Science.gov

Sample records for acidic whey protein

  1. Whey Protein

    MedlinePlus

    ... shows that taking whey protein in combination with strength training increases lean body mass, strength, and muscle size. ... grams/kg of whey protein in combination with strength training for 6-10 weeks. For HIV/AIDS-related ...

  2. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  3. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  4. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  5. The effect of whey acidic protein fractions on bone loss in the ovariectomised rat.

    PubMed

    Kruger, Marlena C; Plimmer, Gabrielle G; Schollum, Linda M; Haggarty, Neill; Ram, Satyendra; Palmano, Kate

    2005-08-01

    Bovine milk has been shown to contain bioactive components with bone-protective properties. Earlier studies on bovine milk whey protein showed that it suppressed bone resorption in the female ovariectomised rat. A new osteotropic component was subsequently identified in the whey basic protein fraction, but bone bioactivity may also be associated with other whey fractions. In the present study, we investigated whether acidic protein fractions isolated from bovine milk whey could prevent bone loss in mature ovariectomised female rats. Six-month-old female rats were ovariectomised (OVX) or left intact (sham). The OVX rats were randomised into four groups. One group remained the control (OVX), whereas three groups were fed various whey acidic protein fractions from milk whey as 3 g/kg diet for 4 months. Outcomes were bone mineral density, bone biomechanics and markers of bone turnover. Bone mineral density of the femurs indicated that one of the whey AF over time caused a recovery of bone lost from OVX. Plasma C-telopeptide of type I collagen decreased significantly in all groups except OVX control over time, indicating an anti-resorptive effect of whey acidic protein. Biomechanical data showed that the AF may affect bone architecture as elasticity was increased by one of the whey AF. The femurs of AF-supplemented rats all showed an increase in organic matter. This is the first report of an acidic whey protein fraction isolated from milk whey that may support the recovery of bone loss in vivo. PMID:16115359

  6. Whey protein fractionation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrated whey protein products from cheese whey, such as whey protein concentrate (WPC) and whey protein isolate (WPI), contain more than seven different types of proteins: alpha-lactalbumin (alpha-LA), beta-lactoglobulin (beta-LG), bovine serum albumin (BSA), immunoglobulins (Igs), lactoferrin ...

  7. Diversity in growth and protein degradation by dairy relevant lactic acid bacteria species in reconstituted whey.

    PubMed

    Pescuma, Micaela; Hébert, Elvira M; Bru, Elena; Font de Valdez, Graciela; Mozzi, Fernanda

    2012-05-01

    The high nutritional value of whey makes it an interesting substrate for the development of fermented foods. The aim of this work was to evaluate the growth and proteolytic activity of sixty-four strains of lactic acid bacteria in whey to further formulate a starter culture for the development of fermented whey-based beverages. Fermentations were performed at 37 °C for 24 h in 10 and 16% (w/v) reconstituted whey powder. Cultivable populations, pH, and proteolytic activity (o-phthaldialdehyde test) were determined at 6 and 24 h incubation. Hydrolysis of whey proteins was analysed by Tricine SDS-PAGE. A principal component analysis (PCA) was applied to evaluate the behaviour of strains. Forty-six percent of the strains grew between 1 and 2 Δlog CFU/ml while 19% grew less than 0·9 Δlog CFU/ml in both reconstituted whey solutions. Regarding the proteolytic activity, most of the lactobacilli released amino acids and small peptides during the first 6 h incubation while streptococci consumed the amino acids initially present in whey to sustain growth. Whey proteins were degraded by the studied strains although to different extents. Special attention was paid to the main allergenic whey protein, β-lactoglobulin, which was degraded the most by Lactobacillus acidophilus CRL 636 and Lb. delbrueckii subsp. bulgaricus CRL 656. The strain variability observed and the PCA applied in this study allowed selecting appropriate strains able to improve the nutritional characteristics (through amino group release and protein degradation) and storage (decrease in pH) of whey. PMID:22559062

  8. Whey Protein

    MedlinePlus

    ... intolerance, for replacing or supplementing milk-based infant formulas, and for reversing weight loss and increasing glutathione ( ... allergic reactions compared to infants who receive standard formula. However, taking why protein might not be helpful ...

  9. Effect of temperature and concentration on benzoyl peroxide bleaching efficacy and benzoic acid levels in whey protein concentrate.

    PubMed

    Smith, T J; Gerard, P D; Drake, M A

    2015-11-01

    Much of the fluid whey produced in the United States is a by-product of Cheddar cheese manufacture and must be bleached. Benzoyl peroxide (BP) is currently 1 of only 2 legal chemical bleaching agents for fluid whey in the United States, but benzoic acid is an unavoidable by-product of BP bleaching. Benzoyl peroxide is typically a powder, but new liquid BP dispersions are available. A greater understanding of the bleaching characteristics of BP is necessary. The objective of the study was to compare norbixin destruction, residual benzoic acid, and flavor differences between liquid whey and 80% whey protein concentrates (WPC80) bleached at different temperatures with 2 different benzoyl peroxides (soluble and insoluble). Two experiments were conducted in this study. For experiment 1, 3 factors (temperature, bleach type, bleach concentration) were evaluated for norbixin destruction using a response surface model-central composite design in liquid whey. For experiment 2, norbixin concentration, residual benzoic acid, and flavor differences were explored in WPC80 from whey bleached by the 2 commercially available BP (soluble and insoluble) at 5 mg/kg. In liquid whey, soluble BP bleached more norbixin than insoluble BP, especially at lower concentrations (5 and 10 mg/kg) at both cold (4°C) and hot (50°C) temperatures. The WPC80 from liquid whey bleached with BP at 50°C had lower norbixin concentration, benzoic acid levels, cardboard flavor, and aldehyde levels than WPC80 from liquid whey bleached with BP at 4°C. Regardless of temperature, soluble BP destroyed more norbixin at lower concentrations than insoluble BP. The WPC80 from soluble-BP-bleached wheys had lower cardboard flavor and lower aldehyde levels than WPC80 from insoluble-BP-bleached whey. This study suggests that new, soluble (liquid) BP can be used at lower concentrations than insoluble BP to achieve equivalent bleaching and that less residual benzoic acid remains in WPC80 powder from liquid whey

  10. Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions.

    PubMed

    Assadpour, Elham; Maghsoudlou, Yahya; Jafari, Seid-Mahdi; Ghorbani, Mohammad; Aalami, Mehran

    2016-05-01

    Due to susceptibility of folic acid like many other vitamins to environmental and processing conditions, it is necessary to protect it by highly efficient methods such as micro/nano-encapsulation. Our aim was to prepare and optimize real water in oil nano-emulsions containing folic acid by a low energy (spontaneous) emulsification technique so that the final product could be encapsulated within maltodextrin-whey protein double emulsions. A non ionic surfactant (Span 80) was used for making nano-emulsions at three dispersed phase/surfactant ratios of 0.2, 0.6, and 1.0. Folic acid content was 1.0, 2.0, and 3.0mg/mL of dispersed phase by a volume fraction of 5.0, 8.5, and 12%. The final optimum nano-emulsion formulation with 12% dispersed phase, a water to surfactant ratio of 0.9 and folic acid content of 3mg/mL in dispersed phase was encapsulated within maltodextrin-whey protein double emulsions. It was found that the emulsification time for preparing nano-emulsions was between 4 to 16h based on formulation variables. Droplet size decreased at higher surfactant contents and final nano-emulsions had a droplet size<100nm. Shear viscosity was higher for those formulations containing more surfactant. Our results revealed that spontaneous method could be used successfully for preparing stable W/O nano-emulsions containing folic acid. PMID:26806649

  11. WHEY PROTEIN PRODUCTION AND UTILIZATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey has traditionally been a waste product of cheese manufacture, but nowadays whey is evolving into a sought-after commodity because of the lactose, minerals, and protein it contains as well as the functional properties it imparts to food. Proteins are separated from whey by membrane filtration f...

  12. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  13. Effect of degree of hydrolysis of whey protein on in vivo plasma amino acid appearance in humans.

    PubMed

    Farup, Jean; Rahbek, Stine Klejs; Storm, Adam C; Klitgaard, Søren; Jørgensen, Henry; Bibby, Bo M; Serena, Anja; Vissing, Kristian

    2016-01-01

    Whey protein is generally found to be faster digested and to promote faster and higher increases in plasma amino acid concentrations during the immediate ~60 min following protein ingestion compared to casein. The aim of the present study was to compare three different whey protein hydrolysates with varying degrees of hydrolysis (DH, % cleaved peptide bonds) to evaluate if the degree of whey protein hydrolysis influences the rate of amino acid plasma appearance in humans. A casein protein was included as reference. The three differentially hydrolysed whey proteins investigated were: High degree of hydrolysis (DH, DH = 48 %), Medium DH (DH = 27 %), and Low DH (DH = 23 %). The casein protein was intact. Additionally, since manufacturing of protein products may render some amino acids unavailable for utilisation in the body the digestibility and the biological value of all four protein fractions were evaluated in a rat study. A two-compartment model for the description of the postprandial plasma amino acid kinetics was applied to investigate the rate of postprandial total amino acid plasma appearance of the four protein products. The plasma amino acid appearance rates of the three whey protein hydrolysates (WPH) were all significantly higher than for the casein protein, however, the degree of hydrolysis of the WPH products did not influence plasma total amino acid appearance rate (estimates of DH and 95 % confidence intervals [CI] (mol L(-1) min(-1)): High DH 0.0585 [0.0454, 0.0754], Medium DH 0.0594 [0.0495, 0.0768], Low DH 0.0560 [0.0429, 0.0732], Casein 0.0194 [0.0129, 0.0291]). The four protein products were all highly digestible, while the biological value decreased with increasing degree of hydrolysis. In conclusion, the current study does not provide evidence that the degree of whey protein hydrolysis is a strong determinant for plasma amino acid appearance rate within the studied range of hydrolysis and protein dose. PMID:27065230

  14. Properties of whey protein-based films containing organic acids and nisin to control Listeria monocytogenes.

    PubMed

    Pintado, Cristina M B S; Ferreira, Maria A S S; Sousa, Isabel

    2009-09-01

    Whey protein isolate and glycerol were mixed to form a matrix to incorporate antimicrobial agents and produce edible films with antimicrobial activity against Listeria monocytogenes strains isolated from cheeses. Various organic acids were used to decrease pH down to approximately 3. In a preliminary assay without nisin, the effect of each organic acid was evaluated with respect to the rheological properties of the film solutions and the inhibitory and mechanical properties of the films. Lactic, malic, and citric acids (3%, wt/vol), which were used in a subsequent study of their combined inhibitory effect with nisin (50 IU/ml), had significantly higher antilisterial activity (P < 0.05) compared with the control (2 N HCl, 3% [wt/vol], with nisin). The largest mean zone of inhibition was 4.00 +/- 0.92 mm for malic acid with nisin. Under small-amplitude oscillatory stress, the protein-glycerol-acid film solutions exhibited a predominantly viscous behavior or a weak gel behavior, with the storage modulus (G') slightly higher than the loss modulus (G"). The malic acid-based solution was the only one whose viscosity was not influenced by the addition of nisin. The addition of nisin resulted in a nonsignificant (P > 0.05) increase in the percentage of elongation at break. Results from tensile and puncture stress were variable, but in general no significant differences were found after the incorporation of nisin. The overall results support the use of malic acid with nisin to produce effective antimicrobial films to control L. monocytogenes growth. PMID:19777891

  15. COMMERCIAL PRODUCTION OF PROTEIN BY THE FERMENTATION OF ACID AND/OR SWEET WHEY

    EPA Science Inventory

    Saccharomyces fragilis may be grown on acid or sweet cheese whey in a deep-tank, aerated fermentor in a continuous manner on a commercial scale. Operations in a 15,000-gallon fermentor at low pH and high cell counts experience no contamination during extended periods of time unde...

