Science.gov

Sample records for acidic uranium mill

  1. Laboratory evaluation of limestone and lime neutralization of acidic uranium mill tailings solution. Progress report

    SciTech Connect

    Opitz, B.E.; Dodson, M.E.; Serne, R.J.

    1984-02-01

    Experiments were conducted to evaluate a two-step neutralization scheme for treatment of acidic uranium mill tailings solutions. Tailings solutions from the Lucky Mc Mill and Exxon Highland Mill, both in Wyoming, were neutralized with limestone, CaCO/sub 3/, to an intermediate pH of 4.0 or 5.0, followed by lime, Ca(OH)/sub 2/, neutralization to pH 7.3. The combination limestone/lime treatment methods, CaCO/sub 3/ neutralization to pH 4 followed by neutralization with Ca(OH)/sub 2/ to pH 7.3 resulted in the highest quality effluent solution with respect to EPA's water quality guidelines. The combination method is the most cost-effective treatment procedure tested in our studies. Neutralization experiments to evaluate the optimum solution pH for contaminant removal were performed on the same two tailings solutions using only lime Ca(OH)/sub 2/ as the neutralizing agent. The data indicate solution neutralization above pH 7.3 does not significantly increase removal of pH dependent contaminants from solution. Column leaching experiments were performed on the neutralized sludge material (the precipitated solid material which forms as the acidic tailings solutions are neutralized to pH 4 or above). The sludges were contacted with laboratory prepared synthetic ground water until several effluent pore volumes were collected. Effluent solutions were analyzed for macro ions, trace metals and radionuclides in an effort to evaluate the long term effectiveness of attenuating contaminants in sludges formed during solution neutralization. Neutralized sludge leaching experiments indicate that Ca, Na, Mg, Se, Cl, and SO/sub 4/ are the only constituents which show solution concentrations significantly higher than the synthetic ground water in the early pore volumes of long-term leaching studies.

  2. Uranium mill tailings and radon

    SciTech Connect

    Hanchey, L A

    1981-04-01

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the United States may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.

  3. Uranium mill tailings and radon

    SciTech Connect

    Hanchey, L A

    1981-01-01

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.

  4. Intense alpha-particle emitting crystallites in uranium mill wastes

    USGS Publications Warehouse

    Landa, E.R.; Stieff, L.R.; Germani, M.S.; Tanner, A.B.; Evans, J.R.

    1994-01-01

    Nuclear emulsion microscopy has demonstrated the presence of small, intense ??-particle emitting crystallites in laboratory-produced tailings derived from the sulfuric acid milling of uranium ores. The ??-particle activity is associated with the isotope pair 210Pb 210Po, and the host mineral appears to be PbSO4 occurring as inclusions in gypsum laths. These particles represent potential inhalation hazards at uranium mill tailings disposal areas. ?? 1994.

  5. Innovative Approach to Prevent Acid Drainage from Uranium Mill Tailings Based on the Application of Na-Ferrate (VI)

    SciTech Connect

    Fernandes, H.M.; Reinhart, D.; Lettie, L.; Franklin, M.R.; Fernandes, H.M.; Franklin, M.R.; Daly, L.J.

    2006-07-01

    The operation of uranium mining and milling plants gives rise to huge amounts of wastes from both mining and milling operations. When pyrite is present in these materials, the generation of acid drainage can take place and result in the contamination of underground and surface waters through the leaching of heavy metals and radionuclides. To solve this problem, many studies have been conducted to find cost-effective solutions to manage acid mine drainage; however, no adequate strategy to deal with sulfide-ric h wastes is currently available. Ferrate (VI) is a powerful oxidizing agent in aqueous media. Under acidic conditions, the redox potential of the Ferrate (VI) ion is the highest of any other oxidant used in wastewater treatment processes. The standard half cell reduction potential of ferrate (VI) has been determined as +2.20 V to + 0.72 V in acidic and basic solutions, respectively. Ferrate (VI) exhibits a multitude of advantageous properties, including higher reactivity and selectivity than traditional oxidant alternatives, as well as disinfectant, flocculating, and coagulant properties. Despite numerous beneficial properties in environmental applications, ferrate (VI) has remained commercially unavailable. Starting in 1953, different methods for producing a high purity, powdered ferrate (VI) product were developed. However, producing this dry, stabilized ferrate (VI) product required numerous process steps which led to excessive synthesis costs (over $20/lb) thereby preventing bulk industrial use. Recently a novel synthesis method for the production of a liquid ferrate (VI) based on hypochlorite oxidation of ferric ion in strongly alkaline solutions has been discovered (USPTO 6,790,428; September 14, 2004). This on-site synthesis process dramatically reduces manufacturing cost for the production of ferrate (VI) by utilizing common commodity feedstocks. This breakthrough means that for the first time ferrate (VI) can be an economical alternative to treating

  6. Uranium mill ore dust characterization

    SciTech Connect

    Knuth, R.H.; George, A.C.

    1980-11-01

    Cascade impactor and general air ore dust measurements were taken in a uranium processing mill in order to characterize the airborne activity, the degree of equilibrium, the particle size distribution and the respirable fraction for the /sup 238/U chain nuclides. The sampling locations were selected to limit the possibility of cross contamination by airborne dusts originating in different process areas of the mill. The reliability of the modified impactor and measurement techniques was ascertained by duplicate sampling. The results reveal no significant deviation from secular equilibrium in both airborne and bulk ore samples for the /sup 234/U and /sup 230/Th nuclides. In total airborne dust measurements, the /sup 226/Ra and /sup 210/Pb nuclides were found to be depleted by 20 and 25%, respectively. Bulk ore samples showed depletions of 10% for the /sup 226/Ra and /sup 210/Pb nuclides. Impactor samples show disequilibrium of /sup 226/Ra as high as +-50% for different size fractions. In these samples the /sup 226/Ra ratio was generally found to increase as particle size decreased. Activity median aerodynamic diameters of the airborne dusts ranged from 5 to 30 ..mu..m with a median diameter of 11 ..mu..m. The maximum respirable fraction for the ore dusts, based on the proposed International Commission on Radiological Protection's (ICRP) definition of pulmonary deposition, was < 15% of the total airborne concentration. Ore dust parameters calculated for impactor duplicate samples were found to be in excellent agreement.

  7. Uranium mill tailings quarterly report, January-March 1982

    SciTech Connect

    Latkovich, J.M.

    1982-05-01

    Progress is reported on: radon barrier systems for uranium mill tailings; liner evaluation for uranium mill tailings; revegetation/rock cover for stabilization of inactive U-tailings sites; and application of long-term chemical biobarriers for uranium tailings.

  8. Radiological health aspects of uranium milling

    SciTech Connect

    Fisher, D.R.; Stoetzel, G.A.

    1983-05-01

    This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.

  9. MILDOS uranium milling dose assessment code update.

    SciTech Connect

    LePoire, D. J.; Arnish, J. J.; Chen, S. Y.; Faillace, E. R.; Yuan, Y. C.; Schmidt, D. W.; Environmental Assessment; Washington Group International; NRC

    2001-11-01

    The MILDOS-AREA code was developed to estimate radiological doses and risks from uranium milling activities. The code has been used for demonstrating radiological compliance regarding the U.S. Nuclear Regulatory Commission's licensing requirements for uranium milling activities. The code was recently updated with an enhanced software package to address the following four areas: regulatory changes, in-situ leaching extraction technologies, software user interfaces, and software distribution technologies via the internet. Users can now specify in-situ leaching processes through a Windows object-based Geographic information System interface with incorporated updated regulation methodologies. The code and documentation are freely distributed through the Internet.

  10. Leaching of 226Ra from components of uranium mill tailings

    USGS Publications Warehouse

    Landa, E.R.

    1991-01-01

    A sequential extraction procedure was used to characterize the geochemical forms of 226Ra retained by mixtures of quartz sand and a variety of fine-grained rock and mineral species. These mixtures had previously been exposed to the sulfuric acid milling liquor of a simulated acid-leach uranium milling circuit. For most test cases, the major fraction of the 226Ra was extracted with 1 mol/1 NH4Cl and was deemed to be exchangeable. However, 226Ra retained by the barite-containing mixture was resistant to both 1 mol/1 NH4Cl and 1 mol/HCHCl extraction. ?? 1991.

  11. Domestic uranium mining and milling

    SciTech Connect

    Not Available

    1983-01-01

    A field hearing was held in Riverton, Wyoming on the erosion of the state's uranium industry as production and capital investment have declined and inventories have continued to rise because of a shift to foreign suppliers. The result has been serious unemployment in Wyoming and a decline in uranium mines from 5400 in 1980 to the present 1200. The seven witnesses spoke for the mining industry and state and federal government. Among the issues raised were mining regulations and the cancellation of nuclear rejects which have impacted the health of the industry. Additional statements and a report supplied for the record follow their testimony. (DCK)

  12. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect

    Not Available

    1994-09-01

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  13. Engineering assessment of inactive uranium mill tailings

    SciTech Connect

    Not Available

    1981-07-01

    The Grand Junction site has been reevaluated in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost estimated to be about $41,900,000. Three principal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive.

  14. Systematic evaluation of satellite remote sensing for identifying uranium mines and mills.

    SciTech Connect

    Blair, Dianna Sue; Stork, Christopher Lyle; Smartt, Heidi Anne; Smith, Jody Lynn

    2006-01-01

    In this report, we systematically evaluate the ability of current-generation, satellite-based spectroscopic sensors to distinguish uranium mines and mills from other mineral mining and milling operations. We perform this systematic evaluation by (1) outlining the remote, spectroscopic signal generation process, (2) documenting the capabilities of current commercial satellite systems, (3) systematically comparing the uranium mining and milling process to other mineral mining and milling operations, and (4) identifying the most promising observables associated with uranium mining and milling that can be identified using satellite remote sensing. The Ranger uranium mine and mill in Australia serves as a case study where we apply and test the techniques developed in this systematic analysis. Based on literature research of mineral mining and milling practices, we develop a decision tree which utilizes the information contained in one or more observables to determine whether uranium is possibly being mined and/or milled at a given site. Promising observables associated with uranium mining and milling at the Ranger site included in the decision tree are uranium ore, sulfur, the uranium pregnant leach liquor, ammonia, and uranyl compounds and sulfate ion disposed of in the tailings pond. Based on the size, concentration, and spectral characteristics of these promising observables, we then determine whether these observables can be identified using current commercial satellite systems, namely Hyperion, ASTER, and Quickbird. We conclude that the only promising observables at Ranger that can be uniquely identified using a current commercial satellite system (notably Hyperion) are magnesium chlorite in the open pit mine and the sulfur stockpile. Based on the identified magnesium chlorite and sulfur observables, the decision tree narrows the possible mineral candidates at Ranger to uranium, copper, zinc, manganese, vanadium, the rare earths, and phosphorus, all of which are

  15. Grouting of uranium mill tailings piles

    SciTech Connect

    Boegly, W.J. Jr.; Tamura, T.; Williams, J.D.

    1984-03-01

    A program of remedial action was initiated for a number of inactive uranium mill tailings piles. These piles result from mining and processing of uranium ores to meet the nation's defense and nuclear power needs and represent a potential hazard to health and the environment. Possible remedial actions include the application of covers to reduce radon emissions and airborne transport of the tailings, liners to prevent groundwater contamination by leachates from the piles, physical or chemical stabilization of the tailings, or moving the piles to remote locations. Conventional installation of liners would require excavation of the piles to emplace the liner; however, utilization of grouting techniques, such as those used in civil engineering to stabilize soils, might be a potential method of producing a liner without excavation. Laboratory studies on groutability of uranium mill tailings were conducted using samples from three abandoned piles and employing a number of particulate and chemical grouts. These studies indicate that it is possible to alter the permeability of the tailings from ambient values of 10/sup -3/ cm/s to values approaching 10/sup -7/ cm/s using silicate grouts and to 10/sup -8/ cm/s using acrylamide and acrylate grouts. An evaluation of grouting techniques, equipment required, and costs associated with grouting were also conducted and are presented. 10 references, 1 table.

  16. Monitoring of Uranium Mining and Milling Operations

    SciTech Connect

    Curtis, Michael M.

    2004-12-01

    The International Atomic Energy Agency's Additional Protocol has engendered the monitoring of past and present uranium mining and milling operations by the IAEA. This activity requires tools, instruments, and expertise unfamiliar to Agency safeguards inspectors, but methods and instruments for effecting such monitoring are currently being employed by geologists, geophysicists, mining engineers, environmental officials, and archaeologists. Remote sensing in the form of photography, radar imagery, and gamma ray spectroscopy complements field data by disclosing prior mine-related activities or the magnitude of present ones, including: surveying pit volumes, mapping the spatial distribution of mine tailings over time, identifying soil and mineral disparities, and revealing biophysical data.

  17. Geochemical hosts of solubilized radionuclides in uranium mill tailings

    USGS Publications Warehouse

    Landa, E.R.; Bush, C.A.

    1990-01-01

    The solubilization and subsequent resorption of radionuclides by ore components or by reaction products during the milling of uranium ores may have both economic and environmental consequences. Particle-size redistribution of radium during milling has been demonstrated by previous investigators; however, the identification of sorbing components in the tailings has received little experimental attention. In this study, uranium-bearing sandstone ore was milled, on a laboratory scale, with sulfuric acid. At regular intervals, filtrate from this suspension was placed in contact with mixtures of quartz sand and various potential sorbents which occur as gangue in uranium ores; the potential sorbents included clay minerals, iron and aluminum oxides, feldspar, fluorspar, barite, jarosite, coal, and volcanic glass. After equilibration, the quartz sand-sorbent mixtures were separated from the filtrate and radioassayed by gamma-spectrometry to determine the quantities of 238U, 230Th, 226Ra, and 210Pb sorbed, and the radon emanation coefficients. Sorption of 238U was low in all cases, with maximal sorptions of 1-2% by the bentonite- and coal-bearing samples. 230Th sorption also was generally less than 1%; maximal sorption here was observed in the fluorspar-bearing sample and appears to be associated with the formation of gypsum during milling. 226Ra and 210 Pb generally showed higher sorption than the other nuclides - more than 60% of the 26Ra solubilized from the ore was sorbed on the barite-bearing sample. The mechanism (s) for this sorption by a wide variety of substrates is not yet understood. Radon emanation coefficients of the samples ranged from about 5 to 30%, with the coal-bearing samples clearly demonstrating an emanating power higher than any of the other materials. ?? 1990.

  18. Uranium mill tailings neutralization: contaminant complexation and tailings leaching studies

    SciTech Connect

    Opitz, B.E.; Dodson, M.E.; Serne, R.J.

    1985-05-01

    Laboratory experiments were performed to compare the effectiveness of limestone (CaCO/sub 3/) and hydrated lime (Ca(OH)/sub 2/) for improving waste water quality through the neutralization of acidic uranium mill tailings liquor. The experiments were designed to also assess the effects of three proposed mechanisms - carbonate complexation, elevated pH, and colloidal particle adsorption - on the solubility of toxic contaminants found in a typical uranium mill waste solution. Of special interest were the effects each of these possible mechanisms had on the solution concentrations of trace metals such as Cd, Co, Mo, Zn, and U after neutralization. Results indicated that the neutralization of acidic tailings to a pH of 7.3 using hydrated lime provided the highest overall waste water quality. Both the presence of a carbonate source or elevating solution pH beyond pH = 7.3 resulted in a lowering of previously achieved water quality, while adsorption of contaminants onto colloidal particles was not found to affect the solution concentration of any constituent investigated. 24 refs., 8 figs., 19 tabs.

  19. Thermal stabilization of uranium mill tailings

    SciTech Connect

    Dreesen, D.R.; Williams, J.M.; Cokal, E.J.

    1981-01-01

    The sintering of tailings at high temperatures (1200/sup 0/C) has shown promise as a conditioning approach that greatly reduces the /sup 222/Rn emanation of uranium mill tailings. The structure of thermally stabilized tailings has been appreciably altered producing a material that will have minimal management requirements and will be applicable to on-site processing and disposal. The mineralogy of untreated tailings is presented to define the structure of the original materials. Quartz predominates in most tailings samples; however, appreciable quantities of gypsum, clay, illite, or albites are found in some tailings. Samples from the Durango and Shiprock sites have plagioclase-type aluminosilicates and non-aluminum silicates as major components. The iron-rich vanadium tailings from the Salt Lake City site contain appreciable quantities of ..cap alpha..-hematite and chloroapatite. The reduction in radon emanation power and changes in mineralogy as a function of sintering temperature (500 to 1200(NiAsS) are considered possible species for consideraed. The calculated activity data of the various carbonate, sulfate and hydroxide species in the Li/sup +/Na/sup +/K/sup +//CO/sub 3/ = SO/sub 4/ = OH/sup -/ system have been combined f liquidus surfaces, and estimated error limits are given for each system. A comng payback period, but as the initial cost of the SAHPS is reduced and fuel prices increase, the payback period of a SAHPS will be shorter and could be competitive with other conventional heating/cooling systems.

  20. Mobilization of radionuclides from uranium mill tailings and related waste materials in anaerobic environments

    USGS Publications Warehouse

    Landa, E.R.

    2003-01-01

    Specific extraction studies in our laboratory have shown that iron and manganese oxide- and alkaline earth sulfate minerals are important hosts of radium in uranium mill tailings. Iron- and sulfate-reducing bacteria may enhance the release of radium (and its analog barium) from uranium mill tailings, oil field pipe scale [a major technologically enhanced naturally occurring radioactive material (TENORM) waste], and jarosite (a common mineral in sulfuric acid processed-tailings). These research findings are reviewed and discussed in the context of nuclear waste forms (such as barium sulfate matrices), radioactive waste management practices, and geochemical environments in the Earth's surficial and shallow subsurface regions.

  1. Uranium Mill Tailings Remedial Action 1993 Roadmap

    SciTech Connect

    Not Available

    1993-10-18

    The 1993 Roadmap for the Uranium Mill Tailings Remedial Action (UMTRA) Project office is a tool to assess and resolve issues. The US Department of Energy (DOE) UMTRA Project Office uses the nine-step roadmapping process as a basis for Surface and Groundwater Project planning. This is the second year the Roadmap document has been used to identify key issues and assumptions, develop logic diagrams, and outline milestones. This document is a key element of the DOE planning process. A multi-interest group used the nine-step process to focus on issues, root cause analysis and resolutions. This core group updated and incorporated comments on the basic assumptions, then used these assumptions to identify issues. The list of assumptions was categorized into the following areas: institutional, regulatory compliance, project management, human resource requirements, and other site-specific assumptions. The group identified 10 issues in the analysis phase. All of the issues are ranked according to importance. The number one issue from the 1992 Roadmap, ``Lack of sufficient human resources,`` remained the number one issue in 1993. The issues and their ranking are as follows: Lack of sufficient human resources; increasing regulatory requirements; unresolved groundwater issues; extension of UMTRCA through September 30, 1998; lack of post-UMTRA and post-cell closure policies; unpredictable amounts and timing of Federal funding; lack of regulatory compliance agreements; problem with states providing their share of remedial action costs; different interests and priorities among participants; and technology development/transfer. The issues are outlined and analyzed in detail in Section 8.0, with a schedule for resolution of these issues in Section 9.0.

  2. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    SciTech Connect

    Not Available

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  3. Accelerated aging tests of liners for uranium mill tailings disposal

    SciTech Connect

    Barnes, S.M.; Buelt, J.L.; Hale, V.Q.

    1981-11-01

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing.

  4. Characterization of surface soils at a former uranium mill.

    PubMed

    Johnson, J A; Meyer, H R; Vidyasagar, M

    2006-02-01

    Dawn Mining Company operated a uranium mill in Stevens County, Washington, from 1957 to 1982, to process ore from the Midnite Mine, and from 1992 through 2000, to extract uranium from mine water treatment sludge. The mill was permanently shut down in 2001 when the Dawn Mining Company radioactive materials license was amended to allow direct disposal of water treatment sludge to a tailings disposal area at the mill. The mill building was demolished in 2003. Site soil characterization took place in 2004. Soil cleanup is ongoing. Contaminated soils on the site were characterized using a GPS-based gamma scanning system. A correlation between shielded gamma exposure rate and concentration of Ra in surface soils was developed. Subsurface soils were sampled using backhoe trenches. This system proved efficient and accurate in guiding development of the remedial action planning for the site and subsequent soil cleanup. PMID:16404186

  5. Uranium Mill Tailings Remedial Action (UMTRA) Project. [UMTRA project

    SciTech Connect

    Not Available

    1989-09-01

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, hereinafter referred to as the Act.'' Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial action at designated inactive uranium processing sites (Attachment 1 and 2) and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing site. The purpose of the remedial actions is to stabilize and control such uranium mill tailings and other residual radioactive materials in a safe and environmentally sound manner to minimize radiation health hazards to the public. The principal health hazards and environmental concerns are: the inhalation of air particulates contaminated as a result of the emanation of radon from the tailings piles and the subsequent decay of radon daughters; and the contamination of surface and groundwaters with radionuclides or other chemically toxic materials. This UMTRA Project Plan identifies the mission and objectives of the project, outlines the technical and managerial approach for achieving them, and summarizes the performance, cost, and schedule baselines which have been established to guide operational activity. Estimated cost increases by 15 percent, or if the schedule slips by six months. 4 refs.

  6. Transportation of the MOAB Uranium Mill Tailings to White Mesa Mill by Slurry Pipeline

    SciTech Connect

    Hochstein, R. F.; Warner, R.; Wetz, T. V.

    2003-02-26

    The Moab uranium mill tailings pile, located at the former Atlas Minerals Corporation site approximately three miles north of Moab, Utah, is now under the control of the US Department of Energy (''DOE''). The location of the tailings pile adjacent to the Colorado River, and the ongoing contamination of groundwater and seepage of pollutants into the river, have lead to the investigation, as part of the final site remediation program, of alternatives to relocate the tailings to a qualified permanent disposal site. This paper will describe the approach being taken by the team formed between International Uranium (USA) Corporation (''IUC'') and Washington Group International (''WGINT'') to develop an innovative technical proposal to relocate the Moab tailings to IUC's White Mesa Mill south of Blanding, Utah. The proposed approach for relocating the tailings involves using a slurry pipeline to transport the tailings to the White Mesa Mill. The White Mesa Mill is a fully licensed, active uranium mill site that is uniquely suited for permanent disposal of the Moab tailings. The tailings slurry would be dewatered at the White Mesa Mill, the slurry water would be recycled to the Moab site for reuse in slurry makeup, and the ''dry'' tailings would be permanently disposed of in an approved below grade cell at the mill site.

  7. ASSESSMENT OF ENVIRONMENTAL ASPECTS OF URANIUM MINING AND MILLING

    EPA Science Inventory

    This research program was initiated with the basic objective of making a preliminary assessment of the potential environmental impacts associated with the mining and milling of domestic uranium ores. All forms of pollution except radiation were considered. The program included a ...

  8. Environmental impact of uranium mining and milling: an American view

    SciTech Connect

    Momeni, M.H.

    1981-08-18

    The radiation dose rates to man from uranium milling activities are discussed. The sources of radiation, the radioisotopes involved, and the environmental exposure pathways are described. Risks of cancer to exposed individuals are presented and recommendations made for mitigation of contamination. (ACR)

  9. Uranium mill tailings and risk estimation

    SciTech Connect

    Marks, S.

    1984-04-01

    Work done in estimating projected health effects for persons exposed to mill tailings at vicinity properties is described. The effect of the reassessment of exposures at Hiroshima and Nagasaki on the risk estimates for gamma radiation is discussed. A presentation of current results in the epidemiological study of Hanford workers is included. 2 references. (ACR)

  10. Geochemical modeling of uranium mill tailings: a case study

    SciTech Connect

    Peterson, S.R.; Felmy, A.R.; Serne, R.J.; Gee, G.W.

    1983-08-01

    Liner failure was not found to be a problem when various acidic tailings solutions leached through liner materials for periods up to 3 y. On the contrary, materials that contained over 30% clay showed a decrease in permeability with time in the laboratory columns. The decreases in permeability noted above are attributed to pore plugging resulting from the precipitation of minerals and solids. This precipitation takes place due to the increase in pH of the tailings solution brought about by the buffering capacity of the soil. Geochemical modeling predicts, and x-ray characterization confirms, that precipitation of solids from solution is occurring in the acidic tailings solution/liner interactions studied. X-ray diffraction identified gypsum and alunite group minerals, such as jarosite, as having precipitated after acidic tailings solutions reacted with clay liners. The geochemical modeling and experimental work described above were used to construct an equilibrium conceptual model consisting of minerals and solid phases. This model was developed to represent a soil column. A computer program was used as a tool to solve the system of mathematical equations imposed by the conceptual chemical model. The combined conceptual model and computer program were used to predict aqueous phase compositions of effluent solutions from permeability cells packed with geologic materials and percolated with uranium mill tailings solutions. An initial conclusion drawn from these studies is that the laboratory experiments and geochemical modeling predictions were capable of simulating field observations. The same mineralogical changes and contaminant reductions observed in the laboratory studies were found at a drained evaporation pond (Lucky Mc in Wyoming) with a 10-year history of acid attack. 24 references, 5 figures 5 tables.

  11. Asphalt emulsion sealing of uranium mill tailings. 1979 annual report

    SciTech Connect

    Hartley, J.N.; Koehmstedt, P.L.; Esterl, D.J.; Freeman, H.D.

    1980-06-01

    Uranium mill tailings are a source of low-level radiation and radioactive materials that may be released into the environment. Stabilization or disposal of these tailings in a safe and environmentally sound way is necessary to minimize radon exhalation and other radioactive releases. One of the most promising concepts for stabilizing uranium tailings is being investigated at the Pacific Northwest Laboratory: the use of asphalt emulsion to contain radon and other potentially hazardous materials in uranium tailings. Results of these studies indicate that radon flux from uranium tailings can be reduced by greater than 99% by covering the tailings with an asphalt emulsion that is poured on or sprayed on (3.0 to 7.0 mm thick), or mixed with some of the tailings and compacted to form an admixture seal (2.5 to 15.2 cm) containing 18 wt % residual asphalt.

  12. Review of fugitive dust control for uranium mill tailings

    SciTech Connect

    Li, C.T.; Elmore, M.R.; Hartley, J.N.

    1983-01-01

    An immediate concern associated with the disposal of uranium mill tailings is that wind erosion of the tailings from an impoundment area will subsequently deposit tailings on surrounding areas. Pacific Northwest Laboratory (PNL), under contract to the U.S. Nuclear Regulatory Commission, is investigating the current technology for fugitive dust control. Different methods of fugitive dust control, including chemical, physical, and vegetative, have been used or tested on mill tailings piles. This report presents the results of a literature review and discussions with manufacturers and users of available stabilization materials and techniques.

  13. From rum jungle to Wismut-reducing the environmental impact of uranium mining and milling

    SciTech Connect

    Zuk, W.M.; Jeffree, R.A.; Levins, D.M.

    1994-12-31

    Australia has a long history of uranium mining. In the early days, little attention was given to environmental matters and considerable pollution occurred. Ansto has been involved in rehabilitation of a number of the early uranium mining sites, from Rum Jungle in Australia`s Northern Territory to Wismut in Germany, and is working with current producers to minimise the environmental impact of their operations. Ansto`s expertise is extensive and includes, inter alia, amelioration of acid mine drainage, radon measurement and control, treatment of mill wastes, management of tailings, monitoring of seepage plumes, mathematical modelling of pollutant transport and biological impacts in a tropical environment.

  14. Ecological aspects of microorganisms inhabiting uranium mill tailings

    USGS Publications Warehouse

    Miller, C.L.; Landa, E.R.; Updegraff, D.M.

    1987-01-01

    Numbers and types of microorganisms in uranium mill tailings were determined using culturing techniques. Arthrobacter were found to be the predominant microorganism inhabiting the sandy tailings, whereas Bacillus and fungi predominated in the slime tailings. Sulfate-reducing bacteria, capable of leaching radium, were isolated in low numbers from tailings samples but were isolated in significantly high numbers from topsoil in contact with the tailings. The results are placed in the context of the magnitude of uranium mill tailings in the United States, the hazards posed by the tailings, and how such hazards could be enhanced or diminished by microbial activities. Patterns in the composition of the microbial population are evaluated with respect to the ecological variables that influence microbial growth. ?? 1987 Springer-Verlag New York Inc.

  15. Sandia's activities in uranium mill tailings remedial action

    SciTech Connect

    Neuhauser, S.

    1980-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978 requires that remedial action be taken at over 20 inactive uranium mill tailings sites in the United States. Standards promulgated by the EPA under this act are to be the operative standards for this activity. Proposed standards must still undergo internal review, public comment, and receive Nuclear Regulatory Commission concurrence before being finalized. Briefly reviewed, the standards deal separately with new disposal sites (Part A) and cleanup of soil and contaminated structures at existing locations (Part B). In several cases, the present sites are felt to be too close to human habitations or to be otherwise unacceptably located. These tailings will probably be relocated. New disposal sites for relocated tailings must satisfy certain standards. The salient features of these standards are summarized.

  16. Uranium mill tailings remedial action project real estate management plan

    SciTech Connect

    Not Available

    1994-09-01

    This plan summarizes the real estate requirements of the US Department of Energy`s (DOE) Uranium Mill Tailings Action (UMTRA) Project, identifies the roles and responsibilities of project participants involved in real estate activities, and describes the approaches used for completing these requirements. This document is intended to serve as a practical guide for all project participants. It is intended to be consistent with all formal agreements, but if a conflict is identified, the formal agreements will take precedence.

  17. Computational modelling of final covers for uranium mill tailings impoundments.

    PubMed

    Leoni, Guilherme Luís Menegassi; Almeida, Márcio de Souza Soares; Fernandes, Horst Monken

    2004-07-01

    To properly design a final cover for uranium mill tailings impoundments the designer must attempt to find an effective geotechnical solution which addresses the radiological and non-radiological potential impact and prevents geochemical processes from occurring within the tailings. This paper presents a computer-based method for evaluating the performance of engineered final covers for the remediation of uranium mill tailings impoundments. Three hypothetical final covers were taken from scientific literature to investigate the proposed method: (i) a compacted clay liner (CCL); (ii) a composite liner (CL) and (iii) a capillary barrier (CB). The processes investigated: (i) the saturated hydraulic flux; (ii) the unsaturated hydraulic flux (exclusively for the capillary barrier) and (iii) the radon exhalation to the atmosphere. The computer programs utilised for the analyses are: (i) Hydrologic Evaluation of Landfill Performance (HELP); (ii) SEEP/W and (iii) RADON. The site considered for the development of the research presented herein was the uranium mill tailings impoundment located at the Brazilian city of Poços de Caldas, in the Minas Gerais State. PMID:15177735

  18. Uranium Mill Tailings Remedial Action Project (UMTRAP) Public Participation Plan

    SciTech Connect

    1981-05-01

    The purpose of this Public Participation Plan is to explain the Department of Energy`s plan for involving the public in the decision-making process related to the Uranium Mill Tailings Remedial Action (UMTRA) Project. This project was authorized by Congress in the Uranium Mill Tailings Radiation Control Act of 1978. The Act provides for a cooperative effort with affected states and Indian tribes for the eventual cleanup of abandoned or inactive uranium mill tailings sites, which are located in nine western states and in Pennsylvania. Section 111 of the Act states, ``in carrying out the provisions of this title, including the designation of processing sites, establishing priorities for such sites, the selection of remedial actions and the execution of cooperative agreements, the Secretary (of Energy), the Administrator (of the Environmental Protection Agency), and the (Nuclear Regulatory) Commission shall encourage public participation and, where appropriate, the Secretary shall hold public hearings relative to such matters in the States where processing sites and disposal sites are located.`` The objective of this document is to show when, where, and how the public will be involved in this project.

  19. Long-term stabilization of uranium mill tailings

    SciTech Connect

    Voorhees, L.D.; Sale, M.J.; Webb, J.W.; Mulholland, P.J.

    1983-01-01

    The primary hazard associated with uranium mill tailings is exposure to a radioactive gas, radon-222, the concentration of which has been correlated with the occurrence of lung cancer. Previous studies on radon attenuation conclude that the placement of earthen cover materials over the tailings is the most effective technique for reducing radioactive emissions and dispersal of tailings. The success of such a plan, however, is dependent on ensuring the long-term integrity of these cover materials. Soil erosion from water and wind is the major natural cause of destabilizing earthen cover materials. Field data related to the control of soil loss are limited and only indirectly apply to the problem of isolation of uranium mill tailings over very long time periods (up to 80,000 a). However, sufficient information is available to determine benefits that will result from the changes in specific design variables and to evaluate the need for different design strategies among potential disposal sites. The three major options available for stabilization of uranium mill tailings are: rock cover, soil and revegetation, or a combination of both on different portions of the tailings cover. The optimal choice among these alternatives depends on site-specific characteristics such as climate and local geomorphology and soils, and on design variables such as embankment, heights and slopes, modification of upstream drainage, and revegetation practices. Generally, geomorphic evidence suggests that use of soil and vegetation alone will not be adequate to reduce erosion on slopes greater than about 5 to 9%.

  20. Analysis of uranium urinalysis and in vivo measurement results from eleven participating uranium mills

    SciTech Connect

    Spitz, H.B.; Simpson, J.C.; Aldridge, T.L.

    1984-05-01

    Uranium urinalysis and in vivo examination results obtained from workers at eleven uranium mills between 1978 and 1980 were evaluated. The main purpose was to determine the degree of the mills' compliance with bioassay monitoring recommendations given in the draft NRC Regulatory Guide 8.22 (USNRC 1978). The effect of anticipated changes in the draft regulatory guidance, as expressed to PNL in May 1982, was also studied. Statistical analyses of the data showed that the bioassay results did not reliably meet the limited performance criteria given in the draft regulatory guide. Furthermore, quality control measurements of uranium in urine indicated that detection limits at ..cap alpha.. = ..beta.. = 0.05 ranged from 13 ..mu..g/l to 29 ..mu..g/l, whereas the draft regulatory guidance suggests 5 ..mu..g/l as the detection limit. Recommendations for monitoring frequencies given in the draft guide were not followed consistently from mill to mill. The results of these statistical analyses indicate a need to include performance criteria for accuracy, precision, and confidence in revisions of the draft Regulatory Guide 8.22. Revised guidance should also emphasize the need for each mill to continually test the laboratory performing urinalyses by submitting quality control samples (i.e., blank and spiked urine samples as open and blind test) to insure that the performance criteria are being met. Recommendations for a bioassay audit program are also given. 25 references, 15 figures, 17 tables.

  1. A Field and Modeling Study of Windblown Particles from a Uranium Mill Tailings Pile

    SciTech Connect

    Schwendiman, L. C.; Sehmel, G. A.; Horst, T. W.; Thomas, C. W.; Perkins, R. W.

    1980-06-01

    An extensive field study whose primary objective was to obtain knowledge and understanding of the nature and quantity of windblown particles from uranium mill tailings piles was conducted in the Ambrosia Lake District of New Mexico. The following major field tasks were undertaken: determination of physical, chemical, and radioactivity characteristics of mill tailings particles; an investigation of the nature and quantity of tailings particles in soil in the vicinity of tailings piles; and the determination of the nature and flux of particles being transported by wind as a function of wind speed and height. Results of the field study are presented. Particle size distributions and associated radioactivity were measured. Radioactivity relationships showed uranium daughters in mill tailings to be in essential radioactive equilibrium for the carbonate leach process but thorium-230 tends to be leached into the slurry water for the acid process mill tailings. One objective of the study was to relate windblown particle concentrations, fluxes, and particle sizes to wind speed. Hundreds of samples were taken and analyses were performed, but relationships between wind speed, airborne particle sizes and concentrations were found to be vague and inconclusive. A resuspension, deposition, and transport model was developed and applied using site meteorology. Ground deposition patterns predicted were similar to those found.

  2. Uranium mine and mill tailings - Liabilities in the European Union

    SciTech Connect

    Hilden, Wolfgang; Murphy, Simon; Vrijen, Jan

    2007-07-01

    Available in abstract form only. Full text of publication follows: Uranium mining and milling has taken place on large scale in the Member States of the European Union (EU) for some 60 years. Although, compared to mining, milling activities are normally concentrated in fewer locations, this can still result in a relatively large number of disposal sites for the tailings, compared to other radioactive wastes. In addition these sites are also quite large, in terms of both volume and surface area. Coupled with the residual uranium in the tailings together with other radionuclides, heavy metals, chemicals etc this results in an environmental legacy continuing far into the future. Often during production no or little provision has been made for the closure, remediation and future supervision of such sites. In 1996 the European Commission funded an inventory of uranium mining and milling liabilities in nine Central and Eastern European Countries. Additionally, pilot projects were funded to carry out remediation activities at several sites. Almost ten years later the Commission has identified the need to address the situation of these large liabilities in all EU Member States and to assess the progress made in remediation of the sites, especially in view of the closure of almost all mining activities in Europe. The Commission study has identified the current tailings liabilities in Europe, their status, the future plans for these sites and the hazards that continue to be associated with them. It is clear that although considerable progress has been made in recent years, much work remains to be carried out in the areas of remediation, and ensuring the long-term safety of many of the identified objects. The paper presents the main findings of the study, as well as the challenges identified to ensure long-term safety of these wastes. (authors)

  3. Uranium Mill Tailings Remedial Action Project environmental protection implementation plan

    SciTech Connect

    Not Available

    1994-10-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  4. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    SciTech Connect

    Not Available

    1992-10-01

    The Uranium Mill Tallings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1 (Chapter 3, paragraph 2). The UMTRA EPIP covers the time period of November 9, 1992, through November 8, 1993. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  5. Uranium Mill Tailings Remedial Action Project. 1995 Environmental Report

    SciTech Connect

    1996-06-01

    In accordance with U.S. Department of Energy (DOE) Order 23 1. 1, Environment, Safety and Health Reporting, the DOE prepares an annual report to document the activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring program. This monitoring must comply with appropriate laws, regulations, and standards, and it must identify apparent and meaningful trends in monitoring results. The results of all monitoring activities must be communicated to the public. The UMTRA Project has prepared annual environmental reports to the public since 1989.

  6. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    SciTech Connect

    Not Available

    1994-10-01

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  7. Concentration-Purification of Uranium from an Acid Leaching Solution

    NASA Astrophysics Data System (ADS)

    Guettaf, H.; Becis, A.; Ferhat, K.; Hanou, K.; Bouchiha, D.; Yakoubi, K.; Ferrad, F.

    2009-11-01

    Chemical processes for the elaboration of uranium concentrate from uranium ore have been studied. This process is composed of successive units operations: crushing, milling, acid conventional leaching, filtration-washing, purification-concentration by ion exchange resins and uranium precipitation. The acid leaching operating conditions allow us to obtain a recovery uranium rate of 93%. The uranium concentration of the pregnant solution is approximately of 1.2 g/l. This value justifies the use of ion exchange resins to the concentration-purification of our pregnant solution. We have noticed that the pregnant solution contains a relatively high phosphate concentration which causes a premature uranium precipitation at pH=1.8. This pH value is in general, considered optimal to obtain the highest amount of fixed uranium by the anionic resin. To avoid the precipitation of uranium, the pH=1.5 has been fixed. We have obtained at this condition a good adsorption capacity. A 75% uranium concentrate have been elaborated, but the filtration of this concentrate has been very difficult. We have also noticed an excessive sulphate concentration. In order to improve this process, we have tested nitrates as eluant at different operating conditions.

  8. The new nuclear west: Uranium milling as community on Colorado's western slope

    NASA Astrophysics Data System (ADS)

    Tidwell, Abraham S. D.

    In mid-2007, Energy Fuels, a Toronto-based uranium mining and milling company, announced their intent to build Piñon Ridge, the first new conventional uranium mill in the United States in 30 years. The prospect of a return to uranium milling has mobilized community support to bring back an industry some see as both familiar and capable of supporting and growing their communities. Using transcripts generated during the Colorado Department of Public Health and Environment's public meetings and hearings during 2010 and 2012, this study examines how proponents of the mill frame the socioeconomic advantages of bringing the industry back. Applying Kinsella's bounded constitutive model of communication, this study shows that the community and the uranium mill are bound in a "sorge-enframing" duality where the care generated by each binds the other to the recalcitrant nature of the uranium industry and preconceived notions of socioeconomic development, respectively.

  9. Mortality among a cohort of uranium mill workers: an update

    PubMed Central

    Pinkerton, L; Bloom, T; Hein, M; Ward, E

    2004-01-01

    Aims: To evaluate the mortality experience of 1484 men employed in seven uranium mills in the Colorado Plateau for at least one year on or after 1 January 1940. Methods: Vital status was updated through 1998, and life table analyses were conducted. Results: Mortality from all causes and all cancers was less than expected based on US mortality rates. A statistically significant increase in non-malignant respiratory disease mortality and non-significant increases in mortality from lymphatic and haematopoietic malignancies other than leukaemia, lung cancer, and chronic renal disease were observed. The excess in lymphatic and haematopoietic cancer mortality was due to an increase in mortality from lymphosarcoma and reticulosarcoma and Hodgkin's disease. Within the category of non-malignant respiratory disease, mortality from emphysema and pneumoconioses and other respiratory disease was increased. Mortality from lung cancer and emphysema was higher among workers hired prior to 1955 when exposures to uranium, silica, and vanadium were presumably higher. Mortality from these causes of death did not increase with employment duration. Conclusions: Although the observed excesses were consistent with our a priori hypotheses, positive trends with employment duration were not observed. Limitations included the small cohort size and limited power to detect a moderately increased risk for some outcomes of interest, the inability to estimate individual exposures, and the lack of smoking data. Because of these limitations, firm conclusions about the relation of the observed excesses in mortality and mill exposures are not possible. PMID:14691274

  10. Liner evaluation for uranium mill tailings. Final report

    SciTech Connect

    Buelt, J.L.

    1983-09-01

    The Liner Evaluation for Uranium Mill Tailings Program was conducted to evaluate the need for and performance of prospective lining materials for the long-term management of inactive uranium mill tailings piles. On the basis of program results, two materials have been identified: natural foundation soil amended with 10% sodium bentonite; catalytic airblown asphalt membrane. The study showed that, for most situations, calcareous soils typical of Western US sites adequately buffer tailings leachates and prevent groundwater contamination without additional liner materials or amendments. Although mathematical modeling of disposal sites is recommended on a site-specific basis, there appears to be no reason to expect significant infiltration through the cover for most Western sites. The major water source through the tailings would be groundwater movement at sites with shallow groundwater tables. Even so column leaching studies showed that contaminant source terms were reduced to near maximum contaminant levels (MCL's) for drinking water within one or two pore volumes; thus, a limited source term for groundwater contamination exists. At sites where significant groundwater movement or infiltration is expected and the tailings leachates are alkaline, however, the sodium bentonite or asphalt membrane may be necessary.

  11. Radon attenuation handbook for uranium mill tailings cover design

    SciTech Connect

    Rogers, V.C.; Nielson, K.K.; Kalkwarf, D.R.

    1984-04-01

    This handbook has been prepared to facilitate the design of earthen covers to control radon emission from uranium mill tailings. Radon emissions from bare and covered uranium mill tailings can be estimated from equations based on diffusion theory. Basic equations are presented for calculating surface radon fluxes from covered tailings, or alternately, the cover thicknesses required to satisfy a given radon flux criterion. Also described is a computer code, RAECOM, for calculating cover thicknesses and surface fluxes. Methods are also described for measuring diffusion coefficients for radon, or for estimating them from empirical correlations. Since long-term soil moisture content is a critical parameter in determining the value of the diffusion coefficient, methods are given for estimating the long-term moisture contents of soils. The effects of cover defects or advection are also discussed and guidelines are given for determining if they are significant. For most practical cases, advection and cover defect effects on radon flux can be neglected. Several examples are given to demonstrate cover design calculations, and an extensive list of references is included. 63 references, 18 figures, 6 tables.

  12. Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1

    SciTech Connect

    Not Available

    1994-12-01

    Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA.

  13. Leaching of radionuclides from uranium ore and mill tailings ( Ra- 226, Tn-230).

    USGS Publications Warehouse

    Landa, E.R.

    1982-01-01

    The major part of the extractable uranium is associated with a readily acid-soluble fraction in both ore and tailings. The major part of the extractable 226Ra was associated with an iron, manganese hydrous-oxide fraction in the ore and tailings. Thorium-230 was the least leachable of the radionuclides studied. The major portion of the extractable 230Th was associated with alkaline-earth sulphate precipitates, organic matter, or both. The specific effects of milling on each of the nuclides are discussed.-Author

  14. Characterization of long-lived radioactive dust in uranium mill operations

    SciTech Connect

    Bigu, J.; DuPort, P. )

    1992-09-01

    The characteristics of long-lived radioactive dust clouds generated in several mechanical and physiochemical operations in a uranium mill have been investigated. The study consisted of the determination of dust size distribution and of the size distribution of radionuclides associated with particulate matter in the size range less than 0.1 to 26 microns. Experiments were conducted by using two different types of cascade impactors operating at different sampling flow rates. Radionuclide identification was done by using alpha-spectrometry. Long- and short-lived radionuclides were identified in dust samples. The characteristics of the dust clouds depended on the mill operation, such as crushing (vibrating grizzly, jaw crusher, cone crusher); screening; ore transportation; grinding; acid leaching; counter-current decantation; yellow cake precipitation and drying; and yellow cake packaging. In addition, other dust and radioactivity measurements have been carried out.

  15. Characterization of long-lived radioactive dust in uranium mill operations.

    PubMed

    Bigu, J; DuPort, P

    1992-09-01

    The characteristics of long-lived radioactive dust clouds generated in several mechanical and physiochemical operations in a uranium mill have been investigated. The study consisted of the determination of dust size distribution and of the size distribution of radionuclides associated with particulate matter in the size range less than 0.1 to 26 microns. Experiments were conducted by using two different types of cascade impactors operating at different sampling flow rates. Radionuclide identification was done by using alpha-spectrometry. Long- and short-lived radionuclides were identified in dust samples. The characteristics of the dust clouds depended on the mill operation, such as crushing (vibrating grizzly, jaw crusher, cone crusher); screening; ore transportation; grinding; acid leaching; counter-current decantation; yellow cake precipitation and drying; and yellow cake packaging. In addition, other dust and radioactivity measurements have been carried out. PMID:1524034

  16. Leaching of molybdenum and arsenic from uranium ore and mill tailings

    USGS Publications Warehouse

    Landa, E.R.

    1984-01-01

    A sequential, selective extraction procedure was used to assess the effects of sulfuric acid milling on the geochemical associations of molybdenum and arsenic in a uranium ore blend, and the tailings derived therefrom. The milling process removed about 21% of the molybdenum and 53% of the arsenic initially present in the ore. While about one-half of the molybdenum in the ore was water soluble, only about 14% existed in this form in the tailings. The major portion of the extractable molybdenum in the tailings appears to be associated with hydrous oxides of iron, and with alkaline earth sulfate precipitates. In contrast with the pattern seen for molybdenum, the partitioning of arsenic into the various extractable fractions differs little between the ore and the tailings. ?? 1984.

  17. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    SciTech Connect

    Vollmer, A.T.

    1993-10-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references.

  18. Laboratory measurements of contaminant attenuation of uranium mill tailings leachates by sediments and clay liners

    SciTech Connect

    Serne, R.J.; Peterson, S.R.; Gee, G.W.

    1983-04-01

    We discuss FY82 progress on the development of laboratory tools to aid in the prediction of migration potential of contaminants present in acidic uranium mill tailings leachate. Further, empirical data on trace metal and radionuclide migration through a clay liner are presented. Acidic uranium mill tailings solution from a Wyoming mill was percolated through a composite sediment called Morton Ranch Clay liner. These laboratory columns and subsequent sediment extraction data show: (1) As, Cr, Pb, Ag, Th and V migrate very slowly; (2) U, Cd, Ni, Zn, Fe, Mn and similar transition metals are initially immobilized during acid neutralization but later are remobilized as the tailings solution exhausts the clay liner's acid buffering capacity. Such metals remain immobilized as long as the effluent pH remains above a pH value of 4 to 4.5, but they become mobile once the effluent pH drops below this range; and (3) fractions of the Se and Mo present in the influent tailings solution are very mobile. Possible controlling mechanisms for the pH-dependent immobilization-mobilization of the trace metals are discussed. More study is required to understand the controlling mechanisms for Se and Mo and Ra for which data were not successfully collected. Using several column lengths (from 4.5 to 65 cm) and pore volume residence times (from 0.8 to 40 days) we found no significant differences in contaminant migration rates or types and extent of controlling processes. Thus, we conclude that the laboratory results may be capable of extrapolation to actual disposal site conditions.

  19. Ammonium Sulfate Evaporites Associated With Uranium Mill Tailings Disposal Cells

    NASA Astrophysics Data System (ADS)

    Wendlandt, R. F.; Harrison, W. J.

    2006-12-01

    The waste products of uranium mill operations are complex and dependent on the ore mineralogy, milling process (e.g., low pH vs. high pH), and operational status of the mill among other things. The White Mesa Mill, Utah, was visited during both quiescent (July 2004) and operational phases (August 2005) to collect liquid and solid samples from the active evaporation and storage ponds environments (Cells 1 and 3). Cell 4, which was unused and being excavated at the times of both samplings, yielded solids accumulated through the history of that cell's use. Raffinate samples are concentrated Na-Mg-Al-Fe-SO4-NO3(-NH4) brines characterized by extreme enrichments in REE and transition elements. Ionic strengths, calculated using the Pitzer activity coefficient model varied from 25M (pH = 1 at 25°C) in Cell 1 and 12M (pH = 2.7) in Cell 3 during July 2004, to 5M (pH = 1.5) in Cell 1 and 1.2M (pH = 2.9) in Cell 3 during August 2005. At the first sampling, the dominant anion was sulfate in Cell 1 and nitrate in Cell 3. At the time of the second sampling, both cells were dominated by sulfate. During July 2004, there was significant evaporative drawdown in the ponds, resulting in 3 variably colored zones (~7m) of mineralogically complex evaporites at the cell margins. During August 2005, the operational nature of the mill and the addition of fresh water had produced high water levels in Cells 1 and 3. Evaporation crusts were recognized around the margins of the cells but they were <2m in extent. XRD analyses document the presence of boussingaultite, (NH4)2Mg(SO4)2.6H2O, which was actively precipitating from Cell 1 during 2004, tschermigite, (NH4)Al(SO4)2.12H2O, gypsum, and polymorphs of Na2SO4 including thenardite. ESEM imaging and EDS analyses of crusts reveal complex parageneses involving the above-mentioned phases and NH4-bearing metavoltine, K2Na6Fe^{+2}Fe6^{+3}(SO4)12O2.18H2O, among others. Ksp calculations and field relations are consistent with a precipitation sequence

  20. Diversity and Characterization of Sulfate-Reducing Bacteria in Groundwater at a Uranium Mill Tailings Site

    PubMed Central

    Chang, Yun-Juan; Peacock, Aaron D.; Long, Philip E.; Stephen, John R.; McKinley, James P.; Macnaughton, Sarah J.; Hussain, A. K. M. Anwar; Saxton, Arnold M.; White, David C.

    2001-01-01

    Microbially mediated reduction and immobilization of U(VI) to U(IV) plays a role in both natural attenuation and accelerated bioremediation of uranium-contaminated sites. To realize bioremediation potential and accurately predict natural attenuation, it is important to first understand the microbial diversity of such sites. In this paper, the distribution of sulfate-reducing bacteria (SRB) in contaminated groundwater associated with a uranium mill tailings disposal site at Shiprock, N.Mex., was investigated. Two culture-independent analyses were employed: sequencing of clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) gene fragments and phospholipid fatty acid (PLFA) biomarker analysis. A remarkable diversity among the DSR sequences was revealed, including sequences from δ-Proteobacteria, gram-positive organisms, and the Nitrospira division. PLFA analysis detected at least 52 different mid-chain-branched saturate PLFA and included a high proportion of 10me16:0. Desulfotomaculum and Desulfotomaculum-like sequences were the most dominant DSR genes detected. Those belonging to SRB within δ-Proteobacteria were mainly recovered from low-uranium (≤302 ppb) samples. One Desulfotomaculum-like sequence cluster overwhelmingly dominated high-U (>1,500 ppb) sites. Logistic regression showed a significant influence of uranium concentration over the dominance of this cluster of sequences (P = 0.0001). This strong association indicates that Desulfotomaculum has remarkable tolerance and adaptation to high levels of uranium and suggests the organism's possible involvement in natural attenuation of uranium. The in situ activity level of Desulfotomaculum in uranium-contaminated environments and its comparison to the activities of other SRB and other functional groups should be an important area for future research. PMID:11425735

  1. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    SciTech Connect

    1995-08-01

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  2. Decontamination and decommissioning of the uranium mill and processing plant at Seelingstaedt, Germany

    SciTech Connect

    Barnekow, Ulf; Bauroth, Matthias; Paul, Michael

    2007-07-01

    In Eastern Germany uranium mining lasted from 1946 till 1990 including a production of in total 220,000 t of uranium. The Seelingstaedt Uranium Mill and Processing Plant, located in Thuringia, Germany, was one of two large uranium mills owned by Wismut. The mill was erected by 1960 and covered an area of 93 ha. From 1961 till 1991 a total of about 110 million t of different types of uranium ores were milled and processed at the Seelingstaedt mill. The mill produced ca. 110,000 t of uranium (in yellow cake). Demolition of the buildings and industrial facilities of the Seelingstaedt mill and processing plant site are nearly completed. The site is being decommissioned with respect to after-use aiming at afforestation and grasslands allowing for a stable plant succession. Decommissioning includes excavation and relocation of contaminated materials, reshaping of the site and construction of ditches for granting a stable surface runoff as well construction of access and maintenance roads. About 85% of the demolition and relocation works have been completed till to date. Last decommissioning works shall be completed by 2015. The present paper presents experiences made and progress achieved till to date. (authors)

  3. Accepting Mixed Waste as Alternate Feed Material for Processing and Disposal at a Licensed Uranium Mill

    SciTech Connect

    Frydenland, D. C.; Hochstein, R. F.; Thompson, A. J.

