Science.gov

Sample records for acidic trace gases

  1. Adsorption and dissociation of acidic trace gases on ice surfaces - caught in the act with core level spectroscopy

    NASA Astrophysics Data System (ADS)

    Waldner, Astrid; Orlando, Fabrizio; Ammann, Markus; Kleibert, Armin; Huthwelker, Thomas; Peter, Thomas; Bartels-Rausch, Thorsten

    2015-04-01

    Chemistry and physical processes in Earth's ice and snow cover can change the composition of the atmosphere and the contaminant content of the cryosphere. They have thus direct impacts on geochemical cycles and the climate system. Our ability to predict the fate of chemicals in snow or air masses in exchange with the cryosphere on a regional scale or to model those in snow chemistry models is currently hampered by our limited understanding of the underlying mechanisms on a molecular level. So far, direct experimental observations under environmentally relevant conditions of the ice surface and of the adsorption of trace gases to it are very limited. The unique approach of this study is to combine two surface sensitive spectroscopic methods to directly probe the hydrogen-bonding network at the ice surface ( ~1 nm depth) and the concentration, depth profile (~1 to 10 nm), and dissociation degree of the dopant. We present first core-electron photoemission (XPS) and partial electron yield X-ray absorption (NEXAFS) measurements of formic acid adsorbed to ice at 240 K. The analysis of oxygen NEXAFS spectra reveals information on changes in the hydrogen-bonding network of the ice surface upon adsorption of formic acid. Depth profiles based on XPS measurements indicate that the adsorbed acid stays at the ice surface. Furthermore we obtained a preliminary estimation of the degree of formic acid dissociation at the ice surface. Results are compared to earlier core-electron studies of several trace gases adsorbed to ice at 240 K and compared to results from more traditional method to and snow to reveal fundamental aspects of the ice surface and how it interacts with dopants. Even with the focus on adsorption of acidic trace gases to ice, results of this study will thus be of high relevance also for other chemical processes in ice and snow. This is of interest not only in environmental science but also in material science, cryobiology, and astrophysics.

  2. Tropospheric trace gases

    NASA Technical Reports Server (NTRS)

    Gammon, R.; Wofsy, S. C.; Cicerone, R. J.; Delany, A. C.; Harriss, R. T.; Khalil, M. A. K.; Logan, J. A.; Midgley, P.; Prather, M.

    1985-01-01

    Trace gas concentrations in the atmosphere reflect in part the overall metabolism of the biosphere, and in part the broad range of human activities such as agriculture, production of industrial chemicals, and combustion of fossil fuels and biomass. There is compelling evidence that the composition of the atmosphere is now changing. Observed trends in trace gas levels are reviewed and implications for the chemistry of the atmosphere are discussed. Throughout the discussion, particular emphasis is given to those species which are now increasing in the atmosphere.

  3. Laboratory studies of interaction between trace gases and sulphuric acid or sulphate aerosols using flow-tube reactors

    NASA Astrophysics Data System (ADS)

    Leu, Ming-Taun

    Stratospheric ozone provides a protective shield for humanity and the global biosphere from harmful ultraviolet solar radiation. In past decades, theoretical models for the calculation of ozone balance frequently used gas-phase reactions alone in their studies. Since the discovery of the Antarctic ozone hole in 1985, however, it has been demonstrated that knowledge of heterogeneous reactions is needed to understand this significant natural event owing to the anthropogenic emission of chlorofluorocarbons. In this review I will briefly discuss the experimental techniques for the research of heterogeneous chemistry carried out in our laboratory. These experimental instruments include flow-tube reactors, an electron-impact ionization mass spectrometer, a chemical ionization mass spectrometer and a scanning mobility particle spectrometer. Numerous measurements of uptake coefficient (or reaction probability) and solubility of trace gases in liquid sulphuric acid have been performed under the ambient conditions in the upper troposphere and lower stratosphere, mainly 190-250 K and 40-80 wt% of H

  4. Atmospheric trace gases in antarctica.

    PubMed

    Rasmussen, R A; Khalil, M A; Dalluge, R W

    1981-01-16

    Trace gases have been measured, by electron-capture gas chromatography and gas chromatography-mass spectrometry techniques, at the South Pole (SP) in Antarctica and in the U.S. Pacific Northwest (PNW) ( approximately 45 degrees N) during January of each year from 1975 to 1980. These measurements show that the concentrations of CCl(3)F, CCl(2)F(2), and CH(3)CCl(3) have increased exponentially at substantial rates. The concentration of CCl(3)F increased at 12 percent per year at the SP and at 8 percent per year in the PNW; CCl(2)F(2) increased at about 9 percent per year at both locations, and CH(3)CCl(3) increased at 17 percent per year at the SP and 11.6 percent per year at the PNW site. There is some evidence that CCl(4) ( approximately 3 percent per year) and N(2)O (0.1 to 0.5 percent per year) may also have increased. Concentrations of nine other trace gases of importance in atmospheric chemistry are also being measured at these two locations. Results of the measurements of CHClF(2)(F-22), C(2)Cl(3)F(3)(F-113), SF(6), C(2)-hydrocarbons, and CH(3)Cl are reported here.

  5. Greenhouse Trace Gases in Deadwood

    NASA Astrophysics Data System (ADS)

    Covey, Kristofer; Bueno de Mesquita, Cliff; Oberle, Brad; Maynard, Dan; Bettigole, Charles; Crowther, Thomas; Duguid, Marlyse; Steven, Blaire; Zanne, Amy; Lapin, Marc; Ashton, Mark; Oliver, Chad; Lee, Xuhui; Bradford, Mark

    2016-04-01

    Deadwood, long recognized as playing an important role in carbon cycling in forest ecosystems, is more recently drawing attention for its potential role in the cycling of other greenhouse trace gases. We report data from four independent studies measuring internal gas concentrations in deadwood in in three Quercus dominated upland forest systems in the Northeastern and Central United States. Mean methane concentrations in deadwood were 23 times atmospheric levels, indicating a lower bound, mean radial wood surface area flux of ~6 x 10-4 μmol CH4 m-2 s-1. Site, decay class, diameter, and species were all highly significant predictors of methane abundance in deadwood, and log diameter and decay stage interacted as important controls limiting methane concentrations in the smallest and most decayed logs. Nitrous oxide concentrations were negatively correlated with methane and on average ~25% lower than ambient, indicating net consumption of nitrous oxide. These data suggest nonstructural carbohydrates fuel archaeal methanogens and confirm the potential for widespread in situ methanogenesis in both living and deadwood. Applying this understanding to estimate methane emissions from microbial activity in living trees implies a potential global flux of 65.6±12.0 Tg CH4 yr-1, more than 20 times greater than currently considered.

  6. Measurement of Selected Organic Trace Gases During TRACE-P

    NASA Technical Reports Server (NTRS)

    Atlas, Elliot

    2004-01-01

    Major goals of the TRACE-P mission were: 1) to investigate the chemical composition of radiatively important gases, aerosols, and their precursors in the Asian outflow over the western Pacific, and 2) to describe and understand the chemical evolution of the Asian outflow as it is transported and mixed into the global troposphere. The research performed as part of this proposal addressed these major goals with a study of the organic chemical composition of gases in the TRACE-P region. This work was a close collaboration with the Blake/Rowland research group at UC-Irvine, and they have provided a separate report for their funded effort.

  7. Climate change and trace gases.

    PubMed

    Hansen, James; Sato, Makiko; Kharecha, Pushker; Russell, Gary; Lea, David W; Siddall, Mark

    2007-07-15

    Palaeoclimate data show that the Earth's climate is remarkably sensitive to global forcings. Positive feedbacks predominate. This allows the entire planet to be whipsawed between climate states. One feedback, the 'albedo flip' property of ice/water, provides a powerful trigger mechanism. A climate forcing that 'flips' the albedo of a sufficient portion of an ice sheet can spark a cataclysm. Inertia of ice sheet and ocean provides only moderate delay to ice sheet disintegration and a burst of added global warming. Recent greenhouse gas (GHG) emissions place the Earth perilously close to dramatic climate change that could run out of our control, with great dangers for humans and other creatures. Carbon dioxide (CO2) is the largest human-made climate forcing, but other trace constituents are also important. Only intense simultaneous efforts to slow CO2 emissions and reduce non-CO2 forcings can keep climate within or near the range of the past million years. The most important of the non-CO2 forcings is methane (CH4), as it causes the second largest human-made GHG climate forcing and is the principal cause of increased tropospheric ozone (O3), which is the third largest GHG forcing. Nitrous oxide (N2O) should also be a focus of climate mitigation efforts. Black carbon ('black soot') has a high global warming potential (approx. 2000, 500 and 200 for 20, 100 and 500 years, respectively) and deserves greater attention. Some forcings are especially effective at high latitudes, so concerted efforts to reduce their emissions could preserve Arctic ice, while also having major benefits for human health, agricultural productivity and the global environment.

  8. Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Trebs, I.; Meixner, F. X.; Slanina, J.; Otjes, R.; Jongejan, P.; Andreae, M. O.

    2004-02-01

    We measured the mixing ratios of ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), hydrochloric acid (HCl), sulfur dioxide (SO2) and the corresponding water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), chloride (Cl-) and sulfate (SO42-), and their diel and seasonal variations at a pasture site in the Amazon Basin (Rondônia, Brazil). This study was conducted within the framework of LBA-SMOCC (Large Scale Biosphere Atmosphere Experiment in Amazonia Smoke Aerosols, Clouds, Rainfall and Climate). Sampling was performed from 12 September to 14 November 2002, extending from the dry season (extensive biomass burning activity), through the transition period to the wet season (background conditions). Measurements were made continuously using a wet-annular denuder in combination with a Steam-Jet Aerosol Collector (SJAC) followed by suitable on-line analysis. A detailed description and verification of the inlet system for simultaneous sampling of soluble gases and aerosol compounds is presented. Overall measurement uncertainties of the ambient mixing ratios usually remained below 15%. The limit of detection (LOD) was determined for each single data point measured during the field experiment. Median LOD values (3σ-definition) were ≤0.015 ppb for acidic trace gases and aerosol anions and ≤0.118 ppb for NH3 and aerosol NH4+. Mixing ratios of acidic trace gases remained below 1ppb throughout the measurement period, while NH3 levels were an order of magnitude higher. Accordingly, mixing ratios of NH4+ exceeded those of other inorganic aerosol contributors by a factor of 4 to 10. During the wet season, mixing ratios decreased by nearly a factor of 3 for all compounds compared to those observed when intensive biomass burning took place. Additionally, N-containing gas and aerosol species featured pronounced diel variations. This is attributed to strong relative humidity and temperature variations between day and night as well as to

  9. Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Trebs, I.; Meixner, F. X.; Slanina, J.; Otjes, R.; Jongejan, P.; Andreae, M. O.

    2004-06-01

    We measured the mixing ratios of ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), hydrochloric acid (HCl), sulfur dioxide (SO2 and the corresponding water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), chloride (Cl- and sulfate (SO42-), and their diel and seasonal variations at a pasture site in the Amazon Basin (Rondônia, Brazil). This study was conducted within the framework of LBA-SMOCC (Large Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was performed from 12 September to 14 November 2002, extending from the dry season (extensive biomass burning activity), through the transition period to the wet season (background conditions). Measurements were made continuously using a wet-annular denuder (WAD) in combination with a Steam-Jet Aerosol Collector (SJAC) followed by suitable on-line analysis. A detailed description and verification of the inlet system for simultaneous sampling of soluble gases and aerosol compounds is presented. Overall measurement uncertainties of the ambient mixing ratios usually remained below 15%. The limit of detection (LOD) was determined for each single data point measured during the field experiment. Median LOD values (3σ-definition) were ≤0.015ppb for acidic trace gases and aerosol anions and ≤0.118ppb for NH3 and aerosol NH4+. Mixing ratios of acidic trace gases remained below 1ppb throughout the measurement period, while NH3 levels were an order of magnitude higher. Accordingly, mixing ratios of NH4+ exceeded those of other inorganic aerosol contributors by a factor of 4 to 10. During the wet season, mixing ratios decreased by nearly a factor of 3 for all compounds compared to those observed when intensive biomass burning took place. Additionally, N-containing gas and aerosol species featured pronounced diel variations. This is attributed to strong relative

  10. Method for detecting trace impurities in gases

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1981-01-01

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (.about.2 ppm) present in commercial Xe and ppm levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  11. Method for detecting trace impurities in gases

    DOEpatents

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  12. EVALUATION OF SIGNIFICANT ANTHROPOGENIC SOURCES OF RADIATIVELY IMPORTANT TRACE GASES

    EPA Science Inventory

    The report is an initial evaluation of significant anthropogenic sources of radiatively important trace gases. missions of greenhouse gases from human activities--including fossil fuel combustion, industrial/agricultural activities, and transportation--contribute to the increasin...

  13. Measurements of Acetic Acid and its Relationships with Trace Gases on Appledore Island, ME during the ICARTT Campaign

    NASA Astrophysics Data System (ADS)

    Haase, K. B.; Sive, B. C.; White, M. L.; Russo, R. S.; Ambrose, J. L.; Zhou, Y.; Talbot, R. W.

    2011-12-01

    Acetic acid is ubiquitously present in the ambient atmosphere. Acetic acid, along with formic acid, is the one of the most abundant gas phase organic acids with mixing ratios reaching into the tens of parts per billion by volume (ppbv) range, and can influence the pH of aerosols and precipitation. The magnitude of the sources and sinks of acetic acid in the environment is not well understood (~24 Tg/yr of missing emissions globally), as they are widely dispersed and measurements are relatively challenging to accomplish using established techniques. Here, the application of Proton Transfer Reaction Mass Spectrometry (PTR-MS) is explored as a technique for quantification of ambient acetic acid. Direct calibrations of PTR-MS instruments at low ppbv levels show good linearity and fast response, and during the ICARTT campaign, a PTR-MS measured acetic acid and a suite of other volatile organic compounds on Appledore Island, ME over a period of 6 weeks. During the campaign, the average mixing ratio of acetic acid on the island was 607.9 ± 341.8 (1σ) pptv with a median of 530 pptv. Mixing ratios of acetic acid observed on the island showed diurnal variations corresponding land breeze/sea breeze transport, similar to other pollutants including ozone and carbon monoxide, indicating that acetic acid was advected to the sample site, and not a product of local emissions. Additionally, no mixing ratio dependence on wind speed was found, indicating that at this location, loss due to dry deposition to the ocean during transport was minimal. Over the course of the campaign, acetic acid showed complex relationships with a range of other VOCs, indicating a diverse set of sources and further showing the utility of the PTR-MS technique for monitoring acetic acid. Mixing ratios of acetic acid showed correlations with different compounds at different times, indicating a complex source signature comprised of (1) anthropogenic emissions, (2) biomass burning, and (3) photochemical

  14. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    ERIC Educational Resources Information Center

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  15. Parallel-plate wet denuder coupled ion chromatograph for near-real-time detection of trace acidic gases in clean room air.

    PubMed

    Takeuchi, Masaki; Tsunoda, Hiromichi; Tanaka, Hideji; Shiramizu, Yoshimi

    2011-01-01

    This paper describes the performance of our automated acidic (CH(3)COOH, HCOOH, HCl, HNO(2), SO(2), and HNO(3)) gases monitor utilizing a parallel-plate wet denuder (PPWD). The PPWD quantitatively collects gaseous contaminants at a high sample flow rate (∼8 dm(3) min(-1)) compared to the conventional methods used in a clean room. Rapid response to any variability in the sample concentration enables near-real-time monitoring. In the developed monitor, the analyte collected with the PPWD is pumped into one of two preconcentration columns for 15 min, and determined by means of ion chromatography. While one preconcentration column is used for chromatographic separation, the other is used for loading the sample solution. The system allows continuous monitoring of the common acidic gases in an advanced semiconductor manufacturing clean room.

  16. Greenhouse effect of trace gases, 1970-1980

    NASA Technical Reports Server (NTRS)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  17. Analysis of atmospheric spectra for trace gases

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Seals, Robert K., Jr.; Smith, Mary Ann H.; Goldman, Aaron; Murcray, David G.; Murcray, Frank J.

    1990-01-01

    The objective is the comprehensive analysis of high resolution atmospheric spectra recorded in the middle-infrared region to obtain simultaneous measurements of coupled parameters (gas concentrations of key trace constituents, total column amounts, pressure, and temperature) in the stratosphere and upper troposphere. Solar absorption spectra recorded at 0.002 and 0.02 cm exp -1 resolutions with the University of Denver group's balloon-borne, aircraft borne, and ground-based interferometers and 0.005 to 0.01 cm exp -1 resolution solar spectra from Kitt Peak are used in the analyses.

  18. Stratospheric trace gases in the spring 1986 Antarctic atmosphere

    NASA Technical Reports Server (NTRS)

    Farmer, C. B.; Toon, G. C.; Schaper, P. W.; Blavier, J.-F.; Lowes, L. L.

    1987-01-01

    The atmospheric absorption features of over 500 infrared solar spectra recorded at McMurdo Station have been analyzed to determine the vertical column abundances of trace gases crucial to understanding of the 'ozone hole' phenomenon. The techniques used to retrieve the column abundances are described. Results are reported for ozone, nitrogen species, and halogen sinks and reservoirs.

  19. Stratospheric trace gases in the spring 1986 Antarctic atmosphere

    NASA Astrophysics Data System (ADS)

    Farmer, C. B.; Toon, G. C.; Schaper, P. W.; Blavier, J.-F.; Lowes, L. L.

    1987-09-01

    The atmospheric absorption features of over 500 infrared solar spectra recorded at McMurdo Station have been analyzed to determine the vertical column abundances of trace gases crucial to understanding of the 'ozone hole' phenomenon. The techniques used to retrieve the column abundances are described. Results are reported for ozone, nitrogen species, and halogen sinks and reservoirs.

  20. Soil and litter exchange of reactive trace gases

    EPA Science Inventory

    The soil and litter play an important role in the exchange of trace gases between terrestrial ecosystems and the atmosphere. - The exchange of ammonia between vegetation and the atmosphere is highly influenced by soil and litter emissions especially in managed ecosystems (grassla...

  1. Remote sensing of atmospheric trace gases by diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Kan, Ruifeng; He, Yabai; He, Ying; Zhang, Yujun; Xie, Pinhua; liu, Wenqing

    2016-04-01

    Gaseous ammonia is the most abundant alkaline trace gas in the atmosphere. In order to study its role in acid deposition and aerosol formation, as well as its influence on the regional air quality and atmospheric visibility, several instruments has been developed based on TDLAS (Tunable Diode Laser Absorption Spectroscopy) techniques. In this paper, a long open path TDLAS system and a continuous-wave CRDS (Cavity-Ring down Spectroscopy) system are presented. The long open path system has been developed for NH3 in-situ monitoring by combining wavelength modulation with harmonic detection techniques to obtain the necessary detection sensitivity. The prototype instrument has been used to monitor atmospheric NH3 concentration at an urban site near Beijing National Stadium during Beijing Olympics in 2008, and recently used to measure the fluxes of NH3 from farm fields by flux-gradient method. The detection limit for ammonia is proved approximately 3ppb for a total path length of 456m. The continuous-wave, rapidly swept CRDS system has been developed for localized atmospheric sensing of trace gases at remote sites. Passive open-path optical sensor units could be coupled by optical fiber over distances of >1 km to a single transmitter/receiver console incorporating a photodetector and a swept-frequency diode laser tuned to molecule-specific near-infrared wavelengths. A noise-limited minimum detectable mixing ratio of ~11 ppbv is attained for ammonia at atmospheric pressure. The developed instruments are deployable in agricultural, industrial, and natural atmospheric environments.

  2. Natural and anthropogenic trace gases in the southern hemisphere

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Khalil, M. A. K.; Crawford, A. J.; Fraser, P. J.

    1982-01-01

    The complexity of the global environment makes it necessary that many important trace gases in the earth's atmosphere be measured on a global scale before predictions can be made regarding the effects of human activities on the environment. A description is presented of measurements of 14 atmospheric trace gases in the lower atmosphere (0-4 km) of the southern hemisphere. Concentrations are considered of CCl3F, CCl2F2, CHClF2, C2.Cl3.F3, CH3CCl3, CCl4, C2.Cl4, CH3I, CHCl3, CO, CH3Cl, CH4, N2O, and OCS. The obtained data are analyzed and interpreted to statistically quantify the possible differences of concentrations in and above the boundary layer, to model the vertical profile of CH3I, and to use the data in support of previous findings that CH4 is increasing in the atmosphere.

  3. Greenhouse effect of chlorofluorocarbons and other trace gases

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  4. Patterns of trace gases near sources of global pollution

    SciTech Connect

    Khalil, M.A.K.; Rasmussen, R.A. )

    1990-08-01

    Many trace gases are increasing in the earth's armosphere and may couase global environmental changes in the future. Consequently there has been growing interest in the cycles of the long-lived gases that are likely to contribute the most to global change. At present there are four such gases: methane (CH{sub 4}), nitrous oxide (N{sub 2}0), trichlorofluoromethane (CCl{sub 3}F,F-11), and dichlorodifluoromethane (CCl{sub 2}F{sub 2},F-12). Methane and N{sub 2}O are involved mostly in adding to the greenhouse effect with some role in the stratospheric ozone cycle, and the two main fluorocarbons (F-11 and F-12) are involved in the depletion of the ozone layer with some role in global warming. This paper is about the patterns of these trace gases near regions of global scale pollution. Our purpose is to provide a synthesis of observations from diverse environments and ecosystems of the world and to provide readers with intuitive connections between sources and concentrations. We will consider four types of regions: rice fields in CHina that are a major source of methane, urban areas of the United States and China that are sources of fluorocarbons and other gases, rivers and surrounding wetlands, specifically the Yangtze in China and the Amazon in Brazil, and finally the environment of Boola Boola National Forest in Australia populated by many speices of termites that are a source of methane to the atmosphere. Eventually these patterns can be translated into estimeates of fluxes from the various sources of global pollution.

  5. Biogenic and anthropogenic trace gases in the atmosphere

    NASA Technical Reports Server (NTRS)

    Brasseur, G. P.; Prinn, R. G.

    1992-01-01

    This paper illustrates the importance of biogenic and anthropogenic trace gases for the global environment and for the climate system. The paper briefly reviews the currently available estimates of sources and strengths of the biogenic and anthropogenic gases on the global scale. One of the major concerns for the global environment is the rapid increase in the concentration of long-lived trace gases such as CO2, CH4, N2O and the chlorofluorocarbons. The trend in the carbon dioxide concentration, as a result of fossil-fuel burning, is of the order of 0.4 percent per year, and this trend is related to the CO2 uptake by the ocean and by terrestrial ecosystems, which are likely to be modified if the planet warms up in the forthcoming decades. The concentrations of methane and nitrous oxide are increasing by 0.9 and 0.25 percent per year, respectively. In the case of the most widely used chlorofluorocarbons, trends as large as 10 percent per year or more are being measured.

  6. Mobile MAX-DOAS observations of tropospheric trace gases

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Ibrahim, O.; Shaiganfar, R.; Platt, U.

    2009-11-01

    From Multi-Axis- (MAX-) DOAS observations information on tropospheric trace gases close to the surface and up to the free troposphere can be obtained. Usually MAX-DOAS observations are performed at fixed locations, which allows to retrieve the diurnal variation of tropospheric species at that location. Alternatively, MAX-DOAS observations can also be made on mobile platforms like cars, ships or aircrafts. Then, in addition to the vertical (and temporal) distribution, also the horizontal variation of tropospheric trace gases can be measured. Such information is important for the quantitative comparison with model simulations, study of transport processes, and for the validation of tropospheric trace gas products from satellite observations. However, for MAX-DOAS observations from mobile platforms, the standard analysis techniques for MAX-DOAS observations can usually not be applied, because the probed airmasses can change rapidly between successive measurements. In this study we introduce a new technique which overcomes these problems and allows the exploitation of the full information content of mobile MAX-DOAS observations. Our method can also be applied to MAX-DOAS observations made at fixed locations in order to improve the accuracy especially in cases of strong winds. We apply the new technique to MAX-DOAS observations made during an automobile trip from Brussels to Heidelberg.

  7. Mobile MAX-DOAS observations of tropospheric trace gases

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Ibrahim, O.; Shaiganfar, R.; Platt, U.

    2010-02-01

    From Multi-Axis- (MAX-) DOAS observations, information on tropospheric trace gases close to the surface and up to the free troposphere can be obtained. Usually MAX-DOAS observations are performed at fixed locations, which allows to retrieve the diurnal variation of tropospheric species at that location. Alternatively, MAX-DOAS observations can also be made on mobile platforms like cars, ships or aircrafts. Then, in addition to the vertical (and temporal) distribution, also the horizontal variation of tropospheric trace gases can be measured. Such information is important for the quantitative comparison with model simulations, study of transport processes, and for the validation of tropospheric trace gas products from satellite observations. However, for MAX-DOAS observations from mobile platforms, the standard analysis techniques for MAX-DOAS observations can usually not be applied, because the probed airmasses can change rapidly between successive measurements. In this study we introduce a new technique which overcomes these problems and allows the exploitation of the full information content of mobile MAX-DOAS observations. Our method can also be applied to MAX-DOAS observations made at fixed locations in order to improve the accuracy especially in cases of strong winds. We apply the new technique to MAX-DOAS observations made during an automobile trip from Brussels to Heidelberg.

  8. Epiphytic cryptogams as a source of bioaerosols and trace gases

    NASA Astrophysics Data System (ADS)

    Ruckteschler, Nina; Hrabe de Angelis, Isabella; Zartman, Charles E.; Araùjo, Alessandro; Pöschl, Ulrich; Manzi, Antonio O.; Andreae, Meinrat O.; Pöhlker, Christopher; Weber, Bettina

    2016-04-01

    Cryptogamic covers comprise (cyano-)bacteria, algae, lichens, bryophytes, fungi, and archaea in varying proportions. These organisms do not form flowers, but reproduce by spores or cell cleavage with these reproductive units being dispersed via the atmosphere. As so-called poikilohydric organisms they are unable to regulate their water content, and their physiological activity pattern mainly follows the external water conditions. We hypothesize, that both spore dispersal and the release of trace gases are governed by the moisture patterns of these organisms and thus they could have a greater impact on the atmosphere than previously thought. In order to test this hypothesis, we initiated experiments at the study site Amazonian Tall Tower Observatory (ATTO) in September 2014. We installed microclimate sensors in epiphytic cryptogams at four different heights of a tree to monitor the activity patterns of these organisms. Self-developed moisture probes are used to analyze the water status of the organisms accompanied by light and temperature sensors. The continuously logged data are linked to ongoing measurements of trace gases and particulate bioaerosols to analyze these for the relevance of cryptogams. Here, we are particularly interested in diurnal cycles of coarse mode particles and the atmospheric abundance of fine potassium-rich particles from a currently unknown biogenic source. Based upon the results of this field study we also investigate the bioaerosol and trace gas release patterns of cryptogamic covers under controlled conditions. With this combined approach of field and laboratory experiments we aim to disclose the role of cryptogamic covers in bioaerosol and trace gas release patterns in the Amazonian rainforest.

  9. Atmospheric trace gases and global climate - A seasonal model study

    NASA Technical Reports Server (NTRS)

    Wang, Wei-Chyung; Molnar, Gyula; Ko, Malcolm K. W.; Goldenberg, Steven; Sze, Nien Dak

    1990-01-01

    Atmospheric models with seasonal cycles are used to study the possible near-future changes in latitudinal and vertical distributions of atmospheric ozone and temperature caused by increases of trace gases. It is found that increases of CFCs, CH4, and N2O may add to the surface warming from increased CO2. Calculations based on projected trends of CO2, N2O, CH4, and CFCs show that the annual mean and global mean surface temperature could warm by as much as 2.5 C by the year 2050, with larger warming at high latitudes. The results suggest that the warming in the lower stratosphere and upper troposphere is much larger than that at the surface, especially during the summer season.

  10. Measurements of Trace Gases Using a Tunable Diode Laser

    NASA Technical Reports Server (NTRS)

    Jost, Hans-Juerg

    2005-01-01

    This report is the final report for "Measurements of Trace Gases Using a Tunable Diode Laser." The tasks outlined in the proposal are listed below with a brief comment. The publications and the conference presentations are listed. Finally, the important publications are attached. The Cooperative Agreement made possible a research effort to produce high- precision and high-accuracy in-situ measurements of carbon monoxide, methane and nitrous oxide on the WB-57 during the CRYSTAL-FACE and pre-AVE field campaigns and to analyze these measurements. These measurements of CO and CH4 were of utmost importance to studies of the radiative effects of clouds. Some important results of the CRYSTAL-FACE program were contained in two scientific papers (attached). This Cooperative Agreement allowed the participation of the Argus instrument in the program and the analysis of the data.

  11. Climate-chemical interactions and greenhouse effects of trace gases

    NASA Technical Reports Server (NTRS)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  12. Measurements of trace gases above the tropical forests....

    NASA Astrophysics Data System (ADS)

    Nicolas-Perea, V.; Monks, P. S.

    2009-04-01

    Measurements of trace gases above the tropical forests; A comparison between ozone levels in the forest and the oil palm plantation areas using the BAe -146 aircraft. The atmospheric composition of Sabah region (Borneo) was sampled using the FAAM BAE-146 instrumented aircraft during July 2008 as part of the OP3 (Oxidant particle photochemical processes above a South East Asia tropical rain forest) project. Tropical forests play an important role in the carbon and energy balance of the Earth (which determine global climate) and are themselves vulnerable to climate change. The tropical biosphere is one of the main sources of reactive trace gas emissions into the global atmosphere, and understanding the role of ozone in these areas is of major importance given the rapid changes in land-use in the tropics. This poster presents preliminary ozone concentrations results collected using the FAAM BAE 146 instrumented aircraft over some of Malaysia most extended oil palm plantations; comparing these with the results recorded when flying over forest areas. Oil palm is becoming one of the most widespread tropical crops; in Malaysia 13% of the land area (4.3Mha) is now oil palm plantations (MPOCP, 2008) compared with 1% in 1974 (FAO, 2005). This poster is expected to show very significant ozone concentrations over the two different landscapes. The set-up of the instruments, the specific sampling sites, as well as the land cover areas will be described.

  13. Microwave limb sounder. [measuring trace gases in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Gustincic, J. J. (Inventor)

    1981-01-01

    Trace gases in the upper atmosphere can be measured by comparing spectral noise content of limb soundings with the spectral noise content of cold space. An offset Cassegrain antenna system and tiltable input mirror alternately look out at the limb and up at cold space at an elevation angle of about 22. The mirror can also be tilted to look at a black body calibration target. Reflection from the mirror is directed into a radiometer whose head functions as a diplexer to combine the input radiation and a local ocillator (klystron) beam. The radiometer head is comprised of a Fabry-Perot resonator consisting of two Fabry-Perot cavities spaced a number of half wavelengths apart. Incoming radiation received on one side is reflected and rotated 90 deg in polarization by the resonator so that it will be reflected by an input grid into a mixer, while the klystron beam received on the other side is also reflected and rotated 90 deg, but not without passing some energy to be reflected by the input grid into the mixer.

  14. Measurements of Trace Gases in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Marcy, T. P.; Popp, P. J.; Gao, R. S.; Fahey, D. W.; Ray, E. A.; Richard, E. C.; Thompson, T. L.; Atlas, E. L.; Lowenstein, M.; Wofsy, S. C.; Park, S.; Weinstock, E. M.; Swartz, W. H.; Mahoney, M. J.

    2008-01-01

    A unique dataset of airborne in situ observations of HCl, O3, HNO3, H2O, CO, CO2 and CH3Cl has been made in and near the tropical tropopause layer (TTL). A total of 16 profiles across the tropopause were obtained at latitudes between 10degN and 3degs from the NASA WB-57F high-altitude aircraft flying from Costa Rica. Few in situ measurements of these gases, particularly HCl and HNO3, have been reported for the TTL. The general features of the trace gas vertical profiles are consistent with the concept of the TTL as distinct from the lower troposphere and lower stratosphere. A combination of the tracer profiles and correlations with O3 is used to show that a measurable amount of stratospheric air is mixed into this region. The HCl measurements offer an important constraint on stratospheric mixing into the TTL because once the contribution from halocarbon decomposition is quantified, the remaining HCl (>60% in this study) must have a stratospheric source. Stratospheric HCl in the TTL brings with it a proportional amount of stratospheric O3. Quantifying the sources of O3 in the TTL is important because O3 is particularly effective as a greenhouse gas in the tropopause region.

  15. Trace gases in the atmosphere over Russian cities

    NASA Astrophysics Data System (ADS)

    Elansky, Nikolai F.; Lavrova, Olga V.; Skorokhod, Andrey I.; Belikov, Igor B.

    2016-10-01

    Multiyear observational data (obtained at the mobile railroad laboratory in the course of the 1995-2010 TROICA experiments) on the composition and state of the atmosphere were used to study the features of both spatial and temporal variations in the contents of trace gases in the surface air layer over Russian cities. The obtained characteristics of urban air noticeably differ from those obtained at stationary stations. The emission fluxes of NOx, CO, and CH4 and their integral emissions from large cities have been estimated on the basis of observational data obtained at the mobile laboratory. The values of these emission fluxes reflect the state of urban infrastructure. The integral urban emissions of CO depend on the city size and vary from 50 Gg yr-1 for Yaroslavl to 130 Gg yr-1 for Yekaterinburg. For most cities, they agree with the EDGAR v4.2 data within the limits of experimental error. The agreement is worse for the emissions of NOx. The EDGAR v4.2 data on the emissions of CH4 seem to be overestimated.

  16. Ultrasensitive detection of atmospheric trace gases using frequency modulation spectroscopy

    NASA Technical Reports Server (NTRS)

    Cooper, David E.

    1986-01-01

    Frequency modulation (FM) spectroscopy is a new technique that promises to significantly extend the state-of-the-art in point detection of atmospheric trace gases. FM spectroscopy is essentially a balanced bridge optical heterodyne approach in which a small optical absorption or dispersion from an atomic or molecular species of interest generates an easily detected radio frequency (RF) signal. This signal can be monitored using standard RF signal processing techniques and is, in principle, limited only by the shot noise generated in the photodetector by the laser source employed. The use of very high modulation frequencies which exceed the spectral width of the probed absorption line distinguishes this technique from the well-known derivative spectroscopy which makes use of low (kHz) modulation frequencies. FM spectroscopy was recently extended to the 10 micron infrared (IR) spectral region where numerous polyatomic molecules exhibit characteristic vibrational-rotational bands. In conjunction with tunable semiconductor diode lasers, the quantum-noise-limited sensitivity of the technique should allow for the detection of absorptions as small as .00000001 in the IR spectral region. This sensitivity would allow for the detection of H2O2 at concentrations as low as 1 pptv with an integration time of 10 seconds.

  17. Titan's temporal evolution in stratospheric trace gases near the poles

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena; Jennings, Donald E.; Achterberg, Richard K.; Bampasidis, Georgios; Lavvas, Panayiotis; Nixon, Conor A.; Teanby, Nicholas A.; Anderson, Carrie M.; Cottini, Valeria; Flasar, F. Michael

    2016-05-01

    We analyze spectra acquired by the Cassini/Composite Infrared Spectrometer (CIRS) at high resolution from October 2010 until September 2014 in nadir mode. Up until mid 2012, Titan's Northern atmosphere exhibited the enriched chemical content found since the Voyager days (November 1980), with a peak around the Northern Spring Equinox (NSE) in 2009. Since then, we have observed the appearance at Titan's south pole of several trace species for the first time, such as HC3N and C6H6, observed only at high northern latitudes before equinox. We investigate here latitudes poleward of 50°S and 50°N from 2010 (after the Southern Autumnal Equinox) until 2014. For some of the most abundant and longest-lived hydrocarbons (C2H2, C2H6 and C3H8) and CO2, the evolution in the past 4 years at a given latitude is not very significant within error bars especially until mid-2013. In more recent dates, these molecules show a trend for increase in the south. This trend is dramatically more pronounced for the other trace species, especially in 2013-2014, and at 70°S relative to 50°S. These two regions then demonstrate that they are subject to different dynamical processes in and out of the polar vortex region. For most species, we find higher abundances at 50°N compared to 50°S, with the exception of C3H8, CO2, C6H6 and HC3N, which arrive at similar mixing ratios after mid-2013. While the 70°N data show generally no change with a trend rather to a small decrease for most species within 2014, the 70°S results indicate a strong enhancement in trace stratospheric gases after 2012. The 663 cm-1 HC3N and the C6H6 674 cm-1 emission bands appeared in late 2011/early 2012 in the south polar regions and have since then exhibited a dramatic increase in their abundances. At 70°S HC3N, HCN and C6H6 have increased by 3 orders of magnitude over the past 3-4 years while other molecules, including C2H4, C3H4 and C4H2, have increased less sharply (by 1-2 orders of magnitude). This is a strong

  18. Observations of atmospheric trace gases by MAX-DOAS in the coastal boundary layer over Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Li, Xianxin; Wang, Zhangjun; Meng, Xiangqian; Zhou, Haijin; Du, Libin; Qu, Junle; Chen, Chao; An, Quan; Wu, Chengxuan; Wang, Xiufen

    2014-11-01

    Atmospheric trace gases exist in the atmosphere of the earth rarely. But the atmospheric trace gases play an important role in the global atmospheric environment and ecological balance by participating in the global atmospheric cycle. And many environmental problems are caused by the atmospheric trace gases such as photochemical smog, acid rain, greenhouse effect, ozone depletion, etc. So observations of atmospheric trace gases become very important. Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) developed recently is a kind of promising passive remote sensing technology which can utilize scattered sunlight received from multiple viewing directions to derive vertical column density of lower tropospheric trace gases like ozone, sulfur dioxide and nitrogen dioxide. It has advantages of simple structure, stable running, passive remote sensing and real-time online monitoring automatically. A MAX-DOAS has been developed at Shandong Academy of Sciences Institute of Oceanographic Instrumentation (SDIOI) for remote measurements of lower tropospheric trace gases (NO2, SO2, and O3). In this paper, we mainly introduce the stucture of the instrument, calibration and results. Detailed performance analysis and calibration of the instrument were made at Qingdao. We present the results of NO2, SO2 and O3 vertical column density measured in the coastal boundary layer over Jiaozhou Bay. The diurnal variation and the daily average value comparison of vertical column density during a long-trem observation are presented. The vertical column density of NO2 and SO2 measured during Qingdao oil pipeline explosion on November 22, 2013 by MAX-DOAS is also presented. The vertical column density of NO2 reached to a high value after the explosion. Finally, the following job and the outlook for future possible improvements are given. Experimental calibration and results show that the developed MAX-DOAS system is reliable and credible.

  19. Observations of tropospheric trace gases from GOSAT thermal infrared spectra

    NASA Astrophysics Data System (ADS)

    Ohyama, Hirofumi; Shiomi, Kei; Kawakami, Shuji; Nakajima, Masakatsu; Maki, Takashi; Deushi, Makoto

    2013-04-01

    Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS), which is one of the sensors onboard the Greenhouse gases Observing SATellite (GOSAT), measures the sunlight backscattered by the Earth's surface and atmosphere as well as the thermal radiance emitted from the Earth. Atmospheric trace gases such as ozone (O3), water vapor (H2O and HDO), methanol (CH3OH) and ammonia (NH3) are derived from the thermal infrared spectral radiance recorded with the TANSO-FTS by an optimal estimation retrieval approach. TANSO-FTS total ozone columns are compared with Dobson spectrophotometer and Ozone Monitoring Instrument (OMI) data. The TANSO-FTS total ozone retrievals exhibit a positive bias of 3-4% with a root-mean-square difference of 2-6% compared to the Dobson and OMI measurements. We compare TANSO-FTS tropospheric ozone columns to those from ozonesonde data as well as from a three-dimensional chemical-climate model (MRI-CCM2). The TANSO-FTS data have high correlations with the ozonesonde data. The seasonal trends of the retrieved tropospheric ozone are consistent with those of the ozonesonde data. The spatial distribution of the tropospheric ozone from the TANSO-FTS and MRI-CCM2 shows good agreement, especially in the high-level tropospheric ozone regions. We also retrieve tropospheric H2O and HDO profiles simultaneously, accounting for the cross correlations between the water isotopes. The joint retrieval results in precise estimation of the isotope ratio by partial cancellation of systematic errors common to both H2O and HDO. The retrieved profiles and columns are compared with radiosonde, GPS, and ground-based high-resolution FTS data. The temporal and spatial variations of the precipitable water and the isotope ratio are consistent with those of the validation data. Finally, air pollutants such as CH3OH and NH3 are retrieved using the retrieved ozone and water vapor. We present the latitudinal and seasonal variations of CH3OH

  20. Halocarbons and other trace heteroatomic organic compounds in volcanic gases from Vulcano (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Seward, Terry M.; Giże, Andrew P.; Hall, Keith; Dietrich, Volker J.

    2013-01-01

    Adsorbent-trapped volcanic gases, sublimates and condensates from active vents of the La Fossa crater on the island of Vulcano (Aeolian Islands, Italy) as well as ambient and industrial air were quantitatively analyzed by Short-Path Thermal Desorption-Solid Phase Microextraction-Cryotrapping-Gas Chromatography/Mass Spectrometry (SPTD-SPME-CF-GC-MS). Among the over 200 detected and quantified compounds are alkanes, alkenes, arenes, phenols, aldehydes, carboxylic acids, esters, ketones, nitriles, PAHs and their halogenated, methylated and sulfonated derivatives, as well as various heterocyclic compounds including thiophenes and furans. Most compounds are found at concentrations well above laboratory, ambient air, adsorbent and field blank levels. For some analytes (e.g., CFC-11, CH2Cl2, CH3Br), concentrations are up to several orders of magnitude greater than even mid-latitudinal industrial urban air maxima. Air or laboratory contamination is negligible or absent on the basis of noble gas measurements and their isotopic ratios. The organic compounds are interpreted as the product of abiogenic gas-phase radical reactions. On the basis of isomer abundances, n-alkane distributions and substitution patterns the compounds are thought to have formed by high-temperature (e.g., 900 °C) alkyl free radical reactions and halide electrophilic substitution on arenes, alkanes and alkenes. The apparent abiogenic organic chemistry of volcanic gases may give insights into metal transport processes during the formation and alteration of hydrothermal ore deposits, into the natural volcanic source strength of ozone-depleting atmospheric trace gases (i.e., halocarbons), into possibly sensitive trace gas redox pairs as potential early indicators of subsurface changes on volcanoes in the state of imminent unrest, and into the possible hydrothermal origin of early life on Earth, as indicated by the presence of simple amino acids, nitriles, and alkanoic acids.

  1. Pilot Institute on Global Change on Trace Gases and the Biosphere, 1988

    NASA Technical Reports Server (NTRS)

    Eddy, J. A.; Moore, B.

    1998-01-01

    Table of Contents: Summary; Background; General Framework for a Series of Institutes on Global Change; The 1988 Pilot Institute on Global Changes: Trace Gases and the Biosphere; Budget; List of Acronyms; and Attachments.

  2. Trace Gases - A Warning Signs of Impending Major Seismic Activity

    NASA Astrophysics Data System (ADS)

    Baijnath, J.; Freund, F.; Li, J.

    2013-12-01

    isopropanol and with a highly reduced butyn containing triple-bonded C and an aromatic ring were used. Multiple tests were conducted to study the interaction of stressed-activated positive hole charge carriers with organic versus inorganic and dry versus moist materials. This study suggests that the appearance of certain trace gases may be useful as a pre-earthquake indicator.

  3. Optical parametric oscillators in lidar sounding of trace atmospheric gases in the mid infrared region

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Sadovnikov, S. A.; Kharchenko, O. V.; Shumskii, V. K.; Yakovlev, S. V.

    2015-12-01

    Applicability of a KTA crystal-based laser system with optical parametric generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases is based on differential absorption (DIAL) technique and differential optical absorption spectroscopy (DOAS). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases.

  4. MIRAGE: Model Description and Evaluation of Aerosols and Trace Gases

    SciTech Connect

    Easter, Richard C.; Ghan, Steven J.; Zhang, Yang; Saylor, Rick D.; Chapman, Elaine G.; Laulainen, Nels S.; Abdul-Razzak, Hayder; Leung, Lai-Yung R.; Bian, Xindi; Zaveri, Rahul A.

    2004-10-27

    The MIRAGE (Model for Integrated Research on Atmospheric Global Exchanges) modeling system, designed to study the impacts of anthropogenic aerosols on the global environment, is described. MIRAGE consists of a chemical transport model coupled on line with a global climate model. The chemical transport model simulates trace gases, aerosol number, and aerosol chemical component mass [sulfate, MSA, organic matter, black carbon (BC), sea salt, mineral dust] for four aerosol modes (Aitken, accumulation, coarse sea salt, coarse mineral dust) using the modal aerosol dynamics approach. Cloud-phase and interstitial aerosol are predicted separately. The climate model, based on the CCM2, has physically-based treatments of aerosol direct and indirect forcing. Stratiform cloud water and droplet number are simulated using a bulk microphysics parameterization that includes aerosol activation. Aerosol and trace gas species simulated by MIRAGE are presented and evaluated using surface and aircraft measurements. Surface-level SO2 in N. American and European source regions is higher than observed. SO2 above the boundary layer is in better agreement with observations, and surface-level SO2 at marine locations is somewhat lower than observed. Comparison with other models suggests insufficient SO2 dry deposition; increasing the deposition velocity improves simulated SO2. Surface-level sulfate in N. American and European source regions is in good agreement with observations, although the seasonal cycle in Europe is stronger than observed. Surface-level sulfate at high-latitude and marine locations, and sulfate above the boundary layer, are higher than observed. This is attributed primarily to insufficient wet removal; increasing the wet removal improves simulated sulfate at remote locations and aloft. Because of the high sulfate bias, radiative forcing estimates for anthropogenic sulfur in Ghan et al. [2001c] are probably too high. Surface-level DMS is {approx}40% higher than observed

  5. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.

    1994-09-20

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO[sub 2]; (B) contacting the gas sample of step (A) comprising NO[sub 2] with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0 and 100 C at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environmentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed. 16 figs.

  6. Trace gases over Northern Eurasia: background level and disturbing factors

    NASA Astrophysics Data System (ADS)

    Skorokhod, A.; Shumsky, R.; Pankratova, N.; Moiseenko, K.; Vasileva, A.; Berezina, E.; Elansky, N.

    2012-04-01

    Atmospheric air composition over the vast and low inhabited areas of Northern Eurasia is still poorly studied because of lack of the precise direct measurements. This harms to accuracy of both global and regional models which simulate climatological and ecosystem changes in that highly important region. In this work background trace gases (such as O3, NO, NO2, CO) concentrations and their variability are considered on base of results of continuous measurements at ZOTTO station in the middle of Siberia which have been carried out since March, 2007. Also factors implying background regime (like long-range transport, wild fires emissions) are analyzed. To compliment study data of TROICA train-based campaigns which have been regularly provided across Russia for many years (1995-2010) are used. The concentration of ozone has a pronounced seasonal variation with a clear peak in spring (40-45 ppbv in average and up to 80 ppbv in extreme cases) and minimum in winter. Average ozone level is about 20 ppbv that corresponds to the background conditions. Enhanced concentration in March-July is due to increased stratospheric-tropospheric exchange. In autumn and winter distribution of ozone is close to uniform. Photochemical processes under low light and air temperature does not cause the generation of ozone. Sink on the snow surface is very small, and therefore the diurnal variations are absent. In general, seasonal variations correspond to the average seasonal course, which is typical for Russia. The analysis of diurnal ozone variations in Zotino in different seasons showed that the maximum rate of ozone formation is observed in summer from 9 to 15 h local time and is 1-2 ppbv/hour. It correlates well with the data on the isoprene emissions and others biogenic VOC reacting with OH- radical. Thus they are biogenic VOC emissions that seem to be the main factor of the lower troposphere oxidation power in summer. In other seasons it is significantly lower. NOx concentration does

  7. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  8. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, Shih-Ger

    1994-01-01

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO.sub.2 ; (B) contacting the gas sample of step (A) comprising NO.sub.2 with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0.degree. and 100.degree. C. at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environ-mentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed.

  9. Does shift in oxygen level in soil air affect the trace gases emissions?

    NASA Astrophysics Data System (ADS)

    malghani, S.; Gleixner, G.; Trumbore, S.

    2013-12-01

    Biogenic processes in soil such as, trace gasses emissions are influenced by presence or absence of oxygen as it is a dominant final acceptor of electrons for number of biochemical processes. However, it is unknown that trace gases emissions from soil are influenced by the level of oxygen or not. To understand the impact of oxygen level on CO2, CH4 and N2O emissions, five contrasting soils which differ in land use and other properties, were incubated at constant temperature and moisture in an automated chamber measurement system. Automated system continuously (30 mL/min) flushed the chambers holding soil samples with inlet air of known composition and the outlet air, sampling the headspace of the column, was connected to an automated multiport stream selection valve (Valco) that directed the air stream from different columns sequentially to instrumental part (LiCOR6262,PICARRO2101i and PICCARO2301). Other greenhouse gases and isotopes (δ13C & D) of CH4 were sampled weekly using 2L flasks. Oxygen levels in inlet air were switched weekly, started from 20% followed by 10, 5, 2.5, 1, 0%, and all levels were repeated in reverse fashion (from 1 to 20%).The results showed that soil respiration was higher in soils that were rich in soil organic matter with higher microbial biomass. Three out of five soils exhibited a gradual decrease in soil respiration while shifting higher to lower O2 levels but no such impact was recorded during gradual increase in O2 level. The lowest respiration rates in all soil types were recorded under anaerobic conditions. Forest soils were rich in soil organic carbon and respired more CO2 than grassland or cropland soils. All soils oxidized CH4, except one grassland soil which was acidic in nature (pH=4.1), in the presence of O2 at all levels. Amount of CH4 oxidized varied among soil types and was highest in forest soils. Under anaerobic condition CH4 oxidation was not observed in any soil, while two soils (cropland and one grassland) emitted

  10. A search for biogenic trace gases in the atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Mckay, Christopher P.

    1989-01-01

    The detection of certain trace gases in the atmosphere of Mars may serve as a possible indicator of microbial life on the surface of Mars. Candidate biogenic gases include methane CH4, ammonia NH3, nitrous oxide N2O, and several reduced sulfur species. Chemical thermodynamic equilibrium and photochemical calculations preclude the presence of these gases in any measurable concentrations in the atmosphere of Mars in the absence of biogenic production. A search for these gases utilizing either high resolution (spectral and spatial) spectroscopy from a Mars orbiter, such as the Observer, and or in situ measurements from a Mars lander or rover, is proposed.

  11. Application of Derivative Spectrometry to the Analysis of Trace Gases

    NASA Technical Reports Server (NTRS)

    Hager, Robert N.

    1971-01-01

    A derivative spectrometer is sensitive to changes in spectral intensity over narrow wavelength internal. Specifically, a second derivative spectrometer senses the curvature of the incident spectral intensity, providing an output voltage signal proportional to the second derivative of intensity with respect to wavelength. When such an instrument is combined with multi-pass White cell, a unique trace gas analyzer results. The analyzer, operating within the middle ultraviolet spectral region, provides a highly amplified derivative spectrum of any molecular narrow band absorption which is used for trace gas identification. The intensity of any peak within a spectrum is proportional to the trace gas concentration. Such an analyzer, utilizing a 20 meter pathlength White cell, is presently being used to automatically monitor ambient air for SO2, NO, NO2, and O3 with minimum detectable concentration limits in the part per billion range.

  12. Greenhouse effects due to man-made perturbations of trace gases

    NASA Technical Reports Server (NTRS)

    Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.

    1976-01-01

    Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.

  13. ENSO effects on stratospheric trace gases: How do we capture reality?

    NASA Astrophysics Data System (ADS)

    Braesicke, Peter; Kirner, Oliver; Versick, Stefan; Joeckel, Patrick; Stiler, Gabriele

    2016-04-01

    The El Niño/Southern Oscillation (ENSO) phenomenon is an important pacemaker for interannual variability in the Earth's atmosphere. ENSO impacts on trace gases have been observed and modelled for the stratosphere and the troposphere. However, unambiguous attribution is often difficult due to the limited length of homogenous observational records and thus long-term (decadal) trends are sometimes difficult to detect. Generally ENSO impacts in low latitudes are easier to detect, because the response emerges close (temporally and spatially) to the forcing. Moving from low to high latitudes it becomes increasingly difficult to isolate ENSO driven variability, due to time-lags involved and many other modes of variability playing a role as well. Here, we use a nudged version of the EMAC chemistry-climate model to evaluate ENSO impacts on trace gases over the last 35 years (a so-called Ref-C1SD integration) and contrast the nudged model with its free running counterpart. We use water vapour and ozone observations from the MIPAS instrument on ENVISAT from 2002 to 2012 to test the model performance. Using lagged correlations for the longer model time-series we trace the ENSO signal from the tropical lower troposphere to the polar lower and middle stratosphere and provide a framework for simple attribution of the ENSO signal in trace gases. This concise characterisation of the ENSO impact on trace gases aids improved trend detection in temporally limited time series.

  14. Effects of traces of molecular gases (hydrogen, nitrogen) in glow discharges in noble gases

    NASA Astrophysics Data System (ADS)

    Steers, E. B. M.; Smid, P.; Hoffmann, V.

    2008-07-01

    The "Grimm" type of low pressure glow discharge source, introduced some forty years ago, has proved to be a versatile analytical source. A flat sample is used as the cathode and placed about 0.2mm away from the end of a hollow tubular anode leading to an obstructed discharge. When the source was first developed, it was used for the direct analysis of solid metallic samples by optical emission spectroscopy (OES), normally with argon as the plasma gas; it was soon found that, using suitable electrical parameters, the cathode material was sputtered uniformly from a circular crater of diameter equal to that of the tubular anode, so that the technique could be used for compositional depth profile analysis (CDPA). Over the years the capability and applications of the technique have steadily increased. The use of rf powered discharges now permits the analysis of non-conducting layers and samples; improved instrumental design now allows CDPA of ever thinner layers (e.g. resolution of layers 5 nm thick in multilayer stacks is possible). For the original bulk material application, pre-sputtering could be used to remove any surface contamination but for CDPA, analysis must start immediately the discharge is ignited, so that any surface contamination can introduce molecular gases into the plasma gas and have significant analytical consequences, especially for very thin layers; in addition, many types of samples now analysed contain molecular gases as components (either as occluded gas, or e.g. as a nitride or oxide), and this gas enters the discharge when the sample is sputtered. It is therefore important to investigate the effect of such foreign gases on the discharge, in particular on the spectral intensities and hence the analytical results. The presentation will concentrate mainly on the effect of hydrogen in argon discharges, in the concentration range 0-2 % v/v but other gas mixtures (e.g. Ar/N_2, Ne/H_2) will be considered for comparison. In general, the introduction of

  15. Titan's temporal evolution in stratospheric trace gases near the poles

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Jennings, D.; Achterberg, R.; Bampasidis, G.; Lavvas, P.; Nixon, C.; Teanby numeration="7">Teanby, N.; Anderson, C.; Cottini, V.; Flasar, F. M.

    2015-10-01

    We analyze spectra acquired by the Cassini/Composite Infrared Spectrometer (CIRS) at high resolution from October 2010 until September 2014 in nadir mode. Up until mid 2012, Titan's Northern atmosphere exhibited the enriched chemical content found since the Voyager days (November 1980), with a peak around the Northern Spring Equinox (NSE) in 2009. Since then, we have observed the appearance at Titan's south pole of several trace species for the first time, such as HC3N and C6H6, observed only at high northern latitudes before equinox. We investigate here latitudes poleward of 50°S and 50°N from 2010 (after the Southern Autumnal Equinox : SAE) until 2014.

  16. NATIONAL- AND STATE-LEVEL EMISSIONS ESTIMATES OF RADIATIVELY IMPORTANT TRACE GASES (RITGS) FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report documents the development of national- and state- level emissions estimates of radiatively important trace gases (RlTGs). Emissions estimates are presented for the principal anthropogenic sources of carbon dioxide (CO2), methane (CH4), chlorofluorocarbons (CFCs), and o...

  17. On the transport of trace gases by extra-tropical cyclones

    NASA Technical Reports Server (NTRS)

    Allaart, Marc A. F.; Heijboer, Lodewijk C.; Kelder, Hennie

    1994-01-01

    Extratropical cyclones are able to transport trace gases through the whole troposphere and lower stratosphere. At mid-latitudes most of the ozone transport from the lower stratosphere down into the troposphere is accomplished by depressions. The changing the total ozone contents, associated with the variable tropopause heights, are shown to be clearly visible in satellite ozone data.

  18. Interannual variability of trace gases in the subtropical winter stratosphere

    SciTech Connect

    Gray, L.J.; Russell, J.M. III

    1999-04-01

    Measurements of water vapor and methane from the Halogen Occultation Experiment instrument on board the Upper Atmosphere Research Satellite are used to study the interannual variability of trace gas distributions in the atmosphere. Particular attention is paid to the mechanisms influencing trace gas distributions in the subtropics. The study highlights the quasi-biennial oscillation (QBO) dependence of subtropical tracer distributions more clearly than in previous studies. There is a strong correlation between the equatorial wind QBO and the slope of the tracer isolines in the Northern Hemisphere subtropics, with steeper subtropical isoline slopes in the easterly phase compared with the westerly phase. This is particularly so in the lower stratosphere. Two possible mechanisms for the QBO signal in subtropical isoline slopes are identified: advection by the mean circulation and isentropic mixing. A comparison between the QBO signal in the slope of the tracer isolines and the isentropic tracer gradients is proposed as a method of determining which process is dominant. The authors suggest that the behavior of these two data diagnostics provides a stringent constraint on computer models of the atmosphere. On the basis of these diagnostics three height regions of the subtropical atmosphere are identified. (1) Below 450--500 K isentropic mixing associated with tropospheric disturbances penetrating the lower stratosphere is dominant. (2) In the region 500--750 K the data suggest that advection by the mean meridional circulation is important and that the role of isentropic mixing by eddies is relatively small. (3) Above 750 K isentropic mixing becomes increasingly important with height, and both advection and mixing are influential in determining the subtropical tracer distributions.

  19. In situ measurements and modeling of reactive trace gases in a small biomass burning plume

    NASA Astrophysics Data System (ADS)

    Müller, M.; Anderson, B.; Beyersdorf, A.; Crawford, J. H.; Diskin, G.; Eichler, P.; Fried, A.; Keutsch, F. N.; Mikoviny, T.; Thornhill, K. L.; Walega, J. G.; Weinheimer, A. J.; Yang, M.; Yokelson, R.; Wisthaler, A.

    2015-11-01

    An instrumented NASA P-3B aircraft was used for airborne sampling of trace gases in a plume that had emanated from a small forest understory fire in Georgia, USA. The plume was sampled at its origin for deriving emission factors and followed ~ 13.6 km downwind for observing chemical changes during the first hour of atmospheric aging. The P-3B payload included a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), which measured non-methane organic gases (NMOGs) at unprecedented spatio-temporal resolution (10 m/0.1 s). Quantitative emission data are reported for CO2, CO, NO, NO2, HONO, NH3 and 16 NMOGs (formaldehyde, methanol, acetonitrile, propene, acetaldehyde, formic acid, acetone plus its isomer propanal, acetic acid plus its isomer glycolaldehyde, furan, isoprene plus isomeric pentadienes and cyclopentene, methyl vinyl ketone plus its isomers crotonaldehyde and methacrolein, methylglyoxal, hydroxy acetone plus its isomers methyl acetate and propionic acid, benzene, 2,3-butandione and 2-furfural) with molar emission ratios relative to CO larger than 1 ppbV ppmV-1. Formaldehyde, acetaldehyde, 2-furfural and methanol dominated NMOG emissions. No NMOGs with more than 10 carbon atoms were observed at mixing ratios larger than 50 ppbV ppmV-1 CO emitted. Downwind plume chemistry was investigated using the observations and a 0-D photochemical box model simulation. The model was run on a near-explicit chemical mechanism (MCM v3.3) and initialized with measured emission data. Ozone formation during the first hour of atmospheric aging was well captured by the model, with carbonyls (formaldehyde, acetaldehyde, 2,3-butanedione, methylglyoxal, 2-furfural) in addition to CO and CH4 being the main drivers of peroxy radical chemistry. The model also accurately reproduced the sequestration of NOx into PAN and the OH-initiated degradation of furan and 2-furfural at an average OH concentration of 7.45 ± 1.07 × 106 cm-3 in the plume. Formaldehyde, acetone

  20. In situ measurements and modeling of reactive trace gases in a small biomass burning plume

    NASA Astrophysics Data System (ADS)

    Müller, Markus; Anderson, Bruce E.; Beyersdorf, Andreas J.; Crawford, James H.; Diskin, Glenn S.; Eichler, Philipp; Fried, Alan; Keutsch, Frank N.; Mikoviny, Tomas; Thornhill, Kenneth L.; Walega, James G.; Weinheimer, Andrew J.; Yang, Melissa; Yokelson, Robert J.; Wisthaler, Armin

    2016-03-01

    An instrumented NASA P-3B aircraft was used for airborne sampling of trace gases in a plume that had emanated from a small forest understory fire in Georgia, USA. The plume was sampled at its origin to derive emission factors and followed ˜ 13.6 km downwind to observe chemical changes during the first hour of atmospheric aging. The P-3B payload included a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), which measured non-methane organic gases (NMOGs) at unprecedented spatiotemporal resolution (10 m spatial/0.1 s temporal). Quantitative emission data are reported for CO2, CO, NO, NO2, HONO, NH3, and 16 NMOGs (formaldehyde, methanol, acetonitrile, propene, acetaldehyde, formic acid, acetone plus its isomer propanal, acetic acid plus its isomer glycolaldehyde, furan, isoprene plus isomeric pentadienes and cyclopentene, methyl vinyl ketone plus its isomers crotonaldehyde and methacrolein, methylglyoxal, hydroxy acetone plus its isomers methyl acetate and propionic acid, benzene, 2,3-butanedione, and 2-furfural) with molar emission ratios relative to CO larger than 1 ppbV ppmV-1. Formaldehyde, acetaldehyde, 2-furfural, and methanol dominated NMOG emissions. No NMOGs with more than 10 carbon atoms were observed at mixing ratios larger than 50 pptV ppmV-1 CO. Downwind plume chemistry was investigated using the observations and a 0-D photochemical box model simulation. The model was run on a nearly explicit chemical mechanism (MCM v3.3) and initialized with measured emission data. Ozone formation during the first hour of atmospheric aging was well captured by the model, with carbonyls (formaldehyde, acetaldehyde, 2,3-butanedione, methylglyoxal, 2-furfural) in addition to CO and CH4 being the main drivers of peroxy radical chemistry. The model also accurately reproduced the sequestration of NOx into peroxyacetyl nitrate (PAN) and the OH-initiated degradation of furan and 2-furfural at an average OH concentration of 7.45 ± 1.07 × 106 cm-3 in the

  1. Observations of halogenated trace gases in Taiwan and Malaysia

    NASA Astrophysics Data System (ADS)

    Gooch, Lauren J.; Laube, Johannes C.; Sturges, William T.; Oram, David E.; Wang, Jia-Lin; Ou-Yang, Cheng-Feng; Lin, Neng-Huei; Mead, Iq; Rigby, Matt; White, Emily

    2015-04-01

    There are a large variety of halocarbons present in the atmosphere that significantly impact on stratospheric ozone depletion and/or global warming. Though the use of some of these compounds has been phased out and replaced under global control measures, relatively long atmospheric lifetimes, imperfect substitutes and incomplete reductions in usage mean that global concentrations of halocarbons still require regular monitoring. This is especially true for the rapidly developing East Asian region, where high emissions have been repeatedly reported in recent years. We here present results from an air sampling activity in Taiwan and Malaysia during the spring months of 2013 and 2014. A large range of halocarbons, including a number of novel gases, were investigated via high sensitivity gas chromatography mass spectrometry (GC-MS). We find periods of relatively clean air as well as episodes that appear to be impacted by urban and/or industrial emissions and examine correlations between individual species. Observed mixing ratios are compared in context with both global background data and other regional studies. Enhancements in the abundances of many halocarbons are detected with examples including the Halons 1211 and 1202 as well as the very long-lived perfluorocarbons c-C4F8, C5F12 and C7F16. We also show and evaluate unusually high mixing ratios of other globally growing halocarbons such as sulphur hexafluoride (SF6), HCFC-133a (CF3CH2Cl), and CFC-113a (CF3CCl3). Finally, we use NAME analysis to produce back-trajectories in order to assess possible regional emission sources.

  2. Method for removing acid gases from a gaseous stream

    DOEpatents

    Gorin, Everett; Zielke, Clyde W.

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  3. 1988 Pilot Institute on Global Change on trace gases and the biosphere

    SciTech Connect

    Eddy, J.A.; Moore, B. III

    1998-07-01

    This proposal seeks multi-agency funding to conduct an international, multidisciplinary 1988 Pilot Institute on Global Change to take place from August 7 through 21, 1988, on the topic: Trace Gases and the Biosphere. The institute, to be held in Snowmass, Colorado, is envisioned as a pilot version of a continuing series of institutes on Global Change (IGC). This proposal seeks support for the 1988 pilot institute only. The concept and structure for the continuing series, and the definition of the 1988 pilot institute, were developed at an intensive and multidisciplinary Summer Institute Planning Meeting in Boulder, Colorado, on August 24--25, 1987. The theme for the 1988 PIGC, Trace Gases and the Biosphere, will focus a concerted, high-level multidisciplinary effort on a scientific problem central to the Global Change Program. Dramatic year-to-year increases in the global concentrations of radiatively-active trace gases such as methane and carbon dioxide are now well documented. The predicted climatic effects of these changes lend special urgency to efforts to study the biospheric sources and sinks of these gases and to clarify their interactions and role in the geosphere-biosphere system.