  16. Secretion of whey acidic protein and cystatin is down regulated at mid-lactation in the red kangaroo (Macropus rufus)

    USGS Publications Warehouse

    Nicholas, K.R.; Fisher, J.A.; Muths, E.; Trott, J.; Janssens, P.A.; Reich, C.; Shaw, D.C.

    2001-01-01

    Milk collected from the red kangaroo (Macropus rufus) between day 100 and 260 of lactation showed major changes in milk composition at around day 200 of lactation, the time at which the pouch young begins to temporarily exit the pouch and eat herbage. The carbohydrate content of milk declined abruptly at this time and although there was only a small increase in total protein content, SDS PAGE analysis of milk revealed asynchrony in the secretory pattern of individual proteins. The levels of ??-lactalbumin, ??-lactoglobulin, serum albumin and transferrin remain unchanged during lactation. In contrast, the protease inhibitor cystatin, and the putative protease inhibitor whey acidic protein (WAP) first appeared in milk at elevated concentrations after approximately 150 days of lactation and then ceased to be secreted at approximately 200 days. In addition, a major whey protein, late lactation protein, was first detected in milk around the time whey acidic protein and cystatin cease to be secreted and was present at least until day 260 of lactation. The co-ordinated, but asynchronous secretion of putative protease inhibitors in milk may have several roles during lactation including tissue remodelling in the mammary gland and protecting specific proteins in milk required for physiological development of the dependent young. ?? 2001 Elsevier Science Inc.

  17. Differential stimulation of muscle protein synthesis in elderly humans following isocaloric ingestion of amino acids or whey protein.

    PubMed

    Paddon-Jones, Douglas; Sheffield-Moore, Melinda; Katsanos, Christos S; Zhang, Xiao-Jun; Wolfe, Robert R

    2006-02-01

    To counteract the debilitating progression of sarcopenia, a protein supplement should provide an energetically efficient anabolic stimulus. We quantified net muscle protein synthesis in healthy elderly individuals (65-79 yrs) following ingestion of an isocaloric intact whey protein supplement (WY; n=8) or an essential amino acid supplement (EAA; n=7). Femoral arterio-venous blood samples and vastus lateralis muscle biopsy samples were obtained during a primed, constant infusion of L-[ring-2H5]phenylalanine. Net phenylalanine uptake and mixed muscle fractional synthetic rate (FSR) were calculated during the post-absorptive period and for 3.5 h following ingestion of 15 g EAA or 15 g whey. After accounting for the residual increase in the intracellular phenylalanine pool, net post-prandial phenylalanine uptake was 53.4+/-9.7 mg phe leg-1 (EAA) and 21.7+/-4.6 mg phe leg-1 (WY), (P<0.05). Postabsorptive FSR values were 0.056+/-0.004% h-1 (EAA) and 0.049+/-0.006% h-1 (WY), (P>0.05). Both supplements stimulated FSR (P<0.05), but the increase was greatest in the EAA group with values of 0.088+/-0.011% h-1 (EAA) and 0.066+/-0.004% h-1 (WY), (P<0.05). While both EAA and WY supplements stimulated muscle protein synthesis, EAAs may provide a more energetically efficient nutritional supplement for elderly individuals. PMID:16310330

  18. Acid-responsive properties of fibrils from heat-induced whey protein concentrate.

    PubMed

    Xu, Hong-Hua; Wang, Jing; Dong, Shi-Rong; Cheng, Wen; Kong, Bao-Hua; Tan, Jun-Yan

    2016-08-01

    The heat-induced fibrils of whey protein concentrate (WPC) have demonstrated an acid-responsive property; that is, the fibrils went through formation-depolymerization-reformation as pH was adjusted to 1.8, 6.5, and back to 1.8. We investigated the microstructure, driving force, and thermal stability of 3.0% (wt) WPC nanofibrils adjusted between pH 6.5 and 1.8 twice. The results showed that the nanofibrils had acid-responsive properties and good thermal stability after reheating for 10h at 90°C and adjusting pH from 1.8 to 6.5 to 1.8. The content of WPC fibril aggregates was not much different with the prolongation of heating times during pH variation. Although the nanofibrils' structure could be destroyed only by changing the pH, the essence of this destruction might only form fiber fragments, polymers that would restore a fibrous structure upon returning to pH 1.8. A described model for the acid-responsive assembly of fibrils of WPC was proposed. The fibrils went through formation-depolymerization-reformation by weaker noncovalent interactions (surface hydrophobicity) as pH changed from 1.8 to 6.5 back to 1.8. However, the fibrils lost the acid-responsive properties because much more S-S (disulfide) formation occurred when the solution was adjusted to pH 6.5 and reheated. Meanwhile, fibrils still possessed acid-responsive properties when reheated at pH 1.8, and the content of fibrils slightly increased with a further reduction of α-helix structure. PMID:27265171

  19. Nutrition and Inflammation in Older Individuals: Focus on Vitamin D, n-3 Polyunsaturated Fatty Acids and Whey Proteins.

    PubMed

    Ticinesi, Andrea; Meschi, Tiziana; Lauretani, Fulvio; Felis, Giovanna; Franchi, Fabrizio; Pedrolli, Carlo; Barichella, Michela; Benati, Giuseppe; Di Nuzzo, Sergio; Ceda, Gian Paolo; Maggio, Marcello

    2016-01-01

    Chronic activation of the inflammatory response, defined as inflammaging, is the key physio-pathological substrate for anabolic resistance, sarcopenia and frailty in older individuals. Nutrients can theoretically modulate this phenomenon. The underlying molecular mechanisms reducing the synthesis of pro-inflammatory mediators have been elucidated, particularly for vitamin D, n-3 polyunsaturated fatty acids (PUFA) and whey proteins. In this paper, we review the current evidence emerging from observational and intervention studies, performed in older individuals, either community-dwelling or hospitalized with acute disease, and evaluating the effects of intake of vitamin D, n-3 PUFA and whey proteins on inflammatory markers, such as C-Reactive Protein (CRP), interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α). After the analysis, we conclude that there is sufficient evidence for an anti-inflammatory effect in aging only for n-3 PUFA intake, while the few existing intervention studies do not support a similar activity for vitamin D and whey supplements. There is need in the future of large, high-quality studies testing the effects of combined dietary interventions including the above mentioned nutrients on inflammation and health-related outcomes. PMID:27043616

  20. Nutrition and Inflammation in Older Individuals: Focus on Vitamin D, n-3 Polyunsaturated Fatty Acids and Whey Proteins

    PubMed Central

    Ticinesi, Andrea; Meschi, Tiziana; Lauretani, Fulvio; Felis, Giovanna; Franchi, Fabrizio; Pedrolli, Carlo; Barichella, Michela; Benati, Giuseppe; Di Nuzzo, Sergio; Ceda, Gian Paolo; Maggio, Marcello

    2016-01-01

    Chronic activation of the inflammatory response, defined as inflammaging, is the key physio-pathological substrate for anabolic resistance, sarcopenia and frailty in older individuals. Nutrients can theoretically modulate this phenomenon. The underlying molecular mechanisms reducing the synthesis of pro-inflammatory mediators have been elucidated, particularly for vitamin D, n-3 polyunsaturated fatty acids (PUFA) and whey proteins. In this paper, we review the current evidence emerging from observational and intervention studies, performed in older individuals, either community-dwelling or hospitalized with acute disease, and evaluating the effects of intake of vitamin D, n-3 PUFA and whey proteins on inflammatory markers, such as C-Reactive Protein (CRP), interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α). After the analysis, we conclude that there is sufficient evidence for an anti-inflammatory effect in aging only for n-3 PUFA intake, while the few existing intervention studies do not support a similar activity for vitamin D and whey supplements. There is need in the future of large, high-quality studies testing the effects of combined dietary interventions including the above mentioned nutrients on inflammation and health-related outcomes. PMID:27043616

  1. Production and characterization of poly(3-hydroxybutyrate) generated by Alcaligenes latus using lactose and whey after acid protein precipitation process.

    PubMed

    Berwig, Karina Hammel; Baldasso, Camila; Dettmer, Aline

    2016-10-01

    Whey after acid protein precipitation was used as substrate for PHB production in orbital shaker using Alcaligenes latus. Statistical analysis determined the most appropriate hydroxide for pH neutralization of whey after protein precipitation among NH4OH, KOH and NaOH 10%w/v. The results were compared to those of commercial lactose. A scale-up test in a 4L bioreactor was done at 35°C, 750rpm, 7L/min air flow, and 6.5 pH. The PHB was characterized through Fourier Transform Infrared Spectroscopy, thermogravimetry and differential scanning calorimetry. NH4OH provided the best results for productivity (p), 0.11g/L.h, and for polymer yield, (YP/S), 1.08g/g. The bioreactor experiment resulted in lower p and YP/S. PHB showed maximum degradation temperature (291°C), melting temperature (169°C), and chemical properties similar to those of standard PHB. The use of whey as a substrate for PHB production did not affect significantly the final product quality. PMID:27347795

  2. Submerged yeast fermentation of acid cheese whey for protein production and pollution potential reduction.

    PubMed

    Ghaly, A E; Kamal, M A

    2004-02-01

    Bench-scale batch bioreactors were used to study the effectiveness of cheese whey fermentation for single-cell protein production using the yeast Kluyveromyces fragilis in reducing the pollution potential of whey as measured by solids, chemical oxygen demand (COD) and nitrogenous compounds concentrations. The four principal phases (lag, exponential, stationary and death) encountered in the history of a microbial culture grown under batch conditions were clearly recognized in the growth, temperature and dissolved oxygen curves. The lactose concentration and soluble COD displayed three distinct phases corresponding to the lag, exponential and stationary phases of the yeast growth. The minimum dissolved oxygen and maximum temperature observed in this study (at an air flow of 3 VVM, a mixing speed of 400 rpm and an ambient temperature) were 2.49 mg/L and 31.6 degrees C, respectively. About 99% of lactose (90.6% of soluble COD) was utilized after 28 h. The total COD continued to decline due to cell death resulting in a reduction of 42.98%. The total nitrogen concentration remained unchanged while the organic nitrogen increased during the exponential phase and then declined during the death phase. The ash content remained unchanged while a substantial reduction (56%) of the volatile solids was observed. These results indicated that sufficient oxygen for yeast growth was present in the medium and no cooling system was needed for this type of fermenter under similar experimental conditions. Recovering the yeast biomass with ultrafiltration reduced the total COD by 98% of its initial value in the raw whey. PMID:14723932

  3. Whey protein fractionation using supercritical carbon dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweet whey, a coproduct of the cheesemaking process, can be concentrated using ultrafiltration and ion-exchange to produce whey protein isolates (WPI). WPI contains approximately 32% alpha-lactalbumin (alpha-LA) and 61% beta-lactoglobulin (beta-LG), plus a small amount of minor whey proteins. Whil...