    2002-02-26

    Certain categories of mixed wastes that contain recoverable amounts of natural uranium can be processed for the recovery of valuable uranium, alone or together with other metals, at licensed uranium mills, and the resulting tailings permanently disposed of as 11e.(2) byproduct material in the mill's tailings impoundment, as an alternative to treatment and/or direct disposal at a mixed waste disposal facility. This paper discusses the regulatory background applicable to hazardous wastes, mixed wastes and uranium mills and, in particular, NRC's Alternate Feed Guidance under which alternate feed materials that contain certain types of mixed wastes may be processed and disposed of at uranium mills. The paper discusses the way in which the Alternate Feed Guidance has been interpreted in the past with respect to processing mixed wastes and the significance of recent changes in NRC's interpretation of the Alternate Feed Guidance that sets the stage for a broader range of mixed waste materials to be processed as alternate feed materials. The paper also reviews the le gal rationale and policy reasons why materials that would otherwise have to be treated and/or disposed of as mixed waste, at a mixed waste disposal facility, are exempt from RCRA when reprocessed as alternate feed material at a uranium mill and become subject to the sole jurisdiction of NRC, and some of the reasons why processing mixed wastes as alternate feed materials at uranium mills is preferable to direct disposal. Finally, the paper concludes with a discussion of the specific acceptance, characterization and certification requirements applicable to alternate feed materials and mixed wastes at International Uranium (USA) Corporation's White Mesa Mill, which has been the most active uranium mill in the processing of alternate feed materials under the Alternate Feed Guidance.

  4. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India.

    PubMed

    Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, p<0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r=0.88, p<0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p<0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. PMID:26360459

  5. 76 FR 70170 - Proposed Alternative Soils Standards for the Uravan, Colorado Uranium Mill

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... COMMISSION Proposed Alternative Soils Standards for the Uravan, Colorado Uranium Mill AGENCY: Nuclear... Waste Management Division (the Division) submitted a proposal for alternative standards for soil clean...) concurrence. Colorado's proposed alternative soil standards are to leave the remaining...

  6. Annual status report on the Uranium Mill Tailings Remedial Action Program

    SciTech Connect

    Not Available

    1992-12-01

    This fourteenth annual status report for the Uranium Mill Tailings Remedial Action (UMTRA) Project Office summarizes activities of the Uranium Mill Tailings Remedial Action Surface (UMTRA-Surface) and Uranium Mill Tailings Remedial Action Groundwater (UMTRA-Groundwater) Projects undertaken during fiscal year (FY) 1992 by the US Department of Energy (DOE) and other agencies. Project goals for FY 1993 are also presented. An annual report of this type was a statutory requirement through January 1, 1986, pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604. The DOE will continue to submit annual reports to DOE-Headquarters, the states, tribes, and local representatives through Project completion in order to inform the public of the yearly Project status. The purpose of the remedial action is to stabilize and control the tailings and other residual radioactive material (RRM) located on the inactive uranium processing sites in a safe and environmentally sound manner, and to minimize or eliminate potential health hazards. Commercial and residential properties near designated processing sites that are contaminated with material from the sites, herein referred to as ``vicinity properties (VP),`` are also eligible for remedial action. Included in the UMTRA Project are 24 inactive uranium processing sites and associated VPs located in 10 states, and the VPs associated with the Edgemont, South Dakota, uranium mill currently owned by the Tennessee Valley Authority (TVA) (Figure A.1, Appendix A).

  7. Moisture content analysis of covered uranium mill tailings

    SciTech Connect

    Mayer, D.W.; Beedlow, P.A.; Cadwell, L.L.

    1981-12-01

    The use of vegetation and rock covers to stabilize uranium mill tailings cover systems is being investigated by Pacific Northwest Laboratory. A modeling study of moisture movement through the tailings and cover layers was initiated to determine the effect of the stabilizing techniques. The cover system was simulated under climatic conditions occurring at Grand Junction, Colorado. The cover consisted of a layer of wet clay/gravel mix followed by a capillary barrier of washed rock and a surface layer of fill soil. Vegetation and rock were used to stabilize the surface layer. The simulation yielded moisture content and moisture storage values for the tailings and cover system along with information about moisture losses due to evaporation, transpiration, and drainage. The study demonstrates that different surface stabilization treatments lead to different degrees of moisture retention in the covered tailings pile. The evapotranspiration from vegetation can result in a relatively stable moisture content. Rock covers, however, may cause drainage to occur because they reduce evaporation and lead to a subsequent increase in moisture content. It is important to consider these effects when designing a surface stabilization treatment. Drainage may contribute to a groundwater pollution problem. A surface treatment that allows the cover system to dry out can increase the risk of atmospheric contamination through elevated radon emission rates.

  8. Miscellaneous radioactive materials detected during uranium mill tailings surveys

    SciTech Connect

    Wilson, M.J.

    1993-10-01

    The Department of Energy`s (DOE) Office of Environmental Restoration and Waste Management directed the Oak Ridge National Laboratory Pollutant Assessments Group in the conduct of radiological surveys on properties in Monticello, Utah, associated with the Mendaciously millsite National Priority List site. During these surveys, various radioactive materials were detected that were unrelated to the Monticello millsite. The existence and descriptions of these materials were recorded in survey reports and are condensed in this report. The radioactive materials detected are either naturally occurring radioactive material, such as rock and mineral collections, uranium ore, and radioactive coal or manmade radioactive material consisting of tailings from other millsites, mining equipment, radium dials, mill building scraps, building materials, such as brick and cinderblock, and other miscellaneous sources. Awareness of the miscellaneous and naturally occurring material is essential to allow DOE to forecast the additional costs and schedule changes associated with remediation activities. Also, material that may pose a health hazard to the public should be revealed to other regulatory agencies for consideration.

  9. Safeguards on uranium ore concentrate? the impact of modern mining and milling process

    SciTech Connect

    Francis, Stephen

    2013-07-01

    Increased purity in uranium ore concentrate not only raises the question as to whether Safeguards should be applied to the entirety of uranium conversion facilities, but also as to whether some degree of coverage should be moved back to uranium ore concentrate production at uranium mining and milling facilities. This paper looks at uranium ore concentrate production across the globe and explores the extent to which increased purity is evident and the underlying reasons. Potential issues this increase in purity raises for IAEA's strategy on the Starting Point of Safeguards are also discussed.

  10. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona: Phase 2, Construction, Subcontract documents: Appendix E, final report. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect

    Not Available

    1989-08-01

    This appendix discusses Phase II construction and subcontract documents uranium mill site near Tuba City, Arizona. It contains the bid schedule, special conditions, specifications, and subcontract drawings.

  11. The paradox of uranium development: A Polanyian analysis of social movements surrounding the Pinon Ridge Uranium Mill

    NASA Astrophysics Data System (ADS)

    Malin, Stephanie A.

    Renewal of nuclear energy development has been proposed as one viable solution for reducing greenhouse gas emissions and impacts of climate change. This discussion became concrete as the first uranium mill proposed since the end of the Cold War, the Pinon Ridge Uranium Mill, received state permits in January 2011 to process uranium in southwest Colorado's Paradox Valley. Though environmental contamination from previous uranium activity caused one local community to be bulldozed to the ground, local support for renewed uranium activity emerges among local residents in communities like Nucla, Naturita, and Bedrock, Colorado. Regionally, however, a coalition of organized, oppositionbased grassroots groups fights the decision to permit the mill. Combined, these events allow social scientists a natural laboratory through which to view social repercussions of nuclear energy development. In this dissertation, I use a Polanyian theoretical framework to analyze social, political-economic, and environmental contexts of social movements surrounding PR Mill. My overarching research problem is: How might Polanyian double movement theory be applied to and made empirically testable within the social and environmental context of uranium development? I intended this analysis to inform energy policy debates regarding renewable energy. In Chapter 1, I found various forms of social dislocation lead to two divergent social movement outcomes. Economic social dislocation led to strong mill support among most local residents, according to archival, in-depth interview, and survey data. On the other hand, residents in regional communities experienced two other types of social dislocation -- another kind of economic dislocation, related to concern over boom-bust economies, and environmental health dislocations related to uranium exposure, creating conditions for a regional movement in opposition to PR Mill. In Chapter 2, I focus on regulations and find that two divergent social movements

  12. Radon emanation from backfilled mill tailings in underground uranium mine.

    PubMed

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekananda; Patnaik, R Lokeswara; Sethy, Narendra Kumar

    2014-04-01

    Coarser mill tailings used as backfill to stabilize the stoped out areas in underground uranium mines is a potential source of radon contamination. This paper presents the quantitative assessment of radon emanation from the backfilled tailings in Jaduguda mine, India using a cylindrical accumulator. Some of the important parameters such as (226)Ra activity concentration, bulk density, bulk porosity, moisture content and radon emanation factor of the tailings affecting radon emanation were determined in the laboratory. The study revealed that the radon emanation rate of the tailings varied in the range of 0.12-7.03 Bq m(-2) s(-1) with geometric mean of 1.01 Bq m(-2) s(-1) and geometric standard deviation of 3.39. An increase in radon emanation rate was noticed up to a moisture saturation of 0.09 in the tailings, after which the emanation rate gradually started declining with saturation due to low diffusion coefficient of radon in the saturated tailings. Radon emanation factor of the tailings varied in the range of 0.08-0.23 with the mean value of 0.21. The emanation factor of the tailings with moisture saturation level over 0.09 was found to be about three times higher than that of the absolutely dry tailings. The empirical relationship obtained between (222)Rn emanation rate and (226)Ra activity concentration of the tailings indicated a significant positive linear correlation (r = 0.95, p < 0.001). This relationship may be useful for quick prediction of radon emanation rate from the backfill material of similar nature. PMID:24412814

  13. Cost of radon-barrier systems for uranium mill tailings

    SciTech Connect

    Baker, E.G.; Hartley, J.N.

    1982-08-01

    This report deals specifically with the cost of three types of radon barrier systems, earthen covers, asphalt emulsion covers, and multilayer covers, which could meet standards proposed by the Environmental Protection Agency to stabilize uranium mill tailings located primarily in the western US. In addition, the report includes a sensitivity analysis of various factors which significantly effect the overall cost of the three systems. These analyses were based on a generic disposal site. Four different 3m thick earthen covers were tested and cost an average of $27/m/sup 2/. The least expensive earthen cover cost was about $21/m/sup 2/. The asphalt cover system (6 to 7 cm of asphalt topped with 0.6m of overburden) cost about $28/m/sup 2/. The four multilayer covers averaged $57/m/sup 2/, but materials handling problems encountered during the test inflated this cost above what was anticipated and significant cost reductions should be possible. The least expensive multilayer cover cost $43/m/sup 2/. Based on the results of the Grand Junction field test we estimated the cost of covering the tailings from three high priority sites, Durango, Shiprock, and Salt Lake City (Vitro). The cost of a 3m earthen cover ranged from $18 to 33/m/sup 2/ for the seven disposal sites (two or three at each location) studied. The cost of asphalt cover systems were $23 to 28/m/sup 2/ and the multilayer cover costs were between $31 to 36/m/sup 2/. The earthen cover costs are less than the Grand Junction field test cost primarily because cover material is available at or near most of the disposal sites selected. Earthen material was imported from 6 to 10 miles for the field test. Assuming more efficienct utilization of materials significantly reduced the cost of the multilayer covers.

  14. Forage uptake of uranium series radionuclides in the vicinity of the anaconda uranium mill

    SciTech Connect

    Rayno, D.R.; Momeni, M.H.; Sabau, C.

    1980-01-01

    Radiochemical analysis was performed on samples of soil and eight species of common vegetation growing on the Anaconda uranium mill site, located in New Mexico. The concentrations of the long-lived radionuclides U-238, U-234, Th-230, Ra-226, and Pb-210 in these forage plants were determined. The sampling procedures and analytical laboratory methods used are described. The highest radionuclide concentration found in a forage species was 130 pCi of Ra-226 per gram dry weight for grass growing on the main tailings pile at Anaconda, where the surface soil activity of Ra-226 was 236 pCi/g. A comparison of shoots activity with that of roots and soil was used to determine a distribution index and uptake coefficient for each species. The distribution index, the ratio of root activity to shoot activity, ranged from 0.30 (Th-230) in galleta grass (Hilaria jamesii) to 38.0 (Ra-226) in Indian ricegrass (Oryzopsis hymenoides). In nearly all instances, the roots contained higher radionuclide concentrations. The uptake coefficient, the ratio of vegetation activity to soil activity, ranged from 0.69 (U-238) in Indian ricegrass roots to 0.01 (U-238) in four-wing saltbush (Atriplex canescans) shoots. The range of radionuclide concentrations in plants growing on the Anaconda mill site is compared to that in vegetation from a control site 20 km away.

  15. Programmatic Environmental Report for remedial actions at UMTRA (Uranium Mill Tailings Remedial Action) Project vicinity properties

    SciTech Connect

    Not Available

    1985-03-01

    This Environmental Report (ER) examines the environmental consequences of implementing a remedial action that would remove radioactive uranium mill tailings and associated contaminated materials from 394 vicinity properties near 14 inactive uranium processing sites included in the Uranium Mill Tailings Remedial Action (UMTRA) Project pursuant to Public Law 95--604, the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. Vicinity properties are those properties in the vicinity of the UMTRA Project inactive mill sites, either public or private, that are believed to be contaminated by residual radioactive material originating from one of the 14 inactive uranium processing sites, and which have been designated under Section 102(a)(1) of UMTRCA. The principal hazard associated with the contaminated properties results from the production of radon, a radioactive decay product of the radium contained in the tailings. Radon, a radioactive gas, can diffuse through the contaminated material and be released into the atmosphere where it and its radioactive decay products may be inhaled by humans. A second radiation exposure pathway results from the emission of gamma radiation from uranium decay products contained in the tailings. Gamma radiation emitted from contaminated material delivers an external exposure to the whole body. If the concentration of radon and its decay products is high enough and the exposure time long enough, or if the exposure to direct gamma radiation is long enough, cancers (i.e., excess health effects) may develop in persons living and working at the vicinity properties. 3 refs., 7 tabs.

  16. Consolidation theory and its applicability to the dewatering and covering of uranium-mill tailings

    SciTech Connect

    Gates, T.E.

    1982-11-01

    This report is a review and evaluation of soil consolidation theories applicable for evaluating settlement during dewatering and subsequent covering of uranium-mill tailings. Such theories may be used to predict both consolidation and water flow related effects in uranium-mill tailings during drainage, following sluicing into burial pits. A consolidation theory to be useful must consider the effect of time-dependent loads, nonhomogeneous soil mass, nonlinear variation of soil properties with the stress-state parameters, large strain, and saturated and unsaturated flow. Constitutive relations linking the stress-deformation-state variables with void ratio should be adopted for predicting both consolidation and fluid-flow interaction in unsaturated uranium-mill tailings.

  17. Scientific basis for risk assessment and management of uranium mill tailings

    SciTech Connect

    Not Available

    1986-01-01

    A National Research Council study panel, convened by the Board on Radioactive Waste Management, has examined the scientific basis for risk assessment and management of uranium mill tailings and issued this final report containing a number of recommendations. Chapter 1 provides a brief introduction to the problem. Chapter 2 examines the processes of uranium extraction and the mechanisms by which radionuclides and toxic chemicals contained in the ore can enter the environment. Chapter 3 is devoted to a review of the evidence on health risks associated with radon and its decay products. Chapter 4 provides a consideration of conventional and possible new technical alternatives for tailings management. Chapter 5 explores a number of issues of comparative risk, provides a brief history of uranium mill tailings regulation, and concludes with a discussion of choices that must be made in mill tailing risk management. 211 refs., 30 figs., 27 tabs.

  18. 40 CFR 23.8 - Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the...

  19. 40 CFR 23.8 - Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the...

  20. 40 CFR 23.8 - Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the...

  1. 40 CFR 23.8 - Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the...

  2. 40 CFR 23.8 - Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the...

  3. Uranium Mill Tailings Remedial Action (UMTRA) Surface Project: Project plan. Revision 1

    SciTech Connect

    Not Available

    1993-08-11

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) [Public Law (PL) 95-604, 42 United States Code (USC) 7901], hereinafter referred to as the ``Act,`` authorizes the US Department of Energy (DOE) to stabilize and control surface tailings and ground water contamination. To fulfill this mission, the DOE has established two projects under the Uranium Mill Tailings Remedial Action (UMTRA) Project Office. The Ground Water Project was established in April 1991 as a major project and a separate project plan will be prepared for that portion of the mission. This project plan covers the UMTRA Surface Project, a major system acquisition (MSA).

  4. In Situ Biostimulation at a Former Uranium Mill Tailings Site: Multicomponent Biogeochemical Reactive Transport Modeling

    NASA Astrophysics Data System (ADS)

    Yabusaki, S.; Fang, Y.; Long, P.

    2005-12-01

    In situ biostimulation at a Former Uranium Mill Tailings Site: Multicomponent Biogeochemical Reactive Transport Modeling Field experiments conducted at a former uranium mill tailings site in western Colorado are being used to investigate microbially mediated immobilization of uranium as a potential future remediation option for such sites. While the general principle of biostimulating microbial communities to reduce aqueous hexavalent uranium to immobile uraninite has been demonstrated in the laboratory and field, the ability to predictably engineer long lasting immobilization will require a more complete understanding of field-scale processes and properties. For this study, numerical simulation of the flow field, geochemical conditions, and micriobial communities is used to interpret field-scale biogeochemical reactive transport observed during experiments performed in 2002 to 2004. One key issue is identifying bioavailable Fe(III) oxide, which is the principal electron acceptor utilized by the acetate- oxidizing Geobacter sp. These organisms are responsible for uranium bioreduction that results in the removal of sufficient U(VI) to lower uranium groundwater concentrations to at or near applicable standards. The depletion of bioavailable Fe(III) leads to succession by sulfate reducers that are considerably less effective at uranium bioreduction. An important modeling consideration are the abiotic reactions (e.g., mineral precipitation and dissolution, aqueous and surface complexation) involving the Fe(II) and sulfide produced during biostimulation. These components, strongly associated with the solid phases, may play an important role in the evolving reactivity of the mineral surfaces that are likely to impact long-term uranium immobilization.

  5. Annual status report on the Uranium Mill Tailings Remedial Action Program

    SciTech Connect

    Not Available

    1989-12-01

    This eleventh annual status report summarizes activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project undertaken during Fiscal Year (FY) 1989 by the US Department of Energy (DOE) and other agencies. Project goals for FY 1990 are also presented. An annual report of this type was a statutory requirement through January 1, 1986, pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95--604. The DOE will continue to submit an annual report through project completion in order to inform the public of yearly project status. Title I of the UMTRCA authorizes the DOE, in cooperation with affected states and Indian tribes within whose boundaries designated uranium processing sites are located, to provide a program of assessment and remedial action at such sites. The purpose of the remedial action is to stabilize and control the tailings and other residual radioactive materials located on the inactive uranium processing sites in a safe and environmentally sound manner and to minimize or eliminate potential radiation health hazards. Commercial and residential properties in the vicinity of designated processing sites that are contaminated with material from the sites, herein referred to as vicinity properties,'' are also eligible for remedial action. Included in the UMTRA Project are 24 inactive uranium processing sites and associated vicinity properties located in 10 states, and the vicinity properties associated with Edgemont, South Dakota, an inactive uranium mill currently owned by the Tennessee Valley Authority (TVA).

  6. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect

    Chernoff, A.R. . Uranium Mill Tailings Remedial Action Project Office); Lacker, D.K. . Bureau of Radiation Control)

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

  7. Environmental control technology for mining and milling low-grade uranium resources

    SciTech Connect

    Weakley, S.A.; Blahnik, D.E.; Long, L.W.; Bloomster, C.H.

    1981-04-01

    This study examined the type and level of wastes that would be generated in the mining and milling of U/sub 3/O/sub 8/ from four potential domestic sources of uranium. The estimated costs of the technology to control these wastes to different degrees of stringency are presented.

  8. Isolation of uranium mill tailings and their component radionuclides from the biosphere; some earth science perspectives

    USGS Publications Warehouse

    Landa, Edward

    1980-01-01

    Uranium mining and milling is an expanding activity in the. Western United States. Although the milling process yields a uranium concentrate, the large volume of tailings remaining contains about 85 percent of the radioactivity originally associated with the ore. By virtue of the physical and chemical processing of the ore and the redistribution of the contained radionuclides at the Earth's surface, these tailings constitute a technologically enhanced source of natural radiation exposure. Sources of potential human radiation exposure from uranium mill tailings include the emanation of radon gas, the transport of particles by wind and water, and the transport of soluble radionuclides, seeping from disposal areas, by ground water. Due to the 77,000 year half-life of thorium-230, the parent of radium-226, the environmental effects associated with radionuclides contained in these railings must be conceived of within the framework of geologic processes operating over geologic time. The magnitude of erosion of cover materials and tailings and the extent of geochemical mobilization of the contained radionuclides to the atmosphere and hydrosphere should be considered in the evaluation of the potential, long-term consequences of all proposed uranium mill tailings management plans.

  9. 76 FR 59173 - Standard Format and Content of License Applications for Conventional Uranium Mills

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... COMMISSION Standard Format and Content of License Applications for Conventional Uranium Mills AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; withdrawal. SUMMARY: On May 30, 2008 (73 FR 31152... availability of Draft Regulatory Guide (DG)-3024, ``Standard Format and Content of License Applications...

  10. Key programmatic steps and activities for implementing the Uranium Mill Tailings Remedial Action Project. [UMTRA Project

    SciTech Connect

    Not Available

    1985-07-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) was enacted based upon findings by Congress that uranium mill tailings located at active and inactive hazard to the public, and that protection of the public health, safety and welfare, and the regulations of interstate commerce, require that every reasonable effort be made to provide for the stabilization, disposal, and control in a safe and environmentally sound manner of such tailings in order to prevent or minimize radon diffusion into the environment and to prevent or minimize other environmental hazards from such tailings.'' A general understanding of the steps leading to elimination of the hazards associated with designated uranium mill tailings sites, and the parties involved in that effort, are presented in this document. A representative schedule is also presented in this document to show both program sequence and activity interdependence. Those activities that have the most potential to influence program duration, because of the significant amount of additional time that may be required, include identification and selection of a suitable site, field data collection delays due to weather, actual acquisition of the designated or alternate disposal site, construction delays due to weather, and site licensing. This document provides an understanding of the steps, the sequence, the parties involved, and a representative duration of activities leading to remedial action and cleanup at the designated inactive uranium mill tailings sites. 10 refs., 5 figs., 1 tab.

  11. 77 FR 35431 - Final Alternative Soils Standards for the Uravan, CO, Uranium Mill

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... standards for a 30-day comment period (76 FR 70170; November 10, 2011). The public comment period and... COMMISSION Final Alternative Soils Standards for the Uravan, CO, Uranium Mill AGENCY: Nuclear Regulatory... of Colorado's proposed alternative soils standards will achieve a level of stabilization...

  12. Project Charter (MSA-143). [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect

    Not Available

    1986-07-01

    Public Law 95-604, The Uranium Mill Tailings Radiation Control Act of 1978'' as amended assigns to DOE, other Federal agencies, and involved States and Indian tribes, responsibilities for remedial actions at 22 inactive uranium mill tailings sites listed in the Act, and for any other sites designated by the Secretary prior to November 8, 1979. The objective of the UMTRA Project is to provide remedial action at the mill tailings sites and associated vicinity properties in order to stabilize and control the tailings in a safe and environmentally sound manner and to eliminate potential health hazards caused by residual levels of uranium decay products that exceed EPA standards. A total of 24 uranium mill tailings sites. This Project Charter delineates the respective responsibilities and authorities of (The Office of Nuclear Energy) (NE) and (Albuquerque Operations Office) (AL), and defines the terms and conditions for management of the UMTRA Project. Supplementary Project management documents which have been and are being developed pursuant to this Charter include a Project Plan (PP), a Project Management Plan (PMP) and other plans governing the accomplishment of the Project mission Evolution of the program will require updates of the Project Plan and Project Management Plan.

  13. Sustainability of uranium mining and milling: toward quantifying resources and eco-efficiency.

    PubMed

    Mudd, Gavin M; Diesendorf, Mark

    2008-04-01

    The mining of uranium has long been a controversial public issue, and a renewed debate has emerged on the potential for nuclear power to help mitigate against climate change. The central thesis of pro-nuclear advocates is the lower carbon intensity of nuclear energy compared to fossil fuels, although there remains very little detailed analysis of the true carbon costs of nuclear energy. In this paper, we compile and analyze a range of data on uranium mining and milling, including uranium resources as well as sustainability metrics such as energy and water consumption and carbon emissions with respect to uranium production-arguably the first time for modern projects. The extent of economically recoverable uranium resources is clearly linked to exploration, technology, and economics but also inextricably to environmental costs such as energy/water/chemicals consumption, greenhouse gas emissions, and social issues. Overall, the data clearly show the sensitivity of sustainability assessments to the ore grade of the uranium deposit being mined and that significant gaps remain in complete sustainability reporting and accounting. This paper is a case study of the energy, water, and carbon costs of uranium mining and milling within the context of the nuclear energy chain. PMID:18505007

  14. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    SciTech Connect

    Not Available

    1993-12-01

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  15. DISSOLUTION OF URANIUM FUELS BY MONOOR DIFLUOROPHOSPHORIC ACID

    DOEpatents

    Johnson, R.; Horn, F.L.; Strickland, G.

    1963-05-01

    A method of dissolving and separating uranium from a uranium matrix fuel element by dissolving the uraniumcontaining matrix in monofluorophosphoric acid and/or difluorophosphoric acid at temperatures ranging from 150 to 275 un. Concent 85% C, thereafter neutralizing the solution to precipitate uranium solids, and converting the solids to uranium hexafluoride by treatment with a halogen trifluoride is presented. (AEC)

  16. Estimated dose to man from uranium milling via the terrestrial food-chain pathway

    SciTech Connect

    Rayno, D.R.

    1982-01-01

    One of the major pathways of radiological exposure to man from uranium milling operations is through the terrestrial food chain. Studies by various investigators have shown the extent of uptake and distribution of U-238, U-234, Th-230, Ra-226, Pb-210, and Po-210 in plants and animals. These long-lived natural radioisotopes, all nuclides of the uranium decay series, are found in concentrated amounts in uranium mill tailings. Data from these investigations are used to estimate the dose to man from consumption of beef and milk contaminated by the tailings. This dose estimate from this technologically enhanced source is compared with that from average normal dietary intake of these radionuclides from natural sources.

  17. Remediation of uranium mill tailings by an integrated biological and chemical process

    SciTech Connect

    Torma, A.E.

    1992-01-01

    Dilute calcium chloride brine solution was found to be effective in the solubilization of toxic heavy metals and long half-life radionuclides (Th-230, Ra-226 and Pb-210) from uranium ores and mill tailings. The recovery of heavy metals and radionuclides from uranium mill tailing effluents was studied with calcium alginate beads. The maximum cadmium and zinc uptakes by calcium alginate beads were determined to be 2.8 [times] 10[sup [minus]3] and 2.3 [times] 10[sup [minus]3] mol/dry weight of alginate. The kinetic values, V[sub m] and K, were calculated for uranium uptake by calcium alginate to be 96.2 mg/l/s and 0.125 g/l, respectively.

  18. Remediation of uranium mill tailings by an integrated biological and chemical process

    SciTech Connect

    Torma, A.E.

    1992-12-31

    Dilute calcium chloride brine solution was found to be effective in the solubilization of toxic heavy metals and long half-life radionuclides (Th-230, Ra-226 and Pb-210) from uranium ores and mill tailings. The recovery of heavy metals and radionuclides from uranium mill tailing effluents was studied with calcium alginate beads. The maximum cadmium and zinc uptakes by calcium alginate beads were determined to be 2.8 {times} 10{sup {minus}3} and 2.3 {times} 10{sup {minus}3} mol/dry weight of alginate. The kinetic values, V{sub m} and K, were calculated for uranium uptake by calcium alginate to be 96.2 mg/l/s and 0.125 g/l, respectively.

  19. Uranium mining and milling work force characteristics in the western US

    SciTech Connect

    Rapp, D.A.

    1980-12-01

    This report presents the results of a survey of the socioeconomic characteristics associated with 11 uranium mine and mill operations in 5 Western States. Comparisons are made with the socioeconomic characteristics of construction and operating crews for coal mines and utility plants in eight Western States. Worker productivity also is compared with that in similar types of coal and uranium mining operations. We found that there existed no significant differences between the socioeconomic characteristics of construction and operating crews and the secondary employment impacts associated with uranium mines and mills when compared with those associated with coal mines and utility plants requiring similar skills at comparable locations. In addition, our survey includes a comparison of several characteristics associated with the households of basic and nonbasic work forces and concludes that significant changes have occurred in the last 5 yr. Accordingly, we recommend additional monitoring and updating of data used in several economic forecasting models to avoid unwarranted delays in achieving national energy goals.

  20. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    SciTech Connect

    1995-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.

  1. Reconnaissance soil geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont County, Wyoming

    USGS Publications Warehouse

    Smith, David B.; Sweat, Michael J.

    2012-01-01

    Soil samples were collected and chemically analyzed from the Riverton Uranium Mill Tailings Remedial Action Site, which lies within the Wind River Indian Reservation in Fremont County, Wyoming. Nineteen soil samples from a depth of 0 to 5 centimeters were collected in August 2011 from the site. The samples were sieved to less than 2 millimeters and analyzed for 44 major and trace elements following a near-total multi-acid extraction. Soil pH was also determined. The geochemical data were compared to a background dataset consisting of 160 soil samples previously collected from the same depth throughout the State of Wyoming as part of another ongoing study by the U.S. Geological Survey. Risk from potentially toxic elements in soil from the site to biologic receptors and humans was estimated by comparing the concentration of these elements with soil screening values established by the U.S. Environmental Protection Agency. All 19 samples exceeded the carcinogenic human health screening level for arsenic in residential soils of 0.39 milligrams per kilogram (mg/kg), which represents a one-in-one-million cancer risk (median arsenic concentration in the study area is 2.7 mg/kg). All 19 samples also exceeded the lead and vanadium screening levels for birds. Eighteen of the 19 samples exceeded the manganese screening level for plants, 13 of the 19 samples exceeded the antimony screening level for mammals, and 10 of 19 samples exceeded the zinc screening level for birds. However, these exceedances are also found in soils at most locations in the Wyoming Statewide soil database, and elevated concentrations alone are not necessarily cause for alarm. Uranium and thorium, two other elements of environmental concern, are elevated in soils at the site as compared to the Wyoming dataset, but no human or ecological soil screening levels have been established for these elements.

  2. Characterization of molybdenum interfacial crud in a uranium mill that employs tertiary-amine solvent extraction

    SciTech Connect

    Moyer, B.; McDowell, W.J.

    1983-01-01

    In the present work, samples of a molybdenum-caused green gummy interfacial crud from an operating western US uranium mill have been physically and chemically examined. Formaton of cruds of this description has been a long-standing problem in the use of tertiary amine solvent extraction for the recovery of uranium from low-grade ores (Amex Process). The crud is essentially an organic-continuous dispersion containing about 10 wt % aqueous droplets and about 37 wt % greenish-yellow crystalline solids suspended in kerosene-amine process solvent. The greenish-yellow crystals were found to be a previously unknown double salt of tertiary amine molybdophosphate with three tertiary amine chlorides having the empirical formula (R/sub 3/NH)/sub 3/(PMo/sub 12/O/sub 40/).3(R/sub 3/NH)Cl. To confirm the identification of the compound, a pure trioctylamine (TOA) analog was synthesized. In laboratory extraction experiments, it was demonstrated that organic-soluble amine molydophosphate forms slowly upon contact of TOA solvent with dilute sulfuric acid solutions containing low concentrations of molybdate and phosphate. If the organic solutions of amine molybdophosphate were then contacted with aqueous NaCl solutions, a greenish-yellow precipitate of (TOAH)/sub 3/(PMo/sub 12/O/sub 40/).3(TOAH)Cl formed at the interface. The proposed mechanism for the formation of the crud under process conditions involves build up of molybdenum in the solvent, followed by reaction with extracted phosphate to give dissolved amine molybdophosphate. The amine molybdophosphate then co-crystallizes with amine chloride, formed during the stripping cycle, to give the insoluble double salt, which precipitates as a layer of small particles at the interface. The proposed solution to the problem is the use of branched-chain, instead of straight-chain, tertiary amine extractants under the expectation that branching would increase the solubility of the double salt. 2 figures, 5 tables.

  3. Evaluation and application of anion exchange resins to measure groundwater uranium flux at a former uranium mill site.

    PubMed

    Stucker, Valerie; Ranville, James; Newman, Mark; Peacock, Aaron; Cho, Jaehyun; Hatfield, Kirk

    2011-10-15

    Laboratory tests and a field validation experiment were performed to evaluate anion exchange resins for uranium sorption and desorption in order to develop a uranium passive flux meter (PFM). The mass of uranium sorbed to the resin and corresponding masses of alcohol tracers eluted over the duration of groundwater installation are then used to determine the groundwater and uranium contaminant fluxes. Laboratory based batch experiments were performed using Purolite A500, Dowex 21K and 21K XLT, Lewatit S6328 A resins and silver impregnated activated carbon to examine uranium sorption and extraction for each material. The Dowex resins had the highest uranium sorption, followed by Lewatit, Purolite and the activated carbon. Recoveries from all ion exchange resins were in the range of 94-99% for aqueous uranium in the environmentally relevant concentration range studied (0.01-200 ppb). Due to the lower price and well-characterized tracer capacity, Lewatit S6328 A was used for field-testing of PFMs at the DOE UMTRA site in Rifle, CO. The effect on the flux measurements of extractant (nitric acid)/resin ratio, and uranium loading were investigated. Higher cumulative uranium fluxes (as seen with concentrations>1 ug U/gram resin) yielded more homogeneous resin samples versus lower cumulative fluxes (<1 ug U/gram resin), which caused the PFM to have areas of localized concentration of uranium. Resin homogenization and larger volume extractions yield reproducible results for all levels of uranium fluxes. Although PFM design can be improved to measure flux and groundwater flow direction, the current methodology can be applied to uranium transport studies. PMID:21798572

  4. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 2: Small mammal food chains and bioavailability

    SciTech Connect

    Thomas, P.A.

    2000-06-01

    Food chain transfer through the soil-vegetation-small mammal food chain was measured by concentration ratios (CRs) for uranium, {sup 226}Ra, {sup 210}Pb, and {sup 210}Po at three sites near the Key Lake uranium mill in northern Saskatchewan. Plant/soil CRs, animal carcass/GI tract CRs, and animal/soil CRs were depressed at sites impacted by mill and tailings dusts relative to a nearby control site. Thus, radionuclides associated with large particulates in tailings and/or ore dusts may be less bioavailable to terrestrial plants and animals than natural sources of radioactive dust. These results show that reliance on default food chain transfer parameters, obtained from uncontaminated terrestrial ecosystems, may overpredict impacts at uranium mine and mill sites. Given the omnivorous diet of small mammals and birds, animal/soil CRs are recommended as the most cost-effective and robust means of predicting animal concentrations from environmental monitoring data at uranium mill facilities.

  5. Asphalt emulsion sealing of uranium mill tailings. 1980 annual report

    SciTech Connect

    Hartley, J.N.; Koehmstedt, P.L; Esterl, D.J.; Freeman, H.D.; Buelt, J.L.; Nelson, D.A.; Elmore, M.R.

    1981-05-01

    Studies of asphalt emulsion sealants conducted by the Pacific Northwest Laboratory have demonstrated that the sealants are effective in containing radon and other potentially hazardous material within uranium tailings. The laboratory and field studies have further demonstrated that radon exhalation from uranium tailings piles can be reduced by greater than 99% to near background levels. Field tests at the tailings pile in Grand Junction, Colorado, confirmed that an 8-cm admix seal containing 22 wt% asphalt could be effectively applied with a cold-mix paver. Other techniques were successfully tested, including a soil stabilizer and a hot, rubberized asphalt seal that was applied with a distributor truck. After the seals were applied and compacted, overburden was applied over the seal to protect the seal from ultraviolet degradation.

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    SciTech Connect

    Not Available

    1994-09-01

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment.

  7. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    SciTech Connect

    Not Available

    1994-09-01

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.

  8. Release of 226Ra from uranium mill tailings by microbial Fe(III) reduction

    USGS Publications Warehouse

    Landa, E.R.; Phillips, E.J.P.; Lovley, D.R.

    1991-01-01

    Uranium mill tailings were anaerobically incubated in the presence of H2 with Alteromonas putrefaciens, a bacterium known to couple the oxidation of H2 and organic compounds to the reduction of Fe(III) oxides. There was a direct correlation between the extent of Fe(III) reduction and the accumulation of dissolved 226Ra. In sterile tailings in which Fe(III) was not reduced, there was negligible leaching of 226Ra. The behavior of Ba was similar to that of Ra in inoculated and sterile systems. These results demonstrate that under anaerobic conditions, microbial reduction of Fe(III) may result in the release of dissolved 226Ra from uranium mill tailings. ?? 1991.

  9. Review of Design Approaches Applicable to Dewatering Uranium Mill Tailings Disposal Pits

    SciTech Connect

    Gutknecht, P. J.; Gates, T. E.

    1982-03-01

    This report is a review of design approaches in the literature that may be applicable to uranium mill tailings drainage. Tailings dewatering is required in the deep mined-out pits used for wet tailings disposal. Agricultural drainage theory is reviewed because it is seen as the most applicable technology. It is concluded that the standard drain-pipe envelope design criteria should be easily adapted. The differences in dewatering objectives and physical characteristics between agricultural and tailings drainage systems prevent direct technology transfer with respect to drain spacing calculations. Recommendations for further research are based on the drainage features unique to uranium mill tailings. It is recommended that transient solutions be applied to describe liquid movement through saturated and partially saturated tailings. Modeling should be used to evaluate the benefits of drainage design approaches after careful consideration of potential construction problems.

  10. Asphalt emulsion radon barrier systems for uranium mill tailings: an overview of the technology

    SciTech Connect

    Baker, E.G.; Hartley, J.N.; Freeman, H.D.; Gates, T.E.; Nelson, D.A.; Dunning, R.L.

    1984-03-01

    Pacific Northwest Laboratory (PNL), under contract to the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) office, has developed an asphalt emulsion cover system to reduce the release of radon from uranium mill tailings. The system has been field tested at Grand Junction, Colorado. Results from laboratory and field tests indicate that this system is effective in reducing radon release to near-background levels (<2.5 pCi m/sup -2/s/sup -1/) and has the properties required for long-term effectiveness and stability. Engineering specifications have been developed, and analysis indicates that asphalt emulsion covers are cost-competitive with other cover systems. This report summarizes the technology for asphalt emulsion radon barrier systems. 59 references, 45 figures, 36 tables.

  11. Revegetation and rock cover for stabilization of inactive uranium mill tailings disposal sites. Final report

    SciTech Connect

    Beedlow, P.A.

    1984-05-01

    Guidelines for using vegetation and rock to protect inactive uranium mill tailings from erosion were developed by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology Development program. Information on soils, climate, and vegetation were collected for 20 inactive tailings sites in the western United States. Sites were grouped according to similarities in climate and vegetation. Soil loss for those sites was characterized using the Universal Soil Loss Equation. Test plots were used to evaluate (1) the interaction between vegetation and sealant barrier systems and (2) the effects of surface rock on soil water and vegetation. Lysimeter and simulation studies were used to direct and support field experiments. 49 references, 17 figures, 16 tables.

  12. Finding of No Significant Impact, proposed remediation of the Maybell Uranium Mill Processing Site, Maybell, Colorado

    SciTech Connect

    Not Available

    1995-12-31

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0347) on the proposed surface remediation of the Maybell uranium mill processing site in Moffat County, Colorado. The mill site contains radioactively contaminated materials from processing uranium ore that would be stabilized in place at the existing tailings pile location. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, Public Law 91-190 (42 U.S.C. {section}4321 et seq.), as amended. Therefore, preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  13. Uranium Mill Tailings remedial action project waste minimization and pollution prevention awareness program plan

    SciTech Connect

    Not Available

    1994-07-01

    The purpose of this plan is to establish a waste minimization and pollution prevention awareness (WM/PPA) program for the U.S. Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The program satisfies DOE requirements mandated by DOE Order 5400.1. This plan establishes planning objectives and strategies for conserving resources and reducing the quantity and toxicity of wastes and other environmental releases.

  14. Technical framework for groundwater restoration. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect

    Not Available

    1991-04-01

    This document provides the technical framework for groundwater restoration under Phase II of the Uranium Mill Tailings Remedial Action (UMTRA) Project. A preliminary management plan for Phase II has been set forth in a companion document titled Preplanning Guidance Document for Groundwater Restoration''. General principles of site characterization for groundwater restoration, restoration methods, and treatment are discussed in this document to provide an overview of standard technical approaches to groundwater restoration.

  15. Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming

    SciTech Connect

    1997-02-01

    This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met.

  16. Scoping session of the programmatic environmental impact statement for the Uranium Mill Tailings Remedial Action Project

    SciTech Connect

    1992-12-31

    This document is about the scoping session which was held at the Community Center in Falls City, Texas. The purpose was to obtain public comment on the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Project (UMTRA), specifically on the ground water project. Presentations made by the manager for the entire UMTRA program, manager of the site and ground water program, comments made by two residents of Fall City are included in this document.

  17. Life Cycle Greenhouse Gas Emissions from Uranium Mining and Milling in Canada.

    PubMed

    Parker, David J; McNaughton, Cameron S; Sparks, Gordon A

    2016-09-01

    Life cycle greenhouse gas (GHG) emissions from the production of nuclear power (in g CO2e/kWh) are uncertain due partly to a paucity of data on emissions from individual phases of the nuclear fuel cycle. Here, we present the first comprehensive life cycle assessment of GHG emissions produced from the mining and milling of uranium in Canada. The study includes data from 2006-2013 for two uranium mine-mill operations in northern Saskatchewan (SK) and data from 1995-2010 for a third SK mine-mill operation. The mine-mill operations were determined to have GHG emissions intensities of 81, 64, and 34 kg CO2e/kg U3O8 at average ore grades of 0.74%, 1.54%, and 4.53% U3O8, respectively. The production-weighted average GHG emission intensity is 42 kg CO2e/kg U3O8 at an average ore grade of 3.81% U3O8. The production-weighted average GHG emission intensity drops to 24 kg CO2e/kg U3O8 when the local hydroelectric GHG emission factor (7.2 g CO2e/kWh) is substituted for the SK grid-average electricity GHG emission factor (768 g CO2e/kWh). This results in Canadian uranium mining-milling contributing only 1.1 g CO2e/kWh to total life cycle GHG emissions from the nuclear fuel cycle (0.7 g CO2e/kWh using the local hydroelectric emission factor). PMID:27471915

  18. Radiological survey of the inactive uranium-mill tailings at Rifle, Colorado

    SciTech Connect

    Haywood, F.F.; Jacobs, D.J.; Ellis, B.S.; Hubbard, H.M. Jr.; Shinpaugh, W.H.

    1980-06-01

    Results of radiological surveys of two inactive uranium-mill sites near Rifle, Colorado, in May 1976 are presented. These sites are referred to as Old Rifle and New Rifle. The calculated /sup 226/Ra inventory of the latter site is much higher than at the older mill location. Data on above-ground measurements of gamma exposure rates, surface and near-surface concentration of /sup 226/Ra in soil and sediment samples, concentration of /sup 226/Ra in water, calculated subsurface distribution of /sup 226/Ra, and particulate radionuclide concentrations in air samples are given. The data serve to define the extent of contamination in the vicinity of the mill sites and their immediate surrounding areas with tailings particles. Results of these measurements were utilized as technical input for an engineering assessment of these two sites.

  19. Assessment of the radiological impact of the inactive uranium-mill tailings at Mexican Hat, Utah

    SciTech Connect

    Haywood, F.F.; Goldsmith, W.A.; Ellis, B.S.; Hubbard, H.M. Jr.; Fox, W.F.; Shinpaugh, W.H.

    1980-03-01

    High surface soil concentrations of /sup 226/Ra and high above-ground measurements of gamma-ray intensity in the vicinity of the inactive uranium-mill tailings at Mexican Hat show both wind and water erosion of the tailings. The former mill area, occupied by a trade school at the time of this survey, shows a comparatively high level of contamination, probably from unprocessed ore on the surface of the ore storage area near the location of the former mill buildings. However, the estimated health effect of exposure to gamma rays during a 2000-hr work year in the area represents an increase of 0.1% in the risk of death from cancer. Exposure of less than 600 persons within 1.6 km of the tailings to radon daughters results in an estimated 0.2%/year increase in risk of lung cancer.

  20. Paleoclimatic data applications: Long-term performance of uranium mill tailings repositories

    SciTech Connect

    Waugh, W.J.; Petersen, K.L.

    1995-09-01

    Abandoned uranium mill tailings sites in the Four Corners region are a lasting legacy of the Cold War. The U.S. Department of Energy (DOE) is designing landfill repositories that will isolate hazardous constituents of tailings from biological intrusion, erosion, and the underlying aquifer for up to 1,000 years. With evidence of relatively rapid past climate change, and model predictions of global climatic variation exceeding the historical record, DOE recognizes a need to incorporate possible ranges of future climatic and ecological change in the repository design process. In the Four Corners region, the center of uranium mining and milling activities in the United States, proxy paleoclimatic records may be useful not only as a window on the past, but also as analogs of possible local responses to future global change. We reconstructed past climate change using available proxy data from tree rings, packrat middens, lake sediment pollen, and archaeological records. Interpretation of proxy paleoclimatic records was based on present-day relationships between plant distribution, precipitation, and temperature along a generalized elevational gradient for the region. For the Monticello, Utah, uranium mill tailings site, this first approximation yielded mean annual temperature and precipitation ranges of 2 to 10{degrees} C, and 38 to 80 cm, respectively, corresponding to late glacial and Altithermal periods. These data are considered to be reasonable ranges of future climatic conditions that can be input to evaluations of groundwater recharge, radon-gas escape, erosion, frost penetration, and biointrusion in engineered earthen barriers designed to isolate tailings.

  1. [Uranium Mill Tailings Remedial Action Project Office Quality Assurance Program Plan]. Revision 4

    SciTech Connect

    Not Available

    1992-06-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites in accordance with Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRA Project`s mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. The US Department of Energy (DOE) UMTRA Project Office (UMTRA PO) directs the overall project. Since these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria (set forth in the reference documents) has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. The UMTRA PO shall require each Project contractor to prepare and submit for approval a more detailed QAPP that is based on the applicable criteria of this QAPP and the referenced documents. All QAPPs on the UMTRA Project shall fit within the framework of this plan.

  2. [Uranium Mill Tailings Remedial Action Project Office Quality Assurance Program Plan

    SciTech Connect

    Not Available

    1992-06-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites in accordance with Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRA Project's mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. The US Department of Energy (DOE) UMTRA Project Office (UMTRA PO) directs the overall project. Since these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria (set forth in the reference documents) has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. The UMTRA PO shall require each Project contractor to prepare and submit for approval a more detailed QAPP that is based on the applicable criteria of this QAPP and the referenced documents. All QAPPs on the UMTRA Project shall fit within the framework of this plan.

  3. Environmental factors affecting long-term stabilization of radon suppression covers for uranium mill tailings

    SciTech Connect

    Young, J.K.; Long, L.W.; Reis, J.W.

    1982-04-01

    Pacific Northwest Laboratory is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon suppression cover applied to uranium mill tailings. To help determine design stresses for the tailings piles, environmental parameters are characterized for the five active uranium-producing regions on a site-specific basis. Only conventional uranium mills that are currently operating or that are scheduled to open in the mid 1980s are considered. Available data indicate that flooding has the most potential for disrupting a tailings pile. The arid regions of the Wyoming Basins and the Colorado Plateau are subject to brief storms of high intensity. The Texas Gulf Coast has the highest potential for extreme precipitation from hurricane-related storms. Wind data indicate average wind speeds from 3 to 6 m/sec for the sites, but extremes of 40 m/sec can be expected. Tornado risks range from low to moderate. The Colorado Plateau has the highest seismic potential, with maximum acceleration caused by earthquakes ranging from 0.2 to 0.4 g. Any direct effect from volcanic eruption is negligible, as all mills are located 90 km or more from an igneous or hydrothermal system.

  4. Investigation of contamination of earthen covers on inactive uranium mill tailings

    SciTech Connect

    Markos, G.; Bush, K.J.

    1983-01-01

    The upward migration of contaminants into earthen covers on uranium mill tailings was evaluated from chemical and isotopic analysis of samples from 5--10 cm intervals through the cover and into the tailings at three locations on the Riverton pile. The Uranium Mill Tailings Remedial Action Project elected to determine the significance of migration of salts and contaminants into earthen covers emplaced on tailings by funding this investigation of the migration which has occurred through an earthen cover since the time of emplacement on an inactive uranium mill tailings pile. The Riverton tailings pile, covered with 20 to 40 cm of local sandy soil, was chosen for the study. The objectives of the study were to: determine vertical distributions of concentrations of salts, trace metals, and radionuclides through the cover and into the tailings; determine the concentrations of salts and contaminants in the cover from chemical migration; relate the migration of salts to the contaminants; model the mechanisms responsible for promoting and retarding migration; and evaluate the chemical and physical properties of the cover influencing migration. 20 refs., 35 figs., 10 tabs.

  5. Radon diffusion in candidate soils for covering uranium mill tailings

    SciTech Connect

    Silker, W.B.; Kalkwarf, D.R.

    1983-04-01

    Diffusion coefficients were measured for radon in 34 soils that had been identified by mill personnel as candidate covers for their tailings piles in order to reduce radon emission. These coefficients referred to diffusion in the total pore space of the soils. They were measured in the laboratory by a steady-state method using soil columns compacted to greater than 80% of their Proctor maximum packing densities but with moisture contents generally less than would be expected at a tailings site. An empirical equation was used to extrapolate measured coefficients to value expected at soil-moisture contents representative of tailings sites in the western United States. Extrapolated values for silty sands and clayey sands ranged from 0.004 to 0.06 cm/sup 2//s. Values for inorganic silts and clays ranged from 0.001 to 0.02 cm/sup 2//s.

  6. PROCESS FOR RECOVERING URANIUM FROM AQUEOUS PHOSPHORIC ACID LIQUORS

    DOEpatents

    Schmitt, J.M.

    1962-09-01

    A liquid-liquid extraction method is given for recovering uranium values from aqueous solutions. An acidic aqueous solution containing uranium values is contacted with an organic phase comprising an organic diluent and the reaction product of phosphorous pentoxide and a substantially pure dialkylphosphoric acid. The uranium values are transferred to the organic phase even from aqueous solutions containing a high concentration of strong uranium complexing agents such as phosphate ions. (AEC)

  7. Milling and Baking Quality of Low Phytic Acid Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low phytic acid (LPA) wheat (Triticum aestivum L.) is one approach to improving nutritional quality of wheat by reducing the major storage form of phosphorus and increasing the level of inorganic phosphorus, which is more readily absorbed by humans and other monogastric animals. Milling and baking ...

  8. The Amino Acid Composition of the Sutter's Mill Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Burton, A. S.; Elsila, J. E.; Dworkin, J. P.; Yin, Q. Z.; Cooper, G.; Jenniskens, P.