  4. Long-Term Changes of Tropospheric Trace Gases over Pakistan Derived From Multiple Satellite Instruments

    NASA Astrophysics Data System (ADS)

    Zeb, Naila; Fahim Khokhar, Muhammad; Murtaza, Rabbia; Noreen, Asma; Khalid, Tameem

    2016-07-01

    Air pollution is the expected key environmental issue of Pakistan in coming years due to its ongoing rapid economic growth and this trend suggests only worst air quality over time. In 2014, World bank reported the Pakistan's urban air quality among the most severe in the world and intimated the government to make improvement in air quality as a priority policy agenda. In addition it is recommended to strengthen the institutional and technical capacity of organizations responsible for air quality management. Therefore, the study is designed to put efforts in highlighting air quality issues. The study will provide first database for tropospheric trace gases over Pakistan. The study aims to analyse tropospheric concentrations of CO, TOC, NO2 and HCHO over Pakistan using multisensory data from January 2005 to January 2014. Spatio-temporal and seasonal variability of tropospheric trace gases is observed over the decade to explore long term trend. Hotspots are identified to see variation of species with latitude and to highlight possible sources of trace gases over the Pakistan. High concentrations of trace gases are mainly observed over the Punjab region, which may be attributed to its metropolitan importance. It is the major agricultural, industrialized and urbanized (nearly 60% of the Pakistan's population) sector of the country. Overall significant decreasing trend of CO is identified by MOPITT with relative change of 12.4%. Tropospheric ozone column (TOC) showed insignificant increasing trend with temporal increase of 10.4% whereas NO2 exhibited a significant temporal increase of about 28%. For formaldehyde (HCHO), an increase of about 3.8% is calculated for SCIAMACHY data. Well defined seasonal cycles for these trace gases are observed over the whole study period. CO concentrations showed peak in winter months (November/December/January/February) and dip in the months of Summer/Monsoon (June/July/August). In spite of CO, TCO increases gradually in March and peaks

  5. Mobile Platforms for Continuous Spatial Measurements of Urban Trace Gases and Criteria Pollutants

    NASA Astrophysics Data System (ADS)

    Fasoli, B.; Mitchell, L.; Bares, R.; Crosman, E.; Bush, S. E.; Horel, J.; Lin, J. C.; Bowling, D. R.; Ehleringer, J. R.

    2015-12-01

    Surface-based observations of atmospheric trace gases and criteria pollutants provide critical data on how emissions and pollutant concentrations vary over time. However, traditional stationary measurement sites only quantify concentrations at a single point in space, limiting our ability to understand spatial patterns. Using trace gas instrumentation capable of making continuous high-frequency (~1s) measurements, we have developed mobile platforms to complement stationary observation sites in order to better constrain the heterogeneity and complexities of urban emissions. These compact trace gas and criteria pollutant measurement systems are capable of precisely measuring CO2, CH4 PM2.5, O3, NOx, and several meteorological parameters on TRAX, Salt Lake City's light-rail system, and in a van-based mobile laboratory. Using case study observations, we discuss mobile measurement methodologies and the practical applications of mobile trace gas sampling platforms.

  6. Development of Optical Parametric Amplifier for Lidar Measurements of Trace Gases on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephen R.; Krainak, Michael; Abshire, James

    2011-01-01

    Trace gases in planetary atmospheres offer important clues as to the origins of the planet's hydrology, geology. atmosphere. and potential for biology. Wc report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OP A output light is single frequency with high spectral purity and is widely tunable both at 1600 nm and 3300 nm with an optical-optical conversion efficiency of approximately 40%. We demonstrated open-path atmospheric measurements ofCH4 (3291 nm and 1651 nm). CO2 (1573 nm), H20 (1652 nm) with this laser source.

  7. Aircraft observations of trace gases and aerosols in the Asian summer monsoon anticyclone

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Gottschaldt, Klaus-Dirk; Baumann, Robert; Hoor, Peter; Jurkat, Tina; Klausner, Theresa; Roiger, Anke; Stratmann, Greta; Voigt, Christiane; Zahn, Andreas; Ziereis, Helmut

    2016-04-01

    In-situ measurements of trace gases and aerosols in the Asian summer monsoon anticyclone are presented from the ESMVal and OMO field campaigns with the HALO research aircraft. Sharp gradients in chemical tracer mixing ratios are observed at the boundary of the anticyclone. In particular, SO2, reactive nitrogen, and aerosols are enhanced inside the anticyclone. SO2 and aerosols are tightly correlated indicating sulfate aerosol formation in the SO2-rich air masses. Ozone and carbon monoxide are enhanced or reduced in the anticyclone depending on the degree of in-mixing of stratospheric air inferred from observations of the stratospheric tracer HCl. Backward trajectory analysis, tracer dispersion calculations, and simulations with the chemistry-climate model EMAC are used to investigate the origin and transport of trace gases in and in the vicinity of the anticyclone.

  8. Estimating source regions of European emissions of trace gases from observations at Mace Head

    NASA Astrophysics Data System (ADS)

    Ryall, D. B.; Derwent, R. G.; Manning, A. J.; Simmonds, P. G.; O'Doherty, S.

    A technique is described for identifying probable source locations for a range of greenhouse and ozone-depleting trace gases from the long-term measurements made at Mace Head, Ireland. The Met. Office's dispersion model NAME is used to predict concentrations at Mace Head from all possible sources in Europe, then source regions identified as those which consistently lead to elevated concentrations at Mace Head. Estimates of European emissions and their distribution are presented for a number of trace gases for the period 1995-1998. Estimated emission patterns are realistic, given the nature and varied applications of the species considered. The results indicate that whilst there are limitations, useful information about source distribution can be extracted from continuous measurements at a remote site. It is probable that much improved estimates could be derived if observations were available from a number of sites. The ability to assess emissions has obvious implications in monitoring compliance with internationally agreed quota and protocols.

  9. High sensitivity detection of trace gases at atmospheric pressure using tunable diode lasers

    NASA Technical Reports Server (NTRS)

    Reid, J.; Sinclair, R. L.; Grant, W. B.; Menzies, R. T.

    1985-01-01

    A detailed study of the detection of trace gases at atmospheric pressure using tunable diode lasers is described. The influence of multipass cells, retroreflectors and topographical targets is examined. The minimum detectable infrared absorption ranges from 0.1 percent for a pathlength of 1.2 km to 0.01 percent over short pathlengths. The factors which limit this sensitivity are discussed, and the techniques are illustrated by monitoring atmospehric CO2 and CH4.

  10. Quantifying sources and sinks of trace gases using space-borne measurements: current and future science.

    PubMed

    Palmer, Paul I

    2008-12-28

    We have been observing the Earth's upper atmosphere from space for several decades, but only over the past decade has the necessary technology begun to match our desire to observe surface air pollutants and climate-relevant trace gases in the lower troposphere, where we live and breathe. A new generation of Earth-observing satellites, capable of probing the lower troposphere, are already orbiting hundreds of kilometres above the Earth's surface with several more ready for launch or in the planning stages. Consequently, this is one of the most exciting times for the Earth system scientists who study the countless current-day physical, chemical and biological interactions between the Earth's land, ocean and atmosphere. First, I briefly review the theory behind measuring the atmosphere from space, and how these data can be used to infer surface sources and sinks of trace gases. I then present some of the science highlights associated with these data and how they can be used to improve fundamental understanding of the Earth's climate system. I conclude the paper by discussing the future role of satellite measurements of tropospheric trace gases in mitigating surface air pollution and carbon trading.

  11. Distributions and Correlations of Organic Trace Gases in the Western Pacific Atmosphere

    NASA Astrophysics Data System (ADS)

    Donets, V.; Atlas, E. L.; Schauffler, S.; Navarro, M. A.; Lueb, R.; Campos, T. L.; Weinheimer, A. J.; Montzka, D.; Kaser, L.; Pan, L.; Salawitch, R. J.; Zhu, X.; Pope, L.

    2014-12-01

    The chemistry of the Tropical Western Pacific atmosphere was studied during three coordinated research missions (CONTRAST, ATTREX, CAST) during Winter, 2014. The purpose of the studies was to examine the chemical emissions of reactive gases from the marine surface, to diagnose transport characteristics of this region, and to better understand the controls of the chemical composition and reactive gas budgets of the tropical atmosphere, including the Tropical Transition Layer (TTL) and lower tropical stratosphere. As part of these studies a wide range of trace gases were measured, including various halo- and hydrocarbons, organic nitrates, methyl halides and solvents. In this presentation we will discuss results from whole air samples that were collected from NASA Global Hawk and NSF/NCAR Gulfstream-V aircrafts during ATTREX and CONTRAST, respectively. Samples were collected at altitudes from near 0.5 km to 18 km, and included latitudes from 40°N to 20°S in the Western Pacific. Combined measurements from two aircrafts produced over 1200 samples, which were subsequently analyzed in the field by means of gas chromatography combined with mass selective, flame ionization and electron capture detectors. The observed distributions of trace gases reflected the combined effects of marine emissions and convective mixing, long range transport, and slow ascent in the TTL. We will show our preliminary results featuring vertical and horizontal distributions of selected hydrocarbon and organic halogen trace species and correlations among these species that were observed during the campaigns.

  12. Mid-Infrared OPO for High Resolution Measurements of Trace Gases in the Mars Atmosphere

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Numata,Kenji; Riris, haris; Abshire, James B.; Allan, Graham; Sun, Xiaoli; Krainak, Michael A.

    2008-01-01

    The Martian atmosphere is composed primarily (>95%) of CO2 and N2 gas, with CO, O2, CH4, and inert gases such as argon comprising most of the remainder. It is surprisingly dynamic with various processes driving changes in the distribution of CO2, dust, haze, clouds and water vapor on global scales in the meteorology of Mars atmosphere [I]. The trace gases and isotopic ratios in the atmosphere offer important but subtle clues as to the origins of the planet's atmosphere, hydrology, geology, and potential for biology. In the search for life on Mars, an important process is the ability of bacteria to metabolize inorganic substrates (H2, CO2 and rock) to derive energy and produce methane as a by-product of anaerobic metabolism. Trace gases have been measured in the Mars atmosphere from Earth, Mars orbit, and from the Mars surface. The concentration of water vapor and various carbon-based trace gases are observed in variable concentrations. Within the past decade multiple groups have reported detection of CH4, with concentrations in the 10's of ppb, using spectroscopic observations from Earth [2]. Passive spectrometers in the mid-infrared (MIR) are restricted to the sunlit side of the planet, generally in the mid latitudes, and have limited spectral and spatial resolution. To accurately map the global distribution and to locate areas of possibly higher concentrations of these gases such as plumes or vents requires an instrument with high sensitivity and fine spatial resolution that also has global coverage and can measure during both day and night. Our development goal is a new MIR lidar capable of measuring, on global scales, with sensitivity, resolution and precision needed to characterize the trace gases and isotopic ratios of the Martian atmosphere. An optical parametric oscillator operating in the MIR is well suited for this instrument. The sufficient wavelength tuning range of the OPO can extend the measurements to other organic molecules, CO2, atmospheric water

  13. The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2013-03-01

    The University of Colorado Airborne Multi-Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (absorption bands at 360, 477, 577, 632 nm) simultaneously in the open atmosphere. The instrument is unique as it (1) features a motion compensation system that decouples the telescope field of view from aircraft movements in real time (<0.35° accuracy), and (2) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system. Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex (California Research at the Nexus of Air Quality and Climate Change) and CARES (Carbonaceous Aerosols and Radiative Effects Study) air quality field campaigns is presented. Horizontal distributions of NO2 VCD (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground-based MAX-DOAS instruments (slope = 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O concentrations and aerosol extinction coefficients, ɛ, at 477 nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  14. Climate-chemical interactions and effects of changing atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.

    1987-01-01

    The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.

  15. Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria

    PubMed Central

    Lynch, Ryan C.; Darcy, John L.; Kane, Nolan C.; Nemergut, Diana R.; Schmidt, Steve K.

    2014-01-01

    Previous surveys of very dry Atacama Desert mineral soils have consistently revealed sparse communities of non-photosynthetic microbes. The functional nature of these microorganisms remains debatable given the harshness of the environment and low levels of biomass and diversity. The aim of this study was to gain an understanding of the phylogenetic community structure and metabolic potential of a low-diversity mineral soil metagenome that was collected from a high-elevation Atacama Desert volcano debris field. We pooled DNA extractions from over 15 g of volcanic material, and using whole genome shotgun sequencing, observed only 75–78 total 16S rRNA gene OTUs3%. The phylogenetic structure of this community is significantly under dispersed, with actinobacterial lineages making up 97.9–98.6% of the 16S rRNA genes, suggesting a high degree of environmental selection. Due to this low diversity and uneven community composition, we assembled and analyzed the metabolic pathways of the most abundant genome, a Pseudonocardia sp. (56–72% of total 16S genes). Our assembly and binning efforts yielded almost 4.9 Mb of Pseudonocardia sp. contigs, which accounts for an estimated 99.3% of its non-repetitive genomic content. This genome contains a limited array of carbohydrate catabolic pathways, but encodes for CO2 fixation via the Calvin cycle. The genome also encodes complete pathways for the catabolism of various trace gases (H2, CO and several organic C1 compounds) and the assimilation of ammonia and nitrate. We compared genomic content among related Pseudonocardia spp. and estimated rates of non-synonymous and synonymous nucleic acid substitutions between protein coding homologs. Collectively, these comparative analyses suggest that the community structure and various functional genes have undergone strong selection in the nutrient poor desert mineral soils and high-elevation atmospheric conditions. PMID:25566214

  16. Distribution and Sources of Trace Gases and Aerosols in the Asian Summer Monsoon Anticyclone - Aircraft Observations and Model Simulations

    NASA Astrophysics Data System (ADS)

    Schlager, H.; Klausner, T.; Aufmhoff, H.; Baumann, R.; Gottschaldt, K. D.

    2015-12-01

    We report aircraft observations of trace gases and aerosols from recent field campaigns in the Asian summer monsoon anticyclone. Measurements were performed with the DLR Falcon and HALO aircraft at altitudes up to 15 km across the boundary of the anticyclone over the Arabian Sea during June, July and September conditions. Sharp gradients in chemical tracer mixing ratios were observed at the boundary of the anticyclone. In particular, sulfur dioxide and aerosols were enhanced inside the anticyclone. Ozone and carbon monoxide were enhanced or reduced in the anticyclone depending on the degree of in-mixing of air from the stratosphere inferred from observations of the stratospheric tracer hydrochloric acid. Backward trajectory analysis, tracer dispersion calculations, and simulations with the chemistry-climate model EMAC, nudged to the meteorological conditions of the measurements, were used to investigate the origin and transport of trace gases in and in the vicinity of the anticyclone. A chemistry-aerosol box model was used to simulate the formation of sulfate aerosol from sulfur dioxide inside the anticyclone uplifted by deep convection over northern India and in the Gulf of Bengal.

  17. The effects of biomass burning on the concentration of trace gases in the atmosphere

    NASA Technical Reports Server (NTRS)

    Donaldson, Leon M.

    1988-01-01

    Over the past several years, there has been considerable interest concerning the global effects of biomass burning on concentrations of trace gases in the atmosphere. The paucity of reported studies and investigations into the effects of the Greenhouse Gases such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), up until about a decade ago, would suggest that the topic was not then one of universal concern. Efforts are now being made to understand the biogenic, anthropogenic and photochemical sources of atmospheric trace gases. Biomass burning which includes the burning of forests for clearing, the burning of vegetative stubble after harvesting, and lightning and human-induced wildfires is but one consideration under the general paradigm of atmospheric perturbations. A team of researchers from the Langley Research Center, along with the Canadian Forest Ministry, Ontario, Canada collaborated in an experiment in a deforestration effort through a prescribed burn. Through a specially designed experimental modeling and instrumentation, a substantial pre-burn data set was collected. The primary focus of the pre-burn experimental activities was the emission of nitrous oxide (N2O) gas from selected sites.

  18. The Oceanic Source of Trace Gases Now and in the Future

    NASA Astrophysics Data System (ADS)

    Liss, P. S.; Turner, S. M.; Martin, J. T.; Frances, H. E.; Valia, A. A.; Meike, V.; Adele, C. L.

    2008-12-01

    A complex cocktail of gases exchange between the atmosphere and oceans and many of the trace gases produced in seawater are considered to play important roles in climate and atmospheric chemistry. The strength of the biogenic marine source depends on a large number of factors that can be categorised as the magnitude of the net formation processes (production - destruction) and the kinetics of the sea-to-air transfer. It is recognised that the rise of anthropogenic CO2 in the atmosphere is already affecting the marine environment, with an average 30% increase in H+ ions in surface waters since pre-industrial times. The decrease in pH is only one of the factors expected to alter over the next century during which atmospheric CO2 will continue to rise. Model predictions suggest significant physical and biogeochemical changes (e.g. surface water temperature, wind speed, stratification, nutrient supply, phytoplankton community structure) that will likely affect many of the processes controlling sea-air gas exchange and fluxes to the atmosphere. We will present data showing how acidification of seawater and changes in nutrients may affect the net production of dimethyl sulphide and halogenated gases in seawater. In addition, we will discuss how the predicted changes in wind speed and seawater temperature may impinge on sea-air transfer and address the potential direction of change in the fluxes of a number of different gases, including ammonia, to the atmosphere.

  19. An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling

    SciTech Connect

    Qian, Yun; Gustafson, William I.; Fast, Jerome D.

    2010-07-29

    One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV) of trace gases and aerosols within a typical global climate model grid cell, i.e. 75x75 km2. Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs) for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV) over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV) over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases are very efficiently transported and mixed vertically by

  20. The temporal and spatial variability of halogenated trace gases in the upper troposphere.

    NASA Astrophysics Data System (ADS)

    Oram, D.; O'Sullivan, D.; Brenninkmeijer, C.; van Velthoven, P.; Sturges, W.

    2007-12-01

    Halogenated trace gases play an important role in stratospheric and tropospheric chemistry, particularly affecting ozone concentrations. In addition they have direct and indirect effects on radiative forcing, and impact on tropospheric reactivity. Data from the CARIBIC project (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrumented Container) have been used in conjunction with back-trajectory analysis to further our understanding of the chemical composition, inter-hemispheric distribution and source regions of halogenated compounds in the upper troposphere and lower stratosphere. Whole air samples collected within CARIBIC, have been analyzed using gas chromatography mass spectrometry for around 35 halocarbons and related trace gases, among them many potent greenhouse gases and species important for ozone depletion. The large spatial and temporal coverage of the CARIBIC project has enabled new work to be done investigating recent inter-annual trends in the CFCs, halons, and other anthropogenic halocarbons, as well as identifying clear inter-hemispheric and seasonal variability for a number of species, such as methylene chloride, HCFCs, methyl chloride, methyl bromide, methyl iodide and several reactive short lived bromo and chloro carbons. In this paper results from the CARIBIC flights to China and the Philippines will be highlighted, to discuss anthropogenic emissions of ozone depleting and greenhouse gases, from Asia and Africa. Data from flights to South America will also be presented. As production and consumption of many of these substances are being phased out in Europe and North America, emissions from Asia, Africa and also South America are becoming increasingly more important. Emissions from these regions are also of interest, as the most significant sources are often collocated with regions of convection in the tropics and sub-tropics. Thus enabling a greater proportion of the substances emitted to reach the stratosphere, where

  1. Analysis of Process Gases and Trace Contaminants in Membrane-Aerated Gaseous Effluent Streams.

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Lunn, Griffin Michael; Meyer, Caitlin E.

    2015-01-01

    In membrane-aerated biofilm reactors (MABRs), hollow fibers are used to supply oxygen to the biofilms and bulk fluid. A pressure and concentration gradient between the inner volume of the fibers and the reactor reservoir drives oxygen mass transport across the fibers toward the bulk solution, providing the fiber-adhered biofilm with oxygen. Conversely, bacterial metabolic gases from the bulk liquid, as well as from the biofilm, move opposite to the flow of oxygen, entering the hollow fiber and out of the reactor. Metabolic gases are excellent indicators of biofilm vitality, and can aid in microbial identification. Certain gases can be indicative of system perturbations and control anomalies, or potentially unwanted biological processes occurring within the reactor. In confined environments, such as those found during spaceflight, it is important to understand what compounds are being stripped from the reactor and potentially released into the crew cabin to determine the appropriateness or the requirement for additional mitigation factors. Reactor effluent gas analysis focused on samples provided from Kennedy Space Center's sub-scale MABRs, as well as Johnson Space Center's full-scale MABRs, using infrared spectroscopy and gas chromatography techniques. Process gases, such as carbon dioxide, oxygen, nitrogen, nitrogen dioxide, and nitrous oxide, were quantified to monitor reactor operations. Solid Phase Microextraction (SPME) GC-MS analysis was used to identify trace volatile compounds. Compounds of interest were subsequently quantified. Reactor supply air was examined to establish target compound baseline concentrations. Concentration levels were compared to average ISS concentration values and/or Spacecraft Maximum Allowable Concentration (SMAC) levels where appropriate. Based on a review of to-date results, current trace contaminant control systems (TCCS) currently on board the ISS should be able to handle the added load from bioreactor systems without the need

  2. Measurements of stratospheric trace gases by a balloon-borne infrared spectrometer in France

    NASA Astrophysics Data System (ADS)

    Jarisch, M.; Offermann, D.

    1994-09-01

    A helium cooled balloon-borne infrared spectrometer was launched from Aire-sur-l'Adour (France) in May, 1986. The experiment used the limb scan technique to measure height profiles of nine stratospheric trace gases prior to, during, and after sunrise. Mixing ration profiles of ozone (O3) and nitrogen pentoxide (N2O5) are presented here. The ozone measurements are compared to in situ measurements taken by electrochemical Brewer/Mast sondes. The N2O5 mixing ratios deduced from predawn measurements are found to be in good agreement with observations obtained by other experiments.

  3. Method and apparatus for detecting and measuring trace impurities in flowing gases

    DOEpatents

    Taylor, Gene W.; Dowdy, Edward J.

    1979-01-01

    Trace impurities in flowing gases may be detected and measured by a dynamic atomic molecular emission spectrograph utilizing as its energy source the energy transfer reactions of metastable species, atomic or molecular, with the impurities in the flowing gas. An electronically metastable species which maintains a stable afterglow is formed and mixed with the flowing gas in a region downstream from and separate from the region in which the metastable species is formed. Impurity levels are determined quantitatively by the measurement of line and/or band intensity as a function of concentration employing emission spectroscopic techniques.

  4. Wet precipitation scavenging of soluble atmospheric trace gases due to chemical absorption in inhomogeneous atmosphere

    NASA Astrophysics Data System (ADS)

    Elperin, Tov; Fominykh, Andrew; Krasovitov, Boris

    2016-04-01

    We analyze the effects of irreversible chemical reactions of the first and higher orders and aqueous-phase dissociation reactions on the rate of trace gas scavenging by rain in the atmosphere with non-uniform concentration and temperature. We employ an one-dimensional model of precipitation scavenging of chemically active soluble gaseous pollutants that is valid for small gradients of temperature and concentration in the atmosphere. It is demonstrated that transient altitudinal distribution of concentration under the influence of rain is determined by the partial hyperbolic differential equation of the first order. Scavenging coefficients are calculated for wet removal of chlorine, nitrogen dioxide and sulfur dioxide for the exponential and linear initial altitudinal distributions of trace gases concentration in the atmosphere and linear and uniform altitudinal temperature distributions. Theoretical predictions of the dependence of the magnitude of the scavenging coefficient on rain intensity for sulfur dioxide are in a good agreement with the available atmospheric measurements.

  5. High-sensitivity detection of trace gases using dynamic photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Wynn, Charles M.; Palmacci, Stephen; Clark, Michelle L.; Kunz, Roderick R.

    2014-02-01

    Lincoln Laboratory of Massachusetts Institute of Technology has developed a technique known as dynamic photoacoustic spectroscopy (DPAS) that could enable remote detection of trace gases via a field-portable laser-based system. A fielded DPAS system has the potential to enable rapid, early warning of airborne chemical threats. DPAS is a new form of photoacoustic spectroscopy that relies on a laser beam swept at the speed of sound to amplify an otherwise weak photoacoustic signal. We experimentally determine the sensitivity of this technique using trace quantities of SF6 gas. A clutter-limited sensitivity of ˜100 ppt is estimated for an integration path of 0.43 m. Additionally, detection at ranges over 5 m using two different detection modalities is demonstrated: a parabolic microphone and a laser vibrometer. Its utility in detecting ammonia emanating from solid samples in an ambient environment is also demonstrated.

  6. Ground-based observations of atmospheric trace gases from 1995 to 2003

    NASA Astrophysics Data System (ADS)

    Oetjen, H.; Wittrock, F.; Fietkau, S.; Ladstätter-Weißenmayer, A.; Medeke, T.; Richter, A.; Burrows, J.

    2003-04-01

    This study presents ground-based measurements of atmospheric trace gases (ozone, NO2, BrO, HCHO and OClO) by means of UV/visible spectroscopy from 1995 to 2003. The measurements sites range from northern high latitudes (Ny-Ålesund, 79° N, 12°E) over mid-latitudes (Bremen, 53°N, 9°E) to equatorial regions (Nairobi, 1°S, 36° E). In 2002 all instruments have been substantially enhanced to use different line of sights close to the horizon as additional viewing geometries. With this MAX- DOAS (multi axis Differential Optical Absorption Spectroscopy) technique it is possible to derive profile information for the retrieved absorbers, which enables us to further investigate the consistency of trace column amounts derived from different platforms and/or from model calculations.

  7. Wet precipitation scavenging of soluble atmospheric trace gases due to chemical absorption in inhomogeneous atmosphere

    NASA Astrophysics Data System (ADS)

    Elperin, Tov; Fominykh, Andrew; Krasovitov, Boris

    2017-02-01

    We analyze the effects of irreversible chemical reactions of the first and higher orders and aqueous-phase dissociation reactions on the rate of trace gas scavenging by rain in the atmosphere with non-uniform concentration and temperature. We employ an one-dimensional model of precipitation scavenging of chemically active soluble gaseous pollutants that is valid for small gradients of temperature and concentration in the atmosphere. It is demonstrated that transient altitudinal distribution of concentration under the influence of rain is determined by the partial hyperbolic differential equation of the first order. Scavenging coefficients are calculated for wet removal of chlorine, nitrogen dioxide and sulfur dioxide for the exponential and linear initial altitudinal distributions of trace gases concentration in the atmosphere and linear and uniform altitudinal temperature distributions. Theoretical predictions of the dependence of the magnitude of the scavenging coefficient on rain intensity for sulfur dioxide are in a good agreement with the available atmospheric measurements.

  8. Feasibility of observations of stratospheric trace gases using the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jaramillo, M.; De Zafra, R. L.

    1987-01-01

    The stellar occultation method has been successfully used in the past from orbiting observatories to measure concentrations of certain trace gases in the earth's mesosphere. The greatly improved spectroscopic capabilities of the Hubble Space Telescope (HST) have prompted recent suggestions for its use to measure stratospheric C10. This possibility is examined along with that for other species relevant to the chemistry of the ozone layer. It is concluded that stratospheric (as opposed to mesospheric) observations with HST are not practical, in part because of its orbital and pointing characteristics, but primarily because the high opacity of stratospheric ozone over most of the bandpass of the HST's most suitable spectrometer will obscure observation of other trace species, such as C10, having mixing ratios of less than 0.001.

  9. Assessment of a 2016 Mission Concept: The Search for Trace Gases in the Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Zurek, Richard W.; Chicarro, Augustin; Allen, Mark A.; Bertauz, Jean-Loup; Clancy, R. Todd; Daerden, Frank; Formisano, Vittorio; Garvin, James B.; neukum, Gerhard; Smith, Michael D.

    2011-01-01

    The reported detection of methane in the atmosphere of Mars as well as its potentially large seasonal spatial variations challenge our understanding of both the sources and sinks of atmospheric trace gases. The presence of methane suggests ongoing exchange between the subsurface and the atmosphere of potentially biogenic trace gases, while the spatial and temporal variations cannot be accounted for with current knowledge of martian photochemistry. A Joint Instrument Definition Team (JIDT) was asked to assess concepts for a mission that might follow up on these discoveries within the framework of a series of joint missions being considered by ESA and NASA for possible future exploration of Mars. The following is based on the report of the JIDT to the space agencies (Zurek et al., 2009); a synopsis of the report was presented at the Workshop on Mars Methane held in Frascati, Italy, in November 2009. To summarize, the JIDT believed that a scientifically exciting and credible mission could be conducted within the evolving capabilities of the science/telecommunications orbiter being considered by ESA and NASA for possible launch in the 2016 opportunity for Mars.

  10. Trace Gases and Aerosol in the Boundary Layer of the Northern Asia: TROICA Experiments

    NASA Astrophysics Data System (ADS)

    Elanksy, N. F.; Aloyan, A. E.; Berezina, E. V.; Elokhov, A. S.; Brenninkmeijer, C. A.; Kopeikin, V. M.; Moeseenko, K. B.; Lavrova, O. V.; Pankratova, N. V.; Safronov, A. N.; Shumsky, R. A.; Skorokhod, A. I.; Tarasova, O. A.; Vivchar, A. V.; Grisenko, A. M.

    2007-12-01

    The TROICA experiment (Transcontinental Observations Into the Chemistry of the Atmosphere) started in 1995. A mobile railroad laboratory is being used for measurements of atmospheric gases, aerosol, solar radiation and meteorological parameters. The laboratory wagon is directly coupled to the locomotive of a passenger train traveling along electrified railroads of Russia. Eleven expeditions have been conducted to the moment of which nine were performed along the Trans-Siberian railroad from Moscow to Vladivostok (around 9300 km). One expedition was North-South between Murmansk and Kislovodsk, and one was around the mega-city of Moscow. The huge coverage of the continental regions and the repetition of the expeditions provide unique information on processes controlling variability of the key trace gases (O3, NOx, CO, CO2, CH4, some VOCs) and aerosols with high temporal and spatial resolution over different scales from continental to local (hundreds meters). Multiple crossings of settlements allowed determining typical variations of surface gases and aerosol concentrations within cities and their plumes. 222Rn concentration data were used for estimates of CO, CH4 and CO2 nocturnal fluxes from the soil and vegetation. Impacts of different factors, like Western Siberian gas and oil industry, forest fires, transboundary air pollution transport and some other can be evaluated based on the measurement data by comparing them with results of model output and hence can be used for model validation. Emissions of the atmospheric CO and CH4 were studied in several expeditions using isotopes analysis.

  11. Arctic haze: Patterns and relationships to regional signatures of trace gases

    NASA Astrophysics Data System (ADS)

    Khalil, M. A. K.; Rasmussen, R. A.

    1993-03-01

    We took measurements of up to 30 gases in Arctic haze and in clean Arctic air. These data were obtained from some 500 flask samples taken on three expeditions of the Arctic Gas and Aerosol Sampling Program (AGASP 1, 2, and 3) during the spring of 1983, 1986, and 1989. Concentrations of many gases are significantly higher in the haze layers compared to outside the haze. To look for the possible origins of the haze, we used cluster analysis to derive regional signatures of trace gases at ground-based sites in middle and high northern latitudes. Comparison of the regional signatures with concentrations observed in Arctic haze suggest that there are no significant contributions from North America but possible influences from Russia and eastern Europe. These conclusions complement results derived from the analysis of the Arctic aerosol chemistry. It is possible, however, that Arctic haze originates from the military, industrial, and mining activities within the Arctic circle, particularly from the Russian Koala peninsula.

  12. Airborne Measurements of Important Ozone-depleting and Climate-forcing Trace Gases from 1991 to HIPPO and Beyond

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Nance, J. D.; Moore, F. L.; Hintsa, E. J.; Dutton, G. S.; Hall, B. D.; Mondeel, D. J.; Montzka, S. A.; Hurst, D. F.; Oltmans, S. J.; Gao, R.; Fahey, D. W.; Wofsy, S. C.

    2012-12-01

    Through collaborations with the National Aeronautics and Space Administration (NASA) and the National Science Foundation, the National Oceanographic and Atmospheric Administration Earth System Research Laboratory Global Monitoring Division (NOAA/ESRL/GMD) has measured a number of trace gases from manned and unmanned aircraft up to 21 km, and balloon platforms up to 32 km since 1991 at locations spanning the globe. Over 40 trace gases, including nitrous oxide (N2O), chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), methyl halides, numerous other halocarbons, sulfur gases (COS, SF6, CS2), and selected hydrocarbons, have been measured at Earth's surface and at altitude. This presentation will highlight our recent observations of halocarbons and other trace gases during the NSF and NOAA sponsored HIAPER Pole-to-Pole Observations (HIPPO) campaigns (2009-2011) that included flyovers of NDACC (Network for the Detection of Atmospheric Composition Change), AGAGE (Advanced Global Atmospheric Gases Experiment), and NOAA stations. Other observations from the recent NASA and NOAA sponsored Unmanned Aircraft Systems (UAS) GloPac and ATTREX campaigns (2010 - present) will also be highlighted, along with comparisons to proximate NDACC and satellite observations (ACE-FTS, Aura MLS and TES instruments). Our goal is to assemble a complete data set of geolocated airborne observations of halocarbons and other important trace gases measured by NOAA/ESRL airborne gas chromatographs for the purpose of facilitating model development and studies of atmospheric chemistry and transport processes in the troposphere and lower stratosphere.

  13. Satellite-derived Signatures of Trace Gases from US. Oil and Gas Operations

    NASA Astrophysics Data System (ADS)

    Kollonige, D. E.; Thompson, A. M.

    2013-12-01

    Since 2005, there has been an increase in shale gas production, which is expected to continue through 2035, leading to heightened environmental concerns regarding increased emissions of the greenhouse gas methane (CH4) and degradation of local air quality. Emissions of CH4 and VOCs may occur at any stage of exploration and production via venting, flashing, flaring, or fugitive/non-permitted emissions. The industrial equipment used to install and maintain a well is a potential emission source of CH4, VOCs, nitrogen oxides, and other gases. Emissions from these individual point sources can accumulate and represent a substantial area source of trace gases to the atmosphere. We have begun to characterize the trace gas signatures associated with oil and natural gas (O&NG) operations in the U.S. using satellite observations over two key regions: the Marcellus and Bakkan Shale Deposits. Current satellite products, including CH4 from the Tropospheric Emission Spectrometer (TES) and nitrogen dioxide (NO2) from the Ozone Monitoring Instrument (OMI) on Aura, are compared to aircraft and ground measurements. Preliminary analysis during June 2012 shows the potential for TES in the mid-troposphere to detect and track increases in CH4 due to a gas well leak in the Marcellus Shale Region. Trace gas trends from satellite observations are analyzed in the vicinity of O&NG sites. The TES CH4 representative tropospheric volume mixing ratio (RTVMR) product, particularly used for emission detection, displays evidence of increasing methane over PA from 2006 through 2012. This analysis begins to provide improved constraints on O&NG emissions and supply a template for future geo-missions, such as TEMPO, for continued observations of air quality.

  14. Clostridium strain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, J.L.

    1997-01-14

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  15. Clostridium stain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, James L.

    1997-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  16. Environmental factors controlling transient and seasonal changes of trace gases within shallow vadose zone

    NASA Astrophysics Data System (ADS)

    Pla, Concepcion; Galiana-Merino, Juan Jose; Cuezva, Soledad; Fernandez-Cortes, Angel; Garcia-Anton, Elena; Cuevas, Jaime; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio; Benavente, David

    2014-05-01

    Shallow vadose environments below soil, mainly caves, show significant seasonal and even daily variations in gas composition of ground air, which involves the exchange of large amounts of gases, e.g. greenhouse gases (GHGs) as CO2 or CH4, with the lower troposphere. To understand better the role of caves as a sink or depot of GHGs, geochemical tracing of air (atmosphere, soil and ground air) was performed at Rull cave (southeast Spain) by monitoring CH4, CO2 and the stable carbon isotopic delta13C[CO2] using cavity ring-down spectroscopy (CRDS). A comprehensive microclimatic monitoring of exterior and cave atmosphere was simultaneously conducted to GHGs-tracking, including factors as temperature, barometric pressure, relative humidity and concentration of CO2 and 222Rn. The analysis of the measured data allows understanding outgassing and isolation processes taking place in the karst cavity. Annual patterns of gases behaviour can be distinguished, depending on the prevailing relationship between outer atmosphere, indoor atmosphere and soil system. Cave air temperature fluctuates around 15.7 ºC and relative humidity remains higher than 96% the whole annual cycle. The mean concentration of 222Rn is 1584 Bq m-3 while CO2 remains 1921 ppm. When external temperature is higher of indoor temperature (April-October), the highest levels of both trace gases are reached, while levels drop to its lowest values in the coldest months. Preliminary results obtained show an annual variation in concentration of CO2 inside the cave between 3300 ppm and 900 ppm, whereas corresponding isotopic signal delta13CO2 varies between -24‰ and -21‰. The results have been studied by Keeling model that approximates the isotopic signal of the source contribution in a resulting air mix. The values registered inside the cave were represented joined to results for exterior air (average values round 410 ppm of CO2 and -9 ‰ for delta13C). Value obtained is -27‰ pointing to a high influence of

  17. Spatial Variability of Trace Gases During DISCOVER-AQ: Planning for Geostationary Observations of Atmospheric Composition

    NASA Technical Reports Server (NTRS)

    Follette-Cook, Melanie B.; Pickering, K.; Crawford, J.; Appel, W.; Diskin, G.; Fried, A.; Loughner, C.; Pfister, G.; Weinheimer, A.

    2015-01-01

    Results from an in-depth analysis of trace gas variability in MD indicated that the variability in this region was large enough to be observable by a TEMPO-like instrument. The variability observed in MD is relatively similar to the other three campaigns with a few exceptions: CO variability in CA was much higher than in the other regions; HCHO variability in CA and CO was much lower; MD showed the lowest variability in NO2All model simulations do a reasonable job simulating O3 variability. For CO, the CACO simulations largely under over estimate the variability in the observations. The variability in HCHO is underestimated for every campaign. NO2 variability is slightly overestimated in MD, more so in CO. The TX simulation underestimates the variability in each trace gas. This is most likely due to missing emissions sources (C. Loughner, manuscript in preparation).Future Work: Where reasonable, we will use these model outputs to further explore the resolvability from space of these key trace gases using analyses of tropospheric column amounts relative to satellite precision requirements, similar to Follette-Cook et al. (2015).

  18. Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid

    DOEpatents

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

  19. Emission rates of sulfur dioxide, trace gases and metals from Mount Erebus, Antarctica

    NASA Astrophysics Data System (ADS)

    Kyle, Philip R.; Meeker, Kimberley; Finnegan, David

    1990-11-01

    SO2 emission rates have been measured annually since 1983 at Mount Erebus, Antarctica by correlation spectrometer (COSPEC V). Following a 4 month period of sustained strombolian activity in late 1984, SO2 emissions declined from 230 Mg/day in 1983 to 25 Mg/day and then slowly increased from 16 Mg/day in 1985 to 51 Mg/day in 1987. Nine sets of filter packs containing particle and (Li-7)OH treated filters were collected in the plume in 1986 and analyzed by neutron activation. Using the COSPEC data and measured element/S ratios on the filters, emission rates have been determined for trace gases and metals. HCl and HF emissions in 1983 are inferred to be about 1200 and 500 Mg/day, respectively. Mt. Erebus has therefore been an important source of halogens to the Antarctic atmosphere and could be responsible for excess Cl found in central Antarctica snow.

  20. Measurements of Long-Lived Trace Gases from Commercial Aircraft Platforms: Development of Instrumentation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The upper troposphere (6-12 km altitude) is a poorly understood and highly vulnerable region of the atmosphere. It is important because many trace species, including ozone, have their greatest impact as greenhouse (infrared-absorbing) gases in this region. The addition of relatively small amounts of anthropogenic chemicals, such as nitrogen oxides, can have a dramatic effect on the abundance of ozone. Some of these pollutants are deposited directly, e.g., by aircraft, while others are transported in. The primary goal of this project was to measure several chemical compounds in the upper troposphere that will help us to understand how air is to transported to that part of the atmosphere; that is, does it come down from the stratosphere, does it rise from the surface via convection, and so on. To obtain adequate sampling to accomplish this goal, we proposed to make measurements from revenue aircraft during normal flight operations.

  1. Impact of Radiatively Active Trace Gases on Long-Term Changes in the Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Qian, L.; Marsh, D. R.; Merkel, A. W.; Solomon, S. C.

    2014-12-01

    We conduct model simulations to examine how changes in concentration of radiatively active trace gases affect long-term changes in the middle atmosphere. We focus our model study on the impact of increases in carbon dioxide and methane, and decreases in ozone, between 1983 and 2003. The increase of carbon dioxide can cool the middle atmosphere through infrared emission at 15 microns, ozone depletion can cause cooling in the stratosphere and mesosphere through reduced solar heating, whereas the enhancement of methane, which increases water vapor, can introduce a cooling through reduced chemical heating or a warming through increased solar heating. We investigate the effect of each gas separately as well as the combined effect, using the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM).

  2. Behavior of carbon monoxide as a trace component of anaerobic digester gases and methanogenesis from acetate

    SciTech Connect

    Hickey, R.F. ); Switzenbaum, M.S. )

    1990-11-01

    Carbon monoxide was a normal trace component of the gases produced during anaerobic sludge digestion. The CO concentration increased in response to perturbing the digestion process by increasing organic loading or adding acetate. Reducing the headspace methane level resulted in higher measured CO concentrations. Accordingly, a thermodynamic relationship was developed by dividing the acetoclastic methane reaction into two half-cell reactions, representing production of and subsequent oxidation of CO. A constant fraction of the total free energy available for acetate conversion to methane was assigned to each half-cell based on the basis of experimental observations. It was determined that approximately 54% of the energy available for acetate conversion to methane was consistently associated with the anaerobic oxidation of CO to carbon dioxide. Estimated values compared well for measured concentrations for both mesophilic and thermophilic digesters operating under steady-state conditions.

  3. Ground-based FTIR measurements of vertical column densities of several trace gases above Spitsbergen

    NASA Astrophysics Data System (ADS)

    Notholt, J.; Schrems, O.

    During the EASOE campaign ground-based FTIR measurements have been performed in March 1992 at Ny-Ålesund (Spitsbergen, 79°N, 12°E) to derive column amounts of several trace gases. For the first part of the measurement campaign Ny-Ålesund was situated inside the polar vortex. The obtained concentrations of N2O, CH4 and HF inside the vortex are consistent with subsidence. The ratio of HClstrat/HF varied from about 2.0 inside to about 2.8 outside the vortex. Inside the vortex low values for NO2 and high values for HNO3 were found. The O3 concentrations inside the vortex are slightly lower than what was observed outside the vortex.

  4. Characteristics of Fine Particles in an Urban Atmosphere—Relationships with Meteorological Parameters and Trace Gases

    PubMed Central

    Zhang, Tianhao; Zhu, Zhongmin; Gong, Wei; Xiang, Hao; Fang, Ruimin

    2016-01-01

    Atmospheric fine particles (diameter < 1 μm) attract a growing global health concern and have increased in urban areas that have a strong link to nucleation, traffic emissions, and industrial emissions. To reveal the characteristics of fine particles in an industrial city of a developing country, two-year measurements of particle number size distribution (15.1 nm–661 nm), meteorological parameters, and trace gases were made in the city of Wuhan located in central China from June 2012 to May 2014. The annual average particle number concentrations in the nucleation mode (15.1 nm–30 nm), Aitken mode (30 nm–100 nm), and accumulation mode (100 nm–661 nm) reached 4923 cm−3, 12193 cm−3 and 4801 cm−3, respectively. Based on Pearson coefficients between particle number concentrations and meteorological parameters, precipitation and temperature both had significantly negative relationships with particle number concentrations, whereas atmospheric pressure was positively correlated with the particle number concentrations. The diurnal variation of number concentration in nucleation mode particles correlated closely with photochemical processes in all four seasons. At the same time, distinct growth of particles from nucleation mode to Aitken mode was only found in spring, summer, and autumn. The two peaks of Aitken mode and accumulation mode particles in morning and evening corresponded obviously to traffic exhaust emissions peaks. A phenomenon of “repeated, short-lived” nucleation events have been created to explain the durability of high particle concentrations, which was instigated by exogenous pollutants, during winter in a case analysis of Wuhan. Measurements of hourly trace gases and segmental meteorological factors were applied as proxies for complex chemical reactions and dense industrial activities. The results of this study offer reasonable estimations of particle impacts and provide references for emissions control strategies in industrial cities of

  5. Mixing ratios of trace gases in the austral polar atmosphere during August and September of 1987

    NASA Technical Reports Server (NTRS)

    Vedder, James F.; Heidt, Leroy E.; Pollock, Walter H.; Henry, Bruce E.; Lueb, Richard A.

    1988-01-01

    Mixing ratios are presented for a number of long-lived trace gases in the austral polar atmosphere during August and September of 1987. The recent discovery of a 12-year trend of increasing depletion of ozone over the Antarctic Continent in the spring of each year led to numerous theoretical interpretations and several scientific expeditions to the region. The results herein were obtained as part of a major effort involving penetration of the region of ozone depletion by NASA's multi-instrumented aircraft. One of the 14 instruments on the high-altitude ER-2 aircraft collected pressurized air samples between latitudes of 53 degrees and 72 degrees south at pressure altitudes up to 21 km in a series of 12 flights from Punta Arenas, Chile, over the Palmer Peninsula. The sampling system, located in the nose section of ER-2, has an inlet tube in the free airstream, a metal-bellows air pump, and 14 specially treated 1.6 l stainless-steel canisters for containing the pressurized air at 350 kPa. A typical flight profile consisted of a southbound path on the 428 K potential temperature surface, a descent to a pressure altitude of 13.7 km, a climb to the 460 K surface, and return on this surface. Mixing ratios for the trace gases were obtained from gas chromatographic analyses of the pressurized air samples. Of the species measured, the mixing ratios for CH4, CO, N2O, CF2 Cl2, CFCl3, CH3, CCl3, CCl4, and C2F3Cl3 are reported here.

  6. On contents of trace gases in the atmospheric surface layer over Moscow

    NASA Astrophysics Data System (ADS)

    Elansky, N. F.; Lokoshchenko, M. A.; Trifanova, A. V.; Belikov, I. B.; Skorokhod, A. I.

    2015-01-01

    The results of the 2002-2012 continuous once-a-minute measurements of the composition of the surface air over Moscow, which were taken at the joint ecological station of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, and the Geographic Faculty of Moscow State University, are discussed. It is shown that the annual increase (on the order of 1%) in the content of surface ozone is stable and the decrease in the content of nitric oxide is statistically significant, while the content of nitric dioxide remains almost unchanged. Reliable regularities in both diurnal and annual variations in the contents of the five trace gases O3, NO, NO2, CO, and SO2 have been studied in detail. Statistical relations of the content of sulfur dioxide with the amount of reserve fuel (black oil) used in city heating (this relation is the strongest one), wind velocity in an atmospheric layer up to a height of 200 m, and air temperature have been analyzed. The influence that wind velocity has on the surface contents of trace gases and carbon dioxide has been studied for the first time on the basis of long-term `MODOS' sodar data. It is shown that, with an increase in wind velocity, the contents of nitric and carbon oxides generally decrease, the content of ozone increases, and the content of sulfur dioxide decreases starting from an intermediate value of 1-2 m/s due to the prevalence of high sources of this gas. An additional maximum found in the content of carbon dioxide at high wind velocities may be associated with the long-range transport of CO2.

  7. Atmospheric variability and emissions of halogenated trace gases near New York City

    NASA Astrophysics Data System (ADS)

    Santella, Nicholas; Ho, David T.; Schlosser, Peter; Gottlieb, Elaine; Munger, William J.; Elkins, James W.; Dutton, Geoffrey S.

    2012-02-01

    Elevated mixing ratios of chlorofluorocarbons (CFC-11 and CFC-12), and sulfur hexafluoride (SF 6) have been observed at Lamont-Doherty Earth Observatory (LDEO), located approximately 25 km north of New York City (NYC). Emissions and transport of these gases are of interest because of their global warming potential, the role of CFCs in depletion of stratospheric ozone and information they provide on the transport of atmospheric pollutants. Comparison of trace gas time series with meteorological data indicates that both NYC and the region to the southwest (New Jersey and the Philadelphia -Washington DC area) are significant sources of CFCs, and confirms that NYC is an unusually large source of SF 6. From 1996 to 2005 the elevation of CFC-12 mixing ratio above that of the remote (well mixed) atmosphere has decreased on average by 5.2 ± 0.6 ppt y -1, whereas that of CFC-11 has not changed significantly (0.0 ± 2.0 ppt y -1). From 1998 to 2006, the elevation of SF 6 mixing ratios above that of the remote atmosphere declined by 0.4 ± 0.1 ppt y -1. Time series of the same gases measured at Harvard Forest, 205 km northeast of LDEO, demonstrate transport of air masses with elevated levels of these gases from their source region to central Massachusetts. Emissions in the local area around LDEO were quantified through analysis of diurnal cycles. Local CFC-12 emissions decreased ca. 95% between 1996 and 2005 while CFC-11 emission decreased ca. 51% during the same period. Local SF 6 emissions decreased by 47% between 1998 and 2005.

  8. Measurements of stratospheric trace gases by a balloon-borne infrared spectrometer in France

    NASA Astrophysics Data System (ADS)

    Jarisch, M.; Offermann, D.; Riese, M.; Wuebbels, D. J.

    1997-09-01

    A helium cooled balloon-borne infrared spectrometer was launched twice from Aire sur l'Adour (France; 44°N, 0°E) on 23 September 1983 and 4 May 1986. The experiment used the limb scan technique to measure mixing ratios of the stratospheric trace gases H2O, O3, N2O, NO2, CH4, HNO3 and N2O5 prior to, during, and after sunrise. The first flight was performed as part of the international MAP/Globus (Middle Atmosphere Program/Global Budget of Stratospheric Trace Constituents) campaign. The height profiles obtained during both flights are presented and compared here with data from other experiments. The ozone measurements are compared with in situ measurements taken by electrochemical Brewer/Mast sondes. N2O5 mixing ratios were deduced from predawn measurements. A maximum value of 1.6 ppbv was obtained for a tangent height of 33.7 km. The N2O5 height profile is found to be in good agreement with observations obtained by other experiments, indicating little latitudinal variation at sunrise. The height profile appears to be representative of an atmosphere with background aerosol levels.

  9. Validation of Global Climatologies of Trace Gases Using NASA Global Tropospheric Experiment (GTE) Data

    NASA Technical Reports Server (NTRS)

    Courchaine, Brian; Venable, Jessica C.

    1995-01-01

    Methane is an important trace gas because it is a greenhouse gas that affects the oxidative capacity of the atmosphere. It is produced from biological and anthropogenic sources, and is increasing globally at a rate of approximately 0.6% per year [Climate Change 1992, IPCC]. By using National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) ground station data, a global climatology of methane values was produced. Unfortunately, because the NOAA/CMDL ground stations are so sparse, the global climatology is low resolution. In order to compensate for this low resolution data, it was compared to in-situ flight data obtained from the NASA Global Tropospheric Experiment (GTE). The smoothed ground station data correlated well with the flight data. Thus, for the first time it is shown that the smoothing process used to make global contours of methane using the ground stations is a plausible way to approximate global atmospheric concentrations of the gas. These verified climatologies can be used for testing large-scale models of chemical production, destruction, and transport. This project develops the groundwork for further research in building global climatologies from sparse ground station data and studying the transport and distribution of trace gases.

  10. Disposal of acid gases with oilfield produced water

    SciTech Connect

    Duckworth, G.L.; Kopperson, D.; Horne, S.; Kohn, G.; Romansky, D.; Chan, C.

    1998-12-31

    With tightening environmental policies, many companies are investigating alternatives to atmospheric sulfur and greenhouse gas emissions. The oil and gas industry of Alberta, Canada typically recovers a high percentage of sulfur in large sour gas processing plants, but is often looking for a more cost effective approach to dealing with small volume plants. PanCanadian Petroleum Limited and DPH Engineering Inc. have developed a disposal scheme that makes low volume sour gas processing more affordable and easier to operate by disposing of acid gases in an aqueous phase to a disposal well. The development of this scheme utilized the results of reservoir studies, computer simulations, laboratory tests and field tests. This work has further resulted in the implementation of two full scale schemes to dissolve acid gas in produced water and inject it into deep subsurface formations. These schemes have operated with minimal problems and have met their environmental requirements.

  11. A chemical climatology of lower tropospheric trace gases and aerosols over the mid-Atlantic region

    NASA Astrophysics Data System (ADS)

    Hains, Jennifer Carrie

    2007-12-01

    Ozone and aerosols affect air quality, visibility and human health. The University of Maryland research aircraft conducted flights over the Mid-Atlantic region between 1995 and 2005 to characterize pollution events. I developed a chemical climatology of trace gases and aerosols that can be used to validate and improve models. O3 and SO2 measured aboard the aircraft were compared with O3 and SO2 generated with the Community Multiscale Air Quality (CMAQ). In general, CMAQ under-estimates O3 above 500 m and over-estimates O3 below 500 m (possible reasons for this include chemistry not being properly represented in the model). A sensitivity test of the rate of photolysis of NO2 was performed and improving the photochemistry did improve the modeled O3. CMAQ over-predicts the SO2 column content by about 50%, possibly because the model gives SO2 too long a lifetime. To test this theory I developed a method for calculating the SO2 lifetime using in-situ measurements. The mean SO2 lifetime was 19 +/- 7 hours for measurements made in the daytime in the summer in the Mid-Atlantic region with in-cloud processes responsible for ˜80% of the removal. I made comparisons of three aerosol sampling systems and found the uncertainty of PM2.5, sulfate, and ammonium measured with the Speciation Trends Network is larger than what has been reported and is at least 20%. I have developed clustering methodologies to group back trajectories associated with aircraft profiles as well as group trace gas and aerosol profiles by size and shape. The first clustering method produced eight distinct meteorological regimes associated with pollution and haze events. I quantified the amount of O3 transported for each meteorological regime. Using the second method, I found a strong correlation between O3 profiles and point source NOx emissions. The comparisons of model and measured profiles, comparisons of surface measurements, and clustering methods are used to explain sources, sinks and distributions

  12. Miniaturized Gas Correlation Radiometer for the Detection of Trace Gases in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Melroy, Hilary R.; Wilson, Emily L.; Georgieva, Elena

    2012-01-01

    We present a miniaturized and simplified version of a gas correlation radiometer (GCR) capable of simultaneously mapping multiple trace gases and identifying active regions on the Mars surface. Gas correlation radiometry (GCR) has been shown to be a sensitive and versatile method for detecting trace gases in Earth's atmosphere. Reduction of the size and mass of the GCR was achieved by implementing compact, light-weight 1 mm inner diameter hollow-core optical fibers (hollow waveguides) as the gas correlation cells. In a comparison with an Earth orbiting CO2 GCR instrument, exchanging the 10 m multipass cells with hollow waveguide gas correlation cells of equivalent path length reduces the mass from approximately 150 kg to approximately 0.5 kg, and reduces the volume from 1.9 m x 1.3 m x 0.86 m to a small bundle of fiber coils approximately 1 meter in diameter by 0.05 m in height (mass and volume reductions of greater than 99%). A unique feature of this instrument is its stackable module design, with a single module for each trace gas. Each of the modules is self-contained, and fundamentally identical; differing by the bandpass filter wavelength range and gas mixtures inside the hollow-waveguide absorption cells. The current configuration contains four stacked modules for simultaneous measurements of methane (CH4), formaldehyde (H2CO), water vapor (H2O), and deuterated water vapor (HDO) but could easily be expanded to include measurements of additional species of interest including nitrous oxide (N2O), hydrogen sulfide (H2S), methanol (CH3OH), and sulfur dioxide (SO2), as well as carbon dioxide (CO2) for a simultaneous measure of mass balance. Preliminary results indicate that a 1 ppb detection limit is possible for both formaldehyde and methane with one second of averaging. Using non-optimized components, we have demonstrated an instrument sensitivity equivalent to approximately 30 ppb for formaldehyde, and approximately 500 ppb for methane. We expect custom

  13. Exomars orbiter science and data-relay mission / looking for trace gases on Mars

    NASA Astrophysics Data System (ADS)

    Fratacci, Olivier

    EXOMARS Orbiter Module: looking for trace gas on Mars and providing data relay support for future Mars Surface assets O.Fratacci, M.Mesrine, H.Renault, Thales Alenia Space France B.Musetti, M.Montagna, Thales Alenia Space Italy M.Kesselmann, M.Barczewski OHB P.Mitschdoerfer, D.Dellantonio Euro-pean Space Agency / ESTEC The European Space Agency (ESA) in a joint cooperation with NASA, will launch in 2016 the EXOMARS spacecraft composite to develop European landing technologies and provide a science orbiter with data-relay capability around Mars until end 2022. The spacecraft composite is composed of the Orbitr Module (OM), provided by TAS-France, an entry descent and landing demonstrator module (EDM) provided by TAS-Italy, and a set of six scientific payloads to be selected by the JPL during 2010. Recent observations of the planet Mars have indicated detection of methane as well as temporal, perhaps spatial variability in the detected signal while current photochemical models cannot explain the presence of methane in the atmosphere of Mars nor its reported rapid variations in space and time. The triple scientific objectives that drive the selection of these six instruments for the Exomars 2016 mission is to detect trace gases in Mars atmosphere, to characterise their spatial and temporal variation and to explore the source of the key trace gases (e.g. methane) on the surface. The launch is scheduled in January 2016 from Kennedy Space Center (KSC) using an ATLAS V 421 launcher with a total launch mass of 4.4 tons. After release of the EDM on Mars, the OM will perform the Mars Orbit Insertion manoeuvre and then reduce its elliptic orbit by implementing the first European Aerobraking around Mars for about 6 to 9 months, to finally end on a circular 400x400km orbit with an altitude in the range of 350km to 420km. From this orbit, a science phase will follow lasting 2 years in which the Mars atmosphere and surface is continuously observed. Science instruments composed of

  14. Carbon dioxide Information Analysis Center and World Data Center: A for Atmospheric trace gases. Annual progress report, FY 1994

    SciTech Connect

    Burtis, M.D.; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.R.; Stoss, F.W.

    1995-03-01

    This report summarizes the activities and accomplishments made by the Carbon Dioxide Information Analysis Center and World Data Center-A for Atmospheric Trace Gases during the fiscal year 1994. Topics discussed in this report include; organization and staff, user services, systems, communications, Collaborative efforts with China, networking, ocean data and activities of the World Data Center-A.

  15. Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan

    Air pollution is a major problem worldwide that adversely a_ects human health, impacts ecosystems and climate. In the atmosphere, there are hundreds of important compounds participating in complex atmospheric reactions linked to air quality and climate. Aerosols are relevant because they modify the radiation balance, a_ect clouds, and thus Earth albedo. The amount of aerosol is often characterized by the vertical integral through the entire height of the atmosphere of the logarithm fraction of incident light that is extinguished called Aerosol Optical Depth (AOD). The AOD at 550 nm (AOD550) over land is 0.19 (multi annual global mean), and that over oceans is 0.13. About 43 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions, sample spatial scales that resemble satellite ground-pixels and atmospheric models, and help integrate remote sensing and in-situ observations to obtain optical closure on the effects of aerosols and trace gases in our changing environment. In this work, I present the recent development of the University of Colorado two dimensional (2-D) Multi-AXis Differential Optical Absorption Spectroscopy (2-D-MAX-DOAS) instrument to measure the azimuth and altitude distribution of trace gases and aerosol optical properties simultaneously with a single instrument. The instrument measures solar scattered light from any direction in the sky, including direct sun light in the hyperspectral domain. In Chapter 2, I describe the capabilities of 2-D measurements in the context of retrievals of azimuth distributions of nitrogen dioxide (NO2), formaldehyde (HCHO), and glyoxal (CHOCHO), which are precursors for tropospheric O3 and aerosols. The measurements were carried out during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign in Mainz, Germany and show the ability to bridge spatial scales to

  16. Theoretical computation of trace gases retrieval random error from measurements of high spectral resolution infrared sounder

    NASA Technical Reports Server (NTRS)

    Huang, Hung-Lung; Smith, William L.; Woolf, Harold M.; Theriault, J. M.

    1991-01-01

    The purpose of this paper is to demonstrate the trace gas profiling capabilities of future passive high spectral resolution (1 cm(exp -1) or better) infrared (600 to 2700 cm(exp -1)) satellite tropospheric sounders. These sounders, such as the grating spectrometer, Atmospheric InfRared Sounders (AIRS) (Chahine et al., 1990) and the interferometer, GOES High Resolution Interferometer Sounder (GHIS), (Smith et al., 1991) can provide these unique infrared spectra which enable us to conduct this analysis. In this calculation only the total random retrieval error component is presented. The systematic error components contributed by the forward and inverse model error are not considered (subject of further studies). The total random errors, which are composed of null space error (vertical resolution component error) and measurement error (instrument noise component error), are computed by assuming one wavenumber spectral resolution with wavenumber span from 1100 cm(exp -1) to 2300 cm(exp -1) (the band 600 cm(exp -1) to 1100 cm(exp -1) is not used since there is no major absorption of our three gases here) and measurement noise of 0.25 degree at reference temperature of 260 degree K. Temperature, water vapor, ozone and mixing ratio profiles of nitrous oxide, carbon monoxide and methane are taken from 1976 US Standard Atmosphere conditions (a FASCODE model). Covariance matrices of the gases are 'subjectively' generated by assuming 50 percent standard deviation of gaussian perturbation with respect to their US Standard model profiles. Minimum information and maximum likelihood retrieval solutions are used.

  17. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO).

    PubMed Central

    Conrad, R

    1996-01-01

    Production and consumption processes in soils contribute to the global cycles of many trace gases (CH4, CO, OCS, H2, N2O, and NO) that are relevant for atmospheric chemistry and climate. Soil microbial processes contribute substantially to the budgets of atmospheric trace gases. The flux of trace gases between soil and atmosphere is usually the result of simultaneously operating production and consumption processes in soil: The relevant processes are not yet proven with absolute certainty, but the following are likely for trace gas consumption: H2 oxidation by abiontic soil enzymes; CO cooxidation by the ammonium monooxygenase of nitrifying bacteria; CH4 oxidation by unknown methanotrophic bacteria that utilize CH4 for growth; OCS hydrolysis by bacteria containing carbonic anhydrase; N2O reduction to N2 by denitrifying bacteria; NO consumption by either reduction to N2O in denitrifiers or oxidation to nitrate in heterotrophic bacteria. Wetland soils, in contrast to upland soils are generally anoxic and thus support the production of trace gases (H2, CO, CH4, N2O, and NO) by anaerobic bacteria such as fermenters, methanogens, acetogens, sulfate reducers, and denitrifiers. Methane is the dominant gaseous product of anaerobic degradation of organic matter and is released into the atmosphere, whereas the other trace gases are only intermediates, which are mostly cycled within the anoxic habitat. A significant percentage of the produced methane is oxidized by methanotrophic bacteria at anoxic-oxic interfaces such as the soil surface and the root surface of aquatic plants that serve as conduits for O2 transport into and CH4 transport out of the wetland soils. The dominant production processes in upland soils are different from those in wetland soils and include H2 production by biological N2 fixation, CO production by chemical decomposition of soil organic matter, and NO and N2O production by nitrification and denitrification. The processes responsible for CH4 production

  18. The airborne Laser Absorption Spectrometer - A new instrument of remote measurement of atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.; Menzies, R. T.

    1978-01-01

    The Laser Absorption Spectrometer is a portable instrument developed by JPL for remote measurement of trace gases from an aircraft platform. It contains two carbon dioxide lasers, two optical heterodyne receivers, appropriate optics to aim the lasers at the ground and detect the backscattered energy, and signal processing and recording electronics. Operating in the differential-absorption mode, it is possible to monitor one atmospheric gas at a time and record the data in real time. The system can presently measure ozone, ethylene, water vapor, and chlorofluoromethanes with high sensitivity. Airborne measurements were made in early 1977 from the NASA/JPL twin-engine Beechcraft and in May 1977 from the NASA Convair 990 during the ASSESS-II Shuttle Simulation Study. These flights resulted in measurements of ozone concentrations in the lower troposphere which were compared with ground-based values provided by the Air Pollution Control District. This paper describes the details of the instrument and results of the airborne measurements.

  19. Emission rates of sulfur dioxide, trace gases and metals from Mount Erebus, Antartica

    SciTech Connect

    Kyle, P.R.; Meeker, K. ); Finnegan, D. )

    1990-11-01

    SO{sub 2} emission rates have been measured annually since 1983 at Mount Erebus, Antarctica by correlation spectrometer (COSPEC V). Following a 4 month period of sustained strombolian activity in late 1984, SO{sub 2} emissions declined from 230 Mg/day in 1983 to 25 Mg/day and then slowly increased from 16 Mg/day in 1985 to 51 Mg/day in 1987. Nine sets of filter packs containing partcle and {sup 7}LiOH treated filters were collected in the plume in 1986 and analyzed by neutron activation. Using the COSPEC data and measured element/S ratios on the filters, emission rates have been determined for trace gases and metals. The authors infer HCl and HF emissions in 1983 to be about 1200 and 500 Mg/day, respectively. Mt Erebus has therefore been an important source of halogens to the Anarctic atmosphere and could be responsible for excess Cl found in Central Antarctica snow.