  4. Whey protein fractionation using supercritical carbon dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweet whey, the watery product of the cheesemaking process, is usually concentrated using ultrafiltration or ion-exchange to produce whey protein concentrates (WPC) and whey protein isolates (WPI), respectively. WPC are comprised mainly of beta-lactoglobulin (LG), alpha-lactalbumin (LA), proteose - ...

  5. Post-exercise whey protein hydrolysate supplementation induces a greater increase in muscle protein synthesis than its constituent amino acid content.

    PubMed

    Kanda, Atsushi; Nakayama, Kyosuke; Fukasawa, Tomoyuki; Koga, Jinichiro; Kanegae, Minoru; Kawanaka, Kentaro; Higuchi, Mitsuru

    2013-09-28

    It is well known that ingestion of a protein source is effective in stimulating muscle protein synthesis after exercise. In addition, there are numerous reports on the impact of leucine and leucine-rich whey protein on muscle protein synthesis and mammalian target of rapamycin (mTOR) signalling. However, there is only limited information on the effects of whey protein hydrolysates (WPH) on muscle protein synthesis and mTOR signalling. The aim of the present study was to compare the effects of WPH and amino acids on muscle protein synthesis and the initiation of translation in skeletal muscle during the post-exercise phase. Male Sprague–Dawley rats swam for 2 h to depress muscle protein synthesis. Immediately after exercise, the animals were administered either carbohydrate (CHO), CHO plus an amino acid mixture (AA) or CHO plus WPH. At 1 h after exercise, the supplements containing whey-based protein (AA and WPH) caused a significant increase in the fractional rate of protein synthesis (FSR) compared with CHO. WPH also caused a significant increase in FSR compared with AA. Post-exercise ingestion of WPH caused a significant increase in the phosphorylation of mTOR levels compared with AA or CHO. In addition, WPH caused greater phosphorylation of ribosomal protein S6 kinase and eukaryotic initiation factor 4E-binding protein 1 than AA and CHO. In contrast, there was no difference in plasma amino acid levels following supplementation with either AA or WPH. These results indicate that WPH may include active components that are superior to amino acids for stimulating muscle protein synthesis and initiating translation. PMID:23388415

  6. Whey protein: The "whey" forward for treatment of type 2 diabetes?

    PubMed

    Mignone, Linda E; Wu, Tongzhi; Horowitz, Michael; Rayner, Christopher K

    2015-10-25

    A cost-effective nutritional approach to improve postprandial glycaemia is attractive considering the rising burden of diabetes throughout the world. Whey protein, a by-product of the cheese-making process, can be used to manipulate gut function in order to slow gastric emptying and stimulate incretin hormone secretion, thereby attenuating postprandial glycaemic excursions. The function of the gastrointestinal tract plays a pivotal role in glucose homeostasis, particularly during the postprandial period, and this review will discuss the mechanisms by which whey protein slows gastric emptying and stimulates release of gut peptides, including the incretins. Whey protein is also a rich source of amino acids, and these can directly stimulate beta cells to secrete insulin, which contributes to the reduction in postprandial glycaemia. Appetite is suppressed with consumption of whey, due to its effects on the gut-brain axis and the hypothalamus. These properties of whey protein suggest its potential in the management of type 2 diabetes. However, the optimal dose and timing of whey protein ingestion are yet to be defined, and studies are required to examine the long-term benefits of whey consumption for overall glycaemic control. PMID:26516411

  7. Short communication: Flavor and flavor stability of cheese, rennet, and acid wheys.

    PubMed

    Smith, S; Smith, T J; Drake, M A

    2016-05-01

    Dried whey ingredients are valuable food ingredients but potential whey sources are underutilized. Previous work has established flavor and flavor stability differences in Cheddar and Mozzarella wheys, but little work has compared these whey sources to acid or rennet wheys. The objective of this study was to characterize and compare flavor and flavor stability among cheese, rennet, and acid wheys. Full-fat and fat-free Cheddar, rennet and acid casein, cottage cheese, and Greek yogurt fluid wheys were manufactured in triplicate. Wheys were fat separated and pasteurized followed by compositional analyses and storage at 4°C for 48 h. Volatile compound analysis and descriptive sensory analysis were evaluated on all liquid wheys initially and after 24 and 48 h. Greek yogurt whey contained almost no true protein nitrogen (0.02% wt/vol) whereas other wheys contained 0.58%±0.4% (wt/vol) true protein nitrogen. Solids and fat content were not different between wheys, with the exception of Greek yogurt whey, which was also lower in solids content than the other wheys (5.6 vs. 6.5% wt/vol, respectively). Fresh wheys displayed sweet aromatic and cooked milk flavors. Cheddar wheys were distinguished by diacetyl/buttery flavors, and acid wheys (acid casein, cottage cheese, and Greek yogurt) by sour aromatic flavor. Acid casein whey had a distinct soapy flavor, and acid and Greek yogurt wheys had distinct potato flavor. Both cultured acid wheys contained acetaldehyde flavor. Cardboard flavor increased and sweet aromatic and buttery flavors decreased with storage in all wheys. Volatile compound profiles were also distinct among wheys and changed with storage, consistent with sensory results. Lipid oxidation aldehydes increased in all wheys with storage time. Fat-free Cheddar was more stable than full-fat Cheddar over 48h of storage. Uncultured rennet casein whey was the most stable whey, as exhibited by the lowest increase in lipid oxidation products over time. These results

  8. Thermophysical properties of starch and whey protein composite prepared in presence of organic acid and esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we prepared starch and protein composite by reactive mixing in presence of various organic acids and found that use of these acid esters resulted in composites with good mechanical properties. In this study, concentration (% w/w) of acid citrates in the starch-protein composites were var...

  9. Fermentation of rice-bengal gram dhal blends with whey: changes in phytic acid content and in vitro digestibility of starch and protein.

    PubMed

    Sharma, A; Khetarpaul, N

    1995-01-01

    Whey fermentation of various rice and bengal gram dhal blends prepared by mixing them in different proportions at 35 degrees C for 18 h brought about a significant decline in phytic acid content. Phytic acid content in various blends decreased to the extent of 23 to 36 per cent over the control values. Whey incorporation as well as fermentation improved the starch and protein digestibility (in vitro) of all the rice-bengal gram dhal mixtures. Improvement in starch and protein digestibility is related to the reduction in phytic acid content, as this antinutrient is known to inhibit amylolysis and proteolysis. A significant negative correlation found between phytic acid and digestibility of starch and protein strengthens our findings. PMID:7477244

  10. Chemical characterisation and application of acid whey in fermented milk.

    PubMed

    Lievore, Paolla; Simões, Deise R S; Silva, Karolline M; Drunkler, Northon L; Barana, Ana C; Nogueira, Alessandro; Demiate, Ivo M

    2015-04-01

    Acid whey is a by-product from cheese processing that can be employed in beverage formulations due to its high nutritional quality. The objective of the present work was to study the physicochemical characterisation of acid whey from Petit Suisse-type cheese production and use this by-product in the formulation of fermented milk, substituting water. In addition, a reduction in the fermentation period was tested. Both the final product and the acid whey were analysed considering physicochemical determinations, and the fermented milk was evaluated by means of sensory analysis, including multiple comparison and acceptance tests, as well as purchase intention. The results of the physicochemical analyses showed that whey which was produced during both winter and summer presented higher values of protein (1.22 and 0.97 %, w/v, respectively), but there were no differences in lactose content. During the autumn, the highest solid extract was found in whey (6.00 %, w/v), with larger amounts of lactose (4.73 %, w/v) and ash (0.83 %, w/v). When analysing the fermented milk produced with added acid whey, the acceptance test resulted in 90 % of acceptance; the purchase intention showed that 54 % of the consumers would 'certainly buy' and 38 % would 'probably buy' the product. Using acid whey in a fermented milk formulation was technically viable, allowing by-product value aggregation, avoiding discharge, lowering water consumption and shortening the fermentation period. PMID:25829588

  11. RHEOLOGY OF EXTRUDED WHEY PROTEIN ISOLATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey protein isolate (WPI), a high-quality protein used to fortify a number of foods, may be texturized with a twin-screw extruder. Since extrusion of food is commonly performed above 70°C, which causes whey protein to denature, cold extrusion below 70°C was investigated to determine the effects on...

  12. Health Benefits of Texturized Whey Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey proteins are an important class of food ingredients used in many functional foods to boost protein content. Using the extrusion texturization process to partially open the native globular structures of whey proteins changed their conformation to the molten globular state, resulting in a new cla...

  13. Perlwapin, an abalone nacre protein with three four-disulfide core (whey acidic protein) domains, inhibits the growth of calcium carbonate crystals.