    2012-01-01

    In contrast to the Murchison meteorite which had a complex distribution of amino acids with a total C2 to Cs amino acid abundance of approx.14,000 parts-per-billion (ppb) [2], the Sutters Mill meteorite was found to be highly depleted in amino acids. Much lower abundances (approx.30 to 180 ppb) of glycine, beta-alanine, L-alanine and L-serine were detected in SM2 above procedural blank levels indicating that this meteorite sample experienced only minimal terrestrial amino acid contamination after its fall to Earth. Carbon isotope measurements will be necessary to establish the origin of glycine and beta-alanine in SM2. Other non-protein amino acids that are rare on Earth, yet commonly found in other CM meteorites such as aaminoisobutyric acid (alpha-AIB) and isovaline, were not identified in SM2. However, traces of beta-AIB (approx.1 ppb) were detected in SM2 and could be" extraterrestrial in origin. The low abundances of amino acids in the Sutter's Mill meteorite is consistent with mineralogical evidence that at least some parts of the Sutter's Mill meteorite parent body experienced extensive aqueous and/or thermal alteration.

  9. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 3: Atmospheric deposition rates (pilot test)

    SciTech Connect

    Thomas, P.A.

    2000-06-01

    Atmospheric deposition rates of uranium series radionuclides were directly measured at three sites near the operating Key Lake uranium mill in northern Saskatchewan. Sites impacted by windblown tailings and mill dusts had elevated rates of uranium deposition near the mill and elevated {sup 226}Ra deposition near the tailings compared to a control site. Rainwater collectors, dust jars, and passive vinyl collectors previously used at the Ranger Mine in Australia were pilot-tested. Adhesive vinyl surfaces (1 m{sup 2}) were oriented horizontally, vertically, and facing the ground as a means of measuring gravitational settling, wind impaction, and soil resuspension, respectively. Although the adhesive glue on the vinyls proved difficult to digest, relative differences in deposition mode were found among radionuclides and among sites. Dry deposition was a more important transport mechanism for uranium, {sup 226}Ra, and {sup 210}Pb than rainfall, while more {sup 210}Po was deposited with rainfall.

  10. Summary of the engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado

    SciTech Connect

    1981-09-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U/sub 3/O/sub 8/ whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future.

  11. Engineering assessment of inactive uranium mill tailings: Phillips/United Nuclear site, Ambrosia Lake, New Mexico

    SciTech Connect

    1981-10-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Phillips/United Nuclear site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ambrosia Lake, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from 2.6 million dry tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,500,000 for stabilization in-place, to about $45,200,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Phillips/United Nuclear tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing.The cost of the uranium recovered would be about $87/lb of U/sub 3/O/sub 8/ by either heap leach or conventional plant process. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Phillips/United Nuclear tailings for uranium recovery does not appear to be economically attractive under present or foreseeable market conditions.

  12. Engineering assessment of inactive uranium mill tailings, Shiprock site, Shiprock, New Mexico

    SciTech Connect

    Not Available

    1981-07-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Shiprock site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Shiprock, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.5 million dry tons of tailings at the Shiprock site constitutes the most significant environental impact, although windblown tailings and external gamma radiation also are factors. The eight alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $13,400,000 for stabilization in place to about $37,900,000 for disposal at a distance of about 16 miles. Three principal alternatives for the reprocessing of the Shiprock tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $230/lb by heap leach and $250/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive.

  13. Engineering assessment of inactive uranium mill tailings: Mexican Hat site, Mexican Hat, Utah. Summary

    SciTech Connect

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Mexican Hat site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Mexican Hat, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.2 million tons of tailings at the Mexican Hat site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $15,200,000 for stabilization in place, to about $45,500,000 for disposal at a distance of about 16 mi. Three principal alternatives for the reprocessing of the Mexican Hat tailings were examined: (a) heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $115/lb of U/sub 3/O/sub 8/ whether by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Mexican Hat tailings for uranium recovery is not economically attractive under present conditions.

  14. Summary of the engineering assessment of inactive uranium mill tailings: Monument Valley site, Monument Valley, Arizona

    SciTech Connect

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching, treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be more than $500/lb of U/sub 3/O/sub 8/ by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is economically unattractive.

  15. Engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado

    SciTech Connect

    1981-09-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U/sub 3/O/sub 8/ whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future.

  16. Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado

    SciTech Connect

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present.

  17. Engineering assessment of inactive uranium mill tailings: Mexican Hat Site, Mexican Hat, Utah

    SciTech Connect

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Mexican Hat site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Mexican Hat, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.2 million tons of tailings at the Mexican Hat site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $15,200,000 for stabilization in place, to about $45,500,000 for disposal at a distance of about 16 mi. Three principal alternatives for the reprocessing of the Mexican Hat tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $115/lb of U/sub 3/O/sub 8/ whether by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Mexican Hat tailings for uranium recovery is not economically attractive under present conditions.

  18. Summary of the engineering assessment of inactive uranium mill tailings, Shiprock Site, Shiprock, New Mexico

    SciTech Connect

    1981-07-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Shiprock site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Shiprock, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.5 million dry tons of tailings at the Shiprock site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The eight alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of the stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $13,400,000 for stabilization in place to about $37,900,000 for disposal at a distance of about 16 miles. Three principal alternatives for the reprocessing of the Shiprock tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and(c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $230/lb by heap leach and $250/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive.

  19. Radioecological investigations of uranium mill tailing systems. Sixth technical progress report, October 1, 1984-September 30, 1985

    SciTech Connect

    Whicker, F.W.; Ibrahim, S.A.

    1985-10-31

    This report provides a status report on studies of the integrity and transport of several radionuclides in active and reclaimed uranium mill tailings. The program is designed to provide basic information on the radioecology of uranium and progeny, responses of native biota to the landscape disruptions associated with uranium production, and guidance for impact analysis, mitigation and regulation of the uranium industry. The studies reported are being conducted at the Shirley Basin Uranium Mine, which is operated by the Pathfinder Mines Corporation. The mine/mill operation, located in southeastern Wyoming, is typical in terms of the ore body, mill process, and ecological setting of many uranium production centers in the western United States. The intent has been to quantitatively evaluate the release of important radionuclides from active and reclaimed uranium mill tailings and their entry into the food chain. An experimental plot was developed in which a uniform slab of tailings was covered with various depths of earthen materials and seeded with native range vegetation. Performance of this vegetation is monitored annually. The ability of roots to function in or near buried tailings is under long-term study as well. Experiments on radon flux versus overburden depth have been conducted and these are continuing with emphasis on understanding the role of soil moisture and climatic variables. Experimental colonies of prairie dogs were introduced to the tailings reclamation plot. The resulting disruptive effects in terms of soil movement, transport of radionuclides and the impact on radon emanation have been studied and reported.

  20. Reconstruction of atmospheric concentrations and deposition of uranium and decay products released from the former uranium mill at Uravan, Colorado.

    PubMed

    Rood, Arthur S; Voillequé, Paul G; Rope, Susan K; Grogan, Helen A; Till, John E

    2008-08-01

    Radionuclide concentrations in air from uranium milling emissions were estimated for the town of Uravan, Colorado, USA and the surrounding area for a 49-yr period of mill operations beginning in 1936 and ending in 1984. Milling processes with the potential to emit radionuclides to the air included crushing and grinding of ores; conveyance of ore; ore roasting, drying, and packaging of the product (U(3)O(8)); and fugitive dust releases from ore piles, tailings' piles, and roads. The town of Uravan is located in a narrow canyon formed by the San Miguel River in western Colorado. Atmospheric transport modeling required a complex terrain model. Because historical meteorological data necessary for a complex terrain model were lacking, meteorological instruments were installed, and relevant data were collected for 1 yr. Monthly average dispersion and deposition factors were calculated using the complex terrain model, CALPUFF. Radionuclide concentrations in air and deposition on ground were calculated by multiplying the estimated source-specific release rate by the dispersion or deposition factor. Time-dependent resuspension was also included in the model. Predicted concentrations in air and soil were compared to measurements from continuous air samplers from 1979 to 1986 and to soil profile sampling performed in 2006. The geometric mean predicted-to-observed ratio for annual average air concentrations was 1.25 with a geometric standard deviation of 1.8. Predicted-to-observed ratios for uranium concentrations in undisturbed soil ranged from 0.67 to 1.22. Average air concentrations from 1936 to 1984 in housing blocks ranged from about 2.5 to 6 mBq m(-3) for (238)U and 1.5 to 3.5 mBq m(-3) for (230)Th, (226)Ra, and (210)Pb. PMID:18448213

  1. Evaluation of liners for a uranium-mill tailings disposal site: a status report

    SciTech Connect

    Buelt, J.L.; Hale, V.Q.; Barnes, S.M.; Silviera, D.J.

    1981-05-01

    The United States Department of Energy is conducting a program designed to reclaim or stabilize inactive uranium-mill tailings sites. This report presents the status of the Liner Evaluation Program. The purpose of the study was to identify eight prospective lining materials or composites for laboratory testing. The evaluation was performed by 1) reviewing proposed regulatory requirements to define the material performance criteria; 2) reviewing published literature and communicating with industrial and government experts experienced with lining materials and techniques; and 3) characterizing the tailings at three of the sites for calcium concentration, a selection of anions, radionuclides, organic solvents, and acidity levels. The eight materials selected for laboratory testing are: natural soil amended with sodium-saturated montmorillonite (Volclay); locally available clay in conjunction with an asphalt emulsion radon suppression cover; locally available clay in conjunction with a multibarrier radon suppression cover; rubberized asphalt membrane; hydraulic asphalt concrete; chlorosulfonated polyethylene (hypalon) or high-density polyethylene; bentonite, sand and gravel mixture; and catalytic airblown asphalt membrane. The materials will be exposed in test units now being constructed to conditions such as wet/dry cycles, temperature cycles, oxidative environments, ion-exchange elements, etc. The results of the tests will identify the best material for field study. The status report also presents the information gathered during the field studies at Grand Junction, Colorado. Two liners, a bentonite, sand and gravel mixture, and a catalytic airblown asphalt membrane, were installed in a prepared trench and covered with tailings. The liners were instrumented and are being monitored for migration of moisture, radionuclides, and hazardous chemicals. The two liner materials will also be subjected to accelerated laboratory tests for a comparative assessment.

  2. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    SciTech Connect

    Not Available

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  3. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado. [UMTRA Project

    SciTech Connect

    Bachrach, A.; Hoopes, J.; Morycz, D. ); Bone, M.; Cox, S.; Jones, D.; Lechel, D.; Meyer, C.; Nelson, M.; Peel, R.; Portillo, R.; Rogers, L.; Taber, B.; Zelle, P. , Inc., Washington, DC ); Rice, G. )

    1984-12-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated (vicinity) properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed.

  4. Environmental assessment of remedial action at the Tuba City uranium mill tailings site, Tuba City, Arizona

    SciTech Connect

    1986-11-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Tuba City uranium mill tailings site located approximately six miles east of Tuba City, Arizona. The site covers 105 acres and contains 25 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR Part 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at a more remote location. The no action alternative is also assessed in this document.

  5. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado

    SciTech Connect

    Not Available

    1995-02-01

    This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.

  6. An aerial radiological survey of the Durango, Colorado uranium mill tailings site and surrounding area

    SciTech Connect

    Hilton, L.K.

    1981-06-01

    An aerial radiological survey of Durango, Colorado, including the inactive uranium mill tailings piles located southwest of the town, was conducted during August 25--29, 1980, for the Department of Energy's Environmental and Safety Engineering Division. Areas of radiation exposure rates higher than the local background, which was about 15 microrentgens per hour ({mu}R/h), were observed directly over and to the south of the mill tailings piles, over a cemetery, and at two spots near the fairgrounds. The rapidly changing radiation exposure rates at the boundaries of the piles preclude accurate extrapolation of aerial radiological data to ground level exposure rates in their immediate vicinity. Estimated radiation exposure rates close to the piles, however, approached 30 times background, or about 450 {mu}R/h. Radiation exposure rates in a long area extending south from the tailings piles were about 25 {mu}R/h.

  7. Swim performance and energy homeostasis in spottail shiner (Notropis hudsonius) collected downstream of a uranium mill.

    PubMed

    Goertzen, Meghan M; Hauck, Dominic W; Phibbs, James; Weber, Lynn P; Janz, David M

    2012-01-01

    The Key Lake uranium milling operation (Saskatchewan, Canada) releases complex effluent into the local watershed. The objective of the current study was to investigate whether fish from an effluent-receiving waterbody exhibited differences in swimming performance and energy homeostasis compared to fish from a local reference site. Juvenile spottail shiner (Notropis hudsonius) were collected from a lake downstream of the uranium mill, and compared to fish collected from a nearby reference lake. Critical swimming speed (U(crit); fatigue velocity), tail beat frequency, and tail amplitude did not differ significantly when comparing fish collected from the exposure lake and reference lake. Captured shiner used in swim tests were considered fatigued, and metabolic endpoints were compared between this group and non-fatigued fish, which were treated similarly but not subjected to swim tests. In both non-fatigued and fatigued shiner, liver glycogen was significantly greater in fish collected from the exposure lake compared to the reference lake. However, it is unclear if this effect, and others related to condition, were the result of contaminant exposure or other environmental factors. While there were no differences in plasma lactate, hematocrit or liver triglycerides in non-fatigued fish between sites, only fatigued reference fish had increased lactate and hematocrit and decreased triglycerides. In non-fatigued fish, plasma glucose did not significantly differ between sites, but significantly decreased after swimming only in fish from the exposure lake. In summary, shiner from the exposure site demonstrated similar swim endurance and possessed greater energy stores despite metabolic alterations compared to shiner from the reference site. Therefore, because fish collected downstream of the uranium mill operation had similar swimming ability as fish from the reference lake, U(crit) test results presented here may not reflect or be indicative of metabolic effects of complex

  8. Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado

    SciTech Connect

    Not Available

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section} 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use.

  9. Refining the site conceptual model at a former uranium mill site in Riverton, Wyoming, USA

    DOE PAGESBeta

    Dam, William; Campbell, Sam; Johnson, Ray; Looney, Brian; Denham, Miles E.; Eddy-Dilek, Carol A.; Babits, Steven J.

    2015-07-07

    Milling activities at a former uranium mill site near Riverton, Wyoming, USA, contaminated the shallow groundwater beneath and downgradient of the site. Although the mill operated for <6 years (1958-1963), its impact remains an environmental liability. Groundwater modeling predicted that contaminant concentrations were declining steadily, which confirmed the conceptual site model (CSM). However, local flooding in 2010 mobilized contaminants that migrated downgradient from the Riverton site and resulted in a dramatic increase in groundwater contaminant concentrations. This observation indicated that the original CSM was inadequate to explain site conditions and needed to be refined. In response to the new observationsmore » after the flood, a collaborative investigation to better understand site conditions and processes commenced. This investigation included installing 103 boreholes to collect soil and groundwater samples, sampling and analysis of evaporite minerals along the bank of the Little Wind River, an analysis of evaportranspiration in the shallow aquifer, and sampling naturally organic-rich sediments near groundwater discharge areas. The enhanced characterization revealed that the existing CSM did not account for high uranium concentrations in groundwater remaining on the former mill site and groundwater plume stagnation near the Little Wind River. Observations from the flood and subsequent investigations indicate that additional characterization is still needed to continue refining the CSM and determine the viability of the natural flushing compliance strategy. Additional sampling, analysis, and testing of soil and groundwater are necessary to investigate secondary contaminant sources, mobilization of contaminants during floods, geochemical processes, contaminant plume stagnation, distribution of evaporite minerals and organic-rich sediments, and mechanisms and rates of contaminant transfer from soil to groundwater. Future data collection will be used to

  10. Refining the site conceptual model at a former uranium mill site in Riverton, Wyoming, USA

    SciTech Connect

    Dam, William; Campbell, Sam; Johnson, Ray; Looney, Brian; Denham, Miles E.; Eddy-Dilek, Carol A.; Babits, Steven J.

    2015-07-07

    Milling activities at a former uranium mill site near Riverton, Wyoming, USA, contaminated the shallow groundwater beneath and downgradient of the site. Although the mill operated for <6 years (1958-1963), its impact remains an environmental liability. Groundwater modeling predicted that contaminant concentrations were declining steadily, which confirmed the conceptual site model (CSM). However, local flooding in 2010 mobilized contaminants that migrated downgradient from the Riverton site and resulted in a dramatic increase in groundwater contaminant concentrations. This observation indicated that the original CSM was inadequate to explain site conditions and needed to be refined. In response to the new observations after the flood, a collaborative investigation to better understand site conditions and processes commenced. This investigation included installing 103 boreholes to collect soil and groundwater samples, sampling and analysis of evaporite minerals along the bank of the Little Wind River, an analysis of evaportranspiration in the shallow aquifer, and sampling naturally organic-rich sediments near groundwater discharge areas. The enhanced characterization revealed that the existing CSM did not account for high uranium concentrations in groundwater remaining on the former mill site and groundwater plume stagnation near the Little Wind River. Observations from the flood and subsequent investigations indicate that additional characterization is still needed to continue refining the CSM and determine the viability of the natural flushing compliance strategy. Additional sampling, analysis, and testing of soil and groundwater are necessary to investigate secondary contaminant sources, mobilization of contaminants during floods, geochemical processes, contaminant plume stagnation, distribution of evaporite minerals and organic-rich sediments, and mechanisms and rates of contaminant transfer from soil to groundwater. Future data collection will be used to

  11. Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming

    SciTech Connect

    1987-06-01

    The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required.

  12. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    SciTech Connect

    Not Available

    1994-02-01

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE`s overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program.

  13. Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado

    SciTech Connect

    Not Available

    1993-09-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands assessment (Assessment 2) are included as part of this EA. The following sections and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service.

  14. Radiologic characterization of the Mexican Hat, Utah, uranium mill tailings remedial action site: Addendum D1

    SciTech Connect

    Ludlam, J.R.

    1985-01-01

    This radiologic characterization of the inactive uranium millsite at Mexican Hat, Utah, was conducted by Bendix Field Engineering Corporation for the US Department of Energy (DOE), Grand Junctions Project Office in response to and in accord with a Statement of Work prepared by the DOE Uranium Mill Tailings Remedial Action Project (UMTRAP) Technical Assistance Contractor, Jacobs Engineering Group, Inc. The objective of this project was to determine the horizontal and vertical extent of contamination that exceeds the US Environmental Protection Agency (EPA) standards at the Mexican Hat site. The data presented in this report are required for characterization of the areas adjacent to the Mexican Hat tailings piles and for the subsequent design of cleanup activities. Some on- pile sampling was required to determine the depth of the 15-pCi/g Ra- 226 interface in an area where wind and water erosion has taken place.

  15. Uranium Mill Tailings Remedial Action Project fiscal year 1997 annual report to stakeholders

    SciTech Connect

    1997-12-31

    The fiscal year (FY) 1997 annual report is the 19th report on the status of the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. In 1978, Congress directed the DOE to assess and clean up contamination at 24 designated former uranium processing sites. The DOE is also responsible for cleaning up properties in the vicinity of the sites where wind and water erosion deposited tailings or people removed them from the site for use in construction or landscaping. Cleanup has been undertaken in cooperation with state governments and Indian tribes within whose boundaries the sites are located. It is being conducted in two phases: the surface project and the groundwater project. This report addresses specifics about the UMTRA surface project.

  16. Fiscal year 1996 annual report to stakeholders, Uranium Mill Tailings Remedial Action Project

    SciTech Connect

    1996-10-01

    This is the Fiscal Year (FY) 1996 annual report on the status of the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. In 1978, Congress directed the DOE to assess and clean up contamination at 24 designated former uranium processing sites. The DOE is also responsible for cleaning up properties in the vicinity of the sites where wind and water erosion deposited tailings or people removed them from the site for use in construction of landscaping. Cleanup is being undertaken in cooperation with state governments and Indian tribes within whose boundaries the sites are located. It is being conducted in two phases: the surface project and the ground water project. This report addresses specifics about the surface phase of the UMTRA Project.

  17. Bioreduction of Uranium(VI) Complexed with Citric Acid by Clostridia Affects its Structure and Mobility

    SciTech Connect

    Francis, A.; Dodge, C

    2008-01-01

    Uranium contamination of the environment from mining and milling operations, nuclear-waste disposal, and ammunition use is a widespread global problem. Natural attenuation processes such as bacterial reductive precipitation and immobilization of soluble uranium is gaining much attention. However, the presence of naturally occurring organic ligands can affect the precipitation of uranium. Here, we report that the anaerobic spore-forming bacteria Clostridia, ubiquitous in soils, sediments, and wastes, capable of reduction of Fe(III) to Fe(II), Mn(IV) to Mn(II), U(VI) to U(IV), Pu(IV) to Pu(III), and Tc(VI) to Tc(IV); reduced U(VI) associated with citric acid in a dinuclear 2:2 U(VI):citric acid complex to a biligand mononuclear 1:2 U(IV):citric acid complex, which remained in solution, in contrast to reduction and precipitation of uranium. Our findings show that U(VI) complexed with citric acid is readily accessible as an electron acceptor despite the inability of the bacterium to metabolize the complexed organic ligand. Furthermore, it suggests that the presence of organic ligands at uranium-contaminated sites can affect the mobility of the actinide under both oxic and anoxic conditions by forming such soluble complexes.

  18. Bioreduction of uranium(VI) complexed with citric acid by Clostridia affects its structure and solubility.

    PubMed

    Francis, A J; Dodge, C J

    2008-11-15

    Uranium contamination of the environment from mining and milling operations, nuclear-waste disposal, and ammunition use is a widespread global problem. Natural attenuation processes such as bacterial reductive precipitation and immobilization of soluble uranium is gaining much attention. However, the presence of naturally occurring organic ligands can affect the precipitation of uranium. Here, we report that the anaerobic spore-forming bacteria Clostridia, ubiquitous in soils, sediments, and wastes, capable of reduction of Fe(III) to Fe(II), Mn(IV) to Mn(II), U(VI) to U(IV), Pu(IV) to Pu(III), and Tc(VI) to Tc(IV); reduced U(VI) associated with citric acid in a dinuclear 2:2 U(VI): citric acid complex to a biligand mononuclear 1:2 U(IV):citric acid complex,which remained in solution, in contrast to reduction and precipitation of uranium. Our findings show that U(VI) complexed with citric acid is readily accessible as an electron acceptor despite the inability of the bacterium to metabolize the complexed organic ligand. Furthermore, it suggests that the presence of organic ligands at uranium-contaminated sites can affect the mobility of the actinide under both oxic and anoxic conditions by forming such soluble complexes. PMID:19068806

  19. Solvent-extraction and purification of uranium(VI) and molybdenum(VI) by tertiary amines from acid leach solutions

    SciTech Connect

    La Gamma, Ana M.G.; Becquart, Elena T.; Chocron, Mauricio

    2008-07-01

    Considering international interest in the yellow-cake price, Argentina is seeking to exploit new uranium ore bodies and processing plants. A study of similar plants would suggest that solvent- extraction with Alamine 336 is considered the best method for the purification and concentration of uranium present in leaching solutions. In order to study the purification of these leach liquors, solvent-extraction tests under different conditions were performed with simulated solutions which containing molybdenum and molybdenum-uranium mixtures. Preliminary extraction tests carried out on mill acid-leaching liquors are also presented. (authors)

  20. Uptake of Uranium and Other Elements of Concern by Plants Growing on Uranium Mill Tailings Disposal Cells

    NASA Astrophysics Data System (ADS)

    Joseph, C. N.; Waugh, W.; Glenn, E.

    2015-12-01

    The U.S. Department of Energy (DOE) is responsible for long-term stewardship of disposal cells for uranium mill tailings throughout the United States. Rock-armored disposal cell covers create favorable habitat for deep-rooted plants by reducing soil evaporation, increasing soil water storage, and trapping windblown dust, thereby providing water and nutrients for plant germination and establishment. DOE is studying the tradeoffs of potential detrimental and beneficial effects of plants growing on disposal cell covers to develop a rational and consistent vegetation management policy. Plant roots often extend vertically through disposal cell covers into underlying tailings, therefore, uptake of tailings contaminants and dissemination through animals foraging on stems and leaves is a possible exposure pathway. The literature shows that plant uptake of contaminants in uranium mill tailings occurs, but levels can vary widely depending on plant species, tailings and soil chemistry, and cover soil hydrology. Our empirical field study measured concentrations of uranium, radium, thorium, molybdenum, selenium, manganese, lead, and arsenic in above ground tissues harvested from plants growing on disposal cells near Native American communities in western states that represent a range of climates, cover designs, cover soil types, and vegetation types. For risk screening, contaminant levels in above ground tissues harvested from plants on disposal cells were compared to Maximum Tolerance Levels (MTLs) set for livestock by the National Research Council, and to tissue levels in the same plant species growing in reference areas near disposal cells. Although tailings were covered with uncontaminated soils, for 14 of 46 comparisons, levels of uranium and other contaminants were higher in plants growing on disposal cells compared to reference area plants, indicating possible mobilization of these elements from the tailing into plant tissues. However, with one exception, all plant

  1. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado

    SciTech Connect

    Not Available

    1994-11-01

    This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report.

  2. Engineering solutions to the long-term stabilization and isolation of uranium mill tailings in the United States

    SciTech Connect

    Sanders, D.R.; Lommler, J.C.

    1995-03-01

    Engineering solutions to the safe and environmentally protective disposal and isolation of uranium mill tailings in the US include many factors. Cover design, materials selection, civil engineering, erosive forces, and cost effectiveness are only a few of those factors described in this paper. The systems approach to the engineering solutions employed in the US is described, with emphasis on the standards prescribed for the Uranium Mill Tailings Remedial Action Project. Stabilization and isolation of the tailings from humans and the environment are the primary goals of the US uranium mill tailings control standards. The performance of cover designs with respect to water infiltration, radon exhalation, geotechnical stability, erosion protection, human and animal intrusion prevention, and longevity are addressed. The need for and frequency of surveillance efforts to ensure continued disposal system performance are also assessed.

  3. Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger.

    PubMed

    Déjeant, Adrien; Galoisy, Laurence; Roy, Régis; Calas, Georges; Boekhout, Flora; Phrommavanh, Vannapha; Descostes, Michael

    2016-03-01

    This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam--Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings. PMID:26747998

  4. Comment and response document for the final remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Revision 2

    SciTech Connect

    1996-05-01

    This document for the final remedial action plan and site design has been prepared for US Department of Energy Environmental Restoration Division as part of the Uranium Mill Tailings Remedial Action plan. Comments and responses are included for the site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado.

  5. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado

    SciTech Connect

    Not Available

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  6. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    SciTech Connect

    Not Available

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  7. Project licensing plan for UMTRA (Uranium Mill Tailings Remedial Action) sites

    SciTech Connect

    Not Available

    1984-07-01

    The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Project Licensing Plan is to establish how a disposal site will be licensed, and to provide responsibilities of participatory agencies as legislated by the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (Public Law 95-604). This Plan has been developed to ensure that the objectives of licensing are met by identifying the necessary institutional controls, participatory agency responsibilities, and key milestones in the licensing process. The Plan contains the legislative basis for and a description of the licensing process ( Process'') for UMTRA sites. This is followed by a discussion of agency responsibilities, and milestones in the Process. The Plan concludes with a generic timeline of this Process. As discussed in Section 2.1, a custodial maintenance and surveillance plan will constitute the basis for a site license. The details of maintenance and surveillance are discussed in the Project Maintenance and Surveillance Plan (AL-350124.0000). 5 refs., 4 figs.

  8. Summary report on reprocessing evaluation of selected inactive uranium mill tailings sites

    SciTech Connect

    Not Available

    1983-09-01

    Sandia National Laboratories has been assisting the Department of Energy in the Uranium Mill Tailings Remedial Actions Program (UMTRAP) the purpose of which is to implement the provisions of Title I of Public Law 95-604, Uranium Mill Tailings Radiation Control Act of 1978.'' As part of this program, there was a need to evaluate the mineral concentration of the residual radioactive materials at some of the designated processing sites to determine whether mineral recovery would be practicable. Accordingly, Sandia contracted Mountain States Research and Development (MSRD), a division of Mountain States Mineral Enterprises, to drill, sample, and test tailings at 12 sites to evaluate the cost of and the revenue that could be derived from mineral recovery. UMTRAP related environmental and engineering sampling and support activities were performed in conjunction with the MSRD operations. This summary report presents a brief description of the various activities in the program and of the data and information obtained and summarizes the results. 8 refs., 9 tabs.

  9. NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY

    SciTech Connect

    Raj K. Rajamani; Sanjeeva Latchireddi; Vikas Devrani; Harappan Sethi; Roger Henry; Nate Chipman

    2003-08-01

    DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide

  10. Use of solvent extraction technique in Brazilian uranium mills - an overview

    SciTech Connect

    Gomiero, Luiz A.

    2008-07-01

    Solvent extraction has been applied to uranium-concentrate production in Brazil. At the first plant, uranium minerals associated with Zr and Mo were acid leached. Extraction was carried out by a mixture of Alamine 336 and Alamine 304, followed by selective Zr, U, and Mo stripping. At the currently operating facilities, a single U mineral is processed by acid heap leaching. Uranium is extracted with Alamine 336 and stripped with NaCl solution. As all water is recycled, chloride contents in the liquor have increased, causing detrimental effects to the extraction process. The current plant operating conditions and the improvements arisen from the research developed to solve these problems are presented. (authors)

  11. Measurements of /sup 234/U, /sup 238/U and /sup 230/Th in excreta of uranium-mill crushermen

    SciTech Connect

    Fisher, D.R.; Jackson, P.O.; Brodacynski, G.G.; Scherpelz, R.I.

    1982-07-01

    Uranium and thorium levels in excreta of uranium mill crushermen who are routinely exposed to airborne uranium ore dust were measured. The purpose was to determine whether /sup 230/Th was preferentially retained over either /sup 234/U or /sup 238/U in the body. Urine and fecal samples were obtained from fourteen active crushermen with long histories of exposure to uranium ore dust, plus four retired crushermen and three control individuals for comparison. Radiochemical procedures were used to separate out the uranium and thorium fractions, which were then electroplated on stainless steel discs and assayed by alpha spectrometry. Significantly greater activity levels of /sup 234/U and /sup 238/U were measured in both urine and fecal samples obtained from uranium mill crushermen, indicating that uranium in the inhaled ore dust was cleared from the body with a shorter biological half-time than the daughter product /sup 230/Th. The measurements also indicated that uranium and thorium separate in vivo and have distinctly different metabolic pathways and transfer rates in the body. The appropriateness of current ICRP retention and clearance parameters for /sup 230/Th in ore dust is questioned.

  12. Quality Assurance Program Plan for the radiological survey activities program --- Uranium Mill Tailings Remedial Action Project

    SciTech Connect

    Knott, R.R.; Little, C.A.

    1991-08-01

    The Pollutant Assessments Group (PAG) at the Grand Junction Office (GJO), Colorado, of Oak Ridge National Laboratory (ORNL) is responsible for surveying designated sites in the vicinity of 24 inactive mill sites involved in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). The purpose of these surveys is to provide a recommendation to DOE whether to include or exclude these sites from UMTRAP based on whether the on-site residual radioactive material (if any) originated from the former mill sites, and radiation levels on-site are in excess of appropriate Environmental Protection Agency (EPA) criteria. This report describes the Quality Assurance Plan (QAP) for the PAG in conducting all activities related to UMTRAP. All quality assurance provisions given by the DOE, DOE/UMTRA and ORNL organizations are integrated into this plan. Specifically, this report identifies the policies and procedures followed in accomplishing the PAG/UMTRA QA program, identifies those organizational units involved in the implementation of these procedures, and outlines the respective responsibilities of those groups. 11 refs., 6 figs., 3 tabs.

  13. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    SciTech Connect

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  14. Economic evaluation of inactive uranium mill tailings, Ambrosia Lake Site, Ambrosia Lake, New Mexico

    SciTech Connect

    Teel, J.H.

    1982-12-01

    Mountain States Research and Development was contracted on March 1, 1981 to make an economic evaluation study at each of 12 abandoned uranium mill tailings sites in the western states. The objective of this work was to obtain the data necessary at each site to determine the possible revenue that could be derived from reprocessing the tailings. To accomplish this objective a drilling and sampling program was established for each site to determine the total amount of tailings and subbase material available for treatment and the amount of recoverable uranium, vanadium and molybdenum. These three metals were selected due to their common occurrence in uranium ores and common extractability in the leaching process. Laboratory leaching was then conducted on the samples obtained to determine the extractability of each of these metals and the optimum plant process to be applied. As the metal contents were generally low and represented mineral that had not been leached during previous processing, the economic evaluation is limited to consideration of the direct capital and operating costs required in connection with processing of each respective site material. Excavating, transportation and disposal of the material from each site in an environmentally acceptable location and manner was not within the scope of this project. It will be necessary to complete a separate study of these areas in order to determine the total costs involved. This report contains the results of the investigations of the Old Rifle Site.

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

  16. Economic evaluation of inactive uranium mill tailings, Gunnison Site, Gunnison, Colorado

    SciTech Connect

    Teel, J H

    1982-12-01

    Mountain States Research and Development was contracted on March 1, 1981 to make an economic evaluation study at each of 12 abandoned uranium mill tailings sites in the western states. The objective of this work was to obtain the data necessary at each site to determine the possible revenue that could be derived from reprocessing the tailings. To accomplish this objective a drilling and sampling program was established for each site to determine the total amount of tailings and subbase material available for treatment and the amount of recoverable uranium, vanadium and molybdenum. These three metals were selected due to their common occurrence in uranium ores and common extractability in the leaching process. Laboratory leaching was then conducted on the samples obtained to determine the extractability of each of these metals and the optimum plant process to be applied. As the metal contents were generally low and represented mineral that had not been leached during previous processing, the economic evaluation is limited to consideration of the direct capital and operating costs required in connection with processing of each respective site material. Excavating, transportation and disposal of the material from each site in an environmentally acceptable location and manner was not within the scope of this project. It will be necessary to complete a separate study of these areas in order to determine the total costs involved. This report contains the results of the investigations of the Old Rifle Site.

  17. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    SciTech Connect

    Not Available

    1994-09-01

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

  18. Uranium from phosphoric acid: IMC`s Uncle Sam Plant

    SciTech Connect

    1994-02-01

    This article discusses uranium recovery from phosphoric acid, proven to be a viable technology by several U.S. producers since 1978. This technology has accounted for 12.8% of U.S. uranium production during this time: a total of almost 40 Mlb equivalent U3O8. Of the several producers, only the Uncle Sam plant of IMC-Agrico has operated continuously during the period, and that plant is the longest-lived uranium production facility operating in the United States. The basis for the process is reviewed, including geological aspects, mining and recovery of phosphorite, phosphoric acid production, and uranium recovery. Licensing of such facilities is also discussed.

  19. Recovery of uranium from acid media by macroporous bifunctional phosphinic acid resin

    SciTech Connect

    Sabharwal, K.N.; Srinivasan, T.G.; Rao, P.R.V.; Nandy, K.K.

    1996-11-01

    The extraction of uranium from various acid media such as nitric acid, sulphuric acid, hydrochloric acid, phosphoric acid and perchloric acid by a macroporous bifunctional phosphinic acid resin (MPBPA) has been studied. The distribution coefficients for the extraction of uranium by the MPBPA resin are compared with the corresponding values reported in literature for the conventional sulphonic acid resin. The results clearly indicate the suitability of the MPBPA resin to recover uranium from different types of acid solutions of widely ranging acidities. 17 refs., 6 figs., 5 tabs.

  20. Modelling study on buffering pH and retaining U using a simplified uranium mill tailings pile example

    NASA Astrophysics Data System (ADS)

    Jacques, Diederik; Simunek, Jirka

    2014-05-01

    The hypothetical problem that is presented here considers the release and migration of uranium from a simplified uranium mill tailings pile towards a river. The modeling exercise with the coupled reactive transport model HP2 illustrates the effect of the geochemical conceptual model for sorption on (i) the buffering of the pH in the soil/aquifer system and (ii) the retention of U in the soil. The HP2 module, which couples the PHREEQC geochemical code with HYDRUS (2D/3D), is a two-dimensional equivalent of the one-dimensional HP1 program that was first released in 2005 (Jacques et al., 2008), and used successfully in many applications. Sorption of U is described using a multi-site cation exchange model (see Jacques et al., 2008). This sorption model also buffers the acid pH due to proton exchange. Two scenarios are considered: a soil with a relatively low (8.1 × 10-3 mol/kg) and relatively high (8.1 × 10-2 mol/kg) sorption capacity. In the third scenario, specific sorption of U and other cations and anions on Fe-oxides is described using a non-electrostatic surface complexation model with a very low capacity (8.1 × 10-4 mol/kg), in addition to low exchange complexation. Proton exchange on the cation exchanger buffers the acidity by replacing calcium with protons on the exchanger; the spatial extent of the pH-perturbed region is smaller in the scenario with the higher exchange capacity. Specific sorption has only a small effect on the pH-perturbed zone, although it is important to note that its capacity is one order of magnitude lower than in the scenario with the low sorption capacity. U reaches the river system within 1000 d in scenarios with low and high exchange capacities. Only in the scenario with specific sorption, U migration within the ground water system is retarded, compared to the other two cases. The results of the three scenarios do not seem to be intuitive, especially the equally fast movement of U in the scenario with a high exchange capacity

  1. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania. Revision 1

    SciTech Connect

    1995-11-01

    For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency`s (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards.

  2. Waste minimization opportunities at the U.S. Uranium Mill Tailings Remedial Action (UMTRA) Project, Rifle, Colorado, site

    SciTech Connect

    Hartmann, G.L.; Arp, S.; Hempill, H.

    1993-12-31

    At two uranium mill sites in Rifle, Colorado, the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is removing uranium mill tailings and contaminated subgrade soils. This remediation activity will result in the production of groundwater contaminated with uranium, heavy metals, ammonia, sulfates, and total dissolved solids (TDS). The initial remediation plan called for a wastewater treatment plant for removal of the uranium, heavy metals, and ammonia, with disposal of the treated water, which still includes the sulfates and TDSS, to the Colorado River. The National Pollutant Discharge Elimination (NPDES) permit issued by the Colorado Department of Health for the two Rifle sites contained more restrictive discharge limits than originally anticipated. During the detailed review of alternate treatment systems to meet these more restrictive limits, the proposed construction procedures were reviewed emphasizing the methods to minimize groundwater production to reduce the size of the water treatment facility, or to eliminate it entirely. It was determined that with changes to the excavation procedures and use of the contaminated groundwater for use in dust suppression at the disposal site, discharge to the river could be eliminated completely.

  3. Integration of Succinic Acid Production in a Dry Mill Ethanol Facility

    SciTech Connect

    2006-08-01

    This project seeks to address both issues for a dry mill ethanol biorefinery by lowering the cost of sugars with the development of an advanced pretreatment process, improving the economics of succinic acid (SA), and developing a model of an ethanol dry mill to evaluate the impact of adding different products and processes to a dry mill.

  4. Dissolution of sludges containing uranium dioxide and metallic uranium in nitric acid

    SciTech Connect

    Flament, T.A.

    1998-08-25

    The dissolution in nitric acid of sludges containing uranium oxide and uranium has been modeled. That study has shown that it was necessary to continuously feed the dissolver to have an appropriate control of the reaction. If a unique procedure is deemed preferable, NH03 6M has been used.

  5. Uranium Mill Tailings Remedial Action Project: Cost Reduction and Productivity Improvement Program Project Plan

    SciTech Connect

    Not Available

    1991-11-01

    The purpose of the Cost Reduction/Productivity Improvement Program Plan is to formalize and improve upon existing efforts to control costs which have been underway since project inception. This program plan has been coordinated with the Department of Energy (DOE) Office of Environmental Management (EM) and the DOE Field Office, Albuquerque (AL). It incorporates prior Uranium Mill Tallings Remedial Action (UMTRA) Project Office guidance issued on the subject. The opportunities for reducing cosh and improving productivity are endless. The CR/PIP has these primary objectives: Improve productivity and quality; heighten the general cost consciousness of project participants, at all levels of their organizations; identify and implement specific innovative employee ideas that extend beyond what is required through existing processes and procedures; emphasize efforts that create additional value for the money spent by maintaining the project Total Estimated Cost (TEC) at the lowest possible level.

  6. Uranium Mill Tailings Remedial Action Project: Cost Reduction and Productivity Improvement Program Project Plan. Revised

    SciTech Connect

    Not Available

    1991-11-01

    The purpose of the Cost Reduction/Productivity Improvement Program Plan is to formalize and improve upon existing efforts to control costs which have been underway since project inception. This program plan has been coordinated with the Department of Energy (DOE) Office of Environmental Management (EM) and the DOE Field Office, Albuquerque (AL). It incorporates prior Uranium Mill Tallings Remedial Action (UMTRA) Project Office guidance issued on the subject. The opportunities for reducing cosh and improving productivity are endless. The CR/PIP has these primary objectives: Improve productivity and quality; heighten the general cost consciousness of project participants, at all levels of their organizations; identify and implement specific innovative employee ideas that extend beyond what is required through existing processes and procedures; emphasize efforts that create additional value for the money spent by maintaining the project Total Estimated Cost (TEC) at the lowest possible level.

  7. Summary of the engineering assessment of inactive uranium mill tailings, Spook Site, Converse County, Wyoming

    SciTech Connect

    Not Available

    1981-10-01

    Ford, Bacon, Davis Utah Inc. has reevaluated the Spook site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings 48 mi northeast of Casper, in Converse County, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 187,000 tons of tailings at the Spook site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  8. Management and overview Quality Assurance Program Plan. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect

    Not Available

    1986-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office (DOE/ UMTRA-PO) is the US Department of Energy (DOE) Albuquerque Operations Office (AL) organization charged with the responsibility of managing and coordinating the activities of the various participating organizations and support contractors working on the UMTRA Project. This Quality Assurance Program Plan (QAPP) describes how the DOE/UMTRA-PO, as assisted by the Technical Assistance Contractor (TAC), performs the quality assurance (QA) aspects of managing and coordinating UMTRA Project activities. This QAPP was developed to comply with DOE Order 5700.6A, August, 1981, and AL Order 5700.6B, April, 1984, which contain the criteria applicable to Project QA activities.

  9. Radiological survey of the inactive uranium-mill tailings at Durango, Colorado

    SciTech Connect

    Haywood, F.F.; Perdue, P.T.; Shinpaugh, W.H.; Ellis, B.S.; Chou, K.D.

    1980-03-01

    Results of a radiological survey of the inactive uranium-mill site at Durango, Colorado, conducted in April 1976, in cooperation with a team from Ford, Bacon and Davis Utah Inc., are presented together with descriptions of the instruments and techniques used to obtain the data. Direct above-ground gamma measurements and analysis of surface soil and sediment samples indicate movement of tailings from the piles toward Lightner Creek on the north and the Animas River on the east side of the piles. The concentration of /sup 226/Ra in the former raffinate pond area is only slightly above the background level. Two structures in Durango were found to contain high concentrations of airborne radon daughters, where tailings are known to have been utilized in construction. Near-background concentrations of radon daughters were found in a well-ventilated building close to the tailings.

  10. Radiological survey of the inactive uranium-mill tailings at Gunnison, Colorado

    SciTech Connect

    Haywood, F.F.; Jacobs, D.G.; Hubbard, H.M. Jr.; Ellis, B.S.; Shinpaugh, W.H.

    1980-03-01

    The findings of a radiological survey of the inactive uranium-mill site at Gunnison, Colorado, conducted in May 1976, are presented. Results of surface soil sample analyses and direct gamma radiation measurements indicate limited spread of tailings off the site. The only significant above background measurements off the site were obtained in an area previously covered by the tailings pile. There was little evidence of contamination of the surface or of unconfined groundwater in the vicinity of the tailings pile; however, the hydrologic conditions at the site indicate a potential for such contamination. The concentration of /sup 226/Ra in all water samples except one from the tailings pile was well below the concentration guide for drinking water. The subsurface distribution of /sup 226/Ra in 14 bore holes located on and around the tailings pile was calculated from gamma ray monitoring data obtained jointly with Ford, Bacon and Davis Utah Inc.

  11. Summary of the engineering assessment of inactive uranium mill tailings, Tuba City site, Tuba City, Arizona

    SciTech Connect

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Tuba City site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Tuba City, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 0.8 million tons of tailings at the Tuba City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  12. Engineering assessment of inactive uranium mill tailings, Tuba City site, Tuba City, Arizona

    SciTech Connect

    Not Available

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Tuba City site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Tuba City, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 0.8 million tons of tailings at the Tuba City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  13. Revegetation/rock cover for stabilization of inactive uranium mill tailings disposal sites

    SciTech Connect

    Beedlow, P.A.; McShane, M.C.; Cadwell, L.L.

    1982-07-01

    Pacific Northwest Laboratory is developing design and performance guidelines for surface stabilization of inactive uranium mill tailings. In this work, vegetation and rock covers are being evaluated for maintaining long-term integrity of impoundment systems. Methods are being developed to estimate erosion rates associated with rock and/or vegetation covers, and to determine the effects of surface treatments on soil moisture. Interactions between surface treatments and barriers (radon and biological) are being studied as well. The product will be a set of guidelines to aid in designing surface covers. This report presents the status of this program and a discussion of considerations pertinent to the application of surface covers to tailings. Test plots located in Grand Junction, Colorado and Waterflow, New Mexico are being used to study: (1) the interactions between vegetation and radon and biological barriers, (2) the effects of surface covers on soil moisture, and (3) the effects of rock covers on vegetation.

  14. Assessment of cover systems at the Grand Junction, Colorado, uranium mill tailings pile: 1987 field measurements

    SciTech Connect

    Gee, G.W.; Campbell, M.D.; Freeman, H.D.; Cline, J.F.

    1989-02-01

    Four Pacific Northwest Laboratory (PNL) scientists and a technician conducted an onsite evaluation of radon gas exhalation, water content profiles, and plant and animal intrusion for a series of cover systems located on the uranium mill tailings pile at Grand Junction, Colorado. These six plots were sampled extensively down to the radon control layer (e.g., asphalt or wet clay) for soil moisture content and permeability. Radon gas emission through the surface was measured. Soil samples were collected and analyzed in the lab for particle-size distribution, particle density, bulk density, and ambient water content. Prairie dog burrows were excavated to discover the extent to which they penetrated the barriers. Plant type, density, and cover characteristics were measured.

  15. Engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah

    SciTech Connect

    1981-08-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Green River site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Green River, Utah. This evaluation has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the 123,000 tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  16. Summary of the engineering assessment of inactive uranium-mill tailings: Canonsburg Site, Canonsburg, Pennsylvania

    SciTech Connect

    Not Available

    1982-04-01

    Ford, Bacon and Davis Utah Inc. has evaluated the Canonsburg site in order to assess the problems resulting from the existence of radioactive residues at Canonsburg, Pennsylvania. This engineering assessment has included the preparation of topographic maps, radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the approximately 300,000 tons of tailings and contaminated soil at the Canonsburg site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings and contaminated materials to a remote disposal site and decontamination of the Canonsburg site (Options II through IV). Cost estimates for the four options range from $23,244,000 for stabilization in-place, to $27,052,000 for disposal at a distance of about 17 mi. Three principal alternatives for the reprocessing of the Canonsburg tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. As required by Public Law 95-604, under whose auspices this project is conducted, the US Department of Energy has solicited expressions of interest in reprocessing the tailings and residues at the Canonsburg site for uranium recovery. Since no such interest was demonstrated, no effort has been made to estimate the value of the residual uranium resource at the Canonsburg site.

  17. US Geological Survey research on the environmental fate of uranium mining and milling wastes

    USGS Publications Warehouse

    Landa, E.R.; Gray, J.R.

    1995-01-01

    Studies by the US Geological Survey (USGS) of uranium mill tailings (UMT) have focused on characterizing the forms in which radionuclides are retained and identifying factors influencing the release of radionuclides to air and water. Selective extraction studies and studies of radionuclide sorption by and leaching from components of UMT showed alkaline earth sulfate and hydrous ferric oxides to be important hosts of radium-226 (226Ra) in UMT. Extrapolating from studies of barite dissolution in anerobic lake sediments, the leaching of 226Ra from UMT by sulfate-reducing bacteria was investigated; a marked increase in 226Ra release to aqueous solution as compared to sterile controls was demonstrated. A similar action of iron(III)-reducing bacteria was later shown. Ion exchangers such as clay minerals can also promote the dissolution of host-phase minerals and thereby influence the fate of radionuclides such as 226Ra. Radon release studies examined particle size and ore composition as variables. Aggregation of UMT particles was shown to mask the higher emanating fraction of finer particles. Studies of various ores and ore components showed that UMT cannot be assumed to have the same radon-release characteristics as their precursor ores, nor can 226Ra retained by various substrates be assumed to emanate the same fraction of radon. Over the last decade, USGS research directed at offsite mobility of radionuclides from uranium mining and milling processes has focused on six areas: the Midnite Mine in Washington; Ralston Creek and Reservoir, Colorado; sites near Canon City, Colorado; the Monument Valley District of Arizona and Utah; the Cameron District of Arizona; and the Puerco River basin of Arizona and New Mexico.

  18. Engineering assessment of inactive uranium mill tailings: Lakeview site, Lakeview, Oregon

    SciTech Connect

    1981-10-01

    This assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The three alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material (Option I) and removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II and III). Cost estimates range from about $6,000,000 for stabilization in-place, to about $7,500,000 for disposal at a distance of about 10 miles. Three alternatives for reprocessing the Lakeview tailings were examined: heap leaching, treatment at an existing mill, and reprocessing at a new conventional mill. The cost of the uranium recovered would be over $450/lb of U/sub 3/O/sub 8/ and hence reprocessing is not economical.

  19. Environmental assessment of remedial action at the Lowman Uranium Mill Tailings Site near Lowman, Idaho. Final

    SciTech Connect

    Not Available

    1991-01-01

    This document assesses the environmental impacts of stabilization on site of the contaminated materials at the Lowman uranium mill tailings site. The Lowman site is 0.5 road mile northeast of the unincorporated village of Lowman, Idaho, and 73 road miles from Boise, Idaho. The Lowman site consists of piles of radioactive sands, an ore storage area, abandoned mill buildings, and windblown/waterborne contaminated areas. A total of 29.5 acres of land are contaminated and most of this land occurs within the 35-acre designated site boundary. The proposed action is to stabilize the tailings and other contaminated materials on the site. A radon barrier would be constructed over the consolidated residual radioactive materials and various erosion control measures would be implemented to ensure the long-term stability of the disposal cell. Radioactive constituents and other hazardous constituents were not detected in the groundwater beneath the Lowman site. The groundwater beneath the disposal cell would not become contaminated during or after remedial action so the maximum concentration limits or background concentrations for the contaminants listed in the draft EPA groundwater protection standards would be met at the point of compliance. No significant impacts were identified as a result of the proposed remedial action at the Lowman site.

  20. Revegetation potential of acidic mill tailings in southwestern New Mexico

    SciTech Connect

    Cornelius, J.M.; Beeson, D.L.; Gomez, M.; Lindemann, W.C.; Whitford, W.G.; Zehner, W.B.

    1995-12-31

    A greenhouse project was conducted to examine the revegetation potential of acid mill tailings from an abandoned mill site near Silver City, Grant County, New Mexico. The tailings piles covered about 35 acres, had percent level concentrations of Zn, Cu, Pb, an average pH of 2.2, and an average net neutralization potential of 120 tons calcium carbonate per kiloton tailings. To successfully revegetate the tailings, five problems must be overcome: (1) neutralization of current and future acidity, (2) immobilization of metals, (3) restoration of biological activity, (4) improvement of water holding capacity, and (5) increasing the supply of plant nutrients. Tailings material was mixed with crushed limestone and divided into greenhouse pots in a randomized complete block design with factorial arrangement of treatments, including nine plant species and four organic amendments. Fertilizer was added based on soil fertility analysis. Germination and growth characteristics of plant species, and physical and chemical characteristics of soil were examined. Liming effectively removed or moderated most chemical plant growth problems. Water soluble and plant available metals in neutralized tailings were slightly higher than in native soils.

  1. Uranium Mill Tailings Remedial Action Project, fiscal year 1995 annual report to stakeholders

    SciTech Connect

    1995-09-30

    In 1978, Congress authorized the DOE to assess and clean up contamination at 24 designated former uranium processing sites. The DOE is also responsible for cleaning up properties in the vicinity of the sites where wind and water erosion deposited tailings or people removed them from the site for use in construction or landscaping projects. Cleanup is being undertaken in cooperation with state governments and Indian tribes within whose boundaries the sites are located. It is being conducted in two phases: the surface project and the ground water project. This report addresses specifics about both phases of the UMTRA Project. DOE`s UMTRA Project is the world`s largest materials management project ever undertaken to reduce or eliminate risk to the general public from exposure to potentially hazardous and radioactive materials. With an estimated cost at completion of nearly $2 billion for both phases of the UMTRA Project, and with the responsibility for encapsulating and isolating almost one-fourth of all the uranium mill tailings generated across the entire US (more than 44 million cubic yards), the UMTRA Project and its people have achieved a long record of safely and effectively completing its mission. It continually enhances its national reputation through its diligent process and cost efficiency as well as its international recognition for its technological innovation.

