Science.gov

Sample records for acidic remineralization model

  1. Biomimetic remineralization of dentin

    PubMed Central

    Niu, Li-na; Zhang, Wei; Pashley, David H.; Breschi, Lorenzo; Mao, Jing; Chen, Ji-hua; Tay, Franklin R.

    2013-01-01

    Objectives Remineralization of demineralized dentin is important for improving dentin bonding stability and controlling primary and secondary caries. Nevertheless, conventional dentin remineralization strategy is not suitable for remineralizing completely-demineralized dentin within hybrid layers created by etch-and-rinse and moderately aggressive self-etch adhesive systems, or the superficial part of a caries-affected dentin lesion left behind after minimally invasive caries removal. Biomimetic remineralization represents a different approach to this problem by attempting to backfill the demineralized dentin collagen with liquid-like amorphous calcium phosphate nanoprecursor particles that are stabilized by biomimetic analogs of noncollagenous proteins. Methods This paper reviewed the changing concepts in calcium phosphate mineralization of fibrillar collagen, including the recently discovered, non-classical particle-based crystallization concept, formation of polymer-induced liquid- precursors (PILP), experimental collagen models for mineralization, and the need for using phosphate-containing biomimetic analogs for biomimetic mineralization of collagen. Published work on the remineralization of resin-dentin bonds and artificial caries-like lesions by various research groups was then reviewed. Finally, the problems and progress associated with the translation of a scientifically-sound concept into a clinically-applicable approach are discussed. Results and Significance The particle-based biomimetic remineralization strategy based on the PILP process demonstrates great potential in remineralizing faulty hybrid layers or caries-like dentin. Based on this concept, research in the development of more clinically feasible dentin remineralization strategy, such as incorporating poly(anionic) acid-stabilized amorphous calcium phosphate nanoprecursor-containing mesoporous silica nanofillers in dentin adhesives, may provide a promising strategy for increasing of the

  2. Remineralizing agents: effects on acid-softened enamel.

    PubMed

    Porcelli, H Bp; Maeda, F A; Silva, B R; Miranda, W G; Cardoso, P Ec

    2015-01-01

    This study sought to evaluate whether remineralizing toothpastes can protect acid-softened enamel against further erosive episodes. Fifty enamel slabs of bovine teeth with preformed erosion-like lesions were randomly assigned to 1 control and 4 experimental groups (n = 10): group 1, nanohydroxyapatite (nanoHAp) dentifrice; group 2, arginine and calcium carbonate (CaCO3) dentifrice; group 3, potassium nitrate (KNO3) and high-fluoride (F) availability dentifrice; group 4, ordinary fluoridated dentifrice (OFD); and group 5, control (deionized water). Initial hardness measurements were taken after the different treatments were applied. Statistically significant mineral gains of 8.0% and 10.0% were exhibited in groups 1 and 4, respectively. Groups 2 and 3 showed mineral gains of 4.5% and 2.1%, respectively; these were not statistically significant. Group 5 showed mineral loss (-11.8%). A 1-way analysis of variance showed no statistically significant differences in the mean microhardness values among groups. However, there are indications that the nanoHAp and OFD toothpastes may decrease erosive lesions after treatment, while the arginine + CaCO3 and KNO3 + F pastes may prevent the progression of erosive lesions.

  3. Phosphoric acid esters cannot replace polyvinylphosphonic acid as phosphoprotein analogs in biomimetic remineralization of resin-bonded dentin

    PubMed Central

    Mai, Sui; Kim, Young Kyung; Toledano, Manuel; Breschi, Lorenzo; Ling, Jun Qi; Pashley, David H.; Tay, Franklin R.

    2009-01-01

    Polyvinylphosphonic acid (PVPA), a biomimetic analog of phosphoproteins, is crucial for recruiting polyacrylic acid (PAA)-stabilized amorphous calcium phosphate nanoprecursors during biomimetic remineralization of dentin collagen matrices. This study tested the null hypothesis that phosphoric acid esters of methacrylates in dentin adhesives cannot replace PVPA during bimimetic remineralization of resin-dentin interfaces. Human dentin specimens were bonded with: I) XP Bond, an etch-and-rinse adhesive using moist bonding; II) XP Bond using dry bonding; and III) Adper Prompt L-Pop, a self-etching adhesive. The control medium contained only set Portland cement and a simulated body fluid (SBF) without any biomimetic analog. Two experimental Portland cement/SBF remineralization media were evaluated: the first contained PAA as the sole biomimetic analog, the second contained PAA and PVPA as dual biomimetic analogs. No remineralization of the resin-dentin interfaces could be identified from specimens immersed in the control medium. After 2–4 months in the first experimental medium, specimens exhibited either no remineralization or large crystal formation within hybrid layers. Only specimens immersed in the second remineralization medium produced nanocrystals that accounted for intrafibrillar remineralization within hybrid layers. The null hypothesis could not be rejected; phosphoric acid esters in dentin adhesives cannot replace PVPA during biomimetic remineralization of adhesive-bonded dentin. PMID:19481792

  4. Effect of acid-etching on remineralization of enamel white spot lesions.

    PubMed

    Al-Khateeb, S; Exterkate, R; Angmar-Månsson, B; ten Cate, J M; ten Cate, B

    2000-02-01

    This in vitro study aimed at investigating whether full remineralization would occur in white spot lesions when the surface porosity was increased by acid-etching. The effect of fluoride was also investigated. Enamel blocks with in vitro produced white spot lesions were used. Group A was exposed to a remineralizing solution only. In group B, the lesions were etched with 35% phosphoric acid for 30 s, then treated as in group A. Group C was treated as group A + daily treatment with a fluoride toothpaste slurry (1,000 ppm) for 5 min. Group D was treated as group B + the daily fluoride treatment of group C. The remineralization was measured weekly with Quantitative Light-induced Fluorescence during the experimental period. After 10 weeks of remineralization, mineral profiles were assessed with transverse microradiography. The enamel fluorescence was partly regained. There were significant differences in the lesion depth, mineral content at the surface layer, and integrated mineral loss between the groups. Addition of fluoride accelerated the remineralization only in the beginning; in later stages the process leveled out and even reached a plateau in all the groups. It was concluded that full remineralization was not achieved by etching, by the addition of fluoride, nor by the combination of both treatments in this in vitro study.

  5. In vitro remineralization of acid-etched human enamel with Ca 3SiO 5

    NASA Astrophysics Data System (ADS)

    Dong, Zhihong; Chang, Jiang; Deng, Yan; Joiner, Andrew

    2010-02-01

    Bioactive and inductive silicate-based bioceramics play an important role in hard tissue prosthetics such as bone and teeth. In the present study, a model was established to study the acid-etched enamel remineralization with tricalcium silicate (Ca 3SiO 5, C 3S) paste in vitro. After soaking in simulated oral fluid (SOF), Ca-P precipitation layer was formed on the enamel surface, with the prolonged soaking time, apatite layer turned into density and uniformity and thickness increasingly from 250 to 350 nm for 1 day to 1.7-1.9 μm for 7 days. Structure of apatite crystals was similar to that of hydroxyapatite (HAp). At the same time, surface smoothness of the remineralized layer is favorable for the oral hygiene. These results suggested that C 3S treated the acid-etched enamel can induce apatite formation, indicating the biomimic mineralization ability, and C 3S could be used as an agent of inductive biomineralization for the enamel prosthesis and protection.

  6. Evaluation of antibacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model

    PubMed Central

    Li, Fang; Wang, Ping; Weir, Michael D.; Fouad, Ashraf F.; Xu, Hockin H. K.

    2014-01-01

    Antibacterial and remineralizing dental composites and adhesives were recently developed to inhibit biofilm acids and combat secondary caries. It is not clear what effect these materials will have on dental pulps in vivo. The objectives of this study were to investigate the antibacterial and remineralizing restorations in a rat tooth cavity model, and determine pulpal inflammatory response and tertiary dentin formation. Nanoparticles of amorphous calcium phosphate (NACP) and antibacterial dimethylaminododecyl methacrylate (DMADDM) were synthesized and incorporated into a composite and an adhesive. Occlusal cavities were prepared in the first molars of rats and restored with four types of restoration: Control composite and adhesive; control plus DMADDM; control plus NACP; and control plus both DMADDM and NACP. At 8 or 30 days (d), rat molars were harvested for histological analysis. For inflammatory cell response, regardless of time periods, NACP group and DMADDM+NACP group showed lower scores (better biocompatibility) than control group (p = 0.014 for 8 d, p = 0.018 for 30 d). For tissue disorganization, NACP and DMADDM+NACP had better scores than control (p = 0.027) at 30 d. At 8 d, restorations containing NACP had tertiary dentin thickness (TDT) that was 5-6 fold that of control. At 30 d, restorations containing NACP had TDT that was 4-6 fold that of control. In conclusion, novel antibacterial and remineralizing restorations were tested in rat teeth in vivo for the first time. Composite and adhesive containing NACP and DMADDM exhibited milder pulpal inflammation and much greater tertiary dentin formation, than control adhesive and composite. Therefore, the novel composite and adhesive containing NACP and DMADDM are promising as a new therapeutic restorative system to not only combat oral pathogens and biofilm acids as shown previously, but also facilitate the healing of the dentin-pulp complex. PMID:24583320

  7. A simple model for the effect of flouride ions on remineralization of partly demineralized tooth enamel

    NASA Astrophysics Data System (ADS)

    Christoffersen, J.; Christoffersen, M. R.; Arends, J.

    1984-06-01

    A model is presented for remineralization of partly demineralized tooth enamel, taking the effect of the presence of fluoride ions into account. The model predicts that, in the absence of precipitation of other phases than calcium hydroxyapatite (HAP) and fluroridized HAP, which are assumed to model enamel, there exists a maximum value of the fluoride concentration gradient, above which lesions cannot be successfully repaired.

  8. Effect of CPP-ACP on the remineralization of acid-eroded human tooth enamel: nanomechanical properties and microtribological behaviour study

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Zheng, J.; Zhang, Y. F.; Qian, L. M.; Zhou, Z. R.

    2013-10-01

    Casein phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) has been used to enhance tooth remineralization in the dental clinic. But the contribution of CPP-ACP to the remineralization of acid-eroded human tooth enamel is of widespread controversy. To confirm the application potential of CPP-ACP in the remineralization repair of tooth erosion caused by acid-attack, the effect of remineralization in vitro in 2% w/v CPP-ACP solution on the acid-eroded human tooth enamel was investigated in this study. The repair of surface morphology and the improvement of nanomechanical and microtribological properties were characterized with laser confocal scanning microscope, scanning electron microscope, nanoindentation tester and nanoscratch tester. Results showed that a layer of uneven mineral deposits, which were mainly amorphous calcium phosphate (ACP) in all probability, was observed on the acid-eroded enamel surface after remineralization. Compared with the acid-eroded enamel surface, the nanoindentation hardness and Young's modulus of the remineralized enamel surface obviously increased. Both the friction coefficient and wear volume of the acid-eroded enamel surface decreased after remineralization. However, both the nanomechanical and the anti-wear properties of the remineralized enamel surface were still inferior to those of original enamel surface. In summary, tooth damage caused by acid erosion could be repaired by remineralization in CPP-ACP solution, but the repair effect, especially on the nanomechanical and anti-wear properties of the acid-eroded enamel, was limited. These results would contribute to a further exploration of the remineralization potential of CPP-ACP and a better understanding of the remineralization repair mechanism for acid-eroded human tooth enamel.

  9. Regional variability in particulate organic matter remineralization depths: an optimization and sensitivity study using a fast Earth system model

    NASA Astrophysics Data System (ADS)

    Wilson, Jamie; Barker, Stephen; Ridgwell, Andy

    2015-04-01

    Nutrient distributions and atmospheric CO2 concentrations are sensitive to changes in the global average depth of particulate organic matter (POM) remineralization in models. Model optimization studies have used this sensitivity to find global mean remineralization depths that result in the statistically best fit to tracer observations such as phosphate (PO4). However, recent global syntheses of sediment trap data have started to suggest the existence of significant spatial variability in the depth of POM remineralization. A number of hypothetical mechanisms have been proposed to explain this variability invoking a wide range of feedbacks on atmospheric CO2. Progress has been hindered by the relatively low sampling density of sediment trap data. In response to this, we explore whether there is an optimal set of regionally variable remineralization depths in an Earth system model that best fits observed PO4 fields and how robust these solutions are. We develop a new computationally fast phosphorous-only version of the Earth system model GENIE using a transport matrix to represent steady-state circulation. The ocean is divided into 15 biogeochemical biomes within which the remineralization depth is an independent parameter. Latin hypercube sampling is used to produce an ensemble of runs that efficiently sample across the range of potential combinations of remineralization depths, producing probability distributions for each region. Despite sensitivity to the global remineralization depth, we find that PO4 is actually relatively insensitive to regional changes in remineralization. An optimal combination of remineralization depths in the Atlantic is found that predicts deeper remineralization in the low latitudes and shallower at high latitudes, matching sediment trap observations. Shallow remineralization is also predicted in the North Pacific. However, remineralization depths in the Southern Ocean, South and Equatorial Pacific, and Indian Ocean cannot be successfully

  10. Poly (amido amine) and nano-calcium phosphate bonding agent to remineralize tooth dentin in cyclic artificial saliva/lactic acid.

    PubMed

    Liang, Kunneng; Weir, Michael D; Reynolds, Mark A; Zhou, Xuedong; Li, Jiyao; Xu, Hockin H K

    2017-03-01

    The objectives of this study were to develop a novel method to remineralize dentin lesions, and investigate the remineralization effects of poly (amido amine) (PAMAM) dendrimer plus a bonding agent with nanoparticles of amorphous calcium phosphate (NACP) in a cyclic artificial saliva/lactic acid environment for the first time. Dentin lesions were produced via phosphoric acid. Four groups were tested: (1) dentin control, (2) dentin with PAMAM, (3) dentin with NACP bonding agent, and (4) dentin with PAMAM plus NACP bonding agent. Specimens were treated with cyclic artificial saliva/lactic acid. The remineralized dentin was examined using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), hardness and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). NACP bonding agent yielded a dentin shear bond strength similar to commercial controls (Prime & Bond NT, Dentsply; Scotchbond Multi-purpose, 3M) (p>0.1). Increasing NACP in bonding agent from 0 to 40% did not affect bond strength. NACP bonding agent neutralized the acid and released Ca ions with concentrations of 4 to 20mmol/L, and P ions of 2 to 9mmol/L. PAMAM or NACP bonding agent alone achieved slight remineralization. The PAMAM+NACP group achieved the greatest dentin remineralization p<0.05). At 20days, PAMAM+NACP increased the hardness of pre-demineralized dentin to reach the normal dentin hardness (p>0.1). In conclusion, superior remineralization of PAMAM+NACP bonding agent was demonstrated for the first time. PAMAM+NACP bonding agent induced dentin remineralization under acid challenge, when conventional remineralization methods such as PAMAM alone did not work well. The novel PAMAM+NACP bonding agent method is promising to improve the longevity of resin-dentin bonds, inhibit caries, and protect teeth.

  11. Modeled diversity effects on microbial ecosystem functions of primary production, nutrient uptake, and remineralization.

    PubMed

    Goebel, Nicole L; Edwards, Christopher A; Follows, Michael J; Zehr, Jonathan P

    2014-01-01

    Ecosystem-wide primary productivity generally increases with primary producer diversity, emphasizing the importance of diversity for ecosystem function. However, most studies that demonstrate this positive relationship have focused on terrestrial and aquatic benthic systems, with little attention to the diverse marine pelagic primary producers that play an important role in regulating global climate. Here we show how phytoplankton biodiversity enhances overall marine ecosystem primary productivity and other ecosystem functions using a self-organizing ecosystem model. Diversity manipulation numerical experiments reveal positive, asymptotically saturating relationships between ecosystem-wide phytoplankton diversity and functions of productivity, nutrient uptake, remineralization, and diversity metrics used to identify mechanisms shaping these relationships. Increase in productivity with increasing diversity improves modeled ecosystem stability and model robustness and leads to productivity rates that exceed expected yields primarily through niche complementarity and facilitative interactions between coexisting phytoplankton types; the composition of traits in assemblages determines the magnitude of complementarity and selection effects. While findings based on these aggregate measures of diversity effects parallel those from the majority of experimental outcomes of terrestrial and benthic biodiversity-ecosystem function studies, we combine analyses of community diversity effects and investigations of the underlying interactions among phytoplankton types to demonstrate how an increase in recycled production of non-diatoms through an increase in new production of diatoms drives this diversity-cosystem function response. We demonstrate the important role that facilitation plays in the modeled marine plankton and how this facilitative interaction could amplify future climate-driven changes in ocean ecosystem productivity.

  12. Polydopamine-induced tooth remineralization.

    PubMed

    Zhou, Yun-Zhi; Cao, Ying; Liu, Wei; Chu, Chun Hung; Li, Quan-Li

    2012-12-01

    Inspired by mussel bioadhesion in nature, dopamine is extensively used for biomaterial surface modification. In this study, we coated dopamine on demineralized enamel and dentin surfaces to evaluate the effect of polydopamine coating on dental remineralization. Dental slices containing enamel and dentin were first etched with 37% phosphoric acid for 2 min, followed by immersion in a 2 mg/mL freshly prepared solution of dopamine (10 mM Tris buffer, pH 8.5) for approximately 24 h at room temperature in the dark to obtain polydopamine coating. Then, the dental slices with and without polydopamine coating were immersed in the supersaturated solution of calcium and phosphate at 37 °C for 2 and 7 days. The supersaturated solution of calcium and phosphate was refreshed each day. The precipitates were characterized by SEM, XRD, FTIR, microhardness, and nanoscratch analyses. No significant difference was observed in the remineralization of enamel whether it was coated with polydopamine or not. However, a significant difference was found in dentin remineralization between dentin with and without polydopamine coating. Polydopamine coating remarkably promoted demineralized dentin remineralization, and all dentin tubules were occluded by densely packed hydroxyapatite crystals. Thus, coating polydopamine on dental tissue surface may be a simple universal technique to induce enamel and dentin remineralization simultaneously.

  13. Influence of nutrient utilization and remineralization stoichiometry on phytoplankton species and carbon export: A modeling study at BATS

    NASA Astrophysics Data System (ADS)

    Salihoglu, B.; Garçon, V.; Oschlies, A.; Lomas, M. W.

    2008-01-01

    The primary objective of this research is to understand the underlying mechanisms of the time-varying flux of carbon in the Sargasso Sea. To address this objective, a one-dimensional multi-component lower trophic level ecosystem model that includes detailed algal physiology as well as nutrient cycles is used at the Bermuda Atlantic Time-series Study (BATS, 31∘40'N, 64∘10'W) site. In this model autotrophic growth is represented by three algal groups and the cell quota approach is used to estimate algal growth and nutrient uptake. This model is tested and evaluated for year 1998 using the bimonthly BATS cruise data. Results show that phosphorus and dissolved organic matter (DOM) are necessary compartments to correctly simulate organic elemental cycles at the BATS site. Model results show that autotrophic eukaryotes and cyanobacteria (i.e. Prochlorococcus and Synechococcus) are the most abundant algal groups and are responsible for 63% and 33% of carbon production in the region, respectively. Sensitivity analyses show that the annual contribution of nitrogen fixation and atmospheric nitrogen deposition to new production is approximately 9% and 3%, respectively. However, the recycled nitrogen and phosphorus are important components of the ecosystem dynamics because sustained growth of algal groups depends on remineralized nutrients which accounts for 75% of the annual carbon production. Nutrient uptake and remineralization stoichiometry can play an important role in determining the surface ocean nutrient distribution. Model results suggest phosphate limitation even during the spring bloom. Phosphate may thus limit the growth of all algal groups throughout the year.

  14. Remineralization of caries lesions extending into dentin.

    PubMed

    ten Cate, J M

    2001-05-01

    Remineralization is one aspect of the overall process of tooth decay. However, it is primarily studied in shallow lesions. The aim of this study was to explore whether caries lesions in enamel and extending into the dentin can be remineralized. A single-section model was developed for the longitudinal and non-destructive monitoring of changes in enamel and dentin. Lesions at least 200 microm into dentin were formed in undersaturated acetate buffers. Next, the lesions were divided into groups (three treatment and one control) and remineralized. The treatments were: weekly immersion in 1,000 ppm fluoride, single treatment with methanehydroxybisphosphonate, and a constant level of 1 ppm fluoride. De- and remineralization was assessed by transverse microradiography. Remineralization was observed in enamel, but also in dentin, indicating that, deep into dentin, the pores become supersaturated to apatite formation. Treatments affected remineralization only in the outer part of enamel. Both findings are explained by a relatively fast diffusion of mineral ions, with precipitation being rate-limiting. The results suggest that dentin remineralization, underneath enamel, can be achieved and could possibly be used in clinical treatment strategies.

  15. Remineralization of Demineralized Enamel via Calcium Phosphate Nanocomposite

    PubMed Central

    Weir, M.D.; Chow, L.C.; Xu, H.H.K.

    2012-01-01

    Secondary caries remains the main problem limiting the longevity of composite restorations. The objective of this study was to investigate the remineralization of demineralized human enamel in vitro via a nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP). NACP were synthesized by a spray-drying technique and incorporated into a dental resin. First, caries-like subsurface enamel lesions were created via an acidic solution. Then, NACP nanocomposite or a commercial fluoride-releasing control composite was placed on the demineralized enamel, along with control enamel without a composite. These specimens were then treated with a cyclic demineralization/remineralization regimen for 30 days. Quantitative microradiography showed typical enamel subsurface demineralization before cyclic demineralization/remineralization treatment, and significant remineralization in enamel under the NACP nanocomposite after the demineralization/remineralization treatment. The NACP nanocomposite had the highest enamel remineralization (mean ± SD; n = 6) of 21.8 ± 3.7%, significantly higher than the 5.7 ± 6.9% for fluoride-releasing composite (p < 0.05). The enamel group without composite had further demineralization of −26.1 ± 16.2%. In conclusion, a novel NACP nanocomposite was effective in remineralizing enamel lesions in vitro. Its enamel remineralization was 4-fold that of a fluoride-releasing composite control. Combined with the good mechanical and acid-neutralization properties reported earlier, the new NACP nanocomposite is promising for remineralization of demineralized tooth structures. PMID:22933607

  16. Dose-response effects of zinc and fluoride on caries lesion remineralization.

    PubMed

    Lippert, F

    2012-01-01

    The present mechanistic in vitro study aimed to investigate dose-response effects of zinc and fluoride on caries lesion remineralization and subsequent protection from demineralization. Artificial caries lesions were created using a methylcellulose acid gel system. Lesions were remineralized for 2 weeks using citrate-containing artificial saliva which was supplemented with zinc (0-153 μmol/l) and fluoride (1.1 or 52.6 μmol/l) in a 7 × 2 factorial design. Lesions were also remineralized in the absence of zinc and citrate, but in the presence of fluoride. After remineralization, all lesions were demineralized for 1 day under identical conditions. Changes in mineral distribution characteristics of caries lesions after remineralization and secondary demineralization were studied using transverse microradiography. At 1.1 μmol/l fluoride, zinc exhibited detrimental effects on remineralization in a dose-response manner and mainly by preventing remineralization near the lesion surface. At 52.6 μmol/l fluoride, zinc retarded remineralization only at the highest concentration tested. Zinc enhanced overall remineralization at 3.8-15.3 μmol/l. At 76.5 and less so at 153 μmol/l, zinc showed extensive remineralization of deeper parts within the lesions at the expense of remineralization near the surface. Citrate did not interfere with remineralization at 1.1 μmol/l fluoride, but enhanced remineralization at 52.6 μmol/l fluoride. Lesions exhibiting preferential remineralization in deeper parts showed higher mineral loss after secondary demineralization, suggesting the formation of more soluble mineral phases during remineralization. In summary, zinc and fluoride showed synergistic effects in enhancing lesion remineralization, however only at elevated fluoride concentrations.

  17. Box-modeling of the impacts of atmospheric nitrogen deposition and benthic remineralization on the nitrogen cycle of the eastern tropical South Pacific

    NASA Astrophysics Data System (ADS)

    Su, B.; Pahlow, M.; Oschlies, A.

    2015-09-01

    Both atmospheric deposition and benthic remineralization influence the marine nitrogen cycle, and hence ultimately also marine primary production. The biological and biogeochemical relations of the eastern tropical South Pacific (ETSP) to nitrogen deposition, benthic denitrification and phosphate regeneration are analysed in a prognostic box model of the oxygen, nitrogen and phosphorus cycles in the ETSP. In the model, atmospheric nitrogen deposition based on estimates for the years 2000-2009 is offset by half by reduced N2 fixation, with the other half transported out of the model domain. Both model- and data-based benthic denitrification are found to trigger nitrogen fixation, partly compensating for the NO3- loss. Since phosphate is the ultimate limiting nutrient in the model, enhanced sedimentary phosphate regeneration under suboxic conditions stimulates primary production and subsequent export production and NO3- loss in the oxygen minimum zone (OMZ). A sensitivity analysis of the local response to both atmospheric deposition and benthic remineralization indicates dominant stabilizing feedbacks in the ETSP, which tend to keep a balanced nitrogen inventory, i.e., nitrogen input by atmospheric deposition is counteracted by decreasing nitrogen fixation; NO3- loss via benthic denitrification is partly compensated by increased nitrogen fixation; enhanced nitrogen fixation stimulated by phosphate regeneration is partly removed by the stronger water-column denitrification. Even though the water column in our model domain acts as a NO3- source, the ETSP including benthic denitrification might become a NO3- sink.

  18. Functional biomimetic analogs help remineralize apatite-depleted demineralized resin-infiltrated dentin via a bottom-up approach.

    PubMed

    Kim, Jongryul; Arola, Dwayne D; Gu, Lisha; Kim, Young Kyung; Mai, Sui; Liu, Yan; Pashley, David H; Tay, Franklin R

    2010-07-01

    Natural biominerals are formed through metastable amorphous precursor phases via a bottom-up, nanoparticle-mediated mineralization mechanism. Using an acid-etched human dentin model to create a layer of completely demineralized collagen matrix, a bio-inspired mineralization scheme has been developed based on the use of dual biomimetic analogs. These analogs help to sequester fluidic amorphous calcium phosphate nanoprecursors and function as templates for guiding homogeneous apatite nucleation within the collagen fibrils. By adopting this scheme for remineralizing adhesive resin-bonded, completely demineralized dentin, we have been able to redeposit intrafibrillar and extrafibrillar apatites in completely demineralized collagen matrices that are imperfectly infiltrated by resins. This study utilizes a spectrum of completely and partially demineralized dentin collagen matrices to further validate the necessity for using a biomimetic analog-containing medium for remineralizing resin-infiltrated partially demineralized collagen matrices in which remnant seed crystallites are present. In control specimens in which biomimetic analogs are absent from the remineralization medium, remineralization could only be seen in partially demineralized collagen matrices, probably by epitaxial growth via a top-down crystallization approach. Conversely, in the presence of biomimetic analogs in the remineralization medium, intrafibrillar remineralization of completely demineralized collagen matrices via a bottom-up crystallization mechanism can additionally be identified. The latter is characterized by the transition of intrafibrillar minerals from an inchoate state of continuously braided microfibrillar electron-dense amorphous strands to discrete nanocrystals, and ultimately into larger crystalline platelets within the collagen fibrils. Biomimetic remineralization via dual biomimetic analogs has the potential to be translated into a functional delivery system for salvaging failing

  19. Reactive-transport modeling of iron diagenesis and associated organic carbon remineralization in a Florida (USA) subterranean estuary

    USGS Publications Warehouse

    Roy, Moutusi; Martin, Jonathan B.; Smith, Christopher G.; Cable, Jaye E.

    2011-01-01

    Iron oxides are important terminal electron acceptors for organic carbon (OC) remineralization in subterranean estuaries, particularly where oxygen and nitrate concentrations are low. In Indian River Lagoon, Florida, USA, terrestrial Fe-oxides dissolve at the seaward edge of the seepage face and flow upward into overlying marine sediments where they precipitate as Fe-sulfides. The dissolved Fe concentrations vary by over three orders of magnitude, but Fe-oxide dissolution rates are similar across the 25-m wide seepage face, averaging around 0.21 mg/cm2/yr. The constant dissolution rate, but differing concentrations, indicate Fe dissolution is controlled by a combination of increasing lability of dissolved organic carbon (DOC) and slower porewater flow velocities with distance offshore. In contrast, the average rate constants of Fe-sulfide precipitation decrease from 21.9 × 10-8 s-1 to 0.64 × 10-8 s-1 from the shoreline to the seaward edge of the seepage face as more oxygenated surface water circulates through the sediment. The amount of OC remineralized by Fe-oxides varies little across the seepage face, averaging 5.34 × 10-2 mg/cm2/yr. These rates suggest about 3.4 kg of marine DOC was remineralized in a 1-m wide, shore-perpendicular strip of the seepage face as the terrestrial sediments were transgressed over the past 280 years. During this time, about 10 times more marine solid organic carbon (SOC) accumulated in marine sediments than were removed from the underlying terrestrial sediments. Indian River Lagoon thus appears to be a net sink for marine OC.

  20. Quantitative examination of demineralized and remineralized dental lesions using photothermal radiometry and modulated luminescence

    NASA Astrophysics Data System (ADS)

    Hellen, Adam; Mandelis, Andreas; Finer, Yoav; Amaechi, Bennett

    2010-02-01

    The development of photothermal techniques to detect thermal waves in biological tissue has occurred with a concomitant advancement in the extraction of material thermophysical properties and knowledge regarding the internal structure of a medium. Human molars (n=37) were subjected to demineralization in acid gel (pH 4.5, 10 days), followed by incubation in different fluoride-containing remineralization solutions. PTR-LUM frequency scans (1 Hz - 1 kHz) were performed prior to and during demineralization and remineralization treatments. Transverse Micro-Radiography (TMR) analysis followed at treatment conclusion. A coupled diffuse-photon-density-wave and thermal-wave theoretical model was used to quantitatively evaluate changes in thermal and optical properties of sound, demineralized and remineralized enamel. Amplitude increase and phase lag decrease in demineralized samples were consistent with higher scatter of the diffuse-photon density field and thermal wave confinement to near-surface regions. A remineralized sample illustrates a complex interplay between surface and subsurface processes, confining the thermal-wave centroid toward the dominating layer. PTR-LUM sensitivity to changes in tooth mineralization coupled with optical and thermal property extraction illustrates the technique's potential for non-destructive evaluation of multi-layered turbid media.

  1. Remineralization of artificial dentinal caries lesions by biomimetically modified Mineral Trioxide Aggregate

    PubMed Central

    Qi, Yi-pin; Li, Nan; Niu, Li-na; Primus, Carolyn M.; Ling, Jun-Qi; Pashley, David H.; Tay, Franklin R.

    2011-01-01

    Fluoride-releasing restorative materials are available for remineralization of enamel and root caries. However, dentin remineralization is more difficult than enamel remineralization due to the paucity of apatite seed crystallites along the lesion surface for heterogeneous crystal growth. Extracellular matrix proteins play critical roles in controlling apatite nucleation/growth in collagenous tissues. This study examined the remineralization efficacy of mineral trioxide aggregate (MTA) in phosphate-containing simulated body fluid (SBF) by incorporating polyacrylic acid and sodium tripolyphosphate as biomimetic analogs of matrix proteins for remineralizing caries-like dentin. Artificial caries-like dentin lesions incubated in SBF were remineralized over a 6-week period using MTA or MTA containing biomimetic analogs in the absence or presence of dentin adhesive application. Lesion depths and integrated mineral loss were monitored with micro-computed tomography. Ultrastructure of baseline and remineralized lesions were examined by transmission electron microscopy. Dentin remineralization was best achieved using MTA containing biomimetic analogs regardless of whether an adhesive was applied; dentinal tubules within the remineralized dentin were occluded by apatite. It is concluded that the MTA version employed in the study may be doped with biomimetic analogs for remineralization of unbonded and bonded artificial caries-like lesions in the presence of SBF. PMID:22085925

  2. Zinc induces apatite and scholzite formation during dentin remineralization.

    PubMed

    Osorio, R; Osorio, E; Cabello, I; Toledano, M

    2014-01-01

    The aim of this study was to ascertain whether zinc may improve the repair ability of demineralized dentin. Dentin disks were demineralized by phosphoric acid during 15 s and immersed in artificial saliva, remineralizing solution, a zinc chloride solution and a zinc oxide solution. Dentin specimens were analyzed after 24 h and 1 month of storage. Surface morphology was assessed by atomic force and scanning electron microscopy, mechanical properties were analyzed by nanohardness testing in a TriboIndenter, and chemical changes at the surfaces were determined by X-ray diffraction, Raman and energy-dispersive elemental analyses. After phosphoric acid application, dentin was only partially demineralized. Demineralized dentin was remineralized after 24 h of storage in any of the tested solutions (nanohardness increased and hydroxylapatite formation was detected by Raman). Remineralization was maintained up to 1 month in dentin stored in remineralizing solution, zinc chloride and zinc oxide. Zinc and phosphate were important for hydroxylapatite homeostasis. Scholzite formation was encountered in dentin stored in zinc-containing solutions. Zinc might allow to reach the balance between dentin demineralization and remineralization processes.

  3. Assessing the sensitivity of modeled air-sea CO2 exchange to the remineralization depth of particulate organic and inorganic carbon

    NASA Astrophysics Data System (ADS)

    Schneider, Birgit; Bopp, Laurent; Gehlen, Marion

    2008-09-01

    To assess the sensitivity of surface ocean pCO2 and air-sea CO2 fluxes to changes in the remineralization depth of particulate organic and inorganic carbon (POC, PIC), a biogeochemical ocean circulation model (PISCES) was run with different parameterizations for vertical particle fluxes. On the basis of fluxes of POC and PIC, productivity, export, and the distributions of nitrogen (NO3), dissolved inorganic carbon (DIC), and alkalinity, a number of indices defined to estimate the efficiency of carbon transport away from the atmosphere are applied. With differing success for the respective indices the results show that the more efficient the vertical transport of organic carbon toward depth, the lower the surface ocean pCO2, the higher the air-sea CO2 flux, and the stronger the increase in the oceanic inventory of DIC. Along with POC flux it is important to consider variations in PIC flux, as the net effect of particle flux reorganizations on surface ocean pCO2 is a combination of changes in DIC and alkalinity. The results demonstrate that changes in the mechanistic formulation of vertical particle fluxes have direct and indirect effects on surface ocean pCO2 and may thus interact with the atmospheric CO2 reservoir.

  4. Can Caries-Affected Dentin be Completely Remineralized by Guided Tissue Remineralization?

    PubMed Central

    Dai, Lin; Liu, Yan; Salameh, Ziad; Khan, Sara; Mao, Jing; Pashley, David H.; Tay, Franklin R.

    2011-01-01

    Introduction To date, there is no evidence that conventional remineralization techniques using calcium and phosphate ion- containing media will completely remineralize carious lesions in regions where remnant apatite seed crystallites are absent. Conversely, guided tissue remineralization using biomimetic analogs of dentin matrix proteins is successful in remineralizing thin layers of completely demineralized dentin. The hypothesis Conventional remineralization strategy depends on epitaxial growth over existing apatite crystallites. If there are no or few crystallites, there will be no remineralization. Guided tissue remineralization uses biomimetic analogs of dentin matrix proteins to introduce sequestered amorphous calcium phosphate nanoprecursors into the internal water compartments of collagen fibrils. Attachment of templating analogs of matrix phosphoproteins to the collagen fibrils further guided the nucleation and growth of apatite crystallites within the fibril. Such a strategy is independent of apatite seed crystallites. Our hypothesis is that 250–300 microns thick artificial carious lesions can be completely remineralized in vitro by guide tissue remineralization but not by conventional remineralization techniques. Evaluation of the hypothesis Validation of the hypothesis will address the critical barrier to progress in remineralization of caries- affected dentin and shift existing paradigms by providing a novel method of remineralization based on a nanotechnology-based bottom-up approach. This will also generate important information to support the translation of the proof-of-concept biomimetic strategy into a clinically-relevant delivery system for remineralizing caries-affected dentin created by micro-organisms in the oral cavity. PMID:21909477

  5. Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite

    PubMed Central

    Zhang, Ke; Cheng, Lei; Weir, Michael D; Bai, Yu-Xing; Xu, Hockin HK

    2016-01-01

    Composites containing nanoparticles of amorphous calcium phosphate (NACP) remineralize tooth lesions and inhibit caries. A recent study synthesized quaternary ammonium methacrylates (QAMs) with chain lengths (CLs) of 3–18 and determined their effects on a bonding agent. This study aimed to incorporate these QAMs into NACP nanocomposites for the first time to simultaneously endow the material with antibacterial and remineralizing capabilities and to investigate the effects of the CL on the mechanical and biofilm properties. Five QAMs were synthesized: DMAPM (CL3), DMAHM (CL6), DMADDM (CL12), DMAHDM (CL16), and DMAODM (CL18). Each QAM was incorporated into a composite containing 20% NACP and 50% glass fillers. A dental plaque microcosm biofilm model was used to evaluate the antibacterial activity. The flexural strength and elastic modulus of nanocomposites with QAMs matched those of a commercial control composite (n = 6; P > 0.1). Increasing the CL from 3 to 16 greatly enhanced the antibacterial activity of the NACP nanocomposite (P < 0.05); further increasing the CL to 18 decreased the antibacterial potency. The NACP nanocomposite with a CL of 16 exhibited biofilm metabolic activity and acid production that were 10-fold lesser than those of the control composite. The NACP nanocomposite with a CL of 16 produced 2-log decreases in the colony-forming units (CFU) of total microorganisms, total streptococci, and mutans streptococci. In conclusion, QAMs with CLs of 3–18 were synthesized and incorporated into an NACP nanocomposite for the first time to simultaneously endow the material with antibacterial and remineralization capabilities. Increasing the CL reduced the metabolic activity and acid production of biofilms and caused a 2-log decrease in CFU without compromising the mechanical properties. Nanocomposites exhibiting strong anti-biofilm activity, remineralization effects, and mechanical properties are promising materials for tooth restorations that inhibit

  6. An in vitro study of the microstructure, composition and nanoindentation mechanical properties of remineralizing human dental enamel

    NASA Astrophysics Data System (ADS)

    Arsecularatne, J. A.; Hoffman, M.

    2014-08-01

    This paper describes the results of an in vitro investigation on the interrelations among microstructure, composition and mechanical properties of remineralizing human dental enamel. Polished enamel samples have been demineralized for 10 min in an acetic acid solution (at pH 3) followed by remineralization in human saliva for 30 and 120 min. Microstructure variations of sound, demineralized and remineralized enamel samples have been analysed using focused ion beam, scanning electron microscopy and transmission electron microscopy, while their compositions have been analysed using energy dispersive x-ray. Variations in the mechanical properties of enamel samples have been assessed using nanoindentation. The results reveal that, under the selected conditions, only partial remineralization of the softened enamel surface layer occurs where some pores remain unrepaired. As a result, while the nanoindentation elastic modulus shows an improvement following remineralization, hardness does not.

  7. Fluorides and non-fluoride remineralization systems.

    PubMed

    Amaechi, Bennett T; van Loveren, Cor

    2013-01-01

    Caries develops when the equilibrium between de- and remineralization is unbalanced favoring demineralization. De- and remineralization occur depending on the degree of saturation of the interstitial fluids with respect to the tooth mineral. This equilibrium is positively influenced when fluoride, calcium and phosphate ions are added favoring remineralization. In addition, when fluoride is present, it will be incorporated into the newly formed mineral which is then less soluble. Toothpastes may contain fluoride and calcium ions separately or together in various compounds (remineralization systems) and may therefore reduce demineralization and promote remineralization. Formulating all these compounds in one paste may be challenging due to possible premature calcium-fluoride interactions and the low solubility of CaF2. There is a large amount of clinical evidence supporting the potent caries preventive effect of fluoride toothpastes indisputably. The amount of clinical evidence of the effectiveness of the other remineralization systems is far less convincing. Evidence is lacking for head to head comparisons of the various remineralization systems.

  8. Shallow Remineralization in the Sargasso Sea Estimated from Seasonal Variations in Oxygen and Dissolved Inorganic Carbon

    NASA Technical Reports Server (NTRS)

    Ono, S.; Ennyu, A.; Najjar, R. G.; Bates, N.

    1998-01-01

    A diagnostic model of the mean annual cycles of dissolved inorganic carbon (DIC) and oxygen below the mixed layer at the Bermuda Atlantic Time-series Study (BATS) site is presented and used to estimate organic carbon remineralization in the seasonal thermocline. The model includes lateral and vertical advection as well as vertical, diffusion. Very good agreement is found for the remineralization estimates based on oxygen and DIC. Net remineralization averaged from mid-spring to early fall is found to be a maximum between 120 and 140 in. Remineralization integrated between 100 (the compensation depth) and 250 m during this period is estimated to be about 1 mol C/sq m. This flux is consistent with independent estimates of the loss of particulate and dissolved organic carbon.

  9. Assessment of remineralized dentin lesions with thermal and near-infrared reflectance imaging

    NASA Astrophysics Data System (ADS)

    Lee, Robert C.; Darling, Cynthia L.; Fried, Daniel

    2016-02-01

    Accurate detection and measurement of the highly mineralized surface layer that forms on caries lesions is important for the diagnosis of lesion activity. Previous studies have demonstrated that optical imaging methods can be used to measure the degree of remineralization on enamel lesions. The purpose of this study was to determine if thermal and near-IR reflectance imaging could be used to assess the remineralization process in simulated dentin lesions. Artificial bovine (n=15) dentin lesions were prepared by immersion in a demineralization solution for 24 hours and they were subsequently placed in an acidic remineralization solution for up to 12 days. The samples were dehydrated using an air spray for 30 seconds and imaged using thermal and InGaAs cameras. The area enclosed by the time-temperature curve, ΔQ, from thermal imaging decreased significantly with longer periods of remineralization. However, near-IR reflectance intensity differences, ΔI, before and after dehydration failed to show any significant relationship with the degree of remineralization. This study shows that thermal imaging can be used for the assessment of the remineralization of dentin lesions.

  10. Assessment of remineralized dentin lesions with thermal and near-infrared reflectance imaging

    PubMed Central

    Lee, Robert C.; Darling, Cynthia L.; Fried, Daniel

    2016-01-01

    Accurate detection and measurement of the highly mineralized surface layer that forms on caries lesions is important for the diagnosis of lesion activity. Previous studies have demonstrated that optical imaging methods can be used to measure the degree of remineralization on enamel lesions. The purpose of this study was to determine if thermal and near-IR reflectance imaging could be used to assess the remineralization process in simulated dentin lesions. Artificial bovine (n=15) dentin lesions were prepared by immersion in a demineralization solution for 24 hours and they were subsequently placed in an acidic remineralization solution for up to 12 days. The samples were dehydrated using an air spray for 30 seconds and imaged using thermal and InGaAs cameras. The area enclosed by the time-temperature curve, ΔQ, from thermal imaging decreased significantly with longer periods of remineralization. However, near-IR reflectance intensity differences, ΔI, before and after dehydration failed to show any significant relationship with the degree of remineralization. This study shows that thermal imaging can be used for the assessment of the remineralization of dentin lesions. PMID:27006522

  11. Enamel demineralization and remineralization under plaque fluid-like conditions: a quantitative light-induced fluorescence study.

    PubMed

    Lippert, F; Butler, A; Lynch, R J M

    2011-01-01

    The present study investigated de- and remineralization in enamel lesions under plaque fluid (PF)-like conditions using quantitative light-induced fluorescence (QLF). Preformed lesions were exposed to partially saturated lactic acid solutions, varying in pH and fluoride concentration ([F]) based on a 5 × 3 factorial study design (0/0.1/0.5/1.5/4 ppm F; pH 4.9/5.2/5.5). Average fluorescence loss (ΔF) was monitored for 11 days. Subsequently, lesions were demineralized in a partially saturated acetic acid solution for two 24-hour periods. Data were analyzed using repeated measures analysis of covariance. Lesions exposed to PF at 4 ppm F and pH 5.5 showed not only the most remineralization (ΔΔF = 28.2 ± 14.0%) for all groups after 11 days, but also the most demineralization (ΔΔF = -19.3 ± 13.5%) after subsequent acetic acid exposure. Increased [F] resulted in more remineralization, regardless of pH. Higher pH values resulted in more remineralization. No remineralization was observed in lesions exposed to F-free solutions, regardless of pH. Remineralization was noticeable under the following conditions: pH 4.9 - [F] = 4 ppm, pH 5.2 - [F] ≥ 1.5 ppm, and pH 5.5 - [F] ≥ 0.5 ppm. Overall, [F] had a stronger effect on remineralization than pH. Subsequent demineralization showed that little protection was offered by PF-like solutions, and further demineralization compared with baseline was observed on lesions not remineralized initially. [F] had a stronger effect on net mineral change than pH. The present study has shown that QLF is a valuable tool in studying lesion de- and remineralization under PF-like conditions, where [F] was shown to be more important than pH.

  12. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries.

    PubMed

    Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin H K

    2015-03-01

    Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining nanoparticles of silver/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry.

  13. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries

    PubMed Central

    Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin HK

    2015-01-01

    Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining NAg/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry. PMID:25723095

  14. The use of sodium trimetaphosphate as a biomimetic analog of matrix phosphoproteins for remineralization of artificial caries-like dentin

    PubMed Central

    Liu, Yan; Li, Nan; Qi, Yipin; Niu, Li-na; Elshafiy, Sally; Mao, Jing; Breschi, Lorenzo; Pashley, David H.; Tay, Franklin R.

    2011-01-01

    Objectives This study examined the use of sodium trimetaphosphate (STMP) as a biomimetic analog of matrix phosphoproteins for remineralization of artificial carious-affected dentin. Methods Artificial carious lesions with lesion depths of 300±30 µm were created by pH-cycling. 2.5% hydrolyzed STMP was applied to the artificial carious lesions to phosphorylate the partially-demineralized collagen matrix. Half of the STMP-treated specimens were bonded with One-Step. The adhesive and non-adhesive infiltrated specimens were remineralized in a Portland cement-simulated body fluid system containing polyacrylic acid (PAA) to stabilize amorphous calcium phosphate as nanoprecursors. Micro-computed tomography (micro-CT) and transmission electron microscopy (TEM) were used to evaluate the results of remineralization after a 4-month period. Results In absence of PAA and STMP as biomimetic analogs (control groups), there was no remineralization irrespective of whether the lesions were infiltrated with adhesive. For the STMP-treated experimental groups immersed in PAA-containing simulated body fluid, specimens without adhesive infiltration were more heavily remineralized than those infiltrated with adhesive. Statistical analysis of the 4-month micro-CT data revealed significant differences in the lesion depth, relative mineral content along the lesion surface and changes in ΔZ between the non-adhesive and adhesive experimental groups (p<0.05 for all the three parameters). TEM examination indicated that collagen degradation occurred in both the non-adhesive and adhesive control and experimental groups after 4 months of remineralization. Significance Biomimetic remineralization using STMP is a promising method to remineralize artificial carious lesions particularly in areas devoid of seed crystallites. Future studies should consider the incorporation of MMP-inhibitors within the partially-demineralized collagen matrix to prevent collagen degradation during remineralization. PMID

  15. Amelogenin-assisted ex vivo remineralization of human enamel: Effects of supersaturation degree and fluoride concentration.

    PubMed

    Fan, Yuwei; Nelson, James R; Alvarez, Jason R; Hagan, Joseph; Berrier, Allison; Xu, Xiaoming

    2011-05-01

    The formation of organized nanocrystals that resemble enamel is crucial for successful enamel remineralization. Calcium, phosphate and fluoride ions, and amelogenin are important ingredients for the formation of organized hydroxyapatite (HAP) crystals in vitro. However, the effects of these remineralization agents on the enamel crystal morphology have not been thoroughly studied. The objective of this study was to investigate the effects of fluoride ions, supersaturation degree and amelogenin on the crystal morphology and organization of ex vivo remineralized human enamel. Extracted third molars were sliced thin and acid-etched to provide the enamel surface for immersion in different remineralization solutions. The crystal morphology and mineral phase of the remineralized enamel surface were analyzed by field emission-scanning electron microscopy, attenuated total reflection-Fourier transformed infrared and X-ray diffraction. The concentration of fluoride and the supersaturation degree of hydroxyapatite had significant effects on the crystal morphology and crystal organization, which varied from plate-like loose crystals to rod-like densely packed nanocrystal arrays. Densely packed arrays of fluoridated hydroxyapatite nanorods were observed under the following conditions: σ(HAP)=10.2±2.0 with 1.5±0.5 mg l(-1) fluoride and 40±10 μg ml(-1) amelogenin, pH 6.8±0.4. A phase diagram summarizes the conditions that form dense or loose hydroxyapatite nanocrystal structures. This study provides the basis for the development of novel dental materials for caries management.

  16. Amelogenin-assisted ex vivo remineralization of human enamel: effects of supersaturation degree and fluoride concentration

    PubMed Central

    Fan, Yuwei; Nelson, James R.; Alvarez, Jason R.; Hagan, Joseph; Berrier, Allison; Xu, Xiaoming

    2011-01-01

    The formation of organized nanocrystals that resemble enamel is crucial for successful enamel remineralization. Calcium, phosphate and fluoride ions and amelogenin are important ingredients for the formation of organized hydroxyapatite (HAP) crystals in vitro. However, the effects of these remineralization agents on the enamel crystal morphology have not been thoroughly studied. The objective of this study was to investigate the effects of fluoride ions, supersaturation degree and amelogenin on the crystal morphology and organization of ex vivo remineralized human enamel. Extracted third molars were sliced thin and acid-etched to provide the enamel surface for immersion in different remineralization solutions. The crystal morphology and mineral phase of the remineralized enamel surface were analyzed by FE-SEM, ATR-FTIR and XRD. The concentration of fluoride and supersaturation degree of hydroxyapatite had significant effects on the crystal morphology and crystal organization, which varied from plate-like loose crystals to rod-like densely packed nanocrystal arrays. Densely packed arrays of fluoridated hydroxyapatite nanorods were observed under the following conditions: σ(HAP) = 10.2±2.0 with fluoride 1.5±0.5 mg/L and amelogenin 40±10 µg/mL, pH 6.8±0.4. A phase diagram summarized the conditions that form dense or loose hydroxyapatite nanocrystal structures. This study provides the basis for the development of novel dental materials for caries management. PMID:21256987

  17. Assessment of the remineralization in simulated enamel lesions via dehydration with near-IR reflectance imaging

    NASA Astrophysics Data System (ADS)

    Lee, Robert C.; Darling, Cynthia L.; Fried, Daniel

    2015-02-01

    Previous studies have demonstrated that near-IR imaging can be used to nondestructively monitor the severity of enamel lesions. Arrested lesions typically have a highly mineralized surface layer that reduces permeability and limits diffusion into the lesion. The purpose of this study was to investigate whether the rate of water loss correlates with the degree of remineralization using near-IR reflectance imaging. Artificial bovine (n=15) enamel lesions were prepared by immersion in a demineralization solution for 24 hours and they were subsequently placed in an acidic remineralization solution for different periods. The samples were dehydrated using an air spray for 30 seconds and surfaces were imaged using an InGaAs camera at 1300-1700 nm wavelengths. Near-IR reflectance intensity differences before and after dehydration decreased with longer periods of remineralization. This study demonstrated that near-IR reflectance imaging was suitable for the detection of remineralization in simulated caries lesions and near-IR wavelengths longer than 1400 nm are well suited for the assessment of remineralization.

  18. Reconsidering remineralization strategies to include nanoparticle hydroxyapatite.

    PubMed

    Kutsch, V Kim; Chaiyabutr, Yada; Milicich, Graeme

    2013-03-01

    Dental caries is a transmissible biofilm-mediated disease of the teeth that is defined by prolonged periods of low pH resulting in net mineral loss from the teeth. Hydroxyapatite, fluorapatite, and the carbonated forms of calcium phosphate form the main mineral content of dental hard tissues: enamel, dentin, and cementum. Active dental caries results when the biofilm pH on the tooth surface drops below the dissolution threshold for hydroxyapatite and fluorapatite. The clinical evidence of this net mineral loss is porosity, whitespot lesions, caries lesions, and/or cavitation. The potential to reverse this mineral loss through remineralization has been well documented, although previous remineralization strategies for dental hard tissues have focused on the use of fluorides and forms of calcium phosphate. This in-vitro study documented the deposition of nanoparticle hydroxyapatite on demineralized enamel surfaces after treatment with an experimental remineralization gel. This finding supports consideration of an additional approach to remineralization that includes pH neutralization strategies and nanoparticle hydroxyapatite crystals.

  19. Enamel alteration following tooth bleaching and remineralization.

    PubMed

    Coceska, Emilija; Gjorgievska, Elizabeta; Coleman, Nichola J; Gabric, Dragana; Slipper, Ian J; Stevanovic, Marija; Nicholson, John W

    2016-06-01

    The purpose of this study was to compare the effects of professional tooth whitening agents containing highly concentrated hydrogen peroxide (with and without laser activation), on the enamel surface; and the potential of four different toothpastes to remineralize any alterations. The study was performed on 50 human molars, divided in two groups: treated with Opalescence(®) Boost and Mirawhite(®) Laser Bleaching. Furthermore, each group was divided into five subgroups, a control one and 4 subgroups remineralized with: Mirasensitive(®) hap+, Mirawhite(®) Gelleѐ, GC Tooth Mousse™ and Mirafluor(®) C. The samples were analysed by SEM/3D-SEM-micrographs, SEM/EDX-qualitative analysis and SEM/EDX-semiquantitative analysis. The microphotographs show that both types of bleaching cause alterations: emphasized perikymata, erosions, loss of interprizmatic substance; the laser treatment is more aggressive and loss of integrity of the enamel is determined by shearing off the enamel rods. In all samples undergoing remineralization deposits were observed, those of toothpastes based on calcium phosphate technologies seem to merge with each other and cover almost the entire surface of the enamel. Loss of integrity and minerals were detected only in the line-scans of the sample remineralized with GC Tooth Mousse™. The semiquantitative EDX analysis of individual elements in the surface layer of the enamel indicates that during tooth-bleaching with HP statistically significant loss of Na and Mg occurs, whereas the bleaching in combination with a laser leads to statistically significant loss of Ca and P. The results undoubtedly confirm that teeth whitening procedures lead to enamel alterations. In this context, it must be noted that laser bleaching is more aggressive for dental substances. However, these changes are reversible and can be repaired by application of remineralization toothpastes.

  20. Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel.

    PubMed

    Wu, Duo; Yang, Jiaojiao; Li, Jiyao; Chen, Liang; Tang, Bei; Chen, Xingyu; Wu, Wei; Li, Jianshu

    2013-07-01

    In situ remineralization of hydroxyapatite (HA) on human tooth enamel surface induced by organic matrices is of great interest in the fields of material science and stomatology. In order to mimic the organic matrices induced biomineralization process in developing enamel and enhance the binding strength at the remineralization interface, carboxyl-terminated poly(amido amine) (PAMAM-COOH)-alendronate (ALN) conjugate (ALN-PAMAM-COOH) was synthesized and characterized. PAMAM-COOH has a highly ordered architecture and is capable of promoting the HA crystallization process. ALN is conjugated on PAMAM-COOH due to its specific adsorption on HA (the main component of tooth enamel), resulting in increased binding strength which is tight enough to resist phosphate buffered saline (PBS) rinsing as compared with that of PAMAM-COOH alone. While incubated in artificial saliva, ALN-PAMAM-COOH could induce in situ remineralization of HA on acid-etched enamel, and the regenerated HA has the nanorod-like crystal structure similar to that of human tooth enamel. The hardness of acid-etched enamel samples treated by ALN-PAMAM-COOH can recover up to 95.5% of the original value with strong adhesion force. In vivo experiment also demonstrates that ALN-PAMAM-COOH is effective in repairing acid-etched enamel in the oral cavity. Overall, these results suggest that ALN-PAMAM-COOH is highly promising as a restorative biomaterial for in situ remineralization of human tooth enamel.

  1. Influence of remineralizing gels on bleached enamel microhardness in different time intervals.

    PubMed

    Borges, Alessandra Bühler; Yui, Karen Cristina Kazue; D'Avila, Thaís Corrêa; Takahashi, Camila Lurie; Torres, Carlos Rocha Gomes; Borges, Alexandre Luis Souto

    2010-01-01

    This study evaluated the influence of bleaching gel pH, the effect of applying remineralizing gels after bleaching and the effect of artificial saliva on enamel microhardness. Seventy bovine incisors were divided into three groups: Group 1 (n=10) received no bleaching procedure (control); Group 2 was bleached with a 35% hydrogen peroxide neutral gel (n=30) and Group 3 was bleached with a 35% hydrogen peroxide acid gel (n=30). Each experimental group was subdivided into three groups (n=10) according to the post-bleaching treatment: storage in artificial saliva, application of a fluoride gel and application of a combination of calcium and fluoride gel. The specimens were stored in artificial saliva for 7, 15 and 30 days and enamel microhardness was evaluated. The Vickers microhardness data were analyzed by three-way RM ANOVA, which revealed a significant difference only for treatment factor. The Tukey's test showed that the groups bleached followed by no additional treatment exhibited microhardness means significantly lower than the bleached groups treated with remineralizing gels. The Dunnet's test showed a significant difference only for the group bleached with acid gel without remineralizing treatment compared to the control group measured immediately after bleaching. It was concluded that acid bleaching gel significantly reduced enamel microhardness and that use of remineralizing gels after bleaching can significantly enhance the microhardness of bleached enamel.

  2. In Vitro Remineralization Effects of Grape Seed Extract on Artificial Root Caries

    PubMed Central

    Xie, Qian; Bedran-Russo, Ana Karina; Wu, Christine D.

    2008-01-01

    Grape seed extract (GSE) contains Proanthocyanidin (PA), which has been reported to strengthen collagen-based tissues by increasing collagen cross-links. We used an in vitro pH-cycling model to evaluate the effect of GSE on the remineralization of artificial root caries. Sound human teeth fragments obtained from the cervical portion of the root were stored in a demineralization solution for 96 hr at 37°C to induce artificial root caries lesions. The fragments were then divided into three treatment groups including: 6.5% GSE, 1,000 ppm fluoride (NaF), and a control (no treatment). The demineralized samples were pH-cycled through treatment solutions, acidic buffer and neutral buffer for 8 days at 6 cycles per day. The samples were subsequently evaluated using a microhardness tester; polarized light microscopy (PLM) and confocal laser scanning microscopy (CLSM). Data were analyzed using ANOVA and Fisher’s tests (p<0.05). GSE and fluoride significantly increased the microhardness of the lesions (p<0.05) when compared to a control group. PLM data revealed a significantly thicker mineral precipitation band on the surface layer of the GSE treated lesions when compared to the other groups (p>0.05), which was confirmed by CLSM. We concluded that grape seed extract positively affects the demineralization and/or remineralization processes of artificial root caries lesions, most likely through a different mechanism than that of Fluoride. Grape seed extract may be a promising natural agent for non-invasive root caries therapy. PMID:18819742

  3. Effects of processed cheese on human plaque pH and demineralization and remineralization.

    PubMed

    Jensen, M E; Wefel, J S

    1990-10-01

    This two-part study was undertaken to examine the effects of processed cheese on human plaque pH and de- and remineralization of enamel and root lesions in a human in situ caries model system. In the first part of the study the selected processed cheese (Kraft American Singles Processed Cheese Food) was eaten alone and followed by a 10% sucrose rinse after the acidogenicity of the plaque was demonstrated. A 10% sucrose rinse alone resulted in a mean minimum pH of 4.26. The cheese alone showed a mean minimum pF of 6.32 and cheese followed by sucrose resulted in a mean minimum pH of 6.48. The plaque pH of cheese eaten alone stayed at pH above 5.7 (the "safe for teeth" level). Cheese consumption also prevented the acid challenge when followed by sucrose. The second part of the study utilized the thin-sections of artificially created caries-like lesions on enamel and root, and sound root sections. One-month periods were used in a cross-over design to examine the effect of eating the cheese q.i.d. Polarized light microscopy was used to determine changes in the size of lesion areas. The addition of the processed cheese to the diet resulted in statistically significant reductions in enamel lesion size as well as a reduction in progression of root lesions. Lesions created on the sound root surfaces were approximately one-third the size of those created during the control period. This study indicates that processed cheese is hypoacidogenic, anti-acidogenic, and prevents demineralization as well as enhances remineralization.

  4. A Chemical Phosphorylation-inspired Design for Type I Collagen Biomimetic Remineralization

    PubMed Central

    Gu, Li-sha; Kim, Jongryul; Kim, Young Kyung; Liu, Yan; Dickens, Sabine H.; Pashley, David H.; Ling, Jun-qi; Tay, Franklin R.

    2010-01-01

    Objectives Type I collagen alone cannot initiate tissue mineralization. Sodium trimetaphosphate (STMP) is frequently employed as a chemical phosphorylating reagent in the food industry. This study examined the feasibility of using STMP as a functional analog of matrix phosphoproteins for biomimetic remineralization of resin-bonded dentin. Methods Equilibrium adsorption and desorption studies of STMP were performed using demineralized dentin powder (DDP). Interaction between STMP and DDP was examined using Fourier-transform infrared spectroscopy. Based on those results, a bio-inspired mineralization scheme was developed for chemical phosphorylation of acid-etched dentin with STMP, followed by infiltration of the STMP-treated collagen matrix with two etch-and-rinse adhesives. Resin-dentin interfaces were remineralized in a Portland cement-simulated body fluid system, with or without the use of polyacrylic acid (PAA) as a dual biomimetic analog. Remineralized resin-dentin interfaces were examined unstained using transmission electron microscopy. Results Analysis of saturation binding curves revealed the presence of irreversible phosphate group binding sites on the surface of the DDP. FT-IR provided additional evidence of chemical interaction between STMP and DDP, with increased in the peak intensities of the P=O and P–O–C stretching modes. Those peaks returned to their original intensities after alkaline phosphatase treatment. Evidence of intrafibrillar apatite formation could be seen in incompletely resin-infiltrated, STMP-phosphorylated collagen matrices only when PAA was present in the SBF. Significance These results reinforce the importance of PAA for sequestration of amorphous calcium phosphate nanoprecursors in the biomimetic remineralization scheme. They also highlight the role of STMP as a templating analog of dentin matrix phosphoproteins for inducing intrafibrillar remineralization of apatite nanocrystals within the collagen matrix of incompletely resin

  5. Photothermal radiometry and modulated luminescence examination of demineralized and remineralized dental lesions

    NASA Astrophysics Data System (ADS)

    Hellen, A.; Mandelis, A.; Finer, Y.

    2010-03-01

    Dental caries involves continuous challenges of acid-induced mineral loss and a counteracting process of mineral recovery. As an emerging non-destructive methodology, photothermal radiometry and modulated luminescence (PTR-LUM) has shown promise in measuring changes in tooth mineral content. Human molars (n=37) were subjected to demineralization in acid gel (pH 4.5, 10 days), followed by incubation in remineralisation solutions (pH 6.7, 4 weeks) without or with fluoride (1 or 1000 ppm). PTR-LUM frequency scans (1 Hz - 1 kHz) were performed prior to and during demineralization and remineralization treatments. Transverse Micro-Radiography (TMR) analysis followed at treatment conclusion. The non-fluoridated group exhibited opposite amplitude and phase trends to those of the highly fluoridated group: smaller phase lag and larger amplitude. These results point to a complex interplay between surface and subsurface processes during remineralization, confining the thermal-wave centroid toward the dominating layer.

  6. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine.

    PubMed

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-12

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID).

  7. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine

    NASA Astrophysics Data System (ADS)

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-01

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID).

  8. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine

    PubMed Central

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-01

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID). PMID:28079165

  9. Snowball Earth prevention by dissolved organic carbon remineralization.

    PubMed

    Peltier, W Richard; Liu, Yonggang; Crowley, John W

    2007-12-06

    The 'snowball Earth' hypothesis posits the occurrence of a sequence of glaciations in the Earth's history sufficiently deep that photosynthetic activity was essentially arrested. Because the time interval during which these events are believed to have occurred immediately preceded the Cambrian explosion of life, the issue as to whether such snowball states actually developed has important implications for our understanding of evolutionary biology. Here we couple an explicit model of the Neoproterozoic carbon cycle to a model of the physical climate system. We show that the drawdown of atmospheric oxygen into the ocean, as surface temperatures decline, operates so as to increase the rate of remineralization of a massive pool of dissolved organic carbon. This leads directly to an increase of atmospheric carbon dioxide, enhanced greenhouse warming of the surface of the Earth, and the prevention of a snowball state.

  10. In situ remineralization of subsurface enamel lesion after the use of a fluoride chewing gum.

    PubMed

    Lamb, W J; Corpron, R E; More, F G; Beltran, E D; Strachan, D S; Kowalski, C J

    1993-01-01

    In situ remineralization of early enamel lesions by a fluoride chewing gum was studied. Human enamel specimens with subsurface lesions were mounted in removable lower appliances for 6 adults. Subjects used a F-free dentifrice 3x/day and chewed five sticks/day for the F gum group (0.1 mg F/stick) or five sticks of sugarless gum. No gum was chewed for controls. Surface microhardness was performed on: (1) sound enamel; (2) lesions; (3) after intraoral exposure, and (4) after acid-resistance testing (ART). Separate specimens were etched and measured for F uptake and image analyses on microradiographs were performed for all regimens. delta Z values were calculated and converted to percent of mineralization. Values for F gum were significantly higher (p > 0.05) than non-F gum and controls for ART, percent remineralization, and F uptake up to 70 microns depth.

  11. Effect of Lesion Baseline Severity and Mineral Distribution on Remineralization and Progression of Human and Bovine Dentin Caries Lesions.

    PubMed

    Lippert, Frank; Churchley, David; Lynch, Richard J

    2015-01-01

    The aims of this laboratory study were to compare the effects of lesion baseline severity, mineral distribution and substrate on remineralization and progression of caries lesions created in root dentin. Lesions were formed in dentin specimens prepared from human and bovine dentin using three protocols, each utilizing three demineralization periods to create lesions of different mineral distributions (subsurface, moderate softening, extreme softening) and severity within each lesion type. Lesions were then either remineralized or demineralized further and analyzed using transverse microradiography. At lesion baseline, no differences were found between human and bovine dentin for integrated mineral loss (x0394;Z). Differences in mineral distribution between lesion types were apparent. Human dentin lesions were more prone to secondary demineralization (x0394;x0394;Z) than bovine dentin lesions, although there were no differences in x0394;L. Likewise, smaller lesions were more susceptible to secondary demineralization than larger ones. Subsurface lesions were more acid-resistant than moderately and extremely softened lesions. After remineralization, differences between human and bovine dentin lesions were not apparent for x0394;x0394;Z although bovine dentin lesions showed greater reduction in lesion depth L. For lesion types, responsiveness to remineralization (x0394;x0394;Z) was in the order extremely softened>moderately softened>subsurface. More demineralized lesions exhibited greater remineralization than shallower ones. In summary, some differences exist between human and bovine dentin and their relative responsiveness to de- and remineralization. These differences, however, were overshadowed by the effects of lesion baseline mineral distribution and severity. Thus, bovine dentin appears to be a suitable substitute for human dentin in mechanistic root caries studies.

  12. Imaging analysis of early DMP1 mediated dentin remineralization

    PubMed Central

    Bedran-Russo, Ana K.; Ravindran, Sriram; George, Anne

    2013-01-01

    Objective This study assessed the micro-morphological changes in demineralized dentin scaffold following incubation with recombinant dentin matrix protein 1 (rDMP1). Design Extracted human molar crowns were sectioned into 6 beams (dimensions: 0.50 × 1.70 × 6.0 mm), demineralized and incubated overnight in 3 different media (n = 4): rDMP1 in bovine serum albumin (BSA), BSA and distilled water. Samples were placed in a chamber with simulated physiological concentrations of calcium and phosphate ions at constant pH 7.4. Samples were immediately processed for transmission electron microscopy (TEM) and field emission-scanning electron microscopy (FE-SEM) after 1 and 2 weeks. Results Analysis of the scaffold showed that decalcification process retained the majority of endogenous proteoglycans and phosphoproteins. rDMP1 treated samples promoted deposition of amorphous calcium phosphate (ACP) precursors and needle shaped hydroxyapatite crystals surrounding collagen fibrils. The BSA group presented ACP bound to collagen with no needle-like apatite crystals. Samples kept in distilled water showed no evidence of ACP and crystal apatite. Results from rDMP1 immobilized on dentin matrix suggests that the acidic protein was able to bind to collagen fibrils and control formation of amorphous calcium phosphate and its subsequent transformation into hydroxyapatite crystals after 2 weeks. Conclusion These findings suggest a possible bio-inspired strategy to promote remineralization of dentin for reparative and regenerative purposes. PMID:23107046

  13. A comparative evaluation of remineralizing ability of bioactive glass and amorphous calcium phosphate casein phosphopeptide on early enamel lesion

    PubMed Central

    Palaniswamy, Udaya Kumar; Prashar, Neha; Kaushik, Mamta; Lakkam, Surender Ram; Arya, Shikha; Pebbeti, Swetha

    2016-01-01

    Background: This study was done to evaluate remineralizing potential of bioactive glasses (BAGs) and amorphous calcium phosphate-casein phosphopeptide (ACP-CPP) on early enamel lesion. Materials and Methods: Twenty freshly extracted mandibular premolars were sectioned sagittally. The buccal half was impregnated in acrylic resin blocks and treated with 37% phosphoric acid in liquid form, to demineralize enamel surface to simulate early enamel lesion. The samples were divided into two groups. The samples in Group I were treated with ACP-CPP (GC Tooth Mousse) and in Group II with BAG (Sensodyne Repair and Protect) and stored in saliva to prevent dehydration. The samples were tested for microhardness. The data obtained was analyzed using ANOVA post hoc multiple comparison and independent sample t- test and presented as a mean and standard deviation. Results: All the samples showed a decrease in the microhardness after demineralization. After application of remineralizing agents, Group II showed a highly significant increase in the microhardness (P < 0.05) after 10 days, while Group I showed a significant increase in microhardness after 15 days (P < 0.05). Conclusion: Both the remineralizing agents tested in this study can be considered effective in repair and prevention of demineralization. BAG showed better results initially, but eventually both have similar remineralizing potential. PMID:27605985

  14. Elevated fluoride products enhance remineralization of advanced enamel lesions.

    PubMed

    ten Cate, J M; Buijs, M J; Miller, C Chaussain; Exterkate, R A M

    2008-10-01

    Caries prevention might benefit from the use of toothpastes containing over 1500 ppm F. With few clinical studies available, the aim of this pH-cycling study was to investigate the dose response between 0 and 5000 ppm F of de- and remineralization of advanced (> 150 microm) enamel lesions. Treatments included sodium and amine fluoride, and a fluoride-free control. Mineral uptake and loss were assessed from solution calcium changes and microradiographs. Treatments with 5000 ppm F both significantly enhanced remineralization and inhibited demineralization when compared with treatments with 1500 ppm F. Slight differences in favor of amine fluoride over sodium fluoride were observed. The ratio of de- over remineralization rates decreased from 13.8 to 2.1 in the range 0 to 5000 ppm F. As much as 71 (6)% of the remineralized mineral was calculated to be resistant to dissolution during subsequent demineralization periods. With 5000-ppm-F treatments, more demineralizing episodes per day (10 vs. 2 for placebo) would still be repaired by remineralization.