    PubMed

    Treccani, Laura; Mann, Karlheinz; Heinemann, Fabian; Fritz, Monika

    2006-10-01

    We have isolated a new protein from the nacreous layer of the shell of the sea snail Haliotis laevigata (abalone). Amino acid sequence analysis showed the protein to consist of 134 amino acids and to contain three sequence repeats of approximately 40 amino acids which were very similar to the well-known whey acidic protein domains of other proteins. The new protein was therefore named perlwapin. In addition to the major sequence, we identified several minor variants. Atomic force microscopy was used to explore the interaction of perlwapin with calcite crystals. Monomolecular layers of calcite crystals dissolve very slowly in deionized water and recrystallize in supersaturated calcium carbonate solution. When perlwapin was dissolved in the supersaturated calcium carbonate solution, growth of the crystal was inhibited immediately. Perlwapin molecules bound tightly to distinct step edges, preventing the crystal layers from growing. Using lower concentrations of perlwapin in a saturated calcium carbonate solution, we could distinguish native, active perlwapin molecules from denaturated ones. These observations showed that perlwapin can act as a growth inhibitor for calcium carbonate crystals in saturated calcium carbonate solution. The function of perlwapin in nacre growth may be to inhibit the growth of certain crystallographic planes in the mineral phase of the polymer/mineral composite nacre. PMID:16861275

  14. Perlwapin, an Abalone Nacre Protein with Three Four-Disulfide Core (Whey Acidic Protein) Domains, Inhibits the Growth of Calcium Carbonate Crystals

    PubMed Central

    Treccani, Laura; Mann, Karlheinz; Heinemann, Fabian; Fritz, Monika

    2006-01-01

    We have isolated a new protein from the nacreous layer of the shell of the sea snail Haliotis laevigata (abalone). Amino acid sequence analysis showed the protein to consist of 134 amino acids and to contain three sequence repeats of ∼40 amino acids which were very similar to the well-known whey acidic protein domains of other proteins. The new protein was therefore named perlwapin. In addition to the major sequence, we identified several minor variants. Atomic force microscopy was used to explore the interaction of perlwapin with calcite crystals. Monomolecular layers of calcite crystals dissolve very slowly in deionized water and recrystallize in supersaturated calcium carbonate solution. When perlwapin was dissolved in the supersaturated calcium carbonate solution, growth of the crystal was inhibited immediately. Perlwapin molecules bound tightly to distinct step edges, preventing the crystal layers from growing. Using lower concentrations of perlwapin in a saturated calcium carbonate solution, we could distinguish native, active perlwapin molecules from denaturated ones. These observations showed that perlwapin can act as a growth inhibitor for calcium carbonate crystals in saturated calcium carbonate solution. The function of perlwapin in nacre growth may be to inhibit the growth of certain crystallographic planes in the mineral phase of the polymer/mineral composite nacre. PMID:16861275

  15. Paraoxonase-1 (PON1) inhibition by tienilic acid produces hepatic injury: Antioxidant protection by fennel extract and whey protein concentrate.

    PubMed

    Abdel-Wahhab, Khaled G; Fawzi, Heba; Mannaa, Fathia A

    2016-03-01

    This study evaluated the effect of whey protein concentrate (WPC) or fennel seed extract (FSE) on paraoxonase-1 activity (PON1) and oxidative stress in liver of tienilic acid (TA) treated rats. Six groups of rats were treated for six weeks as follows: control; WPC (0.5g/kg/day); FSE (200mg/ kg/day); TA (1g/kg/twice a week); TA (1g/kg/twice a week) plus WPC (0.5g/kg/day); TA (1g/kg/twice a week) plus FSE (200mg/kg/day). TA administration significantly increased ALT and AST besides to total- and direct bilirubin levels. Also, serum tumor necrosis factor-α and nitric oxide levels were significantly increased. Furthermore, serum PON1, and hepatic reduced glutathione, glutathione-S-transferase and Na(+)/K(+)-ATPase values were diminished matched with a significant rise in the level of hepatic lipid peroxidation. Also, triglycerides, total- and LDL-cholesterol levels were significantly elevated while HDL-cholesterol was unchanged. The administration of either WPC or FSE to TA-treated animals significantly protected the liver against the injurious effects of tienilic acid. This appeared from the improvement of hepatic functions, atherogenic markers, Na(+)/K(+) ATPase activity, endogenous antioxidants and hepatic lipid peroxidation level; where WPC showed the strongest protection effect. In conclusion, the present study indicated that WPC and FSE improve PON1 activity and attenuate liver dysfunction induced by TA. This may be attributed to the high content of antioxidant compounds in WPC and fennel extract. PMID:26884099

  16. Food products made with glycomacropeptide, a low-phenylalanine whey protein, provide a new alternative to amino Acid-based medical foods for nutrition management of phenylketonuria.

    PubMed

    van Calcar, Sandra C; Ney, Denise M

    2012-08-01

    Phenylketonuria (PKU), an inborn error in phenylalanine metabolism, requires lifelong nutrition management with a low-phenylalanine diet, which includes a phenylalanine-free amino acid-based medical formula to provide the majority of an individual's protein needs. Compliance with this diet is often difficult for older children, adolescents, and adults with PKU. The whey protein glycomacropeptide (GMP) is ideally suited for the PKU diet because it is naturally low in phenylalanine. Nutritionally complete, acceptable medical foods and beverages can be made with GMP to increase the variety of protein sources for the PKU diet. As an intact protein, GMP improves protein use and increases satiety compared with amino acids. Thus, GMP provides a new, more physiologic source of low-phenylalanine dietary protein for people with PKU. PMID:22818728

  17. Supercritical carbon dioxide fractionation of whey protein isolate for new food-grade ingredients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new, environmentally benign whey protein fractionation process was developed using supercritical CO2 (SCO2) as an acid aggregating agent to separate a-lactalbumin (a-LA) aggregates from soluble beta-lactoglobulin (beta-LG) protein in concentrated whey protein isolate (WPI) solutions. The process e...

  18. Astringency reduction in red wine by whey proteins.

    PubMed

    Jauregi, Paula; Olatujoye, Jumoke B; Cabezudo, Ignacio; Frazier, Richard A; Gordon, Michael H

    2016-05-15

    Whey is a by-product of cheese manufacturing and therefore investigating new applications of whey proteins will contribute towards the valorisation of whey and hence waste reduction. This study shows for the first time a detailed comparison of the effectiveness of gelatin and β-lactoglobulin (β-LG) as fining agents. Gelatin was more reactive than whey proteins to tannic acid as shown by both the astringency method (with ovalbumin as a precipitant) and the tannins determination method (with methylcellulose as a precipitant). The two proteins showed similar selectivity for polyphenols but β-LG did not remove as much catechin. The fining agent was removed completely or to a trace level after centrifugation followed by filtration which minimises its potential allergenicity. In addition, improved understanding of protein-tannin interactions was obtained by fluorescence, size measurement and isothermal titration calorimetry (ITC). Overall this study demonstrates that whey proteins have the potential of reducing astringency in red wine and can find a place in enology. PMID:26776007

  19. Acid whey powder modification of gari from cassava

    SciTech Connect

    Okezie, B.O.; Kosikowski, F.V.

    1981-01-01

    Gari, a staple food consumed in Nigeria, is made from peeled and ground cassava tubers. The ground material is pressed with a stone slab for 2-4 days to remove moisture, and the partially fermented product is then baked over an open fire. Since gari mainly contributes energy to the diet, attempts were made to develop a more nutritious product without altering organoleptic and textural properties. In laboratory tests, ground cassava was fermented in stainless steel cheese vats for 4 days (to produce gari flavour) and then partially dehydrated by pressing in cheese cloth. A reduction in HCN content from 6.2 to 3.4 mg/100 g resulted. Various combinations of spray-dried acid whey, soya protein and freeze-dried Candida tropicalis were added to the fermented cassava, which was then pressure-cooked for 10 minutes at 121 degrees Celcius, dried and ground in a hammer mill. Product (i), made with gari fortified with 15% soya concentrate and 5% dried acid whey, was as acceptable as traditional gari and had a protein score of 75.8 vs. 9.91 for traditional gari. Product (ii), gari fortified with 20% yeast and 10% dried acid whey, had significantly lower scores for flavour and texture than traditional gari and the protein score was only 29.45. Supplementing gari with relatively inexpensive whey concentrates appears to be a means of overcoming protein energy malnutrition in children.

  20. Clinical Potential of Hyperbaric Pressure-Treated Whey Protein

    PubMed Central

    Piccolomini, André F.; Kubow, Stan; Lands, Larry C.

    2015-01-01

    Whey protein (WP) from cow’s milk is a rich source of essential and branched chain amino acids. Whey protein isolates (WPI) has been demonstrated to support muscle accretion, antioxidant activity, and immune modulation. However, whey is not readily digestible due to its tight conformational structure. Treatment of WPI with hyperbaric pressure results in protein unfolding. This enhances protein digestion, and results in an altered spectrum of released peptides, and greater release of essential and branched chain amino acids. Pressurized whey protein isolates (pWPI), through a series of cell culture, animal models and clinical studies, have been demonstrated to enhance muscle accretion, reduce inflammation, improve immunity, and decrease fatigue. It is also conceivable that pWPI would be more accessible to digestive enzymes, which would allow for a more rapid proteolysis of the proteins and an increased or altered release of small bioactive peptides. The altered profile of peptides released from WP digestion could thus play a role in the modulation of the immune response and tissue glutathione (GSH) concentrations. The research to date presents potentially interesting applications for the development of new functional foods based on hyperbaric treatment of WPI to produce products with more potent nutritional and nutraceutical properties.

  1. Fractionation of whey protein isolate with supercritical carbon dioxide – process modeling and cost estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (sCO2) as an acid to produce enriched fractions of alpha-lactalbumin (alpha-La) and beta-lactoglobulin (beta-Lg) from a commercial whey protein isolate (WPI) containing 55% ...

  2. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    PubMed

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use. PMID:27542447

  3. Kinetics, aggregation behavior and optimization of the fractionation of whey protein isolate with hydrochloric acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrated WPI solutions (10% (w/w)) containing approximately 30% alpha-lactalbumin (alpha-LA) and 60% beta-lactoglobulin (beta-LG) were fractionated with HCl at acidic pH and moderate temperatures to denature alpha-LA and recover the alpha-LA aggregates via centrifugation. Aggregation behavior an...

  4. Advances in extrusion for texturized whey proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy proteins like whey proteins play an important role in human nutrition because of their characteristic structure and associated numerous benefits such as ease of digestion, in- vivo assimilation, creating new or maintaining the muscle mass and the unique ability of boosting immune functions. W...

  5. Gelling properties of microparticulated whey proteins.

    PubMed

    Dissanayake, Muditha; Kelly, Alan L; Vasiljevic, Todor

    2010-06-01

    Subjecting whey proteins to high-pressure shearing with or without heating, commonly termed microparticulation, results in novel ingredients with modulated functionalities. Gelling properties of microparticulated whey proteins (MWP) were specifically assessed in this study. MWP powders were produced from commercial cheese whey retentate, standardized to 10% (w/w) protein, and subjected to microfluidization (MFZ) at 140 MPa either with or without prior heat-induced denaturation, followed by spray-drying. Gels were created from aqueous MWP dispersions either by heating at 90 degrees C for 20 min or by allowing gels to form at ambient temperature through addition of glucano-delta-lactone and/or NaCl. MWP powders produced from unheated WP dispersions created firm gels upon heating, whereas those produced from denatured WP gave only cold-set gels. Covalent and noncovalent protein-protein interactions were involved during both heat- and cold-induced gelation. Hydrophobic interactions were more pronounced during aggregation of bovine serum albumin. In conclusion, microparticulation of WP resulted in heat- and cold-set gels with different molecular and physical characteristics from those of untreated controls. PMID:20476755

  6. Whey protein concentrate market enhancement. Final report

    SciTech Connect

    Hudson, L.