  2. Regulatory Oversight of the Legacy Gunner Uranium Mine and Mill Site in Northern Saskatchewan, Canada - 13434

    SciTech Connect

    Stenson, Ron; Howard, Don

    2013-07-01

    As Canada's nuclear regulator, the Canadian Nuclear Safety Commission (CNSC) is responsible for licensing all aspects of uranium mining, including remediation activities at legacy sites. Since these sites already existed when the current legislation came into force in 2000, and the previous legislation did not apply, they present a special case. The Nuclear Safety and Control Act (NSCA), was written with cradle-to- grave oversight in mind. Applying the NSCA at the end of a 'facilities' life-cycle poses some challenges to both the regulator and the proponent. When the proponent is the public sector, even more challenges can present themselves. Although the licensing process for legacy sites is no different than for any other CNSC license, assuring regulatory compliance can be more complicated. To demonstrate how the CNSC has approached the oversight of legacy sites the history of the Commission's involvement with the Gunnar uranium mine and mill site provides a good case study. The lessons learned from the CNSC's experience regulating the Gunnar site will benefit those in the future who will need to regulate legacy sites under existing or new legislation. (authors)

  3. Interaction of Uranium(VI) with Phthalic Acid

    SciTech Connect

    Vazquez, G.; Dodge, C; Francis, A

    2008-01-01

    Phthalic acid, a ubiquitous organic compound found in soil, water, and in domestic and nuclear wastes can affect the mobility and bioavailability of metals and radionuclides. We examined the complexation of uranium with phthalic acid by potentiometric titration, electrospray ionization-mass spectroscopy (ESI-MS), and extended X-ray absorption fine structure (EXAFS) analysis. Potentiometric titration of a 1:1 U/phthalic acid indicated uranyl ion bonding with both carboxylate groups of phthalic acid; above pH 5 the uranyl ion underwent hydrolysis with one hydroxyl group coordinated to the inner-sphere of uranium. In the presence of excess phthalic acid, ESI-MS analysis revealed the formation of both 1:1 and 1:2 U/phthalic acid complexes. EXAFS studies confirmed the mononuclear biligand 1:2 U/phthalic acid complex as the predominant form. These results show that phthalates can form soluble stable complexes with uranium and may affect its mobility.

  4. Swimming performance and energy homeostasis in juvenile laboratory raised fathead minnow (Pimephales promelas) exposed to uranium mill effluent.

    PubMed

    Goertzen, Meghan M; Driessnack, Melissa K; Janz, David M; Weber, Lynn P

    2011-11-01

    Research at the Key Lake uranium mill (Saskatchewan, Canada) suggests effluent discharged from the mill affects energy stores of resident fish, but the mechanisms by which energy homeostasis is affected and the subsequent effects on swimming performance are unknown. In the present study larvae were collected from laboratory raised adult fathead minnow (Pimephales promelas) exposed to 5% diluted uranium mill effluent or control (dechlorinated municipal) water, and reared in the same treatments to 60 days post hatch (dph). Critical swimming speed (U(crit)) was significantly lower in effluent exposed 60 dph fish compared to control fish. Fish used in tests were considered fatigued and compared to fish without swim testing (non-fatigued). There were no differences in whole body glycogen or triglyceride concentrations between effluent exposed versus control fish. However, fatigued fish from both treatments had significantly lower triglycerides, but not glycogen, compared to non-fatigued fish from the same treatment. Whole body β-hydroxyacyl coenzymeA dehydrogenase activity was similar in fish from both treatments, but citrate synthase activity was significantly lower in effluent exposed fish. Our results suggest uranium mill effluent exposure in the laboratory affects aerobic energy metabolism and swimming performance in juvenile fathead minnow, which could affect wild fish survivability. PMID:21839854

  5. Radio-Ecological Conditions of Groundwater in the Area of Uranium Mining and Milling Facility - 13525

    SciTech Connect

    Titov, A.V.; Semenova, M.P.; Seregin, V.A.; Isaev, D.V.; Metlyaev, E.G.; Glagolev, A.V.; Klimova, T.I.; Sevtinova, E.B.; Zolotukhina, S.B.; Zhuravleva, L.A.

    2013-07-01

    Manmade chemical and radioactive contamination of groundwater is one of damaging effects of the uranium mining and milling facilities. Groundwater contamination is of special importance for the area of Priargun Production Mining and Chemical Association, JSC 'PPMCA', because groundwater is the only source of drinking water. The paper describes natural conditions of the site, provides information on changes of near-surface area since the beginning of the company, illustrates the main trends of contaminators migration and assesses manmade impact on the quality and mode of near-surface and ground waters. The paper also provides the results of chemical and radioactive measurements in groundwater at various distances from the sources of manmade contamination to the drinking water supply areas. We show that development of deposits, mine water discharge, leakages from tailing dams and cinder storage facility changed general hydro-chemical balance of the area, contributed to new (overlaid) aureoles and flows of scattering paragenetic uranium elements, which are much smaller in comparison with natural ones. However, increasing flow of groundwater stream at the mouth of Sukhoi Urulyungui due to technological water infiltration, mixing of natural water with filtration streams from industrial reservoirs and sites, containing elevated (relative to natural background) levels of sulfate-, hydro-carbonate and carbonate- ions, led to the development and moving of the uranium contamination aureole from the undeveloped field 'Polevoye' to the water inlet area. The aureole front crossed the southern border of water inlet of drinking purpose. The qualitative composition of groundwater, especially in the southern part of water inlet, steadily changes for the worse. The current Russian intervention levels of gross alpha activity and of some natural radionuclides including {sup 222}Rn are in excess in drinking water; regulations for fluorine and manganese concentrations are also in excess

  6. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Falls City, Texas: Revision 1

    SciTech Connect

    Not Available

    1994-09-01

    This baseline risk assessment of ground water contamination of the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives: determine if the site presents immediate or potential future health risks, determine the need for interim institutional controls, serve as a key input to project planning and prioritization, and recommend future data collection efforts to more fully characterize risk. The Uranium Mill Tailings Remedial Action (UMTRA) Project has begun its evaluation of ground water contamination at the Falls City site. This risk assessment is one of the first documents specific to this site for the Ground Water Project. The first step is to evaluate ground water data collected from monitor wells at or near the site. Evaluation of these data show the main contaminants in the Dilworth ground water are cadmium, cobalt, fluoride, iron, nickel, sulfate, and uranium. The data also show high levels of arsenic and manganese occur naturally in some areas.

  7. Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 3, Groundwater hydrology report

    SciTech Connect

    Not Available

    1993-07-01

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites (EPA, 1987). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 Public Law (PL) 95-604 (PL 95-604), the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined that for Slick Rock, this assessment shall include hydrogeologic site characterization for two separate uranium processing sites, the Union Carbide (UC) site and the North Continent (NC) site, and for the proposed Burro Canyon disposal site.

  8. Comment and response document on the final remedial action plan and site design for stabilization of the inactive Uranium Mill Tailings Site at Lakeview, Oregon

    SciTech Connect

    Not Available

    1991-10-01

    This report contains comments provided by the Oregon Department of Energy and responses to these comments on the final remedial action plan for the inactive uranium mill tailings site at Lakeview, Oregon.

  9. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater

    PubMed Central

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification. PMID:26933663

  10. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater.

    PubMed

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification. PMID:26933663

  11. Contaminant distributions at typical U.S. uranium milling facilities and their effect on remedial action decisions

    SciTech Connect

    Hamp, S.; Jackson, T.J.; Dotson, P.W.

    1995-03-01

    Past operations at uranium processing sites throughout the US have resulted in local contamination of soils and ground water by radionuclides, toxic metals, or both. Understanding the origin of contamination and how the constituents are distributed is a basic element for planning remedial action decisions. This report describes the radiological and nonradiological species found in ground water at a typical US uranium milling facility. The report will provide the audience with an understanding of the vast spectrum of contaminants that must be controlled in planning solutions to the long-term management of these waste materials.

  12. Extraction of uranium and molybdenum from aqueous solutions: A survey of industrial materials for use in chemical barriers for uranium mill tailings remediation

    SciTech Connect

    Morrison, S.J.; Spangler, R.R. )

    1992-10-01

    Laboratory experiments were performed to simulate the interaction of contaminated pore fluids with a variety of industrial materials. The objective was to evaluate the materials for use in a chemical barrier under a repository containing uranium mill tailings. Pore water would pass through the barrier, but contaminants would remain fixed in the solid fraction. More than 99% of the dissolved uranium in a synthetic pore fluid (initial uranium concentration of 30.0 mg/L) was extracted by the addition of hydrated lime, fly ash, barium chloride, calcium phosphate, titanium oxide, peat, and lignite. More than 96% of the molybdenum (initial molybdenum concentration of 8.9 mg/L) was extracted by ferrous sulfate, ferric oxyhydroxide, titanium oxide, peat, hematite, calcium chloride, and barium chloride. Some materials were effective only for a limited range of pH values. Extraction was caused by both precipitation (as calcium uranate, calcium molybdate, ferrous molybdate, or barium molybdate) and sorption (on ferric oxyhydroxide, hematite, calcium phosphate, peat, or titanium oxide). Chemicals that precipitate contaminant-bearing minerals are able to control solution chemistry and, therefore, have an advantage over sorbents which are subject to externally determined solution variables such as pH. On the basis of the predicted flux of pore fluid from the Monticello (Utah) uranium mill tailings, some industrial materials may be suitable for a chemical barrier at that site. 37 refs., 6 figs., 6 tabs.

  13. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    SciTech Connect

    Not Available

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  14. Baseline risk assessment for groundwater contamination at the uranium mill tailings site near Monument Valley, Arizona. Draft

    SciTech Connect

    Not Available

    1993-09-01

    This baseline risk assessment evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site near Monument Valley, Arizona. The tailings and other contaminated material at this site are being relocated and stabilized in a disposal cell at Mexican Hat, Utah, through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The tailings removal is planned for completion by spring 1994. After the tailings are removed, groundwater contamination at the site will continue to be evaluated. This risk assessment is the first document specific to this site for the Groundwater Project. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site.

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    SciTech Connect

    Not Available

    1994-09-01

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

  16. Comment and response document for the ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah

    SciTech Connect

    1995-09-01

    The US Department of Energy (DOE) responses to comments from both the US Nuclear Regulatory Commission (NRC) and the state of Utah are provided in this document. The Proposed Ground Water Protection Strategy for the Uranium Mill Tailings Site at Green River, Utah, presents the proposed (modified) ground water protection strategy for the disposal cell at the Green River disposal site for compliance with Subpart A of 40 CFR Part 192. Before the disposal cell was constructed, site characterization was conducted at the Green River Uranium Mill Tailings Remedial Action (UMTRA) Project site to determine an acceptable compliance strategy. Results of the investigation are reported in detail in the final remedial action plan (RAP) (DOE, 1991a). The NRC and the state of Utah have accepted the final RAP. The changes in this document relate only to a modification of the compliance strategy for ground water protection.

  17. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites Slick Rock, Colorado. Draft

    SciTech Connect

    1993-06-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VP) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the groundwater from further degradation. Remedial actions at the Slick Rock sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC).

  18. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Slick Rock, Colorado. Revision 1

    SciTech Connect

    1995-09-01

    Two UMTRA (Uranium Mill Tailings Remedial Action) Project sites are near Slick Rock, Colorado: the North Continent site and the Union Carbide site. Currently, no one uses the contaminated ground water at either site for domestic or agricultural purposes. However, there may be future land development. This risk assessment evaluates possible future health problems associated with exposure to contaminated ground water. Since some health problems could occur, it is recommended that the contaminated ground water not be used as drinking water.

  19. Rock riprap design methods and their applicability to long-term protection of uranium mill tailings impoundments

    SciTech Connect

    Walters, W.H.

    1982-08-01

    This report reviews the more accepted or recommended riprap design methods currently used to design rock riprap protection against soil erosion by flowing water. The basic theories used to develop the various methods are presented. The Riprap Design with Safety Factors Method is identified as the logical choice for uranium mill tailings impoundments. This method is compared to the other methods and its applicability to the protection requirements of tailings impoundments is discussed. Other design problems are identified and investigative studies recommended.

  20. Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado: Revision 2

    SciTech Connect

    Not Available

    1994-11-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment and a floodplain/wetlands assessment are included as part of this EA. This report and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS).

  1. Environmental assessment of remedial action at the Maybell Uranium Mill Tailings Site near Maybell, Colorado. Revision 1

    SciTech Connect

    Not Available

    1994-04-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS).

  2. Radium-226 in vegetation and substrates at inactive uranium mill sites

    SciTech Connect

    Marple, M.L.

    1980-01-01

    Results of a study of the content of radium-226 in plants growing on inactive uranium mill tailings sites in the Four Corners Region of the southwestern United States and in plants grown under greenhouse conditions with minimal surficial contamination are reported. Field plant samples and associated substrates were analyzed from two carbonate tailings sites in the Grants Mineral Belt of New Mexico. Radium activities in air-cleaned samples ranged from 5 to 368 pCi/g (dry weight) depending on species and location: activities in plants growing on local soils averaged 1.0 pCi/g. The talings and local soils contain 140 to 1400 pCi/g and 2.1 pCi/g, respectively. An evaluation of cleaning methods on selected samples showed that from 17 to 79% of the radium activity measured in air-cleaned samples was due to surficial contamination, which varied with species and location. A survey of 18 inactive uranium mill sites in the Four Corners Region was performed. Radium activity in plant tissues from nine species ranged from 2 to 210 pCi/g on bare tailings and from 0.3 to 30 pCi/g on covered tailings The radium content in most of the soil overburdens on the covered tailings piles was 10 to 17 pCi/g. An experiment was performed to measure radium-226 uptake by two species grown on tailings covered with a shallow (5 cm) soil layer. A grass, Sporobolus airoides (alkali sacaton) and a shrub, Atriplex canescens (four-wing saltbush), were studied. The tailings were a mixture of sands and slimes from a carbonate pile. The tailings treatments were plants grown in a soil cover over tailings; the controls were plants grown only in soil. Three soil types, dune sand, clay loam, and loam, were used. The radium activity of the plant tissue from the tailings treatment compared to that of the appropriate control was 1 to 19 times greater for the grass and 4 to 27 times greater for the shrub.

  3. Predictive geochemical modeling of interactions between uranium-mill-tailings solutions and sediments in a flow-through system: model formulations and preliminary results

    SciTech Connect

    Peterson, S.R.; Felmy, A.R.; Serne, R.J.; Gee, G.W.

    1983-08-01

    An equilibrium thermodynamic conceptual model consisting of minerals and solid phases was developed to represent a soil column. A computer program was used as a tool to solve the system of mathematical equations imposed by the conceptual chemical model. The combined conceptual model and computer program were used to predict aqueous phase compositions of effluent solutions from permeability cells packed with geologic materials and percolated with uranium mill tailings solutions. Initial calculations of ion speciation and mineral solubility and our understanding of the chemical processes occurring in the modeled system were used to select solid phases for inclusion in the conceptual model. The modeling predictions were compared to the analytically determined column effluent concentrations. Hypotheses were formed, based on modeling predictions and laboratory evaluations, as to the probable mechanisms controlling the migration of selected contaminants. An assemblage of minerals and other solid phases could be used to predict the concentrations of several of the macro constituents (e.g., Ca, SO/sub 4/, Al, Fe, and Mn) but could not be used to predict trace element concentrations. These modeling conclusions are applicable to situations where uranium mill tailings solutions of low pH and high total dissolved solids encounter either clay liners or natural geologic materials that contain inherent acid neutralizing capacities. 116 references, 22 figures, 6 tables.

  4. Characterization of Microbial Activities and U Reduction in a Shallow Aquifer Contaminated by Uranium Mill Tailing

    SciTech Connect

    Elias, Dwayne A.; Krumholz, Lee R.; Wong, D; Long, Philip E.; Suflita, Joseph M.

    2003-05-21

    A Characterization of the Shiprock, NM, uranium mill tailing site focused on the geochemical and microbiological factors governing in-situ uranium-redox reactions. Groundwater and aqueous extracts of sediment samples contained a wide concentration range of sulfate, nitrate, and U(VI) with median values of 21.2 mM, 16.1um, and 2.7 um, respectively. Iron (III) was not detected in groundwater, but a median value of 0.3 mM in sediment extracts was measured. Bacterial diversity down gradient from the disposal pile reflected the predominant geochemistry with relatively high numbers of sulfate-and nitrate-reducing microorganisms, and smaller numbers of acetogenic, methanogenic, nitrate-dependent Fe(II)-oxidizing, Fe(III)-reducing, and sulfide oxidizing bacteria. In aquifer slurry incubations, nitrate reduction was always preferred and had a negative impact on sulfate-, Fe(III)-, and U-reduction rates. We also found that sulfate-reduction rates decreased sharply in the presence of clay, while Fe(III)-reduction increased with no clear impact on U reduction. In the absence of clay, iron and sulfate reduction correlated with concentrations of Fe(III) and sulfate, respectively. Rates of U(VI) loss did not correlate with the concentration of any electron acceptor. With the exception of Fe(III), electron donor amendment was largely unsuccessful in stimulating electron acceptor loss over a 1-week incubation period, suggesting that endogenous forms of organic matter were sufficient to support microbial activity. Our findings suggest that efforts to accelerate biological U reduction should initially focus on stimulating nitrate removal.

  5. Biological assessment of remedial action at the abandoned uranium mill tailings site near Naturita, Colorado

    SciTech Connect

    1996-03-01

    Pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, the U.S. Department of Energy (DOE) is proposing to conduct remedial action to clean up the residual radioactive materials (RRM) at the Naturita uranium processing site in Colorado. The Naturita site is in Montrose County, Colorado, and is approximately 2 miles (mi) (3 kilometer [km]) from the unincorporated town of Naturita. The proposed remedial action is to remove the RRM from the Naturita site to the Upper Burbank Quarry at the Uravan disposal site. To address the potential impacts of the remedial action on threatened and endangered species, the DOE prepared this biological assessment. Informal consultations with the U.S. Department of the Interior, Fish and Wildlife Service (FWS) were initiated in 1986, and the FWS provided a list of the threatened and endangered species that may occur in the Naturita study area. This list was updated by two FWS letters in 1988 and by verbal communication in 1990. A biological assessment was included in the environmental assessment (EA) of the proposed remedial action that was prepared in 1990. This EA addressed the impacts of moving the Naturita RRM to the Dry Flats disposal site. In 1993, the design for the Dry Flats disposal alternative was changed. The FWS was again consulted in 1993 and provided a new list of threatened and endangered species that may occur in the Naturita study area. The Naturita EA and the biological assessment were revised in response to these changes. In 1994, remedial action was delayed because an alternate disposal site was being considered. The DOE decided to move the FIRM at the Naturita site to the Upper Burbank Quarry at the Uravan site. Due to this delay, the FWS was consulted in 1995 and a list of threatened and endangered species was provided. This biological assessment is a revision of the assessment attached to the Naturita EA and addresses moving the Naturita RRM to the Upper Burbank Quarry disposal site.

  6. 226Ra bioavailability to plants at the Urgeiriça uranium mill tailings site.

    PubMed

    Madruga, M J; Brogueira, A; Alberto, G; Cardoso, F

    2001-01-01

    Large amounts of solid wastes (tailings) resulting from the exploitation and treatment of uranium ore at the Urgeiriça mine (north of Portugal) have been accumulated in dams (tailing ponds). To reduce the dispersion of natural radionuclides into the environment, some dams were revegetated with eucalyptus (Eucalyptus globolus) and pines (Pinus pinea). Besides these plants, some shrubs (Cytisus spp.) are growing in some of the dams. The objective of this study is to determine the 226Ra bioavailability from uranium mill tailings by quantifying the total and available fraction of radium in the tailings and to estimate its transfer to plants growing on the tailing piles. Plant and tailing samples were randomly collected and the activity concentration of 226Ra in plants (aerial part and roots) and tailings was measured by gamma-spectrometry. The exchangeable fraction of radium in tailings was quantified using one single step extraction with 1 mol dm-3 ammonium acetate (pH = 7) or 1 mol dm-3 calcium chloride solutions. The results obtained for 226Ra uptake by plants show that 226Ra concentration ratios for eucalyptus and pines decrease at low 226Ra concentrations in the tailings and appear relatively constant at higher radium concentrations. For shrubs, the concentration ratios increase at higher 226Ra solid waste concentrations approaching a saturation value. Percentage values of 16.0 +/- 8.3 and 12.9 +/- 8.9, for the fraction of radium extracted from the tailings, using 1 mol dm-3 ammonium acetate or calcium chloride solutions, respectively, were obtained. The 226Ra concentration ratios determined on the basis of exchangeable radium are one order of magnitude higher than those based on total radium. It can be concluded that, at a 95% confidence level, more consistent 226Ra concentration ratios were obtained when calculated on the basis of available radium than when total radium was considered, for all the dams. PMID:11379070

  7. Post Audit of a Field Scale Reactive Transport Model of Uranium at a Former Mill Site

    NASA Astrophysics Data System (ADS)

    Curtis, G. P.

    2015-12-01

    Reactive transport of hexavalent uranium (U(VI)) in a shallow alluvial aquifer at a former uranium mill tailings site near Naturita CO has been monitored for nearly 30 years by the US Department of Energy and the US Geological Survey. Groundwater at the site has high concentrations of chloride, alkalinity and U(VI) as a owing to ore processing at the site from 1941 to 1974. We previously calibrated a multicomponent reactive transport model to data collected at the site from 1986 to 2001. A two dimensional nonreactive transport model used a uniform hydraulic conductivity which was estimated from observed chloride concentrations and tritium helium age dates. A reactive transport model for the 2km long site was developed by including an equilibrium U(VI) surface complexation model calibrated to laboratory data and calcite equilibrium. The calibrated model reproduced both nonreactive tracers as well as the observed U(VI), pH and alkalinity. Forward simulations for the period 2002-2015 conducted with the calibrated model predict significantly faster natural attenuation of U(VI) concentrations than has been observed by the persistent high U(VI) concentrations at the site. Alternative modeling approaches are being evaluating evaluated using recent data to determine if the persistence can be explained by multirate mass transfer models developed from experimental observations at the column scale(~0.2m), the laboratory tank scale (~2m), the field tracer test scale (~1-4m) or geophysical observation scale (~1-5m). Results of this comparison should provide insight into the persistence of U(VI) plumes and improved management options.

  8. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    SciTech Connect

    Not Available

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  9. Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico. Draft

    SciTech Connect

    Not Available

    1993-09-01

    This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain.

  10. Silica with immobilized phosphinic acid-derivative for uranium extraction.

    PubMed

    Budnyak, Tetyana M; Strizhak, Alexander V; Gładysz-Płaska, Agnieszka; Sternik, Dariusz; Komarov, Igor V; Kołodyńska, Dorota; Majdan, Marek; Tertykh, Valentin А

    2016-08-15

    A novel adsorbent benzoimidazol-2-yl-phenylphosphinic acid/aminosilica adsorbent (BImPhP(O)(OH)/SiO2NH2) was prepared by carbonyldiimidazole-mediated coupling of aminosilica with 1-carboxymethylbenzoimidazol-2-yl-phenylphosphinic acid. It was obtained through direct phosphorylation of 1-cyanomethylbenzoimidazole by phenylphosphonic dichloride followed by basic hydrolysis of the nitrile. The obtained sorbent was well characterized by physicochemical methods, such as differential scanning calorimetry-mass spectrometry (DSC-MS), surface area and pore distribution analysis (ASAP), scanning electron microscopy (SEM), X-ray photoelectron (XPS) and Fourier transform infrared (FTIR) spectroscopies. The adsorption behavior of the sorbent and initial silica gel as well as aminosilica gel with respect to uranium(VI) from the aqueous media has been studied under varying operating conditions of pH, concentration of uranium(VI), contact time, and desorption in different media. The synthesized material was found to show an increase in adsorption activity with respect to uranyl ions in comparison with the initial compounds. In particular, the highest adsorption capacity for the obtained modified silica was found at the neutral pH, where one gram of the adsorbent can extract 176mg of uranium. Under the same conditions the aminosilica extracts 166mg/g, and the silica - 144mg/g of uranium. In the acidic medium, which is common for uranium nuclear wastes, the synthesized adsorbent extracts 27mg/g, the aminosilica - 16mg/g, and the silica - 14mg/g of uranium. It was found that 15% of uranium ions leached from the prepared material in acidic solutions, while 4% of uranium can be removed in a phosphate solution. PMID:27177215

  11. Giant uranium deposits formed from exceptionally uranium-rich acidic brines

    NASA Astrophysics Data System (ADS)

    Richard, Antonin; Rozsypal, Christophe; Mercadier, Julien; Banks, David A.; Cuney, Michel; Boiron, Marie-Christine; Cathelineau, Michel

    2012-02-01

    Giant uranium deposits were formed during the Mesoproterozoic era, 1.6-1.0 Gyr ago, in both Canada and Australia. The deposits are thought to have formed from large-scale circulation of brines at temperatures of 120-200 °C that percolated between sedimentary basins and underlying crystalline basement rocks. However, the precise conditions for transport of the uranium in these brines are poorly understood. Here we use mass spectrometry to analyse the uranium content of brines preserved in naturally occurring fluid inclusions in ore deposits from the Athabasca Basin, Canada. We measure concentrations of uranium in the range 1.0×10-6-2.8×10-3moll-1. These concentrations are three orders of magnitude above any other common crustal fluids. Experimentally, we measure the solubility of uranium as a function of NaCl content and pH, in mixtures that are analogous to ore-forming brines at 155°C. To account for the high uranium content observed in the Athabasca deposits, we find that the brines must have been acidic, with a pH between 2.5 and 4.5. Our results strongly suggest that the world's richest uranium deposits formed from highly concentrated uranium-bearing acidic brines. We conclude that these conditions are a necessary requirement for the formation of giant uranium deposits in relatively short periods of time of about 0.1-1 Myr, similar to other world-class deposits of lead-zinc and gold.

  12. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado. Revision 1

    SciTech Connect

    Not Available

    1994-04-01

    This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  13. Groundwater protection management program plan. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect

    Not Available

    1992-06-01

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a Groundwater Protection Management Program Plan'' (groundwater protection plan) of sufficient scope and detail to reflect the program's significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1.

  14. Mathematical simulation of contaminant distribution in and around the uranium mill tailing piles, Riverton, Wyoming

    SciTech Connect

    Narasimhan, T.N.; Tokunaga, T.; White, A.F.; Smith, A.R.

    1983-02-01

    As part of the Research and Development phase of the Uranium Mill Tailings Remedial Action (UMTRA) program, the Lawrence Berkeley Laboratory (LBL) has set itself the goal of explaining the physico-chemical evolution of the Riverton site on the basis of the already collected field data at the site (Tokunaga and Narasimhan, 1982, Smith and Moed, 1982; White et al., 1984). The predictive aspects as well as addressing the question of critical quantity of field data have to be considered during the design phase of the project as a joint effort between the LBL team and the construction engineers. At the present time, LBL is in the process of completing the Research and Development phase of the work. As of this writing, the development of an appropriate set of mathematical models has been completed. The computations of the soil-water regime at the upper tailings surface, involving climatological factors is nearing completion. Computations of chemical transport are still in progress. This paper is devoted to a description of the key mathematical issues, the mathematical models that are needed to address these issues and a discussion of the model results pertaining to the soil water regime at the tailings-atmosphere interface. 11 references, 3 figures.

  15. Survivability of ancient man-made earthen mounds: implications for uranium mill tailings impoundments

    SciTech Connect

    Lindsey, C.G.; Mishima, J.; King, S.E.; Walters, W.H.

    1983-06-01

    As part of a study for the Nuclear Regulatory Commission (NRC), the Pacific Northwest Laboratory (PNL) is investigating long-term stabilization techniques for uranium mill impoundments. Part of this investigation involves the design of a rock armoring blanket (riprap) to mitigate wind and water erosion of the underlying soil cover, which in turn prevents exposure of the tailings to the environment. However, the need for the armoring blanket, as well as the blanket's effectiveness, depends on the stability of the underlying soil cap (radon suppression cover) and on the tailings themselves. Compelling evidence in archaeological records suggests that large man-made earthen structures can remain sound and intact for time periods comparable to those required for the stabilization of the tailings piles if properly constructed. We present archaeological evidence on the existence and survivability of man-made earthen and rock structures through specific examples of such structures from around the world. We also review factors contributing to their survival or destruction and address the influence of climate, building materials, and construction techniques on survivability.

  16. Engineering assessment of inactive uranium mill tailings, Spook site, Converse County, Wyoming

    SciTech Connect

    Not Available

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Spook site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings 48 mi northeast of Casper, in Converse County, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 187,000 tons of tailings at the Spook site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover makes and gamma densitometers for measuring cross-sectionally averaged mass velocity in steady steam-water flow are presented. The results are interpreted ntation.

  17. Analysis of BIOMOVS II Uranium Mill Tailings scenario 1.07 with the RESRAD computer code

    SciTech Connect

    Gnanapragasam, E.K.; Yu, C.

    1997-08-01

    The residual radioactive material guidelines (RESRAD) computer code developed at Argonne National Laboratory was selected for participation in the model intercomparison test scenario, version 1.07, conducted by the Uranium Mill Tailings Working Group in the second phase of the international Biospheric Model Validation Study. The RESRAD code was enhanced to provide an output attributing radiological dose to the nuclide at the point of exposure, in addition to the existing output attributing radiological dose to the nuclide in the contaminated zone. A conceptual model to account for off-site accumulation following atmospheric deposition was developed and showed the importance of considering this process for this off-site scenario. The RESRAD predictions for the atmospheric release compared well with most of the other models. The peak and steady-state doses and concentrations predicted by RESRAD for the groundwater release also agreed well with most of the other models participating in the study; however, the RESRAD plots shows a later breakthrough time and sharp changes compared with the plots of the predictions of other models. These differences were due to differences in the formulation for the retardation factor and to not considering the effects of longitudinal dispersion.

  18. Radiological survey of the inactive uranium-mill tailings at Lakeview, Oregon

    SciTech Connect

    Haywood, F.F.; Burden, J.E.; Ellis, B.S.; Loy, E.T.; Shinpaugh, W.H.

    1980-06-01

    The results of the radiological survey of the inactive uranium-mill site at Lakeview, Oregon, show that the average gamma-ray exposure rate 1 m above the tailings pile and the evaporation pond area (now dry) is close to the average background level for the area (11 ..mu..R/hr). The /sup 226/Ra concentration in most of the surface soil and sediment samples is also at or below the average background value for surface soil samples in the area (0.8 pCi/g). Calculated /sup 226/Ra concentrations, based on gamma radiation measurements in shallow (1-m-deep) holes, are in agreement with the results of surface soil and sediment analyses and with gamma-ray exposure rate measurements. The tailings at this site have been stabilized by the addition of 46 to 60 cm (18 to 24 in.) of soil that supports vigorous growth of vegetation. This treatment, coupled with a low-level inventory of /sup 226/Ra in the tailings (50 Ci), has resulted in limited spread of tailings by wind and water.

  19. Selenium accumulation and reproduction in birds breeding downstream of a uranium mill in northern Saskatchewan, Canada.

    PubMed

    Weech, Shari A; Scheuhammer, Anton M; Wayland, Mark E

    2012-01-01

    Selenium (Se) concentrations in aquatic invertebrates and bird eggs collected along the treated effluent receiving environment of the Key Lake uranium mill in northern Saskatchewan were significantly greater than from nearby reference areas, and in some cases (e.g., eggs of common loons--Gavia immer) were higher than commonly used thresholds for adverse reproductive effects in birds (i.e., 5 μg/g dry weight in diet; 12-15 μg/g dry weight in eggs). Mean Se concentrations in tree swallow (Tachycineta bicolor) eggs reached a maximum of 13.3 μg/g dry weight at the point of treated effluent discharge and exhibited a gradient of decreasing Se concentrations with increasing distance from the effluent discharge, probably reflecting both effluent dilution and local site fidelity by nesting swallows. In some cases, high intra-clutch variability in Se concentrations in mallard (Anas platyrhynchos) and tree swallow eggs was observed in high-Se sites, suggesting that a single egg randomly sampled from a nest in an area of higher Se exposure may not be representative of Se concentrations in other eggs from the same nest. Overall, tree swallow reproductive success was similar in both exposed and reference areas. PMID:21927945

  20. Assessment of potential migration of radionuclides and trace elements from the White Mesa uranium mill to the Ute Mountain Ute Reservation and surrounding areas, southeastern Utah

    USGS Publications Warehouse

    Naftz, David L.; Ranalli, Anthony J.; Rowland, Ryan C.; Marston, Thomas M.

    2011-01-01

    In 2007, the Ute Mountain Ute Tribe requested that the U.S. Environmental Protection Agency and U.S. Geological Survey conduct an independent evaluation of potential offsite migration of radionuclides and selected trace elements associated with the ore storage and milling process at an active uranium mill site near White Mesa, Utah. Specific objectives of this study were (1) to determine recharge sources and residence times of groundwater surrounding the mill site, (2) to determine the current concentrations of uranium and associated trace elements in groundwater surrounding the mill site, (3) to differentiate natural and anthropogenic contaminant sources to groundwater resources surrounding the mill site, (4) to assess the solubility and potential for offsite transport of uranium-bearing minerals in groundwater surrounding the mill site, and (5) to use stream sediment and plant material samples from areas surrounding the mill site to identify potential areas of offsite contamination and likely contaminant sources. The results of age-dating methods and an evaluation of groundwater recharge temperatures using dissolved-gas samples indicate that groundwater sampled in wells in the surficial aquifer in the vicinity of the mill is recharged locally by precipitation. Tritium/helium age dating methods found a "modern day" apparent age in water samples collected from springs in the study area surrounding the mill. This apparent age indicates localized recharge sources that potentially include artificial recharge of seepage from constructed wildlife refuge ponds near the mill. The stable oxygen isotope-ratio, delta oxygen-18, or δ(18O/16O), known as δ18O, and hydrogen isotope-ratio, delta deuterium, or δ(2H/1H), known as δD, data indicate that water discharging from Entrance Spring is isotopically enriched by evaporation and has a similar isotopic fingerprint as water from Recapture Reservoir, which is used as facilities water on the mill site. Water from Recapture

  1. A top-down assessment of energy, water and land use in uranium mining, milling, and refining

    SciTech Connect

    E. Schneider; B. Carlsen; E. Tavrides; C. van der Hoeven; U. Phathanapirom

    2013-11-01

    Land, water and energy use are key measures of the sustainability of uranium production into the future. As the most attractive, accessible deposits are mined out, future discoveries may prove to be significantly, perhaps unsustainably, more intensive consumers of environmental resources. A number of previous attempts have been made to provide empirical relationships connecting these environmental impact metrics to process variables such as stripping ratio and ore grade. These earlier attempts were often constrained by a lack of real world data and perform poorly when compared against data from modern operations. This paper conditions new empirical models of energy, water and land use in uranium mining, milling, and refining on contemporary data reported by operating mines. It shows that, at present, direct energy use from uranium production represents less than 1% of the electrical energy produced by the once-through fuel cycle. Projections of future energy intensity from uranium production are also possible by coupling the empirical models with estimates of uranium crustal abundance, characteristics of new discoveries, and demand. The projections show that even for the most pessimistic of scenarios considered, by 2100, the direct energy use from uranium production represents less than 3% of the electrical energy produced by the contemporary once-through fuel cycle.

  2. Environmental assessment of ground water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming. Revision 0

    SciTech Connect

    1996-03-01

    This document is an environmental assessment of the Spook, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site. It analyzes the impacts of the U.S. Department of Energy (DOE) proposed action for ground water compliance. The proposed action is to comply with the U.S. Environmental Protection Agency (EPA) standards for the UMTRA Project sites (40 CFR Part 192) by meeting supplemental standards based on the limited use ground water at the Spook site. This proposed action would not require site activities, including ground water monitoring, characterization, or institutional controls. Ground water in the uppermost aquifer was contaminated by uranium processing activities at the Spook site, which is in Converse County, approximately 48 miles (mi) (77 kilometers [km]) northeast of Casper, Wyoming. Constituents from the site infiltrated and migrated into the uppermost aquifer, forming a plume that extends approximately 2500 feet (ft) (800 meters [m]) downgradient from the site. The principal site-related hazardous constituents in this plume are uranium, selenium, and nitrate. Background ground water in the uppermost aquifer at the site is considered limited use. It is neither a current nor a potential source of drinking water because of widespread, ambient contamination that cannot be cleaned up using treatment methods reasonably employed in public water supply systems (40 CFR {section} 192.11 (e)). Background ground water quality also is poor due to first, naturally occurring conditions (natural uranium mineralization associated with an alteration front), and second, the effects of widespread human activity not related to uranium milling operations (uranium exploration and mining activities). There are no known exposure pathways to humans, animals, or plants from the contaminated ground water in the uppermost aquifer because it does not discharge to lower aquifers, to the surface, or to surface water.

  3. State policies and requirements for management of uranium mining and milling in New Mexico. Volume IV. The supply of electric power and natural gas fuel as possible constraints on uranium production

    SciTech Connect

    Page, G.B.

    1980-04-01

    The report contained in this volume considers the availability of electric power to supply uranium mines and mills. The report, submited to Sandia Laboratories by the New Mexico Department of Energy and Minerals (EMD), is reproduced without modification. The state concludes that the supply of power, including natural gas-fueled production, will not constrain uranium production.

  4. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    SciTech Connect

    Not Available

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  5. Summary of the engineering assessment of inactive uranium mill tailings: Phillips/United Nuclear site, Ambrosia Lake, New Mexico

    SciTech Connect

    1981-10-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Phillips/United Nuclear site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ambrosia Lake, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,500,000 for stabilization in-place, to about $45,200,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Phillips/United Nuclear tailings were examined: heap leaching; treatment at an existing mill; reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $87/lb of U/sub 3/O/sub 8/ by either heap leach or conventional plant process. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Phillips/United Nuclear tailings for uranium recovery does not appear to be economically attractive under present or foreseeable market conditions.

  6. Environmental assessment of remedial action at the Shiprock uranium mill tailings site, Shiprock, New Mexico: Volume 1, Text

    SciTech Connect

    1984-05-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the shiprock uranium mill tailings site located on the Navajo Indian Reservation, one mile south of Shiprock, New Mexico. The site contains 72 acres of tailings and four of the original mill buildings. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated soils into a recontoured pile. A seven-foot-thick radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Three other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a more remote location. The no action alternative is also assessed. 99 refs., 40 figs., 58 tabs.

  7. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado. Revision 1

    SciTech Connect

    Not Available

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section}7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd{sup 3}). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM).

  8. Environmental Assessment of remedial action at the Ambrosia Lake uranium mill tailings site, Ambrosia Lake, New Mexico

    SciTech Connect

    Not Available

    1987-06-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Ambrosia Lake uranium mill tailings site located near Ambrosia Lake, New Mexico. The designated site covers 196 acres and contains 111 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for th remedial action (40 CFR Part 192). Remedial action must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion protection measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at an undeveloped location. The no action alternative is also assessed in this document.

  9. Field testing of fugitive dust control techniques at a uranium mill tailings pile - 1982 Field Test, Gas Hills, Wyoming.

    SciTech Connect

    Elmore, M.R.; Hartley, J.N.

    1983-12-01

    A field test was conducted on a uranium tailings pile to evaluate the effectiveness of 15 chemical stabilizers for control of fugitive dust from uranium mill tailings. A tailings pile at the Federal American Partners (FAP) Uranium Mill, Gas Hills, Wyoming, was used for the field test. Preliminary laboratory tests using a wing tunnel were conducted to select the more promising stabilizers for field testing. Fourteen of the chemical stabilizers were applied with a field spray system pulled behind a tractor; one--Hydro Mulch--was applied with a hydroseeder. A portable weather station and data logger were installed to record the weather conditions at the test site. After 1 year of monitoring (including three site visits), all of the stabilizers have degraded to some degree; but those applied at the manufacturers' recommended rate are still somewhat effective in reducing fugitive emissions. The following synthetic polymer emulsions appear to be the more effective stabilizers: Wallpol 40-133 from Reichold Chemicals, SP-400 from Johnson and March Corporation, and CPB-12 from Wen Don Corporation. Installed costs for the test plots ranged from $8400 to $11,300/ha; this range results from differences in stabilizer costs. Large-scale stabilization costs of the test materials are expected to range from $680 to $3600/ha based on FAP experience. Evaluation of the chemical stabilizers will continue for approximately 1 year. 2 references, 33 figures, 22 tables.

  10. Acceleration of Microbially Mediated U(VI) Reduction at a Uranium Mill Tailings Site, Colorado Plateau

    SciTech Connect

    Phil Long; Todd Anderson; Aaron Peacock; Steve Heald; Yun-Juan Chang; Dick Dayvault; Derek R. Lovley; C.T. Resch; Helen Vrionis; Irene Ortiz-Bernad; D.C. White

    2004-03-17

    A second field-scale electron donor amendment experiment was conducted in 2003 at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site in Rifle, Colorado. The objective of the 2003 experiment (done in collaboration with the U.S. Department of Energy's UMTRA Groundwater Project) was to test the hypothesis that amendment of increased concentration of electron donor would result in an increased export of electron donor down gradient which in turn would create a larger zone of down-gradient U(VI) bioreduction sustained over a longer time period relative to the 2002 experiment (Anderson et al. 2003). During the first experiment (2002), {approx}3 mM acetate was amended to subsurface over a period of 3 months in a 15m by 18m by 2.5m volume comprised of 3 upgradient monitoring wells, 20 injection wells, and 15 down-gradient monitoring wells. After an initial one-month phase of metal reduction, bioavailable oxidized Fe was consumed near the injection gallery and the dominant terminal electron accepting process became sulfate reduction, rapidly consuming the injected acetate. For the 2003 experiment, we amended sufficient acetate ({approx}10 mM) to consume available sulfate and export acetate down-gradient where bioavailable oxidized Fe was still present. Data from the experiment indicate that acetate was exported further down gradient, resulting in a larger zone of microbial U(VI) reduction than for the 2002 experiment. Geohydrologic, geochemical, and microbiological data collected during the course of both experiments enable assessment of relative importance of a number of factors controlling the experimental outcomes. Companion posters by Anderson et al. and White et al. provide additional results.

  11. Groundwater contamination from an inactive uranium mill tailings pile: 2. Application of a dynamic mixing model

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.; White, A. F.; Tokunaga, T.

    1986-12-01

    At Riverton, Wyoming, low pH process waters from an abandoned uranium mill tailings pile have been infiltrating into and contaminating the shallow water table aquifer. The contamination process has been governed by transient infiltration rates, saturated-unsaturated flow, as well as transient chemical reactions between the many chemical species present in the mixing waters and the sediments. In the first part of this two-part series [White et al., 1984] we presented field data as well as an interpretation based on a static mixing model. As an upper bound, we estimated that 1.7% of the tailings water had mixed with the native groundwater. In the present work we present the results of numerical investigation of the dynamic mixing process. The model, DYNAMIX (DYNAmic MIXing), couples a chemical speciation algorithm, PHREEQE, with a modified form of the transport algorithm, TRUMP, specifically designed to handle the simultaneous migration of several chemical constituents. The overall problem of simulating the evolution and migration of the contaminant plume was divided into three sub problems that were solved in sequential stages. These were the infiltration problem, the reactive mixing problem, and the plume-migration problem. The results of the application agree reasonably with the detailed field data. The methodology developed in the present study demonstrates the feasibility of analyzing the evolution of natural hydrogeochemical systems through a coupled analysis of transient fluid flow as well as chemical reactions. It seems worthwhile to devote further effort toward improving the physicochemical capabilities of the model as well as to enhance its computational efficiency.

  12. Groundwater contamination from an inactive uranium mill tailings pile. 2. Application of a dynamic mixing model

    SciTech Connect

    Narashimhan, T.N.; White, A.F.; Tokunaga, T.

    1986-12-01

    At Riverton, Wyoming, low pH process waters from an abandoned uranium mill tailings pile have been infiltrating into and contaminating the shallow water table aquifer. The contamination process has been governed by transient infiltration rates, saturated-unsaturated flow, as well as transient chemical reactions between the many chemical species present in the mixing waters and the sediments. In the first part of this two-part series the authors presented field data as well as an interpretation based on a static mixing models. As an upper bound, the authors estimated that 1.7% of the tailings water had mixed with the native groundwater. In the present work they present the results of numerical investigation of the dynamic mixing process. The model, DYNAMIX (DYNamic MIXing), couples a chemical speciation algorithm, PHREEQE, with a modified form of the transport algorithm, TRUMP, specifically designed to handle the simultaneous migration of several chemical constituents. The overall problem of simulating the evolution and migration of the contaminant plume was divided into three sub problems that were solved in sequential stages. These were the infiltration problem, the reactive mixing problem, and the plume-migration problem. The results of the application agree reasonably with the detailed field data. The methodology developed in the present study demonstrates the feasibility of analyzing the evolution of natural hydrogeochemical systems through a coupled analysis of transient fluid flow as well as chemical reactions. It seems worthwhile to devote further effort toward improving the physicochemical capabilities of the model as well as to enhance its computational efficiency.

  13. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site near Gunnison, Colorado. Final

    SciTech Connect

    Not Available

    1992-02-01

    The presence of contaminated uranium mill tailings adjacent to the city of Gunnison has been a local concern for many years. The following issues were identified during public meetings that were held by the DOE prior to distribution of an earlier version of this EA. Many of these issues will require mitigation. Groundwater contamination; in December 1989, a herd of 105 antelope were introduced in an area that includes the Landfill disposal site. There is concern that remedial action-related traffic in the area would result in antelope mortality. The proposed Tenderfoot Mountain haul road may restrict antelope access to their water supply; a second wildlife issue concerns the potential reduction in sage grouse use of breeding grounds (leks) and nesting habitat; the proposed Tenderfoot Mountain haul road would cross areas designated as wetlands by US Army Corps of Engineers (COE); the proposed disposal site is currently used for grazing by cattle six weeks a year in the spring. Additional concerns were stated in comments on a previous version of this EA. The proposed action is to consolidate and remove all contaminated materials associated with the Gunnison processing site to the Landfill disposal site six air miles east of Gunnison. All structures on the site (e.g., water tower, office buildings) were demolished in 1991. The debris is being stored on the site until it can be incorporated into the disposal cell at the disposal site. All contaminated materials would be trucked to the Landfill disposal site on a to-be-constructed haul road that crosses BLM-administered land.

  14. DESIGN, PERFORMANCE, AND SUSTAINABILITY OF ENGINEERED COVERS FOR URANIUM MILL TAILINGS

    SciTech Connect

    Waugh, W. Jody

    2004-04-21

    Final remedies at most uranium mill tailings sites include engineered covers designed to contain metals and radionuclides in the subsurface for hundreds of years. Early cover designs rely on compacted soil layers to limit water infiltration and release of radon, but some of these covers inadvertently created habitats for deep-rooted plants. Root intrusion and soil development increased the saturated hydraulic conductivity several orders of magnitude above design targets. These covers may require high levels of maintenance to sustain long-term performance. Relatively low precipitation, high potential evapotranspiration, and thick unsaturated soils favor long-term hydrologic isolation of buried waste at arid and semiarid sites. Later covers were designed to mimic this natural soil-water balance with the goal of sustaining performance with little or no maintenance. For example, the cover for the Monticello, Utah, Superfund site relies on a thick soil-sponge layer overlying a sand-and-gravel capillary barrier to store precipitation while plants are dormant and on native vegetation to dry the soil sponge during the growing season. Measurements of both off-site caisson lysimeters and a large 3-ha lysimeter built into the final cover show that drainage has been well below a U.S. Environmental Protection Agency target of less than 3.0 mm/yr. Our stewardship strategy combines monitoring precursors to failure, probabilistic riskbased modeling, and characterization of natural analogs to project performance of covers for a range of possible future environmental scenarios. Natural analogs are needed to understand how ecological processes will influence cover performance, processes that cannot be predicted with short-term monitoring and existing numerical models.

  15. Remediation of former uranium mining and milling activities in Central Asia

    SciTech Connect

    Waggitt, Peter

    2007-07-01

    Available in abstract form only. Full text of publication follows: Several of the Central Asian countries of the former Soviet Union were involved in the uranium mining and milling industry from about 1945 for varying periods until the break up of the Soviet Union in 1991 and beyond. Some facilities are still producing in Uzbekistan and Kazakhstan. However, before the break up, many facilities had been abandoned and in only a few cases had any remediation been undertaken. Since 1991 the newly independent states of the region have been seeking assistance for the remediation of the multitude of tailings piles, waste rock stockpiles and abandoned, and often semi dismantled, production facilities that may be found throughout the region. Many of these sites are close to settlements that were established as service towns for the mines. Most towns still have populations, although the mining industry has departed. In some instances there are cases of pollution and contamination and in many locations there is a significant level of public concern. The IAEA has been undertaking a number of Technical Cooperation (TC) projects throughout the region for some time to strengthen the institutions in the relevant states and assist them to establish monitoring and surveillance programs as an integral part of the long term remediation process. The IAEA is liaising with other agencies and donors who are also working on these problems to optimise the remediation effort. The paper describes the objectives and operation of the main TC regional program, liaison efforts with other agencies, the achievements so far and the long term issues for remediation of these legacies of the 'cold war' era. (authors)

  16. SOLVENT EXTRACTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM FROM AQUEOUS ACIDIC SOLUTIONS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Bruce, F.R.

    1962-07-24

    A solvent extraction process was developed for separating actinide elements including plutonium and uranium from fission products. By this method the ion content of the acidic aqueous solution is adjusted so that it contains more equivalents of total metal ions than equivalents of nitrate ions. Under these conditions the extractability of fission products is greatly decreased. (AEC)

  17. Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China.

    PubMed

    Li, Guang-yue; Hu, Nan; Ding, De-xin; Zheng, Ji-fang; Liu, Yu-long; Wang, Yong-dong; Nie, Xiao-qin

    2011-06-01

    The concentrations of uranium, thorium, barium, nickel, strontium and lead in the samples of the tailings and plant species collected from a uranium mill tailings repository in South China were analyzed. Then, the removal capability of a plant for a target element was assessed. It was found that Phragmites australis had the greatest removal capabilities for uranium (820 μg), thorium (103 μg) and lead (1,870 μg). Miscanthus floridulus had the greatest removal capabilities for barium (3,730 μg) and nickel (667 μg), and Parthenocissus quinquefolia had the greatest removal capability for strontium (3,920 μg). In this study, a novel coefficient, termed as phytoremediation factor (PF), was proposed, for the first time, to assess the potential of a plant to be used in phytoremediation of a target element contaminated soil. Phragmites australis has the highest PFs for uranium (16.6), thorium (8.68), barium (10.0) and lead (10.5). Miscanthus floridulus has the highest PF for Ni (25.0). Broussonetia papyrifera and Parthenocissus quinquefolia have the relatively high PFs for strontium (28.1 and 25.4, respectively). On the basis of the definition for a hyperaccumulator, only Cyperus iria and Parthenocissus quinquefolia satisfied the criteria for hyperaccumulator of uranium (36.4 μg/g) and strontium (190 μg/g), and could be the candidates for phytoremediation of uranium and strontium contaminated soils. The results show that the PF has advantage over the hyperaccumulator in reflecting the removal capabilities of a plant for a target element, and is more adequate for assessing the potential of a plant to be used in phytoremediation than conventional method. PMID:21523506

  18. A thick homogeneous vegetated cover design proves cost - and schedule-effective for the reclamation of uranium mills sites near Spokane, Washington

    SciTech Connect

    Blacklaw, J.; Robertson, G.; Stoffel, D.; Ahmad, J.; Fordham, E.

    1997-08-01

    The Washington State Department of Health (WDOH) has licensed two medium sized uranium mills with tailings impoundments covering 28 and 40 hectares (70 and 100 acres), respectively, The uranium mill licensees have submitted closure and reclamation plans to the state, and site-specific conditions have determined the closure design features, Conventional uranium mill cover designs usually incorporate an overall cap of one to three meters, which includes a low-permeability clay barrier layer. A technical evaluation of several uranium mill facilities that used this design was published in the fall of 1994 and reported that unexpected vegetation root damage had occurred in the low-permeability clay (or bentonite amended) barrier layers. The technical report suggested that the low-permeability design feature at some sites could be compromised within a very short time and the regulatory goal of 1,000 years performance might not be achieved. In October 1994, WDOH sponsored a technical forum meeting to consider design alternatives to address these reliability concerns. Representatives from the federal government, nuclear industry, licensees, engineering firms, and state regulatory agencies attended the workshop. Risk factors considered in the evaluation of the uranium mill reclamation plans include: (1) radon gas emanation through the cover (the air pathway), and (2) migration of hazardous and/or radioactive constituents (the groundwater pathway). Additional design considerations include site structural stability, longevity of 1,000 years, and no active (ongoing) maintenance. 9 refs.