  15. Comparative Evaluation of Remineralizing Potential of Three Pediatric Dentifrices

    PubMed Central

    Kapoor, Ashna; Indushekar, KR; Saraf, Bhavna G; Sheoran, Neha

    2016-01-01

    Introduction Dentifrices are available in different formulations and more commonly a single dentifrice is used by whole family; be it an adult or child. However, concerns over high fluoride in pediatric formulations coupled with inability of the children to spit have led to recommendations to minimize fluoride ingestion during toothbrushing by using a small amount of toothpaste by children and incorporating minimal quantity of fluoride in the toothpastes. Literature is scarce on the remineralization potential of popularly known Indian pediatric dentifrices; hence, pediatric dentifrices containing lesser concentration of fluoride have been marketed relatively recently for the benefit of children without posing a threat of chronic fluoride toxicity at the same time. Aim and objectives The present study was undertaken to evaluate and compare the remineralization potential of three commercially available Indian pediatric dentifrices with different compositions on artificially induced carious lesions in vitro through scanning electron microscopy (SEM). Materials and methods The present in vitro study was conducted on 45 sound extracted primary molar surfaces divided into three groups (15 each). Artificial demineralization was carried out, followed by remineralization using dentifrice slurry as per the group allocation. All the samples were studied for remineralization using SEM and the results statistically compared. Results All three dentifrices tested showed remineralization; although insignificantly different from each other but significantly higher compared to the demineralizing surface. Conclusion One can use pediatric dentifrices for preventing dental caries and decelerating lesion progression with an added advantage of lower fluoride toxicity risk. How to cite this article Kapoor A, Indushekar KR, Saraf BG, Sheoran N, Sardana D. Comparative Evaluation of Remineralizing Potential of Three Pediatric Dentifrices. Int J Clin Pediatr Dent 2016;9(3):186-191. PMID

  16. Near-surface structural examination of human tooth enamel subject to in vitro demineralization and remineralization

    NASA Astrophysics Data System (ADS)

    Gaines, Carmen Veronica

    The early stages of chemical tooth decay are governed by dynamic processes of demineralization and remineralization of dental enamel that initiates along the surface of the tooth. Conventional diagnostic techniques lack the spatial resolution required to analyze near-surface structural changes in enamel at the submicron level. In this study, slabs of highly-polished, decay-free human enamel were subjected to 0.12M EDTA and buffered lactic acid demineralizing agents and MI Paste(TM) and calcifying (0.1 ppm F) remineralizing treatments in vitro. Grazing incidence x-ray diffraction (GIXD), a technique typically used for thin film analysis, provided depth profiles of crystallinity changes in surface enamel with a resolution better than 100 nm. In conjunction with nanoindentation, a technique gaining acceptance as a means of examining the mechanical properties of sound enamel, these results were corroborated with well-established microscopy and Raman techniques to assess the nanohardness, morphologies and chemical nature of treated enamel. Interestingly, the average crystallite size of surface enamel along its c-axis dimension increased by nearly 40% after a 60 min EDTA treatment as detected by GIXD. This result was in direct contrast to the obvious surface degradation observed by microscopic and confocal Raman imaging. A decrease in nanohardness from 4.86 +/- 0.44 GPa to 0.28 +/- 0.10 GPa was observed. Collective results suggest that mineral dissolution characteristics evident on the micron scale may not be fully translated to the nanoscale in assessing the integrity of chemically-modified tooth enamel. While an intuitive decrease in enamel crystallinity was observed with buffered lactic acid-treated samples, demineralization was too slow to adequately quantify the enamel property changes seen. MI Paste(TM) treatment of EDTA-demineralized enamel showed preferential growth along the a-axis direction. Calcifying solution treatments of both demineralized sample types

  17. In vitro remineralization of hybrid layers using biomimetic analogs*

    PubMed Central

    Lin, Hui-ping; Lin, Jun; Li, Juan; Xu, Jing-hong; Mehl, Christian

    2016-01-01

    Resin-dentin bond degradation is a major cause of restoration failures. The major aim of the current study was to evaluate the impact of a remineralization medium on collagen matrices of hybrid layers of three different adhesive resins using nanotechnology methods. Coronal dentin surfaces were prepared from freshly extracted premolars and bonded to composite resin using three adhesive resins (FluoroBond II, Xeno-III-Bond, and iBond). From each tooth, two central slabs were selected for the study. The slabs used as controls were immersed in a simulated body fluid (SBF). The experimental slabs were immersed in a Portland cement-based remineralization medium that contained two biomimetic analogs (biomineralization medium (BRM)). Eight slabs per group were retrieved after 1, 2, 3, and 4 months, respectively and immersed in Rhodamine B for 24 h. Confocal laser scanning microscopy was used to evaluate the permeability of hybrid layers to Rhodamine B. Data were analyzed by analysis of variance (ANOVA) and Tukey’s honest significant difference (HSD) tests. After four months, all BRM specimens exhibited a significantly smaller fluorescent area than SBF specimens, indicating a remineralization of the hybrid layer (P≤0.05). A clinically applicable biomimetic remineralization delivery system could potentially slow down bond degradation. PMID:27819133

  18. Effect of in vitro chewing and bruxism events on remineralization, at the resin-dentin interface.

    PubMed

    Toledano, Manuel; Cabello, Inmaculada; Aguilera, Fátima S; Osorio, Estrella; Osorio, Raquel

    2015-01-02

    The purpose of this study was to evaluate if different in vitro functional and parafunctional habits promote mineralization at the resin-dentin interface after bonding with three different adhesive approaches. Dentin surfaces were subjected to distinct treatments: demineralization by (1) 37% phosphoric acid (PA) followed by application of an etch-and-rinse dentin adhesive, Single Bond (SB) (PA+SB); (2) 0.5 M ethylenediaminetetraacetic acid (EDTA) followed by SB (EDTA+SB); (3) application of a self-etch dentin adhesive, Clearfil SE Bond (SEB). Different loading waveforms were applied: No cycling (I), cycled in sine (II) or square (III) waves, sustained loading hold for 24 h (IV) or sustained loading hold for 72 h (V). Remineralization at the bonded interfaces was assessed by AFM imaging/nano-indentation, Raman spectroscopy and Masson's trichrome staining. In general, in vitro chewing and parafunctional habits, promoted an increase of nano-mechanical properties at the resin-dentin interface. Raman spectroscopy through cluster analysis demonstrated an augmentation of the mineral-matrix ratio in loaded specimens. Trichrome staining reflected a narrow demineralized dentin matrix after loading in all groups except in PA+SB and EDTA+SB samples after sustained loading hold for 72 h, which exhibited a strong degree of mineralization. In vitro mechanical loading, produced during chewing and bruxism (square or hold 24 and 72 h waveforms), induced remineralization at the resin-dentin bonded interface.

  19. A Comparative Analysis of Caries Inhibitory Effect of Remineralizing Agents on Human Enamel Treated With Er:YAG Laser: An In-vitro Atomic Emission Spectrometry Analysis

    PubMed Central

    Nair, Aswin Saseendran; Kumar, R Krishna; Ahameed, Syed Shaheed; Punnathara, Sairaj; Peter, Joby

    2016-01-01

    Introduction The tug of war to maintain tooth integrity is dependent on a ratio between demineralization and remineralization. Hence, demineralization should be retarded and remineralization should be enhanced to maintain a natural equilibrium in the oral cavity. Aim To compare in-vitro acid resistance of human enamel when using Casein Phosphopeptides Amorphous Calcium Phosphate (CPP-ACP) [GC Tooth mousse] cream, Casein Phosphopeptide Amorphous Calcium Fluoride Phosphate (CPP-ACFP) [GC Tooth mousse plus] cream, Er:YAG laser alone, combination of CPP-ACP with Er:YAG laser, CPP-ACFP with Er:YAG laser. Materials and Methods An in-vitro study was done on 100 specimens which were prepared from 50 human premolars to investigate the caries inhibitory effect of remineralizing agents and laser on enamel using an atomic emission spectrometry analysis. The enamel specimens were randomly allocated into 6 groups: Untreated (control); CPP-ACP (GC Tooth mousse); CPP-ACFP (GC Tooth mousse plus); Er:YAG laser treatment alone; CPP-ACP with Er:YAG laser; CPP-ACFP with Er: YAG laser. Then specimens were immersed individually in 5ml of acetate buffer solution (0.1mol/L, pH 4.5) and incubated at 37°C for 24 hours, to determine the acid resistance by analyzing the calcium release using atomic emission spectrometry. An ANOVA model was constructed (p-value 0.05), followed by post-hoc Tukey’s test for multiple pair wise comparisons of mean values. Results There was a significant difference among the various groups with respect to amount of calcium released (p<0.001). The lowest mean score of calcium release was observed for CPP-ACFP with Er:YAG laser followed by CPP-ACFP but the differences between these groups were statistically not significant (p>0.05). Similarly the differences between CPP-ACP with Er:YAG laser and CPP-ACP also were not significant (p>0.05). The highest mean score of calcium release was for Er:YAG laser and no significant statistical difference was noticed in

  20. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro.

    PubMed

    Huang, S B; Gao, S S; Yu, H Y

    2009-06-01

    The purpose of the research was to determine the effect of nano-hydroxyapatite concentrations on initial enamel lesions under dynamic pH-cycling conditions. Initial enamel lesions were prepared in bovine enamel with an acidic buffer. NaF (positive control), deionized water (negative control) and four different concentrations of nano-hydroxyapatite (1%, 5%, 10% and 15% wt%) were selected as the treatment agents. Surface microhardness (SMH) measurements were performed before/after demineralization and after 3, 6, 9 and 12 days of application, and the percentage surface microhardness recovery (%SMHR) was calculated. The specimens were then examined by a scanning electron microscope. The %SMHR in nano-hydroxyapatite groups was significantly greater than that of negative control. When the concentration of nano-HA was under 10%, SMH and %SMHR increased with increasing nano-hydroxyapatite concentrations. There were no significant differences between the 10% and 15% groups at different time periods in the pH-cycling. The SEM analysis showed that nano-hydroxyapatite particles were regularly deposited on the cellular structure of the demineralized enamel surface, which appeared to form new surface layers. It was concluded that nano-hydroxyapatite had the potential to remineralize initial enamel lesions. A concentration of 10% nano-hydroxyapatite may be optimal for remineralization of early enamel caries.

  1. Remineralizing effect of cold plasma and/or bioglass on demineralized enamel.

    PubMed

    El-Wassefy, Noha A

    2017-01-20

    This study investigated the combining effect of cold plasma and bioglass-phosphoric acid paste on demineralized enamel. Fifty bovine incisors' enamel specimens were challenged by a demineralization solution of pH 4.47 for 72 h. Specimens were divided into five groups: (I) Control, demineralized enamel (C); (II) Demineralized enamel treated with fluoride varnish (F); (III) Cold plasma application to demineralized enamel (P); (IV) Demineralized enamel treated with bioglass paste (B); (V) Application of bioglass paste to cold plasma-treated demineralized enamel (PB). Specimens were then immersed in remineralizing solution for 24 h, before being examined with micro-computed tomography (micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and cross-sectional micro-hardness measurement. The results showed that; treating demineralized enamel with cold plasmas before bioglass application ensued a significant high mineral volume recovery and micro-hardness of demineralized region. It can be concluded that cold plasmas may improve the remineralization of bioglass on demineralized enamel.

  2. Laboratory study of nitrogen and phosphorus remineralization during the decomposition of coastal plankton and seston

    NASA Astrophysics Data System (ADS)

    Garber, Jonathan H.

    1984-06-01

    The decomposition of cultured marine phytoplankton ( Skeletonema costatum) and natural estuarine seston from Narragansett Bay, RI, was studied at two temperatures (8°C and 18°C) in bottles containing sterile bay-water (30‰) and in bay-water with micro-organisms small enough to pass through a glass fibre filter (nominally < 1μ). About 50% of the particulate organic nitrogen (PON) and particulate phosphorus (PP) was immediately released to the water in dissolved organic forms from both types of organic matter. Comparison of changes in the dissolved organic nitrogen (DON) fraction in the sterile and non-sterile systems indicated that nearly all of the DON initially released was subsequently remineralized. Ammonification proceeded only in non-sterile bay-water. 20-25% of the PP was converted to dissolved inorganic-P (DIP) fraction after only 7 h in both sterile and non-sterile bay-water. Following autolytic releases of DON, DOP and DIP the initial rates of N and P remineralization were temperature dependent: Q 10 values for PON and PP decay during first phase of microbially mediated decomposition ranged from 1·3 to 6·4. Rates of remineralization then slowed so that about equal amounts of nutrients were remineralized (45-50% of the N and 57-60% of the P in the phytoplankton and 60-63% of the N and 36-60% of the P in the natural seston) after 30 days storage at either temperature. During 30 days of decomposition in non-sterile seawater the N/P ratios in the dissolved inorganic fractions converged on the ratios of total-N/total-P initially present in the bottles. Kinetic analysis of the decay of total organic-N (TON) and total organic-P (TOP) in the non-sterile systems and analysis of similar sets found in the literature showed that the initial stages of the decomposition of N and P from planktonic POM in vitro could be modelled as the sequential decay, at first-order rates, of two particulate fractions. The first, more labile, fraction comprised about 60% of the

  3. Acid rain: Mesoscale model

    NASA Technical Reports Server (NTRS)

    Hsu, H. M.

    1980-01-01

    A mesoscale numerical model of the Florida peninsula was formulated and applied to a dry, neutral atmosphere. The prospective use of the STAR-100 computer for the submesoscale model is discussed. The numerical model presented is tested under synoptically undisturbed conditions. Two cases, differing only in the direction of the prevailing geostrophic wind, are examined: a prevailing southwest wind and a prevailing southeast wind, both 6 m/sec at all levels initially.

  4. Estimation of Particle Flux and Remineralization Rate from Radioactive Disequilibrium

    SciTech Connect

    Michael P. Bacon; Roger Francois

    2004-05-24

    Reactive radionuclides, such as the thorium isotopes, show measurable deficiencies in the oceanic water column because of their removal by chemical scavenging due to the particle flux. Measurement of the deficiency, coupled with measurement of the radionuclide concentration in particles, allows a determination of the effective particle sinking velocity. Results to date suggest that the effective particle sinking velocity is remarkably invariant with depth. This leads to the tentative suggestion that POC concentration profiles may, to a good approximation, be used directly to determine length scales for the remineralization of sinking organic matter. Further measurements are in progress to test this idea and to evaluate its limitations. Knowledge of the remineralization length scale is essential to an evaluation of the efficiency of the biological pump as a means for deep sequestering of carbon in the ocean.

  5. Acid rain: Microphysical model

    NASA Technical Reports Server (NTRS)

    Dingle, A. N.

    1980-01-01

    A microphysical model was used to simulate the case of a ground cloud without dilution by entrainment and without precipitation. The numerical integration techniques of the model are presented. The droplet size spectra versus time and the droplet molalities for each value of time are discussed.

  6. Recovery of crystallographic texture in remineralized dental enamel.

    PubMed

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain

  7. Recovery of Crystallographic Texture in Remineralized Dental Enamel

    PubMed Central

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain

  8. In vivo remineralization of dentin using an agarose hydrogel biomimetic mineralization system

    NASA Astrophysics Data System (ADS)

    Han, Min; Li, Quan-Li; Cao, Ying; Fang, Hui; Xia, Rong; Zhang, Zhi-Hong

    2017-02-01

    A novel agarose hydrogel biomimetic mineralization system loaded with calcium and phosphate was used to remineralize dentin and induce the oriented densely parallel packed HA layer on defective dentin surface in vivo in a rabbit model. Firstly, the enamel of the labial surface of rabbits’ incisor was removed and the dentin was exposed to oral environment. Secondly, the hydrogel biomimetic mineralization system was applied to the exposed dentin surface by using a custom tray. Finally, the teeth were extracted and evaluated by scanning electron microscopy, X-ray diffraction, and nanoindentation test after a certain time of mineralization intervals. The regenerated tissue on the dentin surface was composed of highly organised HA crystals. Densely packed along the c axis, these newly precipitated HA crystals were perpendicular to the underlying dental surface with a tight bond. The demineralized dentin was remineralized and dentinal tubules were occluded by the grown HA crystals. The nanohardness and elastic modulus of the regenerated tissue were similar to natural dentin. The results indicated a potential clinical use for repairing dentin-exposed related diseases, such as erosion, wear, and dentin hypersensitivity.

  9. In vivo remineralization of dentin using an agarose hydrogel biomimetic mineralization system

    PubMed Central

    Han, Min; Li, Quan-Li; Cao, Ying; Fang, Hui; Xia, Rong; Zhang, Zhi-Hong

    2017-01-01

    A novel agarose hydrogel biomimetic mineralization system loaded with calcium and phosphate was used to remineralize dentin and induce the oriented densely parallel packed HA layer on defective dentin surface in vivo in a rabbit model. Firstly, the enamel of the labial surface of rabbits’ incisor was removed and the dentin was exposed to oral environment. Secondly, the hydrogel biomimetic mineralization system was applied to the exposed dentin surface by using a custom tray. Finally, the teeth were extracted and evaluated by scanning electron microscopy, X-ray diffraction, and nanoindentation test after a certain time of mineralization intervals. The regenerated tissue on the dentin surface was composed of highly organised HA crystals. Densely packed along the c axis, these newly precipitated HA crystals were perpendicular to the underlying dental surface with a tight bond. The demineralized dentin was remineralized and dentinal tubules were occluded by the grown HA crystals. The nanohardness and elastic modulus of the regenerated tissue were similar to natural dentin. The results indicated a potential clinical use for repairing dentin-exposed related diseases, such as erosion, wear, and dentin hypersensitivity. PMID:28167823

  10. Pulse thermography for quantitative nondestructive evaluation of sound, de-mineralized and re-mineralized enamel

    NASA Astrophysics Data System (ADS)

    Ando, Masatoshi; Sharp, Nathan; Adams, Douglas

    2012-04-01

    Current limitations for diagnosing mineralization state of tooth enamel can lead to improper surgical treatments. A method is investigated by which the tooth health state is characterized according to its thermal response, which is hypothesized to be sensitive to increased porosity in enamel that is caused by demineralization. Several specimens consisting of previously extracted human teeth a re prepared by exposure to Streptococcus mutans A32-2 in trypticase-soy-borth supplemented with 5% sucrose at 37°C for 3 or 6 days to de-mineralize two 1×1mm2-windows on each tooth. One of these windows is then re-mineralized with 250 or 1,100ppm-F as NaF for 10 days by pH-cyclic-model. Pulse thermography is used to measure the thermal response of these sections as well as the sound (healthy) portions of the specimen. A spatial profile of the thermal parameters of the specimens is then extracted from the thermography data and are used to compare the sound, de-mineralized, and re-mineralized areas. Results show that the thermal parameters are sensitive to the mineralization state of the tooth and that this method has the potential to accurately and quickly characterize the mineralization state of teeth, thereby allowing future dentists to make informed decisions regarding the best treatment for teeth that have experienced demineralization.

  11. N/P re-mineralization ratios across forests worldwide

    NASA Astrophysics Data System (ADS)

    Marklein, A. R.; Houlton, B. Z.

    2012-12-01

    Decomposition of leaf litter is the primary mechanism by which nutrients are recycled in forests. Forests are a sink for atmospheric CO2, but nitrogen (N) and phosphorus (P) could limit or eliminate this ecosystem service in the future. Nutrient cycling during mineralization supplies the vast majority of nutrients to enable forest growth. Therefore, elucidating patterns by which organic N and P are mineralized by decomposing organisms or immobilized in microbial biomass is crucial to establishing controls on plant nutrient availability. Here, we compare re-mineralization N/P ratios to the stoichiometry of the initial material. We performed a meta-analysis of N and P mineralization from leaves and needles in forest ecosystems and included 112 studies, 511 litterbag sequences, and 3225 observations. Of the compiled data, net mineralization occurred in 54 studies, 372 litterbag sequences, and 1308 observations. We compare re-mineralization ratios across temperate and tropical forest systems to elucidate patterns across latitudes. We report strong and systematic regularities between decomposing litter N/P and the N/P of re-mineralization across global forests. Overall, the N/P of mineralization scales at a slope close to unity (slope = 1.4, R2=0.53, n=372), with a tendency toward higher N/P in tropical vs. temperate forests. The N/P of tropical forest re-mineralization is equal to 30/1 (R2=0.55; n=691), corresponding with the high N/P of plant foliage and litter within this biome. In contrast, the N/P of mineralization is equal to 5/1 in temperate forests (R2=0.34; n=617). A modal anomaly analysis further reveals the central tendency of mineralization N/P on that of litter, with departures from the average case tending toward a lower N/P of mineralization compared to litter substrates. These deviations suggest the potential for preferential N retention or enhanced P mineralization, or both, as opposed to more rapid N releases from decomposing organic matter. The

  12. Quantifying the remineralization of artificial caries lesions using PS-OCT

    NASA Astrophysics Data System (ADS)

    Jones, Robert S.; Fried, Daniel

    2006-02-01

    New optical imaging methods are needed to determine whether caries lesions (tooth decay) are active and progressing or have become remineralized and arrested and are no longer progressing. The objective of this study was to use Polarization Sensitive Optical Coherence Tomography (PS-OCT) to image the fluoride enhanced remineralization of artificial enamel lesions. Artificial lesions were created by an acetate buffer on smooth enamel surfaces and were exposed for 20 days to a 2 ppm fluoride containing remineralization solution. PS-OCT images revealed the presence of a low scattering surface zone after the artificial lesions were remineralized. These samples displayed intact nondepolarizing surface zones when analyzed with Polarized Light Microscopy (PLM). No statistical difference in lesion depth before and after remineralization was found with both PS-OCT and PLM. The remineralized lesions showed a significant decrease in the overall integrated reflectivity compared with the demineralized lesions. Digital Microradiography confirmed the increase in mineral volume of the remineralized surface zone. This study determined that PS-OCT can image the restoration of the surface zone enamel after fluoride-enhanced remineralization of artificial in vitro dental caries.

  13. A gastric acid secretion model.

    PubMed Central

    de Beus, A M; Fabry, T L; Lacker, H M

    1993-01-01

    A theory of gastric acid production and self-protection is formulated mathematically and examined for clinical and experimental correlations, implications, and predictions using analytic and numerical techniques. In our model, gastric acid secretion in the stomach, as represented by an archetypal gastron, consists of two chambers, circulatory and luminal, connected by two different regions of ion exchange. The capillary circulation of the gastric mucosa is arranged in arterial-venous arcades which pass from the gastric glands up to the surface epithelial lining of the lumen; therefore the upstream region of the capillary chamber communicates with oxyntic cells, while the downstream region communicates with epithelial cells. Both cell types abut the gastric lumen. Ion currents across the upstream region are calculated from a steady-state oxyntic cell model with active ion transport, while the downstream ion fluxes are (facilitated) diffusion driven or secondarily active. Water transport is considered iso-osmotic. The steady-state model is solved in closed form for low gastric lumen pH. A wide variety of previously performed static and dynamic experiments on ion and CO2 transport in the gastric lumen and gastric blood supply are for the first time correlated with each other for an (at least) semiquantitative test of current concepts of gastric acid secretion and for the purpose of model verification. Agreement with the data is reported with a few outstanding and instructive exceptions. Model predictions and implications are also discussed. Images FIGURE 1 PMID:8396457

  14. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: Quantitative micro-radiographic study

    PubMed Central

    Langhorst, S.E.; O'Donnell, J.N.R.; Skrtic, D.

    2009-01-01

    Objective: This study explores the efficacy of an experimental orthodontic amorphous calcium phosphate (ACP) composite to remineralize in vitro subsurface enamel lesions microradiographically similar to those seen in early caries. Methods: Lesions were artificially created in extracted human molars. Single tooth sections a minimum of 120 μm thick were cut and individually placed in holders exposing only the carious enamel surface. The exposed surfaces were either left untreated (control) or coated with a 1 mm thick layer of the experimental ACP composite (mass fraction 40 % zirconiahybridized ACP and 60 % photo-activated resin), or a commercial fluoride-releasing orthodontic cement. The composite-coated sections were then photo-cured and microradiographic images were taken of all three groups of specimens before the treatment. Specimens were then cyclically immersed in demineralizing and remineralizing solutions for one month at 37 °C to simulate the pH changes occurring in the oral environment. Microradiographs of all specimens were taken before and after treatment. Results: Quantitative digital image analysis of matched areas from the contact microradiographs taken before and after treatment indicated higher mineral recovery with ACP composites compared to the commercial orthodontic F-releasing cement (14.4 % vs. 4.3 %, respectively), while the control specimens showed an average of 55.4 % further demineralization. Significance: Experimental ACP composite efficiently established mineral ion transfer throughout the body of the lesions and restored the mineral lost due to acid attack. It can be considered a useful adjuvant for the control of caries in orthodontic applications. PMID:19215975

  15. Demineralization–remineralization dynamics in teeth and bone

    PubMed Central

    Abou Neel, Ensanya Ali; Aljabo, Anas; Strange, Adam; Ibrahim, Salwa; Coathup, Melanie; Young, Anne M; Bozec, Laurent; Mudera, Vivek

    2016-01-01

    Biomineralization is a dynamic, complex, lifelong process by which living organisms control precipitations of inorganic nanocrystals within organic matrices to form unique hybrid biological tissues, for example, enamel, dentin, cementum, and bone. Understanding the process of mineral deposition is important for the development of treatments for mineralization-related diseases and also for the innovation and development of scaffolds. This review provides a thorough overview of the up-to-date information on the theories describing the possible mechanisms and the factors implicated as agonists and antagonists of mineralization. Then, the role of calcium and phosphate ions in the maintenance of teeth and bone health is described. Throughout the life, teeth and bone are at risk of demineralization, with particular emphasis on teeth, due to their anatomical arrangement and location. Teeth are exposed to food, drink, and the microbiota of the mouth; therefore, they have developed a high resistance to localized demineralization that is unmatched by bone. The mechanisms by which demineralization–remineralization process occurs in both teeth and bone and the new therapies/technologies that reverse demineralization or boost remineralization are also scrupulously discussed. Technologies discussed include composites with nano- and micron-sized inorganic minerals that can mimic mechanical properties of the tooth and bone in addition to promoting more natural repair of surrounding tissues. Turning these new technologies to products and practices would improve health care worldwide. PMID:27695330

  16. Demineralization-remineralization dynamics in teeth and bone.

    PubMed

    Abou Neel, Ensanya Ali; Aljabo, Anas; Strange, Adam; Ibrahim, Salwa; Coathup, Melanie; Young, Anne M; Bozec, Laurent; Mudera, Vivek

    Biomineralization is a dynamic, complex, lifelong process by which living organisms control precipitations of inorganic nanocrystals within organic matrices to form unique hybrid biological tissues, for example, enamel, dentin, cementum, and bone. Understanding the process of mineral deposition is important for the development of treatments for mineralization-related diseases and also for the innovation and development of scaffolds. This review provides a thorough overview of the up-to-date information on the theories describing the possible mechanisms and the factors implicated as agonists and antagonists of mineralization. Then, the role of calcium and phosphate ions in the maintenance of teeth and bone health is described. Throughout the life, teeth and bone are at risk of demineralization, with particular emphasis on teeth, due to their anatomical arrangement and location. Teeth are exposed to food, drink, and the microbiota of the mouth; therefore, they have developed a high resistance to localized demineralization that is unmatched by bone. The mechanisms by which demineralization-remineralization process occurs in both teeth and bone and the new therapies/technologies that reverse demineralization or boost remineralization are also scrupulously discussed. Technologies discussed include composites with nano- and micron-sized inorganic minerals that can mimic mechanical properties of the tooth and bone in addition to promoting more natural repair of surrounding tissues. Turning these new technologies to products and practices would improve health care worldwide.

  17. Insights into particle formation and remineralization using the short-lived radionuclide, Thoruim-234

    NASA Astrophysics Data System (ADS)

    Maiti, Kanchan; Benitez-Nelson, Claudia R.; Buesseler, Ken O.

    2010-08-01

    Simple mass balance models are applied to a high resolution 234Th profile from the northwest Pacific to examine the magnitude, rate, and depth distribution of particle remineralization processes below the euphotic zone (Ez). Here, excess 234Th (234Th > 238U) below the Ez is attributed to fragmentation processes that result in the conversion of sinking to non-sinking particles. By considering particulate organic carbon (POC) to 234Th ratios on particles, we show that POC flux attenuation is larger than for 234Th, which we attribute to bacterial and zooplankton consumption of sinking POC. Three case studies are used to demonstrate how different combinations of particle fragmentation and POC respiration impact flux attenuation below the Ez. When sampled with high vertical resolution and precision, 234Th and POC/234Th ratios provide insights into both export from the Ez and the extent to which sinking particle fluxes and associated minerals are attenuated with depth.

  18. College Chemistry Students' Mental Models of Acids and Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha; Talanquer, Vicente

    2011-01-01

    The central goal of this study was to characterize the mental models of acids and acid strength expressed by advanced college chemistry students when engaged in prediction, explanation, and justification tasks that asked them to rank chemical compounds based on their relative acid strength. For that purpose we completed a qualitative research…

  19. Effects of common dental materials used in preventive or operative dentistry on dentin permeability and remineralization.

    PubMed

    Sauro, Salvatore; Thompson, Ian; Watson, Timothy F

    2011-01-01

    The aim of this study was to evaluate the dentin remineralization induced by bioactive substances contained in common dental materials used in preventive and operative dentistry. Several materials were applied on human dentin segments. Dentin permeability was quantified using a fluid filtration system working at 20 cm H(2)O. Micro-Raman, SEM-EDX, and microhardness calculation were used to evaluate changes in the mineralization of dentin. Dentin treated with the prophylactic materials showed different dentin permeability values, in particular subsequent to immersion in remineralizing solutions (RSS). The bioactive glass (Sylc) was the only substance able to reduce dentin permeability after immersion in remineralizing solution and to show hydroxyapatite precipitation as a sign of dentin remineralization. The reduction in dentin permeability obtained after the application of the other prophylactic materials used in this study was due to the presence of the remnant material in the dentinal tubules, with no remineralization effect after storage in remineralizing solution. In conclusion, the results indicated that bioactive glass prophy powder may induce immediate remineralization of dentin.

  20. Role of enamel deminerlization and remineralization on microtensile bond strength of resin composite

    PubMed Central

    Rizvi, Abbas; Zafar, Muhammad S.; Al-Wasifi, Yasser; Fareed, Wamiq; Khurshid, Zohaib

    2016-01-01

    Objective: This study is aimed to establish the microtensile bond strength of enamel following exposure to an aerated drink at various time intervals with/without application of remineralization agent. In addition, degree of remineralization and demineralization of tooth enamel has been assessed using polarized light microscopy. Materials and Methods: Seventy extracted human incisors split into two halves were immersed in aerated beverage (cola drink) for 5 min and stored in saliva until the time of microtensile bond testing. Prepared specimens were divided randomly into two study groups; remineralizing group (n = 70): specimens were treated for remineralization using casein phosphopeptides and amorphous calcium phosphate (CPP-ACP) remineralization agent (Recaldent™; GC Europe) and control group (n = 70): no remineralization treatment; specimens were kept in artificial saliva. All specimens were tested for microtensile bond strength at regular intervals (1 h, 1 days, 2 days, 1 week, and 2 weeks) using a universal testing machine. The results statistically analyzed (P = 0.05) using two-way ANOVA test. Results: Results showed statistically significant increase in bond strength in CPP-ACP tested group (P < 0.05) at all-time intervals. The bond strength of remineralizing group samples at 2 days (~13.64 megapascals [MPa]) is comparable to that of control group after 1 week (~12.44 MPa). Conclusions: CPP-ACP treatment of teeth exposed to an aerated drink provided significant increase in bond strength at a shorter interval compared to teeth exposed to saliva alone. PMID:27403057

  1. Mesoscale acid deposition modeling studies

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Proctor, F. H.; Zack, John W.; Karyampudi, V. Mohan; Price, P. E.; Bousquet, M. D.; Coats, G. D.

    1989-01-01

    The work performed in support of the EPA/DOE MADS (Mesoscale Acid Deposition) Project included the development of meteorological data bases for the initialization of chemistry models, the testing and implementation of new planetary boundary layer parameterization schemes in the MASS model, the simulation of transport and precipitation for MADS case studies employing the MASS model, and the use of the TASS model in the simulation of cloud statistics and the complex transport of conservative tracers within simulated cumuloform clouds. The work performed in support of the NASA/FAA Wind Shear Program included the use of the TASS model in the simulation of the dynamical processes within convective cloud systems, the analyses of the sensitivity of microburst intensity and general characteristics as a function of the atmospheric environment within which they are formed, comparisons of TASS model microburst simulation results to observed data sets, and the generation of simulated wind shear data bases for use by the aviation meteorological community in the evaluation of flight hazards caused by microbursts.

  2. Using ammonium pore water profiles to assess stoichiometry of deep remineralization processes in methanogenic continental margin sediments

    NASA Astrophysics Data System (ADS)

    Burdige, David J.; Komada, Tomoko

    2013-05-01

    many continental margin sediments, a deep reaction zone exists which is separated from remineralization processes near the sediment surface. Here, methane diffuses upward to a depth where it is oxidized by downwardly diffusing sulfate. However, the methane sources that drive this anaerobic oxidation of methane (AOM) in the sulfate-methane transition zone (SMT) may vary among sites. In particular, these sources can be thought of as either (i) "internal" sources from in situ methanogenesis (regardless of where it occurs in the sediment column) that are ultimately coupled to organic matter deposition and burial, or (ii) "external" sources such as hydrocarbon reservoirs derived from ancient source rocks, or deeply buried gas hydrates, both of which are decoupled from contemporaneous organic carbon deposition at the sediment surface. Using a modeling approach, we examine the relationship between different methane sources and pore water sulfate, methane, dissolved inorganic carbon (DIC), and ammonium profiles. We show that pore water ammonium profiles through the SMT represent an independent "tracer" of remineralization processes occurring in deep sediments that complement information obtained from profiles of solutes directly associated with AOM and carbonate precipitation, i.e., DIC, methane, and sulfate. Pore water DIC profiles also show an inflection point in the SMT based on the type of deep methane source and the presence/absence of accompanying upward DIC fluxes. With these results, we present a conceptual framework which illustrates how shallow pore water profiles from continental margin settings can be used to obtain important information about remineralization processes and methane sources in deep sediments.

  3. Terahertz pulsed imaging study to assess remineralization of artificial caries lesions

    NASA Astrophysics Data System (ADS)

    Churchley, David; Lynch, Richard J. M.; Lippert, Frank; O'Bryan Eder, Jennifer Susan; Alton, Jesse; Gonzalez-Cabezas, Carlos

    2011-02-01

    We compare terahertz-pulsed imaging (TPI) with transverse microradiography (TMR) and microindentation to measure remineralization of artificial caries lesions. Lesions are formed in bovine enamel using a solution of 0.1 M lactic acid/0.2% Carbopol C907 and 50% saturated with hydroxyapatite adjusted to pH 5.0. The 20-day experimental protocol consists of four 1 min treatment periods with dentifrices containing 10, 675, 1385, and 2700 ppm fluoride, a 4-h/day acid challenge, and, for the remaining time, specimens are stored in a 50:50 pooled human/artificial saliva mixture. Each specimen is imaged at the focal point of the terahertz beam (data-point spacing = 50 μm). The time-domain data are used to calculate the refractive index volume percent profile throughout the lesion, and the differences in the integrated areas between the baseline and post-treatment profiles are used to calculate ΔΔZ(THz). In addition, the change from baseline in both the lesion depth and the intensity of the reflected pulse from the air/enamel interface is determined. Statistically significant Pearson correlation coefficients are observed between TPI and TMR/microindentation (P < 0.05). We demonstrate that TPI has potential as a research tool for hard tissue imaging.

  4. Molecular modeling of nucleic acid structure

    PubMed Central

    Galindo-Murillo, Rodrigo; Bergonzo, Christina

    2013-01-01

    This unit is the first in a series of four units covering the analysis of nucleic acid structure by molecular modeling. This unit provides an overview of computer simulation of nucleic acids. Topics include the static structure model, computational graphics and energy models, generation of an initial model, and characterization of the overall three-dimensional structure. PMID:18428873

  5. Combining CPP-ACP with fluoride: a synergistic remineralization potential of artificially demineralized enamel or not?

    NASA Astrophysics Data System (ADS)

    El-Sayad, I. I.; Sakr, A. K.; Badr, Y. A.

    2008-08-01

    Background and objective: Minimal intervention dentistry (MID) calls for early detection and remineralization of initial demineralization. Laser fluorescence is efficient in detecting changes in mineral tooth content. Recaldent is a product of casein phosphopeptide-amorphous calcium phosphate (CPP- ACP) which delivers calcium and phosphate ions to enamel. A new product which also contains fluoride is launched in United States. The remineralizing potential of CPP- ACP per se, or when combined with 0.22% Fl supplied in an oral care gel on artificially demineralised enamel using laser fluorescence was investigated. Methods: Fifteen sound human molars were selected. Mesial surfaces were tested using He-Cd laser beam at 441.5nm with 18mW power as excitation source on a suitable set-up based on Spex 750 M monochromator provided with PMT for detection of collected auto-fluorescence from sound enamel. Mesial surfaces were subjected to demineralization for ten days. The spectra from demineralized enamel were measured. Teeth were then divided according to the remineralizing regimen into three groups: group I recaldent per se, group II recaldent combined with fluoride gel and group III artificial saliva as a positive control. After following these protocols for three weeks, the spectra from remineralized enamel from the three groups were measured. The spectra of enamel auto-fluorescence were recorded and normalized to peak intensity at about 540 nm to compare between spectra from sound, demineralized and remineralized enamel surfaces. Results: A slight red shift was noticed in spectra from demineralized enamel, while a blue shift may occur in remineralized enamel. Group II showed the highest remineralizing potential. Conclusions: Combining fluoride with CPP-ACP had a synergistic effect on enamel remineralization. In addition, laser auto-fluorescence is an accurate technique for assessment of changes in tooth enamel minerals.

  6. Solution activity product (KFAP) and simultaneous demineralization-remineralization in bovine tooth enamel and hydroxyapatite pellets

    SciTech Connect

    Fox, J.L.; Iyer, B.V.; Higuchi, W.I.; Hefferren, J.J.

    1983-11-01

    The effects of changing the ion activity product of the remineralization solution at pH 4.5 (pKFAP 108-118) on the remineralization behavior of demineralized bovine tooth enamel and hydroxyapatite pellets have been studied. Solutions containing calcium-4.5, phosphate, and fluoride in acetate buffers were used. The /sup 45/Ca/F molar ratios indicated the formation of fluoridated hydroxyapatite in the enamel or the pellet when the pKFAP values for remineralizing solutions were less than 112. When the pKFAP values were greater than 112, the /sup 45/Ca/F ratios were found to be much less than 5. Also, when the pKFAP values were large (greater than 112), the remineralization patterns based on the fluoride distribution in the tooth (or pellet) were found to be different than when the pKFAP values were small (less than 112). The hypothesis that a pKFAP value of 112 is the demarcation between remineralization only and simultaneous dissolution-remineralization has been proposed based on these results.

  7. Preferential remineralization of dissolved organic phosphorus and non-Redfield DOM dynamics in the global ocean: Impacts on marine productivity, nitrogen fixation, and carbon export

    NASA Astrophysics Data System (ADS)

    Letscher, Robert T.; Moore, J. Keith

    2015-03-01

    Selective removal of nitrogen (N) and phosphorus (P) from the marine dissolved organic matter (DOM) pool has been reported in several regional studies. Because DOM is an important advective/mixing pathway of carbon (C) export from the ocean surface layer and its non-Redfieldian stoichiometry would affect estimates of marine export production per unit N and P, we investigated the stoichiometry of marine DOM and its remineralization globally using a compiled DOM data set. Marine DOM is enriched in C and N compared to Redfield stoichiometry, averaging 317:39:1 and 810:48:1 for C:N:P within the degradable and total bulk pools, respectively. Dissolved organic phosphorus (DOP) is found to be preferentially remineralized about twice as rapidly with respect to the enriched C:N stoichiometry of marine DOM. Biogeochemical simulations with the Biogeochemical Elemental Cycling model using Redfield and variable DOM stoichiometry corroborate the need for non-Redfield dynamics to match the observed DOM stoichiometry. From our model simulations, preferential DOP remineralization is found to increase the strength of the biological pump by ~9% versus the case of Redfield DOM cycling. Global net primary productivity increases ~10% including an increase in marine nitrogen fixation of ~26% when preferential DOP remineralization and direct utilization of DOP by phytoplankton are included. The largest increases in marine nitrogen fixation, net primary productivity, and carbon export are observed within the western subtropical gyres, suggesting the lateral transfer of P in the form of DOP from the productive eastern and poleward gyre margins may be important for sustaining these processes downstream in the subtropical gyres.

  8. Biomimetic remineralization of human enamel in the presence of polyamidoamine dendrimers in vitro.

    PubMed

    Chen, Liang; Yuan, He; Tang, Bei; Liang, Kunneng; Li, Jiyao

    2015-01-01

    Poly(amidoamine) (PAMAM) dendrimers, known as artificial proteins, have unique and well-defined molecular size and structure. It has previously been used to mimic protein-crystal interaction during biomineralization. In this study, generation 4.5 (4.5G) PAMAM with carboxylic acid (PAMAM-COOH) was synthesized and utilized to remineralize the surface of etched enamel in vitro. Using confocal laser scanning microscopy, Fourier transform infrared spectroscopy, X-ray diffraction analysis and scanning electron microscopy we observed that 4.5G PAMAM-COOH can be absorbed on the etched enamel surface and that it can induce the formation of hydroxyapatite crystals with the same orientation as that of the enamel prisms on longitudinal and transversal enamel surfaces. The self-assembly behavior of PAMAM in the mineralization solution was also investigated and the result showed that 4.5G PAMAM can assemble to microribbon structure similar to the behavior of amelogenins. Therefore, we concluded that 4.5G PAMAM-COOH assemblies can act as the organic template on enamel surface and in mineralization solution to control the nucleation site and morphology of new-grown crystals to form the biomimetic structure of human enamel, which may open a new way for repairing damaged enamel.

  9. In situ protocol for the determination of dose-response effect of low-fluoride dentifrices on enamel remineralization

    PubMed Central

    AFONSO, Rebeca Lima; PESSAN, Juliano Pelim; IGREJA, Bruna Babler; CANTAGALLO, Camila Fernandes; DANELON, Marcelle; DELBEM, Alberto Carlos Botazzo

    2013-01-01

    No in situ protocol has assessed the dose-response effects of fluoride dentifrices involving low-fluoride formulations. Objective To assess the ability of an in situ remineralization model in determining dose-response effects of dentifrices containing low fluoride concentrations ([F]) on bovine enamel. Material and Methods Volunteers wore palatal appliances containing demineralized enamel blocks and brushed their teeth and devices with the dentifrices supplied (double-blind, crossover protocol) separately for 3 and 7 days. Surface hardness (SH), integrated subsurface hardness (ΔKHN) and [F] in enamel were determined. Data were analyzed by ANOVA, Tukey's test and Pearson's correlation (p<0.05). Results Dose-response relationships were verified between [F] in dentifrices and SH, ΔKHN and enamel [F]. Higher correlation coefficients between enamel [F] and SH and ΔKHN were obtained for the 3-day period. Significant differences in SH and ΔKHN were observed among all groups for the 3-day period, but not between 0-275, 275-550, and 550-1,100 µg F/g dentifrices for the 7-day period, nor between 3- and 7-day periods for the 1,100 µg F/g groups. Conclusions Considering that the peak remineralization capacity of the conventional dentifrice (1,100 µg F/g) was achieved in 3 days, this experimental period could be used in future studies assessing new dentifrice formulations, especially at low-fluoride concentrations. PMID:24473718

  10. Methods for Biomimetic Remineralization of Human Dentine: A Systematic Review

    PubMed Central

    Cao, Chris Ying; Mei, May Lei; Li, Quan-Li; Lo, Edward Chin Man; Chu, Chun Hung

    2015-01-01

    This study aimed to review the laboratory methods on biomimetic remineralization of demineralized human dentine. A systematic search of the publications in the PubMed, TRIP, and Web of Science databases was performed. Titles and abstracts of initially identified publications were screened. Clinical trials, reviews, non-English articles, resin-dentine interface studies, hybrid layer studies, hybrid scaffolds studies, and irrelevant studies were excluded. The remaining papers were retrieved with full texts. Manual screening was conducted on the bibliographies of remaining papers to identify relevant articles. A total of 716 studies were found, and 690 were excluded after initial screening. Two articles were identified from the bibliographies of the remaining papers. After retrieving the full text, 23 were included in this systematic review. Sixteen studies used analogues to mimic the functions of non-collagenous proteins in biomineralization of dentine, and four studies used bioactive materials to induce apatite formation on demineralized dentine surface. One study used zinc as a bioactive element, one study used polydopamine, and another study constructed an agarose hydrogel system for biomimetic mineralization of dentine. Many studies reported success in biomimetic mineralization of dentine, including the use of non-collagenous protein analogues, bioactive materials, or elements and agarose hydrogel system. PMID:25739078

  11. Methods for biomimetic remineralization of human dentine: a systematic review.

    PubMed

    Cao, Chris Ying; Mei, May Lei; Li, Quan-Li; Lo, Edward Chin Man; Chu, Chun Hung

    2015-03-02

    This study aimed to review the laboratory methods on biomimetic remineralization of demineralized human dentine. A systematic search of the publications in the PubMed, TRIP, and Web of Science databases was performed. Titles and abstracts of initially identified publications were screened. Clinical trials, reviews, non-English articles, resin-dentine interface studies, hybrid layer studies, hybrid scaffolds studies, and irrelevant studies were excluded. The remaining papers were retrieved with full texts. Manual screening was conducted on the bibliographies of remaining papers to identify relevant articles. A total of 716 studies were found, and 690 were excluded after initial screening. Two articles were identified from the bibliographies of the remaining papers. After retrieving the full text, 23 were included in this systematic review. Sixteen studies used analogues to mimic the functions of non-collagenous proteins in biomineralization of dentine, and four studies used bioactive materials to induce apatite formation on demineralized dentine surface. One study used zinc as a bioactive element, one study used polydopamine, and another study constructed an agarose hydrogel system for biomimetic mineralization of dentine. Many studies reported success in biomimetic mineralization of dentine, including the use of non-collagenous protein analogues, bioactive materials, or elements and agarose hydrogel system.

  12. Impact of an Anticaries Mouthrinse on In Vitro Remineralization and Microbial Control

    PubMed Central

    Sun, Frank C.; Engelman, E. Eric; McGuire, James A.; Kosmoski, Gabrielle; Carratello, Lauren; Ricci-Nittel, Danette; Zhang, Jane Z.; Schemehorn, Bruce R.; Gambogi, Robert J.

    2014-01-01

    Objective. The objective of this research was to evaluate the caries control potential of a new fluoride mouthrinse that also contained antimicrobial agents and a biofilm disrupting agent using different in vitro models. Methods. Four in vitro studies were conducted to assess the performance of this three pronged approach to caries control: (1) traditional enamel fluoride uptake, (2) surface microhardness study using pH cycling model and subsequent fluoride uptake, (3) a salivary biofilm flow-through study to determine the anti-microbial activity, and (4) a single species biofilm model measuring effect on biofilm matrix disruption. Results. The data showed that a LISTERINE rinse with fluoride, essential oils and xylitol was superior in promoting enamel fluoride uptake and in enhancing antimicrobial activity over traditional commercially available fluoridated products. An increase of the surface microhardness was observed when the LISTERINE rinse was used in combination with fluoridated toothpaste versus the fluoridated toothpaste alone. Finally, it was demonstrated that xylitol solutions disrupted and reduced the biovolume of biofilm matrix of mature Streptococcus mutans. Conclusion. These in vitro studies demonstrated that a fluoride mouthrinse with antimicrobial agent and biofilm matrix disrupting agent provided multifaceted and enhanced anti-caries efficacy by promoting remineralization, reducing acidogenic bacteria and disrupting biofilm matrix. PMID:24648842

  13. Organic nutrient enrichment in the oligotrophic ocean: Impacts on remineralization, carbon sequestration, and community structure

    NASA Astrophysics Data System (ADS)

    Mackey, K. R.; Paytan, A.; Post, A. F.

    2007-12-01

    In oligotrophic seas where inorganic nitrogen (N) and phosphorus (P) are below the limits of detection, organic forms of these nutrients may constitute greater than 90% of the total N and P in the euphotic zone. The combined enzymatic activity of phytoplankton and heterotrophic bacteria determines the rate of nutrient remineralization, thereby influencing phytoplankton growth rates and carbon sequestration in these regions. In this study we investigated the effects of fertilization with ammonium (NH4), nitrate (NO3), nitrite (NO2), and phosphate (PO4) as well as various forms of organic N (urea, glycine) and P (deoxyribonucleic acid, 2- aminoethyl phosphonic acid, phytic acid) on the growth and taxonomic composition of the phytoplankton community in the Gulf of Aqaba, Red Sea. The impacts of these changes on nutrient cycling and biological assimilation were also assessed. Organic N additions led to phytoplankton growth when given together with PO4, yielding 2-3 fold increases in chlorophyll a (Chl a) and cell density relative to initial levels. Moreover, our results show that addition of NH4 or NO3 led to accumulation of extra-cellular NO2, suggesting that incomplete assimilatory reduction of NO3 by phytoplankton as well as chemoautotrophic oxidation of NH4 by ammonium oxidizing microbes contributed to NO2 formation. These findings conflict with earlier studies in the Gulf that attributed NO2 formation solely to the phytoplankton community. Organic P additions also led to 2-3 fold increases in Chl a and cell density relative to initial levels when given together with NH4 and NO3. Compared to other P additions, DNA led to the rapid accumulation of extra-cellular PO4, indicating substantial nucleotidase activity in excess of the amount needed to meet phytoplankton growth requirements. These results show the importance and interconnectivity of phytoplankton and heterotrophic bacteria communities in contributing to nutrient cycling and carbon sequestration in

  14. Early season mesopelagic carbon remineralization and transfer efficiency in the naturally iron-fertilized Kerguelen area

    NASA Astrophysics Data System (ADS)

    Jacquet, S. H. M.; Dehairs, F.; Cavagna, A. J.; Planchon, F.; Monin, L.; André, L.; Closset, I.; Cardinal, D.

    2014-06-01

    We report on the zonal variability of mesopelagic particulate organic carbon) remineralization and deep carbon transfer potential during the Kerguelen Ocean and Plateau compared Study 2 expedition (KEOPS 2; October-November 2011) in an area of the Polar Front supporting recurrent massive blooms from natural Fe fertilization. Mesopelagic carbon remineralization was assessed using the excess, non-lithogenic particulate barium (Baxs) inventories in mesopelagic waters and compared with surface primary and export productions. Results for this early season study are compared with results obtained earlier (2005; KEOPS 1) for the same area during summer. For the Kerguelen plateau (A3 site) we observe a similar functioning of the mesopelagic ecosystem during both seasons (spring and summer), with less that 30% of carbon exported from the upper 150 m being remineralized in the mesopelagic column (150-400 m). For deeper stations (> 2000 m) located on the margin, inside a Polar Front meander, as well as in the vicinity of the Polar Front, east of Kerguelen, remineralization in the upper 400 m in general represents > 30% of carbon export, but when considering the upper 800 m, in some cases, the entire flux of exported carbon is remineralized. It appears that above the plateau (A3 site) mesopelagic remineralization is not a major barrier to the transfer of organic matter to the sea-floor (close to 500 m). There the efficiency of carbon sequestration into the bottom waters (> 400 m) reached up to 87% of the carbon exported from the upper 150 m. In contrast, at the deeper locations mesopelagic remineralization clearly limits the sequestration of carbon to depths > 400 m. For sites at the margin of the plateau (station E-4W) and the Polar front (station F-L), mesopelagic remineralization even exceeds upper 150 m export, resulting in a null sequestration efficiency to depths > 800 m. In the Polar Front meander, where successive stations form a time series, the capacity of the

  15. Remineralization potential of nano-hydroxyapatite on initial enamel lesions: an in vitro study.

    PubMed

    Huang, S; Gao, S; Cheng, L; Yu, H

    2011-01-01

    The application of nano-hydroxyapatite (HA) in the repair of early caries lesion has received considerable attention. Neither the effects of the size of HA nor the effects of the effective pH range of nano-HA on remineralization have been investigated comprehensively, and the protective mechanism is still open for debate. To address these factors, the remineralization effect of nano-HA on demineralized bovine enamel is investigated under pH cycling conditions through surface and cross-sectional microhardness (CSMH) tests and polarized light microscopy (PLM). The percentage of surface microhardness recovery and integrated mineral loss obtained from CSMH tests demonstrated that nano-HA provides better remineralization than micro-HA. However, detailed investigation using CSMH tests and PLM indicated that nano-HA helped mineral deposition predominantly in the outer layer of the lesion and only had a limited capacity to reduce lesion depth. Nevertheless, the remineralization effect of nano-HA increased significantly when the pH was less than 7.0. Clearly, nano-HA has potential as an effective repair material and anticaries agent. Our findings also suggest that both the particle- and ion-mediated remineralization pathways in nano-HA may contribute to the repair of demineralized enamel.

  16. Investigation on the remineralization effect of arginine toothpaste for early enamel caries: nanotribological and nanomechanical properties

    NASA Astrophysics Data System (ADS)

    Yu, Ping; Arola, Dwayne D.; Min, Jie; Yu, Dandan; Xu, Zhou; Li, Zhi; Gao, Shanshan

    2016-11-01

    Remineralization is confirmed as a feasible method to restore early enamel caries. While there is evidence that the 8% arginine toothpaste has a good remineralization effect by increasing surface microhardness, the repair effect on wear-resistance and nanomechanical properties still remains unclear. Therefore, this research was conducted to reveal the nanotribological and nanomechanical properties changes of early caries enamel after remineralized with arginine toothpaste. Early enamel caries were created in bovine enamel blocks, and divided into three groups according to the treatment solutions: distilled and deionized water (DDW group), arginine toothpaste slurry (arginine group) and fluoride toothpaste slurry (fluoride group). All of the samples were subjected to pH cycling for 12 d. The nanotribological and nanomechanical properties were evaluated via the nanoscratch and nanoindentation tests. The wear depth and scratch morphology were observed respectively by scanning probe microscopic (SPM) and scanning electron microscopy (SEM). Finally, x-ray photoelectron spectroscopy (XPS) was used for element analysis of remineralized surfaces. Results showed that the wear depth of early caries enamel decreased after remineralization treatment and both the nanohardness and elastic modulus increased. Compared with the fluoride group, the arginine group exhibited higher nanohardness and elastic modulus with higher levels of calcium, fluoride, nitrogen and phosphorus; this group also underwent less wear and related damage. Overall, the synergistic effect of arginine and fluoride in arginine toothpaste achieves better nanotribological and nanomechanical properties than the single fluoride toothpaste, which could have significant impact on fight against early enamel caries.

  17. Dentifrices, mouthwashes, and remineralization/caries arrestment strategies

    PubMed Central

    Zero, Domenick T

    2006-01-01

    While our knowledge of the dental caries process and its prevention has greatly advanced over the past fifty years, it is fair to state that the management of this disease at the level of the individual patient remains largely empirical. Recommendations for fluoride use by patients at different levels of caries risk are mainly based on the adage that more is better. There is a general understanding that the fluoride compound, concentration, frequency of use, duration of exposure, and method of delivery can influence fluoride efficacy. Two important factors are (1) the initial interaction of relatively high concentrations of fluoride with the tooth surface and plaque during application and (2) the retention of fluoride in oral fluids after application. Fluoride dentifrices remain the most widely used method of delivering topical fluoride. The efficacy of this approach in preventing dental caries is beyond dispute. However, the vast majority of currently marketed dentifrice products have not been clinically tested and have met only the minimal requirements of the FDA monograph using mainly laboratory testing and animal caries testing. Daily use of fluoride dental rinses as an adjunct to fluoride dentifrice has been shown to be clinically effective as has biweekly use of higher concentration fluoride rinses. The use of remineralizing agents (other than fluoride), directed at reversing or arresting non-cavitated lesions, remains a promising yet largely unproven strategy. High fluoride concentration compounds, e.g., AgF, Ag(NH3)2F, to arrest more advanced carious lesions with and without prior removal of carious tissue are being used in several countries as part of the Atraumatic Restorative Treatment (ART) approach. Most of the recent innovations in oral care products have been directed toward making cosmetic marketing claims. There continues to be a need for innovation and collaboration with other scientific disciplines to fully understand and prevent dental caries

  18. Whole body acid-base modeling revisited.

    PubMed

    Ring, Troels; Nielsen, Søren

    2017-04-01

    The textbook account of whole body acid-base balance in terms of endogenous acid production, renal net acid excretion, and gastrointestinal alkali absorption, which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. To improve understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production were already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption in terms of urine excretions. With a few assumptions it was possible to see that this expression of net acid balance was arithmetically identical to minus urine charge, whereby under the development of acidosis, urine was predicted to acquire a net negative charge. The literature already mentions unexplained negative urine charges so we scrutinized a series of seminal papers and confirmed empirically the theoretical prediction that observed urine charge did acquire negative charge as acidosis developed. Hence, we can conclude that the conventional model is problematic since it predicts what is physiologically impossible. Therefore, we need a new model for whole body acid-base balance, which does not have impossible implications. Furthermore, new experimental studies are needed to account for charge imbalance in urine under development of acidosis.

  19. Automated detection of remineralization in simulated enamel lesions with PS-OCT

    NASA Astrophysics Data System (ADS)

    Lee, Robert C.; Darling, Cynthia L.; Fried, Daniel

    2014-02-01

    Previous in vitro and in vivo studies have demonstrated that polarization-sensitive optical coherence tomography (PS-OCT) can be used to nondestructively image the subsurface structure and measure the thickness of the highly mineralized transparent surface zone of caries lesions. There are structural differences between active lesions and arrested lesions, and the surface layer thickness may correlate with activity of the lesion. The purpose of this study was to develop a method that can be used to automatically detect and measure the thickness of the transparent surface layer in PS-OCT images. Automated methods of analysis were used to measure the thickness of the transparent layer and the depth of the bovine enamel lesions produced using simulated caries models that emulate demineralization in the mouth. The transparent layer thickness measured with PS-OCT correlated well with polarization light microscopy (PLM) measurements of all regions (r2=0.9213). This study demonstrates that PS-OCT can automatically detect and measure thickness of the transparent layer formed due to remineralization in simulated caries lesions.

  20. Remineralization of particulate organic carbon in an ocean oxygen minimum zone

    PubMed Central

    Cavan, E. L.; Trimmer, M.; Shelley, F.; Sanders, R.

    2017-01-01

    Biological oceanic processes, principally the surface production, sinking and interior remineralization of organic particles, keep atmospheric CO2 lower than if the ocean was abiotic. The remineralization length scale (RLS, the vertical distance over which organic particle flux declines by 63%, affected by particle respiration, fragmentation and sinking rates) controls the size of this effect and is anomalously high in oxygen minimum zones (OMZ). Here we show in the Eastern Tropical North Pacific OMZ 70% of POC remineralization is due to microbial respiration, indicating that the high RLS is the result of lower particle fragmentation by zooplankton, likely due to the almost complete absence of zooplankton particle interactions in OMZ waters. Hence, the sensitivity of zooplankton to ocean oxygen concentrations can have direct implications for atmospheric carbon sequestration. Future expansion of OMZs is likely to increase biological ocean carbon storage and act as a negative feedback on climate change. PMID:28322218

  1. Remineralization of initial enamel caries in vitro using a novel peptide based on amelogenin

    NASA Astrophysics Data System (ADS)

    Li, Danxue; Lv, Xueping; Tu, Huanxin; Zhou, Xuedong; Yu, Haiyang; Zhang, Linglin

    2015-09-01

    Dental caries is the most common oral disease with high incidence, widely spread and can seriously affect the health of oral cavity and the whole body. Current caries prevention measures such as fluoride treatment, antimicrobial agents, and traditional Chinese herbal, have limitations to some extent. Here we design and synthesize a novel peptide based on the amelogenin, and assess its ability to promote the remineralization of initial enamel caries lesions. We used enamel blocks to form initial lesions, and then subjected to 12-day pH cycling in the presence of peptide, NaF and HEPES buffer. Enamel treated with peptide or NaF had shallower, narrower lesions, thicker remineralized surfaces and less mineral loss than enamel treated with HEPES. This peptide can promote the remineralization of initial enamel caries and inhibit the progress of caries. It is a promising anti-caries agent with various research prospects and practical application value.

  2. Remineralization of particulate organic carbon in an ocean oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Cavan, E. L.; Trimmer, M.; Shelley, F.; Sanders, R.

    2017-03-01

    Biological oceanic processes, principally the surface production, sinking and interior remineralization of organic particles, keep atmospheric CO2 lower than if the ocean was abiotic. The remineralization length scale (RLS, the vertical distance over which organic particle flux declines by 63%, affected by particle respiration, fragmentation and sinking rates) controls the size of this effect and is anomalously high in oxygen minimum zones (OMZ). Here we show in the Eastern Tropical North Pacific OMZ 70% of POC remineralization is due to microbial respiration, indicating that the high RLS is the result of lower particle fragmentation by zooplankton, likely due to the almost complete absence of zooplankton particle interactions in OMZ waters. Hence, the sensitivity of zooplankton to ocean oxygen concentrations can have direct implications for atmospheric carbon sequestration. Future expansion of OMZs is likely to increase biological ocean carbon storage and act as a negative feedback on climate change.

  3. In vitro evaluation of the efficacy of laser fluorescence (DIAGNOdent) to detect demineralization and remineralization of smooth enamel lesions

    PubMed Central

    Bahrololoomi, Zahra; Musavi, Seyed Ahmad; Kabudan, Mona

    2013-01-01

    Objective: Early detection of smooth surface lesions is important for appropriate management and monitoring of dental caries. The purpose of this in vitro study was to evaluate the efficacy of laser fluorescence to detect demineralization and remineralization of smooth enamel surfaces. Materials and Methods: In this in vitro study, 132 enamel blocks of semi-impacted human third molars were obtained; artificial caries lesions were induced and they were submitted to the pH-cycling process to create remineralization. Superficial microhardness (SMH) and laser fluorescence (LF) analysis were performed at baseline, after demineralization, and remineralization processes. The data were analyzed by Statistical Package for Social Sciences (SPSS)-16 using analysis of variance (ANOVA), Paired samples t-test, and Pearson's correlation test. Results: There was a significant difference between SMH values at baseline, after demineralization and after remineralization. Also, a statistically significant difference was observed between LF values in these three stages. The LF values increased after demineralization and then decreased after remineralization, and the SMH values decreased after demineralization and increased after remineralization. There was an inverse relationship between SMH and LF only at baseline and after demineralization, but not after remineralization. Conclusion: The results showed that LF is an appropriate method for detection of demineralization in an in vitro condition in smooth enamel lesions, but it was not so efficient in the detection of remineralization. PMID:23956542

  4. Changes in Stiffness of Resin-infiltrated Demineralized Dentin after Remineralization with a Bottom-up Biomimetic Approach

    PubMed Central

    Gu, Li-sha; Huffman, Bradford P.; Arola, Dwayne D.; Kim, Young Kyung; Mai, Sui; Elsalanty, Mohammed E.; Pashley, David H.; Tay, Franklin R.

    2009-01-01

    This study examined changes in elastic modulus, mineral density and ultrastructure of resin-infiltrated dentin after biomimetic remineralization. Sixty demineralized dentin beams were infiltrated with Clearfil Tri-S Bond, One-Step or Prime&Bond NT. They were immersed in simulated body fluid (SBF) for one week to maximize water sorption before determining the baseline elastic moduli. For each adhesive (N=20), half of the beams remained immersed in SBF (control). The rest were immersed in a biomimetic remineralization medium. The elastic moduli were measured weekly for 15 additional weeks. Representative remineralized specimens were evaluated with X-ray microtomography and transmission electron microscopy (TEM). The elastic moduli of control resin-infiltrated dentin remained consistently low, while those immersed in the biomimetic remineralization medium increased by 55–118% after 4-months. X-ray microtomography of the remineralized specimens revealed decreases in mineral density from the beam surface to the beam core that was indicative of external mineral aggregation and internal mineral deposition. Interfibrillar and intrafibrillar remineralization of resin-sparse intertubular dentin were seen under TEM together with remineralized peritubular dentin. Biomimetic remineralization occurs by diffusion of nanoprecursors and biomimetic analogs in completely demineralized resin-infiltrated dentin and proceeds without the contribution of materials released from a mineralized dentin base. PMID:19887126

  5. In vitro evaluation of remineralization efficacy of different calcium- and fluoride-based delivery systems on artificially demineralized enamel surface

    PubMed Central

    Gangrade, Aparajita; Gade, Vandana; Patil, Sanjay; Gade, Jaykumar; Chandhok, Deepika; Thakur, Deepa

    2016-01-01

    Background: Caries is the most common dental disease facing the world population. Caries can be prevented by remineralizing early enamel lesions. Aim: To evaluate remineralization efficacy of stannous fluoride (SnF2), casein phosphopeptide-amorphous calcium phosphate with fluoride (CPP-ACPF) and calcium sucrose phosphate (CaSP). Materials and Methods: Fifty enamel samples were taken; they were divided into five groups (n = 10). Demineralization was carried out with Groups A, B, C, and E. Remineralization was carried out with Groups A, B, and C for 7 days using SnF2, CPP-ACPF, and CaSP, respectively. In Group D, no surface treatment was carried out, to mark as positive control whereas Group E was kept as negative control with only surface demineralization of enamel. Enamel microhardness was tested using Vickers's microhardness tester after 7 day remineralization regime. Statistical Analysis: One-way analysis of variance and post hoc Tukey tests were performed. Results: The mean microhardness values in descending order: Positive control > SnF2> CaSP > CPP-ACPF > negative control. Conclusion: All remineralizing agents showed improved surface remineralization. However, complete remineralization did not occur within 7 days. SnF2 showed the highest potential for remineralization followed by CaSP and CPP-ACPF. PMID:27563180

  6. Monitoring of enamel lesion remineralization by optical coherence tomography: an alternative approach towards signal analysis

    NASA Astrophysics Data System (ADS)

    Sadr, Alireza; Mandurah, Mona; Nakashima, Syozi; Shimada, Yasushi; Kitasako, Yuichi; Tagami, Junji; Sumi, Yasunori

    Early detection, monitoring and remineralization repair of enamel lesions are top research priorities in the modern dentistry focusing on minimal intervention concept for caries management. We investigate the use of swept-source optical coherence tomography system (SS-OCT) without polarization-sensing at 1319 nm wavelength developed for clinical dentistry (Dental OCT System Prototype 2, Panasonic Healthcare Co., Ltd., Japan) in quantitative assessment of artificial enamel lesions and their remineralization. Bovine enamel blocks were subjected to demineralization to create subsurface lesions approximately 130 μm in depth over 2 weeks, and subjected to remineralization in solution containing bioavailable calcium and 1ppm fluoride at pH 6.5 for 2 weeks. Cross-sectional images of sound, demineralized and remineralized specimens were captured under hydrated conditions by the OCT. Finally, the specimens were cut into sections for nanoindentation to measure hardness through the lesion under 2mN load. Reflectivity had increased with demineralization. OCT images of lesions showed a boundary closely suggesting the lesion depth that gradually progressed with demineralization time. After remineralization, the boundary depth gradually decreased and nanoindentation showed over 60% average hardness recovery rate. A significant negative correlation was found between the slope power-law regression as a measure of attenuation and overall nanohardness for a range of data covering sound, demineralized and remineralized areas. In conclusion, OCT could provide clear images of early enamel lesion extent and signal attenuation could indicate its severity and recovery. Clinical data of natural lesions obtained using Dental OCT and analyzed by this approach will also be presented. Study supported by GCOE IRCMSTBD and NCGG.

  7. The role of zooplankton in the cycling and remineralization of chemical materials in the Southern California Bight

    SciTech Connect

    Small, L.F.; Huh, Chih-An.

    1988-01-01

    The overall objective of our research is to understand the transport pathways and mass balances of selected metabolically active and inactive chemical species in the Santa Monica/San Pedro Basins. One focus of our study is to examine the role of zooplankton and micronekton in the cycling and remineralization of chemical materials in the Southern California Bight, with particular reference to C, N and certain radionuclides and trace metals. A second focus is to examine these same radionuclides and trace metals in other important reservoirs. Knowledge of the rates and routes of transfer of these nuclides and metals through these reservoirs should lead to a cogent model for these elements in SM/SP Basins. Our zooplankton C and N data, should lead ultimately to a model of C and N cycling in the upper water column. Our sediment core data will lead to the construction of mass balances and budgets in the SM/SP Basins. 4 refs.