    1982-09-01

    Whey protein concentrate (WPC) was studied to see whether or not there was sufficient depth in the marketplace to accommodate increased WPC production in the event more whey was converted into alcohol. It was concluded that the current market for WPC is still immature and ample room exists in the marketplace to produce and dispose of WPC. In addition, WPC literature was reviewed so as to evaluate the current state of the art producing WPC. Considerable evidence suggests that more product formulation work is needed to move WPC into the general marketplace. Concurrent to the market and ltierature study WPC was incorporated into select categories of foods where finished goods were enhanced by having WPC incorporated in their formulations. Formulations were produced to demonstrate the fact that products such as ice cream, breedings and batters for fish sticks, and orange juice can be enhanced by using WPC.

  7. Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus.

    PubMed

    Amado, Isabel R; Vázquez, José A; Pastrana, Lorenzo; Teixeira, José A

    2016-05-01

    This study focuses on the optimisation of cheese whey formulated media for the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Culture media containing whey (W; 2.1g/L) or whey hydrolysate (WH; 2.4 g/L) gave the highest HA productions. Both W and WH produced high yields on protein consumed, suggesting cheese whey is a good nitrogen source for S. zooepidemicus production of HA. Polysaccharide concentrations of 4.0 g/L and 3.2g/L were produced in W and WH in a further scale-up to 5L bioreactors, confirming the suitability of the low-cost nitrogen source. Cheese whey culture media provided high molecular weight (>3000 kDa) HA products. This study revealed replacing the commercial peptone by the low-cost alternative could reduce HA production costs by up to a 70% compared to synthetic media. PMID:26769504

  8. Preparation of protein concentrates from whey and seed products

    SciTech Connect

    Saunders, R.M.; Kohler, G.O.

    1980-01-01

    Whey is mixed with a seed product (e.g., cereal, legumes, oil seeds, flour, etc.) and the pH of the mixture adjusted to 9-10. The resultant mixture is treated to separate a juice from the fibrous residue; in a preferred embodiment of the subsequent process, a protein concentrate is recovered from the juice by adding an acid to it to adjust the pH to 3-4 and subsequently adding sodium hexametaphosphate in an amount sufficient to precipitate the protein product. After adjustment of the pH to 7, a protein concentrate may be obtained by drying the alkaline extract.

  9. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides.

    PubMed

    Yadav, Jay Shankar Singh; Yan, Song; Pilli, Sridhar; Kumar, Lalit; Tyagi, R D; Surampalli, R Y

    2015-11-01

    The byproduct of cheese-producing industries, cheese whey, is considered as an environmental pollutant due to its high BOD and COD concentrations. The high organic load of whey arises from the presence of residual milk nutrients. As demand for milk-derived products is increasing, it leads to increased production of whey, which poses a serious management problem. To overcome this problem, various technological approaches have been employed to convert whey into value-added products. These technological advancements have enhanced whey utilization and about 50% of the total produced whey is now transformed into value-added products such as whey powder, whey protein, whey permeate, bioethanol, biopolymers, hydrogen, methane, electricity bioprotein (single cell protein) and probiotics. Among various value-added products, the transformation of whey into proteinaceous products is attractive and demanding. The main important factor which is attractive for transformation of whey into proteinaceous products is the generally recognized as safe (GRAS) regulatory status of whey. Whey and whey permeate are biotransformed into proteinaceous feed and food-grade bioprotein/single cell protein through fermentation. On the other hand, whey can be directly processed to obtain whey protein concentrate, whey protein isolate, and individual whey proteins. Further, whey proteins are also transformed into bioactive peptides via enzymatic or fermentation processes. The proteinaceous products have applications as functional, nutritional and therapeutic commodities. Whey characteristics, and its transformation processes for proteinaceous products such as bioproteins, functional/nutritional protein and bioactive peptides are covered in this review. PMID:26165970

  10. Whey protein/polysaccharide-stabilized oil powders for topical application-release and transdermal delivery of salicylic acid from oil powders compared to redispersed powders.

    PubMed

    Kotzé, Magdalena; Otto, Anja; Jordaan, Anine; du Plessis, Jeanetta

    2015-08-01

    Oil-in-water (o/w) emulsions are commonly converted into solid-like powders in order to improve their physical and chemical stabilities. The aim of this study was to investigate whether whey protein/polysaccharide-stabilized o/w emulsions could be converted into stable oil powders by means of freeze-drying. Moreover, during this study, the effects of pH and polymer type on release and trans(dermal) delivery of salicylic acid, a model drug, from these oil powders were investigated and compared to those of the respective template emulsions and redispersed oil powders. Physical characterization of the various formulations was performed, such as droplet size analysis and oil leakage, and relationships drawn with regards to release and trans(dermal) delivery. The experimental outcomes revealed that the oil powders could be redispersed in water without changing the release characteristics of salicylic acid. pH and polymer type affected the release of salicylic acid from the oil powders, template emulsions, and redispersed powders similarly. Contrary, the transdermal delivery from the oil powders and from their respective redispersed oil powders was differently affected by pH and polymer type. It was hypothesized that the release had been influenced by the electrostatic interactions between salicylic acid and emulsifiers, whereas the transdermal performance could have been determined by the particle or aggregate sizes of the formulations. PMID:25573437

  11. Transglutaminase-induced or citric acid-mediated cross-linking of whey proteins to tune the characteristics of subsequently desolvated sub-micron and nano-scaled particles.

    PubMed

    Bagheri, Leila; Yarmand, Mohammadsaeed; Madadlou, Ashkan; Mousavi, Mohammad E

    2014-01-01

    Whey proteins were inter-connected either by the enzyme transglutaminase or citric acid and then desolvated with ethanol to generate particles. Both samples comprised of sub-micron (>300 nm) and nano-scaled (~100 nm) particles based on the hydrodynamic size measurements. Enzyme-induced cross-linking of proteins yielded more monodisperse particles and decreased the mean size of the major (nano-scaled) fraction of particles. Scanning electron microscopy images revealed a spherical morphology for all samples with mean sizes of <40 nm. Atomic force microscopy indicated a lower height for the particles from enzymatically cross-linked proteins. The mediating role of citric acid in bridging the proteins was confirmed by Fourier transform infrared spectroscopy. Differential scanning calorimetry indicated that pre-heating of protein solution before cross-linking and desolvation denatured the proteins entirely. In vitro degradation of whey protein particles in a simulated gastric fluid demonstrated that cross-linking of whey proteins before desolvation stage enhanced significantly the digestion stability of particles. PMID:24766206

  12. Antioxidant activity of whey protein hydrolysates in milk beverage system.

    PubMed

    Mann, Bimlesh; Kumari, Anuradha; Kumar, Rajesh; Sharma, Rajan; Prajapati, Kishore; Mahboob, Shaik; Athira, S

    2015-06-01

    The aim of the present study was to evaluate the antioxidant activity of flavoured milk enriched with antioxidative whey protein hydrolysates (WPHs) by radical scavenging method. Whey protein concentrate (WPC) was hydrolyzed by using three commercial proteases; flavouzyme, alcalase and corolase PP and these WPHs were analyzed for degree of hydrolysis and antioxidant activity. The antioxidant activities of these WPHs were evaluated using ABTS method. Trolox equivalent antioxidant activity of all the hydrolysates i.e. flavourzyme (0.81 ± 0.04), alcalase (1.16 ± 0.05) and corolase (1.42 ± 0.12) was higher than the WPC (0.19 ± 0.01). Among these, whey protein hydrolysates prepared using corolase showed maximum antioxidant activity. Total 15 β-lactoglobulin, 1 α-lactoalbumin, and 6 β-casein derived peptide fragments were identified in the WPHs by LC-MS/MS. Due to their size and characteristic amino acid composition, all the identified peptides may contribute for the antioxidant activity. The strawberry and chocolate flavoured milk was supplemented with WPC and WPHs and 2 % addition has shown increase in antioxidant activity upto 42 %. The result suggests that WPH could be used as natural biofunctional ingredients in enhancing antioxidant properties of food products. PMID:26028704

  13. Whey protein: The “whey” forward for treatment of type 2 diabetes?

    PubMed Central

    Mignone, Linda E; Wu, Tongzhi; Horowitz, Michael; Rayner, Christopher K

    2015-01-01

    A cost-effective nutritional approach to improve postprandial glycaemia is attractive considering the rising burden of diabetes throughout the world. Whey protein, a by-product of the cheese-making process, can be used to manipulate gut function in order to slow gastric emptying and stimulate incretin hormone secretion, thereby attenuating postprandial glycaemic excursions. The function of the gastrointestinal tract plays a pivotal role in glucose homeostasis, particularly during the postprandial period, and this review will discuss the mechanisms by which whey protein slows gastric emptying and stimulates release of gut peptides, including the incretins. Whey protein is also a rich source of amino acids, and these can directly stimulate beta cells to secrete insulin, which contributes to the reduction in postprandial glycaemia. Appetite is suppressed with consumption of whey, due to its effects on the gut-brain axis and the hypothalamus. These properties of whey protein suggest its potential in the management of type 2 diabetes. However, the optimal dose and timing of whey protein ingestion are yet to be defined, and studies are required to examine the long-term benefits of whey consumption for overall glycaemic control. PMID:26516411

  14. Behavior of whey protein concentrates under extreme storage conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The overseas demand for whey protein concentrates (WPC) has increased steadily in recent years. Emergency aid foods often include WPC, but shelf-life studies of whey proteins under different shipment and storage conditions have not been conducted in the last 50 yr. Microbial quality, compound form...

  15. Health and functional benefits of texturized whey proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey proteins are added to many food products to enhance their nutrient content. Recent research findings confirm that consumption of whey proteins provides health benefits such as boosting immune response and maintaining muscle mass. We have used the extrusion processing conditions of moderate shea...

  16. Effect of inclusion of hydroxycinnamic and chlorogenic acids from green coffee bean in β-cyclodextrin on their interactions with whey, egg white and soy protein isolates.

    PubMed

    Budryn, Grażyna; Pałecz, Bartłomiej; Rachwał-Rosiak, Danuta; Oracz, Joanna; Zaczyńska, Donata; Belica, Sylwia; Navarro-González, Inmaculada; Meseguer, Josefina María Vegara; Pérez-Sánchez, Horacio

    2015-02-01

    The aim of the study was to characterise the interactions of hydroxycinnamic and chlorogenic acids (CHAs) from green coffee, with isolates of proteins from egg white (EWP), whey (WPC) and soy (SPI), depending on pH and temperature. The binding degree was determined by liquid chromatography coupled to a diode array detector and an ultrahigh resolution hybrid quadruple-time-of-flight mass spectrometer with ESI source (LC-QTOF-MS/MS). As a result of binding, the concentration of CHAs in proteins ranged from 9.44-12.2, 11.8-13.1 and 12.1-14.4g/100g for SPI, WPC and EWP, respectively. Thermodynamic parameters of protein-ligand interactions were determined by isothermal titration calorimetry (ITC) and energetics of interactions at the atomic level by molecular modelling. The amount of CHAs released during proteolytic digestion was in the range 0.33-2.67g/100g. Inclusion of CHAs with β-cyclodextrin strongly limited these interactions to a level of 0.03-0.06g/100g. PMID:25172711

  17. STAT5 plays a critical role in regulating the 5'-flanking region of the porcine whey acidic protein gene in transgenic mice.