  19. An aerial radiological survey of the Durango, Colorado uranium mill tailings site and surrounding area. Date of survey: August 1980

    SciTech Connect

    Hilton, L.K.

    1981-06-01

    An aerial radiological survey of Durango, Colorado, including the inactive uranium mill tailings piles located southwest of the town, was conducted during August 25--29, 1980, for the Department of Energy`s Environmental and Safety Engineering Division. Areas of radiation exposure rates higher than the local background, which was about 15 microrentgens per hour ({mu}R/h), were observed directly over and to the south of the mill tailings piles, over a cemetery, and at two spots near the fairgrounds. The rapidly changing radiation exposure rates at the boundaries of the piles preclude accurate extrapolation of aerial radiological data to ground level exposure rates in their immediate vicinity. Estimated radiation exposure rates close to the piles, however, approached 30 times background, or about 450 {mu}R/h. Radiation exposure rates in a long area extending south from the tailings piles were about 25 {mu}R/h.

  20. Annotated bibliography of environmentally relevant investigations of uranium mining and milling in the Grants Mineral Belt, northwestern New Mexico

    USGS Publications Warehouse

    Otton, James K.

    2011-01-01

    Studies of the natural environment in the Grants Mineral Belt in northwestern New Mexico have been conducted since the 1930s; however, few such investigations predate uranium mining and milling operations, which began in the early 1950s. This report provides an annotated bibliography of reports that describe the hydrology and geochemistry of groundwaters and surface waters and the geochemistry of soils and sediments in the Grants Mineral Belt and contiguous areas. The reports referenced and discussed provide a large volume of information about the environmental conditions in the area after mining started. Data presented in many of these studies, if evaluated carefully, may provide much basic information about the baseline conditions that existed over large parts of the Grants Mineral Belt prior to mining. Other data may provide information that can direct new work in efforts to discriminate between baseline conditions and the effects of the mining and milling on the natural environment.

  1. The ultrasonic ranging and data system for radiological surveys in the UMTRA (Uranium Mill Tailings Remedial Action) Project

    SciTech Connect

    Little, C.A.; Berven, B.A.; Blair, M.S.; Dickerson, K.S.; Pickering, D.A.

    1988-01-01

    The Ultrasonic Ranging and Data System (USRADS) was developed to allow radiation exposure data and positional information to be collected, stored and analyzed in a more efficient manner than currently employed on the (Uranium Mill Tailings Remedial Action (UMTRA) project. USRADS is a portable unit which employs ultrasonics, radio frequency transmissions, and a personal computer. Operational experience indicates that the system results in increased information about the property with decreased data analysis and transcription effort and only slightly more field effort. 5 refs., 3 figs., 2 tabs.

  2. Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995

    SciTech Connect

    1995-12-01

    This Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1995 (1 July 1994 through 30 June 1995). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock, Colorado. Economic data were requested from the Remedial Action Contractor (RAC), the Technical Assistance Contractor (TAC) and the US Department of Energy (DOE). The most significant benefits associated with the UMTRA Project in Colorado are summarized.

  3. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993

    SciTech Connect

    Not Available

    1993-12-01

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1993 (July 1, 1992, through June 30, 1993). To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized.

  4. Evaluation of health risks associated with proposed ground water standards at selected inactive uranium mill-tailings sites

    SciTech Connect

    Hamilton, L.D.; Medeiros, W.H.; Meinhold, A.; Morris, S.C.; Moskowitz, P.D.; Nagy, J.; Lackey, K.

    1989-04-01

    The US Environmental Protection Agency (EPA) has proposed ground water standards applicable to all inactive uranium mill-tailings sites. The proposed standards include maximum concentration limits (MCL) for currently regulated drinking water contaminants, as well as the addition of standards for molybdenum, uranium, nitrate, and radium-226 plus radium-228. The proposed standards define the point of compliance to be everywhere downgradient of the tailings pile, and require ground water remediation to drinking water standards if MCLs are exceeded. This document presents a preliminary description of the Phase 2 efforts. The potential risks and hazards at Gunnison, Colorado and Lakeview, Oregon were estimated to demonstrate the need for a risk assessment and the usefulness of a cost-benefit approach in setting supplemental standards and determining the need for and level of restoration at UMTRA sites. 8 refs., 12 tabs.

  5. Radiologic characterization of the Mexican Hat, Utah, uranium mill tailings remedial action site: Appendix D, Addenda D1--D7

    SciTech Connect

    Ludlam, J.R.

    1985-01-01

    This radiologic characterization of the inactive uranium millsite at Mexican Hat, Utah, was conducted by Bendix Field Engineering Corporation foe the US Department of Energy (DOE), Grand Junction Project Office, in response to and in accord with a Statement of Work prepared by the DOE Uranium Mill tailings Remedial Action Project (UMTRAP) Technical Assistance Contractor, Jacobs Engineering Group, Inc. the objective of this project was to determine the horizontal and vertical extent of contamination that exceeds the US Environmental Protection Agency (EPA) standards at the Mexican Hat site. The data presented in this report are required for characterization of the areas adjacent to the Mexican Hat tailings piles and for the subsequent design of cleanup activities. Some on-pile sampling was required to determine the depth of the 15-pCi/g Ra-226 interface in an area where wind and water erosion has taken place.

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    SciTech Connect

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  7. A Multifaceted Sampling Approach to Better Understanding Biogeochemical and Hydrogeological Controls on Uranium Mobility at a Former Uranium Mill Tailings Site in Riverton, Wyoming

    NASA Astrophysics Data System (ADS)

    Dam, W. L.; Johnson, R. H.; Campbell, S.; Bone, S. E.; Noel, V.; Bargar, J.

    2015-12-01

    Understanding uranium mobility in subsurface environments is not trivial. Obtaining sufficient data to accurately represent soil and aquifer characteristics can require unique approaches that evolve with added site knowledge. At Riverton, the primary source of uranium mill tailings remaining from ore processing was removed but contaminant plumes have persisted longer than predicted by groundwater modeling. What are the primary mechanisms controlling plume persistence? DOE is conducting new characterization studies to assist our understanding of underlying biogeochemical and hydrogeological mechanisms affecting secondary sources. A variety of field sampling techniques are being sequentially employed including augering, trenching, pore water sampling, and installing multi-level wells. In August 2012, vadose zone soil samples from 34 locations and groundwater from 103 boreholes were collected with Geoprobe ® direct push rods. Lower than expected uranium concentrations in composited shallow soils indicated the need for more focused and deeper samples. In May 2014, soil samples containing evaporites were collected along the bank of the Little Wind River; elevated uranium concentrations in evaporite minerals correlated with plume configurations and reflect contaminated groundwater discharge at the river. In September 2014, hand anger samples collected by the river and oxbow lake also indicated the presence of organic rich zones containing elevated uranium (>50 mg/kg). Subsequent samples collected from five backhoe trenches in May 2015 revealed a highly heterogeneous vadose zone composed of clay, silt, sand and cobbles containing evaporites and organic rich zones which may interact with groundwater plumes.Plans for August 2015 include sonic drilling to obtain continuous cores from the surface down to the base of the surficial aquifer with multi-level monitoring wells constructed in each borehole to assess vertical variation in groundwater chemistry. Temporary well

  8. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    SciTech Connect

    1996-10-01

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are in

  9. Worker protection implications of the solubility and human metabolism of modern uranium mill products in the U.S.

    PubMed

    Brown, Steven H; Chambers, Douglas B

    2014-11-01

    This paper presents an analysis of the implications of some recent studies performed to characterize uranium products from modern uranium recovery facilities important for worker protection. Assumptions about the solubility (related to the molecular species being produced) of these materials in humans are critical to properly assess radiation dose from intakes, understand chemotoxic implications, and establish protective exposure standards (airborne concentrations, limits on intake, etc.). Recent studies, as well as information in the historical professional literature, were reviewed that address the issue of solubility and related characteristics. These data are important for the design of programs for assessment of both chemical and radiological aspects of worker exposure to the products of modern uranium recovery plants (conventional uranium mills and in situ recovery plants; i.e., ISRs). The data suggest strongly that the oxide form produced by these facilities (and therefore, product solubility) is related to precipitation chemistry and thermal exposure (dryer temperature). Given the peroxide precipitation and low temperature drying methods being used at many modern uranium recovery facilities in the U.S. today, very soluble products are being produced. The dosimetric impacts of these products to the pulmonary system (except perhaps in case of an extreme acute insult) would be small, and any residual pulmonary retention beyond a month or two would most likely be too small to measure by traditional urinalysis sampling or the current state-of-the-art of natural uranium in vivo lung counting techniques. Uranium recovery plants should revisit the adequacy of current bioassay programs in the context of their process and product specifics. Workers potentially exposed to these very soluble yellowcake concentrates should have urine specimens submitted for uranium analysis on an approximately weekly basis, including analysis for the biomarkers associated with potential

  10. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Appendix D. Final report

    SciTech Connect

    1988-07-01

    This appendix is an assessment of the present conditions of the inactive uranium mill site near Mexican Hat, Utah. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan. Plan is to characterize the conditions at the mill and tailings site so that the Remedial Action Contractor may complete final designs of the remedial action.

  11. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Volume 2, Appendices D and E: Final report

    SciTech Connect

    Not Available

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  12. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Gunnison, Colorado: Remedial action selection report. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect

    Not Available

    1992-10-01

    The Gunnison uranium mill tailings site is just south of the city limits of Gunnison, Colorado, in the south-central part of the state. The entire site covers 61 acres in the valley of the Gunnison River and Tomichi Creek. Contaminated materials at the Gunnison processing site include the tailings pile, covering about 35 acres to an average depth of nine feet and containing 459,000 cubic yards. Ore storage areas and the former mill processing area cover about 20 acres on the south side of the site. The volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 718,900 cubic yards. An interim action was approved by the US Department of Energy to eliminate existing safety hazards to the Gunnison community. These actions, started in September 1991, included demolition of mill buildings and related processing facilities, excavation of two underground storage tanks, removal of asbestos and other hazardous materials from buildings, storage of those materials in a secured area on the site, and improvements of site security.

  13. TRANSPORT AND FATE OF AMMONIUM AND ITS IMPACT ON URANIUM AND OTHER TRACE ELEMENTS AT A FORMER URANIUM MILL TAILING SITE

    PubMed Central

    Miao, Ziheng; Nihat, Hakan; McMillan, Andrew Lee; Brusseau, Mark L.

    2013-01-01

    The remediation of ammonium-containing groundwater discharged from uranium mill tailing sites is a difficult problem facing the mining industry. The Monument Valley site is a former uranium mining site in the southwest US with both ammonium and nitrate contamination of groundwater. In this study, samples collected from 14 selected wells were analyzed for major cations and anions, trace elements, and isotopic composition of ammonium and nitrate. In addition, geochemical data from the U.S. Department of Energy (DOE) database were analyzed. Results showing oxic redox conditions and correspondence of isotopic compositions of ammonium and nitrate confirmed the natural attenuation of ammonium via nitrification. Moreover, it was observed that ammonium concentration within the plume area is closely related to concentrations of uranium and a series of other trace elements including chromium, selenium, vanadium, iron, and manganese. It is hypothesized that ammonium-nitrate transformation processes influence the disposition of the trace elements through mediation of redox potential, pH, and possibly aqueous complexation and solid-phase sorption. Despite the generally relatively low concentrations of trace elements present in groundwater, their transport and fate may be influenced by remediation of ammonium or nitrate at the site. PMID:24357895

  14. Uranium*

    NASA Astrophysics Data System (ADS)

    Grenthe, Ingmar; Drożdżyński, Janusz; Fujino, Takeo; Buck, Edgar C.; Albrecht-Schmitt, Thomas E.; Wolf, Stephen F.

    Uranium compounds have been used as colorants since Roman times (Caley, 1948). Uranium was discovered as a chemical element in a pitchblende specimen by Martin Heinrich Klaproth, who published the results of his work in 1789. Pitchblende is an impure uranium oxide, consisting partly of the most reduced oxide uraninite (UO2) and partly of U3O8. Earlier mineralogists had considered this mineral to be a complex oxide of iron and tungsten or of iron and zinc, but Klaproth showed by dissolving it partially in strong acid that the solutions yielded precipitates that were different from those of known elements. Therefore he concluded that it contained a new element (Mellor, 1932); he named it after the planet Uranus, which had been discovered in 1781 by William Herschel, who named it after the ancient Greek deity of the Heavens.

  15. Uranium recovery from wet-process phosphoric acid with octylphenyl acid phosphate. Progress report

    SciTech Connect

    Arnold, W.D.; McKamey, D.R.; Baes, C.F.

    1980-01-01

    Studies were continued of a process for recovering uranium from wet-process phosphoric acid with octylphenyl acid phosphate (OPAP), a mixture of mono- and dioctylphenyl phosphoric acids. The mixture contained at least nine impurities, the principal one being octyl phenol, and also material that readily hydrolyzed to octyl phenol and orthophosphoric acid. The combination of mono- and dioctylphenyl phosphoric acids was the principal uranium extractant, but some of the impurities also extracted uranium. Hydrolysis of the extractant had little effect on uranium extraction, as did the presence of moderate concentrations of octyl phenol and trioctylphenyl phosphate. Diluent choice among refined kerosenes, naphthenic mixtures, and paraffinic hydrocarbons also had little effect on uranium extraction, but extraction was much lower when an aromatic diluent was used. Purified OPAP fractions were sparingly soluble in aliphatic hydrocarbon diluents. The solubility was increased by the presence of impurities such as octyl phenol, and by the addition of water or an acidic solution to the extractant-diluent mixture. In continuous stability tests, extractant loss by distribution to the aqueous phase was much less to wet-process phosphoric acid than to reagent grade acid. Uranium recovery from wet-process acid decreased steadily because of the combined effects of extractant poisoning and precipitation of the extractant as a complex with ferric iron. Unaccountable losses of organic phase volume occurred in the continuous tests. While attempts to recover the lost organic phase were unsuccessful, the test results indicate it was not lost by entrainment or dissolution in the phosphoric acid solutions. 21 figures, 8 tables.

  16. Biological characterization of radiation exposure and dose estimates for inhaled uranium milling effluents. Annual progress report April 1, 1982-March 31, 1983

    SciTech Connect

    Eidson, A.F.

    1984-05-01

    The problems addressed are the protection of uranium mill workers from occupational exposure to uranium through routine bioassay programs and the assessment of accidental worker exposures. Comparisons of chemical properties and the biological behavior of refined uranium ore (yellowcake) are made to identify important properties that influence uranium distribution patterns among organs. These studies will facilitate calculations of organ doses for specific exposures and associated health risk estimates and will identify important bioassay procedures to improve evaluations of human exposures. A quantitative analytical method for yellowcake was developed based on the infrared absorption of ammonium diuranate and U/sub 3/O/sub 8/ mixtures in KBr. The method was applied to yellowcake samples obtained from six operating mills. The composition of yellowcake from the six mills ranged from nearly pure ammonium diuranate to nearly pure U/sub 3/O/sub 8/. The composition of yellowcake samples taken from lots from the same mill was only somewhat less variable. Because uranium mill workers might be exposed to yellowcake either by contamination of a wound or by inhalation, a study of retention and translocation of uranium after subcutaneous implantation in rats was done. The results showed that 49% of the implanted yellowcake cleared from the body with a half-time (T sub 1/2) in the body of 0.3 days, and the remainder was cleared with a T sub 1/2 of 11 to 30 days. Exposures of Beagle dogs by nose-only inhalation to aerosols of commercial yellowcake were completed. Biochemical indicators of kidney dysfunction that appeared in blood and urine 4 to 8 days after exposure to the more soluble yellowcake showed significant changes in dogs, but levels returned to normal by 16 days after exposure. No biochemical evidence of kidney dysfunction was observed in dogs exposed to the less soluble yellowcake form. 18 figures, 9 tables.

  17. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    SciTech Connect

    1995-08-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  18. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    SciTech Connect

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

  19. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    SciTech Connect

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  20. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    SciTech Connect

    1995-12-01

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  1. Chemical reactions of uranium in ground water at a mill tailings site

    NASA Astrophysics Data System (ADS)

    Abdelouas, A.; Lutze, W.; Nuttall, E.

    1998-11-01

    We studied soil and ground water samples from the tailings disposal site near Tuba City, AZ, located on Navajo sandstone, in terms of uranium adsorption and precipitation. The uranium concentration is up to 1 mg/l, 20 times the maximum concentration for ground water protection in the United States. The concentration of bicarbonate (HCO 3-) in the ground water increased from ≤7×10 -4 M, the background concentration, to 7×10 -3 M. Negatively charged uranium carbonate complexes prevail at high carbonate concentrations and uranium is not adsorbed on the negatively charged mineral surfaces. Leaching experiments using contaminated and uncontaminated sandstone and 1 N HCl show that adsorption of uranium from the ground water is negligible. Batch adsorption experiments with the sandstone and ground water at 16°C, the in situ ground water temperature, show that uranium is not adsorbed, in agreement with the results of the leaching experiments. Adsorption of uranium at 16°C is observed when the contaminated ground water is diluted with carbonate-free water. The observed increase in pH from 6.7 to 7.3 after dilution is too small to affect adsorption of uranium on the sandstone. Storage of undiluted ground water to 24°C, the temperature in the laboratory, causes coprecipitation of uranium with aragonite and calcite. Our study provides knowledge of the on-site uranium chemistry that can be used to select the optimum ground water remediation strategy. We discuss our results in terms of ground water remediation strategies such as pump and treat, in situ bioremediation, steam injection, and natural flushing.

  2. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Szecsody, Jim E.; Truex, Mike J.; Qafoku, Nikolla P.; Wellman, Dawn M.; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2 +, Mg2 +) and phosphate and a slow (100 s of hours) increase in silica, Al3 +, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  3. Influence of Acidic and Alkaline Waste Solution Properties on Uranium Migration in Subsurface Sediments

    SciTech Connect

    Szecsody, James E.; Truex, Michael J.; Qafoku, Nikolla; Wellman, Dawn M.; Resch, Charles T.; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments has significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2+, Mg2+) and phosphate and a slow (100s of hours) increase in silica, Al3+, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10s to 100s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  4. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.

    PubMed

    Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. PMID:23851265

  5. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Ambrosia Lake, New Mexico

    SciTech Connect

    Not Available

    1991-11-01

    This volume deals with the main construction subcontract for the uranium mill tailings remedial action of Ambrosia Lake, New Mexico. Contents of subcontract documents AMB-4 include: bidding requirements; terms and conditions; specifications which cover general requirements and sitework; and subcontract drawings.

  6. Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect

    Not Available

    1992-06-01

    The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public's concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained.

  7. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Remedial action selection report. Revised final report

    SciTech Connect

    Not Available

    1991-12-01

    The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose. First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado.

  8. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Remedial action selection report

    SciTech Connect

    Not Available

    1991-12-01

    The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose. First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado.

  9. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Appendix A to Attachment 3, tables; Preliminary final

    SciTech Connect

    1994-03-01

    This appendix contains the supporting tables for the remedial action plan for uranium mill tailings sites at Slick Rock, CO. The tables contain monitoring well information, background groundwater quality data, regulated constituent summaries, tailings pore fluid sample analyses, and other data for each of the sites studied.

  10. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  11. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    SciTech Connect

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  12. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Attachment 3, Groundwater hydrology report. Revised final report

    SciTech Connect

    Not Available

    1991-12-01

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites. According to the Uranium Mill Tailings Radiation Control Act of 1978, (UMTRCA) the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined this assessment shall include information on hydrogeologic site characterization. The water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards is presented in Attachment 4. Site characterization activities discussed in this section include: Characterization of the hydrogeologic environment; characterization of existing groundwater quality; definition of physical and chemical characteristics of the potential contaminant source; and description of local water resources.

  13. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State fiscal year 1994. Revision 1

    SciTech Connect

    Not Available

    1994-12-01

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994 (1 July 1993 through 30 June 1994). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. Information on wages, taxes, and subcontract expenditures in combination with estimates and economic multipliers is used to estimate the dollar economic benefits to Colorado during the state fiscal year. Finally, the fiscal year 1994 estimates are compared to fiscal year 1993 employment and economic information.

  14. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    SciTech Connect

    None, None

    2014-03-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

  15. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    SciTech Connect

    2013-11-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

  16. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1

    SciTech Connect

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  17. Transient proteinuria and aminoaciduria in rodents following uranium intoxication

    SciTech Connect

    Bentley, K.W.; Stockwell, D.R.; Britt, K.A.; Kerr, C.B.

    1985-03-01

    Alternative human bioassay procedures for uranium are being investigated. Aminoaciduria in uranium hexafluoride and uranium mill employees has been examined. Although not conclusive, the results suggest that chronic human urinary uranium concentrations of 30-50 ..mu..g L/sup -1/ produce marked changes in the amino acid excretion profile although no consistent patterns emerged. As part of a program to examine alternative bioassay techniques for occupationally exposed uranium workers and to assist in interpretation of amino acid obtained from human incident exposures, the authors have examined the occurrence of transient aminoaciduria following uranium intoxication in female rats.

  18. Process for recovering uranium using an alkyl pyrophosphoric acid and alkaline stripping solution

    SciTech Connect

    Worthington, R.E.; Magdics, A.

    1987-03-24

    A process is described for stripping uranium from a pregnant organic extractant comprising an alkyl pyrophosphoric acid dissolved in a substantially water-immiscible organic diluent. The organic extractant contains tetravalent uranium and an alcohol or phenol modifier in a quantity sufficient to retain substantially all the unhydrolyzed alkyl pyrophosphoric acid in solution in the diluent during stripping. The process comprises adding an oxidizing agent to the organic extractant to and thereby oxidizing the tetravalent uranium to the +6 state in the organic extractant, and contacting the organic extractant containing the uranium in the +6 state with a stripping solution comprising an aqueous solution of an alkali metal or ammonium carbonate, nonsaturated in uranium. The uranium is stripped from, the organic extractant into the stripping solution, and the resulting barren organic extractant containing substantially all of the unhydrolyzed alkyl pyrophosphoric acid dissolved in the diluent is separated from the stripping solution containing the stripped uranium, the barren extractant being suitable for recycle.

  19. Survey of Radionuclide Distributions Resulting from the Church Rock, New Mexico, Uranium Mill Tailings Pond Dam Failure

    SciTech Connect

    Weimer, W. C.; Kinnison, R. R.; Reeves, J. H.

    1981-12-01

    An intensive site survey and on-site analysis program were conducted to evaluate the distribution of four radionucliGes in the general vicinity of Gallup, New Mexico, subsequent to the accidental breach of a uranium mill tailings pond dam and the release of a large quantity of tailings pond materials. The objective of this work was to determine the distribution and concentration levels of {sup 210}Pb, {sup 226}Ra, {sup 230}Th, and {sup 238}U in the arroyo that is immediately adjacent to the uranium tailings pond (pipeline arroyo) and in the Rio Puerco arroyo into which the pipeline arroyo drains. An intensive survey between the United Nuclear Corporation (UNC) Church Rock Mill site and the New Mexico-Arizona state border was performed. Sampling locations were established at approximately 500-ft intervals along the arroyo. During the weeks of September 24 through October 5, 1979, a series of samples was collected from alternate sampling locations along the arroyo. The purpose of this collection of samples and their subsequent analysis was to provide an immediate evaluation of the extent and the levels of radioactive contamination. The data obtained from this extensive survey were then compared to action levels which had been proposed by the Nuclear Regulatory Commission and were adapted by the New Mexico Environmental Improvement Division (NMEID) for {sup 230}Th and {sup 226}Ra concentrations that would require site cleanup. The Pacific Northwest Laboratory/Nuclear Regulatory Commission mobile laboratory van was on-site at the UNC Church Rock Mill from September 22, 1979, through December 13, 1979, and was manned by one or more PNL personnel for all but four weeks of this time period. Approximately 1200 samples associated with the Rio Puerco survey were analyzed 1n the laboratory. An additional 1200 samples related to the Rio Puerco cleanup operations which the United Nuclear Corporation was conducting were analyzed on-site in the mobile laboratory. The purpose of

  20. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    SciTech Connect

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  1. Radiological survey of the inactive uranium-mill tailings at the Spook site, Converse County, Wyoming

    SciTech Connect

    Haywood, F.F.; Christian, D.J.; Chou, K.D.; Ellis, B.S.; Lorenzo, D.; Shinpaugh, W.H.

    1980-05-01

    Results of a radiological survey performed at the Spook site in Converse County, Wyoming, in June 1976, are presented. The mill at this site was located a short distance from the open-pit mine where the ore was obtained and where part of the tailings was dumped into the mine. Several piles of overburden or low-grade ore in the vicinity were included in the measurements of above-ground gamma exposure rate. The average exposure rate over these piles varied from 14 ..mu..R/hr, the average background exposure rate for the area, to 140 ..mu..R/hr. The average exposure rate for the tailings and former mill area was 220 ..mu..R/hr. Movement of tailings particles down dry washes was evident. The calculated concentration of /sup 226/Ra in ten holes as a function of depth is presented graphically.

  2. Radiological survey of the inactive uranium-mill tailings at Ray Point, Texas

    SciTech Connect

    Haywood, F.F.; Christian, D.J.; Ellis, B.S.; Loy, E.T.; Lorenzo, D.

    1980-11-01

    The mill site and tailings pile near Ray Point, Texas, cover an area of approximately 140 hectares located 1.6 km west of Ray Point. The dry portion of the tailings pile is stabilized, and the whole pile is surrounded by a dike. It contains approximately 445,000 metric tons of material with an estimated average /sup 226/Ra concentration of 518 pCi/g. The average gamma-ray exposure rate 1 m above the pile is 300 ..mu..R/hr while the corresponding average for the mill site, including the former ore storage area, is 87 ..mu..R/hr. Soil and sediment sample analyses, as well as gamma-ray exposure rate measurements, show some spread of contamination off the site; however, it appears that control measures at this site have been effective in limiting the spread of tailings. Access to the area is limited by chain-link and barbed-wire fences, and continued surveillance of the area is maintained. The mill buildings have been maintained for possible future use.

  3. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Appendix D, Final report

    SciTech Connect

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two designated inactive uranium mill tailings sites near Rifle, Colorado, and the proposed disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  4. Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance

    SciTech Connect

    2012-03-01

    This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.

  5. Phytoremediation of uranium-contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants

    SciTech Connect

    Huang, J.W.; Blaylock, M.J.; Kapulnik, Y.; Ensley, B.D.

    1998-07-01

    Uranium phytoextraction, the use of plants to extract U from contaminated soils, is an emerging technology. The authors report on the development of this technology for the cleanup of U-contaminated soils. In this research, they investigated the effects of various soil amendments on U desorption from soil to soil solution, studied the physiological characteristics of U uptake and accumulation in plants, and developed techniques to trigger U hyperaccumulation in plants. A key to the success of U phytoextraction is to increase soil U availability to plants. The authors have found that some organic acids can be added to soils to increase U desorption from soil to soil solution and to trigger a rapid U accumulation in plants. Of the organic acids (acetic acid, citric acid, and malic acid) tested, citric acid was the most effective in enhancing U accumulation in plants. Shoot U concentrations of Brassica juncea and Brassica chinensis grown in a U-contaminated soil increased from less than 5 mg kg{sup {minus}1} to more than 5,000 mg kg{sup {minus}1} in citric acid-treated soils. To their knowledge, this is the highest shoot U concentration reported for plants grown on U-contaminated soils. Using this U hyperaccumulation technique, they are now able to increase U accumulation in shoots of selected plant species grown in two U-contaminated soils by more than 1,000-fold within a few days. The results suggest that U phytoextraction may provide an environmentally friendly alternative for the cleanup of U-contaminated soils.

  6. Extraction of uranium: comparison of stripping with ammonia vs. strong acid

    SciTech Connect

    Moldovan, B.; Grinbaum, B.; Efraim, A.

    2008-07-01

    Following extraction of uranium in the first stage of solvent extraction using a tertiary amine, typically Alamine 336, the stripping of the extracted uranium is accomplished either by use of an aqueous solution of (NH{sub 4}){sub 2}SO{sub 4} /NH{sub 4}OH or by strong-acid stripping using 400-500 g/L H{sub 2}SO{sub 4}. Both processes have their merits and determine the downstream processing. The classical stripping with ammonia is followed by addition of strong base, to precipitate ammonium uranyl sulfate (NH{sub 4}){sub 2}UO{sub 2}(SO{sub 4}){sub 2}, which yields finally the yellow cake. Conversely, stripping with H{sub 2}SO{sub 4}, followed by oxidation with hydrogen peroxide yields uranyl oxide as product. At the Cameco Key Lake operation, both processes were tested on a pilot scale, using a Bateman Pulsed Column (BPC). The BPC proved to be applicable to both processes. It met the process criteria both for extraction and stripping, leaving less than 1 mg/L of U{sub 3}O{sub 8} in the raffinate, and product solution had the required concentration of U{sub 3}O{sub 8} at high flux and reasonable height of transfer unit. In the Key Lake mill, each operation can be carried out in a single column. The main advantages of the strong-acid stripping over ammonia stripping are: (1) 60% higher flux in the extraction, (2) tenfold higher concentration of the uranium in the product solution, and (3) far more robust process, with no need of pH control in the stripping and no need to add acid to the extraction in order to keep the pH above the point of precipitation of iron compounds. The advantages of the ammoniacal process are easier stripping, that is, less stages needed to reach equilibrium and lower concentration of modifier needed to prevent the creation of a third phase. (authors)

  7. Environmental assessment of remedial action at vicinity properties associated with the former Climax Uranium Company Uranium Mill Site, Grand Junction, Mesa County, Colorado

    SciTech Connect

    1986-07-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the UMTRA Project vicinity properties in Mesa County, Colorado. Vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as a building material or as fill material before the hazards associated with this material were known. It is estimated that 3585 contaminated properties remain to be formally included on the vicinity property list and thereby require remedial action. The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law 95-604, authorized the US Department of Energy to perform remedial action at these properties. The US Environmental Protection Agency promulqated standards for remedial action (40 CRF Part 192). The alternatives addressed in this environmental assessment (EA) including taking no action toward remedial action at the vicinity properties, conducting remedial action at a rate of 500 properties per year, and conducting remedial action at a rate of 800 properties per year. 3 figs., 4 tabs.

  8. Process for recovering uranium using an alkyl pyrophosphoric acid and alkaline stripping solution

    SciTech Connect

    Worthington, R.E.; Magdics, A.

    1987-03-24

    A process is described for stripping uranium for a pregnant organic extractant comprising an alkyl pyrophosphoric acid dissolved in a substantially water-immiscible organic diluent. The organic extractant contains tetravalent uranium and an alcohol or phenol modifier in a quantity sufficient to retain substantially all the unhydrolyzed alkyl pyrophosphoric acid in solution in the diluent during stripping. The process comprises adding an oxidizing agent to the organic extractant and thereby oxidizing the tetravalent uranium to the +6 state in the organic extractant, and contacting the organic extractant containing the uranium in the +6 state with a stripping solution comprising an aqueous solution of an alkali metal or ammonium carbonate or hydroxide thereby stripping uranium from the organic extractant into the stripping solution. The resulting barren organic extractant containing substantially all of the unhydrolyzed alkyl pyrophosphoric acid dissolved in the diluent is separated from the stripping solution containing the stripped uranium, the barren extractant being suitable for recycle.

  9. [Remedial action plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah]. Appendix F, Groundwater hydrology calculations

    SciTech Connect

    1993-12-31

    This document contains the ground water hydrology calculations for the remedial action plan for the codisposal and stabilization of uranium mill tailings at Mexican Hat, Utah. Included are calculations for the following: slug test analyses for monitor wells, analyses of packer tests, hydraulic gradients and ground water velocities, volume of released water, aquifer pumping test analysis, slug test analysis to determine hydraulic conductivity, and gradient calculations.

  10. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Final report

    SciTech Connect

    1996-08-01

    This document contains the page changes for Attachment 3, Ground Water Hydrology Report dated August, 1996 for the Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings at Slick Rock, Colorado. This portion of Attachment 3 contains the Table of Contents pages i and ii, and pages numbered 3-3 through 3-56 of the Ground Water Hydrology Report. Also included are the cover sheets for Appendix A, B, and C to Attachment 3.

  11. Environmental analysis and data report prepared for the environmental assessment of remedial action at the inactive uranium mill tailings site near Falls City, Texas. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect

    Not Available

    1991-12-01

    This document contains information and data gathered in support of the preparation of the environmental assessment (EA) of the proposed remedial action at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Falls City, Texas. The Falls City EA was prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the impacts of their actions on the environment. It examines the short- and long-term effects of the US Department of Energy's (DOE) remedial action for the Falls City site as well as the no action alternative. The DOE will use the information and analyses presented in the EA to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an environmental impact statement (EIS) will be prepared. If the impacts are not determined to be significant, the DOE may issue a Finding of No Significant Impact (FONSI) and implement the proposed action. The information and data presented in this report are for background purposes only and are not required as part of the NEPA decision-making process.

  12. Assessment of oxidative stress and histopathology in juvenile northern pike (Esox lucius) inhabiting lakes downstream of a uranium mill.

    PubMed

    Kelly, Jocelyn M; Janz, David M

    2009-05-17

    Lakes receiving effluent from the Key Lake uranium mill in northern Saskatchewan contain elevated trace metals, some of which are associated with increased reactive oxygen species (ROS) in cells and tissues causing oxidative stress. The potential for oxidative stress was assessed in juvenile (age 1+) northern pike (Esox lucius) collected from two exposure (high and low) and one reference lake near the Key Lake operation. The concentrations of total, reduced and oxidized glutathione and the ratio of oxidized to reduced glutathione in liver and kidney did not differ significantly among pike collected from exposure and reference lakes, with the exception of low exposure pike kidney that had significantly greater oxidized glutathione and ratio of oxidized to reduced glutathione. The concentrations of by-products of lipid peroxidation (malondialdehyde and 4-hydroxyalkenal) were significantly greater in kidney of pike collected from the reference lake compared to both exposure lakes. The activity of the antioxidant enzyme glutathione peroxidase in liver was greater in pike collected from the high exposure lake compared to the reference lake. Histopathological evaluations revealed greater pathology in reference lake pike as indicated by a greater number of pyknotic and fragmented nuclei and dilated tubules as well as a thickening of Bowman's capsule in kidney, and as a thickening of the primary filament epithelial padding in gills. In liver, hepatocyte morphology, including transsectional area and degree of vacuolation, differed among lakes without any clear signs of pathology. Trace metal analyses of muscle showed that eight elements (arsenic, cobalt, copper, iron, molybdenum, selenium, thallium, and uranium) were significantly elevated in pike collected from both exposure lakes compared to reference. These results provide only limited evidence of oxidative stress in exposure pike tissues and no evidence of histopathology despite indications that trace metals, most

  13. Uranium Adsorption on Ferrihydrite - Effects of Phosphate and Humic Acid

    USGS Publications Warehouse

    Payne, T.E.; Davis, J.A.; Waite, T.D.

    1996-01-01

    Uranium adsorption on ferrihydrite was studied as a function of pH in systems equilibrated with air, in the presence and absence of added phosphate and humic acid (HA). The objective was to determine the influence of PO43- and HA on uranium uptake. Below pH 7, the sorption of UO22+ typically increases with increasing pH (the 'low pH sorption edge'), with a sharp decrease in sorption above this pH value (the 'high pH edge'). The presence of ??PO43- of 10-4 mol/L moved the low pH edge to the left by approximately 0.8 pH units. The PO43- was strongly bound by the ferrihydrite surface, and the increased uptake of U was attributed to the formation of ternary surface complexes involving both UO22+ and PO43-. The addition of HA (9 mg/L) increased U uptake at pH values below 7, with little effect at higher pH values. The positions of the pH edges were also affected by the ionic strength and total U content. These experiments show that sorption interactions involving PO43 and HA must be considered in order to model the behavior of U in natural systems, in which these components are often present.

  14. Remedial action plan for stabilization of the inactive uranium mill tailings site at Monument Valley, Arizona

    SciTech Connect

    1986-02-01

    This Remedial Action Plan (RAP) has been developed to serve a two-fold purpose. It presents the series of activities which are proposed by the U.S. Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Monument Valley, Arizona It also serves to document the concurrence of both the Navajo Nation and the U.S. Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by NRC, becomes Appendix B of the Cooperative Agreement.

  15. Microbiology and biodegradation of resin acids in pulp mill effluents: a minireview.

    PubMed

    Liss, S N; Bicho, P A; Saddler, J N

    1997-07-01

    Resin acids, a group of diterpenoid carboxylic acids present mainly in softwood species, are present in many pulp mill effluents and toxic to fish in recipient waters. They are considered to be readily biodegradable. However, their removal across biological treatment systems has been shown to vary. Recent studies indicate that natural resin acids and transformation products may accumulate in sediments and pose acute and chronic toxicity to fish. Several resin acid biotransformation compounds have also been shown to bioaccumulate and to be more resistant to biodegradation than the original material. Until recently, the microbiology of resin-acid degradation has received only scant attention. Although wood-inhabiting fungi have been shown to decrease the level of resin present in wood, there is no conclusive evidence that fungi can completely degrade these compounds. In contrast, a number of bacterial isolates have recently been described which are able to utilize dehydroabietic or isopimaric acids as their sole carbon source. There appears to be an unusually high degree of substrate specificity with respect of the utilization of abietane congeners and the presence of substituents. Pimaranes do not appear to be attacked to the same extent as the abietanes. This paper reviews the occurrence, chemistry, toxicity, and biodegradation of resin acids in relation to the biological treatment of pulp and paper mill effluents. PMID:9246738

  16. Radiological survey of the inactive uranium-mill tailings at Riverton, Wyoming

    SciTech Connect

    Haywood, F.F.; Lorenzo, D.; Christian, D.J.; Chou, K.D.; Ellis, B.S.; Shinpaugh, W.H.

    1980-03-01

    Results of a radiological survey performed at the Riverton, Wyoming site in July 1976, are presented. The average external gamma exposure rate at 1 m over the tailings pile was 56 ..mu..R/hr. The corresponding rate for the former mill area was 97 ..mu..R/hr. Movement of tailings particles in a dry wash is evident; but it appears that, in general, the earth cover over the tailings pile has been effective in limiting both wind and water erosion of the tailings. The calculated concentration of /sup 226/Ra as a function of depth in 15 augered holes is presented graphically. A survey of the Teton Division Lumber Company property in Riverton showed a maximum external gamma exposure rate of 270 ..mu..R/hr.

  17. Groundwater Ages and Stable Isotope Fingerprints of Contaminated Water to Examine Potential Solute Sources at a Uranium Processing Mill

    NASA Astrophysics Data System (ADS)

    Hurst, T. G.; Solomon, D. K.

    2007-12-01

    To evaluate sources of high solute concentrations in groundwater near a uranium processing facility, groundwater recharge dates are correlated to specific solute concentrations and depth in the water column. Stable isotopes are also used as potential fingerprints of water sourced from mill tailing cells. Passive diffusion samplers, to be analyzed for 3He/4He ratio, were deployed in 15 different wells with samplers at two depths in the saturated interval. Low-flow purging and sampling was then conducted to isolate sampling points at different depths in the wells, with sampling at multiple depths being completed in 4 of the 15 wells sampled. Laboratory analyses were conducted for CFC recharge age, as well as T/3He recharge age. Contract laboratories analyzed for: deuterium and oxygen-18 isotopes of water; sulfur-34 and oxygen-18 isotopes of sulfate; trace metals uranium, manganese, and selenium; and nitrate and sulfate. Analysis for 235U/238U isotope ratios will be conducted to further identify fingerprint signals of source water. Groundwater recharge ages determined using CFC analysis show some vertical stratification in ages across the water column. Upon initial data processing and analysis, measured CFC ages ranged from 30 to 40 years within the water column of one well to only several years difference in another well. Additional results for trace metal concentrations, stable isotope ratios, and T/3He recharge ages will be reported when results are received. Further post-processing of CFC laboratory analysis and noble gas analyses will provide greater clarity as to groundwater ages within the aquifer and, combined with field pumping data, will allow for a comprehensive groundwater model to be constructed. This study provides great insight to potential mine tailings leakage problems and using isotopes and groundwater age dating techniques as a means of tracing contaminated groundwater to the leakage source. Utilizing stable isotopes of water and sulfate, combined

  18. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 3, Ground water hydrology report: Preliminary final

    SciTech Connect

    Not Available

    1994-03-04

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent ground water contamination resulting from processing activities at inactive uranium milling sites (52 FR 36000 (1987)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, 42 USC {section}7901 et seq., the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined that for Slick Rock, this assessment shall include hydrogeologic site characterization for two separate uranium processing sites, the Union Carbide (UC) site and the North Continent (NC) site, and for the proposed Burro Canyon disposal site. The water resources protection strategy that describes how the proposed action will comply with the EPA ground water protection standards is presented in Attachment 4. The following site characterization activities are discussed in this attachment: Characterization of the hydrogeologic environment, including hydrostratigraphy, ground water occurrence, aquifer parameters, and areas of recharge and discharge. Characterization of existing ground water quality by comparison with background water quality and the maximum concentration limits (MCL) of the proposed EPA ground water protection standards. Definition of physical and chemical characteristics of the potential contaminant source, including concentration and leachability of the source in relation to migration in ground water and hydraulically connected surface water. Description of local water resources, including current and future use, availability, and alternative supplies.

  19. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1994

    SciTech Connect

    Not Available

    1994-11-01

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994. To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized. This study assesses benefits associated with the Grand Junction, Gunnison, Naturita, and Rifle UMTRA Projects sites for the 1-year period under study. Work at the Naturita site was initiated in April 1994 and involved demolition of buildings at the processing site. Actual start-up of remediation of Naturita is planned to begin in the spring of 1995. Work at the Slick Rock and Maybell sites is expected to begin in 1995. The only current economic benefits associated with these sites are related to UMTRA Project support work.

  20. Pollution of ground water due to inactive uranium mill tailings. Summary of progress, October 1, 1979-September 30, 1981

    SciTech Connect

    Not Available

    1980-01-01

    An extensive program of characterization of several inactive uranium tailings piles has been carried out in the past year. The geotechnical engineering program conducted a drilling program at the Salt Lake City and Grand Junction sites. The locations of slimes and sands in these sites hve been characterized. In general, it was found that slimes exist in the impoundments in lower percentages than normally produced from mill tailings. Permeability tests were conducted yielding values ranging from 10/sup -3/ cm/sec to 10/sup -6/cm/sec. The geochemical studies made considerable progress in the past year. Extensive sampling of several sites was conducted. Sampling programs have been completed for seven sites and are underway for nine other sites. The work to date has indicated the importance of salts in controlling the direction and rate of movement of contaminants. The work has also indicated that a number of non-radioactive elements such as As are of environmental importance. The work also indicates the importance of the fact that the tailings piles are out of chemical equilibrium with their environment. Computer software was developed and implemented for data storage and retrieval. Automation hardware was installed and tested for the Inductively Coupled Plasma Emission Spectrometer. A number of analytical protocols were developed for routine analyses. A comprehensive quality control program was implemented. More than 18,000 chemical analyses were performed.

  1. Hydro-geochemical studies of uranium mill tailing piles at Riverton, Wyoming and Maybell, Colorado. Annual report for FY 1981

    SciTech Connect

    Narasimhan, T.N.; Galbraith, R.M.; White, A.; Smith, A.; Schmidt, H.; Moed, B.; Tokunaga, T.

    1982-05-01

    The present study is the beginning phase of an effort to develop an understanding of the physico-chemical interactions that occur within two typical inactive uranium mill tailing piles under the jurisdiction of the UMTRA Program. These sites are located at Riverton, Wyoming and at Maybell, Colorado. The understanding is to be gained through integrated hydrological-geochemical-radiometric studies. Investigated are: (a) the release of contaminants to the interstitial fluid; and (b) the vertical transport of the contaminants either upward to the surface or downward to the water table. This investigation would determine the important contaminants, ascertain the influence of chemical/osmotic potentials (if any) on fluid movement, and investigate the possibility of temporal cycles in the upward/downward movement of fluids with seasonal changes in the moisture content of the piles. The field work carried out during fiscal 1981 extended from June to September. During this period, exploratory drilling was completed at six locations on the Riverton and Maybell piles. Over 141 Shelby tube samples were collected, which represent relatively undisturbed core samples of the tailings material. In order to gain a maximum advantage of the short time available before the onset of the winter, it was decided to concentrate the rest of the data collection at the Riverton site, where the water table is shallow.

  2. CURRENT STATUS AND RECLAMATION PLAN OF FORMER URANIUM MINING AND MILLING FACILITIES AT NINGYO-TOGE IN JAPAN

    SciTech Connect

    Sato, Kazuhiko; Tokizawa, Takayuki

    2003-02-27

    The Japan Nuclear Cycle Development Institute (JNC) conducted research and development projects on uranium exploration in Japan from 1956 to 1987. Several mine facilities, such as waste rock yards and a mill tailing pond, were retained around Ningyo-toge after the projects ended. Although there is no legal issue in the mine in accordance with related law and agreements at present, JNC has a notion that it is important to reduce the burden of waste management on future generations. Thus, the Ningyo-toge Environmental Engineering Center of JNC proposed a reclamation plan for these facilities with fundamental policy, an example of safety analysis and timetables. The plan has mainly three phases: Phase I is the planning stage, and this paper corresponds to this: Phase II is the stage to perform various tests for safety analysis and site designing: Phase III is the stage to accomplish measures. Preliminarily safety analyses suggested that our supposed cover designs for both waste rock and m ill tailing are enough to keep dose limit of 1mSv/y at site boundaries. The plan is primarily based on the Japanese Mine Safety Law, also refers to ICRP recommendations, IAEA reports, measures implemented overseas, etc. because this is the first case in Japan. For the accomplishment of this plan, it is important to establish a close relationship with local communities and governments, and to maintain a policy of open-to-public.

  3. Long-term survivability of riprap for armoring uranium-mill tailings and covers: a literature review. [203 references

    SciTech Connect

    Lindsey, C.G.; Long, L.W.; Begej, C.W.

    1982-06-01

    Pacific Northwest Laboratory (PNL) is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon suppression cover applied to uranium mill tailings. Because the radon suppression cover and the tailings must remain intact for up to 1000 years or longer, the riprap must withstand natural weathering forces. This report is a review of information on rock weathering and riprap durability. Chemical and physical weathering processes, rock characteristics related to durability, climatic conditions affecting the degree and rate of weathering, and testing procedures used to measure weathering susceptibilities have been reviewed. Sampling and testing techniques, as well as analyses of physical and chemical weathering susceptibilities, are necessary to evaluate rock durability. Many potential riprap materials may not be able to survive 1000 years of weathering. Available techniques for durability testing cannot adequately predict rock durability for the 1000-year period because they do not consider the issue of time (i.e., how long must riprap remain stable). This report includes an Appendix, which discusses rock weathering, written by Dr. Richard Jahns of Stanford University.

  4. An assessment of plant biointrusion at the Uranium Mill Tailings Remedial Action Project rock-covered disposal cells

    SciTech Connect

    Not Available

    1990-10-01

    This study is one of a number of special studies that have been conducted regarding various aspects of the Uranium Mill Tailings Remedial Action (UMTRA) Project. This special study was proposed following routine surveillance and maintenance surveys and observations reported in a special study of vegetative covers (DOE, 1988), in which plants were observed growing up through the rock erosion layer at recently completed disposal cells. Some of the plants observed were deep-rooted woody species, and questions concerning root intrusion into disposal cells and the need to control plant growth were raised. The special study discussed in this report was designed to address some of the ramifications of plant growth on disposal cells that have rock covers. The NRC has chosen rock covers over vegetative covers in the arid western United States because licenses cannot substantiate that the vegetative covers will be significantly greater than 30 percent and preferably 70 percent,'' which is the amount of vegetation required to reduce flow to a point of stability.'' The potential impacts of vegetation growing in rock covers are not addressed by the NRC (1990). The objectives, then, of this study were to determine the species of plants growing on two rock-covered disposal cells, study the rooting pattern of plants on these cells, and identify possible impacts of plant root penetration on these and other UMTRA Project rock-covered cells.

  5. Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995. Revision 1

    SciTech Connect

    1995-12-01

    As required by the Romer-Twining Agreement of 1990, the US Department of Energy (DOE) has prepared this annual economic impact study for the state of Colorado. This report assesses the economic impacts related to the DOE Uranium Mill Tailings Remedial Action (UMTRA) Project in Colorado during the state fiscal year (FY) between 1 July 1994 and 30 June 1995. To estimate net economic benefit, employment, salaries and wages, and other related economic benefits are discussed, quantified, and then compared to the state`s 10 percent share of the remedial action costs. Actual data obtained from sites currently undergoing remedial action were used as the basis for analyses. If data were not available, estimates were used to derive economic indicators. This study describes the types of employment associated with the UMTRA Project and estimates of the numbers of people employed by UMTRA Project subcontractors in Colorado during state FY 1995. Employment totals are reported in estimated average annual jobs; however, the actual number of workers at the site fluctuates depending on weather and on the status of remedial action activities. In addition, the actual number of people employed on the Project during the year may be higher than the average annual employment reported due to the temporary nature of some of the jobs.

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    SciTech Connect

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  7. Solid acid-catalyzed depolymerization of barley straw driven by ball milling.

    PubMed

    Schneider, Laura; Haverinen, Jasmiina; Jaakkola, Mari; Lassi, Ulla

    2016-04-01

    This study describes a time and energy saving, solvent-free procedure for the conversion of lignocellulosic barley straw into reducing sugars by mechanocatalytical pretreatment. The catalytic conversion efficiency of several solid acids was tested which revealed oxalic acid dihydrate as a potential catalyst with high conversion rate. Samples were mechanically treated by ball milling and subsequently hydrolyzed at different temperatures. The parameters of the mechanical treatment were optimized in order to obtain sufficient amount of total reducing sugar (TRS) which was determined following the DNS assay. Additionally, capillary electrophoresis (CE) and Fourier transform infrared spectrometry (FT-IR) were carried out. Under optimal conditions TRS 42% was released using oxalic acid dihydrate as a catalyst. This study revealed that the acid strength plays an important role in the depolymerization of barley straw and in addition, showed, that the oxalic acid-catalyzed reaction generates low level of the degradation product 5-hydroxymethylfurfural (HMF). PMID:26859328

  8. The amino acid composition of the Sutter's Mill CM2 carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Burton, Aaron S.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.; Jenniskens, Peter; Yin, Qing-Zhu

    2014-11-01

    We determined the abundances and enantiomeric compositions of amino acids in Sutter's Mill fragment #2 (designated SM2) recovered prior to heavy rains that fell April 25-26, 2012, and two other meteorite fragments, SM12 and SM51, that were recovered postrain. We also determined the abundance, enantiomeric, and isotopic compositions of amino acids in soil from the recovery site of fragment SM51. The three meteorite stones experienced terrestrial amino acid contamination, as evidenced by the low D/L ratios of several proteinogenic amino acids. The D/L ratios were higher in SM2 than in SM12 and SM51, consistent with rain introducing additional L-amino acid contaminants to SM12 and SM51. Higher percentages of glycine, β-alanine, and γ-amino-n-butyric acid were observed in free form in SM2 and SM51 compared with the soil, suggesting that these free amino acids may be indigenous. Trace levels of D+L-β-aminoisobutyric acid (β-AIB) observed in all three meteorites are not easily explained as terrestrial contamination, as β-AIB is rare on Earth and was not detected in the soil. Bulk carbon and nitrogen and isotopic ratios of the SM samples and the soil also indicate terrestrial contamination, as does compound-specific isotopic analysis of the amino acids in the soil. The amino acid abundances in SM2, the most pristine SM meteorite analyzed here, are approximately 20-fold lower than in the Murchison CM2 carbonaceous chondrite. This may be due to thermal metamorphism in the Sutter's Mill parent body at temperatures greater than observed for other aqueously altered CM2 meteorites.

  9. PHOTODEGRADATION OF A TERNARY IRON(III)-URANIUM(VI)-CITRIC ACID COMPLEX

    EPA Science Inventory

    The mechanisms of photodegradation of binary iron- and uranium-citrate and ternary iron-uranium-citrate complexes were elucidated. Citric acid degradation products were identified by HPLC and GC, and the metal precipitates were identified by XRD and EXAFS. Photodegradation of a b...