  20. Emission of methane and other trace gases from the Amazon Varzea

    NASA Technical Reports Server (NTRS)

    Richey, Jeffrey E.; Devol, Allan H.

    1986-01-01

    Researchers measured the distributions and fluxes of methane and other trace gases from the various Amazon floodplain environments. These were determined during both a large scale, quasi-synoptic survey along a 2000 km reach of the Amazon river and an intensive local study (by J. Melack, R. Harriss et al.) covering a six-week period. The environments studied included the major rivers, connecting channels (paranas), floating macrophyte beds, flooded forests, open lakes and recently wetted soils. The results are summarized. Measured rates of methane emission averaged about 300 mg m-2 d-1, but with considerable variance, and were comparable to or higher than previously reported emissions from similar temperature zone environments. In general, areas covered by floating macrophytes showed the highest emissions. Individual hotspots had among the highest rates ever observed, over 10 g m-2 d-1. The high methane emissions appear to result because about 50% of the organic matter fixed on the floodplain (either terrestrial or aquatic) that is oxidized in the water is decomposed anaerobically via methanogensis. Measured fluxes of methane to the atmosphere appear to be significantly correlated with surface water dissolved methane concentrations.

  1. Retrieval of vertical profiles of multiple trace gases from MAX-DOAS observations during the MADCAT Campaign in Mainz, Germany

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Xie, Pinhua; Wagner, Thomas; Li, Ang; Luo, Yuhan; Remmers, Julia; Horbanski, Martin; Friess, Udo

    2014-05-01

    In order to promote the development of passive DOAS technique and solve some critical problems including e.g. accurate retrievals of trace gas slant column densities (SCD), profile retrievals of trace gases and aerosol, and the effects of cloud, the Multi Axis DOAS-Comparison campaign for Aerosols and Trace gases (MAD-CAT) was held at the Max-Planck institute for Chemistry in Mainz, Germany from June to August 2013. Within this campaign, spectra of scattered sun light were taken by our two-dimensional scanning MAX-DOAS (2D-MAX-DOAS) instrument and a Mini-MAX-DOAS instrument from the Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences. In this presentation, firstly we show the retrieved differential SCDs of O4, NO2, HCHO, HONO and CHOCHO based on the observations of the 2D-MAX-DOAS. Based on these dSCDs we acquired the vertical profiles of these trace gases and aerosol extinction using optimal estimation method. We compare the aerosol optical depth (AOD) from MAX-DOAS with simultaneous observations from an AERONET instrument as well as the near surface volume mixing ratio (VMR) of NO2 from MAX-DOAS with those from a CE-DOAS instrument from the IUP Heidelberg group and found in general good agreement. In addition we apply a cloud classification scheme based on our MAX-DOAS observations to identify different kinds of weather during the MAD-CAT campaign.

  2. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  3. The CU Airborne MAX-DOAS instrument: ground based validation, and vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2012-09-01

    The University of Colorado Airborne Multi Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light remote sensing to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (360 nm, 477 nm, 577 nm and 632 nm) simultaneously, and sensitively in the open atmosphere. The instrument is unique, in that it presents the first systematic implementation of MAX-DOAS on research aircraft, i.e. (1) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system, and (2) features a motion compensation system that decouples the telescope field of view (FOV) from aircraft movements in real-time (< 0.35° accuracy). Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex and CARES air quality field campaigns is presented. Horizontal distributions of NO2 VCDs (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground based CU MAX-DOAS instruments (slope 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O mixing ratios and aerosol extinction coefficients, ɛ, at 477nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  4. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases, Fiscal Year 2002 Annual Report

    SciTech Connect

    Cushman, R.M.

    2003-08-28

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  5. Luminescence studies of trace gases through metastable transfer in cold helium jets

    NASA Astrophysics Data System (ADS)

    Wilde, Scott Colton

    Among the elements, Helium has the largest steps among its internal energy structure that can keep for long periods of time, hence the metastable helium moniker. It is referred to as a "nano-grenade" in some circles because of how much energy it can deliver to a space roughly the size of an atom. This work demonstrates a method to create metastable helium abundantly and it is used to excite trace amounts of oxygen to the point where the signal received from the oxygen was larger than the signal received from the helium in a cold atomized jet. Further cooling of the jet and turbulence added by a liquid helium surface worked to increase the oxygen signal and decrease the helium signal. This work investigates the possibility of forming a strong metastable helium source from a flowing helium gas jet excited by passing through ring electrodes introduced into a cryogenic environment using evaporated helium as a buffer gas. Prior study of luminescence from trace gases at cold helium temperatures is virtually absent and so it is the motivation for this work to blaze the trail in this subject. The absence of ionic oxygen spectral lines from the transfer of energy that was well over the first ionization potential of oxygen made for a deeper understanding of collision dynamics with multiple collision partners. This opened the possibility of using the high energy states of oxygen after metastable transfer as a lasing transition previously unavailable and a preliminary analysis suggested that the threshold for lasing action should be easily overcome if feedback were introduced by an optical cavity. To better understand the thermodynamics of the jet it was proposed to use diatomic nitrogen as an in situ thermometer, investigating whether the rotational degrees of freedom of the nitrogen molecule were in thermal equilibrium with the surrounding environment. If the gas was truly in thermodynamic equilibrium then the temperature given by the method of using collisions of a buffer

  6. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report

    SciTech Connect

    Cushman, R.M.

    2001-11-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  7. Interannual variability of tropospheric trace gases and aerosols: The role of biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Voulgarakis, Apostolos; Marlier, Miriam E.; Faluvegi, Greg; Shindell, Drew T.; Tsigaridis, Kostas; Mangeon, Stéphane

    2015-07-01

    Fires are responsible for a range of gaseous and aerosol emissions. However, their influence on the interannual variability of atmospheric trace gases and aerosols has not been systematically investigated from a global perspective. We examine biomass burning emissions as a driver of interannual variability of large-scale abundances of short-lived constituents such as carbon monoxide (CO), hydroxyl radicals (OH), ozone, and aerosols using the Goddard Institute for Space Studies ModelE composition-climate model and a range of observations, with an emphasis on satellite information. Our model captures the observed variability of the constituents examined in most cases, but with substantial underestimates in boreal regions. The strongest interannual variability on a global scale is found for carbon monoxide (~10% for its global annual burden), while the lowest is found for tropospheric ozone (~1% for its global annual burden). Regionally, aerosol optical depth shows the largest variability which exceeds 50%. Areas of strong variability of both aerosols and CO include the tropical land regions (especially Equatorial Asia and South America) and northern high latitudes, while even regions in the northern midlatitudes experience substantial interannual variability of aerosols. Ozone variability peaks over equatorial Asia in boreal autumn, partly due to varying biomass burning emissions, and over the western and central Pacific in the rest of the year, mainly due to meteorological fluctuations. We find that biomass burning emissions are almost entirely responsible for global CO interannual variability, and similarly important for OH variability. The same is true for global and regional aerosol variability, especially when not taking into account dust and sea-salt particles. We show that important implications can arise from such interannual influences for regional climate and air quality.

  8. Surface fluxes of trace gases derived from convective-layer profiles

    SciTech Connect

    Davis, K.J.

    1992-01-01

    Non-local gradient and variance functions relating the surface and entrainment fluxes of a passive scalar to the mean mixing ratio and variance profiles in the cloud-free, convective boundary layer have been determined from large eddy simulations. These functions can be used to calculate the surface and entrainment fluxes of trace gases over a large area, given profile measurements within the convective boundary layer. This dissertation develops the convective layer gradient technique for estimating fluxes and demonstrates two potentially valuable applications. An attempt is made to verify the large eddy simulation gradient functions with aircraft observations from the First ISLSCP Field Experiment and the San Joaquin Valley Air Quality Study. Results show general agreement with the simulated gradient functions but precise comparison is made difficult by scatter in the aircraft derived functions. The gradient functions are used to estimate forest emissions of nonmethane hydrocarbons using tethered balloon profiles. Mean emission estimates from profiles collected during the Amazon Boundary Layer Experiment 2A and the Rural Oxidants in the Southern Environment I experiment show good agreement with estimates made from budget arguments. Daytime isoprene emissions from the dry season Amazon are estimated. Summer, daytime isoprene, alpha-pinene, and beta-pinene emissions from an Alabama pine-oak forest are estimated. This technique provides a valuable means of measuring biogenic hydrocarbon emissions, a precursor to photochemical ozone production. The convective layer gradient technique holds the potential for remote estimation of surface fluxes over large areas using remote profiling technology, such as Differential Absorption Lidar (DIAL). The minimum signal-to-noise ratio for successful ozone deposition estimates using this DIAL system and the convective layer gradient technique was less than the signal-to-noise level in the analyzed DIAL observations.

  9. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic compounds

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Cox, R. A.; Kalberer, M.

    2014-09-01

    Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions; however, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. Here we compile and evaluate, for the first time, the diffusivities (pressure-independent diffusion coefficients) of atmospheric inorganic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed. A different version of this compilation/evaluation, which will be updated when new data become available, is uploaded online (https://sites.google.com/site/mingjintang/home/diffusion).

  10. Measurement of gas/water uptake coefficients for trace gases active in the marine environment

    SciTech Connect

    Davidovits, P. . Dept. of Chemistry); Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. . Center for Chemical and Environmental Physics)

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean's surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry's law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  11. ACID GASES IN CO2-RICH SUBSURFACE GEOLOGIC ENVIRONMENTS

    SciTech Connect

    Chialvo, Ariel A; Vlcek, Lukas; Cole, David

    2013-01-01

    The analysis of species behavior involving dilute fluid environments has been crucial for the advance of modern solvation thermodynamics through molecular-based formalisms to guide the development of macroscopic regression tools in the description of fluid behavior and correlation of experimental data (Chialvo 2013). Dilute fluid environments involving geologic formations are of great theoretical and practical relevance regardless of the thermodynamic state conditions. The most challenging systems are those involving highly compressible and reactive confined environments, i.e., where small perturbations of pressure and/or temperature can trigger considerable density changes. This in turn can alter significantly the species solvation, their preferential solvation, and consequently, their reactivity with one another and with the surrounding mineral surfaces whose outcome is the modification of the substrate porosity and permeability, and ultimately, the integrity of the mineral substrates. Considering that changes in porosity and permeability resulting from dissolution and precipitation phenomena in confined environments are at the core of the aqueous CO2-mineral interactions, and that caprock integrity (e.g., sealing capacity) depends on these key parameters, it is imperative to gain fundamental understanding of the mineral-fluid interfacial phenomena and fluid-fluid equilibria under mineral confinement at subsurface conditions. In order to undertand the potential effects of acid gases as contaminants of supercritical CO2 streams, in the next section we will discuss the thermodynamic behavior of CO2 fluid systems by addressing two crucial issues in the context of carbon capture, utilization and sequestration (CCUS) technologies: (i) Why should we consider (acid gas) CO2 impurities? and (ii) Why are CO2 fluid - mineral interactions of paramount relevance?

  12. The tropical forest and fire emissions experiment: Trace gases emitted by smoldering logs and dung from deforestation and pasture fires in Brazil

    NASA Astrophysics Data System (ADS)

    Christian, Ted J.; Yokelson, Robert J.; Carvalho, JoãO. A.; Griffith, David W. T.; Alvarado, Ernesto C.; Santos, José C.; Neto, Turibio Gomes Soares; Veras, Carlos A. Gurgel; Hao, Wei Min

    2007-09-01

    Earlier work showed that Amazonian biomass burning produces both lofted and initially unlofted emissions in large amounts. A mobile, Fourier transform infrared spectrometer (FTIR) measured the unlofted emissions of 17 trace gases from residual smoldering combustion (RSC) of logs as part of the Tropical Forest and Fire Emissions Experiment (TROFFEE) during the 2004 Amazonian dry season. The RSC emissions were highly variable and the few earlier RSC measurements lay near the high end of combustion efficiency observed in this study. Fuel consumption by RSC was ˜5% of total for a planned deforestation fire. Much regional RSC probably occurs in the residual woody debris burned during pasture maintenance fires. RSC could increase estimated total fire emissions for the Amazon region by 20-50% for several important VOC. FTIR emissions measurements of burning dung (in a pasture) showed high emission ratios for acetic acid and ammonia to CO (6.6 ± 3.4% and 8.9 ± 2.1%). Large emissions of nitrogen containing trace gases from burning dung and crop waste could mean that biomass burning in India produces more particle mass than previously assumed. Measurements of late-stage kiln emissions suggested that VOC/CO may increase as carbonization is extended. A cook stove emitted many VOC and NH3 far outside the range observed for open wood cooking fires. Enclosed/vented cooking stoves may change the chemistry of the smoke that is emitted.

  13. Monitoring Shipping Emissions with In-situ Measurements of Trace Gases

    NASA Astrophysics Data System (ADS)

    Kattner, Lisa; Mathieu-Üffing, Barbara; Aulinger, Armin; Burrows, John; Chirkov, Maksym; Matthias, Volker; Neumann, Daniel; Richter, Andreas; Schmolke, Stefan; Seyler, André; Theobald, Norbert; Wittrock, Folkard

    2014-05-01

    The importance of discussions about ship emissions has grown due to the increase of commercial shipping as well as the publication of studies showing their serious effects on human health and on our environment. Especially in coastal areas and harbor cities the impact of ship emissions becomes more and more relevant. The establishment of a Sulfur Emission Controlled Area (SECA) for North Sea and Baltic Sea based on the MARPOL Annex VI protocol by the International Maritime Organization (IMO) has been a first step to control and reduce sulfur dioxide (SO2) emissions by consecutively regulating the sulfur content of fuels. To reduce nitrogen oxide (NOx) emissions from shipping, the emission of newly built engines is limited according to the year the engine is built (Tier I - III regulations). The project MeSMarT (Measurements of shipping emissions in the marine troposphere) has been established as a cooperation between the University of Bremen, the German Bundesamt für Seeschifffahrt und Hydrographie (Federal Maritime and Hydrographic Agency) and the Helmholtz-Zentrum Geesthacht to estimate the influence of ship emissions on the chemistry of the atmospheric boundary layer and to establish a monitoring system for main shipping routes. Pollution relevant trace gases SO2, NO2, NO, CO2 and O3 are measured with in-situ techniques. Within the project different measurement sites have been set up. In Wedel near Hamburg measurements have been performed in close distance to the Elbe River where ships entering the Hamburg harbor are passing by. It is shown that ship emission peaks can be associated with individual ships and how this information can possibly help to monitor the compliance of ships with SECA regulations. On the island Neuwerk the measurement station is located about 6 km south of the main shipping route through the German Bight. An outlook is given on how the method of identifying ship plumes can be transferred to the Neuwerk data and how the ship emissions

  14. Black carbon and trace gases over South Asia: Measurements and Regional Climate model simulations

    NASA Astrophysics Data System (ADS)

    Bhuyan, Pradip; Pathak, Binita; Parottil, Ajay

    2016-07-01

    Trace gases and aerosols are simulated with 50 km spatial resolution over South Asian CORDEX domain enclosing the Indian sub-continent and North-East India for the year 2012 using two regional climate models RegCM4 coupled with CLM4.5 and WRF-Chem 3.5. Both models are found to capture the seasonality in the simulated O3 and its precursors, NOx and CO and black carbon concentrations together with the meteorological variables over the Indian Subcontinent as well as over the sub-Himalayan North-Eastern region of India including Bangladesh. The model simulations are compared with the measurements made at Dibrugarh (27.3°N, 94.6°E, 111 m amsl). Both the models are found to capture the observed diurnal and seasonal variations in O3 concentrations with maximum in spring and minimum in monsoon, the correlation being better for WRF-Chem (R~0.77) than RegCM (R~0.54). Simulated NOx and CO is underestimated in all the seasons by both the models, the performance being better in the case of WRF-Chem. The observed difference may be contributed by the bias in the estimation of the O3 precursors NOx and CO in the emission inventories or the error in the simulation of the meteorological variables which influences O3 concentration in both the models. For example, in the pre-monsoon and winter season, the WRF-Chem model simulated shortwave flux overestimates the observation by ~500 Wm-2 while in the monsoon and post monsoon season, simulated shortwave flux is equivalent to the observation. The model predicts higher wind speed in all the seasons especially during night-time. In the post-monsoon and winter season, the simulated wind pattern is reverse to observation with daytime low and night-time high values. Rainfall is overestimated in all the seasons. RegCM-CLM4.5 is found to underestimate rainfall and other meteorological parameters. The WRF-Chem model closely captured the observed values of black carbon mass concentrations during pre-monsoon and summer monsoon seasons, but

  15. Climate relevant trace gases (N2O and CH4) in the Eurasian Basin (Arctic Ocean)

    NASA Astrophysics Data System (ADS)

    Verdugo, Josefa; Damm, Ellen; Snoeijs, Pauline; Díez, Beatriz; Farías, Laura

    2016-11-01

    The concentration of greenhouse gases, including nitrous oxide (N2O), methane (CH4), and compounds such as total dimethylsulfoniopropionate (DMSPt), along with other oceanographic variables were measured in the ice-covered Arctic Ocean within the Eurasian Basin (EAB). The EAB is affected by the perennial ice-pack and has seasonal microalgal blooms, which in turn may stimulate microbes involved in trace gas cycling. Data collection was carried out on board the LOMROG III cruise during the boreal summer of 2012. Water samples were collected from the surface to the bottom layer (reaching 4300 m depth) along a South-North transect (SNT), from 82.19°N, 8.75°E to 89.26°N, 58.84°W, crossing the EAB through the Nansen and Amundsen Basins. The Polar Mixed Layer and halocline waters along the SNT showed a heterogeneous distribution of N2O, CH4 and DMSPt, fluctuating between 42-111 and 27-649% saturation for N2O and CH4, respectively; and from 3.5 to 58.9 nmol L-1 for DMSPt. Spatial patterns revealed that while CH4 and DMSPt peaked in the Nansen Basin, N2O was higher in the Amundsen Basin. In the Atlantic Intermediate Water and Arctic Deep Water N2O and CH4 distributions were also heterogeneous with saturations between 52% and 106% and 28% and 340%, respectively. Remarkably, the Amundsen Basin contained less CH4 than the Nansen Basin and while both basins were mostly under-saturated in N2O. We propose that part of the CH4 and N2O may be microbiologically consumed via methanotrophy, denitrification, or even diazotrophy, as intermediate and deep waters move throughout EAB associated with the overturning water mass circulation. This study contributes to baseline information on gas distribution in a region that is increasingly subject to rapid environmental changes, and that has an important role on global ocean circulation and climate regulation.

  16. Characteristics of aerosol particles and trace gases in ship exhaust plumes

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.; Borrmann, S.

    2011-12-01

    Gaseous and particulate matter from marine vessels gain increasing attention due to their significant contribution to the anthropogenic burden of the atmosphere, implying the change of the atmospheric composition and the impact on local and regional air quality and climate (Eyring et al., 2010). As ship emissions significantly affect air quality of onshore regions, this study deals with various aspects of gas and particulate plumes from marine traffic measured near the Elbe river mouth in northern Germany. In addition to a detailed investigation of the chemical and physical particle properties from different types of commercial marine vessels, we will focus on the chemistry of ship plumes and their changes while undergoing atmospheric processing. Measurements of the ambient aerosol, various trace gases and meteorological parameters using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe which is passed on average, daily by 30 ocean-going vessels reaching the port of Hamburg, the second largest freight port of Europe. During 5 days of sampling from April 25-30, 2011 170 commercial marine vessels were probed at a distance of about 1.5-2 km with high temporal resolution. Mass concentrations in PM1, PM2.5 and PM10 and number as well as PAH and black carbon (BC) concentrations in PM1 were measured; size distribution instruments covered the size range from 6 nm up to 32 μm. The chemical composition of the non-refractory aerosol in the submicron range was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gas concentrations in the air and a weather station provided meteorological parameters. Additionally, a wide spectrum of ship information for each vessel including speed, size, vessel type, fuel type, gross tonnage and engine power was recorded via Automatic Identification System (AIS) broadcasts. Although commercial marine vessels powered by diesel engines consume high

  17. The airborne mass spectrometer AIMS - Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS

    NASA Astrophysics Data System (ADS)

    Jurkat, Tina; Kaufmann, Stefan; Voigt, Christiane; Schäuble, Dominik; Jeßberger, Philipp; Ziereis, Helmut

    2016-04-01

    Understanding the role of climate-sensitive trace gas variabilities in the upper troposphere and lower stratosphere region (UTLS) and their impact on its radiative budget requires accurate measurements. The composition of the UTLS is governed by transport and chemistry of stratospheric and tropospheric constituents, such as chlorine, nitrogen oxide and sulfur compounds. The Atmospheric chemical Ionization Mass Spectrometer AIMS has been developed to accurately measure a set of these constituents on aircraft by means of chemical ionization. Here we present a setup using SF5- reagent ions for the simultaneous measurement of trace gas concentrations of HCl, HNO3 and SO2 in the pptv to ppmv (10-12 to 10-6 mol mol-1) range with in-flight and online calibration called AIMS-TG (Atmospheric chemical Ionization Mass Spectrometer for measurements of trace gases). Part 1 of this paper (Kaufmann et al., 2016) reports on the UTLS water vapor measurements with the AIMS-H2O configuration. The instrument can be flexibly switched between two configurations depending on the scientific objective of the mission. For AIMS-TG, a custom-made gas discharge ion source has been developed for generation of reagent ions that selectively react with HCl, HNO3, SO2 and HONO. HNO3 and HCl are routinely calibrated in-flight using permeation devices; SO2 is continuously calibrated during flight adding an isotopically labeled 34SO2 standard. In addition, we report on trace gas measurements of HONO, which is sensitive to the reaction with SF5-. The detection limit for the various trace gases is in the low 10 pptv range at a 1 s time resolution with an overall uncertainty of the measurement of the order of 20 %. AIMS has been integrated and successfully operated on the DLR research aircraft Falcon and HALO (High Altitude LOng range research aircraft). As an example, measurements conducted during the TACTS/ESMVal (Transport and Composition of the LMS/UT and Earth System Model Validation) mission with

  18. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath

    NASA Astrophysics Data System (ADS)

    Smith, David; Španěl, Patrik

    Our major objective in this paper is to describe a new method we have developed for the analysis of trace gases at partial pressures down to the ppb level in atmospheric air, with special emphasis on the detection and quantification of trace gases on human breath. It involves the use of our selected ion flow tube (Sift) technique which we previously developed and used extensively for the study of gas phase ionic reactions occurring in ionized media such as the terrestrial atmosphere and interstellar gas clouds. Before discussing this analytical technique we describe the results of our very recent Sift and flowing afterglow (FA) studies of the reactions of the H3O+ and OH- ions, of their hydrates H3O+(H2O)1,2,3 and OH- (H2O)1,2, and of NO+ and O2+, with several hydrocarbons and oxygen-bearing organic molecules, studies that are very relevant to our trace gas analytical studies. Then follows a detailed discussion of the application of our Sift technique to trace gas analysis, after which we present some results obtained for the analyses of laboratory air, the breath of a healthy non-smoking person, the breath of a person who regularly smokes cigarettes, the complex vapours emitted by banana and onion, and the molecules present in a butane/air flame. We show how the quantitative analysis of breath can be achieved from only a single exhalation and in real time (the time response of the instrument is only about 20 ms). We also show how the time variation of breath gases over long time periods can be followed, using the decay of ethanol on the breath after the ingestion of distilled liquor as an example, yet simultaneously following several other trace gases including acetone and isoprene which are very easily detected on the breath of all individuals because of their relatively high partial pressures (typically 100 to 1000 ppb). The breath of a smoker is richer in complex molecules, some nitrogen containing organics apparently being very evident at the 5 to 50 ppb level

  19. Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere

    DOEpatents

    Wamsley, Paula R.; Weimer, Carl S.; Nelson, Loren D.; O'Brien, Martin J.

    2003-01-01

    An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.

  20. Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases

    NASA Astrophysics Data System (ADS)

    Ganzeveld, Laurens; Lelieveld, Jos

    1995-10-01

    A dry deposition scheme has been developed for the chemistry general circulation model to improve the description of the removal of chemically reactive trace gases at the earth's surface. The chemistry scheme simulates background CH4-CO-NOx- HOx photochemistry and calculates concentrations of, for example, HNO3, NOx, and O3. A resistance analog is used to parameterize the dry deposition velocity for these gases. The aerodynamic resistance is calculated from the model boundary layer stability, wind speed, and surface roughness, and a quasi-laminar boundary layer resistance is incorporated. The stomatal resistance is explicitly calculated and combined with representative cuticle and mesophyll resistances for each trace gas. The new scheme contributes to internal consistency in the model, in particular with respect to diurnal and seasonal cycles in both the chemistry and the planetary boundary layer processes and surface characteristics that control dry deposition. Evaluation of the model indicates satisfactory agreement between calculated and observed deposition velocities. Comparison of the results with model simulations in which the deposition velocity was kept constant indicates significant relative differences in deposition fluxes and surface layer trace gas concentrations up to about ±35%. Shortcomings are discussed, for example, violation of the constant flux approach for the surface layer, the lacking canopy description, and effects of surface water layers.

  1. Applications of broadband cavity enhanced spectroscopy for measurements of trace gases and aerosols

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Brock, C. A.; Brown, S. S.; Dube, W. P.; Flores, J. M.; Langford, A. O.; Min, K. E.; Rudich, Y.; Stutz, J.; Wagner, N.; Young, C.; Zarzana, K. J.

    2015-12-01

    Broadband cavity enhanced spectroscopy (BBCES) uses a broadband light source, optical cavity, and multichannel detector to measure light extinction with high sensitivity. This method differs from cavity ringdown spectroscopy, because it uses an inexpensive, incoherent light source and allows optical extinction to be determined simultaneously across a broad wavelength region.Spectral fitting methods can be used to retrieve multiple absorbers across the observed wavelength region. We have successfully used this method to measure glyoxal (CHOCHO), nitrous acid (HONO), and nitrogen dioxide (NO2) from ground-based and aircraft-based sampling platforms. The detection limit (2-sigma) in 5 s for retrievals of CHOCHO, HONO and NO2 is 32, 250 and 80 parts per trillion (pptv).Alternatively, gas-phase absorbers can be chemically removed to allow the accurate determination of aerosol extinction. In the laboratory, we have used the aerosol extinction measurements to determine scattering and absorption as a function of wavelength. We have deployed a ground-based field instrument to measure aerosol extinction, with a detection limit of approximately 0.2 Mm-1 in 1 min.BBCES methods are most widely used in the near-ultraviolet and visible spectral region. Recently, we have demonstrated measurements at 315-350 nm for formaldehyde (CH2O) and NO2. Extending the technique further into the ultraviolet spectral region will allow important additional measurements of trace gas species and aerosol extinction.

  2. New spectral features of stratospheric trace gases identified from high-resolution infrared balloon-borne and laboratory spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1989-01-01

    A new Michelson-type interferometer system operating in the infrared at very high resolution has been used to record numerous balloon-borne solar absorption spectra of the stratosphere, ground-based solar absorption spectra, and laboratory spectra of molecules of atmospheric interest. In the present work results obtained for several important stratospheric trace gases, HNO3, CIONO2, HO2NO2, NO2, and COF2, in the 8- to 12-micron spectral region are reported. Many new features of these gases have been identified in the stratospheric spectra. Comparison of the new spectra with line-by-line simulations shows that previous spectral line parameters are often inadequate and that new analysis of high-resolution laboratory and atmospheric spectra and improved theoretical calculations will be required for many bands. Preliminary versions of several sets of improved line parameters under development are discussed.

  3. Process for the removal of acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.; Liu, D.K.

    1992-11-17

    Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

  4. Process for the removal of acid forming gases from exhaust gases

    DOEpatents

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. are attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO and SO.sub.2 can be removed in an economic fashion.

  5. Low to middle tropospheric profiles and biosphere/troposphere fluxes of acidic gases in the summertime Canadian taiga

    NASA Technical Reports Server (NTRS)

    Klemm, O.; Talbot, R. W.; Fitzgerald, D. R.; Klemm, K. I.; Lefer, B. L.

    1994-01-01

    We report features of acidic gases in the troposphere from 9 to 5000 m altitude above ground over the Canadian taiga in the summer of 1990. The measurements were conducted at a 30-m meteorological tower and from the NASA Wallops Electra aircraft as part of the joint U.S.-Canadian Arctic Boundary Layer Expedition (ABLE) 3B Northern Wetland Studies (NOWES). We sampled air for acidic gases using the mist chamber collector coupled with subsequent analysis using ion chromatography. At the tower we collected samples at two heights during a 13-day period, including diurnal studies. Using eddy flux and profile data, we estimated the biosphere/troposphere fluxes of nitric, formic, and acetic acids and sulfur dioxide. For the organic acids, emissions from the taiga in the afternoon hours and deposition during the predawn morning hours were observed. The flux intensities alone were however not high enough to explain the observed changes in mixing ratios. The measured deposition fluxes of nitric acid were high enough to have a significant influence on its mixing ratio in the boundary layer. On three days we measured vertical profiles of nitric, formic, and acetic acids through the lower to midtroposphere. We found that the chemical composition of the troposphere was extremely heterogenous. Pronounced layers of polluted air were readily apparent from our measurements. Local photochemical production and episodic long-range transport of trace components, originating from biomass burning and possibly industrial emissions, appear to have a strong influence on the composition of the troposphere and biosphere/troposphere fluxes of acidic gases at this site.

  6. Note: A dual temperature closed loop batch reactor for determining the partitioning of trace gases within CO2-water systems

    NASA Astrophysics Data System (ADS)

    Warr, Oliver; Rochelle, Christopher A.; Masters, Andrew J.; Ballentine, Christopher J.

    2016-01-01

    An experimental approach is presented which can be used to determine partitioning of trace gases within CO2-water systems. The key advantages of this system are (1) The system can be isolated with no external exchange, making it ideal for experiments with conservative tracers. (2) Both phases can be sampled concurrently to give an accurate composition at each phase at any given time. (3) Use of a lower temperature flow loop outside of the reactor removes contamination and facilitates sampling. (4) Rapid equilibration at given pressure/temperature conditions is significantly aided by stirring and circulating the water phase using a magnetic stirrer and high-pressure liquid chromatography pump, respectively.

  7. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Keywood, M. D.; Galbally, I. E.; Gras, J. L.; Cainey, J. M.; Cope, M. E.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Bentley, S. T.; Meyer, C. P.; Ristovski, Z.; Goldstein, A. H.

    2015-12-01

    (ΔO3 / ΔCO 0.001-0.074). A short-lived increase in NMOCs by a factor of 10 corresponded with a large CO enhancement, an increase of the NMOC / CO emission ratio (ER) by a factor of 2-4 and a halving of the BC / CO ratio. Rainfall on Robbins Island was observed by radar during this period which likely resulted in a lower fire combustion efficiency, and higher emission of compounds associated with smouldering. This highlights the importance of relatively minor meteorological events on BB emission ratios. Emission factors (EFs) were derived for a range of trace gases, some never before reported for Australian fires, (including hydrogen, phenol and toluene) using the carbon mass balance method. This provides a unique set of EFs for Australian coastal heathland fires. Methyl halide EFs were higher than EFs reported from other studies in Australia and the Northern Hemisphere which is likely due to high halogen content in vegetation on Robbins Island. This work demonstrates the substantial impact that BB plumes can have on the composition of marine air, and the significant changes that can occur as the plume interacts with terrestrial, aged urban and marine emission sources.

  8. Radiolysis gases from nitric acid solutions containing HSA and HAN

    SciTech Connect

    Smith, J.R.

    1994-10-28

    The concentration of hydrogen (H{sub 2}) in the radiolytically produced off-gas from 2.76-4.25M HNO{sub 3}/PU solutions has been found to be greatly reduced in the presence of sulfamic acid (HSA) and hydroxylamine nitrate (HAN). The H{sub 2} concentration ([H{sub 2}]) is reduced from 35 percent to about 4 percent by dilution caused from an increase in the production rates of nitrogen (N{sub 2}), nitrous oxide (N{sub 2}O), and oxygen (O{sub 2}) gases. The generation rate of H{sub 2} was not affected by HSA or HAN giving a measured radiolytic yield, G(H{sub 2}), value of 0.201 molecules/100 eV for 2.765M NO{sub 3}{sup -} solution (a value of 0.213 is predicted from previous data). The G(H{sub 2}) values are dependent on the solution nitrate concentration ([NO{sub 3}{sup -}]). The generation rates of N{sub 2}, N{sub 2}O, and O{sub 2} are not dependent on the [NO{sub 3}{sup -}] in this narrow range, but are dependent on the presence of HSA and the concentration of HAN. The percentage [H{sub 2}] for the 2.5 to 3.0M NO{sub 3}{sup -} range expected in the off- from the FB-Line Pu{sup +3} Hold Tanks is conservatively estimated to be about 3.5 to 4.5 % for Pu + 3 solutions initially containing 0.023M HAN/0.165M HSA. The upper limit [H{sub 2}] may actually be about 4.1 % (4.3 % at 90 % confidence limits) but more {open_quotes}initial{close_quotes} off-gas rate data is needed at about 2.9M [NO{sub 3}{sup -}] in Pu{sup +3} solution for verification. Addition of ascorbic acid had no effect on the off-gas rate of Pu{sup +3} solutions containing HSA and NO{sub 3}{sup -} concentrations higher than those expected in the hold tanks. The maximum {open_quotes}hold time{close_quotes} for 50 grams/liter Pu{sup +3}/0.165M HSA/0.023M HAN/2.5-3.0M HNO{sub 3} solution is 20.3{+-}2.1 days. After this time the HSA initially present will become exhausted and the [H{sub 2}] will increase to 35 %. This hold time may be longer in [NO{sub 3}{sup -}] < 3.0M, but again more study is needed.

  9. Dynamics of a geothermal field traced by noble gases: Cerro Prieto, Mexico

    USGS Publications Warehouse

    Mazor, E.; Truesdell, A.H.

    1984-01-01

    Noble gases have been measured mass spectrometrically in samples collected during 1977 from producing wells at Cerro Prieto. Positive correlations between concentrations of radiogenic (He and 40Ar) and atmospheric noble gases (Ne, Ar and Kr) suggest the following dynamic model: the geothermal fluids originated from meteoric water that penetrated to more than 2500 m depth (below the level of first boiling) and mixed with radiogenic He and 40Ar formed in the aquifer rocks. Subsequently, small amounts of steam were lost by a Raleigh process (0 - 30%) and mixing with shallow cold water occurred (0 - 30%). Noble gases are sensitive tracers of boiling in the initial stages of 0 - 3% steam separation and complement other tracers, such as C1 or temperature, which are effective only beyond this range. ?? 1984.

  10. Dynamics of a geothermal field traced by noble gases: Cerro Prieto, Mexico

    SciTech Connect

    Mazor, E.; Truesdell, A.H.

    1981-01-01

    Noble gases have been measured mass spectrometrically in samples collected during 1977 from producing wells at Cerro Prieto. Positive correlations between concentrations of radiogenic (He, /sup 40/Ar) and atmospheric noble gases (Ne, Ar, and Kr) suggest the following dynamic model: the geothermal fluids originated from meteoric water penetrated to more than 2500 m depth (below the level of first boiling) and mixed with radiogenic helium and argon-40 formed in the aquifer rocks. Subsequently, small amounts of steam were lost by a Raleigh process (0 to 3%) and mixing with shallow cold water occurred (0 to 30%). Noble gases are sensitive tracers of boiling in the initial stages of 0 to 3% steam separation and complement other tracers, such as Cl or temperature, which are effective only beyond this range.

  11. Azimuthal variability of trace gases and aerosols measured during the MADCAT campaign in summer 2013 in Mainz, Germany

    NASA Astrophysics Data System (ADS)

    Remmers, Julia; Wagner, Thomas

    2015-04-01

    With the MAX-DOAS technique it is possible to retrieve vertical profiles of trace gases and aerosols in the lower troposphere. Often these instruments monitor the atmosphere in one azimuthal direction only. Therefore horizontal variability is not resolved. Especially the comparison to satellite data close to strong emission sources (one main application of MAX-DOAS) is possibly biased. MADCAT (Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases) took place in summer 2013 in Mainz, a city in the Rhine-Main region close to Frankfurt, with high population density and many industrial complexes. The main focus of this campaign was on the comparison of the results from the different instruments. Therefore 16 MAX-DOAS instruments from 10 different institutes were operated on the roof of the MPI for Chemistry. In standard operation mode, vertical scans at one or several selected azimuth viewing direction were performed. In addition, 6 instruments scanned the sky also in azimuth direction every two hours. These scans were performed under a low elevation angle (2°) to capture the pollution close to the ground. A comparison of the trace gas columns derived from these instruments will be shown for NO2 and O4, the latter is used to retrieve information about aerosols. The observed variation for different azimuth angles does not only reflect a gradient in the trace gas, but also differences in the light path length, which is affected by sun and viewing geometry as well as aerosols. To distinguish between the different effects comparisons with radiative transfer models are performed. The results of the azimuth scans are also compared to car-DOAS measurements around Mainz, which were conducted at least twice a day.

  12. Amplification of trace amounts of nucleic acids

    DOEpatents

    Church, George M.; Zhang, Kun

    2008-06-17

    Methods of reducing background during amplification of small amounts of nucleic acids employ careful analysis of sources of low level contamination. Ultraviolet light can be used to reduce nucleic acid contaminants in reagents and equipment. "Primer-dimer" background can be reduced by judicious design of primers. We have shown clean signal-to-noise with as little as starting material as one single human cell (.about.6 picogram), E. coli cell (.about.5 femtogram) or Prochlorococcus cell (.about.3 femtogram).

  13. Distributions of C 2-C 5 NMHCs and related trace gases at a tropical urban site in India

    NASA Astrophysics Data System (ADS)

    Sahu, L. K.; Lal, S.

    Simultaneous surface measurements of C 2-C 5 non-methane hydrocarbons (NMHCs), O 3, CO and CH 4 were made during the year 2002 at a tropical urban site, Ahmedabad. This is the first time that NMHCs levels have been characterized in detail in India. The diurnal distributions of these species show pronounced variations in the winter months and less during the summer months. The seasonal variations of all these species show substantially higher levels during the winter and lowest during the summer season. The strength (winter to summer ratios) of seasonal variations in NMHCs are observed to be higher than other reported measurements elsewhere. The seasonal changes in transport patterns, boundary layer height and OH concentrations, all contribute in the seasonal variations of these trace gases. The correlation studies of various NMHCs and CO indicate dominant role of local emissions in the observed distributions of trace gases. The natural gas emission and leakage of liquid petroleum gas contribute to elevated levels of ethane and propane. While emissions from vehicular exhaust are found to be dominant sources of ethene, propene and acetylene. The higher C 2H 2/CO ratio of about 6.4 pptv/ppbv indicates influences of fresh emissions at Ahmedabad.

  14. Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: FY 1993 activities

    SciTech Connect

    Cushman, R.M.; Stoss, F.W. |

    1994-01-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provide technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC (including World Data Center-A for Atmospheric Trace Gases) during the period October 1, 1992, to September 30, 1993. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of NDPS, CMPS, technical reports, newsletters, fact sheets, specialty publications, and reprints are provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also presented.

  15. Atmos/Atlas 3 Infrared Profile Measurements of Trace Gases in The November 1994 Tropical and Subtropical Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Wang, P.-H.; Arduini, R. F.; Baum, B. A.; Minnis, P.; Minnis, P.; Goldman, A.; Abrams, M. C.; Zander, R.; Mahieu, E.; Mahieu, E.; Salawitch, R. J.; Michelsen, H. A.; Irion, F. W.; Newchurch, M. J.

    1998-01-01

    Vertical mixing ratio profiles of four relatively long-lives gases, HCN, C2H2, CO, and C2H6, have been retrieved from 0.01/cm resolution infrared solar occultation spectra recorded between latitudes of 5.3degN and 31.4degN. The observations were obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer during the Atmospheric Laboratory for Applications and Science (ATLAS) 3 shuttle flight, 3-12 November 1994. Elevated mixing ratios below the tropopause were measured for these gases during several of the occultations. The positive correlations obtained between the simultaneously measured mixing ratios suggest that the enhancements are likely the result of surface emissions, most likely biomass burning and/or urban industrial activities, followed by common injection via deep convective transport of the gases to the upper troposphere. The elevated levels of HCN may account for at least part of the "missing NO," in the upper troposphere. Comparisons of the observations with values measured during a recent aircraft campaign are presented.

  16. The airborne mass spectrometer AIMS - Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS

    NASA Astrophysics Data System (ADS)

    Jurkat, T.; Kaufmann, S.; Voigt, C.; Schäuble, D.; Jeßberger, P.; Ziereis, H.

    2015-12-01

    Understanding the role of climate-sensitive trace gas variabilities in the upper troposphere and lower stratosphere region (UTLS) and their impact on its radiative budget requires accurate measurements. The composition of the UTLS is governed by transport and chemistry of stratospheric and tropospheric constituents, such as chlorine, nitrogen oxide and sulphur components. The Airborne chemical Ionization Mass Spectrometer AIMS has been developed to accurately measure a set of these constituents on aircraft by means of chemical ionization. Here we present a setup using chemical ionization with SF5- reagent ions for the simultaneous measurement of trace gas concentrations in the pptv to ppmv (10-12 to 10-6 mol mol-1) range of HCl, HNO3 and SO2 with in-flight and online calibration called AIMS-TG. Part 1 of this paper (Kaufmann et al., 2015) reports on the UTLS water vapour measurements with the AIMS-H2O configuration. The instrument can be flexibly switched between two configurations depending on the scientific objective of the mission. For AIMS-TG, a custom-made gas discharge ion source has been developed generating a characteristic ionization scheme. HNO3 and HCl are routinely calibrated in-flight using permeation devices, SO2 is permanently calibrated during flight adding an isotopically labelled 34SO2 standard. In addition, we report on trace gas measurements of HONO which is sensitive to the reaction with SF5-. The detection limit for the various trace gases is in the low ten pptv range at a 1 s time resolution with an overall uncertainty of the measurement in the order of 20 %. AIMS has been integrated and successfully operated on the DLR research aircraft Falcon and HALO. Exemplarily, measurements conducted during the TACTS/ESMVal mission with HALO in 2012 are presented, focusing on a classification of tropospheric and stratospheric influences in the UTLS region. Comparison of AIMS measurements with other measurement techniques allow to draw a comprehensive

  17. Supercritical hydrogenation and acid-catalysed reactions "without gases".

    PubMed

    Hyde, Jason R; Poliakoff, Martyn

    2004-07-07

    The high temperature catalytic decomposition of HCO2H and HCO2Et are used to generate the high pressure H2 and the supercritical fluids needed for micro-scale hydrogenation of organic compounds; our approach overcomes the problems and limitations of handling high pressure gases on a small-scale and opens the way to the widespread use of continuous supercritical reactions in the laboratory.

  18. Long-term MAX-DOAS measurement of trace gases and aerosol in the Environmental Research Station Schneefernerhaus

    NASA Astrophysics Data System (ADS)

    Wang, Zhuoru; Hao, Nan; Hendrick, François; Van Roozendael, Michel; Holla, Robert; Valks, Pieter

    2016-04-01

    The Environmental Research Station Schneefernerhaus (Umwelt Forschungsstation Schneefernerhaus, UFS) is located immediately under the summit of Zugspitze (2962 m), the highest mountain of Germany, at a height of 2650 m. The UFS is a rare observation site in Germany with mostly clean and unpolluted air. It is ideal for both stratospheric composition measurements and trace gas measurements in the free-troposphere. It is optimal for detecting pollution events in the free-troposphere, which are indications of short- or long-range transport of air pollutants. A MAX-DOAS instrument has been working in the UFS since February 2011. With the zenith spectrum of each cycle used as the reference, the differential slant column densities (DSCDs) of trace gases are calculated from the spectra with Differential Optical Absorption Spectroscopy (DOAS) method. The DSCDs of both O4 and NO2 are calculated in two different wavelength intervals, 338-370 nm in the UV region and 440-490 nm in the VIS region. For HCHO and HONO, optimal fitting windows have been determined in the UV region. A retrieval algorithm, based on the radiative transfer model LIDORT and the optimal estimation technique, is used to provide information on the vertical profiles and vertical column densities (VCDs) of aerosol and trace gases. Meanwhile, zenith-sky radiance spectra during twilight hours are analyzed using DOAS method to derive the total vertical column densities (VCDs) of O3 and NO2. A zenith spectrum measured in the noon of a summer day was chosen as the reference spectrum. The slant column densities (SCDs) of O3 and NO2, which are the direct product of the DOAS analysis, are then converted into VCDs using the air mass factors (AMFs) derived by radiative transfer calculations. This work presents the results of the MAX-DOAS measurement in the UFS from 2012 to 2015, including aerosol (derived from O4 measurement), NO2, HCHO, and HONO, etc. The vertical profiles as well as the seasonal and diurnal variation

  19. CU AMAX-DOAS applications in cloud-free and cloudy atmospheres: innovative Scattered Sun Light observations of trace gases and aerosol extinction

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Baidar, S.; Coburn, S.; Dix, B. K.; Oetjen, H.; Ortega, I.; Sinreich, R.; Atmospeclab

    2011-12-01

    An innovative airborne scanning multi-axis differential optical absorption spectroscopy (CU AMAX-DOAS) instrument has been developed at the University of Colorado, Boulder. The instrument collects scattered sunlight spectra in a sequence of discrete viewing angles, and employs the DOAS method (inherently calibrated, and selective) to simultaneously retrieve multiple trace gases, e.g., nitrogen dioxide (NO2), nitrous acid (HONO), formaldehyde (HCHO), glyoxal (CHOCHO), bromine oxide (BrO), iodine oxide (IO), chlorine dioxide (OClO), water vapor (H2O), and oxygen dimers (O4, at 360nm, 477nm, and 632nm) differential slant column densities (dSCD). Vertical profiles of these gases and multi-spectral aerosol extinction are inferred by combining Monte-Carlo Radiative Transfer Modelling (RTM) and optimal estimation techniques to construct a model atmosphere that can in principle represent 3D clouds and aerosols. The atmospheric state of this model atmosphere is constrained by observations of O4 dSCDs, Raman Scattering Probability (RSP), and intensity ratios, i.e., quantities that depend solely on relative intensity changes, without need for a direct sun view, or absolute radiance calibration. We show results from ongoing validation efforts (NOAA TwinOtter aircraft during CalNex and CARES), and demonstrate vertical profile retrievals (NSF/NCAR GV over the tropical Pacific Ocean) in both cloud-free and cloudy atmospheres.

  20. Process for recovery of sulfur from acid gases

    DOEpatents

    Towler, Gavin P.; Lynn, Scott

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  1. Adsorption of humic acids and trace metals in natural waters

    NASA Technical Reports Server (NTRS)

    Leung, W. H.

    1982-01-01

    Studies concerning the interactions between suspended hydrous iron oxide and dissolved humic acids and trace metals are reported. As a major component of dissolved organic matters and its readiness for adsorption at the solid/water interface, humic acids may play a very important role in the organometallic geochemistry of suspended sediments and in determining the fate and distribution of trace metals, pesticides and anions in natural water systems. Most of the solid phases in natural waters contain oxides and hydroxides. The most simple promising theory to describe the interactions of hydrous iron oxide interface is the surface complex formation model. In this model, the adsorptions of humic acids on hydrous iron oxide may be interpreted as complex formation of the organic bases (humic acid oxyanions) with surface Fe ions. Measurements on adsorptions were made in both fresh water and seawater. Attempts have been made to fit our data to Langmuir adsorption isotherm. Adsorption equilibrium constants were determined.

  2. CARBON TRACE GASES IN LAKE AND BEAVER POND ICE NEAR THOMPSON, MANITOBA, CANADA

    EPA Science Inventory

    Concentrations of CO2, CO, and CH4 were measured in beaver pond and lake ice in April 1996 near Thompson, Manitoba to derive information on possible impacts of ice melting on corresponding atmospheric trace gas concentrations. CH4 concentrations in beaver pond and lake ice ranged...

  3. Trace element geochemistry of volcanic gases and particles from 1983--1984 eruptive episodes of Kilauea volcano

    SciTech Connect

    Crowe, B.M.; Finnegan, D.L.; Zoller, W.H.; Boynton, W.V.

    1987-12-10

    Compositional data have been obtained for volcanic gases and particles collected from fume emitted at the Pu'u O'o vent on the east rift zone of Kilauea volcano. The samples were collected by pumping fume through a filter pack system consisting of a front stage particulate filter followed by four base-treated filters (/sup 7/LiOH). Particles and condensed phases are trapped on the particulate filter, and acidic gases are collected on the treated filters. The filters are analyzed for 30 elements by instrumental neutron activation analysis. Fume samples were collected from the Pu'u O'o vent for two eruptive episodes: (1) 7 days after episode 11 (cooling vent samples) and (2) the stage of episode 13 (active vent samples).

  4. Emission of climate-relevant trace gases and succession of microbial communities during open-windrow composting

    SciTech Connect

    Hellmann, B.; Zelles, L.; Palojaervi, A.; Bai, Q.

    1997-03-01

    Municipal solid-waste composting is a process of increasing importance, based primarily on augmentation of microbial activity. The composting of organic matter leads not only to a reduction in waste but a sensible recycling of residuals to their origin. Carbon dioxide derived from plant matter degradation does not contribute to global warming. However, emitted nitrous oxide and methane molecules contribute to the enhancement of the greenhouse effect. This study determined a wide variety of microbial properties during the composting processes at a whole windrow level and quantified the emission rates of the climate relevant trace gases, carbon dioxide, nitrous oxide and methane during the course of maturation of a compost row. 47 refs., 6 figs., 1 tab.

  5. The interannual variability of trace gases in the stratosphere: A comparative study of the LIMS and UARS measurement periods

    NASA Astrophysics Data System (ADS)

    Gray, L. J.; Ruth, S.

    1992-04-01

    The inter-annual variability of trace gases in the equatorial lower stratosphere is examined in order to explore the usefulness of comparisons between measurements from LIMS and the UARS satellite instruments. The quasi biennial oscillation (QBO) is simulated in a two dimensional model by relaxing the modelled equatorial winds towards observed values. It is shown that during the LIMS data period the QBO was in the opposite phase to that expected during the first winter of the UARS measurements. The model predicts that LIMS measurements of ozone, NO2, and HNO3 may have been up to 30% less than the long-term average in the equatorial lower stratosphere while the first few months of UARS measurements may observe abundances up to 30% more than the long-term average. The importance of taking this variability into account and the desirability of several complete cycles of the QBO in the derivation of climatological values is noted.

  6. Evolution of Trace Gases and Particles Emitted by a Chaparral Fire in California

    DTIC Science & Technology

    2012-02-07

    2.16)× 10−2 in ∼4.5 h following smoke emis- sion. Excess acetic and formic acid (normalized to excess CO) increased by factors of 1.73± 0.43 and 7.34...and formic acid (normalized to excess CO) increased by factors of 1.73?0.43 and 7.34?3.03 (respectively) over the same time since emission. Based on...C3H6), formalde- hyde (HCHO), methanol (CH3OH), furan (C4H4O), phe- nol (C6H5OH), acetic acid (CH3COOH), and formic acid (HCOOH). Ram air was

  7. Differences in the concentrations of atmospheric trace gases in and above the tropical boundary layer

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Khalil, M. A. K.

    1981-01-01

    Weekly air samples were collected at Cape Kumakahi (0 km) and at nearby Mauna Loa Observatory (3.4 km) which is above the boundary layer. EC/GC and GC/FID techniques were used to measure CH3I, CHCl3, CO and CH4 which are largely natural in origin, and C2Cl4, CCl4, CH3CCl3, (F-11), CCl2F2, (F-12), CHClF, (F-22) and C2F3Cl3 (F-113), which are due to anthropogenic (CCl3F) etc. activities. It was found that all these gases are significantly (alpha is equal to or less than 0.05) more abundant in the boundary layer than above it.

  8. Emissions of Trace Gases and Particles from Two Ships in the Southern Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Christian, Ted J.; Kirchstetter, Thomas W.; Bruintjes, Roelof

    2003-01-01

    Measurements were made of the emissions of particles and gases from two diesel-powered ships in the southern Atlantic Ocean off the coast of Namibia. The measurements are used to derive emission factors from ships of three species not reported previously, namely, black carbon, accumulation-mode particles, and cloud condensation nuclei (CCN), as well as for carbon dioxide, carbon monoxide (CO), methane (CH4), non-methane hydrocarbons, sulfur dioxide (SO2), nitrogen oxides (NOx), and condensation nuclei. The effects of fuel grade and engine power on ship emissions are discussed. The emission factors are combined with fuel usage data to obtain estimates of global annual emissions of various particles and gases from ocean-going ships. Global emissions of black carbon, accumulation- mode particles, and CCN from ocean-going ships are estimated to be 19-26 Gg yr(sup -1), (4.4-6.1) x 10(exp 26) particles yr(sup -1), and (1.0-1.5) x l0(exp 26) particles yr(sup -1), respectively. Black carbon emissions from ocean-going ships are approximately 0.2% of total anthropogenic emissions. Emissions of NOx and SO2 from ocean-going ships are approximately 10-14% and approximately 3-4%, respectively, of the total emissions of these species from the burning of fossil fuels, and approximately 40% and approximately 70%, respectively, of the total emissions of these species from the burning of biomass. Global annual emissions of CO and CH4 from ocean-going ships are approximately 2% and approximately 2-5%, respectively, of natural oceanic emissions of these species.

  9. High resolution infrared absorption spectra of various trace gases present in the upper atmosphere of the Earth

    NASA Technical Reports Server (NTRS)

    Hunt, Robert H.

    1988-01-01

    The objective of NASA Grant NsG 7473 was to obtain and analyze high resolution infrared absorption spectra of various trace gases present in the Earth's upper atmosphere. The goal of the spectral analysis was to obtain values of absorption line strengths, widths and frequencies of sufficient accuracy for use in upper atmosphere trace gas monitoring. During the early phase of the grant, high resolution spectra were obtained from two instruments. One was the 0.02/cm resolution vacuum grating spectrometer at the Florida State University and the other was the 0.01/cm resolution Fourier transform spectrometer at the McMath solar telescope at the Kitt Peak Observatory. Using these instruments, a considerable amount of spectra of methane and hydrogen peroxide were obtained and analyzed. During the latter years of the project, data taking was halted while efforts were devoted to building a new 0.0025/cm resolution vacuum Fourier transform spectrometer. Progress during this phase of the grant then became greatly slowed due to a lack of suitable graduate students in the program. However, the instrument was completed and brought to the point of producing interferograms.

  10. Data Preparation and Analysis for Annex III, USA/PRC Cooperation in the Field of Atmospheric Trace Gases

    SciTech Connect

    Easterling, D.R.; Karl, T.R.

    1999-04-13

    The National Climatic Data Center (NCDC) has been a long-time and very active participant in the joint research program on the Greenhouse Effect created by the bilateral agreement Annex III to the Protocol on Fossil Energy Research and Development on Cooperation in the Field of Atmospheric Trace Gases. This agreement between the US Department of Energy (DOE) and the People's Republic of China, Chinese Academy of Sciences (CAS) has fostered a large amount of data set development and research (Riches et al., 1992) as well as science exchange between the two countries. Within the agreement there have been four basic tasks: (1) to analyze general circulation models, (2) to prepare, validate, and analyze data, (3) analyze the relationship between large scale and local climate, and (4) atmospheric trace gas measurements, particularly methane (Riches et al. 1992). Within this framework the NCDC has had two basic tasks in this program: to develop, validate, analyze and exchange long-term climate data sets suitable for analyzing past climate change, and to perform research into past climate change and linking large-scale and regional climates. Following is a brief review of NCDC's accomplishments in the project.

  11. Using FLEXPART-WRF to Identify Source Regions Influencing Arctic Trace Gases and Aerosols During the Summer 2014 NETCARE Campaign

    NASA Astrophysics Data System (ADS)

    Thomas, J. L.

    2015-12-01

    In July and August 2014 the Canadian Network on Aerosols and Climate: Addressing Key Uncertainties in Remote Canadian Regions (NETCARE) project conducted aircraft and ship based campaigns with the goal of identifying both emissions and atmospheric processes influencing Arctic trace gas and aerosol concentrations. The aircraft campaign was conducted using the Alfred Wegener Institute's POLAR 6 aircraft (based in Resolute Bay, Canada) and the ship based campaign was conducted onboard the CCGS Amundsen (icebreaker and Arctic Ocean research vessel). Here, we use the Weather Research and Forecasting Model (WRF) to study meteorology and transport patterns that influence airmasses sampled during the aircraft campaign (5-21 July 2012) and research Legs 1a and 1b for Amundsen (1a: 8 - 24 July Quebec City to Resolute and 24 July - 14 August Resolute to Kugluktuk). The FLEXible PARTicle dispersion model driven by WRF meteorology (FLEXPART-WRF) run in backwards mode is used to study source regions that influenced enhanced concentrations in trace gases including DMS and NH3 as well as aerosols. Links between biomass burning in Northern Canada and measurements during the campaign are discussed. Finally FLEXPART-WRF run in forward mode is used to study links between shipping emissions from the Amundsen and enhanced pollution sampled by the POLAR 6 aircraft when both were operating in the same region of Lancaster Sound during the campaigns.

  12. Quantum cascade laser based sensor for in situ and real time atmospheric trace gases (CO and N2O) measurements

    NASA Astrophysics Data System (ADS)

    Li, Jingsong; Parchatka, Uwe; Fischer, Horst

    2013-04-01

    In addition to the primary greenhouse gases carbon dioxide (CO2) and methane (CH4), several other atmospheric trace gases are radiatively active, and thereby can also contribute to a greenhouse warming of the lower atmosphere directly or indirectly. Nitrous oxide (N2O) is a greenhouse gas with a global warming potential about 200-300 times that of CO2. Carbon monoxide (CO) is not considered a direct greenhouse gas, mostly because it does not absorb terrestrial thermal IR energy strongly enough. However, CO plays an important role in the oxidative chemistry of Earth's atmosphere, since it is a key trace gas for controlling the budget and distribution of the hydroxyl (OH) radical, which exerts a controlling influence on the gas phase chemistry of many atmospheric species [1]. Therefore, there is a critical need to identify sources and sinks of N2O and CO in order to better understand their impact on global climate change [2]. We present a fast, compact, and precise sensor based-on a novel thermoelectrically (TE) cooled quantum cascade laser (QCL) operating at near-room temperature in CW (continuous-wave) mode for simultaneous detection of atmospheric N2O and CO. The technique is based on atmospheric absorption of these trace species in the mid-infrared region near 4.56 µm, using a single QC laser source and two TE-cooled infrared detectors. Wavelength modulation spectroscopy with second harmonic detection technique in conjunction with a compact multi-pass absorption cell has been employed to demonstrate highly sensitive and precise measurements. CO and N2O at ambient concentration levels are detected simultaneously with a high temporal response (< 1s). Preliminary results (Laboratory investigation and field application) of the sensor's performance will be presented. This completely TE-cooled system shows the capability of long-term, unattended and continuous operation at room temperature without complicated cryogenic cooling [3]. [1] J. A. Logan, M. J. Prather, S. C

  13. Atmospheric transport and chemistry of trace gases in LMDz5B: evaluation and implications for inverse modelling

    NASA Astrophysics Data System (ADS)

    Locatelli, R.; Bousquet, P.; Hourdin, F.; Saunois, M.; Cozic, A.; Couvreux, F.; Grandpeix, J.-Y.; Lefebvre, M.-P.; Rio, C.; Bergamaschi, P.; Chambers, S. D.; Karstens, U.; Kazan, V.; van der Laan, S.; Meijer, H. A. J.; Moncrieff, J.; Ramonet, M.; Scheeren, H. A.; Schlosser, C.; Schmidt, M.; Vermeulen, A.; Williams, A. G.

    2015-02-01

    Representation of atmospheric transport is a major source of error in the estimation of greenhouse gas sources and sinks by inverse modelling. Here we assess the impact on trace gas mole fractions of the new physical parameterizations recently implemented in the atmospheric global climate model LMDz to improve vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL), and deep convection in the troposphere. At the same time, the horizontal and vertical resolution of the model used in the inverse system has been increased. The aim of this paper is to evaluate the impact of these developments on the representation of trace gas transport and chemistry, and to anticipate the implications for inversions of greenhouse gas emissions using such an updated model. Comparison of a one-dimensional version of LMDz with large eddy simulations shows that the thermal scheme simulates shallow convective tracer transport in the PBL over land very efficiently, and much better than previous versions of the model. This result is confirmed in three-dimensional simulations, by a much improved reproduction of the radon-222 diurnal cycle. However, the enhanced dynamics of tracer concentrations induces a stronger sensitivity of the new LMDz configuration to external meteorological forcings. At larger scales, the inter-hemispheric exchange is slightly slower when using the new version of the model, bringing them closer to observations. The increase in the vertical resolution (from 19 to 39 layers) significantly improves the representation of stratosphere/troposphere exchange. Furthermore, changes in atmospheric thermodynamic variables, such as temperature, due to changes in the PBL mixing modify chemical reaction rates, which perturb chemical equilibriums of reactive trace gases. One implication of LMDz model developments for future inversions of greenhouse gas emissions is the ability of the updated system to assimilate a larger amount of high

  14. Vapour and acid components separation from gases by membranes principles and engineering approach to membranes development

    NASA Astrophysics Data System (ADS)

    Kagramanov, G. G.; Storojuk, I. P.; Farnosova, E. N.

    2016-09-01

    The modern commercially available polymer membranes and membrane modules for purification of gases, containing acid components, simultaneously with dehumidification of treated gas streams, were developed and commercialized in the very end of XXth century. The membranes basic properties - selectivity (separation factor) and permeation flow rates - are relatively far from satisfying the growing and modern-scale industrial need in purification technologies and corresponding equipments. The attempt to formulate the basic principles, scientific and engineering approaches to the development of prospective membranes for the purification of gases, especially such as natural and oil gases, from acid components, simultaneously with drying them, was being made. For this purpose the influence of various factors - polymer nature, membrane type, structure, geometrical and mass-transfer characteristics, etc. - were studied and analyzed in order to formulate the basic principles and demands for development of membranes, capable to withstand successfully the sever conditions of exploitation.

  15. The production of trace gases by photochemistry and lightning in the early atmosphere

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Tennille, G. M.; Towe, K. M.; Khanna, R. K.

    1986-01-01

    Recent atmospheric calculation suggest that the prebiological atmosphere was most probably composed of nitrogen, carbon dioxide, and water vapor, resulting from volatile outgassing, as opposed to the older view of a strongly reducing early atmosphere composed of methane, ammonia, and hydrogen. Photochemical calculations indicate that methane would have been readily destroyed via reaction with the hydroxyl radical produced from water vapor and that ammonia would have been readily lost via photolysis and rainout. The rapid loss of methane and ammonia, coupled with the absence of a significant source of these gases, suggest that atmospheric methane and ammonia were very short lived, if they were present at all. An early atmosphere of N2, CO2, and H2O is stable and leads to the chemical production of a number of atmospheric species of biological significance, including oxygen, ozone, carbon monoxide, formaldehyde, and hydrogen cyanide. Using a photochemical model of the early atmosphere, the chemical productionof these species over a wide range of atmospheric parameters were investigated. These calculations indicate that early atmospheric levels of O3 were significantly below the levels needed to provide UV shielding. The fate of volcanically emitted sulfur species, e.g., sulfur dioxide and hydrogen sulfide, was investigated in the early atmosphere to assess their UV shielding properties. The photochemical calculations show that these species were of insufficient levels, due in part to their short photochemical lifetimes, to provide UV shielding.

  16. Correction for water vapor in the measurement of atmospheric trace gases.

    PubMed

    Butenhoff, C L; Khalil, M A K

    2002-06-01

    The presence of water vapor in a sample of air reduces the concentration of a trace gas measured from the sample. We present a methodology to correct for this effect for those cases when the concentration of the trace gas has already been measured from a wet sample. The conversion or correction factor that takes the wet mole fraction to a dry mole fraction is determined by the mixing ratio of water vapor inside the sampling canister. For those samples where the water vapor is saturated inside the canister, the water vapor mixing ratio is largely determined by laboratory conditions; for the unsaturated samples, the mixing ratio is determined by station conditions. If the meteorology at the sampling station is known, the equations presented here can be used directly to calculate the appropriate correction factor. For convenience, we use climatological data to derive average monthly correction factors for seven common global sampling sites: Barrow, AK, US (71 degrees N, 157degrees W); Cape Meares, OR, US (45 degrees N, 124 degrees W); Mauna Loa, HI, US (19 degrees N, 155 degrees W); Ragged Point, Barbados (13 degrees N, 59 degrees W); American Samoa (14 degrees S, 171 degrees W); Cape Grim, Tasmania, Australia (41 degrees S, 145 degrees E); South Pole (90 degrees S). These factors adjust wet mole fractions upwards within a range of 0.002% for the South Pole to over 0.8% for saturated sites. We apply the correction factors to wet nitrous oxide (N2O) mole fractions. The corrected data are more consistent with our understanding of N2O sources.

  17. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On and... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for municipal waste...

  18. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On and... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for municipal waste...

  19. Energy and Angle Resolved Uptake of Organic Gases in Concentrated Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Fiehrer, Kathleen; Nathanson, Gilbert

    1996-03-01

    We have measured the uptake of reactive gases in concentrated (98.8 wtsulfuric acid at 298 K. Our goal is to determine the fraction of gas molecules that dissolve in and react with concentrated sulfuric acid as a function of impact angle, collision energy, and gas molecule basicity (pKBH+). These gases include olefins, alcohols, ethers, aldehydes, and carboxylic acids. We have investigated how scattering and solvation compete at high and low impact energies and at grazing and perpendicular approach directions. We find that the sticking probability decreases slowly with increasing impact energy and with more grazing angle of incidence. However, the sticking probabilities change dramatically with gas functionality and scale monotonically with the molecule's solution phase basicity. Thus, the sticking probability decreases in the order ethanol, dimethyl ether, formic acid, acetaldehyde, and propene.