  8. Leucine-rich amelogenin peptide (LRAP) as a surface primer for biomimetic remineralization of superficial enamel defects: An in vitro study.

    PubMed

    Shafiei, Farhad; Hossein, Bagheri G; Farajollahi, Mohammad M; Fathollah, Moztarzadeh; Marjan, Behroozibakhsh; Tahereh, Jafarzadeh Kashi

    2015-01-01

    This study was carried out to obtain more information about the assembly of hydroxyapatite bundles formed in the presence of Leucine-Rich Amelogenin Peptide (LRAP) and to evaluate its effect on the remineralization of enamel defects through a biomimetic approach. One or 2 mg/mL LRAP solutions containing 2.5 mM of Ca(+2) and 1.5 mM phosphate were prepared (pH = 7.2) and stored at 37 °C for 24 h. The products of the reaction were studied using atomic force microscopy (AFM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). Vickers surface microhardness recovery (SMR%) of acid-etched bovine enamel, with or without LRAP surface treatment, were calculated to evaluate the influence of peptide on the lesion remineralization. Distilled water and 1 or 2 mg/mL LRAP solution (pH = 7.2) were applied on the lesions and the specimens were incubated in mineralization solution (2.5mM Ca(+2) , 1.5mM PO4 (-3) , pH = 7.2) for 24 h. One-way ANOVA and Tukey's multi-comparison tests were used for statistical analysis. The pattern of enamel surface repair was studied using FE-SEM. AFM showed the formation of highly organized hierarchical structures, composed of hydroxyapatite (HA) crystals, similar to the dental enamel microstructure. ANOVA procedure showed significant effect of peptide treatment on the calculated SMR% (p < 0.001). Tukey's test revealed that peptide treated groups had significantly higher values of SMR%. In conclusion, LRAP is able to regulate the formation of HA and enhances the remineralization of acid-etched enamel as a surface treatment agent.

  9. Remineralization and repair of enamel surface by biomimetic Zn-carbonate hydroxyapatite containing toothpaste: a comparative in vivo study.

    PubMed

    Lelli, Marco; Putignano, Angelo; Marchetti, Marco; Foltran, Ismaela; Mangani, Francesco; Procaccini, Maurizio; Roveri, Norberto; Orsini, Giovanna

    2014-01-01

    Consumption of acidic foods and drinks and other factors that cause enamel wear are responsible for the daily enamel loss and degradation. Use of some toothpastes that have been showed to possess different properties of remineralisation and/or repair of the enamel surface may help to protect tooth enamel. The aim of this study was to evaluate whether the use of toothpaste containing Zn-carbonate hydroxyapatite (CHA) nanostructured microcrystals may exert remineralization/repair effects of the enamel surface. Two groups of patients, aged between 18 and 75 years, used a Zn-CHA nanocrystals-based toothpaste (experimental group) and a potassium nitrate/sodium fluoride toothpaste (active control group) for 8 weeks. At the end of this period, extractions were performed in five subjects per study group. Negative controls consisted of two subjects treated with non-specified fluoride toothpaste. Teeth were processed for morphological and chemical-physic superficial characterizations by means of Scanning Electronic Microscopy with Elementary analysis, X-Ray Diffraction analysis and Infrared analysis. In this study, the use of a Zn-CHA nanocrystals toothpaste led to a remineralization/repair of the enamel surface, by deposition of a hydroxyapatite-rich coating. On the other hand, the use of both a nitrate potassium/sodium fluoride and non-specified fluoride toothpastes did not appreciably change the enamel surface. In conclusion, this study demonstrates that the toothpaste containing Zn-CHA nanostructured microcrystals, differently from nitrate potassium/sodium fluoride and non-specified fluoride toothpastes, may promote enamel superficial repair by means of the formation of a protective biomimetic CHA coating.

  10. Early spring mesopelagic carbon remineralization and transfer efficiency in the naturally iron-fertilized Kerguelen area

    NASA Astrophysics Data System (ADS)

    Jacquet, S. H. M.; Dehairs, F.; Lefèvre, D.; Cavagna, A. J.; Planchon, F.; Christaki, U.; Monin, L.; André, L.; Closset, I.; Cardinal, D.

    2015-03-01

    We report on the zonal variability of mesopelagic particulate organic carbon remineralization and deep carbon transfer potential during the Kerguelen Ocean and Plateau compared Study 2 expedition (KEOPS 2; October-November 2011) in an area of the polar front supporting recurrent massive blooms from natural Fe fertilization. Mesopelagic carbon remineralization (MR) was assessed using the excess, non-lithogenic particulate barium (Baxs) inventories in mesopelagic waters and compared with bacterial production (BP), surface primary production (PP) and export production (EP). Results for this early season study are compared with the results obtained during a previous study (2005; KEOPS 1) for the same area at a later stage of the phytoplankton bloom. Our results reveal the patchiness of the seasonal advancement and of the establishment of remineralization processes between the plateau (A3) and polar front sites during KEOPS 2. For the Kerguelen plateau (A3 site) we observe a similar functioning of the mesopelagic ecosystem during both seasons (spring and summer), with low and rather stable remineralization fluxes in the mesopelagic column (150-400 m). The shallow water column (~500 m), the lateral advection, the zooplankton grazing pressure and the pulsed nature of the particulate organic carbon (POC) transfer at A3 seem to drive the extent of MR processes on the plateau. For deeper stations (>2000 m) located on the margin, inside a polar front meander, as well as in the vicinity of the polar front, east of Kerguelen, remineralization in the upper 400 m in general represents a larger part of surface carbon export. However, when considering the upper 800 m, in some cases, the entire flux of exported carbon is remineralized. In the polar front meander, where successive stations form a time series, two successive events of particle transfer were evidenced by remineralization rates: a first mesopelagic and deep transfer from a past bloom before the cruise, and a second

  11. Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide.

    PubMed

    Chung, Hsiu-Ying; Li, Cheng Che

    2013-03-01

    A highly biocompatible peptide, triplet repeats of asparagine-serine-serine (3 NSS) was designed to regulate mineral deposition from aqueous ions in saliva for the reconstruction of enamel lesions. Healthy human enamel was sectioned and acid demineralized to create lesions, then exposed to the 3 NSS peptide solution, and finally immersed in artificial saliva for 24h. The surface morphology and roughness were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. X-ray diffraction (XRD) was used to identify the phases and crystallinity of the deposited minerals observed on the enamel surface. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used to quantitatively analyze the mineral variation by calculating the relative integrated-area of characteristic bands. Nanohardness and elastic modulus measured by nanoindentation at various treatment stages were utilized to evaluate the degree of recovery. Biomimetic effects were accessed according to the degree of nanohardness recovery and the amount of hydroxyapatite deposition. The charged segments in the 3 NSS peptide greatly attracted aqueous ions from artificial saliva to form hydroxyapatite crystals to fill enamel caries, in particular the interrod areas, resulting in a slight reduction in overall surface roughness. Additionally, the deposited hydroxyapatites were of a small crystalline size in the presence of the 3 NSS peptide, which effectively restrained the plastic deformations and thus resulted in greater improvements in nanohardness and elastic modulus. The degree of nanohardness recovery was 5 times greater for remineralized enamel samples treated with the 3 NSS peptide compared to samples without peptide treatment.

  12. Ions-modified nanoparticles affect functional remineralization and energy dissipation through the resin-dentin interface.

    PubMed

    Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; Medina-Castillo, Antonio Luis; Toledano-Osorio, Manuel; Aguilera, Fátima S

    2017-04-01

    The aim of this study was to evaluate changes in the mechanical and chemical behavior, and bonding ability at dentin interfaces infiltrated with polymeric nanoparticlesstandard deviations and modes of failure are (NPs) prior to resin application. Dentin surfaces were treated with 37% phosphoric acid followed by application of an ethanol suspension of NPs, Zn-NPs or Ca-NPs followed by the application of an adhesive, Single Bond (SB). Bonded interfaces were stored for 24h, submitted to microtensile bond strength test, and evaluated by scanning electron microscopy. After 24h and 21 d of storage, the whole resin-dentin interface adhesive was evaluated using a Nano-DMA. Complex modulus, storage modulus and tan delta (δ) were assessed. AFM imaging and Raman analysis were performed. Bond strength was not affected by NPs infiltration. After 21 d of storage, tan δ generally decreased at Zn-NPs/resin-dentin interface, and augmented when Ca-NPs or non-doped NPs were used. When both Zn-NPs and Ca-NPs were employed, the storage modulus and complex modulus decreased, though both moduli increased at the adhesive and at peritubular dentin after Zn-NPs infiltration. The phosphate and the carbonate peaks, and carbonate substitution, augmented more at interfaces promoted with Ca-NPs than with Zn-NPs after 21 d of storage, but crystallinity did not differ at created interfaces with both ions-doped NPs. Crosslinking of collagen and the secondary structure of collagen improved with Zn-NPs resin-dentin infiltration. Ca-NPs-resin dentin infiltration produced a favorable dissipation of energy with minimal stress concentration trough the crystalline remineralized resin-dentin interface, causing minor damage at this structure.

  13. Experimental investigation of demineralization and remineralization of human teeth using infrared photothermal radiometry and modulated luminescence

    NASA Astrophysics Data System (ADS)

    Jeon, Raymond J.; Hellen, Adam; Matvienko, Anna; Mandelis, Andreas; Abrams, Stephen H.; Amaechi, Bennett T.

    2008-02-01

    Photothermal radiometry (PTR) and modulated luminescence (LUM) were applied to detect and monitor the demineralization of root and enamel surfaces of human teeth to produce caries lesions and the subsequent remineralization of the produced lesions. The experimental set-up consisted of a semiconductor laser (659 nm, 120 mW), a mercury-cadmium-telluride IR detector for PTR, a photodiode for LUM, and two lock-in amplifiers. A lesion was created on a 1-mm × 4-mm rectangular window, spanning root to enamel surface, using an artificial caries lesion gel to demineralize the tooth surface and create small carious lesions. The samples were subsequently immersed in a remineralization solution. Each sample was examined with PTR/LUM on root and enamel before and after treatment at times from 1 to 10 days of demineralization and 2 to 10 days of remineralization. PTR/LUM signals showed gradual and consistent changes with treatment time. At the completion of the experiments, transverse micro-radiography (TMR) analysis was performed to correlate the PTR/LUM signals to depth of the carious lesions and mineral losses. In this study, TMR showed good correlation with PTR/LUM. It was also found that treatment duration did not correlate well to any technique, PTR/LUM, or TMR, which is indicative of significant variations in demineralization - remineralization rates among different teeth.

  14. Modeling Electrical Transport through Nucleic Acids

    NASA Astrophysics Data System (ADS)

    Qi, Jianqing

    Nucleic acids play a vital role in many biological systems and activities. In recent years, engineers and scientists have been interested in studying their electrical properties. The motivation for these studies stems from the following facts: (1) the bases, which form the building blocks of nucleic acids, have unique ionization potentials. Further, nucleic acids are one of the few nanomaterials that can be reproducibly manufactured with a high degree of accuracy (though admittedly their placement at desired locations remains a challenge). As a result, designed strands with specific sequences may offer unique device properties; (2) electrical methods offer potential for sequencing nucleic acids based on a single molecule; (3) electrical methods for disease detection based on the current flowing through nucleic acids are beginning to be demonstrated. While experiments in the above mentioned areas is promising, a deeper understanding of the electrical current flow through the nucleic acids needs to be developed. The modeling of current flowing in these molecules is complex because: (1) they are based on atomic scale contacts between nucleic acids and metal, which cannot be reproducibly built; (2) the conductivity of nucleic acids is easily influenced by the environment, which is constantly changing; and (3) the nucleic acids by themselves are floppy. This thesis focuses on the modeling of electrical transport through nucleic acids that are connected to two metal electrodes at nanoscale. We first develop a decoherent transport model for the double-stranded helix based on the Landauer-Buttiker framework. This model is rationalized by comparison with an experiment that measured the conductance of four different DNA strands. The developed model is then used to study the: (1) potential to make barriers and wells for quantum transport using specifically engineered sequences; (2) change in the electrical properties of a specific DNA strand with and without methylation; (3

  15. Remineralization of demineralized bone matrix in critical size cranial defects in rats: A 6-month follow-up study.

    PubMed

    Horváthy, Dénes B; Vácz, Gabriella; Toró, Ildikó; Szabó, Tamás; May, Zoltán; Duarte, Miguel; Hornyák, István; Szabó, Bence T; Dobó-Nagy, Csaba; Doros, Attila; Lacza, Zsombor

    2016-10-01

    The key drawback of using demineralized bone matrix (DBM) is its low initial mechanical stability due to the severe depletion of mineral content. In the present study, we investigated the long-term regeneration of DBM in a critical size bone defect model and investigated the remineralization after 6 months. Bone defects were created in the cranium of male Wistar rats which were filled with DBM or left empty as negative control. In vivo bone formation was monitored with computed tomography after 11, 19, and 26 weeks postoperatively. After 6 months, parietal bones were subjected to micro-CT. Mineral content was determined with spectrophotometric analysis. After 11 weeks the DBM-filled bone defects were completely closed, while empty defects were still open. Density of the DBM-treated group increased significantly while the controls remained unchanged. Quantitative analysis by micro-CT confirmed the in vivo results, bone volume/tissue volume was significantly lower in the controls than in the DBM group. The demineralization procedure depleted the key minerals of the bone to a very low level. Six months after implantation Ca, P, Na, Mg, Zn, and Cr contents were completely restored to the normal level, while K, Sr, and Mn were only partially restored. The remineralization process of DBM is largely complete by the 6th month after implantation in terms of bone density, structure, and key mineral levels. Although DBM does not provide sufficient sources for any of these minerals, it induces a faster and more complete regeneration process. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1336-1342, 2016.

  16. Remineralization of organic carbon in eastern Canadian continental margin sediments

    NASA Astrophysics Data System (ADS)

    Silverberg, Norman; Sundby, Bjørn; Mucci, Alfonso; Zhong, Shaojun; Arakaki, Takeshi; Hall, Per; Landén, Angela; Tengberg, Anders

    2000-04-01

    .6 - 4.2 mmol/m 2/d) was estimated as the sum of the sediment oxygen and nitrate uptake rates. The contribution of other electron-acceptors to the mineralization of organic carbon is assumed to be accounted for by the oxidation of most of their reduced by-products by O 2 and NO 3-. The return fluxes of dissolved inorganic carbon (∑CO 2 efflux corrected for carbonate dissolution) were generally comparable to the carbon oxidation rates. A detailed carbon budget was established at one of the sampled stations for which a complete set of measurements is available. The vertical flux of total particulate carbon through the water column (measured with a sediment trap at 150 m depth) accounts for approximately 9% of the annual primary production (PP). In the sediment, about 6% of the PP is remineralized and total carbon equivalent to 4.5% PP is buried. The self-consistency of the flux data at this station is used to justify similar budget calculations at the other stations where a limited data set was gathered. Sequestration of organic carbon via burial with the accumulating sediments (on average 0.5 mol/m 2/yr) is partially offset by the release of CO 2 associated with carbonate precipitation and burial (about 0.2 mol/m 2/yr).

  17. Nanotribological and Nanomechanical Properties Changes of Tooth After Bleaching and Remineralization in Wet Environment

    NASA Astrophysics Data System (ADS)

    Yu, Dandan; Gao, Shanshan; Min, Jie; Zhang, Qianqian; Gao, Shuai; Yu, Haiyang

    2015-12-01

    Teeth bleaching cases had increased with people's desire for oral aesthetic; however, bleached teeth would still undertake chewing actions and remineralizing process in saliva. Nanotribological and nanomechanical properties are proper displays for dental performance of bleached teeth. The purpose of the research was to reveal the effect of bleaching and remineralization on the nanotribological and nanomechanical properties of teeth in wet environment. The specimens were divided into four groups according to the bleaching products used: 12 % hydrogen peroxide (HP) (12HP group); 15 % carbamide peroxide (CP) (15CP group); 35 % CP (35CP group); and artificial saliva (control group). The nanotribological and nanomechanical property changes of tooth enamel after bleaching and remineralization were evaluated respectively by nanoscratch and nanoindentation tests in wet environment, imitating the wet oral environment. The morphology changes were evaluated by statistical parametric mapping (SPM) and scanning electron microscopy (SEM). After bleaching, 12HP group and 15CP group showed increased scratch depth with more pile ups on the scratch edges, decreased nanohardness, and corroded surface appearance. While the 35CP group showed an increase in nanoscratch depth, no change in nanohardness and surface appearance was observed. The control group showed no change in these measurements. After remineralization, the three bleaching groups showed decreased nanoscratch depth and no change of nanohardness compared with the bleached teeth. And the control group showed no changes in nanotribological and nanomechanical properties. The nanotribological and nanomechanical properties of the 12HP group and 15CP group were affected by bleaching, but the nanotribological properties recovered partly and the nanomechanical properties got no change after 1 week of remineralization. As for the 35CP group, the nanotribological properties were influenced and the nanomechanical properties were not

  18. Nanotribological and Nanomechanical Properties Changes of Tooth After Bleaching and Remineralization in Wet Environment.

    PubMed

    Yu, Dandan; Gao, Shanshan; Min, Jie; Zhang, Qianqian; Gao, Shuai; Yu, Haiyang

    2015-12-01

    Teeth bleaching cases had increased with people's desire for oral aesthetic; however, bleached teeth would still undertake chewing actions and remineralizing process in saliva. Nanotribological and nanomechanical properties are proper displays for dental performance of bleached teeth. The purpose of the research was to reveal the effect of bleaching and remineralization on the nanotribological and nanomechanical properties of teeth in wet environment. The specimens were divided into four groups according to the bleaching products used: 12 % hydrogen peroxide (HP) (12HP group); 15 % carbamide peroxide (CP) (15CP group); 35 % CP (35CP group); and artificial saliva (control group). The nanotribological and nanomechanical property changes of tooth enamel after bleaching and remineralization were evaluated respectively by nanoscratch and nanoindentation tests in wet environment, imitating the wet oral environment. The morphology changes were evaluated by statistical parametric mapping (SPM) and scanning electron microscopy (SEM). After bleaching, 12HP group and 15CP group showed increased scratch depth with more pile ups on the scratch edges, decreased nanohardness, and corroded surface appearance. While the 35CP group showed an increase in nanoscratch depth, no change in nanohardness and surface appearance was observed. The control group showed no change in these measurements. After remineralization, the three bleaching groups showed decreased nanoscratch depth and no change of nanohardness compared with the bleached teeth. And the control group showed no changes in nanotribological and nanomechanical properties. The nanotribological and nanomechanical properties of the 12HP group and 15CP group were affected by bleaching, but the nanotribological properties recovered partly and the nanomechanical properties got no change after 1 week of remineralization. As for the 35CP group, the nanotribological properties were influenced and the nanomechanical properties were

  19. Effects of immersion in solution of an experimental toothpaste containing S-PRG filler on like-remineralizing ability of etched enamel.

    PubMed

    Iijima, Masahiro; Ito, Shuichi; Nakagaki, Susumu; Kohda, Naohisa; Muguruma, Takeshi; Saito, Takashi; Mizoguchi, Itaru

    2014-01-01

    This study investigated the like-remineralizing ability of experimental toothpaste containing surface reaction-type pre-reacted glassionomer (S-PRG) filler on etched enamel. Human enamel blocks were etched with 35% phosphoric acid and immersed in 5-mL distilled water, fourfold diluted solution of NaF-containing toothpaste, or S-PRG filler-containing experimental toothpaste. Nanoindentation testing was carried out during immersion and the enamel surfaces were observed by scanning electron microscopy. Elemental analysis of the ions in each solution was performed using inductively coupled plasma atomic emission spectroscopy and fluoride electrode. After 1 month of immersion, the hardness and elastic modulus of the specimen immersed in S-PRG filler-containing toothpaste showed significantly greater values than those of the specimen immersed in NaF-containing toothpaste. Considerable amounts of Al, B, Na, Si, Sr, F ions were detected in the solution of S-PRG filler-containing toothpaste. Experimental S-PRG filler-containing toothpaste may enhance the like-remineralizing ability of etched enamel surfaces due to its ion-releasing ability.

  20. Atomic force microscopic comparison of remineralization with casein-phosphopeptide amorphous calcium phosphate paste, acidulated phosphate fluoride gel and iron supplement in primary and permanent teeth: An in-vitro study

    PubMed Central

    Agrawal, Nikita; Shashikiran, N. D.; Singla, Shilpy; Ravi, K. S.; Kulkarni, Vinaya Kumar

    2014-01-01

    Context: Demineralization of tooth by erosion is caused by frequent contact between the tooth surface and acids present in soft drinks. Aim: The present study objective was to evaluate the remineralization potential of casein-phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste, 1.23% acidulated phosphate fluoride (APF) gel and iron supplement on dental erosion by soft drinks in human primary and permanent enamel using atomic force microscopy (AFM). Materials and Methods: Specimens were made from extracted 15 primary and 15 permanent teeth which were randomly divided into three treatment groups: CPP-ACP paste, APF gel and iron supplement. AFM was used for baseline readings followed by demineralization and remineralization cycle. Results and Statistics: Almost all group of samples showed remineralization that is a reduction in surface roughness which was higher with CPP-ACP paste. Statistical analysis was performed using by one-way ANOVA and Mann-Whitney U-test with P < 0.05. Conclusions: It can be concluded that the application of CPP-ACP paste is effective on preventing dental erosion from soft drinks. PMID:24808700

  1. Remineralization of human natural caries and artificial caries-like lesions with an experimental whisker-reinforced ART-composite

    PubMed Central

    Yang, Bin; Flaim, Glenn; Dickens, Sabine H.

    2011-01-01

    To compare the remineralization of human natural caries and artificial caries-like dentin lesions from a novel whisker-reinforced experimental composite resin to a resin-modified glass ionomer cement (RM-GIC) as control. Ten molars with moderate natural dentin caries were prepared (N). Artificial caries-like dentin lesions were prepared in occlusal dentin of ten caries-free molars and demineralized at pH=4.3 for 48 h (A). The cavities were restored with ART-composite or RM-GIC. All restored teeth were sliced into 120-μm sections. Transverse microradiography combined with digital image analysis was performed to analyze the change in mineral density at the same position of the specimens before, after 4 weeks and 8 weeks remineralization/demineralization treatment. The mean percent remineralization ± standard deviation after 4 weeks and 8 weeks are: N: ART-composite: 27±9, 46±14; RM-GIC: 18±6, 36±11; A: ART-composite: 48±9, 66±11; RM-GIC: 50±13, 62±11. For the remineralization of natural caries, there was a significant difference between ART-composite and RM-GIC (p<0.05). For both restoratives there were significant differences between remineralization of natural and artificial caries (p<0.001). ART-composite and RM-GIC remineralized natural and artificial caries differently most likely due to differences in microstructure and composition of caries dentin. PMID:21232637

  2. Sugar Alcohols, Caries Incidence, and Remineralization of Caries Lesions: A Literature Review

    PubMed Central

    Mäkinen, Kauko K.

    2010-01-01

    Remineralization of minor enamel defects is a normal physiological process that is well known to clinicians and researchers in dentistry and oral biology. This process can be facilitated by various dietary and oral hygiene procedures and may also concern dentin caries lesions. Dental caries is reversible if detected and treated sufficiently early. Habitual use of xylitol, a sugar alcohol of the pentitol type, can be associated with significant reduction in caries incidence and with tooth remineralization. Other dietary polyols that can remarkably lower the incidence of caries include erythritol which is a tetritol-type alditol. Based on known molecular parameters of simple dietary alditols, it is conceivable to predict that their efficacy in caries prevention will follow the homologous series, that is, that the number of OH-groups present in the alditol molecule will determine the efficacy as follows: erythritol ≥ xylitol > sorbitol. The possible difference between erythritol and xylitol must be confirmed in future clinical trials. PMID:20339492

  3. In vivo remineralization by a monofluorophosphate dentifrice as determined with a thin-section sandwich method.

    PubMed

    Mellberg, J R; Castrovince, L A; Rotsides, I D

    1986-08-01

    Artificial caries lesions were formed in thin sections of subsurface enamel sandwiched between protective sheets of plastic. Six lesions were placed into the buccal surfaces of lower partial dentures of seven subjects, covered with a stainless steel mesh to provide a plaque cover, and brushed with either a sodium monofluorophosphate or placebo dentifrice for four weeks, by means of a double-blind random cross-over design. Analysis of the lesions by quantitative microradiography revealed that significant remineralization (21%) occurred in the monofluorophosphate group and significant further demineralization (27%) in the placebo group. The difference between the active and placebo treatments was significant (p = 0.02), showing that the monofluorophosphate was effective not only in preventing lesion progression but also in promoting mineral deposition. The simultaneous presence of remineralized lesions and lesions with increased demineralization showed the non-uniformity of conditions within a mouth.

  4. Surficial bioturbation and rapid benthic remineralization in the Cape Hatteras shelf/slope region. Final report

    SciTech Connect

    Robert C. Aller; Josephine Y. Aller; C. Lee; J. Kirk Cochran

    1999-03-17

    This is a final report for the DOE of grant DE-FG02-92ER61464 ''Surficial bioturbation and rapid benthic remineralization in the Cape Hatteras shelf slope region''. Over the past 6 years we have participated in a multidisciplinary field study called the Ocean margins Program (OMP) to examine the importance of continental margins in the global carbon cycle. Specifically, we have focused on the southern portion of the Mid-Atlantic Bight between Cape Hatteras and Chesapeake Bay where a large flux of freshwater and organic carbon enters the North Atlantic Ocean. Additionally, during the first stage of this project, we developed the use of CM-a distributions in sediments as a quantitative indicator of benthic C flux and remineralization rates. The primary objective of our research group has been to understand mechanisms and quantify biogeochemical processes in the seabed that affect cycling, flux, and storage of carbon on the ocean margin of the Mid-Atlantic Bight.

  5. Triclosan-loaded poly(amido amine) dendrimer for simultaneous treatment and remineralization of human dentine.

    PubMed

    Zhou, Yan; Yang, Jiaojiao; Lin, Zaifu; Li, Jiyao; Liang, Kunneng; Yuan, He; Li, Sheyu; Li, Jianshu

    2014-03-01

    In order to treat dental caries of damaged dentine, triclosan-loaded carboxyl-terminated poly(amido amine) dendrimer (PAMAM-COOH) is prepared and characterized. While being incubated in artificial saliva, triclosan-loaded PAMAM-COOH formulation can induce in situ remineralization of hydroxyapatite (HA) on etched dentine, and the regenerated HA has a similar crystal structure with natural dentine. It can also release the encapsulated triclosan for a long period. The interesting drug release profiles are controlled by both dendrimer encapsulation capability and the mineralization degree, which are ideal to obtain multifunctional properties of long-term release of anti-bacterial drug for local treatment during the remineralization process. The triclosan-loaded G4-COOH provides a general strategy to cure dental caries and repair damaged dentine at the same time, which forms a potential restorative material for dental repair.

  6. Effect of Biomimetic Remineralization on the Dynamic Nanomechanical Properties of Dentin Hybrid Layers

    PubMed Central

    Ryou, H.; Niu, L.-N.; Dai, L.; Pucci, C.R.; Arola, D.D.; Pashley, D.H.; Tay, F.R.

    2011-01-01

    The mineral and organic phases of mineralized dentin contribute co-operatively to its strength and toughness. This study tested the null hypothesis that there is no difference in nano-dynamic mechanical behavior (complex modulus-E*; loss modulus-E′′; storage modulus-E′; in GPa) of dentin hybrid layers (baseline: E*, 3.86 ± 0.24; E′′, 0.23 ± 0.05; E′, 3.85 ± 0.24) created by an etch-and-rinse adhesive in the presence or absence of biomimetic remineralization after in vitro aging. Using scanning probe microscopy and nano-dynamic mechanical analysis, we demonstrated that biomimetic remineralization restored the nano-dynamic mechanical behavior of heavily remineralized, resin-sparse regions of dentin hybrid layers (E*, 19.73 ± 3.85; E′′, 8.75 ± 3.97; E′, 16.02 ± 2.58) to those of the mineralized dentin base (E*, 19.20 ± 2.42; E′′, 6.57 ± 1.96; E′, 17.39 ± 2.0) [p > 0.05]. Conversely, those resin-sparse, water-rich regions degraded in the absence of biomimetic remineralization, with significant decline [p < 0.05] in their complex and storage moduli (E*, 0.83 ± 0.35; E′′, 0.88 ± 0.24; E′, 0.62 ± 0.32). Intrafibrillar apatite deposition preserves the integrity of resin-sparse regions of hybrid layers by restoring their nanomechanical properties to those exhibited by mineralized dentin. PMID:21730254

  7. [Effect of sucrose-containing gum and fluoridated dentifrice on in situ remineralization of artificial caries].

    PubMed

    de Freitas, R R; de Oliveira, J A; Taga, E M; Buzalaf, M A

    2001-01-01

    The aim of this study was to evaluate the remineralization of incipient carious lesions in bovine enamel in situ. Artificial carious lesions were produced and fixed in removable lower appliances in the region of the lingual surfaces of first molars, in six volunteers with ages between 18 and 22 years, who were subjected to 3 distinct experimental periods of 1 week each. In the first period (control group), patients brushed their teeth with a non-fluoridated dentifrice 4 times a day (after meals), and, in the second period (group I), patients used a dentifrice containing 1,500 ppm of fluorine (in the form of MFP). In the third period (group II) volunteers brushed their teeth with non-fluoridated dentifrice and used chewing gum containing 60% of sucrose during 20 minutes, 4 times a day (after meals). Before and after each treatment, the specimens underwent Vicker's hardness test (200 g of load), and the remineralization percentage (alpha) was calculated. The control group showed 2.78% of demineralization, and groups I and II showed 3.36 and 5.21% of remineralization, respectively. Statistical analysis (with Kruskal-Wallis and Miller's tests) showed significant difference (p < 0.05) between the control and experimental groups (I and II). Group II showed greater alpha than group I, but this difference was not significant. These results suggest that the use of sucrose-containing chewing gum and fluoridated dentifrice has a considerable effect on the remineralization of incipient carious lesions and may be a valuable alternative for their prevention.

  8. Remineralizing potential, antiplaque and antigingivitis effects of xylitol and sorbitol sweetened chewing gum.

    PubMed

    Steinberg, L M; Odusola, F; Mandel, I D

    1992-01-01

    The objective of this study was to investigate the effects of xylitol and sorbitol sweetened chewing gums on plaque accumulation, gingival inflammation and remineralizing potential of plaque following six weeks of use. Twenty-eight consenting individuals were randomly assigned to each of three phases (six weeks in duration) consisting of chewing xylitol gum, chewing sorbitol gum and a non-chewing phase. Subjects chewed one stick after every meal and at two other times for a total of five sticks per day. At the completion of each treatment phase, plaque and gingival indexes were performed and plaque was later collected. Calcium concentration in plaque was determined by atomic absorption spectophotometry. Reductions in plaque indexes were significant for both xylitol gum (p < 0.001) and sorbitol gum (p < 0.05) when compared to the no chewing period. The gingival indexes reflected a decrement in gingival inflammation with both xylitol and sorbitol, though only sorbitol values were statistically significant (p < 0.05). Chewing xylitol and sorbitol gums reduced plaque accumulation and gingival inflammation. In addition, both gums enhanced the remineralization potential of plaque. Xylitol gum showed a superior effect with respect to remineralization potential and plaque reduction. Sorbitol gum had a superior effect on gingival health but not significantly so.

  9. Organic acid modeling and model validation: Workshop summary. Final report

    SciTech Connect

    Sullivan, T.J.; Eilers, J.M.

    1992-08-14

    A workshop was held in Corvallis, Oregon on April 9--10, 1992 at the offices of E&S Environmental Chemistry, Inc. The purpose of this workshop was to initiate research efforts on the entitled ``Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using Independent data sources.`` The workshop was attended by a team of internationally-recognized experts in the fields of surface water acid-bass chemistry, organic acids, and watershed modeling. The rationale for the proposed research is based on the recent comparison between MAGIC model hindcasts and paleolimnological inferences of historical acidification for a set of 33 statistically-selected Adirondack lakes. Agreement between diatom-inferred and MAGIC-hindcast lakewater chemistry in the earlier research had been less than satisfactory. Based on preliminary analyses, it was concluded that incorporation of a reasonable organic acid representation into the version of MAGIC used for hindcasting was the logical next step toward improving model agreement.

  10. Organic acid modeling and model validation: Workshop summary

    SciTech Connect

    Sullivan, T.J.; Eilers, J.M.

    1992-08-14

    A workshop was held in Corvallis, Oregon on April 9--10, 1992 at the offices of E S Environmental Chemistry, Inc. The purpose of this workshop was to initiate research efforts on the entitled Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using Independent data sources.'' The workshop was attended by a team of internationally-recognized experts in the fields of surface water acid-bass chemistry, organic acids, and watershed modeling. The rationale for the proposed research is based on the recent comparison between MAGIC model hindcasts and paleolimnological inferences of historical acidification for a set of 33 statistically-selected Adirondack lakes. Agreement between diatom-inferred and MAGIC-hindcast lakewater chemistry in the earlier research had been less than satisfactory. Based on preliminary analyses, it was concluded that incorporation of a reasonable organic acid representation into the version of MAGIC used for hindcasting was the logical next step toward improving model agreement.

  11. Observation and Modeling of Atmospheric Peroxyformic Acid

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Liang, H.; Huang, D.; Huang, L.; Wu, Q.; Wu, H.

    2015-12-01

    The existence and importance of peroxyformic acid (PFA) in the atmosphere has been under controversy. We present here, for the first time, the observation data for PFA from four field measurements carried out in China. These data provided powerful evidence that PFA can stay in the atmosphere, typically in dozens of pptv level. The relationship between PFA and other detected peroxides was examined. The results showed that PFA had a strong positive correlation with its homolog, peroxyacetic acid, due to their similar sources and sinks. Through an evaluation of PFA production and removal rates, we proposed that the reactions between peroxyformyl radical (HC(O)O2) and formaldehyde or the hydroperoxyl radical (HO2) were likely to be the major source and degradation into formic acid (FA) was likely to be the major sink for PFA. Based on a box model evaluation, we proposed that the HC(O)O2 and PFA chemistry was a major source for FA under low NOx conditions. Furthermore, it is found that the impact of the HC(O)O2 and PFA chemistry on radical cycling was dependent on the yield of HC(O)O2 radical from HC(O) + O2 reaction. When this yield exceeded 50%, the HC(O)O2 and PFA chemistry should not be neglected for calculating the radical budget. To make clear the exact importance of HC(O)O2 and PFA chemistry in the atmosphere, further kinetic, field and modeling studies are required.

  12. Does ozone enhance the remineralizing potential of nanohydroxyapatite on artificially demineralized enamel? A laser induced fluorescence study

    NASA Astrophysics Data System (ADS)

    Srinivasan, Samuelraj; Prabhu, Vijendra; Chandra, Subhash; Koshy, Shalini; Acharya, Shashidhar; Mahato, Krishna K.

    2014-02-01

    The present era of minimal invasive dentistry emphasizes the early detection and remineralization of initial enamel caries. Ozone has been shown to reverse the initial demineralization before the integrity of the enamel surface is lost. Nano-hydroxyapatite is a proven remineralizing agent for early enamel caries. In the present study, the effect of ozone in enhancing the remineralizing potential of nano-hydroxyapatite on artificially demineralized enamel was investigated using laser induced fluorescence. Thirty five sound human premolars were collected from healthy subjects undergoing orthodontic treatment. Fluorescence was recorded by exciting the mesial surfaces using 325 nm He-Cd laser with 2 mW power. Tooth specimens were subjected to demineralization to create initial enamel caries. Following which the specimens were divided into three groups, i.e ozone (ozonated water for 2 min), without ozone and artificial saliva. Remineralization regimen was followed for 3 weeks. The fluorescence spectra of the specimens were recorded from all the three experimental groups at baseline, after demineralization and remineralization. The average spectrum for each experimental group was used for statistical analysis. Fluorescence intensities of Ozone treated specimens following remineralization were higher than that of artificial saliva, and this difference was found to be statistically significant (P<0.0001). In a nutshell, ozone enhanced the remineralizing potential of nanohydroxyapatite, and laser induced fluorescence was found to be effective in assessing the surface mineral changes in enamel. Ozone can be considered an effective agent in reversing the initial enamel caries there by preventing the tooth from entering into the repetitive restorative cycle.

  13. Biomimetic remineralization as a progressive dehydration mechanism of collagen matrices – implications in the aging of resin-dentin bonds

    PubMed Central

    Kim, Young Kyung; Mai, Sui; Mazzoni, Annalisa; Liu, Yan; Tezvergil-Mutluay, Arzu; Takahashi, Kei; Zhang, Kai; Pashley, David H.; Tay, Franklin R.

    2010-01-01

    Biomineralization is a dehydration process in which water from the intrafibrillar compartments of collagen fibrils are progressively replaced by apatites. As water is an important element that precipitates the lack of durability of resin-dentin bonds, this study examined the use of a biomimetic remineralization strategy as a progressive dehydration mechanism for preserving joint integrity and maintaining adhesive strength after aging. Human dentin surfaces were bonded with dentin adhesives, restored with resin composites and sectioned into sticks containing the adhesive joint. Experimental specimens were aged in a biomimetic analog-containing remineralizing medium and control specimens in simulated body fluid for up to 12 months. Specimens retrieved from the designated periods were examined by transmission electron microscopy for manifestation of water-rich regions using a silver tracer and for collagen degradation within the adhesive joints. Tensile testing was performed to determine the potential loss of bond integrity after aging. Control specimens exhibited severe collagen degradation within the adhesive joint after aging. Remineralized specimens exhibited progressive dehydration as manifested by silver tracer reduction and partial remineralization of water-filled micro-channels within the adhesive joint, as well as intrafibrillar remineralization of collagen fibrils that were demineralized initially as part of the bonding procedure. Biomimetic remineralization as a progressive dehydration mechanism of water-rich, resin-sparse collagen matrices enables those adhesive joints to resist degradation over the 12-month aging period, as verified by the conservation of their tensile bond strengths. The ability of the proof-of-concept biomimetic remineralization strategy to prevent bond degradation warrants further development of clinically-relevant delivery systems. PMID:20304110

  14. Mathematical modeling of acid-base physiology

    PubMed Central

    Occhipinti, Rossana; Boron, Walter F.

    2015-01-01

    pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3− , NH4+) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cell–which to our knowledge is the first one capable of handling a multitude of buffer reaction–that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3− influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis. PMID:25617697

  15. Biological factors in dental caries enamel structure and the caries process in the dynamic process of demineralization and remineralization (part 2).

    PubMed

    Hicks, John; Garcia-Godoy, Franklin; Flaitz, Catherine

    2004-01-01

    Dental caries is a complex disease process that afflicts a large proportion of the world's population, regardless of gender, age and ethnicity, although it does tend to affect more indivduals with a low socioeconomic status to a greater extent. The physicochemical properties of the mineral comprising the tooth surface and subsurface modulate the development, arrestment and remineralization of dental caries. Post-eruption maturation of enamel surfaces and exposed root surfaces is important in order for more susceptible mineral phases to be modified by incorporation of soluble fluoride from the plaque into dental hydroxyapatite. The chemical reactions that occur during acidic conditions when tooth mineral dissolves (critical pH) are determined by the supersaturation of calcium and phosphate within plaque and saliva, as well as if fluoride is present.

  16. Variations in the elemental ratio of organic matter in the central Baltic Sea: Part I-Linking primary production to remineralization

    NASA Astrophysics Data System (ADS)

    Kreus, Markus; Schartau, Markus; Engel, Anja; Nausch, Monika; Voss, Maren

    2015-06-01

    For most marine ecosystems the growth of diazotrophic cyanobacteria and the associated amount of nitrogen fixation are regulated by the availability of phosphorus. The intensity of summer blooms of nitrogen (N2) fixing algae in the Baltic Sea is assumed to be determinable from a surplus of dissolved inorganic phosphorus (DIP) that remains after the spring bloom has ended. But this surplus DIP concentration is observed to continuously decrease at times when no appreciable nitrogen fixation is measured. This peculiarity is currently discussed and has afforded different model interpretations for the Baltic Sea. In our study we propose a dynamical model solution that explains these observations with variations of the elemental carbon-to-nitrogen-to-phosphorus (C:N:P) ratio during distinct periods of organic matter production and remineralization. The biogeochemical model resolves seasonal C, N and P fluxes with depth at the Baltic Sea monitoring site BY15, based on three assumptions: (1) DIP is utilized by algae though not needed for immediate growth, (2) the uptake of dissolved inorganic nitrogen (DIN) is hampered when the algae's phosphorus (P) quota is low, and (3) carbon assimilation continues at times of nutrient depletion. Model results describe observed temporal variations of DIN, DIP and chlorophyll-a concentrations along with partial pressure of carbon dioxide (pCO2). In contrast to other model studies, our solution does not require N2 fixation to occur shortly after the spring bloom to explain DIP drawdown and pCO2 levels. Model estimates of annual N2 fixation are 297 ± 24 mmol Nm-2a-1. Estimates of total production are 14200 ± 700 mmol Cm-2a-1, 1400 ± 70 mmol Nm-2a-1, and 114 ± 5 mmol Pm-2a-1 for the upper 50 m. The models C, N and P fluxes disclose preferential remineralization of P and of organic N that was introduced via N2 fixation. Our results are in support of the idea that P uptake by phytoplankton during the spring bloom contributes to the

  17. Model development for naphthenic acids ozonation process.

    PubMed

    Al Jibouri, Ali Kamel H; Wu, Jiangning

    2015-02-01

    Naphthenic acids (NAs) are toxic constituents of oil sands process-affected water (OSPW) which is generated during the extraction of bitumen from oil sands. NAs consist mainly of carboxylic acids which are generally biorefractory. For the treatment of OSPW, ozonation is a very beneficial method. It can significantly reduce the concentration of NAs and it can also convert NAs from biorefractory to biodegradable. In this study, a factorial design (2(4)) was used for the ozonation of OSPW to study the influences of the operating parameters (ozone concentration, oxygen/ozone flow rate, pH, and mixing) on the removal of a model NAs in a semi-batch reactor. It was found that ozone concentration had the most significant effect on the NAs concentration compared to other parameters. An empirical model was developed to correlate the concentration of NAs with ozone concentration, oxygen/ozone flow rate, and pH. In addition, a theoretical analysis was conducted to gain the insight into the relationship between the removal of NAs and the operating parameters.

  18. Effect of dentifrices on their remineralizing potential in artificial carious lesions: An in situ study

    PubMed Central

    Damle, Satyawan Gangaramji; Bector, Aditi; Damle, Dhanashree; Kaur, Simranjeet

    2016-01-01

    Background: The eventual sequel of dental caries is determined by the dynamic equilibrium between pathological factors which lead to demineralization and protective elements, which in turn leads to remineralization. Remineralization is the natural process for noncavitated demineralized lesions and relies on calcium and phosphate ions assisted by fluoride to rebuild a new surface on existing crystal remnants in subsurface lesions remaining after demineralization. Hence, the present study was designed to evaluate the efficacy of fluoride dentifrices in remineralizing artificial caries-like lesions in situ. Materials and Methods: A double-blind, randomized study with an initial washout period of 7 days was carried out for 3 weeks. Twenty volunteers were enrolled, who wore the intraoral cariogenicity test appliance having enamel slabs incorporated into them, for 3 weeks. 10 participants were instructed to use Group A dentifrice (fluoride) and the other 10 Group B dentifrice (nonfluoride) for brushing their teeth. The enamel slabs were analyzed by surface microhardness testing and scanning electron microscopy (SEM) at 3 intervals. Results: No significant differences was seen in the microhardness values recorded for Group A and Group B at baseline and after demineralization (P > 0.05); however Group B exhibited lesser microhardness compared to Group A, after intra-oral exposure (P < 0.05). In the SEM analysis, the Group A enamel surfaces had more regular and longer crystallites to those of the Group B. Conclusion: Fluoride dentifrices avert the decrease in enamel hardness and loss of minerals from the enamel surface to a large extent as compared to the nonfluoride dentifrices. PMID:26962320

  19. Organic Matter Remineralization Predominates Phosphorus Cycling in the Mid-Bay Sediments in the Chesapeake Bay

    SciTech Connect

    Sunendra, Joshi R.; Kukkadapu, Ravi K.; Burdige, David J.; Bowden, Mark E.; Sparks, Donald L.; Jaisi, Deb P.

    2015-05-19

    The Chesapeake Bay, the largest and most productive estuary in the US, suffers from varying degrees of water quality issues fueled by both point and non–point source nutrient sources. Restoration of the bay is complicated by the multitude of nutrient sources, their variable inputs and hydrological conditions, and complex interacting factors including climate forcing. These complexities not only restrict formulation of effective restoration plans but also open up debates on accountability issues with nutrient loading. A detailed understanding of sediment phosphorus (P) dynamics enables one to identify the exchange of dissolved constituents across the sediment- water interface and aid to better constrain mechanisms and processes controlling the coupling between the sediments and the overlying waters. Here we used phosphate oxygen isotope ratios (δ18Op) in concert with sediment chemistry, XRD, and Mössbauer spectroscopy on the sediment retrieved from an organic rich, sulfidic site in the meso-haline portion of the mid-bay to identify sources and pathway of sedimentary P cycling and to infer potential feedback effect on bottom water hypoxia and surface water eutrophication. Isotope data indicate that the regeneration of inorganic P from organic matter degradation (remineralization) is the predominant, if not sole, pathway for authigenic P precipitation in the mid-bay sediments. We interpret that the excess inorganic P generated by remineralization should have overwhelmed any bottom-water and/or pore-water P derived from other sources or biogeochemical processes and exceeded saturation with respect to authigenic P precipitation. It is the first research that identifies the predominance of remineralization pathway against remobilization (coupled Fe-P cycling) pathway in the Chesapeake Bay. Therefore, these results are expected to have significant implications for the current understanding of P cycling and benthic-pelagic coupling in the bay, particularly on the

  20. In vitro enamel remineralization by low-fluoride toothpaste with calcium citrate and sodium trimetaphosphate.

    PubMed

    Hirata, Edo; Danelon, Marcelle; Freire, Isabelle Rodrigues; Delbem, Alberto Carlos Botazzo

    2013-01-01

    The objective of this study was to evaluate in vitro the effect of a low fluoride toothpaste (450 µgF/g, NaF) combined with calcium citrate (Cacit) and sodium trimetaphosphate (TMP) on enamel remineralization. Bovine enamel blocks had the enamel surface polished sequentially to determine the surface hardness. After production of artificial carious lesions, the blocks selected by their surface hardness were submitted to remineralization pH cycling and daily treatment with dentifrice suspensions (diluted in deionized water or artificial saliva): placebo, 275, 450, 550 and 1,100 µgF/g and commercial dentifrice (positive control, 1,100 µgF/g). Finally, the surface and cross-section hardness was determined for calculating the change of surface hardness (%SH) and mineral content (%∆Z). Fluoride in enamel was also determined. The data from %SH, %∆Z and fluoride were subjected to two-way analysis of variance followed by Student-Newman-Keuls's test (p<0.05). The mineral gain (%SH and %∆Z) was higher for toothpastes diluted in saliva (p<0.05), except for the 450 µgF/g dentifrice with Cacit/TMP (p>0.05). The 450 Cacit/TMP toothpaste and the positive control showed similar results (p>0.05) when diluted in water. A dose-response was observed between fluoride concentration in toothpastes and fluoride present in enamel, regardless of dilution. It was concluded that it is possible to enhance the remineralization capacity of low F concentration toothpaste by of organic (Cacit) and inorganic (TMP) compounds with affinity to hydroxyapatite.

  1. Effects of Treatment with Various Remineralizing Agents on the Microhardness of Demineralized Enamel Surface.

    PubMed

    Salehzadeh Esfahani, Kiana; Mazaheri, Romina; Pishevar, Leila

    2015-01-01

    Background and aims. Remineralization of incipient caries is one of the goals in dental health care. The present study aimed at comparing the effects of casein phosphopeptide-amorphous calcium phosphate complex (CPP-ACP), Remin Pro(®), and 5% sodium fluoride varnish on remineralization of enamel lesions. Materials and methods. In this in vitro study, 60 enamel samples were randomly allocated to six groups of 10. After four days of immersion in demineralizing solution, microhardness of all samples was measured. Afterward, groups 1-3 underwent one-time treatment with fluoride varnish, CPP-ACP, and Remin Pro(®), respectively. Microhardness of groups 4-6 was measured not only after one-month treatment with the above-mentioned materials (for eight hours a day), but also after re-exposing to the demineralizing solution. The results were analyzed by one-way analysis of variance (ANOVA), repeated measures ANOVA, and Fisher's least significant difference (LSD) test. Results . None of the regimens could increase microhardness in groups 1-3. However, one-month treatment regimens in groups 4-6 caused a significant increase in microhardness. The greatest microhardness was detected in the group treated with CPP-ACP (P = 0.001). In addition, although microhardness reduced following re-demineralization in all three groups, the mean reduction was minimum in the CPP-ACP-treated group (P < 0.001). Conclusion. While long-term repeated application of all compounds improved microhardness, the remineralization potential of CPP-ACP was significantly higher than that of Remin Pro(®) and sodium fluoride varnish.

  2. Evaluation of the remineralization capacity of CPP-ACP containing fluoride varnish by different quantitative methods

    PubMed Central

    SAVAS, Selcuk; KAVRÌK, Fevzi; KUCUKYÌLMAZ, Ebru

    2016-01-01

    ABSTRACT Objective The aim of this study was to evaluate the efficacy of CPP-ACP containing fluoride varnish for remineralizing white spot lesions (WSLs) with four different quantitative methods. Material and Methods Four windows (3x3 mm) were created on the enamel surfaces of bovine incisor teeth. A control window was covered with nail varnish, and WSLs were created on the other windows (after demineralization, first week and fourth week) in acidified gel system. The test material (MI Varnish) was applied on the demineralized areas, and the treated enamel samples were stored in artificial saliva. At the fourth week, the enamel surfaces were tested by surface microhardness (SMH), quantitative light-induced fluorescence-digital (QLF-D), energy-dispersive spectroscopy (EDS) and laser fluorescence (LF pen). The data were statistically analyzed (α=0.05). Results While the LF pen measurements showed significant differences at baseline, after demineralization, and after the one-week remineralization period (p<0.05), the difference between the 1- and 4-week was not significant (p>0.05). With regards to the SMH and QLF-D analyses, statistically significant differences were found among all the phases (p<0.05). After the 1- and 4-week treatment periods, the calcium (Ca) and phosphate (P) concentrations and Ca/P ratio were higher compared to those of the demineralization surfaces (p<0.05). Conclusion CPP-ACP containing fluoride varnish provides remineralization of WSLs after a single application and seems suitable for clinical use. PMID:27383699

  3. Effects of Treatment with Various Remineralizing Agents on the Microhardness of Demineralized Enamel Surface

    PubMed Central

    Salehzadeh Esfahani, Kiana; Mazaheri, Romina; Pishevar, Leila

    2015-01-01

    Background and aims. Remineralization of incipient caries is one of the goals in dental health care. The present study aimed at comparing the effects of casein phosphopeptide-amorphous calcium phosphate complex (CPP-ACP), Remin Pro®, and 5% sodium fluoride varnish on remineralization of enamel lesions. Materials and methods. In this in vitro study, 60 enamel samples were randomly allocated to six groups of 10. After four days of immersion in demineralizing solution, microhardness of all samples was measured. Afterward, groups 1-3 underwent one-time treatment with fluoride varnish, CPP-ACP, and Remin Pro®, respectively. Microhardness of groups 4-6 was measured not only after one-month treatment with the above-mentioned materials (for eight hours a day), but also after re-exposing to the demineralizing solution. The results were analyzed by one-way analysis of variance (ANOVA), repeated measures ANOVA, and Fisher’s least significant difference (LSD) test. Results. None of the regimens could increase microhardness in groups 1-3. However, one-month treatment regimens in groups 4-6 caused a significant increase in microhardness. The greatest microhardness was detected in the group treated with CPP-ACP (P = 0.001). In addition, although microhardness reduced following re-demineralization in all three groups, the mean reduction was minimum in the CPP-ACP-treated group (P < 0.001). Conclusion. While long-term repeated application of all compounds improved microhardness, the remineralization potential of CPP-ACP was significantly higher than that of Remin Pro® and sodium fluoride varnish. PMID:26889361

  4. Effect of pH of amine fluoride containing toothpastes on enamel remineralization in vitro

    PubMed Central

    Arnold, Wolfgang H; Haase, Anabel; Hacklaender, Julia; Gintner, Zeno; Bánóczy, Jolan; Gaengler, Peter

    2007-01-01

    Background One of the important factors of the demineralization and remineralization equilibrium of enamel is the pH of the surrounding solutions. Effort has been laid in the formulation of different fluoride compounds and the fluoride content in toothpastes but much less is known about the influence of the pH of the toothpastes on their effectiveness. It was therefore the aim of this study to investigate the influence of different pH levels on enamel remineralization in an in vitro experiment using polarization light microscopy and EDX quantitative element analysis. Methods A 5 × 5 mm window on the enamel surface of 40 caries free extracted human premolars was demineralized in a hydroxyethylcellulose solution at pH 4.8. The teeth were divided into 8 groups and the lower half of the window was covered with varnish serving as control. Each group was then immersed in toothpaste slurry containing amine fluoride (1400 ppm) at pH 4.1, 4.5, 5.1 and 6.9 or control toothpaste slurry without fluoride at pH 4.3, 4.7, 5.3 and 7.0. Serial sections were cut through the lesions and investigated with polarization light microscopy and quantitative EDX element analysis. Results The PLM results showed a decreased porous volume of the body of the lesion after incubation with fluoridated toothpaste at pH 4.53 and 5.16. No differences between the experimental window and the control window were found in the other groups. The quantitative element analysis showed no differences in the element content of any of the groups. Conclusion From the results it can be concluded that slightly acidified fluoridated dentifrices may have a certain positive effect on enamel remineralization. PMID:17941981

  5. Comparison of Various Concentrations of Tricalcium Phosphate Nanoparticles on Mechanical Properties and Remineralization of Fissure Sealants

    PubMed Central

    Tavassoli-Hojjati, Sara; Atai, Mohammad; Haghgoo, Roza; Rahimian-Imam, Sara; Kameli, Somayeh; Ahmaian-Babaki, Fatemeh; Hamzeh, Faezeh; Ahmadyar, Maryam

    2014-01-01

    Objective: The aim of this study was to investigate the mechanical properties (flexural strength, micro-shear bond strength) and remineralizing potential of fissure sealants by adding various concentrations of β-tricalcium phosphate nanoparticles. Materials and Methods: This in-vitro study consisted of five experimental groups containing prepared nano-fisssure sealants (1–5 wt.% β-TCP nanoparticles) and two control groups containing a prepared and a commercial fissure sealant. Flexural/micro-shear bond strength values were measured using Zwick test machine. Cavities on sixty healthy premolar teeth were filled with the fissure sealants containing 0–5 wt.% of nano β-TCP. The samples were assessed for remineralization under scanning electron microscopy (SEM) and EDAX. Kolmogorov-Smirnov test, One-way ANOVA and Tukey’s Post Hoc analysis/HSD were used to analyze the data. Results: There was no significant difference between the flexural strengths/elastic modulus of the 0–5 wt.% nano β-TCP groups (p>0.05). The average flexural strength/elastic modulus of the prepared fissure sealant group (0%) was significantly higher than the commercial fissure sealant group (Clinpro) (p<0.05). There was no significant difference between micro-shear bond strengths of the experimental groups (1–5 wt.%), and between the commercial and the prepared (0%) fissure sealant groups (p>0.05). Examining the samples under SEM showed a significant increase in thickness of the intermediate layer with increasing concentrations of β-TCP nanoparticles (p<0.05). Conclusion: Addition of 1–5 wt.% β-TCP nanoparticles to the fissure sealants significantly increased the remineralization potential without affecting the mechanical properties. PMID:25584048

  6. Structural investigations on differently sized monodisperse iron oxide nanoparticles synthesized by remineralization of apoferritin molecules

    NASA Astrophysics Data System (ADS)

    Ullrich, Aladin; Horn, Siegfried

    2013-08-01

    We have investigated the structure of iron oxide nanoparticles produced by remineralization and thermal treatment of horse spleen apoferritin molecules. The described procedure allows to synthesize particles with diameters ranging from 4 to 7 nm in size. Atomic force microscopy and transmission electron microscopy (TEM) investigations were performed for shape and size determination, whereas energy-dispersive X-ray (TEM-EDX), high-resolution TEM, and electron diffraction measurements revealed the chemical composition and crystal structure of the particles. We found predominantly single crystalline nanoparticles with a hematite-like (α-Fe2O3) structure.

  7. Modeling the continuous lactic acid production process from wheat flour.

    PubMed

    Gonzalez, Karen; Tebbani, Sihem; Lopes, Filipa; Thorigné, Aurore; Givry, Sébastien; Dumur, Didier; Pareau, Dominique

    2016-01-01

    A kinetic model of the simultaneous saccharification, protein hydrolysis, and fermentation (SSPHF) process for lactic acid production from wheat flour has been developed. The model describes the bacterial growth, substrate consumption, lactic acid production, and maltose hydrolysis. The model was fitted and validated with data from SSPHF experiments obtained under different dilution rates. The results of the model are in good agreement with the experimental data. Steady state concentrations of biomass, lactic acid, glucose, and maltose as function of the dilution rate were predicted by the model. This steady state analysis is further useful to determine the operating conditions that maximize lactic acid productivity.

  8. Biotic and abiotic retention, recycling and remineralization of metals in the ocean

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.; Ellwood, Michael J.; Tagliabue, Alessandro; Twining, Benjamin S.

    2017-03-01

    Trace metals shape both the biogeochemical functioning and biological structure of oceanic provinces. Trace metal biogeochemistry has primarily focused on modes of external supply of metals from aeolian, hydrothermal, sedimentary and other sources. However, metals also undergo internal transformations such as abiotic and biotic retention, recycling and remineralization. The role of these internal transformations in metal biogeochemical cycling is now coming into focus. First, the retention of metals by biota in the surface ocean for days, weeks or months depends on taxon-specific metal requirements of phytoplankton, and on their ultimate fate: that is, viral lysis, senescence, grazing and/or export to depth. Rapid recycling of metals in the surface ocean can extend seasonal productivity by maintaining higher levels of metal bioavailability compared to the influence of external metal input alone. As metal-containing organic particles are exported from the surface ocean, different metals exhibit distinct patterns of remineralization with depth. These patterns are mediated by a wide range of physicochemical and microbial processes such as the ability of particles to sorb metals, and are influenced by the mineral and organic characteristics of sinking particles. We conclude that internal metal transformations play an essential role in controlling metal bioavailability, phytoplankton distributions and the subsurface resupply of metals.

  9. The effect of different fluoride application methods on the remineralization of initial carious lesions

    PubMed Central

    2016-01-01

    Objectives The purpose of this study was to assess the effect of single and combined applications of fluoride on the amount of fluoride release, and the remineralization and physical properties of enamel. Materials and Methods Each of four fluoride varnish and gel products (Fluor Protector, FP, Ivoclar Vivadent; Tooth Mousse Plus, TM, GC; 60 Second Gel, A, Germiphene; CavityShield, CS, 3M ESPE) and two fluoride solutions (2% sodium fluoride, N; 8% tin(ii) fluoride, S) were applied on bovine teeth using single and combined methods (10 per group), and then the amount of fluoride release was measured for 4 wk. The electron probe microanalysis and the Vickers microhardness measurements were conducted to assess the effect of fluoride application on the surface properties of bovine teeth. Results The amount of fluoride release was higher in combined applications than in single application (p < 0.05). Microhardness values were higher after combined applications of N with FP, TM, and CS than single application of them, and these values were also higher after combined applications of S than single application of A (p < 0.05). Ca and P values were higher in combined applications of N with TM and CS than single application of them (p < 0.05). They were also increased after combined applications of the S with A than after single application (p < 0.05). Conclusions Combined applications of fluoride could be used as a basis to design more effective methods of fluoride application to provide enhanced remineralization. PMID:27200280

  10. Remineralized Bone Matrix (RBM) as a Scaffold for Bone Tissue Engineering

    PubMed Central

    Soicher, Matthew A.; Christiansen, Blaine A.; Stover, Susan M.; Leach, J. Kent; Yellowley, Clare E.; Griffiths, Leigh G.; Fyhrie, David P.

    2014-01-01

    There is a need for improved biomaterials for use in treating non-healing bone defects. A number of natural and synthetic biomaterials have been used for the regeneration of bone tissue with mixed results. One approach is to modify native tissue via decellularization or other treatment for use as natural scaffolding for tissue repair. In this study, our goal was to improve on our previously published alternating solution immersion (ASI) method to fabricate a robust, biocompatible, and mechanically competent biomaterial from natural demineralized bone matrix (DBM). The improved method includes an antigen removal (AR) treatment step which improves mineralization and stiffness while removing unwanted proteins. The chemistry of the mineral in the remineralized bone matrix (RBM) was consistent with dicalcium phosphate dihydrate (brushite), a material used clinically in bone healing applications. Mass spectrometry identified proteins removed from the matrix with AR treatment to include α-2 HS-glycoprotein and osteopontin, non-collagenous proteins (NCPs) and known inhibitors of biomineralization. Additionally, the RBM supported the survival, proliferation, and differentiation of human mesenchymal stromal cells (MSCs) in vitro as well or better than other widely used biomaterials including DBM and PLG scaffolds. DNA content increased more than 10-fold on RBM compared to DBM and PLG; likewise, osteogenic gene expression was significantly increased after 1 and 2 weeks. We demonstrated that ASI remineralization has the capacity to fabricate mechanically stiff and biocompatible RBM, a suitable biomaterial for cell culture applications. PMID:24616346

  11. Incorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization

    SciTech Connect

    Nico, Peter S.; Stewart, Brandy D.; Fendorf, Scott

    2009-07-01

    The form of solid phase U after Fe(II) induced anaerobic remineralization of ferrihydrite in the presence of aqueous and absorbed U(VI) was investigated under both abiotic batch and biotic flow conditions. Experiments were conducted with synthetic ground waters containing 0.168 mM U(VI), 3.8 mM carbonate, and 3.0 mM Ca{sup 2+}. In spite of the high solubility of U(VI) under these conditions, appreciable removal of U(VI) from solution was observed in both the abiotic and biotic systems. The majority of the removed U was determined to be substituted as oxidized U (U(VI) or U(V)) into the octahedral position of the goethite and magnetite formed during ferrihydrite remineralization. It is estimated that between 3% and 6% of octahedral Fe(III) centers in the new Fe minerals were occupied by U(VI). This site specific substitution is distinct from the non-specific U co-precipitation processes in which uranyl compounds, e.g. uranyl hydroxide or carbonate, are entrapped with newly formed Fe oxides. The prevalence of site specific U incorporation under both abiotic and biotic conditions and the fact that the produced solids were shown to be resistant to both extraction (30 mM KHCO{sub 3}) and oxidation (air for 5 days) suggest the potential importance of sequestration in Fe oxides as a stable and immobile form of U in the environment.

  12. Marine phosphate oxygen isotopes and organic matter remineralization in the oceans

    PubMed Central

    Colman, Albert S.; Blake, Ruth E.; Karl, David M.; Fogel, Marilyn L.; Turekian, Karl K.

    2005-01-01

    We show that the isotopic composition of oxygen (δ18O) in dissolved inorganic phosphate (Pi) reveals the balance between Pi transport and biological turnover rates in marine ecosystems. Our δ18Op of Pi (δ18Op) measurements herein indicate the importance of cell lysis in the regeneration of Pi in the euphotic zone. Depth profiles of the δ18Op in the Atlantic and Pacific Oceans are near a temperature-dependent isotopic equilibrium with water. Small deviations from equilibrium below the thermocline suggest that P remineralization in the deep ocean is a byproduct of microbial carbon and energy requirements. However, isotope effects associated with phosphohydrolase enzymes involved in P remineralization are quite large and could potentially lead to significant disequilibration of Pi oxygen. The observed near equilibration of deep water Pi likely calls for continued slow rates of microbial uptake and release of Pi and/or extracellular pyrophosphatase-mediated oxygen exchange between water and Pi along the deep water flow path. PMID:16141319

  13. The effect of two remineralizing agents and natural saliva on bleached enamel hardness

    PubMed Central

    Heshmat, Haleh; Ganjkar, Maryam Hoorizad; Miri, Yasaman; Fard, Mohamad Javad Kharrazi

    2016-01-01

    Background: In order to compensate the adverse consequences of bleaching agents, the use of fluoride-containing remineralizing agents has been suggested by many researchers. The aim of this study was to compare the effect of applying two remineralizing materials on bleached enamel hardness and in comparison to natural saliva. Materials and Methods: In this experimental study, 30 enamel samples of sound human permanent molars were prepared for this study. Microhardness (MH) of all specimens was measured and 35% hydrogen peroxide was applied 3 times to the specimens. After completion of the bleaching process, MH of samples was measured and then enamel specimens were divided into three groups each of 10, specimens of groups 1 and 2 were subjected to daily application of hydroxyl apatite (Remin Pro) and casein phosphopeptide amorphous calcium phosphate fluoride (CPP-ACPF) (MI Paste Plus) pastes, respectively, for 15 days. In group 3, the specimens were stored in the operators' natural saliva at room temperature in this period of time. Final MH of all groups was measured. The data were analyzed using repeated measures ANOVA (α = 0.05). Results: The hardness significantly decreased in all groups following bleaching. Application of either Remin Pro, CPP-ACPF or natural saliva increased the hardness significantly. The hardness of the three test groups after 15 days were statistically similar to each other. Conclusion: The hardness of enamel increases eventually after exposure to either MI Paste Plus, Remin Pro or natural saliva. PMID:26962316

  14. Effect of Green and White Tea Pretreatment on Remineralization of Demineralized Dentin by CPP-ACFP-An Invitro Microhardness Analysis

    PubMed Central

    Jose, Poornima; Sekar, Mahalaxmi

    2016-01-01

    Introduction Mechanical performance of dentine is of major significance for the overall function of the teeth. Remineralization of carious dentine is the ultimate goal in re-establishing the functionality of the affected tissue so as to regain and maintain the mechanical properties of dentine. Functional remineralization of the affected dentin involves stabilization of both inorganic and organic component, but Caesin Phosphopeptide Amorphous Calcium Flurophosphate (CPP-ACFP) stabilizes only inorganic content. Hence to stabilize organic content and to bring in functional remineralization the use of anticollagenolytic and antielastastic agent was considered for this study. Aim To assess and compare the remineralization of artificial carious dentin pre treated with white and green tea, before and after application of CPP-ACFP using microhardness test. Null hypothesis was that both teas did not have any effect on remineralization potential of CPP ACFP. Materials and Methods Forty specimens were subjected to artificial caries lesions and were randomly divided into 4 groups based on the application of tea extract followed by CPP-ACFP (groups A & B) and CPP-ACFP followed by tea extracts (groups C & D). All the specimens were subjected to two pH cycling regimen. The specimens were subjected to Vickers microhardness test to obtain the microhardness values. The values were statistically analysed using one-way ANOVA and multiple comparisons with Tukey’s HSD procedure. Results After the 1st and 2nd pH cycling in groups A and B, Group B showed significant increase in microhardness values (35.79± 3.12 VHN). But after the pH cycling regimen in groups C and D, microhardness values increased in 1st pH cycling (50.03± 3.64 VHN); (50.03±3.64 VHN), respectively but decreased during the 2nd pH cycling, (33.94±6.45 VHN); (33.11±6.11 VHN) respectively with the level of significance <0.05. Conclusion The results of this study rejects the hypothesis tested and showed that both the

  15. Casein phosphopeptide-amorphous calcium phosphate and glass ionomer show distinct effects in the remineralization of proximal artificial caries lesion in situ.

    PubMed

    Thepyou, Rathapong; Chanmitkul, Wanvipa; Thanatvarakorn, Ornnicha; Hamba, Hidenori; Chob-Isara, Wanwalai; Trairatvorakul, Chutima; Tagami, Junji

    2013-01-01

    This study aimed to compare the ability of casein-phosphopeptide amorphous-calcium-phosphate (CPP-ACP) and glass-ionomer (GI) in remineralizing proximal artificial caries lesions (ACLs). Molar enamel-slabs were divided into: original-lesion control, intra-oral controls, and experimental (CPP-ACP or GI) groups. Specimens received ACLs and were bonded on subject maxillary first molars. After 4-weeks, mineral density (MD) was analyzed by μCT. Compared to control, CPP-ACP increased MD at 0-38/68-84 microns and the GI group had an increase at 0-68 microns, with a greater increase in MD compared to the CPP-ACP group from 0-53 microns. The mean percent remineralization (%R) showed differences between the GI, CPP-ACP groups and their paired controls. GI tended to increase remineralization more than CPP-ACP. In conclusion, CPP-ACP and GI demonstrated distinct remineralizing ability. GI induced greater remineralization in the superficial lesion, while CPP-ACP remineralized the lesion body. Their effects on percent remineralization and reducing lesion depth of proximal ACLs were similar.

  16. Revised reference model for nitric acid

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Bailey, P. L.; Craig, C. A.

    1989-01-01

    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision, and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter.

  17. Proposed reference model for nitric acid

    NASA Astrophysics Data System (ADS)

    Gille, John C.; Bailey, Paul L.; Craig, Cheril A.

    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter.

  18. Revised reference model for nitric acid

    NASA Astrophysics Data System (ADS)

    Gille, J. C.; Bailey, P. L.; Craig, C. A.

    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter.

  19. Revised reference model for nitric acid

    NASA Astrophysics Data System (ADS)

    Gille, J. C.; Bailey, P. L.; Craig, C. A.

    1993-01-01

    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision, and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter.

  20. Modeling acid transport in chemically amplified resist films

    NASA Astrophysics Data System (ADS)

    Patil, Abhijit A.; Doxastakis, Manolis; Stein, Gila E.