  10. Study of uranium oxide milling in order to obtain nanostructured UCx target

    NASA Astrophysics Data System (ADS)

    Guillot, Julien; Tusseau-Nenez, Sandrine; Roussière, Brigitte; Barré-Boscher, Nicole; Brisset, François; Mhamed, Maher Cheikh; Lau, Christophe; Nowak, Sophie

    2016-05-01

    A R&D program is developed at the ALTO facility to provide new beams of exotic neutron-rich nuclei, as intense as possible. In the framework of European projects, it has been shown that the use of refractory targets with nanometric structure allows us to obtain beams of nuclei unreachable until now. The first parameter to be controlled in the processing to obtain targets with a homogeneous nanostructure is the grinding of uranium dioxide, down to 100 nm grain size. In this study, dry and wet grinding routes are studied and the powders are analyzed in terms of phase stabilization, specific surface area and grain morphology. It appears that the grinding, as well dry as wet, leads to the decrease of the particle size. The oxidation of UO2 is observed whatever the grinding. However, the dry grinding is the most efficient and leads to the oxidation of UO2 into U4O9 and U3O7 whose quantities increase with the grinding time while crystallite sizes decrease.

  11. Engineering assessment of inactive uranium mill tailings, Belfield Site, Belfield, North Dakota

    SciTech Connect

    Not Available

    1981-11-01

    Ford, Bacon and Davis Utah Inc. has evaluated the Belfield site in order to assess the problems resulting from the existence of radiactive ash at Belfield, South Dakota. This engineering assessment has included drilling of boreholes and radiometric measurements sufficient to determine areas and volumes of ash and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actons. Radon gas released from the 55,600 tons of ash and contaminated material at the Belfield site constitutes a significant environmental impact, although external gamma radiation also is a factor. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material, to removal of the ash and contaminated materials to remote disposal sites, and decontamination of the Belfield site. Cost estimates for the four options range from about $1,500,000 for stabilization in-place, to about $2,500,000 for disposal at a distance of about 17 mi from the Belfield site. Reprocessing the ash for uranium recovery is not feasible because of the extremely small amount of material available at the site and because of its low U/sub 3/O/sub 8/ content.

  12. Ethanol Addition for Enhancing Denitrification at the Uranium Mill Tailing Site in Monument Valley, AZ

    SciTech Connect

    Borden, A. K.; Brusseau, M. L.; Carroll, Kenneth C.; McMillan, Andrew; Akyol, N. H.; Berkompas, J.; Miao, Z.; Jordan, F.; Tick, Geoff; Waugh, W. J.; Glenn, E. P.

    2012-01-01

    Uranium mining and processing near Monument Valley, Arizona resulted in the formation of a large nitrate plume in a shallow alluvial aquifer. The results of prior field characterization studies indicate that the nitrate plume is undergoing a slow rate of attenuation via denitrification, and the results of bench-scale studies suggest that denitrification rates can potentially be increased by an order of magnitude with the addition of ethanol as a carbon substrate. The objective of the study was to investigate the potential of ethanol amendment for enhancing the natural denitrification occurring in the alluvial aquifer. Pilot tests were conducted using the single well, push-pull method and a natural-gradient test. The results showed that the concentration of nitrate decreased, while the concentration of nitrous oxide (a product of denitrification) increased. In addition, changes in aqueous concentrations of sulfate, iron, and manganese indicate the ethanol amendment effected a change in prevailing redox conditions. The results of compound-specific stable isotope analysis for nitrogen indicated that the nitrate concentration reductions were biologically mediated. Continued monitoring after completion of the pilot tests has shown that nitrate concentrations in the injection zone have remained at levels three orders of magnitude lower than the initial values, indicating that the impacts of the pilot tests have been sustained for several months.

  13. Interaction of Uranium Mill Tailings Leachate with Soils and Clay Liners

    SciTech Connect

    Gee, G. W.; Campbell, A. C.; Sherwood, D. R.; Strickert, R. G.; Phillips, S. J.

    1980-06-01

    This study evaluates leachate-soil interactions that will take place at the Morton Ranch for certain disposal alternatives. Laboratory tests were conducted to evaluate the following: 1) physical and chemical characteristics of geologic materials from the Morton Ranch. 2) physical and chemical characteristics of acid leach tailings and tallings solution, 3) leaching tests with selected tailings materials and leach solutions to evaluate the leachability of contaminants with time under specific disposal alternatives, 4) adsorption studies measuring the sorption characteristics of heavy metals and radionuclides on the geologic materials at Morton Ranch, 5) clay liner stability tests to evaluate effects of acid leachate on clay mineralogy and clay permeability.

  14. Ozonation kinetics of phenolic acids present in wastewaters from olive oil mills

    SciTech Connect

    Benitez, F.J.; Beltran-Heredia, J.; Acero, J.L.; Pinilla, M.L.

    1997-03-01

    A kinetic study of the degradation by ozone of eight phenolic acids present in wastewaters from olive oil mills has been performed by using a competition kinetic method. The selected phenolic acids are: caffeic, p-coumaric, syringic, vanillic, 3,4,5-trimethoxybenzoic, veratric, p-hydroxy-benzoic, and protocatechuic. The influence of the operating variables (temperature, pH, and ozone partial pressure in the gas stream) is established, and the stoichiometric ratios for the individual direct reactions between ozone and each acid are determined. Once the reaction rate constants are evaluated, they are correlated as a function of temperature and pH into kinetic expressions which are provided for every phenolic acid. The global process occurs in the fast and pseudo-first-order kinetic regime of absorption, a condition required by the competition model to be used.

  15. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.

    PubMed

    Popov, L

    2016-09-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials. PMID:27451111

  16. Reductive stripping process for the recovery of uranium from wet-process phosphoric acid

    DOEpatents

    Hurst, Fred J.; Crouse, David J.

    1984-01-01

    A reductive stripping flow sheet for recovery of uranium from wet-process phosphoric acid is described. Uranium is stripped from a uranium-loaded organic phase by a redox reaction converting the uranyl to uranous ion. The uranous ion is reoxidized to the uranyl oxidation state to form an aqueous feed solution highly concentrated in uranium. Processing of this feed through a second solvent extraction cycle requires far less stripping reagent as compared to a flow sheet which does not include the reductive stripping reaction.

  17. The removal of uranium from acidic media using ion exchange and/or extraction chromatography

    SciTech Connect

    FitzPatrick, J.R.; Schake, B.S.; Murphy, J.; Holmes, K; West, M.H.

    1996-06-01

    The separation and purification of uranium from either nitric acid or hydrochloric acid media can be accomplished by using either solvent extraction or ion-exchange. Over the past two years at Los Alamos, emerging programs are focused on recapturing the expertise required to do limited, small-quantity processing of enriched uranium. During this period of time, we have been investigating ion-addition, waste stream polishing is associated with this effort in order to achieve more complete removal of uranium prior to recycle of the acid. Extraction chromatography has been demonstrated to further polish the uranium from both nitric and hydrochloric acid media thus allowing for a more complete recovery of the actinide material and creation of less waste during the processing steps.

  18. Colorado economic impact study on the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993

    SciTech Connect

    Not Available

    1993-11-12

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1993. To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are: Direct employment was estimated at 894 workers; An estimated 89 percent of all direct employment was local; Secondary employment resulting from remedial action at the active Colorado UMTRA Project sites and the Grand Junction vicinity property program is estimated at 546 workers. Total employment (direct and secondary) is estimated at 1440 workers for the period of study (July 1, 1992, to June 30, 1993). An estimated $24.1 million was paid in wages to UMTRA workers in Colorado during FY1993; Direct and secondary wage earnings were estimated at $39.9 million; Income tax payments to the state of Colorado were estimated at $843,400 during FY1993; The gross economic impact of UMTRA Project activities in the state of Colorado is estimated at $70 million during the 1-year study period; and the net economic benefit to the state of Colorado was estimated at $57.5 million, or $5.90 per dollar of funding provided by Colorado. This figure includes both direct and secondary benefits but does not include the impact of alternative uses of the state funding.

  19. Status of activities on the inactive uranium mill tailings sites remedial action program. Office of the Assistant Secretary for Environment

    SciTech Connect

    Not Available

    1981-04-01

    This report on the status of the Office of Environment's program for inactive uranium mill tailings sites is an analysis of the current status and a forecast of future activities of the Office of Environment. The termination date for receipt of information was September 30, 1980. Aerial radiological surveys and detailed ground radiological assessments of properties within the communities in the vicinity of the designated processing sites in Canonsburg, Pennsylvania, Salt Lake City, Utah, and Boise, Idaho led to the designation of an initial group of vicinity properties for remedial action. The potential health effects of the residual radioactive materials on or near these properties were estimated, and the Assistant Secretary for Environment recommended priorities for performing remedial action to the Department's Assistant Secretary for Nuclear Energy. In designating these properties and establishing recommended priorities for performing remedial action, the Office of Environment consulted with the Environmental Protection Agency, the Nuclear Regulatory Commission, representatives from the affected State and local governments, and individual property owners. After notifying the Governors of each of the affected States and the Navajo Nation of the Secretary of Energy's designation of processing sites within their areas of jurisdiction and establishment of remedial action priorities, a Sample Cooperative Agreement was developed by the Department in consultation with the Nuclear Regulatory Commission and provided to the affected States and the Navajo Nation for comments. During September 1980, a Cooperative Agreement with the Commonwealth of Pennsylvania for the designated Canonsburg processing site was executed by the Department. It is anticipated that a Cooperative Agreement between the State of Utah and the Department to perform remedial actions at the designated Salt Lake City site will be executed in the near future.

  20. Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

    SciTech Connect

    Waugh, W.J.; Kastens, M.K.; Sheader, L.R.L.; Benson, C.H.; Albright, W.H.; Mushovic, P.S.

    2008-07-01

    The U.S. Department of Energy Office of Legacy Management (DOE) and the U.S. Environmental Protection Agency (EPA) collaborated on the design and monitoring of an alternative cover for the Monticello uranium mill tailings disposal cell, a Superfund site in southeastern Utah. Ground-water recharge is naturally limited at sites like Monticello where thick, fine-textured soils store precipitation until evaporation and plant transpiration seasonally return it to the atmosphere. The cover at Monticello uses local soils and a native plant community to mimic the natural soil water balance. The cover is fundamentally an evapotranspiration (ET) design with a capillary barrier. A 3-hectare drainage lysimeter was embedded in the cover during construction of the disposal cell in 2000. The lysimeter consists of a geo-membrane liner below the capillary barrier that directs percolation water to a monitoring system. Soil water storage is determined by integration of point water content measurements. Meteorological parameters are measured nearby. Plant cover, shrub density, and leaf area index (LAI) are monitored annually. The cover performed well over the 7-year monitoring period (2000-2007). The cumulative percolation was 4.2 mm (0.6 mm yr{sup -1}), satisfying an EPA goal of an average percolation of <3.0 mm yr{sup -1}. Almost all percolation can be attributed to the exceptionally wet winter and spring of 2004-2005 when soil water content slightly exceeded the water storage capacity of the cover. The diversity, percent cover, and LAI of vegetation increased over the monitoring period, although the density of native shrubs that extract water from deeper in the cover has remained less than revegetation targets. DOE and EPA are applying the monitoring results to plan for long-term surveillance and maintenance and to evaluate alternative cover designs for other waste disposal sites. (authors)

  1. Recovery of Uranium from Wet Phosphoric Acid by Solvent Extraction Processes

    SciTech Connect

    Beltrami, Denis; Cote, Gérard; Mokhtari, Hamid; Courtaud, Bruno; Moyer, Bruce A.; Chagnes, Alexandre

    2014-11-17

    Between 1951 and 1991, we developed about 17 processes to recover uranium from wet phosphoric acid (WPA), but the viability of these processes was subject to the variation of the uranium price market. Nowadays, uranium from WPA appears to be attractive due to the increase of the global uranium demand resulting from the emergence of developing countries. Moreover, the increasing demand provides impetus for a new look at the applicable technology with a view to improvements as well as altogether new approaches. This paper gives an overview on extraction processes developed in the past to recover uranium from wet phosphoric acid (WPA) as well as the physicochemistry involved in these processes. Recent advances concerning the development of new extraction systems are also reported and discussed.

  2. Recovery of Uranium from Wet Phosphoric Acid by Solvent Extraction Processes

    DOE PAGESBeta

    Beltrami, Denis; Cote, Gérard; Mokhtari, Hamid; Courtaud, Bruno; Moyer, Bruce A.; Chagnes, Alexandre

    2014-11-17

    Between 1951 and 1991, we developed about 17 processes to recover uranium from wet phosphoric acid (WPA), but the viability of these processes was subject to the variation of the uranium price market. Nowadays, uranium from WPA appears to be attractive due to the increase of the global uranium demand resulting from the emergence of developing countries. Moreover, the increasing demand provides impetus for a new look at the applicable technology with a view to improvements as well as altogether new approaches. This paper gives an overview on extraction processes developed in the past to recover uranium from wet phosphoricmore » acid (WPA) as well as the physicochemistry involved in these processes. Recent advances concerning the development of new extraction systems are also reported and discussed.« less

  3. Treatment of olive mill wastewater by chemical processes: effect of acid cracking pretreatment.

    PubMed

    Hande Gursoy-Haksevenler, B; Arslan-Alaton, Idil

    2014-01-01

    The effect of acid cracking (pH 2.0; T 70 °C) and filtration as a pretreatment step on the chemical treatability of olive mill wastewater (chemical oxygen demand (COD) 150,000 m/L; total organic carbon (TOC) 36,000 mg/L; oil-grease 8,200 mg/L; total phenols 3,800 mg/L) was investigated. FeCl3 coagulation, Ca(OH)2 precipitation, electrocoagulation using stainless steel electrodes and the Fenton's reagent were applied as chemical treatment methods. Removal performances were examined in terms of COD, TOC, oil-grease, total phenols, colour, suspended solids and acute toxicity with the photobacterium Vibrio fischeri. Significant oil-grease (95%) and suspended solids (96%) accompanied with 58% COD, 43% TOC, 39% total phenols and 80% colour removals were obtained by acid cracking-filtration pretreatment. Among the investigated chemical treatment processes, electrocoagulation and the Fenton's reagent were found more effective after pretreatment, especially in terms of total phenols removal. Total phenols removal increased from 39 to 72% when pretreatment was applied, while no significant additional (≈10-15%) COD and TOC removals were obtained when acid cracking was coupled with chemical treatment. The acute toxicity of the original olive mill wastewater sample increased considerably after pretreatment from 75 to 89% (measured for the 10-fold diluted wastewater sample). An operating cost analysis was also performed for the selected chemical treatment processes. PMID:24718336

  4. State policies and requirements for management of uranium mining and milling in New Mexico. Volume V. State policy needs for community impact assistance

    SciTech Connect

    Vandevender, S.G.

    1980-04-01

    The report contained in this volume describes a program for management of the community impacts resulting from the growth of uranium mining and milling in New Mexico. The report, submitted to Sandia Laboratories by the New Mexico Department of Energy and Minerals, is reproduced without modification. The state recommends that federal funding and assistance be provided to implement a growth management program comprised of these seven components: (1) an early warning system, (2) a community planning and technical assistance capability, (3) flexible financing, (4) a growth monitoring system, (5) manpower training, (6) economic diversification planning, and (7) new technology testing.

  5. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Gunnison, Colorado. Attachment 4, Water resources protection strategy: Final report

    SciTech Connect

    Not Available

    1992-10-01

    To achieve compliance with the proposed US Environmental Protection Agency (EPA) groundwater protection standards the US Department of Energy (DOE) proposes to meet background concentrations or the EPA maximum concentration limits (MCLS) for hazardous constituents in groundwater in the uppermost aquifer at the point of compliance (POC) at the Gunnison Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site near Gunnison, Colorado. The proposed remedial action will ensure protection of human health and the environment. A summary of the principal features of the water resources protection strategy for the Gunnison disposal site is included in this report.

  6. CHARACTERIZATION OF H CANYON CONDUCTIVITY METER INDICATIONS WITH ELEVATED URANIUM IN NITRIC ACID

    SciTech Connect

    Nash, C

    2007-10-31

    Solution conductivity data from the 1CU conductivity meter in H-Canyon shows that uranium concentration in the 0 to 30 gram per liter (g/L) range has no statistically significant effect on the calibration of free nitric acid measurement. Based on these results, no additional actions are needed on the 1CU Conductivity Meter prior to or during the processing of uranium solutions in the 0 to 30 g/L range. A model based only on free nitric acid concentration is shown to be appropriate for explaining the data. Data uncertainties for the free acid measurement of uranium-bearing solutions are 8.5% or less at 95% confidence. The analytical uncertainty for calibrating solutions is an order of magnitude smaller only when uranium is not present, allowing use of a more accurate analytical procedure. Literature work shows that at a free nitric acid level of 0.33 M, uranium concentration of 30 g/L and 25 C, solution conductivity is 96.4% of that of a uranium-free solution. The level of uncertainties in the literature data and its fitting equation do not justify calibration changes based on this small depression in solution conductivity. This work supports preparation of H-Canyon processing of Super Kukla fuel; however, the results will be applicable to the processing of any similar concentration uranium and nitric acid solution. Super Kukla fuel processing will increase the uranium concentration above the nominal zero to 10 g/L level, though not above 30 g/L. This work examined free nitric acid levels ranging from 0.18 to 0.52 molar. Temperature ranged from 27.9 to 28.3 C during conductivity testing. The data indicates that sequential order of measurement is not a significant factor. The conductivity meter was thus flushed effectively between measurements as desired.

  7. Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study

    SciTech Connect

    Zhao, Haibo; Kwak, Ja Hun; Wang, Yong; Franz, James A.; White, John M.; Holladay, Johnathan E.

    2005-12-23

    The dilute acid (0.05 M H2SO4) hydrolysis at 175°C of samples comprising varying fractions of crystalline (α-form) and amorphous cellulose was studied. The amorphous content, based on XRD and NMR, and then the product (glucose) yield, based on HPLC, increased by as much as a factor of three upon ball milling. These results are interpreted in terms of a model involving mechanical disruption of crystallinity by breaking hydrogen bonds in α-cellulose, opening up the structure and making more β-1,4 glycosidic bonds readily accessible to the dilute acid. In parallel with hydrolysis to form liquid phase products, there are reactions of amorphous cellulose that form solid degradation products.

  8. 1991 New Mexico economic impact study for the Uranium Mill Tailings Remedial Action Project, Ambrosia Lake, New Mexico, site

    SciTech Connect

    Not Available

    1991-06-01

    The University of New Mexico Bureau of Business and Economic Research completed an abbreviated cost-benefit analysis of the income and employment impact of the US Department of Energy (DOE) and contractor offices in Albuquerque. Since the Project Office will have a significant positive impact on the State`s economy (shown on Table 8), the impact is combined with the impact of remedial actions at the Ambrosia Lake site to highlight the cost-benefit of the entire Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project at the Ambrosia Lake site will generate $12.509 million in gross labor income in New Mexico between 1989 and 1994. This includes $1.161 million in federal tax revenue, $1.015 million in State personal income tax revenue, and seven thousand in local tax revenue. The UMTRA Project will generate the equivalent of 84 full-time jobs during the peak year of remedial action at Ambrosia Lake site. New Mexico`s total funding requirement for the UMTRA Project is estimated to be $2.963 million. The net economic benefit of the Ambrosia Lake portion of the UMTRA Project to New Mexico after the State`s share of the project`s cost, the federal income tax, and the $0.936 million income impact of the alternate use of the State funding are subtracted, will be $7.451 million between 1990 and 1994. In Fiscal Year 1990 the UMTRA Project DOE and contractor offices in Albuquerque directly employed 163 people. Another 78 jobs were also maintained in support of the industry sector and 166 jobs were also maintained in other sections of the New Mexico economy. It is estimated that $19 million dollars of income was generated and 1.949 million of State and local taxes were collected. The University of New Mexico study shows that for every dollar the State of New Mexico invests in the UMTRA Project, it will realize $95.05 in gross labor income. This corresponds to a net return on the States investment in the Project of $97.20 for every dollar invested.

  9. Uranium Binding Mechanisms of the Acid-Tolerant Fungus Coniochaeta fodinicola.

    PubMed

    Vázquez-Campos, Xabier; Kinsela, Andrew S; Collins, Richard N; Neilan, Brett A; Aoyagi, Noboru; Waite, T David

    2015-07-21

    The uptake and binding of uranium [as (UO2)(2+)] by a moderately acidophilic fungus, Coniochaeta fodinicola, recently isolated from a uranium mine site, is examined in this work in order to better understand the potential impact of organisms such as this on uranium sequestration in hydrometallurgical systems. Our results show that the viability of the fungal biomass is critical to their capacity to remove uranium from solution. Indeed, live biomass (viable cells based on vital staining) were capable of removing ∼16 mg U/g dry weight in contrast with dead biomass (autoclaved) which removed ∼45 mg U/g dry weight after 2 h. Furthermore, the uranium binds with different strength, with a fraction ranging from ∼20-50% being easily leached from the exposed biomass by a 10 min acid wash. Results from X-ray absorption spectroscopy measurements show that the strength of uranium binding is strongly influenced by cell viability, with live cells showing a more well-ordered uranium bonding environment, while the distance to carbon or phosphorus second neighbors is similar in all samples. When coupled with time-resolved laser fluorescence and Fourier transformed infrared measurements, the importance of organic acids, phosphates, and polysaccharides, likely released with fungal cell death, appear to be the primary determinants of uranium binding in this system. These results provide an important progression to our understanding with regard to uranium sequestration in hydrometallurgical applications with implications to the unwanted retention of uranium in biofilms and/or its mobility in a remediation context. PMID:26106944

  10. Report on game species of concern associated with the Gunnison Remedial Action Project, Gunnison, Colorado. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect

    Not Available

    1991-09-01

    This report provides background information and data used in the analysis of potential impacts to game species reported in the Environmental Assessment of the Proposed Remedial Action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado. That environmental assessment provides details regarding proposed remedial action at the Gunnison site along with a description of existing conditions and projected environmental impacts. A summary of the proposed action is provided. The uranium mill tailings and other contaminated materials at the Gunnison processing site would be transported to the Landfill disposal site via the Tenderfoot Mountain (TM) haul route. The remedial action would take place over a three-year period with two six-month winter shutdowns. The first year would consist of site preparation and haul road construction. The second year would consist of moving the tailings. Movement of the radon/infiltration barrier cover material and erosion protection material would take place during the third construction year. The material used to cover the pile is fine-grained material for the radon/infiltration barrier (Sixmile Lane borrow site) and rock for erosion protection from the Chance Gulch borrow site. The location of the borrow sites used to obtain these materials and the associated haul roads is shown.

  11. DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (July 2005)

    SciTech Connect

    N /A

    2005-08-05

    The U.S. Department of Energy (DOE or the Department) is proposing to clean up surface contamination and implement a ground water compliance strategy to address contamination that resulted from historical uranium-ore processing at the Moab Uranium Mill Tailings Site (Moab site), Grand County, Utah. Pursuant to the National Environmental Policy Act (NEPA), 42 United States Code (U.S.C.) {section} 4321 et seq., DOE prepared this environmental impact statement (EIS) to assess the potential environmental impacts of remediating the Moab site and vicinity properties (properties where uranium mill tailings were used as construction or fill material before the potential hazards associated with the tailings were known). DOE analyzed the potential environmental impacts of both on-site and off-site remediation and disposal alternatives involving both surface and ground water contamination. DOE also analyzed the No Action alternative as required by NEPA implementing regulations promulgated by the Council on Environmental Quality. DOE has determined that its preferred alternatives are the off-site disposal of the Moab uranium mill tailings pile, combined with active ground water remediation at the Moab site. The preferred off-site disposal location is the Crescent Junction site, and the preferred method of transportation is rail. The basis for this determination is discussed later in this Summary. DOE has entered into agreements with 12 federal, tribal, state, and local agencies to be cooperating agencies in the development and preparation of this EIS. Several of the cooperating agencies have jurisdiction by law and intend to use the EIS to support their own decisionmaking. The others have expertise relevant to potential environmental, social, or economic impacts within their geographic regions. During the preparation of the EIS, DOE met with the cooperating agencies, provided them with opportunities to review preliminary versions of the document, and addressed their comments

  12. Nuclear Isotopic Dilution of Highly-Enriched Uranium-235 and Uranium-233 by Dry Blending via the RM-2 Mill Technology

    SciTech Connect

    N. A. Chipman; R. N. Henry; R. K. Rajamani; S. Latchireddi; V. Devrani; H. Sethi; J. L. Malhotra

    2004-02-01

    The United States Department of Energy has initiated numerous activities to identify strategies to disposition various excess fissile materials. Two such materials are the off-specification highly enriched uranium-235 oxide powder and the uranium-233 contained in unirradiated nuclear fuel both currently stored at the Idaho National Engineering and Environmental Laboratory. This report describes the development of a technology that could dilute these materials to levels categorized as low-enriched uranium, or further dilute the materials to a level categorized as waste. This dilution technology opens additional pathways for the disposition of these excess fissile materials as existing processing infrastructure continues to be retired.

  13. Uranium partitioning under acidic conditions in a sandy soil aquifer

    SciTech Connect

    Johnson, W.H. |; Serkiz, S.M.; Johnson, L.M.

    1995-07-01

    The partitioning of uranium in an aquifer down gradient of two large mixed waste sites was examined with respect to the solution and soil chemistry (e.g., pH redox potential and contaminant concentration) and aqueous-phase chemical speciation. This involved generation of field-derived, batch sorption, and reactive mineral surface sorption data. Field-derived distribution coefficients for uranium at these waste sites were found to vary between 0.40 and 15,000. Based on thermodynamic speciation modeling and a comparison of field and laboratory data, gibbsite is a potential reactive mineral surface present in modified soils at the sites. Uranium partitioning data are presented from field samples and laboratory studies of background soil and the mineral surface gibbsite. Mechanistic and empirical sorption models fit to the field-derived uranium partitioning data show an improvement of over two orders of magnitude, as measured by the normalized sum of errors squared, when compared with the single K{sub d} model used in previous risk work. Models fit to batch sorption data provided a better fit of sorbed uranium than do models fit to the field-derived data.

  14. Vegetation composition and ²²⁶Ra uptake by native plant species at a uranium mill tailings impoundment in South China.

    PubMed

    Hu, Nan; Ding, Dexin; Li, Guangyue; Zheng, Jifang; Li, Le; Zhao, Weichao; Wang, Yongdong

    2014-03-01

    A field investigation was conducted for the vegetation composition and (226)Ra uptake by native plant species at a uranium mill tailings impoundment in South China. 80 species belonging to 67 genera in 32 families were recorded in the sampling sites. The Poaceae and Asteraceae were the dominant families colonizing the impoundment. The number of the plant species and vegetation community composition in the sampling sites seemed most closely related to the activities of (226)Ra and the pH value of the uranium tailings. The plant species in the sampling sites with relatively low activities of (226)Ra and relatively high pH value formed a relatively stable vegetation community. The plant species in the sampling sites with medium activities of (226)Ra and medium pH value formed the transitional vegetation community. The plant species in the sampling sites with relatively high activities of (226)Ra and relatively low pH value formed a simple unstable vegetation community that was similar to that on the unused grassland. The activities of (226)Ra and transfer factors (TFs) varied greatly with the plant species. The high activities of (226)Ra and TFs were found in the leaves of Pteris multifida (150.6 Bq/g of AW; 9.131), Pteridium aquilinum (122.2 Bq/g of AW; 7.409), and Dryopteris scottii (105.7 Bq/g of AW; 6.408). They satisfied the criteria for a hyperaccumulator for (226)Ra. They may be the candidates for phytoremediation of (226)Ra in the uranium mill tailings impoundment areas and the contaminated soils around. PMID:24412774

  15. Evaluation of Background Concentrations of Contaminants in an Unusual Desert Arroyo Near a Uranium Mill Tailings Disposal Cell - 12260

    SciTech Connect

    Bush, Richard P.; Morrison, Stan J.

    2012-07-01

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) manages 27 sites that have groundwater containing uranium concentrations above background levels. The distal portions of the plumes merge into background groundwater that can have 50 μg/L or more uranium. Distinguishing background from site-related uranium is often problematic, but it is critical to determining if remediation is warranted, establishing appropriate remediation goals, and evaluating disposal cell performance. In particular, groundwater at disposal cells located on the upper Cretaceous Mancos Shale may have relatively high background concentrations of uranium. Elevated concentrations of nitrate, selenium, and sulfate accompany the uranium. LM used geologic analogs and uranium isotopic signatures to distinguish background groundwater from groundwater contaminated by a former uranium processing site. The same suite of contaminants is present in groundwater near former uranium processing sites and in groundwater seeps emanating from the Mancos Shale over a broad area. The concentrations of these contaminants in Many Devils Wash, located near LM's Shiprock disposal cell, are similar to those in samples collected from many Mancos seeps, including two analog sites that are 8 to 11 km from the disposal cell. Samples collected from Many Devils Wash and the analog sites have high AR values (about 2.0)-in contrast, groundwater samples collected near the tailings disposal cell have AR values near 1.0. These chemical signatures raise questions about the origin of the contamination seeping into Many Devils Wash. (authors)

  16. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    SciTech Connect

    Not Available

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

  17. Selected resin acids in effluent and receiving waters derived from a bleached and unbleached kraft pulp and paper mill

    USGS Publications Warehouse

    Quinn, B.P.; Booth, M.M.; Delfino, J.J.; Holm, S.E.; Gross, T.S.

    2003-01-01

    Water samples were collected on three dates at 24 sites influenced by effluent from Georgia-Pacific's Palatka Pulp and Paper Mill Operation, a bleached and unbleached kraft mill near Palatka, Florida, USA. The sampling sites were located within the mill retention ponds, Rice Creek, and the St. John's River. Samples were analyzed by gas chromatography-mass spectrometry for abietic, dehydroabietic, and isopimaric acids, all of which are potentially toxic by-products of pulp production. Isopimaric acid concentrations greater than 12 mg/L were measured at the mill's effluent outfall but were less than 20 ??g/L at the end of Rice Creek. This result indicates that the waters of Rice Creek provide dilution or conditions conducive for degradation or sorption of these compounds. Large differences in resin acid concentrations were observed between sampling events. In two sampling events, the maximum observed concentrations were less than 2 mg/L for each analyte. In a third sampling event, all of the compounds were detected at concentrations greater than 10 mg/L. Data from the three sample dates showed that resin acid concentrations were below 20 ??g/L before the confluence of Rice Creek and the St. John's River in all cases.

  18. Migration of acidic groundwater seepage from uranium-tailings impoundments, 1. Field study and conceptual hydrogeochemical model

    NASA Astrophysics Data System (ADS)

    Morin, Kevin A.; Cherry, John A.; Dave, Nand K.; Lim, Tjoe P.; Vivyurka, Al J.

    1988-08-01

    In this first paper of a series, the results of a study at a non-operational tailings site are presented and are used to construct a general conceptual model for seepage migration from uranium-tailings impoundments. Many parts of the model are applicable to other types of tailings and to acid drainage in general. At the field site, the impoundment lies over a portion of a glaciofluvial sand aquifer. Tailings seepage drains downward into the aquifer and then migrates laterally away. Results of the field study indicate the seepage can be divided into three geochemical zones: (1) the inner core, which is essentially unaltered, acidic seepage from the tailings; (2) the neutralization zone, in which inner-core water is neutralized and aqueous concentrations decrease significantly; and (3) the outer zone, which contains both neutralized water from the neutralization zone and pH-neutral process water from the uranium milling operation. Yearly comparisons from 1979 to 1984 indicate the neutralization zone and inner core are migrating downgradient at a rate of about 1 meter/year, which is about 1/440 of the groundwater velocity. The mechanisms that produce the retardation and the decreases in aqueous concentrations are part of the conceptual model. The main features of the conceptual model are solid-liquid interactions, particularly mineral precipitation-dissolution, and buffering effects of dominant aqueous species. The important minerals undergoing precipitation-dissolution are the calcite-siderite solid solution, gypsum, Al-OH minerals, and Fe-OH minerals. "Cell and streamtube" calculations are used to evaluate the general trends in aqueous concentrations and to assist in explaining observed migration rates. Co-precipitation with the above minerals apparently accounts for decreases in other major, minor, and metal solutes. Because of the large amount of mineral precipitation and co-precipitation, variations in 2H and 18O were observed over a flow distance of several

  19. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Ambrosia Lake, New Mexico. Volume 3, Appendix F, Final plans and specifications: Final report

    SciTech Connect

    Not Available

    1991-11-01

    This volume deals with the main construction subcontract for the uranium mill tailings remedial action of Ambrosia Lake, New Mexico. Contents of subcontract documents AMB-4 include: bidding requirements; terms and conditions; specifications which cover general requirements and sitework; and subcontract drawings.

  20. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Appendix E. Final report

    SciTech Connect

    1988-07-01

    This document provides Appendix E of the Remedial Action Plan (RAP) presented in 1988 for the stabilization of the inactive uranium mill tailings at the Mexican Hat, Utah site. The RAP was developed to serve a two- fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. The RAP has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action.

  1. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary final

    SciTech Connect

    Not Available

    1994-03-01

    This proposed remedial action plan incorporates the results of detailed investigation of geologic, geomorphic, and seismic conditions at the proposed disposal site. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/waterborne materials to a permanent repository at the proposed Burro Canyon disposal cell. The proposed disposal site will be geomorphically stable. Seismic design parameters were developed for the geotechnical analyses of the proposed cell. Cell stability was analyzed to ensure long-term performance of the disposal cell in meeting design standards, including slope stability, settlement, and liquefaction potential. The proposed cell cover and erosion protection features were also analyzed and designed to protect the RRM (residual radioactive materials) against surface water and wind erosion. The location of the proposed cell precludes the need for permanent drainage or interceptor ditches. Rock to be used on the cell top-, side-, and toeslopes was sized to withstand probable maximum precipitation events.

  2. Sutter's Mill dicarboxylic acids as possible tracers of parent-body alteration processes

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra; Garvie, Laurence A. J.

    2014-11-01

    Dicarboxylic acids were searched for in three Sutter's Mill (SM) fragments (SM2 collected prerain, SM12, and SM41) and found to occur almost exclusively as linear species of 3- to 14-carbon long. Between these, concentrations were low, with measured quantities typically less than 10 nmole g-1 of meteorite and a maximum of 6.8 nmole g-1 of meteorite for suberic acid in SM12. The SM acids' molecular distribution is consistent with a nonbiological origin and differs from those of CMs, such as Murchison or Murray, and of some stones of the C2-ungrouped Tagish Lake meteorite, where they are abundant and varied. Powder X-ray diffraction of SM12 and SM41 show them to be dominated by clays/amorphous material, with lesser amounts of Fe-sulfides, magnetite, and calcite. Thermal gravimetric (TG) analysis shows mass losses up to 1000 °C of 11.4% (SM12) and 9.4% (SM41). These losses are low compared with other clay-rich carbonaceous chondrites, such as Murchison (14.5%) and Orgueil (21.1%). The TG data are indicative of partially dehydrated clays, in accordance with published work on SM2, for which mineralogical studies suggest asteroidal heating to around 500 °C. In view of these compositional traits and mineralogical features, it is suggested that the dicarboxylic acids observed in the SM fragments we analyzed likely represent a combination of molecular species original to the meteorite as well as secondary products formed during parent-body alteration processes, such as asteroidal heating.

  3. Recovery of uranium from phosphoric acid medium by polymeric composite beads encapsulating organophosphorus extractants

    SciTech Connect

    Singh, D.K.; Yadav, K.K.; Varshney, L.; Singh, H.

    2013-07-01

    The present study deals with the preparation and evaluation of the poly-ethersulfone (PES) based composite beads encapsulating synergistic mixture of D2EHPA and Cyanex 923 (at 4:1 mole ratio) for the separation of uranium from phosphoric acid medium. SEM was used for the characterization of the composite materials. Addition of 1% PVA (polyvinyl alcohol) improved the internal morphology and porosity of the beads. Additionally, microscopic examination of the composite bead confirmed central coconut type cavity surrounded by porous polymer layer of the beads through which exchange of metal ions take place. Effect of various experimental variables including aqueous acidity, metal ion concentration in aqueous feed, concentration of organic extractant inside the beads, extractant to polymer ratio, liquid to solid (L/S) ratio and temperature on the extraction of uranium was studied. Increase in acidity (1-6 M), L/S ratio (1- 10), metal ion concentration (0.2-3 g/L U{sub 3}O{sub 8}) and polymer to extractant ratio (1:4 -1:10) led to decrease in extraction of uranium. At 5.5 M (comparable to wet process phosphoric acid concentration) the extraction of uranium was about 85% at L/S ratio 5. Increase in extractant concentration inside the bead resulted in enhanced extraction of metal ion. Increase in temperature in the range of 30 to 50 Celsius degrees increased the extraction, whereas further increase to 70 C degrees led to the decrease in extraction of uranium. Amongst various reagents tested, stripping of uranium was quantitative by 12% Na{sub 2}CO{sub 3} solution. Polymeric beads were found to be stable and reusable up-to 10 cycles of extraction/stripping. (authors)

  4. Effect of polymer species and concentration on the production of mefenamic acid nanoparticles by media milling.

    PubMed

    Ito, Atsutoshi; Konnerth, Christoph; Schmidt, Jochen; Peukert, Wolfgang

    2016-01-01

    The effect of four structurally different polymer species (hydroxypropylcellulose, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymer and polyvinyl alcohol) on the production of mefenamic acid nanoparticles during media milling has been studied. It was found that product particle sizes are strongly determined by the type of polymeric stabiliser as well as by its concentration at constant process conditions. With respect to small product particle sizes an optimum excipient concentration was identified and adjusted for colloidal stability of the drug nanosuspensions. Furthermore, it was found that overdosing of excipients must be omitted to suppress ripening due to enhanced solubilisation phenomena. Hence, the smallest product particle sizes were obtained using a polymeric stabiliser which exhibits a high affinity to the model drug compound and a low solubilisation capacity. Affinities of each polymer species to mefenamic acid and corresponding surface concentrations were determined using straightforward and simple viscosity measurements of the supernatant. A relationship between polymer affinity, solubilisation capacity and limiting product particle size has been observed, which supports the hypothesis that final product particle sizes are rather determined by the solid-liquid equilibrium than by pure mechanical fracture. PMID:26592155

  5. Effects of Dietary Milled Seed Mixture on Fatty Acid Status and Inflammatory Markers in Patients on Hemodialysis

    PubMed Central

    Perunicic-Pekovic, Gordana; Takic, Marija; Popovic, Tamara; Arsic, Aleksandra; Glibetic, Marija

    2014-01-01

    Background. Plant seeds have gained interest for their health benefits due to their fatty acid content. The objective of this study was to determine the effects of dietary consumption of milled sesame/pumpkin/flax seed mixture on glycemic control, serum lipids, phospholipid fatty acid status, and inflammatory factors in patients on hemodialysis. Methods. Thirty patients with well nutrition status (18 male, 12 female) were enrolled in the study. Participants consumed 30 g of milled sesame/pumpkin/flax (6 g/6 g/18 g, resp.) seeds mixture added to their habitual diet. Results. Total n-6 and n-3 polyunsaturated fatty acids and levels of linoleic, dihomo-gamma-linolenic (DGLA), arachidonic, alpha-linolenic (ALA), eicosapentaenoic, docosapentaenoic, and docosahexaenoic (DHA) acid were increased after 12 weeks of supplementation. A significant decrease of the serum triglyceride level (P < 0.001), glucose, insulin, calculated IR HOMA (P < 0.05), and inflammatory markers (TNF-alpha, IL-6, and hs-CRP, P < 0.001) was observed after seed mixture treatment. The serum levels of CRP and TNF-alpha negative correlate with ALA, DHA, and DGLA. Conclusion. Results of this study indicated that dietary milled sesame/pumpkin/flax seed mixture added to a habitual diet lowered triglyceride and CRP, TNF-alpha, IL-6 levels, affect glycemic control and improved fatty acid profile and pruritus symptoms in hemodialysis patients. PMID:24578648

  6. Uranium control in phosphogypsum. [In wet-process phosphoric acid production

    SciTech Connect

    Hurst, F.J.; Arnold, W.D.

    1980-01-01

    In wet-process phosphoric acid plants, both previous and recent test results show that uranium dissolution from phosphate rock is significantly higher when the rock is acidulated under oxidizing conditions than under reducing conditions. Excess sulfate and excess fluoride further enhance the distribution of uranium to the cake. Apparently the U(IV) present in the crystal lattice of the apatite plus that formed by reduction of U(IV) by FE(II) during acidulation is trapped or carried into the crystal lattice of the calcium sulfate crystals as they form and grow. The amount of uranium that distributes to hemihydrate filter cake is up to seven times higher than the amount that distributes to the dihydrate cake. About 60% of the uranium in hemihydrate cakes can be readily leached after hydration of the cake, but the residual uranium (20 to 30%) is very difficult to remove economically. Much additional research is needed to develop methods for minimizing uranium losses to calcium filter cakes.

  7. [Absorption of Uranium with Tea Oil Tree Sawdust Modified by Succinic Acid].

    PubMed

    Zhang, Xiao-feng; Chen, Di-yun; Peng, Yan; Liu, Yong-sheng; Xiong, Xue-ying

    2015-05-01

    In order to explore how the modification of succinic acid improves the adsorption of tea oil tree sawdust for uranium, the tea oil tree sawdust was modified by succinic acid, after the pretreatments of crushing, screening, alkalization and acidification. Infrared analysis indicated carboxylic acid groups and ester groups were added to the sawdust after modification, and scanning electron microscope demonstrated after modification the appearance of tea oil tree sawdust was transferred from the structure like compact and straight stripped into the structure like loose and wrinkled leaves, which meant modification increased its inner pores. By the static experiments, effects of reaction time between adsorbent and solvent, dosage of adsorbent, temperature, pH value and initial concentration of uranium were investigated. The results showed that after the modification by succinic acid, the absorption rate of tea oil tree sawdust for uranium increased significantly by about 20% in 12.5 mg · L(-1) initial concentration uranium solution. Adsorption equilibrium was achieved within 180 min, and the kinetic data can be well described by the pseudo-second-order kinetic model. The experimental adsorption isotherm followed the Langmuir and Freundlich models. In addition, the maximum adsorption amounts of tea oil tree sawdust after modification calculated from Langmuir equation raised from 21.413 3 to 31.545 7 mg · g(-1) at 35°C and pH 4.0. PMID:26314117

  8. Effects of grazing on leaf area index, fractional cover and evapotranspiration by a desert phreatophyte community at a former uranium mill site on the Colorado Plateau

    USGS Publications Warehouse

    Bresloff, Cynthia J.; Nguyen, Uyen; Glenn, Edward P.; Waugh, Jody; Nagler, Pamela L.

    2013-01-01

    This study employed ground and remote sensing methods to monitor the effects of grazing on leaf area index (LAI), fractional cover (fc) and evapotranspiration (ET) of a desert phreatophyte community over an 11 year period at a former uranium mill site on the Colorado Plateau, U.S. Nitrate, ammonium and sulfate are migrating away from the mill site in a shallow alluvial aquifer. The phreatophyte community, consisting of Atriplex canescens (ATCA) and Sarcobatus vermiculatus (SAVE) shrubs, intercepts groundwater and could potentially slow the movement of the contaminant plume through evapotranspiration (ET). However, the site has been heavily grazed by livestock, reducing plant cover and LAI. We used livestock exclosures and revegetation plots to determine the effects of grazing on LAI, fc and ET, then projected the findings over the whole site using multi-platform remote sensing methods. We show that ET is approximately equal to annual precipitation at the site, but when ATCA and SAVE are protected from grazing they can develop high fc and LAI values, and ET can exceed annual precipitation, with the excess coming from groundwater discharge. Therefore, control of grazing could be an effective method to slow migration of contaminants at this and similar sites in the western U.S.

  9. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Remedial action selection report, Appendix B

    SciTech Connect

    Not Available

    1993-07-01

    The Slick Rock uranium mill tailings sites are located near the small town of Slick Rock, in San Miguel County, Colorado. There are two designated UMTRA sites at Slick Rock, the Union Carbide (UC) site and the North Continent (NC) site. Both sites are adjacent to the Dolores River. The UC site is approximately 1 mile (mi) [2 kilometers (km)] downstream of the NC site. Contaminated materials cover an estimated 55 acres (ac) [22 hectares (ha)] at the UC site and 12 ac (4.9 ha) at the NC site. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 620, 000 cubic yards (yd{sup 3}) [470,000 cubic meters (m{sup 3})]. In addition to the contamination at the two processing site areas, four vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into groundwater.

  10. Effects of grazing on leaf area index, fractional cover and evapotranspiration by a desert phreatophyte community at a former uranium mill site on the Colorado Plateau.

    PubMed

    Bresloff, Cynthia J; Nguyen, Uyen; Glenn, Edward P; Waugh, Jody; Nagler, Pamela L

    2013-01-15

    This study employed ground and remote sensing methods to monitor the effects of grazing on leaf area index (LAI), fractional cover (f(c)) and evapotranspiration (ET) of a desert phreatophyte community over an 11 year period at a former uranium mill site on the Colorado Plateau, U.S. Nitrate, ammonium and sulfate are migrating away from the mill site in a shallow alluvial aquifer. The phreatophyte community, consisting of Atriplex canescens (ATCA) and Sarcobatus vermiculatus (SAVE) shrubs, intercepts groundwater and could potentially slow the movement of the contaminant plume through evapotranspiration (ET). However, the site has been heavily grazed by livestock, reducing plant cover and LAI. We used livestock exclosures and revegetation plots to determine the effects of grazing on LAI, f(c) and ET, then projected the findings over the whole site using multi-platform remote sensing methods. We show that ET is approximately equal to annual precipitation at the site, but when ATCA and SAVE are protected from grazing they can develop high f(c) and LAI values, and ET can exceed annual precipitation, with the excess coming from groundwater discharge. Therefore, control of grazing could be an effective method to slow migration of contaminants at this and similar sites in the western U.S. PMID:23220605

  11. Acid wash of second cycle solvent in the recovery of uranium from phosphate rock

    SciTech Connect

    York, W.R.

    1984-02-07

    Entrainment of contaminated water in the organic phase and poor phase disengagement is prevented in the second cycle scrubber, in a two cycle-uranium recovery process, by washing the organic solvent stream containing entrained H/sub 3/PO/sub 4/ from the second cycle extractor, with a dilute aqueous sulfuric or nitric acid solution in an acid scrubber, prior to passing the solvent stream into the second cycle stripper.

  12. Evaluation of uranium geochemical anomalies in the Spartanburg 1/sup 0/ x 2/sup 0/ NTMS area near Pacolet Mills, SC

    SciTech Connect

    Owen, J.

    1981-06-01

    The Savannah River Laboratory (SRL) was involved in the National Uranium Resource Evaluation (NURE) program from 1974 through 1981. The SRL role was to design, conduct, and report the data from a geochemical reconnaissance of almost half the continental United States. The purpose of this work was to provide a basis for evaluating the uranium potential of areas and to identify areas meriting conventional geological followup. In this program over 275,000 samples of stream sediment, soil vegetation, and ground or surface water were collected. As a part of the development program to support interpretation of the geochemical data, SRL conducted a series of anomaly verification field studies. Each study area was chosen on the basis of a geochemical anomaly in reconnaissance data. Subcontractors were selected to conduct field scintillometer surveys, compile geologic maps, collect additional samples, or provide other services as deemed appropriate for a given study. This report, which summarizes the results of a study in the Spartanburg 1/sup 0/ x 2/sup 0/ quadrangle, was compiled for SRL by Jerry Owen and is published as a facsimile of this report to SRL. Normal editing was not done so that the report could be placed in the public domain prior to the termination of the NURE program. This study is one of a series designed to provide a basis for interpretation of SRL regional geochemical reconnaissance data. It contains a synthesis of published data and results of a four-channel gamma spectrometer survey of an area near Pacolet Mills, South Carolina.

  13. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Gunnison, Colorado. Attachment 5, Supplemental radiological data: Final report

    SciTech Connect

    Not Available

    1992-10-01

    Diffusion coefficients for radon gas in earthen materials are required to design suitable radon-barrier covers for uranium tailings impoundments and other materials that emit radon gas. Many early measurements of radon diffusion coefficients relied on the differences in steady-state radon fluxes measured from radon source before and after installation of a cover layer of the material being tested. More recent measurements have utilized the small-sample transient (SST) technique for greater control on moistures and densities of the test soils, greater measurement precision, and reduced testing time and costs. Several of the project sites for the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Program contain radiologically contaminated subsurface material composed predominantly of cobbles, gravels andsands. Since remedial action designs require radon diffusion coefficients for the source materials as well as the cover materials, these cobbly and gravelly materials also must be tested. This report contains the following information: a description of the test materials used and the methods developed to conduct the SST radon diffusion measurements on cobbly soils; the protocol for conducting radon diffusion tests oncobbly soils; the results of measurements on the test samples; and modifications to the FITS computer code for analyzing the time-dependent radon diffusion data.

  14. Investigating Freshwater Periphyton Community Response to Uranium with Phospholipid Fatty Acid and Denaturing Gradient Gel Electrophoresis Analyses

    SciTech Connect

    Small, Jack A.; Bunn, Amoret L.; McKinstry, Craig A.; Peacock, A. D.; Miracle, Ann L.

    2008-04-01

    Periphyton communities can be used as monitors of ecosystem health and as indicators of contamination in lotic systems. Measures of biomass, community structure and genetic diversity were used to investigate impacts of uranium exposure on periphyton. Laboratory exposures of periphyton in river water amended with uranium were performed for 5 days, followed by 2 days of uranium depuration in unamended river water. Productivity as measured by biomass was not affected by concentrations up to 100 µg L-1 uranium. Phospholipid fatty acid (PLFA) profiles and denaturing gradient gel electrophoresis (DGGE) banding patterns found no changes in community or genetic structure related to uranium exposure. We suggest that the periphyton community as a whole is not impacted by exposures of uranium up to a dose of 100 µg L-1. These findings have significance for the assessment and prediction of uranium impacts on aquatic ecosystems.

  15. Uranium mill tailings remedial action program. Radiological survey of Shiprock vicinity property SH04, Shiprock, New Mexico, September-November 1982

    SciTech Connect

    Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

    1984-05-01

    The radiological assessment conducted at the Shiprock vicinity property SH04 by the ANL Radiological Survey Group indicated background levels of radioactivity within the residential structure. Short-term radon daughter measurements did not exceed the 0.02 WL (or 20 mWL) limit for average annual concentration including background as specified in the EPA Standard (40 CFR 192.12(b)(1)). The assessment indicated elevated levels of radioactivity at several areas in the outside environs. Twelve discrete hot spots or localized areas were found in the backyard, most associated with small slabs of decorative flagstone. Radiochemical analyses of the stone sample collected from one of the localized areas indicated the presence of natural uranium ore. Radiochemical analysis of the soil sample collected from one other of the localized areas indicated a radium concentration of 33 +- 3 pCi/g, which is in excess of the limit of 5 pCi/g above background, averaged over the first 15 cm of soil below the surface, as specified in Section 192.12(a)(1) of the EPA Standard. From the analyses of the samples and the history of the site, the contaminating material in the general area at the backyard and alleyway, in the area in the frontyard, and at several of the discrete locations in the backyard appears to be residual radioactive material under the provisions of the Uranium Mill Tailings Radiation Control Act of 1978 in the form of radium-enhanced material (i.e., tailings) and natural uranium ore. Since the surface soil contamination levels exceed the limits specified in the EPA Standard, remedial action for this vicinity site should be considered. 10 references, 4 figures, 5 tables.

  16. Spectrophotometric determination of the oxygen to uranium ratio in uranium oxides based on dissolution in sulphuric acid.