    PubMed

    Ji, Mi-Ran; Lee, Sang In; Jang, Ye-Jin; Jeon, Mi-Hyang; Kim, Jeom Sun; Kim, Kyung-Woon; Park, Jin-Ki; Yoo, Jae Gyu; Jeon, Ik-Soo; Kwon, Dae-Jin; Park, Choon-Keun; Byun, Sung June

    2015-12-01

    The mammary gland serves as a valuable bioreactor system for the production of recombinant proteins in lactating animals. Pharmaceutical-grade recombinant protein can be harvested from the milk of transgenic animals that carry a protein of interest under the control of promoter regions genes encoding milk proteins. Whey acidic protein (WAP), for example, is predominantly expressed in the mammary gland and is regulated by lactating hormones during pregnancy. We cloned the 5'-flanking region of the porcine WAP gene (pWAP) to confirm the sequence elements in its promoter that are required for gene-expression activity. In the present study, we investigated how lactogenic hormones--including prolactin, hydrocortisone, and insulin--contribute to the transcriptional activation of the pWAP promoter region in mammalian cells, finding that these hormones activate STAT5 signaling, which in turn induce gene expression via STAT5 binding sites in its 5'-flanking region. To confirm the expression and hormonal regulation of the 5'-flanking region of pWAP in vivo, we generated transgenic mice expressing human recombinant granulocyte colony stimulating factor (hCSF2) in the mammary gland under the control of the pWAP promoter. These mice secreted hCSF2 protein in their milk at levels ranging from 242 to 1,274.8 ng/ml. Collectively, our findings show that the pWAP promoter may be useful for confining the expression of foreign proteins to the mammary gland, where they can be secreted along with milk. PMID:26256125

  18. Whey protein/polysaccharide-stabilized emulsions: Effect of polymer type and pH on release and topical delivery of salicylic acid.

    PubMed

    Combrinck, Johann; Otto, Anja; du Plessis, Jeanetta

    2014-06-01

    Emulsions are widely used as topical formulations in the pharmaceutical and cosmetic industries. They are thermodynamically unstable and require emulsifiers for stabilization. Studies have indicated that emulsifiers could affect topical delivery of actives, and this study was therefore designed to investigate the effects of different polymers, applied as emulsifiers, as well as the effects of pH on the release and topical delivery of the active. O/w emulsions were prepared by the layer-by-layer technique, with whey protein forming the first layer around the oil droplets, while either chitosan or carrageenan was subsequently adsorbed to the protein at the interface. Additionally, the emulsions were prepared at three different pH values to introduce different charges to the polymers. The active ingredient, salicylic acid, was incorporated into the oil phase of the emulsions. Physical characterization of the resulting formulations, i.e., droplet size, zeta potential, stability, and turbidity in the water phase, was performed. Release studies were conducted, after which skin absorption studies were performed on the five most stable emulsions, by using Franz type diffusion cells and utilizing human, abdominal skin membranes. It was found that an increase in emulsion droplet charge could negatively affect the release of salicylic acid from these formulations. Contrary, positively charged emulsion droplets were found to enhance dermal and transdermal delivery of salicylic acid from emulsions. It was hypothesized that electrostatic complex formation between the emulsifier and salicylic acid could affect its release, whereas electrostatic interaction between the emulsion droplets and skin could influence dermal/transdermal delivery of the active. PMID:24550100

  19. Antiviral activities of whey proteins.

    PubMed

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Wang, Yan; Ip, Denis Tsz Ming; Wan, David Chi Cheong; Xia, Jiang

    2015-09-01

    Milk contains an array of proteins with useful bioactivities. Many milk proteins encompassing native or chemically modified casein, lactoferrin, alpha-lactalbumin, and beta-lactoglobulin demonstrated antiviral activities. Casein and alpha-lactalbumin gained anti-HIV activity after modification with 3-hydroxyphthalic anhydride. Many milk proteins inhibited HIV reverse transcriptase. Bovine glycolactin, angiogenin-1, lactogenin, casein, alpha-lactalbumin, beta-lactoglobulin, bovine lactoferrampin, and human lactoferrampin inhibited HIV-1 protease and integrase. Several mammalian lactoferrins prevented hepatitis C infection. Lactoferrin, methylated alpha-lactalbumin and methylated beta-lactoglobulin inhibited human cytomegalovirus. Chemically modified alpha-lactalbumin, beta-lactoglobulin and lysozyme, lactoferrin and lactoferricin, methylated alpha-lactalbumin, methylated and ethylated beta-lactoglobulins inhibited HSV. Chemically modified bovine beta-lactoglobulin had antihuman papillomavirus activity. Beta-lactoglobulin, lactoferrin, esterified beta-lactoglobulin, and esterified lactoferrindisplayed anti-avian influenza A (H5N1) activity. Lactoferrin inhibited respiratory syncytial virus, hepatitis B virus, adenovirus, poliovirus, hantavirus, sindbis virus, semliki forest virus, echovirus, and enterovirus. Milk mucin, apolactoferrin, Fe(3+)-lactoferrin, beta-lactoglobulin, human lactadherin, bovine IgG, and bovine kappa-casein demonstrated antihuman rotavirus activity. PMID:26198883

  20. Whey Protein Concentrate Hydrolysate Prevents Bone Loss in Ovariectomized Rats.

    PubMed

    Kim, Jonggun; Kim, Hyung Kwan; Kim, Saehun; Imm, Ji-Young; Whang, Kwang-Youn

    2015-12-01

    Milk is known as a safe food and contains easily absorbable minerals and proteins, including whey protein, which has demonstrated antiosteoporotic effects on ovariectomized rats. This study evaluated the antiosteoporotic effect of whey protein concentrate hydrolysate (WPCH) digested with fungal protease and whey protein concentrate (WPC). Two experiments were conducted to determine (1) efficacy of WPCH and WPC and (2) dose-dependent impact of WPCH in ovariectomized rats (10 weeks old). In Experiment I, ovariectomized rats (n=45) were allotted into three dietary treatments of 10 g/kg diet of WPC, 10 g/kg diet of WPCH, and a control diet. In Experiment II, ovariectomized rats (n=60) were fed four different diets (0, 10, 20, and 40 g/kg of WPCH). In both experiments, sham-operated rats (n=15) were also fed a control diet containing the same amount of amino acids and minerals as dietary treatments. After 6 weeks, dietary WPCH prevented loss of bone, physical properties, mineral density, and mineral content, and improved breaking strength of femurs, with similar effect to WPC. The bone resorption enzyme activity (tartrate resistance acid phosphatase) in tibia epiphysis decreased in response to WPCH supplementation, while bone formation enzyme activity (alkaline phosphatase) was unaffected by ovariectomy and dietary treatment. Bone properties and strength increased as the dietary WPCH level increased (10 and 20 g/kg), but there was no difference between the 20 and 40 g/kg treatment. WPCH and WPC supplementation ameliorated bone loss induced by ovariectomy in rats. PMID:26367331

  1. The composition and functional properties of whey protein concentrates produced from buttermilk are comparable with those of whey protein concentrates produced from skimmed milk.

    PubMed

    Svanborg, Sigrid; Johansen, Anne-Grethe; Abrahamsen, Roger K; Skeie, Siv B

    2015-09-01

    The demand for whey protein is increasing in the food industry. Traditionally, whey protein concentrates (WPC) and isolates are produced from cheese whey. At present, microfiltration (MF) enables the utilization of whey from skim milk (SM) through milk protein fractionation. This study demonstrates that buttermilk (BM) can be a potential source for the production of a WPC with a comparable composition and functional properties to a WPC obtained by MF of SM. Through the production of WPC powder and a casein- and phospholipid (PL)-rich fraction by the MF of BM, sweet BM may be used in a more optimal and economical way. Sweet cream BM from industrial churning was skimmed before MF with 0.2-µm ceramic membranes at 55 to 58°C. The fractionations of BM and SM were performed under the same conditions using the same process, and the whey protein fractions from BM and SM were concentrated by ultrafiltration and diafiltration. The ultrafiltration and diafiltration was performed at 50°C using pasteurized tap water and a membrane with a 20-kDa cut-off to retain as little lactose as possible in the final WPC powders. The ultrafiltrates were subsequently spray dried, and their functional properties and chemical compositions were compared. The amounts of whey protein and PL in the WPC powder from BM (BMWPC) were comparable to the amounts found in the WPC from SM (SMWPC); however, the composition of the PL classes differed. The BMWPC contained less total protein, casein, and lactose compared with SMWPC, as well as higher contents of fat and citric acid. No difference in protein solubility was observed at pH values of 4.6 and 7.0, and the overrun was the same for BMWPC and SMWPC; however, the BMWPC made less stable foam than SMWPC. PMID:26142868

  2. The effects of whey protein on cardiometabolic risk factors.

    PubMed

    Pal, Sebely; Radavelli-Bagatini, Simone

    2013-04-01

    Obesity has reached epidemic proportions worldwide. The health consequences of obesity are more dangerous when associated with the metabolic syndrome and its components. Studies show that whey protein and its bioactive components can promote greater benefits compared to other protein sources such as egg and casein. The aim of this paper is to review the effects of whey protein on cardiometabolic risk factors. Using PubMed as the database, a review was conducted to identify current scientific literature on whey protein and the components of the metabolic syndrome published between 1970 and 2012. Consumption of whey protein seems to play an anti-obesity and muscle-protective role during dieting by increasing thermogenesis and maintaining lean mass. In addition, whey protein has been shown to improve glucose levels and insulin response, promote a reduction in blood pressure and arterial stiffness, and improve lipid profile. The collective view of current scientific literature indicates that the consumption of whey protein may have beneficial effects on some symptoms of the metabolic syndrome as well as a reduction in cardiovascular risk factors. PMID:23167434

  3. Protein-peptide interactions in mixtures of whey peptides and whey proteins.

    PubMed

    Creusot, Nathalie; Gruppen, Harry

    2007-03-21

    The effects of several conditions on the amounts and compositions of aggregates formed in mixtures of whey protein hydrolysate, made with Bacillus licheniformis protease, and whey protein isolate were investigated using response surface methodology. Next, the peptides present in the aggregates were separated from the intact protein and identified with liquid chromatography-mass spectrometry. Increasing both temperature and ionic strength increased the amounts of both intact protein and peptides in the aggregates. There was an optimal amount of added intact WPI that could aggregate with peptides, yielding a maximal amount of aggregated material in which the peptide/protein molar ratio was around 6. Under all conditions applied, the same peptides were observed in the protein-peptide aggregates formed. The dominant peptides were beta-lg AB [f1-45], beta-lg AB [f90-108], and alpha-la [f50-113]. It was hypothesized that peptides could form a kind of glue network that can include beta-lactoglobulin via hydrophobic interactions at the hydrophobic binding sites at the surface of the protein. PMID:17295504