  20. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C. Judson; MacKenzie, Patricia D.

    1985-01-01

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  1. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C.J.; Mackenzie, P.D.

    1982-09-03

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  2. Flux measurements of energy and trace gases in urban Houston, Texas

    NASA Astrophysics Data System (ADS)

    Boedeker, I.; Schade, G. W.; Adams, S.; Park, C.

    2008-12-01

    We describe the setup and some first year results of a new flux measurements tower in an urban area. An existing radio communications tower 4 km north of downtown Houston was equipped with micrometeorological instrumentation and trace gas sampling lines in spring 2007. Wind speed, temperature and relative humidity are recorded at five levels between 12 and 60 m above ground; 3-D wind speed measurements, solar and net radiances, and trace gas sampling are established from the 60 m level. A closed path IRGA is used for CO2 and water vapor fluxes, and independent instrumentation for criteria pollutant and VOC fluxes. Two CSI data loggers and software control the measurements, and EdiRe software is used to analyze turbulence data and compute fluxes. A project description is provided at http://atmo.tamu.edu/yellowcabtower. Surface properties as calculated from the gradient measurements show the site to be surprisingly uniform, with displacement heights between 5 and 9 m and roughness lengths between 0.4 and 0.7 m, despite urban heterogeneity. The latter is investigated through visible/near IR orthoimagery and LIDAR data, which are incorporated into a local GIS. Net radiation was also only marginally affected by surface heterogeneity. At this urban location it is balanced by roughly equal amounts of sensible heat, latent heat, and storage fluxes. Latent heat flux, however, is smaller outside the growing season, with an equivalent increase in winter storage fluxes, as expected. Significant differences are also observed with direction during summer, showing decreased Bowen ratios and lower CO2 emissions from sectors with a larger urban tree canopy cover in the footprint. The largely mature, dominantly oak urban canopy cover alleviates approximately 100 W m- 2 during typical summer days. On the other hand, anthropogenic CO2 emissions dominate over photosynthetic uptake all year round. Measured carbon fluxes peak during morning rush-hour traffic, especially when increasing

  3. Global satellite analysis of the relation between aerosols and short-lived trace gases

    NASA Astrophysics Data System (ADS)

    Veefkind, J. P.; Boersma, K. F.; Wang, J.; Kurosu, T. P.; Krotkov, N.; Chance, K.; Levelt, P. F.

    2011-02-01

    The spatial and temporal correlations between concurrent satellite observations of aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and tropospheric columns of nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) from the Ozone Monitoring Instrument (OMI) are used to infer information on the global composition of aerosol particles. When averaging the satellite data over large regions and longer time periods, we find significant correlation between MODIS AOT and OMI trace gas columns for various regions in the world. This shows that these enhanced aerosol and trace gas concentrations originate from common sources, such as fossil fuel combustion, biomass burning, and organic compounds released from the biosphere. This leads us to propose that satellite-inferred AOT to NO2 ratios for regions with comparable photochemical regimes can be used as indicators for the relative regional pollution control of combustion processes. Indeed, satellites observe low AOT to NO2 ratios over the eastern United States and western Europe, and high AOT to NO2 ratios over comparably industrialized regions in eastern Europe and China. Emission databases and OMI SO2 observations over these regions suggest a much stronger sulfur contribution to aerosol formation than over the well-regulated areas of the eastern United States and western Europe. Furthermore, satellite observations show AOT to NO2 ratios are a factor 100 higher over biomass burning regions than over industrialized areas, reflecting the unregulated burning practices with strong primary particle emissions in the tropics compared to the heavily controlled combustion processes in the industrialized Northern Hemisphere. Simulations with a global chemistry transport model (GEOS-Chem) capture most of these variations, although on regional scales significant differences are found. Wintertime aerosol concentrations show strongest correlations with NO2 throughout most of the

  4. Global analysis of the relation between aerosols and short-lived trace gases

    NASA Astrophysics Data System (ADS)

    Veefkind, J. P.; Boersma, K. F.; Wang, J.; Kurosu, T.; Krotkov, N.; Levelt, P. F.

    2010-08-01

    The spatial and temporal correlations between concurrent satellite observations of aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and tropospheric columns of nitrogen dioxide, sulfur dioxide, and formaldehyde from the Ozone Monitoring Instrument (OMI) are used to infer information on the global composition of aerosol particles. When averaging the satellite data over large regions and longer time periods, we find significant correlation between MODIS AOT and OMI trace gas columns for various regions in the world. This suggests that enhanced aerosol and trace gas concentrations originate from common sources, such as fossil fuel combustion, biomass burning, and organic compounds released from the biosphere. This leads us to propose that satellite-inferred AOT to NO2 ratios for regions with comparable photochemical regimes can be used as indicators for the relative (local) efficiency of combustion processes. Indeed, satellites observe low AOT to NO2 ratios over the eastern United States and western Europe, and high AOT to NO2 ratios over comparably industrialized regions in eastern Europe and China. Emission databases and OMI SO2 observations over these regions suggest a much stronger sulfur contribution to aerosol formation than over the well-regulated areas of the eastern United States and western Europe. Furthermore, satellite observations show AOT to NO2 ratios are a factor 100 higher over biomass burning regions than over industrialized areas, reflecting the unregulated burning practices with strong primary particle emissions in the tropics compared to the heavily controlled combustion processes in the industrialized Northern Hemisphere. Simulations with a global chemistry transport model (GEOS-Chem) capture most of these differences, providing some confidence in our understanding of aerosol sources, formation mechanisms, and sinks. Wintertime aerosol concentrations show strongest correlations with NO2 throughout

  5. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 1999 Annual Report

    SciTech Connect

    Cushman, R.M.

    2000-03-31

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global-change data and information analysis center of the Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has--since its inception in 1982--enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea level. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Acting Director) of DOE's Office of Biological and Environmental Research. CDIAC's FY 1999 budget was 2.2M dollars. CDIAC represents the DOE in the multi-agency Global Change Data and Information System. Bobbi Parra, and Wanda Ferrell on an interim basis, is DOE's Program Manager with responsibility for CDIAC. CDIAC comprises three groups, Global Change Data, Computer Systems, and Information

  6. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2001 Annual Report

    SciTech Connect

    Cushman, R.M.

    2002-10-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on climate and vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Director) of DOE's Office of Biological and Environmental Research. CDIAC represents DOE in the multi-agency Global Change Data and Information System (GCDIS). Wanda Ferrell is DOE's Program Manager with overall responsibility for CDIAC. Roger Dahlman is responsible for CDIAC's AmeriFlux tasks, and Anna Palmisano for CDIAC's Ocean Data tasks. CDIAC is made up of three groups: Data

  7. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  8. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  9. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  10. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  11. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  12. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  13. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  14. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  15. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  16. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  17. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  18. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  19. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  20. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  1. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  2. High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn C.; Duren, Riley M.; Hopkins, Francesca M.; Hook, Simon J.; Vance, Nick; Guillevic, Pierre; Johnson, William R.; Eng, Bjorn T.; Mihaly, Jonathan M.; Jovanovic, Veljko M.; Chazanoff, Seth L.; Staniszewski, Zak K.; Kuai, Le; Worden, John; Frankenberg, Christian; Rivera, Gerardo; Aubrey, Andrew D.; Miller, Charles E.; Malakar, Nabin K.; Sánchez Tomás, Juan M.; Holmes, Kendall T.

    2016-06-01

    Currently large uncertainties exist associated with the attribution and quantification of fugitive emissions of criteria pollutants and greenhouse gases such as methane across large regions and key economic sectors. In this study, data from the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) have been used to develop robust and reliable techniques for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution that permits direct attribution to sources. HyTES is a pushbroom imaging spectrometer with high spectral resolution (256 bands from 7.5 to 12 µm), wide swath (1-2 km), and high spatial resolution (˜ 2 m at 1 km altitude) that incorporates new thermal infrared (TIR) remote sensing technologies. In this study we introduce a hybrid clutter matched filter (CMF) and plume dilation algorithm applied to HyTES observations to efficiently detect and characterize the spatial structures of individual plumes of CH4, H2S, NH3, NO2, and SO2 emitters. The sensitivity and field of regard of HyTES allows rapid and frequent airborne surveys of large areas including facilities not readily accessible from the surface. The HyTES CMF algorithm produces plume intensity images of methane and other gases from strong emission sources. The combination of high spatial resolution and multi-species imaging capability provides source attribution in complex environments. The CMF-based detection of strong emission sources over large areas is a fast and powerful tool needed to focus on more computationally intensive retrieval algorithms to quantify emissions with error estimates, and is useful for expediting mitigation efforts and addressing critical science questions.

  3. Sub-millimetre spectroscopy of Saturn's trace gases from Herschel/SPIRE

    NASA Astrophysics Data System (ADS)

    Fletcher, L. N.; Swinyard, B.; Salji, C.; Polehampton, E.; Fulton, T.; Sidher, S.; Lellouch, E.; Moreno, R.; Orton, G.; Cavalié, T.; Courtin, R.; Rengel, M.; Sagawa, H.; Davis, G. R.; Hartogh, P.; Naylor, D.; Walker, H.; Lim, T.

    2012-03-01

    Aims: We provide an extensive new sub-millimetre survey of the trace gas composition of Saturn's atmosphere using the broad spectral range (15-51 cm-1) and high spectral resolution (0.048 cm-1) offered by Fourier transform spectroscopy by the Herschel/SPIRE instrument (Spectral and Photometric Imaging REceiver). Observations were acquired in June 2010, shortly after equinox, with negligible contribution from Saturn's ring emission. Methods: Tropospheric temperatures and the vertical distributions of phosphine and ammonia are derived using an optimal estimation retrieval algorithm to reproduce the sub-millimetre data. The abundance of methane, water and upper limits on a range of different species are estimated using a line-by-line forward model. Results: Saturn's disc-averaged temperature profile is found to be quasi-isothermal between 60 and 300 mbar, with uncertainties of 7 K due to the absolute calibration of SPIRE. Modelling of PH3 rotational lines confirms the vertical profile derived in previous studies and shows that negligible PH3 is present above the 10- to 20-mbar level. The upper tropospheric abundance of NH3 appears to follow a vapour pressure distribution throughout the region of sensitivity in the SPIRE data, but the degree of saturation is highly uncertain. The tropospheric CH4 abundance and Saturn's bulk C/H ratio are consistent with Cassini studies. We improve the upper limits on several species (H2S, HCN, HCP and HI); provide the first observational constraints on others (SO2, CS, methanol, formaldehyde, CH3Cl); and confirm previous upper limits on HF, HCl and HBr. Stratospheric emission from H2O is suggested at 36.6 and 38.8 cm-1 with a 1σ significance level, and these lines are used to derive mole fractions and column abundances consistent with ISO and SWAS estimations a decade earlier.

  4. Development of optical spectroscopic instruments and application to field measurements of marine trace gases

    NASA Astrophysics Data System (ADS)

    Coburn, Sean Christopher

    Halogens (X = Cl, Br, I) and organic carbon are relevant to the oxidative capacity of the atmosphere, are linked to atmospheric sulfur and nitrogen cycles, modify aerosols, and oxidize atmospheric mercury. The abundance of halogen radical species in the atmosphere is very low, but even concentrations of parts per trillion (1 ppt = 10-12 volume mixing ratio) or parts per quadrillion (1 ppq = 10-15 volume mixing ratio) are relevant for the aforementioned processes. Halogen radicals can be traced through measurements of halogen oxides (XO, where X = Cl, Br, I), that are ~1-10 times more abundant. However, measurements of halogen oxides are sparse, partly due to the lack of analytical techniques that enable their routine detection. In Chapters II-IV, I describe the development of a research grade Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument to measure bromine monoxide (BrO) and iodine monoxide (IO) routinely in the troposphere. I present autonomous measurements of BrO and IO in Pensacola, Florida that maximize sensitivity towards the detection of BrO in the free troposphere (altitudes >2km) from ground. The measurements are then coupled to a box-model to assess their impact on the oxidation of mercury in the atmosphere. Chapter V describes the Fast Light-Emitting-Diode Cavity-Enhanced DOAS (Fast LED-CE-DOAS) instrument and first measurements of glyoxal diurnal cycles and Eddy Covariance (EC) fluxes of glyoxal in the marine atmosphere. Glyoxal is the smallest alpha-dicarbonyl and a useful tracer molecule for fast photochemistry of hydrocarbons over oceans. The unique physical and chemical properties of glyoxal pose challenges in explaining this soluble gas over the remote ocean, and recent measurements over the open ocean currently remain unexplained by models. Results from a first cruise deployment over the tropical Pacific Ocean (TORERO field campaign) are presented.

  5. Numerical modelling of the transport of trace gases including methane in the subsurface of Mars

    NASA Astrophysics Data System (ADS)

    Stevens, Adam H.; Patel, Manish R.; Lewis, Stephen R.

    2015-04-01

    We model the transport of gas through the martian subsurface in order to quantify the timescales of release of a trace gas with a source at depth using a Fickian model of diffusion through a putative martian regolith column. The model is then applied to the case of methane to determine if diffusive transport of gas can explain previous observations of methane in the martian atmosphere. We investigate which parameters in the model have the greatest effect on transport timescales and show that the calculated diffusivity is very sensitive to the pressure profile of the subsurface, but relatively insensitive to the temperature profile, though diffusive transport may be affected by other temperature dependent properties of the subsurface such as the local vapour pressure. Uncertainties in the structure and physical conditions of the martian subsurface also introduce uncertainties in the timescales calculated. It was found that methane may take several hundred thousand Mars-years to diffuse from a source at depth. Purely diffusive transport cannot explain transient release that varies on timescales of less than one martian year from sources such as serpentinization or methanogenic organisms at depths of more than 2 km. However, diffusion of gas released by the destabilisation of methane clathrate hydrates close to the surface, for example caused by transient mass wasting events or erosion, could produce a rapidly varying flux of methane into the atmosphere of more than 10-3 kg m-2 s-1 over a duration of less than half a martian year, consistent with observations of martian methane variability. Seismic events, magmatic intrusions or impacts could also potentially produce similar patterns of release, but are far more complex to simulate.

  6. Linking aerosol size and optical properties to trace gases emitted from biomass burning in real-time

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Carrico, C. M.; Stockwell, C.; Yokelson, R. J.; Veres, P. R.; DeMott, P. J.; Kreidenweis, S. M.

    2014-12-01

    Biomass burning aerosols have large impacts on regional and global climate that are partly determined by their optical properties. The optical properties of aerosol depend on their size and composition, which in turn are related to fire combustion processes. Here we investigate relationships between a large suite of trace gases and aerosol size and optical properties to better understand processes governing the optical properties of fresh biomass burning aerosol emissions. We examined over 100 individual burns of biomass fuels during the Fire Laboratory at Missoula Experiment 4 (FLAME 4). Emissions were measured directly from an exhaust stack designed to capture all emissions from relatively small-scale fires burned at the base of a large burn chamber. Trace gas species were measured using a combination of an open-path Fourier transform infrared spectrometer (OP-FTIR) and proton-transfer mass spectrometer (PTR-MS). Aerosol optical properties at 870 nm were measured using a photoacoustic extinctiometer (PAX) and particle size distributions were measured using a Fast Mobility Particle Sizer (FMPS) and Aerodynamic Particle Sizer. The rapid response of the instruments allowed for comparisons of the emissions and particle properties over the duration of the fire. For example, we observed correlations between aerosol absorption, particle size, and gas-phase species associated with different types of combustion such as flaming and smoldering. We also report fire-integrated emissions for aerosol absorption and scattering coefficients and compare these to other fire-integrated properties. Many of our burn experiments examined a number of fuels that had not before been characterized in laboratory conditions, including a number of peat fuels, African savanna grasses and crop residuals.

  7. Heavily fractionated noble gases in an acid residue from the Klein Glacier 98300 EH3 chondrite

    NASA Astrophysics Data System (ADS)

    Nakashima, Daisuke; Ott, Ulrich; El Goresy, Ahmed; Nakamura, Tomoki

    2010-09-01

    Noble gases were measured both in bulk samples (stepped pyrolysis and total extraction) and in a HF/HCl residue (stepped pyrolysis and combustion) from the Klein Glacier (KLE) 98300 EH3 chondrite. Like the bulk meteorite and as seen in previous studies of bulk type 3 E chondrites ("sub-Q"), the acid residue contains elementally fractionated primordial noble gases. As we show here, isotopically these are like those in phase-Q of primitive meteorites, but elementally they are heavily fractionated relative to these. The observed noble gases are different from "normal" Q noble gases also with respect to release patterns, which are similar to those of Ar-rich noble gases in anhydrous carbonaceous chondrites and unequilibrated ordinary chondrites (with also similar isotopic compositions). While we cannot completely rule out a role for parent body processes such as thermal and shock metamorphism (including a later thermal event) in creating the fractionated elemental compositions, parent body processes in general seem not be able to account for the distinct release patterns from those of normal Q noble gases. The fractionated gases may have originated from ion implantation from a nebular plasma as has been suggested for other types of primordial noble gases, including Q, Ar-rich, and ureilite noble gases. With solar starting composition, the corresponding effective electron temperature is about 5000 K. This is lower than inferred for other primordial noble gases (10,000-6000 K). Thus, if ion implantation from a solar composition reservoir was a common process for the acquisition of primordial gas, electron temperatures in the early solar system must have varied spatially or temporally between 10,000 and 5000 K. Neon and xenon isotopic ratios of the residue suggest the presence of presolar silicon carbide and diamond in abundances lower than in the Qingzhen EH3 and Indarch EH4 chondrites. Parent body processes including thermal and shock metamorphism and a late thermal

  8. Investigating atmospheric transport processes of trace gases with ICON-ART on different scales

    NASA Astrophysics Data System (ADS)

    Schröter, Jennifer; Ruhnke, Roland; Rieger, Daniel; Vogel, Heike; Vogel, Bernhard

    2016-04-01

    We have extended the global ICON [1] (ICOsahedral Nonhydrostatic) modelling framework by introducing ICON-ART [2]. ICON is jointly developed by the German Weather Service (DWD) and Max-Planck-Institute for Meteorology (MPI-M), and is used for numerical weather prediction as well as for future climate predictions. ICON-ART is developed at the KIT with the goal to simulate interactions between trace substances and the state of the atmosphere. For the dynamics (transport and diffusion) of gaseous tracers, the original ICON tracer framework is used. A process splitting approach separates the physical processes. In this study, we present results of the ICON-ART extension, including the full gas-phase chemistry module. This module uses the kpp formalism [3] to generate chemistry modules and the photolysis module is based on Cloud-J7.3 [4]. Photolysis rates are calculated online based on the meteorological state of the atmosphere, as well as on the actual ozone profile and cloud optical parameters. Two simulations are performed with ICON-ART. The first one with physics parameterisations for the numerical weather prediction (NWP) and the second one with that for climate simulation in order to investigate the dynamical influence on the distribution of long-lived as well as of short-lived species by comparing both simulations. The results are evaluated with other model results and with observation. In addition to that, we use aircraft campaign data to validate the results on the regional scale for short term simulations by using the NWP physics. [1] Zängl, G., Reinert, D., Ripodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamicalcore, Q. J. Roy. Meteor. Soc,141, 563-579, doi:10.1002/qj.2378, 2015 [2] Rieger, D., Bangert, M., Bischoff-Gauss, I., Förstner, J., Lundgren, K., Reinert, D., Schröter, J., Vogel, H., Zängl, G., Ruhnke, R., and Vogel, B.: ICON-ART 1.0 - a new online

  9. Spatiotemporal Patterns of Urban Trace Gases and Pollutants Observed with a Light Rail Vehicle Platform in Salt Lake City, UT

    NASA Astrophysics Data System (ADS)

    Mitchell, L.; Crosman, E.; Fasoli, B.; Leclair-Marzolf, L.; Jacques, A.; Horel, J.; Lin, J. C.; Bowling, D. R.; Ehleringer, J. R.

    2015-12-01

    Urban environments are characterized by both spatial complexity and temporal variability, each of which present challenges for measurement strategies aimed at constraining estimates of greenhouse gas emissions and air quality. To address these challenges we initiated a project in December 2014 to measure trace species (CO2, CH4, O3, and Particulate Matter) by way of a Utah Transit Authority (UTA) light rail vehicle whose route traverses the Salt Lake Valley in Utah on an hourly basis, retracing the same route through commercial, residential, suburban, and rural typologies. Light rail vehicles present advantages as a measurement platform, including the absence of in-situ fossil fuel emissions, repeated transects across a urban region that provides both spatial and temporal information, and relatively low operating costs. We present initial results from the first year of operations including the spatiotemporal patterns of greenhouse gases and pollutants across Salt Lake City, UT with an emphasis on criteria pollutants, identification of sources, and future applications of this measurement platform.

  10. Pi-MAX: a new parametrized algorithm to retrieve vertical profiles of trace gases and aerosols from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Remmers, Julia; Beirle, Steffen; Doerner, Steffen; Wagner, Thomas

    2013-04-01

    Multi-Axis (MAX-) DOAS instruments observe scattered sunlight under various mostly slant elevation angles. From such observations information on tropospheric profiles of trace gases and aerosols can be retrieved. MAX-DOAS observations can be used to quantify emissions and to study chemical processes in the atmosphere. Measuring (horizontally and vertically) averaged concentrations the technique can be used as a link between in-situ and satellite measurements. Thus satellite observations of tropospheric trace gases can be validated. IMAX (Parametrized Inversion for MAX-DOAS measurements) is a parametrized method to retrieve vertical profiles of trace gases (such as H2O, NO2, HCHO, CHOCHO) and aerosols. No online calculations are necessary, since look-up tables (LUT) calculated with a Monte Carlo based radiative Transport Model are used. In this manner it is user-friendly, easy to distribute and applicable to every measurement location. The here shown measurements took place in the Maldives in March, 2012, during the CARDEX campaign. Simultaneous sun photometry-, Lidar- and UAV-measurements provide the possibility to validate the new algorithm. We present time series of profiles of trace gas concentrations and aerosol extinction We discuss the effects of clouds on the retrieved results.

  11. Emissions of Trace Gases and Particles from Savanna Fires in Southern Africa

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Bertschi, Isaac T.; Blake, Donald R.; Simpson, Isobel J.; Gao, Song; Kirchstetter, Thomas W.; Novakov, Tica

    2003-01-01

    Airborne measurements made on initial smoke from 10 savanna fires in southern Africa provide quantitative data on emissions of 50 gaseous and particulate species, including carbon dioxide, carbon monoxide, sulfur dioxide, nitrogen oxides, methane, ammonia, dimethyl sulfide, nonmethane organic compounds, halocarbons, gaseous organic acids, aerosol ionic components, carbonaceous aerosols, and condensation nuclei (CN). Measurements of several of the gaseous species by gas chromatography and Fourier transform infrared spectroscopy are compared. Emission ratios and emission factors are given for eight species that have not been reported previously for biomass burning of savanna in southern Africa (namely, dimethyl sulfide, methyl nitrate, five hydrocarbons, and particles with diameters from 0.1 to 3 microns). The emission factor that we measured for ammonia is lower by a factor of 4, and the emission factors for formaldehyde, hydrogen cyanide, and CN are greater by factors of about 3, 20, and 3 - 15, respectively, than previously reported values. The new emission factors are used to estimate annual emissions of these species from savanna fires in Africa and worldwide.

  12. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing Determination of Various Atmospheric Trace Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Heaps, W. S.; Wilson, E. L.

    2007-01-01

    New type of remote sensing instrument based upon the Fabry-Perot inte rferometric technique has been developed at NASA's Goddard Space Flight Center. Fabry-Perot interferometry (FPI) is a well known, powerful spectroscopic technique and one of its many applications is to be use d to measure greenhouse gases and also some harmful species in the at mosphere. With this technique, absorption of particular species is me asured and related to its concentration. A solid Fabry-Perot etalon is used as a frequency filter to restrict the measurement to particular absorption bands of the gas of interest. With adjusting the thicknes s of the etalon that separation (in frequency) of the transmitted fri nges can be made equal to the almost constant separation of the gas a bsorption lines. By adjusting the temperature of the etalon, which changes the index of refi-action of its material, the transmission fring es can be brought into nearly exact correspondence with absorption li nes of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosph ere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The instrument that we have dev eloped detects the absorption of various atmospheric trace gases in d irect or reflected sunlight. Our instrument employing Fabry-Perot interferometer makes use of two features to achieve high sensitivity. The first is high spectral resolution enabling one to match the width of an atmospheric absorption feature by the instrumental band pass. The second is high optical throughput enabled by using multiple spectral lines simultaneously. For any species that one wishes to measure, thi s first feature is available while the use of multiple spectral features can be employed only for species with suitable spectra and freedom from interfering species in the same wavelength region. We have deve loped an instrument for use as ground based

  13. A new UK Greenhouse Gas measurement network providing ultra high-frequency measurements of key radiatively active trace gases taken from a network of tall towers

    NASA Astrophysics Data System (ADS)

    Grant, A.; O'Doherty, S.; Manning, A. J.; Simmonds, P. G.; Derwent, R. G.; Moncrieff, J. B.; Sturges, W. T.

    2012-04-01

    Monitoring of atmospheric concentrations of gases is important in assessing the impact of international policies related to the atmospheric environment. The effects of control measures on greenhouse gases introduced under the Montreal and Kyoto Protocols are now being observed. Continued monitoring is required to assess the overall success of the Protocols. For over 15 years the UK Government have funded high-frequency measurements of greenhouse gases and ozone depleting gases at Mace Head, a global background measurement station on the west coast of Ireland. These continuous, high-frequency, high-precision measurements are used to estimate regional (country-scale) emissions of greenhouse gases across the UK using an inversion methodology (NAME-Inversion) that links the Met Office atmospheric dispersion model (Numerical Atmospheric dispersion Modelling Environment - NAME) with the Mace Head observations. This unique inversion method acts to independently verify bottom up emission estimates of radiatively active and ozone-depleting trace gases. In 2011 the UK government (DECC) funded the establishment and integration of three new tall tower measurements stations in the UK, to provide enhanced resolution emission maps and decrease uncertainty of regional emission estimates produced using the NAME-Inversion. One station included in this new UK network was already established in Scotland and was used in collaboration with Edinburgh University. The two other new stations are in England and were set-up early in 2012, they contain brand new instrumentation for measurements of greenhouse gases. All three additional stations provide ultra high-frequency (1 sec) data of CO2 and CH4 using the Picarro© Cavity Ring Down Spectrometer and high frequency (20 min) measurements of N2O and SF6 from custom built sample modules with GC-ECD. We will present the new tall tower UK measurement network in detail. Using high-frequency measurements at new operational sites, including Mace

  14. Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño

    NASA Astrophysics Data System (ADS)

    Stockwell, Chelsea E.; Jayarathne, Thilina; Cochrane, Mark A.; Ryan, Kevin C.; Putra, Erianto I.; Saharjo, Bambang H.; Nurhayati, Ati D.; Albar, Israr; Blake, Donald R.; Simpson, Isobel J.; Stone, Elizabeth A.; Yokelson, Robert J.

    2016-09-01

    Peat fires in Southeast Asia have become a major annual source of trace gases and particles to the regional-global atmosphere. The assessment of their influence on atmospheric chemistry, climate, air quality, and health has been uncertain partly due to a lack of field measurements of the smoke characteristics. During the strong 2015 El Niño event we deployed a mobile smoke sampling team in the Indonesian province of Central Kalimantan on the island of Borneo and made the first, or rare, field measurements of trace gases, aerosol optical properties, and aerosol mass emissions for authentic peat fires burning at various depths in different peat types. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared spectroscopy, whole air sampling, photoacoustic extinctiometers (405 and 870 nm), and a small subset of the data from analyses of particulate filters. The trace gas measurements provide emission factors (EFs; grams of a compound per kilogram biomass burned) for up to ˜ 90 gases, including CO2, CO, CH4, non-methane hydrocarbons up to C10, 15 oxygenated organic compounds, NH3, HCN, NOx, OCS, HCl, etc. The modified combustion efficiency (MCE) of the smoke sources ranged from 0.693 to 0.835 with an average of 0.772 ± 0.053 (n = 35), indicating essentially pure smoldering combustion, and the emissions were not initially strongly lofted. The major trace gas emissions by mass (EF as g kg-1) were carbon dioxide (1564 ± 77), carbon monoxide (291 ± 49), methane (9.51 ± 4.74), hydrogen cyanide (5.75 ± 1.60), acetic acid (3.89 ± 1.65), ammonia (2.86 ± 1.00), methanol (2.14 ± 1.22), ethane (1.52 ± 0.66), dihydrogen (1.22 ± 1.01), propylene (1.07 ± 0.53), propane (0.989 ± 0.644), ethylene (0.961 ± 0.528), benzene (0.954 ± 0.394), formaldehyde (0.867 ± 0.479), hydroxyacetone (0.860 ± 0.433), furan (0.772 ± 0.035), acetaldehyde (0.697 ± 0.460), and acetone (0.691 ± 0.356). These field data support significant revision

  15. Shallow borehole array for measuring fluxes of reduced trace gases in Greenland as an analogue for volatile emission on Mars

    NASA Astrophysics Data System (ADS)

    Pratt, L. M.

    2011-12-01

    -packer-optic-capillary system as a technology demonstration of semi-autonomous drilling for planetary exploration. Carbon and hydrogen isotopic compositions for methane and ethane will be determined in the field using Integrated Cavity Output Spectroscopy and Cavity Ring Down Spectroscopy. Continuous permafrost is present at the study site down to 300 m depth with temperatures dropping to -3 degrees C at a depth of about 4 meters, providing a relatively shallow and pristine setting for an instrumented study of reduced trace gases in soil, fractured bedrock, and groundwater constituting the active layer.

  16. Method and compositions for reducing corrosion in the removal of acidic gases from gaseous mixtures

    SciTech Connect

    DuPart, M.S.; Cringle, D.C.; Oakes, B.D.

    1984-05-01

    A corrosion inhibited composition containing a gas conditioning solution such as an alkanol amine with water or with organic solvents and with small amounts of soluble thiocyanate compounds, soluble trivalent bismuth compounds with or without soluble divalent nickel or cobalt compounds. The compositions are useful to separate acid gases such as carbon dioxide from hydrocarbon feed streams in gas conditioning apparatus with minimum amounts of corrosion of the ferrous surfaces.

  17. Chemical gradient of selected organic trace gases in the Tropical Tropopause Layer observed during the Airborne Tropical Tropopause Experiment 2013 (ATTREX-2013)

    NASA Astrophysics Data System (ADS)

    Navarro, M. A.; Atlas, E. L.; Lueb, R.; Hendershot, R.; Gabbard, S.; Zhu, X.; Pope, L.

    2013-12-01

    Hydrocarbons and short-lived organic halogen gases play an important role in the chemistry of the upper troposphere/lower stratosphere (UT/LS) region. The characterization of these gases not only provides information on air mass sources and transport time scales, but also defines the reactive halogen budget and the conditions for the stratospheric chemistry that affects ozone depletion rates. As part of the transition between troposphere and stratosphere, nonmethane hydrocarbons (NMHC) and halocarbons reach the Tropical Tropopause Layer (TTL) where chemical and physical processes determine their fate. However, very limited data are available regarding composition, seasonality and variability of these gases, since only high altitude aircraft can reach this region of the atmosphere (>13-14 Km). A new whole air sampler (GWAS) was developed to study the trace gas chemistry in this region of the upper troposphere and lower stratosphere. The sampler collects up to 90 samples per flight for measurement of a wide range of hydrocarbons, halocarbons, organic nitrates and solvents. During the Airborne Tropical Tropopause Experiment (ATTREX) field project, carried out during February-March 2013, we flew the GWAS system on 5 research flights. A total of 388 samples were collected during flights of approximately 24 hours, which sampled air over the tropical Pacific Ocean at altitudes from 9 to 19 km. The sample collection focused on obtaining measurements across the TTL region. Approximately 45 vertical profiles of the TTL were sampled with our instrument during this mission. Measurements of trace gases were carried out at Dryden Flight Research Center using a combination of gas chromatography with mass spectrometric, flame ionization, and electron capture detectors. Supporting measurements were done at the University of Miami (UM) laboratory. The distribution, vertical structure, and variability of selected hydrocarbon and organic halogen trace gases in the TTL region will be

  18. Soluble species in the Arctic summer troposphere - Acidic gases, aerosols, and precipitation

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Vijgen, A. S.; Harriss, R. C.

    1992-01-01

    The large-scale spatial distribution from 0.15-to 6 km altitude in the North American Arctic troposphere of several soluble acidic gases and major aerosol species during the summertime is reported. The distribution is found to be compositionally consistent on a large spatial scale. The summertime troposphere is an acidic environment, with HCOOH and CH3COOH the principal acidic gases while acidic sulfate aerosols dominate the particulate phase. There appears to be a surface source of NH3 over the pack ice which may originate from decay of dead marine organisms on the ice surface, evolution from surface ocean waters in open ice leads, or release from rotting sea ice. At low altitude over the pack ice this NH34 appears to partially neutralize aerosol acidity. Over sub-Arctic tundra in southeastern Alaska, inputs of marine biogenic sulfur from the Bering Sea appear to be an important source of boundary layer aerosol SO4(2-). The rainwater acidity over the tundra is typical of remote regions.

  19. Soluble species in the Arctic summer troposphere - acidic gases, aerosols, and precipitation

    SciTech Connect

    Talbot, R.W.; Vijgen, A.S.; Harriss, R.C. Old Dominion Univ., Norfolk, VA )

    1992-10-01

    The large-scale spatial distribution from 0.15-to 6 km altitude in the North American Arctic troposphere of several soluble acidic gases and major aerosol species during the summertime is reported. The distribution is found to be compositionally consistent on a large spatial scale. The summertime troposphere is an acidic environment, with HCOOH and CH3COOH the principal acidic gases while acidic sulfate aerosols dominate the particulate phase. There appears to be a surface source of NH3 over the pack ice which may originate from decay of dead marine organisms on the ice surface, evolution from surface ocean waters in open ice leads, or release from rotting sea ice. At low altitude over the pack ice this NH34 appears to partially neutralize aerosol acidity. Over sub-Arctic tundra in southeastern Alaska, inputs of marine biogenic sulfur from the Bering Sea appear to be an important source of boundary layer aerosol SO4(2-). The rainwater acidity over the tundra is typical of remote regions. 61 refs.

  20. A versatile, refrigerant- and cryogen-free cryofocusing-thermodesorption unit for preconcentration of traces gases in air

    NASA Astrophysics Data System (ADS)

    Obersteiner, Florian; Bönisch, Harald; Keber, Timo; O'Doherty, Simon; Engel, Andreas

    2016-10-01

    We present a compact and versatile cryofocusing-thermodesorption unit, which we developed for quantitative analysis of halogenated trace gases in ambient air. Possible applications include aircraft-based in situ measurements, in situ monitoring and laboratory operation for the analysis of flask samples. Analytes are trapped on adsorptive material cooled by a Stirling cooler to low temperatures (e.g. -80 °C) and subsequently desorbed by rapid heating of the adsorptive material (e.g. +200 °C). The set-up involves neither the exchange of adsorption tubes nor any further condensation or refocusing steps. No moving parts are used that would require vacuum insulation. This allows for a simple and robust design. Reliable operation is ensured by the Stirling cooler, which neither contains a liquid refrigerant nor requires refilling a cryogen. At the same time, it allows for significantly lower adsorption temperatures compared to commonly used Peltier elements. We use gas chromatography - mass spectrometry (GC-MS) for separation and detection of the preconcentrated analytes after splitless injection. A substance boiling point range of approximately -80 to +150 °C and a substance mixing ratio range of less than 1 ppt (pmol mol-1) to more than 500 ppt in preconcentrated sample volumes of 0.1 to 10 L of ambient air is covered, depending on the application and its analytical demands. We present the instrumental design of the preconcentration unit and demonstrate capabilities and performance through the examination of analyte breakthrough during adsorption, repeatability of desorption and analyte residues in blank tests. Examples of application are taken from the analysis of flask samples collected at Mace Head Atmospheric Research Station in Ireland using our laboratory GC-MS instruments and by data obtained during a research flight with our in situ aircraft instrument GhOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer).

  1. Atmospheric Trace Gases, Aerosols, and Cloud Data from the EOS Ozone Monitoring Instrument (OMI) on the Aura Satellite

    NASA Astrophysics Data System (ADS)

    Ahmad, S. P.; Levelt, P. F.; Hilsenrath, E.; Tamminen, J.; Bhartia, P.; Veefkind, P. J.; van den Oord, B.; Joiner, J.; Fleig, A.; Johnson, J.; Leptoukh, G.; Kempler, S.

    2005-12-01

    The Ozone Monitoring Instrument (OMI) along with the other three instruments MLS, HIRDLS and TES is flown (July 2004) on the Aura satellite. OMI is a nadir imaging sensor which measures ultraviolet and visible solar and earth-atmosphere radiances in the wavelength range of 270 to 500 nm with a spectral resolution of about 0.5 nm, and a spatial resolution of 13x24 km2 (http://www.knmi.nl/omi). OMI is the primary instrument on Aura for tracking the expected recovery of the ozone layer, the sources of aerosol and its transport over oceans and continents, and trace gases that effect air quality. The primary data product from OMI is total column ozone. The other major products are tropospheric ozone, nitrogen dioxide, sulfur dioxide, and aerosol optical depth (four of the U.S. Environmental Protection Agency's six criteria pollutants), formaldehyde, bromine monoxide, chlorine dioxide, cloud fraction and height, and surface erythemal UV-B irradiances. After preliminary validation (based on limited in-situ observations), some of these products (version 2.0) are released to the public and are available from Goddard Earth Sciences Data and Information Services Center Distributed Active Archive Center (GES DISC DAAC (http://acdisc.gsfc.nasa.gov/). This presentation will provide an overview of the OMI data products and its applications, along with the software and web based on-line tool (OMI Giovanni) that have been developed for the subsetting, manipulation and analysis of these data. Details of the data access and data mining tools will be provided in another presentation (see J. Johnson et al. at this AGU session).

  2. 3-DoF MAX-DOAS: A new method for deriving free tropospheric columns of marine trace gases from ground

    NASA Astrophysics Data System (ADS)

    Coburn, S.; Baidar, S.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2013-12-01

    Current retrievals of Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements from the surface focus on retrieving boundary layer vertical profiles and vertical column amounts of atmospheric trace gases in the lower atmosphere. We have expanded these retrievals, and combine a high signal-to-noise MAX-DOAS instrument with an in-depth treatment of radiative transfer modeling of the suns movement to show that we can decouple the partial vertical column of trace gases located in the free troposphere from that in the boundary layer. The approach is demonstrated using our long-term (9 months) of MAX-DOAS observations of iodine oxide (IO), bromine oxide (BrO), glyoxal (CHOCHO) and formaldehyde (HCHO) near Pensacola, FL. Boundary layer profiles are derived from measurements at shallow looking elevation angles. In a second inversion we utilize MAX-DOAS angles still containing information above the boundary layer in order to assess total tropospheric columns (up to ~13km). The free tropospheric column is then derived by difference of the total column minus the boundary layer partial column. We apply this technique to several trace gases measured in the coastal marine troposphere including IO, BrO, CHOCHO, and HCHO, and discuss implications of our findings in context with recent aircraft observations by the TORERO project.

  3. Raman Scattering Sensor for On-Line Monitoring of Amines and Acid Gases

    SciTech Connect

    Uibel, Rory; Smith, Lee

    2010-05-20

    Sulfur and CO2 removal from hydrocarbon streams and power plant effluents are a major problem. The sulfur is normally in the form of H2S. These two acid gases are scrubbed using aqueous amine solutions that are difficult to control with conventional technology. Process Instruments Inc. developed Raman scattering technology for on-line, real-time monitoring of amine streams to improve their efficiency in scrubbing H2S and CO2 from hydrocarbon streams and power plant effluents. Improved control of amine and acid gas concentrations will allow refineries, natural gas processes and power plants to more efficiently scrub Sulfur and CO2, saving energy, time and financial resources.

  4. Measurement of gas/water uptake coefficients for trace gases active in the marine environment. [Annual report

    SciTech Connect

    Davidovits, P.; Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E.

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean`s surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry`s law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  5. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, J.L.

    1998-09-15

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 5 figs.

  6. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, James L.

    1998-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  7. Basin scale natural gas source, migration and trapping traced by noble gases and major elements: the Pakistan Indus basin

    NASA Astrophysics Data System (ADS)

    Battani, Anne; Sarda, Philippe; Prinzhofer, Alain

    2000-08-01

    He, Ne and Ar concentrations, He and Ar isotopic ratios, carbon isotopic ratios and chemical compositions of hydrocarbon gases were measured in natural gas samples from gas-producing wells in the Indus basin, Pakistan, where no oil has ever been found. 3He/ 4He ratios are in the range 0.01-0.06 Ra (Ra is the atmospheric value of 1.38×10 -6) indicating the absence of mantle-derived helium despite the Trias extension. 40Ar/ 36Ar ratios range from 296 to 800, consistent with variable additions of radiogenic argon to atmospheric, groundwater-derived argon. Rare gas concentrations show large variations, from 6×10 -5 to 1×10 -3 mol/mol for 4He and from 3×10 -7 to 3×10 -5 mol/mol for 36Ar. In general, 36Ar concentrations are high compared to literature data for natural gas. CO 2 and N 2 concentrations are variable, ranging up to 70 and 20%, respectively. Mantle-derived He is not observed, therefore CO 2 and N 2 are not mantle-derived either. Hydrocarbon gas maturity is high, but accumulation efficiency is small, suggesting that early-produced hydrocarbons, including oil, were lost as well as mantle helium. This is consistent with the generally late, Pliocene, trap formation, and explains the high N 2 concentrations, since N 2 is the final species generated at the end of organic matter maturation. Based on δ 13C data, CO 2 originates from carbonate decomposition. Very elevated 20Ne/ 36Ar ratios are found, reaching a maximum of 1.3 (compared to 0.1-0.2 for air-saturated water and 0.5 for air), and these high values are related to the lowest rare gas concentrations. We suggest that this highly fractionated signature is the trace of the past presence of oil in the basin and appeared in groundwater. We propose a model where oil-water contact is followed by gas-water contact, both with Rayleigh distillation for rare gas abundance ratios, thereby generating the fractionated 20Ne/ 36Ar signature in groundwater first and transferring it to gas later. Assuming the gas

  8. Airborne Measurements and Emission Estimates of Greenhouse Gases and Other Trace Constituents From the 2013 California Yosemite Rim Wildfire

    NASA Technical Reports Server (NTRS)

    Yates, E. L.; Iraci, L. T.; Singh, H. B.; Tanaka, T.; Roby, M. C.; Hamill, P.; Clements, C. B.; Lareau, N.; Contezac, J.; Blake, D. R.; Simpson, I. J.; Wisthaler, A.; Mikoviny, T.; Diskin, G. S.; Beyersdorf, A. J.; Choi, Y.; Ryerson, T. B.; Jimenez, J. L.; Campuzano-Jost, P.; Loewenstein, M.; Gore, W.

    2015-01-01

    This paper presents airborne measurements of multiple atmospheric trace constituents including greenhouse gases (such as CO2, CH4, O3) and biomass burning tracers (such as CO, CH3CN) downwind of an exceptionally large wildfire. In summer 2013, the Rim wildfire, ignited just west of the Yosemite National Park, California, and burned over 250,000 acres of the forest during the 2-month period (17 August to 24 October) before it was extinguished. The Rim wildfire plume was intercepted by flights carried out by the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) on 29 August and the NASA DC-8, as part of SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys), on 26 and 27 August during its intense, primary burning period. AJAX revisited the wildfire on 10 September when the conditions were increasingly smoldering, with slower growth. The more extensive payload of the DC-8 helped to bridge key measurements that were not available as part of AJAX (e. g. CO). Data analyses are presented in terms of emission ratios (ER), emission factors (EF) and combustion efficiency and are compared with previous wildfire studies. ERs were 8.0 ppb CH4/(ppm CO2) on 26 August, 6.5 ppb CH4 (ppm CO2)1 on 29 August and 18.3 ppb CH4 (ppm CO2)1 on 10 September 2013. The increase in CH4 ER from 6.5 to 8.0 ppb CH4/(ppm CO2) during the primary burning period to 18.3 ppb CH4/(ppm CO2) during the fire's slower growth period likely indicates enhanced CH4 emissions from increased smoldering combustion relative to flaming combustion. Given the magnitude of the Rim wildfire, the impacts it had on regional air quality and the limited sampling of wildfire emissions in the western United States to date, this study provides a valuable dataset to support forestry and regional air quality management, including observations of ERs of a wide number of species from the Rim wildfire.

  9. Airborne measurements and emission estimates of greenhouse gases and other trace constituents from the 2013 California Yosemite Rim wildfire

    NASA Astrophysics Data System (ADS)

    Yates, E. L.; Iraci, L. T.; Singh, H. B.; Tanaka, T.; Roby, M. C.; Hamill, P.; Clements, C. B.; Lareau, N.; Contezac, J.; Blake, D. R.; Simpson, I. J.; Wisthaler, A.; Mikoviny, T.; Diskin, G. S.; Beyersdorf, A. J.; Choi, Y.; Ryerson, T. B.; Jimenez, J. L.; Campuzano-Jost, P.; Loewenstein, M.; Gore, W.

    2016-02-01

    This paper presents airborne measurements of multiple atmospheric trace constituents including greenhouse gases (such as CO2, CH4, O3) and biomass burning tracers (such as CO, CH3CN) downwind of an exceptionally large wildfire. In summer 2013, the Rim wildfire, ignited just west of the Yosemite National Park, California, and burned over 250,000 acres of the forest during the 2-month period (17 August to 24 October) before it was extinguished. The Rim wildfire plume was intercepted by flights carried out by the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) on 29 August and the NASA DC-8, as part of SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys), on 26 and 27 August during its intense, primary burning period. AJAX revisited the wildfire on 10 September when the conditions were increasingly smoldering, with slower growth. The more extensive payload of the DC-8 helped to bridge key measurements that were not available as part of AJAX (e. g. CO). Data analyses are presented in terms of emission ratios (ER), emission factors (EF) and combustion efficiency and are compared with previous wildfire studies. ERs were 8.0 ppb CH4 (ppm CO2)-1 on 26 August, 6.5 ppb CH4 (ppm CO2)-1 on 29 August and 18.3 ppb CH4 (ppm CO2)-1 on 10 September 2013. The increase in CH4 ER from 6.5 to 8.0 ppb CH4 (ppm CO2)-1 during the primary burning period to 18.3 ppb CH4 (ppm CO2)-1 during the fire's slower growth period likely indicates enhanced CH4 emissions from increased smoldering combustion relative to flaming combustion. Given the magnitude of the Rim wildfire, the impacts it had on regional air quality and the limited sampling of wildfire emissions in the western United States to date, this study provides a valuable dataset to support forestry and regional air quality management, including observations of ERs of a wide number of species from the Rim wildfire.

  10. Fluxes of reactive trace gases from Tapajos forest: Upwind precursor emissions to complement the GoAmazon campaign.

    NASA Astrophysics Data System (ADS)

    Munger, J. W.; Alves, E. G.; Batalha, S. S. A.; Freitas, H.; Guenther, A. B.; Hayek, M.; Martin, S. T.; Park, J. H.; Rizzo, L. V.; Rocha, H.; Saleska, S. R.; Seco, R.; Smith, J. N.; Tota, J.; Wiedemann, K. T.; Wofsy, S. C.

    2014-12-01

    The Amazon Forest includes a diverse combination of vegetation characteristics, climate, and land usage that influence emission of the reactive trace-gases driving atmospheric chemistry and particle formation. A better understanding of atmospheric chemistry across this region requires consideration of variation in precursor emissions. To complement the intensive GoAmazon measurement campaigns that are focused on the interaction of Manaus urban plume with surrounding forest emissions we have established a suite of measurements at the km67 site in the Floresta Nacional do Tapajós, south of Santarem. The site is situated midway between the Tapajos River on the west and the BR 163 highway to the east (upwind). The nearby surroundings for up to 6 km on all sides is intact rain forest. A strip along the east side of the highway and adjacent roads has been cleared for agriculture, but the upwind area is otherwise sparsely populated. The km67 site was initially established in 2001 during the LBA campaign as carbon flux site and included CO measurements to identify influence from local and regional biomass burning. A 64 m tower extends above a 40-45 m closed canopy. In 2014 additional instrumentation including continuous NO/NO2, O3, SO2, and CH4 concentration profiles, NOy concentration and fluxes were added. Volatile organic compound (VOC) measurements using a PTR-HRTOF-MS (Proton Transfer Reaction-High Resolution-Time of Flight-Mass Spectrometer) and particle measurements using a nanoSMPS were added during a campaign in June-July 2014. This period was influenced by heavy precipitation; as a result O3 levels above the canopy were rather low, and declined further close to the ground. Even though there was no evidence of anthropogenic influence NO and NO2 concentrations were significant. Elevated concentrations beneath the canopy indicate soil NO emission is the dominant source. Eddy-covariance flux measurements of volatile organic compounds (VOC) above the Tapajós forest

  11. Autonomous Long-Path DOAS Measurements of Tropospheric Trace Gases at Neumayer Station III, Antarctica: First Results

    NASA Astrophysics Data System (ADS)

    Nasse, Jan-Marcus; Frieß, Udo; Pöhler, Denis; Weller, Rolf; Platt, Ulrich

    2016-04-01

    Reactive Halogen Species (RHS, like IO, BrO, ClO, etc.) have an important impact on atmospheric chemistry. In Polar Regions, the role of halogen radical chemistry has been subject of intensive research for more than two decades. Among the most prominent effects of RHS on the Polar atmosphere are the change of the oxidative capacity of the troposphere including wide-spread and frequently virtually complete destruction of tropospheric ozone, in particular during springtime, as well as the oxidation and subsequent deposition of gaseous elemental mercury. The number of field observations and the understanding of the underlying processes varies greatly between bromine, iodine and chlorine compounds. While elevated BrO concentrations resulting from autocatalytic processes (the so-called bromine explosion mechanism) are frequently observed, the abundance and influence of iodine is still subject to discussions and available observations give no consistent picture. With only a few direct observations of chlorine compounds, such as ClO and OClO, the role of tropospheric chlorine chemistry remains poorly understood to date, despite strong evidence for its relevance. The lack of observations of chlorine radicals is mainly due to the challenging detection, particularly in the case of ClO. Scattered sunlight DOAS measurements, which are available from a number of Polar locations, are not sensitive for ClO, due to insufficient radiation intensity in the UV spectral region (<308nm) where this molecule is absorbing. Here we present the overall design and first results of a novel Long Path DOAS (Differential Optical Absorption Spectroscopy) instrument with an active light source suitable for the detection of ClO. It has been set up at the German Research Station Neumayer III in coastal Antarctica during the summer season 2015/16 and is planned to operate autonomously for at least one year. The instrument is able to detect - in addition to ClO - many trace gases absorbing in the UV

  12. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania, 41° S

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Keywood, M. D.; Galbally, I. E.; Gras, J. L.; Cainey, J. M.; Cope, M. E.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Bentley, S. T.; Meyer, C. P.; Ristovski, Z.; Goldstein, A. H.

    2015-07-01

    with a large CO enhancement, an increase of the NMOC / CO emission ratio (ER) by a factor of 2-4 and a halving of the BC / CO ratio. Rainfall on Robbins Island was observed by radar during this period which likely resulted in a lower fire combustion efficiency, and higher emission of compounds associated with smouldering. This highlights the importance of relatively minor meterological events on BB emissions. Emission factors (EF) were derived for a range of trace gases, some never before reported for Australian conditions, (including hydrogen, phenol and toluene) using a calculated ER to CO and a published CO EF. The EF derived for most species are comparable to other temperate Australian studies but lower than Northern Hemisphere temperate studies. This work demonstrates the substantial impact that BB plumes have on the composition of marine air, and the significant changes that can occur as the plume is diluted and interacts with other emission sources. We also provide new trace gas and particle EF for temperate southern Australia.

  13. Dating of young groundwater using four anthropogenic trace gases (SF6, SF5CF3, CFC-12 and Halon-1301): methodology and first results.

    PubMed

    Bartyzel, Jakub; Rozanski, Kazimierz

    2016-01-01

    A dedicated, GC-based analytical system is presented which allows detection of four anthropogenic trace gases (SF6, SF5CF3, CFC-12 and Halon-1301) in a single water sample, with detection limits and measurement uncertainties sufficiently low to employ them as quantitative indicators of groundwater age. The gases dissolved in water are extracted in the field using the method based on a dynamic head-space concept. In the laboratory, the investigated gases are cryogenically enriched, separated and measured using an electron capture detector. Reproducibility of the analyses is in the order of 2-5 %. The investigated tracers were measured in several production wells located in the recharge area of an intensively exploited aquifer in southern Poland. While the piston-flow ages of groundwater in the investigated wells revealed internal consistency, they appeared to be generally smaller than the ages derived from time series of tritium content in those wells, interpreted by lumped-parameter models. This difference stems mainly from significantly longer travel times of tritium through the unsaturated zone, when compared to the gaseous tracers being used. The results of this study highlight the benefits of using multiple tracing in quantifying timescales of groundwater flow in shallow aquifer systems.

  14. Noble Gases and Nitrogen Released from a Lunar Soil Pyroxene Separate by Acid Etching

    NASA Astrophysics Data System (ADS)

    Rider, P. E.

    1993-07-01

    We report initial results from a series of experiments designed to measure recently implanted solar wind (SW) ions in lunar soil mineral grains [1]. An acid-etching technique similar to the CSSE method developed at ETH Zurich was used to make abundance and isotope measurements of the SW noble gas and nitrogen compositions. Among the samples examined was a pyroxene separate from soil 75081. It was first washed with H2O to remove contamination from the sample finger walls and grain surfaces. H2O also acted as a weak acid, releasing gases from near-surface sites. Treatment with H2SO3 followed the water washes. Acid pH (~1.8 to ~1.0) and temperature (~23 degrees C to ~90 degrees C) and duration of acid attack (several minutes to several days) were varied from step to step. Finally, the sample was pyrolyzed in several steps to remove the remaining gases, culminating with a high-temperature pyrolysis at 1200 degrees C. Measurements of the light noble gases were mostly consistent with those from previous CSSE experiments performed on pyroxene [2,3]. It should be noted, however, that the Zurich SEP component was not easily distinguishable in the steps where it was expected to be observed. We suspect our experimental protocol masked the SEP reservoir, preventing us from seeing its distinctive signature. The most interesting results from this sample are its Kr and Xe isotopic and elemental compositions. Pyroxene apparently retains heavy noble gases as well as ilmenite (and plagioclase [4]). The heavy noble gas element ratios from this sample along with those previously reported [5,6] are, however, considerably heavier than the theoretically determined "solar system" values [7,8]. Explanations for the difference include the possibility that the derivations are incorrect, that there is another component of lunar origin mixing with the solar component, or that some type of loss mechanism is altering the noble gas reservoirs of the grains. The Kr and Xe isotopic compositions for

  15. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere - the state and future of the eddy covariance method.

    PubMed

    Baldocchi, Dennis

    2014-12-01

    The application of the eddy covariance flux method to measure fluxes of trace gas and energy between ecosystems and the atmosphere has exploded over the past 25 years. This opinion paper provides a perspective on the contributions and future opportunities of the eddy covariance method. First, the paper discusses the pros and cons of this method relative to other methods used to measure the exchange of trace gases between ecosystems and the atmosphere. Second, it discusses how the use of eddy covariance method has grown and evolved. Today, more than 400 flux measurement sites are operating world-wide and the duration of the time series exceed a decade at dozens of sites. Networks of tower sites now enable scientists to ask scientific questions related to climatic and ecological gradients, disturbance, changes in land use, and management. The paper ends with discussions on where the field of flux measurement is heading. Topics discussed include role of open access data sharing and data mining, in this new era of big data, and opportunities new sensors that measure a variety of trace gases, like volatile organic carbon compounds, methane and nitrous oxide, and aerosols, may yield.

  16. Horizonal and Vertical Spatial Patterns of Radon and Other Soil-gases Across the El Pilar Fault Trace at Guaraphiche, Edo. Surce (Venezuela)

    NASA Astrophysics Data System (ADS)

    LaBrecque, J. J.

    2002-05-01

    Soil-gases (radon, thoron, carbon dioxide and hydrogen) were measured at 63-cm depths along a transect perpendicular to the rupture (fault trace) from the 1997 Caricao earthquake (Mw=6.9) at Guarapiche, state of Sucre (Venezuela). The transect was about 40 meters long with ten sampling points with the spacings was smaller near the rupture. The shapes of the horizontal spatial patterns for radon (Rn-222), thoron (Rn-220) and total radon (Rn-222+Rn-220) were similar; the gas concentrations increased from both ends of the transect toward the rupture where a dip (valley) occurred. Both carbon dioxide and hydrogen gases showed anomalous values at the same sampling points. Twin peaks (anomalies) had been previously reported and suggested that they were due to blockage in the rupture. We have also determined soil-gases from 25-cm to 155-cm depths near the rupture and at the ends of the transect. The results showed that the soil-gas concentrations were not only higher in the upper levels (less than 65-cm) near the fault trace but were similar or greater than the lower levels. Thus, producing the twin peaks when soil-gas sampling was performed at the 65-cm depth. When the sampling was performed at only 45-cm depth the dip over the rupture was much less and the patterns looked more like a broad doublet peak. In conclusion, one can clearly see that not only positive soil-gas anomalies can occur over a fault trace but also negative ones too. 1) This work was partially funded by a research contract from the Venezuelan National Science Foundation (CONICIT Proyecto S1-95000448). 2) Mailing Address: Centro de Quimica, 8424 NW 56th Street, Suite 00204,Miami, Fl 33166 (USA). E-mail jjlabrec@ivic.ve FAX: +58-212-504-1214

  17. Chemical Gradient and Inter-hemispheric Distribution of Selected Organic Trace Gases in the Tropical Tropopause Layer Over the Western Pacific

    NASA Astrophysics Data System (ADS)

    Navarro, M. A.; Atlas, E. L.; Schauffler, S.; Donets, V.; Lueb, R.; Hendershot, R.; Gabbard, S.; Saiz-Lopez, A.; Rodriguez, X.; Kinnison, D. E.; Lamarque, J. F.; Zhu, X.; Pope, L.

    2014-12-01

    Hydrocarbons and short-lived species play an important role in the chemistry of the upper troposphere/lower stratosphere (UT/LS) region. Their distribution, vertical structure and variability provide information about emission sources and transport. Furthermore, the characterization of short-lived organic halogens defines the reactive halogen budget and the conditions for the stratospheric chemistry that affects ozone depletion rates. The chemical composition of the air masses entering the stratosphere depends on the chemical and physical processes that occur during their transitions through the Tropical Tropopause Layer (TTL). It is well known that convective systems effectively transport short-lived trace gases to the UT. However, the overall impact of these processes on the distribution and budget of trace gases is not well known since only high altitude aircraft can reach this region of the atmosphere (>13-14 Km) During the recent field campaign of the Airborne Tropical Tropopause Experiment (ATTREX) and the Convective Transport of Active Species in the Tropics (CONTRAST), carried out in Guam during January-March 2014, the Whole Air Samplers (GWAS and AWAS) collected approximately 1200 samples to examine the tropical convection of the west pacific and its influence on the distribution of the short-lived species from the bottom of the TTL to the lower stratosphere. Measurement of a wide range of hydrocarbons, halocarbons, organic nitrates and solvents were carried out in the field using a combination of gas chromatography with mass selective, flame ionization, and electron capture detectors. In addition, model simulations of selected hydrocarbon and organic trace gases were performed with the chemistry climate model CAM-Chem to evaluate the chemical gradients and inter-hemispheric distributions. In this presentation we will show the gradients and inter-hemispheric distributions from the measurements and compare them with the model results.

  18. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    PubMed Central

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148

  19. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    PubMed

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  20. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-08-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  1. Fundamental Understanding of the Interaction of Acid Gases with CeO2 : From Surface Science to Practical Catalysis

    DOE PAGES

    Tumuluri, Uma; Rother, Gernot; Wu, Zili

    2016-03-21

    Acid gases including CO2, SO2, and NOx are ubiquitous in large-scale energy applications including heterogeneous catalysis. The adverse environmental and health effects of these acid gases have resulted in high interest in the research and development of technologies to remove or convert these acid gases. The main challenge for the development of these technologies is to develop catalysts that are highly efficient, stable, and cost-effective, and many catalysts have been reported in this regard. CeO2 and CeO2-based catalysts have gained prominence in the removal and conversion of CO2, SO2, and NOx because of their structural robustness and redox and acid–basemore » properties. In this article, we provide a brief overview of the application of CeO2 and CeO2-based catalysts for the removal of CO2, SO2, and NOx gases with an emphasis on the fundamental understanding of the interactions of these acid gases with CeO2. The studies summarized in this review range from surface science using single crystals and thin films with precise crystallographic planes to practical catalysis applications of nanocrystalline and polycrystalline CeO2 materials with defects and dopants. After an introduction to the properties of CeO2 surfaces, their catalytic properties for conversions of different acid gases are reviewed and discussed. Lastly, we find that the surface atomic structure, oxygen vacancies, and surface acid–base properties of CeO2 play vital roles in the surface chemistry and structure evolution during the interactions of acid gases with CeO2 and CeO2-based catalysts.« less

  2. Soluble species in the Arctic summer troposphere: Acidic gases, aerosols, and precipitation

    NASA Astrophysics Data System (ADS)

    Talbot, R. W.; Vijgen, A. S.; Harriss, R. C.

    1992-10-01

    We report here the distribution of selected acidic gases and aerosol species in the North American Arctic and sub-Arctic summer troposphere. The summertime troposphere is an acidic environment, with HCOOH and CH3COOH the principal acidic gases and acidic sulfate aerosols dominating the particulate phase. Our data show that the acidic gas and aerosol composition is uniform on a large spatial scale. There appears to be a surface source of NH4+ over the Arctic Ocean pack ice which may reflect release of NH3 from decay of dead marine organisms on the ice surface near ice leads, release from rotting sea ice, or an upward flux from surface ocean waters in open ice leads. This NH3 appears to partially neutralize aerosol acidity in the boundary layer. Over sub-Arctic tundra in southwestern Alaska inputs of marine biogenic sulfur from the nearby Bering Sea appear to be an important source of boundary layer aerosol SO42-. While there were only minor effects on aerosol chemistry over the tundra from sea salt, the rainwater chemistry showed influence from marine aerosols which were apparently incorporated into air masses during frontal passages moving inland from the Bering Sea. The rainwater acidity over the tundra (pH 4.69) is typical of remote regions. The principal acidity components are H2SO4 and carboxylic acids, especially HCOOH. The carboxylic acids appear to have a strong continental biogenic source, but hydrocarbons of marine origin and emissions from forest fires may also be important. The wet deposition fluxes of NO3--N and SO42--S over sub-Arctic tundra during July-August 1988 were 2.1 and 2.4 mmol m-2 yr-1. Wet deposition of NO3- was nearly 3 times higher than the average NOy deposition flux, which is believed to represent primarily dry deposition of HNO3 (Bakwin et al., this issue). Our measurements indicate that the mid-troposphere in the Arctic is generally contaminated with low levels of anthropogenic pollutants even in summer when direct atmospheric coupling

  3. An improved back-flush-to-vent gas chromatographic method for determination of trace permanent gases and carbon dioxide in ultra-high purity ammonia.

    PubMed

    Trubyanov, Maxim M; Mochalov, Georgy M; Vorotyntsev, Ilya V; Vorotyntsev, Andrey V; Suvorov, Sergey S; Smirnov, Konstantin Y; Vorotyntsev, Vladimir M

    2016-05-20

    A novel method for rapid, quantitative determination of trace permanent gases and carbon dioxide in ultra-high purity ammonia by dual-channel two-dimensional GC-PDHID is presented. An improved matrix back-flush-to-vent approach combining back-flush column switching technique with auxiliary NaHSO4 ammonia trap is described. The NaHSO4 trap prevents traces of ammonia from entering the analytical column and is shown not to affect the impurity content of the sample. The approach allows shortening the analysis time and increasing the amount of measurements without extensive maintenance of the GC-system. The performance of the configuration has been evaluated utilizing ammonia- and helium-based calibration standards. The method has been applied for the analysis of 99.9999+% ammonia purified by high-pressure distillation at the production site.

  4. Detection of Matrix Elements and Trace Impurities in Cu(In, Ga)Se2 Photovoltaic Absorbers Using Surface Analytical Techniques.

    PubMed

    Kim, Min Jung; Lee, Jihye; Kim, Seon Hee; Kim, Haidong; Lee, Kang-Bong; Lee, Yeonhee

    2015-10-01

    Chalcopyrite Cu(In, Ga)Se2 (CIGS) thin films are well known as the next-generation solar cell materials notable for their high absorption coefficient for solar radiation, suitable band gap, and ability for deposition on flexible substrate materials, allowing the production of highly flexible and lightweight solar panels. To improve solar cell performances, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is much needed. In this study, Cu(In, Ga)Se2 thin films were prepared on molybdenum back contacts deposited on soda-lime glass substrates via three-stage evaporation. Surface analyses via AES and SIMS were used to characterize the CIGS thin films and compare their depth profiles. We determined the average concentration of the matrix elements, Cu, In, Ga, and Se, using ICP-AES, XRF, and EPMA. We also obtained depth profiling results using TOF-SIMS, magnetic sector SIMS and AES, and APT, a sub-nanometer resolution characterization technique that enables three-dimensional elemental mapping. The SIMS technique, with its high detection limit and ability to obtain the profiles of elements in parallel, is a powerful tool for monitoring trace elements in CIGS thin films. To identify impurities in a CIGS layer, the distribution of trace elements was also observed according to depth by SIMS and APT.