    2014-03-01

    The acid-catalyzed deprotection of glassy poly(4-hydroxystyrene-co-tert butyl acrylate) films was studied with infrared absorbance spectroscopy and stochastic simulations. Experimental data were interpreted with a simple description of subdiffusive acid transport coupled to second-order acid loss. This model predicts key attributes of observed deprotection rates, such as fast reaction at short times, slow reaction at long times, and a non-linear dependence on acid loading. The degree of anomalous character is reduced by increasing the post-exposure bake temperature or adding plasticizing agents to the polymer resin. These findings indicate that the acid mobility and overall deprotection kinetics are coupled to glassy matrix dynamics. Furthermore, the acid diffusion lengths were calculated from the anomalous transport model and compared with nanopattern line widths. The consistent scaling between experiments and simulations suggests that the anomalous diffusion model could be further developed into a predictive lithography tool.

  1. Venus clouds - A dirty hydrochloric acid model.

    NASA Technical Reports Server (NTRS)

    Hapke, B.

    1972-01-01

    The spectral and polarization data for Venus are consistent with micrometer-sized aerosol cloud particles of hydrochloric acid with soluble and insoluble iron compounds, whose source could be volcanic or crustal dust. The yellow color of the clouds could be due to absorption bands in the near UV involving ferric iron and chlorine complexes. It is pointed out that the UV features could arise from variations in the concentrations of iron and hydrochloric acid in the cloud particles.

  2. Remineralizing efficacy of a CPP-ACP cream on enamel caries lesions in situ.

    PubMed

    Meyer-Lueckel, Hendrik; Wierichs, Richard J; Schellwien, Timo; Paris, Sebastian

    2015-01-01

    The aim of this double-blind, randomized, cross-over in situ study was to compare the remineralizing effects induced by the application of casein phosphopeptide-stabilized amorphous calcium phosphate complexes (CPP-ACP)-containing cream (without fluoride) after the use of fluoride toothpaste with the prolonged use of fluoride toothpaste on enamel caries lesions in situ. During each of three experimental legs of 4 weeks, 13 participants wore intra-oral mandibular appliances with 8 pre-demineralized bovine enamel specimens in the vestibular flanges mimicking either 'easily cleanable' or 'proximal' surfaces (n = 312). The three randomly allocated treatments were as follows: (1) application of CPP-ACP-containing cream (GC Tooth Mouse, non-fluoride) after the use of fluoride toothpaste (1,400 ppm NaF; TM), (2) prolonged application of fluoride toothpaste (1,400 ppm NaF; positive control, PC) and (3) prolonged application of fluoride-free toothpaste (negative control, NC). Additionally, one of each of the two flanges was brushed twice daily with the respective toothpaste. The differences in integrated mineral loss as assessed by transversal microradiography were calculated between values before and after the in situ period. Changes in mineral loss were analysed for those pairs of subgroups differing in only one of the three factors (intervention, brushing and position). The PC treatment induced a significantly higher mineral gain compared with the TM and NC treatments. No significant differences between TM and NC for both positions were observed. In conclusion, the additional use of a CPP-ACP-containing cream seems to be less efficacious in remineralizing caries lesions than the prolonged application of fluoride toothpaste.

  3. Multidecadal accumulation of anthropogenic and remineralized dissolved inorganic carbon along the Extended Ellett Line in the northeast Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Humphreys, Matthew P.; Griffiths, Alex M.; Achterberg, Eric P.; Holliday, N. Penny; Rérolle, Victoire M. C.; Menzel Barraqueta, Jan-Lukas; Couldrey, Matthew P.; Oliver, Kevin I. C.; Hartman, Susan E.; Esposito, Mario; Boyce, Adrian J.

    2016-02-01

    Marine carbonate chemistry measurements have been carried out annually since 2009 during UK research cruises along the Extended Ellett Line (EEL), a hydrographic transect in the northeast Atlantic Ocean. The EEL intersects several water masses that are key to the global thermohaline circulation, and therefore the cruises sample a region in which it is critical to monitor secular physical and biogeochemical changes. We have combined results from these EEL cruises with existing quality-controlled observational data syntheses to produce a hydrographic time series for the EEL from 1981 to 2013. This reveals multidecadal increases in dissolved inorganic carbon (DIC) throughout the water column, with a near-surface maximum rate of 1.80 ± 0.45 µmol kg-1 yr-1. Anthropogenic CO2 accumulation was assessed, using simultaneous changes in apparent oxygen utilization (AOU) and total alkalinity (TA) as proxies for the biogeochemical processes that influence DIC. The stable carbon isotope composition of DIC (δ13CDIC) was also determined and used as an independent test of our method. We calculated a volume-integrated anthropogenic CO2 accumulation rate of 2.8 ± 0.4 mg C m-3 yr-1 along the EEL, which is about double the global mean. The anthropogenic CO2 component accounts for only 31 ± 6% of the total DIC increase. The remainder is derived from increased organic matter remineralization, which we attribute to the lateral redistribution of water masses that accompanies subpolar gyre contraction. Output from a general circulation ecosystem model demonstrates that spatiotemporal heterogeneity in the observations has not significantly biased our multidecadal rate of change calculations and indicates that the EEL observations have been tracking distal changes in the surrounding North Atlantic and Nordic Seas.

  4. Remineralization of demineralized enamel by toothpastes: a scanning electron microscopy, energy dispersive X-ray analysis, and three-dimensional stereo-micrographic study.

    PubMed

    Gjorgievska, Elizabeta S; Nicholson, John W; Slipper, Ian J; Stevanovic, Marija M

    2013-06-01

    Remineralization of hard dental tissues is thought to be a tool that could close the gap between prevention and surgical procedures in clinical dentistry. The purpose of this study was to examine the remineralizing potential of different toothpaste formulations: toothpastes containing bioactive glass, hydroxyapatite, or strontium acetate with fluoride, when applied to demineralized enamel. Results obtained by scanning electron microscopy (SEM) and SEM/energy dispersive X-ray analyses proved that the hydroxyapatite and bioactive glass-containing toothpastes were highly efficient in promoting enamel remineralization by formation of deposits and a protective layer on the surface of the demineralized enamel, whereas the toothpaste containing 8% strontium acetate and 1040 ppm fluoride as NaF had little, if any, remineralization potential. In conclusion, the treatment of demineralized teeth with toothpastes containing hydroxyapatite or bioactive glass resulted in repair of the damaged tissue.

  5. Modelling malic acid accumulation in fruits: relationships with organic acids, potassium, and temperature.

    PubMed

    Lobit, Philippe; Genard, Michel; Soing, Patrick; Habib, Robert

    2006-01-01

    Malic acid production, degradation, and storage during fruit development have been modelled. The model assumes that malic acid content is determined essentially by the conditions of its storage in the mesocarp cells, and provides a simplified representation of the mechanisms involved in the accumulation of malate in the vacuole and their regulation by thermodynamic constraints. Solving the corresponding system of equations made it possible to predict the malic acid content of the fruit as a function of organic acids, potassium concentration, and temperature. The model was applied to peach fruit, and parameters were estimated from the data of fruit development monitored over 2 years. The predictions were in good agreement with experimental data. Simulations were performed to analyse the behaviour of the model in response to variations in composition and temperature.

  6. EDX-Element Analysis of the In Vitro Effect of Fluoride Oral Hygiene Tablets on Artificial Caries Lesion Formation and Remineralization in Human Enamel.

    PubMed

    Eggerath, J; Kremniczky, T; Gaengler, P; Arnold, W H

    2011-01-01

    Aim of this in-vitro-study was to assess the remineralization potential of a tooth cleaning tablet with different fluoride content quantitatively using EDX analysis.Twenty three caries free impacted third molars were examined; enamel surfaces were wax coated leaving two 3x4mm windows for exposure to demineralization/remineralization cycles. The teeth were randomly assigned to 4 groups of 5 control and 6 experimental teeth each. Demineralization by standardized HEC-gel, pH 4.7 at 37°C for 72h, was alternated by rinsing in remineralization solution, pH 7.0 at 37°C for 72h, total challenge time 432h. The negative control group N was treated during remineralization cycles with saline; positive control group P was treated with remineralization solution; experimental group D1 was exposed to remineralization solution containing Denttabs(®)-tablets with 1450 ppm F; experimental group D2 was exposed to remineralization solution and Denttabs(®)-tablets with 4350 ppm F. Each tooth was cut into serial sections and analyzed by scanning electron microscopy with EDX element analysis for assessment of the different zones of the lesions in 3 representative sections. Statistical analysis was based on the AVOVA test for repeated measurements and post hoc Bonferroni adjustment. The results showed a significantly higher Ca and P content in the body of the lesion in both fluoride treated groups compared to the controls. It can be concluded that higher concentrations of NaF may be more effective in remineralization of early advanced caries lesions.

  7. Gas-grain Modeling of Isocyanic Acid (HNCO), Cyanic Acid (HOCN), Fulminic Acid (HCNO), and Isofulminic Acid (HONC) in Assorted Interstellar Environments

    NASA Astrophysics Data System (ADS)

    Quan, Donghui; Herbst, Eric; Osamura, Yoshihiro; Roueff, Evelyne

    2010-12-01

    Isocyanic acid (HNCO) is a well-known interstellar molecule. Evidence also exists for the presence of two of its metastable isomers in the interstellar medium: HCNO (fulminic acid) and HOCN (cyanic acid). Fulminic acid has been detected toward cold and lukewarm sources, while cyanic acid has been detected both in these sources and in warm sources in the Galactic Center. Gas-phase models can reproduce the abundances of the isomers in cold sources, but overproduce HCNO in the Galactic Center. Here we present a detailed study of a gas-grain model that contains these three isomers, plus a fourth isomer, isofulminic acid (HONC), for four types of sources: hot cores, the warm envelopes of hot cores, lukewarm corinos, and cold cores. The current model is partially able to rationalize the abundances of HNCO, HOCN, and HCNO in cold and warm sources. Predictions for HONC in all environments are also made.

  8. Surface complexation modeling or organic acid sorption to goethite

    SciTech Connect

    Evanko, C.R.; Dzombak, D.A.

    1999-06-15

    Surface complexation modeling was performed using the Generalized Two-Layer Model for a series of low molecular weight organic acids. Sorption of these organic acids to goethite was investigated in a previous study to assess the influence of particular structural features on sorption. Here, the ability to describe the observed sorption behavior for compounds with similar structural features using surface complexation modeling was investigated. A set of surface reactions and equilibrium constants yielding optimal data fits was obtained for each organic acid over a range of total sorbate concentrations. Surface complexation modeling successfully described sorption of a number of the simple organic acids, but an additional hydrophobic component was needed to describe sorption behavior of some compounds with significant hydrophobic character. These compounds exhibited sorption behavior of some compounds with significant hydrophobic character. These compounds exhibited sorption behavior that was inconsistent with ligand exchange mechanisms since sorption behavior of some compounds with significant hydrophobic character. These compounds exhibited sorption behavior that was inconsistent with ligand exchange mechanisms since sorption did not decrease with increasing total sorbate concentration and/or exceeded surface site saturation. Hydrophobic interactions appeared to be most significant for the compound containing a 5-carbon aliphatic chain. Comparison of optimized equilibrium constants for similar surface species showed that model results were consistent with observed sorption behavior: equilibrium constants were highest for compounds having adjacent carboxylic groups, lower for compounds with adjacent phenolic groups, and lowest for compounds with phenolic groups in the ortho position relative to a carboxylic group. Surface complexation modeling was also performed to fit sorption data for Suwannee River fulvic acid. The data could be described well using reactions and

  9. Surface Complexation Modeling of Organic Acid Sorption to Goethite.

    PubMed

    Evanko; Dzombak

    1999-06-15

    Surface complexation modeling was performed using the Generalized Two-Layer Model for a series of low molecular weight organic acids. Sorption of these organic acids to goethite was investigated in a previous study to assess the influence of particular structural features on sorption. Here, the ability to describe the observed sorption behavior for compounds with similar structural features using surface complexation modeling was investigated. A set of surface reactions and equilibrium constants yielding optimal data fits was obtained for each organic acid over a range of total sorbate concentrations. Surface complexation modeling successfully described sorption of a number of the simple organic acids, but an additional hydrophobic component was needed to describe sorption behavior of some compounds with significant hydrophobic character. These compounds exhibited sorption behavior that was inconsistent with ligand exchange mechanisms since sorption did not decrease with increasing total sorbate concentration and/or exceeded surface site saturation. Hydrophobic interactions appeared to be most significant for the compound containing a 5-carbon aliphatic chain. Comparison of optimized equilibrium constants for similar surface species showed that model results were consistent with observed sorption behavior: equilibrium constants were highest for compounds having adjacent carboxylic groups, lower for compounds with adjacent phenolic groups, and lowest for compounds with phenolic groups in the ortho position relative to a carboxylic group. Surface complexation modeling was also performed to fit sorption data for Suwannee River fulvic acid. The data could be described well using reactions and constants similar to those for pyromellitic acid. This four-carboxyl group compound may be useful as a model for fulvic acid with respect to sorption. Other simple organic acids having multiple carboxylic and phenolic functional groups were identified as potential models for humic

  10. Eroded enamel lesion remineralization by saliva as a possible factor in the site-specificity of human dental erosion.

    PubMed

    Amaechi, B T; Higham, S M

    2001-08-01

    The composition and flow of saliva, which determine its functions, vary within intraoral sites and among individuals. Also, the susceptibility to tooth erosion reportedly varies among individuals and within the dental arches. A possible effect of saliva on early-eroded lesions may be a contributory factor. The aims here were firstly to determine the remineralization of eroded enamel lesions by saliva, and secondly to investigate any variation of this remineralization within the dental arches and among individuals. Early enamel erosion was produced on human premolars using orange juice. Control sections and two test slabs were cut from each tooth. The two slabs from the same lesion were bonded with composite resins to the palatal surface of upper right lateral incisor teeth and the lingual surface of the lower right lateral incisor teeth of volunteers, who then chewed a sugar-free gum four times daily. After 28-day intraoral exposure, mineral loss (DeltaZ) and lesion depth (ld) were quantified using microradiography and the data analysed by paired t-test (n=10, alpha=0.05). Mean DeltaZ was significantly lower in the group of slabs positioned palatally (P<0.001) and lingually (P<0.001) when compared with the control group, and in the lingually placed group when compared with the palatally positioned (P<0.01). A significantly lower ld was observed in the group of slabs positioned palatally (P<0.05) and lingually (P<0.001) when compared with the control group, and in the lingually positioned group when compared with the palatally placed (P<0.05). It was concluded that saliva can remineralize early enamel erosion, and that the degree of remineralization varies within intraoral sites and may be responsible for the differing susceptibility to erosion within the dental arches.

  11. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    PubMed

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions.

  12. Role of fluoridated carbamide peroxide whitening gel in the remineralization of demineralized enamel: An in vitro study

    PubMed Central

    Bollineni, Swetha; Janga, Ravi Kumar; Venugopal, L.; Reddy, Indukuri Ravikishore; Babu, P. Ravisekhar; Kumar, Sunil S.

    2014-01-01

    Introduction: The use of self-administered carbamide peroxide bleaching gels has become increasingly popular for whitening of discolored vital teeth. Studies have reported that its use may induce increased levels of sensitivity and surface roughness of the tooth due to demineralization. This study evaluates the effect of fluoride addition to the bleaching agent – its remineralizing capacity and alterations in the whitening properties. Materials and Methods: Twenty-four extracted lower third molar teeth, with the pretreatment shade determined, were taken up in the study. Each tooth was sectioned into four and labeled as groups A, B, C, and D. The tooth quadrants in group A-C were demineralized; groups A and B were treated with 10% carbamide peroxide gel (group-A without fluoride and group-B with 0.463% fluoride addition) (no further treatment was carried out for group c) group-D remained as the control. The post-treatment shade was determined. The tooth samples were sectioned (approximately 200 μm) for evaluation under a light microscope. The depth of demineralization was analyzed at five different equidistant points. Statistical analysis was carried out with t-tests, accepting ≤0.05 as significant. Results and Conclusion: Addition of fluoride caused remineralization of demineralized enamel. The tooth whitening system showed that the remineralization properties did not affect the whitening properties. PMID:25254197

  13. Remineralization of particulate authigenic trace metals in the middle Atlantic Bight: Implications for proxies of export production

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Anderson, R. F.; Biscaye, P. E.

    1996-09-01

    Samples collected by time-series sediment traps deployed in the Middle Atlantic Bight were studied to better understand the formation, and preservation, of particulate authigenic forms of trace metals (Cu, Ni, Ba) That hold potential to serve as proxies in the sedimentary record of past changes in the flux of biogenic detritus sinking from the surface ocean into the deep sea (export production). Particulate biogenic and authigenic phases are extremely labile, as evidenced by the observation that as much as 70% of the particulate fluxes of organic carbon and of certain metals (Cu, Ni, and Mn), and up to 25% of the particulate fluxes of authigenic Ba and of opal collected by sediment traps are released rapidly into solution during the time period between particle collection and trap retrieval. Further remineralization on the seabed reduces concentrations of authigenic Cu and Ni in surface sediments below the limit of detection. Approximately 80% of authigenic Ba is remineralized during early diagenesis on the seabed, much more than is expected for conditions of high sediment mass accumulation rate that exist in the study area. Extensive remineralization during early diagenesis, combined with large corrections required to remove the aluminosilicate contribution to the concentrations of Cu, Ni, and Ba in sediments, preclude the successful use of down-core profiles of these trace metals to reconstruct past changes in export production of the Middle Atlantic Bight. Similar problems are likely to plague paleoproductivity reconstructions in other ocean-margin regions, or wherever high fluxes of aluminosilicate phases occur.

  14. Shear Bond Strength of Orthodontic Brackets Fixed with Remineralizing Adhesive Systems after Simulating One Year of Orthodontic Treatment.

    PubMed

    Bezerra, Gisele Lima; Torres, Carlos Rocha Gomes; Tonetto, Mateus Rodrigues; Borges, Alvaro Henrique; Kuga, Milton Carlos; Bandeca, Matheus Coelho; Firoozmand, Leily Macedo

    2015-01-01

    The objective of this study is to assess, in vitro, the shear bond strength of orthodontic brackets fixed with remineralizing adhesive systems submitted to thermomechanical cycling, simulating one year of orthodontic treatment. Sixty-four bovine incisor teeth were randomly divided into 4 experimental groups (n = 16): XT: Transbond XT, QC: Quick Cure, OL: Ortholite Color, and SEP: Transbond Plus Self-Etching Primer. The samples were submitted to thermomechanical cycling simulating one year of orthodontic treatment. Shear bond strength tests were carried out using a universal testing machine with a load cell of 50 KgF at 0.5 mm/minute. The samples were examined with a stereomicroscope and a scanning electron microscope (SEM) in order to analyze enamel surface and Adhesive Remnant Index (ARI). Kruskal-Wallis and Mann-Whitney (with Bonferroni correction) tests showed a significant difference between the studied groups (p < 0.05). Groups XT, QC, and SEP presented the highest values of adhesive resistance and no statistical differences were found between them. The highest frequency of failures between enamel and adhesive was observed in groups XT, QC, and OL. Quick Cure (QC) remineralizing adhesive system presented average adhesive resistance values similar to conventional (XT) and self-etching (SEP) adhesives, while remineralizing system (OL) provided the lowest values of adhesive resistance.

  15. Shear Bond Strength of Orthodontic Brackets Fixed with Remineralizing Adhesive Systems after Simulating One Year of Orthodontic Treatment

    PubMed Central

    Bezerra, Gisele Lima; Torres, Carlos Rocha Gomes; Tonetto, Mateus Rodrigues; Borges, Alvaro Henrique; Kuga, Milton Carlos; Bandeca, Matheus Coelho; Firoozmand, Leily Macedo

    2015-01-01

    The objective of this study is to assess, in vitro, the shear bond strength of orthodontic brackets fixed with remineralizing adhesive systems submitted to thermomechanical cycling, simulating one year of orthodontic treatment. Sixty-four bovine incisor teeth were randomly divided into 4 experimental groups (n = 16): XT: Transbond XT, QC: Quick Cure, OL: Ortholite Color, and SEP: Transbond Plus Self-Etching Primer. The samples were submitted to thermomechanical cycling simulating one year of orthodontic treatment. Shear bond strength tests were carried out using a universal testing machine with a load cell of 50 KgF at 0.5 mm/minute. The samples were examined with a stereomicroscope and a scanning electron microscope (SEM) in order to analyze enamel surface and Adhesive Remnant Index (ARI). Kruskal-Wallis and Mann-Whitney (with Bonferroni correction) tests showed a significant difference between the studied groups (p < 0.05). Groups XT, QC, and SEP presented the highest values of adhesive resistance and no statistical differences were found between them. The highest frequency of failures between enamel and adhesive was observed in groups XT, QC, and OL. Quick Cure (QC) remineralizing adhesive system presented average adhesive resistance values similar to conventional (XT) and self-etching (SEP) adhesives, while remineralizing system (OL) provided the lowest values of adhesive resistance. PMID:26380371

  16. Evaluation of remineralization capacity of casein phosphopeptide-amorphous calcium phosphate on the carbamide peroxide treated enamel

    PubMed Central

    Penumatsa, Narendra Varma; Kaminedi, Raja Rajeswari; Baroudi, Kusai; Barakath, Ola

    2015-01-01

    Objective: The aim of this study was to evaluate the potential of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) in remineralizing the bleached enamel surface using micro-hardness. Materials and Methods: Thirty human enamel slabs were randomly divided into three groups (n = 10). Groups A and B were exposed to 20% carbamide peroxide and 35% carbamide peroxide gel, respectively. After the exposure to the bleaching agent, the slabs were kept in artificial saliva for 1-week. Group C (control group) were kept in artificial saliva for 1-week. Vickers micro-hardness test was performed by Leica VMHT-Mot micro-hardness tester. CPP-ACP (Gc Tooth Mousse, Melbourne, Australia) was then applied to specimens of Groups A and B for 3 min for 2 weeks. Micro-hardness values of postbleach Group A (Ar) and Group B (Br) were recorded and statistically analyzed by paired t-test and one-way analysis of variance at the significance level of α =0.05. Results: There was a significant decrease in micro-hardness of enamel in carbamide peroxide bleached groups. However, there was a significant increase in micro-hardness after the remineralization by CPP-ACP and the extent of remineralization is more for the Group B. Conclusions: That bleaching agents reduced enamel micro-hardness and the use of CPP-ACP after bleaching can significantly enhance the micro-hardness of bleached enamel. PMID:26538923

  17. Effect of dentifrice containing fluoride and/or baking soda on enamel demineralization/remineralization: an in situ study.

    PubMed

    Cury, J A; Hashizume, L N; Del Bel Cury, A A; Tabchoury, C P

    2001-01-01

    The additive effect of baking soda on the anticariogenic effect of fluoride dentifrice is not well established. To evaluate it, a crossover in situ study was done in three phases of 28 days. Volunteers, using acrylic palatal appliances containing four human enamel blocks, two sound (to evaluate demineralization) and two with artificial caries lesions (to evaluate remineralization), took part in this study. During each phase, 10% sucrose solution was dripped (3 times a day) only onto the sound blocks. After 10 min, a slurry of placebo, fluoride (F) or fluoride and baking soda (F+NaHCO(3)) dentifrice was dripped onto all enamel blocks. The results showed a higher F concentration in dental plaque formed during treatment with F+NaHCO(3) than placebo (p<0.05), but the difference related to F dentifrice was not significant. The enamel demineralization was lower, and remineralization was greater, after treatment with F+NaHCO(3) than placebo (p<0.05), but the difference related to F dentifrice was not significant. The data suggest that baking soda neither improves nor impairs the effect of F dentifrice on reduction of demineralization and enhancement of remineralization of enamel.

  18. Modeling the influence of organic acids on soil weathering

    USGS Publications Warehouse

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  19. Nitric acid: modeling osmotic coefficients and acid-base dissociation using the BIMSA theory.

    PubMed

    Ruas, Alexandre; Pochon, Patrick; Simonin, Jean-Pierre; Moisy, Philippe

    2010-11-14

    This work is aimed at a description of the thermodynamic properties of highly concentrated aqueous solutions of nitric acid salts at 25 °C within the binding mean spherical approximation (BIMSA) theory. The predictive capability of this model was examined. First, Raman spectroscopy was used to study the proportion of associated nitric acid as a function of concentration. The corresponding apparent association constant values were compared with literature values. Besides, the BIMSA model, taking into account complex formation, was used to represent literature experimental osmotic coefficient variation with concentration. This theoretical description led to an assessment of the degree of association. The so calculated amount of associated nitric acid coincides accurately with our Raman experimental results up to a high concentration of acid.

  20. Inconsistencies between (14)C and short-lived radionuclides-based sediment accumulation rates: Effects of long-term remineralization.

    PubMed

    Baskaran, M; Bianchi, T S; Filley, T R

    2016-09-06

    (14)C is the most widely utilized geochronometer to investigate geological, geochemical and geophysical problems over the past 5 decades. Establishment of precise sedimentation rates is crucial for the reconstruction of paleo-climate, -ecological and - environmental studies when extrapolation of sedimentation rates is utilized for time scales beyond the dating range. However, agreement between short-term and long-term sedimentation rates in anthropogenically unperturbed sediment cores has not been shown. Here we show that the AMS (14)C-based long-term mass accumulation rate (MAR) of an organic-rich (>70%) sediment core from Mud Lake, Florida to be ∼5 times lower than the short-term MAR obtained using (239,240)Pu, (137)Cs and excess (210)Pb ((210)Pbxs). The measured sediment inventories of (210)Pbxs, (137)Cs and (239,240)Pu are comparable to the atmospheric fallout for the sampling site, indicating very little accelerated sediment erosion over the past several decades. Presence of sharp fallout peaks of (239,240)Pu indicates very little sediment mixing. The penetration depths of (137)Cs and (239,240)Pu were found to be much deeper than expected and this is attributed to their post-depositional mobility. MAR calculated using (14)C-ages in successive layers also indicated decreasing MARs with depth, and was reflective of progressive remineralization. Using first-order kinetics, the sediment remineralization rate was found to be 4.4 × 10(-4) y(-1) and propose that over the long-term, remineralization of organic-rich sediment affected the long-term MAR, but not the ratio of (14)C/(12)C. Thus, the MAR and linear sedimentation rate obtained using (14)C (and other isotope-based methods) could be erroneous, although (14)C ages may not be affected by such remineralization. Long-term remineralization rates of organic matter has a direct bearing on the biogeochemical cycling of elements in aqueous systems and mass balance of elements needs to be taken into consideration.

  1. Controlled remineralization of enamel in the presence of amelogenin and fluoride.

    PubMed

    Fan, Yuwei; Sun, Zhi; Moradian-Oldak, Janet

    2009-02-01

    Reconstructing enamel-like structures on teeth have been an important topic of study in the material sciences and dentistry. The important role of amelogenin in modulating the mineralization of organized calcium phosphate crystals has been previously reported. We used amelogenin and utilized a modified biomimetic deposition method to remineralize the surface of etched enamel to form mineral layers containing organized needle-like fluoridated hydroxyapatite crystals. The effect of a recombinant amelogenins (rP172) on the microstructure of the mineral in the coating was analyzed by SEM, XRD and FT-IR. At rP172 concentrations below 33 microg/mL, no significant effect was observed. In the presence of 1 mg/L F and at a concentration of 33 microg/mL rP172, formation of fused crystals growing from the enamel surface was initiated. Amelogenin promoted the oriented bundle formation of needle-like fluoridated hydroxyapatite in a dose dependent manner. Biomimetic synthesis of the amelogenin fluoridated hydroxyapatite nano-composite is one of the primary steps towards the development and design of novel biomaterial for future application in reparative and restorative dentistry.

  2. Controlled remineralization of enamel in the presence of amelogenin and fluoride

    PubMed Central

    Fan, Yuwei; Sun, Zhi; Moradian-Oldak, Janet

    2008-01-01

    Reconstructing enamel-like structures on teeth has been an important topic of study in the material sciences and dentistry. The important role of amelogenin in modulating the mineralization of organized calcium phosphate crystals has been previously reported. We used amelogenin and utilized a modified biomimetic deposition method to remineralize the surface of etched enamel to form mineral layers containing organized needle-like fluoridated hydroxyapatite crystals. The effect of a recombinant amelogenins (rP172) on the microstructure of the mineral in the coating was analyzed by SEM, XRD and FT-IR. At rP172 concentrations below 33 μg/mL, no significant effect was observed. In the presence of 1 mg/L F and at a concentration of 33 μg/mL rP172, formation of fused crystals growing from the enamel surface was initiated. Amelogenin promoted the oriented bundle formation of needle-like fluoridated hydroxyapatite in a dose dependent manner. Biomimetic synthesis of the amelogenin fluoridated hydroxyapatite nano-composite is one of the primary steps towards the development and design of novel biomaterial for future application in reparative and restorative dentistry. PMID:18996587

  3. Ion permeable microcapsules for the release of biologically available ions for remineralization.

    PubMed

    Davidson, Michael T; Greving, Theresa A; McHale, William A; Latta, Mark A; Gross, Stephen M

    2012-03-01

    The objective of this study was to investigate the effect of chemical structure, ion concentration, and ion type on the release rate of biologically available ions useful for remineralization from microcapsules with ion permeable membranes. A heterogeneous polymerization technique was utilized to prepare microcapsules containing either an aqueous solution of K₂HPO₄, Ca(NO₃)₂, or NaF. Six different polyurethane-based microcapsule shells were prepared and characterized based on ethylene glycol, butanediol, hexanediol, octanediol, triethylene glycol, and bisphenol A structural units. Ion release profiles were measured as a function of initial ion concentration within the microcapsule, ion type, and microcapsule chemical structure. The rate of ion release increased with initial concentration of ion stored in the microcapsule over a range of 0.5-3.0M. The monomer used in the synthesis of the membrane had a significant effect on ion release rates at 3.0 M salt concentration. At 1.0 M, the ethylene glycol released ions significantly faster than the hexanediol-, octanediol-, and butanediol-based microcapsules. Ion release was fastest for fluoride and slowest for phosphate for the salts used in this study. It was concluded that the microcapsules are capable of releasing calcium, phosphate, and fluoride ions in their biologically available form.

  4. Comparing models for perfluorooctanoic acid pharmacokinetics using Bayesian analysis

    EPA Science Inventory

    Selecting the appropriate pharmacokinetic (PK) model given the available data is investigated for perfluorooctanoic acid (PFOA), which has been widely analyzed with an empirical, one-compartment model. This research examined the results of experiments [Kemper R. A., DuPont Haskel...

  5. The kainic acid model of temporal lobe epilepsy

    PubMed Central

    Lévesque, Maxime; Avoli, Massimo

    2016-01-01

    The kainic acid model of temporal lobe epilepsy has greatly contributed to the understanding of the molecular, cellular and pharmacological mechanisms underlying epileptogenesis and ictogenesis. This model presents with neuropathological and electroencephalographic features that are seen in patients with temporal lobe epilepsy. It is also characterized by a latent period that follows the initial precipitating injury (i.e., status epilepticus) until the appearance of recurrent seizures, as observed in the human condition. Finally, the kainic acid model can be reproduced in a variety of species using either systemic, intrahippocampal or intra-amygdaloid administrations. In this review, we describe the various methodological procedures and evaluate their differences with respect to the behavioral, electroencephalographic and neuropathological correlates. In addition, we compare the kainic acid model with other animal models of temporal lobe epilepsy such as the pilocarpine and the kindling model. We conclude that the kainic acid model is a reliable tool for understanding temporal lobe epilepsy, provided that the differences existing between methodological procedures are taken into account. PMID:24184743

  6. Animal model of acid-reflux esophagitis: pathogenic roles of acid/pepsin, prostaglandins, and amino acids.

    PubMed

    Takeuchi, Koji; Nagahama, Kenji

    2014-01-01

    Esophagitis was induced in rats within 3 h by ligating both the pylorus and transitional region between the forestomach and glandular portion under ether anesthesia. This esophageal injury was prevented by the administration of acid suppressants and antipepsin drug and aggravated by exogenous pepsin. Damage was also aggravated by pretreatment with indomethacin and the selective COX-1 but not COX-2 inhibitor, whereas PGE2 showed a biphasic effect depending on the dose; a protection at low doses, and an aggravation at high doses, with both being mediated by EP1 receptors. Various amino acids also affected this esophagitis in different ways; L-alanine and L-glutamine had a deleterious effect, while L-arginine and glycine were highly protective, both due to yet unidentified mechanisms. It is assumed that acid/pepsin plays a major pathogenic role in this model of esophagitis; PGs derived from COX-1 are involved in mucosal defense of the esophagus; and some amino acids are protective against esophagitis. These findings also suggest a novel therapeutic approach in the treatment of esophagitis, in addition to acid suppressant therapy. The model introduced may be useful to test the protective effects of drugs on esophagitis and investigate the mucosal defense mechanism in the esophagus.

  7. A computational study of ultrafast acid dissociation and acid-base neutralization reactions. I. The model

    NASA Astrophysics Data System (ADS)

    Maurer, Patrick; Thomas, Vibin; Rivard, Ugo; Iftimie, Radu

    2010-07-01

    Ultrafast, time-resolved investigations of acid-base neutralization reactions have recently been performed using systems containing the photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and various Brønsted bases. Two conflicting neutralization mechanisms have been formulated by Mohammed et al. [Science 310, 83 (2005)] and Siwick et al. [J. Am. Chem. Soc. 129, 13412 (2007)] for the same acid-base system. Herein an ab initio molecular dynamics based computational model is formulated, which is able to investigate the validity of the proposed mechanisms in the general context of ground-state acid-base neutralization reactions. Our approach consists of using 2,4,6-tricyanophenol (exp. pKa≅1) as a model for excited-state HPTS∗ (pKa≅1.4) and carboxylate ions for the accepting base. We employ our recently proposed dipole-field/quantum mechanics (QM) treatment [P. Maurer and R. Iftimie, J. Chem. Phys. 132, 074112 (2010)] of the proton donor and acceptor molecules. This approach allows one to tune the free energy of neutralization to any desired value as well as model initial nonequilibrium hydration effects caused by a sudden increase in acidity, making it possible to achieve a more realistic comparison with experimental data than could be obtained via a full-QM treatment of the entire system. It is demonstrated that the dipole-field/QM model reproduces correctly key properties of the 2,4,6-tricyanophenol acid molecule including gas-phase proton dissociation energies and dipole moments, and condensed-phase hydration structure and pKa values.

  8. Transport of two naphthoic acids and salicylic acid in soil: experimental study and empirical modeling.

    PubMed

    Hanna, K; Lassabatere, L; Bechet, B

    2012-09-15

    In contrast to the parent compounds, the mechanisms responsible for the transport of natural metabolites of polycyclic aromatic hydrocarbons (PAH) in contaminated soils have been scarcely investigated. In this study, the sorption of three aromatic acids (1-naphthoic acid (NA), 1-hydroxy-2-naphthoic acid (HNA) and salicylic acid (SA)) was examined on soil, in a batch equilibrium single-system, with varying pH and acid concentrations. Continuous flow experiments were also carried out under steady-state water flow. The adsorption behavior of naphthoic and benzoic acids was affected by ligand functionality and molecular structure. All modeling options (equilibrium, chemical nonequilibrium, i.e. chemical kinetics, physical nonequilibrium, i.e. surface sites in the immobile water fraction, and both chemical and physical nonequilibrium) were tested in order to describe the breakthrough behavior of organic compounds in homogeneously packed soil columns. Tracer experiments showed a small fractionation of flow into mobile and immobile compartments, and the related hydrodynamic parameters were used for the modeling of reactive transport. In all cases, the isotherm parameters obtained from column tests differed from those derived from the batch experiments. The best accurate modeling was obtained considering nonequilibrium for the three organic compounds. Both chemical and physical nonequilibrium led to appropriate modeling for HNA and NA, while chemical nonequilibrium was the sole option for SA. SA sorption occurs mainly in mobile water and results from the concomitancy of instantaneous and kinetically limited sites. For all organic compounds, retention is contact condition dependent and differs between batch and column experiments. Such results show that preponderant mechanisms are solute dependent and kinetically limited, which has important implications for the fate and transport of carboxylated aromatic compounds in contaminated soils.

  9. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis.

    PubMed

    Durruty, Ignacio; Aguirrezábal, Luis A N; Echarte, María M

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ') while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way.

  10. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis

    PubMed Central

    Durruty, Ignacio; Aguirrezábal, Luis A. N.; Echarte, María M.

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ′) while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809

  11. AIRPOLISHING EFFECT ON BOVINE ENAMEL AND THE POSTERIOR REMINERALIZING EFFECT OF SALIVA. AN IN VITRO STUDY

    PubMed Central

    Ribeiro, Helena Zaramella Vono; Lima, José Eduardo de Oliveira; Vono, Bernardo Gonzalez; Machado, Maria Aparcida de Andrade Moreira; da Silva, Salete Moura Bonifácio

    2006-01-01

    Purpose: The aim of the present study was to evaluate the alterations of surface microhardness and wear caused by the sodium bicarbonate jet on bovine enamel and the further remineralizing effect of artificial saliva. Methods: Fifteen enamel samples (4,0mm × 4,0mm) were used, which constituted the groups: no treatment (MI); treatment with sodium bicarbonate jet (MII and DI); treatment with sodium bicarbonate jet and immersion in saliva for one hour (MIII and DII), 24 hours (MIV and DIII) and 7 days (MV and DIV). Microhardness tests were carried out using a microdurometer in groups M and wear tests by a rugosimeter in groups D. The data were assessed by the one criterion variance analysis and Tukey test. Results: The mean value of microhardness, in KHN, in groups MI, MII, MIII, MIV and MV were 359,80; 335,46; 369,20; 377,73 and 341,86, respectively, whereas the mean values in μm, of wear for group DI, DII, DIII and DIV were 0,564; 0,519; 0,441 and 0,428, respectively. Conclusions: The sodium bicarbonate jet caused a wear and a reduction in microhardness on the enamel surface; saliva promoted the recovery of initial condition surface microhardness and reduced the wear; the repairing effect of saliva on the surface microhardness alterations occurred within one hour of treatment, having no significant statistical difference from the effect obtained in 24 hours; the best saliva repairing effect on the wear occurred with treatment of 24 hours. PMID:19089072

  12. Current technology and techniques in re-mineralization of white spot lesions: A systematic review

    NASA Astrophysics Data System (ADS)

    Podray, Susan S.

    White Spot lesions are a common iatrogenic occurrence on patients who are treated with fixed orthodontic appliances. There is a dynamic chemical interaction between enamel and saliva at the tooth surface that allow a lesion to have phase changes involving demineralization of enamel and reminerlization. This is due to calcium and phosphate dissolved in saliva that is deposited onto the tooth surface or removed depending on the surrounding pH. Caseinphosphopeptide-amorphous calcium phosphate (CPP-ACP) is gaining popularity in dentistry as a way to increase the available level of calcium and phosphate in plaque and saliva to improve the chemical gradient so that if favors reminerlization. The aim of our investigation is to search the available current literature and formulate a recommendation for use of CPP-ACP in orthodontics. Publications from the following electronic databases were searched: PubMed, Web of Science, Cochrane Library and Science Direct. Searches from August 2010 to April 1st 2012 were performed under the terms "MI Paste OR Recaldent OR caseinphosphopeptide-amorphous calcium phosphate OR CPP-ACP or tooth mousse". The searches yielded 155 articles, These were reviewed for relevance based on inclusion and exclusion criteria. Articles with inappropriate study design or no outcome measures at both baseline and end point were also excluded. 13 articles were deemed of relevance with a high quality study design and were included in this study for evaluation. The current literature suggests a preventative treatment regimen in which MI Paste Plus is used. It should be delivered once daily prior to bed after oral hygiene for 3 minutes in a fluoride tray, throughout orthodontic treatment. It should be recommended for high risk patients determined by poor oral hygiene, as seen by the inability to remove plaque from teeth and appliances. This protocol may prevent or assist in the remineralization of enamel white spot lesions during and after orthodontic treatment.

  13. The effect of casein phosphopeptide toothpaste versus fluoride toothpaste on remineralization of primary teeth enamel.

    PubMed

    Yimcharoen, Veeritta; Rirattanapong, Praphasri; Kiatchallermwong, Warawan

    2011-07-01

    This study evaluated the effect of a CPP-containing toothpaste and compared it with fluoride-containing toothpastes on remineralization of caries-like lesions in primary teeth enamel, using polarized light microscopy. Forty-eight sound primary incisors were coated with nail varnish, leaving two 1x1 mm windows before being placed in a demineralizing solution for 4 days. After demineralization, all the specimens were coated with nail varnish over one window and were randomly assigned to 4 groups (A to D; n = 12). Group A teeth were exposed to distilled water. Group B teeth were exposed to a CPP-containing toothpaste (Hi Herb). Group C teeth were exposed to a 260 ppm fluoride-containing toothpaste (Smile baby toothgel). Group D teeth were exposed to a 500 ppm fluoride-containing toothpaste (Oralmed Kid). Polarized light microscopy was used to evaluate lesion depth, before and after a 7-day pH cycle. Lesion depth was measured using a computerized method with the Image-Pro Plus program. Differences in mean lesion depth within groups and between groups were analysed using the paired t-test, Kruskal-Wallis test and Mann-Whitney U test at a 95% level of confidence. Mean lesion depths in Groups A, B, C and D significantly increased by 110.1, 36.1, 40.2 and 18.2%, respectively. The mean lesion depths for all the toothpaste groups (B, C and D) were significantly different from the control group (A). Comparisons made among treatment groups showed Group D was significantly different from Groups B and C. All toothpastes were effective for inhibiting progression of carious lesions. However, a 500 ppm fluoride-containing toothpaste inhibited lesion progression better than a CPP-containing toothpaste and a 260 ppm fluoride-containing toothpaste.

  14. Simulation of lead-acid battery using model order reduction

    NASA Astrophysics Data System (ADS)

    Esfahanian, Vahid; Ansari, Amir Babak; Torabi, Farschad

    2015-04-01

    In this study, a reduced order model (ROM) based on proper orthogonal decomposition (POD) method has been applied to the coupled one-dimensional electrochemical transport equations in order to efficiently simulate lead-acid batteries, numerically. The governing equations, including conservation of charge in solid and liquid phases and conservation of species are solved simultaneously. The POD-based method for a lead-acid cell is used to simulate a discharge process to show the capability of the present method. The obtained results show that not only the POD-based ROM of lead-acid battery significantly decreases the computational time but also there is an excellent agreement with the results of previous computational fluid dynamics (CFD) models.

  15. A collaborative effort to model plant response to acidic rain

    SciTech Connect

    Jacobson, J.; Irving, P.; Kuja, A.; Lee, J.; Shriner, D.; Troiano, J.; Perrigan, S.; Cullinan, V.

    1989-01-01

    Radish plants were exposed three times per week to simulated acidic rain at pH values of 2.6 to 5.4 over the course of four weeks in trials performed at Argonne, Illinois; Ithaca and Upton, New York; Corvallis, Oregon; Oak Ridge, Tennessee; and Toronto, Canada. Uniform genotype, soil media and planting techniques, treatment procedures, biological measurements, and experimental design were employed. Growth of plants differed among trials as a result of variation in greenhouse environmental conditions according to location and facilities. Larger plants underwent greater absolute but lower relative reductions in biomass after exposure to the higher levels of acidity. A generalized Mitscherlich function was used to model the effects of acidity of simulated rain on dry mass of hypocotyls using data from three laboratories that performed duplicate trials. The remaining data, from three other laboratories that performed only one trial each, were used to test the model. 14 refs., 2 figs., 7 tabs.

  16. Exploring the Validity of Valproic Acid Animal Model of Autism

    PubMed Central

    Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Ji-woon; Kim, Ki Chan

    2015-01-01

    The valproic acid (VPA) animal model of autism spectrum disorder (ASD) is one of the most widely used animal model in the field. Like any other disease models, it can't model the totality of the features seen in autism. Then, is it valid to model autism? This model demonstrates many of the structural and behavioral features that can be observed in individuals with autism. These similarities enable the model to define relevant pathways of developmental dysregulation resulting from environmental manipulation. The uncovering of these complex pathways resulted to the growing pool of potential therapeutic candidates addressing the core symptoms of ASD. Here, we summarize the validity points of VPA that may or may not qualify it as a valid animal model of ASD. PMID:26713077

  17. Non-destructive measurement of demineralization and remineralization in the occlusal pits and fissures of extracted 3rd molars with PS-OCT

    NASA Astrophysics Data System (ADS)

    Lee, Chulsung; Hsu, Dennis J.; Le, Michael H.; Darling, Cynthia L.; Fried, Daniel

    2009-02-01

    Previous studies have demonstrated that Polarization Sensitive Optical Coherence Tomography (PS-OCT) can be used to image the remineralization of early artificial caries lesion on smooth enamel surfaces of human and bovine teeth. However, most new dental decay is found in the pits and fissures of the occlusal surfaces of posterior dentition and it is in these high risk areas where the performance of new caries imaging devices need to be investigated. The purpose of this study was to demonstrate that PS-OCT can be used to measure the subsequent remineralization of artificial lesions produced in the pits and fissures of extracted 3rd molars. A PS-OCT system operating at 1310-nm was used to acquire polarization resolved images of occlusal surfaces exposed to a demineralizing solution at pH-4.5 followed by a fluoride containing remineralizing solution at pH-7.0 containing 2-ppm fluoride. The integrated reflectivity was calculated to a depth of 200-µm in the entire lesion area using an automated image processing algorithm. Although a well-defined surface zone was clearly resolved in only a few of the samples that underwent remineralization, the PS-OCT measurements indicated a significant (p<0.05) reduction in the integrated reflectivity between the severity of the lesions that were exposed to the remineralization solution and those that were not. The lesion depth and mineral loss were also measured with polarized light microscopy and transverse microradiography after sectioning the teeth. These results show that PS-OCT can be used to non-destructively monitor the remineralization potential of anti-caries agents in the important pits and fissures of the occlusal surface.

  18. Collaborative effort to model plant response to acidic rain

    SciTech Connect

    Jacobson, J.; Kuja, A.; Shriner, D.; Perrigan, S.; Irving, P.; Lee, J.; Troiano, J.; Cullinan, V.

    1988-06-01

    Radish plants were exposed three times per week to simulated acidic rain at pH values of 2.6 to 5.4 over the course of four weeks in trials performed at Argonne, Illinois; Ithaca and Upton, New York; Corvallis, Oregon; Oak Ridge, Tennessee; and Toronto, Canada. Uniform genotype, soil media and planting techniques, treatment procedures, biological measurements, and experimental design were employed. Growth of plants differed among trials as a result of variation in greenhouse environmental conditions according to location and facilities. Larger plants underwent greater absolute but lower relative reductions in biomass after exposure to the higher levels of acidity. A generalized Mitscherlich function was used to model the effects of acidity of simulated rain or dry mass of hypocotyls using data from three laboratories that performed duplicate trials. The remaining data, from three other laboratories that performed only one trial each, were used to test the model. When the laboratory by trial effect was removed, lack of fit to the Mitscherlich function was insignificant. Thus, a single mathematical model satisfactorily characterized the relationship between acidity and mean plant response.

  19. Computational model of abiogenic amino acid condensation to obtain a polar amino acid profile.

    PubMed

    Polanco, Carlos; Buhse, Thomas; Samaniego, José Lino; Castañón González, Jorge Alberto; Arias Estrada, Miguel

    2014-01-01

    In accordance with the second law of thermodynamics, the Universe as a whole tends to higher entropy. However, the sequence of far-from-equilibrium events that led to the emergence of life on Earth could have imposed order and complexity during the course of chemical reactions in the so-called primordial soup of life. Hence, we may expect to find characteristic profiles or biases in the prebiotic product mixtures, as for instance among the first amino acids. Seeking to shed light on this hypothesis, we have designed a high performance computer program that simulates the spontaneous formation of the amino acid monomers in closed environments. The program was designed in reference to a prebiotic scenario proposed by Sydney W. Fox. The amino acid abundances and their polarities as the two principal biases were also taken into consideration. We regarded the computational model as exhaustive since 200,000 amino acid dimers were formed by simulation, subsequently expressed in a vector and compared with the corresponding amino acid dimers that were experimentally obtained by Fox. We found a very high similarity between the experimental results and our simulations.

  20. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid.

    PubMed

    Girisuta, B; Danon, B; Manurung, R; Janssen, L P B M; Heeres, H J

    2008-11-01

    A comprehensive experimental and modelling study on the acid-catalysed hydrolysis of the water hyacinth plant (Eichhornia crassipes) to optimise the yield of levulinic acid (LA) is reported (T=150-175 degrees CH2SO4 = 0.1-1M, water hyacinth intake=1-5wt%). At high acid concentrations (>0.5M), LA was the major organic acid whereas at low acid concentrations (<0.1M) and high initial intakes of water hyacinth, the formation of propionic acid instead of LA was favoured. The highest yield of LA was 53mol% (35wt%) based on the amount of C6-sugars in the water hyacinth (T=175 degrees CH2SO4 =1M , water hyacinth intake=1wt%). The LA yield as a function of the process conditions was modelled using a kinetic model originally developed for the acid-catalysed hydrolysis of cellulose and good agreement between the experimental and modelled data was obtained.

  1. Modeling of carbonic acid pretreatment process using ASPEN-Plus.

    PubMed

    Jayawardhana, Kemantha; Van Walsum, G Peter

    2004-01-01

    ASPEN-Plus process modeling software is used to model carbonic acid pretreatment of biomass. ASPEN-Plus was used because of the thorough treatment of thermodynamic interactions and its status as a widely accepted process simulator. Because most of the physical property data for many of the key components used in the simulation of pretreatment processes are not available in the standard ASPEN-Plus property databases, values from an in-house database (INHSPCD) developed by the National Renewable Energy Laboratory were used. The standard non-random-two-liquid (NRTL) or renon route was used as the main property method because of the need to distill ethanol and to handle dissolved gases. The pretreatment reactor was modeled as a "black box" stoichiometric reactor owing to the unavailability of reaction kinetics. The ASPEN-Plus model was used to calculate the process equipment costs, power requirements, and heating and cooling loads. Equipment costs were derived from published modeling studies. Wall thickness calculations were used to predict construction costs for the high-pressure pretreatment reactor. Published laboratory data were used to determine a suitable severity range for the operation of the carbonic acid reactor. The results indicate that combined capital and operating costs of the carbonic acid system are slightly higher than an H2SO4-based system and highly sensitive to reactor pressure and solids concentration.

  2. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  3. Mouse models: the ketogenic diet and polyunsaturated fatty acids.

    PubMed

    Borges, Karin

    2008-11-01

    Literature on the anticonvulsant effects of the ketogenic diet (KD) in mouse seizure models is summarized. Recent data show that a KD balanced in vitamin, mineral, and antioxidant content is anticonvulsant in mice, confirming that the KD's effect in mice can be attributed to the composition of the diet and not other dietary factors. Given that the anticonvulsant mechanism of the KD is still unknown, the anticonvulsant profile of the diet in different seizure models may help to decipher this mechanism. The implications of the findings that the KD is anticonvulsant in electrical seizure models are indicated. Further, the potential involvement of polyunsaturated fatty acids (PUFA) in the KD's anticonvulsant mechanism is discussed.

  4. Comparative study of the measurement of enamel demineralization and remineralization using transverse microradiography and electron probe microanalysis.

    PubMed

    Cochrane, Nathan J; Iijima, Youichi; Shen, Peiyan; Yuan, Yi; Walker, Glenn D; Reynolds, Coralie; MacRae, Colin M; Wilson, Nicholas C; Adams, Geoffrey G; Reynolds, Eric C

    2014-06-01

    Transverse microradiography (TMR) and electron probe microanalysis (EPMA) are commonly used for characterizing dental tissues. TMR utilizes an approximately monochromatic X-ray beam to determine the mass attenuation of the sample, which is converted to volume percent mineral (vol%min). An EPMA stimulates the emission of characteristic X-rays from a variable volume of sample (dependent on density) to provide compositional information. The aim of this study was to compare the assessment of sound, demineralized, and remineralized enamel using both techniques. Human enamel samples were demineralized and a part of each was subsequently remineralized. The same line profile through each demineralized lesion was analyzed using TMR and EPMA to determine vol%min and wt% elemental composition and atomic concentration ratio information, respectively. The vol%min and wt% values determined by each technique were significantly correlated but the absolute values were not similar. This was attributable to the complex ultrastructural composition, the variable density of the samples analyzed, and the nonlinear interaction of the EPMA-generated X-rays. EPMA remains an important technique for obtaining atomic ratio information, but its limitations in determining absolute mineral content indicate that it should not be used in place of TMR for determining the mineral density of dental hard tissues.

  5. In vitro study of remineralization of dentin: effects of ions on mineral induction by decalcified dentin matrix.

    PubMed

    Saito, Takashi; Toyooka, Hiroki; Ito, Shuichi; Crenshaw, Miles A

    2003-01-01

    We examined the effects of various ions on the mineralization of dentin matrix in vitro. Demineralized dentin matrix was incubated in a metastable calcium phosphate solution with or without silicate, fluoride, calcium, phosphate, magnesium or silver. Insoluble dentin matrix induced mineral formation after incubation for 10.2 h in the metastable solution without added ions. Silicate at 5 microM and fluoride at 40 microM significantly reduced the mineral induction time. At least 200 microM calcium or 100 microM phosphate was required to promote mineral induction. Conversely, magnesium and silver concentrations as low as 10 and 2 microM inhibited mineral induction. The mineral induced by each sample after incubation for 24 h was identified by its X-ray diffraction pattern as apatite. We concluded that silicate is a stronger inducer of remineralization of dentin matrix than fluoride, calcium or phosphate, and that magnesium and silver inhibit the induction of remineralization of dentin matrix.

  6. Efficacy of Concomitant Therapy with Fluoride and Chlorhexidine Varnish on Remineralization of Incipient Lesions in Young Children

    PubMed Central

    Tandon, Shobha; Nayak, Rashmi; Ratnanag, P Venkat; Prajapati, Deepesh; Kamath, Namitha

    2016-01-01

    Aim To assess the effect of combined use of chlorhexidine and fluoride varnish on the remineralization of incipient carious lesions in young children. Materials and methods Twenty caries-active children (80 lesions) were randomly divided into four groups and subjected to initial examination. Caries status was assessed visually and with the aid of DIAGNOdent. Baseline enamel biopsies were obtained. Subjects of groups I and II received fluoride and chlorhexidine varnish respectively. Group III received both fluoride and chlorhexidine varnish alternatively, for a period of 4 weeks. Group IV served as the control. At 3-month follow-up, the incipient lesions were assessed again with DIAGNOdent and enamel biopsy. Results Increased calcium, phosphate, and fluoride levels were noticed in groups I, II, III compared to group IV, at the 3-month follow-up (p < 0.001). Conclusion The combined therapy with fluoride and chlorhex-idine varnish may be considered an alternative therapy for early reversal of incipient lesions. How to cite this article Naidu S, Tandon S, Nayak R, Ratnanag PV, Prajapati D, Kamath N. Efficacy of Concomitant Therapy with Fluoride and Chlorhexidine Varnish on Remineralization of Incipient Lesions in Young Children. Int J Clin Pediatr Dent 2016;9(4):296-302. PMID:28127159

  7. Identifiability of PBPK models with applications to dimethylarsinic acid exposure.

    PubMed

    Garcia, Ramon I; Ibrahim, Joseph G; Wambaugh, John F; Kenyon, Elaina M; Setzer, R Woodrow

    2015-12-01

    Any statistical model should be identifiable in order for estimates and tests using it to be meaningful. We consider statistical analysis of physiologically-based pharmacokinetic (PBPK) models in which parameters cannot be estimated precisely from available data, and discuss different types of identifiability that occur in PBPK models and give reasons why they occur. We particularly focus on how the mathematical structure of a PBPK model and lack of appropriate data can lead to statistical models in which it is impossible to estimate at least some parameters precisely. Methods are reviewed which can determine whether a purely linear PBPK model is globally identifiable. We propose a theorem which determines when identifiability at a set of finite and specific values of the mathematical PBPK model (global discete identifiability) implies identifiability of the statistical model. However, we are unable to establish conditions that imply global discrete identifiability, and conclude that the only safe approach to analysis of PBPK models involves Bayesian analysis with truncated priors. Finally, computational issues regarding posterior simulations of PBPK models are discussed. The methodology is very general and can be applied to numerous PBPK models which can be expressed as linear time-invariant systems. A real data set of a PBPK model for exposure to dimethyl arsinic acid (DMA(V)) is presented to illustrate the proposed methodology.

  8. Effects of Ascorbic Acid, Phytic Acid and Tannic Acid on Iron Bioavailability from Reconstituted Ferritin Measured by an In Vitro Digestion/Caco-2 Cell Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of ascorbic acid, phytate and tannic acid on Fe bioavailability from Fe supplied as ferritin was compared to FeSO4 using an in vitro digestion/Caco-2 cell model. Horse spleen ferritin (HSF) was chemically reconstituted into a plant-type ferritin (P-HSF). In the presence of ascorbic acid...

  9. Geochemical ecosystem engineering by the mud shrimp Upogebia pugettensis (Crustacea: Thalassinidae) in Yaquina Bay, Oregon: density-dependent effects on organic matter remineralization and nutrient cycling

    EPA Science Inventory

    We investigated the effect of the thalassinid mud shrimp Upogebia pugettensis on organic matter and nutrient cycling on Idaho Flat, an intertidal flat in the Yaquina River estuary, Oregon. Field studies were conducted to measure carbon and nitrogen remineralization rates and bent...

  10. A Polarized Light Microscopic Study to Comparatively evaluate Four Remineralizing Agents on Enamel viz CPP-ACPF, ReminPro, SHY-NM and Colgate Strong Teeth

    PubMed Central

    Krishnan, Ramesh; Bhaskaran, Bibin; Kumar, Suresh V

    2015-01-01

    ABSTRACT Aim: To compare and evaluate the remineralizing potential of four commercially available products namely SHY-NM, GC Tooth Mousse Plus, ReminPro and Colgate strong teeth on demineralized human teeth. Materials and methods: The study included 50 extracted premolars having 3 × 3 mm window prepared on the middle third of the tooth, which was then subjected to demineralization for 48 hours at 37°C. Teeth were randomly selected and grouped into five study groups of 10 teeth in each. Each group was treated with respective remineralizing agent and sectioned using hard-tissue microtome. Each section obtained was visualized under polarized light microscope and analyzed using Image J software. Results: The statistically evaluated results revealed that SHY-NM has the most remineralizing potential followed by ReminPro, GC Tooth Mousse Plus and fluoridated toothpaste. Conclusion: Based on the study, the SHY-NM was superior to the GC Tooth Mousse Plus, ReminPro and Colgate strong teeth on demineralized human teeth. How to cite this article: Rajan R, Krishnan R, Bhaskaran B, Kumar SV. A Polarized Light Microscopic Study to Comparatively evaluate Four Remineralizing Agents on Enamel viz CPP-ACPF, ReminPro, SHY-NM and Colgate Strong Teeth. Int J Clin Pediatr Dent 2015;8(1):42-47. PMID:26124580

  11. Understanding atmospheric peroxyformic acid chemistry: observation, modeling and implication

    NASA Astrophysics Data System (ADS)

    Liang, H.; Chen, Z. M.; Huang, D.; Wu, Q. Q.; Huang, L. B.

    2015-01-01

    The existence and importance of peroxyformic acid (PFA) in the atmosphere has been under controversy. We present here, for the first time, the observation data for PFA from four field measurements carried out in China. These data provided powerful evidence that PFA can stay in the atmosphere, typically in dozens of pptv level. The relationship between PFA and other detected peroxides was examined. The results showed that PFA had a strong positive correlation with its homolog, peroxyacetic acid, due to their similar sources and sinks. Through an evaluation of PFA production and removal rates, we proposed that the reactions between peroxyformyl radical (HC(O)O2) and formaldehyde or the hydroperoxyl radical (HO2) were likely to be the major source and degradation into formic acid (FA) was likely to be the major sink for PFA. Based on a box model evaluation, we proposed that the HC(O)O2 and PFA chemistry was a major source for FA under low NOx conditions. Furthermore, it is found that the impact of the HC(O)O2 and PFA chemistry on radical cycling was dependent on the yield of HC(O)O2 radical from HC(O) + O2 reaction. When this yield exceeded 50%, the HC(O)O2 and PFA chemistry should not be neglected for calculating the radical budget. To make clear the exact importance of HC(O)O2 and PFA chemistry in the atmosphere, further kinetic, field and modeling studies are required.

  12. Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis.

    PubMed

    Oh, Euhlim; Lu, Mingshou; Park, Changhun; Park, Changhun; Oh, Han Bin; Lee, Sang Yup; Lee, Jinwon

    2011-02-01

    A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/ MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

  13. Barium in Twilight Zone suspended matter as a potential proxy for particulate organic carbon remineralization: Results for the North Pacific

    SciTech Connect

    Dehairs, F.; Jacquet, S.; Savoye, N.; Van Mooy, B.A.S.; Buesseler, K.; Bishop, J.K.B.; Lamborg, C.H.; Elskens, M.; Baeyens, W.; Boyd, P.W.; Casciotti, K.L.; Monnin, C.

    2008-04-10

    This study focuses on the fate of exported organic carbon in the twilight zone at two contrasting environments in the North Pacific: the oligotrophic ALOHA site (22 degrees 45 minutes N 158 degrees W; Hawaii; studied during June-July 2004) and the mesotrophic Subarctic Pacific K2 site (47 degrees N, 161 degrees W; studied during July-August 2005). Earlier work has shown that non-lithogenic, excess particulate Ba (Ba{sub xs}) in the mesopelagic water column is a potential proxy of organic carbon remineralization. In general Ba{sub xs} contents were significantly larger at K2 than at ALOHA. At ALOHA the Ba{sub xs} profiles from repeated sampling (5 casts) showed remarkable consistency over a period of three weeks, suggesting that the system was close to being at steady state. In contrast, more variability was observed at K2 (6 casts sampled) reflecting the more dynamic physical and biological conditions prevailing in this environment. While for both sites Ba{sub xs} concentrations increased with depth, at K2 a clear maximum was present between the base of the mixed layer at around 50m and 500m, reflecting production and release of Ba{sub xs}. Larger mesopelagic Ba{sub xs} contents and larger bacterial production in the twilight zone at the K2 site indicate that more material was exported from the upper mixed layer for bacterial degradation deeper, compared to the ALOHA site. Furthermore, application of a published transfer function (Dehairs et al., 1997) relating oxygen consumption to the observed Ba{sub xs} data indicated that the latter were in good agreement with bacterial respiration, calculated from bacterial production. These results corroborate earlier findings highlighting the potential of Ba{sub xs} as a proxy for organic carbon remineralization. The range of POC remineralization rates calculated from twilight zone excess particulate Ba contents did also compare well with the depth dependent POC flux decrease as recorded by neutrally buoyant sediment traps

  14. Modelling of Rare Earth Elements Complexation With Humic Acid

    NASA Astrophysics Data System (ADS)

    Pourret, O.; Davranche, M.; Gruau, G.; Dia, A.

    2006-12-01

    The binding of rare earth elements (REE) to humic acid (HA) was studied by combining Ultrafiltration and ICP- MS techniques. REE-HA complexation experiments were performed at various pH conditions (ranging from 2 to 10.5) using a standard batch equilibration method. Results show that the amount of REE bound to HA strongly increase with increasing pH. Moreover, a Middle REE (MREE) downward concavity is evidenced by REE distribution patterns at acidic pH. Modelling of the experimental data using Humic Ion Binding Model VI provided a set of log KMA values (i.e. the REE-HA complexation constants specific to Model VI) for the entire REE series. The log KMA pattern obtained displays a MREE downward concavity. Log KMA values range from 2.42 to 2.79. These binding constants are in good agreement with the few existing datasets quantifying the binding of REE with humic substances except a recently published study which evidence a lanthanide contraction effect (i.e. continuous increase of the constant from La to Lu). The MREE downward concavity displayed by REE-HA complexation pattern determined in this study compares well with results from REE-fulvic acid (FA) and REE-acetic acid complexation studies. This similarity in the REE complexation pattern shapes suggests that carboxylic groups are the main binding sites of REE in HA. This conclusion is further supported by a detailed review of published studies for natural, organic-rich, river- and ground-waters which show no evidence of a lanthanide contraction effect in REE pattern shape. Finally, application of Model VI using the new, experimentally determined log KMA values to World Average River Water confirms earlier suggestions that REE occur predominantly as organic complexes (> 60 %) in the pH range between 5-5.5 and 7-8.5 (i.e. in circumneutral pH waters). The only significant difference as compared to earlier model predictions made using estimated log KMA values is that the experimentally determined log KMA values

  15. Bioaccumulation of perfluorinated alkyl acids: observations and models.

    PubMed

    Ng, Carla A; Hungerbühler, Konrad

    2014-05-06

    In this review, we consider the two prevailing hypotheses for the mechanisms that control the bioaccumulation of perfluorinated alkyl acids (PFAAs). The first assumes that partitioning to membrane phospholipids, which have a higher affinity for charged species than neutral storage lipids, can explain the high bioaccumulation potential of these compounds. The second assumes that interactions with proteins--including serum albumin, liver fatty acid binding proteins (L-FABP), and organic anion transporters--determine the distribution, accumulation and half-lives of PFAAs. We consider three unique phenomena to evaluate the two models: (1) observed patterns of tissue distribution in the laboratory and field, (2) the relationship between perfluorinated chain length and bioaccumulation, and (3) species- and gender-specific variation in elimination half-lives. Through investigation of these three characteristics of PFAA bioaccumulation, we show the strengths and weaknesses of the two modeling approaches. We conclude that the models need not be mutually exclusive, but that protein interactions are needed to explain some important features of PFAA bioaccumulation. Although open questions remain, further research should include perfluorinated alkyl substances (PFASs) beyond the long-chain PFAAs, as these substances are being phased out and replaced by a wide variety of PFASs with largely unknown properties and bioaccumulation behavior.

  16. Haloacetic acid and trihalomethane formation from the chlorination and bromination of aliphatic beta-dicarbonyl acid model compounds.

    PubMed

    Dickenson, Eric R V; Summers, R Scott; Croué, Jean-Philippe; Gallard, Hervé

    2008-05-01

    While it is known that resorcinol- and phenol-type aromatic structures within natural organic matter (NOM) react during drinking water chlorination to form trihalomethanes (THMs), limited studies have examined aliphatic-type structures as THM and haloacetic acid (HAA) precursors. A suite of aliphatic acid model compounds were chlorinated and brominated separately in controlled laboratory-scale batch experiments. Four and two beta-dicarbonyl acid compounds were found to be important precursors for the formation of THMs (chloroform and bromoform (71-91% mol/mol)), and dihaloacetic acids (DXAAs) (dichloroacetic acid and dibromoacetic acid (5-68% mol/mol)), respectively, after 24 h at pH 8. Based upon adsorbable organic halide formation, THMs and DXAAs, and to a lesser extent mono and trihaloacetic acids, were the majority (> 80%) of the byproducts produced for most of the aliphatic beta-dicarbonyl acid compounds. Aliphatic beta-diketone-acid-type and beta-keto-acid-type structures could be possible fast- and slow-reacting THM precursors, respectively, and aliphatic beta-keto-acid-type structures are possible slow-reacting DXAA precursors. Aliphatic beta-dicarbonyl acid moieties in natural organic matter, particularly in the hydrophilic fraction, could contribute to the significant formation of THMs and DXAAs observed after chlorination of natural waters.

  17. Sensitivity of air-sea CO2-exchange and calcite saturation depth to the remineralization depth of marine particulate organic and inorganic carbon

    NASA Astrophysics Data System (ADS)

    Schneider, B.; Bopp, L.; Gehlen, M.

    2009-04-01

    The present study addresses the question of what would happen to air-sea CO2 exchange and the depth of the calcite saturation horizon (CSH) if the remineralization depth of particulate organic and inorganic carbon (POC, PIC) was changing. Therefore, a biogeochemical ocean circulation model (PISCES) was run with four different parameterizations for vertical particle fluxes, starting from the same initial conditions. Particle fluxes undergo strong changes induced by a combination of the respective mechanistic formulation of the vertical particle flux and the resulting ecosystem response. Reorganizations in dissolved properties are caused by (i) changed fluxes of POC and PIC; (ii) advection; (iii) air-sea CO2 exchange (DIC). The results show that the more (less) efficient the vertical transport of POC (PIC) from the surface toward depth, the lower the surface ocean pCO2, the higher the air-sea CO2 flux, and the stronger the increase in the oceanic inventory of DIC, and vice versa. Consequently, in one experiment the ocean is turning into a CO2 source to the atmosphere, in two cases it becomes a weak sink and in one simulation it turns into a strong sink. Surprisingly, results for changes in the CSH are more similar among the simulations at larger scale with a general deepening in the North Pacific and a shoaling elsewhere. In most areas the readjustment of the CSH is controlled by DIC and alkalinity acting both towards the simulated CSH shifts, however, in some cases DIC (alkalinity) is overcompensating for an effect that would occur due to changes in alkalinity (DIC), alone. In detail, the differences found between the experiments can be well explained by the respective particle flux responses. The current study shows that reorganizations in the vertical flux of particulate matter in the ocean may have immediate and longer-term effects on the marine carbon cycle which could potentially feedback on the climate system.

  18. Modeling of the charge acceptance of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Thele, M.; Schiffer, J.; Karden, E.; Surewaard, E.; Sauer, D. U.

    This paper presents a model for flooded and VRLA batteries that is parameterized by impedance spectroscopy and includes the overcharging effects to allow charge-acceptance simulations (e.g. for regenerative-braking drive-cycle profiles). The full dynamic behavior and the short-term charge/discharge history is taken into account. This is achieved by a detailed modeling of the sulfate crystal growth and modeling of the internal gas recombination cycle. The model is applicable in the full realistic temperature and current range of automotive applications. For model validation, several load profiles (covering the dynamics and the current range appearing in electrically assisted or hybrid cars) are examined and the charge-acceptance limiting effects are elaborately discussed. The validation measurements have been performed for different types of lead-acid batteries (flooded and VRLA). The model is therefore an important tool for the development of automotive power nets, but it also allows to analyze different charging strategies and energy gains which can be achieved during regenerative-braking.