    PubMed

    Murty, B N; Yadav, R B; Ramamurthy, C K; Syamundar, S

    1991-11-01

    The oxygen to uranium ratio in uranium oxides such as U(3)O(8), UO(2+x) powders and UO(2) fuel pellets has been determined by a new spectrophotometric method. The method can be used for determination of O/U ratio in UO(2) pellets and powders on a routine basis. In the described method, uranium oxides in the powder form are dissolved in 2M sulphuric acid containing a few drops of HF. The concentrations of U(IV) and U(VI) are directly determined by means of the absorbances of these species at different wavelengths. For determination of the O/U ratio in U(3)O(8) powder samples, 630 and 310 nm are the wavelengths chosen for U(IV) and U(VI), respectively. For UO(2+x) powder, where the O/U ratio lies between 2.04 to 2.15, U(IV) and U(VI) are determined at 630 and 300 nm respectively, whereas for UO(2) fuel pellets, where the O/U ratio is less than 2.01, 535 and 285 nm are used. The molar absorptivity of U(IV) at 630 and 535 nm is 21.4 and 6.8 l.mole(-1).cm(-1) and that of U(VI) at 310, 300 and 285 nm is 178.1, 278.6 and 585 l.mole(-1).cm(-1), respectively. Standard deviations of +/-0.002 O/U ratio units for pellets and +/-0.004 O/U ratio units for powders have been achieved. PMID:18965306

  17. Field analyses of (238)U and (226)Ra in two uranium mill tailings piles from Niger using portable HPGe detector.

    PubMed

    Déjeant, Adrien; Bourva, Ludovic; Sia, Radia; Galoisy, Laurence; Calas, Georges; Phrommavanh, Vannapha; Descostes, Michael

    2014-11-01

    The radioactivities of (238)U and (226)Ra in mill tailings from the U mines of COMINAK and SOMAÏR in Niger were measured and quantified using a portable High-Purity Germanium (HPGe) detector. The (238)U and (226)Ra activities were measured under field conditions on drilling cores with 600s measurements and without any sample preparation. Field results were compared with those obtained by Inductive Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and emanometry techniques. This comparison indicates that gamma-ray absorption by such geological samples does not cause significant deviations. This work shows the feasibility of using portable HPGe detector in the field as a preliminary method to observe variations of radionuclides concentration with the aim of identifying samples of interest. The HPGe is particularly useful for samples with strong secular disequilibrium such as mill tailings. PMID:25036918

  18. Catalytic hydrodechlorination of monochloroacetic acid in wastewater using Ni-Fe bimetal prepared by ball milling.

    PubMed

    Zhu, Hong; Xu, Fuyuan; Zhao, Jianzhuang; Jia, Linfang; Wu, Kunming

    2015-09-01

    Monochloroacetic acid (MCA) is a chemically stable and biologically toxic pollutant. It is often generated during the production of the pesticide dimethoate. Conventional wastewater treatment processes have difficulty degrading it. In this work, the dechlorination effects of Ni-Fe bimetal prepared using ball milling (BM) technology for the high concentrations of MCA in wastewater were examined. The MCA in aqueous solution was found to be degraded efficiently by the Ni-Fe bimetal. However, S-(methoxycarbonyl) methyl O, O-dimethyl phosphorodithioate (SMOPD) in wastewater, a by-product of the dimethoate production process, significantly inhibited the reductive dechlorination activity of Ni-Fe bimetal. Increasing the reaction temperature in the MCA wastewater enhanced the reduction activity of the Ni-Fe bimetal effectively. Oxygen was found to be unfavorable to dechlorination. Sealing the reaction to prevent oxidation was found to render the degradation process more efficient. The process retained over 88% efficiency after 10 treatment cycles with 50 g/L of Ni-Fe bimetal under field conditions. PMID:25976331

  19. Sugar and volatile fatty acids dynamic during anaerobic treatment of olive mill wastewater.

    PubMed

    Fernandes, L R; Gomes, A C; Lopes, A; Albuquerque, A; Simões, R M

    2016-01-01

    Biogas production has been the main route used to exploit olive mill wastewater (OMW), after pretreatment and/or in combination with other effluents, but more recently the production of chemicals and biopolymers by biotechnological routes has deserved increasing attention by the scientific community. The present paper aims to explore the potential of fresh OMW as a source of volatile fatty acids (VFAs) and biogas. The time profile of VFAs production and the corresponding sugar consumption was followed by high-performance liquid chromatography, in batch anaerobic assays. The experimental results have revealed the very high potential of the OMW for the production of VFAs, mainly due to the high sugar concentration in the effluent (37.8 g/L) and its complete conversion into VFAs, in a time period of 2-3 days. The most abundant VFAs were acetic (48-50%), n-butanoic (12-27%), iso-pentanoic (12-14%) and propanoic (5-13%). The ratio of VFA containing even and odd carbon chains increased with the reduction in the initial chemical oxygen demand concentration of the samples used in the experiments. The conversion of the VFAs to biogas was inhibited at concentrations of 3.5 g/L of VFAs. PMID:26496487

  20. Transcriptomic Analysis Reveals the Metabolic Mechanism of L-Ascorbic Acid in Ziziphus jujuba Mill.

    PubMed Central

    Zhang, Chunmei; Huang, Jian; Li, Xingang

    2016-01-01

    Chinese jujube (Ziziphus jujuba Mill.) is the most economically important member of the Rhamnaceae family and contains a high concentration of ascorbic acid (AsA). To explore the metabolic mechanism of AsA accumulation, we investigated the abundance of AsA in the fruit development stages, the leaf and flower of Z. jujuba cv Junzao, and the mature fruit of one type of wild jujube (Z. jujuba var. spinosa Hu, Yanchuan sour jujube). And the expression patterns of genes involved in AsA biosynthesis, degradation, and recycling were analyzed. The result showed that AsA biosynthesis during early fruit development (the enlargement stage) is the main reason for jujube high accumulation. The L-galactose pathway plays a predominant role in the biosynthesis of AsA during jujube fruit development, and the genes GMP1, GME1, GGP, and GaLDH involved in the determination of AsA concentration during fruit development and in different genotypes; the myo-inositol pathway along with the genes GME2 and GMP2 in the L-galactose pathway play a compensatory role in maintaining AsA accumulation during the ripening stage. These findings enhance our understanding of the molecular mechanism in regulating AsA accumulation for jujube. PMID:26913041

  1. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement

    SciTech Connect

    1986-12-01

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

  2. Compilation of data on the uranium and equivalent uranium content of samples analyzed by U.S. Geological Survey during a program of sampling mine, mill, and smelter products

    USGS Publications Warehouse

    Hall, Marlene Louise; Butler, Arthur Pierce, Jr.

    1952-01-01

    In 1942 the Geological Survey began to collect, in response to a request made by the War Production Board, samples of mine, mill, and smelter products. About 1,400 such samples were collected and analyzed spectrographically for about 20 elements that were of strategic importance, in order to determine whether any of the products analyzed might be possible sources of some of the needed elements. When attention was directed to radioactive elements in 1943, most of the samples were scanned for radioactivity. Part of the work was done on behalf of the Division of Raw Materials of the Atomic Energy Commission. The sources, mine mill, smelter, or prospect, from which these samples were collected, the kind of material sampled, i.e. ores, concentrates, middlings, tailings, flue dusts, and so forth, and the radioactivity of the samples are listed in this report. Samples of the materials collected in the course of the Geological Survey’s investigations for uranium are excluded, but about 500 such samples were analyzed spectrographically for some or all of the same 20 elements sought in the samples that are the subject of this report. Most of the samples were tested only for their radioactivity, but a few were analyzed chemically for uranium. The radioactivity of many of the samples tested in the early screening was determined only qualitatively. Several samples were tested at one time, and if the count obtained did not exceed a predetermined minimum above background, the samples were not tested individually. If the count was more than this minimum, the samples were tested individually to identify the radioactive sample or samples and to obtain a quantitative value for the radioactivity. In general, the rough screening served as a basis for separating samples in which the radioactivity amount to less than 0.003 percent equivalent uranium from those in which it exceeded that amount. Some aspects of various phases of the investigation of radioactivity in these samples have

  3. Summary of the engineering assessment of inactive uranium-mill tailings, Bowman Site, Bowman, North Dakota. [Burning of uranium-bearing lignite

    SciTech Connect

    1981-11-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive residues from the burning of uranium-bearing lignite at Bowman, North Dakota. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of ash residues and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 97,000 tons of ash and contaminated materials at the Bowman site constitutes a significant environmental impact, although windblown ash and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the contaminated materials to remote disposal sites and decontamination of the ashing site (Options II through IV). Cost estimates for the four options range from about $1,740,000 for stabilization in-place, to about $3,060,000 for disposal at a distance of about 4 mi. Reprocessing the ash for uranium recovery is not feasible because of the extremely small amount of material available at the site and because of its low U/sub 3/O/sub 8/ content.

  4. Modeling uranium transport in acidic contaminated groundwater with base addition

    SciTech Connect

    Zhang, Fan; Luo, Wensui; Parker, Jack C.; Brooks, Scott C; Watson, David B; Jardine, Philip; Gu, Baohua

    2011-01-01

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  5. Bioremediation of uranium contaminated soils and wastes

    SciTech Connect

    Francis, A.J.

    1998-12-31

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  6. Uranium mill tailings remedial action program. Radiological survey of Shiprock vicinity property SH05, Shiprock, New Mexico, August-November 1982

    SciTech Connect

    Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

    1984-05-01

    The radiological assessment conducted at the Shiprock vicinity property SH05 by the ANL Radiological Survey Group indicated background levels of radioactivity within the residential structure. Radiation exposure rates were less than the 20 ..mu..R/h above background limit specified in the EPA Standard (40 CFR 192.12(b)(2)). Short-term radon daughter measurements within the residence did not exceed the 0.02 WL (or 20 mWL) limit for average annual concentration including background as specified in the EPA Standard (Section 192.12(b)(1)). The assessment indicated elevated levels of radioactivity at several areas in the outside environs. One discrete hot spot or localized area was found in the frontyard, near the front porch of the residence. Radiochemical analysis of the soil sample collected there indicated a radium concentration of 352 +- 35 pCi/g, which is in excess of the limit of 5 pCi/g above background, averaged over the first 15 cm of soil below the surface, as specified in Section 192.12(a)(1) of the EPA Standard. From soil sample analyses and the history of the site, the contaminating material appears to be residual radioactive material under the provisions of the Uranium Mill Tailings Radiation Control Act of 1978 in the form of radium-enhanced material (i.e., tailings) and natural uranium ore. Since the surface soil contamination levels exceed the limits specified in the EPA Standard, remedial action for this vicinity site should be considered. 10 references, 4 figures, 5 tables.

  7. Uranium ore treatment. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning the treatment of uranium ores. Emphasis is place upon the primary step within the process, acid leaching. Tailing disposal and proper handling of radioactive materials is also emphasized. Primary treatment procedures include ion-exchange, sulfuric acid leaching, solvent extraction, and sedimentation. Environmental aspects of uranium milling and mining are examined in a related bibliography. (Contains a minimum of 112 citations and includes a subject term index and title list.)

  8. Uranium ore treatment. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning the treatment of uranium ores. Emphasis is place upon the primary step within the process, acid leaching. Tailing disposal and proper handling of radioactive materials is also emphasized. Primary treatment procedures include ion-exchange, sulfuric acid leaching, solvent extraction, and sedimentation. Environmental aspects of uranium milling and mining are examined in a related bibliography. (Contains a minimum of 115 citations and includes a subject term index and title list.)

  9. EXAFS determinations of uranium structures: The uranyl ion complexed with tartaric, citric, and malic acids

    SciTech Connect

    Allen, P.G.; Shuh, D.K.; Bucher, J.J.

    1996-01-31

    Studies of the coordination chemistry of uranium in aqueous solutions are increasingly important for understanding the behavior of uranium in the environment. Actinide speciation information is essential for assessing and developing long-term strategies addressing problems such as migration in nuclear waste repositories or improvements in the processing of nuclear waste and materials. Relative to the latter, one method for removing uranium contamination from soils involves extraction using a chelating agent such as Tiron, or citrate. These types of extractants are quite efficient at binding the uranyl ion and thus are suitable for removing uranium contamination when it is in the hexavalent uranyl ion form. Martell et al. and Markovits et al. have published a series of articles detailing the complexation of the uranyl ion with tartaric, malic, and citric acids as a function of pH. Using the functional dependencies of potentiometric titration results, they showed that, in the pH range 2-4, the uranyl ion forms a 2:2 dimeric species, (UO{sub 2}){sub 2-} (L){sub 2}, where L = tartrate, malate, or citrate ligands. The authors have reinvestigated the solution structures of the uranyl complexes formed in these systems with the structural technique extended X-ray absorption fine-structure (EXAFS) spectroscopy.

  10. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Lowman, Idaho: Remedial action selection report for the Lowman UMTRA project site, Idaho. Final report

    SciTech Connect

    Matthews, M.L.; Nagel, J.

    1991-09-01

    The inactive uranium mill tailings site near Lowman, Idaho, was designated as one of 24 abandoned uranium tailings sites to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan and certify that the remedial action complies with the standards promulgated by the US Environmental Protection Agency (EPA). The remedial action plan (RAP), which includes this remedial action selection report (RAS), has been developed to serve a two-fold purpose. First, it describes the activities that are proposed by the DOE to accomplish long-term stabilization and control of residual radioactive materials at the inactive uranium processing site near Lowman, Idaho. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Idaho, and the NRC, becomes Appendix B of the Cooperative Agreement (No. DE-FC04-85AL20535) between the DOE and the State of Idaho.

  11. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Lowman, Idaho: Remedial action selection report for the Lowman UMTRA project site, Idaho

    SciTech Connect

    Matthews, M.L. . Uranium Mill Tailings Remedial Action Project Office); Nagel, J. . Div. of Environmental Quality)

    1991-09-01

    The inactive uranium mill tailings site near Lowman, Idaho, was designated as one of 24 abandoned uranium tailings sites to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan and certify that the remedial action complies with the standards promulgated by the US Environmental Protection Agency (EPA). The remedial action plan (RAP), which includes this remedial action selection report (RAS), has been developed to serve a two-fold purpose. First, it describes the activities that are proposed by the DOE to accomplish long-term stabilization and control of residual radioactive materials at the inactive uranium processing site near Lowman, Idaho. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Idaho, and the NRC, becomes Appendix B of the Cooperative Agreement (No. DE-FC04-85AL20535) between the DOE and the State of Idaho.

  12. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report: Attachment 2, Geology report; Attachment 3, Groundwater hydrology report; Attachment 4, Water resources protection strategy: Final report

    SciTech Connect

    Chernoff, A.R.; Lacker, D.K.

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

  13. Uranium Mill Tailings Remedial Action Program. Radiological survey of Shiprock vicinity property SH17, Shiprock, New Mexico, August and November 1982

    SciTech Connect

    Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

    1984-05-01

    The assessment activities included determination of indoor surface radiation levels in two buildings through direct instrument surveys, measurement of ambient external penetrating radiation levels at 1-meter heights, and analysis of air samples. No evidence of radioactive contamination was found inside either building; the assessment indicated no elevated levels of radioactivity that could not be attributed to the structural materials used in the construction of the buildings. The levels of radiation that were detected from these sources were considered normal for the glazed-tile and cement-block materials encountered. Radiation exposure rates were less than the 20 ..mu..R/h above background limit specified in the EPA Standard. Short-term radon daughter measurements within the buildings did not exceed the 0.02 WL limit for average annual concentrations including background as specified in the EPA Standard. The assessment did not indicate the presence of residual radioactive material under the provisions of the Uranium Mill Tailings Radiation Control Act of 1978. Remedial action for this vicinity site should not be considered.

  14. Environmental analysis and data report prepared for the environmental assessment of remedial action at the inactive uranium mill tailings site near Falls City, Texas

    SciTech Connect

    Not Available

    1991-12-01

    This document contains information and data gathered in support of the preparation of the environmental assessment (EA) of the proposed remedial action at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Falls City, Texas. The Falls City EA was prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the impacts of their actions on the environment. It examines the short- and long-term effects of the US Department of Energy`s (DOE) remedial action for the Falls City site as well as the no action alternative. The DOE will use the information and analyses presented in the EA to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an environmental impact statement (EIS) will be prepared. If the impacts are not determined to be significant, the DOE may issue a Finding of No Significant Impact (FONSI) and implement the proposed action. The information and data presented in this report are for background purposes only and are not required as part of the NEPA decision-making process.

  15. 9. VIEW OF MILLING AND LATHE MACHINES, MILLING AND LATHE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF MILLING AND LATHE MACHINES, MILLING AND LATHE MACHINES WERE USED TO FORM COMPONENTS INTO THEIR FINAL SHAPE. IN THE FOUNDRY, ENRICHED URANIUM WAS CAST INTO SPHERICAL SHAPES OR INGOT FROM WHICH WEAPONS COMPONENTS WERE FABRICATED. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  16. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    SciTech Connect

    1995-09-01

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.

  17. Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Spook, Wyoming

    SciTech Connect

    Matthews, M L; Sullivan, M

    1990-04-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at an inactive uranium processing site northeast of Casper, Wyoming, and referred to as the Spook site. It provides a characterization of the present conditions at the site and also serves to document the concurrence of the State of Wyoming and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the State of Wyoming, and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement.

  18. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots

    DOE PAGESBeta

    Li, Dien; Kaplan, Daniel I.; Chang, Hyun-Shik; Seaman, John C.; Jaffé, Peter R.; Koster van Groos, Paul; Scheckel, Kirk G.; Segre, Carlo U.; Chen, Ning; Jiang, De-Tong; et al

    2015-03-03

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6–5.8) conditions using U L₃-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U–C bond distance at ~2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulatingmore » the SRS wetland processes, U immobilization on roots was two orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was re-oxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.« less

  19. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots

    SciTech Connect

    Li, Dien; Kaplan, Daniel I.; Chang, Hyun-Shik; Seaman, John C.; Jaffé, Peter R.; Koster van Groos, Paul; Scheckel, Kirk G.; Segre, Carlo U.; Chen, Ning; Jiang, De-Tong; Newville, Matthew; Lanzirotti, Antonio

    2015-03-03

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6–5.8) conditions using U L₃-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U–C bond distance at ~2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulating the SRS wetland processes, U immobilization on roots was two orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was re-oxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.

  20. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots.

    PubMed

    Li, Dien; Kaplan, Daniel I; Chang, Hyun-Shik; Seaman, John C; Jaffé, Peter R; Koster van Groos, Paul; Scheckel, Kirk G; Segre, Carlo U; Chen, Ning; Jiang, De-Tong; Newville, Matthew; Lanzirotti, Antonio

    2015-03-01

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6-5.8) conditions using U L3-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U-C bond distance at ∼2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulating the SRS wetland processes, U immobilization on roots was 2 orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was reoxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands. PMID:25634067

  1. Production of polyhydroxyalkanoate (PHA) by Ralstonia eutropha JMP 134 with volatile fatty acids from palm oil mill effluent as precursors.

    PubMed

    Setiadi, Tjandra; Aznury, Martha; Trianto, Azis; Pancoro, Adi

    2015-01-01

    The highest volatile fatty acids (VFAs) concentration from palm oil mill effluent (POME) treated by anaerobic fermentation was achieved for a 1-day process when the main acids used were acetic, propionic and butyric acids. Polyhydroxyalkanoate (PHA) production with VFAs from POME as precursors in the fed-batch mode has advantages over batch mode, both in terms of its productivity and 3HV (3-hydroxyvalerate) composition in the produced polymer. With the fed batch, the productivity increased to 343% and contained more 3HV than those of the batch. The structures of the PHA were identified by different methods and they supported each other; the resulting products consisted of functional groups of 3HB (3-hydroxybutyrate) and 3HV. PMID:26606081

  2. Comparison of acid leaching and fusion techniques to determine uranium in soil samples by alpha spectrometry.

    PubMed

    Dirican, Abdullah; Şahin, Mihriban

    2016-03-01

    Dissolution of radionuclides of interest is an indispensable first step in the alpha spectrometric analysis of soil samples. In this study a uranium recovery method for the analysis of uranium isotopes in soil samples is presented. Two different soil sample dissolution techniques were used: digestion in open beaker and fusion. The results of these techniques were compared. Two proficiency test samples and one reference material prepared by the IAEA were analyzed. Better results were obtained by fusion dissolution technique but impurities were higher than with acid leaching. Results of two techniques were more or less similar within the uncertainty limits. The detection limit (a(#)) was evaluated as part of the quality control. PMID:26651172

  3. Potentiality of uranium biosorption from nitric acid solutions using shrimp shells.

    PubMed

    Ahmed, S H; El Sheikh, E M; Morsy, A M A

    2014-08-01

    Biosorption has gained important credibility during recent years because of its good performance and low cost. This work is concerned with studying the potentiality of the chitin component of the shrimp shells for uranium biosorption from nitric acid liquid solutions. The structural characteristics of the working chitin have been determined via Fourier Transform Infrared Spectroscopy (FTIR). The surface morphology was examined using Scanning Electron Microscopy (SEM). The adsorption capacity of biomass was investigated experimentally. The influence of contact time, pH, metal ion concentration, solution volume to mass ratio and temperature were evaluated and the results were fitted using adsorption isotherm models. The kinetic of uranium biosorption was also investigated as well as biosorption thermodynamic. PMID:24704766

  4. Development and evaluation of optimized sucrose ester stabilized oleanolic acid nanosuspensions prepared by wet ball milling with design of experiments.

    PubMed

    Li, Wenji; Ng, Ka-yun; Heng, Paul Wan Sia

    2014-01-01

    The aim of this study was to develop optimized sucrose ester (SE) stabilized oleanolic acid (OA) nanosuspensions (NS) for enhanced delivery via wet ball milling by design of experiments (DOE). In this study, SEOA NS batches were prepared by wet ball milling method. Mean particle sizes and polydispersity indices were determined using a nanosizer. The percent encapsulation efficiency, saturation solubility and in vitro dissolution rate were obtained with analyses using HPLC. Preparation methods were optimized by DOE using the Minitab software. The in vitro bioefficacy was obtained by methyl thiazolyl tetrazolium (MTT) measurements in A549 human non small cell lung cancer cell line. The in vivo pharmacokinetics profile was determined using LC-electrospray ionization (ESI)-MS/MS. The study produced spherical SEOA NS particles (ca. 100 nm in diameter) which were found to be able to increase OA saturation solubility considerably. Optimized SEOA-GBD NS (milled at 600 rpm for 3 h, sucrose monolaurate (SEL) : sucrose monopalmitate (SEP) at 9 : 1, w/w; SE : OA at 1 : 1, w/w) was found to be physically stable over 14 d at 4°C. The NS showed much higher dissolution rate, cytotoxicity and bioavailability when compared with the free drug. Thus, the prepared OA as SE stabilized NS particles by wet ball milling enhanced the saturation solubility, in vitro dissolution rate, bioefficacy and in vivo bioavailability of OA. The use of sugar esters may also be potentially applied to other hydrophobic drugs. PMID:24882406

  5. Ultrasonic cleaning of depleted uranium material as an alternative to nitric acid cleaning

    SciTech Connect

    Frye, L.E.; Senviel, C.B.

    1991-05-28

    Nitric acid is used to clean depleted uranium in the form of cast billets, and cast and wrought parts in the processing cycle and is the largest contributor of waste to the West End Treatment Facility (WETF). An estimated 27,000 gallons of liquid and 75 to 95% of all uranium received was sent to the WETF for processing from this facility in our baseline year. Because wrought parts account for the largest throughput at the nitric acid facility, an alternative cleaning method for these parts was examined first. Test results on the first part type from the wrought family showed ultrasonic cleaning to be an effective cleaning method. Since the geometry for this part presented the most difficulty in terms of ultrasonic cleaning, the entire wrought family is expected to be moved from the nitric acid facility to the ultrasonic cleaning facility. As a result, there will be an 83% reduction part throughput at the nitric acid facility which corresponds to a significant decrease in wastes sent to the WETF and a reduction in the generation and associated costs of waste overall. This change also eliminated two building moves involving two RAD areas resulting in a part movement reduction of approximately 25% which is a significant cost savings.

  6. High surface-area amidoxime-based polymer fibers co-grafted with various acid monomers yielding increased adsorption capacity for the extraction of uranium from seawater.

    PubMed

    Oyola, Yatsandra; Dai, Sheng

    2016-06-01

    Uranium is dissolved in the ocean at a uniform concentration of 3.34 ppb, which translates to approximately 4-5 billion tons of uranium. The development of adsorbents that can extract uranium from seawater has been a long term goal, but the extremely dilute uranium concentration along with the competition of other metal salts (which are at higher concentrations) has hindered the development of an economical adsorption process. Several acid monomers were co-grafted with acrylonitrile (AN) to help increase the hydrophilicity of the adsorbent to improve access to the metal adsorption sites. Grafting various acid monomers on PE fibers was found to significantly affect the uranium adsorption in simulated seawater in the following order: acrylic acid (AA) < vinyl sulfonic acid (VSA) < methacrylic acid (MAA) < itaconic acid (ITA) < vinyl phosphonic acid (VPA). Interestingly, the uranium adsorption capacity significantly increased when Mohr's salt was added with acrylic acid, most likely due to the reduction of co-polymerization of the monomers. When testing under more realistic conditions, the acid-grafted PE fiber adsorbents were exposed to natural seawater (more dilute uranium), the uranium adsorption capacity increased in the following order: MAA < AA (Mohr's salt) < VSA < ITA (Mohr's salt) < ITA < VPA, which agreed well with the simulated seawater results. Characterization of the adsorbents indicated that the increase in uranium adsorption capacity with each acid monomer was related to higher grafting of AN and therefore a higher conversion to amidoxime (AO). PMID:27145863

  7. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona

    SciTech Connect

    Not Available

    1989-08-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site near Tuba City, Arizona. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the Navajo Nation, the Hopi Tribe, US Bureau of Indian Affairs (BIA), and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE, the Navajo Nation, and the Hopi Tribe, and concurrence by NRC, becomes Appendix B of the Cooperative Agreement. Following the introduction, contents are as follows: Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3.0 summarizes the present site characteristics and provides a definition of site-specific problems. Section 4.0 is the site design for the proposed action. Section 5.0 summarizes the plan for ensuring environmental, health, and safety protection for the surrounding community and the on-site workers. Section 6.0 presents a detailed listing of the responsibilities of the project participants. Section 7.0 describes the features of the long-term surveillance and maintenance plan. Section 8.0 presents the quality assurance aspects of the project. Section 9.0 documents the ongoing activities to keep the public informed and participating in the project.

  8. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    SciTech Connect

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla; Serne, R. Jeffrey

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  9. Supercritical fluid extraction of uranium and thorium from nitric acid solutions with organophosphorus reagents

    SciTech Connect

    Lin, Y.; Wai, C.M.; Smart, N.G. |

    1995-10-01

    Extraction techniques for the recovery of uranium and transuranic elements from acid waste solutions are important in nuclear waste management. This paper examines the feasibility of extracting uranyl and thorium ions from nitric acid solutions with supercritical CO{sub 2} containing the different organophosphorus reagents. In this study, an organophosphorus reagent is dissolved in supercritical CO{sub 2} by passing the fluid through a reagent vessel placed upstream of the sample vessel in the extractor. Using TBPO or TOPO in supercritical CO{sub 2}, effective extraction of uranyl and thorium ions can be achieved even in dilute HNO{sub 3} solutions, thus yielding the possibility of reducing acidic waste volumes in nuclear waste treatment. The results may form the basis of a novel extraction process for the treatment of acidified nuclear wastes, while minimizing the production of secondary wastes. 12 refs., 2 figs., 2 tabs.

  10. Recovery of organic extractant from secondary emulsions formed in the extraction of uranium from wet-process phosphoric acid

    SciTech Connect

    Korchnak, J.D.; Fett, R.H.G.

    1984-01-03

    Uranium in wet-process phosphoric acid is extracted with an organic extractant. The pregnant extractant is then centrifuged to separate contaminants from the extractant. Secondary emulsions obtained by separating the contaminants following centrifugation are mixed with water or an acid leaching solution. After mixing, the mixture is centrifuged to separate and recover extractant which is recycled for stripping.

  11. Established techniques for cleaning depleted-uranium derby in lieu of nitric acid pickling. Contractor report (Final)

    SciTech Connect

    Letham-Brown, C.E.; Vanderkooi, D.

    1987-05-01

    The work described in this report details a method for the surface cleaning of depleted uranium derby by means of high-pressure water in lieu of nitric acid. The benefits realized are a more thorough cleaning, no loss of metal by pickling, elimination of hazardous handling, and disposal of spent-acid solutions.

  12. Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Shiprock, New Mexico

    SciTech Connect

    Hill, T.V.; Morley, J.A. . Uranium Mill Tailings Remedial Action Project Office); Began, E.T. )

    1985-06-01

    This Remedial Action Plan (RAP) has been developed to serve a twofold purpose. It presents the series of activities which are proposed by the Department of Energy (DOE) to effect long-term control of radioactive materials at the inactive uranium processing site located on the Navajo Reservation at Shiprock, New Mexico. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Shiprock site. Detailed supporting information can be found in appendices and referenced documents. Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3.0 traces the history of operations at the Shiprock site with a description of the present site characteristics. Section 4.0 provides a definition of site-specific problems, a listing of remedial action alternatives which have been considered, and the action which is being proposed. Section 5.0 presents a summary of the conceptual design for the proposed action which includes objectives, design features, schedule, cost, and implementation methods. Section 6.0 summarizes the plan for ensuring health and safety protection for the surrounding community and the onsite workers. Section 7.0 presents a detailed listing of the responsibilities of the project participants. Section 8.0 describes the quality assurance process that will be used by the RAC during construction. Section 9.0 describes the features of the long-term maintenance and surveillance plan. Section 10.0 documents the on-going activities to keep the public informed and participating in the project. Attached as part of the RAP are five appendices which describe in more detail various aspects of the remedial action.

  13. Uranium mill tailings remedial action program. Radiological survey of Shiprock vicinity property SH03, Shiprock, NM, July-November 1982

    SciTech Connect

    Flynn, K F; Justus, A L; Sholeen, C M; Smith, W H; Wynveen, R A

    1984-04-01

    A comprehensive survey of the vicinity property designated as SH03 was conducted on an intermittent basis from July 26 to November 11, 1982. At the time of the survey, three structures were located on the property - a residential trailer, the main structure, and an old gas pump housing. The lands surrounding the structures were either sparsely covered with arid vegetation or paved. The assessment activities included determination of indoor and outdoor surface radiation levels, for both fixed and removable contamination, through direct instrument and smear (indoor only) surveys; measurement of ambient external penetrating radiation levels at 1-meter heights; and analyses of air, soil, and other material samples. No evidence of radioactive contamination was found inside the trailer. However, the results of the radiological assessment did indicate the occurrence of elevated levels of gamma, surface alpha, and radon daughter radioactivity within the main structure. The short-term radon daughter measurements exceeded the limit of 0.02 Working Level for average annual concentration including background. The assessment also indicated elevated levels of radioactivity in the outdoor environs, encompassing about 32,000 ft/sup 2/ of the grounds adjacent to and surrounding the main structure on the east, south, and west sides. The contamination appeared to be due to the presence of unprocessed uranium ore. Analysis of surface soil samples collected from the environs indicated radium concentrations in excess of the limit of 5 pCi/g above background specified in the EPA Standard. Subsurface soil sampling was not conducted, and thus the vertical extent of the radiological contamination is not known. Since the surface soil contamination levels exceeded the limits specified in the EPA Standard, remedial action for this vicinity site should be considered.

  14. Long-term Effects of Ethanol Addition on Denitrification At The Uranium Mill Tailing Site In Monument Valley, Arizona

    NASA Astrophysics Data System (ADS)

    McMillan, A. L.; Borden, A. K.; Brusseau, M. L.; Carroll, K. C.; Akyol, N. H.; Berkompas, J. L.; Miao, Z.; Jordan, F.; Tick, G. R.; Waugh, J.; Glenn, E. P.

    2011-12-01

    Due to mining and processing of uranium at a site near Monument Valley, AZ, an extensive nitrate plume was produced in a shallow alluvial aquifer. Two pilot tests were conducted to evaluate the addition of ethanol as a carbon substrate to enhance natural denitrification. Aqueous geochemistry was characterized based upon groundwater samples collected before and after the addition of ethanol. Compound specific stable isotope analysis was also conducted. The results of the field tests showed that the concentration of nitrate decreased, while the concentration of nitrous oxide (a product of denitrification) increased. In addition, changes in aqueous concentrations of sulfate, iron, and manganese indicated that the ethanol amendment caused a change in prevailing redox conditions. The results of compound-specific stable isotope analysis for nitrate-nitrogen indicated that the nitrate concentration reductions were biologically mediated. Denitrification rate coefficients estimated for the pilot tests were approximately 50 times larger than resident-condition (non-enhanced) values obtained from prior characterization studies conducted at the site. Using the time at which nitrate concentrations began to decline for downgradient monitoring wells, and the associated inter-well distances, rough estimates of approximately 0.1-0.17 m/day were obtained for the effective reactive-front velocity. These values are within the range of mean pore-water velocities expected for the measured hydraulic conductivities and gradient. The nitrate concentrations in the injection zone have remained at levels three orders of magnitude below the initial values for many months, indicating that the ethanol amendments had a long-term impact on the local subsurface environment.

  15. Spectroscopic characteristics of ultrafiltration fractions of fulvic and humic acids isolated from an eucalyptus bleached Kraft pulp mill effluent.

    PubMed

    Duarte, Regina M B O; Santos, Eduarda B H; Duarte, Armando C

    2003-10-01

    In order to investigate the chemical heterogeneity of fulvic and humic acids previously isolated from a bleached Kraft pulp mill effluent, a sequential ultrafiltration (UF) scheme through four polyethersulphone membranes was applied. The unfractionated fulvic and humic acids and their fractions were characterized by UV-VIS, synchronous fluorescence (with Deltalambda=60 nm) and FTIR spectroscopies. The FTIR spectra were compared with those of lignin isolated from Eucalyptus globulus wood and from the black liquor of a Kraft pulping process. The results highlighted that fulvic acids fractions of low molecular sizes contain more lignin derived phenolic units, while those of higher molecular size exhibit a higher content of carbohydrate structures. However, the shift observed in the UV-VIS absorbance and fluorescence intensity towards higher wavelength, suggests a higher degree of conjugation of pi-bonds in the fractions of highest molecular sizes. In what concerns the humic acids size fractions, the FTIR spectra did not exhibit major differences but, as observed for the fulvic acids' fractions, UV-VIS and synchronous fluorescence spectra also suggest a higher degree of conjugation of pi-bonds in the fractions with the highest molecular sizes. It was also observed that the fulvic and humic acids fractions of the same molecular size, operationally defined by the UF process, exhibit major differences in their spectroscopic features. PMID:12946888

  16. Uranium Dispersion & Dosimetry Model.

    SciTech Connect

    MICHAEL,; MOMENI, H.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.

  17. Uranium Dispersion & Dosimetry Model.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for applicationmore » to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.« less

  18. Use of dry-milling derived thin stillage for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare.

    PubMed

    Liang, Yi; Zhao, Xuefei; Strait, Megan; Wen, Zhiyou

    2012-05-01

    This study was to explore the use of thin stillage, a major byproduct in dry milling corn-ethanol plants, for production of eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. Thin stillage contains various compounds that were ideal for fungal growth. Thin stillage concentration and temperature played important roles in fungal growth and EPA production. When 50% thin stillage was used in a stepwise temperature shift culture process, the cell density reached 23 g/L at day 9 with EPA yield and productivity of 243 and 27 mg/L day, respectively. The fungal biomass contained 39% lipid, 28% protein, 30% carbohydrate, and 3% ash. The fungal culture also generated a nutrient-depleted liquid by removing organic compounds in the raw thin stillage. The results collectively showed a new use of thin stillage by feeding to the fungus P. irregulare for producing omega-3 fatty acids. PMID:22386467

  19. Position paper on the applicability of supplemental standards to the uppermost aquifer at the Uranium Mill Tailings Vitro Processing Site, Salt Lake City, Utah

    SciTech Connect

    1996-03-01

    This report documents the results of the evaluation of the potential applicability of supplemental standards to the uppermost aquifer underlying the Uranium Mill Tailings Remedial Action (UMTRA) Project, Vitro Processing Site, Salt Lake City, Utah. There are two goals for this evaluation: provide the landowner with information to make an early qualitative decision on the possible use of the Vitro property, and evaluate the proposed application of supplemental standards as the ground water compliance strategy at the site. Justification of supplemental standards is based on the contention that the uppermost aquifer is of limited use due to wide-spread ambient contamination not related to the previous site processing activities. In support of the above, this report discusses the site conceptual model for the uppermost aquifer and related hydrogeological systems and establishes regional and local background water quality. This information is used to determine the extent of site-related and ambient contamination. A risk-based evaluation of the contaminants` effects on current and projected land uses is also provided. Reports of regional and local studies and U.S. Department of Energy (DOE) site investigations provided the basis for the conceptual model and established background ground water quality. In addition, a limited field effort (4 through 28 March 1996) was conducted to supplement existing data, particularly addressing the extent of contamination in the northwestern portion of the Vitro site and site background ground water quality. Results of the field investigation were particularly useful in refining the conceptual site model. This was important in light of the varied ground water quality within the uppermost aquifer. Finally, this report provides a critical evaluation, along with the related uncertainties, of the applicability of supplemental standards to the uppermost aquifer at the Salt Lake City Vitro processing site.

  20. Near-Real-Time Geophysical and Biological Monitoring of Bioremediation Methods at a Uranium Mill Tailings Site in Rifle, Colorado

    NASA Astrophysics Data System (ADS)

    Tarrell, A. N.; Haas, A.; Revil, A.; Figueroa, L. A.; Rodriguez, D.; Smartgeo

    2010-12-01

    Bioremediation has been utilized on subsurface uranium contamination at the Rifle IRFC site in Colorado by injecting acetate as an electron donor. However, successfully monitoring the progress of subsurface bioremediation over time is difficult and requires long-term stewardship considerations to ensure cost effective treatment due to biological, chemical, and hydrological heterogeneity. In order to better understand the complex heterogeneities of the subsurface and the resultant effect on microbial activity, innovative subsurface monitoring techniques must be investigated. The key hypothesis of this work is that a combination of data from electrode-based microbial monitoring, self potential monitoring, oxidation reduction potential, and water level sensors will provide sufficient information for identifying and localizing bioremediation activity and will provide better predictions of deleterious biogeochemical change. In order to test the proof-of-concept of these sensing techniques and to deconvolve the redox activity from other electric potential changing events involved in bioremediation, a 2D tank (2.4m x 1.2m x 0.6m) experiment has been developed. Field material obtained from the Rifle IRFC site will be packed in the tank and an artificial groundwater will flow across the tank through constant-head boundaries. The experiment will utilize sensors for electrode-based microbial monitoring, self potential monitoring, oxidation-reduction potential, and water level monitoring. Electrode-based microbial monitoring will be used to estimate microbial activity by measuring how much electrical current indigenous bacteria are producing. Self potential monitoring will be used to measure the natural electrical voltage potential between sampled points, providing indications of when and where electrical activity is occurring; such as reduction of radionuclides. In addition to the application of sensing technologies, this work will explore the application of a wireless sensor

  1. kinetics and mechanism of the oxidation of uranium(iv) by persulfate ions in perchloric acid solutions

    SciTech Connect

    Ermakov, V.A.

    1986-07-01

    The kinetics of the oxidation of uranium(IV) by persulfate ions in perchloric acid solutions was studied by a spectrophotometric method. It was established that the oxidation of uranium(IV) ions occurs along three pathways: directly by S/sub 2/O /SUP 2/8/ /sup -/ ions, by products of their thermal decomposition, and intramolecularly in a persulfate complex. It was shown that the contribution of each of the three pathways to the overall rate of oxidation of uranium(IV) depends on the initial reagent concentrations, the hydrogen ion concentration, and the temperature. The activation energies of the oxidation of uranium(IV) directly by persulfate ions, by products of their thermal decomposition, as well as in a persulfate complex, were determined.

  2. Characterization of olive mill wastes composts and their humic acids: stability assessment within different particle size fractions.

    PubMed

    Masmoudi, Saoussan; Jarboui, Raja; El Feki, Hafedh; Gea, Teresa; Medhioub, Khaled; Ammar, Emna

    2013-01-01

    Compost stability assessment within different particle size fractions was studied. Humic acids (HAs) were extracted from two kinds of co-composts prepared using evaporated olive mill wastewater (OMSW) or solid waste from olive oil extraction (OC) and poultry manure (PM). The elemental composition, Fourier-transform infrared spectroscopy (FTIR) and 13C-NMR (nuclear magnetic resonance) analysis and molecular weight distribution were investigated to assess the composted organic matter stability in different fractions. In both composts, organic matter content was higher in the > 2 mm fractions than in the < 2 mm fractions, because of fractions' richness in hardly biodegradable compounds. Spectroscopic analysis revealed that OMSW compost fraction < 2 mm and OC compost 2-4 mm fraction were rich in aromatic compounds and oxygenated groups but poor in aliphatic structure. Moreover, the HA distribution reflected a high stabilized compost < 2 mm fraction, especially from evaporated effluent known as phytotoxic. However, the 4-6 mm fraction included high aliphatic compounds besides aromatic structures and did not exhibit any phytotoxicity, confirming compost fraction maturity. However, the low C/N ratio, the high OMSW compost mineral nutritive elements and the high aromatic C rate reflected highly stabilized products. Consequently, the performance of both prepared organic fertilizers for agriculture use contested the previous negative effect ascribed to olive mill wastewater. PMID:23837330

  3. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailing site Maybell, Colorado. Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final report

    SciTech Connect

    Not Available

    1994-06-01

    The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPA ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies.

  4. Ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final, Revision 2, Version 5: Appendix E to the remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Green River, Utah

    SciTech Connect

    1995-09-01

    The purpose of this appendix is to provide a ground water protection strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Green River, Utah. Compliance with the US Environmental Protection Agency (EPA) ground water protection standards will be achieved by applying supplemental standards (40 CFR {section} 192.22(a); 60 FR 2854) based on the limited use ground water present in the uppermost aquifer that is associated with widespread natural ambient contamination (40 CFR {section} 192.11(e); 60 FR 2854). The strategy is based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. The strategy will result in compliance with Subparts A and C of the EPA final ground water protection standards (60 FR 2854). The document contains sufficient information to support the proposed ground water protection strategy, with monitor well information and ground water quality data included as a supplement. Additional information is available in the final remedial action plan (RAP) (DOE, 1991a), the final completion report (DOE, 1991b), and the long-term surveillance plan (LTSP) (DOE, 1994a).

  5. IMPACT OF PRIMARY SULFATE AND NITRATE EMISSIONS FROM SELECTED MAJOR SOURCES. PHASE 2: SULFURIC ACID PLANT AND PULP AND PAPER MILL

    EPA Science Inventory

    The report covers Phase two of a two phase study of the near source impacts of primary sulfate and nitrate emission sources. The phase two portion of the study was an investigation of the impact of the emissions from a sulfuric acid plant, and a pulp and paper mill. The study was...

  6. Sulfur, Protein Size Distribution, and Free Amino Acids in Flour Mill Streams and Their Relationship to Dough Rheology and Breadmaking Traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to evaluate differences in sulfur content, protein size distribution, and free amino acids among flour mill streams (FMS) and their relationships to dough rheology and breadmaking traits. Information from this study would likely lead to more precise blending of FMS in comme...

  7. Comparison of two numerical modelling approaches to a field experiment of unsaturated radon transport in a covered uranium mill tailings soil (Lavaugrasse, France).

    PubMed

    Saâdi, Zakaria; Guillevic, Jérôme

    2016-01-01

    Uncertainties on the mathematical modelling of radon ((222)Rn) transport in an unsaturated covered uranium mill tailings (UMT) soil at field scale can have a great impact on the estimation of the average measured radon exhalation rate to the atmosphere at the landfill cover. These uncertainties are usually attributed to the numerical errors from numerical schemes dealing with soil layering, and to inadequate modelling of physical processes at the soil/plant/atmosphere interface and of the soil hydraulic and transport properties, as well as their parameterization. In this work, we demonstrate how to quantify these uncertainties by comparing simulation results from two different numerical models to experimental data of radon exhalation rate and activity concentration in the soil-gas measured in a covered UMT-soil near the landfill site Lavaugrasse (France). The first approach is based on the finite volume compositional (i.e., water, radon, air) transport model TOUGH2/EOS7Rn (Transport Of Unsaturated Groundwater and Heat version 2/Equation Of State 7 for Radon; Saâdi et al., 2014), while the second one is based on the finite difference one-component (i.e., radon) transport model TRACI (Transport de RAdon dans la Couche Insaturée; Ferry et al., 2001). Transient simulations during six months of variable rainfall and atmospheric air pressure showed that the model TRACI usually overestimates both measured radon exhalation rate and concentration. However, setting effective unsaturated pore diffusivities of water, radon and air components in soil-liquid and gas to their physical values in the model EOS7Rn, allowed us to enhance significantly the modelling of these experimental data. Since soil evaporation has been neglected, none of these two models was able to simulate the high radon peaks observed during the dry periods of summer. However, on average, the radon exhalation rate calculated by EOS7Rn was 34% less than that was calculated by TRACI, and much closer to the

  8. Structural characterization of poorly-crystalline scorodite, iron(III)-arsenate co-precipitates and uranium mill neutralized raffinate solids using X-ray absorption fine structure spectroscopy

    SciTech Connect

    Chen, N; Jiang, D T; Cutler, J; Kotzer, T; Jia, Y F; Demopoulos, G P; Rowson, J W

    2009-12-01

    X-ray absorption fine structure (XAFS) is used to characterize the mineralogy of the iron(III)-arsenate(V) precipitates produced during the raffinate (aqueous effluent) neutralization process at the McClean Lake uranium mill in northern Saskatchewan, Canada. To facilitate the structural characterization of the precipitated solids derived from the neutralized raffinate, a set of reference compounds were synthesized and analyzed. The reference compounds include crystalline scorodite, poorly-crystalline scorodite, iron(III)-arsenate co-precipitates obtained under different pH conditions, and arsenate-adsorbed on goethite. The poorly-crystalline scorodite (prepared at pH 4 with Fe/As = 1) has similar As local structure as that of crystalline scorodite. Both As and Fe K-edge XAFS of poorly-crystalline scorodite yield consistent results on As-Fe (or Fe-As) shell. From As K-edge analysis the As-Fe shell has an inter-atomic distance of 3.33 ± 0.02 Å and coordination number of 3.2; while from Fe K-edge analysis the Fe-As distance and coordination number are 3.31 ± 0.02 Å and 3.8, respectively. These are in contrast with the typical arsenate adsorption on bidentate binuclear sites on goethite surfaces, where the As-Fe distance is 3.26 ± 0.03 Å and coordination number is close to 2. A similar local structure identified in the poorly-crystalline scorodite is also found in co-precipitation solids (Fe(III)/As(V) = 3) when precipitated at the same pH (pH = 4): As-Fe distance 3.30 ± 0.03 Å and coordination number 3.9; while at pH = 8 the co-precipitate has As-Fe distance of 3.27 ± 0.03 Å and coordination number about 2, resembling more closely the adsorption case. The As local structure in the two neutralized raffinate solid series (precipitated at pH values up to 7) closely resembles that in the poorly-crystalline scorodite. All of the raffinate solids have the same As-Fe inter-atomic distance as that in the poorly-crystalline scorodite, and a systematic decrease in the

  9. Constituents within pulp mill effluent deplete retinoid stores in white sucker and bind to rainbow trout retinoic acid receptors and retinoid X receptors.

    PubMed

    Alsop, Derek; Hewitt, Mark; Kohli, Mohan; Brown, Scott; Van Der Kraak, Glen

    2003-12-01

    Wild female and male white sucker (Catostomus commersoni) inhabiting an area receiving pulp mill effluent had reduced hepatic levels of retinol, didehydroretinol, retinyl esters, and didehydroretinyl esters, while vitamin E levels were unaffected. This disruption of the retinoid system led us to test methanol and dichloromethane extracts from the effluent of 11 pulp mills from across Canada for their ability to bind to rainbow trout (Oncorhynchus mykiss) retinoic acid receptors (RARs) from the gill and retinoid X receptors (RXRs) from the liver. Concentrated extracts of the final effluent from 6 of the 11 pulp mills were able to displace greater than 25% of the receptor-bound [3H]all-trans retinoic acid (RA) or [3H]9-cis RA from trout RARs and RXRs, respectively. The ability of the extracts to displace retinoic acid did not appear to be linked to the pulping or treatment processes. Moreover, extracts with the greatest activity came from thermomechanical mills, suggesting the compounds may originate from the wood furnish. In addition, extracts prepared from wood furnish (wood chips: white spruce [50%], lodgepole pine [47%], and balsam fir [3%]) from one mill were able to displace [3H]RA from the RARs and RXRs. The 4-hydroxy RA, a metabolite of RA that has been shown to be generated in greater quantities in fish exposed to P450-inducing xenobiotics, was able to displace [3H]all-trans RA from trout RARs as effectively as unlabeled all-trans RA. These results suggest that pulp mill effluent may impact the retinoid system of fish at multiple sites, either by decreasing hepatic retinoid stores or through contributing additional ligands (from the wood furnish) that can bind to RA receptors. PMID:14713038

  10. Statistical data of the uranium industry

    SciTech Connect

    1981-01-01

    Data are presented on US uranium reserves, potential resources, exploration, mining, drilling, milling, and other activities of the uranium industry through 1980. The compendium reflects the basic programs of the Grand Junction Office. Statistics are based primarily on information provided by the uranium exploration, mining, and milling companies. Data on commercial U/sub 3/O/sub 8/ sales and purchases are included. Data on non-US uranium production and resources are presented in the appendix. (DMC)

  11. Melanin and humic acid-like polymer complex from olive mill waste waters. Part I. Isolation and characterization.

    PubMed

    Khemakhem, Maissa; Papadimitriou, Vassiliki; Sotiroudis, Georgios; Zoumpoulakis, Panagiotis; Arbez-Gindre, Cécile; Bouzouita, Nabiha; Sotiroudis, Theodore G

    2016-07-15

    A water soluble humic acid and melanin-like polymer complex (OMWW-ASP) was isolated from olive mill waste waters (OMWW) by ammonium sulfate fractionation to be used as natural additive in food preparations. The dark polymer complex was further characterized by a variety of biochemical, physicochemical and spectroscopic techniques. OMWW-ASP is composed mainly of proteins associated with polyphenols and carbohydrates and the distribution of its relative molecular size was determined between about 5 and 190 kDa. SDS-PAGE shows the presence of a well separated protein band of 21.3 kDa and a low molecular weight peptide. The OMWW-ASP complex exhibits a monotonically increasing UV-Vis absorption spectrum and it contains stable radicals. Antioxidant activity measurements reveal the ability of the OMWW protein fraction to scavenge both the cationic 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(+)) radical, as well as the stable nitroxide free radical 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL). PMID:26948649

  12. Pretreatment of corn stover for sugar production using a two-stage dilute acid followed by wet-milling pretreatment process.

    PubMed

    Liu, Qiyu; Li, Wenzhi; Ma, Qiaozhi; An, Shengxin; Li, Minghao; Jameel, Hasan; Chang, Hou-Min

    2016-07-01

    A two-stage process was evaluated to increase sugar recovery. Firstly, corn stover was treated with dilute hydrochloric acid to recover the xylose, and then the residue was subjected to a wet-milling pretreatment. Dilute hydrochloric acid showed a high xylose recovery during the first stage. The optimal condition was 120°C and 40min for 0.7wt% dilute hydrochloric acid pretreatment followed by wet-milling pretreatment for 15min. The xylose and glucose yield were 81.0% and 64.0%, respectively, with a cellulase dosage at 3FPU/g of substrate. This two-stage process was effective on account of the removal of hemicelluloses in the first stage and the delamination of cell wall in the second stage, increasing the possibility of adsorption of cellulose to enzymes, and resulting in a high sugar recovery with a very low enzyme loading. PMID:27035475

  13. Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 2, Geology report

    SciTech Connect

    Not Available

    1993-07-01

    This report presents geologic considerations that are pertinent to the Remedial Action Plan for Slick Rock mill tailings. Topics covered include regional geology, site geology, geologic stability, and geologic suitability.

  14. BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES.

    SciTech Connect

    FRANCIS,A.J.

    1998-09-17

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction in waste volume and (ii) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste such as Ca, Fe, K, Mg and Na released into solution are removed, thus reducing the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  15. Simultaneous determination of nitric acid and uranium concentrations in aqueous solution from measurements of electrical conductivity, density, and temperature

    SciTech Connect

    Spencer, B.B.

    1991-01-01

    Nuclear fuel reprocessing plants handle aqueous solutions of nitric acid and uranium in large quantities. Automatic control of process operations requires reliable measurements of these solutes concentration, but this is difficult to directly measure. Physical properties such as solution density and electrical conductivity vary with solute concentration and temperature. Conductivity, density and temperature can be measured accurately with relatively simple and inexpensive devices. These properties can be used to determine solute concentrations will good correlations. This paper provides the appropriate correlations for solutions containing 2 to 6 Molar (M) nitric acid and 0 to 300 g/L uranium metal at temperatures from 25--90{degrees}C. The equations are most accurate below 5 M nitric acid, due to a broad maximum in the conductivity curve at 6 M. 12 refs., 9 figs., 6 tabs.

  16. Carbon Paste Electrode Modified with Carbamoylphosphonic Acid Functionalized Mesoporous Silica: A New Mercury-Free Sensor for Uranium Detection

    SciTech Connect

    Yantasee, Wassana; Lin, Yuehe; Fryxell, Glen E.; Wang, Zheming

    2004-05-20

    This study reports a new approach for developing a uranium (U(VI)) electrochemical sensor that is mercury-free, solid-state, and has less chance for ligand depletion than existing sensors. A carbon-paste electrode modified with carbamoylphosphonic acid self-assembled monolayer on mesoporous silica was developed for uranium detection based on an adsorptive square-wave stripping voltammetry technique. Voltammetric responses for U(VI) detection are reported as a function of pH, preconcentration time, and aqueous phase U(VI) concentration. The uranium detection limit is 25 ppb after 5 minutes preconcentration and improved to 1 ppb after 20 minutes preconcentration. The relative standard deviations are normally less than 5%.