  5. Uncertainties in the current knowledge of some atmospheric trace gases associated with U.S. agriculture: a review.

    PubMed

    Krupa, Sagar; Booker, Fitzerald; Bowersox, Van; Lehmann, Christopher; Lehmann, Chris Topher; Grantz, David

    2008-08-01

    Approximately 80 different crop species are grown in the United States in widely differing geographic areas, climatic and edaphic conditions, and management practices. Although the majority of cultivated acreage in the United States is planted with only about 10 primary crops, uncertainties associated with trace gas emissions arise from: (1) limited data availability, (2) inaccurate estimates because of large temporal and spatial variability in trace gas composition and magnitude of trace gas emissions from agricultural activities, (3) differing characteristics of pollutant emissions from highly dispersed animal feed-lots, and (4) limited understanding of the emissions of semi-volatile organic compounds (SVOCs) associated with agriculture. Although emission issues are of concern, so also is atmospheric deposition to cropping systems, including wet and dry nitrogen, minerals, and organic compounds. These can have feedback effects on trace gas emissions. Overall, the many gaps in our understanding of these aspects of agricultural systems deserve serious attention.

  6. Using the full IASI spectrum for the physical retrieval of temperature, H2O, HDO, O3, minor and trace gases

    NASA Astrophysics Data System (ADS)

    Serio, C.; Blasi, M. G.; Liuzzi, G.; Masiello, G.; Venafra, S.

    2017-02-01

    IASI (Infrared Atmospheric Sounder Interferometer) is flying on the European MetOp series of weather satellites. Besides acquiring temperature and humidity data, IASI also observes the infrared emission of the main minor and trace atmospheric components with high precision. The retrieval of these gases would be highly beneficial to the efforts of scientists monitoring Earths climate. IASI retrieval capability and algorithms have been mostly driven by Numerical Weather Prediction centers, whose limited resources for data transmission and computing is hampering the full exploitation of IASI information content. The quest for real or nearly real time processing has affected the precision of the estimation of minor and trace gases, which are normally retrieved on a very coarse spatial grid. The paper presents the very first retrieval of the complete suite of IASI target parameters by exploiting all its 8461 channels. The analysis has been exemplified for sea surface and the target parameters will include sea surface temperature, temperature profile, water vapour and HDO profiles, ozone profile, total column amount of CO, CO2, CH4, N2O, SO2, HNO3, NH3, OCS and CF4. Concerning CO2, CH4 and N2O, it will be shown that their colum amount can be obtained for each single IASI IFOV (Instantaneous Field of View) with a precision better than 1-2%, which opens the possibility to analyze, e.g., the formation of regional patterns of greenhouse gases. To assess the quality of the retrieval, a case study has been set up which considers two years of IASI soundings over the Hawaii, Manua Loa validation station.

  7. Enhanced adsorption of acidic gases (CO2, NO2 and SO2) on light metal decorated graphene oxide.

    PubMed

    Chen, Chi; Xu, Kui; Ji, Xiao; Miao, Ling; Jiang, Jianjun

    2014-06-14

    The adsorption of several acidic gases (CO2, NO2 and SO2) on light metal (Li, Al) decorated graphene oxide (GO) is theoretically studied, based on the first-principles calculations. Configuration relaxation, binding energy and charge transfer are carried out to discuss the acidic gas adsorption ability of light metal decorated GO. It is found out that Li, Al could be anchored stably by hydroxyl and epoxy groups on GO, and then a strong adsorption of CO2, NO2 and SO2 will occur above these light metals. In contrast to Ti, Li decorated GO exhibits a comparable adsorption ability of acidic gases, but a much smaller interaction with O2 about 2.85-3.98 eV lower in binding energy; and Al decorated GO displays much higher binding energy of all acidic gases with an enhancement of about 0.59-2.29 eV. The results of enhanced acidic gas adsorption ability and a reduced interference by O2 imply that Li, Al decorated GO may be useful and promising for collection and filtration of exhaust gases.

  8. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    USGS Publications Warehouse

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side

  9. Organic Halogen and Related Trace Gases in the Tropical Atmosphere: Results from Recent Airborne Campaigns Over the Pacific

    NASA Astrophysics Data System (ADS)

    Atlas, E. L.; Navarro, M. A.; Donets, V.; Schauffler, S.; Lueb, R.; Hendershot, R.; Gabbard, S.; Hornbrook, R. S.; Apel, E. C.; Riemer, D. D.; Pan, L.; Salawitch, R. J.; Nicely, J. M.; Montzka, S. A.; Miller, B.; Moore, F. L.; Elkins, J. W.; Hintsa, E. J.; Campos, T. L.; Quack, B.; Zhu, X.; Pope, L.

    2014-12-01

    Organic halogen gases, especially containing bromine and iodine, play a significant role as precursors to active halogen chemistry and ozone catalytic loss. Much of the reactive organic halogen originates from biological processes in the surface ocean, which can be quite variable by season and location. The tropics and coastal margins are potentially important sources that are being examined. The recent coordinated CONTRAST/ATTREX/CAST missions were conducted in the Western Tropical Pacific, a region that is a major transport pathway for tropospheric air entering the stratosphere. One of the goals of the missions was to identify sources, distributions, and transport of organic halogens from the ocean surface into the tropical lower stratosphere. The missions were conducted during the NH winter season, Jan-Feb, 2014. In this presentation, we will discuss the distributions and variability of organic halogen gases in the study region and will examine the input of organic halogen species into the Tropical Tropopause Layer (TTL). Comparison with other tracers, such as methyl nitrate and NMHC, will help identify source regions for these gases. We will focus on the measurements obtained in the CONTRAST and ATTREX missions with data from in-situ GC/MS measurements and whole air samples collected on the NSF GV and NASA Global Hawk aircraft. Comparisons with other recent airborne campaigns, such as HIPPO and TC4, and with several ship-based studies will provide an additional context for evaluating the variability of organic halogen species in the tropical atmosphere and their role in transporting reactive halogen compounds into the UT/LS.

  10. High resolution imaging Fourier transform spectrometer with no moving components for the measurement of atmospheric trace gases

    NASA Astrophysics Data System (ADS)

    Mortimer, H.

    2014-12-01

    A high resolution Static Imaging Fourier Transform Spectrometer, SIFTS, with no moving parts has been developed for the detection of atmospheric gases. The instrument has been shown to have high spectral resolution (4 cm-1) and temporal resolution (10kHz) resolution in both the mid and near infrared and moderate spectral resolution (14cm-1) in the visible. This instrument has been developed for the remote sensing and in-situ measurements of atmospheric gases. It has been identified that due to the low mass and compact size of the instrument system, that the SIFTS could be deployed as a remote sensing instrument onboard a Earth Observation satellite or Unmanned Aerial Vehicle (UAV), or conversely as a radiosonde instrument for in-situ measurements of atmospheric gases. The technique is based on a static optical configuration whereby light is split into two paths and made to recombine along a focal plane producing an interference pattern. The spectral information is returned using a detector array to digitally capture the interferogram which can then be processed into a spectrum by applying a Fourier transform. As there are no moving components, the speed of measurement is determined by the frame rate of the detector array. Thus, this instrument has a temporal advantage over common Michelson FTIR instruments. Using a high speed Toshiba CCD line array, sensitive over the spectral region of 400 - 1100nm, spectra have been recorded at a rate of one every 100 microseconds. Using an uncooled microbolometer infrared detector array, sensitive over the spectral region of 2 to 15μm, the gases NH3, O3 and CH4 have been used to demonstrate the sensitivity of the SIFTS instrument. It has been shown that the Signal to Noise of the SIFTSMIR is >1200 using an integration time of 77msec. The novel optical design has reduced the optics to only 3 optical components, and the detector array, to generate and measure the interferogram. The experimental performance of the SIFTS instrument

  11. The 1997 El Niño impact on clouds, water vapour, aerosols and reactive trace gases in the troposphere, as measured by the Global Ozone Monitoring Experiment

    NASA Astrophysics Data System (ADS)

    Loyola, D.; Valks, P.; Ruppert, T.; Richter, A.; Wagner, T.; Thomas, W.; van der A, R.; Meisner, R.

    2006-03-01

    The El Niño event of 1997/1998 caused dry conditions over the Indonesian area that were followed by large scale forest and savannah fires over Kalimantan, Sumatra, Java, and parts of Irian Jaya. Biomass burning was most intense between August and October 1997, and large amounts of ozone precursors, such as nitrogen oxides, carbon monoxide and hydrocarbons were emitted into the atmosphere. In this work, we use satellite measurements from the Global Ozone Monitoring Experiment (GOME) sensor to study the teleconnections between the El Niño event of 1997 and the Indonesian fires, clouds, water vapour, aerosols and reactive trace gases (nitrogen dioxide, formaldehyde and ozone) in the troposphere.

  12. Remote open-path cavity-ringdown spectroscopic sensing of trace gases in air, based on distributed passive sensors linked by km-long optical fibers.

    PubMed

    He, Yabai; Jin, Chunjiang; Kan, Ruifeng; Liu, Jianguo; Liu, Wenqing; Hill, Julian; Jamie, Ian M; Orr, Brian J

    2014-06-02

    A continuous-wave, rapidly swept cavity-ringdown spectroscopic technique has been developed for localized atmospheric sensing of trace gases at remote sites. It uses one or more passive open-path optical sensor units, coupled by optical fiber over distances of >1 km to a single transmitter/receiver console incorporating a photodetector and a swept-frequency diode laser tuned to molecule-specific near-infrared wavelengths. Ways to avoid interference from stimulated Brillouin scattering in long optical fibers have been devised. This rugged open-path system, deployable in agricultural, industrial, and natural atmospheric environments, is used to monitor ammonia in air. A noise-limited minimum detectable mixing ratio of ~11 ppbv is attained for ammonia in nitrogen at atmospheric pressure.

  13. Note: A dual temperature closed loop batch reactor for determining the partitioning of trace gases within CO{sub 2}-water systems

    SciTech Connect

    Warr, Oliver Ballentine, Christopher J.; Rochelle, Christopher A.; Masters, Andrew J.

    2016-01-15

    An experimental approach is presented which can be used to determine partitioning of trace gases within CO{sub 2}-water systems. The key advantages of this system are (1) The system can be isolated with no external exchange, making it ideal for experiments with conservative tracers. (2) Both phases can be sampled concurrently to give an accurate composition at each phase at any given time. (3) Use of a lower temperature flow loop outside of the reactor removes contamination and facilitates sampling. (4) Rapid equilibration at given pressure/temperature conditions is significantly aided by stirring and circulating the water phase using a magnetic stirrer and high-pressure liquid chromatography pump, respectively.

  14. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study

    SciTech Connect

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-15

    Highlights: • Two scenarios of acid gases removal in WTE plants were compared in an LCA study. • A detailed inventory based on primary data has been reported for the production of the new dolomitic sorbent. • Results show that the comparison between the two scenarios does not show systematic differences. • The potential impacts are reduced only if there is an increase in the energy efficiency of the WTE plant. - Abstract: The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO{sub 2} emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in

  15. Measurements of Acidic Gases and Aerosol Species Aboard the NASA DC-8 Aircraft During the Pacific Exploratory Mission in the Tropics (PEM-Tropics A)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1999-01-01

    We received funding to provide measurements of nitric acid (HNO3), formic acid (HCOOH), acetic acid (CH3COOH), and the chemical composition of aerosols aboard the NASA Ames DC-8 research aircraft during the PEM-Tropics A mission. These measurements were successfully completed and the final data resides in the electronic archive (ftp-gte.larc.nasa.gov) at NASA Langley Research Center. For the PEM-Tropics A mission the University of New Hampshire group was first author of four different manuscripts. Three of these have now appeared in the Journal of Geophysical Research-Atmospheres, included in the two section sections on PEM-Tropics A. The fourth manuscript has just recently been submitted to this same journal as a stand alone paper. All four of these papers are included in this report. The first paper (Influence of biomass combustion emissions on the distribution of acidic trace gases over the Southern Pacific basin during austral springtime) describes the large-scale distributions of HNO3, HCOOH, and CH3COOH. Arguments were presented to show, particularly in the middle tropospheric region, that biomass burning emissions from South America and Africa were a major source of acidic gases over the South Pacific basin. The second paper (Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics) covers the aerosol aspects of our measurement package. Compared to acidic gases, O3, and selected hydrocarbons, the aerosol chemistry showed little influence from biomass burning emissions. The data collected in the marine boundary layer showed a possible marine source of NH3 to the troposphere in equatorial areas. This source had been speculated on previously, but our data was the first collected from an airborne platform to show its large-scale features. The third paper (Constraints on the age and dilution of Pacific Exploratory Mission-Tropics biomass burning plumes from the natural radionuclide tracer Pb-210) utilized the unexpectedly

  16. Trace analysis of impurities in bulk gases by gas chromatography-pulsed discharge helium ionization detection with "heart-cutting" technique.

    PubMed

    Weijun, Yao

    2007-10-12

    A method has been developed for the detection of low-nL/L-level impurities in bulk gases such as H(2), O(2), Ar, N(2), He, methane, ethylene and propylene, respectively. The solution presented here is based upon gas chromatography-pulsed discharge helium ionization detection (GC-PDHID) coupled with three two-position valves, one two-way solenoid valve and four packed columns. During the operation, the moisture and heavy compounds are first back-flushed via a pre-column. Then the trace impurities (except CO(2) which is diverted to a separate analytical column for separation and detection) together with the matrix enter onto a main column, followed by the heart-cut of the impurities onto a longer analytical column for complete separation. Finally the detection is performed by PDHID. This method has been applied to different bulk gases and the applicability of detecting impurities in H(2), Ar, and N(2) are herewith demonstrated. As an example, the resulting detection limit of 100 nL/L and a dynamic range of 100-1000 nL/L have been obtained using an Ar sample containing methane.

  17. Model studies of short-term variations induced in trace gases by particle precipitation in the mesosphere and lower thermosphere

    NASA Astrophysics Data System (ADS)

    Fytterer, T.; Bender, S.; Berger, U.; Nieder, H.; Sinnhuber, M.; Wissing, J. M.

    2016-10-01

    The 3-D global chemistry and transport model (3dCTM) was used to investigate NO, OH, and O3 from January 2002 to May 2010 between 60 km and 133 km. Their daytime and nighttime mean zonal means (55°-75° geomagnetic latitude) were analyzed with respect to short-term variations associated with particle precipitation. The corresponding ionization rates were derived from the 3-D atmospheric ionization module Osnabrück (AIMOS), which is based on particle flux measurements. The trace gas variations with respect to their background were investigated by using a superposed epoch analysis. The 27 day signature associated with particle precipitation is found in NO, while it is only indicated in OH and O3 during winter. A varying solar spectrum associated with the 11 year solar cycle causes modifications of this signal up to 10%, while the main patterns are conserved. Published observations show a clear 27 day signal, qualitatively agreeing with the model results at altitudes >70 km except for O3 in Northern Hemisphere winter. Further differences occur with respect to the magnitude of the trace gas variations, primarily attributed to the different trace gas background and dynamical variations of the background atmosphere. Absolute OH variations are overestimated by the 3dCTM during winter, while the opposite is true for O3. These differences might originate from an unknown offset in AIMOS, incorrect chemical reaction rates, a different background of H2O and O3, and the model dynamics. However, their nonlinear relationship and their altitude of largest response are qualitatively captured in Southern Hemisphere winter.

  18. The application of activated carbon enhanced lime for controlling acid gases, mercury, and dioxins from MWCs

    SciTech Connect

    Licata, A.; Babu, M.; Carlson, W.

    1996-12-31

    Environmental control agencies have sought to reduce Municipal Waste Combustor (MWC) emission rates by the implementation of new regulations. Examples of these regulations are Germany`s 17th Federal Regulation on Emission Protection; the Clean Air Act Amendments of 1990; EPA`s New Source Performance Standards (NSPS) and Emission Guidelines; and recent regulatory actions in Minnesota, New Jersey, and Florida to adopt Hg standards for MWCs. Sorbalit{reg_sign} is an activated carbon enhanced lime process that reduces MWC emissions and has been successfully demonstrated in Europe and the U.S. The process consists of two components: (1) a specially developed agent characterized by a high adsorption material capable of adsorbing toxic elements and acid gases, and (2) highly efficient air pollution control systems used by MWCs and various other types of combustion sources, which provide through agitation, a vortexing of the adsorbing agent mixture in a collection device, usually a fabric filter or ESP. This paper presents the theoretical design of the Sorbalit technology. Actual field test results illustrate applications that reduce the concerns related to mercury and dioxin emissions based on practical experience. The adsorbing agent is described in detail and results obtained in various types of air pollution control systems which are applicable to the U.S. are presented.

  19. Annular denuders for use in global climate and stratospheric measurements of acidic gases and particles

    NASA Technical Reports Server (NTRS)

    Stevens, Robert K.

    1991-01-01

    Measurements of acidic and basic gases that coexist with fine particle (less than 2.5 micron) may be useful for determining the impact of these species on global climate changes and determining species that influence stratospheric ozone levels. Annular denuders are well suited for this purpose. A new concentric annular denuder system, consisting of a three channel denuder, a Teflon coated cyclone preseparator, and a multistage filter pack was developed, evaluated, and shown to provide reliable atmospheric measurements of SO2, HNO2, HNO3, NH3, SO4(=), NH4(+), NO3(-), and H(+). For example, the precision of the annular denuder for the ambient measurements of HNO3 and nitrates at concentrations between 0.1 to 3 microgram/cu m was + or - 12 and 16 pct., respectively. The 120 x 25 mm three channel denuder is encased in a stainless steel sheath and has annular spaces that are 1 mm wide. This design was shown to have nearly identical capacity for removal of SO2 as conventional 210 x 25 mm single channel denuder configurations. The cyclone preseparator was designed and tested to have a D sub 50 cutoff diameter of 2.5 micron and minimal retention of HNO3.

  20. EDDY RESOLVING NUTRIENT ECODYNAMICS IN THE GLOBAL PARALLEL OCEAN PROGRAM AND CONNECTIONS WITH TRACE GASES IN THE SULFUR, HALOGEN AND NMHC CYCLES

    SciTech Connect

    S. CHU; S. ELLIOTT

    2000-08-01

    Ecodynamics and the sea-air transfer of climate relevant trace gases are intimately coupled in the oceanic mixed layer. Ventilation of species such as dimethyl sulfide and methyl bromide constitutes a key linkage within the earth system. We are creating a research tool for the study of marine trace gas distributions by implementing coupled ecology-gas chemistry in the high resolution Parallel Ocean Program (POP). The fundamental circulation model is eddy resolving, with cell sizes averaging 0.15 degree (lat/long). Here we describe ecochemistry integration. Density dependent mortality and iron geochemistry have enhanced agreement with chlorophyll measurements. Indications are that dimethyl sulfide production rates must be adjusted for latitude dependence to match recent compilations. This may reflect the need for phytoplankton to conserve nitrogen by favoring sulfurous osmolytes. Global simulations are also available for carbonyl sulfide, the methyl halides and for nonmethane hydrocarbons. We discuss future applications including interaction with atmospheric chemistry models, high resolution biogeochemical snapshots and the study of open ocean fertilization.

  1. Advances in the Hyperspectral Thermal Emission Spectrometer (HyTES) and Application to the Remote Sensing of Fires and Trace Gases

    NASA Astrophysics Data System (ADS)

    Mihaly, J. M.; Johnson, W. R.; Hulley, G. C.; Hook, S. J.; Eng, B. T.

    2014-12-01

    The Hyperspectral Thermal Emission Spectrometer (HyTES) is an airborne imaging spectrometer developed by JPL and currently configured on the Twin Otter aircraft. The instrument utilizes 256 spectral channels between 7.5 and 12 micrometers in the Earth observing thermal infrared range of the electromagnetic spectrum and 512 spatial pixels cross-track. Given a 50 degree full angle field of view and the relatively low flight altitude of the Twin Otter aircraft, the instrument provides a wide swath with high spatial resolution (approximately 1.5 m at 1 km AGL). The available spatial and spectral resolution of HyTES represents a significant advance in airborne TIR remote sensing capability and considerable improvements to instrument performance have been made between the 2013 and 2014 science flights. The TIR wavelength range enables a wide range of remote sensing applications, including the detection of atmospheric trace gases (such as SO2, NH3, H2S, and N2O). The current performance, overall science objectives, and recent trace gas observations of the HyTES instrument will be presented. Results from a 2014 flight over a southern Utah wildfire will be discussed. Current work involving the miniaturization of the HyTES instrument for future deployment in the ER-2 high-altitude aircraft will also be presented.

  2. Observations of organic trace gases during ITCT: Characterization of sources, background, and long-range transport to the US West coast and eastern Pacific atmosphere

    NASA Astrophysics Data System (ADS)

    Atlas, E.; Donnelly, S.; Stroud, V.; Schauffler, S.; Johnson, K.; Schwaller, N.; Hubler, G.; Parrish, D.; Holloway, J.; Trainer, M.

    2002-12-01

    The NOAA ITCT (Intercontinental Transport and Chemical Transformation) mission examined the processes that impact the chemical composition of the atmosphere in the eastern North Pacific Ocean and along the West Coast of the United States. The mission took place during April - May, 2002, when long-range transport to the US West Coast from downwind sources in Asia and beyond is most favorable. As part of the atmospheric chemistry payload on the NOAA P3 aircraft, whole air samples were collected for analysis of a variety of organic trace gases, including methane, NMHC, halocarbons, organic nitrates, and selected sulfur species. Mission flight tracks were designed to examine regions characteristic of the background atmosphere, and regions impacted by specific point sources, larger urban sources, and long-range transport. In this presentation we summarize the organic trace gas measurements and relationships from the whole air samples, characterize signatures of emissions from the west coast urban areas, and identify signatures of long-range trans-Pacific transport.

  3. A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, A.; Xie, P. H.; Wagner, T.; Chen, H.; Liu, W. Q.; Liu, J. G.

    2014-06-01

    We apply a novel experimental procedure for the rapid measurement of the average volume mixing ratios (VMRs) and horizontal distributions of trace gases such as NO2, SO2, and HCHO in the boundary layer, which was recently suggested by Sinreich et al. (2013). The method is based on two-dimensional scanning multi-axis differential optical absorption spectroscopy (MAX-DOAS). It makes use of two facts (Sinreich et al., 2013): first, the light path for observations at 1° elevation angle traverses mainly air masses located close to the ground (typically < 200 m); second, the light path length can be calculated using the simultaneous measured absorption of the oxygen dimer O4. Thus, the average value of the trace gas VMR in the atmospheric layer between the surface and the particular altitude, for which this observation was sensitive, can be calculated. Compared to the originally proposed method, we introduce several important modifications and improvements: We apply the method only to measurements at 1° elevation angle (besides zenith view), for which the uncertainties of the retrieved values of the VMRs and surface extinctions are especially small. Using only 1° elevation angle for off-axis observation also allows an increased temporal resolution. We determine (and apply) correction factors (and their uncertainties) directly as function of the measured O4 absorption. Finally, the method is extended to trace gases analysed at other wavelengths and also to the retrieval of aerosol extinction. Depending on atmospheric visibility, the typical uncertainty of the results ranges from about 20% to 30%. We apply the rapid method to observations of a newly-developed ground-based multifunctional passive differential optical absorption spectroscopy (GM-DOAS) instrument in the north-west outskirts near Hefei in China. We report NO2, SO2, and HCHO VMRs and aerosol extinction for four azimuth angles and compare these results with those from simultaneous long-path DOAS observations

  4. A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, A.; Xie, P. H.; Wagner, T.; Chen, H.; Liu, W. Q.; Liu, J. G.

    2013-09-01

    We apply a novel experimental procedure for the rapid measurement of the average volume mixing ratios (VMRs) and horizontal distributions of trace gases such as NO2, SO2, and HCHO in the boundary layer, which was recently suggested by Sinreich et al. (2013). The method is based on two-dimensional scanning multi-axis differential optical absorption spectroscopy (MAX-DOAS). It makes use of two facts (Sinreich et al. 2013): First, the light path for observations at 1° elevation angle traverses mainly air masses located close to the ground (typically < 200 m). Second, the light path length can be calculated using the simultaneous measured absorption of the oxygen dimer O4. Thus, the average value of the trace gas VMR in the atmospheric layer between the surface and the altitude, for which this observation was sensitive, can be calculated. Compared to the originally proposed method, we introduce several important modifications and improvements: We apply the method only to measurements at 1° elevation angles, for which the uncertainties are especially small. Using only 1 elevation angle also allows an increased temporal resolution. We apply correction factors (and their uncertainties) as function of the simultaneously modelled O4 absorption. In this way the correction factors can be directly determined according to the measured O4 dAMF. Finally, the method is extended to trace gases analysed at other wavelengths and also to the retrieval of the aerosol extinction. Depending on the atmospheric visibility, the typical uncertainty of the results ranges from about 15 to 30%. We apply the rapid method to observations of a newly developed ground-based multifunctional passive differential optical absorption spectroscopy (GM-DOAS) instrument in the north-west outskirt near Hefei City in China. We report NO2, SO2, and HCHO VMRs and aerosol extinction for four azimuth angles and compare these results with those from simultaneous long-path DOAS observations. Good agreement is

  5. Continuous renal replacement therapy amino acid, trace metal and folate clearance in critically ill children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that continuous veno-venous hemodialysis (CVVHD) results in amino acid, trace metals, and folate losses, thereby adversely impacting nutrient balance. Critically ill children receiving CVVHD were studied prospectively for 5 days. Blood concentrations, amino acids, copper, zinc, man...

  6. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... affected facility any gases that contain hydrogen chloride in excess of 5 percent of the potential hydrogen chloride emission rate (95 percent reduction by weight or volume) or 25 parts per million by...

  7. Investigation of reactions between trace gases and functional CuO nanospheres and octahedrons using NEXAFS-TXM imaging.

    PubMed

    Henzler, Katja; Heilemann, Axel; Kneer, Janosch; Guttmann, Peter; Jia, He; Bartsch, Eckhard; Lu, Yan; Palzer, Stefan

    2015-12-03

    In order to take full advantage of novel functional materials in the next generation of sensorial devices scalable processes for their fabrication and utilization are of great importance. Also understanding the processes lending the properties to those materials is essential. Among the most sought-after sensor applications are low-cost, highly sensitive and selective metal oxide based gas sensors. Yet, the surface reactions responsible for provoking a change in the electrical behavior of gas sensitive layers are insufficiently comprehended. Here, we have used near-edge x-ray absorption fine structure spectroscopy in combination with x-ray microscopy (NEXAFS-TXM) for ex-situ measurements, in order to reveal the hydrogen sulfide induced processes at the surface of copper oxide nanoparticles, which are ultimately responsible for triggering a percolation phase transition. For the first time these measurements allow the imaging of trace gas induced reactions and the effect they have on the chemical composition of the metal oxide surface and bulk. This makes the new technique suitable for elucidating adsorption processes in-situ and under real operating conditions.

  8. Investigation of reactions between trace gases and functional CuO nanospheres and octahedrons using NEXAFS-TXM imaging

    PubMed Central

    Henzler, Katja; Heilemann, Axel; Kneer, Janosch; Guttmann, Peter; Jia, He; Bartsch, Eckhard; Lu, Yan; Palzer, Stefan

    2015-01-01

    In order to take full advantage of novel functional materials in the next generation of sensorial devices scalable processes for their fabrication and utilization are of great importance. Also understanding the processes lending the properties to those materials is essential. Among the most sought-after sensor applications are low-cost, highly sensitive and selective metal oxide based gas sensors. Yet, the surface reactions responsible for provoking a change in the electrical behavior of gas sensitive layers are insufficiently comprehended. Here, we have used near-edge x-ray absorption fine structure spectroscopy in combination with x-ray microscopy (NEXAFS-TXM) for ex-situ measurements, in order to reveal the hydrogen sulfide induced processes at the surface of copper oxide nanoparticles, which are ultimately responsible for triggering a percolation phase transition. For the first time these measurements allow the imaging of trace gas induced reactions and the effect they have on the chemical composition of the metal oxide surface and bulk. This makes the new technique suitable for elucidating adsorption processes in-situ and under real operating conditions. PMID:26631608

  9. An automated analyzer to measure surface-atmosphere exchange fluxes of water soluble inorganic aerosol compounds and reactive trace gases.

    PubMed

    Thomas, Rick M; Trebs, Ivonne; Otjes, René; Jongejan, Piet A C; Ten Brink, Harry; Phillips, Gavin; Kortner, Michael; Meixner, Franz X; Nemitz, Eiko

    2009-03-01

    Here, we present a new automated instrument for semicontinuous gradient measurements of water-soluble reactive trace gas species (NH3, HNO3, HONO, HCl, and SO2) and their related aerosol compounds (NH4+, NO3-, Cl-, SO4(2-)). Gas and aerosol samples are collected simultaneously at two heights using rotating wet-annular denuders and steam-jet aerosol collectors, respectively. Online (real-time) analysis using ion chromatography (IC) for anions and flow injection analysis (FIA) for NH4+ and NH3 provide a half-hourly averaged gas and aerosol gradients within each hour. Through the use of syringe pumps, IC preconcentration columns, and high-quality purified water, the system achieves detection limits (3sigma-definition) under field conditions of typically: 136/207,135/114, 29/ 22,119/92, and 189/159 ng m(-3) for NH3/NH4+, HNO3/NO3-, HONO/ NO2-, HCl/Cl- and SO2/SO4(2-), respectively. The instrument demonstrates very good linearity and accuracy for liquid and selected gas phase calibrations over typical ambient concentration ranges. As shown by examples from field experiments, the instrument provides sufficient precision (3-9%), even at low ambient concentrations, to resolve vertical gradients and calculate surface-atmosphere exchange fluxes undertypical meteorological conditions of the atmospheric surface layer using the aerodynamic gradient technique.

  10. Physical and chemical properties of the regional mixed layer of Mexico's Megapolis – Part II: Evaluation of measured and modeled trace gases and particle size distributions

    SciTech Connect

    Ochoa, Carlos; Baumgardner, Darrel; Grutter, M.; Allan, James D.; Fast, Jerome D.; Rappengluck, B.

    2012-10-31

    This study extends the work of Baumgardner et al. (2009) in which measurements of trace gases and particles at a remote, high-altitude mountain site 60 km from Mexico City were analyzed with respect to the origin of air masses. In the current evaluation, the temperature, water vapor, ozone (O3), carbon monoxide (CO), acyl peroxy nitrate (APN) and particle size distributions (PSDs) of the mass concentrations of sulfate, nitrate, ammonium and organic mass (OM) were simulated with the WRF-Chem chemical transport model and compared with the measurements at the mountain site. The model prediction of the diurnal trends of the gases were well correlated with the measurements before the regional boundary layer reached the measurement site but underestimated the concentrations after that time. The differences are caused by an overly rapid growth of the boundary layer by the model with too much dilution. There also appears to be more O3 produced by photochemical production, downwind of the emission sources, than predicted by the model. The measured and modeled PSDs compare very well with respect to their general shape and diameter of the peak concentrations. The spectra are log normally distributed with most of the mass in the accumulation mode and the geometric diameter centered at 200 ±20 nm, with little observed or predicted change with respect to the origin of the air mass or the time when the RBL is above the Altzomoni research. Only the total mass changed with time and air mass origin. The invariability of the average diameter of the accumulation mode suggests that there is very little growth of the particles by condensation or coagulation after six hours of aging downwind of the major sources of anthropogenic emissions in Mexico’s Megapolis.

  11. Assessing the suitability of MOZAIC soundings of trace gases in the lower troposphere for chemical transport model evaluation

    NASA Astrophysics Data System (ADS)

    Silverman, M. L.; Szykman, J.; Crawford, J. H.; Volz-Thomas, A.; Cammas, J.; Nedelec, P.

    2012-12-01

    Since the mid-90's, vertical profiles of reactive gases into and out of major airports have been measured by the MOZAIC (Measurements of OZone and water vapor on Airbus In-service airCraft - currently part of the European program In-service Aircraft for a Global Observing System (IAGOS) http://www.iagos.fr/web/) program. Recent interest in using MOZAIC data to evaluate regional chemical transport models, such as CMAQ, raises questions regarding the suitability of the data for this purpose. Specifically, to what degree are aircraft data influenced by aviation emissions along flight paths and how well does the data represent the regional environment at lower altitudes? This analysis will characterize MOZAIC measurements of O3, CO, and NOy in the mid to lower troposphere (<6km). MOZAIC afternoon profiles that span 2002-2004, during June, July, August, and September at major U.S. airports are analyzed. In addition, appropriate data for comparison with the MOZAIC profiles has also become available under the NASA Earth Venture -1 (EV-1) DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality) mission. As part of the first DISCOVER-AQ field mission conducted in July 2011, the NASA P-3B aircraft performed over 250 profiles in the Baltimore-DC region, including one landing at the Baltimore Washington International Airport. These profiles offer comparative observations of O3, CO, and reactive nitrogen in the vicinity of major air traffic patterns, local urban sources, and typical background environments. In general, MOZAIC profiles show a decrease in O3 within the last several hundred meters of the airport. Nearest the ground this is likely due to titration by NO, but further above decreases in O3 do not correlate with significant increases in NOy. A limiting factor in the MOZAIC data is that NOy is not measured below ~1km. Correlations of O3 to CO appear representative of the background environment

  12. Robust IR Remote Sensing Technique of the Total Column of Trace Gases Including Carbon Dioxide and Methane

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Heaps, W. S.

    2011-01-01

    methane very suddenly further exacerbating climate change [2]. Last year our group began a joint effort with Johns Hopkins Applied Physics Laboratory to investigate the possibility of developing a small unmanned aerial vehicle (UAV) equipped to measure greenhouse gases-particularly methane. Although we are targeting our system for smaller UAV's the instrument will be directly applicable to missions involving larger NASA UAV's such as Global Hawk or even on missions utilizing manned aircraft. Because of its small size, inherent ruggedness and simplicity some version of our proposed instrument may find a role as a satellite instrument for NASA or NOAA.

  13. High temperature abatement of acid gases from waste incineration. Part I: experimental tests in full scale plants.

    PubMed

    Biganzoli, Laura; Racanella, Gaia; Rigamonti, Lucia; Marras, Roberto; Grosso, Mario

    2015-02-01

    In recent years, several waste-to-energy plants in Italy have experienced an increase of the concentration of acid gases (HCl, SO2 and HF) in the raw gas. This is likely an indirect effect of the progressive decrease of the amount of treated municipal waste, which is partially replaced by commercial waste. The latter is characterised by a higher variability of its chemical composition because of the different origins, with possible increase of the load of halogen elements such as chlorine (Cl) and fluorine (F), as well as of sulphur (S). A new dolomitic sorbent was then tested in four waste-to-energy plants during standard operation as a pre-cleaning stage, to be directly injected at high temperature in the combustion chamber. For a sorbent injection of about 6 kg per tonne of waste, the decrease of acid gases concentration downstream the boiler was in the range of 7-37% (mean 23%) for HCl, 34-95% (mean 71%) for SO2 and 39-80% (mean 63%) for HF. This pre-abatement of acid gases allowed to decrease the feeding rate of the traditional low temperature sorbent (sodium bicarbonate in all four plants) by about 30%. Furthermore, it was observed by the plant operators that the sorbent helps to keep the boiler surfaces cleaner, with a possible reduction of the fouling phenomena and a consequent increase of the specific energy production. A preliminary quantitative estimate was carried out in one of the four plants.

  14. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    DOE PAGES

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; ...

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convectivemore » cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it

  15. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    SciTech Connect

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is

  16. Low Ozone and High Mixing Ratios of Long-Lived Trace Gases in the Tropical Tropopause Layer over the Western Pacific

    NASA Astrophysics Data System (ADS)

    Hintsa, E. J.; Moore, F. L.; Dutton, G. S.; Hall, B. D.; Haugstad, A.; McClure-Begley, A.; Nance, J. D.; Elkins, J. W.; Gao, R. S.; Rollins, A. W.; Thornberry, T. D.; Watts, L. A.; Daube, B. C.; Pittman, J. V.; Wofsy, S. C.; Campos, T. L.; Homeyer, C. R.; Honomichl, S.; Pan, L.; Weinheimer, A. J.

    2014-12-01

    The tropopause over the western tropical Pacific is thought to be one of the primary entry points of air from the troposphere into the stratosphere. In this region, temperatures are low enough in the tropical tropopause layer (TTL; ~14-18.5 km) to dehydrate air to the low values observed in the stratosphere. The NASA Airborne Tropical Tropopause Experiment (ATTREX) mission was designed to study the transport of water vapor and other trace gases in the TTL over the Pacific Ocean, in order to better understand how dehydration occurs and how ozone-depleting gases reach the lower stratosphere. The field campaign phase of the mission recently concluded with flights of the NASA Global Hawk unmanned aircraft over the western tropical Pacific from Guam in January-March 2014 (ATTREX-3). This followed two previous deployments with flights from California to the central and eastern tropical Pacific (ATTREX-1 and 2). Particularly in ATTREX-3, the long duration of the Global Hawk allowed observations over nearly a complete diurnal cycle in the TTL. Over 100 vertical profiles in the TTL were obtained over the western tropical Pacific, as well as long sections at constant altitude. As expected, very low values of water vapor (a few ppm) were observed, and ice saturation was frequently encountered. Ozone was consistently low in the TTL (averaging ~20 ppb), with low values extending up to the tropopause, particularly in March 2014. While ozone as low as 20 ppb was occasionally observed over the central and eastern Pacific in February-March 2013 during ATTREX-2, it more often averaged 40-50 ppb, and typically increased slowly with height from about 14 km to the tropopause. In ATTREX-3, long-lived tracers such as N2O were very close to their tropospheric values over the western tropical Pacific. Sulfur hexafluoride (SF6) data indicated that sampled air masses originated in the tropics, with little in-mixing of extratropical air. Methane and CO often peaked near the local tropopause

  17. Emission factors of fine particles, carbonaceous aerosols and traces gases from road vehicles: Recent tests in an urban tunnel in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yanli; Wang, Xinming; Li, Guanghui; Yang, Weiqiang; Huang, Zhonghui; Zhang, Zhou; Huang, Xinyu; Deng, Wei; Liu, Tengyu; Huang, Zuzhao; Zhang, Zhanyi

    2015-12-01

    Motor vehicles contribute primarily and secondarily to air quality problems due to fine particle (PM2.5) and ozone (O3) pollution in China's megacities. Characterizing vehicle emission with the rapid change of vehicle numbers and fleet compositions is vital for both bottom-up emission survey and top-down source apportioning. To obtain emission factors (EFs) of PM2.5, carbonaceous aerosols and trace gases for road vehicles, in urban Guangzhou we conducted a field campaign in 2014 in the Zhujiang Tunnel, a heavily burdened tunnel with about 40,000 motor vehicles passing through each of its two separated bores per day. PM2.5 and volatile organic compounds (VOCs) were sampled for offline analysis while trace gases including SO2, NOx and CO were measured online and in situ. An eddy covariance system with an integrated 3-D sonic anemometer was also adopted to measure CO2 and winds inside the tunnel. We recorded an average fleet composition of 61% light-duty gasoline vehicles (LDVs) + 12% heavy-duty diesel vehicles (HDVs) + 27% liquefied petroleum gas vehicles (LPGVs), and EFs of 82.7 ± 28.3, 19.3 ± 4.7 and 13.3 ± 3.3 mg veh-1 km-1, respectively, for PM2.5, organic carbon (OC) and elemental carbon (EC). These EFs were respectively 23.4%, 18.3% and 72.3% lower when compared to that measured in the same tunnel in 2004. EFs of PM2.5, OC and EC were higher at night time (148 ± 126, 29 ± 24 and 21 ± 18 mg veh-1 km-1, respectively) due to significantly elevated fractions of HDVs in the traffic fleets. An average ratio of OC to EC 1.45 from this tunnel study was much higher than that of ∼0.5 in previous tunnel studies. The EFs of SO2, NOx, CO, CO2 and NMHCs for road traffic were also obtained from our tunnel tests, and they were 20.7 ± 2.9, (1.29 ± 0.2)E+03, (3.10 ± 0.68)E+03, (3.90 ± 0.49)E+05, and 448 ± 39 mg veh-1 km-1, respectively.

  18. Airborne and ground-based measurements of the trace gases and particles emitted from prescribed fires in the United States

    SciTech Connect

    Burling, Ian; Yokelson, Robert J.; Akagi, Sheryl; Urbanski, Shawn; Wold, Cyle E.; Griffith, David WT; Johnson, Timothy J.; Reardon, James; Weise, David

    2011-12-07

    We measured the emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous suggestions that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured the emissions in the convective smoke plume from our airborne platform at the same time the unlofted residual smoldering combustion emissions were measured with our ground-based platform after the flame front passed through. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including significant 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts of smoke that disperses at ground level, and we show that the normally-ignored unlofted emissions can also significantly impact estimates of total emissions. Preliminary evidence of large emissions of monoterpenes was seen in the residual smoldering spectra, but we have not yet quantified these emissions. These data should lead to an improved capacity to model the impacts of biomass burning in similar

  19. Spatial structures in UTLS trace gases imaged by the GLORIA instrument during the TACTS/ESMVal campaign in 2012

    NASA Astrophysics Data System (ADS)

    Guggenmoser, Tobias; Ungermann, Joern; Blank, Joerg; Kleinert, Anne; Grooss, Jens-Uwe; Vogel, Baerbel

    2013-04-01

    The combined TACTS/ESMVal measurement campaign was conducted during August and September 2012. Its objective was to improve our understanding of the UTLS region using a combination of airborne in situ and remote sensing devices. While the focus of TACTS was on exchange processes across the tropopause, ESMVal's objective was to obtain a wide latitude coverage from northern to southern polar regions. The campaign was based in Oberpfaffenhofen (D), with support bases in Sal (CV), Malé (MV), and Cape Town (ZA). A total of 13 scientific flights, ranging in latitude from 65°S to 80°N, were performed aboard the High Altitude and LOng Range (HALO) research aircraft, operated by the German Aerospace Agency (DLR). One of the core instruments was GLORIA, the Gimballed Limb Observer for Radiance Imaging of the Atmosphere. GLORIA is a joint development of Forschungszentrum Jülich and Karlsruher Institut für Technologie. It is an imaging Fourier transform spectrometer in the thermal infrared range, designed to optimize either spatial or spectral resolution, so as to yield data for dynamical as well as chemical analysis. In dynamics mode, the instrument also pans between measurements, making it possible to observe the same target volume from multiple directions. Combined with the right flight pattern, a 3D tomographic analysis becomes possible. In this presentation, we will show our first results for temperature and trace gas mixing ratios from a selection of the TACTS/ESMVal flights, concentrating on dynamics mode measurements in the polar regions. We will show the resolution of filaments in the UTLS region in two-dimensional cross-sections along the flight path, as well as preliminary results from true 3D retrievals.

  20. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    SciTech Connect

    Yokelson, R. J.; Burling, I. R.; Gilman, J. B.; Warneke, C.; Stockwell, C. E.; de Gouw, J.; Akagi, S. K.; Urbanski, S. P.; Veres, P.; Roberts, J. M.; Kuster, W. C.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Hosseini, S.; Miller, J. W.; Cocker III, D. R.; Jung, H.; Weise, D. R.

    2013-01-01

    Vegetative fuels commonly consumed in prescribed fires were collected from five locations in the southeastern and southwestern U.S. and burned in a series of 77 fires at the U.S. Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC), organic carbon (OC), and 38 elements. The trace gas emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP FTIR) spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS), proton-transfer ion-trap mass spectrometry (PIT-MS), negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), and gas chromatography with MS detection (GC-MS). 204 trace gas species (mostly non-methane organic compounds (NMOC)) were identified and quantified with the above instruments. An additional 152 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species. As phase II of this study, we conducted airborne and ground-based sampling of the emissions from real prescribed fires mostly in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5) was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These extensive field measurements of emission factors (EF) for temperate biomass burning are useful both for modeling and to examine the representativeness of our lab fire EF. The lab/field EF ratio for the pine understory fuels was not statistically different from one, on average. However, our lab EF for “smoldering compounds” emitted by burning the semi

  1. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Burling, I. R.; Gilman, J. B.; Warneke, C.; Stockwell, C. E.; de Gouw, J.; Akagi, S. K.; Urbanski, S. P.; Veres, P.; Roberts, J. M.; Kuster, W. C.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Hosseini, S.; Miller, J. W.; Cocker, D. R., III; Jung, H.; Weise, D. R.

    2013-01-01

    An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC), organic carbon (OC), and 38 elements. The trace gas emissions were measured by an open-path Fourier transform infrared (OP-FTIR) spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS), proton-transfer ion-trap mass spectrometry (PIT-MS), negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), and gas chromatography with MS detection (GC-MS). 204 trace gas species (mostly non-methane organic compounds (NMOC)) were identified and quantified with the above instruments. Many of the 182 species quantified by the GC-MS have rarely, if ever, been measured in smoke before. An additional 153 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species. In a second, "field" phase of this program, airborne and ground-based measurements were made of the emissions from prescribed fires that were mostly located in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5) was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. The field measurements of emission factors (EF) are useful both for modeling and to examine the representativeness of our lab fire EF. The lab EF/field EF ratio for the pine understory fuels was not

  2. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Burling, I. R.; Gilman, J. B.; Warneke, C.; Stockwell, C. E.; de Gouw, J.; Akagi, S. K.; Urbanski, S. P.; Veres, P.; Roberts, J. M.; Kuster, W. C.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Hosseini, S.; Miller, J. W.; Cocker, D. R., III; Jung, H.; Weise, D. R.

    2012-08-01

    An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC), organic carbon (OC), and 38 elements. The trace gas emissions were measured by an open-path Fourier transform infrared (OP-FTIR) spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS), proton-transfer ion-trap mass spectrometry (PIT-MS), negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), and gas chromatography with MS detection (GC-MS). 204 trace gas species (mostly non-methane organic compounds - NMOC) were identified and quantified with the above instruments. Many of the 182 species quantified by the GC-MS have rarely, if ever, been measured in smoke before. An additional 153 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species. In a second, "field" phase of this program, airborne and ground-based measurements were made of the emissions from prescribed fires that were mostly located in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5) was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. The field measurements of emission factors (EF) are useful both for modeling and to examine the representativeness of our lab fire EF. The lab EF/field EF ratio for the pine understory fuels was not

  3. Measurement of trace gases and organic compounds in the smoke plume from a wildfire in Penedono (central Portugal)

    NASA Astrophysics Data System (ADS)

    Vicente, Ana; Alves, Célia; Monteiro, Cristina; Nunes, Teresa; Mirante, Fátima; Evtyugina, Margarita; Cerqueira, Mário; Pio, Casimiro

    2011-09-01

    Gas and particulate fractions were measured simultaneously from a wildfire in Penedono, central Portugal, which occurred in summer 2009. The total volatile hydrocarbons (THC) and carbon oxides (CO 2 and CO) collected in Tedlar bags were measured using automatic analysers with flame ionisation and non-dispersive infrared detectors, respectively. Carbonyls (formaldehyde and acetaldehyde) were sampled from the Tedlar bags in DNHP cartridges and analysed by high-performance liquid chromatography. Fine (PM 2.5) and coarse (PM 2.5-10) smoke particles were collected sequentially, on pre-fired quartz fibre filters, with a portable high-volume sampler. The detailed speciation of organic compounds in smoke samples was carried out by gas chromatography-mass spectrometry. The organic and elemental carbon content of particulate matter was analysed by a thermal-optical transmission technique. Average emission factors of 1.86 ± 0.80 and 0.063 ± 0.066 g kg -1 (dry basis) were obtained for acetaldehyde and formaldehyde, respectively. The THC, CO, CO 2, PM 2.5, PM 10, OC and EC emission factors (g kg -1 fuel burned, dry basis) were 260 ± 88, 268 ± 92, 1200 ± 172, 37 ± 12.2, 40 ± 12.6, 21 ± 6.7 and 0.44 ± 0.21, respectively. The chromatographically resolved organics included n-alkanes, n-alkenes, n-alkanoic acids, n-di-acids, unsaturated fatty acids, phenolic compounds, ketones, steroids, di- and triterpenoids, PAHs, with retene as the major compound, oxygenated PAH and anhydrosugars.

  4. Effects of land use on surface-atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest.

    PubMed

    Fowler, David; Nemitz, Eiko; Misztal, Pawel; Di Marco, Chiara; Skiba, Ute; Ryder, James; Helfter, Carole; Cape, J Neil; Owen, Sue; Dorsey, James; Gallagher, Martin W; Coyle, Mhairi; Phillips, Gavin; Davison, Brian; Langford, Ben; MacKenzie, Rob; Muller, Jennifer; Siong, Jambery; Dari-Salisburgo, Cesare; Di Carlo, Piero; Aruffo, Eleonora; Giammaria, Franco; Pyle, John A; Hewitt, C Nicholas

    2011-11-27

    This paper reports measurements of land-atmosphere fluxes of sensible and latent heat, momentum, CO(2), volatile organic compounds (VOCs), NO, NO(2), N(2)O and O(3) over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO(2) flux to the two canopies differs by approximately a factor of 2, 1200 mg C m(-2) h(-1) for the oil palm and 700 mg C m(-2) h(-1) for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O(3) to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces.

  5. The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Acevedo, O. C.; Araùjo, A.; Artaxo, P.; Barbosa, C. G. G.; Barbosa, H. M. J.; Brito, J.; Carbone, S.; Chi, X.; Cintra, B. B. L.; da Silva, N. F.; Dias, N. L.; Dias-Júnior, C. Q.; Ditas, F.; Ditz, R.; Godoi, A. F. L.; Godoi, R. H. M.; Heimann, M.; Hoffmann, T.; Kesselmeier, J.; Könemann, T.; Krüger, M. L.; Lavric, J. V.; Manzi, A. O.; Lopes, A. P.; Martins, D. L.; Mikhailov, E. F.; Moran-Zuloaga, D.; Nelson, B. W.; Nölscher, A. C.; Santos Nogueira, D.; Piedade, M. T. F.; Pöhlker, C.; Pöschl, U.; Quesada, C. A.; Rizzo, L. V.; Ro, C.-U.; Ruckteschler, N.; Sá, L. D. A.; de Oliveira Sá, M.; Sales, C. B.; dos Santos, R. M. N.; Saturno, J.; Schöngart, J.; Sörgel, M.; de Souza, C. M.; de Souza, R. A. F.; Su, H.; Targhetta, N.; Tóta, J.; Trebs, I.; Trumbore, S.; van Eijck, A.; Walter, D.; Wang, Z.; Weber, B.; Williams, J.; Winderlich, J.; Wittmann, F.; Wolff, S.; Yáñez-Serrano, A. M.

    2015-09-01

    The Amazon Basin plays key roles in the carbon and water cycles, climate change, atmospheric chemistry, and biodiversity. It has already been changed significantly by human activities, and more pervasive change is expected to occur in the coming decades. It is therefore essential to establish long-term measurement sites that provide a baseline record of present-day climatic, biogeochemical, and atmospheric conditions and that will be operated over coming decades to monitor change in the Amazon region, as human perturbations increase in the future. The Amazon Tall Tower Observatory (ATTO) has been set up in a pristine rain forest region in the central Amazon Basin, about 150 km northeast of the city of Manaus. Two 80 m towers have been operated at the site since 2012, and a 325 m tower is nearing completion in mid-2015. An ecological survey including a biodiversity assessment has been conducted in the forest region surrounding the site. Measurements of micrometeorological and atmospheric chemical variables were initiated in 2012, and their range has continued to broaden over the last few years. The meteorological and micrometeorological measurements include temperature and wind profiles, precipitation, water and energy fluxes, turbulence components, soil temperature profiles and soil heat fluxes, radiation fluxes, and visibility. A tree has been instrumented to measure stem profiles of temperature, light intensity, and water content in cryptogamic covers. The trace gas measurements comprise continuous monitoring of carbon dioxide, carbon monoxide, methane, and ozone at five to eight different heights, complemented by a variety of additional species measured during intensive campaigns (e.g., VOC, NO, NO2, and OH reactivity). Aerosol optical, microphysical, and chemical measurements are being made above the canopy as well as in the canopy space. They include aerosol light scattering and absorption, fluorescence, number and volume size distributions, chemical

  6. Trends in source gases

    NASA Technical Reports Server (NTRS)

    Ehhalt, D. H.; Fraser, P. J.; Albritton, D.; Cicerone, R. J.; Khalil, M. A. K.; Legrand, M.; Makide, Y.; Rowland, F. S.; Steele, L. P.; Zander, R.

    1989-01-01

    Source gases are defined as those gases that, by their breakdown, introduce into the stratosphere halogen, hydrogen, and nitrogen compounds that are important in stratospheric ozone destruction. Given here is an update of the existing concentration time series for chlorocarbons, nitrous oxide, and methane. Also reviewed is information on halogen containing species and the use of these data for establishing trends. Also reviewed is evidence on trends in trace gases that influence tropospheric chemistry and thus the tropospheric lifetimes of source gases, such as carbon dioxide, carbon monoxide, or nitrogen oxides. Much of the information is given in tabular form.

  7. Water and acid soluble trace metals in atmospheric particles

    NASA Technical Reports Server (NTRS)

    Lindberg, S. E.; Harriss, R. C.

    1983-01-01

    Continental aerosols are collected above a deciduous forest in eastern Tennessee and subjected to selective extractions to determine the water-soluble and acid-leachable concentrations of Cd, Mn, Pb, and Zn. The combined contributions of these metals to the total aerosol mass is 0.5 percent, with approximately 70 percent of this attributable to Pb alone. A substantial fraction (approximately 50 percent or more) of the acid-leachable metals is soluble in distilled water. In general, this water-soluble fraction increases with decreasing particle size and with increasing frequency of atmospheric water vapor saturation during the sampling period. The pattern of relative solubilities (Zn being greater than Mn, which is approximately equal to Cd, which is greater than Pb) is found to be similar to the general order of the thermodynamic solubilities of the most probable salts of these elements in continental aerosols with mixed fossil fuel and soil sources.

  8. Analysis of motor vehicle emissions over eastern Los Angeles, California from in-situ airborne measurements of trace gases and particulates during CalNex

    NASA Astrophysics Data System (ADS)

    Pollack, I. B.; Ryerson, T. B.; Trainer, M.; Frost, G. J.; Holloway, J. S.; McKeen, S. A.; Peischl, J.; Fahey, D. W.; Perring, A.; Schwarz, J. P.; Spackman, J. R.

    2010-12-01

    In-situ measurements of trace gases and particulates were acquired on the instrumented NOAA WP-3D aircraft during the CalNex (California Research at the Nexus of Air Quality and Climate Change) field study in May and June 2010. Multiple daytime research flights under similar meteorological conditions provide a sufficient data set for characterizing automobile emissions over the eastern Los Angeles (eLA) area of the South Coast air basin. Ratios of nitrogen oxides (NOx) and black carbon (BC) to carbon monoxide (CO) are used to isolate emissions of light duty vehicles from those of medium/heavy duty diesel trucks. Observations in the mixed boundary layer for the eLA area are separated according to latitude, longitude, and altitude. Industrial influences are eliminated by filtering the data according to SO2 mixing ratio and wind direction. The resulting correlations show weekday-to-weekend differences in enhancement ratios of NOx to CO and BC to CO, indicating a general tendency for higher emissions from heavy duty vehicles during the week. The CalNex data over eLA in 2010 will be compared to eLA data from a research flight in May 2002 by the WP-3D aircraft during the Intercontinental Transport and Chemical Transformation (ITCT) field study.

  9. Study of trace gases in the Martian atmosphere: Groundbased observation using SUBARU/IRCS and development of radiative transfer model for MEX/PFS limb observation

    NASA Astrophysics Data System (ADS)

    Aoki, S.; Nakagawa, H.; Kasaba, Y.; Giuranna, M.; Geminale, A.; Sindoni, G.; Sagawa, H.; Mendrok, J.; Kasai, Y.; Formisano, V.

    2012-09-01

    We observed Martian atmosphere to investigate CH4, H2O, and HDO on 30 November 2011, 4-5 January 2012, and 12 April 2012 using SUBARU/ IRCS. This observation aims to verify CH4 on Mars, constrain its source, and investigate the distribution of H2O/HDO ratio. Our observation covered possible source areas of CH4, i.e. the areas where the extend plumes of CH4 were detected by previous groundbased and MEX/PFS observations [1,2] and the potential mud volcanism areas [3,4]. This paper will show some preliminary results. Vertical profiles of these trace gases are crucial for understanding their chemistry and transportation. Limb observations by MEX/PFS are a powerful tool to retrieve vertical profiles of H2O, CO, and CH4. For this purpose, we adapted the SARTre model, a radiative transfer code which includes multiple scattering for limb geometry observations developed for the terrestrial atmosphere [5], to the Martian atmosphere. In order to validate our model, SARTre model for Martian limb, we first compared of our synthetic spectra in nadir geometry with the result from ARS [6] which has been widely used for previous studies of MEX/PFS nadir-observation. We concluded that the difference between them is small offset (below 3%) in the spectral range between 3000 and 3030 cm-1.

  10. Combining stable isotope (δ13C) of trace gases and aerobiological data to monitor the entry and dispersion of microorganisms in caves.

    PubMed

    Garcia-Anton, E; Cuezva, S; Jurado, V; Porca, E; Miller, A Z; Fernandez-Cortes, A; Saiz-Jimenez, C; Sanchez-Moral, S

    2014-01-01

    Altamira Cave (north of Spain) contains one of the world's most prominent Paleolithic rock art paintings, which are threatened by a massive microbial colonization of ceiling and walls. Previous studies revealed that exchange rates between the cave and the external atmosphere through the entrance door play a decisive role in the entry and transport of microorganisms (bacteria and fungi) and nutrients to the interior of the cave. A spatial-distributed sampling and measurement of carrier (CO2) and trace (CH4) gases and isotopic signal of CO2 (δ(13)C) inside the cave supports the existence of a second connection (active gas exchange processes) with the external atmosphere at or near the Well Hall, the innermost and deepest area of the cave. A parallel aerobiological study also showed that, in addition to the entrance door, there is another connection with the external atmosphere, which favors the transport and increases microorganism concentrations in the Well Hall. This double approach provides a more complete knowledge on cave ventilation and revealed the existence of unknown passageways in the cave, a fact that should be taken into account in future cave management.

  11. [Determination of trace haloacetic acids in drinking water using ion chromatography coupled with solid phase extraction].

    PubMed

    Sun, Yingxue; Huang, Jianjun; Gu, Ping

    2006-05-01

    The combined solid phase extraction (SPE)-ion chromatography (IC) method was developed for the analysis of trace haloacetic acids (HAAs) in drinking water. The tested HAAs included monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA). For trace determination of HAAs in real drinking water samples, conditions of LiChrolut EN SPE cartridge were investigated for HAAs preconcentration and matrix elimination. Elution was carried out by 2 mL of sodium hydroxide (10 mmol/L) with the flow rate of 2 mL/min. The Dionex IonPac AS16 column (250 mm x 4 mm i. d.), a high capacity and hydroxide-selective anion-exchange column designed for the determination of polarizable anions, was chosen for chromatographic separation. HAAs were analyzed with a concentration gradient of NaOH with the flow rate of 0.8 mL/min and detected by suppressed conductivity. A 500 microL sample loop was used. The detection limits of this SPE-IC method for MCAA, DCAA, DBAA and TCAA were 0.38-1.69 microg/L and MBAA was 12.5 microg/L under 25-fold preconcentration. The results demonstrate that the method is suitable for the analysis of trace haloacetic acids in drinking water.

  12. Novel technology for sewage sludge utilization: preparation of amino acids chelated trace elements (AACTE) fertilizer.

    PubMed

    Liu, Yangsheng; Kong, Sifang; Li, Yaqiong; Zeng, Hui

    2009-11-15

    This study developed a novel technology for sewage sludge utilization. The bacteria proteins in the sewage sludge were extracted to produce the amino acid chelated trace elements (AACTE) fertilizer by virtue of several chemical processes. Firstly, the sewage sludge was hydrolyzed under hot hydrochloric acid solution to obtain protein solution. The effects of hydrolysis temperature, reaction time and pH on the extraction ratio of protein from the sewage sludge were investigated. Secondly, the protein solution was further hydrolyzed into amino acids under hot acid condition. The effects of the HCl dosage, hydrolysis temperature and reaction time on the yields of amino acids were investigated in detail. Thirdly, the raw amino acids solution was purified by activated carbon decolorization and glacial acetic acid dissolution. Finally, the purified amino acids were used to produce the AACTE fertilizer by chelating with trace elements. Results showed that, under optimum hydrolysis conditions, 78.5% of protein was extracted from the sewage sludge and the amino acids yield was 10-13 g per 100g of dry sludge. The AACTE fertilizer produced was in accordance with China Standard for Amino Acids Foliar Fertilizer. This novel technology is more environmentally friendly compared with the conventional sludge treatments.

  13. Extraterrestrial Amino Acids in Orgueil and Ivuna: Tracing the Parent Body of CI Type Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Meyer, Michael (Technical Monitor); Ehrenfreund, Pascale; Glavin, Daniel P.; Bota, Oliver; Cooper, George; Bada, Jeffrey

    2001-01-01

    Amino acid analyses using HPLC of pristine interior pieces of the CI carbonaceous chondrites Orgueil and Ivuna have found that beta-alanine, glycine, and gamma-amino-n-butyric acid (ABA) are the most abundant amino acids in these two meteorites, with concentrations ranging from approx. 600 to 2,000 parts per billion (ppb). Other alpha-amino acids such as alanine, alpha-ABA, alpha-aminoisobutyric acid (AIB), and isovaline are present only in trace amounts (less than 200 ppb). Carbon isotopic measurements of beta-alanine and glycine and the presence of racemic (D/L 1) alanine and beta-ABA in Orgueil suggest that these amino acids are extraterrestrial in origin. In comparison to the CM carbonaceous chondrites Murchison and Murray, the amino acid composition of the CIs is strikingly distinct, suggesting that these meteorites came from a different type of parent body, possibly an extinct comet, than did the CM carbonaceous chondrites.

  14. Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites

    PubMed Central

    Ehrenfreund, Pascale; Glavin, Daniel P.; Botta, Oliver; Cooper, George; Bada, Jeffrey L.

    2001-01-01

    Amino acid analyses using HPLC of pristine interior pieces of the CI carbonaceous chondrites Orgueil and Ivuna have found that β-alanine, glycine, and γ-amino-n-butyric acid (ABA) are the most abundant amino acids in these two meteorites, with concentrations ranging from ≈600 to 2,000 parts per billion (ppb). Other α-amino acids such as alanine, α-ABA, α-aminoisobutyric acid (AIB), and isovaline are present only in trace amounts (<200 ppb). Carbon isotopic measurements of β-alanine and glycine and the presence of racemic (D/L ≈ 1) alanine and β-ABA in Orgueil suggest that these amino acids are extraterrestrial in origin. In comparison to the CM carbonaceous chondrites Murchison and Murray, the amino acid composition of the CIs is strikingly distinct, suggesting that these meteorites came from a different type of parent body, possibly an extinct comet, than did the CM carbonaceous chondrites. PMID:11226205

  15. Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry.

    PubMed

    Yang, Chunxia; Chen, Yongheng; Peng, Ping'an; Li, Chao; Chang, Xiangyang; Wu, Yingjuan

    2009-08-15

    Total concentrations combined with chemical partitioning of trace elements (Cd, Co, Cr, Mn, Ni, Pb, Tl, and Zn) in raw pyrite ore and solid roasting wastes were investigated in order to elucidate their transformations and partitioning during the roasting of raw pyrite ores in sulfuric acid production. In order to better understand the behavior of these elements during roasting, mineral transformations accompanying roasting were also investigated by using microscopy. Results indicated that the mode of occurrence of trace elements in raw pyrite ore and the thermostability of trace element-bearing species formed during roasting played major roles in the transformations of the selected trace elements. Silicate- and amorphous iron (hydr)oxide-bound elements (Cr and Pb) were stable and mainly retained in their original phases. However, acid-exchangeable and sulfide-bound elements tended to transform into other forms via different pathways: elements that tend to form low thermostable species (Cd, Pb and Tl) were significantly vaporized, whereas elements that tend to form high thermostable species (Co, Mn and Ni) mainly reacted with iron oxides or silicates, which then remained in the solid residues. The volatility of trace elements during the roasting has a significant effect on their subsequent partitioning in roasting wastes. Nonvolatile element (Co, Cr, Mn, and Ni) partitioning was determined by settling of the particulate in which they are bound, whereas the partitioning of (semi)volatile elements (Cd, Pb, Tl, and Zn) was controlled by the adsorption of their gaseous species on the particulate.

  16. Determination of trace amount of oxalic acid with zirconium(IV)-(DBS-arsenazo) by spectrophotometry

    NASA Astrophysics Data System (ADS)

    Zhai, Qing-Zhou

    2008-11-01

    A novel method is proposed for the determination of trace amount of oxalic acid in the present article. In 1.0 M hydrochloric acid medium, oxalic acid can react with the zirconium(IV) in Zr(IV)-(DBS-arsenazo) complex and replaces the DBS-arsenazo to produce a hyperchromic effect at 520 nm. The hyperchromic degree is proportional to the concentration of the oxalic acid added over a defined range. Based on this property, a new method for the spectrophotometric determination of trace oxalic acid was developed. Beer's law is held over the concentration range of 9.0 × 10 -6 to 5.0 × 10 -4 M for oxalic acid with a correlation coefficient of 0.9995. The apparent molar absorptivity of the method is ɛ520 nm = 1.16 × 10 3 L mol -1 cm -1 and the detection limit for oxalic acid is 0.815 μg/mL. The developed method was directly applied to the determination of oxalic acid in tomato samples with satisfactory results.