  19. Application of a continuous distribution model for proton binding by humic acids extracted from acidic lake sediments

    SciTech Connect

    Rhea, J.R.; Young, T.C. )

    1987-01-01

    The proton binding characteristics of humic acids extracted from the sediments of Cranberry Pond, an acidic water body located in the Adirondack Mountain region of New York State, were explored by the application of a nultiligand distribution model. The model characterizes a class of proton binding sites by mean log K values and the standard deviations of log K values and the mean. Mean log K values and their relative abundances were determined directly from experimental titration data. The model accurately predicts the binding of protons by the humic acids for pH values in the range 3.5 to 10.0.

  20. Application of a continuous distribution model for proton binding by humic acids extracted from acidic lake sediments

    NASA Astrophysics Data System (ADS)

    Rhea, James R.; Young, Thomas C.

    1987-10-01

    The proton binding characteristics of humic acids extracted from the sediments of Cranberry Pond, an acidic water body located in the Adirondack Mountain region of New York State, were explored by the application of a multiligand distribution model. The model characterizes a class of proton binding sites by mean log K values and the standard deviations of log K values about the mean. Mean log K values and their relative abundances were determined directly from experimental titration data. The model accurately predicts the binding of protons by the humic acids for pH values in the range 3.5 to 10.0.

  1. Kinetics of browning and correlations between browning degree and pyrazine compounds in l-ascorbic acid/acidic amino acid model systems.

    PubMed

    Yu, Ai-Nong; Zhou, Yong-Yan; Yang, Yi-Ni

    2017-04-15

    The kinetics of browning and the correlation between browning products (BPs) and pyrazine compounds were investigated by heating equimolar l-ascorbic acid (ASA)/acidic amino acids under weak alkaline conditions at 120-150°C for 10-120min. The formations of BPs and pyrazine compounds from the reaction were monitored by UV-vis and SPME-GC-FID, respectively. The formation of BPs in both ASA/l-glutamic acid and ASA/l-aspartic acid model reaction systems followed zero order reaction kinetics with activation energies (Ea) of 90.13 and 93.38kJ/mol, respectively. ASA/l-aspartic acid browned at a slightly higher rate than ASA/l-glutamic acid. The total concentration of pyrazine compounds was highly and positively correlated with that of BPs. Based on the observed kinetic data, the formation mechanisms of BPs and pyrazine compounds were proposed.

  2. Modeling of free fatty acid dynamics: insulin and nicotinic acid resistance under acute and chronic treatments.

    PubMed

    Andersson, Robert; Kroon, Tobias; Almquist, Joachim; Jirstrand, Mats; Oakes, Nicholas D; Evans, Neil D; Chappel, Michael J; Gabrielsson, Johan

    2017-02-21

    Nicotinic acid (NiAc) is a potent inhibitor of adipose tissue lipolysis. Acute administration results in a rapid reduction of plasma free fatty acid (FFA) concentrations. Sustained NiAc exposure is associated with tolerance development (drug resistance) and complete adaptation (FFA returning to pretreatment levels). We conducted a meta-analysis on a rich pre-clinical data set of the NiAc-FFA interaction to establish the acute and chronic exposure-response relations from a macro perspective. The data were analyzed using a nonlinear mixed-effects framework. We also developed a new turnover model that describes the adaptation seen in plasma FFA concentrations in lean Sprague-Dawley and obese Zucker rats following acute and chronic NiAc exposure. The adaptive mechanisms within the system were described using integral control systems and dynamic efficacies in the traditional [Formula: see text] model. Insulin was incorporated in parallel with NiAc as the main endogenous co-variate of FFA dynamics. The model captured profound insulin resistance and complete drug resistance in obese rats. The efficacy of NiAc as an inhibitor of FFA release went from 1 to approximately 0 during sustained exposure in obese rats. The potency of NiAc as an inhibitor of insulin and of FFA release was estimated to be 0.338 and 0.436 [Formula: see text], respectively, in obese rats. A range of dosing regimens was analyzed and predictions made for optimizing NiAc delivery to minimize FFA exposure. Given the exposure levels of the experiments, the importance of washout periods in-between NiAc infusions was illustrated. The washout periods should be [Formula: see text]2 h longer than the infusions in order to optimize 24 h lowering of FFA in rats. However, the predicted concentration-response relationships suggests that higher AUC reductions might be attained at lower NiAc exposures.

  3. Modeling Fatty Acid Transfer from Artery to Cardiomyocyte

    PubMed Central

    Arts, Theo; Reneman, Robert S.; Bassingthwaighte, James B.; van der Vusse, Ger J.

    2015-01-01

    Despite the importance of oxidation of blood-borne long-chain fatty acids (Fa) in the cardiomyocytes for contractile energy of the heart, the mechanisms underlying the transfer of Fa from the coronary plasma to the cardiomyocyte is still incompletely understood. To obtain detailed insight into this transfer process, we designed a novel model of Fa transfer dynamics from coronary plasma through the endothelial cells and interstitium to the cardiomyocyte, applying standard physicochemical principles on diffusion and on the chemical equilibrium of Fa binding to carrier proteins Cp, like albumin in plasma and interstitium and Fatty Acid-Binding Proteins within endothelium and cardiomyocytes. Applying these principles, the present model strongly suggests that in the heart, binding and release of Fa to and from Cp in the aqueous border zones on both sides of the cell membranes form the major hindrance to Fa transfer. Although often considered, the membrane itself appears not to be a significant hindrance to diffusion of Fa. Proteins, residing in the cellular membrane, may facilitate transfer of Fa between Cp and membrane. The model is suited to simulate multiple tracer dilution experiments performed on isolated rabbit hearts administrating albumin and Fa as tracer substances into the coronary arterial perfusion line. Using parameter values on myocardial ultrastructure and physicochemical properties of Fa and Cp as reported in literature, simulated washout curves appear to be similar to the experimentally determined ones. We conclude therefore that the model is realistic and, hence, can be considered as a useful tool to better understand Fa transfer by evaluation of experimentally determined tracer washout curves. PMID:26675003

  4. Mathematical modeling of acid deposition due to radiation fog

    SciTech Connect

    Pandis, S.N.; Seinfeld, J.H. )

    1989-09-20

    A Lagrangian model has been developed to study acidic deposition due to radiation fog. The model couples submodels describing the development and dissipation of radiation fog, the gas-phase chemistry and transfer, and the aqueous-phase chemistry. The model is applied to a radiation fog episode in Bakersfield in the San Joaquin Valley of California over the period January 4--5 1985. Model predictions for temperature profile, fog development, liquid water content, gas-phase concentrations of SO{sub 2}, HNO{sub 3}, and NH{sub 3}, {ital p}H, aqueous-phase concentrations of OS{sup 2{minus}}{sub 4}, NH{sup +}{sub 4}, and NO{sup {minus}}{sub 3}, and finally deposition rates of the above ions are compared with the observed values. The deposition rates of the major ions are predicted to increase significantly during the fog episode, the most notable being the increase of sulfate deposition. Pathways for sulfate production that are of secondary importance in a cloud environment may become signficant in a fog. Expressing the mean droplet settling velocity as a function of liquid water content is found to be quite influential in the model's predictions. {copyright} American Geophysical Union 1989

  5. The sugar model: catalysis by amines and amino acid products

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    2001-01-01

    Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonylcontaining products under the conditions studied (pH 5.5 and 50 degrees C). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. alpha-aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.

  6. Modeling lanthanide series binding sites on humic acid.

    PubMed

    Pourret, Olivier; Martinez, Raul E

    2009-02-01

    Lanthanide (Ln) binding to humic acid (HA) has been investigated by combining ultrafiltration and ICP-MS techniques. A Langmuir-sorption-isotherm metal-complexation model was used in conjunction with a linear programming method (LPM) to fit experimental data representing various experimental conditions both in HA/Ln ratio (varying between 5 and 20) and in pH range (from 2 to 10) with an ionic strength of 10(-3) mol L(-1). The LPM approach, not requiring prior knowledge of surface complexation parameters, was used to solve the existing discrepancies in LnHA binding constants and site densities. The application of the LPM to experimental data revealed the presence of two discrete metal binding sites at low humic acid concentrations (5 mg L(-1)), with log metal complexation constants (logK(S,j)) of 2.65+/-0.05 and 7.00 (depending on Ln). The corresponding site densities were 2.71+/-0.57x10(-8) and 0.58+/-0.32x10(-8) mol of Ln(3+)/mg of HA (depending on Ln). Total site densities of 3.28+/-0.28x10(-8), 4.99+/-0.02x10(-8), and 5.01+/-0.01x10(-8) mol mg(-1) were obtained by LPM for humic acid, for humic acid concentrations of 5, 10, and 20 mg L(-1), respectively. These results confirm that lanthanide binding occurs mainly at weak sites (i.e., ca. 80%) and second at strong sites (i.e., ca. 20%). The first group of discrete metal binding sites may be attributed to carboxylic groups (known to be the main binding sites of Ln in HA), and the second metal binding group to phenolic moieties. Moreover, this study evidences heterogeneity in the distribution of the binding sites among Ln. Eventually, the LPM approach produced feasible and reasonable results, but it was less sensitive to error and did not require an a priori assumption of the number and concentration of binding sites.

  7. Evaluation of polylactic acid nanoparticles safety using Drosophila model.

    PubMed

    Legaz, Sophie; Exposito, Jean-Yves; Lethias, Claire; Viginier, Barbara; Terzian, Christophe; Verrier, Bernard

    2016-10-01

    Cytotoxicity of nanoparticles and their sub-lethal effect on cell behavior and cell fate are a high topic of studies in the nanomaterial field. With an explosion of nanoparticle types (size, shape, polarity, stiffness, composition, etc.), Drosophila has become an attractive animal model for high throughput analysis of these nanocarriers in the drug delivery field with applications in cancer therapy, or simply to generate a fast and complete cytotoxic study of a peculiar nanoparticle. In respect to that, we have conducted an in cellulo study of poly(lactic acid) (PLA) nanoparticle cytotoxicity, and determined that near lethal nanoparticle doses, oxidative stress as well as P53 and ATP pathways may lead to cell cycle arrest at G1, and ultimately to cell death. Neither viability nor the development of Drosophila larvae are affected by the ingestion of PLA nanoparticles at sub-lethal concentrations. Drosophila will be a useful model to study PLA and PLA-modified nanoparticle toxicity, and nanoparticle fate after ingestion.

  8. Mechanistic Study of the Acid Degradation of Lignin Model Compounds

    SciTech Connect

    Sturgeon, M.; Kim, S.; Chmely, S. C.; Foust, T. D.; Beckham, G. T.

    2012-01-01

    Lignin is a major constituent of biomass, which remains underutilized in selective biomass conversion strategies to renewable fuels and chemicals. Here we are interested in understanding the mechanisms related to the acid deconstruction of lignin with a combined theoretical and experimental approach. Two model dimers with a b-O-4 aryl ether linkage (2-phenoxy-1-phenethanol and 2-phenoxy-1-phenyl-1,3 propanediol) and model dimmers with an a-O-4 aryl ether linkage were synthesized and deconstructed in H2SO4. The major products of the acidolysis of the b-O-4 compounds consisted of phenol and two aldehydes, phenylacetaldehyde and benzaldehyde. Quantum mechanical calculations were employed to elucidate possible deconstruction mechanisms with transition state theory. To confirm proposed mechanisms several possible intermediates were studied under similar acidolysis conditions. Although the resonance time for cleavage was on the order several hours, we have shown that the cleavage of the aryl ether linkage affords phenol and aldehydes. We would next like to utilize our mechanism of aryl ether cleavage in actual lignin.

  9. Dysregulation of bile acid homeostasis in parenteral nutrition mouse model

    PubMed Central

    Zhan, Le; Yang, Ill; Shen, Jianliang; Gorczyca, Ludwik; Memon, Naureen; Buckley, Brian T.

    2015-01-01

    Long-term parenteral nutrition (PN) administration can lead to PN-associated liver diseases (PNALD). Although multiple risk factors have been identified for PNALD, to date, the roles of bile acids (BAs) and the pathways involved in BA homeostasis in the development and progression of PNALD are still unclear. We have established a mouse PN model with IV infusion of PN solution containing soybean oil-based lipid emulsion (SOLE). Our results showed that PN altered the expression of genes involved in a variety of liver functions at the mRNA levels. PN increased liver gene expression of Cyp7a1 and markedly decreased that of Cyp8b1, Cyp7b1, Bsep, and Shp. CYP7A1 and CYP8B1 are important for synthesizing the total amount of BAs and regulating the hydrophobicity of BAs, respectively. Consistently, both the levels and the percentages of primary BAs as well as total non-12α-OH BAs increased significantly in the serum of PN mice compared with saline controls, whereas liver BA profiles were largely similar. The expression of several key liver-X receptor-α (LXRα) target genes involved in lipid synthesis was also increased in PN mouse livers. Retinoid acid-related orphan receptor-α (RORα) has been shown to induce the expression of Cyp8b1 and Cyp7b1, as well as to suppress LXRα function. Western blot showed significantly reduced nuclear migration of RORα protein in PN mouse livers. This study shows that continuous PN infusion with SOLE in mice leads to dysregulation of BA homeostasis. Alterations of liver RORα signaling in PN mice may be one of the mechanisms implicated in the pathogenesis of PNALD. PMID:26564717

  10. Interaction of metal ions with acid sites of biosorbents peat moss and Vaucheria and model substances alginic and humic acids

    SciTech Connect

    Crist, R.H.; Martin, J.R.; Crist, D.R.

    1999-07-01

    The interaction between added metal ions and acid sites of two biosorbents, peat moss and the alga Vaucheria, was studied. Results were interpreted in terms of two model substances, alginic acid, a copolymer of guluronic and mannuronic acids present in marine algae, and humic acid in peat moss. For peat moss and Vaucheria at pH 4--6, two protons were displaced per Cd sorbed, after correction for sorbed metals also displaced by the heavy metal. The frequent neglect of exchange of heavy metals for metals either sorbed on the native material or added for pH adjustment leads to erroneous conclusions about proton displacement stoichiometry. Proton displacement constants K{sub ex}{sup H} decreased logarithmically with pH and had similar slopes for alginic acid and biosorbents. This pH effect was interpreted as an electrostatic effect of increasing anionic charge making proton removal less favorable. The maximum number of exchangeable acid sites (capacity C{sub H}) decreased with pH for alginic acid but increased with pH for biosorbents. Consistent with titration behavior, this difference was explained in terms of more weak acid sites in the biosorbents.

  11. Of Mental Models, Assumptions and Heuristics: The Case of Acids and Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha Michelle

    2010-01-01

    This study explored what cognitive resources (i.e., units of knowledge necessary to learn) first-semester organic chemistry students used to make decisions about acid strength and how those resources guided the prediction, explanation and justification of trends in acid strength. We were specifically interested in the identifying and…

  12. Effect of calcium, tannic acid, phytic acid and pectin over iron uptake in an in vitro Caco-2 cell model.

    PubMed

    Andrews, M; Briones, L; Jaramillo, A; Pizarro, F; Arredondo, M

    2014-04-01

    Calcium, phytic acid, polyphenols and fiber are major inhibitors of iron absorption and they could be found in excess in some diets, thereby altering or modifying the iron nutrition status. The purpose of this study is to evaluate the effect of calcium, tannic acid, phytic acid, and pectin over iron uptake, using an in vitro model of epithelial cells (Caco-2 cell line). Caco-2 cells were incubated with iron (10-30 μM) with or without CaCl2 (500 and 1,000 μM) for 24 h. Then, cells were challenged with phytic acid (50-150 μM); pectin (50-150 nM) or tannic acid (100-500 μM) for another 24 h. Finally, (55)Fe (10 μM) uptake was determined. Iron dialyzability was studied using an in vitro digestion method. Iron uptake in cells pre-incubated with 20 and 30 μM Fe was inhibited by CaCl2 (500 μM). Iron uptake decreased in cells cultured with tannic acid (300 μM) and CaCl2 (500-1,000 μM) (two-way ANOVA, p = 0.002). Phytic acid also decreased iron uptake mainly when cells were treated with CaCl2 (1,000 μM) (two-way ANOVA; p < 0.05). Pectin slightly decreased iron uptake (p = NS). Iron dialyzability decreased when iron was mixed with CaCl2 and phytic or tannic acid (T test p < 0.0001, for both) but not when mixed with pectin. Phytic acid combined with calcium is a strong iron uptake inhibitor. Pectin slightly decreased iron uptake with or without calcium. Tannic acid showed an unexpected behavior, inducing an increase on iron uptake, despite its low Fe dialyzability.

  13. Electron probe micro-analysis for subsurface demineralization and remineralization of dental enamel

    SciTech Connect

    Chu, J.S.; Fox, J.L.; Higuchi, W.I.; Nash, W.P.

    1989-01-01

    A quantitative study of fluoride distribution profile changes in dental enamel was conducted by means of electron probe micro-analysis (EPMA). Fluoride-deposited hydroxyapatite powders were chosen as fluoride standards, and analytical conditions were optimized. The lower limit of detection for fluoride was estimated to be 270 ppm, with an accelerating voltage of 5 kV, a specimen current of 40 nA, and a counting time of 40 seconds. Fluoride profiles in fluoride-treated dental enamel, which exhibited intact surface layers and subsurface demineralization, were determined. The results were also compared with those of an acid-abrasion method, and reasonable consistency was found between these two methods, although the acid-abrasion procedure yielded a slightly lower fluoride content in the initial layers, followed by a higher content of fluoride in the deeper layers. The precision of fluoride profile data obtained from EPMA permits further studies to be conducted on the kinetics of subsurface demineralization and intact surface layer formation (white spot formation) which is observed during the acid challenge of dental enamel.

  14. Modeling the Acid-Base Properties of Montmorillonite Edge Surfaces.

    PubMed

    Tournassat, Christophe; Davis, James A; Chiaberge, Christophe; Grangeon, Sylvain; Bourg, Ian C

    2016-12-20

    The surface reactivity of clay minerals remains challenging to characterize because of a duality of adsorption surfaces and mechanisms that does not exist in the case of simple oxide surfaces: edge surfaces of clay minerals have a variable proton surface charge arising from hydroxyl functional groups, whereas basal surfaces have a permanent negative charge arising from isomorphic substitutions. Hence, the relationship between surface charge and surface potential on edge surfaces cannot be described using the Gouy-Chapman relation, because of a spillover of negative electrostatic potential from the basal surface onto the edge surface. While surface complexation models can be modified to account for these features, a predictive fit of experimental data was not possible until recently, because of uncertainty regarding the densities and intrinsic pKa values of edge functional groups. Here, we reexamine this problem in light of new knowledge on intrinsic pKa values obtained over the past decade using ab initio molecular dynamics simulations, and we propose a new formalism to describe edge functional groups. Our simulation results yield reasonable predictions of the best available experimental acid-base titration data.

  15. Modeling three-dimensional network formation with an atomic lattice model: application to silicic acid polymerization.

    PubMed

    Jin, Lin; Auerbach, Scott M; Monson, Peter A

    2011-04-07

    We present an atomic lattice model for studying the polymerization of silicic acid in sol-gel and related processes for synthesizing silica materials. Our model is based on Si and O atoms occupying the sites of a body-centered-cubic lattice, with all atoms arranged in SiO(4) tetrahedra. This is the simplest model that allows for variation in the Si-O-Si angle, which is largely responsible for the versatility in silica polymorphs. The model describes the assembly of polymerized silica structures starting from a solution of silicic acid in water at a given concentration and pH. This model can simulate related materials-chalcogenides and clays-by assigning energy penalties to particular ring geometries in the polymerized structures. The simplicity of this approach makes it possible to study the polymerization process to higher degrees of polymerization and larger system sizes than has been possible with previous atomistic models. We have performed Monte Carlo simulations of the model at two concentrations: a low density state similar to that used in the clear solution synthesis of silicalite-1, and a high density state relevant to experiments on silica gel synthesis. For the high concentration system where there are NMR data on the temporal evolution of the Q(n) distribution, we find that the model gives good agreement with the experimental data. The model captures the basic mechanism of silica polymerization and provides quantitative structural predictions on ring-size distributions in good agreement with x-ray and neutron diffraction data.

  16. Statistical modeling of ammonia absorption in an acid spray scrubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of acid spray wet scrubbers for recovering ammonia (NH3) emissions is promising due to its high NH3 removal efficiency, simplicity in design, and minimal pressure drop contribution on fans. An experimental study was conducted to evaluate the performance of a lab-optimised acid spray scrubber...

  17. Pharmacophore model for bile acids recognition by the FPR receptor

    NASA Astrophysics Data System (ADS)

    Ferrari, Cristina; Macchiarulo, Antonio; Costantino, Gabriele; Pellicciari, Roberto

    2006-05-01

    Formyl-peptide receptors (FPRs) belong to the family A of the G-protein coupled receptor superfamily and include three subtypes: FPR, FPR-like-1 and FPR-like-2. They have been involved in the control of␣many inflammatory processes promoting the recruitment and infiltration of leukocytes in regions of inflammation through the molecular recognition of chemotactic factors. A large number of structurally diverse chemotypes modulate the activity of FPRs. Newly identified antagonists include bile acids deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA). The molecular recognition of these compounds at FPR receptor was computationally investigated using both ligand- and structure-based approaches. Our findings suggest that all antagonists bind at the first third of the seven helical bundles. A closer inspection of bile acid interaction reveals a number of unexploited anchor points in the binding site that may be used to aid the design of new potent and selective bile acids derivatives at FPR.

  18. ModelOMatic: fast and automated model selection between RY, nucleotide, amino acid, and codon substitution models.

    PubMed

    Whelan, Simon; Allen, James E; Blackburne, Benjamin P; Talavera, David

    2015-01-01

    Molecular phylogenetics is a powerful tool for inferring both the process and pattern of evolution from genomic sequence data. Statistical approaches, such as maximum likelihood and Bayesian inference, are now established as the preferred methods of inference. The choice of models that a researcher uses for inference is of critical importance, and there are established methods for model selection conditioned on a particular type of data, such as nucleotides, amino acids, or codons. A major limitation of existing model selection approaches is that they can only compare models acting upon a single type of data. Here, we extend model selection to allow comparisons between models describing different types of data by introducing the idea of adapter functions, which project aggregated models onto the originally observed sequence data. These projections are implemented in the program ModelOMatic and used to perform model selection on 3722 families from the PANDIT database, 68 genes from an arthropod phylogenomic data set, and 248 genes from a vertebrate phylogenomic data set. For the PANDIT and arthropod data, we find that amino acid models are selected for the overwhelming majority of alignments; with progressively smaller numbers of alignments selecting codon and nucleotide models, and no families selecting RY-based models. In contrast, nearly all alignments from the vertebrate data set select codon-based models. The sequence divergence, the number of sequences, and the degree of selection acting upon the protein sequences may contribute to explaining this variation in model selection. Our ModelOMatic program is fast, with most families from PANDIT taking fewer than 150 s to complete, and should therefore be easily incorporated into existing phylogenetic pipelines. ModelOMatic is available at https://code.google.com/p/modelomatic/.

  19. Science review: quantitative acid-base physiology using the Stewart model.

    PubMed

    Wooten, E Wrenn

    2004-12-01

    There has been renewed interest in quantifying acid-base disorders in the intensive care unit. One of the methods that has become increasingly used to calculate acid-base balance is the Stewart model. This model is briefly discussed in terms of its origin, its relationship to other methods such as the base excess approach, and the information it provides for the assessment and treatment of acid-base disorders in critically ill patients.

  20. Resolution of a Challenge for Solvation Modeling: Calculation of Dicarboxylic Acid Dissociation Constants Using Mixed Discrete-Continuum Solvation Models

    SciTech Connect

    Marenich, Aleksandr; Ding, Wendu; Cramer, Christopher J.; Truhlar, Donald G.

    2012-06-07

    First and second dissociation constants (pKa values) of oxalic acid, malonic acid, and adipic acid were computed by using a number of theoretical protocols based on density functional theory and using both continuum solvation models and mixed discrete-continuum solvation models. We show that fully implicit solvation models (in which the entire solvent is represented by a dielectric continuum) fail badly for dicarboxylic acids with mean unsigned errors averaged over six pKa values) of 2.4-9.0 log units, depending on the particular implicit model used. The use of water-solute clusters and accounting for multiple conformations in solution significantly improve the performance of both generalized Born solvation models and models that solve the nonhomogeneous dielectric Poisson equation for bulk electrostatics. The four most successful models have mean unsigned errors of only 0.6-0.8 log units.

  1. (The role of zooplankton in the cycling and remineralization of chemical materials in the Southern California Bight): California Basin Study: DOE west coast basin program: Progress report 4, (June 1987--June 1988)

    SciTech Connect

    Small, L.F.; Huh, Chih-An

    1988-06-01

    The overall objective of our research, within the structure of the DOE CaBS (California Basin Study) program, is to understand the transport pathways and mass balances of selected metabolically active and inactive chemical species in the Santa Monica/San Pedro Basins. One focus of our study is to examine the role of zooplankton and micronekton in the cycling and remineralization of chemical materials in the Southern California Bight, with particular reference to C, N and certain radionuclides and trace metals. A second focus is to examine these same radionuclides and trace metals in other reservoirs besides the zooplankton (i.e., in seawater, sediment trap material and bottom sediments). Knowledge of the rates, routes and reservoirs of these nuclides and metals should lead to a cogent model for these elements in Santa Monica/San Pedro Basins. Our zooplankton C and N data, in conjunction with primary production, microbiological and sediment flux data from colleagues in the program, should also lead ultimately to a model of C and N cycling in the basins. 33 refs., 13 figs., 7 tabs.

  2. A meteorological potential forecast model for acid rain in Fujian Province, China.

    PubMed

    Cai, Yi Yong; Lin, Chang Cheng; Liu, Jing Xiong; Wu, De Hui; Lian, Dong Ying; Chen, Bin Bin

    2010-05-01

    Based on the acid rain and concurrent meteorological observational data during the past 10 years in Fujian Province, China, the dependence of distribution characteristics of acid rain on season, rain rate, weather pattern and dominant airflow in four regions of Fujian Province is analyzed. On the annual average, the acid rain frequency is the highest (above 40%) in the southern and mid-eastern regions, and the lowest (16.2%) in the western region. The acid rain occurs most frequently in spring and winter, and least frequent in summer. The acid rain frequency in general increases with the increase of precipitation. It also depend on the direction of dominant airflows at 850 hPa. In the mid-eastern region, more than 40% acid rains appear when the dominant wind directions are NW, W, SW, S and SE. In the southern region, high acid rain occurrence happens when the dominant wind directions are NW, W, SW and S. In the northern region, 41.8% acid rains occur when the southwesterly is pronounced. In the western region, the southwesterly is associated with a 17% acid rain rate. The examination of meteorological sounding conditions over Fuzhou, Xiamen and Shaowu cities shows that the acid rain frequency increases with increased inversion thickness. Based on the results above, a meteorological potential forecast model for acid rain is established and tested in 2007. The result is encouraging. The model provides an objective basis for the development of acid rain forecasting operation in the province.

  3. Natural abiotic formation of oxalic acid in soils: results from aromatic model compounds and soil samples.

    PubMed

    Studenroth, Sabine; Huber, Stefan G; Kotte, Karsten; Schöler, Heinz F

    2013-02-05

    Oxalic acid is the smallest dicarboxylic acid and plays an important role in soil processes (e.g., mineral weathering and metal detoxification in plants). We have first proven its abiotic formation in soils and investigated natural abiotic degradation processes based on the oxidation of soil organic matter, enhanced by Fe(3+) and H(2)O(2) as hydroxyl radical suppliers. Experiments with the model compound catechol and further hydroxylated benzenes were performed to examine a common degradation pathway and to presume a general formation mechanism of oxalic acid. Two soil samples were tested for the release of oxalic acid and the potential effects of various soil parameters on oxalic acid formation. Additionally, the soil samples were treated with different soil sterilization methods to prove the oxalic acid formation under abiotic soil conditions. Different series of model experiments were conducted to determine a range of factors including Fe(3+), H(2)O(2), reaction time, pH, and chloride concentration on oxalic acid formation. Under certain conditions, catechol is degraded up to 65.6% to oxalic acid referring to carbon. In serial experiments with two soil samples, oxalic acid was produced, and the obtained results are suggestive of an abiotic degradation process. In conclusion, Fenton-like conditions with low Fe(3+) concentrations and an excess of H(2)O(2) as well as acidic conditions were required for an optimal oxalic acid formation. The presence of chloride reduced oxalic acid formation.

  4. Synthesis and evaluation of radioiodinated (E)-18-iodo-17-octadecenoic acid as a model iodoalkenyl fatty acid for myocardial imaging

    SciTech Connect

    Knapp, F.F. Jr.; Goodman, M.M.; Kabalka, G.W.; Sastry, K.A.

    1984-01-01

    /sup 125/I-labeled (E)-18-iodo-17-octadecenoic acid (13) has been prepared and evaluated in rats to determine the myocardial uptake and retention and degree of in vivo deiodination of this model iodovinyl-substituted fatty acid, which contains no structural perturbation to inhibit metabolism. This new agent was prepared by NaI-chloramine-T treatment of (17-carbomethoxyheptadec-1-en-1-yl)boronic acid (11) prepared by catecholborane treatment of methyl 17-octadecynoate (10), followed by basic hydrolysis to the free acid (13). The pivotal substrate, 17-octadecynoic acid (9), was prepared by two new routes. The /sup 125/I-labeled acid 13 showed high myocardial uptake (1 h, 1.90-2.28% dose/g) with 45% washout after 2 h but lower heart/blood ratios in comparison to analogues containing the tellurium heteroatom. Deiodination was low for the first 2 h after injection (2 h, 61% dose/g). Excellent myocardial images were obtained in a dog with the /sup 123/I-labeled agent.

  5. An experimental and modeling study of humic acid concentration effect on H(+) binding: Application of the NICA-Donnan model.

    PubMed

    Vidali, Roza; Remoundaki, Emmanouela; Tsezos, Marios

    2009-11-15

    Humic substances are the most abundant components of the colloidal and the dissolved fraction of natural organic matter (NOM) and they are characterized by a strong binding capacity for both metals and organic pollutants, affecting their mobility and bioavailability. The understanding of the humic acidic character is the first necessary step for the study of the mechanisms of binding of other positively charged soluble metal species by humic molecules. The present work, which constitutes part of the Ph.D. thesis of Roza Vidali, reports results on the influence of the concentration of humic acids on the binding of protons obtained through both an experimental and a modeling approach. A reference purified peat humic acid (PPHA) isolated by the International Humic Substances Society (IHSS) and a humic acid from a Greek soil (GHA) were experimentally studied at various humic acid concentrations, ranging from 20 to 200mgL(-1). The proton binding isotherms obtained at different humic acid concentrations have shown that proton binding is dependent on the concentration of both humic acids. Proton binding experimental data were fitted to the NICA-Donnan model and the model parameter values were calculated for humic acid concentrations of 20 and >or=100mgL(-1). The results obtained for the NICA-Donnan parameters at humic acid concentrations >or=100mgL(-1) are in excellent agreement with those reported in the literature. However, these model parameter values cannot be used for modeling and predicting cation binding in natural aquatic systems, where humic acid concentrations are much lower. Two sets of the NICA-Donnan parameters are reported: one for humic acid concentrations of >or=100mgL(-1) and one for humic acid concentration of 20mgL(-1). The significance of the parameters values for each concentration level is also discussed.

  6. In Situ Investigation of the Remineralizing Effect of Saliva and Fluoride on Enamel Following Prophylaxis Using Sodium Bicarbonate

    PubMed Central

    Grazziotin, Gladis Benjamina; Rios, Daniela; Honório, Heitor Marques; Silva, Salete Moura Bonifácio; Lima, José Eduardo Oliveira

    2011-01-01

    Objectives: This in situ study evaluated the effect of saliva, associated or not with fluoride, on enamel previously submitted to prophylaxis using sodium bicarbonate. Methods: The study was conducted on enamel blocks submitted to in vitro prophylaxis using sodium bicarbonate. The blocks were randomly divided into 2 groups (G1/G2) and mounted on intraoral appliances wore by 10 volunteers. G1 blocks were directly exposed to saliva in situ, while blocks in G2 were exposed to saliva with fluoride (rinsing with 0.2% NaF solution during the initial minute). Enamel alterations were evaluated using surface microhardness and profilometry. Enamel hardness data were analyzed by ANOVA and Tukey tests and surface wear was evaluated using paired t test (P<.05). Results: No significant differences were found between G1 and G2 for enamel hardness and wear. The wear after prophylaxis was not different from the wear after the in situ stage. Baseline mean values of enamel hardness, after prophylaxis and after the in situ stage were 340±16.6, 329±35.7 and 354±37.8 for G1 and 338±15.6, 312±46.3 and 340±21.8 for G2, respectively. Conclusions: It was concluded that saliva alone exhibited a similar effect to saliva associated with fluoride; after 4h of in situ remineralization, there was no recovery in height of the enamel structure that had been lost due to the application of sodium bicarbonate. PMID:21228955

  7. Variations of iron flux and organic carbon remineralization in a subterranean estuary caused by interannual variations in recharge

    USGS Publications Warehouse

    Roy, Moutusi; Martin, Jonathan B.; Cable, Jaye E.; Smith, Christopher G.

    2013-01-01

    We determine the inter-annual variations in diagenetic reaction rates of sedimentary iron (Fe ) in an east Florida subterranean estuary and evaluate the connection between metal fluxes and recharge to the coastal aquifer. Over the three-year study period (from 2004 to 2007), the amount of Fe-oxides reduced at the study site decreased from 192 g/yr to 153 g/yr and associated organic carbon (OC) remineralization decreased from 48 g/yr to 38 g/yr. These reductions occurred although the Fe-oxide reduction rates remained constant around 1 mg/cm2/yr. These results suggest that changes in flow rates of submarine groundwater discharge (SGD) related to changes in precipitation may be important to fluxes of the diagenetic reaction products. Rainfall at a weather station approximately 5 km from the field area decreased from 12.6 cm/month to 8.4 cm/month from 2004 to 2007. Monthly potential evapotranspiration (PET) calculated from Thornthwaite’s method indicated potential evapotranspiration cycled from about 3 cm/month in the winter to about 15 cm/month in the summer so that net annual recharge to the aquifer decreased from 40 cm in 2004 to -10 cm in 2007. Simultaneously, with the decrease in recharge of groundwater, freshwater SGD decreased by around 20% and caused the originally 25 m wide freshwater seepage face to decrease in width by about 5 m. The smaller seepage face reduced the area under which Fe-oxides were undergoing reductive dissolution. Consequently, the observed decrease in Fe flux is controlled by hydrology of the subterranean estuary. These results point out the need to better understand linkages between temporal variations in diagenetic reactions and changes in flow within subterranean estuaries in order to accurately constrain their contribution to oceanic fluxes of solutes from subterranean estuaries.

  8. Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments

    USGS Publications Warehouse

    Sweetman, A.K.; Middelburg, J.J.; Berle, A.M.; Bernardino, A.F.; Schander, C.; Demopoulos, A.W.J.; Smith, C.R.

    2010-01-01

    To evaluate how mangrove invasion and removal can modify benthic carbon cycling processes and ecosystem functioning, we used stable-isotopically labelled algae as a deliberate tracer to quantify benthic respiration and C-flow through macrofauna and bacteria in sediments collected from (1) an invasive mangrove forest, (2) deforested mangrove sites 2 and 6 years after removal of above-sediment mangrove biomass, and (3) two mangrove-free, control sites in the Hawaiian coastal zone. Sediment oxygen consumption (SOC) rates were significantly greater in the mangrove and mangrove removal site experiments than in controls and were significantly correlated with total benthic (macrofauna and bacteria) biomass and sedimentary mangrove biomass (SMB). Bacteria dominated short-term C-processing of added microalgal-C and benthic biomass in sediments from the invasive mangrove forest habitat. In contrast, macrofauna were the most important agents in the short-term processing of microalgal-C in sediments from the mangrove removal and control sites. Mean faunal abundance and short term C-uptake rates in sediments from both removal sites were significantly higher than in control cores, which collectively suggest that community structure and short-term C-cycling dynamics in habitats where mangroves have been cleared can remain fundamentally different from un-invaded mudflat sediments for at least 6-yrs following above-sediment mangrove removal. In summary, invasion by mangroves can lead to large shifts in benthic ecosystem function, with sediment metabolism, benthic community structure and short-term C-remineralization dynamics being affected for years following invader removal. ?? 2010 Author(s).

  9. Effects of stratification, organic matter remineralization and bathymetry on summertime oxygen distribution in the Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Zhao, Hua-De; Kao, Shuh-Ji; Zhai, Wei-Dong; Zang, Kun-Peng; Zheng, Nan; Xu, Xue-Mei; Huo, Cheng; Wang, Ju-Ying

    2017-02-01

    The Bohai Sea, a semi-enclosed shallow coastal sea with increasing nutrient loads, is susceptible to seasonal oxygen deficiency in its bottom waters, similar to many other areas of the worlds' coastal oceans. We examined the dissolved oxygen (DO) distribution in the Bohai during August 2014. Two oxygen-deficient zones (DO<92 μmol O2 kg-1) with a minimum DO of 80 μmol O2 kg-1 were documented. The area and volume of bottom oxygen-deficient water were 756 km2 and 7820×106 m3, with a mean thickness of 10 m. Thus, the Bohai is second to the Changjiang estuary in its oxygen-deficient zone size among China's coastal waters. We classified three hydrographic areas that dictated the distribution of DO: 1) the shallow well-mixed zone; 2) the laterally-open stratified zone; and 3) the isolated stratified zone. Vertical mixing dominated the shallow well-mixed zone leading to homogeneous DO in the water column. The laterally-open stratified zone was influenced by high DO and low temperature inflow through the northern Bohai Strait. The isolated stratified zones, i.e., the low DO areas, were found in depressed regions. The stoichiometric relationship between DO consumption and the corresponding enrichment of dissolved inorganic carbon suggested that the aerobic respiration of organic matter contributed to the oxygen-depletion in the isolated stratified zone. Overall, the bottom DO distribution in the Bohai system was controlled largely by lateral DO exchange modified by bathymetric features, while superimposed on that was the build-up of stratification caused by summer heating and the remineralization of organics sourced from spring phytoplankton bloom.

  10. Influence of dissolved organic carbon content on modelling natural organic matter acid-base properties.

    PubMed

    Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves

    2004-10-01

    Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.

  11. Effects of caffeic acid on learning deficits in a model of Alzheimer's disease.

    PubMed

    Wang, Yunliang; Wang, Yutong; Li, Jinfeng; Hua, Linlin; Han, Bing; Zhang, Yuzhen; Yang, Xiaopeng; Zeng, Zhilei; Bai, Hongying; Yin, Honglei; Lou, Jiyu

    2016-09-01

    Caffeic acid is a type of phenolic acid and organic acid. It is found in food (such as tomatoes, carrots, strawberries, blueberries and wheat), beverages (such as wine, tea, coffee and apple juice) as well as Chinese herbal medicines. In the present study, we examined the effects of caffeic acid on learning deficits in a rat model of Alzheimer's disease (AD). The rats were randomly divided into three groups: i) control group, ii) AD model group and iii) caffeic acid group. Caffeic acid significantly rescued learning deficits and increased cognitive function in the rats with AD as demonstrated by the Morris water maze task. Furthermore, caffeic acid administration resulted in a significant decrease in acetylcholinesterase activity and nitrite generation in the rats with AD compared with the AD model group. Furthermore, caffeic acid suppressed oxidative stress, inflammation, nuclear factor‑κB‑p65 protein expression and caspase‑3 activity as well as regulating the protein expression of p53 and phosphorylated (p-)p38 MAPK expression in the rats with AD. These experimental results indicate that the beneficial effects of caffeic acid on learning deficits in a model of AD were due to the suppression of oxidative stress and inflammation through the p38 MAPK signaling pathway.

  12. Impact of Fluorescent Lighting on Oxidation of Model Wine Solutions Containing Organic Acids and Iron.

    PubMed

    Grant-Preece, Paris; Barril, Celia; Schmidtke, Leigh M; Clark, Andrew C

    2017-03-22

    Previous studies have provided evidence that light exposure can increase oxygen consumption in wine and that the photodegradation of iron(III) tartrate could contribute to this process. In the present study, model wine solutions containing iron(III) and various organic acids, either alone or combined, were stored in sealed clear glass wine bottles and exposed to light from fluorescent lamps. Dissolved oxygen was monitored, and afterward the organic acid degradation products were determined and the capacity of the solutions to bind sulfur dioxide, the main wine preservative, was assessed. In the dark controls, little or no dissolved oxygen was consumed and the organic acids were stable. In the irradiated solutions, dissolved oxygen was consumed at a rate that was dependent on the specific organic acid present, and the latter were oxidized to various carbonyl compounds. For the solutions containing tartaric acid, malic acid, and/or citric acid, irradiation increased their sulfur dioxide-binding capacity.

  13. Statistical modeling of correlatively expressed functional amino acids in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern maize breeding and selection for large starchy kernels may have contributed to reduced contents of essential amino acids which represents a serious nutritional problem for humans and animals. A large number (1,348) of germplasm accessions belonging to 13 populations and classified into four h...

  14. Modeling aqueous ozone/UV process using oxalic acid as probe chemical.

    PubMed

    Garoma, Temesgen; Gurol, Mirat D

    2005-10-15

    A kinetic model that describes the removal of organic pollutants by an ozone/UV process is described. Oxalic acid, which reacts with a very low rate constant with ozone and relatively high rate constant with hydroxyl radical (OH*), was used as the probe chemical to model the process. The model was verified by experimental data on concentrations of oxalic acid and hydrogen peroxide (H202) under various experimental conditions, i.e., ozone gas dosage, UV light intensity, and varying oxalic acid concentrations.

  15. Issues in model validation: assessing the performance of a regional-scale acid deposition model using measured and modelled data

    NASA Astrophysics Data System (ADS)

    Metcalfe, S. E.; Whyatt, J. D.; Nicholson, J. P. G.; Derwent, R. G.; Heywood, E.

    The development and validation of a new version of the Hull Acid Rain Model (HARM12.1) is described in the context of changes in emissions and deposition estimates supplied by the Centre for Ecology and Hydrology (CEH) Edinburgh based on the available measurement networks. Major changes to the model include greater vertical resolution, the adoption of new background concentrations and ecosystem-specific deposition velocities. HARM output for 1998-2000 is compared with data from the rural SO 2, NO 2 and NH 3 networks and results from the nitric acid and aerosol network. The ability to reproduce deposition estimates based on measurements is key to a regional-scale model like HARM. Changes in these estimates between 1995-97 and 1998-2000 are discussed. Comparing HARM modelled deposition and the CEH data indicates that the new version of the model performs better in this respect than its predecessor (HARM11.5). The trend in deposition over the time period does not seem to reflect the marked reduction in emissions. The possible reasons for this are explored with particular emphasis on changes in precipitation. 1995-97 was unusually dry, while 1998-2000 was wet. Changes in rainfall concentration and unmodified deposition are presented for comparison with HARM and CEH estimates. It is clear that the impact of precipitation variability on modelled acid deposition requires further investigation. Finally, we compare HARM12.1 and HARM 11.5 deposition in 2010 following emissions reductions to meet the terms of the National Emissions Ceilings Directive.

  16. Integrated assessment of acid deposition impacts using reduced-form modeling. Final report

    SciTech Connect

    Sinha, R.; Small, M.J.

    1996-05-01

    Emissions of sulfates and other acidic pollutants from anthropogenic sources result in the deposition of these acidic pollutants on the earth`s surface, downwind of the source. These pollutants reach surface waters, including streams and lakes, and acidify them, resulting in a change in the chemical composition of the surface water. Sometimes the water chemistry is sufficiently altered so that the lake can no longer support aquatic life. This document traces the efforts by many researchers to understand and quantify the effect of acid deposition on the water chemistry of populations of lakes, in particular the improvements to the MAGIC (Model of Acidification of Groundwater in Catchments) modeling effort, and describes its reduced-form representation in a decision and uncertainty analysis tool. Previous reduced-form approximations to the MAGIC model are discussed in detail, and their drawbacks are highlighted. An improved reduced-form model for acid neutralizing capacity is presented, which incorporates long-term depletion of the watershed acid neutralization fraction. In addition, improved fish biota models are incorporated in the integrated assessment model, which includes reduced-form models for other physical and chemical processes of acid deposition, as well as the resulting socio-economic and health related effects. The new reduced-form lake chemistry and fish biota models are applied to the Adirondacks region of New York.

  17. Modeling of fractal patterns in matrix acidizing and their impact on well performance

    SciTech Connect

    Frick, T.P.; Kuermayr, M.; Economides, M.J.

    1994-02-01

    This paper describes a model where wormholes, the primary feature of carbonate acidizing, are considered as fractals. The influences of acid volume, injection rate, fractal dimension, porosity, and the ratio of undamaged to damaged permeabilities on well performance are studied. Exact expressions of post-treatment skin effects are developed for vertical and horizontal wells.

  18. Effect of fatty acids on the permeability barrier of model and biological membranes.

    PubMed

    Arouri, Ahmad; Lauritsen, Kira E; Nielsen, Henriette L; Mouritsen, Ole G

    2016-10-01

    Because of the amphipathicity and conical molecular shape of fatty acids, they can efficiently incorporate into lipid membranes and disturb membrane integrity, chain packing, and lateral pressure profile. These phenomena affect both model membranes as well as biological membranes. We investigated the feasibility of exploiting fatty acids as permeability enhancers in drug delivery systems for enhancing drug release from liposomal carriers and drug uptake by target cells. Saturated fatty acids, with acyl chain length from C8 to C20, were tested using model drug delivery liposomes of 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the breast cancer MCF-7 cell line as a model cell. A calcein release assay demonstrated reduction in the membrane permeability barrier of the DPPC liposomes, proportionally to the length of the fatty acid. Differential scanning calorimetry (DSC) and dynamic light scattering (DLS) experiments revealed that C12 to C20 fatty acids can stabilize DPPC liposomal bilayers and induce the formation of large structures, probably due to liposome aggregation and bilayer morphological changes. On the other hand, the short fatty acids C8 and C10 tend to destabilize the bilayers and only moderately cause the formation of large structures. The effect of fatty acids on DPPC liposomes was not completely transferrable to the MCF-7 cell line. Using cytotoxicity assays, the cells were found to be relatively insensitive to the fatty acids at apoptotic sub-millimolar concentrations. Increasing the fatty acid concentration to few millimolar substantially reduced the viability of the cells, most likely via the induction of necrosis and cell lysis. A bioluminescence living-cell-based luciferase assay showed that saturated fatty acids in sub-cytotoxic concentrations cannot reduce the permeability barrier of cell membranes. Our results confirm that the membrane perturbing effect of fatty acids on model membranes cannot simply be carried over to biological

  19. Intrafibrillar mineralization of polyacrylic acid-bound collagen fibrils using a two-dimensional collagen model and Portland cement-based resins.

    PubMed

    Wu, Shiyu; Gu, Lisha; Huang, Zihua; Sun, Qiurong; Chen, Huimin; Ling, Junqi; Mai, Sui

    2017-02-01

    The biomimetic remineralization of apatite-depleted dentin is a potential method for enhancing the durability of resin-dentin bonding. To advance this strategy from its initial proof-of-concept design, we sought to investigate the characteristics of polyacrylic acid (PAA) adsorption to desorption from type I collagen and to test the mineralization ability of PAA-bound collagen. Portland cement and β-tricalcium phosphate (β-TCP) were homogenized with a hydrophilic resin blend to produce experimental resins. The collagen fibrils reconstituted on nickel (Ni) grids were mineralized using different methods: (i) group I consisted of collagen treated with Portland cement-based resin in simulated body fluid (SBF); (ii) group II consisted of PAA-bound collagen treated with Portland cement-based resin in SBF; and (iii) group III consisted of PAA-bound collagen treated with β-TCP-doped Portland cement-based resin in deionized water. Intrafibrillar mineralization was evaluated using transmission electron microscopy. We found that a carbonyl-associated peak at pH 3.0 increased as adsorption time increased, whereas a hydrogen bond-associated peak increased as desorption time increased. The experimental resins maintained an alkaline pH and the continuous release of calcium ions. Apatite was detected within PAA-bound collagen in groups II and III. Our results suggest that PAA-bound type I collagen fibrils can be mineralized using Portland cement-based resins.

  20. Remineralizing amorphous calcium phosphate based composite resins: the influence of inert fillers on monomer conversion, polymerization shrinkage, and microhardness

    PubMed Central

    Marović, Danijela; Šariri, Kristina; Demoli, Nazif; Ristić, Mira; Hiller, Karl-Anton; Škrtić, Drago; Rosentritt, Martin; Schmalz, Gottfried; Tarle, Zrinka

    2016-01-01

    Aim To determine if the addition of inert fillers to a bioactive dental restorative composite material affects its degree of conversion (DC), polymerization shrinkage (PS), and microhardness (HV). Methods Three amorphous calcium phosphate (ACP)-based composite resins: without added fillers (0-ACP), with 10% of barium-glass fillers (Ba-ACP), and with 10% of silica fillers (Si-ACP), as well as commercial control (Ceram•X, Dentsply DeTrey) were tested in laboratory conditions. The amount of ACP (40%) and the composition of the resin mixture (based on ethoxylated bisphenol A dimethacrylate) was the same for all ACP materials. Fourier transform infrared spectroscopy was used to determine the DC (n = 40), 20 min and 72 h after polymerization. Linear PS and Vickers microhardness (n = 40) were also evaluated. The results were analyzed by paired samples t test, ANOVA, and one-way repeated measures ANOVA with Student-Newman-Keuls or Tukey’s post-hoc test (P = 0.05). Results The addition of barium fillers significantly increased the DC (20 min) (75.84 ± 0.62%) in comparison to 0-ACP (73.92 ± 3.08%), but the addition of silica fillers lowered the DC (71.00 ± 0.57%). Ceram•X had the lowest DC (54.93 ± 1.00%) and linear PS (1.01 ± 0.24%) but the highest HV (20.73 ± 2.09). PS was significantly reduced (P < 0.010) in both Ba-ACP (1.13 ± 0.25%) and Si-ACP (1.17 ± 0.19%) compared to 0-ACP (1.43 ± 0.21%). HV was significantly higher in Si-ACP (12.82 ± 1.30) than in 0-ACP (10.54 ± 0.86) and Ba-ACP (10.75 ± 0.62) (P < 0.010). Conclusion Incorporation of inert fillers to bioactive remineralizing composites enhanced their physical-mechanical performance in laboratory conditions. Both added fillers reduced the PS while maintaining high levels of the DC. Silica fillers additionally moderately improved the HV of ACP composites. PMID:27815937

  1. Coarse-Grained Modeling of Nucleic Acids Using Anisotropic Gay-Berne and Electric Multipole Potentials.

    PubMed

    Li, Guohui; Shen, Hujun; Zhang, Dinglin; Li, Yan; Wang, Honglei

    2016-02-09

    In this work, we attempt to apply a coarse-grained (CG) model, which is based on anisotropic Gay-Berne and electric multipole (EMP) potentials, to the modeling of nucleic acids. First, a comparison has been made between the CG and atomistic models (AMBER point-charge model) in the modeling of DNA and RNA hairpin structures. The CG results have demonstrated a good quality in maintaining the nucleic acid hairpin structures, in reproducing the dynamics of backbone atoms of nucleic acids, and in describing the hydrogen-bonding interactions between nucleic acid base pairs. Second, the CG and atomistic AMBER models yield comparable results in modeling double-stranded DNA and RNA molecules. It is encouraging that our CG model is capable of reproducing many elastic features of nucleic acid base pairs in terms of the distributions of the interbase pair step parameters (such as shift, slide, tilt, and twist) and the intrabase pair parameters (such as buckle, propeller, shear, and stretch). Finally, The GBEMP model has shown a promising ability to predict the melting temperatures of DNA duplexes with different lengths.

  2. Bilayer Structure and Lipid Dynamics in a Model Stratum Corneum with Oleic Acid

    SciTech Connect

    Hoopes, Matthew I.; Noro, Massimo G.; Longo, Marjorie L.; Faller, Roland

    2011-03-31

    The stratum corneum is the uppermost layer of the skin and acts as a barrier to keep out contaminants and retain moisture. Understanding the molecular structure and behavior of this layer will provide guidance for optimizing its biological function. In this study we use a model mixture comprised of equimolar portions of ceramide NS (24:0), lignoceric acid, and cholesterol to model the effect of the addition of small amounts of oleic acid to the bilayer at 300 and 340 K. Five systems at each temperature have been simulated with concentrations between 0 and 0.1 mol % oleic acid. Our major finding is that subdiffusive behavior over the 200 ns time scale is evident in systems at 340 K, with cholesterol diffusion being enhanced with increased oleic acid. Importantly, cholesterol and other species diffuse faster when radial densities indicate nearest neighbors include more cholesterol. We also find that, with the addition of oleic acid, the bilayer midplane and interfacial densities are reduced and there is a 3% decrease in total thickness occurring mostly near the hydrophilic interface at 300 K with reduced overall density at 340 K. Increased interdigitation occurs independent of oleic acid with a temperature increase. Slight ordering of the long non-hydroxy fatty acid of the ceramide occurs near the hydrophilic interface as a function of the oleic acid concentration, but no significant impact on hydrogen bonding is seen in the chosen oleic acid concentrations.

  3. TWOPOT: a computer model of the two-pot extractive distillation concept for nitric acid

    SciTech Connect

    Jubin, R.T.; Holland, W.D.; Counce, R.M.; Beckwith, D.R.

    1985-05-01

    A mathematical model, TWOPOT, of the ''two-pot'' extractive distillation concept for nitric acid concentration has been developed. Prediction from a computer simulation using this model shows excellent agreement with the experimental data. This model is recommended for use in the design of large-scale, similar-purpose equipment. 9 refs., 15 figs., 2 tabs.

  4. A PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODEL FOR intravenous and ingested DIMETHYLARSINIC ACID (DMAV) IN MICE.

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model for the organoarsenical dimethylarsinic acid (DMA(V)) was developed in mice. The model was calibrated using tissue time course data from multiple tissues in mice administered DMA(V) intravenously. The final model structure was ...

  5. Evaluation of toxic effects of several carboxylic acids on bacterial growth by toxicodynamic modelling

    PubMed Central

    2011-01-01

    Background Effects of organic acids on microbial fermentation are commonly tested in investigations about metabolic behaviour of bacteria. However, they typically provide only descriptive information without modelling the influence of acid concentrations on bacterial kinetics. Results We developed and applied a mathematical model (secondary model) to capture the toxicological effects of those chemicals on kinetic parameters that define the growth of bacteria in batch cultures. Thus, dose-response kinetics were performed with different bacteria (Leuconostoc mesenteroides, Carnobacterium pisicola, Escherichia coli, Bacillus subtilis and Listonella anguillarum) exposed at increasing concentrations of individual carboxylic acids (formic, acetic, propionic, butyric and lactic). In all bioassays the acids affected the maximum bacterial load (Xm) and the maximum growth rate (vm) but only in specific cases the lag phase (λ) was modified. Significance of the parameters was always high and in all fermentations the toxicodynamic equation was statistically consistent and had good predictability. The differences between D and L-lactic acid effects were significant for the growth of E. coli, L. mesenteroides and C. piscicola. In addition, a global parameter (EC50,τ) was used to compare toxic effects and provided a realistic characterization of antimicrobial agents using a single value. Conclusions The effect of several organic acids on the growth of different bacteria was accurately studied and perfectly characterized by a bivariate equation which combines the basis of dose-response theory with microbial growth kinetics (secondary model). The toxicity of carboxylic acids was lower with the increase of the molecular weight of these chemicals. PMID:22118421

  6. Kinetics of color development of melanoidins formed from fructose/amino acid model systems.

    PubMed

    Echavarría, A P; Pagán, J; Ibarz, A

    2014-03-01

    The formation of soluble melanoidins from a single combination of sugar (fructose) and amino acid model systems were evaluated kinetically. The selected amino acids, commonly found in apple juice and highly reactive in the Maillard reaction, were asparagine, aspartic acid, and glutamic acid. The effect of these reagents and the treatment at different temperatures (50 , 85 , and 100 ) during 96 h on the color intensity of the melanoidin formed was measured by absorbance at different wavelengths (280, 325, 405, and 420 nm). The absorbance of the melanoidin formed from all model systems was located on the wavelength of 405 nm, that is, the area of the visible spectrum close to the UV region. The color of the melanoidins was directly measured using the CIELAB color space system. A first-order kinetic model was applied to the evolution of the ΔE * (color difference) and L * (lightness) of the color. The fructose/aspartic acid model system values of a * (redness) and b * (yellowness) were found in the brown-red zone. Therefore, the color development of the melanoidins was influenced by the type of amino acid and temperature. Especially, it is thought that the a * and b * values can be used to explain the differences among the amino acids in the color development of melanoidins.

  7. Modelling of the simultaneous photodegradation of Acid Red 97, Acid Orange 61 and Acid Brown 425 using factor screening and response surface strategies.

    PubMed

    Fernández, Cristina; Larrechi, M Soledad; Callao, M Pilar

    2010-08-15

    In this paper the influence of seven variables that could be relevant in the photodegradation of three textile dyes - Acid Red 97, Acid Orange 61 and Acid Brown 425 - has been studied with the aim of determining the most efficient conditions for this process. The type and concentration of catalyst, the presence and concentration of H(2)O(2), the stirring, the pH and the dye concentration have been studied as variables. In the first stage the more basic variables were analyzed using a screening methodology (saturated fractional factorial design) and it was concluded that the most influential variable was the presence of H(2)O(2). In the second stage, a central composite design was used to establish a response surface for the behavior of the photodegradation. In this stage the concentration of Acid Brown 425 was fixed and the degradation was carried out without catalyst. The most remarkable aspects of the experiment are that brown dye is always the most persistent in the solution and that a catalyst is not needed to degrade the dyes quickly. A second-order equation is needed to model this process. The response surface obtained could be useful for reducing the time and money needed to treat effluent wastewater.

  8. Identifiability of PBPK Models with Applications to Dimethylarsinic Acid Exposure

    EPA Science Inventory

    Any statistical model should be identifiable in order for estimates and tests using it to be meaningful. We consider statistical analysis of physiologically-based pharmacokinetic (PBPK) models in which parameters cannot be estimated precisely from available data, and discuss diff...

  9. Kinetic modeling of lactic acid production from batch submerged fermentation of cheese whey

    SciTech Connect

    Tango, M.S.A.; Ghaly, A.E.

    1999-12-01

    A kinetic model for the production of lactic acid through batch submerged fermentation of cheese whey using Lactobacillus helveticus was developed. The model accounts for the effect of substrate limitation, substrate inhibition, lactic acid inhibition, maintenance energy and cell death on the cell growth, substrate utilization, and lactic acid production during the fermentation process. The model was evaluated using experimental data from Tango and Ghaly (1999). The predicted results obtained from the model compared well with experimental (R{sup 2} = 0.92--0.98). The model was also used to investigate the effect of the initial substrate concentration on the lag period, fermentation time, specific growth rate, and cell productivity during batch fermentation. The maximum specific growth rate ({micro}{sub m}), the saturation constant (K{sub S}), the substrate inhibition constant (K{sub IS}), and the lactic acid inhibition constant (K{sub IP}) were found to be 0.25h{sup {minus}1}, 0.9 g/L, 250.0 g/L, and 60.0 g/L, respectively. High initial lactose concentration in cheese whey reduced both the specific growth rate and substrate utilization rate due to the substrate inhibition phenomenon. The maximum lactic acid production occurred at about 100 g/L initial lactose concentration after 40 h of fermentation. The maximum lactic acid concentration above which Lactobacillus helveticus did not grow was found to be 80.0 g/L.

  10. Modeling and optimizing the design of matrix treatments in carbonate reservoirs with self-diverting acid systems

    NASA Astrophysics Data System (ADS)

    Bulgakova, G. T.; Kharisov, R. Ya; Sharifullin, A. R.; Pestrikov, A. V.

    2015-01-01

    Application of a self-diverting-acid based on viscoelastic surfactant (SDVA) is a promising technology for improving the efficacy of acid treatment in oil and gas-bearing carbonate reservoirs. In this study, we present a mathematical model for assessing SDVA flow and reaction with carbonate rock using the SDVA rheological characteristics. The model calculates the technological parameters for acidizing operations and the prediction of well productivity after acid treatment, in addition to technical and economic optimization of the acidizing process by modeling different acid treatment options with varying volumes, injection rates, process fluids stages and initial economic scenarios.

  11. Acid-Base Chemistry of White Wine: Analytical Characterisation and Chemical Modelling

    PubMed Central

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic “wine” especially adapted for testing. PMID:22566762

  12. Conformational analysis of glutamic acid: a density functional approach using implicit continuum solvent model.

    PubMed

    Turan, Başak; Selçuki, Cenk

    2014-09-01

    Amino acids are constituents of proteins and enzymes which take part almost in all metabolic reactions. Glutamic acid, with an ability to form a negatively charged side chain, plays a major role in intra and intermolecular interactions of proteins, peptides, and enzymes. An exhaustive conformational analysis has been performed for all eight possible forms at B3LYP/cc-pVTZ level. All possible neutral, zwitterionic, protonated, and deprotonated forms of glutamic acid structures have been investigated in solution by using polarizable continuum model mimicking water as the solvent. Nine families based on the dihedral angles have been classified for eight glutamic acid forms. The electrostatic effects included in the solvent model usually stabilize the charged forms more. However, the stability of the zwitterionic form has been underestimated due to the lack of hydrogen bonding between the solute and solvent; therefore, it is observed that compact neutral glutamic acid structures are more stable in solution than they are in vacuum. Our calculations have shown that among all eight possible forms, some are not stable in solution and are immediately converted to other more stable forms. Comparison of isoelectronic glutamic acid forms indicated that one of the structures among possible zwitterionic and anionic forms may dominate over the other possible forms. Additional investigations using explicit solvent models are necessary to determine the stability of charged forms of glutamic acid in solution as our results clearly indicate that hydrogen bonding and its type have a major role in the structure and energy of conformers.

  13. Acid-base chemistry of white wine: analytical characterisation and chemical modelling.

    PubMed

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic "wine" especially adapted for testing.

  14. Developmental nephrotoxicity of aristolochic acid in a zebrafish model

    SciTech Connect

    Ding, Yu-Ju; Chen, Yau-Hung

    2012-05-15

    Aristolochic acid (AA) is a component of Aristolochia plant extracts which is used as a treatment for different pathologies and their toxicological effects have not been sufficiently studied. The aim of this study was to evaluate AA-induced nephrotoxicity in zebrafish embryos. After soaking zebrafish embryos in AA, the embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tubes, pronephric ducts, and cases of atrophic glomeruli. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AA increased. Furthermore, AA-treated embryos exhibited significantly reduced glomerular filtration rates (GFRs) in comparison with mock-control littermates (mock-control: 100 ± 2.24% vs. 10 ppm AA treatment for 3–5 h: 71.48 ± 18.84% ∼ 39.41 ± 15.88%), indicating that AA treatment not only caused morphological kidney changes but also induced renal failure. In addition to kidney malformations, AA-treated zebrafish embryos also exhibited deformed hearts, swollen pericardiums, impaired blood circulation and the accumulation(s) of red blood cells. Whole-mount in situ hybridization studies using cmlc2 and wt1b as riboprobes indicated that the kidney is more sensitive than the heart to AA damage. Real-time PCR showed that AA can up-regulate the expression of proinflammatory genes like TNFα, cox2 and mpo. These results support the following conclusions: (1) AA-induced renal failure is mediated by inflammation, which causes circulation dysfunction followed by serious heart malformation; and (2) the kidney is more sensitive than the heart to AA injury. -- Highlights: ► Zebrafish were used to evaluate aristolochic acid (AA)-induced nephrotoxicity. ► AA-treated zebrafish embryos exhibited deformed heart as well as malformed kidney. ► Kidney is more sensitive to AA injury than the heart.

  15. Modeling uranium transport in acidic contaminated groundwater with base addition.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2011-06-15

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO(3)(-), SO(4)(2-), U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  16. Mutation-selection models of coding sequence evolution with site-heterogeneous amino acid fitness profiles

    PubMed Central

    Rodrigue, Nicolas; Philippe, Hervé; Lartillot, Nicolas

    2010-01-01

    Modeling the interplay between mutation and selection at the molecular level is key to evolutionary studies. To this end, codon-based evolutionary models have been proposed as pertinent means of studying long-range evolutionary patterns and are widely used. However, these approaches have not yet consolidated results from amino acid level phylogenetic studies showing that selection acting on proteins displays strong site-specific effects, which translate into heterogeneous amino acid propensities across the columns of alignments; related codon-level studies have instead focused on either modeling a single selective context for all codon columns, or a separate selective context for each codon column, with the former strategy deemed too simplistic and the latter deemed overparameterized. Here, we integrate recent developments in nonparametric statistical approaches to propose a probabilistic model that accounts for the heterogeneity of amino acid fitness profiles across the coding positions of a gene. We apply the model to a dozen real protein-coding gene alignments and find it to produce biologically plausible inferences, for instance, as pertaining to site-specific amino acid constraints, as well as distributions of scaled selection coefficients. In their account of mutational features as well as the heterogeneous regimes of selection at the amino acid level, the modeling approaches studied here can form a backdrop for several extensions, accounting for other selective features, for variable population size, or for subtleties of mutational features, all with parameterizations couched within population-genetic theory. PMID:20176949

  17. Identification of hydroxycinnamic acid-maillard reaction products in low-moisture baking model systems.

    PubMed

    Jiang, Deshou; Chiaro, Christopher; Maddali, Pranav; Prabhu, K Sandeep; Peterson, Devin G

    2009-11-11

    The chemistry and fate of hydroxycinnamic acids (ferulic, p-coumeric, caffeic, sinapic, and cinnamic acid) in a glucose/glycine simulated baking model (10% moisture at 200 degrees C for 15 min) were investigated. Liquid chromatography-mass spectrometry analysis of glucose/glycine and glucose/glycine/hydroxycinnamic acid model systems confirmed the phenolics reacted with Maillard intermediates; two main reaction product adducts were reported. On the basis of isotopomeric analysis, LC-MS, and NMR spectroscopy, structures of two ferulic acid-Maillard reaction products were identified as 6-(4-hydroxy-3-methoxyphenyl)-5-(hydroxymethyl)-8-oxabicyclo[3.2.1]oct-3-en-2-one (adduct I) and 2-(6-(furan-2-yl)-7-(4-hydroxy-3-methoxyphenyl)-1-methyl-3-oxo-2,5-diazabicyclo[2.2.2]oct-5-en-2-yl)acetic acid (adduct II). In addition, a pyrazinone-type Maillard product, 2-(5-(furan-2-yl)-6-methyl-2-oxopyrazin-1(2H)-yl) acetic acid (IIa), was identified as an intermediate for reaction product adduct II, whereas 3-deoxy-2-hexosulose was identified as an intermediate of adduct I. Both adducts I and II were suggested to be generated by pericyclic reaction mechanisms. Quantitative gas chromatography (GC) analysis and liquid chromatography (LC) also indicated that the addition of ferulic acid to a glucose/glycine model significantly reduced the generation of select Maillard-type aroma compounds, such as furfurals, methylpyrazines, 2-acetylfuran, 2-acetylpyridine, 2-acetylpyrrole, and cyclotene as well as inhibited color development in these Maillard models. In addition, adducts I and II suppressed the bacterial lipopolysaccharide (LPS)-mediated expression of two prototypical pro-inflammatory genes, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, in an in vitro murine macrophage model; ferulic acid reported negligible activity.

  18. Electrochemical treatment of acidic aqueous ferrous sulfate and copper sulfate as models for acid mine drainage.

    PubMed

    Bunce, N J; Chartrand, M; Keech, P

    2001-12-01

    Acid mine drainage (AMD) is a serious environmental problem in the mining industry. The present work describes electrolytic reduction of solutions of synthetic AMD, comprising FeSO4/H2SO4 and CuSO4/H2SO4, in flow-through cells whose anode and cathode compartments were separated using ion exchange membranes. In the case of FeSO4/H2SO4 at constant flow rate, the pH of the effluent from the catholyte increased progressively with current at a variety of cathodes, due to electrolytic reduction of H+ ions to elemental hydrogen. Near-quantitative removal of iron was achieved by sparging air into the catholyte effluent, thereby precipitating iron outside the electrochemical cell, and avoiding fouling of the electrodes. The anode reaction was the oxidation of water to O2, a proton-releasing process. Using cation exchange membranes and sodium sulfate as the supporting electrolyte in the anode compartment, the efficiency of the process was compromised at high currents by transport of H+ competitively with Na+ from the anode to the cathode compartments. Higher efficiencies were obtained when anion exchange membranes were used, and in this case no additional supporting electrolyte other than dilute H2SO4 was needed, the net reaction being the electrochemically driven transfer of the elements of H2SO4 from the cathode to the anode compartments. Current efficiencies approximately 50% were achieved, the loss of efficiency being accounted for by ohmic heating of the solutions. In the case of CuSO4/H2SO4 and anion exchange membranes at high currents, reduction of Cu2+ and H+ ions and transport of SO4(2-) ions out of the catholyte caused unacceptably high potentials to be generated.

  19. Models of metal binding structures in fulvic acid from the Suwannee River, Georgia

    USGS Publications Warehouse

    Leenheer, J.A.; Brown, G.K.; MacCarthy, P.; Cabaniss, S.E.

    1998-01-01

    Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The 'metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-1R spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short- chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The `metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that

  20. Carbon remineralization in a north Florida swamp forest: Effects of water level on the pathways and rates of soil organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Happell, James D.; Chanton, Jeffrey P.