  17. Uranium industry annual 1994

    SciTech Connect

    1995-07-05

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  18. Carbonate and citric acid leaching of uranium from uranium-contaminated soils: Pilot-scale studies (Phase II)

    SciTech Connect

    Wilson, J.H.; Chernikoff, R.; DeMarco, W.D.

    1995-10-01

    The purpose of this document is to describe the results of the soil decontamination demonstration conducted at the Fernald Environmental Management Project (FEMP) site by the Fernald Environmental Restoration and Management Corporation (FERMCO) and the Oak Ridge National Laboratory (ORNL). This demonstration, which began in November 1993 and ended in October 1994, involved the removal of uranium from contaminated soil sampled from two FEMP sites. The demonstration was conducted so as to meet the requirements of the Fernald Site Integrated Demonstration program, as well as all environmental, safety, and health requirements of the site.

  19. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    SciTech Connect

    1995-09-01

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

  20. Thermal pretreatment of olive mill wastewater for efficient methane production: control of aromatic substances degradation by monitoring cyclohexane carboxylic acid.

    PubMed

    Pontoni, Ludovico; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; Pirozzi, Francesco

    2015-01-01

    Anaerobic digestion is investigated as a sustainable depurative strategy of olive oil mill wastewater (OOMW). The effect of thermal pretreatment on the anaerobic biodegradation of aromatic compounds present in (OMWW) was investigated. The anaerobic degradation of phenolic compounds, well known to be the main concern related to this kind of effluents, was monitored in batch anaerobic tests at a laboratory scale on samples pretreated at mild (80±1 °C), intermediate (90±1 °C) and high temperature (120±1 °C). The obtained results showed an increase of 34% in specific methane production (SMP) for OMWW treated at the lowest temperature and a decrease of 18% for treatment at the highest temperature. These results were related to the different decomposition pathways of the lignocellulosic compounds obtained in the tested conditions. The decomposition pathway was determined by measuring the concentrations of volatile organic acids, phenols, and chemical oxygen demand (COD) versus time. Cyclohexane carboxylic acid (CHCA) production was identified in all the tests with a maximum concentration of around 200 µmol L(-1) in accordance with the phenols degradation, suggesting that anaerobic digestion of aromatic compounds follows the benzoyl-CoA pathway. Accurate monitoring of this compound was proposed as the key element to control the process evolution. The total phenols (TP) and total COD removals were, with SMP, the highest (TP 62.7%-COD 63.2%) at 80 °C and lowest (TP 44.9%-COD 32.2%) at 120 °C. In all cases, thermal pretreatment was able to enhance the TP removal ability (up to 42% increase). PMID:25624137

  1. Phenolic composition, ascorbic acid content, and antioxidant capacity of Spanish jujube (Ziziphus jujube Mill.) fruits.

    PubMed

    Wojdyło, Aneta; Carbonell-Barrachina, Ángel A; Legua, Pilar; Hernández, Francisca

    2016-06-15

    The interest in Ziziphus jujube is growing because it is an excellent source of nutrients and phytochemicals, and can contribute to a healthy diet. Nutritional compounds (phenolic compounds and L-ascorbic acid), and antioxidant capacity of 4 Spanish jujube cultivars were studied. Polyphenols were identified by LC-MS-QTof and quantified by UPLC-PDA-FL. A total of 25 polyphenolic compounds were identified and classified as 10 flavan-3-ols, 13 flavonols, 1 flavanone, and 1 dihydrochalcone. The content of total polyphenols (TP) ranged from 1442 to 3432 mg/100 g dry matter (dm) in fruits of the cultivars 'DAT' and 'PSI', respectively. Flavan-3-ols, the major group of polyphenols in jujube represented ∼92% of the TP content, whereas flavonols only amounted for about ∼8% each. The content of L-ascorbic acid was very high and took values in the range of 387-555 mg/100 g fresh weight (fw). Some Spanish jujube cultivars, especially 'PSI' and 'MSI', may be selected to promote the growth of cultivars with valuable nutritional and phytochemical beneficial effects on human health. PMID:26868581

  2. Hexavalent uranium diffusion into soils from concentrated acidic and alkaline solutions

    SciTech Connect

    Tokunaga, Tetsu K.; Wan, Jiamin; Pena, Jasquelin; Sutton, Stephen R.; Newville, Matthew

    2004-03-29

    Uranium contamination of soils and sediments often originates from acidic or alkaline waste sources, with diffusion being a major transport mechanism. Measurements of U(VI) diffusion from initially pH 2 and pH 11 solutions into a slightly alkaline Altamont soil and a neutral Oak Ridge soil were obtained through monitoring uptake from boundary reservoirs and from U concentration profiles within soil columns. The soils provided pH buffering, resulting in diffusion at nearly constant pH. Micro x-ray absorption near edge structure spectra confirmed that U remained in U(VI) forms in all soils. Time trends of U(VI) depletion from reservoirs, and U(VI) concentration profiles within soil columns yielded K{sub d} values consistent with those determined in batch tests at similar concentrations ({approx} 1 mM), and much lower than values for sorption at much lower concentrations (nM to {mu}M). These results show that U(VI) transport at high concentrations can be relatively fast at non-neutral pH, with negligible surface diffusion, because of weak sorption.

  3. Determination of uranium(IV) by derivative spectrophotometry of its complexes with hydroethylidenediphosphomic acid

    SciTech Connect

    Perfil'ev, V.A.; Mishchenko, V.T.; Poluektov, N.S.

    1985-05-20

    This paper reports on a study of the spectral characteristics of complex compounds of uranium-(IV) with a ligand containing the phosphonic groups - hydroxyethyllidenediphosphonic acid (HEDPA) - and its possible use for analysis. The method of derivative spectrophotometry has been used since absorption bands corresponding to a mixture of compounds can thus be resolved into absorption bands of the individual components, and their fine structure can be studied. The method ensures accuracy and reproducibility of the analysis of the mixture of compounds. It was found that, depending on the ratio of the components in the solution, compounds with composition of U(IV) . HEDPA . and U(IV) . 2 HEDPA are formed. It is shown that the complexes studied can be used for the determination of uraniun(IV) in pure salts (C /SUB min/ = 0.05 ..mu..g/ml) and also in the presence of iron (II) ions. In this latter case, the second derivatives of the absorption spectra were used.

  4. Prediction of uranium and technetium sorption during titration of contaminated acidic groundwater

    SciTech Connect

    Zhang, Fan; Parker, Jack C.; Watson, David B; Jardine, Philip M; Gu, Baohua

    2010-01-01

    This study investigates uranium and technetium sorption onto aluminum and iron hydroxides during titration of acidic groundwater. The contaminated groundwater exhibits oxic conditions with high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U, Tc, and various metal cations. More than 90% of U and Tc was removed from the aqueous phase as Al and Fe precipitated above pH 5.5, but was partially resolublized at higher pH values. An equilibrium hydrolysis and precipitation reaction model adequately described variations in aqueous concentrations of metal cations. An anion exchange reaction model was incorporated to simulate sulfate, U and Tc sorption onto variably charged (pH-dependent) Al and Fe hydroxides. Modeling results indicate that competitive sorption/desorption on mixed mineral phases needs to be considered to adequately predict U and Tc mobility. The model could be useful for future studies of the speciation of U, Tc and co-existing ions during pre- and post-groundwater treatment practices.

  5. Klebsiella sp. strain C2A isolated from olive oil mill waste is able to tolerate and degrade tannic acid in very high concentrations.

    PubMed

    Pepi, Milva; Cappelli, Serena; Hachicho, Nancy; Perra, Guido; Renzi, Monia; Tarabelli, Alessandro; Altieri, Roberto; Esposito, Alessandro; Focardi, Silvano E; Heipieper, Hermann J

    2013-06-01

    Four bacterial strains capable of growing in the presence of tannic acid as sole carbon and energy source were isolated from olive mill waste mixtures. 16S rRNA gene sequencing assigned them to the genus Klebsiella. The most efficient strain, Klebsiella sp. strain C2A, was able to degrade 3.5 g L(-1) tannic acid within 35 h with synthesizing gallic acid as main product. The capability of Klebsiella sp. strain C2A to produce tannase was evidenced at high concentrations of tannic acid up to 50 g L(-1) . The bacteria adapted to the toxicity of tannic acids by an increase in the membrane lipid fatty acids degree of saturation, especially in the presence of concentrations higher than 20 g L(-1) . The highly tolerant and adaptable bacterial strain characterized in this study could be used in bioremediation processes of wastes rich in polyphenols such as those derived from olive mills, winery or tanneries. PMID:23521025

  6. Relationship between Indole-3-Acetic Acid Levels in Apple (Malus pumila Mill) Rootstocks Cultured in Vitro and Adventitious Root Formation in the Presence of Indole-3-Butyric Acid.

    PubMed

    Alvarez, R; Nissen, S J; Sutter, E G

    1989-02-01

    In vitro rooting response and indole-3-acetic acid (IAA) levels were examined in two genetically related dwarfing apple (Malus pumila Mill) rootstocks. M.26 and M.9 were cultured in vitro using Linsmaier-Skoog medium supplemented with benzyladenine (BA), indole-3-butyric acid (IBA), and 1,3,5-trihydroxybenzoic acid (PG). Rooting response was tested in Lepoivre medium supplemented with IBA and PG. IBA concentrations of 12.0 and 4.0 micromolar induced the maximum rooting percentages for M.9 and M.26, respectively. At these concentrations rooting response was 100% for M.26 and 80% for M.9. Free and conjugated IAA levels were determined in M.26 and M.9 shoots prior to root inducing treatment by high performance liquid chromatography with fluorescence detection and validated by gas chromatography-mass spectrometry using (13)[C(6)]IAA as internal standard. Basal sections of M.26 shoots contained 2.8 times more free IAA than similar tissue in M.9 (477.1 +/- 6.5 versus 166.6 +/- 6.7 nanograms per gram fresh weight), while free IAA levels in apical sections of M.26 and M.9 shoots were comparable (298.0 +/- 4.4 versus 263.7 +/- 9.3 nanograms per gram fresh weight). Conjugated IAA levels were significantly higher in M.9 than in M.26 indicating that a greater proportion of total IAA was present as a conjugate in M.9. These data suggest that differences between M.26 and M.9 rooting responses may be related to differences in free IAA levels in the shoot base. PMID:16666562

  7. PROCESS OF PURIFYING URANIUM

    DOEpatents

    Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.

    1958-12-23

    A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.

  8. Supercritical Fluid Extraction of Toxic Heavy Metals and Uranium from Acidic Solutions with Sulfur-Containing Organophosphorus Reagents

    SciTech Connect

    Lin, Yuehe ); Liu, Chongxuan ); Wu, Hong ); Yak, H K.; Wai, Chien M.

    2003-03-02

    The feasibility of using sulfur-containing organophosphorus reagents for the chelation-supercritical fluid extraction (SFE) of toxic heavy metals and uranium from acidic media was investigated. The SFE experiments were conducted in a specially-designed flow-through liquid extractor. Effective extraction of the metal ions from various acidic media was demonstrated. The effect of ligand concentration in supercritical CO{sub 2} on the kinetics of metal extraction was studied. A simplified model is used to describe the extraction kinetics and the good agreement of experimental data with the equilibrium-based model is achieved.

  9. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado: Final report. Volume 4, Addenda D1--D5 to Appendix D

    SciTech Connect

    Allen, James W.

    1990-02-01

    This radiologic characterization of tho two inactive uranium millsites at Rifle, Colorado, was conducted by Bendix Field Engineering Corporation (Bendix) for the US Department of Energy (DOE), Grand Junction Projects Office, in accord with a Statement of Work prepared by the DOE Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor, Jacobs Engineering Group, Inc. (Jacobs). The purpose of this project is to define the extent of radioactive contamination at the Rifle sites that exceeds US Environmental Protection Agency, (EPA) standards for UMTRA sites. The data presented in this report are required for characterization of the areas adjacent to the tailings piles and for the subsequent design of cleanup activities. An orientation visit to the study area was conducted on 31 July--1 August 1984, in conjunction with Jacobs, to determine the approximate extent of contaminated area surrounding tho piles. During that visit, survey control points were located and baselines were defined from which survey grids would later be established; drilling requirements were assessed; and radiologic and geochemical data were collected for use in planning the radiologic fieldwork. The information gained from this visit was used by Jacobs, with cooperation by Bendix, to determine the scope of work required for the radiologic characterization of the Rifle sites. Fieldwork at Rifle was conducted from 1 October through 16 November 1984.

  10. Sterols and fatty acid biomarkers as indicators of changes in soil microbial communities in a uranium mine area.

    PubMed

    Guedes, Maria J; Pereira, Ruth; Duarte, Kátia; Rocha-Santos, Teresa A P; Antunes, Sara C; Gonçalves, Fernando; Duarte, Armando C; Freitas, Ana C

    2011-01-01

    Included in the 2nd tier of a site specific risk assessment that is being carried out in an abandoned uranium mine (Cunha Baixa uranium mine, Central Portugal), fatty acids biomarkers and sterols were analyzed to assess the impact of soil contamination with metals and radionuclides in the structure of the microbial community in seven sampling sites located at different distances from the mine. Surface soil samples were collected in those sampling sites in the four different seasons of the year. Principal component analysis (PCA) was performed on fatty acid biomarkers and sterols. Subsequently PCA scores obtained for both components were used to test the effect of sites and seasons, on soil samples collected in the Cunha Baixa uranium mine, through bi-factorial ANOVAs. Through PCA analysis, two distinct groups were set apart along the first two components. One group included sites at a great distance from the mine which were negatively correlated with higher contents of iC15:0 and iC17:0, both indicators of Gram-positive bacteria, as well as with ergosterol, cholestanol and cholesterol. The second group, in turn, was composed of the sampling sites most impacted by ore exploration, in situ leaching of poor ore, and spread of sludge from the effluent treatment pond. These sites were positively correlated with higher levels of iC16:0 (Gram-positive bacteria indicator), cyC17:0 (generally common in gram negative bacteria) and C18:0 and C17:0 biomarkers of non-specific bacteria. The profile of fatty acids obtained in the sampling sites revealed variable predominance of groups of bacteria which are a clear indication of differences in the soil microbial communities that are directly related to the environmental conditions prevailing in the uranium mine area. PMID:21547821

  11. Dissolved organic carbon reduces uranium bioavailability and toxicity. 1. Characterization of an aquatic fulvic acid and its complexation with uranium[VI].

    PubMed

    Trenfield, Melanie A; McDonald, Suzanne; Kovacs, Krisztina; Lesher, Emily K; Pringle, Jennifer M; Markich, Scott J; Ng, Jack C; Noller, Barry; Brown, Paul L; van Dam, Rick A

    2011-04-01

    Fulvic acid (FA) from a tropical Australian billabong (lagoon) was isolated with XAD-8 resin and characterized using size exclusion chromatography, solid state cross-polarization magic angle spinning, 13C nuclear magnetic resonance spectroscopy, elemental analysis, and potentiometric acid-base titration. Physicochemical characteristics of the billabong FA were comparable with those of the Suwannee River Fulvic Acid (SRFA) standard. The greater negative charge density of the billabong FA suggested it contained protons that were more weakly bound than those of SRFA, with the potential for billabong water to complex less metal contaminants, such as uranium (U). This may subsequently influence the toxicity of metal contaminants to resident freshwater organisms. The complexation of U with dissolved organic carbon (DOC) (10 mg L(-1)) in billabong water was calculated using the HARPHRQ geochemical speciation model and also measured using flow field-flow fractionation combined with inductively coupled plasma mass-spectroscopy. Agreement between both methods was very good (within 4% as U-DOC). The results suggest that in billabong water at pH 6.0, containing an average DOC of 10 mg L(-1) and a U concentration of 90 μg L(-1), around 10% of U is complexed with DOC. PMID:21351802

  12. Solvothermal synthesis of uranium(VI) phases with aromatic carboxylate ligands: A dinuclear complex with 4-hydroxybenzoic acid and a 3D framework with terephthalic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Karatchevtseva, Inna; Bhadbhade, Mohan; Tran, Toan Trong; Aharonovich, Igor; Fanna, Daniel J.; Shepherd, Nicholas D.; Lu, Kim; Li, Feng; Lumpkin, Gregory R.

    2016-02-01

    With the coordination of dimethylformamide (DMF), two new uranium(VI) complexes with either 4-hydroxybenzoic acid (H2phb) or terephthalic acid (H2tph) have been synthesized under solvothermal conditions and structurally characterized. [(UO2)2(Hphb)2(phb)(DMF)(H2O)3]·4H2O (1) has a dinuclear structure constructed with both pentagonal and hexagonal bipyramidal uranium polyhedra linked through a μ2-bridging ligand via both chelating carboxylate arm and alcohol oxygen bonding, first observation of such a coordination mode of 4-hydroxybenzoate for 5 f ions. [(UO2)(tph)(DMF)] (2) has a three-dimensional (3D) framework built with pentagonal bipyramidal uranium polyhedra linked with μ4-terephthalate ligands. The 3D channeled structure is facilitated by the unique carboxylate bonding with nearly linear C-O-U angles and the coordination of DMF molecules. The presence of phb ligands in different coordination modes, uranyl ions in diverse environments and DMF in complex 1, and tph ligand, DMF and uranyl ion in complex 2 has been confirmed by Raman spectroscopy. In addition, their thermal stability and photoluminescence properties have been investigated.

  13. Phosphate Bariers for Immobilization of Uranium Plumes

    SciTech Connect

    Peter C. Burns

    2007-01-26

    Uranium contamination of the subsurface has remained a persistent problem plaguing remedial design at sites across the U.S. that were involved with production, handling, storage, milling, and reprocessing of uranium for both civilian and defense related purposes. Remediation efforts to date have relied upon excavation, pump-and-treat, or passive remediation barriers (PRB's) to remove or attenuate uranium mobility.

  14. Estimation of Bioactive Compound, Maslinic Acid by HPTLC, and Evaluation of Hepatoprotective Activity on Fruit Pulp of Ziziphus jujuba Mill. Cultivars in India

    PubMed Central

    Rajopadhye, Anagha; Upadhye, Anuradha S.

    2016-01-01

    Fruits of Ziziphus jujuba Mill. (family: Rhamnaceae), known as Indian jujube or “Ber,” are of potential nutritional and medicinal value. The objectives of the present study were to estimate bioactive compound maslinic acid by HPTLC method and to evaluate in vitro antioxidant and hepatoprotective activity of eight cultivars of Indian jujube. Maslinic acid and the fruit pulp of various cultivars of Indian jujube, namely, Gola, Sannur, Umaran, Mehrun, and Chhuhara, exhibited significantly high antioxidant and hepatoprotective activity. HPTLC-densitometric method was developed for quantification of maslinic acid from fruits of Indian jujube cultivars. The trend of occurrence of maslinic acid in fruits pulp extracts was as follows: Gola > Sannur > Umaran > Mehrun > Chhuhara > Wild > Kadaka > Apple. A significant correlation was shown by maslinic acid content and prevention of oxidative stress induced by CCl4 in liver slice culture cell treated with extract. Maslinic acid along with its other phytoconstituents like phenols, flavonoids, and ascorbic acid may act as a possible therapeutic agent for preventing hepatotoxicity caused by oxidative stress generated due to the prooxidants like CCl4. This is the first report of fruit pulp extracts of Z. jujube cultivars in India and maslinic acid preventing CCl4 induced damage in liver slice culture cell of mice. PMID:26904143

  15. Production of lactic acid from the mixture of softwood pre-hydrolysate and paper mill sludge by simultaneous saccharification and fermentation.

    PubMed

    Shi, Suan; Kang, Li; Lee, Y Y

    2015-03-01

    Paper mill sludge is a solid waste material composed of pulp residues and ash generated from pulping and paper making process. The carbohydrate portion of the sludges from Kraft/Recycle paper mill has chemical and physical characteristics similar to those of commercial wood pulp. Because of its high carbohydrate content and well-dispersed structure, the sludge can be biologically converted to value-added products without pretreatment. In bioconversion of solid feedstock such as paper mill sludge, a certain amount of water must be present to attain fluidity. In this study, hemicellulose pre-hydrolysate, in place of water, was added to the sludge to increase the concentration of the final product. Pre-hydrolysate was obtained by hot-water treatment of pine wood in which the total sugar concentration reached 4 wt.%. The mixture was processed by simultaneous saccharification and fermentation (SSF) using enzymes (cellulase and pectinase) and Lactobacillus rhamnosus (ATCC-10863). Pectinase was added to hydrolyze mannose oligomers in the pre-hydrolysate to monomers. During the SSF of the mixture, calcium carbonate in the paper sludge acted as a buffer, yielding calcium lactate as the final product. External pH control was unnecessary due to the buffer action of calcium carbonate that maintained the pH near optimum for the SSF. The lactic acid yield in the range of 80-90 % of the theoretical maximum was obtained. Use of the mixed feed of pre-hydrolysate and pulp mill sludges in the SSF raised the product concentration to 60 g of lactate/L. PMID:25561054

  16. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Ambrosia Lake, New Mexico

    SciTech Connect

    Matthews, M.L. . Uranium Mill Tailings Remedial Action Project Office); Mitzelfelt, R. . Environmental Improvement Div.)

    1991-11-01

    This Remedial Action Plan (RAP) has been developed to serve a dual purpose. It presents the series of activities that is proposed by the US Department of Energy (DOE) to stabilize and control radioactive materials at the inactive Phillips/United Nuclear uranium processing site designated as the Ambrosia Lake site in McKinley County, New Mexico. It also serves to document the concurrence of both State of New Mexico and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state and concurrence by NRC, becomes Appendix B of the Cooperative Agreement.

  17. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah. Volume 1, Text, Appendices A, B, and C: Final report

    SciTech Connect

    Matthews, M.L.; Alkema, K.

    1991-03-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement.

  18. Environmental radioactivity assessment around old uranium mining sites near Mangualde (Viseu), Portugal

    SciTech Connect

    Carvalho, Fernando P.; Torres, Lubelia M.; Oliveira, Joao M.

    2007-07-01

    Uranium ore was extracted in the surroundings of Mangualde city, North of Portugal, in the mines of Cunha Baixa, Quinta do Bispo and Espinho until a few years ago. Mining waste, milling tailings and acid mine waters are the on site remains of this extractive activity. Environmental radioactivity measurements were performed in and around these sites in order to assess the dispersal of radionuclides from uranium mining waste and the spread of acidic waters resulting from the in situ uranium leaching with sulphuric acid. Results show migration of acid waters into groundwater around the Cunha Baixa mine. This groundwater is tapped by irrigation wells in the agriculture area near the Cunha Baixa village. Water from wells displayed uranium ({sup 238}U) concentrations up to 19x10{sup 3} mBq L{sup -1} and sulphate ion concentrations up to 1070 mg L{sup -1}. These enhanced concentrations are positively correlated with low water pH, pointing to a common origin for radioactivity, dissolved sulphate, and acidity in underground mining works. Radionuclide concentrations were determined in horticulture and farm products from this area also and results suggest low soil to plant transfer of radionuclides and low food chain transfer of radionuclides to man. Analysis of aerosols in surface air showed re suspension of dust from mining and milling waste heaps. Therefore, it is recommended to maintain mine water treatment and to plan remediation of these mine sites in order to prevent waste dispersal in the environment. (authors)

  19. Spectroscopic Evidence of Uranium Immobilization in Acidic Wetlands by Natural Organic Matter and Plant Roots

    EPA Science Inventory

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah Ri...

  20. Humic substances can modulate the allelopathic potential of caffeic, ferulic, and salicylic acids for seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.).

    PubMed

    Loffredo, Elisabetta; Monaci, Linda; Senesi, Nicola

    2005-11-30

    The capacity of a leonardite humic acid (LHA), a soil humic acid (SHA), and a soil fulvic acid (SFA) in modulating the allelopathic potential of caffeic acid (CA), ferulic acid (FA), and salicylic acid (SA) on seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) was investigated. Lettuce showed a sensitivity greater than that of tomato to CA, FA, and SA phytotoxicity, which was significantly reduced or even suppressed in the presence of SHA or SFA, especially at the highest dose, but not LHA. In general, SFA was slightly more active than SHA, and the efficiency of the action depended on their concentration, the plant species and the organ examined, and the allelochemical. The daily measured residual concentration of CA and FA decreased drastically and that of SA slightly in the presence of germinating seeds of lettuce, which were thus able to absorb and/or enhance the degradation of CA and FA. The adsorption capacity of SHA for the three allelochemicals was small and decreased in the order FA > CA > SA, thus suggesting that adsorption could be a relevant mechanism, but not the only one, involved in the "antiallelopathic" action. PMID:16302757

  1. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report

    SciTech Connect

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

  2. The Ambrosia Lake project archaeological investigations of three small sites associated with the southern Chacoan outlier of Kin Nizhoni, McKinley County, New Mexico. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect

    Cullington, B.J.; Hammack, L.C.; Baugh, T.G. )

    1990-03-15

    During the fall of 1987, Complete Archaeological Service Associates conducted mitigative excavations at three sites (LA50363, LA50364, and LA50371) in McKinley County, New Mexico. These sites are adjacent to the Phillips/United Nuclear Inactive Uranium Mill and Tailings site at Ambrosia Lake, New Mexico. The primary deposition at each of these sites appears to be related to a Pueblo II or Bonito Phase occupation. Temporal placement is based primarily on the cross dating of ceramics and archaeomagnetic determinations when possible. No tree-ring or radiocarbon samples are available from these sites. These Ambrosia Lake sites indicate that this area was occupied primarily by Pueblo II people who may have had close social, economic, and ceremonial ties with the people living at the nuclear community of Lower Nizhoni about 3 km south-southeast. The later component at LA50364 indicates a Pueblo III occupation by people who may have had similar ties to the people of the Kin Nizhoni nuclear community. The Ambrosia Lake sites, then, provide important information on the structure of subnuclear communities within the southern Chaco periphery.

  3. Acid-Assisted Ball Milling of Cellulose as an Efficient Pretreatment Process for the Production of Butyl Glycosides.

    PubMed

    Boissou, Florent; Sayoud, Nassim; De Oliveira Vigier, Karine; Barakat, Abdellatif; Marinkovic, Sinisa; Estrine, Boris; Jérôme, François

    2015-10-12

    Ball milling of cellulose in the presence of a catalytic amount of H2SO4 was found to be a promising pre-treatment process to produce butyl glycosides in high yields. Conversely to the case of water, n-butanol has only a slight effect on the recrystallization of ball-milled cellulose. As a result, thorough depolymerization of cellulose prior the glycosylation step is no longer required, which is a pivotal aspect with respect to energy consumption. This process was successfully transposed to wheat straw from which butyl glycosides and xylosides were produced in good yields. Butyl glycosides and xylosides are important chemicals as they can be used as hydrotropes but also as intermediates in the production of valuable amphiphilic alkyl glycosides. PMID:26346950

  4. Pulp and paper mills

    SciTech Connect

    Not Available

    1980-10-14

    The various hazards present in the many steps used in the production of products from pulp and paper mills were reviewed and discussed. The biological effects of 43 chemical, physical and dust hazards were detailed in the report. Dust hazards included exposures to wood dust, mold and bagasse dusts and fibrogenic dusts. Physical hazards included high heat and humidity, and noise. Raw materials and chemical intermediates discussed included calcium-oxide (1305788), magnesium-oxide (1309484), pulping liquors, sodium-hydroxide (1310732), sulfate, sulfites, sulfides, sulfur (7704349) and sulfuric-acid (7664939). Pulp bleaching agents were discussed along with papermaking additives, contaminants and/or byproducts, and pulping or combustion effluents. Sampling and analytical techniques for physical and chemical hazards were discussed. Engineering controls for hazards in pulp and paper mills were reviewed. OSHA regulations governing pulp and paper mills were evaluated.

  5. Synthesis and characterization of new biopolymeric microcapsules containing DEHPA-TOPO extractants for separation of uranium from phosphoric acid solutions.

    PubMed

    Outokesh, Mohammad; Tayyebi, Ahmad; Khanchi, Alireza; Grayeli, Fatemeh; Bagheri, Ghodrat

    2011-01-01

    A novel microcapsule adsorbent for separation of uranium from phosphoric acid solutions was developed by immobilizing the di(2-ethylhexyl) phosphoric acid-trioctyl phosphine oxide extractants in the polymeric matrix of calcium alginate. Physical characterization of the microcapsules was accomplished by scanning electron microscopy and thermogravimetric techniques. Equilibrium experiments revealed that both ion exchange and solvent extraction mechanisms were involved in the adsorption of [Formula: see text] ions, but the latter prevailed in a wider range of acid concentration. According to the results of kinetics study, at low acidity level, the rate controlling step was slow chemical reaction of [Formula: see text] ions with the microdroplets of extractant, whereas it changed to intraparticle diffusion at higher acid concentration. The study also attempted identification of the diffusion paths of the ions within the microcapsules, and the mechanism of change of mass transfer rate during the uptake process. The prepared microcapsules preserved their entire capacity after three cycles of adsorption, and their breakthrough behaviour was well fitted by a new formula derived from shrinking core model. PMID:21545316

  6. Statistical data of the uranium industry

    SciTech Connect

    1982-01-01

    Statistical Data of the Uranium Industry is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1981. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining, and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office (GJAO) of the US Department of Energy. The production, reserves, and drilling information is reported in a manner which avoids disclosure of proprietary information.

  7. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill Tailings Radiation Control Act of 1978, as amended. The licensee will be the Department of Energy, another... this general license is to ensure that uranium and thorium mill tailings disposal sites will be...

  8. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill Tailings Radiation Control Act of 1978, as amended. The licensee will be the Department of Energy, another... this general license is to ensure that uranium and thorium mill tailings disposal sites will be...

  9. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill Tailings Radiation Control Act of 1978, as amended. The licensee will be the Department of Energy, another... this general license is to ensure that uranium and thorium mill tailings disposal sites will be...

  10. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill Tailings Radiation Control Act of 1978, as amended. The licensee will be the Department of Energy, another... this general license is to ensure that uranium and thorium mill tailings disposal sites will be...

  11. Flow injection online spectrophotometric determination of uranium after preconcentration on XAD-4 resin impregnated with nalidixic acid.

    PubMed

    Shahida, Shabnam; Ali, Akbar; Khan, Muhammad Haleem; Saeed, Muhammad Mufazzal

    2013-02-01

    In this work, spectrophotometer was used as a detector for the determination of uranium from water, biological, and ore samples with a flow injection system coupled with solid phase extraction. In order to promote the online preconcentration of uranium, a minicolumn packed with XAD-4 resin impregnated with nalidixic acid was utilized. The system operation was based on U(VI) ion retention at pH 6 in the minicolumn at flow rate of 15.2 mL min(-1). The uranium complex was removed from the resin by 0.1 mol dm(-3) HCl at flow rate of 3.2 mL min(-1) and was mixed with arsenazo III solution (0.05 % solution in 0.1 mol dm(-3) HCl, 3.2 mL min(-1)) and driven to flow through cell of spectrophotometer where its absorbance was measured at 651 nm. The influence of chemical (pH and HCl (as eluent and reagent medium) concentration) and flow (sample and eluent flow rate and preconcentration time) parameters that could affect the performance of the system as well as the possible interferents was investigated. At the optimum conditions for 60 s preconcentration time (15.2 mL of sample volume), the method presented a detection limit of 1.1 μg L(-1), a relative standard deviation (RSD) of 0.8 % at 100 μg L(-1), enrichment factor of 30, and a sample throughput of 42 h(-1), whereas for 300 s of the preconcentration time (76 mL of sample volume), a detection limit of 0.22 μg L(-1), a RSD of 1.32 % at 10 μg L(-1), enrichment factor of 150, and a sampling frequency of 11 h(-1) were reported. PMID:22580790

  12. URANIUM SEPARATION PROCESS

    DOEpatents

    Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

    1959-07-14

    The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.

  13. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  14. URANIUM RECOVERY PROCESS

    DOEpatents

    Yeager, J.H.

    1958-08-12

    In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.

  15. Enumeration and Characterization of Iron(III)-Reducing Microbial Communities from Acidic Subsurface Sediments Contaminated with Uranium(VI)

    PubMed Central

    Petrie, Lainie; North, Nadia N.; Dollhopf, Sherry L.; Balkwill, David L.; Kostka, Joel E.

    2003-01-01

    Iron(III)-reducing bacteria have been demonstrated to rapidly catalyze the reduction and immobilization of uranium(VI) from contaminated subsurface sediments. Thus, these organisms may aid in the development of bioremediation strategies for uranium contamination, which is prevalent in acidic subsurface sediments at U.S. government facilities. Iron(III)-reducing enrichment cultures were initiated from pristine and contaminated (high in uranium, nitrate; low pH) subsurface sediments at pH 7 and pH 4 to 5. Enumeration of Fe(III)-reducing bacteria yielded cell counts of up to 240 cells ml−1 for the contaminated and background sediments at both pHs with a range of different carbon sources (glycerol, acetate, lactate, and glucose). In enrichments where nitrate contamination was removed from the sediment by washing, MPN counts of Fe(III)-reducing bacteria increased substantially. Sediments of lower pH typically yielded lower counts of Fe(III)-reducing bacteria in lactate- and acetate-amended enrichments, but higher counts were observed when glucose was used as an electron donor in acidic enrichments. Phylogenetic analysis of 16S rRNA gene sequences extracted from the highest positive MPN dilutions revealed that the predominant members of Fe(III)-reducing consortia from background sediments were closely related to members of the Geobacteraceae family, whereas a recently characterized Fe(III) reducer (Anaeromyxobacter sp.) and organisms not previously shown to reduce Fe(III) (Paenibacillus and Brevibacillus spp.) predominated in the Fe(III)-reducing consortia of contaminated sediments. Analysis of enrichment cultures by terminal restriction fragment length polymorphism (T-RFLP) strongly supported the cloning and sequencing results. Dominant members of the Fe(III)-reducing consortia were observed to be stable over several enrichment culture transfers by T-RFLP in conjunction with measurements of Fe(III) reduction activity and carbon substrate utilization. Enrichment

  16. Method for the recovery of uranium values from uranium tetrafluoride

    DOEpatents

    Kreuzmann, A.B.

    1982-10-27

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  17. Method for the recovery of uranium values from uranium tetrafluoride

    DOEpatents

    Kreuzmann, Alvin B.

    1983-01-01

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  18. India's Worsening Uranium Shortage

    SciTech Connect

    Curtis, Michael M.

    2007-01-15

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  19. Comparison of uranium-series, radiocarbon, and amino acid data from marine molluscs, Baffin Island, Arctic Canada

    SciTech Connect

    Szabo, B.J.; Miller, G.H.; Andrews, J.T.; Stuiver, M.

    1981-10-01

    Uranium-series and /sup 14/C dates and the extent of amino acid racemization are reported for 24 marine shell samples from three areas of Baffin Island, Arctic Canada. When the radiometric dates are plotted against the ratio of D-alloisoleucene:L-isoleucene in the shells, five broad age groups are recognized. The uranium-series data indicate that /sup 231/Pa is incompletely retained in most fossil shells and that /sup 230/Th is lost from some of the samples. Therefore, their apparent ages are minimum. However, a few dated samples in each group have yielded useful age results, and the minimum ages of the five groups of samples are estimated as 7,000 to 11,000, greater than or equal to70,000, greater than or equal to136,000, greater than or equal to190,000 and >300,000 yr. Calculated integrated thermal histories based on the epimerization reaction in the mollusc Hiatella arctica Linne give paleotemperature estimates of around -5/sup o/C, compared to the present mean annual air temperature of about -11/sup o/C.

  20. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona. Text, Appendices A, B, and C: Final report

    SciTech Connect

    Not Available

    1989-08-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site near Tuba City, Arizona. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the Navajo Nation, the Hopi Tribe, US Bureau of Indian Affairs (BIA), and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE, the Navajo Nation, and the Hopi Tribe, and concurrence by NRC, becomes Appendix B of the Cooperative Agreement. Following the introduction, contents are as follows: Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3.0 summarizes the present site characteristics and provides a definition of site-specific problems. Section 4.0 is the site design for the proposed action. Section 5.0 summarizes the plan for ensuring environmental, health, and safety protection for the surrounding community and the on-site workers. Section 6.0 presents a detailed listing of the responsibilities of the project participants. Section 7.0 describes the features of the long-term surveillance and maintenance plan. Section 8.0 presents the quality assurance aspects of the project. Section 9.0 documents the ongoing activities to keep the public informed and participating in the project.

  1. Variations in fatty acid compositions of the seed oil of Eruca sativa Mill. caused by different sowing periods and nitrogen forms

    PubMed Central

    Uğur, Atnan; Süntar, İpek; Aslan, Sinem; Orhan, İlkay Erdoğan; Kartal, Murat; Şekeroğlu, Nazim; Eşiyok, Dursun; Şener, Bilge

    2010-01-01

    Background: Eruca is a native plant genus of the South Europe and central Asia where it has been cultivated since centuries. As the genus name implies, the oil is high in erucic acid. Materials and Methods: In this study, our aim was to investigate the effect of sowing periods (autumn and spring) and three forms of the nitrogen-containing fertilizers (manure, calcium nitrate [Ca(NO3)2, 15.5% N], and ammonium sulphate [(NH4)2SO4, 21% N]) on fatty acid compositions of the oils obtained from Eruca sativa Mill. seeds cultivated. All oils were obtained by maceration of the seeds with n-hexane at room temperature and converted to their methyl ester derivatives by trans-methylesterification reaction using boron-trifluorur (BF3). The fatty acid methyl esters (FAMEs) in the oils were detected by capillary gas chromatography-mass spectrometry (GC-MS). Results: All the samples analyzed were found to contain quite high amounts of erucic acid ranging between 46.64-54.79%, followed by oleic (17.86-19.95%), palmitic (7.25-10.97%), linoleic (4.23-9.72%), and linolenic (1.98-3.01%) acids. Conclusion: Our data pointed out that there is a statistically important alteration caused by these applications on the contents of only C12:0 and C14:0 found as the minor fatty acids, whereas no other fatty acids in the samples seemed to be affected by those criteria. PMID:21120033

  2. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60[degree]C) or long extraction times (23 h). Adding KMnO[sub 4] in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  3. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60{degree}C) or long extraction times (23 h). Adding KMnO{sub 4} in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  4. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods

    NASA Astrophysics Data System (ADS)

    Rahimi Kord Sofla, M.; Brown, R. J.; Tsuzuki, T.; Rainey, T. J.

    2016-09-01

    This study compared the fundamental properties of cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) extracted from sugarcane bagasse. Conventional hydrolysis was used to extract CNC while ball milling was used to extract CNF. Images generated by scanning electron microscope and transmission electron microscope showed CNC was needle-like with relatively lower aspect ratio and CNF was rope-like in structure with higher aspect ratio. Fourier-transformed infrared spectra showed that the chemical composition of nanocellulose and extracted cellulose were identical and quite different from bagasse. Dynamic light scattering studies showed that CNC had uniform particle size distribution with a median size of 148 nm while CNF had a bimodal size distribution with median size 240 ± 12 nm and 10 μm. X-ray diffraction showed that the amorphous portion was removed during hydrolysis; this resulted in an increase in the crystalline portion of CNC compared to CNF. Thermal degradation of cellulose initiated at a much lower temperature, in the case of the nanocrystals while the CNF prepared by ball milling were not affected, indicating higher thermal stability.

  5. Development of a mathematical model for the dissolution of uranium dioxide. II. Statistical model for the dissolution of uranium dioxide tablets in nitric acid

    SciTech Connect

    Zhukovskii, Yu.M.; Luksha, O.P.; Nenarokomov, E.A.; Pronin, A.V.

    1988-03-01

    We have derived a statistical model for the dissolution of uranium dioxide tablets for the 6 to 12 M concentration range and temperatures from 80/sup 0/C to the boiling point. The model differs qualitatively from the dissolution model for ground uranium dioxide. In the indicated range of experimental conditions, the mean-square deviation of the curves for the model from the experimental curves is not greater than 6%.

  6. METHOD OF DISSOLVING URANIUM METAL

    DOEpatents

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  7. The Unusual Acid-Accumulating Behavior during Ripening of Cherimoya (Annona cherimola Mill.) is Linked to Changes in Transcription and Enzyme Activity Related to Citric and Malic Acid Metabolism.

    PubMed

    González-Agüero, Mauricio; Tejerina Pardo, Luis; Zamudio, María Sofía; Contreras, Carolina; Undurraga, Pedro; Defilippi, Bruno G

    2016-01-01

    Cherimoya (Annona cherimola Mill.) is a subtropical fruit characterized by a significant increase in organic acid levels during ripening, making it an interesting model for studying the relationship between acidity and fruit flavor. In this work, we focused on understanding the balance between the concentration of organic acids and the gene expression and activity of enzymes involved in the synthesis and degradation of these metabolites during the development and ripening of cherimoya cv. "Concha Lisa". Our results showed an early accumulation of citric acid and other changes associated with the accumulation of transcripts encoding citrate catabolism enzymes. During ripening, a 2-fold increase in malic acid and a 6-fold increase in citric acid were detected. By comparing the contents of these compounds with gene expression and enzymatic activity levels, we determined that cytoplasmic NAD-dependent malate dehydrogenase (cyNAD-MDH) and mitochondrial citrate synthase (mCS) play important regulatory roles in the malic and citric acid biosynthetic pathways. PMID:27120592

  8. Uranium industry annual 1993

    SciTech Connect

    Not Available

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  9. The combination of coagulation, acid cracking and Fenton-like processes for olive oil mill wastewater treatment: phytotoxicity reduction and biodegradability augmentation.

    PubMed

    Yazdanbakhsh, Ahmadreza; Mehdipour, Fayyaz; Eslami, Akbar; Maleksari, Hajar Sharifi; Ghanbari, Farshid

    2015-01-01

    Olive oil mill wastewater (OOMW) is one of the most important industrial wastewaters in the world due to high organic load and phenolic compounds. In this study, an integration of three processes including coagulation, acid cracking and Fenton-like was evaluated to treat OOMW. The performance of alum, ferric chloride and polyaluminum chloride was studied as coagulants. Among coagulants, ferric chloride showed the best results in comparison with the others. Coagulation process with FeCl3 removed 91.2% chemical oxygen demand (COD), 91.3% phenol, 98.9% total suspended solids and 99.2% turbidity at condition of pH = 6 and 3,000 mg/L coagulant dosage. Acid cracking process following the coagulation process with ferric chloride could slightly degrade organic compounds and provided suitable condition for the next process. Fenton-like process with zero valent iron (ZVI) was applied after coagulation and acid cracking. The optimal removal efficiency was achieved by Fenton-like process which was accomplished in condition of 7 g/L ZVI, 1,000 mg/L H2O2 and 180 min reaction time. The biodegradability of final effluent of this integration was improved significantly and biochemical oxygen demand5/COD value increased from 0.14 to 0.83. The results of germination tests revealed that phytotoxicity of the final effluent decreased. PMID:25860714

  10. Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Hillesheim, M.; Mosey, G.

    2013-11-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power system at the site.

  11. URANIUM PRECIPITATION PROCESS

    DOEpatents

    Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

    1957-12-01

    A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

  12. METHOD OF DISSOLVING METALLIC URANIUM

    DOEpatents

    Schulz, W.W.

    1959-07-28

    A process is presented for more rapidly dissolving metallic uranium which comprises contacting the uranium with a mixture of nitric and phosphoric acids. The preferred concentration is a mixture which is about 10 M in nitric acid and between 0.1 to 0.15 M in phosphoric acid.

  13. URANIUM RECOVERY PROCESS

    DOEpatents

    Kaufman, D.

    1958-04-15

    A process of recovering uranium from very low-grade ore residues is described. These low-grade uraniumcontaining hydroxide precipitates, which also contain hydrated silica and iron and aluminum hydroxides, are subjected to multiple leachings with aqueous solutions of sodium carbonate at a pH of at least 9. This leaching serves to selectively extract the uranium from the precipitate, but to leave the greater part of the silica, iron, and aluminum with the residue. The uranium is then separated from the leach liquor by the addition of an acid in sufficient amount to destroy the carbonate followed by the addition of ammonia to precipitate uranium as ammonium diuranate.

  14. Statistical data of the uranium industry

    SciTech Connect

    1983-01-01

    This report is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1982. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office of the US Department of Energy. Statistical data obtained from surveys conducted by the Energy Information Administration are included in Section IX. The production, reserves, and drilling data are reported in a manner which avoids disclosure of proprietary information.

  15. Sequential separation of lanthanides, thorium and uranium using novel solid phase extraction method from high acidic nuclear wastes.

    PubMed

    Kesava Raju, Ch Siva; Subramanian, M S

    2007-06-25

    A novel grafted polymer for selective extraction and sequential separation of lanthanides, thorium and uranium from high acidic wastes has been developed by grafting Merrifield chloromethylated (MCM) resin with octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO) (MCM-CMPO). The grafting process is well characterized using FT-IR spectroscopy, (31)P and (13)C CPMAS (cross-polarized magic angle spin) NMR spectroscopy and CHNPS elemental analysis. The influence of various physico-chemical parameters during metal ion extraction by the resin phase are studied and optimized by both static and dynamic methods. The resin shows very high sorption capacity values of 0.960mmolg(-1) for U(VI), 0.984mmolg(-1) for Th(IV), 0.488mmolg(-1) for La(III) and 0.502mmolg(-1) for Nd(III) under optimum HNO(3) medium, respectively. The grafted polymer shows faster rate exchange kinetics (<5min is sufficient for 50% extraction) and greater preconcentration ability, with reusability exceeding 20 cycles. During desorption process, sequential separation of the analytes is possible with varying eluting agents. The developed grafted resin has been successfully applied in extracting Th(IV) from high matrix monazite sand, U(VI) and Th(IV) from simulated nuclear spent fuel mixtures. All the analytical data is based on triplicate analysis and measurements are within 3.5% rsd reflecting the reproducibility and reliability of the developed method. PMID:17178189

  16. CS2 activation at uranium(III) siloxide ate complexes: the effect of a Lewis acidic site.

    PubMed

    Camp, Clément; Cooper, Oliver; Andrez, Julie; Pécaut, Jacques; Mazzanti, Marinella

    2015-02-14

    Multimetallic cooperative binding of heteroallenes provides an attractive route to their activation, but the reduction of CS(2) at heterobimetallic sites, associating an electron-rich metal with a main group Lewis acid has not been explored. Here we show that the presence of a heterometallic U, K site plays an important role in the CS(2) reduction by uranium(iii) complexes of the electron-rich and the sterically demanding tris(tert-butoxy)siloxide ligand. Specifically, the ion-pair complex [K(18c6)][U(OSi(O(t)Bu)(3))(4)], 1, leads preferentially to the reductive disproportionation of CS(2) to K(2)CS(3) and CS. The crystal structure of the thiocarbonate intermediate complex [U(OSi(O(t)Bu(3)(4) (μ(3)-κ(2):κ(2):κ(2-)CS(3))K(2)(18c6)(2)], 2, isolated from the toluene reaction mixture has been determined. In contrast, the heterobimetallic complex [U(OSi(O(t)Bu(3)(4)K], 3, promotes preferentially the reductive dimerization of CS(2) to K(2)C(2)S(4) and K(2)C(3)S(5). The [K(2)C(2)S(4)(DMSO)(3)](n), 5, and [U(OSi(O(t)Bu)(3))(4)K(2)(C(3)S(5))](n), 6, polymeric compounds were isolated from this reaction and structurally characterized. PMID:25436831

  17. Electron flow in acidic subsurface sediments co-contaminated with nitrate and uranium

    NASA Astrophysics Data System (ADS)

    Edwards, Lainie; Küsel, Kirsten; Drake, Harold; Kostka, Joel E.

    2007-02-01

    The combination of low pH and high concentrations of nitrate and radionuclides in the subsurface is representative of many sites within the U.S. nuclear weapons complex managed by the Department of Energy (DOE), including the DOE's Environmental Remediation Sciences Program Field Research Center (ORFRC), in Oak Ridge, Tennessee. In order to provide a further understanding of the coupled microbiological and geochemical processes limiting radionuclide bioremediation, we determined the rates and pathways of terminal-electron accepting processes (TEAPs) in microcosm experiments using close to in situ conditions with ORFRC subsurface materials. At the in situ pH range of 4-5, carbon substrate utilization and TEAP rates were diminished, such that nitrate was not depleted and metal reduction was prevented. Upon biostimulation by pH neutralization and carbon substrate addition, TEAPs were stimulated to rates that rival those measured in organic-rich surficial sediments of aquatic environments, and extremely high nitrate concentrations (0.4-0.5 M) were not found to be toxic to microbial metabolism. Metal reduction under neutral pH conditions started once nitrate was depleted to low levels in response to biostimulation. Acidity controlled not only the rates but also the pathways of microbial activity. Denitrification predominated in sediments originating from neutral pH zones, while dissimilatory nitrate reduction to ammonium occurred in neutralized acidic microcosms amended with glucose. Electron donors were determined to stimulate microbial metabolism leading to metal reduction in the following order: glucose > ethanol > lactate > hydrogen. In microcosms of neutralized acidic sediments, 80-90% of C equivalents were recovered as fermentation products, mainly as acetate. Due to the stress imposed by low pH on microbial metabolism, our results indicate that the TEAPs of acidic subsurface sediment are inherently different from those of neutral pH environments and

  18. A comparative study of the complexation of uranium(VI) withoxydiacetic acid and its amide derivatives

    SciTech Connect

    Rao, Linfeng; Tian, Guoxin

    2005-05-01

    There has been significant interest in recent years in the studies of alkyl-substituted amides as extractants for actinide separation because the products of radiolytic and hydrolytic degradation of amides are less detrimental to separation processes than those of organophosphorus compounds traditionally used in actinide separations. Stripping of actinides from the amide-containing organic solvents is relatively easy. In addition, the amide ligands are completely incinerable so that the amount of secondary wastes generated in nuclear waste treatment could be significantly reduced. One group of alkyl-substituted oxa-diamides have been shown to be promising in the separation of actinides from nuclear wastes. For example, tetraoctyl-3-oxa-glutaramide and tetraisobutyl-oxa-glutaramide form actinide complexes that can be effectively extracted from nitric acid solutions. To understand the thermodynamic principles governing the complexation of actinides with oxa-diamides, we have studied the complexation of U(VI) with dimethyl-3-oxa-glutaramic acid (DMOGA) and tetramethyl-3-oxa-glutaramide (TMOGA) in aqueous solutions, in comparison with oxydiacetic acid (ODA) (Figure 1). Previous studies have indicated that the complexation of U(VI) with ODA is strong and entropy-driven. Comparing the results for DMOGA and TMOGA with those for ODA could provide insight into the energetics of amide complexation with U(VI) and the relationship between the thermodynamic properties and the ligand structure.

  19. A comparative study of europium, thorium and uranium binding to an aquatic fulvic acid

    SciTech Connect

    Norden, M.; Ephraim, H.J.; Allard, B.; Albinsson, Y.

    1993-12-31

    Advances in safe management and disposal of radioactive waste have shown that a comprehensive program requires the incorporation of dissolved organics into radwaste and transport effluent models, with respect to their binding of radionuclides. The binding of Eu{sup 3+}, Th{sup 4+} and UO{sub 2}{sup 2+} to a well-characterized aquatic fulvic acid has been studied using an ultrafiltration method at a bulk electrolyte concentration of 0.10 M NaClO{sub 4}, trace amounts of radionuclides and fulvic acid concentrations of 60 and 120 mg/l. The results expressed as the overall complex formation function, {beta}{sub ov}, versus pH show the following order: Th{sup 4+} > Eu{sup 3+} > UO{sub 2}{sup 2+}. The estimated {beta}{sub 0v} values have been discussed by considering the aqueous chemistry of Eu{sup 3+}, Th{sup 4+} and UO{sub 2}{sup 2+} vis-a-vis the solution chemistry of the fulvic acid sample.

  20. RECOVERY OF URANIUM VALUES

    DOEpatents

    Brown, K.B.; Crouse, D.J. Jr.; Moore, J.G.

    1959-03-10

    A liquid-liquid extraction method is presented for recovering uranium values from an aqueous acidic solution by means of certain high molecular weight amine in the amine classes of primary, secondary, heterocyclic secondary, tertiary, or heterocyclic tertiary. The uranium bearing aqueous acidic solution is contacted with the selected amine dissolved in a nonpolar water-immiscible organic solvent such as kerosene. The uranium which is substantially completely exiracted by the organic phase may be stripped therefrom by waters and recovered from the aqueous phase by treatment into ammonia to precipitate ammonium diuranate.