  4. Flavor and Functional Characteristics of Whey Protein Isolates from Different Whey Sources.

    PubMed

    Smith, T J; Foegeding, E A; Drake, M A

    2016-04-01

    This study evaluated flavor and functional characteristics of whey protein isolates (WPIs) from Cheddar, Mozzarella, Cottage cheese, and rennet casein whey. WPIs were manufactured in triplicate. Powders were rehydrated and evaluated in duplicate by descriptive sensory analysis. Volatile compounds were extracted by solid-phase microextraction followed by gas chromatography-mass spectrometry. Functional properties were evaluated by measurement of foam stability, heat stability, and protein solubility. WPI from Cheddar and Cottage cheese whey had the highest cardboard flavor, whereas sweet aromatic flavor was highest in Mozzarella WPI, and rennet casein WPI had the lowest overall flavor and aroma. Distinct sour taste and brothy/potato flavor were also noted in WPI from Cottage cheese whey. Consistent with sensory results, aldehyde concentrations were also highest in Cheddar and Cottage cheese WPI. Overrun, yield stress, and foam stability were not different (P > 0.05) among Cheddar, Mozzarella, and rennet casein WPI, but WPI foams from Cottage cheese whey had a lower overrun and air-phase fraction (P < 0.05). Cottage cheese WPI was more heat stable at pH 7 (P < 0.05) than other WPI in 4% protein solutions, and was the only WPI to not gel at 10% protein. Cottage cheese WPI was less soluble at pH 4.6 compared to other WPI (P < 0.05) and also exhibited higher turbidity loss at pH 3 to 7 compared to other WPI (P < 0.05). This study suggests that WPI produced from nontraditional whey sources could be used in new applications due to distinct functional and flavor characteristics. PMID:26910294

  5. Emerging trends in nutraceutical applications of whey protein and its derivatives.

    PubMed

    Patel, Seema

    2015-11-01

    The looming food insecurity demands the utilization of nutrient-rich residues from food industries as value-added products. Whey, a dairy industry waste has been characterized to be excellent nourishment with an array of bioactive components. Whey protein comprises 20 % of total milk protein and it is rich in branched and essential amino acids, functional peptides, antioxidants and immunoglobulins. It confers benefits against a wide range of metabolic diseases such as cardiovascular complications, hypertension, obesity, diabetes, cancer and phenylketonuria. The protein has been validated to boost recovery from resistance exercise-injuries, stimulate gut physiology and protect skin against detrimental radiations. Apart from health invigoration, whey protein has proved its suitability as fat replacer and emulsifier. Further, its edible and antimicrobial packaging potential renders its highly desirable in food as well as pharmaceutical sectors. Considering the enormous nutraceutical worth of whey protein, this review emphasizes on its established and emerging biological roles. Present and future scopes in food processing and dietary supplement formulation are discussed. Associated hurdles are identified and how technical advancement might augment its applications are explored. This review is expected to provide valuable insight on whey protein-fortified functional foods, associated technical hurdles and scopes of improvement. PMID:26884639

  6. Molecular modelling and experimental studies of mutation and cell-adhesion sites in the fibronectin type III and whey acidic protein domains of human anosmin-1.

    PubMed Central

    Robertson, A; MacColl, G S; Nash, J A; Boehm, M K; Perkins, S J; Bouloux, P M

    2001-01-01

    Anosmin-1, the gene product of the KAL gene, is implicated in the pathogenesis of X-linked Kallmann's syndrome. Anosmin-1 protein expression is restricted to the basement membrane and interstitial matrix of tissues affected in this syndrome during development. The anosmin-1 sequence indicates an N-terminal cysteine-rich domain, a whey acidic protein (WAP) domain, four fibronectin type III (FnIII) domains and a C-terminal histidine-rich region, and shows similarity with cell-adhesion molecules, such as neural cell-adhesion molecule, TAG-1 and L1. We investigated the structural and functional significance of three loss-of-function missense mutations of anosmin-1 using comparative modelling of the four FnIII and the WAP domains based on known NMR and crystal structures. Three missense mutation-encoded amino acid substitutions, N267K, E514K and F517L, were mapped to structurally defined positions on the GFCC' beta-sheet face of the first and third FnIII domains. Electrostatic maps demonstrated large basic surfaces containing clusters of conserved predicted heparan sulphate-binding residues adjacent to these mutation sites. To examine these modelling results anosmin-1 was expressed in insect cells. The incorporation of the three mutations into recombinant anosmin-1 had no effect on its secretion. The removal of two dibasic motifs that may constitute potential physiological cleavage sites for anosmin-1 had no effect on cleavage. Peptides based on the anosmin-1 sequences R254--K285 and P504--K527 were then synthesized in order to assess the effect of the three mutations on cellular adhesion, using cell lines that represented potential functional targets of anosmin-1. Peptides (10 microg/ml) incorporating the N267K and E514K substitutions promoted enhanced adhesion to 13.S.1.24 rat olfactory epithelial cells and canine MDCK1 kidney epithelial cells (P<0.01) compared with the wild-type peptides. This result was attributed to the introduction of a lysine residue adjacent to

  7. Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise.

    PubMed

    Tipton, Kevin D; Elliott, Tabatha A; Cree, Melanie G; Aarsland, Asle A; Sanford, Arthur P; Wolfe, Robert R

    2007-01-01

    Timing of nutrient ingestion has been demonstrated to influence the anabolic response of muscle following exercise. Previously, we demonstrated that net amino acid uptake was greater when free essential amino acids plus carbohydrates were ingested before resistance exercise rather than following exercise. However, it is unclear if ingestion of whole proteins before exercise would stimulate a superior response compared with following exercise. This study was designed to examine the response of muscle protein balance to ingestion of whey proteins both before and following resistance exercise. Healthy volunteers were randomly assigned to one of two groups. A solution of whey proteins was consumed either immediately before exercise (PRE; n = 8) or immediately following exercise (POST; n = 9). Each subject performed 10 sets of 8 repetitions of leg extension exercise. Phenylalanine concentrations were measured in femoral arteriovenous samples to determine balance across the leg. Arterial amino acid concentrations were elevated by approximately 50%, and net amino acid balance switched from negative to positive following ingestion of proteins at either time. Amino acid uptake was not significantly different between PRE and POST when calculated from the beginning of exercise (67 +/- 22 and 27 +/- 10 for PRE and POST, respectively) or from the ingestion of each drink (60 +/- 17 and 63 +/- 15 for PRE and POST, respectively). Thus the response of net muscle protein balance to timing of intact protein ingestion does not respond as does that of the combination of free amino acids and carbohydrate. PMID:16896166

  8. Treatability of cheese whey for single-cell protein production in nonsterile systems: Part I. Optimal condition for lactic acid fermentation using a microaerobic sequencing batch reactor (microaerobic SBR) with immobilized Lactobacillus plantarum TISTR 2265 and microbial communities.

    PubMed

    Monkoondee, Sarawut; Kuntiya, Ampin; Chaiyaso, Thanongsak; Leksawasdi, Noppol; Techapun, Charin; Kawee-Ai, Arthitaya; Seesuriyachan, Phisit

    2016-05-18

    Cheese whey contains a high organic content and causes serious problems if it is released into the environment when untreated. This study aimed to investigate the optimum condition of lactic acid production using the microaerobic sequencing batch reactor (microaerobic SBR) in a nonsterile system. The high production of lactic acid was achieved by immobilized Lactobacillus plantarum TISTR 2265 to generate an acidic pH condition below 4.5 and then to support single-cell protein (SCP) production in the second aerobic sequencing batch reactor (aerobic SBR). A hydraulic retention time (HRT) of 4 days and a whey concentration of 80% feeding gave a high lactic acid yield of 12.58 g/L, chemical oxygen demand (COD) removal of 62.38%, and lactose utilization of 61.54%. The microbial communities in the nonsterile system were dominated by members of lactic acid bacteria, and it was shown that the inoculum remained in the system up to 330 days. PMID:26178366

  9. Effect of whey protein coating on quality attributes of low-fat, aerobically packaged sausage during refrigerated storage.

    PubMed

    Shon, J; Chin, K B

    2008-08-01

    Whey protein-based edible coating was used to reduce oxidative degradation and microbial growth of low-fat sausages (LFSs) stored at 4 degrees C for 8 wk, under aerobic package. Whey protein coating reduced (P<0.05) thiobarbituric acid-reactive substances (TBARS) and peroxide value (PV) formation compared to control sausages. The percent inhibition of TBARS and PV for whey protein-coated sausages, compared to the control, was 31.3% and 27.1%, respectively. The ability of the whey protein coating to provide a moisture barrier for the sausages was reduced (P<0.05). In addition, a reduction of moisture loss by 36.7% compared to the control was achieved by whey coating. However, whey protein coating of LFSs did not inhibit the growth of either the total number of aerobic bacteria or of Listeria monocytogenes. These results indicated that whey protein coating had an antioxidative activity in LFSs under aerobic package during refrigerated storage. PMID:19241536

  10. Fractionation of whey protein isolate with supercritical carbon dioxide to produce enriched alpha-lactalbumin and beta-lactoglobulin food ingredients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A potentially economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (SCO2) as an acid to produce enriched fractions of alpha-lactalbumin (a-LA) and beta-lactoglobulin (b-LG) from whey protein isolate. To prepare the fractions, so...

  11. USE OF EXTRUSION-TEXTURIZED WHEY PROTEIN ISOLATES IN PUFFED CORN MEAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adding whey protein concentrates or isolates to expanded snack foods would boost their nutritional content; however, adding non-textured whey proteins in amounts larger than 5% interferes with expansion, making the products less crunchy. To counter this effect, whey protein isolate was first extrud...