    1993-09-01

    Water level controlled gas emissions from North Florida swamp forests. Under flooded conditions, CO2 and CH4 were the principle carbon gases transported to the atmosphere by bubble ebullition and molecular diffusion. The respective emission rates were for CO2, 29.3 ± 16.4 (13% by means of ebullition, 87% by means of diffusion, error is ± 1 standard deviation throughout) and for CH4, 2.16 ± 2.24 (45% by means of ebullition, 55% by means of diffusion) mol m-2 yr-1. Methane emissions were significantly attenuated by CH4 oxidation which occurred primarily at the sediment-water interface. Forty-six ± 22 % (n=19) of the belowground CH4 diffusing to this interface was oxidized before it could escape to the atmosphere. Under dry conditions, CO2 was the principle carbon gas released and atmospheric CH4 was consumed by microbes in the soil. The respective rates were 101.2 ± 26.80 and -0.015 ± 0.005 mol mr-2 yr-1. A carbon budget for the degradation of soil organic matter was developed for a swamp forest site under flooded and dry conditions. Assuming that live root respiration accounted for 67% (value determined in a swamp forest and is at the upper range of literature values) of the total CO2 emissions (given above), we calculate that under flooded conditions carbon remineralization proceeded at a total rate of 11.9 mol C m-2 yr-1. Forty-nine percent of the remineralization was by means of nonmethanogenic processes which produce CO2; the balance was by means of methanogenic processes, which produce both CH4 and CO2. Under dry conditions, remineralization was dominated by aerobic processes at a rate of 33.7 mol C m-2 yr-1. Carbon inputs to the soil occurred by aboveground and belowground production. Aboveground litter production contributed 25.6 mol C m-2 yr-1. If belowground production contributed an equal amount, then over the course of this study organic carbon accumulated in the soils at rates of 39.3 and 17.5 mol C m-2 yr-1 under flooded and dry conditions

  1. Discharge Behavior Modeling of Traction lead-Acid Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Q.; Zhou, D. S.; Feng, N. L.; Wen, N.

    2010-03-01

    In hybrid electric vehicles, one of the key tasks for the battery management system is to maintain the batteries in the proper range which can fulfill the requirement of energy flow. Considering the dynamic operating conditions of traction batteries, an equivalent circuit model is proposed to simulate electro-chemical characteristics of the battery. According to the dynamic equations of the circuit model, internal parameters can be induced through battery response under pulse current test. Different experiments are implemented exploring how the internal parameters vary with the depth of discharge, which is critical for the battery management to determine the energy conversion range.

  2. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities

    USGS Publications Warehouse

    Kidd, Haack S.; Garchow, H.; Odelson, D.A.; Forney, L.J.; Klug, M.J.

    1994-01-01

    We determined the accuracy and reproducibility of whole-community fatty acid methyl ester (FAME) analysis with two model bacterial communities differing in composition by using the Microbial ID, Inc. (MIDI), system. The biomass, taxonomic structure, and expected MIDI-FAME profiles under a variety of environmental conditions were known for these model communities a priori. Not all members of each community could be detected in the composite profile because of lack of fatty acid 'signatures' in some isolates or because of variations (approximately fivefold) in fatty acid yield across taxa. MIDI- FAME profiles of replicate subsamples of a given community were similar in terms of fatty acid yield per unit of community dry weight and relative proportions of specific fatty acids. Principal-components analysis (PCA) of MIDI-FAME profiles resulted in a clear separation of the two different communities and a clustering of replicates of each community from two separate experiments on the first PCA axis. The first PCA axis accounted for 57.1% of the variance in the data and was correlated with fatty acids that varied significantly between communities and reflected the underlying community taxonomic structure. On the basis of our data, community fatty acid profiles can be used to assess the relative similarities and differences of microbial communities that differ in taxonomic composition. However, detailed interpretation of community fatty acid profiles in terms of biomass or community taxonomic composition must be viewed with caution until our knowledge of the quantitative and qualitative distribution of fatty acids over a wide variety of taxa and the effects of growth conditions on fatty acid profiles is more extensive.

  3. Incinerator ash dissolution model for the system: Plutonium, nitric acid and hydrofluoric acid

    SciTech Connect

    Brown, E V

    1988-06-01

    This research accomplished two goals. The first was to develop a computer program to simulate a cascade dissolver system. This program would be used to predict the bulk rate of dissolution in incinerator ash. The other goal was to verify the model in a single-stage dissolver system using Dy/sub 2/O/sub 3/. PuO/sub 2/ (and all of the species in the incinerator ash) was assumed to exist as spherical particles. A model was used to calculate the bulk rate of plutonium oxide dissolution using fluoride as a catalyst. Once the bulk rate of PuO/sub 2/ dissolution and the dissolution rate of all soluble species were calculated, mass and energy balances were written. A computer program simulating the cascade dissolver system was then developed. Tests were conducted on a single-stage dissolver. A simulated incinerator ash mixture was made and added to the dissolver. CaF/sub 2/ was added to the mixture as a catalyst. A 9M HNO/sub 3/ solution was pumped into the dissolver system. Samples of the dissolver effluent were analyzed for dissolved and F concentrations. The computer program proved satisfactory in predicting the F concentrations in the dissolver effluent. The experimental sparge air flow rate was predicted to within 5.5%. The experimental percentage of solids dissolved (51.34%) compared favorably to the percentage of incinerator ash dissolved (47%) in previous work. No general conclusions on model verification could be reached. 56 refs., 11 figs., 24 tabs.

  4. The Omega-3 Fatty Acid Eicosapentaenoic Acid Accelerates Disease Progression in a Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Gladman, Stacy; Biggio, Maria Luigia; Marino, Marianna; Jayasinghe, Maduka; Ullah, Farhan; Dyall, Simon C.; Malaspina, Andrea; Bendotti, Caterina; Michael-Titus, Adina

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease characterised by loss of motor neurons that currently has no cure. Omega-3 polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), have many health benefits including neuroprotective and myoprotective potential. We tested the hypothesis that a high level of dietary EPA could exert beneficial effects in ALS. The dietary exposure to EPA (300 mg/kg/day) in a well-established mouse model of ALS expressing the G93A superoxide dismutase 1 (SOD1) mutation was initiated at a pre-symptomatic or symptomatic stage, and the disease progression was monitored until the end stage. Daily dietary EPA exposure initiated at the disease onset did not significantly alter disease presentation and progression. In contrast, EPA treatment initiated at the pre-symptomatic stage induced a significantly shorter lifespan. In a separate group of animals sacrificed before the end stage, the tissue analysis showed that the vacuolisation detected in G93A-SOD1 mice was significantly increased by exposure to EPA. Although EPA did not alter motor neurone loss, EPA reversed the significant increase in activated microglia and the astrocytic activation seen in G93A-SOD1 mice. The microglia in the spinal cord of G93A-SOD1 mice treated with EPA showed a significant increase in 4-hydroxy-2-hexenal, a highly toxic aldehydic oxidation product of omega-3 fatty acids. These data show that dietary EPA supplementation in ALS has the potential to worsen the condition and accelerate the disease progression. This suggests that great caution should be exerted when considering dietary omega-3 fatty acid supplements in ALS patients. PMID:23620776

  5. Enhancement and modeling of microparticle-added Rhizopus oryzae lactic acid production.

    PubMed

    Coban, Hasan Bugra; Demirci, Ali

    2016-02-01

    Lactic acid has a wide industrial application area and can be produced by fungal strains. However, excessive bulk growth form of fungi during the fermentations is a major problem, which limits the fermentation performance. Microparticles are excellent tools to prevent bulk fungal growth and provide homogenized fermentation broth to increase uniformity and the prediction performance of the models. Therefore, in this study, addition of aluminum oxide and talcum microparticles into fermentations was evaluated to enhance the production of lactic acid by Rhizopus oryzae. The results showed that the bulk fungal growth was prevented and the lactic acid concentration increased from 6.02 to 13.88 and 24.01 g/L, when 15 g/L of aluminum oxide or 10 g/L of talcum was used, respectively, in the shake-flask fermentations. Additionally, substrate concentration, pH, and agitation were optimized in the bioreactors using response surface methodology, and optimum values were determined as 126 g/L of glucose, 6.22 pH, and 387 rpm, respectively. Under these conditions, lactic acid production further increased to 75.1 ± 1.5 g/L with 10 g/L of talcum addition. Also, lactic acid production and glucose consumption in the batch fermentation were successfully modeled with modified Gompertz model and modified logistic model. RMSE and MAE values for lactic acid production were calculated as 2.279 and 1.498 for the modified Gompertz model; 3.6 and 4.056 for the modified logistic model. Additionally, modified logistic model predicted glucose consumption with -2.088 MAE and 2.868 RMSE, whereas these values were calculated as 2.035 and 3.946 for the modified Gompertz model.

  6. Inflammation in Response to n3 Fatty Acids in a Porcine Obesity Model

    PubMed Central

    Faris, Richard J; Boddicker, Rebecca L; Walker-Daniels, Jennifer; Li, Jenny; Jones, Douglas E; Spurlock, Michael E

    2012-01-01

    Fatty acids have distinct cellular effects related to inflammation and insulin sensitivity. Dietary saturated fat activates toll-like receptor 4, which in turn can lead to chronic inflammation, insulin resistance, and adipose tissue macrophage infiltration. Conversely, n3 fatty acids are generally antiinflammatory and promote insulin sensitivity, in part via peroxisome proliferator-activated receptor γ. Ossabaw swine are a useful biomedical model of obesity. We fed Ossabaw pigs either a low-fat control diet or a diet containing high-fat palm oil with or without additional n3 fatty acids for 30 wk to investigate the effect of saturated fats and n3 fatty acids on obesity-linked inflammatory markers. The diet did not influence the inflammatory markers C-reactive protein, TNFα, IL6, or IL12. In addition, n3 fatty acids attenuated the increase in inflammatory adipose tissue CD16–CD14+ macrophages induced by high palm oil. High-fat diets with and without n3 fatty acids both induced hyperglycemia without hyperinsulinemia. The high-fat only group but not the high-fat group with n3 fatty acids showed reduced insulin sensitivity in response to insulin challenge. This effect was not mediated by decreased phosphorylation of protein kinase B. Therefore, in obese Ossabaw swine, n3 fatty acids partially attenuate insulin resistance but only marginally change inflammatory status and macrophage phenotype in adipose tissue. PMID:23561883

  7. Degradation kinetic modelling of ascorbic acid and colour intensity in pasteurised blood orange juice during storage.

    PubMed

    Remini, Hocine; Mertz, Christian; Belbahi, Amine; Achir, Nawel; Dornier, Manuel; Madani, Khodir

    2015-04-15

    The stability of ascorbic acid and colour intensity in pasteurised blood orange juice (Citrus sinensis [L.] Osbeck) during one month of storage was investigated at 4-37 °C. The effects of ascorbic acid fortification (at 100, 200 mg L(-1)) and deaeration, temperature/time storage on the kinetic behaviour were determined. Ascorbic acid was monitored by HPLC-DAD and colour intensity by spectrophotometric measurements. Degradation kinetics were best fitted by first-order reaction models for both ascorbic acid and colour intensity. Three models (Arrhenius, Eyring and Ball) were used to assess the temperature-dependent degradation. Following the Arrhenius model, activation energies were ranged from 51 to 135 kJ mol(-1) for ascorbic acid and from 49 to 99 kJ mol(-1) for colour intensity. The effect of storage temperature and deaeration are the most influent factors on kinetics degradation, while the fortification revealed no significant effect on ascorbic acid content and colour intensity.

  8. Colored petri nets to model gene mutation and amino acids classification.

    PubMed

    Yang, Jinliang; Gao, Rui; Meng, Max Q-H; Tarn, Tzyh-Jong

    2012-05-07

    The genetic code is the triplet code based on the three-letter codons, which determines the specific amino acid sequences in proteins synthesis. Choosing an appropriate model for processing these codons is a useful method to study genetic processes in Molecular Biology. As an effective modeling tool of discrete event dynamic systems (DEDS), colored petri net (CPN) has been used for modeling several biological systems, such as metabolic pathways and genetic regulatory networks. According to the genetic code table, CPN is employed to model the process of genetic information transmission. In this paper, we propose a CPN model of amino acids classification, and further present the improved CPN model. Based on the model mentioned above, we give another CPN model to classify the type of gene mutations via contrasting the bases of DNA strands and the codons of amino acids along the polypeptide chain. This model is helpful in determining whether a certain gene mutation will cause the changes of the structures and functions of protein molecules. The effectiveness and accuracy of the presented model are illustrated by the examples in this paper.

  9. Alternative models for describing the acid unfolding of the apomyoglobin folding intermediate.

    PubMed

    Kay, M S; Baldwin, R L

    1998-05-26

    The acid-induced unfolding of the pH 4 intermediate of apomyoglobin (I) is described by either of two models: (1) a Monod-Wyman-Changeux-based model (MWC) where salt bridges perturb the pKa values of specific ionizable side chains, causing unfolding of I as these salt bridges are broken at low pH, and (2) the Linderstrom-Lang smeared charge model (L-L), which attributes acid unfolding of I to charge repulsion caused by the accumulation of positive charge on the surface of the protein. Both models fit earlier acid unfolding data well, but they make differing predictions about the effects of electrostatic mutants, which have been made and tested. Deletions of positive charge within I are found to stabilize I, but disruptions of potential salt bridges have little effect. These results show that the acid unfolding of I (I<-->U) is largely caused by generalized charge effects rather than by the loss of specific salt bridges. Acid unfolding of the native form, which is caused largely by a single histidine with a severely depressed pKa, is a sensitive indicator of changes in stability produced by mutations. In contrast, the I <--> U transition is caused by a number of groups with smaller pKa perturbations and both models predict that the pH midpoint of the I right harpoon over left harpoon U transition is an insensitive indicator of stability. This result reconciles previous conflicting results, in urea and acid unfolding studies of hydrophobic contact mutants, by showing that changes in the stability of I are poorly detected by acid unfolding.

  10. Comparison of parameterized nitric acid rainout rates using a coupled stochastic-photochemical tropospheric model

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.; Thompson, Anne M.; Owens, Melody A.; Herwehe, Jerold A.

    1989-01-01

    A major tropospheric loss of soluble species such as nitric acid results from scavenging by water droplets. Several theoretical formulations have been advanced which relate an effective time-independent loss rate for soluble species to statistical properties of precipitation such as the wet fraction and length of a precipitation cycle. In this paper, various 'effective' loss rates that have been proposed are compared with the results of detailed time-dependent model calculations carried out over a seasonal time scale. The model is a stochastic precipitation model coupled to a tropospheric photochemical model. The results of numerous time-dependent seasonal model runs are used to derive numerical values for the nitric acid residence time for several assumed sets of preciptation statistics. These values are then compared with the results obtained by utilizing theoretical 'effective' loss rates in time-independent models.

  11. Manual of phosphoric acid fuel cell stack three-dimensional model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    A detailed distributed mathematical model of phosphoric acid fuel cell stack have been developed, with the FORTRAN computer program, for analyzing the temperature distribution in the stack and the associated current density distribution on the cell plates. Energy, mass, and electrochemical analyses in the stack were combined to develop the model. Several reasonable assumptions were made to solve this mathematical model by means of the finite differences numerical method.

  12. In vitro evaluation of different remineralization periods in improving the resistance of previously eroded bovine dentine against tooth-brushing abrasion.

    PubMed

    Attin, T; Buchalla, W; Putz, B

    2001-09-01

    One dentine specimen was prepared from each of 90 bovine incisors. The samples were then evenly distributed among nine groups (A-I) and submitted to 10 alternating de- and re-mineralization cycles, including abrasion by tooth brushing. Each cycle started with a demineralization using the erosive soft drink Sprite Light for 1 min, followed by storing the samples in pooled human saliva for a total of 240 min. The specimens were removed from the saliva at different intervals (group A, 0 min; B, 15 min; C, 30 min; D, 45 min; E, 60 min; F, 90 min; G, 120 min) and brushed in an automatic brushing machine. Groups H (erosion, but no brushing) and I (no erosion, but brushing), which were also stored in saliva for 240 min, served as controls. After these cycles, loss of dentine was determined by profilometry, producing the following values (mean+/-S.D.), which were analysed statistically (P< or = 0.05): group A (5.03+/-1.49 microm), B (4.44+/-1.09 microm), C (4.91+/-0.95 microm), D (5.47+/-1.52 microm), E (5.29+/-1.45 microm), F (4.76+/-0.74 microm), G (5.16+/-0.71 microm), H (2.61+/-1.31), I (1.11+/-0.39). Groups A-G had no significant differences, but they showed a significantly greater loss of dentine than groups H and I. It is concluded that the abrasion resistance of eroded bovine dentine is still decreased after a remineralization period of 120 min.

  13. A Systems Model for Ursodeoxycholic Acid Metabolism in Healthy and Patients With Primary Biliary Cirrhosis

    PubMed Central

    Dobbins, RL; O'Connor‐Semmes, RL; Young, MA

    2016-01-01

    A systems model was developed to describe the metabolism and disposition of ursodeoxycholic acid (UDCA) and its conjugates in healthy subjects based on pharmacokinetic (PK) data from published studies in order to study the distribution of oral UDCA and potential interactions influencing therapeutic effects upon interruption of its enterohepatic recirculation. The base model was empirically adapted to patients with primary biliary cirrhosis (PBC) based on current understanding of disease pathophysiology and clinical measurements. Simulations were performed for patients with PBC under two competing hypotheses: one for inhibition of ileal absorption of both UDCA and conjugates and the other only of conjugates. The simulations predicted distinctly different bile acid distribution patterns in plasma and bile. The UDCA model adapted to patients with PBC provides a platform to investigate a complex therapeutic drug interaction among UDCA, UDCA conjugates, and inhibition of ileal bile acid transport in this rare disease population. PMID:27537780

  14. Models of metal binding structures in fulvic acid from the Suwannee River, Georgia

    SciTech Connect

    Leenheer, J.A.; Brown, G.K.; Cabaniss, S.E.; MacCarthy, P.

    1998-08-15

    Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca{sup 2+}, Cd{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca{sup 2+} ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The metal binding fraction was characterized by quantitative {sup 13}C NMR, {sup 1}H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca{sup 2+} binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.

  15. Homology Modeling of Human γ-Butyric Acid Transporters and the Binding of Pro-Drugs 5-Aminolevulinic Acid and Methyl Aminolevulinic Acid Used in Photodynamic Therapy

    PubMed Central

    Baglo, Yan; Gabrielsen, Mari; Sylte, Ingebrigt; Gederaas, Odrun A.

    2013-01-01

    Photodynamic therapy (PDT) is a safe and effective method currently used in the treatment of skin cancer. In ALA-based PDT, 5-aminolevulinic acid (ALA), or ALA esters, are used as pro-drugs to induce the formation of the potent photosensitizer protoporphyrin IX (PpIX). Activation of PpIX by light causes the formation of reactive oxygen species (ROS) and toxic responses. Studies have indicated that ALA and its methyl ester (MAL) are taken up into the cells via γ-butyric acid (GABA) transporters (GATs). Uptake via GATs into peripheral sensory nerve endings may also account for one of the few adverse side effects of ALA-based PDT, namely pain. In the present study, homology models of the four human GAT subtypes were constructed using three x-ray crystal structures of the homologous leucine transporter (LeuT) as templates. Binding of the native substrate GABA and the possible substrates ALA and MAL was investigated by molecular docking of the ligands into the central putative substrate binding sites in the outward-occluded GAT models. Electrostatic potentials (ESPs) of the putative substrate translocation pathway of each subtype were calculated using the outward-open and inward-open homology models. Our results suggested that ALA is a substrate of all four GATs and that MAL is a substrate of GAT-2, GAT-3 and BGT-1. The ESP calculations indicated that differences likely exist in the entry pathway of the transporters (i.e. in outward-open conformations). Such differences may be exploited for development of inhibitors that selectively target specific GAT subtypes and the homology models may hence provide tools for design of therapeutic inhibitors that can be used to reduce ALA-induced pain. PMID:23762315

  16. Assessment of the Impact of Zoledronic Acid on Ovariectomized Osteoporosis Model Using Micro-CT Scanning

    PubMed Central

    Shuai, Bo; Shen, Lin; Yang, Yanping; Ma, Chen; Zhu, Rui; Xu, Xiaojuan

    2015-01-01

    Purpose/Objective Prompted by preliminary findings, this study was conducted to investigate the impact of zoledronic acid on the cancellous bone microstructure and its effect on the level of β-catenin in a mouse model of postmenopausal osteoporosis. Methods and Materials 96 8-week-old specific-pathogen-free C57BL/6 mice were randomly divided into 4 groups (24 per group): a sham group, an ovariectomized osteoporosis model group, an estradiol-treated group, and a zoledronic acid-treated group. Five months after surgery, the third lumbar vertebra and left femur of the animals were dissected and scanned using micro-computed tomography (micro-CT) to acquire three-dimensional imagery of their cancellous bone microstructure. The impact of ovariectomy, the effect of estradiol, and the effect of zoledronic acid intervention on cancellous bone microstructure, as well as on the expression of β-catenin, were evaluated. Results The estradiol-treated and the zoledronic acid-treated group exhibited a significant increase in the bone volume fraction, trabecular number, trabecular thickness, bone surface to bone volume ratio (BS/BV), and β-catenin expression, when compared with those of the control group (P <0.01). In contrast, the structure model index, trabecular separation, and BS/BV were significantly lower compared with those of the model group (P <0.01). No differences were observed in the above parameters between animals of the zoledronic acid-treated and the estradiol-treated group. Conclusion These results suggest that increased β-catenin expression may be the mechanism underlying zoledronic acid-related improvement in the cancellous bone microstructure in ovariectomized mice. Our findings provide a scientific rationale for using zoledronic acid as a therapeutic intervention to prevent bone loss in post-menopausal women. PMID:26148020

  17. Comparison of the SAWNUC model with CLOUD measurements of sulphuric acid-water nucleation.

    PubMed

    Ehrhart, Sebastian; Ickes, Luisa; Almeida, Joao; Amorim, Antonio; Barmet, Peter; Bianchi, Federico; Dommen, Josef; Dunne, Eimear M; Duplissy, Jonathan; Franchin, Alessandro; Kangasluoma, Juha; Kirkby, Jasper; Kürten, Andreas; Kupc, Agnieszka; Lehtipalo, Katrianne; Nieminen, Tuomo; Riccobono, Francesco; Rondo, Linda; Schobesberger, Siegfried; Steiner, Gerhard; Tomé, António; Wimmer, Daniela; Baltensperger, Urs; Wagner, Paul E; Curtius, Joachim

    2016-10-27

    Binary nucleation of sulphuric acid-water particles is expected to be an important process in the free troposphere at low temperatures. SAWNUC (Sulphuric Acid Water Nucleation) is a model of binary nucleation that is based on laboratory measurements of the binding energies of sulphuric acid and water in charged and neutral clusters. Predictions of SAWNUC are compared for the first time comprehensively with experimental binary nucleation data from the CLOUD chamber at European Organization for Nuclear Research. The experimental measurements span a temperature range of 208-292 K, sulphuric acid concentrations from 1·10(6) to 1·10(9) cm(-3), and distinguish between ion-induced and neutral nucleation. Good agreement, within a factor of 5, is found between the experimental and modeled formation rates for ion-induced nucleation at 278 K and below and for neutral nucleation at 208 and 223 K. Differences at warm temperatures are attributed to ammonia contamination which was indicated by the presence of ammonia-sulphuric acid clusters, detected by an Atmospheric Pressure Interface Time of Flight (APi-TOF) mass spectrometer. APi-TOF measurements of the sulphuric acid ion cluster distributions ( (H2SO4)i·HSO4- with i = 0, 1, ..., 10) show qualitative agreement with the SAWNUC ion cluster distributions. Remaining differences between the measured and modeled distributions are most likely due to fragmentation in the APi-TOF. The CLOUD results are in good agreement with previously measured cluster binding energies and show the SAWNUC model to be a good representation of ion-induced and neutral binary nucleation of sulphuric acid-water clusters in the middle and upper troposphere.

  18. Comparison of the SAWNUC model with CLOUD measurements of sulphuric acid-water nucleation

    NASA Astrophysics Data System (ADS)

    Ehrhart, Sebastian; Ickes, Luisa; Almeida, Joao; Amorim, Antonio; Barmet, Peter; Bianchi, Federico; Dommen, Josef; Dunne, Eimear M.; Duplissy, Jonathan; Franchin, Alessandro; Kangasluoma, Juha; Kirkby, Jasper; Kürten, Andreas; Kupc, Agnieszka; Lehtipalo, Katrianne; Nieminen, Tuomo; Riccobono, Francesco; Rondo, Linda; Schobesberger, Siegfried; Steiner, Gerhard; Tomé, António; Wimmer, Daniela; Baltensperger, Urs; Wagner, Paul E.; Curtius, Joachim

    2016-10-01

    Binary nucleation of sulphuric acid-water particles is expected to be an important process in the free troposphere at low temperatures. SAWNUC (Sulphuric Acid Water Nucleation) is a model of binary nucleation that is based on laboratory measurements of the binding energies of sulphuric acid and water in charged and neutral clusters. Predictions of SAWNUC are compared for the first time comprehensively with experimental binary nucleation data from the CLOUD chamber at European Organization for Nuclear Research. The experimental measurements span a temperature range of 208-292 K, sulphuric acid concentrations from 1·106 to 1·109 cm-3, and distinguish between ion-induced and neutral nucleation. Good agreement, within a factor of 5, is found between the experimental and modeled formation rates for ion-induced nucleation at 278 K and below and for neutral nucleation at 208 and 223 K. Differences at warm temperatures are attributed to ammonia contamination which was indicated by the presence of ammonia-sulphuric acid clusters, detected by an Atmospheric Pressure Interface Time of Flight (APi-TOF) mass spectrometer. APi-TOF measurements of the sulphuric acid ion cluster distributions ((H2SO4)i·HSO4- with i = 0, 1, ..., 10) show qualitative agreement with the SAWNUC ion cluster distributions. Remaining differences between the measured and modeled distributions are most likely due to fragmentation in the APi-TOF. The CLOUD results are in good agreement with previously measured cluster binding energies and show the SAWNUC model to be a good representation of ion-induced and neutral binary nucleation of sulphuric acid-water clusters in the middle and upper troposphere.

  19. The Effects of Proresolution of Ellagic Acid in an Experimental Model of Allergic Airway Inflammation

    PubMed Central

    de Freitas Alves, Claudiney; Angeli, Giovanna Natalia; Favarin, Daniely Cornélio; Lemos de Andrade, Edinéia; Lazo Chica, Javier Emilio; Faccioli, Lúcia Helena; Roberto da Silva, Paulo; de Paula Rogerio, Alexandre

    2013-01-01

    Asthma is a disease of airway inflammation characterized by airway hyperresponsiveness, eosinophilic inflammation, and hypersecretion of mucus. Ellagic acid, a compound derived from medicinal plants and fruits, has shown anti-inflammatory activity in several experimental disease models. We used the classical experimental model, in BALB/c mice, of sensibilization with ovalbumin to determine the effect of ellagic acid (10 mg/kg; oral route) in the resolution of allergic airways response. Dexamethasone (1 mg/kg; subcutaneous route) was used as a positive control. The control group consisted of nonimmunized mice that received challenge with ovalbumin. Ellagic acid and dexamethasone or vehicle (water) were administered before or after intranasal allergen challenge. Ellagic acid accelerated the resolution of airways inflammation by decreasing total leukocytes and eosinophils numbers in the bronchoalveolar lavage fluid (BALF), the mucus production and lung inflammation in part by reducing IL-5 concentration, eosinophil peroxidase (EPO) activity, and P-selectin expression, but not activator protein 1 (AP-1) and nuclear factor kappa B (NF-κB) pathways. In addition, ellagic acid enhanced alveolar macrophage phagocytosis of IgG-OVA-coated beads ex vivo, a new proresolving mechanism for the clearance of allergen from the airways. Together, these findings identify ellagic acid as a potential therapeutic agent for accelerating the resolution of allergic airways inflammation. PMID:24376308

  20. Adsorption of small weak organic acids on goethite: Modeling of mechanisms

    SciTech Connect

    Filius, J.D.; Hiemstra, T.; Riemsdijk, W.H. Van

    1997-11-15

    The adsorption of lactate, oxalate, malonate, phthalate, and citrate has been determined experimentally as a function of concentration, pH, and ionic strength. The data have been described with the CD-MUSIC model of Hiemstra and Van Riemsdijk which allows a distribution of charge of the organic molecule over the surface and the Stern layer. Simultaneously, the concentration, pH, and salt dependency as well as the basic charging behavior of goethite could be described well. On the basis of model calculations, a distinction is made between inner and outer sphere complexation of weak organic acids by goethite. The results indicate that the affinity of the organic acids is dominated by the electrostatic attraction. The intrinsic affinity constants for the exchange reaction of surface water groups and organic acids, expressed per bond, increases with increasing number of reactive groups on the organic molecule. Ion pair formation between noncoordinated carboxylic groups of adsorbed organic acids and cations of the background electrolyte proved to be important for the salt dependency. The knowledge obtained may contribute to the interpretation of the binding of larger organic acids like fulvic and humic acids.

  1. Model Systems of Precursor Cellular Membranes: Long-Chain Alcohols Stabilize Spontaneously Formed Oleic Acid Vesicles

    PubMed Central

    Rendón, Adela; Carton, David Gil; Sot, Jesús; García-Pacios, Marcos; Montes, Ruth; Valle, Mikel; Arrondo, José-Luis R.; Goñi, Felix M.; Ruiz-Mirazo, Kepa

    2012-01-01

    Oleic acid vesicles have been used as model systems to study the properties of membranes that could be the evolutionary precursors of more complex, stable, and impermeable phospholipid biomembranes. Pure fatty acid vesicles in general show high sensitivity to ionic strength and pH variation, but there is growing evidence that this lack of stability can be counterbalanced through mixtures with other amphiphilic or surfactant compounds. Here, we present a systematic experimental analysis of the oleic acid system and explore the spontaneous formation of vesicles under different conditions, as well as the effects that alcohols and alkanes may have in the process. Our results support the hypothesis that alcohols (in particular 10- to 14-C-atom alcohols) contribute to the stability of oleic acid vesicles under a wider range of experimental conditions. Moreover, studies of mixed oleic-acid-alkane and oleic-acid-alcohol systems using infrared spectroscopy and Langmuir trough measurements indicate that precisely those alcohols that increased vesicle stability also decreased the mobility of oleic acid polar headgroups, as well as the area/molecule of lipid. PMID:22339864

  2. Modeling the degradation of Portland cement pastes by biogenic organic acids

    SciTech Connect

    De Windt, Laurent; Devillers, Philippe

    2010-08-15

    Reactive transport models can be used to assess the long-term performance of cement-based materials subjected to biodegradation. A bioleaching test (with Aspergillus niger fungi) applied to ordinary Portland cement pastes during 15 months is modeled with HYTEC. Modeling indicates that the biogenic organic acids (acetic, butyric, lactic and oxalic) strongly accelerate hydrate dissolution by acidic hydrolysis whilst their complexation of aluminum has an effect on the secondary gel stability only. The deepest degradation front corresponds to portlandite dissolution and decalcification of calcium silicate hydrates. A complex pattern of sulfate phases dissolution and precipitation takes place in an intermediate zone. The outermost degraded zone consists of alumina and silica gels. The modeling accurateness of calcium leaching, pH evolution and degradation thickness is consistently enhanced whilst considering increase of diffusivity in the degraded zones. Precipitation of calcium oxalate is predicted by modeling but was hindered in the bioleaching reactor.

  3. Ultraviolet-induced oxidation of ascorbic acid in a model juice system: identification of degradation products.

    PubMed

    Tikekar, Rohan V; Anantheswaran, Ramaswamy C; Elias, Ryan J; LaBorde, Luke F

    2011-08-10

    Degradation products of ultraviolet (UV-C, 254 nm) treated ascorbic acid (AA) are reported. Analysis by high-performance liquid chromatography-mass spectroscopy (HPLC-MS) conducted in a 0.5% malic acid model juice system (pH 3.3) demonstrated increased degradation of AA above untreated controls with concomitant increases in dehydroascorbic acid (DHA) and 2,3-diketogulonic acid (DKGA) levels. Electron spin resonance (ESR) spectroscopy studies, conducted in phosphate buffer (pH 7.0) to increase detection sensitivity, demonstrated that ascorbyl radical (AA•) formation occurs simultaneously with AA degradation. Consistent with a previous study in which UV treatments were shown to accelerate dark storage degradation, AA• radicals continued to form for up to 200 min after an initial UV treatment. Results from this study suggest that the mechanism for UV-induced degradation is the same as the general mechanism for metal-catalyzed oxidation of AA in juice.

  4. Cloning and comparative protein modeling of two purple acid phosphatase isozymes from sweet potatoes (Ipomoea batatas).

    PubMed

    Durmus, A; Eicken, C; Spener, F; Krebs, B

    1999-09-14

    The sequence of cDNA fragments of two isozymes of the purple acid phosphatase from sweet potato (spPAP1 and spPAP2) has been determined by 5' and 3' rapid amplification of cDNA ends protocols using oligonucleotide primers based on amino acid information. The encoded amino acid sequences of these two isozymes show an equidistance of 72-77% not only to each other, but also to the primary structure of the purple acid phosphatase from red kidney bean (kbPAP). A three-dimensional model of the active site has been constructed for spPAP2 on the basis of the kbPAP crystallographic structure that helps to explain the reported differences in the visible and EPR spectra of spPAP2 and kbPAP.

  5. Fat-1 transgenic cattle as a model to study the function of ω-3 fatty acids.

    PubMed

    Guo, Tao; Liu, Xin F; Ding, Xiang B; Yang, Fei F; Nie, Yong W; An, Yu J; Guo, Hong

    2011-12-29

    ω-3 polyunsaturated fatty acids have been shown to play an important role in health. Enriched with ω-3 polyunsaturated fatty acids modulate expression of a number of genes with such broad functions as cell proliferation, growth and apoptosis and cell signaling and transduction, these effects, seem to regulate coronary artery disease, hypertension, atherosclerosis, psychiatric disorders and various cancer. In this context, fat-1 transgenic cattle was designed to convert ω-6 to ω-3 fatty acids could form an ideal model to study the effect of ω-3 fatty acids on the above functions. This study focuses on the total genomic difference of gene expression between fat-1 transgenic cattle and wild-type using cDNA microarrays, several genes were found to be overexpressed or suppressed in transgenic cattle relative to wild-type, these discrepancy genes related with lipid metabolism, immunity, inflammation nervous development and fertility.

  6. A MULTISTAGE BIOLOGICALLY BASED MATHEMATICAL MODEL FOR MOUSE LIVER TUMORS INDUCED BY DICHLOROACETIC ACID (DCA) - EXPLORATION OF THE MODEL

    EPA Science Inventory

    A biologically based mathematical model for the induction of liver tumors in mice by dichloroacetic acid (DCA) has been developed from histopathologic analysis of the livers of exposed mice. This analysis suggests that following chronic exposure to DCA, carcinomas can arise dire...

  7. A physiologically based pharmacokinetic model for Valproic acid in adults and children.

    PubMed

    Ogungbenro, Kayode; Aarons, Leon

    2014-10-15

    Valproic acid is an anti-convulscant drug that is widely used in the treatment of different types of epilepsy and since its introduction the clinical use has increased rapidly both as a sole agent and in combination therapies. The mechanism of action has been linked to blockade of voltage-dependent sodium channels and potentiation of GABAergic transmission. The most widely used route of administration of Valproic acid is oral, although it can also be given intravenously and rectally and its pharmacokinetics has been studied extensively. The aim of this work was to develop a physiologically based pharmacokinetic model for plasma and tissue/organ prediction in children and adults following intravenous and oral dosing of Valproic acid. The plasma/tissue concentration profile will be used for clinical trial simulation in Dravet syndrome, a rare form of epilepsy in children where the combination of Valproic acid, stiripentol and clobazam has shown remarkable results. A physiologically based pharmacokinetic model was developed with compartments for gut lumen, enterocyte, gut tissue, systemic blood, kidney, liver, brain, spleen, muscle and rest of body. System and drug specific parameters for the model were obtained from the literature from in vitro and in vivo experiments. The model was initially developed for adults and scaled to children using age-dependent changes in anatomical and physiological parameters and ontogeny functions for enzyme maturation assuming the same elimination pathways in adults and children. The results from the model validation showed satisfactory prediction of plasma concentration both in terms of mean prediction and variability in children and adults following intravenous and oral dosing especially after single doses. The model also adequately predicts clearance in children. Due to limited distribution of Valproic acid into tissues, the concentration in plasma is about 8-9 times higher than tissues/organs. The model could help to improve

  8. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model.

    PubMed

    Dimiev, Ayrat M; Alemany, Lawrence B; Tour, James M

    2013-01-22

    The existing structural models of graphene oxide (GO) contradict each other and cannot adequately explain the acidity of its aqueous solutions. Inadequate understanding of chemical structure can lead to a misinterpretation of observed experimental phenomena. Understanding the chemistry and structure of GO should enable new functionalization protocols while explaining GO's limitations due to its water instability. Here we propose an unconventional view of GO chemistry and develop the corresponding "dynamic structural model" (DSM). In contrast to previously proposed models, the DSM considers GO as a system, constantly changing its chemical structure due to interaction with water. Using potentiometric titration, (13)C NMR, FTIR, UV-vis, X-ray photoelectron microscopy, thermogravimetric analysis, and scanning electron microscopy we show that GO does not contain any significant quantity of preexisting acidic functional groups, but gradually generates them through interaction with water. The reaction with water results in C-C bond cleavage, formation of vinylogous carboxylic acids, and the generation of protons. An electrical double layer formed at the GO interface in aqueous solutions plays an important role in the observed GO chemistry. Prolonged exposure to water gradually degrades GO flakes converting them into humic acid-like structures. The proposed DSM provides an explanation for the acidity of GO aqueous solutions and accounts for most of the known spectroscopic and experimental data.

  9. Does folic acid supplementation prevent or promote colorectal cancer? Results from model-based predictions.

    PubMed

    Luebeck, E Georg; Moolgavkar, Suresh H; Liu, Amy Y; Boynton, Alanna; Ulrich, Cornelia M

    2008-06-01

    Folate is essential for nucleotide synthesis, DNA replication, and methyl group supply. Low-folate status has been associated with increased risks of several cancer types, suggesting a chemopreventive role of folate. However, recent findings on giving folic acid to patients with a history of colorectal polyps raise concerns about the efficacy and safety of folate supplementation and the long-term health effects of folate fortification. Results suggest that undetected precursor lesions may progress under folic acid supplementation, consistent with the role of folate role in nucleotide synthesis and cell proliferation. To better understand the possible trade-offs between the protective effects due to decreased mutation rates and possibly concomitant detrimental effects due to increased cell proliferation of folic acid, we used a biologically based mathematical model of colorectal carcinogenesis. We predict changes in cancer risk based on timing of treatment start and the potential effect of folic acid on cell proliferation and mutation rates. Changes in colorectal cancer risk in response to folic acid supplementation are likely a complex function of treatment start, duration, and effect on cell proliferation and mutations rates. Predicted colorectal cancer incidence rates under supplementation are mostly higher than rates without folic acid supplementation unless supplementation is initiated early in life (before age 20 years). To the extent to which this model predicts reality, it indicates that the effect on cancer risk when starting folic acid supplementation late in life is small, yet mostly detrimental. Experimental studies are needed to provide direct evidence for this dual role of folate in colorectal cancer and to validate and improve the model predictions.

  10. Phytic acid as a potential treatment for Alzheimer's pathology: evidence from animal and in vitro models

    PubMed Central

    Anekonda, Thimmappa S.; Wadsworth, Teri L.; Sabin, Robert; Frahler, Kate; Harris, Christopher; Petriko, Babett; Ralle, Martina; Woltjer, Randy; Quinn, Joseph F.

    2010-01-01

    Alzheimer’s disease (AD) causes progressive age-dependent cortical and hippocampal dysfunctions leading to abnormal intellectual capacity and memory. We propose a novel protective treatment for AD pathology with phytic acid (inositol hexakisphosphate), a phytochemical found in food grains and a key signaling molecule in mammalian cells. We evaluated the protective and beneficial effects of phytic acid against amyloid beta pathology in MC65 cells and the Tg2576 mouse model. In MC65 cells, 48–72-hour treatment with phytic acid provided complete protection against amyloid precursor protein-C-terminal fragment-induced cytotoxicity by attenuating levels of increased intracellular calcium, hydrogen peroxide, superoxide, beta amyloid oligomers, and moderately up-regulated the expression of autophagy (beclin-1) protein. In a tolerance paradigm, wild type mice were treated with 2% phytic acid in drinking water for 70 days. Phytic acid was well tolerated. Ceruloplasmin activity, brain copper and iron levels and brain superoxide dismutase and ATP levels were unaffected by the treatment. There was a significant increase in brain levels of cytochrome oxidase and a decrease in lipid peroxidation with phytic acid administration. In a treatment paradigm, 12-month old Tg2576 and wild type mice were treated with 2% phytic acid or vehicle for 6 months. Brain levels of copper, iron, and zinc were unaffected. The effects of phytic acid were modest on the expression of APP trafficking-associated protein AP180, autophagy-associated proteins (beclin-1, LC3B), sirtuin 1, the ratio of phosphorylated AMP-activated protein kinase (PAMPK) to AMPK, soluble Aβ1-40, and insoluble Aβ1-42. These results suggest that phytic acid may provide a viable treatment option for AD. PMID:20930278

  11. Phytic acid as a potential treatment for alzheimer's pathology: evidence from animal and in vitro models.

    PubMed

    Anekonda, Thimmappa S; Wadsworth, Teri L; Sabin, Robert; Frahler, Kate; Harris, Christopher; Petriko, Babett; Ralle, Martina; Woltjer, Randy; Quinn, Joseph F

    2011-01-01

    Alzheimer's disease (AD) causes progressive, age-dependent cortical and hippocampal dysfunction leading to abnormal intellectual capacity and memory. We propose a novel protective treatment for AD pathology with phytic acid (inositol hexakisphosphate), a phytochemical found in food grains and a key signaling molecule in mammalian cells. We evaluated the protective and beneficial effects of phytic acid against amyloid-β (Aβ) pathology in MC65 cells and the Tg2576 mouse model. In MC65 cells, 48-72-hour treatment with phytic acid provided complete protection against amyloid precursor protein-C-terminal fragment-induced cytotoxicity by attenuating levels of increased intracellular calcium, hydrogen peroxide, superoxide, Aβ oligomers, and moderately upregulated the expression of autophagy (beclin-1) protein. In a tolerance paradigm, wild type mice were treated with 2% phytic acid in drinking water for 70 days. Phytic acid was well tolerated. Ceruloplasmin activity, brain copper and iron levels, and brain superoxide dismutase and ATP levels were unaffected by the treatment. There was a significant increase in brain levels of cytochrome oxidase and a decrease in lipid peroxidation with phytic acid administration. In a treatment paradigm, 12-month old Tg2576 and wild type mice were treated with 2% phytic acid or vehicle for 6 months. Brain levels of copper, iron, and zinc were unaffected. The effects of phytic acid were modest on the expression of AβPP trafficking-associated protein AP180, autophagy-associated proteins (beclin-1, LC3B), sirtuin 1, the ratio of phosphorylated AMP-activated protein kinase (PAMPK) to AMPK, soluble Aβ1-40, and insoluble Aβ1-42. These results suggest that phytic acid may provide a viable treatment option for AD.

  12. Folic Acid Education for Hispanic Women: The Promotora de Salud Model

    PubMed Central

    Flores, Alina L.; Isenburg, Jennifer; Hillard, Christina L.; deRosset, Leslie; Colen, Lisa; Bush, Troy; Mai, Cara T.

    2017-01-01

    Background Although rates of neural tube defects (NTDs) have declined in the United States since fortification, disparities still exist with Hispanic women having the highest risk of giving birth to a baby with a NTD. The Promotora de Salud model has been shown to be an effective tool for reaching Hispanics for a variety of health topics; however, literature on its effectiveness in folic acid interventions is limited. Methods An intervention using the Promotora de Salud model was implemented in four U.S. counties with large populations of Hispanic women. The study comprised: 1) a written pre-test survey to establish baseline levels of folic acid awareness, knowledge, and consumption; 2) a small group education intervention along with a 90-day supply of multivitamins; and 3) a post-intervention (post-test) assessment conducted four months following the intervention. Results Statistically significant differences in pre- and post-tests were observed for general awareness about folic acid and vitamins, and specific knowledge about the benefits of folic acid. Statistically significant changes were also seen in vitamin consumption and multivitamin consumption. Folic acid supplement consumption increased dramatically by the end of the study. Conclusions The Promotora de Salud model relies on interpersonal connections forged between promotoras and the communities they serve to help drive positive health behaviors. The findings underscore the positive impact that these interpersonal connections can have on increasing awareness, knowledge, and consumption of folic acid. Utilizing the Promotora de Salud model to reach targeted populations might help organizations successfully implement their programs in a culturally appropriate manner. PMID:28067585

  13. Modeling and prediction of retardance in citric acid coated ferrofluid using artificial neural network

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Fung; Sheu, Jer-Jia

    2016-06-01

    Citric acid coated (citrate-stabilized) magnetite (Fe3O4) magnetic nanoparticles have been conducted and applied in the biomedical fields. Using Taguchi-based measured retardances as the training data, an artificial neural network (ANN) model was developed for the prediction of retardance in citric acid (CA) coated ferrofluid (FF). According to the ANN simulation results in the training stage, the correlation coefficient between predicted retardances and measured retardances was found to be as high as 0.9999998. Based on the well-trained ANN model, the predicted retardance at excellent program from Taguchi method showed less error of 2.17% compared with a multiple regression (MR) analysis of statistical significance. Meanwhile, the parameter analysis at excellent program by the ANN model had the guiding significance to find out a possible program for the maximum retardance. It was concluded that the proposed ANN model had high ability for the prediction of retardance in CA coated FF.

  14. Evaluation of the efficacy of four weak acids as antifungal preservatives in low-acid intermediate moisture model food systems.

    PubMed

    Huang, Yang; Wilson, Mark; Chapman, Belinda; Hocking, Ailsa D

    2010-02-01

    The potential efficacy of four weak acids as preservatives in low-acid intermediate moisture foods was assessed using a glycerol based agar medium. The minimum inhibitory concentrations (MIC, % wt./wt.) of each acid was determined at two pH values (pH 5.0, pH 6.0) and two a(w) values (0.85, 0.90) for five food spoilage fungi, Eurotium herbariorum, Eurotium rubrum, Aspergillus niger, Aspergillus flavus and Penicillium roqueforti. Sorbic acid, a preservative commonly used to control fungal growth in low-acid intermediate moisture foods, was included as a reference. The MIC values of the four acids were lower at pH 5.0 than pH 6.0 at equivalent a(w) values, and lower at 0.85 a(w) than 0.90 a(w) at equivalent pH values. By comparison with the MIC values of sorbic acid, those of caprylic acid and dehydroacetic acid were generally lower, whereas those for caproic acid were generally higher. No general observation could be made in the case of capric acid. The antifungal activities of all five weak acids appeared related not only to the undissociated form, but also the dissociated form, of each acid.

  15. Model Experiment of Thermal Runaway Reactions Using the Aluminum-Hydrochloric Acid Reaction

    ERIC Educational Resources Information Center

    Kitabayashi, Suguru; Nakano, Masayoshi; Nishikawa, Kazuyuki; Koga, Nobuyoshi

    2016-01-01

    A laboratory exercise for the education of students about thermal runaway reactions based on the reaction between aluminum and hydrochloric acid as a model reaction is proposed. In the introductory part of the exercise, the induction period and subsequent thermal runaway behavior are evaluated via a simple observation of hydrogen gas evolution and…

  16. Phosphoric acid fuel cell power plant system performance model and computer program

    NASA Technical Reports Server (NTRS)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  17. Effect of organic acids on Salmonella colonization and shedding in weaned piglets in a seeder model.

    PubMed

    Michiels, Joris; Missotten, Joris; Rasschaert, Geertrui; Dierick, Noël; Heyndrickx, Marc; De Smet, Stefaan

    2012-11-01

    Piglets (n = 128) weaned at 21 days of age were used in a 35-day seeder model to evaluate the effects of dietary additives differing in active ingredients, chemical, and physical formulation, and dose on Salmonella colonization and shedding and intestinal microbial populations. Treatments were a negative control (basal diet), the positive control (challenged, basal diet), and six treatments similar to the positive control but supplemented with the following active ingredients (dose excluding essential oils or natural extracts): triglycerides with butyric acid (1.30 g kg(-1)); formic and citric acids and essential oils (2.44 g kg(-1)); coated formic, coated sorbic, and benzoic acids (2.70 g kg(-1)); salts of formic, sorbic, acetic, and propionic acids, their free acids, and natural extracts (2.92 g kg(-1)); triglycerides with caproic and caprylic acids and coated oregano oil (1.80 g kg(-1)); and caproic, caprylic, lauric, and lactic acids (1.91 g kg(-1)). On day 6, half the piglets (seeder pigs) in each group were orally challenged with a Salmonella Typhimurium nalidixic acid-resistant strain (4 × 10(9) and 1.2 × 10(9) log CFU per pig in replicate experiments 1 and 2, respectively). Two days later, they were transferred to pens with an equal number of contact pigs. Salmonella shedding was determined 2 days after challenge exposure and then on a weekly basis. On day 34 or 35, piglets were euthanized to sample tonsils, ileocecal lymph nodes, and ileal and cecal digesta contents. The two additives, both containing short-chain fatty acids and one of them also containing benzoic acid and the other one also containing essential oils, and supplemented at more than 2.70 g kg(-1), showed evidence of reducing Salmonella fecal shedding and numbers of coliforms and Salmonella in cecal digesta. However, colonization of tonsils and ileocecal lymph nodes by Salmonella was not affected. Supplementing butyric acid and medium-chain fatty acids at the applied dose failed to inhibit

  18. Precipitation of heavy metals from acid mine drainage and their geochemical modeling

    NASA Astrophysics Data System (ADS)

    Petrilakova, Aneta; Balintova, Magdalena; Holub, Marian

    2014-06-01

    Geochemical modeling plays an increasingly vital role in a number of areas of geoscience, ranging from groundwater and surface water hydrology to environmental preservation and remediation. Geochemical modeling is also used to model the interaction processes at the water - sediment interface in acid mine drainage (AMD). AMD contains high concentrations of sulfate and dissolved metals and it is a serious environmental problem in eastern Slovakia. The paper is focused on comparing the results of laboratory precipitation of metal ions from AMD (the Smolnik creek, Slovakia) with the results obtained by geochemical modeling software Visual Minteq 3.0.

  19. A global three-dimensional model of the stratospheric sulfuric acid layer

    NASA Technical Reports Server (NTRS)

    Golombek, Amram; Prinn, Ronald G.

    1993-01-01

    A 3D model which encompasses SO2 production from OCS, followed by its oxidation to gaseous H2SO4, the condensation-evaporation equilibrium of gaseous and particulate H2SO4, and finally particle condensation and rainout, is presently used to study processes maintaining the nonvolcanically-perturbed stratosphere's sulfuric acid layer. A comparison of the results thus obtained with remotely sensed stratospheric aerosol extinction data shows the model to simulate the general behavior of stratospheric aerosol extinction.

  20. Cloud Condensation Nucleus Activity of calcite and calcite coated with model humic and fulvic acids

    NASA Astrophysics Data System (ADS)

    Hatch, C. D.; Gierlus, K. M.; Schuttlefield, J. D.; Grassian, V. H.

    2007-12-01

    Many recent studies have shown that organics can alter the water adsorption and cloud condensation nuclei (CCN) activity of common deliquescent species in the Earth's atmosphere. However, very little is known about the effect of organics on water adsorption and CCN activity of common inactive cloud nuclei, such as mineral aerosol. As many studies have shown that a large fraction of unidentified organic material in aerosol particles is composed of polycarboxylic acids resembling humic substances, the presence of these large molecular weight Humic-Like Substances (HULIS) may also alter the water adsorption and CCN activity of mineral aerosol. Thus, we have measured the water adsorption and CCN activity of model humic and fulvic acids. Additionally, the water adsorption and CCN activity of mineral aerosol particles coated with humic and fulvic acids have been studied. We find that humic and fulvic acids show continual multilayer water adsorption as the relative humidity is raised. Additionally, we find that calcite particles mixed with humic and fulvic acids take up more water by mass, by a factor of two, compared to the uncoated calcite particles at approximately 70% RH. CCN measurements also indicate that internally mixed calcite-humic or fulvic acid aerosols are more CCN active than the otherwise inactive, uncoated calcite particles. Our results suggest that mineral aerosol particles coated with high molecular weight organic materials will take up more water and become more efficient CCN in the Earth's atmosphere than single-component mineral aerosol.

  1. Model membranes prepared with ceramide EOS, cholesterol and free fatty acids form a unique lamellar phase.

    PubMed

    Groen, Daniel; Gooris, Gert S; Bouwstra, Joke A

    2010-03-16

    The lipid matrix present in the human stratum corneum (the thin, uppermost layer of the skin) is considered to play a crucial role in the skin barrier function. The lipid matrix consists of ceramides, cholesterol, and free fatty acids. The 13 nm lamellar phase present in the lipid matrix of the stratum corneum is very characteristic and plays an important role in the skin barrier function. One subclass of ceramides with a linoleic acid linked to a very long acyl (referred to as EOS) plays a crucial role in the formation of the 13 nm lamellar phase. In this article, we focus on the lipid phase behavior of EOS mixed with cholesterol or with cholesterol and free fatty acids. Our studies reveal that an equimolar ratio of EOS, cholesterol, and free fatty acids forms a lamellar phase with a very long repeat distance of approximately 14.7 nm. This phase exhibits exceptional behavior in that in the thermotropic response the fatty acid chains and the ceramide chains undergo an order-disorder transition in different temperature ranges while part of the hydrocarbon chains of ceramides and fatty acids are mixing in the orthorhombic lattice. On the basis of these observations, a molecular model for the 14.7 nm phase has been proposed in which the lipids are organized in a lamellar phase with three different lipid layers in a symmetric unit cell.

  2. From thiol to sulfonic acid: modeling the oxidation pathway of protein thiols by hydrogen peroxide.

    PubMed

    van Bergen, Laura A H; Roos, Goedele; De Proft, Frank

    2014-08-07

    Hydrogen peroxide is a natural oxidant that can oxidize protein thiols (RSH) via sulfenic acid (RSOH) and sulfinic acid (RSO2H) to sulfonic acid (RSO3H). In this paper, we study the complete anionic and neutral oxidation pathway from thiol to sulfonic acid. Reaction barriers and reaction free energies for all three oxidation steps are computed, both for the isolated substrates and for the substrates in the presence of different model ligands (CH4, H2O, NH3) mimicking the enzymatic environment. We found for all three barriers that the anionic thiolate is more reactive than the neutral thiol. However, the assistance of the environment in the neutral pathway in a solvent-assisted proton-exchange (SAPE) mechanism can lower the reaction barrier noticeably. Polar ligands can decrease the reaction barriers, whereas apolar ligands do not influence the barrier heights. The same holds for the reaction energies: they decrease (become more negative) in the presence of polar ligands whereas apolar ligands do not have an influence. The consistently negative consecutive reaction energies for the oxidation in the anionic pathway when going from thiolate over sulfenic and sulfinic acid to sulfonic acid are in agreement with biological reversibility.

  3. Experimental Study and Reactive Transport Modeling of Boric Acid Leaching of Concrete

    NASA Astrophysics Data System (ADS)

    Pabalan, R. T.; Chiang, K.-T. K.

    2013-07-01

    Borated water leakage through spent fuel pools (SFPs) at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure, compromise the integrity of the structure, or cause unmonitored releases of contaminated water to the environment. Experimental data indicate that pH is a critical parameter that determines the corrosion susceptibility of rebar in borated water and the degree of concrete degradation by boric acid leaching. In this study, reactive transport modeling of concrete leaching by borated water was performed to provide information on the solution pH in the concrete crack or matrix and the degree of concrete degradation at different locations of an SFP concrete structure exposed to borated water. Simulations up to 100 years were performed using different boric acid concentrations, crack apertures, and solution flow rates. Concrete cylinders were immersed in boric acid solutions for several months and the mineralogical changes and boric acid penetration in the concrete cylinder were evaluated as a function of time. The depths of concrete leaching by boric acid solution derived from the reactive transport simulations were compared with the measured boric acid penetration depth.

  4. Microminipigs as a new experimental animal model for toxicological studies: comparative pharmacokinetics of perfluoroalkyl acids.

    PubMed

    Guruge, Keerthi S; Noguchi, Michiko; Yoshioka, Koji; Yamazaki, Eriko; Taniyasu, Sachi; Yoshioka, Miyako; Yamanaka, Noriko; Ikezawa, Mitsutaka; Tanimura, Nobuhiko; Sato, Masumi; Yamashita, Nobuyoshi; Kawaguchi, Hiroaki

    2016-01-01

    In this study, we evaluated the efficacy of a novel minipig strain, the Microminipig (MMPig), as an animal model for studying the pharmacokinetics of a mixture of 10 perfluoroalkyl acids (PFAAs). After a single oral dose was given, we found that the blood depuration of PFAAs (blood t1/2), which we calculated using first-order elimination curves, ranged from 1.6 to 86.6 days. Among the five body compartments analyzed, the liver was the greatest site of accumulation of perfluorooctanesulfonate and longer chain perfluorinated carboxylates such as perfluorodecanoic acid, perfluoroundecanoic acid and perfluorododecanoic acid. We observed an increasing accumulation trend of perfluorinated carboxylates in the organs associated with the fluorinated carbon chain length. The perfluorononanoic acid burden was the highest among the treated compounds 21 days after a single exposure, as 29% of the given perfluorononanoic acid dose was accumulated in the tissues. The persistence of PFAAs in edible pig tissues even after 21 days post-exposure raises concerns about the safety of swine products. This was the first study to use MMPigs to elucidate the pharmacokinetics of a group of environmental pollutants. We found that MMPigs could be excellent experimental animals for toxicological studies due to their easy handling, cost efficacy for target compounds and ease of waste treatment.

  5. Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling

    SciTech Connect

    De Windt, Laurent; Bertron, Alexandra; Larreur-Cayol, Steeves; Escadeillas, Gilles

    2015-03-15

    Interactions of short-chain organic acids with hydrated cement phases affect structure durability in the agro-food and nuclear waste industries but can also be used to modify cement properties. Most previous studies have been experimental, performed at fixed concentrations and pH, without quantitatively discriminating among polyacidity effects, or complexation and salt precipitation processes. This paper addresses such issues by thermodynamic equilibrium calculations for acetic, citric, oxalic, succinic acids and a simplified hydrated CEM-I. The thermodynamic constants collected from the literature allow the speciation to be modeled over a wide range of pH and concentrations. Citric and oxalic had a stronger chelating effect than acetic acid, while succinic acid was intermediate. Similarly, Ca-citrate and Ca-oxalate salts were more insoluble than Ca-acetate and Ca-succinate salts. Regarding aluminium complexation, hydroxyls, sulfates, and acid competition was highlighted. The exploration of acid mixtures showed the preponderant effect of oxalate and citrate over acetate and succinate.

  6. An Integrated Spin-Labeling/Computational-Modeling Approach for Mapping Global Structures of Nucleic Acids.

    PubMed

    Tangprasertchai, Narin S; Zhang, Xiaojun; Ding, Yuan; Tham, Kenneth; Rohs, Remo; Haworth, Ian S; Qin, Peter Z

    2015-01-01

    The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve "correct" all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements.

  7. An Integrated Spin-Labeling/Computational-Modeling Approach for Mapping Global Structures of Nucleic Acids

    PubMed Central

    Tangprasertchai, Narin S.; Zhang, Xiaojun; Ding, Yuan; Tham, Kenneth; Rohs, Remo; Haworth, Ian S.; Qin, Peter Z.

    2015-01-01

    The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve “correct” all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements. PMID:26477260

  8. Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability.

    PubMed

    Patella, Francesca; Schug, Zachary T; Persi, Erez; Neilson, Lisa J; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-03-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability.

  9. Characterization of an organic acid analog model in Adirondack, New York, surface waters

    NASA Astrophysics Data System (ADS)

    Fakhraei, H.; Driscoll, C. T.

    2013-12-01

    Natural waters include a variety of organic matter that differs in composition and functional groups. Dissolved organic matter is important but difficult to characterize acidic and metal binding (e.g., Al) functional groups in chemical equilibrium models. In this study data from Adirondack Lake Survey were used to calibrate an organic acid analog model in order to quantify the influence of organic acids on surface water chemistry. The study sites in the Adirondack region of New York have diverse levels of dissolved organic carbon (DOC), used as a surrogate for organic acids. DOC in 55 Adirondack surface waters varies from 180 μmol C/l (in Little Echo Pond) to 1263 μmol C/l (in Sunday Pond). To reduce the variability inherited in the large raw data set, suite of mean observations was constructed by grouping and averaging measured data into pH intervals of 0.05 pH units from pH 4.15 to 7.3. A chemical equilibrium model, which includes major solutes in natural waters, was linked to an optimization algorithm (genetic algorithm) to calibrate a triprotic organic analog model which includes proton and aluminum binding by adjusting the dissociation constants and site density of DOC. The object of fitting procedure was to simultaneously minimize the discrepancy between observed and simulated pH, acid neutralizing capacity (ANC), organic monomeric aluminum and inorganic monomeric aluminum. A sensitivity analysis on calibrated values indicate that the speciation of the modeled solutes are most responsive to the dissociation constant of AlOrg= Al3+ + Org3- reaction (Org3- represents organic anion), the site density of DOC and the second H+ dissociation constant of the triprotic organic analog (i.e. H2Org- = 2H+ + Org3- reaction).

  10. Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Delmelle, Pierre; Bernard, Alain

    1994-06-01

    The Kawah Ijen volcano—with a record of phreatic eruptions—has its 1000 m wide crater filled with a lake that has existed for at least one century. At present, the lake waters are hot ( T ≈ 37° C), strongly mineralized (TDS = 105 g/L) and extremely acidic ( pH ≈ 0.4). By its volume, the Javanese lake is probably the largest accumulation in the world of such acidic waters. Mineralogy of the suspended solids within the lake waters suggests that concentrations of Si, Ca, Ti, and Ba are controlled by precipitation of silica, gypsum, anatase, and barite. Lake sediment is composed of chemical precipitates with composition similar to the suspended solids. Thermodynamic calculations predict that the lake waters have reached equilibrium with respect to α-cristobalite, barite, gypsum, anglesite, celestite, and amorphous silica, in agreement with the analytical observations. Significant concentrations of ferric iron suggest that the current lake waters are fairly oxidized. Sulfides are absent in the water column but are always present in the native S spherules that form porous aggregates which float on the lake. The presence of native S provides direct evidence of more reduced conditions at the lake floor where H 2S is probably being injected into the lake. With progressive addition of H 2S to the acid waters, native S, pyrite, and enargite are theoretically predicted to be saturated. Reactions between upward streaming H 2S-bearing gases discharged by subaqueous fumaroles, and metals dissolved in the acidic waters could initiate precipitation of these sulfides. A model of direct absorption of hot magmatic gases into cool water accounts for the extreme acidity of the crater lake. Results show that strongly acidic, sulfate-rich solutions are formed under oxidizing conditions at high gas/water ratios. Reactions between the acidic fluids and the Ijen andesite were modeled to account for elevated cation concentrations in lake water. Current concentrations of conservative

  11. [Kinetic model of enhanced biological phosphorus removal with mixed acetic and propionic acids as carbon sources. (III): Model application].

    PubMed

    Zhang, Chao; Chen, Yin-Guang

    2013-03-01

    The kinetic model based on SCFAs metabolism was applied for the prediction of phosphorus-and glycogen-accumulating organisms (PAO and GAO) competition with different carbon sources and m(P)/m(COD) ratios. When acetic acid was used as the sole carbon source, the biomass compositions were almost the same as those before cultivation, and neither PAO nor GAO could be out-competed from EBPR. However, increasing propionic acid in the influent helped PAO to be the predominance organism, and EBPR performance kept excellent when the ratio of propionate to mixed acids (acetate + propionate) was higher than 0.33. It also found that the m(P)/m(COD) ratio should be kept at 0.04-0.10 to avoid phosphorus became a limiting factor for PAO growth. This was because at low m(P)/m(COD) ratios, such as 0.01, GAO would take up 95% of the total (PAO + GAO) biomass.

  12. Modeling methylene blue aggregation in acidic solution to the limits of factor analysis.

    PubMed

    Golz, Emily K; Vander Griend, Douglas A

    2013-01-15

    Methylene blue (MB(+)), a common cationic thiazine dye, aggregates in acidic solutions. Absorbance data for equilibrated solutions of the chloride salt were analyzed over a concentration range of 1.0 × 10(-3) to 2.6 × 10(-5) M, in both 0.1 M HCl and 0.1 M HNO(3). Factor analyses of the raw absorbance data sets (categorically a better choice than effective absorbance) definitively show there are at least three distinct molecular absorbers regardless of acid type. A model with monomer, dimer, and trimer works well, but extensive testing has resulted in several other good models, some with higher order aggregates and some with chloride anions. Good models were frequently indistinguishable from each other by quality of fit or reasonability of molar absorptivity curves. The modeling of simulated data sets demonstrates the cases and degrees to which signal noise in the original data obscure the true model. In particular, the more mathematically similar (less orthogonal) the molar absorptivity curves of the chemical species in a model are, the less signal noise it takes to obscure the true model from other potentially good models. Unfortunately, the molar absorptivity curves in dye aggregation systems like that of methylene blue tend to be sufficiently similar so as to lead to the obscuration of models even at the noise levels (0.0001 ABS) of typical benchtop spectrophotometers.

  13. Challenges of a mechanistic feedback model describing nicotinic acid-induced changes in non-esterified fatty acids in rats.

    PubMed

    Ahlström, Christine; Peletier, Lambertus A; Gabrielsson, Johan

    2013-08-01

    Previously, we developed a feedback model to describe the tolerance and oscillatory rebound of non-esterified fatty acid (NEFA) plasma concentrations in male Sprague Dawley rats after intravenous infusions of nicotinic acid (NiAc). This study challenges that model, using the following regimens of intravenous and oral NiAc dosing in male Sprague Dawley rats (n = 95) to create different patterns of exposure: (A) 30 min infusion at 0, 1, 5 or 20 μmol kg(-1) body weight; (B) 300 min infusion at 0, 5, 10 or 51 μmol kg(-1); (C) 30 min infusion at 5 μmol kg(-1), followed by a stepwise decrease in rate every 10 min for 180 min; (D) 30 min infusion at 5 μmol kg(-1), followed by a stepwise decrease in rate every 10 min for 180 min and another 30 min infusion at 5 μmol kg(-1) from 210 to 240 min; (E) an oral dose of 0, 24.4, 81.2 or 812 μmol kg(-1). Serial arterial blood samples were taken for measurement of plasma NiAc and NEFA concentrations. The gradual decrease in infusion rate in (C) and (D) were also designed to test the hypothesis that a gradual reduction in NiAc plasma concentration may be expected to reduce or prevent rebound. The absorption of NiAc was described by parallel linear and non-linear processes and the disposition of NiAc by a two-compartment model with endogenous turnover rate and two parallel capacity-limited elimination processes. NEFA (R) turnover, which was driven by the plasma concentration of NiAc via an inhibitory drug-mechanism function acting on NEFA formation, was described by a feedback model with a moderator distributed over a series of transit compartments, where the first compartment (M 1) inhibited the formation of R and the last compartment (M N ) stimulated the loss of R. All processes regulating the plasma NEFA concentration were assumed to be captured by the moderator function. Data were analyzed using non-linear mixed effects modeling (NONMEM). The potency IC 50 of NiAc was 68 nmol L(-1), the fractional turnover rate k out 0

  14. [Kinetic model of enhanced biological phosphorus removal with mixed acetic and propionic acids as carbon sources. (I): Model constitution].

    PubMed

    Zhang, Chao; Chen, Yin-Guang

    2013-03-01

    Based on activated sludge model No. 2 (ASM2), the anaerobic/aerobic kinetic model of phosphorus-accumulating organisms (PAO) was established with mixed short-chain fatty acids (SCFAs) as the base substance in enhanced biological phosphorus removal process. The characteristic of the PAO model was that the anaerobic metabolism rates of glycogen degradation, poly-beta-hydroxyalkanoates synthesis and polyphosphate hydrolysis were expressed by SCFAs uptake equation, and the effects of anaerobic maintenance on kinetics and stoichiometry were considered. The PAO kinetic model was composed of 3 soluble components, 4 particulate components and a pH parameter, which constituted the matrix of stoichiometric coefficients. On the basis of PAO model, the GAO kinetic model was established, which included 7 processes, and phosphorus content influenced the aerobic metabolism only.

  15. Kinetic modeling on batch-cooling crystallization of zinc lactate: The influence of malic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Qian, Gang; Zhou, Xinggui

    2017-04-01

    Influence of malic acid, which acts as an impurity, on the crystallization kinetics of zinc lactate has been investigated in this work. Crystallization of zinc lactate with a linear cooling profile was carried out in a batch crystallizer and a population balance model was used to estimate the crystallization kinetics for each studied system by using the nonlinear optimization method. The predicted results related to the concentration profile of zinc lactate are in good agreement with the experimental data. The influence of malic acid on the crystallization of zinc lactate is discussed herein.

  16. Challenges and surprises that arise with nucleic acids during model building and refinement.

    PubMed

    Scott, William G

    2012-04-01

    The process of building and refining crystal structures of nucleic acids, although similar to that for proteins, has some peculiarities that give rise to both various complications and various benefits. Although conventional isomorphous replacement phasing techniques are typically used to generate an experimental electron-density map for the purposes of determining novel nucleic acid structures, it is also possible to couple the phasing and model-building steps to permit the solution of complex and novel RNA three-dimensional structures without the need for conventional heavy-atom phasing approaches.