  17. Determination of trace amount of oxalic acid with zirconium(IV)-(DBS-arsenazo) by spectrophotometry.

    PubMed

    Zhai, Qing-Zhou

    2008-11-15

    A novel method is proposed for the determination of trace amount of oxalic acid in the present article. In 1.0M hydrochloric acid medium, oxalic acid can react with the zirconium(IV) in Zr(IV)-(DBS-arsenazo) complex and replaces the DBS-arsenazo to produce a hyperchromic effect at 520 nm. The hyperchromic degree is proportional to the concentration of the oxalic acid added over a defined range. Based on this property, a new method for the spectrophotometric determination of trace oxalic acid was developed. Beer's law is held over the concentration range of 9.0 x 10(-6) to 5.0 x 10(-4)M for oxalic acid with a correlation coefficient of 0.9995. The apparent molar absorptivity of the method is epsilon520 nm = 1.16 x 10(3)L mol(-1)cm(-1) and the detection limit for oxalic acid is 0.815 microg/mL. The developed method was directly applied to the determination of oxalic acid in tomato samples with satisfactory results.

  18. Apparatus for purifying arsine, phosphine, ammonia, and inert gases to remove Lewis acid and oxidant impurities therefrom

    DOEpatents

    Tom, Glenn M.; Brown, Duncan W.

    1991-01-08

    An apparatus for purifying a gaseous mixture comprising arsine, phosphine, ammonia, and/or inert gases, to remove Lewis acid and/or oxidant impurities therefrom, comprising a vessel containing a bed of a scavenger, the scavenger including a support having associated therewith an anion which is effective to remove such impurities, such anion being selected from one or more members of the group consisting of: (i) carbanions whose corresponding protonated compounds have a pK.sub.a value of from about 22 to about 36; and (ii) anions formed by reaction of such carbanions with the primary component of the mixture.

  19. Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: application of acid leachable technique.

    PubMed

    Janaki-Raman, D; Jonathan, M P; Srinivasalu, S; Armstrong-Altrin, J S; Mohan, S P; Ram-Mohan, V

    2007-01-01

    Core sediments from Mullipallam Creek of Muthupet mangroves on the southeast coast of India were analyzed for texture, CaCO(3), organic carbon, sulfur and acid leachable trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd). Textural analysis reveals a predominance of mud while CaCO(3) indicates dissolution in the upper half of the core, and reprecipitation of carbonates in reduction zones. Trace metals are diagenetically modified and anthropogenic processes control Pb and, to some extent, Ni, Zn and Fe. A distinct event is identified at 90 cm suggesting a change in deposition. Strong relationship of trace metals with Fe indicates that they are associated with Fe-oxyhydroxides. The role of carbonates in absorbing trace metals is evident from their positive relationship with trace metals. Comparison of acid leachable trace metals indicates increase in concentrations in the study area and the sediments act as a sink for trace metals contributed from multiple sources.

  20. Characteristics of trace gases and aerosols at top of urban canopy layer in Nanjing of China from one year observational study

    NASA Astrophysics Data System (ADS)

    Wang, Tijian

    2013-04-01

    To understand the physical and chemical processes of air pollution formation in urban and their linkage with climate change in Yangtze River Delta(YRD), the fast developing area in China, a monitoring site was built on the top of a high building in the center of Nanjing. The site was set up to investigate the long term variations of trace gases and aerosols, which may play important roles in air pollution and climate change in regional scale. From one year measurement records, the annual average concentrations of ozone, sulfur dioxide, carbon monoxide, carbon dioxide, nitric oxide, total reactive nitrogen, water vapor are reported as 161.9±19.4 ppb, 93.8±8.9 ppb, 3856.7±412.1 ppb, 565.1±20.0 ppm, 173.6±15.6 ppb, 230.8±24.9 ppb, 34.76±7.2x10-3, respectively. PM10, PM2.5, visibility, black carbon, back scattering of particles(BSP), single scattering albedo(SSA), aerosol optical depth(AOD) and Angstrom wavelength exponent (AWE) are 115±113.1 μg/m3, 54±46.1 μg/m3, 9780±5594 m, 3055.9±2102.3 ng/m3, 66.3±97.5 Mm-1, 0.5±2.4, 0.7±0.38 and 1.22±0.28, respectively. Measurement show that the levels of air pollutants in YRD in East China are high compared to Pearl River Delta(PRD) in South China and Jing-Jin-Ji (JJJ) in North China, suggesting a possible stronger effect on atmospheric environment, climate change and human health in this region, which should be further addressed in the future study.

  1. Application of the LIRIC algorithm for the characterization of aerosols during the Airborne Romanian Measurements of Aerosols and Trace gases (AROMAT) campaign

    NASA Astrophysics Data System (ADS)

    Stefanie, Horatiu; Nicolae, Doina; Nemuc, Anca; Belegante, Livio; Toanca, Florica; Ajtai, Nicolae; Ozunu, Alexandru

    2015-04-01

    The ESA/ESTEC AROMAT campaign (Airborne Romanian Measurements of Aerosols and Trace gases) was held between 1st and 14th of September 2014 with the purpose to test and inter-compare newly developed airborne and ground-based instruments dedicated to air quality studies in the context of validation programs of the forthcoming European Space Agency satellites (Sentinel 5P, ADM-Aeolus and EarthCARE). Ground-based remote sensing and airborne in situ measurements were made in southern Romania in order to assess the level and the variability of NO2 and particulate matter, focusing on two areas of interest: SW (Turceni), where many coal based power plants are operating, and SE (Bucharest), affected by intense traffic and partially by industrial pollution. In this paper we present the results obtained after the application of the Lidar - Radiometer Inversion Code (LIRIC) algorithm on combined lidar and sunphotometer data collected at Magurele, 6 km South Bucharest. Full lidar data sets in terms of backscatter signals at 355, 532 and 1064 nm, as well as depolarization at 532 nm were used and combined with Aerosol Robotic Network (AERONET) data, in order to retrieve the profiles of aerosol volume concentrations, separated as fine, spherical and spheroidal coarse modes. Preliminary results showed that aerosols generated by traffic and industrial activities were present in the Planetary Boundary Layer, while biomass burning aerosols transported from the Balkan Peninsula were detected in the upper layers. Acknowledgements: ***This work has been supported by Programme for Research- Space Technology and Advanced Research - STAR, project number 55/2013 - CARESSE. ***The financial support by the European Community's FP7 - PEOPLE 2011 under ITaRS Grant Agreement n° 289923 is gratefully acknowledged.

  2. Phase Partitioning of Soluble Trace Gases with Size-Resolved Aerosols during the Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) Campaign

    NASA Astrophysics Data System (ADS)

    Young, A.; Keene, W. C.; Pszenny, A.; Sander, R.; Maben, J. R.; Warrick-Wriston, C.; Bearekman, R.

    2011-12-01

    During February and March 2011, size-resolved and bulk aerosol were sampled at 22 m above the surface over nominal 12-hour (daytime and nighttime) intervals from the Boulder Atmospheric Observatory tower (40.05 N, 105.01 W, 1584-m elevation). Samples were analyzed for major organic and inorganic ionic constituents by high performance ion chromatography (IC). Soluble trace gases (HCl, HNO3, NH3, HCOOH, and CH3COOH) were sampled in parallel over 2-hour intervals with tandem mist chambers and analyzed on site by IC. NH4+, NO3-, and SO42- were the major ionic components of aerosols (median values of 57.7, 34.5, and 7.3 nmol m-3 at STP, respectively, N = 45) with 86%, 82%, and 82%, respectively, associated with sub-μm size fractions. Cl- and Na+ were present at significant concentrations (median values of 6.8 and 6.6 nmol m-3, respectively) but were associated primarily with super-μm size fractions (75% and 78%, respectively). Median values (and ranges) for HCl, HNO3, and NH3 were 21 (<20-1257), 120 (<45-1638), and 5259 (<1432-48,583) pptv, respectively. Liquid water contents of size-resolved aerosols and activity coefficients for major ionic constituents were calculated with the Extended Aerosol Inorganic Model II and IV (E-AIM) based on the measured aerosol composition, RH, temperature, and pressure. Size-resolved aerosol pHs were inferred from the measured phase partitioning of HCl, HNO3, and NH3. Major controls of phase partitioning and associated chemical dynamics will be presented.

  3. Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxi; Zhang, Y.; Huey, L. G.; Yokelson, R. J.; Wang, Y.; Jimenez, J. L.; Campuzano-Jost, P.; Beyersdorf, A. J.; Blake, D. R.; Choi, Y.; St. Clair, J. M.; Crounse, J. D.; Day, D. A.; Diskin, G. S.; Fried, A.; Hall, S. R.; Hanisco, T. F.; King, L. E.; Meinardi, S.; Mikoviny, T.; Palm, B. B.; Peischl, J.; Perring, A. E.; Pollack, I. B.; Ryerson, T. B.; Sachse, G.; Schwarz, J. P.; Simpson, I. J.; Tanner, D. J.; Thornhill, K. L.; Ullmann, K.; Weber, R. J.; Wennberg, P. O.; Wisthaler, A.; Wolfe, G. M.; Ziemba, L. D.

    2016-06-01

    Emissions from 15 agricultural fires in the southeastern U.S. were measured from the NASA DC-8 research aircraft during the summer 2013 Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. This study reports a detailed set of emission factors (EFs) for 25 trace gases and 6 fine particle species. The chemical evolution of the primary emissions in seven plumes was examined in detail for ~1.2 h. A Lagrangian plume cross-section model was used to simulate the evolution of ozone (O3), reactive nitrogen species, and organic aerosol (OA). Observed EFs are generally consistent with previous measurements of crop residue burning, but the fires studied here emitted high amounts of SO2 and fine particles, especially primary OA and chloride. Filter-based measurements of aerosol light absorption implied that brown carbon (BrC) was ubiquitous in the plumes. In aged plumes, rapid production of O3, peroxyacetyl nitrate (PAN), and nitrate was observed with ΔO3/ΔCO, ΔPAN/ΔNOy, and Δnitrate/ΔNOy reaching ~0.1, ~0.3, and ~0.3. For five selected cases, the model reasonably simulated O3 formation but underestimated PAN formation. No significant evolution of OA mass or BrC absorption was observed. However, a consistent increase in oxygen-to-carbon (O/C) ratios of OA indicated that OA oxidation in the agricultural fire plumes was much faster than in urban and forest fire plumes. Finally, total annual SO2, NOx, and CO emissions from agricultural fires in Arkansas, Louisiana, Mississippi, and Missouri were estimated (within a factor of ~2) to be equivalent to ~2% SO2 from coal combustion and ~1% NOx and ~9% CO from mobile sources.

  4. Continental pollution in the western Mediterranean basin: vertical profiles of aerosol and trace gases measured over the sea during TRAQA 2012 and SAFMED 2013

    NASA Astrophysics Data System (ADS)

    Di Biagio, C.; Doppler, L.; Gaimoz, C.; Grand, N.; Ancellet, G.; Raut, J.-C.; Beekmann, M.; Borbon, A.; Sartelet, K.; Attié, J.-L.; Ravetta, F.; Formenti, P.

    2015-08-01

    In this study we present airborne observations of aerosol and trace gases obtained over the sea in the western Mediterranean basin during the TRAQA (TRansport and Air QuAlity) and SAFMED (Secondary Aerosol Formation in the MEDiterranean) campaigns in summer 2012 and 2013. A total of 23 vertical profiles were measured up to 5000 m above sea level over an extended area (40-45° N and 2° W-12° E) including the Gulf of Genoa, southern France, the Gulf of Lion, and the Spanish coast. During TRAQA and SAFMED the study area experienced a wide range of meteorological conditions which favoured pollution export from different sources located around the basin. Also, several events of dust outflows were measured during the campaigns. Observations from the present study show that continental pollution largely affects the western Mediterranean both close to coastal regions and in the open sea as far as ~ 250 km from the coastline. The measured aerosol scattering coefficient varies between ~ 20 and 120 Mm-1, while carbon monoxide (CO) and ozone (O3) mixing ratios are in the range of 60-165 and 30-85 ppbv, respectively. Pollution reaches 3000-4000 m in altitude and presents a very complex and highly stratified structure characterized by fresh and aged layers both in the boundary layer and in the free troposphere. Within pollution plumes the measured particle concentration in the Aitken (0.004-0.1 μm) and accumulation (0.1-1.0 μm) modes is between ~ 30 and 5000-6000 scm-3 (standard cm-3), which is comparable to the aerosol concentration measured in continental areas under pollution conditions. Additionally, our measurements indicate the presence of highly concentrated Aitken layers (10 000-15 000 scm-3) observed both close to the surface and in the free troposphere, possibly linked to the influence of new particle formation (NPF) episodes over the basin.

  5. Reactive trace element enrichment in a highly modified, tidally inundated acid sulfate soil wetland: East Trinity, Australia.

    PubMed

    Keene, Annabelle F; Johnston, Scott G; Bush, Richard T; Burton, Edward D; Sullivan, Leigh A

    2010-04-01

    This study examines the abundance of trace elements in surface sediments of a former acid sulfate soil (ASS) wetland subjected to marine tidal inundation. Sediment properties of this highly modified study site are compared with those of an adjacent unmodified, intertidal mangrove forest. Whilst some trace elements (Al, Cd, Mn, Ni and Zn) were clearly depleted due to mobilisation and leaching in the previous oxic-acidic phase, other trace elements (As and Cr) displayed significant enrichment in the tidally inundated ASS. Many trace elements were strongly associated with the reactive Fe and acid volatile sulfide (AVS) fractions, suggesting that trace elements may be adsorbed to abundant reactive Fe phases or sequestered as sulfide minerals. These findings provide an important understanding of the fate and mobility of reactive iron, AVS and trace elements during tidal remediation of a formerly acidified Great Barrier Reef (GBR) catchment.

  6. Atmospheric pollutants and trace gases

    SciTech Connect

    Ranieri, A.; Schenone, G.; Lencioni, L.; Soldatini, G.F.

    1994-03-01

    Pumpkin [Cucurbita pepo (L.) cv. Ambassador] plants were grown under either nonfiltered or filtered ambient air in open-top field chambers (OTCs) near the urban area of Milan, Northern Italy. The effects of ambient air pollution on the enzymatic detoxfication system of the leaves, both in terms of activity and isoform pattern were investigated. The data on air quality showed that ozone was the main phytotoxic pollutant present in ambient air, reaching a 7 h mean of 63 nL L{sup -1} and a maximum hourly peak of 104 nL L{sup -1} The peroxidase and catalase activities increased fourfold and twofold, respectively in the nonfiltered air plants In comparison to the filtered air ones. The peroxidase patterns were very modified in the polluted plants. In contrast no significant changes were found in the activity and isoenzyme pattern of superoxide dismutase. The data reported here suggest that in field-grown pumpkin plants exposed to ambient levels of photooxidants, a stimulation of the peroxddase-catalase detoxification system takes place. 32 refs., 3 figs., 3 tabs.

  7. Predicting the toxicity of sediment-associated trace metals with simultaneously extracted trace metal: Acid-volatile sulfide concentrations and dry weight-normalized concentrations: A critical comparison

    USGS Publications Warehouse

    Long, E.R.; MacDonald, D.D.; Cubbage, J.C.; Ingersoll, C.G.

    1998-01-01

    The relative abilities of sediment concentrations of simultaneously extracted trace metal: acid-volatile sulfide (SEM:AVS) and dry weight- normalized trace metals to correctly predict both toxicity and nontoxicity were compared by analysis of 77 field-collected samples. Relative to the SEM:AVS concentrations, sediment guidelines based upon dry weight-normalized concentrations were equally or slightly more accurate in predicting both nontoxic and toxic results in laboratory tests.

  8. Condensational growth and trace species scavenging in stratospheric sulfuric acid/water aerosol droplets

    NASA Technical Reports Server (NTRS)

    Tompson, Robert V., Jr.

    1991-01-01

    Stratospheric aerosols play a significant role in the environment. The composition of aerosols is believed to be a liquid solution of sulfuric acid and water with numerous trace species. Of these trace species, ozone in particular was recognized as being very important in its role of shielding the environment from harmful ultraviolet radiation. Also among the trace species are HCl and ClONO2, the so called chlorine reservoir species and various oxides of nitrogen. The quantity of stratospheric aerosol and its particle size distribution determines, to a large degree, the chemistry present in the stratosphere. Aerosols experience 3 types of growth: nucleation, condensation, and coagulation. The application of condensation investigations to the specific problem of stratospheric aerosols is discussed.

  9. Geochemical and biological controls on trace metal transport in an acid mine impacted watershed.

    PubMed

    Butler, Thomas W

    2006-06-01

    Water samples collected in an acid mine impacted watershed indicated that the concentrations of dissolved trace metals were diurnally influenced by mineral saturation, which is controlled primarily by pH and water temperature. Measurements taken suggested that these variations only occur at sample locations immediately downstream from the confluence of acidic and alkaline waters. It is at these locations where initial mineral precipitation occurred and where subtle changes in solubility were most affected, increasing trace metal removal when both the rate of photosynthesis (influencing pH in headwaters) and water temperature were at a maximum. The role of iron photoreduction (increased midday production of ferrous iron) on overall Cu, Mn, and Zn transport was also evaluated, but found to be inconclusive. Iron photoreduction may however influence adsorption and/or coprecipitation of trace metals through associated changes in oxidation state, solubility, and mineralogy of various iron colloids, which are produced upon the neutralization of acidic, metal enriched water. Furthermore, measured values of copper and zinc were compared to relative USEPA chronic criterion for exposure to continuous concentration (CCC) of metals by the calculation of a "toxicity unit" (TU). It was found that average values of both copper and zinc only exceeded the CCC (TU>1) in the acid mine-impacted Leona Creek. In general, zinc toxicity decreased while copper toxicity increased downstream of the confluence of the mine impacted Leona Creek and background Lion Creek (sampled at Lake Aliso), indicating a significant source of zinc in upstream, non mine-impacted samples.

  10. Community Radiative Transfer Model Applications - A Study of the Retrieval of Trace Gases in the Atmosphere from Cross-track Infrared Sounder (CrIS) Data of a Full-spectral Resolution

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Nalli, N. R.; Tan, C.; Zhang, K.; Iturbide, F.; Wilson, M.; Zhou, L.

    2015-12-01

    The Community Radiative Transfer Model (CRTM) [3] operationally supports satellite radiance assimilation for weather forecasting, sensor data verification, and the retrievals of satellite products. The CRTM has been applied to UV and visible sensors, infrared and microwave sensors. The paper will demonstrate the applications of the CRTM, in particular radiative transfer in the retrieva algorithm. The NOAA Unique CrIS/ATMS Processing System (NUCAPS) operationally generates vertical profiles of atmospheric temperature (AVTP) and moisture (AVMP) from Suomi NPP Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) measurements. Current operational CrIS data have reduced spectral resolution: 1.25 cm-1 for a middle wave band and 2.5 cm-1 for a short-wave wave band [1]. The reduced spectral data largely degraded the retrieval accuracy of trace gases. CrIS full spectral data are also available now which have single spectral resolution of 0.625 cm-1 for all of the three bands: long-wave band, middle wave band, and short-wave band. The CrIS full-spectral resolution data is critical to the retrieval of trace gases such as O3, CO [2], CO2, and CH4. In this paper, we use the Community Radiative Transfer Model (CRTM) to study the impact of the CrIS spectral resolution on the retrieval accuracy of trace gases. The newly released CRTM version 2.2.1 can simulates Hamming-apodized CrIS radiance of a full-spectral resolution. We developed a small utility that can convert the CRTM simulated radiance to un-apodized radiance. The latter has better spectral information which can be helpful to the retrievals of the trace gases. The retrievals will be validated using both NWP model data as well as the data collected during AEROSE expeditions [4]. We will also discuss the sensitivity on trace gases between apodized and un-apodized radiances. References[1] Gambacorta, A., et al.(2013), IEEE Lett., 11(9), doi:10.1109/LGRS.2014.230364, 1639-1643. [2] Han, Y., et

  11. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-10-01

    Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes in physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard, in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased, the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces adsorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the Arctic atmosphere, which need to be incorporated into atmospheric chemical models in the Arctic troposphere.

  12. Preliminary simulations of planned experiments to study the impact of trace gases on the capacity of the Weyburn-Midale field to store carbon dioxide

    SciTech Connect

    Carroll, S; Hao, Y

    2009-11-13

    The CO{sub 2} stream injecting into the Weyburn-Midale field can be generally classified as a reducing stream with residual H{sub 2}S and low-molecular weight hydrocarbons. The composition of the CO{sub 2} gas stream from the Dakota Gasification Company is reported to be 95% CO{sub 2}, 4% hydrocarbons, and 1% H{sub 2}S by volume (Huxley 2006). In addition to the H{sub 2}S introduced at the injection wells, significant concentrations of H{sub 2}S are thought to have been produced in-situ by sulfate reducing bacteria from previous water floods for enhanced oil production. Produced gas compositions range in H{sub 2}S concentrations from 1 to 6 volume percent. The produced gas, including the trace impurities, is re-injected into the field. Although there is no evidence for inorganic reduction of SO{sub 4}{sup 2-} to H{sub 2}S at the Weyburn-Midale field, Sitchler and Kazuba (2009) suggest that SO{sub 4}{sup 2-} can be inorganically reduced to elemental sulfur in highly reducing environments based on a natural analog study of the Madison Formation in Wyoming. They propose that elevated concentrations of CO{sub 2} dissolve anhydrite to produce the sulfate that is then reduced. Oxidizing CO{sub 2} streams with residual O{sub 2} and SO{sub 2} typical of streams captured from oxyfuel and post combustion processes are not presently an issue at the Weyburn-Midale field. However it is possible that the oxidizing CO{sub 2} streams may be injected in the future in carbonate reservoirs similar to the Weyburn-Midale field. To date there are few modeling and experimental studies that have explored the impact of impurity gases in CO{sub 2} streams targeted for geologic storage (Gale 2009). Jacquemet et al (2009) reviewed select geochemical modeling studies that explored the impact of SO{sub 2} and H{sub 2}S impurities in the waste streams (Gunter et al., 2000, Knauss et al., 2005, Xu et al., 2007). These studies collectively show that SO{sub 2} significantly reduces the pH when

  13. Interaction between common organic acids and trace nucleation species in the Earth's atmosphere.

    PubMed

    Xu, Yisheng; Nadykto, Alexey B; Yu, Fangqun; Herb, J; Wang, Wei

    2010-01-14

    Atmospheric aerosols formed via nucleation in the Earth's atmosphere play an important role in the aerosol radiative forcing associated directly with global climate changes and public health. Although it is well-known that atmospheric aerosol particles contain organic species, the chemical nature of and physicochemical processes behind atmospheric nucleation involving organic species remain unclear. In the present work, the interaction of common organic acids with molecular weights of 122, 116, 134, 88, 136, and 150 (benzoic, maleic, malic, pyruvic, phenylacetic, and tartaric acids) with nucleation precursors and charged trace species has been investigated. We found a moderate strong effect of the organic species on the stability of neutral and charged ionic species. In most cases, the free energies of the mixed H(2)SO(4)-organic acid dimer formation are within 1-1.5 kcal mol(-1) of the (H(2)SO(4))(NH(3)) formation energy. The interaction of the organic acids with trace ionic species is quite strong, and the corresponding free energies far exceed those of the (H(3)O(+))(H(2)SO(4)) and (H(3)O(+))(H(2)SO(4))(2) formation. These considerations lead us to conclude that the aforementioned organic acids may possess a substantial capability of stabilizing both neutral and positively charged prenucleation clusters, and thus, they should be studied further with regard to their involvement in the gas-to-particle conversion in the Earth's atmosphere.

  14. Adsorptive removal of trace oxytetracycline from water by acid-modified zeolite: influencing factors.

    PubMed

    An, Wenhao; Xiao, Hua; Yu, Man; Chen, Xiaoyang; Xu, Yuxin; Zhou, Wenmin

    2013-01-01

    Because of the wide use of antibiotics in the livestock industry, trace tetracycline antibiotics are frequently detected in swine wastewater and water bodies near pig farms. Based on natural zeolite, modified zeolite was synthesized by treatment with nitric acid. As one kind of typical tetracyclines, oxytetracycline (OTC) was chosen as the target adsorbate. Removal of trace OTC by modified zeolite and the effects of several main water matrices on OTC adsorption were studied in detail. OTC removal efficiency by acid-modified zeolite was about 90%, compared to less than 20% by natural zeolite. In general, in acidic conditions the removal efficiency of OTC by modified zeolite was about 90%, which was much higher than 20-35% in alkaline conditions. An increase in ionic strength from 0.01 to 1.0 M led to a decrease in adsorption efficiency from 90 to 27%. The presence of 10.0 mg L(-1) dissolved humic acid accelerated sorption of OTC on modified zeolite, while 100.0 mg L(-1) humic acid resulted in the opposite effect. An increase in temperature contributed to enhancing the adsorption efficiency.

  15. Continental pollution in the Western Mediterranean Basin: vertical profiles of aerosol and trace gases measured over the sea during TRAQA 2012 and SAFMED 2013

    NASA Astrophysics Data System (ADS)

    Di Biagio, C.; Doppler, L.; Gaimoz, C.; Grand, N.; Ancellet, G.; Raut, J.-C.; Beekmann, M.; Borbon, A.; Sartelet, K.; Attié, J.-L.; Ravetta, F.; Formenti, P.

    2015-03-01

    In this study we present airborne observations of aerosol and trace gases obtained over the sea in the Western Mediterranean Basin during the TRAQA (TRansport and Air QuAlity) and SAFMED (Secondary Aerosol Formation in the MEDiterranean) campaigns in summers 2012 and 2013. A total of 23 vertical profiles were measured up to 5000 m a.s.l. over an extended area (40-45° N latitude and 2° W-12° E longitude) including the Gulf of Genoa, Southern France, the Gulf of Lion, and the Spanish coast. TRAQA and SAFMED successfully measured a wide range of meteorological conditions which favoured the pollution export from different sources located around the basin. Also, several events of dust outflows were measured during the campaigns. Observations from the present study indicate that continental pollution largely affects the Western Mediterranean both close to coastal regions and in the open sea as far as ~250 km from the coastline. Aerosol layers not specifically linked with Saharan dust outflows are distributed ubiquitously which indicates quite elevated levels of background pollution throughout the Western Basin. The measured aerosol scattering coefficient varies between ~20 and 120 M m-1, while carbon monoxide (CO) and ozone (O3) mixing ratios are in the range of 60-170 and 30-85 ppbv, respectively. Pollution reaches 3000-4000 m in altitude and presents a very complex and highly stratified structure characterized by fresh and aged layers both in the boundary layer and in the free troposphere. Within pollution plumes the measured particle concentration in the Aitken (0.004-0.1 μm) and accumulation (0.1-1.0 μm) modes is between ˜ 100 and 5000-6000 s cm-3 (standard cm-3), which is comparable to the aerosol concentration measured in continental urban areas. Additionally, our measurements indicate the presence of highly concentrated Aitken layers (10 000-15 000 s cm-3) observed both close to the surface and in the free troposphere, possibly linked to the influence of new

  16. Detections and Sensitive Upper Limits for Methane and Related Trace Gases on Mars during 2003-2014, and planned extensions in 2016

    NASA Astrophysics Data System (ADS)

    Mumma, Michael J.; Villanueva, Geronimo L.; Novak, Robert E.

    2015-11-01

    Five groups report methane detections on Mars; all results suggest local release and high temporal variability [1-7]. Our team searched for CH4 on many dates and seasons and detected it on several dates [1, 9, 10]. TLS (Curiosity rover) reported methane upper limits [6], and then detections [7] that were consistent in size with earlier reports and that also showed rapid modulation of CH4 abundance.[8] argued that absorption features assigned to Mars 12CH4 by [1] might instead be weak lines of terrestrial 13CH4. If not properly removed, terrestrial 13CH4 signatures would appear on the blue wing of terrestrial 12CH4 even when Mars is red-shifted - but they do not (Fig. S6 of [1]), demonstrating that terrestrial signatures were correctly removed. [9] demonstrated that including the dependence of δ13CH4 with altitude did not affect the residual features, nor did taking δ13CH4 as zero. Were δ13CH4 important, its omission would have overemphasized the depth of 13CH4 terrestrial absorption, introducing emission features in the residual spectra [1]. However, the residual features are seen in absorption, establishing their origin as non-terrestrial - [8] now agrees with this view.We later reported results for multiple organic gases (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), three nitriles (N2O, NH3, HCN) and two chlorinated species (HCl, CH3Cl) [9]. Most of these species cannot be detected with current space assets, owing to instrumental limitations (e.g., spectral resolving power). However, the high resolution infrared spectrometers (NOMAD, ACS) on ExoMars 2016 (Trace Gas Orbiter) will begin measurements in late 2016. In solar occultation, TGO sensitivities will far exceed prior capabilities.We published detailed hemispheric maps of H2O and HDO on Mars, inferring the size of a lost early ocean [10]. In 2016, we plan to acquire 3-D spatial maps of HDO and H2O with ALMA, and improved maps of organics with iSHELL/NASA-IRTF.References: [1] Mumma et al. Sci09

  17. Trace gases, aerosols and their interactions with synoptic weather: An overview of in-situ measurements at the SORPES Station in the western Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Ding, A.; Fu, C.; Yang, X.; Petaja, T.; Kerminen, V.; Kulmala, M. T.

    2013-12-01

    This work presents an overview of 1 yr measurements of ozone (O3) and fine particular matter (PM2.5) and related trace gases at a recently developed regional background site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. Ozone and PM2.5 showed strong seasonal cycles but with contrast patterns: O3 reached a maximum in warm seasons but PM2.5 in cold seasons. Correlation analysis suggests a VOC-sensitive regime for O3 chemistry and a formation of secondary aerosols under conditions of high O3 in summer. Compared with the National Ambient Air Quality Standards in China, our measurements report 15 days of O3 exceedance and 148 days of PM2.5 exceedance during the 1 yr period, suggesting a severe air pollution situation in this region. A calculation of potential source contributions based on Lagrangian dispersion simulations suggests that emissions from the YRD contributed to over 70% of the O3 precursor CO, with a majority from the mid-YRD. North-YRD and the North China Plain are the main contributors to PM2.5pollution in this region. Case studies for typical O3 and PM2.5 episodes showed that synoptic weather played an important role in air pollution, especially for O3. Observation during the typical biomass burning seasons also shows clear air pollution - weather interactions. For the typical episode occurred on 10 June, 2012, the measurement suggest that the mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70 %, of sensible heat flux over 85 %, a temperature drop by almost 10 K, and a change 10 of rainfall during daytime and nighttime. This work shows an important environmental impact from industrialization and urbanization in the YRD region, and suggests an urgent need for improving air quality in these areas through collaborative control measures among different administrative regions, and

  18. Trace gases, aerosols and their interactions with synoptic weather: An overview of in-situ measurements at the SORPES Station in the western Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Ding, A.; Fu, C.; Yang, X.; Petaja, T.; Kerminen, V.; Kulmala, M. T.

    2011-12-01

    This work presents an overview of 1 yr measurements of ozone (O3) and fine particular matter (PM2.5) and related trace gases at a recently developed regional background site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. Ozone and PM2.5 showed strong seasonal cycles but with contrast patterns: O3 reached a maximum in warm seasons but PM2.5 in cold seasons. Correlation analysis suggests a VOC-sensitive regime for O3 chemistry and a formation of secondary aerosols under conditions of high O3 in summer. Compared with the National Ambient Air Quality Standards in China, our measurements report 15 days of O3 exceedance and 148 days of PM2.5 exceedance during the 1 yr period, suggesting a severe air pollution situation in this region. A calculation of potential source contributions based on Lagrangian dispersion simulations suggests that emissions from the YRD contributed to over 70% of the O3 precursor CO, with a majority from the mid-YRD. North-YRD and the North China Plain are the main contributors to PM2.5pollution in this region. Case studies for typical O3 and PM2.5 episodes showed that synoptic weather played an important role in air pollution, especially for O3. Observation during the typical biomass burning seasons also shows clear air pollution - weather interactions. For the typical episode occurred on 10 June, 2012, the measurement suggest that the mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70 %, of sensible heat flux over 85 %, a temperature drop by almost 10 K, and a change 10 of rainfall during daytime and nighttime. This work shows an important environmental impact from industrialization and urbanization in the YRD region, and suggests an urgent need for improving air quality in these areas through collaborative control measures among different administrative regions, and

  19. Combining moving inlets for measuring gradients of reactive trace gases and thoron measurements for the determination of near surface fluxes -first results from the Amazon rain forest-

    NASA Astrophysics Data System (ADS)

    Sörgel, Matthias; Artaxo, Paulo; Kesselmeier, Jürgen; Quesada, Carlos Alberto; Ferreira de Souza, Rodrigo Augusto; Trebs, Ivonne; Vega, Oscar; Yañez-Serrano, Ana Maria

    2016-04-01

    For many compounds of interest no fast response sensors for the determination of eddy covariance fluxes are available. Therefore, flux-gradient relationships are used. The most common are the aerodynamic gradient method and the modified Bowen ratio method. For those approaches some assumptions have to be made which restrict their use. An alternative approach to calculate these fluxes might be given by the "thoron clock" method. The radon isotope Thoron (220Rn) is exhaled from the soil and has a half life time of 56 seconds. Therefore, it exists in measureable amounts only close to the ground and is hardly advected. Its only source is the radioactive decay of Thorium in soil. As it is a noble gas Thoron is not influenced by biochemical processes in air. Consequently, its concentration profile only depends on vertical mixing and the radioactive decay which is a physical constant. According to Lehmann et al. (1999) and Plake and Trebs (2013) a transport-time can be directly calculated from two heights thoron concentration/activity for the layer in-between without further assumptions. From this transport time the transfer velocity is derived which is then applied to calculate the fluxes of other (reactive) trace gases. A major advantage of the method is that the transport-time is known and using the measured concentration profile the chemical loss of a compound can be directly calculated and corrected for. We have applied this method for a first time in the Amazon rainforest during a field campaign at the ATTO site 150 km North East of Manaus in the dry season of 2014. We measured gradients of NO, NO2, O3, HONO and VOCs by using a movable inlet on a lift system close to the forest floor (0.19 m, 0.52 m and 1.59 m). A Thoron profile was measure in parallel at the lower two heights. First results of the gradients, the transport times and some preliminary flux values will be presented. References: Lehmann, B.E., Lehmann, M., Neftel, A .: 220 Radon calibration of near

  20. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-06-01

    Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C14N- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C14N- line scans further show that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces determines their hygroscopic and optical properties. These abundant SSA, whose reactive surfaces absorb inorganic and organic acidic gases in the arctic troposphere, need to be incorporated into atmospheric chemical models.

  1. A Pilot-Scale Evaluation of a New Technology to Control NO(x) Emissions from Boilers at KSC: Hydrogen Peroxide Injection into Boiler Flue Gases Followed by Wet Scrubbing of Acid Gases

    NASA Technical Reports Server (NTRS)

    Cooper, C. David

    1997-01-01

    Emissions of nitrogen oxides NO(x) are a significant problem in the United States. NO(x) are formed in any combustion process, therefore it is not surprising that NO(x) are emitted from the boilers at KSC. Research at UCF has shown (in the laboratory) that injecting H2O2 into hot simulated flue gases can oxidize the NO and NO2 to their acid gas forms, HNO2 and HNO3, respectively. These acid gases are much more water soluble than their counterparts, and theoretically can be removed easily by wet scrubbing. This technology was of interest to NASA, both for their boilers at KSC, and for their combustion sources elsewhere. However, it was necessary to field test the technology and to provide pilot-scale data to aid in design of full-scale facilities. Hence this project was initiated in May of 1996.

  2. TRACE ANALYSIS OF FLUORESCEIN-DERIVATIZED PHENOXY ACID HERBICIDES BY MICELLAR ELECTROKINETIC CHROMATOGRAPHY WITH LASER-INDUCTED FLUORESCENCE DETECTION

    EPA Science Inventory

    Micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence (LIF) detection was used for the trace analysis of phenoxy acid herbicides. Capillary electrophoresis (CE) with LIF detection, which has not previously been used for pesticide analysis, overcomes the po...

  3. Aortic ascorbic acid, trace elements, and superoxide dismutase activity in human aneurysmal and occlusive disease.

    PubMed

    Dubick, M A; Hunter, G C; Casey, S M; Keen, C L

    1987-02-01

    Altered trace elements and ascorbic acid metabolism have been implicated in the pathogenesis of atherosclerotic cardiovascular disease. However, their role in the disease process, or the effect of atherosclerosis on their tissue levels within plaque, is poorly understood. The present study analyzes the concentrations of Fe, Cu, Zn, and Mn, and ascorbic acid and superoxide dismutase (SOD) activity in tissue samples from 29 patients with abdominal aortic aneurysms (AAA) and 14 patients with atherosclerotic occlusive disease (AOD). It was observed that the Fe and Mn concentrations in AAA and AOD tissue were higher than the levels in nondiseased control aorta, whereas Cu and Zn levels in AAA and AOD tissue were similar to the levels in controls. The Zn:Cu ratio was significantly lower in the AAA tissue in comparison to both AOD and control tissue. In addition, AAA and AOD tissue had low ascorbic acid levels and low Cu,Zn-SOD activity with Cu,Zn-SOD:Mn-SOD ratios of 0.27 and 0.19, respectively, compared to a ratio of 3.20 in control aorta. These data indicate that aorta affected by aneurysms and occlusive disease have altered trace element and ascorbic acid concentrations, as well as low Cu,Zn-SOD activity. Although these observations do not directly support the hypothesis that AAA is associated with aortic Cu deficiency they do suggest a role for oxygen radicals or increased lipid peroxidation in occlusive and aneurysmal disease of the aorta.

  4. Aortic ascorbic acid, trace elements, and superoxide dismutase activity in human aneurysmal and occlusive disease

    SciTech Connect

    Dubick, M.A.; Hunter, G.C.; Casey, S.M.; Keen, C.L.

    1987-02-01

    Altered trace elements and ascorbic acid metabolism have been implicated in the pathogenesis of atherosclerotic cardiovascular disease. However, their role in the disease process, or the effect of atherosclerosis on their tissue levels within plaque, is poorly understood. The presence study analyzes the concentrations of Fe, Cu, Zn, and Mn, and ascorbic acid and superoxide dismutase (SOD) activity in tissue samples from 29 patients with abdominal aortic aneurysms (AAA) and 14 patients with atherosclerotic occlusive disease (AOD). It was observed that the Fe and Mn concentrations in AAA and AOD tissue were higher than the levels in nondiseased control aorta, whereas Cu and Zn levels in AAA and AOD tissue were similar to the levels in controls. The Zn:Cu ratio was significantly lower in the AAA tissue in comparison to both AOD and control tissue. In addition, AAA and AOD tissue had low ascorbic acid levels and low Cu, Zn-SOD activity with Cu,Zn-SOD:Mn-SOD ratios of 0.27 and 0.19, respectively, compared to a ratio of 3.20 in control aorta. These data indicate that aorta affected by aneurysms and occlusive disease have altered trace element and ascorbic acid concentrations, as well as low Cu,Zn-SOD activity. Although these observations do not directly support the hypothesis that AAA is associated with aortic Cu deficiency they do suggest a role for oxygen radicals or increased lipid peroxidation in occlusive and aneurysmal disease of the aorta.

  5. Enhancement of acidic gases in biomass burning impacted air masses over Canada

    NASA Technical Reports Server (NTRS)

    Lefer, B. L.; Talbot, R. W.; Harriss, R. C.; Bradshaw, J. D.; Sandholm, S. T.; Olson, J. O.; Sachse, G. W.; Collins, J.; Shipham, M. A.; Blake, D. R.

    1994-01-01

    Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.

  6. Microscopic evaluation of trace metals in cloud droplets in an acid precipitation region.

    PubMed

    Li, Weijun; Wang, Yan; Collett, Jeffrey L; Chen, Jianmin; Zhang, Xiaoye; Wang, Zifa; Wang, Wenxing

    2013-05-07

    Mass concentrations of soluble trace metals and size, number, and mixing properties of nanometal particles in clouds determine their toxicity to ecosystems. Cloud water was found to be acidic, with a pH of 3.52, at Mt. Lu (elevation 1,165 m) in an acid precipitation region in South China. A combination of Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Transmission Electron Microscopy (TEM) for the first time demonstrates that the soluble metal concentrations and solid metal particle number are surprisingly high in acid clouds at Mt. Lu, where daily concentrations of SO2, NO2, and PM10 are 18 μg m(-3), 7 μg m(-3), and 22 μg m(-3). The soluble metals in cloudwater with the highest concentrations were zinc (Zn, 200 μg L(-1)), iron (Fe, 88 μg L(-1)), and lead (Pb, 77 μg L(-1)). TEM reveals that 76% of cloud residues include metal particles that range from 50 nm to 1 μm diameter with a median diameter of 250 nm. Four major metal-associated particle types are Pb-rich (35%), fly ash (27%), Fe-rich (23%), and Zn-rich (15%). Elemental mapping shows that minor soluble metals are distributed within sulfates of cloud residues. Emissions of fine metal particles from large, nonferrous industries and coal-fired power plants with tall stacks were transported upward to this high elevation. Our results suggest that the abundant trace metals in clouds aggravate the impacts of acid clouds or associated precipitation on the ecosystem and human health.

  7. Treatment of acid mine drainage with fly ash: Removal of major contaminants and trace elements

    SciTech Connect

    Gitari, M.W.; Petrik, L.F.; Etchebers, O.; Key, D.L.; Iwuoha, E.; Okujeni, C.

    2006-08-15

    Acid mine drainage (AMD) has been reacted with two South African fly ashes in a batch setup in an attempt to evaluate their neutralization and major, trace elements removal capacity. Different fly ash:acid mine drainage ratios (FA:AMD) were stirred in a beaker for a set time and the process water analyzed for major, trace elements and sulphate content. The three factors that finally dictated the nature of the final solution in these neutralization reactions were the FA:AMD ratio, the contact time of the reaction and the chemistry of the AMD. Efficiency of the elements removal was directly linked to the amount of FA in the reaction mixture and to the final pH attained. Most elements attained approximate to 100% removal only when the pH of minimum solubility of their hydroxides was achieved (i.e., Mg = 10.49 - 11.0, Cu{sup 2+} = 6, Pb{sup 2+} = 6 - 7). Dissolution of CaO and subsequent precipitation of gypsum and formation of Al, Fe oxyhydroxysulphates, Fe oxyhydroxides with subsequent adsorption of sulphate contributed to the sulphate attenuation. Significant leaching of B, Sr, Ba and Mo was observed as the reaction progressed and was observed to increase with quantity of fly ash in the reaction mixture. However B was observed to decrease at high FA:AMD ratios probably as result of co-precipitation with CaCO{sub 3}(s).

  8. Fundamental Understanding of the Interaction of Acid Gases with CeO2 : From Surface Science to Practical Catalysis

    SciTech Connect

    Tumuluri, Uma; Rother, Gernot; Wu, Zili

    2016-03-21

    Acid gases including CO2, SO2, and NOx are ubiquitous in large-scale energy applications including heterogeneous catalysis. The adverse environmental and health effects of these acid gases have resulted in high interest in the research and development of technologies to remove or convert these acid gases. The main challenge for the development of these technologies is to develop catalysts that are highly efficient, stable, and cost-effective, and many catalysts have been reported in this regard. CeO2 and CeO2-based catalysts have gained prominence in the removal and conversion of CO2, SO2, and NOx because of their structural robustness and redox and acid–base properties. In this article, we provide a brief overview of the application of CeO2 and CeO2-based catalysts for the removal of CO2, SO2, and NOx gases with an emphasis on the fundamental understanding of the interactions of these acid gases with CeO2. The studies summarized in this review range from surface science using single crystals and thin films with precise crystallographic planes to practical catalysis applications of nanocrystalline and polycrystalline CeO2 materials with defects and dopants. After an introduction to the properties of CeO2 surfaces, their catalytic properties for conversions of different acid gases are reviewed and discussed. Lastly, we find that the surface atomic structure, oxygen vacancies, and surface acid–base properties of CeO2 play vital roles in the surface chemistry and structure evolution during the interactions of acid gases with CeO2 and CeO2-based catalysts.

  9. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index.

    PubMed

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study.

  10. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index

    PubMed Central

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study. PMID:27835687

  11. Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal

    SciTech Connect

    Blasing, T.J.; Miller, R.L.; McCold, L.N.

    1993-11-01

    The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

  12. Influence of experimental Eimeria zuernii infection in calves on electrolyte concentrations, acid-base balance and blood gases.

    PubMed

    Bangoura, B; Daugschies, A

    2007-11-01

    Coccidiosis, often caused by Eimeria zuernii, is an important disease in calf rearing and is clinically mainly associated with diarrhoea (PR Fitzgerald in Adv Vet Sci Comp Med, 24:121-143, 1980). Calves were experimentally infected with E. zuernii oocysts to investigate the effects of artificial E. zuernii coccidiosis on electrolyte concentrations, acid-base balance and blood gases. Therefore, animals were assigned to three groups: group 1 (n = 14) served as uninfected control group, group 2 (n = 11) was infected with 150,000 sporulated E. zuernii oocysts per calf, and group 3 (n = 16) was infected with 250,000 sporulated E. zuernii oocysts per calf. Aberrances which were attributed to coccidiosis were observed in the following parameters: sodium and chloride concentrations, pH (only high-dose infected group 3), base excess, standard bicarbonate, total carbon dioxide and partial pressure of carbon dioxide. Alterations were most pronounced in the high-dose infected group 3. Anion gap and oxygen saturation did not show significant differences between the groups. Due to diarrhoea and malabsorption in coccidiosis-affected calves, there is a distinct loss not only of fluid and blood but also of electrolytes and alkaline buffer substances which provokes the development of an acidosis. This is counteracted by metabolism and respiration but cannot be compensated in severely affected and moribund calves.

  13. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources

    NASA Astrophysics Data System (ADS)

    Stockwell, Chelsea E.; Christian, Ted J.; Goetz, J. Douglas; Jayarathne, Thilina; Bhave, Prakash V.; Praveen, Puppala S.; Adhikari, Sagar; Maharjan, Rashmi; DeCarlo, Peter F.; Stone, Elizabeth A.; Saikawa, Eri; Blake, Donald R.; Simpson, Isobel J.; Yokelson, Robert J.; Panday, Arnico K.

    2016-09-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP) of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient) combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning), crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR) spectroscopy, whole-air sampling (WAS), and photoacoustic extinctiometers (PAX; 405 and 870 nm) based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs) for scattering and absorption coefficients (EF Bscat, EF Babs, in m2 kg-1 fuel burned), single scattering albedos (SSAs), and absorption Ångström exponents (AAEs). From these data we estimate black and brown carbon (BC, BrC) emission factors (g kg-1 fuel burned). The trace gas measurements provide EFs (g kg-1) for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ˜ 80 gases in all). The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63 ± 0.68) was significantly higher than for wood-fuel cooking fires (3.01 ± 0.10). Dung-fuel cooking fires also emitted high levels of NH3 (3.00 ± 1.33 g kg-1), organic acids (7.66 ± 6.90 g kg-1), and HCN (2.01 ± 1.25 g kg-1), where the latter could

  14. Dissolved, particulate and acid-leachable trace metal concentrations in North Atlantic precipitation collected on the Global Change Expedition

    SciTech Connect

    Lim, B.; Jickells, T.D. )

    1990-12-01

    Atmospheric inputs of trace metals into surface waters are an important pathway for the oceanic biogeochemical cycling of many trace constituents. Rainwater samples from six precipitation events were collected on board ship during legs 3 and 4 of the Global Change Expedition over the North Atlantic Ocean and analyzed for dissolved, particulate (Al and Pb), and acid-leachable trace metals (Al, Fe, Mn, Cd, Cu, Pb, Zn). Acid-leachable concentrations of the elements were similar to reported values from the North Atlantic and Pacific Oceans which were measured using comparable acidification procedures. Concentrations of dissolved and particulate Al and Pb were determined in rain events acid-leachable and total trace metal concentrations suggest that the acid-leachable fraction of metals can significantly underestimate total concentrations of crustal elements in rain. The solubilities of Al and Pb in precipitation were variable and mean solubilities of the elements were 13% and 45%, respectively. Recycled sea salt components were less than 14% for Al, Fe, Mn, Pb, Cd, Cu, and Zn, indicating that the net trace metal flux is from the atmosphere to the oceans. Deep sea particle fluxes for these metals through the western tropical North Atlantic exceed atmospheric deposition fluxes by a factor of 18 to 41. 57 refs., 2 figs., 12 tabs.

  15. Solubilization of manganese and trace metals in soils affected by acid mine runoff.

    PubMed

    Green, C H; Heil, D M; Cardon, G E; Butters, G L; Kelly, E F

    2003-01-01

    Manganese solubility has become a primary concern in the soils and water supplies in the Alamosa River basin, Colorado due to both crop toxicity problems and concentrations that exceed water quality standards. Some of the land in this region has received inputs of acid and trace metals as a result of irrigation with water affected by acid mine drainage and naturally occurring acid mineral seeps. The release of Mn, Zn, Ni, and Cu following saturation with water was studied in four soils from the Alamosa River basin. Redox potentials decreased to values adequate for dissolution of Mn oxides within 24 h following saturation. Soluble Mn concentrations were increased to levels exceeding water quality standards within 84 h. Soluble concentrations of Zn and Ni correlated positively with Mn following reduction for all four soils studied. The correlation between Cu and Mn was significant for only one of the soils studied. The soluble concentrations of Zn and Ni were greater than predicted based on the content of each of these metals in the Mn oxide fraction only. Increases in total electrolyte concentration during reduction indicate that this may be the result of displacement of exchangeable metals by Mn following reductive dissolution of Mn oxides.

  16. Tracing Carbon Sources through Aquatic and Terrestrial Food Webs Using Amino Acid Stable Isotope Fingerprinting

    PubMed Central

    Larsen, Thomas; Ventura, Marc; Andersen, Nils; O’Brien, Diane M.; Piatkowski, Uwe; McCarthy, Matthew D.

    2013-01-01

    Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ13C patterns among amino acids (δ13CAA) could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ13CAA patterns in contrast to bulk δ13C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ13CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ13C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ13C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs. PMID:24069196

  17. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting.

    PubMed

    Larsen, Thomas; Ventura, Marc; Andersen, Nils; O'Brien, Diane M; Piatkowski, Uwe; McCarthy, Matthew D

    2013-01-01

    Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ(13)C patterns among amino acids (δ(13)CAA) could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ(13)CAA patterns in contrast to bulk δ(13)C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ(13)CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ(13)C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ(13)C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs.

  18. Effect of trace elements on citric acid fermentation by Aspergillus niger.

    PubMed

    Sánchez-Marroquín, A; Carreño, R; Ledezma, M

    1970-12-01

    Citric acid yields of 98.7% (sugar consumption basis) were reached in shaker flasks with mutant UV-ET-71-15 of Aspergillus niger in a resin-treated sucrose medium of the following composition (g/100 ml): sucrose, 14.0; NH(4)NO(3), 0.20; KH(2)PO(4), 0.10; MgSO(4).7H(2)O, 0.025; and (mg/liter): FeSO(4), 0.15 to 0.75; ZnSO(4), 0.10; and CuSO(4), 0.01. Yields of 75% were obtained in medium with resin-treated clarified syrup and 68% with ferrocyanide-treated blackstrap molasses. Optimal conditions included selection of appropriate pellets as inoculum at 3%, pH of 4.5, temperature at 30 C, agitation at 250 rev/min, and fermentation time of 8 days. The mutant tolerated high concentrations of trace elements.

  19. Absolute identification of muramic acid, at trace levels, in human septic synovial fluids in vivo and absence in aseptic fluids.

    PubMed

    Fox, A; Fox, K; Christensson, B; Harrelson, D; Krahmer, M

    1996-09-01

    This is the first report of a study employing the state-of-the-art technique of gas chromatography-tandem mass spectrometry for absolute identification of muramic acid (a marker for peptidoglycan) at trace levels in a human or animal body fluid or tissue. Daughter mass spectra of synovial fluid muramic acid peaks (> or = 30 ng/ml) were identical to those of pure muramic acid. Absolute chemical identification at this level represents a 1,000-fold increase in sensitivity over previous gas chromatography-mass spectrometry identifications. Muramic acid was positively identified in synovial fluids during infection and was eliminated over time but was absent from aseptic fluids.

  20. Assessment of acid leachable trace metals in sediment cores from River Uppanar, Cuddalore, Southeast coast of India.

    PubMed

    Ayyamperumal, T; Jonathan, M P; Srinivasalu, S; Armstrong-Altrin, J S; Ram-Mohan, V

    2006-09-01

    An acid leachable technique is employed in core samples (C1, C2 and C3) to develop a baseline data on the sediment quality for trace metals of River Uppanar, Cuddalore, southeast coast of India. Acid leachable metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd) indicate peak values at the sulphidic phase and enrichment of metals in the surface layers are due to the anthropogenic activities. Association of trace metals with Fe, Mn indicates their adsorption onto Fe-Mn oxyhydroxides and their correlation with S indicate that they are precipitated as metal sulphides. Factor analysis identified three possible types of geochemical associations and the supremacy of trace metals along with Fe, Mn, S and mud supports their geochemical associations. Factor analysis also signifies that anthropogenic activities have affected both the estuarine and fresh water regions of River Uppanar.

  1. Simultaneous determination of trace oxyhalides and haloacetic acids using suppressed ion chromatography-electrospray mass spectrometry.

    PubMed

    Barron, Leon; Paull, Brett

    2006-05-15

    A new analytical procedure for the simultaneous determination of trace oxyhalides and haloacetic acids (HAs) in drinking water and aqueous soil extracts is described. The method uses micro-bore ion chromatography (IC) coupled with suppressed conductivity (SC) and electrospray ionization mass spectrometric detection (ESI-MS). The IC-SC-ESI-MS system included a secondary flow of 100% MeOH, which was added to the column eluate (post-suppressor) and resulted in a significant increase in sensitivity for all analytes. All ESI-MS parameters were optimized for HA analysis and sensitivity quantitatively compared to suppressed conductivity. Full analytical performance characteristics for the developed method are presented for monochloro-, monobromo-, dichloro-, dibromo-, trichloro-, bromochloro, chlorodifluoro-, trifluoro-, dichlorobromo- and dibromochloroacetic acid, as well as the oxyhalides iodate, bromate, chlorate and perchlorate. In the case of the HAs, an optimised 25-fold SPE preconcentration method meant all analytes could be readily detected well below the USEPA 60mug/L regulatory limit using conductivity and/or ESI-MS. The IC-ESI-MS method was applied to the determination of oxyhalides and HAs in both soil extracts and drinking water samples. Soil samples were extracted using ultra pure water with subsequent determination of perchlorate at 1.68mug/g of soil. A drinking water sample containing HAs was preconcentrated using LiChrolut EN solid phase extraction cartridges with subsequent sulphate and chloride removal. Total HAs were determined at 13mug/L.

  2. Method development for liquid chromatographic/triple quadrupole mass spectrometric analysis of trace level perfluorocarboxylic acids in articles of commerce

    EPA Science Inventory

    An analytical method to identify and quantify trace levels of C5 to C12 perfluorocarboxylic acids (PFCAs) in articles of commerce (AOC) is developed and rigorously validated. Solid samples were extracted in methanol, and liquid samples were diluted with a solvent consisting of 60...

  3. Analysis of trace inorganic anions in weak acid salts by single pump cycling-column-switching ion chromatography.

    PubMed

    Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan

    2015-05-01

    The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts.

  4. Use of satellite data to constrain the model-calculated atmospheric liftime for N sub 2 O: Implications for other trace gases

    SciTech Connect

    Ko, M.K.W.; Sze, Nien Dak; Weisenstein, D.K. )

    1991-04-20

    The source gases, such as nitrous oxide (N{sub 2}O) and chloroflurocarbons (CFCs), are released into the atmosphere at the Earth's surface and are removed mainly by photolysis in the stratosphere. The liftime is determined by the local photochemical removal rate of the gas and the efficiency of transport that carries the gas from where it is emitted to the dominant photochemical removal region. The authors calculate that approximately 80% of N{sub 2}O is removed in the stratosphere between 30{degree}N and 30{degree}S. Using the data for N{sub 2}O obtained fron the stratospheric and mesospheric sounder (SAMS) instrument on the Nimbus 7 satellite to constrain the model-calculated distributions, they concluded that previous models may have underestimated the magnitude of vertical transport over the tropics and that the calculated lifetime for N{sub 2}O and CFC source gases could be 30% shorter than previously reported values.The calculated lifetime for N{sub 2}O of 110 years would imply a source strength of 13 {times} 10{sup 6} tons (N)/yr, compared to a source strength of 9.2 {times} 10{sup 6} tons (N)/yr for a lifetime of 160 years. A shorter lifetime for the CFCs (47 years for CFC-11 and 95 years for CFC-12) would imply a more rapid decrease in the atmospheric chlorine content once the CFC emissions are stopped, making it possible to reach the pre-ozone hole value of 2 ppbv as early as 2045. Accurate determination of the lifetime of CFC-11 is particularly important, since the lifetime is used in the definitions of the ozone depletion potentials (ODP), chlorine loading potentials (CLP), and greenhouse warming potentials (GWP) of the replacement chemicals for the CFCs. A shorter lifetime for CFC-11 would elevate the magnitudes of ODP, CLP, and GWP for these chemicals.

  5. Constraining Gas Diffusivity-Soil Water Content Relationships in Forest Soils Using Surface Chamber Fluxes and Depth Profiles of Multiple Trace Gases

    NASA Astrophysics Data System (ADS)

    Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.

    2012-12-01

    Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.

  6. Catalytic kinetic spectrophotometry for the determination of trace amount of oxalic acid in biological samples with oxalic acid-rhodamine B-potassium dichromate system

    NASA Astrophysics Data System (ADS)

    Zhai, Qing-Zhou; Zhang, Xiao-Xia; Liu, Qing-Zhou

    2006-09-01

    A new catalytic kinetic spectrophotometric method was proposed for determining trace oxalic acid based on the catalytic effect of oxalate on the oxidation of potassium dichromate with rhodamin B in 0.10 M of sulfuric acid. Good linearity is obtained over the concentration range 0.40-6.0 μg/mL of oxalic acid. After the reactions of the catalytic and non-catalytic systems were terminated by using 2.00 mL of 4 M sodium hydroxide solution, they can be stable for 3 h at room temperature. The apparent activation energy of the catalytic reaction is 12.44 kJ/mol. The effect of 50 coexisting substances was observed. The method was used to determine trace oxalic acid in tea, spinach and urine samples with satisfactory results.

  7. Catalytic kinetic spectrophotometry for the determination of trace amount of oxalic acid in biological samples with oxalic acid-rhodamine B-potassium dichromate system.

    PubMed

    Zhai, Qing-Zhou; Zhang, Xiao-Xia; Liu, Qing-Zhou

    2006-09-01

    A new catalytic kinetic spectrophotometric method was proposed for determining trace oxalic acid based on the catalytic effect of oxalate on the oxidation of potassium dichromate with rhodamin B in 0.10 M of sulfuric acid. Good linearity is obtained over the concentration range 0.40-6.0 microg/mL of oxalic acid. After the reactions of the catalytic and non-catalytic systems were terminated by using 2.00 mL of 4 M sodium hydroxide solution, they can be stable for 3 h at room temperature. The apparent activation energy of the catalytic reaction is 12.44 kJ/mol. The effect of 50 coexisting substances was observed. The method was used to determine trace oxalic acid in tea, spinach and urine samples with satisfactory results.

  8. Removal of Particles and Acid Gases (SO2 or HCl) with a Ceramic Filter by Addition of Dry Sorbents

    SciTech Connect

    Hemmer, G.; Kasper, G.; Wang, J.; Schaub, G.

    2002-09-20

    The present investigation intends to add to the fundamental process design know-how for dry flue gas cleaning, especially with respect to process flexibility, in cases where variations in the type of fuel and thus in concentration of contaminants in the flue gas require optimization of operating conditions. In particular, temperature effects of the physical and chemical processes occurring simultaneously in the gas-particle dispersion and in the filter cake/filter medium are investigated in order to improve the predictive capabilities for identifying optimum operating conditions. Sodium bicarbonate (NaHCO{sub 3}) and calcium hydroxide (Ca(OH){sub 2}) are known as efficient sorbents for neutralizing acid flue gas components such as HCl, HF, and SO{sub 2}. According to their physical properties (e.g. porosity, pore size) and chemical behavior (e.g. thermal decomposition, reactivity for gas-solid reactions), optimum conditions for their application vary widely. The results presented concentrate on the development of quantitative data for filtration stability and overall removal efficiency as affected by operating temperature. Experiments were performed in a small pilot unit with a ceramic filter disk of the type Dia-Schumalith 10-20 (Fig. 1, described in more detail in Hemmer 2002 and Hemmer et al. 1999), using model flue gases containing SO{sub 2} and HCl, flyash from wood bark combustion, and NaHCO{sub 3} as well as Ca(OH){sub 2} as sorbent material (particle size d{sub 50}/d{sub 84} : 35/192 {micro}m, and 3.5/16, respectively). The pilot unit consists of an entrained flow reactor (gas duct) representing the raw gas volume of a filter house and the filter disk with a filter cake, operating continuously, simulating filter cake build-up and cleaning of the filter medium by jet pulse. Temperatures varied from 200 to 600 C, sorbent stoichiometric ratios from zero to 2, inlet concentrations were on the order of 500 to 700 mg/m{sup 3}, water vapor contents ranged from

  9. Impact of western Siberia heat wave 2012 on greenhouse gases and trace metal concentration in thaw lakes of discontinuous permafrost zone

    NASA Astrophysics Data System (ADS)

    Pokrovsky, O. S.; Shirokova, L. S.; Kirpotin, S. N.; Kulizhsky, S. P.; Vorobiev, S. N.

    2013-08-01

    During the anomalously hot summer in 2012, surface air temperatures in Western Siberia were 5 to 15 °C higher than those observed during the previous period of > 30 yr. This unusual climate phenomenon provided an opportunity to examine the effects of short-term natural heating of water in thermokarst ponds and lakes in discontinuous permafrost zones and compare these observations to previous field results obtained when the temperature was normal during the summer of 2010 in the same region. In 2012, thermokarst bodies of water shrank significantly, water levels dropped approximately 50 cm in large lakes and small (< 10-100 m2) ponds, and shallow soil depressions disappeared. Based on samples from ~ 40 bodies of water collected previously and in 2012, first-order features of changes in chemical composition in response to increased water temperatures (from 14.1 ± 2.2 to 23.8 ± 2.3 °C in 2010 and 2012, respectively) were established. In these thermokarst bodies of water that covered a full range of surface areas, the average conductivity and pH were almost unchanged, whereas dissolved organic carbon (DOC), Cl- and SO42- concentrations were higher by a factor of ~ 2 during summer 2012 compared to periods with normal temperatures. Similarly, most divalent metals and insoluble trivalent and tetravalent elements were more concentrated by a factor of 1.7-2.4 in the summer of 2012 than normal periods. The average concentrations of dissolved CO2 and CH4 during the hot summer of 2012 increased by factors of 1.4 and 4.9, respectively. For most of the trace elements bound to colloids, the degree of colloidal binding decreased by a factor of 1.44 ± 0.33 (for an average of 40 elements) during the hot summer of 2012 compared to normal periods. Increases in CO2 and CH4 concentrations with the decreasing size of the body of water were well-pronounced during the hot summer of 2012. The concentrations of CO2 and CH4 rose by factors of 5 and 150, respectively, in small (≤ 102 m2

  10. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    PubMed

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams.

  11. Amino acid sequence and structural comparison of BACE1 and BACE2 using evolutionary trace method.

    PubMed

    Mirsafian, Hoda; Mat Ripen, Adiratna; Merican, Amir Feisal; Bin Mohamad, Saharuddin

    2014-01-01

    Beta-amyloid precursor protein cleavage enzyme 1 (BACE1) and beta-amyloid precursor protein cleavage enzyme 2 (BACE2), members of aspartyl protease family, are close homologues and have high similarity in their protein crystal structures. However, their enzymatic properties differ leading to disparate clinical consequences. In order to identify the residues that are responsible for such differences, we used evolutionary trace (ET) method to compare the amino acid conservation patterns of BACE1 and BACE2 in several mammalian species. We found that, in BACE1 and BACE2 structures, most of the ligand binding sites are conserved which indicate their enzymatic property of aspartyl protease family members. The other conserved residues are more or less randomly localized in other parts of the structures. Four group-specific residues were identified at the ligand binding site of BACE1 and BACE2. We postulated that these residues would be essential for selectivity of BACE1 and BACE2 biological functions and could be sites of interest for the design of selective inhibitors targeting either BACE1 or BACE2.

  12. Effect of Trace Elements on Citric Acid Fermentation by Aspergillus niger

    PubMed Central

    Sánchez-Marroquín, A.; Carreño, R.; Ledezma, M.