  17. Sum frequency generation surface spectra of ice, water, and acid solution investigated by an exciton model.

    PubMed

    Buch, V; Tarbuck, T; Richmond, G L; Groenzin, H; Li, I; Shultz, M J

    2007-11-28

    A new computational scheme is presented for calculation of sum frequency generation (SFG) spectra, based on the exciton model for OH bonds. The scheme is applied to unified analysis of the SFG spectra in the OH-stretch region of the surfaces of ice, liquid water, and acid solution. A significant role of intermolecularly coupled collective modes is pointed out. SFG intensity amplification observed for acid solutions in the H-bonded OH-stretch region is reproduced qualitatively and accounted for by enhanced orientational preference "into the surface" of the H(2)O bisectors within the hydronium solvation shell.

  18. A coarse-grained model for amorphous and crystalline fatty acids

    PubMed Central

    Hadley, K. R.; McCabe, C.

    2010-01-01

    Fatty acids constitute one of the main components of the lipid lamellae in the top layer of the skin, known as the stratum corneum, which acts as a barrier to foreign substances entering the body and to water leaving the body. To better understand the mechanics of the skin, a molecular-level understanding of the structure of the lamellae needs to be investigated. As a first step toward this goal, the current work involves the development of a coarse-grained model for fatty acids in an amorphous and a crystalline state. In order to retain the structural details of the atomistic molecules, radial distribution functions have been used to provide target data against which the coarse-grained force field is optimized. The optimization was achieved using the method developed by Reith, Pütz, and Müller-Plathe with a damping factor introduced into the updating scheme to facilitate the convergence against the crystalline radial distribution functions. Using this approach, a transferable force field has been developed for both crystalline and amorphous systems that can be used to describe fatty acids of different chain lengths. We are unaware of any other coarse-grained model in the literature that has been developed to study solid phases. Additionally, the amorphous force field has been shown to accurately model mixtures of different free fatty acids based on the potentials derived from pure lipid systems. PMID:20387939

  19. Kinetic model of water disinfection using peracetic acid including synergistic effects.

    PubMed

    Flores, Marina J; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D

    2016-01-01

    The disinfection efficiencies of a commercial mixture of peracetic acid against Escherichia coli were studied in laboratory scale experiments. The joint and separate action of two disinfectant agents, hydrogen peroxide and peracetic acid, were evaluated in order to observe synergistic effects. A kinetic model for each component of the mixture and for the commercial mixture was proposed. Through simple mathematical equations, the model describes different stages of attack by disinfectants during the inactivation process. Based on the experiments and the kinetic parameters obtained, it could be established that the efficiency of hydrogen peroxide was much lower than that of peracetic acid alone. However, the contribution of hydrogen peroxide was very important in the commercial mixture. It should be noted that this improvement occurred only after peracetic acid had initiated the attack on the cell. This synergistic effect was successfully explained by the proposed scheme and was verified by experimental results. Besides providing a clearer mechanistic understanding of water disinfection, such models may improve our ability to design reactors.

  20. MICS-Asia II: Model inter-comparison and evaluation of acid deposition

    NASA Astrophysics Data System (ADS)

    Wang, Zifa; Xie, Fuying; Sakurai, T.; Ueda, H.; Han, Zhiwei; Carmichael, G. R.; Streets, D.; Engardt, M.; Holloway, T.; Hayami, H.; Kajino, M.; Thongboonchoo, N.; Bennet, C.; Park, S. U.; Fung, C.; Chang, A.; Sartelet, K.; Amann, M.

    This paper focuses on the comparison of chemical deposition of eight regional chemical models used in Model Inter-Comparison Study for Asia (MICS-Asia) II. Monthly-mean depositions of chemical species simulated by these models, including dry deposition of SO 2, HNO 3, NH 3, sulfate, nitrate and ammonium and wet deposition of SO 42-, NO 3- and NH 4+, have been provided for four periods (March, July, December 2001 and March 2002) in this work. Observations at 37 sites of the Acid Deposition Monitoring Network in East Asia (EANET) are compared with SO 42-, NO 3- and NH 4+ wet deposition model results. Significant correlations appeared between the observation and computed ensemble mean of participant models. Also, differences among modeled sulfur and nitrogen dry depositions have been studied at the EANET sites. Based on the analysis of acid deposition for various species from different models, total depositions of sulfur (SO 2 and sulfate) and nitrogen (nitrate and ammonium) have been evaluated as the ensemble mean of the eight models. In general, all models capture the observed spatial distribution of sulfur and nitrogen deposition, although the absolute values may differ from measurements. High deposition often occurs in eastern China, Japan, the Republic of Korea, Thailand, Vietnam, Philippines and other parts of Southeast Asia. The magnitude of model bias is quite large for many of the models. In examining the reasons for model-measurement disagreement, we find that differences in chemical processes, deposition parameterization, and modeled precipitation are the main reasons for large model disparities.

  1. Modelling of Batch Lactic Acid Fermentation in
the Presence of Anionic Clay

    PubMed Central

    Jinescu, Cosmin; Aruş, Vasilica Alisa; Nistor, Ileana Denisa

    2014-01-01

    Summary Batch fermentation of milk inoculated with lactic acid bacteria was conducted in the presence of hydrotalcite-type anionic clay under static and ultrasonic conditions. An experimental study of the effect of fermentation temperature (t=38–43 °C), clay/milk ratio (R=1–7.5 g/L) and ultrasonic field (ν=0 and 35 kHz) on process dynamics was performed. A mathematical model was selected to describe the fermentation process kinetics and its parameters were estimated based on experimental data. A good agreement between the experimental and simulated results was achieved. Consequently, the model can be employed to predict the dynamics of batch lactic acid fermentation with values of process variables in the studied ranges. A statistical analysis of the data based on a 23 factorial experiment was performed in order to express experimental and model-regressed process responses depending on t, R and ν factors. PMID:27904318

  2. Synergistic effect of docosahexaenoic acid on anticonvulsant activity of valproic acid and lamotrigine in animal seizure models.

    PubMed

    Gavzan, Hakimeh; Sayyah, Mohammad; Sardari, Soroush; Babapour, Vahab

    2015-10-01

    Add-on therapy is a common strategy to improve efficacy and tolerability of antiepileptic drugs (AEDs). Anticonvulsant potential and appropriate safety of docosahexaenoic acid (DHA) makes it a promising candidate for combination therapy. We evaluated influence of DHA on anticonvulsant activity of AEDs phenytoin, valproate, and lamotrigine in maximal electroshock (MES), pentylenetetrazole (PTZ), and kindling models of epilepsy. The dose-response to DHA was obtained 15 min after intracerebroventricular (i.c.v.) injection in PTZ model of clonic seizures in mice, MES model of tonic seizures in mice, and kindling model of complex partial seizures in rats. The dose-response curve of valproate (30 min after i.p. injection to mice) in PTZ, phenytoin (60 min after i.p. injection to mice) in MES, and lamotrigine (60 min after i.p. injection to rats) in kindling models were obtained. Dose-response curves of the AEDs were then achieved in the presence of ED25 of DHA. DHA had no anticonvulsant effect in the MES model. However, it showed a dose-dependent protective effect against PTZ (ED50 = 0.13 μM) and kindled seizures (ED50 = 1.08 mM). DHA at ED25 caused a 3.6-fold increase in potency of valproate as its ED50 value from 117.5 (98.3-135.3) decreased to 32.5 (21.6-44.1) mg/kg. Moreover, a 4.9-fold increase in potency of lamotrigine occurred, as its ED50 value from 13.10 (11.50-14.9) decreased to 2.65 (0.8-5.6) mg/kg. CompuSyn analysis indicated synergistic anticonvulsant interaction between DHA and both valproate and lamotrigine. Co-administration strategy of the safe and inexpensive anticonvulsant compound DHA with AEDs should be favorably regarded in clinical studies of epilepsy treatment.

  3. Modeling analysis of the benefits of Crassulacean acid metabolism (CAM) for sustainable agriculture in arid regions

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S.; Vico, G.; Porporato, A. M.

    2012-12-01

    In view of the pressing needs to sustainably manage water and soil resources, especially in arid and semi-arid regions, here we propose a new carbon assimilation model that couples a simple yet mechanistic description of Crassulacean acid metabolism (CAM) photosynthesis to the soil-plant-atmosphere continuum. The model captures the full coupling of the CAM photosynthetic pathway with fluctuations in environmental conditions (cycles of light availability and air humidity, changes in soil moisture as driven by plant transpiration and rainfall occurrence). As such, the model is capable of reproducing the different phases of CAM, including daytime stomatal closure and photosynthesis from malic acid, afternoon stomatal opening for direct carbon assimilation, and nighttime stomatal opening for CO2 uptake and malic acid synthesis. Thanks to its versatility, our model allows us to relate CAM productivity, for both obligate and facultative CAM plants, to various soil moisture conditions including hydroclimatic scenarios of rainfall frequency and intensity as well as different night-time conditions of temperature, wind speed, and humidity. Our analyses show the potential productive benefits of CAM cultivation in dryland environments as feedstock and possible biofuel source, in terms of sustainable water use and economic benefits. In particular, the model is used to explore conditions where CAM plant resiliency to water stress makes these plants a more sustainable alternative to C3 and C4 species for potential deficit irrigation.

  4. Embryonic exposure to model naphthenic acids delays growth and hatching in the pond snail Lymnaea stagnalis.

    PubMed

    Johnston, Christina U; Clothier, Lindsay N; Quesnel, Dean M; Gieg, Lisa M; Chua, Gordon; Hermann, Petra M; Wildering, Willem C

    2017-02-01

    Naphthenic acids (NAs), a class of structurally diverse carboxylic acids with often complex ring structures and large aliphatic tail groups, are important by-products of many petrochemical processes including the oil sands mining activity of Northern Alberta. While it is evident that NAs have both acute and chronic harmful effects on many organisms, many aspects of their toxicity remain to be clarified. Particularly, while substantive data sets have been collected on NA toxicity in aquatic prokaryote and vertebrate model systems, to date, nothing is known about the toxic effects of these compounds on the embryonic development of aquatic invertebrate taxa, including freshwater mollusks. This study examines under laboratory conditions the toxicity of NAs extracted from oil sands process water (OSPW) and the low-molecular weight model NAs cyclohexylsuccinic acid (CHSA), cyclohexanebutyric acid (CHBA), and 4-tert-butylcyclohexane carboxylic acid (4-TBCA) on embryonic development of the snail Lymnaea stagnalis, a common freshwater gastropod with a broad Palearctic distribution. Evidence is provided for concentration-dependent teratogenic effects of both OSPW-derived and model NAs with remarkably similar nominal threshold concentrations between 15 and 20 mg/L and 28d EC50 of 31 mg/L. In addition, the data provide evidence for substantial toxicokinetic differences between CHSA, CHBA and 4-TBCA. Together, our study introduces Lymnaea stagnalis embryonic development as an effective model to assay NA-toxicity and identifies molecular architecture as a potentially important toxicokinetic parameter in the toxicity of low-molecular weight NA in embryonic development of aquatic gastropods.

  5. A log-normal distribution model for the molecular weight of aquatic fulvic acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Zhou, Q.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.

    2000-01-01

    The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a lognormal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured M(n) and M(w) and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several types of molecular weight data, including the shapes of high- pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a log-normal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured Mn and Mw and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several type's of molecular weight data, including the shapes of high-pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.

  6. A model for protocellular coordination of nucleic acid and protein syntheses

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1981-01-01

    The proteinoid model for the coordination of protein synthesis with nucleic acid coding within the evolving protocell is discussed. Evidence for the self-ordering of amino acid chains, which would enhance the catalytic activity of a lysine-rich proteinoid, is presented, along with that for the preferential formation of microparticles, particularly proteinoid microparticles, in various solutions. Demonstrations of the catalytic activity of lysine-rich proteinoids in the synthesis of peptide and internucleotide bonds are pointed out. The view of evolution as a two stage sequence in which the geological synthesis of peptides evolved to the protocellular synthesis of peptides and oligonucleotides is discussed, and contrasted with the alternative view, in accord with the central dogma, that nucleic acids arose first then governed the production of proteins and protocells.

  7. Ascorbic acid metabolism in protection against free radicals: A radiation model

    SciTech Connect

    Rose, R.C. )

    1990-06-15

    The role of ascorbic acid in scavenging free radicals was evaluated in a model of mammalian colonic epithelium homogenized in physiologic buffer and exposed to ionizing radiation. Ascorbic acid interacts with hydroxyl free radicals, resulting in production of the ascorbate free radical (AFR). Colonic mucosa contains a soluble factor that is heat sensitive, PCA precipitable and is contained within 1,000 MW dialysis tubing; it uses GSH and cysteine to reduce AFR. The factor from rat colon is fractionated between 55 and 70% saturation with solid (NH4)2SO4; a 3-4 fold increase in enzyme activity was achieved. We suggest that the factor is a cytosolic enzyme appropriately referred to as soluble AFR-reductase. This information provides insight into the mechanism by which ascorbic acid protects against damage by hydroxyl free radicals.

  8. Cytotoxic Activity of Salicylic Acid-Containing Drug Models with Ionic and Covalent Binding.

    PubMed

    Egorova, Ksenia S; Seitkalieva, Marina M; Posvyatenko, Alexandra V; Khrustalev, Victor N; Ananikov, Valentine P

    2015-11-12

    Three different types of drug delivery platforms based on imidazolium ionic liquids (ILs) were synthesized in high preparative yields, namely, the models involving (i) ionic binding of drug and IL; (ii) covalent binding of drug and IL; and (iii) dual binding using both ionic and covalent approaches. Seven ionic liquids containing salicylic acid (SA-ILs) in the cation or/and in the anion were prepared, and their cytotoxicity toward the human cell lines CaCo-2 (colorectal adenocarcinoma) and 3215 LS (normal fibroblasts) was evaluated. Cytotoxicity of SA-ILs was significantly higher than that of conventional imidazolium-based ILs and was comparable to the pure salicylic acid. It is important to note that the obtained SA-ILs dissolved in water more readily than salicylic acid, suggesting benefits of possible usage of traditional nonsoluble active pharmaceutical ingredients in an ionic liquid form.

  9. Aggregation of asphaltene model compounds using a porphyrin tethered to a carboxylic acid.

    PubMed

    Schulze, Matthias; Lechner, Marc P; Stryker, Jeffrey M; Tykwinski, Rik R

    2015-07-07

    A Ni(II) porphyrin functionalized with an alkyl carboxylic acid (3) has been synthesized to model the chemical behavior of the heaviest portion of petroleum, the asphaltenes. Specifically, porphyrin 3 is used in spectroscopic studies to probe aggregation with a second asphaltene model compound containing basic nitrogen (4), designed to mimic asphaltene behavior. NMR spectroscopy documents self-association of the porphyrin and aggregation with the second model compound in solution, and a Job's plot suggests a 1 : 2 stoichiometry for compounds 3 and 4.

  10. Nonlocal nonlinear refractive index of gold nanoparticles synthesized by ascorbic acid reduction: comparison of fitting models.

    PubMed

    Balbuena Ortega, A; Arroyo Carrasco, M L; Méndez Otero, M M; Gayou, V L; Delgado Macuil, R; Martínez Gutiérrez, H; Iturbe Castillo, M D

    2014-12-12

    In this paper, the nonlinear refractive index of colloidal gold nanoparticles under continuous wave illumination is investigated with the z-scan technique. Gold nanoparticles were synthesized using ascorbic acid as reductant, phosphates as stabilizer and cetyltrimethylammonium chloride (CTAC) as surfactant agent. The nanoparticle size was controlled with the CTAC concentration. Experiments changing incident power and sample concentration were done. The experimental z-scan results were fitted with three models: thermal lens, aberrant thermal lens and the nonlocal model. It is shown that the nonlocal model reproduces with exceptionally good agreement; the obtained experimental behaviour.

  11. Manual of phosphoric acid fuel cell power plant optimization model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    An optimized cost and performance model for a phosphoric acid fuel cell power plant system was derived and developed into a modular FORTRAN computer code. Cost, energy, mass, and electrochemical analyses were combined to develop a mathematical model for optimizing the steam to methane ratio in the reformer, hydrogen utilization in the PAFC plates per stack. The nonlinear programming code, COMPUTE, was used to solve this model, in which the method of mixed penalty function combined with Hooke and Jeeves pattern search was chosen to evaluate this specific optimization problem.

  12. An averaging battery model for a lead-acid battery operating in an electric car

    NASA Technical Reports Server (NTRS)

    Bozek, J. M.

    1979-01-01

    A battery model is developed based on time averaging the current or power, and is shown to be an effective means of predicting the performance of a lead acid battery. The effectiveness of this battery model was tested on battery discharge profiles expected during the operation of an electric vehicle following the various SAE J227a driving schedules. The averaging model predicts the performance of a battery that is periodically charged (regenerated) if the regeneration energy is assumed to be converted to retrievable electrochemical energy on a one-to-one basis.

  13. Nonlocal nonlinear refractive index of gold nanoparticles synthesized by ascorbic acid reduction: comparison of fitting models

    PubMed Central

    Balbuena Ortega, A.; Arroyo Carrasco, M.L.; Méndez Otero, M.M.; Gayou, V.L.; Delgado Macuil, R.; Martínez Gutiérrez, H.; Iturbe Castillo, M.D.

    2014-01-01

    In this paper, the nonlinear refractive index of colloidal gold nanoparticles under continuous wave illumination is investigated with the z-scan technique. Gold nanoparticles were synthesized using ascorbic acid as reductant, phosphates as stabilizer and cetyltrimethylammonium chloride (CTAC) as surfactant agent. The nanoparticle size was controlled with the CTAC concentration. Experiments changing incident power and sample concentration were done. The experimental z-scan results were fitted with three models: thermal lens, aberrant thermal lens and the nonlocal model. It is shown that the nonlocal model reproduces with exceptionally good agreement; the obtained experimental behaviour. PMID:25705090

  14. Modeling aluminum-silicon chemistries and application to Australian acidic playa lakes as analogues for Mars

    USGS Publications Warehouse

    Marion, G.M.; Crowley, J.K.; Thomson, B.J.; Kargel, J.S.; Bridges, N.T.; Hook, S.J.; Baldridge, A.; Brown, A.J.; Ribeiro da Luz, B.; de Souza, Filho C.R.

    2009-01-01

    Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (<0 ??C), if possible, and (3) use the reformulated model to investigate parallels in the mineral precipitation behavior of acidic Australian lakes and hypothetical Martian brines. FREZCHEM is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <-70 to 25 ??C and the pressure range from 1 to 1000 bars. Aluminum chloride and sulfate mineral parameterizations were based on experimental data. Aluminum hydroxide and silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO4-NO3-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system that now contain 95 solid phases. There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron

  15. Modeling aluminum-silicon chemistries and application to Australian acidic playa lakes as analogues for Mars

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Crowley, J. K.; Thomson, B. J.; Kargel, J. S.; Bridges, N. T.; Hook, S. J.; Baldridge, A.; Brown, A. J.; Ribeiro da Luz, B.; de Souza Filho, C. R.

    2009-06-01

    Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (<0 °C), if possible, and (3) use the reformulated model to investigate parallels in the mineral precipitation behavior of acidic Australian lakes and hypothetical Martian brines. FREZCHEM is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <-70 to 25 °C and the pressure range from 1 to 1000 bars. Aluminum chloride and sulfate mineral parameterizations were based on experimental data. Aluminum hydroxide and silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO 4-NO 3-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system that now contain 95 solid phases. There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron

  16. Hydrogen peroxide generation in a model paediatric parenteral amino acid solution.

    PubMed

    Brawley, V; Bhatia, J; Karp, W B

    1993-12-01

    1. Parenteral amino acid solutions undergo photooxidation, which may be an important factor in total parenteral nutrition-associated hepatic dysfunction. Light-exposed parenteral solutions containing amino acids, in addition to vitamins and trace minerals, generate free radicals, which, in turn, may contribute to this type of injury. This study examined the characteristics of H2O2 production in a parenteral amino acid solution modelled on a commercially available paediatric parenteral amino acid solution. 2. The solution was exposed to light in the presence of riboflavin-5'-monophosphate (riboflavin), and peroxide formation in the presence and absence of catalase (H2O2 formation) was assayed using potassium iodide/molybdate. 3. Peak H2O2 production occurred at a light intensity of 8 microW cm-2 nm-1 in the 425-475 nm waveband and was linear to 2 h of light exposure. H2O2 production reached 500 mumol/l at 24 h. 4. H2O2 was directly related to a riboflavin concentration of up to 20 mumol/l and was maximal at 30 mumol/l. 5. H2O2 production was greatest in the amino acid/riboflavin solution at a pH of between 5 and 6. 6. Under the conditions of light exposure intensity, light exposure time, riboflavin concentration and pH found during the administration of parenteral nutrition in neonatal intensive care units, net H2O2 production occurs in solutions modelled on a paediatric parenteral amino acid preparation.

  17. Modelling binary homogeneous nucleation of water-sulfuric acid vapours: parameterisation for high temperature emissions.

    PubMed

    Vehkamäki, H; Kulmala, M; Lehtinen, K E J; Noppel, M

    2003-08-01

    Particles formed in the automobile exhaust might form a significant fraction of fine particles in urban air. We have developed a model and produced parametrizations for predicting the particle formation rate at exhaust conditions. We studied the formation in the mixture of water and sulfuric acid vapors and at temperatures between 300 and 400 K. A thermodynamically consistent version of the classical binary homogeneous nucleation model was used. The needed thermodynamical input data (vapor pressures, chemical activities, surface tensions, densities) are carefully investigated and utilized in thermodynamically consistent way. The obtained nucleation rates are parametrized in order to be able to use this nucleation model in aerosol dynamic models, exhaust models, or other process models. The parametrization reduces computational time at least by a factor of 500.

  18. Comparison of trichostatin A and valproic acid treatment regimens in a mouse model of kidney fibrosis

    SciTech Connect

    Van Beneden, Katrien; Geers, Caroline; Pauwels, Marina; Mannaerts, Inge; Wissing, Karl M.; Van den Branden, Christiane; Grunsven, Leo A. van

    2013-09-01

    Histone deacetylase (HDAC) inhibitors are promising new compounds for the therapy of fibrotic diseases. In this study we compared the effect of two HDAC inhibitors, trichostatin A and valproic acid, in an experimental model of kidney fibrosis. In mice, doxorubicin (adriamycin) can cause nephropathy characterized by chronic proteinuria, glomerular damage and interstitial inflammation and fibrosis, as seen in human focal segmental glomerulosclerosis. Two treatment regimens were applied, treatment was either started prior to the doxorubicin insult or delayed until a significant degree of proteinuria and fibrosis was present. Pre-treatment of trichostatin A significantly hampered glomerulosclerosis and tubulointerstitial fibrosis, as did the pre-treatment with valproic acid. In contrast, the development of proteinuria was only completely inhibited in the pre-treated valproic acid group, and not in the pre-treated trichostatin A animals. In the postponed treatment with valproic acid, a complete resolution of established doxorubicin-induced proteinuria was achieved within three days, whereas trichostatin A could not correct proteinuria in such a treatment regimen. However, both postponed regimens have comparable efficacy in maintaining the kidney fibrosis to the level reached at the start of the treatments. Moreover, not only the process of fibrosis, but also renal inflammation was attenuated by both HDAC inhibitors. Our data confirm a role for HDACs in renal fibrogenesis and point towards a therapeutic potential for HDAC inhibitors. The effect on renal disease progression and manifestation can however be different for individual HDAC inhibitors. - Highlights: • Valproic acid is a potent antiproteinuric drug, whereas trichostatin A is not. • Trichostatin A and valproic acid reduce kidney fibrosis in doxorubicin nephropathy. • Both valproic acid and trichostatin A attenuate renal inflammation.

  19. Skeletal effects of zoledronic acid in an animal model of chronic kidney disease

    PubMed Central

    Chen, N. X.; Gattone, V. H.; Chen, X.; Carr, A. J.; LeBlanc, P.; Brown, D.; Moe, S. M.

    2014-01-01

    Summary Bisphosphonates reduce skeletal loss and fracture risk, but their use has been limited in patients with chronic kidney disease. This study shows skeletal benefits of zoledronic acid in an animal model of chronic kidney disease. Introduction Bisphosphonates are routinely used to reduce fractures but limited data exists concerning their efficacy in non-dialysis chronic kidney disease. The goal of this study was to test the hypothesis that zoledronic acid produces similar skeletal effects in normal animals and those with kidney disease. Methods At 25 weeks of age, normal rats were treated with a single dose of saline vehicle or 100 µg/kg of zoledronic acid while animals with kidney disease (approximately 30 % of normal kidney function) were treated with vehicle, low dose (20 µg/kg), or high dose (100 µg/kg) zoledronic acid, or calcium gluconate (3 % in the drinking water). Skeletal properties were assessed 5 weeks later using micro-computed tomography, dynamic histomorphometry, and mechanical testing. Results Animals with kidney disease had significantly higher trabecular bone remodeling compared to normal animals. Zoledronic acid significantly suppressed remodeling in both normal and diseased animals yet the remodeling response to zoledronic acid was no different in normal and animals with kidney disease. Animals with kidney disease had significantly lower cortical bone biomechanical properties; these were partially normalized by treatment. Conclusions Based on these results, we conclude that zoledronic acid produces similar amounts of remodeling suppression in animals with high turnover kidney disease as it does in normal animals, and has positive effects on select biomechanical properties that are similar in normal animals and those with chronic kidney disease. PMID:22907737

  20. Radiolytic Modification of Sulfur Containing Acidic Amino Residues in Model Peptides: Fundamental Studies for Protein Footprinting

    SciTech Connect

    Xu,G.; Chance, M.

    2005-01-01

    Protein footprinting based on hydroxyl radical-mediated modification and quantitative mass spectroscopic analysis is a proven technique for examining protein structure, protein-ligand interactions, and structural allostery upon protein complex formation. The reactive and solvent-accessible amino acid side chains function as structural probes; however, correct structural analysis depends on the identification and quantification of all the relevant oxidative modifications within the protein sequence. Sulfur-containing amino acids are oxidized readily and the mechanisms of oxidation are particularly complex, although they have been extensively investigated by EPR and other spectroscopic methods. Here we have undertaken a detailed mass spectrometry study (using electrospray ionization mass spectrometry and tandem mass spectrometry) of model peptides containing cysteine (Cys-SH), cystine (disulfide bonded Cys), and methionine after oxidation using {gamma}-rays or synchrotron X-rays and have compared these results to those expected from oxidation mechanisms proposed in the literature. Radiolysis of cysteine leads to cysteine sulfonic acid (+48 Da mass shift) and cystine as the major products; other minor products including cysteine sulfinic acid (+32 Da mass shift) and serine (-16 Da mass shift) are observed. Radiolysis of cystine results in the oxidative opening of the disulfide bond and generation of cysteine sulfonic acid and sulfinic acid; however, the rate of oxidation is significantly less than that for cysteine. Radiolysis of methionine gives rise primarily to methionine sulfoxide (+16 Da mass shift); this can be further oxidized to methionine sulfone (+32 Da mass shift) or another product with a -32 Da mass shift likely due to aldehyde formation at the {gamma}-carbon. Due to the high reactivity of sulfur-containing amino acids, the extent of oxidation is easily influenced by secondary oxidation events or the presence of redox reagents used in standard proteolytic

  1. Conceptual models of the formation of acid-rock drainage at road cuts in Tennessee

    USGS Publications Warehouse

    Bradley, Michael W.; Worland, Scott; Byl, Tom

    2015-01-01

    Pyrite and other minerals containing sulfur and trace metals occur in several rock formations throughout Middle and East Tennessee. Pyrite (FeS2) weathers in the presence of oxygen and water to form iron hydroxides and sulfuric acid. The weathering and interaction of the acid on the rocks and other minerals at road cuts can result in drainage with low pH (< 4) and high concentrations of trace metals. Acid-rock drainage can cause environmental problems and damage transportation infrastructure. The formation and remediation of acid-drainage from roads cuts has not been researched as thoroughly as acid-mine drainage. The U.S Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to better understand the geologic, hydrologic, and biogeochemical factors that control acid formation at road cuts. Road cuts with the potential for acid-rock drainage were identifed and evaluated in Middle and East Tennessee. The pyrite-bearing formations evaluated were the Chattanooga Shale (Devonian black shale), the Fentress Formation (coal-bearing), and the Precambrian Anakeesta Formation and similar Precambrian rocks. Conceptual models of the formation and transport of acid-rock drainage (ARD) from road cuts were developed based on the results of a literature review, site reconnaissance, and the initial rock and water sampling. The formation of ARD requires a combination of hydrologic, geochemical, and microbial interactions which affect drainage from the site, acidity of the water, and trace metal concentrations. The basic modes of ARD formation from road cuts are; 1 - seeps and springs from pyrite-bearing formations and 2 - runoff over the face of a road cut in a pyrite-bearing formation. Depending on site conditions at road cuts, the basic modes of ARD formation can be altered and the additional modes of ARD formation are; 3 - runoff over and through piles of pyrite-bearing material, either from construction or breakdown

  2. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry.

    PubMed

    Atik, A Emin; Guray, Melda Z; Yalcin, Talat

    2017-03-15

    O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH2O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions.

  3. Ursolic acid reduces prostate size and dihydrotestosterone level in a rat model of benign prostatic hyperplasia.

    PubMed

    Shin, In-Sik; Lee, Mee-Young; Jung, Da-Young; Seo, Chang-Seob; Ha, Hye-Kyung; Shin, Hyeun-Kyoo

    2012-03-01

    Benign prostatic hyperplasia (BPH) is characterized by hyperplasia of prostatic stromal and epithelial cells, which can lead to lower urinary tract symptoms. The prevalence of BPH increases in an age-dependent manner. We investigated the protective effect of ursolic acid in BPH development using a testosterone-induced BPH rat model. BPH was induced in experimental groups by daily subcutaneous injections of testosterone propionate (TP), for a period of four weeks. Ursolic acid was administrated daily by oral gavage at a dose level of 5mg/kg during the four weeks of TP injections. Animals were sacrificed on the scheduled termination, before prostates were weighed and subjected to histopathological examination. TP and dihydrotestosterone (DHT) levels in the serum and prostate were also measured. BPH-induced animals displayed an increase in prostate weight with increased testosterone and DHT levels in both the serum and prostate. However, ursolic acid treatment resulted in significant reductions in prostate weight and testosterone and DHT levels in both the serum and prostate, compared with BPH-induced animals. Histopathological examination also showed that ursolic acid treatment suppressed TP-induced prostatic hyperplasia. These findings indicate that ursolic acid may effectively inhibit the development of BPH and it may be a useful agent in BPH treatment.

  4. Modeling wet deposition of acid substances over the PRD region in China

    NASA Astrophysics Data System (ADS)

    Lu, Xingcheng; Fung, Jimmy Chi Hung; Wu, Dongwei

    2015-12-01

    The Pearl River Delta (PRD) region in southern China has suffered heavily from acid rain in the last 10 years due to the anthropogenic emission of sulfur dioxide and nitrogen dioxide. Several measurement-based studies about this issue have been conducted to analyze the chemical composition of precipitation in this area. However, no detailed, high resolution numerical simulation regarding this topic has ever been done in this region. In this study, the WRF-SMOKE-CMAQ system was applied to simulate the wet deposition of acid substances (SO42- and NO3-) in the PRD region from 2009 to 2011 with a resolution of 3 km. The simulation output agreed well with the observation data. Our results showed that Guangzhou was the city most affected by acid rain in this region. The ratio of non-sea-salt sulfate to nitrate indicated that the acid rain in this region belonged to the sulfate-nitrate mixed type. The source apportionment result suggests that point source and super regional source are the ones that contribute the pollutants most in the rain water over PRD Region. The sulfate and nitrate input to some reservoirs via wet deposition was also estimated based on the model simulation. Our results suggest that further cross-city cooperation and emission reduction are needed to further curb acid rain in this region.

  5. N-3 polyunsaturated fatty acids in animal models with neuroinflammation: An update.

    PubMed

    Trépanier, Marc-Olivier; Hopperton, Kathryn E; Orr, Sarah K; Bazinet, Richard P

    2016-08-15

    Neuroinflammation is a characteristic of a multitude of neurological and psychiatric disorders. Modulating inflammatory pathways offers a potential therapeutic target in these disorders. Omega-3 polyunsaturated fatty acids have anti-inflammatory and pro-resolving properties in the periphery, however, their effect on neuroinflammation is less studied. This review summarizes 61 animal studies that tested the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory outcomes in vivo in various models including stroke, spinal cord injury, aging, Alzheimer's disease, Parkinson's disease, lipopolysaccharide and IL-1β injections, diabetes, neuropathic pain, traumatic brain injury, depression, surgically induced cognitive decline, whole body irradiation, amyotrophic lateral sclerosis, N-methyl-D-aspartate-induced excitotoxicity and lupus. The evidence presented in this review suggests anti-neuroinflammatory properties of omega-3 polyunsaturated fatty acids, however, it is not clear by which mechanism omega-3 polyunsaturated fatty acids exert their effect. Future research should aim to isolate the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory signaling in vivo and elucidate the mechanisms underlying these effects.

  6. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter.

    PubMed

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid reabsorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, and a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested, and their K(i) values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or nonpotent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors.

  7. Computational Models for Drug Inhibition of the Human Apical Sodium-dependent Bile Acid Transporter

    PubMed Central

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E.

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid re-absorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, as well as a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested and their Ki values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or non-potent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors. PMID:19673539

  8. A toy model of prebiotic peptide evolution: the possible role of relative amino acid abundances.

    PubMed

    Polanco, Carlos; Buhse, Thomas; Samaniego, José Lino; Castañón González, Jorge Alberto

    2013-01-01

    This paper presents a mathematical-computational toy model based on the assumed dynamic principles of prebiotic peptide evolution. Starting from a pool of amino acid monomers, the model describes in a generalized manner the generation of peptides and their sequential information. The model integrates the intrinsic and dynamic key elements of the initiation of biopolymerization, such as the relative amino acid abundances and polarities, as well as the oligomer reversibility, i.e. fragmentation and recombination, and peptide self-replication. Our modeling results suggest that the relative amino acid abundances, as indicated by Miller-Urey type electric discharge experiments, played a principal role in the early sequential information of peptide profiles. Moreover, the computed profiles display an astonishing similarity to peptide profiles observed in so-called biological common ancestors found in the following three microorganisms; E. coli, M. jannaschii, and S. cereviasiae. The prebiotic peptide fingerprint was obtained by the so-called polarity index method that was earlier reported as a tool for the identification of cationic amphipathic antibacterial short peptides.

  9. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study

    SciTech Connect

    Boszormenyi, I.

    1991-05-01

    This (<100 [Angstrom]) silica-alumina layers were tested as potential model heterogeneous acid catalysts for combined surface science and catalysis studies. Three preparation methods were used: oxidation of r3 [times] r3 R30 Al/Si(111) structure in UHV; deposition on Si(lll) from aqueous solution; and argon ion beam sputter deposition in UHV. The homogeneous thin layers are amorphous, and the chemical environment of surface atoms is similar to that of Si, Al and oxygen atoms on high surface area acid catalysts. Since the ion beam-deposited thin layer of silica-alumina has the same composition as the target zeolite this deposition method is a promising tool to prepare model catalysts using practical catalyst targets. The silica-alumina layers are active in cumene cracking, a typical acid catalyzed reaction. In order to clearly distinguish background reactions and the acid catalyzed reaction at least 20 cm[sup 2] catalyst surface area is needed. Two series of model platinum-alumina catalysts were prepared in a combined UHV -- high pressure reactor cell apparatus by depositing alumina on polycrystalline Pt foil and by vapor depositing Pt on a thin alumina layer on Au. Both model surfaces have been prepared with and without chlorine. AES, CO desorption as well as methyl cyclopentane (MCP) hydrogenolysis studies indicate that the Pt surface area is always higher if a chlorination step is involved. Selectivity patterns in MCP ring opening on Pt-on-alumina'' and on alumina-on-Pt'' are different; only the former is a linear combination of selective and statistical ring opening. Product distribution, however, changes with coverage and reaction time. The properties of the two model catalyst systems and role of chlorine in MCP hydrogenolysis are also discussed.

  10. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study

    SciTech Connect

    Boszormenyi, I.

    1991-05-01

    This (<100 {Angstrom}) silica-alumina layers were tested as potential model heterogeneous acid catalysts for combined surface science and catalysis studies. Three preparation methods were used: oxidation of r3 {times} r3 R30 Al/Si(111) structure in UHV; deposition on Si(lll) from aqueous solution; and argon ion beam sputter deposition in UHV. The homogeneous thin layers are amorphous, and the chemical environment of surface atoms is similar to that of Si, Al and oxygen atoms on high surface area acid catalysts. Since the ion beam-deposited thin layer of silica-alumina has the same composition as the target zeolite this deposition method is a promising tool to prepare model catalysts using practical catalyst targets. The silica-alumina layers are active in cumene cracking, a typical acid catalyzed reaction. In order to clearly distinguish background reactions and the acid catalyzed reaction at least 20 cm{sup 2} catalyst surface area is needed. Two series of model platinum-alumina catalysts were prepared in a combined UHV -- high pressure reactor cell apparatus by depositing alumina on polycrystalline Pt foil and by vapor depositing Pt on a thin alumina layer on Au. Both model surfaces have been prepared with and without chlorine. AES, CO desorption as well as methyl cyclopentane (MCP) hydrogenolysis studies indicate that the Pt surface area is always higher if a chlorination step is involved. Selectivity patterns in MCP ring opening on ``Pt-on-alumina`` and on ``alumina-on-Pt`` are different; only the former is a linear combination of selective and statistical ring opening. Product distribution, however, changes with coverage and reaction time. The properties of the two model catalyst systems and role of chlorine in MCP hydrogenolysis are also discussed.

  11. Design of an experimental viscoelastic food model system for studying Zygosaccharomyces bailii spoilage in acidic sauces.

    PubMed

    Mertens, L; Geeraerd, A H; Dang, T D T; Vermeulen, A; Serneels, K; Van Derlinden, E; Cappuyns, A M; Moldenaers, P; Debevere, J; Devlieghere, F; Van Impe, J F

    2009-11-01

    Within the field of predictive microbiology, the number of studies that quantify the effect of food structure on microbial behavior is very limited. This is mainly due to impracticalities related to the use of a nonliquid growth medium. In this study, an experimental food model system for studying yeast spoilage in acid sauces was developed by selecting a suitable thickening/gelling agent. In a first step, a variety of thickening/gelling agents was screened, with respect to the main physicochemical (pH, water activity, and acetic acid and sugar concentrations) and rheological (weak gel viscoelastic behavior and presence of a yield stress) characteristics of acid sauces. Second, the rheological behavior of the selected thickening/gelling agent, Carbopol 980, was extensively studied within the following range of conditions: pH 4.0 to 5.0, acetic acid concentration of 0 to 1.0% (vol/vol), glycerol concentration of 0 to 15% (wt/vol), and Carbopol concentration of 1.0 to 1.5% (wt/vol). Finally, the applicability of the model system was illustrated by performing growth experiments in microtiter plates for Zygosaccharomyces bailii at 0, 0.5, 1.0, and 1.5% (wt/vol) Carbopol, 5% (wt/vol) glycerol, 0% (vol/vol) acetic acid, and pH 5.0. A shift from planktonic growth to growth in colonies was observed when the Carbopol concentration increased from 0.5 to 1.0%. The applicability of the model system was illustrated by estimating mu(max) at 0.5% Carbopol from absorbance detection times.

  12. Design of an Experimental Viscoelastic Food Model System for Studying Zygosaccharomyces bailii Spoilage in Acidic Sauces▿

    PubMed Central

    Mertens, L.; Geeraerd, A. H.; Dang, T. D. T.; Vermeulen, A.; Serneels, K.; Van Derlinden, E.; Cappuyns, A. M.; Moldenaers, P.; Debevere, J.; Devlieghere, F.; Van Impe, J. F.

    2009-01-01

    Within the field of predictive microbiology, the number of studies that quantify the effect of food structure on microbial behavior is very limited. This is mainly due to impracticalities related to the use of a nonliquid growth medium. In this study, an experimental food model system for studying yeast spoilage in acid sauces was developed by selecting a suitable thickening/gelling agent. In a first step, a variety of thickening/gelling agents was screened, with respect to the main physicochemical (pH, water activity, and acetic acid and sugar concentrations) and rheological (weak gel viscoelastic behavior and presence of a yield stress) characteristics of acid sauces. Second, the rheological behavior of the selected thickening/gelling agent, Carbopol 980, was extensively studied within the following range of conditions: pH 4.0 to 5.0, acetic acid concentration of 0 to 1.0% (vol/vol), glycerol concentration of 0 to 15% (wt/vol), and Carbopol concentration of 1.0 to 1.5% (wt/vol). Finally, the applicability of the model system was illustrated by performing growth experiments in microtiter plates for Zygosaccharomyces bailii at 0, 0.5, 1.0, and 1.5% (wt/vol) Carbopol, 5% (wt/vol) glycerol, 0% (vol/vol) acetic acid, and pH 5.0. A shift from planktonic growth to growth in colonies was observed when the Carbopol concentration increased from 0.5 to 1.0%. The applicability of the model system was illustrated by estimating μmax at 0.5% Carbopol from absorbance detection times. PMID:19783742

  13. Omega-3 Fatty Acids Inhibit Tumor Growth in a Rat Model of Bladder Cancer

    PubMed Central

    Parada, Belmiro; Reis, Flávio; Cerejo, Raquel; Garrido, Patrícia; Sereno, José; Xavier-Cunha, Maria; Neto, Paula; Mota, Alfredo; Figueiredo, Arnaldo; Teixeira, Frederico

    2013-01-01

    Omega-3 (ω-3) fatty acids have been tested on prevention and treatment of several cancer types, but the efficacy on “in vivo” bladder cancer has not been analyzed yet. This study aimed at evaluating the chemopreventive efficacy of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) mixture in an animal model of bladder cancer. Forty-four male Wistar rats were divided into 4 groups during a 20-week protocol: control; carcinogen—N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN); ω-3 (DHA + EPA); and ω-3 + BBN. BBN and ω-3 were given during the initial 8 weeks. At week 20 blood and bladder were collected and checked for the presence of urothelium lesions and tumors, markers of inflammation, proliferation, and redox status. Incidence of bladder carcinoma was, control (0%), ω-3 (0%), BBN (65%), and ω-3 + BBN (62.5%). The ω-3 + BBN group had no infiltrative tumors or carcinoma in situ, and tumor volume was significantly reduced compared to the BBN (0.9 ± 0.1 mm3 versus 112.5 ± 6.4 mm3). Also, it showed a reduced MDA/TAS ratio and BBN-induced serum CRP, TGF-β1, and CD31 were prevented. In conclusion, omega-3 fatty acids inhibit the development of premalignant and malignant lesions in a rat model of bladder cancer, which might be due to anti-inflammatory, antioxidant, anti-proliferative, and anti-angiogenic properties. PMID:23865049

  14. Receptor-level interrelationships of amino acids and the adequate amino acid type hormones in Tetrahymena: a receptor evolution model.

    PubMed

    Csaba, G; Darvas, Z

    1986-01-01

    Histidine stimulates the phagocytosis of Tetrahymena to the same extent as histamine, and also stimulates its division, which histamine does not. Tyrosine and diiodotyrosine equally stimulate the growth of the Tetrahymena. Both amino acids inhibit the characteristic influence of the adequate amino acid hormone when added to Tetrahymena culture 72 h in advance of it. Primary interaction with diiodotyrosine and tyrosine notably increases the cellular growth rate. Histamine has a similar, although less notable effect than histidine. In the light of these experimental observations there is reason to postulate that the receptors of the amino acid hormones have developed from amino acid receptors.

  15. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights.

    PubMed

    Hines, Daniel J; Kaplan, David L

    2013-01-01

    Poly(lactic-co-glycolic acid) (PLGA) has been the most successful polymeric biomaterial used in controlled drug delivery systems. There are several different chemical and physical properties of PLGA that impact the release behavior of drugs from PLGA delivery devices. These properties must be considered and optimized in the formulation of drug release devices. Mathematical modeling is a useful tool for identifying, characterizing, and predicting mechanisms of controlled release. The advantages and limitations of poly(lactic-co-glycolic acid) for controlled release are reviewed, followed by a review of current approaches in controlled-release technology that utilize PLGA. Mathematical modeling applied toward controlled-release rates from PLGA-based devices also will be discussed to provide a complete picture of a state-of-the-art understanding of the control that can be achieved with this polymeric system, as well as the limitations.

  16. A novel kinetic model for polysaccharide dissolution during atmospheric acetic acid pretreatment of sugarcane bagasse.

    PubMed

    Zhao, Xuebing; Morikawa, Yuichi; Qi, Feng; Zeng, Jing; Liu, Dehua

    2014-01-01

    Acetic acid (AcH) pretreatment of sugarcane bagasse with the catalysis of sulfuric acid (SA) could greatly enhance the enzymatic digestibility of cellulose. However, polysaccharide dissolution happened inevitably during the pretreatment. It was found that the simplest model, which assumes that the total polysaccharides were reactive to be dissolved, could not well describe the kinetic behavior of polysaccharide dissolution. A novel pseudo-homogenous kinetic model was thus developed by introducing a parameter termed as "potential dissolution degree" (δ(d)) based on the multilayered structure of cell wall. It was found that solid xylan and glucan dissolutions were a first-order reaction with respect to the dissolvable fraction. Due to the delignification action of AcH, polysaccharide dissolutions were enhanced in AcH media compared with those in aqueous system. Acetylizations of cellulose and sugars were also observed, and AcH concentration showed a significant influence on the degree of acetylization.

  17. Valproic acid improves second-line regimen of small cell lung carcinoma in preclinical models

    PubMed Central

    Hubaux, Roland; Vandermeers, Fabian; Cosse, Jean-Philippe; Crisanti, Cecilia; Kapoor, Veena; Albelda, Steven M.; Mascaux, Céline; Delvenne, Philippe; Hubert, Pascale

    2015-01-01

    With 5-year survival rates below 5%, small cell lung carcinoma (SCLC) has very poor prognosis and requires improved therapies. Despite an excellent overall response to first-line therapy, relapses are frequent and further treatments are disappointing. The goal of the study was to improve second-line therapy of SCLC. The effect of chemotherapeutic agents was evaluated in cell lines (apoptosis, reactive oxygen species, and RNA and protein expression) and in mouse models (tumour development). We demonstrate here that valproic acid, a histone deacetylase inhibitor, improves the efficacy of a second-line regimen (vindesine, doxorubicin and cyclophosphamide) in SCLC cells and in mouse models. Transcriptomic profiling integrating microRNA and mRNA data identifies key signalling pathways in the response of SCLC cells to valproic acid, opening new prospects for improved therapies. PMID:27730151

  18. Poly (lactic-co-glycolic acid) controlled release systems: experimental and modeling insights

    PubMed Central

    Hines, Daniel J.; Kaplan, David L.

    2013-01-01

    Poly-lactic-co-glycolic acid (PLGA) has been the most successful polymeric biomaterial for use in controlled drug delivery systems. There are several different chemical and physical properties of PLGA that impact the release behavior of drugs from PLGA delivery devices. These properties must be considered and optimized in drug release device formulation. Mathematical modeling is a useful tool for identifying, characterizing, and predicting the mechanisms of controlled release. The advantages and limitations of poly (lactic-co-glycolic acid) for controlled release are reviewed, followed by a review of current approaches in controlled release technology that utilize PLGA. Mathematical modeling applied towards controlled release rates from PLGA-based devices will also be discussed to provide a complete picture of state of the art understanding of the control achievable with this polymeric system, as well as the limitations. PMID:23614648

  19. Kinetic modeling of the photocatalytic degradation of clofibric acid in a slurry reactor.

    PubMed

    Manassero, Agustina; Satuf, María Lucila; Alfano, Orlando Mario

    2015-01-01

    A kinetic study of the photocatalytic degradation of the pharmaceutical clofibric acid is presented. Experiments were carried out under UV radiation employing titanium dioxide in water suspension. The main reaction intermediates were identified and quantified. Intrinsic expressions to represent the kinetics of clofibric acid and the main intermediates were derived. The modeling of the radiation field in the reactor was carried out by Monte Carlo simulation. Experimental runs were performed by varying the catalyst concentration and the incident radiation. Kinetic parameters were estimated from the experiments by applying a non-linear regression procedure. Good agreement was obtained between model predictions and experimental data, with an error of 5.9 % in the estimations of the primary pollutant concentration.

  20. Folic acid enhances early functional recovery in a piglet model of pediatric head injury.

    PubMed

    Naim, Maryam Y; Friess, Stuart; Smith, Colin; Ralston, Jill; Ryall, Karen; Helfaer, Mark A; Margulies, Susan S

    2010-01-01

    For stroke and spinal cord injury, folic acid supplementation has been shown to enhance neurodevelopment and to provide neuroprotection. We hypothesized that folic acid would reduce brain injury and improve neurological outcome in a neonatal piglet model of traumatic brain injury (TBI), using 4 experimental groups of 3- to 5-day-old female piglets. Two groups were intubated, anesthetized and had moderate brain injury induced by rapid axial head rotation without impact. One group of injured (Inj) animals received folic acid (Fol; 80 μg/kg) by intraperitoneal (IP) injection 15 min following injury, and then daily for 6 days (Inj + Fol; n = 7). The second group of injured animals received an IP injection of saline (Sal) at the same time points (Inj + Sal; n = 8). Two uninjured (Uninj) control groups (Uninj + Fol, n = 8; Uninj + Sal, n = 7) were intubated, anesthetized and received folic acid (80 μg/kg) or saline by IP injection at the same time points as the injured animals following a sham procedure. Animals underwent neurobehavioral and cognitive testing on days 1 and 4 following injury to assess behavior, memory, learning and problem solving. Serum folic acid and homocysteine levels were collected prior to injury and again before euthanasia. The piglets were euthanized 6 days following injury, and their brains were perfusion fixed for histological analysis. Folic acid levels were significantly higher in both Fol groups on day 6. Homocysteine levels were not affected by treatment. On day 1 following injury, the Inj + Fol group showed significantly more exploratory interest, and better motor function, learning and problem solving compared to the Inj + Sal group. Inj + Fol animals had a significantly lower cognitive composite dysfunction score compared to all other groups on day 1. These functional improvements were not seen on day 4 following injury. Axonal injury measured by β-amyloid precursor protein staining 6 days after injury was not affected by treatment

  1. Folic Acid Enhances Early Functional Recovery in a Piglet Model of Pediatric Head Injury

    PubMed Central

    Naim, Maryam Y.; Friess, Stuart; Smith, Colin; Ralston, Jill; Ryall, Karen; Helfaer, Mark A.; Margulies, Susan S.

    2011-01-01

    For stroke and spinal cord injury, folic acid supplementation has been shown to enhance neurodevelopment and to provide neuroprotection. We hypothesized that folic acid would reduce brain injury and improve neurological outcome in a neonatal piglet model of traumatic brain injury (TBI), using 4 experimental groups of 3- to 5-day-old female piglets. Two groups were intubated, anesthetized and had moderate brain injury induced by rapid axial head rotation without impact. One group of injured (Inj) animals received folic acid (Fol; 80 μg/kg) by intraperitoneal (IP) injection 15 min following injury, and then daily for 6 days (Inj + Fol; n = 7). The second group of injured animals received an IP injection of saline (Sal) at the same time points (Inj + Sal; n = 8). Two uninjured (Uninj) control groups (Uninj + Fol, n = 8; Uninj + Sal, n = 7) were intubated, anesthetized and received folic acid (80 μg/kg) or saline by IP injection at the same time points as the injured animals following a sham procedure. Animals underwent neurobehavioral and cognitive testing on days 1 and 4 following injury to assess behavior, memory, learning and problem solving. Serum folic acid and homocysteine levels were collected prior to injury and again before euthanasia. The piglets were euthanized 6 days following injury, and their brains were perfusion fixed for histological analysis. Folic acid levels were significantly higher in both Fol groups on day 6. Homocysteine levels were not affected by treatment. On day 1 following injury, the Inj + Fol group showed significantly more exploratory interest, and better motor function, learning and problem solving compared to the Inj + Sal group. Inj + Fol animals had a significantly lower cognitive composite dysfunction score compared to all other groups on day 1. These functional improvements were not seen on day 4 following injury. Axonal injury measured by β-amyloid precursor protein staining 6 days after injury was not affected by treatment

  2. Simulation of continuous boric acid slurry reactors in series by microfluid and macrofluid models

    NASA Astrophysics Data System (ADS)

    Çakal, Gaye Ö.; Eroğlu, İnci; Özkar, Saim

    2007-08-01

    Growth kinetics of gypsum during dissolution of colemanite with particle size less than 150 μm in aqueous sulfuric acid was studied in a batch reactor at 85 °C with a stirring rate of 400 rpm and initial CaO/SO 42- ratio of 1.0. Kinetic data obtained from batch reactors was used to predict calcium ion concentration in continuous reactors by macrofluid and microfluid models. Model predictions were tested by experiments in four CFSSR in series each having mean residence time of 20 or 60 min. Calcium ion concentration predicted by macrofluid model in the first reactor was found to be closer to the experimental value indicating the significance of segregation. However, microfluid model provides the effluent calcium ion concentrations from the third and fourth reactors closer to experimental values. Verification of the model values by experimental data reveals that the methodology developed here is applicable to gypsum crystallization in n-CFSSR's in series.

  3. Modeling weight loss and chlorogenic acids content in coffee during roasting.

    PubMed

    Perrone, Daniel; Donangelo, Raul; Donangelo, Carmen M; Farah, Adriana

    2010-12-08

    Roasting is a key step in the production of a high-quality coffee. Roasting degree is directly related to coffee chemical composition and may be determined objectively by weight loss after roasting. Chlorogenic acids (CGA) are thermally labile phenolic compounds that play an important role in the final cup quality and health benefits of coffee. Considering the interest in finding a reliable method to predict weight loss and CGA content in coffee, models have been developed to estimate these parameters during roasting. Weight loss was successfully modeled (r = 0.99) independent of the instant temperature. CGA degradation followed first-order Arrhenius-compliant kinetic models with good predictability (r = 0.98), especially for light to moderately dark samples. In both cases distinct models for Coffea arabica and Coffea canephora were calculated, because of differences in chemical composition and cell wall structure between these species. The proposed models may become important predictive tools in the coffee industry.

  4. Modelling and predicting the simultaneous growth of Escherichia coli and lactic acid bacteria in milk.

    PubMed

    Ačai, P; Valík, L'; Medved'ová, A; Rosskopf, F

    2016-09-01

    Modelling and predicting the simultaneous competitive growth of Escherichia coli and starter culture of lactic acid bacteria (Fresco 1010, Chr. Hansen, Hørsholm, Denmark) was studied in milk at different temperatures and Fresco inoculum concentrations. The lactic acid bacteria (LAB) were able to induce an early stationary state in E. coli The developed model described and tested the growth inhibition of E. coli (with initial inoculum concentration 10(3) CFU/mL) when LAB have reached maximum density in different conditions of temperature (ranging from 12 ℃ to 30 ℃) and for various inoculum sizes of LAB (ranging from approximately 10(3) to 10(7) CFU/mL). The prediction ability of the microbial competition model (the Baranyi and Roberts model coupled with the Gimenez and Dalgaard model) was first performed only with parameters estimated from individual growth of E. coli and the LAB and then with the introduced competition coefficients evaluated from co-culture growth of E. coli and LAB in milk. Both the results and their statistical indices showed that the model with incorporated average values of competition coefficients improved the prediction of E. coli behaviour in co-culture with LAB.

  5. Defining and Modeling Known Adverse Outcome Pathways: Domoic Acid and Neuronal Signaling as a Case Study

    SciTech Connect

    Watanabe, Karen H.; Andersen, Melvin E.; Basu, Nil; Carvan, Michael J.; Crofton, Kevin M.; King, Kerensa A.; Sunol, Cristina; Tiffany-Castiglioni, Evelyn; Schultz, Irvin R.

    2011-01-01

    An adverse outcome pathway (AOP) is a sequence of key events from a molecular-level initiating event and an ensuing cascade of steps to an adverse outcome with population level significance. To implement a predictive strategy for ecotoxicology, the multiscale nature of an AOP requires computational models to link salient processes (e.g., in chemical uptake, toxicokinetics, toxicodynamics, and population dynamics). A case study with domoic acid was used to demonstrate strategies and enable generic recommendations for developing computational models in an effort to move toward a toxicity testing paradigm focused on toxicity pathway perturbations applicable to ecological risk assessment. Domoic acid, an algal toxin with adverse effects on both wildlife and humans, is a potent agonist for kainate receptors (ionotropic glutamate receptors whose activation leads to the influx of Na+ and Ca2+). Increased Ca2+ concentrations result in neuronal excitotoxicity and cell death primarily in the hippocampus, which produces seizures, impairs learning and memory, and alters behavior in some species. Altered neuronal Ca2+ is a key process in domoic acid toxicity which can be evaluated in vitro. Further, results of these assays would be amenable to mechanistic modeling for identifying domoic acid concentrations and Ca2+ perturbations that are normal, adaptive, or clearly toxic. In vitro assays with outputs amenable to measurement in exposed populations can link in vitro to in vivo conditions, and toxicokinetic information will aid in linking in vitro results to the individual organism. Development of an AOP required an iterative process with three important outcomes: (1) a critically reviewed, stressor-specific AOP; (2) identification of key processes suitable for evaluation with in vitro assays; and (3) strategies for model development.

  6. Kinetic model and thermodynamic study of Acid Red 1 entrapment at electropolymerised polypyrrole films.

    PubMed

    Haque, Md Mominul; Wong, Danny K Y

    2015-11-01

    This work is focussed on the determination of a kinetic model and the thermodynamic study of the electrochemical entrapment of the model azo dye, Acid Red 1, at conducting polypyrrole films, which is proposed as a potential green technology for treatment of azo dyes in industrial effluents. The entrapment kinetic data were found to follow a pseudosecond order model involving an intra-particle diffusion. However, the equilibrium data obtained for Acid Red 1 entrapment at polypyrrole did not obey any common surface adsorption models such as the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. Accordingly, the entrapment process may lead to an enhanced quantity of dye embedded in a polypyrrole film, making it a more effective and efficient technology than those involving only adsorption. Similarly, dye leakage from polypyrrole film surface to a sample matrix will be easily prevented. For this treatment process, a negative ΔG° range between -1.46±0.78 and -2.94±0.24 kJ mol(-1) at the corresponding temperature range of 298-318 K, and a ΔH° of 20.5±2.5 kJ mol(-1) indicate a spontaneous and endothermic entrapment process. Also, a positive ΔS° (73.6±8.2 J mol(-1) K(-1)) reveals increased randomness of the interface and an affinity of Acid Red 1 towards polypyrrole films. A low activation energy (7.67±0.80 kJ mol(-1)) confirms a physical process for Acid Red 1 entrapment at polypyrrole films.

  7. Modeling anaerobic digestion of blue algae: stoichiometric coefficients of amino acids acidogenesis and thermodynamics analysis.

    PubMed

    Yuan, Xian-Zheng; Shi, Xiao-Shuang; Yuan, Chun-Xin; Wang, Yu-Ping; Qiu, Yan-Ling; Guo, Rong-Bo; Wang, Li-Sheng

    2014-02-01

    In order to facilitate the application of Anaerobic Digestion Model No. 1 (ADM1), an approach for a detailed calculation of stoichiometric coefficients for amino acids acidogenesis during the anaerobic digestion of blue algae is presented. The simulation results obtained support the approach by good predictions of the dynamic behavior of cumulative methane production, pH values as well as the concentrations of acetate, propionate, butyrate, valerate and inorganic nitrogen. The sensitivity analysis based on Monte Carlo simulation showed that the stoichiometric coefficients for amino acids acidogenesis had high sensitivities to the outputs of the model. The model further indicated that the Gibbs free energies from the uptake of long-chain fatty acids (LCFA), valerate and butyrate were positive through the digestion, while the free energies for other components were negative. During the digestion, the cumulative heat productions from microbial activities and methane were 77.69 kJ and 185.76 kJ, respectively. This result suggested that proper heat preservation of anaerobic digesters could minimize the external heating needs due to the heat produced from microbial activities.

  8. Interaction of Cytotoxic and Cytoprotective Bile Acids with Model Membranes: Influence of the Membrane Composition.

    PubMed

    Esteves, M; Ferreira, M J; Kozica, A; Fernandes, A C; Gonçalves da Silva, A; Saramago, B

    2015-08-18

    To understand the role of bile acids (BAs) in cell function, many authors have investigated their effect on biomembrane models which are less complex systems, but there are still many open questions. The present study aims to contribute for the deepening of the knowledge of the interaction between BAs and model membranes, in particular, focusing on the effect of BA mixtures. The cytotoxic deoxycholic acid (DCA), the cytoprotective ursodeoxycholic acid (UDCA), and the equimolar mixture (DCA + UDCA) were investigated. Monolayers and liposomes were taken as model membranes with two lipid compositions: an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sphingomyelin (SM), and cholesterol (Chol)) traditionally associated with the formation of lipid rafts and an equimolar POPC/SM binary mixture. The obtained results showed that DCA causes the fluidization of monolayers and bilayers, leading to the eventual rupture of POPC/SM liposomes at high concentration. UDCA may provide a stabilization of POPC/SM membranes but has a negligible effect on the Chol-containing liposomes. In the case of equimolar mixture DCA/UDCA, the interactions depend not only on the lipid composition but also on the design of the experiment. The BA mixture has a greater impact on the monolayers than do pure BAs, suggesting a cooperative DCA-UDCA interaction that enhances the penetration of UDCA in both POPC/SM and POPC/SM/Chol monolayers. For the bilayers, the presence of UDCA in the mixture decreases the disturbing effect of DCA.

  9. Empirical Modeling of Iron Oxide Dissolution in Sulphuric and Hydrochloric Acid

    NASA Astrophysics Data System (ADS)

    Hemmelmann, Jan C.; Xu, Hao; Krumm, Wolfgang

    2013-10-01

    A new approach is presented to an empirical modeling of chemical pickling processes, based on the activation energy of oxide dissolution in hydrochloric acid (HCl) and sulfuric acid (H2SO4). The model allows us to calculate pickling times as a function of definite parameters. The main oxide layers on hot-rolled materials are magnetite (Fe3O4), hematite (Fe2O3), and wustite (FeO). On the laboratory scale, the activation energy of each oxide has been determined. FeO is a metastable oxide and has been produced based on magnetite powder in a H2/H2O atmosphere. The oxide powders used for the experimental procedure have been analyzed by X-ray powder diffraction to insure the proper stoichiometry and composition. The model allows us to calculate the time of oxide dissolution based on the parameters temperature, acid concentration, and the composition of the oxide layer. Calculated values are verified by surface potential measurement on industrial oxide layers. The hot-rolled material used for verification is low carbon steel. A comparison between calculated pickling times and experimental data will be presented.

  10. Effects of bioactive fatty acid amide derivatives in zebrafish scale model of bone metabolism and disease.

    PubMed

    Carnovali, M; Ottria, R; Pasqualetti, S; Banfi, G; Ciuffreda, P; Mariotti, M

    2016-02-01

    The endocannabinoid system (which includes fatty acid derivatives, receptors, and metabolizing enzymes) is involved in a variety of physiological processes, including bone metabolism in which it regulates the function of osteoblasts and osteoclasts, as well as differentiation of their precursors. The zebrafish (Danio rerio) provides a useful animal model for bone research since zebrafish bones develop rapidly and are anatomically similar to mammalian bones. Putative orthologues and paralogs of endocannabinoid genes have recently been identified in zebrafish, demonstrating the presence of cannabinoid type 1 (CB1) and type 2 (CB2) receptors with affinity to endocannabinoid ligands. To identify therapeutic molecules potentially useful in bone-related diseases, we evaluated the in vivo effects of exposure to long-chain fatty acid amides in adult zebrafish. Using a well-established zebrafish scale model, we found that anandamide and N-linoleoylethanolamine are able to stimulate bone formation by increasing alkaline phosphatase activity in physiological conditions. In addition, they prevent the alteration of bone markers in a prednisolone-induced osteoporosis model in adult zebrafish scales, whereas their esterified forms do not. These data suggest that long-chain fatty acid amides are involved in regulating bone metabolism in zebrafish scales and that the CB2 receptor is a key mediator in this process.

  11. Titration of fatty acids solubilized in cationic and anionic micelles. Calorimetry and thermodynamic modeling.

    PubMed

    Söderman, Olle; Jönsson, Bengt; Olofsson, Gerd

    2006-02-23

    The electrostatic properties of charged surfactant micelles are investigated through titrations of fatty acid probes solubilized in the micelles. The titration process is followed by means of calorimetric measurements and by determining the pH values as a function of added base. This approach yields a complete thermodynamic description of the titration process. In particular, we find that the process is endothermic at 298 K. This is contrary to the titration of carboxylic acids in water, where DeltaH is approximately 0. To identify the main effect underlying the difference in DeltaH between titration in a micelle and water, a thermodynamic model has been developed which focuses on the transfer properties of charged and uncharged species from bulk water to the surface of a micelle and which incorporates a dielectric discontinuity at the micellar surface. The model relies on the use of the Poisson-Boltzmann equation which is solved using a finite element method. Experimental results and the model calculations imply that the dielectric discontinuity at (or near) the micellar surface plays a major role and hence must be included when analyzing the titration behavior of an acid functionality at the surface of a charged micelle.

  12. Modelling of the protonophoric uncoupling by phenoxyacetic acid of the plasma membrane potential of Penicillium chrysogenum.

    PubMed

    Henriksen, C M; Nielsen, J; Villadsen, J

    1998-12-20

    Physiological effects of phenoxyacetic acid, the penicillin V side-chain precursor, on steady-state continuous cultures of Penicillium chrysogenum have been studied both theoretically and experimentally. Theoretical calculations show that at an extracellular pH of 6.50, phenoxyacetic acid has negligible influence on the growth energetics due to protonophoric uncoupling of membrane potentials by passive diffusive uptake. On the other hand, when the extracellular pH is lowered to 5.00, a severe maintenance-related uncoupling effect of phenoxyacetic acid is calculated. These findings were confirmed experimentally by steady-state continuous cultivations with a high-yielding penicillin strain of P. chrysogenum performed on a chemically defined and glucose-limited medium at pH 6.50 and pH 5.00, both with and without phenoxyacetic acid present. The yield and maintenance coefficients were determined from steady-state measurements of the specific uptake rates of glucose and oxygen and the specific production rate of carbon dioxide as functions of the specific growth rate. Combining these data with a simple stoichiometric model for the primary metabolism of P. chrysogenum allows quantitative information to be extracted on the growth energetics in terms of ATP spent in maintenance- and growth-related processes, i.e. mATP and YxATP. The increased maintenance-related ATP consumption when adding phenoxyacetic acid at pH 5.00 agrees with the theoretical calculations on the uncoupling effect of phenoxyacetic acid. When YxATP is compared with earlier reported values for the theoretical ATP requirement for biosynthesis of P. chrysogenum, i.e. YxATP, growth, it is found that YxATP,growth is only 40-50% of YxATP, which stresses that a large amount of ATP is wasted in turnover of macromolecules, leaks, and futile cycles.

  13. Structural identifiability analysis of pharmacokinetic models using DAISY: semi-mechanistic gastric emptying models for 13C-octanoic acid.

    PubMed

    Ogungbenro, Kayode; Aarons, Leon

    2011-04-01

    Structural identifiability analysis is necessary for efficient parameter estimation and it is concerned with determination of whether the parameters in a model can be identified from specified experiments with perfect input-output data. Structural identifiability analysis is very important in mathematical modelling of biological and biomedical experiments and should be considered at the design stage of these experiments. There are three possible outcomes from a structural identifiability analysis; globally/uniquely identifiable, locally/non-uniquely identifiable or non-identifiable/unidentifiable. An ideal outcome is a globally/uniquely identifiable model, however a locally/non-uniquely identifiable outcome can help to identify areas of the model or experiment that need improvement. Despite the importance of structural identifiability analysis, it is still not widely used due to the heavy computational burden involved and the lack of software. A new software package, DAISY, that implemented differential algebra for identifiability analysis was recently released. DAISY is freely available, easy to use and does not require any high-level programming skill. The (13)C-octanoic acid breath test is now widely used for assessing the rate of gastric emptying in patients. Unlike scintigraphy, which is the gold standard and is a direct measure of the rate of gastric emptying, the (13)C-octanoic acid breath test is an indirect method for assessing the rate of gastric emptying. However the (13)C-octanoic acid breath test is cheaper, safer and easy to perform. Because the rate of excretion of (13)CO(2) in breath does not only reflect the rate of gastric emptying but other processes involved between the ingestion of (13)C-octanoic acid and elimination of (13)CO(2) in breath, the parameters commonly derived from the excretion data are not direct measures of gastric emptying. The aim of this paper was to propose a new semi-mechanistic model for the analysis of (13)C-octanoic acid

  14. Possibilities and potential roles of the functional peptides based on enamel matrix proteins in promoting the remineralization of initial enamel caries.

    PubMed

    Ieong, Cheng Cheng; Zhou, Xue Dong; Li, Ji Yao; Li, Wei; Zhang, Ling Lin

    2011-03-01

    Dental caries is the most common oral diseases, and it gives a serious threat to oral and general health. Fluoride, a classic anti-caries agent, has a profound effect on caries prevention and treatment. However, fluorosis and fluoride-resistant strains limit the further application of fluoride treatment. Therefore, it is still of significant benefit to seek alternatives, bringing more effective anti-caries agents. The potential role of enamel matrix proteins(EMPs) in promoting the regeneration of periodontal tissue and inducing bone have been proved. EMPs have been successfully applied in the field of periodontal disease and dental implants in recent years. Previous researches revealed that enamel matrix proteins had an important role in the synthesis of hydroxyapatite in vitro. Some experiments about the degeneration or removal of EMP suggest that enamel matrix proteins are related to the occurrence and development of caries. Based on evidences illustrated by these experiments, this paper hypothesizes that functional peptides based on the function and structure of EMPs could promote remineralization of enamel caries, which could perform as a suitable treatment to enamel caries. The hypothesis may lead a new direction in the study on the prevention and treatment of enamel caries, and further study of the anti-caries mechanisms of EMP will enable researchers to find out the most effective anti-caries peptides, which could be developed into a bionics anti-cariogenic agent.