    1970-01-01

    Citric acid yields of 98.7% (sugar consumption basis) were reached in shaker flasks with mutant UV-ET-71-15 of Aspergillus niger in a resin-treated sucrose medium of the following composition (g/100 ml): sucrose, 14.0; NH4NO3, 0.20; KH2PO4, 0.10; MgSO4·7H2O, 0.025; and (mg/liter): FeSO4, 0.15 to 0.75; ZnSO4, 0.10; and CuSO4, 0.01. Yields of 75% were obtained in medium with resin-treated clarified syrup and 68% with ferrocyanide-treated blackstrap molasses. Optimal conditions included selection of appropriate pellets as inoculum at 3%, pH of 4.5, temperature at 30 C, agitation at 250 rev/min, and fermentation time of 8 days. The mutant tolerated high concentrations of trace elements. PMID:5492439

  13. HALO airborne pole-to-pole measurements of trace gases in the Atlantic and Indian Oceans for Earth System Model validation

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Eyring, Veronika; ESMVal Team

    2013-04-01

    We report on atmospheric trace gas measurements from the German research aircraft HALO in the free troposphere and lower stratosphere from Spitsbergen to the border of the Antarctic continent in September 2012 in the frame of the ESMVal (Earth System Model Validation) project. Detailed profile measurements were performed in specific target regions for process studies to investigate corresponding parametrizations in global models. Such areas included large scale outflow from biomass burning in African and anthropogenic sources in Asia, pristine air masses over the open Indian Ocean, and the northern and southern polar regions. The ESMVal mission is a collaborative research activity of several German research centres and universities and closely connected to the TACTS mission. We give an overview of the ESMVal objectives and rational of the HALO flights. We present first result from the observations in the specific target regions and first comparisions with simulations using the ECHAM/MESSy Atmospheric Chemistry (EMAC) model.

  14. Present state of knowledge of the upper atmosphere: An assessment report; processes that control ozone and other climatically important trace gases

    NASA Technical Reports Server (NTRS)

    Watson, R. T.; Geller, M. A.; Stolarski, R. S.; Hampson, R. F.

    1986-01-01

    The state of knowledge of the upper atmosphere was assessed as of January 1986. The physical, chemical, and radiative processes which control the spatial and temporal distribution of ozone in the atmosphere; the predicted magnitude of ozone perturbations and climate changes for a variety of trace gas scenarios; and the ozone and temperature data used to detect the presence or absence of a long term trend were discussed. This assessment report was written by a small group of NASA scientists, was peer reviewed, and is based primarily on the comprehensive international assessment document entitled Atmospheric Ozone 1985: Assessment of Our Understanding of the Processes Controlling Its Present Distribution and Change, to be published as the World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 16.

  15. Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis.

    PubMed

    Budge, S M; Wooller, M J; Springer, A M; Iverson, S J; McRoy, C P; Divoky, G J

    2008-08-01

    Global warming and the loss of sea ice threaten to alter patterns of productivity in arctic marine ecosystems because of a likely decline in primary productivity by sea ice algae. Estimates of the contribution of ice algae to total primary production range widely, from just 3 to >50%, and the importance of ice algae to higher trophic levels remains unknown. To help answer this question, we investigated a novel approach to food web studies by combining the two established methods of stable isotope analysis and fatty acid (FA) analysis--we determined the C isotopic composition of individual diatom FA and traced these biomarkers in consumers. Samples were collected near Barrow, Alaska and included ice algae, pelagic phytoplankton, zooplankton, fish, seabirds, pinnipeds and cetaceans. Ice algae and pelagic phytoplankton had distinctive overall FA signatures and clear differences in delta(13)C for two specific diatom FA biomarkers: 16:4n-1 (-24.0+/-2.4 and -30.7+/-0.8 per thousand, respectively) and 20:5n-3 (-18.3+/-2.0 and -26.9+/-0.7 per thousand, respectively). Nearly all delta(13)C values of these two FA in consumers fell between the two stable isotopic end members. A mass balance equation indicated that FA material derived from ice algae, compared to pelagic diatoms, averaged 71% (44-107%) in consumers based on delta(13)C values of 16:4n-1, but only 24% (0-61%) based on 20:5n-3. Our estimates derived from 16:4n-1, which is produced only by diatoms, probably best represented the contribution of ice algae relative to pelagic diatoms. However, many types of algae produce 20:5n-3, so the lower value derived from it likely represented a more realistic estimate of the proportion of ice algae material relative to all other types of phytoplankton. These preliminary results demonstrate the potential value of compound-specific isotope analysis of marine lipids to trace C flow through marine food webs and provide a foundation for future work.

  16. Impacts of an African Green Revolution on Greenhouse Gases and Pollution Precursors: Nonlinear Trace N Gas Emission Responses to Incremental Increases in Fertilizer Inputs in a Western Kenyan Maize Field

    NASA Astrophysics Data System (ADS)

    Hickman, J. E.; Palm, C.

    2011-12-01

    Over the last several decades, agricultural soils in many parts of sub-Saharan Africa have become depleted of nitrogen (N) and other nutrients, creating challenges to achieving food security in many countries. At only 7 kg N ha-1 yr-1, average fertilizer application rates in the region are an order of magnitude lower than typical rates in the United States, and well below optimal levels. Increased use of nutrient inputs is a centerpiece of most African Green Revolution strategies, making it important to quantify the impacts of this change in practices as farmers begin moving towards 50-80 kg N ha-1 yr-1. Increased N inputs are invariably accompanied by losses of trace N gases to the atmosphere, including the greenhouse gas nitrous oxide (N2O), and nitric oxide (NO), a precursor to tropospheric ozone pollution. Several investigations of greenhouse gas emissions and one investigation of NO emissions from sub-Saharan agricultural systems have been conducted over the last 20 years, but they are few in number and were not designed to identify potentially important thresholds in the response of trace gas emissions to fertilization rate. Here we examine the response function of NO and N2O emissions to 6 different levels of inorganic fertilizer additions in a maize field in Yala, Kenya during the 2011 long rainy season. We used a randomized complete block design incorporating inorganic fertilizer treatments of 0, 50, 75, 100, 150, and 200 kg N ha-1 in 4 blocks. After each of 2 fertilizer applications, we measured trace gas fluxes daily, and conducted weekly measurements until trace gas emissions subsided to control levels. We fit the data to linear and exponential models relating N gas emissions to N input levels, and conducted a model comparison using AIC. Preliminary analysis suggests that NO emissions do respond in a non-linear fashion over the course of 67 days, as has been found in several commercial agroecosystems for N2O. Although N2O emissions responded linearly

  17. Structure-selective hot-spot Raman enhancement for direct identification and detection of trace penicilloic acid allergen in penicillin.

    PubMed

    Zhang, Liying; Jin, Yang; Mao, Hui; Zheng, Lei; Zhao, Jiawei; Peng, Yan; Du, Shuhu; Zhang, Zhongping

    2014-08-15

    Trace penicilloic acid allergen frequently leads to various fatal immune responses to many patients, but it is still a challenge to directly discriminate and detect its residue in penicillin by a chemosensing way. Here, we report that silver-coated gold nanoparticles (Au@Ag NPs) exhibit a structure-selective hot-spot Raman enhancement capability for direct identification and detection of trace penicilloic acid in penicillin. It has been demonstrated that penicilloic acid can very easily link Au@Ag NPs together by its two carboxyl groups, locating itself spontaneously at the interparticle of Au@Ag NPs to form strong Raman hot-spot. At the critical concentration inducing the nanoparticle aggregation, Raman-enhanced effect of penicilloic acid is ~60,000 folds higher than that of penicillin. In particular, the selective Raman enhancement to the two carboxyl groups makes the peak of carboxyl group at C6 of penicilloic acid appear as a new Raman signal due to the opening of β-lactam ring of penicillin. The surface-enhanced Raman scattering (SERS) nanoparticle sensor reaches a sensitive limit lower than the prescribed 1.0‰ penicilloic acid residue in penicillin. The novel strategy to examine allergen is more rapid, convenient and inexpensive than the conventional separation-based assay methods.

  18. A Portable FTIR Analyser for Field Measurements of Trace Gases and their Isotopologues: CO2, CH4, N2O, CO, del13C in CO2 and delD in water vapour

    NASA Astrophysics Data System (ADS)

    Griffith, D. W.; Bryant, G. R.; Deutscher, N. M.; Wilson, S. R.; Kettlewell, G.; Riggenbach, M.

    2007-12-01

    We describe a portable Fourier Transform InfraRed (FTIR) analyser capable of simultaneous high precision analysis of CO2, CH4, N2O and CO in air, as well as δ13C in CO2 and δD in water vapour. The instrument is based on a commercial 1 cm-1 resolution FTIR spectrometer fitted with a mid-IR globar source, 26 m multipass White cell and thermoelectrically-cooled MCT detector operating between 2000 and 7500 cm-1. Air is passed through the cell and analysed in real time without any pre-treatment except for (optional) drying. An inlet selection manifold allows automated sequential analysis of samples from one or more inlet lines, with typical measurement times of 1-10 minutes per sample. The spectrometer, inlet sampling sequence, real-time quantitative spectrum analysis, data logging and display are all under the control of a single program running on a laptop PC, and can be left unattended for continuous measurements over periods of weeks to months. Selected spectral regions of typically 100-200 cm-1 width are analysed by a least squares fitting technique to retrieve concentrations of trace gases, 13CO2 and HDO. Typical precision is better than 0.1% without the need for calibration gases. Accuracy is similar if measurements are referenced to calibration standard gases. δ13C precision is typically around 0.1‰, and for δD it is 1‰. Applications of the analyser include clean and polluted air monitoring, tower-based flux measurements such as flux gradient or integrated horizontal flux measurements, automated soil chambers, and field-based measurements of isotopic fractionation in soil-plant-atmosphere systems. The simultaneous multi-component advantages can be exploited in tracer-type emission measurements, for example of CH4 from livestock using a co-released tracer gas and downwind measurement. We have also developed an open path variant especially suited to tracer release studies and measurements of NH3 emissions from agricultural sources. An illustrative

  19. Greenhouse Gases

    MedlinePlus

    ... Found Solar Thermal Power Plants Solar Thermal Collectors Solar Energy and the Environment Secondary Sources Electricity The Science ... the earth’s atmosphere act as greenhouse gases. When sunlight strikes the earth’s surface, some of it radiates ...

  20. Comparison of four digestion procedures not requiring perchloric acid for the trace-element analysis of plant material

    SciTech Connect

    Knight, M. J.

    1980-05-01

    Perchloric acid (HClO/sub 4/) is often used to destroy organic material contained in plant tissue during sample preparation for trace-element analysis. However, since perchloric acid is an extremely strong oxidizing agent that can cause fire and explosion when in contact with combustible materials, its use is best avoided when proper safety equipment and training is unavailable. A comparison was made of four digestion procedures that do not require perchloric acid: wet digestion with nitric and sulfuric acids; wet digestion with nitric acid alone; a repeated wet digestion with nitric acid; and direct dry ashing. Each procedure was used to digest National Bureau of Standards orchard leaves (SRM 1571). To investigate the effect of possible filter paper adsorption on the determination of trace elements, digested samples were either filtered or not filtered before analysis. Atomic absorption spectrophotometry was employed to determine concentrations of As, Be, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sr, and Zn in each digested sample. Recoveries of each element and the relative error of each determination for each digestion procedure were then calculated. A statistical analysis of these data indicates that the direct dry ashing procedure is best suited for multi-element analysis. Dry ashing is appropriate to recover As, Be, Cr, Cu, Fe, Mn, Mo, Pb, and Zn. The nitric-sulfuric acids, nitric acid, and repeated nitric acid digestion procedures were deemed poor for multi-element analysis; however, each proved useful for the recovery of certain individual elements, including Cd, Pb, and Zn. Sample filtration significantly (p less than or equal to 0.05) lowered the recovery of Cr, Mn, Pb, and Zn from the digested samples. Conversely, the recovery of As, Mo, and Sr was significantly (p less than or equal to 0.05) higher in samples filtered before analysis when compared to the recovery of these elements in unfiltered samples.

  1. Ground-based Measurements of Vertical Profiles and Columns of Atmospheric Trace Gases Over Toronto Using a New High-Resolution Fourier Transform Infrared Spectrometer

    NASA Astrophysics Data System (ADS)

    Wiacek, A.; Yashcov, D.; Strong, K.; Boudreau, L.; Rochette, L.; Roy, C.

    2002-12-01

    The University of Toronto Atmospheric Observatory (TAO) has recently been established at Toronto, Canada. TAO includes several instruments, with a DA8 Fourier Transform Spectrometer (DA8 FTS, manufactured by ABB Bomem Inc., Québec, Canada) serving as the primary instrument at the facility. The geographic position of TAO (43.66°N, 79.40°W) makes it well suited for long-term measurements of mid-latitude stratospheric ozone and related species, while its urban setting enables measurements of tropospheric pollution. The DA8 FTS is based on a Michelson interferometer with a maximum optical path difference of 250 cm, providing a maximum unapodized resolution of 0.0026 cm-1. It is currently equipped with KBr and CaF2 beamsplitters, and InSb and HgCdTe detectors, for coverage of the spectral range from 700 to 4100 cm-1. A new heliostat (manufactured by Aim Controls Inc., California, USA) provides active solar tracking, collecting the incoming solar radiation and directing it into the FTS. The TAO DA8 FTS incorporates a new optical design recently developed by ABB Bomem Inc., which results in a fixed optical axis through the beamsplitter (and a fixed focal point on the detector) as well as a more stable modulation efficiency. The new instrument optics will be discussed. Next, the performance of the instrument will be examined in the context of standard NDSC (Network for the Detection of Stratospheric Change) trace gas column and vertical profile retrieval techniques, which use least squares fitting algorithms (SFIT, SFIT2). TAO has been operational (weather permitting) since October 2001. We have been retrieving columns and vertical profiles of HCl, HF, CH4, OCS, C2H6, CO, N2O and NO2 since May 2002. A detailed error analysis of retrieved columns and vertical profiles has been undertaken for the above species. Future plans for the TAO FTS include comparing our measurements with satellite measurements made by MOPITT, OSIRIS, and the upcoming ACE and MAESTRO instruments

  2. A new laboratory facility to study the interactions of aerosols, cloud droplets/ice crystals, and trace gases in a turbulent environment: The Π Chamber

    NASA Astrophysics Data System (ADS)

    Cantrell, W. H., II; Chang, K.; Ciochetto, D.; Niedermeier, D.; Bench, J.; Shaw, R. A.

    2014-12-01

    A detailed understanding of gas-aerosol-cloud interaction within the turbulent atmosphere is of prime importance for an accurate understanding of Earth's climate system. As one example: While every cloud droplet began as an aerosol particle, not every aerosol particle becomes a cloud droplet. The particle to droplet transformation requires that the particle be exposed to some critical concentration of water vapor, which differs for different combinations of particle size and chemical composition. Similarly, the formation of ice particles in mixed phase clouds is also catalyzed by aerosol particles. Even in the simplest scenarios it is challenging to gain a full understanding of the aerosol activation and ice nucleation processes. At least two other factors contribute significantly to the complexity observed in the atmosphere. First, aerosols and cloud particles are not static entities, but are continuously interacting with their chemical environment, and therefore changing in their properties. Second, clouds are ubiquitously turbulent, so thermodynamic and compositional variables, such as water vapor or other trace gas concentrations, fluctuate in space and time. Indeed, the coupling between turbulence and microphysical processes is one of the major research challenges in cloud physics. We have developed a multiphase, turbulent reaction chamber, (dubbed the Π Chamber, after the internal volume of 3.14 cubic meters) designed to address the problems outlined above. It is capable of pressures ranging from sea level to ~ 100 mbar, and can sustain temperatures of +40 to -55 ºC. We can independently control the temperatures on the surfaces of three heat transfer zones. This allows us to establish a temperature gradient between the floor and ceiling inducing Rayleigh-Benard convection and inducing a turbulent environment. Interior surfaces are electropolished stainless steel to facilitate cleaning before and after chemistry experiments. At present, supporting

  3. Assessment of the effects of glutamic acid decarboxylase antibodies and trace elements on cognitive performance in older adults

    PubMed Central

    Alghadir, Ahmad H; Gabr, Sami A; Al-Eisa, Einas S

    2015-01-01

    Background Homeostatic imbalance of trace elements such as iron (Fe), copper (Cu), and zinc (Zn) demonstrated adverse effects on brain function among older adults. Objective The present study aimed to investigate the effects of trace elements and the presence of anti-glutamic acid decarboxylase antibodies (GADAs) in human cognitive abilities among healthy older adults. Methods A total of 100 healthy subjects (65 males, 35 females; age range; 64–96 years) were recruited for this study. Based on Loewenstein Occupational Therapy Cognitive Assessment (LOTCA) score, the participants were classified according to cognitive performance into normal (n=45), moderate (n=30), and severe (n=25). Cognitive functioning, leisure-time physical activity (LTPA), serum trace elements – Fe, Cu, Zn, Zn/Cu, and GADAs were assessed using LOTCA battery, pre-validated physical activity (PA) questionnaire, atomic absorption, and immunoassay techniques, respectively. Results Approximately 45% of the study population (n=45) had normal distribution of cognitive function and 55% of the study population (n=55) had abnormal cognitive function; they were classified into moderate (score 62–92) and severe (score 31–62). There was a significant reduction in the level of Zn and Zn/Cu ratio along with an increase in the level of Fe, Cu, and anti-GADAs in subjects of severe (P=0.01) and moderate (P=0.01) cognitive performance. LOTCA-cognitive scores correlated positively with sex, HbA1c, Fe, Cu, Zn, and Zn/Cu ratio, and negatively with age, PA, body mass index, and anti-GADAs. Significant inter-correlation was reported between serum trace element concentrations and anti-GADAs which suggest producing a cognitive decline via oxidative and neural damage mechanism. Conclusion This study found significant associations among trace elements, anti-GADAs, and cognitive function in older adults. The homeostatic balance of trace elements should be recommended among older adults for better cognitive

  4. Field measurements of trace gases emitted by prescribed fires in southeastern U.S. pine forests using an open-path FTIR system

    SciTech Connect

    Akagi, Sheryl; Burling, Ian R.; Mendoza, Albert; Johnson, Timothy J.; Cameron, Melanie; Griffith, David WT; Paton-Walsh, C.; Weise, David; Reardon, James; Yokelson, Robert J.

    2014-01-08

    We report trace-gas emission factors from three pine-understory prescribed fires in South Carolina, U.S. measured during the fall of 2011. The fires were an attempt to simulate high-intensity burns and the fuels included mature pine stands not frequently subjected to prescribed fire that were lit following a sustained period of drought. In this work we focus on the emission factor measurements made using a fixed open-path gas analyzer Fourier transform infrared (FTIR) system. We compare these emission factors with those measured using a roving, point sampling, land-based FTIR and an airborne FTIR that were deployed on the same fires. We also compare to emission factors measured by a similar open-path FTIR system deployed on savanna fires in Africa. The data suggest that the method in which the smoke is sampled can strongly influence the relative abundance of the emissions that are observed. The airborne FTIR probed the bulk of the emissions, which were lofted in the convection column and the downwind chemistry while the roving ground-based point sampling FTIR measured the contribution of individual residual smoldering combustion fuel elements scattered throughout the burn site. The open-path FTIR provided a fixed path-integrated sample of emissions produced directly upwind mixed with emissions that were redirected by wind gusts, or right after ignition and before the adjacent plume achieved significant vertical development. It typically probed two distinct combustion regimes, “flaming-like” (immediately after adjacent ignition) and “smoldering-like”, denoted “early” and “late”, respectively. The calculated emission factors from open-path measurements were closer to the airborne than to the point measurements, but this could vary depending on the calculation method or from fire to fire given the changing MCE and dynamics over the duration of a typical burn. The emission factors for species whose emissions are not highly fuel dependent (e.g. CH4 and

  5. Toxic gases.

    PubMed Central

    Matthews, G.

    1989-01-01

    An overview of the widespread use of gases and some volatile solvents in modern society is given. The usual circumstances in which undue exposure may occur are described. The most prominent symptoms and general principles of diagnosis and treatment are given and are followed by more specific information on the commoner, more toxic materials. While acute poisonings constitute the greater part of the paper, some indication of chronic disorders arising from repeated or prolonged exposure is also given. PMID:2687827

  6. Trace determination of nine haloacetic acids in drinking water by liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Meng, Liping; Wu, Shimin; Ma, Fujun; Jia, Ai; Hu, Jianying

    2010-07-16

    A simple, fast and sensitive liquid chromatography-electrospray tandem mass spectrometry method was established for trace levels of nine haloacetic acids (HAAs) in drinking water. Water samples were removed of residual chlorine by adding L-ascorbic acid, and directly injected after filtered by 0.22 microm membrane. Nine HAAs were separated by liquid chromatography in 7.5 min, and the limits of detection were generally between 0.16 and 0.99 microg/L except for chlorodibromoacetic acid (1.44 microg/L) and tribromoacetic acid (8.87 microg/L). The mean recoveries of nine target compounds in spiked drinking water samples were 80.1-108%, and no apparent signal suppression was observed. Finally, this method was applied to determine HAAs in the tap water samples collected from five waterworks in Shandong, China. Nine HAAs except for monochloroacetic acid, monobromoacetic acid, dibromochloroacetic acid and tribromoacetic acid were detected, and the total concentrations were 7.79-36.5 microg/L. The determination results well met the first stage of the Disinfectants/Disinfection By-Products (D/DBP) Rules established by U.S.EPA and Guidelines for Drinking-water Quality of WHO.

  7. Noble Gases

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the

  8. Development of a liquid chromatography-tandem mass spectrometry method for quantitative analysis of trace d-amino acids.

    PubMed

    Nakano, Yosuke; Konya, Yutaka; Taniguchi, Moyu; Fukusaki, Eiichiro

    2017-01-01

    d-Amino acids have recently attracted much attention in various research fields including medical, clinical and food industry due to their important biological functions that differ from l-amino acid. Most chiral amino acid separation techniques require complicated derivatization procedures in order to achieve the desirable chromatographic behavior and detectability. Thus, the aim of this research is to develop a highly sensitive analytical method for the enantioseparation of chiral amino acids without any derivatization process using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By optimizing MS/MS parameters, we established a quantification method that allowed the simultaneous analysis of 18 d-amino acids with high sensitivity and reproducibility. Additionally, we applied the method to food sample (vinegar) for the validation, and successfully quantified trace levels of d-amino acids in samples. These results demonstrated the applicability and feasibility of the LC-MS/MS method as a novel, effective tool for d-amino acid measurement in various biological samples.

  9. Organic amendments increase phylogenetic diversity of arbuscular mycorrhizal fungi in acid soil contaminated by trace elements.

    PubMed

    Montiel-Rozas, María Del Mar; López-García, Álvaro; Kjøller, Rasmus; Madejón, Engracia; Rosendahl, Søren

    2016-08-01

    In 1998, a toxic mine spill polluted a 55-km(2) area in a basin southward to Doñana National Park (Spain). Subsequent attempts to restore those trace element-contaminated soils have involved physical, chemical, or biological methodologies. In this study, the restoration approach included application of different types and doses of organic amendments: biosolid compost (BC) and leonardite (LEO). Twelve years after the last addition, molecular analyses of arbuscular mycorrhizal (AM) fungal communities associated with target plants (Lamarckia aurea and Chrysanthemum coronarium) as well as analyses of trace element concentrations both in soil and in plants were performed. The results showed an improved soil quality reflected by an increase in soil pH and a decrease in trace element availability as a result of the amendments and dosages. Additionally, the phylogenetic diversity of the AM fungal community increased, reaching the maximum diversity at the highest dose of BC. Trace element concentration was considered the predominant soil factor determining the AM fungal community composition. Thereby, the studied AM fungal community reflects a community adapted to different levels of contamination as a result of the amendments. The study highlights the long-term effect of the amendments in stabilizing the soil system.

  10. Field enhancements of packed-bed performance for low-concentration acidic and basic-waste gases from semiconductor manufacturing process.

    PubMed

    Chein, Hung Min; Aggarwal, Shankar Gopala; Wu, Hsin Hsien; Chen, Tzu Ming; Huang, Chun-Chao

    2005-05-01

    Low-concentration acidic and basic-waste gas pollutants contribute significantly in the total emission of a facility. Previous results show that the control of high volumetric flow rate (approximately 500 m3/min), low-concentration acidic (< 1 ppm by vol) and basic (< 3 ppm by vol) gases from semiconductor process vent, by conventional wet scrubbing technique is a challenging task. This work was targeted to enhance the performance of packed beds for high-volumetric flow rate, low-concentration acidic (HF, HCl), and basic (NH3)-waste gases from the semiconductor manufacturing process. The methodology used to meet the goal was the application of fine-water mist over the inlet stream before entering to the packed bed and use of the surfactant with mist/packed-bed liquid in low concentration. An experimental study was carried out in two acid-packed beds to optimize the operating conditions, such as pH of the liquid, circulating liquid flow rate, blow-down cycle, and so forth. The relationship among liquid pH, liquid ionic concentration, and the removal efficiency of the packed bed for the pollutants has been discussed considering chemical equilibrium, two-film theory, and Henry's law. For the potential utilization of scrubbing water, the dependency of the efficiency on blow-down cycle was studied, and a mechanism is suggested. The proposed water-mist surfactant system was installed in two acid-packed beds, and performance of the packed beds was compared. The background efficiencies of the acid-packed beds for HF, HCl, and NH3 were found max to be (n = 11) 53, 40, and 27%, whereas after installation of the system, they increased significantly and became 76 +/- 13% (n = 10), 76 +/- 8% (n = 7), and 78 +/- 7% (n = 7), respectively, for inlet concentrations of HF and HCl < 1 ppm and NH3 < 14 ppm. The mechanism by which the surfactants operate to enhance the removal in scrubbing process is suggested considering the hydrodynamic effect and the interfacial effect with the

  11. Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester.

    PubMed

    Karlsson, Anna; Einarsson, Peter; Schnürer, Anna; Sundberg, Carina; Ejlertsson, Jörgen; Svensson, Bo H

    2012-10-01

    The effect of trace element addition on anaerobic digestion of food industry- and household waste was studied using two semi-continuous lab-scale reactors, one (R30+) was supplied with Fe, Co and Ni, while the other (R30) acted as a control. Tracer analysis illustrated that methane production from acetate proceeded through syntrophic acetate oxidation (SAO) in both digesters. The effect of the trace elements was also evaluated in batch assays to determine the capacity of the microorganisms of the two digesters to degrade acetate, phenyl acetate, oleic acid or propionate, butyrate and valerate provided as a cocktail. The trace elements addition improved the performance of the process giving higher methane yields during start-up and early operation and lower levels of mainly acetate and propionate in the R30+ reactor. The batch assay showed that material from R30+ gave effects on methane production from all substrates tested. Phenyl acetate was observed to inhibit methane formation in the R30 but not in the R30+ assay. A real-time PCR analysis targeting methanogens on the order level as well as three SAO bacteria showed an increase in Methanosarcinales in the R30+ reactor over time, even though SAO continuously was the dominating pathway for methane production. Possibly, this increase explains the low VFA-levels and higher degradation rates observed in the R30+ batch incubations. These results show that the added trace elements affected the ability of the microflora to degrade VFAs as well as oleic acid and phenyl acetate in a community, where acetate utilization is dominated by SAO.

  12. High-resolution printed amino acid traces: a first-feature extraction approach for fingerprint forgery detection

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Mario; Kiltz, Stefan; Sturm, Jennifer; Dittmann, Jana; Vielhauer, Claus

    2012-03-01

    Fingerprints are used for the identification of individuals for over a century in crime scene forensics. Here, often physical or chemical preprocessing techniques are used to render a latent fingerprint visible. For quality assurance purposes of those development techniques, Schwarz1 introduces a technique for the reproducible generation of latent fingerprints using ink-jet printers and artificial amino acid sweat. However, this technique allows for printing latent fingerprints at crime scenes to leave false traces, too. Hence, Kiltz et al.2 introduce a first framework for the detection of printed fingerprints. However, the utilized printers have a maximum resolution of 2400×1200 dpi. In this paper, we use a Canon PIXMA iP46003 printer with a much higher resolution of 9600×400 dpi, which does not produce the kind of visible dot patterns reported in Kiltz et al.2 We show that an acquisition with a resolution of 12700 to 25400 ppi is necessary to extract microstuctures, which perspectively allows for an automated detection of printed fingerprint traces fabricated with high-resolution printers. Using our first test set with 20 printed and 20 real, natural fingerprint patterns from the human the evaluation results indicate a very positive tendency towards the detectability of such traces using the method proposed in this paper.

  13. Acidity of vapor plume from cooling tower mixed with flue gases emitted from coal-fired power plant.

    PubMed

    Hlawiczka, Stanislaw; Korszun, Katarzyna; Fudala, Janina

    2016-06-01

    Acidity of products resulting from the reaction of flue gas components emitted from a coal-fired power plant with water contained in a vapor plume from a wet cooling tower was analyzed in a close vicinity of a power plant (710 m from the stack and 315 m from the cooling tower). Samples of this mixture were collected using a precipitation funnel where components of the mixed plumes were discharged from the atmosphere with the rainfall. To identify situations when the precipitation occurred at the same time as the wind directed the mixed vapor and flue gas plumes above the precipitation funnel, an ultrasound anemometer designed for 3D measurements of the wind field located near the funnel was used. Precipitation samples of extremely high acidity were identified - about 5% of samples collected during 12 months showed the acidity below pH=3 and the lowest recorded pH was 1.4. During the measurement period the value of pH characterizing the background acidity of the precipitation was about 6. The main outcome of this study was to demonstrate a very high, and so far completely underestimated, potential of occurrence of episodes of extremely acid depositions in the immediate vicinity of a coal-fired power plant.

  14. Sulfuric acid vapor and other cloud-related gases in the Venus atmosphere - Abundances inferred from observed radio opacity

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.; Eshleman, V. R.

    1982-01-01

    It is suggested that the absorbing characteristics of sulfuric acid vapor appear to reconcile what had been thought to be an inconsistency among measurements and deductions regarding the constituents of the Venus atmosphere and radio occultation, radar reflection, and radio emission measurements of its opacity. Laboratory measurements of sulfuric acid, sulfur dioxide, water vapor, and carbon dioxide are used to model relative contributions to opacity as a function of height in a way that is consistent with observations of the constituents and absorbing properties of the atmosphere. It is concluded that sulfuric acid vapor is likely to be the principal microwave absorber in the 30-50 km altitude range of the middle atmosphere of Venus.

  15. Variations in trace metal and halogen ratios in magmatic gases through an eruptive cycle of the Pu'u O'o vent, Kilauea, Hawaii: July-August 1985

    SciTech Connect

    Miller, T.L.; Zoller, W.H. ); Crowe, B.M.; Finnegan, D.L. )

    1990-08-10

    Particle and gas samples were obtained before and after eruptive episode 35 in July and August 1985 at the fuming Pu'u O'o vent, Kilauea volcano, Hawaii. The sampling system employed consisted of a particle filter followed by four {sup 7}LiOH treated filters to collect acidic gases. The filters were analyzed using instrumental neutron activation analysis (INAA). The results indicate that Br/Cl and Re/Cl ratios do not fluctuate through an eruption cycle but the F/Cl, F/Br and metal/Cl ratios (In and Cd) do change through the cycle. An inverse relationship between F/Cl and metal/Cl was observed. The changes are probably due to influxes of relatively undegassed magma during the repose period releasing fume with lower F/Cl, F/BR and higher metal/Cl ratios. As the magma in the Pu'u O'o conduit gradually degasses either before or several days after an eruptive episode, F/Cl and F/Br ratios increase and the metal/Cl ratios decrease. One sample collected on July 24, two days before eruptive episode 35, did not follow this general trend. This can be explained by a gas pulse from a deeper, less degassed portion of magma making its way to the top of the conduit.

  16. Flow injection spectrophotometric determination of ultra trace amounts of oxalic acid.

    PubMed

    Ensafi, A A; Kazemzadeh, A

    2000-07-01

    A new simple, sensitive and rapid catalytic-spectrophotometric method for the determination of oxalic acid has been described based on its catalytic effect on the redox reaction between dichromate and Brilliant cresyl blue in acidic media by means of a flow injection analysis method. The color change of Brilliant cresyl blue due to its oxidation was monitored spectrophotometrically at 625 nm. The calibration graph was linear in the range of 0.020-4.70 microg/mL oxalic acid with a limit of detection 0.005 microg/mL of oxalic acid. The relative standard deviation for ten replicate measurements of 0.020 microg/mL and 0.900 microg/mL was 2.2% and 1.7%, respectively. No serious interference was identified. Oxalic acid was determined in wastewater and in spinach by the proposed method with satisfactory results.

  17. Acidic gases and nitrate and sulfate particles in the atmosphere in the city of Guadalajara, México.

    PubMed

    Saldarriaga-Noreña, Hugo; Waliszewski, Stefan; Murillo-Tovar, Mario; Hernández-Mena, Leonel; de la Garza-Rodríguez, Iliana; Colunga-Urbina, Edith; Cuevas-Ordaz, Rosalva

    2012-05-01

    Atmospheric concentrations of nitrous acid, nitric acid, nitrate and sulfate particles were obtained in this study from April to June 2008 in the center of the city of Guadalajara, while concentrations of ozone, sulfur dioxide, nitrogen dioxide and meteorological parameters (temperature and relative humidity), were acquired by the Secretaría del Medio Ambiente para el Desarrollo Sustentable del Estado de Jalisco (SEMADES). The results showed that nitric acid (2.7 μg m(-3)) was 2.7 times higher than nitrous acid (1.0 μg m(-3)). The sulfur dioxide (SO(2)) concentration indicated an opposite trend to sulfate (SO(4) (2-)), with the average concentration of SO(2) (6.9 μg m(-3)) higher in almost the entire period of study. The sulfur conversion ratio (Fs, 24.9%) and nitrogen conversion ratio (Fn, 6.2%), were revealed to be similar to that reported in other urban areas during warm seasons. It is also noted that ozone is not the main oxidizer of nitrogen dioxide and sulfur dioxide. This determination was made by taking into account the slightly positively correlation determined for Fn (r(2) = 0.084) and Fs (r(2) = 0.092) with ozone that perhaps suggests there are other oxidizing species such as the radical OH, which are playing an important role in the processes of atmospheric oxidation in this area.

  18. Blood gases

    MedlinePlus

    ... test also provides information about the body's acid/base balance, which can reveal important clues about lung ... slightly among different laboratories. Some laboratories use different measurements or may test different specimens. Talk to your ...

  19. Use of nitric acid in sample pretreatment for determination of trace elements in various biological samples by ETAAS.

    PubMed

    Scancar, J; Milacic, R; Falnoga, I; Cemazar, M; Bukovec, P

    2000-07-01

    Trace elements in liquid biological samples may be determined by direct electrothermal atomic absorption spectrometry (ETAAS). In our previous work it was found that samples containing proteins or DNA may leak out of the graphite tube before the drying step, despite the addition of various modifiers. In order to keep the sample to the graphite tube, samples were diluted before analysis 1 + 1 with 32% v/v nitric acid, or 5 microl of 32% v/v nitric acid was added to the graphite tube before ETAAS determination. Applying the proposed procedure, the concentrations of lead in eluted fractions after gel chromatographic separation of human cerebellar nucleus dentatus supernatant and platinum in isolated DNA samples were determined. The use of nitric acid in sample pretreatment prevent sample leakage out of the graphite tube, provided for even drying and considerably reduced nonspecific absorption in lead determination. The repeatability of measurements was better than + 6%. The accuracy of the procedure was checked by spiking samples. The recoveries for both elements lay between 93--104%. Nitric acid was found to be a better modifier than TRITON X-100.

  20. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Blake, N. J.; Barletta, B.; Diskin, G. S.; Fuelberg, H. E.; Gorham, K.; Huey, L. G.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Yang, M.; Blake, D. R.

    2010-08-01

    lower the viscosity of the extracted bitumen (i.e., C4-C9 alkanes, C5-C6 cycloalkanes, C6-C8 aromatics), together with CO; and (2) emissions associated with the mining effort (i.e., CO2, CO, CH4, NO, NO2, NOy, SO2, C2-C4 alkanes, C2-C4 alkenes, C9 aromatics, short-lived solvents such as C2Cl4 and C2HCl3, and longer-lived species such as HCFC-22 and HCFC-142b). Prominent in the second group, SO2 and NO were remarkably enhanced over the oil sands, with maximum enhancements of 38.7 and 5.0 ppbv, or 383 and 319× the local background, respectively. The SO2 enhancements are comparable to maximum values measured in heavily polluted megacities such as Mexico City and are attributed to coke combustion. By contrast, relatively poor correlations between CH4 ethane and propane suggest low natural gas leakage despite its heavy use at the surface mining sites. In addition to the emission of many trace gases, the natural drawdown of OCS by vegetation was absent above the surface mining operations, presumably because of the widespread land disturbance. Unexpectedly, the mixing ratios of α- and β-pinene were much higher over the oil sands (up to 217 and 610 pptv, respectively) than over vegetation in the background boundary layer (20±7 and 84±24 pptv, respectively), and the pinenes correlated well with several industrial tracers that were elevated in the oil sands plumes. Because so few independent measurements from the oil sands mining industry exist, this study provides an important initial characterization of trace gas emissions from oil sands surface mining operations.

  1. Acid composition of particles and gases in a ponderosa pine forest during the BEACHON-RoMBAS campaign

    NASA Astrophysics Data System (ADS)

    Stark, H.; Yatavelli, L.; Thompson, S.; Kimmel, J. R.; Palm, B. B.; Day, D. A.; Campuzano-Jost, P.; Cubison, M. J.; Jayne, J.; Worsnop, D. R.; Thornton, J. A.; Jimenez, J. L.

    2012-12-01

    We present results from the high mass-resolution analysis of gas-phase and aerosol spectra collected with a chemical ionization high-resolution time-of-flight mass spectrometer, equipped with a micro-orifice volatilization impactor ("MOVI-HRToF-CIMS", Yatavelli and Thornton AS&T, 2010; Yatavelli et al., AS&T, 2012) during the 2011 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study ("BEACHON-RoMBAS"). The study was conducted during July - August 2011 in a ponderosa pine forest in Colorado. Choosing acetate (CH3C(O)O-) as the reagent ion and developing analysis tools for formula identification and elemental analysis allowed us to identify hundreds of individual acids in aerosol spectra. Positive Matrix Factorization (PMF) analysis of the ion time series is useful to account for backgrounds in the different modes of operation and to separate several gas-phase and particulate factors with different volatility and composition. Results on aerosol composition, including nitrogen- and sulfur-containing species as well as information about elemental ratios (e.g. O:C, H:C) and average carbon oxidation state are presented. Most of the acids detected have between 1 and 10 carbons and average carbon oxidation states (OsC) between -1 and 1. This suggests the importance of monoterpenes and MBO as precursors of the measured acids. We will discuss these results with special consideration of fragmentation on the heated surfaces of the instrument.

  2. Trace analysis of acids and bases by conductometric titration with multiparametric non-linear regression.

    PubMed

    Coelho, Lúcia H G; Gutz, Ivano G R

    2006-03-15

    A chemometric method for analysis of conductometric titration data was introduced to extend its applicability to lower concentrations and more complex acid-base systems. Auxiliary pH measurements were made during the titration to assist the calculation of the distribution of protonable species on base of known or guessed equilibrium constants. Conductivity values of each ionized or ionizable species possibly present in the sample were introduced in a general equation where the only unknown parameters were the total concentrations of (conjugated) bases and of strong electrolytes not involved in acid-base equilibria. All these concentrations were adjusted by a multiparametric nonlinear regression (NLR) method, based on the Levenberg-Marquardt algorithm. This first conductometric titration method with NLR analysis (CT-NLR) was successfully applied to simulated conductometric titration data and to synthetic samples with multiple components at concentrations as low as those found in rainwater (approximately 10 micromol L(-1)). It was possible to resolve and quantify mixtures containing a strong acid, formic acid, acetic acid, ammonium ion, bicarbonate and inert electrolyte with accuracy of 5% or better.

  3. Trace level uranyl complexation with phenylphosphonic acid in aqueous solution: direct speciation by high resolution mass spectrometry.

    PubMed

    Galindo, Catherine; Del Nero, Mirella

    2013-04-15

    The complexation of U(VI) by organic P-containing ligands in humic substances (HS) is an important issue of uranyl mobility in soil. We have investigated the complexation of uranyl by a model ligand for aromatic phosphorus functionalities in HS, phenylphosphonic acid, by using ultrahigh resolution electrospray ionization-mass spectrometry (ESI-MS). The high sensitivity permitted to investigate the complexation of trace level uranyl and to explore directly in the native aqueous solutions the nature of the uranyl-phenylphosphonate complexes. Positive identification of the complexes coexisting in solutions with low pH and varying ligand-to-metal ratio was achieved thanks to the high resolving power, high mass accuracy, and reliability of ion abundance of the technique. The positively charged and neutral uranyl species were detected simultaneously on negative ion mass spectra, evidencing formation of three types of U(VI)-phenylphosphonate complexes. Two complexes with a metal-to-ligand stoichiometry of 1:1 (in the monoprotonated and nonprotonated forms) existed in solutions at pH 3-5, and a 1:2 complex was additionally formed at relatively high ligand-to-metal ratio. A strategy based on the use of uranyl-phosphate solution complexes as internal standards was developed to determine from the ESI(-)MS results the stability constants of the complexes, which were calculated to be log K111 = 3.4 ± 0.2 for UO2(HPhPO3)(+), log K101 = 7.1 ± 0.1 for UO2PhPO3, and log K112 = 7.2 ± 0.2 for UO2(HPhPO3)2. The speciation model presented here suggests that organic P existing at low concentration in HS is involved significantly in binding by humic and fulvic acids of trace level uranyl in soil.

  4. Detection of trace amino acid biomarkers in ice from extreme environments with the Mars Organic Analyzer

    NASA Astrophysics Data System (ADS)

    Jayarajah, Christine; Jayarajah, Christine; Botta, Oliver; Aubrey, Andrew; Parker, Eric; Bada, Jeffrey; Mathies, Richard

    A portable microfabricated capillary electrophoresis (CE) system named the Mars Organic Analyzer (MOA) has been developed to analyze fluorescently-labeled biomarkers including amino acids, amines, nucleobases, and amino sugars with the goal of life detection on Mars (1,2). This system consists of a multilayer microfabricated glass wafer containing electrophoresis channels as well as microfluidic valves and pumps for sample manipulation, a confocal laser excitation and fluorescence detection system, and integrated CE power supplies. The MOA has been successfully field tested in the Panoche Valley, CA and in the Atacama Desert, Chile, detecting amino acids at the ppb levels (3). In addition, this technology has been shown to be effective in screening the formation of biogenic amines during fermentation (4). The MOA is a part of the Urey instrument package that has been selected for the 2013 European ExoMars mission by ESA. The identification of recent gully erosion sites, observations of ice on and beneath the surface of Mars, and the discovery of large reservoirs of sub-surface ice on Mars point to water-ice as an important target for astrobiological analyses (5). In addition, the ice moons Europa and Enceladus are of astrobiological interest due to the possibility that they may contain liquid water under their ice crusts. Consequently, we explore here the use of the MOA instrument for the analysis of amino acids in polar ice samples. Soil extracts as well as concentrated icecore samples tend to be highly saline and inhomogeneous. Furthermore, brine pockets in ice form potential refugia for extant extra-terrestrial life, rendering near surface ice a key target for the search for a record of past life on the planet (6). Therefore, we have determined the effect of salinity on sample injection parameters in ice-core samples retrieved from Greenland. The amino acids valine, alanine/serine, glycine, glutamic acid, and aspartic acid were found in the parts

  5. Radon tracing of groundwater discharge into an Australian estuary surrounded by coastal acid sulphate soils

    NASA Astrophysics Data System (ADS)

    Santos, Isaac R.; Eyre, Bradley D.

    2011-01-01

    SummaryWidespread sulphidic deposits have accumulated in tropical coastal floodplains throughout the world. Sulphidic soils oxidize when floodplains are drained for urban and agricultural development. As a result, large amounts of sulphuric acid may be released to nearby waterways. Macropores may create excellent conditions for groundwater flow in coastal acid sulphate soils (CASS). An automated radon ( 222Rn) measurement system was used to quantify groundwater inputs into a tidally-dominated estuary that is known to be influenced by acid discharges from CASS (Richmond River Estuary, Australia). A high resolution radon survey along a 120-km long segment of the tidal river identified two areas of preferential groundwater inputs. Intensive time series measurements in one of those areas (the Tuckean Broadwater) demonstrated that groundwater inputs are highly variable over hourly and seasonal time scales and inversely related to surface water pH. Elevated radon concentrations (up to 12 dpm/L) and low pH (as low as 3.3) were observed in surface waters at low tide a few weeks after a large rain event. These results demonstrate that acidic waters are entering the estuary via tidally-modulated groundwater flow pathways. Groundwater discharge rates into drains in the Tuckean Swamp were estimated from a dual-assumption radon mass balance to be 0.09-0.16 and 0.56-0.89 m 3 s -1 during the dry and wet season, respectively (or 6-10 and 37-59 cm/day if the area is taken into account). While surface runoff increased only 2-fold in the wet season relative to the dry season, groundwater discharge rates increased ˜6-fold. Since groundwater can be a major driver of surface water quality, radon can be useful in CASS monitoring and management efforts.

  6. Effect of salicylic acid upon trace-metal sorption (Cd, Zn, Co, and Mn) onto alumina, silica, and kaolinite as a function of pH

    SciTech Connect

    Benyahya, L.; Garnier, J.M.

    1999-05-01

    The sorption of four trace metals (Cd, Zn, Co, and Mn) onto alumina, silica, and kaolinite, in the presence or absence of salicylic acid was investigated in batch experiments in the pH range from 4 to 9. The sorption was interpreted in terms of surface complexation using the diffuse layer model (DLM). Equilibrium parameters were optimized using the FITEQL program. The salicylic acid was only significantly sorbed onto the alumina and the sorption was modeled using the anionic monodentate surface complex. In the absence of salicylic acid, the sorption of the trace metals presented different pH edge behaviors, depending on the substrate. Using the cationic monodendate surface complex, the model fitted the experimental data well. In the presence of salicylic acid, at a given pH and depending on the substrate, the sorption of metals was (1) increased, suggesting the occurrence of ternary complexes; (2) reduced (sometimes totally inhibited), due to the complexation with dissolved salicylic acid; or (3) very weakly changed in terms of net effect compared to free-organic-ligand systems. Modeling of the trace-metal sorption in the presence of salicylic acid was performed using ternary surface complexes. In the acidic pH range, this allowed the experimental data to be simulated, but in the alkaline pH range, the model failed to simulate the decrease in sorption. Probable causes of the discrepancies between the experimental data and modeling results are discussed.

  7. Microwave-assisted diluted acid digestion for trace elements analysis of edible soybean products.

    PubMed

    Barbosa, José Tiago P; Santos, Clarissa M M; Peralva, Vanessa N; Flores, Erico M M; Korn, Mauro; Nóbrega, Joaquim A; Korn, Maria Graças A

    2015-05-15

    A new method for the decomposition of soybean based edible products (soy extract, textured soy protein, transgenic soybeans, and whole soy flour) was developed to essential (Co, Cr, Cu, Fe, Mn, Ni, Se, V, and Zn) and non-essential (As, Ba, Cd, Pb, and Sr) trace elements determination by ICP OES and ICP-MS respectively. Effects related to the concentration of HNO3 (2.1-14.5 mol L(-1)) and the use of hydrogen peroxide on the efficiency of decomposition was evaluated based on the residual carbon content (RCC). It was demonstrated that 2.1 mol L(-1) HNO3 plus 1.0 mL H2O2 was suitable for an efficient digestion, since RCC was lower than 18% and the agreement with certified values and spike recoveries were higher than 90% for all analytes. The concentrations of analytes in the samples (minimum-maximum in mgkg(-1)) were: The concentrations of analytes in the samples (minimum-maximum in mgkg(-1)) were: As (<0.007-0.040), Ba (0.064-10.6), Cd (<0.006-0.028), Co (0.012-102), Cr (0.56-5.88), Cu (6.53-13.9), Fe (24.9-126), Mn (16.4-35.2), Ni (0.74-4.78), Se (<2.90-25), Sr (2.48-20.1), Pb (<0.029-0.11), V (<0.027-20), and Zn (30.1-47.3). Soy-based foods investigated in this study presented variable composition in terms of essential and potentially toxic elements, which can be attributed to different methods of processing.

  8. Evaluation of trace element and mineral status and related to levels of amino acid in children with phenylketonuria.

    PubMed

    Gok, Fazilet; Ekin, Suat; Dogan, Murat

    2016-07-01

    The aim of the present study was to examine trace elements (Zn, Cu, Mn, Se, Fe, Co, Cr, Ni, Cd, Pb), minerals (Ca, Mg, K), amino acids status in children with phenylketonuria and also whether they were correlated with each other in phenylketonuric patients. It has been found out that the HPA group was significantly lower than the control group with regards to Zn, Se, K, Ca, Mg and Zn/Cr levels (p<0.001, p<0.01, p<0.001, p<0.01, p<0.01 and p<0.001 respectively). In the patients with HPA, significantly strong positive correlations were observed between magnesium and calcium (r=0.791; p=0.001), also, indicates negative significant correlation between the concentrations of magnesium and phenylalanine (r=-0.591; p=0.026). The results of this study showed that, in the HPA group, phenylalanine-Mg relationship found, the presence of disease will in the evaluation of phenylalanine and other amino acids, together with the value of magnesium is required to consider.

  9. Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites.

    PubMed

    Nath, Bibhash; Birch, Gavin; Chaudhuri, Punarbasu

    2013-10-01

    The generation of acidity and subsequent mobilization of toxic metals induced by acid sulfate soils (ASSs) are known to cause severe environmental damage to many coastal wetlands and estuaries of Australia and worldwide. Mangrove ecosystems serve to protect coastal environments, but are increasingly threatened from such ASS-induced acidification due to variable hydrological conditions (i.e., inundation-desiccation cycles). However, the impact of such behaviors on trace metal distribution, bio-availability and accumulation in mangrove tissues, i.e., leaves and pneumatophores, are largely unknown. In this study, we examined how ASS-induced acidifications controlled trace metal distribution and bio-availability in gray mangrove (Avicennia marina) soils and in tissues in the Kooragang wetland, New South Wales, Australia. We collected mangrove soils, leaves and pneumatophores from a part of the wetland acidified from ASS (i.e., an affected site) for detailed biogeochemical studies. The results were compared with samples collected from a natural intertidal mangrove forest (i.e., a control site) located within the same wetland. Soil pH (mean: 5.90) indicated acidic conditions in the affected site, whereas pH was near-neutral (mean: 7.17) in the control site. The results did not show statistically significant differences in near-total and bio-available metal concentrations, except for Fe and Mn, between affected and control sites. Iron concentrations were significantly (p values≤0.001) greater in the affected site, whereas Mn concentrations were significantly (p values≤0.001) greater in the control site. However, large proportions of near-total metals were potentially bio-available in control sites. Concentrations of Fe and Ni were significantly (p values≤0.001) greater in leaves and pneumatophores of the affected sites, whereas Mn, Cu, Pb and Zn were greater in control sites. The degree of metal bio-accumulation in leaves and pneumatophores suggest contrasting

  10. Biological response of Costa Rica Dome phytoplankton to Light, Silicic acid and Trace metals.

    PubMed

    Goes, Joaquim I; Gomes, Helga do Rosario; Selph, Karen E; Landry, Michael R

    2016-03-01

    The Costa Rica Dome (CRD) is a unique open-ocean upwelling system, with picophytoplankton dominance of phytoplankton biomass and suppressed diatoms, yet paradoxically high export of biogenic silica. As a part of Flux and Zinc Experiments cruise in summer (June-July 2010), we conducted shipboard incubation experiments in the CRD to examine the potential roles of Si, Zn, Fe and light as regulating factors of phytoplankton biomass and community structure. Estimates of photosynthetic quantum yields revealed an extremely stressed phytoplankton population that responded positively to additions of silicic acid, iron and zinc and higher light conditions. Size-fractioned Chl a yielded the surprising result that picophytoplankton, as well as larger phytoplankton, responded most to treatments with added silicic acid incubated at high incident light (HL + Si). The combination of Si and HL also led to increases in cell sizes of picoplankton, notably in Synechococcus. Such a response, coupled with the recent discovery of significant intracellular accumulation of Si in some picophytoplankton, suggests that small phytoplankton could play a potentially important role in Si cycling in the CRD, which may help to explain its peculiar export characteristics.

  11. Biological response of Costa Rica Dome phytoplankton to Light, Silicic acid and Trace metals

    PubMed Central

    Goes, Joaquim I.; Gomes, Helga do Rosario; Selph, Karen E.; Landry, Michael R.

    2016-01-01

    The Costa Rica Dome (CRD) is a unique open-ocean upwelling system, with picophytoplankton dominance of phytoplankton biomass and suppressed diatoms, yet paradoxically high export of biogenic silica. As a part of Flux and Zinc Experiments cruise in summer (June–July 2010), we conducted shipboard incubation experiments in the CRD to examine the potential roles of Si, Zn, Fe and light as regulating factors of phytoplankton biomass and community structure. Estimates of photosynthetic quantum yields revealed an extremely stressed phytoplankton population that responded positively to additions of silicic acid, iron and zinc and higher light conditions. Size-fractioned Chl a yielded the surprising result that picophytoplankton, as well as larger phytoplankton, responded most to treatments with added silicic acid incubated at high incident light (HL + Si). The combination of Si and HL also led to increases in cell sizes of picoplankton, notably in Synechococcus. Such a response, coupled with the recent discovery of significant intracellular accumulation of Si in some picophytoplankton, suggests that small phytoplankton could play a potentially important role in Si cycling in the CRD, which may help to explain its peculiar export characteristics. PMID:27275031

  12. Trace Amounts of Furan-2-Carboxylic Acids Determine the Quality of Solid Agar Plates for Bacterial Culture

    PubMed Central

    Hara, Shintaro; Isoda, Reika; Tahvanainen, Teemu; Hashidoko, Yasuyuki

    2012-01-01

    Background Many investigators have recognised that a significant proportion of environmental bacteria exist in a viable but non-culturable state on agar plates, and some researchers have also noticed that some of such bacteria clearly recover their growth on matrices other than agar. However, the reason why agar is unsuitable for the growth of some bacteria has not been addressed. Methodology/Principal Findings According to the guide of a bioassay for swarming inhibition, we identified 5-hydroxymethylfuran-2-carboxylic acid (5-HMFA) and furan-2-carboxylic acid (FA) as factors that inhibit bacterial swarming and likely inhibit extracellular polysaccharide production on agar. The furan-2-carboxylic acids 5-HMFA and FA effectively inhibited the swarming and swimming of several environmental bacteria at concentrations of 1.8 and 2.3 µg L−1 (13 and 21 nmol L−1), respectively, which are equivalent to the concentrations of these compounds in 0.3% agar. On Luria-Bertani (LB) plates containing 1.0% agar that had been previously washed with MeOH, a mixture of 5-HMFA and FA in amounts equivalent to their original concentrations in the unwashed agar repressed the swarming of Escherichia coli K12 strain W3110, a representative swarming bacterium. Conclusions/Significance Agar that contains trace amounts of 5-HMFA and FA inhibits the proliferation of some slow-growing or difficult-to-culture bacteria on the plates, but it is useful for single colony isolation due to the ease of identification of swarmable bacteria as the non-swarmed colonies. PMID:22848437

  13. Trace element composition characteristics and acidity of central-Alabama rain

    NASA Astrophysics Data System (ADS)

    Ghorai, S. K.; Tekyi-Mensah, O.; Sims, J. F.; Williams, J. R.; Alford, W. L.

    1991-11-01

    Elemental concentrations and acidity of central Alabama rain have been studied by the proton induced X-ray emission (PIXE) method. Seventeen elements (Na, Si, P, S, Cl, Ar, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) have been found to occur in the rain samples. Samples collected during the initial five-month period (January-May, 1985) showed characteristics that are described here. The elemental composition of southerly air flow rains was found to be different from that of northerly air flow rains with the latter containing relatively higher concentrations of S, Ca, Cu and Zn, indicating a more polluted area to the north. Correlation coefficients were calculated for pairs of elements in an attempt to determine possible sources of pollutants. A strong correlation was found between pH and logarithmic sulfur concentration for northern rains but not for southern rains.

  14. Biocompatible 3D SERS substrate for trace detection of amino acids and melamine.

    PubMed

    Satheeshkumar, Elumalai; Karuppaiya, Palaniyandi; Sivashanmugan, Kundan; Chao, Wei-Ting; Tsay, Hsin-Sheng; Yoshimura, Masahiro

    2017-03-21

    A novel, low-cost and biocompatible three-dimensional (3D) substrate for surface-enhanced Raman spectroscopy (SERS) is fabricated using gold nanoparticles (AuNPs) loaded on cellulose paper for detection of amino acids and melamine. Dysosma pleiantha rhizome (Dp-Rhi) capped AuNPs (Dp-Rhi_AuNPs) were prepared by in situ using aqueous extract of Dp-Rhi and in situ functionalized Dp-Rhi on AuNPs surface was verified by Fourier transform infrared spectroscopy and zeta potentials analysis shows a negative (-18.4mV) surface charges, which confirm that presence of Dp-Rhi on AuNPs. The biocompatibility of Dp-Rhi_AuNPs is also examined by cell viability of FaDu cells using MTS assay and compared to control group. In conclusion, the SERS performance of AuNPs@cellulose paper substrates were systematically demonstrated and examined with different excitation wavelengths (i.e. 532, 632.8 and 785nm lasers) and the as-prepared 3D substrates provided an enhancement factor approaching 7 orders of magnitude compared with conventional Raman intensity using para-nitrothiophenol (p-NTP), para-aminothiophenol (p-ATP) and para-mercaptobenzoic acid (p-MBA) as probe molecules. The strong electromagnetic effect was generated at the interface of AuNPs and pre-treated roughened cellulose paper is also investigated by simulation in which the formation of possible Raman hot-spot zone in fiber-like microstructure of cellulose paper decorated with AuNPs. Notably, with optimized condition of as-prepared 3D AuNPs@cellulose paper is highly sensitive in the SERS detection of aqueous tyrosine (10(-10)M) and melamine (10(-9)M).

  15. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Blake, N. J.; Barletta, B.; Diskin, G. S.; Fuelberg, H. E.; Gorham, K.; Huey, L. G.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Yang, M.; Blake, D. R.

    2010-12-01

    products and/or from the diluent used to lower the viscosity of the extracted bitumen (i.e., C4-C9 alkanes, C5-C6 cycloalkanes, C6-C8 aromatics), together with CO; and (2) emissions associated with the mining effort, such as upgraders (i.e., CO2, CO, CH4, NO, NO2, NOy, SO2, C2-C4 alkanes, C2-C4 alkenes, C9 aromatics, short-lived solvents such as C2Cl4 and C2HCl3, and longer-lived species such as HCFC-22 and HCFC-142b). Prominent in the second group, SO2 and NO were remarkably enhanced over the oil sands, with maximum mixing ratios of 38.7 ppbv and 5.0 ppbv, or 383× and 319× the local background, respectively. These SO2 levels are comparable to maximum values measured in heavily polluted megacities such as Mexico City and are attributed to coke combustion. By contrast, relatively poor correlations between CH4, ethane and propane suggest low levels of natural gas leakage despite its heavy use at the surface mining sites. Instead the elevated CH4 levels are attributed to methanogenic tailings pond emissions. In addition to the emission of many trace gases, the natural drawdown of OCS by vegetation was absent above the surface mining operations, presumably because of the widespread land disturbance. Unexpectedly, the mixing ratios of α-pinene and β-pinene were much greater over the oil sands (up to 217 pptv and 610 pptv, respectively) than over vegetation in the background boundary layer (20±7 pptv and 84±24 pptv, respectively), and the pinenes correlated well with several industrial tracers that were elevated in the oil sands plumes. Because so few independent measurements from the oil sands mining industry exist, this study provides an important initial characterization of trace gas emissions from oil sands surface mining operations.

  16. Measurements on atmospheric trace species at Mt. Kwanak, the southern suburb of Seoul, Korea

    SciTech Connect

    Lee, Gangwoong; Lee, Dong Soo; Kim, Kyung-Ryul

    1996-12-31

    Although there has been increasing awareness of the photochemical pollution in Seoul, comprehensive scientific studies are too sparse to understand behaviors and interactions of photochemically reactive species. To extend our knowledge on chemical characteristics of atmosphere in Seoul, we made concurrent measurements of various atmospheric trace species and meteorological parameters in the campus of Seoul National University on the high foot of Mt. Kwanak, from 22 November to 2 December 1995. Among them are reactive atmospheric trace gases (NO, NO{sub 2}, O{sub 3}, SO{sub 2}, HNO{sub 3}, HCl, Formic acid), water-soluble ions of aerosols (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, NH{sup +}{sub 4} Na{sup +}), and conservative trace gases (CH{sub 4}, CO{sub 2}, CFC-11, CFC-12, N{sub 2}O).

  17. Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds.

    PubMed

    Gosavi, K; Sammut, J; Gifford, S; Jankowski, J

    2004-05-25

    Earthen shrimp aquaculture ponds are often impacted by acid sulfate soils (ASS), typically resulting in increased disease and mortality of cultured organisms. Production losses have been attributed to either low pH or to elevated concentrations of toxic metals, both direct products of pyrite oxidation in ASS. The standard farm management practice to minimise effects of pyrite oxidation is to maintain pH of pond waters above 5, based on the assumption that dissolved metal bioavailability is negligible at this pH. This study aimed to test the validity of this assumption, and therefore elucidate a possible role of toxic heavy metals in observed decreases in farm productivity. Metal bioaccumulation in four genera of macroalgae, Ulva sp., Enteromorpha sp., Cladophora sp. and Chaetomorpha sp., sampled from ASS-affected shrimp aquaculture ponds were measured using inductively coupled plasma-optical emission spectroscopy (ICP-OES) to assess the relative bioavailability of dissolved metals within the system. Results showed that all four genera of macroalgae accumulated appreciable quantities of Fe, Al, Zn, Cd, Cu, As and Pb. Iron and Al, the most common metals mobilised from ASS, were both accumulated in all algal genera to concentrations three orders of magnitude greater than all other metals analysed. These findings indicate that dissolved heavy metals are indeed bioavailable within the aquaculture pond system. A literature search of heavy metal bioaccumulation by these algal genera revealed concentrations recorded in this study are comparable to highly contaminated environments, such as those exposed to urban, industrial and mining pollution. The results of this study indicate that dissolved metal bioavailability in many earthen shrimp aquaculture ponds may be higher than previously thought.

  18. Tracing the biosynthetic source of essential amino acids in marine turtles using delta13C fingerprints.

    PubMed

    Arthur, Karen E; Kelez, Shaleyla; Larsen, Thomas; Choy, C Anela; Popp, Brian N

    2014-05-01

    Plants, bacteria, and fungi produce essential amino acids (EAAs) with distinctive patterns of delta13C values that can be used as naturally occurring fingerprints of biosynthetic origin of EAAs in a food web. Because animals cannot synthesize EAAs and must obtain them from food, their tissues reflect delta13C(EAA) patterns found in diet, but it is not known how microbes responsible for hindgut fermentation in some herbivores influence the delta13C values of EAAs in their hosts' tissues. We examined whether distinctive delta13C fingerprints of hindgut flora are evident in the tissues of green turtles (Chelonia mydas), which are known to be facultative hindgut fermenters. We determined delta13C(EAA) values in tissues of green turtles foraging herbivorously in neritic habitats of Hawaii and compared them with those from green, olive ridley, and loggerhead turtles foraging carnivorously in oceanic environments of the central and southeast Pacific Ocean. Results of multivariate statistical analysis revealed two distinct groups that could be distinguished based on unique delta13C(EAA) patterns. A three-end-member predictive linear discriminant model indicated that delta13C(EAA) fingerprints existed in the tissues of carnivorous turtles that resembled patterns found in microalgae, which form the base of an oceanic food web, whereas herbivorous turtles derive EAAs from a bacterial or seagrass source. This study demonstrates the capacity for delta13C fingerprinting to establish the biosynthetic origin of EAAs in higher consumers, and that marine turtles foraging on macroalgal diets appear to receive nutritional supplementation from bacterial symbionts in their digestive system.

  19. A comparison of blood gases and acid-base measurements in arterial, arterialized venous, and venous blood during short-term maximal exercise.

    PubMed

    Linderman, J; Fahey, T D; Lauten, G; Brooker, A S; Bird, D; Dolinar, B; Musselman, J; Lewis, S; Kirk, L

    1990-01-01

    The purpose of this study was to determine the relationship between blood gases and acid-base measurements in arterial, arterialized venous, and venous blood measured simultaneously during short-term maximal exercise. Ten well-trained male cyclists performed a graded maximal exercise test on a cycle ergometer to determine the power output corresponding to their peak oxygen consumption (test I), and a short-term maximal test on a cycle ergometer at peak power output (test II). During test II arterial, arterialized venous and venous blood were sampled simultaneously for determination of partial pressures of oxygen and carbon dioxide, pH, bicarbonate (HCO3-), base excess (BE), and lactate (La). Samples were taken at rest, the end of 1 min of exercise (1 ME), at the end of exercise (EE), and at 2 min of recovery (REC). During test II, subjects maintained a peak power output of 370.6 (62.1) W [mean (SD)] for 4.5, SD 1.6 min. Except at rest venous and arterialized venous measurements tended to be the same at all sampling intervals, but differed significantly from measurements in arterial blood (P less than 0.05). BE was the only variable that rendered consistently significant correlations between arterial and arterialized venous blood at each sampling interval. The pooled correlation coefficient between arterial and arterialized venous BE was r = 0.83 [regression equation: BEa = (0.84 BEav)-0.51]. Arterial La was significantly higher than venous La at 1 ME (2.8, 0.7 vs 0.8, 0.3 mmol.l-1) and higher than both venous and arterialized venous La at EE.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Process for recovering acidic gases

    SciTech Connect

    Riggs, O.L. Jr.