  15. Temporal variation and stoichiometric ratios of organic matter remineralization in bottom waters of the northern Gulf of Mexico during late spring and summer

    NASA Astrophysics Data System (ADS)

    Xue, Jianhong; Cai, Wei-Jun; Hu, Xinping; Huang, Wei-Jen; Lohrenz, Steven E.; Gundersen, Kjell

    2015-12-01

    An improved extended optimum multiparameter (eOMP) analysis was applied to hydrographic (temperature and salinity), and water chemistry data, including dissolved oxygen (O2), nutrients (nitrate plus nitrite, phosphate, and silicate), dissolved inorganic carbon (DIC), and total alkalinity (TAlk) data collected during late spring and summer from 2006 to 2012 in bottom waters off the Louisiana coast, to explore the dynamics and stoichiometry of DIC production during the development and maintenance of summer hypoxia. Our analysis demonstrated that DIC in bottom water was relatively low from April to June, but increased significantly in July, peaked in August, and dropped slightly in September. Furthermore, DIC production resulted from both aerobic organic carbon (OC) respiration and denitrification, as well as substantial loss due to vertical mixing with surface water. The average summer gross OC respiration rate was estimated to be 0.19 g C m-2 d-1, with the highest values occurring in late summer when hypoxic conditions dominated. We also found that Corg/N/P/-O2 remineralization ratios for aerobic respiration were generally consistent with the classic Redfield ratio (106/16/1/138) except individual C/N and C/P ratios were slightly lower, indicating that marine OC was the major source of the DIC production in the bottom water. This study quantified the role of temporal bottom-water microbial respiration to seasonal DIC dynamics and provided a means for studying the stoichiometry of biogeochemical processes in coastal waters.

  16. Burial, remineralization and utilization of organic matter at the sea floor under a strong western boundary current. Final report, May 1, 1992--April 30, 1995

    SciTech Connect

    Jahnke, R.A.

    1995-08-24

    The overall goals of this project were to quantify the rates of organic carbon export from the southern mid-Atlantic Bight and to quantify the rates at which carbon is exchanged between the inorganic and organic pools within the bottom sediments. This information is necessary to constrain the role of the oceans in the control of carbon dioxide released to the atmosphere in association with energy production. During this project, in situ benthic flux chamber incubations have been performed at six sites on the continental slope and rise adjacent to Cape Hatteras. Based on the analysis of the time-series samples recovered during each experiment, the sea floor exchange rates of the major biogenic elements, oxygen, carbon, nitrogen, phosphorus and silicon were calculated. From the estimated benthic flux rates and the ancillary pore water and sediment analyses, the deposition, remineralization and burial rates of organic carbon to the sea floor in this area was evaluated. This information has been incorporated into regional and global assessments of organic carbon fluxes to the deep sea.

  17. Growth/no growth models for Zygosaccharomyces rouxii associated with acidic, sweet intermediate moisture food products.

    PubMed

    Marvig, C L; Kristiansen, R M; Nielsen, D S

    2015-01-02

    The most notorious spoilage organism of sweet intermediate moisture foods (IMFs) is Zygosaccharomyces rouxii, which can grow at low water activity, low pH and in the presence of organic acids. Together with an increased consumer demand for preservative free and healthier food products with less sugar and fat and a traditionally long self-life of sweet IMFs, the presence of Z. rouxii in the raw materials for IMFs has made assessment of the microbiological stability a significant hurdle in product development. Therefore, knowledge on growth/no growth boundaries of Z. rouxii in sweet IMFs is important to ensure microbiological stability and aid product development. Several models have been developed for fat based, sweet IMFs. However, fruit/sugar based IMFs, such as fruit based chocolate fillings and jams, have lower pH and aw than what is accounted for in previously developed models. In the present study growth/no growth models for acidified sweet IMFs were developed with the variables aw (0.65-0.80), pH (2.5-4.0), ethanol (0-14.5% (w/w) in water phase) and time (0-90 days). Two different strains of Z. rouxii previously found to show pronounced resistance to the investigated variables were included in model development, to account for strain differences. For both strains data sets with and without the presence of sorbic acid (250 ppm on product basis) were built. Incorporation of time as an exploratory variable in the models gave the possibility to predict the growth/no growth boundaries at each time between 0 and 90 days without decreasing the predictive power of the models. The influence of ethanol and aw on the growth/no growth boundary of Z. rouxii was most pronounced in the first 30 days and 60 days of incubation, respectively. The effect of pH was almost negligible in the range of 2.5-4.0. The presence of low levels of sorbic acid (250 ppm) eliminated growth of both strains at all conditions tested. The two strains tested have previously been shown to have

  18. Physiologically based pharmacokinetic modeling of dibromoacetic acid in F344 rats

    SciTech Connect

    Matthews, Jessica L.; Schultz, Irvin R.; Easterling, Michael R.; Melnick, Ronald L.

    2010-04-15

    A novel physiologically based pharmacokinetic (PBPK) model structure, which includes submodels for the common metabolites (glyoxylate (GXA) and oxalate (OXA)) that may be involved in the toxicity or carcinogenicity of dibromoacetic acid (DBA), has been developed. Particular attention is paid to the representation of hepatic metabolism, which is the primary elimination mechanism. DBA-induced suicide inhibition is modeled by irreversible covalent binding of the intermediate metabolite alpha-halocarboxymethylglutathione (alphaH1) to the glutathione-S-transferase zeta (GSTzeta) enzyme. We also present data illustrating the presence of a secondary non-GSTzeta metabolic pathway for DBA, but not dichloroacetic acid (DCA), that produces GXA. The model is calibrated with plasma and urine concentration data from DBA exposures in female F344 rats through intravenous (IV), oral gavage, and drinking water routes. Sensitivity analysis is performed to confirm identifiability of estimated parameters. Finally, model validation is performed with data sets not used during calibration. Given the structural similarity of dihaloacetates (DHAs), we hypothesize that the PBPK model presented here has the capacity to describe the kinetics of any member or mixture of members of this class in any species with the alteration of chemical-and species-specific parameters.

  19. Modeling spray/puddle dissolution processes for deep-ultraviolet acid-hardened resists

    NASA Astrophysics Data System (ADS)

    Hutchinson, John M.; Das, Siddhartha; Qian, Qi-De; Gaw, Henry T.

    1993-10-01

    A study of the dissolution behavior of acid-hardened resists (AHR) was undertaken for spray and spray/puddle development processes. The Site Services DSM-100 end-point detection system is used to measure both spray and puddle dissolution data for a commercially available deep-ultraviolet AHR resist, Shipley SNR-248. The DSM allows in situ measurement of dissolution rate on the wafer chuck and hence allows parameter extraction for modeling spray and puddle processes. The dissolution data for spray and puddle processes was collected across a range of exposure dose and postexposure bake temperature. The development recipe was varied to decouple the contribution of the spray and puddle modes to the overall dissolution characteristics. The mechanisms involved in spray versus puddle dissolution and the impact of spray versus puddle dissolution on process performance metrics has been investigated. We used the effective-dose-modeling approach and the measurement capability of the DSM-100 and developed a lumped parameter model for acid-hardened resists that incorporates the effects of exposure, postexposure bake temperature and time, and development condition. The PARMEX photoresist-modeling program is used to determine parameters for the spray and for the puddle process. The lumped parameter AHR model developed showed good agreement with experimental data.

  20. High-resolution atmospheric modeling of fluorotelomer alcohols and perfluorocarboxylic acids in the North American troposphere.

    PubMed

    Yarwood, Greg; Kemball-Cook, Susan; Keinath, Michael; Waterland, Robert L; Korzeniowski, Stephen H; Buck, Robert C; Russell, Mark H; Washburn, Stephen T

    2007-08-15

    A high spatial and temporal resolution atmospheric model is used to evaluate the potential contribution of fluorotelomer alcohol (FTOH) and perfluorocarboxylate (PFCA) emissions associated with the manufacture, use, and disposal of DuPont fluorotelomer-based products in North America to air concentrations of FTOH, perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) in North America and the Canadian Arctic. A bottom-up emission inventory for PFCAs and FTOHs was developed from sales and product composition data. A detailed FTOH atmospheric degradation mechanism was developed to simulate FTOH degradation to PFCAs and model atmospheric transport of PFCAs and FTOHs. Modeled PFCA yields from FTOH degradation agree with experimental smog-chamber results supporting the degradation mechanism used. Estimated PFCA and FTOH air concentrations and PFCA deposition fluxes are compared to monitoring data and previous global modeling. Predicted FTOH air concentrations are generally in agreement with available monitoring data. Overall emissions from the global fluorotelomer industry are estimated to contribute approximately 1-2% of the PFCAs in North American rainfall, consistent with previous global emissions estimates. Emission calculations and modeling results indicate that atmospheric inputs of PFCAs in North America from fluorotelomer-based products will decline by an order of magnitude in the near future as a result of current industry commitments to reduce manufacturing emissions and lower the residual fluorotelomer alcohol raw material and trace PFCA product content.

  1. Human colon cell culture models of different transformation stages to assess conjugated linoleic acid and conjugated linolenic acid metabolism: Challenges and chances.

    PubMed

    Degen, Christian; Habermann, Nina; Piegholdt, Stefanie; Glei, Michael; Jahreis, Gerhard

    2012-09-01

    Both cellular transformation status and cell culture conditions affect fatty acid metabolism. Hence, the incorporation and metabolism of c9,t11-CLA (conjugated linoleic acid) and other CFAs (conjugated fatty acids) were compared in colon cells (LT-97, adenoma; HT-29, adenocarcinoma). Growth inhibition by CFA in LT-97 cells was assessed via the DAPI (4',6-diamidino-2-phenylindole dihydrochloride) assay. Basal gene expression of desaturases (Δ5, Δ6 and Δ9) and elongases (1, 2, 5 and 6) was determined in LT-97 using PCR. Analysis of cellular fatty acids revealed a 2-fold higher incorporation of c9,t11-CLA (40 and 80μM) in HT-29 cells compared to LT-97 cells. The β-oxidized and elongated conjugated dienoic (CD) fatty acids differed by 8-fold (CD-C16:2/CD-C20:2; HT-29: 8:1; LT-97: 1:1). Notably, LT-97 cells were shown to convert conjugated linolenic acid (CLnA) to CLA. Moreover, LT-97 cells revealed no basal expression of elongase 2. CLnA caused stronger growth inhibition (≤80μM) compared to CLA (200μM). The results indicate that LT-97 cells represent a superior model to carry out elongation and desaturation studies of unsaturated and conjugated fatty acids compared to HT-29 cells. Nevertheless, further in-depth metabolic and transcriptomic analyses are required to confirm this suggestion.

  2. Addition of Amino Acids to Further Stabilize Lyophilized Sucrose-Based Protein Formulations: I. Screening of 15 Amino Acids in Two Model Proteins.

    PubMed

    Forney-Stevens, Kelly M; Bogner, Robin H; Pikal, Michael J

    2016-02-01

    In small amounts, the low molecular weight excipients-sorbitol and glycerol-have been shown to stabilize lyophilized sucrose-based protein formulations. The purpose of this study was to explore the use of amino acids as low molecular weight excipients to similarly enhance stability. Model proteins, recombinant human serum albumin and α-chymotrypsin, were formulated with sucrose in combination with one of 15 amino acid additives. Each formulation was lyophilized at 1:1:0.3 (w/w) protein-sucrose-amino acid. Percent total soluble aggregate was measured by size-exclusion chromatography before and after storage at 50 °C for 2 months. Classical thought might suggest that the addition of the amino acids to the sucrose-protein formulations would be destabilizing because of a decrease in the system's glass transition temperature. However, significant improvement in storage stability was observed for almost all formulations at the ratio of amino acid used. Weak correlations were found between the extent of stabilization and both amino acid molar volume and side-chain charge. The addition of amino acids at a modest level generally improves storage stability, often by more than a 50% increase, for lyophilized sucrose-based protein formulations.

  3. Salmonella enterica serovar Typhimurium and Listeria monocytogenes acid tolerance response induced by organic acids at 20 degrees C: optimization and modeling.

    PubMed

    Greenacre, E J; Brocklehurst, T F; Waspe, C R; Wilson, D R; Wilson, P D G

    2003-07-01

    An acid tolerance response (ATR) has been demonstrated in Listeria monocytogenes and Salmonella enterica serovar Typhimurium in response to low pH poised (i.e., adapted) with acetic or lactic acids at 20 degrees C and modeled by using dynamic differential equations. The ATR was not immediate or prolonged, and optimization occurred after exposure of L. monocytogenes for 3 h at pH 5.5 poised with acetic acid and for 2 h at pH 5.5 poised with lactic acid and after exposure of S. enterica serovar Typhimurium for 2 h at pH 5.5 poised with acetic acid and for 3 h at pH 5.5 poised with lactic acid. An objective mechanistic analysis of the acid inactivation data yielded estimates of the duration of the shoulder (t(s)), the log-linear decline (k(max)), and the magnitude of a critical component (C). The magnitude of k(max) gave the best agreement with estimates of conditions for optimum ATR induction made from the raw data.

  4. Analysis of acidity production during enhanced reductive dechlorination using a simplified reactive transport model

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Barry, D. A.; Robinson, C.; Gerhard, J. I.

    2012-07-01

    Build-up of fermentation products and hydrochloric acid at a contaminated site undergoing enhanced reductive dechlorination can result in groundwater acidification. Sub-optimal pH conditions can inhibit microbial activity and lead to reduced dechlorination rates. The extent of acidification likely to occur is site-specific and depends primarily on the extent of fermentation and dechlorination, the geochemical composition of soil and groundwater, and the pH-sensitivity of the active microbial populations. Here, the key chemical and physical mechanisms that control the extent of groundwater acidification in a contaminated site were examined, and the extent to which the remediation efficiency was affected by variations in groundwater pH was evaluated using a simplified process-based reactive-transport model. This model was applied successfully to a well-documented field site and was then employed in a sensitivity analysis to identify the processes likely to significantly influence acidity production and subsequent microbial inhibition. The accumulation of organic acids produced from the fermentation of the injected substrate was the main cause of the pH change. The concentration of dissolved sulphates controlled substrate utilisation efficiency because sulphate-reducing biomass competed with halo-respiring biomass for the fermentation products. It was shown further that increased groundwater velocity increases dilution and reduces the accumulation of acidic products. As a consequence, the flow rate corresponding to the highest remediation efficiency depends on the fermentation and dechlorination rates. The model enables investigation and forecasting of the extent and areal distribution of pH change, providing a means to optimise the application of reductive dechlorination for site remediation.

  5. A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover.

    PubMed

    Chen, Longjian; Zhang, Haiyan; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Han, Lujia

    2015-02-01

    Kinetic experiments on the dilute sulfuric acid pretreatment of corn stover were performed. A high xylan removal and a low inhibitor concentration were achieved by acid pretreatment. A novel diffusion-hydrolysis coupled kinetic model was proposed. The contribution to the xylose yield was analyzed by the kinetic model. Compared with the inhibitor furfural negatively affecting xylose yield, the fast and slow-hydrolyzing xylan significantly contributed to the xylose yield, however, their dominant roles were dependent on reaction temperature and time. The impact of particle size and acid concentration on the xylose yield were also investigated. The diffusion process may significantly influence the hydrolysis of large particles. Increasing the acid concentration from 0.15 M to 0.30 M significantly improved the xylose yield, whereas the extent of improvement decreased to near-quantitative when further increasing acid loading. These findings shed some light on the mechanism for dilute sulfuric acid hydrolysis of corn stover.

  6. The Immunosuppressant Mycophenolic Acid Alters Nucleotide and Lipid Metabolism in an Intestinal Cell Model

    PubMed Central

    Heischmann, Svenja; Dzieciatkowska, Monika; Hansen, Kirk; Leibfritz, Dieter; Christians, Uwe

    2017-01-01

    The study objective was to elucidate the molecular mechanisms underlying the negative effects of mycophenolic acid (MPA) on human intestinal cells. Effects of MPA exposure and guanosine supplementation on nucleotide concentrations in LS180 cells were assessed using liquid chromatography-mass spectrometry. Proteomics analysis was carried out using stable isotope labeling by amino acids in cell culture combined with gel-based liquid chromatography-mass spectrometry and lipidome analysis using 1H nuclear magnetic resonance spectroscopy. Despite supplementation, depletion of guanosine nucleotides (p < 0.001 at 24 and 72 h; 5, 100, and 250 μM MPA) and upregulation of uridine and cytidine nucleotides (p < 0.001 at 24 h; 5 μM MPA) occurred after exposure to MPA. MPA significantly altered 35 proteins mainly related to nucleotide-dependent processes and lipid metabolism. Cross-reference with previous studies of MPA-associated protein changes widely corroborated these results, but showed differences that may be model- and/or method-dependent. MPA exposure increased intracellular concentrations of fatty acids, cholesterol, and phosphatidylcholine (p < 0.01 at 72 h; 100 μM MPA) which corresponded to the changes in lipid-metabolizing proteins. MPA affected intracellular nucleotide levels, nucleotide-dependent processes, expression of structural proteins, fatty acid and lipid metabolism in LS180 cells. These changes may compromise intestinal membrane integrity and contribute to gastrointestinal toxicity. PMID:28327659

  7. Free fatty acids enhance the oxidative damage induced by ethanol metabolism in an in vitro model.

    PubMed

    Hernández, Ileana; Domínguez-Pérez, Mayra; Bucio, Leticia; Souza, Verónica; Miranda, Roxana U; Clemens, Dahn L; Gomez-Quiroz, Luis Enrique; Gutiérrez-Ruiz, María Concepción

    2015-02-01

    In recent years, there has been a growing interest to explore the responsiveness to injury in steatotic hepatocyte. VL-17A cells, which express ADH and Cyp2E1 overloaded with free fatty acids (1 mM of oleic and palmitic acid 2:1) showed an increased oxidative damaged after 24 h free fatty acids treatment when exposed to ethanol (100 mM) for 48 h as a second injury. An increment in reactive oxygen species, determined by DCFH-DA, protein oxidation, and apoptosis were observed although an increase in main antioxidant proteins such as superoxide dismutase 1 and glutathione peroxidase were observed, but failed in gamma-glutamylcysteine synthetase, suggesting a decreased capacity of synthesis of glutathione compared with cells treated only with free fatty acids or ethanol. The increased oxidative stress and toxicity in lipid overloaded VL-17A cells subjected to ethanol exposure were accompanied by increases in Cyp2E1 protein expression. Our data show that lipid loaded in an in vitro model, VL-17A cells, is more susceptible to cell damage and oxidative stress when treated with ethanol.

  8. Priming of plant resistance by natural compounds. Hexanoic acid as a model

    PubMed Central

    Aranega-Bou, Paz; de la O Leyva, Maria; Finiti, Ivan; García-Agustín, Pilar; González-Bosch, Carmen

    2014-01-01

    Some alternative control strategies of currently emerging plant diseases are based on the use of resistance inducers. This review highlights the recent advances made in the characterization of natural compounds that induce resistance by a priming mechanism. These include vitamins, chitosans, oligogalacturonides, volatile organic compounds, azelaic and pipecolic acid, among others. Overall, other than providing novel disease control strategies that meet environmental regulations, natural priming agents are valuable tools to help unravel the complex mechanisms underlying the induced resistance (IR) phenomenon. The data presented in this review reflect the novel contributions made from studying these natural plant inducers, with special emphasis placed on hexanoic acid (Hx), proposed herein as a model tool for this research field. Hx is a potent natural priming agent of proven efficiency in a wide range of host plants and pathogens. It can early activate broad-spectrum defenses by inducing callose deposition and the salicylic acid (SA) and jasmonic acid (JA) pathways. Later it can prime pathogen-specific responses according to the pathogen’s lifestyle. Interestingly, Hx primes redox-related genes to produce an anti-oxidant protective effect, which might be critical for limiting the infection of necrotrophs. Our Hx-IR findings also strongly suggest that it is an attractive tool for the molecular characterization of the plant alarmed state, with the added advantage of it being a natural compound. PMID:25324848

  9. Modelling of the nitric acid reduction process: Application to materials behavior in reprocessing plants

    SciTech Connect

    Sicsic, D.; Balbaud-Celerier, F.; Tribollet, B.

    2012-07-01

    In France, the recycling process of nuclear waste fuels involves the use of hot concentrated nitric acid. The understanding and the prediction of the structural materials (mainly austenitic stainless steels) behaviour requires the determination of the nitric acid reduction process. Nitric acid is indirectly reduced by an autocatalytic mechanism depending on the cathodic overpotential and the acid concentration. This mechanism has been widely studied. All the authors agree on its autocatalytic nature, characterized by the predominant role of the reduction products. It is also generally admitted that nitric acid or the nitrate ion are not the electro-active species. However, uncertainties remain concerning the nature of the electro-active species, the place where the catalytic species regenerates and the thermodynamic and kinetic behaviour of the reaction intermediates. The aim of this study is to clarify some of these uncertainties by performing an electrochemical investigation of the 4 mol.L -1 nitric acid reduction process at 40 deg. C occurring on an inert electrode (platinum or gold). An inert electrode was chosen as a working electrode in a first step in order to avoid its oxidation and focus the research on the reduction mechanism. This experimental work enabled to suggest a coherent sequence of electrochemical and chemical reactions. Then, a kinetic modelling of this sequence was carried out for a gold rotating disk system. In this objective, a thermodynamic study at 25 deg. C led to the evaluation of the composition of liquid and gaseous phases for nitric acid solutions from 0.5 to 22 mol.L -1. The kinetics of the reduction process of nitric acid 4 mol.L -1 was investigated by cyclic voltammetry and chrono-amperometry on an inert electrode at 40 deg. C. A coupling of chrono-amperometry and FTIR in gaseous phase led to the identification of the gaseous reduction products as a function of the cathodic overpotential. These different results showed that for

  10. Screening of central functions of amino acids and their metabolites for sedative and hypnotic effects using chick models.

    PubMed

    Furuse, Mitsuhiro

    2015-09-05

    The chick has a practical advantage in the screening process in that chicks require only small quantities of drugs. The chick separation stress paradigm has traditionally been recognized as a valid form of anxiolytic screening. Further, chick behavior involving standing motionless with eyes closed or sitting motionless with head drooped is nearly always associated with electrophysiological sleep. When centrally administered, some DNA-encoded L-α-amino acids, as well as some DNA-non-encoded amino acids, such as metabolites of L-α-amino acids, D-amino acid and β-amino acid, have shown sedative and/or hypnotic effects in chicks. The effects of some of these amino acids have subsequently been confirmed in humans. In conclusion, the chick model is convenient and useful for screening central functions of amino acids and their metabolites for hypnosis and sedation.

  11. New model of pharmacoresistant seizures induced by 3-mercaptopropionic acid in mice.

    PubMed

    Enrique, Andrea; Goicoechea, Sofía; Castaño, Rocío; Taborda, Facundo; Rocha, Luisa; Orozco, Sandra; Girardi, Elena; Bruno Blanch, Luis

    2017-01-01

    About 30% of the patients with epilepsy do not respond to clinically established anticonvulsants, despite having effective concentrations of the antiepileptic drug in plasma. Therefore, new preclinical models of epilepsy are needed to identify more efficacious treatments. We describe here a new drug-resistant seizure model in mice to be used at the early stages of pre-clinical trials. This model consists in inducing daily generalized seizures for 23 consecutive days by administration of 3-mercaptopropionic acid (MP). As a result, 100% of animals become resistant to phenytoin and 80% to phenobarbital. Such resistance is strongly associated with the overexpression of P-glycoprotein (Pgp), observed in cerebral cortex, hippocampus and striatum while resistance to Pgp nonsubstrate drugs such as carbamazepine, diazepam and levetiracetam is not observed. This model could be useful for screening novel anticonvulsant drugs with a potential effect on pharmacoresistant seizures treatment.

  12. Modeling the effect of relative humidity on nitrous acid formation in the Houston area

    NASA Astrophysics Data System (ADS)

    Diao, Lijun; Roy, Anirban; Czader, Beata; Pan, Shuai; Jeon, Wonbae; Souri, Amir Hossein; Choi, Yunsoo

    2016-04-01

    The field and laboratory based relative humidity (RH) impact on nitrous acid (HONO) heterogeneous reaction has not been considered in chemical transport models. This study parameterized this dependency into the Community Multiscale Air Quality (CMAQ) model. In view of the positive linear correlation between the reaction rate and RH, the HONO heterogeneous reaction rate constants were respectively scaled by the factors of RH/30 and RH/40. Two corresponding sensitivity tests were carried out in the period of September 2013 in Houston. Both tests significantly improved modeled HONO concentrations and reduced the bias for NO2 in comparison with observations. However, the model is still not capable of reproducing the high HONO concentrations in the morning rush hours. Further work is needed to explore the underlying mechanisms for the early morning HONO formation.

  13. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    NASA Astrophysics Data System (ADS)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    Acid mine drainage, AMD, results from the oxidation of metal sulfide minerals (e.g. pyrite), producing ferrous iron and sulfuric acid. Acidophilic autotrophic bacteria such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans obtain energy by oxidizing ferrous iron back to ferric iron, using oxygen as the electron acceptor. Most existing models of AMD do not account for microbial kinetics or iron geochemistry rigorously. Instead they assume that oxygen limitation controls pyrite oxidation and thus focus on oxygen transport. These models have been successfully used for simulating conditions where oxygen availability is a limiting factor (e.g. source prevention by capping), but have not been shown to effectively model acid generation and effluent chemistry under a wider range of conditions. The key reactions, oxidation of pyrite and oxidation of ferrous iron, are both slow kinetic processes. Despite being extensively studied for the last thirty years, there is still not a consensus in the literature about the basic mechanisms, limiting factors or rate expressions for microbially enhanced oxidation of metal sulfides. An indirect leaching mechanism (chemical oxidation of pyrite by ferric iron to produce ferrous iron, with regeneration of ferric iron by microbial oxidation of ferrous iron) is used as the foundation of a conceptual model for microbially enhanced oxidation of pyrite. Using literature data, a rate expression for microbial consumption of ferrous iron is developed that accounts for oxygen, ferrous iron and pH limitation. Reaction rate expressions for oxidation of pyrite and chemical oxidation of ferrous iron are selected from the literature. A completely mixed stirred tank reactor (CSTR) model is implemented coupling the kinetic rate expressions, speciation calculations and flow. The model simulates generation of AMD and effluent chemistry that qualitatively agrees with column reactor and single rock experiments. A one dimensional reaction

  14. On the Formation of Benzoic Acid and Higher Order Benzene Carboxylic Acids in Interstellar Model Ices grains

    NASA Astrophysics Data System (ADS)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, Andrew M.; Chakravarty, Harish K.; Kaiser, Ralf I.

    2016-11-01

    With a binary ice mixture of benzene (C6H6) and carbon dioxide (CO2) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta- and para-benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, was proposed utilizing the kinetic fitting of the coupled differential equations.

  15. Acetylsalicylic acid combined with diclofenac inhibits cartilage degradation in rabbit models of osteoarthritis.

    PubMed

    Liu, Jianqiang; Wu, Changshun; Wang, Dong; Wang, Laicheng; Sun, Shui

    2016-10-01

    The present study aimed to investigate the effect of different concentrations of acetylsalicylic acid combined with diclofenac on the articular cartilage of a rabbit model of osteoarthritis (OA). A total of 40 New Zealand white rabbits were divided into 5 groups. Group A was a sham-operated control group, which was treated with normal saline. Groups B-E were OA models and were treated with normal saline and acetylsalicylic acid combined with diclofenac at concentrations of 5, 10 and 20 mg/kg, respectively. A cartilage macroscopic examination and a pathological observation were performed to analyze the structure of the articular cartilage in all of the treated groups. The nitric oxide (NO) content and interleukin 1β (IL-1β) levels were detected by an enzyme-linked immunosorbent assay. In addition, the protein expression of matrix metalloproteinase 3 (MMP)-3 and MMP-13 were detected by western blot analysis. The mRNA expression of tissue inhibitor of metalloproteinases 1 (TIMP1) was detected by polymerase chain reaction (PCR). The results revealed that different concentrations of the drugs significantly reduced the scores of cartilago articularis, the NO and IL-1β levels and the protein expression of MMP-3 and MMP-13. Furthermore, PCR revealed that the mRNA expression of TIMP1 was significantly upregulated, and the effects increased with increasing drug concentration. Thus, the administration of different concentrations of acetylsalicylic acid combined with diclofenac demonstrates preventive or therapeutic effects against OA progression.

  16. Acetylsalicylic acid combined with diclofenac inhibits cartilage degradation in rabbit models of osteoarthritis

    PubMed Central

    Liu, Jianqiang; Wu, Changshun; Wang, Dong; Wang, Laicheng; Sun, Shui

    2016-01-01

    The present study aimed to investigate the effect of different concentrations of acetylsalicylic acid combined with diclofenac on the articular cartilage of a rabbit model of osteoarthritis (OA). A total of 40 New Zealand white rabbits were divided into 5 groups. Group A was a sham-operated control group, which was treated with normal saline. Groups B-E were OA models and were treated with normal saline and acetylsalicylic acid combined with diclofenac at concentrations of 5, 10 and 20 mg/kg, respectively. A cartilage macroscopic examination and a pathological observation were performed to analyze the structure of the articular cartilage in all of the treated groups. The nitric oxide (NO) content and interleukin 1β (IL-1β) levels were detected by an enzyme-linked immunosorbent assay. In addition, the protein expression of matrix metalloproteinase 3 (MMP)-3 and MMP-13 were detected by western blot analysis. The mRNA expression of tissue inhibitor of metalloproteinases 1 (TIMP1) was detected by polymerase chain reaction (PCR). The results revealed that different concentrations of the drugs significantly reduced the scores of cartilago articularis, the NO and IL-1β levels and the protein expression of MMP-3 and MMP-13. Furthermore, PCR revealed that the mRNA expression of TIMP1 was significantly upregulated, and the effects increased with increasing drug concentration. Thus, the administration of different concentrations of acetylsalicylic acid combined with diclofenac demonstrates preventive or therapeutic effects against OA progression. PMID:27698707

  17. Mechanisms of insulin secretion in malnutrition: modulation by amino acids in rodent models.

    PubMed

    de Oliveira, Camila Aparecida Machado; Latorraca, Márcia Queiroz; de Mello, Maria Alice Rostom; Carneiro, Everardo Magalhães

    2011-04-01

    Protein restriction at early stages of life reduces β-cell volume, number of insulin-containing granules, insulin content and release by pancreatic islets in response to glucose and other secretagogues, abnormalities similar to those seen in type 2 diabetes. Amino acids are capable to directly modulate insulin secretion and/or contribute to the maintenance of β-cell function, resulting in an improvement of insulin release. Animal models of protein malnutrition have provided important insights into the adaptive mechanisms involved in insulin secretion in malnutrition. In this review, we discuss studies focusing on the modulation of insulin secretion by amino acids, specially leucine and taurine, in rodent models of protein malnutrition. Leucine supplementation increases insulin secretion by pancreatic islets in malnourished mice. This effect is at least in part due to increase in the expression of proteins involved in the secretion process, and the activation of the PI3K/PKB/mTOR pathway seems also to contribute. Mice supplemented with taurine have increased insulin content and secretion as well as increased expression of genes essential for β-cell functionality. The knowledge of the mechanisms through which amino acids act on pancreatic β-cells to stimulate insulin secretion is of interest for clinical medicine. It can reveal new targets for the development of drugs toward the treatment of endocrine diseases, in special type 2 diabetes.

  18. [Rumen fermentation and digestibility of nutrients studied by the addition of Ca soaps of palm oil fatty acids and their analogous fatty acids in the sheep model].

    PubMed

    Drochner, W; Yildiz, G

    1999-12-01

    The ruminally fistulated sheep was used as a model to study the effects of fat supplementation (Ca-soaps and free long chain fatty acids from palm oil) on rumen physiology and digestibility of the nutrients. The animals were fed with a typical ration of hay and concentrate supplying nutrients according to maintenance levels. The following results should be pointed out: The addition of free fatty acids and their Ca-soaps induced a retarded recovery of postprandially decreased pH-values in ruminal fluid. This retardation was more pronounced after addition of free long chain fatty acids than with their Ca-soap-analogous acids. Compared to the control, the concentration of short chain fatty acids was depressed by fat addition in the period 2 hours after feed intake. The release of ammonia in the first period after feed intake was reduced by fat addition. A lack of synchronity could be observed in this post-prandial period in ruminal fluid between concentration of short chain fatty acids and ammonia. This effect was most obvious with supplementation of unprotected fatty acids. This might be one reason for the better tolerance of Ca soaps from palm oil fatty acids. Formation of hydrides, branched chains and transforms proceeds more effectively with free fatty acids than with their analogous forms of Ca-soaps. The well-known effect of depression of digestibility of nutrients due to fat supplementation was--under present conditions--quite low. This might be different in lactating dairy cows with higher levels of feed intake. With high feed intake, passage time is reduced. This will affect digestibility and interactions with fat supplementation.

  19. A model to assess lactic acid bacteria aminopeptidase activities in Parmigiano Reggiano cheese during ripening.

    PubMed

    Gatti, M; De Dea Lindner, J; Gardini, F; Mucchetti, G; Bevacqua, D; Fornasari, M E; Neviani, E

    2008-11-01

    The aim of this work was to investigate in which phases of ripening of Parmigiano Reggiano cheese lactic acid bacteria aminopeptidases present in cheese extract could be involved in release of free amino acids and to better understand the behavior of these enzymes in physical-chemical conditions that are far from their optimum. In particular, we evaluated 6 different substrates to reproduce broad-specificity aminopeptidase N, broad-specificity aminopeptidase C, glutamyl aminopeptidase A, peptidase with high specificity for leucine and alanine, proline iminopeptidase, and X-prolyl dipeptidyl aminopeptidase activities releasing different N-terminal amino acids. The effects of pH, NaCl concentration, and temperature on the enzyme activities of amino acid beta-naphthylamide (betaNA)-substrates were determined by modulating the variables in 19 different runs of an experimental design, which allowed the building of mathematical models able to assess the effect on aminopeptidases activities over a range of values, obtained with bibliographic data, covering different environmental conditions in different zones of the cheese wheel at different aging times. The aminopeptidases tested in this work were present in cell-free Parmigiano Reggiano cheese extract after a 17-mo ripening and were active when tested in model system. The modeling approach shows that to highlight the individual and interactive effects of chemical-physical variables on enzyme activities, it is helpful to determine the true potential of an amino-peptidase in cheese. Our results evidenced that the 6 different lactic acid bacteria peptidases participate in cheese proteolysis and are induced or inhibited by the cheese production parameters that, in turn, depend on the cheese dimension. Generally, temperature and pH exerted the more relevant effects on the enzymatic activities, and in many cases, a relevant interactive effect of these variables was observed. Increasing salt concentration slowed down broad

  20. Geological Modeling and Fluid Flow Simulation of Acid Gas Storage, Nugget Sandstone, Moxa Arch, Wyoming

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, Y.; Zhang, X.; Du, C.

    2009-12-01

    The Moxa Arch Anticline is a regional-scale northwest-trending uplift in western Wyoming where geological storage of acid gases (CO2, CH4, N2, H2S, He) from ExxonMobile's Shute Creek Gas Plant is under consideration. The Nugget Sandstone, a deep saline aquifer at depths exceeding 17,170 ft, is a candidate formation for acid gas storage. As part of a larger goal of determining site suitability, this study builds three-dimensional local to regional scale geological and fluid flow models for the Nugget Sandstone, its caprock (Twin Creek Limestone), and an underlying aquifer (Ankareh Sandstone), or together, the ``Nugget Suite''. For an area of 3000 square miles, geological and engineering data were assembled, screened for accuracy, and digitized, covering an average formation thickness of ~1700 feet. The data include 900 public-domain well logs (SP, Gamma Ray, Neutron Porosity, Density, Sonic, shallow and deep Resistivity, Lithology, Deviated well logs), 784 feet of core measurements (porosity and permeability), 4 regional geological cross sections, and 3 isopach maps. Data were interpreted and correlated for geological formations and facies, the later categorized using both Neural Network and Gaussian Hierarchical Clustering algorithms. Well log porosities were calibrated with core measurements, those of permeability estimated using formation-specific porosity-permeability transforms. Using conditional geostatistical simulations (first indicator simulation of facies, then sequential Gaussian simulation of facies-specific porosity), data were integrated at the regional-scale to create a geological model from which a local-scale simulation model surrounding the Shute Creek injection site was extracted. Based on this model, full compositional multiphase flow simulations were conducted with which we explore (1) an appropriate grid resolution for accurate acid gas predictions (pressure, saturation, and mass balance); (2) sensitivity of key geological and engineering

  1. Modeling the plant-soil interaction in presence of heavy metal pollution and acidity variations.

    PubMed

    Guala, Sebastián; Vega, Flora A; Covelo, Emma F

    2013-01-01

    On a mathematical interaction model, developed to model metal uptake by plants and the effects on their growth, we introduce a modification which considers also effects on variations of acidity in soil. The model relates the dynamics of the uptake of metals from soil to plants and also variations of uptake according to the acidity level. Two types of relationships are considered: total and available metal content. We suppose simple mathematical assumptions in order to get as simple as possible expressions with the aim of being easily tested in experimental problems. This work introduces modifications to two versions of the model: on the one hand, the expression of the relationship between the metal in soil and the concentration of the metal in plants and, on the other hand, the relationship between the metal in the soil and total amount of the metal in plants. The fine difference of both versions is fundamental at the moment to consider the tolerance and capacity of accumulation of pollutants in the biomass from the soil.

  2. Wintertime nitric acid chemistry - Implications from three-dimensional model calculations

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Kaye, Jack A.; Douglass, Anne R.; Allen, Dale J.; Steenford, Stephen

    1990-01-01

    A three-dimensional simulation of the evolution of HNO3 has been run for the winter of 1979. Winds and temperatures are taken from a stratospheric data assimilation analysis, and the chemistry is based on Limb Infrared Monitor of the Stratosphere (LIMS) observations. The model is compared to LIMS observations to investigate the problem of 'missing' nitric acid chemistry in the winter hemisphere. Both the model and observations support the contention that a nitric acid source is needed outside of the polar vortex and north of the subtropics. Observations suggest that HNO3 is not dynamically controlled in middle latitudes. The model shows that given the time scales of conventional chemistry, dynamical control is expected. Therefore, an error exists in the conventional chemistry or additional processes are needed to bring the model and data into agreement. Since the polar vortex is dynamically isolated from the middle latitudes, and since the highest HNO3 values are observed in October and November, a source associated solely with polar stratospheric clouds cannot explain the deficiencies in the chemistry. The role of heterogeneous processes on background aerosols is reviewed in light of these results.

  3. Computational Mechanistic Studies of Acid-Catalyzed Lignin Model Dimers for Lignin Depolymerization

    SciTech Connect

    Kim, S.; Sturgeon, M. R.; Chmely, S. C.; Paton, R. S.; Beckham, G. T.

    2013-01-01

    Lignin is a heterogeneous alkyl-aromatic polymer that constitutes up to 30% of plant cell walls, and is used for water transport, structure, and defense. The highly irregular and heterogeneous structure of lignin presents a major obstacle in the development of strategies for its deconstruction and upgrading. Here we present mechanistic studies of the acid-catalyzed cleavage of lignin aryl-ether linkages, combining both experimental studies and quantum chemical calculations. Quantum mechanical calculations provide a detailed interpretation of reaction mechanisms including possible intermediates and transition states. Solvent effects on the hydrolysis reactions were incorporated through the use of a conductor-like polarizable continuum model (CPCM) and with cluster models including explicit water molecules in the first solvation shell. Reaction pathways were computed for four lignin model dimers including 2-phenoxy-phenylethanol (PPE), 1-(para-hydroxyphenyl)-2-phenoxy-ethanol (HPPE), 2-phenoxy-phenyl-1,3-propanediol (PPPD), and 1-(para-hydroxyphenyl)-2-phenoxy-1,3-propanediol (HPPPD). Lignin model dimers with a para-hydroxyphenyl ether (HPPE and HPPPD) show substantial differences in reactivity relative to the phenyl ether compound (PPE and PPPD) which have been clarified theoretically and experimentally. The significance of these results for acid deconstruction of lignin in plant cell walls will be discussed.

  4. Transport of heptafluorostearate across model membranes. Membrane transport of long-chain fatty acid anions I.

    PubMed

    Schmider, W; Fahr, A; Blum, H E; Kurz, G

    2000-05-01

    Heptafluorostearic acid, an isogeometric derivative of stearic acid, has a pK(a) value of about 0.5. To evaluate the suitability of heptafluorostearate as model compound for anions of long-chain fatty acids in membrane transport, monolayer and liposome studies were performed with lipid mixtures containing phospholipids;-cholesterol-heptafluorostearate or stearate (100:40:20 molar ratios). Transfer of heptafluorostearate and stearate from liposomes to bovine serum albumin (BSA) was followed by measuring the intrinsic fluorescence of BSA. The percentage of heptafluorostearate, equivalent to the amount placed in their outer monolayer, transferred from liposomes (120;-130 nm diameter) to BSA was 55.7 +/- 3.7% within 10 min at 25 degrees C and 55 +/- 2% within 5 min at 37 degrees C. Slow transfer of 22.7 +/- 2.5% of heptafluorostearate at 25 degrees C followed with a half-life of 2.3 +/- 0.4 h and of 20 +/- 4% at 37 degrees C with a half-life of 0.9 +/- 0.1 h until the final equilibrium distributions between BSA and liposomes were reached, 79 +/- 6% to 21 +/- 5% at 25 degrees C and 75 +/- 5% to 25 +/- 4% at 37 degrees C. The pseudounimolecular rate constants for flip-flop of heptafluorostearate equal k(FF,25) = 0.24 +/- 0.05 h(-) and k(FF,37) = 0.6 +/- 0.1 h(-), respectively. By comparison, transfer of stearate required only 3 min to reach equilibrium distribution. The difference between heptafluorostearate and stearate may be explained by a rapid flip-flop movement of the un-ionized fatty acids which exist in different concentrations in accordance with their pK(a) values. Half-life of flip-flop of heptafluorostearate makes it suitable to study mediated membrane transport of long-chain fatty acid anions.

  5. Selective rod degeneration and partial cone inactivation characterize an iodoacetic acid model of Swine retinal degeneration.

    PubMed

    Wang, Wei; Fernandez de Castro, Juan; Vukmanic, Eric; Zhou, Liang; Emery, Douglas; Demarco, Paul J; Kaplan, Henry J; Dean, Douglas C

    2011-10-07

    PURPOSE. Transgenic pigs carrying a mutant human rhodopsin transgene have been developed as a large animal model of retinitis pigmentosa (RP). This model displays some key features of human RP, but the time course of disease progression makes this model costly, time consuming, and difficult to study because of the size of the animals at end-stage disease. Here, the authors evaluate an iodoacetic acid (IAA) model of photoreceptor degeneration in the pig as an alternative model that shares features of the transgenic pig and human RP. METHODS. IAA blocks glycolysis, thereby inhibiting photoreceptor function. The effect of the intravenous injection of IAA on swine rod and cone photoreceptor viability and morphology was followed by histologic evaluation of different regions of the retina using hematoxylin and eosin and immunostaining. Rod and cone function was analyzed by full-field electroretinography and multifocal electroretinography. RESULTS. IAA led to specific loss of rods in a central-to-peripheral retinal gradient. Although cones were resistant, they showed shortened outer segments, loss of bipolar cell synaptic connections, and a diminished flicker ERG, hallmarks of transition to cone dysfunction in RP patients. CONCLUSIONS. IAA provides an alternative rod-dominant model of retinal damage that shares a surprising number of features with the pig transgenic model of RP and with human RP. This IAA model is cost-effective and rapid, ensuring that the size of the animals does not become prohibitive for end-stage evaluation or therapeutic intervention.

  6. Topical treatments for hydrofluoric acid dermal burns. Further assessment of efficacy using an experimental piq model.

    PubMed

    Dunn, B J; MacKinnon, M A; Knowlden, N F; Billmaier, D J; Derelanko, M J; Rusch, G M; Naas, D J; Dahlgren, R R

    1996-05-01

    Several topical treatments for hydrofluoric acid dermal burns (Zephiran, calcium acetate and magnesium hydroxide antacid soaks, and calcium gluconate gel) were assessed for efficacy in a pig model. Gross appearance and histopathology of treated and untreated burn sites were evaluated. For superficial burns, Zephiran was most effective; calcium acetate, magnesium hydroxide antacid, and calcium gluconate gel were less effective. For deep burns, gross observations showed that calcium acetate and Zephiran were most efficacious, whereas histopathology indicated comparable efficacy of Zephiran, calcium acetate, and calcium gluconate gel for all skin layers. Magnesium hydroxide antacid demonstrated efficacy only for the subdermis. The clinically beneficial effects of both Zephiran and calcium gluconate gel were affirmed. Although results suggest that calcium acetate and magnesium-containing antacids may be beneficial for human hydrofluoric acid dermal burns, these are not established clinical treatments.

  7. Uncertainty analysis on simple mass balance model to calculate critical loads for soil acidity.

    PubMed

    Li, Harbin; McNulty, Steven G

    2007-10-01

    Simple mass balance equations (SMBE) of critical acid loads (CAL) in forest soil were developed to assess potential risks of air pollutants to ecosystems. However, to apply SMBE reliably at large scales, SMBE must be tested for adequacy and uncertainty. Our goal was to provide a detailed analysis of uncertainty in SMBE so that sound strategies for scaling up CAL estimates to the national scale could be developed. Specifically, we wanted to quantify CAL uncertainty under natural variability in 17 model parameters, and determine their relative contributions in predicting CAL. Results indicated that uncertainty in CAL came primarily from components of base cation weathering (BC(w); 49%) and acid neutralizing capacity (46%), whereas the most critical parameters were BC(w) base rate (62%), soil depth (20%), and soil temperature (11%). Thus, improvements in estimates of these factors are crucial to reducing uncertainty and successfully scaling up SMBE for national assessments of CAL.

  8. A mathematical model of the link between growth and L-malic acid consumption for five strains of Oenococcus oeni.

    PubMed

    Fahimi, N; Brandam, C; Taillandier, P

    2014-12-01

    In winemaking, after the alcoholic fermentation of red wines and some white wines, L-malic acid must be converted into L-lactic acid to reduce the acidity. This malolactic fermentation (MLF) is usually carried out by the lactic acid bacteria Oenococcus oeni. Depending on the level of process control, selected O. oeni is inoculated or the natural microbiota of the cellar is used. This study considers the link between growth and MLF for five strains of O. oeni species. The kinetics of growth and L-malic acid consumption were followed in modified MRS medium (20 °C, pH 3.5, and 10 % ethanol) in anaerobic conditions. A large variability was found among the strains for both their growth and their consumption of L-malic acid. There was no direct link between biomass productivities and consumption of L-malic acid among strains but there was a link of proportionality between the specific growth of a strain and its specific consumption of L-malic acid. Experiments with and without malic acid clearly demonstrated that malic acid consumption improved the growth of strains. This link was quantified by a mathematical model comparing the intrinsic malic acid consumption capacity of the strains.

  9. Semi-mechanistic modelling of ammonia absorption in an acid spray wet scrubber based on mass balance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A model to describe reactive absorption of ammonia (NH3) in an acid spray scrubber was developed as a function of the combined overall mass transfer coefficient K. An experimental study of NH3 absorption using 1% dilute sulphuric acid was carried out under different operating conditions. An empiric...

  10. Proresolving Action of Docosahexaenoic Acid Monoglyceride in Lung Inflammatory Models Related to Cystic Fibrosis.

    PubMed

    Morin, Caroline; Cantin, André M; Rousseau, Éric; Sirois, Marco; Sirois, Chantal; Rizcallah, Edmond; Fortin, Samuel

    2015-10-01

    Cystic fibrosis (CF) is a hereditary, chronic disease of the exocrine glands, characterized by the production of viscid mucus that obstructs the pancreatic ducts and bronchi, leading to infection and fibrosis. ω3 fatty acid supplementations are known to improve the essential fatty acid deficiency as well as reduce inflammation in CF. The objective of this study was to determine the effects of docosahexaenoic acid monoacylglyceride (MAG-DHA) on mucin overproduction and resolution of airway inflammation in two in vitro models related to CF. Isolated human bronchi reverse permeabilized with CF transmembrane conductance regulator (CFTR) silencing (si) RNA and stable Calu3 cells expressing a short hairpin (sh) RNA directed against CFTR (shCFTR) were used. Lipid analyses revealed that MAG-DHA increased DHA/arachidonic acid (AA) ratio in shCFTR Calu-3 cells. MAG-DHA treatments, moreover, resulted in a decreased activation of Pseudomonas aeruginosa LPS-induced NF-κB in CF and non-CF Calu-3 cells. Data also revealed a reduction in MUC5AC, IL-6, and IL-8 expression levels in MAG-DHA-treated shCFTR cells stimulated, or not, with LPS. Antiinflammatory properties of MAG-DHA were also investigated in a reverse-permeabilized human bronchi model with CFTR siRNA. After MAG-DHA treatments, messenger RNA transcript levels for MUC5AC, IL-6, and IL-8 were markedly reduced in LPS-treated CFTR siRNA bronchi. MAG-DHA displays antiinflammatory properties and reduces mucin overexpression in Calu-3 cells and human bronchi untreated or treated with P. aeruginosa LPS, a finding consistent with the effects of resolvinD1, a known antiinflammatory mediator.

  11. A fractional order model for lead-acid battery crankability estimation

    NASA Astrophysics Data System (ADS)

    Sabatier, J.; Cugnet, M.; Laruelle, S.; Grugeon, S.; Sahut, B.; Oustaloup, A.; Tarascon, J. M.

    2010-05-01

    With EV and HEV developments, battery monitoring systems have to meet the new requirements of car industry. This paper deals with one of them, the battery ability to start a vehicle, also called battery crankability. A fractional order model obtained by system identification is used to estimate the crankability of lead-acid batteries. Fractional order modelling permits an accurate simulation of the battery electrical behaviour with a low number of parameters. It is demonstrated that battery available power is correlated to the battery crankability and its resistance. Moreover, the high-frequency gain of the fractional model can be used to evaluate the battery resistance. Then, a battery crankability estimator using the battery resistance is proposed. Finally, this technique is validated with various battery experimental data measured on test rigs and vehicles.

  12. Perfluorooctanoic Acid Degradation Using UV-Persulfate Process: Modeling of the Degradation and Chlorate Formation.

    PubMed

    Qian, Yajie; Guo, Xin; Zhang, Yalei; Peng, Yue; Sun, Peizhe; Huang, Ching-Hua; Niu, Junfeng; Zhou, Xuefei; Crittenden, John C

    2016-01-19

    In this study, we investigated the destruction and by-product formation of perfluorooctanoic acid (PFOA) using ultraviolet light and persulfate (UV-PS). Additionally, we developed a first-principles kinetic model to simulate both PFOA destruction and by-product and chlorate (ClO3(-)) formation in ultrapure water (UW), surface water (SW), and wastewater (WW). PFOA degradation was significantly suppressed in the presence of chloride and carbonate species and did not occur until all the chloride was converted to ClO3(-) in UW and for low DOC concentrations in SW. The model was able to simulate the PS decay, pH changes, radical concentrations, and ClO3(-) formation for UW and SW. However, our model was unable to simulate PFOA degradation well in WW, possibly from PS activation by NOM, which in turn produced sulfate radicals.

  13. Sulfonic acid resin-catalyzed addition of phenols, carboxylic acids, and water to olefins: Model reactions for catalytic upgrading of bio-oil.

    PubMed

    Zhang, Zhi-Jun; Wang, Qing-Wen; Yang, Xu-Lai; Chatterjee, Sabornie; Pittman, Charles U

    2010-05-01

    Acid-catalyzed 1-octene reactions with phenol and mixtures of phenol with water, acetic acid and 1-butanol were studied as partial bio-oil upgrading models. Bio-oil from fast biomass pyrolysis has poor fuel properties due to the presence of substantial amounts of water, carboxylic acid, phenolic derivatives and other hydroxyl-containing compounds. Additions across olefins offer a route to simultaneously lower water content and acidity while increasing hydrophobicity, stability and heating value. Amberlyst15, Dowex50WX2 and Dowex50WX4 effectively catalyzed phenol O- and C-alkylation from 65 to 120 degrees C, giving high O-alkylation selectivities in the presence of water, acetic acid and 1-butanol. Octanols and dioctyl ethers were formed from water and octyl acetates and phenol acetates from acetic acid. Phenol alkylation slowed in the presence of water. Dowex50WX2 and Dowex50WX4 were more stable in the presence of water than Amberlyst15 and were successfully recycled. Adding 1-butanol to phenol/water/1-octene, gave emulsion-like mixtures which improved phenol conversion and olefin hydration.

  14. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms.

    PubMed

    Widdows, Kate L; Panitchob, Nuttanont; Crocker, Ian P; Please, Colin P; Hanson, Mark A; Sibley, Colin P; Johnstone, Edward D; Sengers, Bram G; Lewis, Rohan M; Glazier, Jocelyn D

    2015-06-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [(14)C]L-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [(14)C]L-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with L-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.

  15. Accuracy assessment of the linear Poisson-Boltzmann equation and reparametrization of the OBC generalized Born model for nucleic acids and nucleic acid-protein complexes.

    PubMed

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2015-04-05

    The generalized Born model in the Onufriev, Bashford, and Case (Onufriev et al., Proteins: Struct Funct Genet 2004, 55, 383) implementation has emerged as one of the best compromises between accuracy and speed of computation. For simulations of nucleic acids, however, a number of issues should be addressed: (1) the generalized Born model is based on a linear model and the linearization of the reference Poisson-Boltmann equation may be questioned for highly charged systems as nucleic acids; (2) although much attention has been given to potentials, solvation forces could be much less sensitive to linearization than the potentials; and (3) the accuracy of the Onufriev-Bashford-Case (OBC) model for nucleic acids depends on fine tuning of parameters. Here, we show that the linearization of the Poisson Boltzmann equation has mild effects on computed forces, and that with optimal choice of the OBC model parameters, solvation forces, essential for molecular dynamics simulations, agree well with those computed using the reference Poisson-Boltzmann model.

  16. Effect of discharge rate on charging a lead-acid battery simulated by mathematical model

    NASA Astrophysics Data System (ADS)

    Cugnet, Mikael; Liaw, Bor Yann

    To simulate lead-acid battery (LAB) charging has never been an easy task due to the influences of: (1) secondary reactions that involve gas evolution and recombination and grid corrosion, (2) prior end-of-discharge (EOD) and rest conditions; and (3) complexity caused by charging algorithm. In this work, successful results have been obtained with considerations of internal oxygen cycle and gas phase in the valve-regulated lead-acid (VRLA) cells. The success is first attributed to the satisfactory validation of a mathematical model that has been able to simulate discharge regimes with various rates consistently. The model has been subsequently used to simulate a galvanostatic charge regime performed at C/10. The results give a better understanding of the role each electrode played in the polarization, the nature of the polarization (constituted by reaction kinetics and mass transport), and the charging efficiency. We were able to extrapolate the simulation results to rates beyond what the model has been validated for, and the results are still consistent, confirming some experimental observations, notably the maximum charging rate specified by most LAB manufacturers.

  17. Uric acid metabolism of kidney and intestine in a rat model of chronic kidney disease.

    PubMed

    Nagura, Michito; Tamura, Yoshifuru; Kumagai, Takanori; Hosoyamada, Makoto; Uchida, Shunya

    2016-12-01

    Uric acid (UA) is a potential risk factor of the progression of chronic kidney disease (CKD). Recently, we reported that intestinal UA excretion might be enhanced via upregulation of the ATP-binding cassette transporter G2 (Abcg2) in a 5/6 nephrectomy (Nx) rat model. In the present study, we examined the mRNA and protein expressions of UA transporters, URAT1, GLUT9/URATv1, ABCG2 and NPT4 in the kidney and ileum in the same rat model. Additionally, we investigated the Abcg2 mRNA expression of ileum in hyperuricemic rat model by orally administering oxonic acid. Male Wistar rats were randomly assigned to three groups consisting of Nx group, oxonic acid-treated (Ox) group and sham-operated control group, and sacrificed at 8 weeks. Creatinine and UA were measured and the mRNA expressions of UA transporters in the kidney and intestine were evaluated by a real time PCR. UA transporters in the kidney sections were also examined by immunohistochemistry. Serum creatinine elevated in the Nx group whereas serum UA increased in the Ox group. Both the mRNA expression and the immunohistochemistry of the UA transporters were decreased in the Nx group, suggesting a marginal role in UA elevation in decreased kidney function. In contrast, the mRNA expression of Abcg2 in the ileum significantly increased in the Ox group. These results suggest that the upregulation of Abcg2 mRNA in the ileum triggered by an elevation of serum UA may play a compensatory role in increasing intestinal UA excretion.

  18. Mechanistic Effects of Amino Acids and Glucose in a Novel Glutaric Aciduria Type 1 Cell Model

    PubMed Central

    Fu, Xi; Gao, Hongjie; Tian, Fengyan; Gao, Jinzhi; Lou, Liping; Liang, Yan; Ning, Qin; Luo, Xiaoping

    2014-01-01

    Acute neurological crises involving striatal degeneration induced by a deficiency of glutaryl-CoA dehydrogenase (GCDH) and the accumulation of glutaric (GA) and 3-hydroxyglutaric acid (3-OHGA) are considered to be the most striking features of glutaric aciduria type I (GA1). In the present study, we investigated the mechanisms of apoptosis and energy metabolism impairment in our novel GA1 neuronal model. We also explored the effects of appropriate amounts of amino acids (2 mM arginine, 2 mM homoarginine, 0.45 g/L tyrosine and 10 mM leucine) and 2 g/L glucose on these cells. Our results revealed that the novel GA1 neuronal model effectively simulates the hypermetabolic state of GA1. We found that leucine, tyrosine, arginine, homoarginine or glucose treatment of the GA1 model cells reduced the gene expression of caspase-3, caspase-8, caspase-9, bax, fos, and jun and restored the intracellular NADH and ATP levels. Tyrosine, arginine or homoarginine treatment in particular showed anti-apoptotic effects; increased α-ketoglutarate dehydrogenase complex (OGDC), fumarase (FH), and citrate synthase (CS) expression; and relieved the observed impairment in energy metabolism. To the best of our knowledge, this study is the first to investigate the protective mechanisms of amino acids and glucose in GA1 at the cellular level from the point of view of apoptosis and energy metabolism. Our data support the results of previous studies, indicating that supplementation of arginine and homoarginine as a dietary control strategy can have a therapeutic effect on GA1. All of these findings facilitate the understanding of cell apoptosis and energy metabolism impairment in GA1 and reveal new therapeutic perspectives for this disease. PMID:25333616

  19. Evaluating remedial alternatives for an acid mine drainage stream: Application of a reactive transport model

    USGS Publications Warehouse

    Runkel, R.L.; Kimball, B.A.

    2002-01-01

    A reactive transport model based on one-dimensional transport and equilibrium chemistry is applied to synoptic data from an acid mine drainage stream. Model inputs include streamflow estimates based on tracer dilution, inflow chemistry based on synoptic sampling, and equilibrium constants describing acid/base, complexation, precipitation/dissolution, and sorption reactions. The dominant features of observed spatial profiles in pH and metal concentration are reproduced along the 3.5-km study reach by simulating the precipitation of Fe(III) and Al solid phases and the sorption of Cu, As, and Pb onto freshly precipitated iron-(III) oxides. Given this quantitative description of existing conditions, additional simulations are conducted to estimate the streamwater quality that could result from two hypothetical remediation plans. Both remediation plans involve the addition of CaCO3 to raise the pH of a small, acidic inflow from ???2.4 to ???7.0. This pH increase results in a reduced metal load that is routed downstream by the reactive transport model, thereby providing an estimate of post-remediation water quality. The first remediation plan assumes a closed system wherein inflow Fe(II) is not oxidized by the treatment system; under the second remediation plan, an open system is assumed, and Fe(II) is oxidized within the treatment system. Both plans increase instream pH and substantially reduce total and dissolved concentrations of Al, As, Cu, and Fe(II+III) at the terminus of the study reach. Dissolved Pb concentrations are reduced by ???18% under the first remediation plan due to sorption onto iron-(III) oxides within the treatment system and stream channel. In contrast, iron(III) oxides are limiting under the second remediation plan, and removal of dissolved Pb occurs primarily within the treatment system. This limitation results in an increase in dissolved Pb concentrations over existing conditions as additional downstream sources of Pb are not attenuated by

  20. Mechanistic effects of amino acids and glucose in a novel glutaric aciduria type 1 cell model.

    PubMed

    Fu, Xi; Gao, Hongjie; Tian, Fengyan; Gao, Jinzhi; Lou, Liping; Liang, Yan; Ning, Qin; Luo, Xiaoping

    2014-01-01

    Acute neurological crises involving striatal degeneration induced by a deficiency of glutaryl-CoA dehydrogenase (GCDH) and the accumulation of glutaric (GA) and 3-hydroxyglutaric acid (3-OHGA) are considered to be the most striking features of glutaric aciduria type I (GA1). In the present study, we investigated the mechanisms of apoptosis and energy metabolism impairment in our novel GA1 neuronal model. We also explored the effects of appropriate amounts of amino acids (2 mM arginine, 2 mM homoarginine, 0.45 g/L tyrosine and 10 mM leucine) and 2 g/L glucose on these cells. Our results revealed that the novel GA1 neuronal model effectively simulates the hypermetabolic state of GA1. We found that leucine, tyrosine, arginine, homoarginine or glucose treatment of the GA1 model cells reduced the gene expression of caspase-3, caspase-8, caspase-9, bax, fos, and jun and restored the intracellular NADH and ATP levels. Tyrosine, arginine or homoarginine treatment in particular showed anti-apoptotic effects; increased α-ketoglutarate dehydrogenase complex (OGDC), fumarase (FH), and citrate synthase (CS) expression; and relieved the observed impairment in energy metabolism. To the best of our knowledge, this study is the first to investigate the protective mechanisms of amino acids and glucose in GA1 at the cellular level from the point of view of apoptosis and energy metabolism. Our data support the results of previous studies, indicating that supplementation of arginine and homoarginine as a dietary control strategy can have a therapeutic effect on GA1. All of these findings facilitate the understanding of cell apoptosis and energy metabolism impairment in GA1 and reveal new therapeutic perspectives for this disease.

  1. Lead binding to soil fulvic and humic acids: NICA-Donnan modeling and XAFS spectroscopy.

    PubMed

    Xiong, Juan; Koopal, Luuk K; Tan, WenFeng; Fang, LinChuan; Wang, MingXia; Zhao, Wei; Liu, Fan; Zhang, Jing; Weng, LiPing

    2013-10-15

    Binding of lead (Pb) to soil fulvic acid (JGFA), soil humic acids (JGHA, JLHA), and lignite-based humic acid (PAHA) was investigated through binding isotherms and XAFS. Pb binding to humic substances (HS) increased with increasing pH and decreasing ionic strength. The NICA-Donnan model described Pb binding to the HS satisfactorily. The comparison of the model parameters showed substantial differences in median Pb affinity constants among JGFA, PAHA, and the soil HAs. Milne's "generic" parameters did not provide an adequate prediction for the soil samples. The Pb binding prediction with generic parameters for the soil HAs was improved significantly by using the value n(Pb1) = 0.92 instead of the generic value n(Pb1) = 0.60. The n(Pb1)/n(H1) ratios obtained were relatively high, indicating monodentate Pb binding to the carboxylic-type groups. The nPb2/nH2 ratios depended somewhat on the method of optimization, but the values were distinctly lower than the n(Pb1)/nH1 ratios, especially when the optimization was based on Pb bound vs log [Pb(2+)]. These low values indicate bidentate binding to the phenolic-type groups at high Pb concentration. The NICA-Donnan model does not consider bidentate binding of Pb to a carboxylic- and a phenolic-type group. The EXAFS results at high Pb loading testified that Pb was bound in bidentate complexes of one carboxylic and one phenolic group (salicylate-type) or two phenolic groups (catechol-type) in ortho position.

  2. Number of free hydroxyl groups on bile acid phospholipids determines the fluidity and hydration of model membranes.

    PubMed

    Sreekanth, Vedagopuram; Bajaj, Avinash

    2013-10-10

    Interactions of synthetic phospholipids with model membranes determines the drug release capabilities of phospholipid vesicles at diseased sites. We performed 1,6-diphenyl-1,3,5-hexatriene (DPH)-based fluorescence anisotropy, Laurdan-based membrane hydration, and differential scanning calorimetry (DSC) studies to cognize the interactions of three bile acid phospholipids, lithocholic acid-phosphocholine (LCA-PC), deoxycholic acid-phosphocholine (DCA-PC), and cholic acid-phosphocholine (CA-PC) with model membranes. These studies revealed that bile acid phospholipids increases membrane fluidity in DCA-PC > CA-PC > LCA-PC order, indicating that induction of membrane fluidity is contingent on the number and positioning of free hydroxyl groups on bile acids. Similarly, DCA-PC causes maximum membrane perturbations due to the presence of a free hydroxyl group, whereas LCA-PC induces gel phase in membranes due to hydrophobic bile acid acyl chain interactions. These DCA-PC-induced membrane perturbations induce a drastic decrease in phase transition temperature (Tm) as determined by calorimetric studies, whereas doping of LCA-PC causes phase transition broadening without change in Tm. Doping of CA-PC induces membrane perturbations and membrane hydration like DCA-PC but sharpening of phase transition at higher doping suggests self-association of CA-PC molecules. Therefore these differential mode of interactions between bile acid phospholipids and model membranes would help in the future for their use in drug delivery.

  3. A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Sadaei, Hossein Javedani; Abdullah, Abdul Hanan; Lee, Malrey; Isnin, Ismail Fauzi

    2015-08-01

    Currently, there are many studies have conducted on developing security of the digital image in order to protect such data while they are sending on the internet. This work aims to propose a new approach based on a hybrid model of the Tinkerbell chaotic map, deoxyribonucleic acid (DNA) and cellular automata (CA). DNA rules, DNA sequence XOR operator and CA rules are used simultaneously to encrypt the plain-image pixels. To determine rule number in DNA sequence and also CA, a 2-dimension Tinkerbell chaotic map is employed. Experimental results and computer simulations, both confirm that the proposed scheme not only demonstrates outstanding encryption, but also resists various typical attacks.

  4. Field-scale modeling of acidity production and remediation efficiency during in situ reductive dechlorination

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Robinson, C. E.; Barry, D. A.; Gerhard, J.

    2009-12-01

    Enhanced reductive dechlorination is a viable technology for in situ remediation of chlorinated solvent DNAPL source areas. Although in recent years increased understanding of this technology has led to more rapid dechlorination rates, complete dechlorination can be hindered by unfavorable conditions. Hydrochloric acid produced from dechlorination and organic acids generated from electron donor fermentation can lead to significant groundwater acidification. Adverse pH conditions can inhibit the activity of dehalogenating microorganisms and thus slow or stall the remediation process. The extent of acidification likely to occur at a contaminated site depends on a number of factors including (1) the extent of dechlorination, (2) the pH-sensitivity of dechlorinating bacteria, and (3) the geochemical composition of the soil and water, in particular the soil’s natural buffering capacity. The substantial mass of solvents available for dechlorination when treating DNAPL source zones means that these applications are particularly susceptible to acidification. In this study a reactive transport biogeochemical model was developed to investigate the chemical and physical parameters that control the build-up of acidity and subsequent remediation efficiency. The model accounts for the site water chemistry, mineral precipitation and dissolution kinetics, electron donor fermentation, gas phase formation, competing electron-accepting processes (e.g., sulfate and iron reduction) and the sensitivity of microbial processes to pH. Confidence in the model was achieved by simulating a well-documented field study, for which the 2-D field scale model was able to reproduce long-term variations of pH, and the concurrent build up of reaction products. Sensitivity analyses indicated the groundwater flow velocity is able to reduce acidity build-up when the rate of advection is comparable or larger than the rate of dechlorination. The extent of pH change is highly dependent on the presence of

  5. α-Lipoic acid treatment prevents cystine urolithiasis in a mouse model of cystinuria.

    PubMed

    Zee, Tiffany; Bose, Neelanjan; Zee, Jarcy; Beck, Jennifer N; Yang, See; Parihar, Jaspreet; Yang, Min; Damodar, Sruthi; Hall, David; O'Leary, Monique N; Ramanathan, Arvind; Gerona, Roy R; Killilea, David W; Chi, Thomas; Tischfield, Jay; Sahota, Amrik; Kahn, Arnold; Stoller, Marshall L; Kapahi, Pankaj

    2017-03-01

    Cystinuria is an incompletely dominant disorder characterized by defective urinary cystine reabsorption that results in the formation of cystine-based urinary stones. Current treatment options are limited in their effectiveness at preventing stone recurrence and are often poorly tolerated. We report that the nutritional supplement α-lipoic acid inhibits cystine stone formation in the Slc3a1(-/-) mouse model of cystinuria by increasing the solubility of urinary cystine. These findings identify a novel therapeutic strategy for the clinical treatment of cystinuria.

  6. Synthesis, molecular modeling and biological evaluation of two new chicoric acid analogs.

    PubMed

    Righi, Giuliana; Pelagalli, Romina; Isoni, Valerio; Tirotta, Ilaria; Dallocchio, Roberto; Dessì, Alessandro; Macchi, Beatrice; Frezza, Caterina; Rossetti, Ilaria; Bovicelli, Paolo

    2017-02-01

    Two conformationally constrained compounds similar to chicoric acid but lacking the catechol and carboxyl groups were prepared. In these analogues, the single bond between the two caffeoyl fragments has been replaced with a chiral oxirane ring and both aromatic residues modified protecting completely or partially the catechol moiety as methyl ether. Preliminary molecular modelling studies carried out on the two analogues showed interactions near the active site of HIV integrase; however, in comparison with raltegravir, the biological evaluation confirmed that CAA-1 and CAA-2 were unable to inhibit infection at lower concentration.