    1989-09-26

    This patent describes an improvement in a continuous process for recovering carbon dioxide from a carbon dioxide-rich gas stream. The gas stream is contacted with an aqueous alknolamine solution in an absorption section contained in an absorption zone to produce a carbon dioxide-lean gaseous overhead stream and a carbon dioxide-rich liquid effluent stream. The carbon dioxide-rich effluent stream is heated in a regeneration zone to produce a carbon dioxide-rich gaseous overhead stream and a carbon dioxide-lean liquid effluent stream. The carbon dioxide-lean liquid effluent stream comprising a regenerated aqueous alkanolamine solution. The regenerated aqueous alkanolamine solution is returned to and introduced into the absorption zone.

  1. Biological production of products from waste gases

    DOEpatents

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  2. Method development for liquid chromatographic/triple quadrupole mass spectrometric analysis of trace level perfluorocarboxylic acids in articles of commerce.

    PubMed

    Liu, Xiaoyu; Krebs, Kenneth; Guo, Zhishi; Roache, Nancy

    2009-05-01

    An analytical method to identify and quantify trace levels of C5-C12 perfluorocarboxylic acids (PFCAs) in articles of commerce (AOCs) was developed and rigorously validated. Solid samples were extracted in methanol, and liquid samples were diluted with a solvent consisting of 60:40 (v/v) methanol and 2 mM ammonium acetate (NH(4)Ac) aqueous solution. In both cases, the samples were spiked with an isotopically labeled recovery check standard. The samples were concentrated in a nitrogen atmosphere (solid samples only), filtered, and then analyzed by HPLC coupled with a tandem mass spectrometer. Method evaluation included selection of the extraction solvent and the sample preparation solvent used to facilitate sample injection into the analytical system, method comparison for extraction and sample concentration, determination of extraction efficiency, instrument and method detection limits, and determination of potential sample loss during filtration and sample storage. Results of consecutive extractions demonstrated that a single extraction step accounts for 70-100% of the "total" PFCAs in the AOCs with the exception of cookware. The instrument's detection limit was < or = 0.05 ng/mL, and the method detection limit were 1.0-3.9 ng/g for solid AOCs and 1.1-6.8 ng/g for liquid AOCs. The method has been used to determine the PFCA content in a wide range of AOCs containing or treated with fluoropolymers and fluorotelomers.

  3. Sorption and coprecipitation of trace concentrations of thorium with various minerals under conditions simulating an acid uranium mill effluent environment

    USGS Publications Warehouse

    Landa, Edward R.; Le, Anh H.; Luck, Rudy L.; Yeich, Philip J.

    1995-01-01

    Sorption of thorium by pre-existing crystals of anglesite (PbSO4), apatite (Ca5(PO4)3(HO)), barite (BaSO4), bentonite (Na0.7Al3.3Mg0.7Si8O20(OH)4), celestite (SrSO4), fluorite (CaF2), galena (PbS), gypsum (CaSO4·2H2O), hematite (Fe2O3), jarosite (KFe3(SO4)2(OH)6), kaolinite (Al2O3·2SiO2·2H2O), quartz (SiO2) and sodium feldspar (NaAlSi3O8) was studied under conditions that simulate an acidic uranium mill effluent environment. Up to 100% removal of trace quantitiees of thorim (approx. 1.00 ppm in 0.01 N H2SO4) from solution occurred within 3 h with fluorite and within 48 h in the case of bentonite. Quartz, jarosite, hematite, sodium feldspar, gypsum and galena removed less than 15% of the thorium from solution. In the coprecipitation studies, barite, anglesite, gypsum and celestite were formed in the presence of thorium (approx. 1.00 ppm). Approximately all of the thorium present in solution coprecipitated with barite and celestite; 95% coprecipitated with anglesite and less than 5% with gypsum under similar conditions. When jarosite was precipitated in the presence of thorium, a significant amount of thorium (78%) was incorporated in the precipitate.

  4. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain).

    PubMed

    Hierro, A; Olías, M; Cánovas, C R; Martín, J E; Bolivar, J P

    2014-11-01

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH~6 Cu is desorbed, probably by the formation of Cu(I)-chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes.

  5. Nanoindentation of GaSe thin films

    PubMed Central

    2012-01-01

    The structural and nanomechanical properties of GaSe thin films were investigated by means of X-ray diffraction (XRD) and nanoindentation techniques. The GaSe thin films were deposited on Si(111) substrates by pulsed laser deposition. XRD patterns reveal only the pure (000 l)-oriented reflections originating from the hexagonal GaSe phase and no trace of any impurity or additional phases. Nanoindentation results exhibit discontinuities (so-called multiple ‘pop-in’ events) in the loading segments of the load–displacement curves, and the continuous stiffness measurements indicate that the hardness and Young’s modulus of the hexagonal GaSe films are 1.8 ± 0.2 and 65.8 ± 5.6 GPa, respectively. PMID:22804961

  6. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  7. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  8. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi

    1986-01-01

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  9. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  10. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters.

    PubMed

    Jones, Adele M; Xue, Youjia; Kinsela, Andrew S; Wilcken, Klaus M; Collins, Richard N

    2016-03-15

    Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values<3.9, 78 and 58% of Al and total Fe, respectively, were present as neutral or negatively-charged species. Complementary isotope dilution experiments with (55)Fe and (26)Al demonstrated that only soluble (i.e. no colloidal) species were present. Trivalent rare earth elements (REEs) were also mainly present (>70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO4)2(-) and/or Me-NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported.

  11. Visual detection of trace copper ions based on copper-catalyzed reaction of ascorbic acid with oxygen

    NASA Astrophysics Data System (ADS)

    Hou, Xin Yan; Chen, Shu; Shun, Lian Ju; Zhao, Yi Ni; Zhang, Zhi Wu; Long, Yun Fei; Zhu, Li

    2015-10-01

    A visual detection method for trace Cu2+ in aqueous solutions using triangular silver nanoplates (abbreviated as TAgNPs) as the probe was developed. The method is based on that TAgNPs could be corroded in sodium thiosulfate (Na2S2O3) solutions. The absorption spectrum of TAgNPs solution changed when it is corroded by Na2S2O3. The reaction of oxygen with ascorbic acid (Vc) in the presence of a low concentration of Cu2+ generates hydrogen peroxide that reacts with Na2S2O3, which leads the concentration of Na2S2O3 in the solution to be decreased. Therefore, the reaction between TAgNPs and the reacted mixture of Na2S2O3/Vc/Cu2+ was prevented efficiently. When the Na2S2O3 concentration and reaction time are constant, the decrease in the concentration of Na2S2O3 is directly proportional to the Cu2+ concentration. Thus, morphology, color, and maximum absorption wavelength of TAgNPs changed with the change of Cu2+ concentration. The changed maximum absorption wavelength of TAgNPs (Δλ) is proportional to Cu2+ concentration in the range from 7.5 × 10-9 to 5.0 × 10-7 M with a correlation coefficient of r = 0.9956. Moreover, color change of TAgNP solution was observed clearly over a Cu2+ concentration range from 7.5 × 10-8 to 5.0 × 10-7 M. This method has been used to detect the Cu2+ content of a human hair sample, and the result is in agreement with that obtained by the atomic absorption spectroscopy (AAS) method.

  12. Dephytinisation of soyabean protein isolate with low native phytic acid content has limited impact on mineral and trace element absorption in healthy infants.

    PubMed

    Davidsson, Lena; Ziegler, Ekhard E; Kastenmayer, Peter; van Dael, Peter; Barclay, Denis

    2004-02-01

    Infant formulas based on soyabean protein isolate are often used as an alternative to cows'-based formulas. However, the presence of phytic acid in soya formulas has raised concern about the absorption of trace elements and minerals from these products. The aim of the present study was to evaluate mineral and trace element absorption from regular and dephytinised soya formula in healthy infants. Soyabean protein isolate with a relatively low native content of phytic acid was used for production of a regular soya formula (300 mg phytic acid/kg liquid formula) and an experimental formula was based on dephytinised soya protein isolate (<6 mg phytic acid/kg liquid formula). Using a crossover study design, apparent mineral and trace element absorptions were measured by a stable isotope technique based on 72 h faecal excretion of non-absorbed stable isotopes (Zn, Fe, Cu and Ca) and by the chemical balance technique (Mn, Zn, Cu and Ca) in nine infants (69-191 d old). Fe absorption was also measured by erythrocyte incorporation 14 d after intake. The results from the present study demonstrated that Zn absorption, measured by a stable isotope technique, was significantly greater after dephytinisation (mean value 16.7 v. 22.6 %; P=0.03). No other statistically significant differences between the two formulas were observed. The nutritional benefit of dephytinisation was marginal in the present study. Based on these results, the use of soyabean protein isolate with low native content of phytic acid should be promoted for production of soya formulas and adequate addition of ascorbic acid to enhance Fe absorption should be ensured in the products.

  13. On the abiotic formation of amino acids. I - HCN as a precursor of amino acids detected in extracts of lunar samples. II - Formation of HCN and amino acids from simulated mixtures of gases released from lunar samples

    NASA Technical Reports Server (NTRS)

    Yuasa, S.; Flory, D.; Basile, B.; Oro, J.

    1984-01-01

    Two studies on the abiotic formation of amino acids are presented. The first study demonstrates the role of hydrogen cyanide as a precursor of amino acids detected in extracts of lunar samples. The formation of several amino acids, including glycine, alanine, aspartic acid, and glutamic acid, under conditions similar to those used for the analysis of lunar samples is demonstrated. The second study investigates the formation of hydrogen cyanide as well as amino acids from lunar-sample gas mixtures under electrical discharge conditions. These results extend the possibility of synthesis of amino acids to planetary bodies with primordial atmospheres less reducing than a mixture of methane, ammonia, hydrogen and water.

  14. El Chichon - Composition of plume gases and particles

    NASA Technical Reports Server (NTRS)

    Kotra, J. P.; Finnegan, D. L.; Zoller, W. H.; Hart, M. A.; Moyers, J. L.

    1983-01-01

    Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichon volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (not greater than 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume.

  15. El Chichon - Composition of plume gases and particles

    NASA Astrophysics Data System (ADS)

    Kotra, J. P.; Finnegan, D. L.; Zoller, W. H.; Hart, M. A.; Moyers, J. L.

    1983-12-01

    Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichon volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (not greater than 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume.

  16. Differentiation of farmed and wild turbot (Psetta maxima): proximate chemical composition, fatty acid profile, trace minerals and antimicrobial resistance of contaminant bacteria.

    PubMed

    Martínez, B; Miranda, J M; Nebot, C; Rodriguez, J L; Cepeda, A; Franco, C M

    2010-10-01

    The proximate, cholesterol, fatty acid and trace mineral compositions in the flesh of farmed and wild turbot (Psetta maxima) were evaluated. Additionally, the potential influence of the use of antimicrobial agents in the bacteria carried by farmed turbot was investigated. For this purpose, a total of 144 Pseudomonas spp. and 127 Aeromonas spp. were isolated and tested for their susceptibility to 12 antimicrobials by a disk diffusion method. Farmed turbot contained higher fat, cholesterol and calories as well as lower moisture content than its wild counterpart. The fatty acid profile of farmed turbot included higher levels of myristic, pentadecanoic, palmitoleic, gadoleic, cetoleic, linoleic, linolenic, stearidonic, eicosadienoic and eicosapentaenoic acids, and lower levels of stearic, arachidonic, docosapentaenoic and docosahexaenoic acids than its wild counterpart. The proportions of polyunsaturated fatty acids and n-3/n-6 ratios were higher in wild turbot than in farmed turbot. With respect to trace minerals, no toxic levels were found, and higher amounts of Cd, Co, Cu, Fe, Mn, Pb and Zn, as well as lower amounts of Cr, were found in farmed turbot relative to wild turbot. The antimicrobial resistance of Pseudomonas spp. and Aeromonas spp. were quite similar, with only the trimethoprim-sulfamethoxazole resistance of Aeromonas spp. isolated from farmed turbot being higher than those isolated from wild turbot. In the case of ampicillin, Pseudomonas spp. isolated from wild turbot showed higher resistance levels than those of their counterparts isolated from farmed turbot. In conclusion, the nutritional parameters of wild turbot are more adequate with respect to nutritional recommendations, while no differences were observed in food safety derived from trace mineral concentrations or the antimicrobial resistance of bacteria isolated from wild and farmed turbot.

  17. Transport and sediment-water partitioning of trace metals in acid mine drainage: an example from the abandoned Kwangyang Au-Ag mine area, South Korea

    NASA Astrophysics Data System (ADS)

    Jung, Hun-Bok; Yun, Seong-Taek; Mayer, Bernhard; Kim, Soon-Oh; Park, Seong-Sook; Lee, Pyeong-Koo

    2005-08-01

    Transport and sediment-water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au-Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF-HNO3-HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment-water distribution coefficients ( K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe-Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(-Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe-Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.

  18. Source gases: Concentrations, emissions, and trends

    NASA Technical Reports Server (NTRS)

    Fraser, Paul J.; Harriss, Robert; Penkett, Stuart A.; Makide, Yoshihiro; Sanhueza, Eugenio; Alyea, Fred N.; Rowland, F. Sherwood; Blake, Don; Sasaki, Toru; Cunnold, Derek M.

    1991-01-01

    Source gases are defined as those gases that influence levels of stratospheric ozone (O3) by transporting species containing halogen, hydrogen, and nitrogen to the stratosphere. Examples are the CFC's, methane (CH4), and nitrous oxide (N2O). Other source gases that also come under consideration in an atmospheric O3 context are those that are involved in the O3 or hydroxyl (OH) radical chemistry of the troposphere. Examples are CH4, carbon monoxide (CO), and nonmethane hydrocarbons (NMHC's). Most of the source gases, along with carbon dioxide (CO2) and water vapor (H2O), are climatically significant and thus affect stratospheric O3 levels by their influence on stratospheric temperatures. Carbonyl sulphide (COS) could affect stratospheric O3 through maintenance of the stratospheric sulphate aerosol layer, which may be involved in heterogeneous chlorine-catalyzed O3 destruction. The previous reviews of trends and emissions of source gases, either from the context of their influence on atmospheric O3 or global climate change, are updated. The current global abundances and concentration trends of the trace gases are given in tabular format.

  19. Beta-trace Protein as a new non-invasive immunological Marker for Quinolinic Acid-induced impaired Blood-Brain Barrier Integrity

    PubMed Central

    Baranyi, Andreas; Amouzadeh-Ghadikolai, Omid; Lewinski, Dirk von; Breitenecker, Robert J.; Stojakovic, Tatjana; März, Winfried; Robier, Christoph; Rothenhäusler, Hans-Bernd; Mangge, Harald; Meinitzer, Andreas

    2017-01-01

    Quinolinic acid, a macrophage/microglia-derived excitotoxin fulfills a plethora of functions such as neurotoxin, gliotoxin, and proinflammatory mediator, and it alters the integrity and cohesion of the blood-brain barrier in several pathophysiological states. Beta-trace protein (BTP), a monomeric glycoprotein, is known to indicate cerebrospinal fluid leakage. Thus, the prior aim of this study was to investigate whether BTP might non-invasively indicate quinolinic acid-induced impaired blood-brain barrier integrity. The research hypotheses were tested in three subsamples with different states of immune activation (patients with HCV-infection and interferon-α, patients with major depression, and healthy controls). BTP has also been described as a sensitive marker in detecting impaired renal function. Thus, the renal function has been considered. Our study results revealed highest quinolinic acid and highest BTP- levels in the subsample of patients with HCV in comparison with the other subsamples with lower or no immune activation (quinolinic acid: F = 21.027, p < 0.001 [ANOVA]; BTP: F = 6.792, p < 0.01 [ANOVA]). In addition, a two-step hierarchical linear regression model showed that significant predictors of BTP levels are quinolinic acid, glomerular filtration rate and age. The neurotoxin quinolinic acid may impair blood-brain barrier integrity. BTP might be a new non-invasive biomarker to indicate quinolinic acid-induced impaired blood-brain barrier integrity. PMID:28276430

  20. Where do California's greenhouse gases come from?

    ScienceCinema

    Fischer, Marc

    2016-07-12

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  1. Gases in Sea Ice 1975 - 1979.

    DTIC Science & Technology

    1979-09-01

    understanding the magnitude and rate of exchange of CO, CH4 , and N20 in the I arctic. These trace gases are crucial to many important tropospheric...These factors are of prime importance in producing low sea surface temperatures through water stirring, reduced isolation, and increased sensible and...air. Open water during the winter in the form of leads and polyni may amount to as much as 11 percent in area and are important in the air-sea

  2. Development of monitoring and control technology based on trace gas monitoring. Final report

    SciTech Connect

    Liebowitz, B.

    1997-07-01

    Trace gases are generated by many biological reactions. During anaerobic decomposition, trace levels of hydrogen (H{sub 2}) and carbon monoxide (CO) gases are produced. It was shown previously that these trace gases are intrinsically related to the biochemical reactions occurring and, therefore, offer promise for on-line process monitoring and control. This work was designed to test how effectively hydrogen and CO could be to monitor high-rate anaerobic systems that has significant mass transfer and complex hydraulics. An experimental program was designed to examine the behavior of an upflow anaerobic sludge blanket (UASB) reactor system under steady state and in response to organic loading perturbations. The responses of trace gases CO and H{sub 2} were tracked using an on-line, real-time gas-monitoring system linked to a computer-controlled data acquisition package. Data on conventional process parameters such as pH, chemical oxygen demand (COD), volatile fatty acids (VFAs) were concurrently collected. Monitoring of conventional process indicators (i.e., pH, VFA, gas production) and trace gas (H{sub 2} and CO) indicators was conducted using a matrix of nine different steady-state OLRs (4-23 kg COD/m{sup 3} -d) and system HRTs (0.5 to 2.5 days) was performed to determine any correlation among the indicators. Of OLR, HRT, and influent COD, only OLR had any significant influence on the process indicators examined. All parameters except methane increased with increases in OLR; methane decreased with increased OLR. The OLR and gas production rate (GP) were observed to be linearly correlated.

  3. A comparison of simultaneous plasma, atomic absorption, and iron colorimetric determinations of major and trace constituents in acid mine waters

    USGS Publications Warehouse

    Ball, J.W.; Nordstrom, D.K.

    1994-01-01

    Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of

  4. Effect of trace metals and sulfite oxidation of adipic acid degradation in FGD systems. Final report Dec 81-May 82

    SciTech Connect

    Jarvis, J.B.; Terry, J.C.; Schubert, S.A.; Utley, B.L.

    1982-12-01

    The report gives results of the measurement of the adipic acid degradation rate in a bench-scale flue gas desulfurization (FGD) system, designed to simulate many of the important aspects of full-scale FGD systems. Results show that the adipic acid degradation rate depends on the sulfite oxidation rate, the adipic acid concentration, the presence of manganese in solution, and temperature. The degradation rate is also affected by pH, but only when manganese is present. Adipic acid degradation products identified in the liquid phase include valeric, butyric, propionic, succinic, and glutaric acids. When manganese was present, the predominant degradation products were succinic and glutaric acids. Analysis of solids from the bench scale tests shows large concentrations of coprecipitated adipic acid in low oxidation sulfite solids. By contrast, low quantities of coprecipitated adipic acid were found in high oxidation gypsum solids.

  5. Determination of ultra-trace organic acids in Masson pine (Pinus massoniana L.) by accelerated solvent extraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Shuiliang; Fan, China Q; Wang, Ping

    2015-02-15

    An accelerated solvent extraction (ASE)-solid-phase extraction (SPE)-liquid chromatography with electrospray ionization-tandem mass spectrometry (ASE-SPE-LC-ESI-MS/MS) methodology was developed for the extraction, cleanup and quantification of ultra-trace organic acids in Masson pine (Pinus massoniana L.) tissues. The separation was carried out on a Bio-Rad Aminex HPX-87H sulfonic column with an eluent containing 5 mmol L(-1) H₂SO₄ at a flow rate of 0.5 mL min(-1). A linear ion trap mass spectrometer equipped with electrospray ionization (ESI) source was operated in negative ion mode, and the six organic acids were eluted within 20 min. ASE extraction, SPE cleanup and LC-ESI-MS/MS analysis conditions were optimized to obtain reliable information about plant organic acid composition. Selective reaction monitoring (SRM) was employed for quantitative measurement. Intra-day precisions averaged 6.7%, and inter-day precisions were 2.1-10.7% for organic acid measurements in the pine samples. External standard calibration curves were linear over the range of 16.5-5000 ng L(-1), and detection limits based on a signal-to-noise ratio of three were at 0.5-5.0 ng L(-1). The results obtained showed the sensibility of the method was better than that of previously described HPLC methodology, and had no significant matrix effect. The proposed ASE-SPE-LC-ESI-MS/MS method is sensitive and reliable for the determination of ultra-trace organic acids in plant samples, despite the presence of the particularly complex matrix.

  6. Acrylamide-functionalized graphene micro-solid-phase extraction coupled to high-performance liquid chromatography for the online analysis of trace monoamine acidic metabolites in biological samples.

    PubMed

    Yang, Xiaoting; Hu, Yufei; Li, Gongke; Zhang, Zhuomin

    2015-05-01

    Monoamine acidic metabolites in biological samples are essential biomarkers for the diagnosis of neurological disorders. In this work, acrylamide-functionalized graphene adsorbent was successfully synthesized by a chemical functionalization method and was packed in a homemade polyether ether ketone micro column as a micro-solid-phase extraction unit. This micro-solid-phase extraction unit was directly coupled to high-performance liquid chromatography to form an online system for the separation and analysis of three monoamine acidic metabolites including homovanillic acid, 5-hydroxyindole-3-acetic acid, and 3,4-dihydroxyphenylacetic acid in human urine and plasma. The online system showed high stability, permeability, and adsorption capacity toward target metabolites. The saturated extraction amount of this online system was 213.1, 107.0, and 153.4 ng for homovanillic acid, 5-hydroxyindole-3-acetic acid, and 3,4-dihydroxyphenylacetic acid, respectively. Excellent detection limits were achieved in the range of 0.08-0.25 μg/L with good linearity and reproducibility. It was interesting that three targets in urine and plasma could be actually quantified to be 0.94-3.93 μg/L in plasma and 7.15-19.38 μg/L in urine. Good recoveries were achieved as 84.8-101.4% for urine and 77.8-95.1% for plasma with the intra- and interday relative standard deviations less than 9.3 and 10.3%, respectively. This method shows great potential for online analysis of trace monoamine acidic metabolites in biological samples.

  7. Acid-leachable trace metals in sediments from an industrialized region (Ennore Creek) of Chennai City, SE coast of India: An approach towards regular monitoring

    NASA Astrophysics Data System (ADS)

    Jayaprakash, M.; Jonathan, M. P.; Srinivasalu, S.; Muthuraj, S.; Ram-Mohan, V.; Rajeshwara-Rao, N.

    2008-02-01

    The article presents the results for enrichment of acid-leachable trace metals (ALTMs) from Ennore Creek in north Chennai, a metropolis on the southeast coast of India. ALTMs Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd along with sediment texture, OC and CaCO 3 were analyzed in surface sediments collected during two different seasons, pre-monsoon (PRM) and post-monsoon (POM) seasons to identify and observe the input of trace metals in the creek from various sources in the city limits. The most prominent feature of the ALTMs is the enrichment of Fe, Cr, Cu, Ni, Pb and Zn in the sediments, which is mainly attributed to the intense industrial activities around Chennai, and to the rapid industrialization policies. The ALTMs also indicate their association with the finer fractions, OC and Fe-Mn oxyhydroxides. The enrichment is very well supported by the correlation, grouping and clustering of ALTMs in statistical analysis. The differential behavior of ALTMs in POM season compared to PRM season is possibly due to the excess level of industrial effluents in the channel feeding Ennore Creek. Comparative results of ALTMs with other estuarine regions also indicate that the study area has been enriched with trace metals during the past two decades. The results of the present study suggest the need for a regular monitoring program which will help to improve the quality of Ennore Creek.

  8. Application of gas-liquid chromatography and high-performance liquid chromatography to the analysis of trace amounts of salicylic acid, acetylsalicylic anhydride and acetylsalicylsalicylic acid in aspirin samples and aspirin formulations.

    PubMed

    Ali, S L

    1976-11-03

    The gas-liquid chromatographic (GLC) determination of salicylic acid (SA) in 12 commercial acetylsalicylic acid (aspirin, ASA) samples and 12 ASA formulations is reported. The GLC determination of SA as an impurity in ASA, utilising methylation with methyl iodide in the presence of potassium carbonate, requires a column chromatographic separation of SA prior to derivatization. Trace amounts of SA in ASA have also been determined by high-performance liquid chromatography (HPLC) on a Sil-X-I adsorption column using light petroleum-ethyl acetate-acetic acid as the mobile phase. Acetylsalicylic anhydride (ASN) and acetylsalicylsalicylic acid (ASSA) were determined by HPLC on a reversed-phase C18 column with water-methanol mixtures as the mobile phase. GLC was also applied to the determination of ASN as an impurity in ASA formulations.

  9. Ultra trace determination of fluorobenzoic acids in tap and reservoir water using solid-phase extraction and gas chromatography-mass spectrometry.

    PubMed

    Müller, Karsten; Seubert, Andreas

    2012-10-19

    A method for the ultra trace analysis of 21 fluorobenzoic acids (FBAs) via GC-MS based on solid-phase extraction (SPE) and derivatization with BF3·MeOH is described. All fluorobenzoic acids were enriched and determined simultaneously. Solid-phase extraction on hydrophilic-lipophilic-balanced reversed-phase cartridges containing a poly(divinylbenzene-co-N-vinylpyrrolidone) polymer allowed a 250-fold enrichment of the acids if 100mL sample volume is used with extraction efficiencies between 71% and 94%. The method enables the determination of fluorobenzoic acid methyl esters (FBAMEs) down to the range of 6-44 ng L(-1) combined with a fast and easy sample-preparation (pH-adjusting prior to SPE and derivatization within 24 h at 64 °C directly in the vial). It uses low amounts of chemicals and is adaptable to larger and smaller sample volumes. Simultaneous extraction and determination of 21 fluorinated aromatic acids in reservoir samples with high salinity confirmed the applicability and reproducibility of the method.

  10. Ethanol-based organosolv treatment with trace hydrochloric acid improves the enzymatic digestibility of Japanese cypress (Chamaecyparis obtusa) by exposing nanofibers on the surface.

    PubMed

    Hideno, Akihiro; Kawashima, Ayato; Endo, Takashi; Honda, Katsuhisa; Morita, Masatoshi

    2013-03-01

    The effects of adding trace acids in ethanol based organosolv treatment were investigated to increase the enzymatic digestibility of Japanese cypress. A high glucose yield (60%) in the enzymatic hydrolysis was obtained by treating the sample at 170 °C for 45 min in 50% ethanol liquor containing 0.4% hydrochloric acid. Moreover, the enzymatic digestibility of the treated sample was improved to ∼70% by changing the enzyme from acremonium cellulase to Accellerase1500. Field emission scanning electron microscopy revealed the presence of lignin droplets and partial cellulose nanofibers on the surface of the treated sample. Simultaneous saccharification and fermentation of the treated samples using thermotolerant yeast (Kluyveromyces marxianus NBRC1777) was tested. A high ethanol concentration (22.1 g/L) was achieved using the EtOH50/W50/HCl0.4-treated sample compared with samples from other treatments.

  11. Tin film sensor with on-chip three-electrode configuration for voltammetric determination of trace Tl(I) in strong acidic media.

    PubMed

    Kokkinos, Christos; Economou, Anastasios

    2014-07-01

    The present work describes the trace analysis of Tl(I) in acidic medium (0.05 mol L(-1) nitric acid) by square wave anodic stripping voltammetry (SWASV) at a tin film sensor with novel configuration. This "green" electroanalytical device features on-chip metal film electrodes (a Sn-film working electrode, a Ag-film reference electrode and a Pt-film counter electrode), fabricated by sputtering the respective metals on a silicon chip. The effect of preconcentration time, preconcentration potential and SW stripping parameters on the Tl(I) detection was studied in detail. The limit of detection for Tl(I) was 1.1 μg L(-1), while the % relative standard deviation at the same sensor was 5.2% at the 10 μg L(-1) level. Finally, the sensors were successfully applied to the direct determination of Tl(I) in an acidified certified lake water sample.

  12. Determination of traces of rubidium in high purity cesium chloride by electrothermal atomic absorption spectrometry (ETAAS) using boric acid as a modifier.

    PubMed

    Dash, K; Thangavel, S; Chaurasia, S C; Arunachalam, J

    2007-02-12

    The use of boric acid as a modifier for the determination of trace amount of rubidium in high purity cesium chloride matrix by electrothermal atomic absorption is described. It was found that the negative influence of the chloride matrix could not be eliminated using stabilized temperature platform (STPF) alone. Due to the high dissociation energy (D(0)=427 kJ mol(-1)) of rubidium chloride, it was difficult to dissociate in the gas phase and hence is lost. Elimination of interferences was achieved by the addition of boric acid as a chemical modifier. Diluted cesium chloride samples (5%, m/v) were analyzed applying the standard addition method. The characteristic mass of 24 pg was obtained. The detection limit of the proposed method is around 26 ng g(-1). The developed method was applied to the determination of traces of rubidium in high purity cesium chloride samples. The data obtained by this method were in good agreement with those obtained by other independent method like FAAS.

  13. Comparison of MP AES and ICP-MS for analysis of principal and selected trace elements in nitric acid digests of sunflower (Helianthus annuus).

    PubMed

    Karlsson, Stefan; Sjöberg, Viktor; Ogar, Anna

    2015-04-01

    The use of nitrogen as plasma gas for microwave plasma atomic emission spectroscopy (MP AES) is an interesting development in analytical science since the running cost can be significantly reduced in comparison to the inductively coupled argon plasma. Here, we evaluate the performance of the Agilent 4100 MP AES instrument for the analysis of principal metals (Ca, K, Mg, and Na), lithogenic metals (Al, Fe, and Mn) and selected trace metals (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V, and Zn) in nitric acid plant digests. The digests were prepared by microwave-assisted dissolution of dry plant material from sunflower (Helianthus annuus) in concentrated nitric acid. Comparisons are made with analysis of the same solutions with ICP-MS (Agilent 7500cx) using the octopole reaction system (ORS) in the collision mode for As, Fe, and V. The limits of detection were usually in the low µg L(-1) range and all principal and lithogenic metals were successfully determined with the MP AES and provided almost identical results with the ICP-MS. The same applies for the selected trace metals except for As, Co and Mo where the concentrations were below the detection limit with the MP AES. For successful analysis we recommend that (i) only atom lines are used, (ii) ionization is minimized (e.g. addition of CsNO3) and (iii) the use of internal standards should be considered to resolve spectral interferences.

  14. Photochemistry of biogenic gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1989-01-01

    The relationship between the biosphere and the atmosphere is examined, emphasizing the composition and photochemistry and chemistry of the troposphere and stratosphere. The reactions of oxygen, ozone, and hydroxyl are reviewed and the fate of the biogenic gases ammonia, methane, reduced sulfur species, reduced halogen species, carbon monoxide, nitric oxide, nitrous oxide, nitrogen, and carbon dioxide are described. A list is given of the concentration and sources of the various gases.

  15. El Chichon: Composition of Plume Gases and Particles

    NASA Astrophysics Data System (ADS)

    Phelan Kotra, Janet; Finnegan, David L.; Zoller, William H.; Hart, Mark A.; Moyers, Jarvis L.

    1983-12-01

    Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichon volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. Rates of trace element emission to the atmosphere for each species were estimated by normalization to the simultaneously determined total sulfur emission rate. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (<= 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume.

  16. Biomass burning and the production of greenhouse gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    The present discussion of related aspects of biomass burning describes a technique for estimating the instantaneous emission of trace gases generated by such fires on the basis of satellite imagery, and notes that burning results in significantly enhanced biogenic emissions of N2O, NO, and CH4. Biomass burning therefore has both immediate and long-term impacts on the trace-gas content of the atmosphere. The effects of Kuwait's oil fires, which encompass both combustion gases and particulates, are compared with those of the more general problem.

  17. Seeded optically driven avalanche ionization in molecular and noble gases

    NASA Astrophysics Data System (ADS)

    Polynkin, Pavel; Pasenhow, Bernard; Driscoll, Nicholas; Scheller, Maik; Wright, Ewan M.; Moloney, Jerome V.

    2012-10-01

    We report experimental and numerical results on the dual laser-pulse plasma excitation in molecular and noble gases at atmospheric pressure. Dilute plasma channels generated through filamentation of ultraintense femtosecond laser pulses in air, argon, and helium are densified through the application of multijoule nanosecond heater pulses. Plasma densification in molecular gases is always accompanied by the fragmentation of the plasma channels into discrete bubbles, while in atomic gases, under certain conditions, the densified channels remain smooth and continuous. The densification effect in atomic gases persists through considerably longer delays between the femtosecond and nanosecond pulses compared to that in molecular gases. Using rate equations we trace this difference in the temporal dynamics of densification to the different cooling mechanisms operative in atomic and molecular cases.

  18. Quantitative trace analysis of L-ascorbic acid in human body fluids by on-line combination of capillary isotachophoresis and zone electrophoresis.

    PubMed

    Procházková, A; Krivánková, L; Bocek, P

    1998-02-01

    On-line combination of capillary isotachophoresis and zone electrophoresis performed in two coupled capillaries (ITP-CZE) is used for the trace analysis of L-ascorbic acid in human serum, urine and stomach fluid. At the ITP stage, anionic sample components are separated into individual zones and macrocomponents are detected and driven out of the migration path. In the CZE stage, only a small segment of the sample zones containing L-ascorbic acid is analyzed. High sensitivity of this hyphenated method (limit of detection, 0.09-0.15 mg/L), low sample volume consumption (2 microL), and acceptable reproducibility of the results (relative standard deviation, 8%) in the concentration range 0.1-15 mg/L demonstrate that the method is applicable for the study of the relation between the content of L-ascorbic acid in body fluids and the state of health of a person, in which lower amounts of L-ascorbic acid than the normal levels (i.e., 5.1-15.1 mg/L in human serum and 12.5-26.8 mg/L in urine) are expected. Possible interferences of other components of the body fluids are excluded by good correlation of the results obtained by the ITP-CZE method and a routine colorimetric method.

  19. Trace anion determination in concentrated hydrofluoric acid solutions by two-dimensional ion chromatography I. Matrix elimination by ion-exclusion chromatography.

    PubMed

    Vermeiren, Koen

    2005-08-26

    Since years, ion exclusion chromatography (ICE) has been the standard method to separate strong acid analyte anions from concentrated weak acid matrices such as hydrofluoric acid (HF). In this work, the commercially available IonPac ICE-AS 1 column was used to separate trace levels of chloride, nitrate, sulfate and phosphate from HF solutions at 20% (w/w). The efficiency of the separation was studied in more detail using techniques such as ion chromatography (IC), inductively coupled plasma optical emission spectrometry (ICP-OES) and ICP-mass spectrometry (ICP-MS). For 20% (w/w) HF solutions and at a water carrier flow-rate of 0.50 ml/min, the cut window was set from 8.5 to 14.5 min. Under these conditions, analyte recoveries of better than 90% were obtained for chloride, nitrate and sulfate, but only about 75% for phosphate. The HF rejection efficiency was better than 99.9%. It was found that the ICP techniques, measuring total element levels and not species, yielded significantly higher recoveries for phosphorus and sulfur compared to IC. Evidence will be given that part of the added phosphorus (approximately 15% for an addition of 10 mg PO4/kg) is present as mono-fluorophosphoric acid (H2FPO3). In the case of sulfate, the difference between IC and ICP-MS could be attributed to an important matrix effect from the residual HF concentration.

  20. Determination of trace levels of haloacetic acids and perchlorate in drinking water by ion chromatography with direct injection.

    PubMed

    Liu, Yongjian; Mou, Shifen

    2003-05-16

    Disinfection by products of haloacetic acids and perchlorate pose significant health risks, even at low microg/l levels in drinking water. A new method for the simultaneous determination of nine haloacetic acids (HAAs) and perchlorate as well as some common anions in one run with ion chromatography was developed. The HAAs tested included mono-, di-, trichloroacetic acids, mono, di-, tribromoacetic acids, bromochloroacetic acid, dibromochloroacetic acid, and bromodichloroacetic acid. Two high-capacity anion-exchange columns, a carbonate-selective column and a hydroxide-selective hydrophilic one, were used for the investigation. With the carbonate-selective column, the nine HAAs as well as fluoride, chloride, nitrite, nitrate, phosphate and sulfate could be well separated and determined in one run. With the very hydrophilic column and a gradient elution of sodium hydroxide, methanol and deionized water, the nine HAAs, fluoride, chloride, nitrite, nitrate as well as perchlorate could be simultaneously determined in one run within 34 min. The detection limits for HAAs were between 1.11 and 9.32 microg/l. For perchlorate, it was 0.60 microg/l.

  1. Spatial Patterns and Temperature Predictions of Tuna Fatty Acids: Tracing Essential Nutrients and Changes in Primary Producers.

    PubMed

    Pethybridge, Heidi R; Parrish, Christopher C; Morrongiello, John; Young, Jock W; Farley, Jessica H; Gunasekera, Rasanthi M; Nichols, Peter D

    2015-01-01

    Fatty acids are among the least understood nutrients in marine environments, despite their profile as key energy components of food webs and that they are essential to all life forms. Presented here is a novel approach to predict the spatial-temporal distributions of fatty acids in marine resources using generalized additive mixed models. Fatty acid tracers (FAT) of key primary producers, nutritional condition indices and concentrations of two essential long-chain (≥C20) omega-3 fatty acids (EFA) measured in muscle of albacore tuna, Thunnus alalunga, sampled in the south-west Pacific Ocean were response variables. Predictive variables were: location, time, sea surface temperature (SST) and chlorophyll-a (Chla), and phytoplankton biomass at time of catch and curved fork length. The best model fit for all fatty acid parameters included fish length and SST. The first oceanographic contour maps of EFA and FAT (FATscapes) were produced and demonstrated clear geographical gradients in the study region. Predicted changes in all fatty acid parameters reflected shifts in the size-structure of dominant primary producers. Model projections show that the supply and availability of EFA are likely to be negatively affected by increases in SST especially in temperate waters where a 12% reduction in both total fatty acid content and EFA proportions are predicted. Such changes will have large implications for the availability of energy and associated health benefits to high-order consumers. Results convey new concerns on impacts of projected climate change on fish-derived EFA in marine systems.

  2. The NOMAD Spectrometer Suite on ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Thomas, I. R.; Vandaele, A. C.; Daerden, F.; Drummond, R.; Neefs, E.; Patel, M. R.; López-Moreno, J.-J.; Rodriguez Gomez, J.; Bellucci, G.; NOMAD Team

    2014-07-01

    NOMAD, due to launch in 2016 onboard ExoMars Trace Gas Orbiter, consists of one ultraviolet/visible and two infrared spectrometers. Through solar occultation, limb and nadir observations, it will measure a wide range of trace atmospheric gases.

  3. The role of trace gas flux networks in biogeosciences

    SciTech Connect

    Baldocch, Dennis; Reichstein, Markus; Papale, D.; Koteen, Laurie; Vargas, Rodrigo; Agarwal, D. A.; Cook, Robert B.

    2012-01-01

    Vast networks of meteorological sensors ring the globe, providing continuous measurements of an array of atmospheric state variables such as temperature, humidity, rainfall, and the concentration of carbon dioxide [New etal., 1999; Tans etal., 1996]. These measurements provide input to weather and climate models and are key to detecting trends in climate, greenhouse gases, and air pollution. Yet to understand how and why these atmospheric state variables vary in time and space, biogeoscientists need to know where, when, and at what rates important gases are flowing between the land and the atmosphere. Tracking trace gas fluxes provides information on plant or microbial metabolism and climate-ecosystem interactions. The existence of trace gas flux networks is a relatively new phenomenon, dating back to research in 1984. The first gas flux measurement networks were regional in scope and were designed to track pollutant gases such as sulfur dioxide, ozone, nitric acid, and nitrogen dioxide. Atmospheric observations and model simulations were used to infer the depositional rates of these hazardous chemicals [Fowler etal., 2009; Meyers etal., 1991]. In the late 1990s, two additional trace gas flux measurement networks emerged. One, the United States Trace Gas Network (TRAGNET), was a short-lived effort that measured trace gas emissions from the soil and plants with chambers distributed throughout the country [Ojima etal., 2000]. The other, FLUXNET, was an international endeavor that brought many regional networks together to measure the fluxes of carbon dioxide, water vapor, and sensible heat exchange with the eddy covariance technique [Baldocchi etal., 2001]. FLUXNET, which remains active today, currently includes more than 400 tower sites, dispersed across most of the world's climatic zones and biomes, with sites in North and South America, Europe, Asia, Africa, and Australia. More recently, several specialized networks have emerged, including networks dedicated to

  4. Online Determination of Trace Amounts of Tannic Acid in Colored Tannery Wastewaters by Automatic Reference Flow Injection Analysis

    PubMed Central

    Wei, Liang

    2010-01-01

    A simple, rapid and sensitive method was proposed for online determination of tannic acid in colored tannery wastewater by automatic reference flow injection analysis. Based on the tannic acid reduction phosphotungstic acid to form blue compound in pH 12.38 alkaline solutions, the shade of blue compound is in a linear relation to the content of tannic acid at the point of the maximum absorption peak of 760 nm. The optimal experimental conditions had been obtained. The linear range of the proposed method was between 200 μg L−1 to 80 mg L−1 and the detection limit was 0.58 μg L−1. The relative standard deviation was 3.08% and 2.43% for 500 μg L−1 and 40 mg L−1 of tannic acid standard solution, respectively, (n = 10). The method had been successfully applied to determination of tannic acid in colored tannery wastewaters and the analytical results were satisfactory. PMID:20508812

  5. Spatial Patterns and Temperature Predictions of Tuna Fatty Acids: Tracing Essential Nutrients and Changes in Primary Producers

    PubMed Central

    Pethybridge, Heidi R.; Parrish, Christopher C.; Morrongiello, John; Young, Jock W.; Farley, Jessica H.; Gunasekera, Rasanthi M.; Nichols, Peter D.

    2015-01-01

    Fatty acids are among the least understood nutrients in marine environments, despite their profile as key energy components of food webs and that they are essential to all life forms. Presented here is a novel approach to predict the spatial-temporal distributions of fatty acids in marine resources using generalized additive mixed models. Fatty acid tracers (FAT) of key primary producers, nutritional condition indices and concentrations of two essential long-chain (≥C20) omega-3 fatty acids (EFA) measured in muscle of albacore tuna, Thunnus alalunga, sampled in the south-west Pacific Ocean were response variables. Predictive variables were: location, time, sea surface temperature (SST) and chlorophyll-a (Chla), and phytoplankton biomass at time of catch and curved fork length. The best model fit for all fatty acid parameters included fish length and SST. The first oceanographic contour maps of EFA and FAT (FATscapes) were produced and demonstrated clear geographical gradients in the study region. Predicted changes in all fatty acid parameters reflected shifts in the size-structure of dominant primary producers. Model projections show that the supply and availability of EFA are likely to be negatively affected by increases in SST especially in temperate waters where a 12% reduction in both total fatty acid content and EFA proportions are predicted. Such changes will have large implications for the availability of energy and associated health benefits to high-order consumers. Results convey new concerns on impacts of projected climate change on fish-derived EFA in marine systems. PMID:26135308

  6. Trace-metal leaching from plumbing materials exposed to acidic groundwater in three areas of the coastal plain of New Jersey

    SciTech Connect

    Kish, G.R.; Macy, J.A.; Mueller, R.T.

    1987-01-01

    The US Geological Survey analyzed trace metal concentrations in tap water from domestic wells in newly constructed homes in Berkeley Township, Ocean County and Galloway Township, Atlantic County, N.J. The potable water distribution systems in all of the homes sampled are constructed primarily of copper with lead-based solder points. Home water treatment is used in Berkeley Township but not in Galloway Township. Tap water was collected after the water had been standing in the pipes overnight. In Berkeley, 6 to 11 samples exceeded both the US Environmental Protection Agency's primary drinking water regulation (DWR) for lead and the secondary drinking water regulation (SDWR) for copper. In Galloway, 12 of 14 samples exceeded the DWR for lead and 13 of 14 exceeded the SDWR for copper. After collecting the standing-water samples, the water was left running for 15 minutes and a second sample was collected. None of the running-water samples exceeded the regulations for lead or copper. Available data suggest a correlation between the residence time of soft, acidic groundwater in new home plumbing systems and elevated trace-metal concentrations in drinking water derived from domestic wells within the New Jersey Coastal Plain. 2 figs., 6 tabs.

  7. Trace-metal leaching from plumbing materials exposed to acidic ground water in three areas of the coastal plain of New Jersey

    USGS Publications Warehouse

    Kish, G.R.; Macy, J.A.; Mueller, R.T.

    1987-01-01

    The U.S. Geological Survey analyzed trace metal concentrations in tap water from domestic wells in newly constructed homes in Berkeley Township, Ocean County and Galloway Township, Atlantic County, N. J. The potable water distribution systems in all of the homes sampled are constructed primarily of copper with lead-based solder points. Home water treatment is used in Berkeley Township but not in Galloway Township. Tap water was collected after the water had been standing in the pipes overnight. In Berkeley, 6 to 11 samples exceeded both the U.S. Environmental Protection Agency 's primary drinking water regulation (DWR) for lead (50 microgram/L) and the secondary drinking water regulation (SDWR) for copper (1,000 microgram/L). In Galloway, 12 of 14 samples exceeded the DWR for lead and 13 of 14 exceeded the SDWR for copper. After collecting the standing-water samples, the water was left running for 15 minutes and a second sample was collected. None of the running-water samples exceeded the regulations for lead or copper. Available data suggest a correlation between the residence time of soft, acidic groundwater in new home plumbing systems and elevated trace-metal concentrations in drinking water derived from domestic wells within the New Jersey Coastal Plain. (USGS)

  8. Strongly correlated Bose gases

    NASA Astrophysics Data System (ADS)

    Chevy, F.; Salomon, C.

    2016-10-01

    The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states. We outline differences and similarities with ultracold Fermi gases, discuss recent experiments on the unitary Bose gas, and finally present a few perspectives for future research.

  9. Advanced Global Atmospheric Gases Experiment (AGAGE)

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Kurylo, Michael (Technical Monitor)

    2004-01-01

    We seek funding from NASA for the third year (2005) of the four-year period January 1, 2003 - December 31, 2006 for continued support of the MIT contributions to the multi-national global atmospheric trace species measurement program entitled Advanced Global Atmospheric Gases Experiment (AGAGE). The case for real-time high-frequency measurement networks like AGAGE is very strong and the observations and their interpretation are widely recognized for their importance to ozone depletion and climate change studies and to verification issues arising from the Montreal Protocol (ozone) and Kyoto Protocol (climate). The proposed AGAGE program is distinguished by its capability to measure over the globe at high frequency almost all of the important species in the Montreal Protocol and almost all of the significant non-CO2 gases in the Kyoto Protocol.

  10. The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Driscoll, John N.; Warneck, Peter

    1973-01-01

    Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)

  11. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  12. Analytical evaluation of nebulizers for the introduction of acetic acid extracts aiming at the determination of trace elements by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    de Gois, Jefferson S.; Maranhão, Tatiane de A.; Oliveira, Fernando J. S.; Frescura, Vera L. A.; Curtius, Adilson J.; Borges, Daniel L. G.

    2012-11-01

    Most of the official procedures aiming at classification of solid waste toxicity take into account metal solubility and bioavailability by means of extraction experiments using acetic acid solutions. Hence, the aim of this work was to investigate and optimize conditions to suppress the effect of acetic acid on the determination of trace elements using inductively coupled plasma mass spectrometry. The performance of four nebulizers (cross-flow (CFN), ultrasonic (USN), Meinhard (MN) and MicroMist (MMN)) were compared as to their efficiency in minimizing spectral and non-spectral effects on the determination of Ag, As, Ba, Cd, Cr, Hg, Pb and Se, with the ultimate goal to analyze acetic acid extracts obtained from solid waste residues. Operating conditions (desolvation temperatures for USN, RF power and nebulizer gas flow rates) were optimized individually for each nebulizer and for all analytes maintained in 0.14 mol L- 1 HNO3 solutions and in solutions prepared with acetic acid and acetic acid + NaOH, adjusted to pH 2.88 and 4.93, respectively. Pronounced non-spectral interferences for 75As and 82Se were observed in the presence of acetic acid for CF and MN, although to a less extent also for MMN and USN. Signal increase for blank solutions measured at m/z 208 (208Pb) for CFN and MN, 107 (107Ag) for USN and MN coupled to a cyclonic chamber and, m/z 82 (82Se) for USN was observed, indicating an increased risk of spectral interference upon an increase in the concentration of acetic acid. Signal increase at specific m/z ratios, however, was not significant when the MMN was used, with the exception of m/z 52 (52Cr) in acetic acid solutions, arising from the formation of 40Ar12C+. This same effect was noticed for all nebulizers, although at noticeably different intensities. A signal stability study was performed, demonstrating that variations in the analytical signal were within a 20% range for all analytes, with the exception of Hg, after continuous aspiration for 70 min

  13. Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging

    NASA Astrophysics Data System (ADS)

    Naemat, Abida; Elsheikha, Hany M.; Boitor, Radu A.; Notingher, Ioan

    2016-02-01

    This study investigates the temporal and spatial interchange of the aromatic amino acid phenylalanine (Phe) between human retinal pigment epithelial cell line (ARPE-19) and tachyzoites of the apicomplexan protozoan parasite Toxoplasma gondii (T. gondii). Stable isotope labelling by amino acids in cell culture (SILAC) is combined with Raman micro-spectroscopy to selectively monitor the incorporation of deuterium-labelled Phe into proteins in individual live tachyzoites. Our results show a very rapid uptake of L-Phe(D8) by the intracellular growing parasite. T. gondii tachyzoites are capable of extracting L-Phe(D8) from host cells as soon as it invades the cell. L-Phe(D8) from the host cell completely replaces the L-Phe within T. gondii tachyzoites 7–9 hours after infection. A quantitative model based on Raman spectra allowed an estimation of the exchange rate of Phe as 0.5–1.6 × 104 molecules/s. On the other hand, extracellular tachyzoites were not able to consume L-Phe(D8) after 24 hours of infection. These findings further our understanding of the amino acid trafficking between host cells and this strictly intracellular parasite. In particular, this study highlights new aspects of the metabolism of amino acid Phe operative during the interaction between T. gondii and its host cell.

  14. Tracing the source of cooking oils with an integrated approach of using stable carbon isotope and fatty acid abundance.

    PubMed

    Liu, Weiguo; Yang, Hong; Wang, Zheng; Liu, Jinzhao

    2012-08-15

    We report a new approach to identify swill-cooked oils that are recycled from tainted food and livestock waste from commercial vegetable and animal oils by means of carbon isotope values and relative abundance of fatty acids. We test this method using 40 cooking oil samples of different types with known sources. We found significant differences in both total organic carbon isotope as well as compound-specific isotope values and fatty acid C(14)/C(18) ratios between commercial vegetable oils refined from C(3) plants (from -35.7 to -27.0‰ and from 0 to 0.15) and animal oils (from -28.3 to -14.3‰ and from 0.1 to 0.6). Tested swill-cooked oils, which were generally refined by mixing with animal waste illegally, fall into a narrow δ(13)C/fatty acid ratio distribution: from -25.9 to -24.1‰ and from 0.1 to 0.2. Our data demonstrate that the index of a cross-plotting between fatty acid δ(13)C values and C(14)/C(18) ratios can be used to distinguish clean commercial cooking oils from illegal swill-cooked oils.

  15. Geochemical Modeling of Reactions and Partitioning of Trace Metals and Radionuclides during Titration of Contaminated Acidic Sediments

    SciTech Connect

    Zhang, Fan; Parker, Jack C.; Luo, Wensui; Spalding, Brian Patrick; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2008-01-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This study was undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO{sub 4}{sup 2-} for contaminated sediments indicated close agreement, suggesting that the model could potentially be used to predict the acid-base behavior of the sediment-solution system under variable pH conditions.

  16. Geochemical modeling of reactions and partitioning of trace metals and radionuclides during titration of contaminated acidic sediments.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2008-11-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.

  17. Golf ball-assisted electrospray ionization of mass spectrometry for the determination of trace amino acids in complex samples.

    PubMed

    Li, Yen-Hsien; Chen, Chung-Yu; Kuo, Cheng-Hsiung; Lee, Maw-Rong

    2016-09-28

    During the electrospray ionization (ESI) process, ions move through a heated capillary aperture to be detected on arrival at a mass analyzer. However, the ESI process creates an ion plume, which expands into an ion cloud with an area larger than that of the heated capillary aperture, significantly contributing to an ion loss of 50% due to coulombic repulsion. The use of DC and RF fields to focus ions from the ion source into the vacuum chamber has been proposed in the literature, but the improvement of ion transmission efficiency is limited. To improve ion transmission, in this study we propose a novel method using a home-made golf ball positioned between the ion source and the inlet of the mass analyzer to hydrodynamically focus the ions passing through the golf ball. The ion plume produced by the ESI process passes through the golf ball will reduce the size of the ion cloud then be focused and most of them flowed into the mass analyzer. Therefore, the sensitivity will be improved, the aim of this investigation is to study the enhancing of the signal using golf ball-assisted electrospray ionization liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine 20 trace amino acids in complex samples, including tea, urine and serum. The results showed that the analytical performance of the determination of the 20 amino acids in tea, urine and serum samples using the home-made golf ball-assisted ESI source is better than that of a commercial ESI source. The signal intensities of the 20 amino acids were enhanced by factors of 2-2700, 11-2525, and 31-342680 in oolong tea, urine and serum analyses, respectively. The precision of the proposed method ranged from 1-9%, 0.4-9% and 0.4-8% at low, medium and high concentration levels of amino acids, respectively. The home-made golf ball-assisted ESI source effectively increased the signal intensity and enhanced the ion transmission efficiency and is also an easy, convenient and economical device. This technique can

  18. Global Distribution of Organo-Bromine Gases.

    NASA Astrophysics Data System (ADS)

    Gunawardena, Rohith

    Both man-made and natural trace organo-bromine gases are present in the atmosphere in minute quantities --in the order of a few parts per trillion by volume. The man-made species CBrF_3 and CBrClF _2 are believed to be an important source of bromine to the stratosphere where they act as catalysts in the chlorofluorocarbon-ozone-depletion hypothesis. A high resolution capillary column EC-GC method with and O_2 doped detector was developed, System V, to measure these and related organo -bromine gases in the atmosphere. It was developed from a packed column EC-GC method, System I, that was used to measure CH_3I at sub pptv levels but could measure only one organo-bromine gas, CBrClF _2. The development work to improve upon System I involved testing and matching different types of columns, carrier gases, make-up gases to the detector and detector temperatures to obtain operating conditions with optimum resolution, very high sensitivity and sufficiently stable baseline to measure atmospheric organo-bromine gases. During this development work, nine organo-bromine gases were identified in clean background air. The precision of analysis of each system used was sufficient to determine the distributions and time course behavior of the species studied. During the course of this study, samples collected weekly at 11 remote stations around the world spanning latitudes from 82^circN down to 42^circS were analyzed for these organo-bromine gases. In addition, samples collected for 10 years at Cape Meares - Oregon, Cape Matatula - American Samoa, Cape Grim - Tasmania and at the South Pole during the austral summer months were analyzed for long term trends of CBrF_3 and CBrClF_2 . Significant altitudinal differences, interhemispheric gradients and seasonal cycles were observed for certain gases. Long-term trends were observed for CBrF _3 and CBrClF_2. CBrF _3 showed an exponential increase. From 1979 to 1987, its northern and southern hemispheric concentrations have increased at

  19. Trace elements in atmospheric precipitation at Northern Jordan measured by ICP-MS: acidity and possible sources

    NASA Astrophysics Data System (ADS)

    Al-Momani, I. F.

    Rainwater samples were collected in a rural region in Northern Jordan using 24-h sampling periods from December 1998 to April 2000. All samples were analyzed for major ions (Na +, K +, Ca 2+, H +, Mg 2+, NH 4+, Cl -, NO 3- and SO 42-) and trace metals (Pb, Cd, Zn, Cu, Al, Fe, Mn, Mo, Ni, Sb and V). The majority of the rain samples collected had pH values higher than 5.6. The average pH was 6.4±0.9. High values of pH were attributed to the neutralization by natural alkaline local dusts which contain large fractions of calcite. The annual average SO 42--to-NO 3- ratio is 1.8, which is close to that observed in more polluted regions. Concentrations of measured species were lower than those reported for other rural sites worldwide. Elements of anthropogenic origins (Zn, Pb, As, Sb, Ag and Cd) were highly enriched with respect to crustal composition. Factor analysis permitted the identification of four source groups, namely crustal dust, sea-salt spray, road traffic and combustion and secondary aerosol formation processes.

  20. Separation of chlorogenic acid and concentration of trace caffeic acid from natural products by pH-zone-refining countercurrent chromatography.

    PubMed

    Lu, Yuanyuan; Dong, Genlai; Gu, Yanxiang; Ito, Yoichiro; Wei, Yun

    2013-07-01

    Chlorogenic acid and caffeic acid were selected as test samples for separation by the pH-zone-refining countercurrent chromatography (CCC). The separation of these test samples was performed with a two-phase solvent system composed of methyl-tert-butyl-ether/acetonitrile/water at a volume ratio of 4:1:5 v/v/v where trifluoroacetic acid (TFA; 8 mM) was added to the organic stationary phase as a retainer and NH4 OH (10 mM) to the aqueous mobile phase as an eluter. Chlorogenic acid was successfully separated from Flaveria bidentis (L.) Kuntze (F. bidentis) and Lonicerae Flos by pH-zone-refining CCC, a slightly polar two-phase solvent system composed of methyl-tert-butyl-ether/acetonitrile/n-butanol/water at a volume ratio of 4:1:1:5 v/v/v/v was selected where TFA (3 mM) was added to the organic stationary phase as a retainer and NH4 OH (3 mM) to the aqueous mobile phase as an eluter. A 16.2 mg amount of chlorogenic acid with the purity of 92% from 1.4 g of F. bidentis, and 134 mg of chlorogenic acid at the purity of 99% from 1.3 g of crude extract of Lonicerae Flos have been obtained. These results suggest that pH-zone-refining CCC is suitable for the isolation of the chlorogenic acid from the crude extracts of F. bidentis and Lonicerae Flos.

  1. Decontamination of aquatic vegetable leaves by removing trace toxic metals during pickling process with acetic acid solution.

    PubMed

    Wu, Wenbiao; Yang, Yixing

    2011-01-01

    The heavy-metal content of aquatic plants is mainly dependent upon their ecological system. This study indicated that although the toxic heavy-metal contents could be above the recommended maximum levels depending upon their concentrations in growing water, they can be decontaminated by pickling with 5% acetic acid solution. Almost all Cd, Hg, Ba, or Sb and 99.5% Pb, 96.7% Ag, or 97.1% Al were removed from Water Spinach leaves by soaking in acetic acid solution. For Water-Shield leaves, almost all Cd, Hg, Pb, Ba, or Sb and 95.0% Ag or 96.1% Al were removed. For Watercress leaves, almost all Cd, Hg, Ba, or Sb and 99.0% Pb or 99.7% Ag were removed. For Water Hyacinth leaves, almost all Cd, Ba, or Sb and 99.0% Hg, 98.5% Pb, 95.0% Ag, or 98.7% Al were removed.

  2. Rocket- and aircraft-borne trace gas measurements in the winter polar stratosphere

    NASA Technical Reports Server (NTRS)

    Arnold, F.; Moehler, O.; Pfeilsticker, K.; Ziereis, H.

    1988-01-01

    In January and February 1987 stratospheric rocket- and aircraft-borne trace gas measurements were done in the North Polar region using ACIMS (Active Chemical Ionization Mass Spectrometry) and PACIMS (PAssive Chemical Ionization Mass Spectrometry) instruments. The rocket was launched at ESRANGE (European Sounding Rocket Launching Range) (68 N, 21 E, Northern Sweden) and the twin-jet research aircraft operated by the DFVLR (Deutsche Forschungs- und Versuchs-anstalt fuer Luft- und Raumfahrt), and equipped with a mass spectrometer laboratory was stationed at Kiruna airport. Various stratospheric trace gases were measured including nitric acid, sulfuric acid, non-methane hydrocarbons (acetone, hydrogen cyanide, acetonitrile, methanol etc.), and ambient cluster ions. The experimental data is presented and possible implications for polar stratospheric ozone discussed.

  3. Biological production of ethanol from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, James L.

    2000-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  4. Kinetic catalytic determination of trace Cu(II) in water samples with the thioglycolic/thiolactic acid-chromate reaction.

    PubMed

    Rustoiu-Csavdari, A; Mihai, D; Bâldea, I

    2005-04-01

    The use of two novel similar indicator reactions as applied to the kinetic determination of Cu(II) in water is investigated. The methods rely on the catalytic effect of the analyte on the oxidation of thioglycolic (TGA) and thiolactic (TLA) acids by chromate in acidic media. The extent of the reactions was followed spectrophotometrically at 345 nm. Pseudo-first-order rate coefficients, k(obsd), were determined as a function of catalyst concentration. Interference of Fe(III) and Pb(II) was suppressed by complexation with pyrophosphate. For the reaction of TGA, a linear regression for k(obsd) versus [Cu(II)] was obtained for the entire concentration range considered. Although the plot corresponding to TLA oxidation exhibits a sharp change of slope at approximately 1.8x10(-5) M Cu(II), it can still be described effectively by two linear regressions with different slopes. The reaction of TGA is more sensitive than that of TLA at low Cu(II) concentration. The opposite is true for higher catalyst contents. The detection limits were 65 microg L(-1) for TGA and of 80 microg L(-1) for TLA oxidation, respectively. The relative standard deviations, of 0.4% for TGA and 1.1% for TLA oxidation, respectively, were obtained for five replicate runs at 1000 microg L(-1). Samples of river and wastewater from the mining region of Baia-Mare, Northern Romania were analyzed using the more sensitive reaction of thioglycolic acid. Results were compared to those obtained by the officially standardized methods. Good agreement was obtained, even for an untreated sample. Measurements did not require prior separation of interfering species.

  5. The Perils of Pathogen Discovery: Origin of a Novel Parvovirus-Like Hybrid Genome Traced to Nucleic Acid Extraction Spin Columns

    PubMed Central

    Naccache, Samia N.; Greninger, Alexander L.; Lee, Deanna; Coffey, Lark L.; Phan, Tung; Rein-Weston, Annie; Aronsohn, Andrew; Hackett, John; Delwart, Eric L.

    2013-01-01

    Next-generation sequencing was used for discovery and de novo assembly of a novel, highly divergent DNA virus at the interface between the Parvoviridae and Circoviridae. The virus, provisionally named parvovirus-like hybrid virus (PHV), is nearly identical by sequence to another DNA virus, NIH-CQV, previously detected in Chinese patients with seronegative (non-A-E) hepatitis. Although we initially detected PHV in a wide range of clinical samples, with all strains sharing ∼99% nucleotide and amino acid identity with each other and with NIH-CQV, the exact origin of the virus was eventually traced to contaminated silica-binding spin columns used for nucleic acid extraction. Definitive confirmation of the origin of PHV, and presumably NIH-CQV, was obtained by in-depth analyses of water eluted through contaminated spin columns. Analysis of environmental metagenome libraries detected PHV sequences in coastal marine waters of North America, suggesting that a potential association between PHV and diatoms (algae) that generate the silica matrix used in the spin columns may have resulted in inadvertent viral contamination during manufacture. The confirmation of PHV/NIH-CQV as laboratory reagent contaminants and not bona fide infectious agents of humans underscores the rigorous approach needed to establish the validity of new viral genomes discovered by next-generation sequencing. PMID:24027301

  6. The perils of pathogen discovery: origin of a novel parvovirus-like hybrid genome traced to nucleic acid extraction spin columns.

    PubMed

    Naccache, Samia N; Greninger, Alexander L; Lee, Deanna; Coffey, Lark L; Phan, Tung; Rein-Weston, Annie; Aronsohn, Andrew; Hackett, John; Delwart, Eric L; Chiu, Charles Y

    2013-11-01

    Next-generation sequencing was used for discovery and de novo assembly of a novel, highly divergent DNA virus at the interface between the Parvoviridae and Circoviridae. The virus, provisionally named parvovirus-like hybrid virus (PHV), is nearly identical by sequence to another DNA virus, NIH-CQV, previously detected in Chinese patients with seronegative (non-A-E) hepatitis. Although we initially detected PHV in a wide range of clinical samples, with all strains sharing ∼99% nucleotide and amino acid identity with each other and with NIH-CQV, the exact origin of the virus was eventually traced to contaminated silica-binding spin columns used for nucleic acid extraction. Definitive confirmation of the origin of PHV, and presumably NIH-CQV, was obtained by in-depth analyses of water eluted through contaminated spin columns. Analysis of environmental metagenome libraries detected PHV sequences in coastal marine waters of North America, suggesting that a potential association between PHV and diatoms (algae) that generate the silica matrix used in the spin columns may have resulted in inadvertent viral contamination during manufacture. The confirmation of PHV/NIH-CQV as laboratory reagent contaminants