  12. Whey versus soy protein diets and renal status in rats.

    PubMed

    Aparicio, Virginia A; Nebot, Elena; Tassi, Mohamed; Camiletti-Moirón, Daniel; Sanchez-Gonzalez, Cristina; Porres, Jesús M; Aranda, Pilar

    2014-09-01

    Different dietary protein sources can promote different renal statuses. We examined the effects of whey protein (WP) and soy protein (SP) intake on plasma, urinary, and morphological renal parameters in rats. One hundred and twenty Wistar rats were randomly distributed into 2 experimental groups fed with either WP or SP diets over 12 weeks. These diets were based on commercial WP or SP isolates. The urinary calcium content was higher in the WP diet compared to the SP diet group (P<.001) whereas the urinary citrate level was lower (P<.001). The urinary pH was more acidic in the WP diet group compared to the SP diet group (P<.001); however, no differences were observed between the groups for any of the renal morphological parameters analyzed (all, P>.05) or other plasma renal markers such as albumin or urea concentrations. The increase of acid and urinary calcium and the lower urinary citrate level observed in the WP diet group could increase the incidence of nephrolithiasis compared to the SP diet group. Despite the WP showed poorer acid-base profile, no significant morphological renal changes were observed. These results suggest that the use of SP instead of WP appears to promote a more alkaline plasma and urinary profile, with their consequent renal advantages. PMID:25055031

  13. Designing Whey Protein-Polysaccharide Particles for Colloidal Stability.

    PubMed

    Wagoner, Ty; Vardhanabhuti, Bongkosh; Foegeding, E Allen

    2016-01-01

    Interactions between whey proteins and polysaccharides, in particular the formation of food-grade soluble complexes, are of interest because of potential functional and health benefits. A specific application that has not received much attention is the use of complexes for enhanced colloidal stability of protein sols, such as protein-containing beverages. In beverages, the primary goal is the formation of complexes that remain dispersed after thermal processing and extended storage. This review highlights recent progress in the area of forming whey protein-polysaccharide soluble complexes that would be appropriate for beverage applications. Research in this area indicates that soluble complexes can be formed and stabilized that are reasonably small in size and possess a large surface charge that would predict colloidal stability. Selection of specific proteins and polysaccharides can be tailored to desired conditions. The principal challenges involve overcoming restrictions on protein concentration and ensuring that protein remains bioavailable. PMID:26934171

  14. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

    PubMed Central

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application. PMID:26761849

  15. 21 CFR 184.1979c - Whey protein concentrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51, is given in paragraphs (b)(1)(i... 1 CFR part 51. Copies are available from the National Academy Press, Box 285, 2101 Constitution Ave... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Whey protein concentrate. 184.1979c Section...

  16. 21 CFR 184.1979c - Whey protein concentrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51, is given in paragraphs (b)(1)(i... 1 CFR part 51. Copies are available from the National Academy Press, Box 285, 2101 Constitution Ave... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Whey protein concentrate. 184.1979c Section...

  17. 21 CFR 184.1979c - Whey protein concentrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51, is given in paragraphs (b)(1)(i... 1 CFR part 51. Copies are available from the National Academy Press, Box 285, 2101 Constitution Ave... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Whey protein concentrate. 184.1979c Section...

  18. 21 CFR 184.1979c - Whey protein concentrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51, is given in paragraphs (b)(1)(i... 1 CFR part 51. Copies are available from the National Academy Press, Box 285, 2101 Constitution Ave... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Whey protein concentrate. 184.1979c Section...

  19. Whey protein concentrate storage at elevated temperature and humidity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy processors are finding new export markets for whey protein concentrate (WPC), a byproduct of cheesemaking, but they need to know if full-sized bags of this powder will withstand high temperature and relative humidity (RH) levels during unrefrigerated storage under tropical conditions. To answ...

  20. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry.

    PubMed

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application. PMID:26761849

  1. Antioxidant Effects of Sheep Whey Protein on Endothelial Cells

    PubMed Central

    Kerasioti, Efthalia; Stagos, Dimitrios; Georgatzi, Vasiliki; Bregou, Erinda; Priftis, Alexandros; Kafantaris, Ioannis; Kouretas, Dimitrios

    2016-01-01

    Excessive production of reactive oxygen species (ROS) may cause endothelial dysfunction and consequently vascular disease. In the present study, the possible protective effects of sheep whey protein (SWP) from tert-butyl hydroperoxide- (tBHP-) induced oxidative stress in endothelial cells (EA.hy926) were assessed using oxidative stress biomarkers. These oxidative stress biomarkers were glutathione (GSH) and ROS levels determined by flow cytometry. Moreover, thiobarbituric acid-reactive substances (TBARS), protein carbonyls (CARB), and oxidized glutathione (GSSG) were determined spectrophotometrically. The results showed that SWP at 0.78, 1.56, 3.12, and 6.24 mg of protein mL−1 increased GSH up to 141%, while it decreased GSSG to 46.7%, ROS to 58.5%, TBARS to 52.5%, and CARB to 49.0%. In conclusion, the present study demonstrated for the first time that SWP protected endothelial cells from oxidative stress. Thus, SWP may be used for developing food supplements or biofunctional foods to attenuate vascular disturbances associated with oxidative stress. PMID:27127549

  2. Antioxidant Effects of Sheep Whey Protein on Endothelial Cells.

    PubMed

    Kerasioti, Efthalia; Stagos, Dimitrios; Georgatzi, Vasiliki; Bregou, Erinda; Priftis, Alexandros; Kafantaris, Ioannis; Kouretas, Dimitrios

    2016-01-01

    Excessive production of reactive oxygen species (ROS) may cause endothelial dysfunction and consequently vascular disease. In the present study, the possible protective effects of sheep whey protein (SWP) from tert-butyl hydroperoxide- (tBHP-) induced oxidative stress in endothelial cells (EA.hy926) were assessed using oxidative stress biomarkers. These oxidative stress biomarkers were glutathione (GSH) and ROS levels determined by flow cytometry. Moreover, thiobarbituric acid-reactive substances (TBARS), protein carbonyls (CARB), and oxidized glutathione (GSSG) were determined spectrophotometrically. The results showed that SWP at 0.78, 1.56, 3.12, and 6.24 mg of protein mL(-1) increased GSH up to 141%, while it decreased GSSG to 46.7%, ROS to 58.5%, TBARS to 52.5%, and CARB to 49.0%. In conclusion, the present study demonstrated for the first time that SWP protected endothelial cells from oxidative stress. Thus, SWP may be used for developing food supplements or biofunctional foods to attenuate vascular disturbances associated with oxidative stress. PMID:27127549

  3. Water sorption by proteins: milk and whey proteins.

    PubMed

    Kinsella, J E; Fox, P F

    1986-01-01

    The content and physical state of water in foods influence their physical, chemical, quality, safety, and functional behavior. Information concerning the sorption behavior of dairy proteins, in the water activity (Aw) range 0 to 0.9, is collated in this paper. The sorption behavior of proteins in general, the kinetics of absorption, factors affecting water binding, the phenomenon of desorption hysteresis, and the chemical and physical nature of water/protein interactions are reviewed in general terms. This is followed by a discussion of thermodynamic aspects of sorption phenomena and the adequacy of the various equations for describing sorption isotherms of proteins. After a discussion of the methods available for measuring sorption by milk proteins, the sorption behavior of various milk protein preparations, i.e., nonfat dry milk, whey proteins, caseins, and milk powders is summarized. Finally, the water activity of cheese and its relationship to solute mobility and solvent water are discussed. Some of the unique features of protein behavior, i.e., conformational changes, swelling, and solubilization are cited as possible sources of disparities between various reports. PMID:3527564

  4. Curd and whey proteins in the nutrition of low birthweight babies.

    PubMed Central

    Berger, H M; Scott, P H; Kenward, C; Scott, P; Wharton, B A

    1979-01-01

    Some animals thrive more satisfactorily on a milk that contains whey and curd protein. For this reason human milk protein (which contains about 40% whey) may have some advantages over cows' milk protein (which contains about 15% whey) and so infants feeding formulae based on demineralised whey in which the protein has been modified to achieve a curd:whey ratio similar to that in human milk may also thrive more satisfactorily. As the exact situation in the human newborn is unclear, the effects of feeding a formula containing unmodified cows' milk protein (mainly curd) and one containing the same amount of modified cows' milk protein (curd and whey) were studied in 57 low birthweight babies during the first 3 months of life. During the early weeks of life the curd and whey group grew bigger, absorbed more nitrogen, and excreted proportionately less urea. These results suggest that a curd and whey formula has advantages in the protein nutrition of low birthweight babies, especially the preterm ones. We feel it would be unwise to reduce the protein content of a formula based on cows' milk below 15 g/1 unless it was modified to achieve a larger proportion of whey protein and hence, among other qualities, more cysteine. Although some of the qualities of human milk protein can be mimicked by the use of demineralised whey formulae, others cannot. PMID:571263

  5. Proteomic analysis of cow, yak, buffalo, goat and camel milk whey proteins: quantitative differential expression patterns.

    PubMed

    Yang, Yongxin; Bu, Dengpan; Zhao, Xiaowei; Sun, Peng; Wang, Jiaqi; Zhou, Lingyun

    2013-04-01

    To aid in unraveling diverse genetic and biological unknowns, a proteomic approach was used to analyze the whey proteome in cow, yak, buffalo, goat, and camel milk based on the isobaric tag for relative and absolute quantification (iTRAQ) techniques. This analysis is the first to produce proteomic data for the milk from the above-mentioned animal species: 211 proteins have been identified and 113 proteins have been categorized according to molecular function, cellular components, and biological processes based on gene ontology annotation. The results of principal component analysis showed significant differences in proteomic patterns among goat, camel, cow, buffalo, and yak milk. Furthermore, 177 differentially expressed proteins were submitted to advanced hierarchical clustering. The resulting clustering pattern included three major sample clusters: (1) cow, buffalo, and yak milk; (2) goat, cow, buffalo, and yak milk; and (3) camel milk. Certain proteins were chosen as characterization traits for a given species: whey acidic protein and quinone oxidoreductase for camel milk, biglycan for goat milk, uncharacterized protein (Accession Number: F1MK50 ) for yak milk, clusterin for buffalo milk, and primary amine oxidase for cow milk. These results help reveal the quantitative milk whey proteome pattern for analyzed species. This provides information for evaluating adulteration of specific specie milk and may provide potential directions for application of specific milk protein production based on physiological differences among animal species. PMID:23464874

  6. Whey and casein labeled with L-[1-13C]leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion.

    PubMed

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon; Helmark, Ida C; Lund, Peter; Kristensen, Niels B; Frystyk, Jan; Flyvbjerg, Allan; Schjerling, Peter; van Hall, Gerrit; Kjaer, Michael; Holm, Lars

    2011-01-01

    Muscle protein turnover following resistance exercise and amino acid availability are relatively well described. By contrast, the beneficial effects of different sources of intact proteins in relation to exercise need further investigation. Our objective was to compare muscle anabolic responses to a single bolus intake of whey or casein after performance of heavy resistance exercise. Young male individuals were randomly assigned to participate in two protein trials (n = 9) or one control trial (n = 8). Infusion of l-[1-(13)C]leucine was carried out, and either whey, casein (0.3 g/kg lean body mass), or a noncaloric control drink was ingested immediately after exercise. l-[1-(13)C]leucine-labeled whey and casein were used while muscle protein synthesis (MPS) was assessed. Blood and muscle tissue samples were collected to measure systemic hormone and amino acid concentrations, tracer enrichments, and myofibrillar protein synthesis. Western blots were used to investigate the Akt signaling pathway. Plasma insulin and branched-chain amino acid concentrations increased to a greater extent after ingestion of whey compared with casein. Myofibrillar protein synthesis was equally increased 1-6 h postexercise after whey and casein intake, both of which were higher compared with control (P < 0.05). Phosphorylation of Akt and p70(S6K) was increased after exercise and protein intake (P < 0.05), but no differences were observed between the types of protein except for total 4E-BP1, which was higher after whey intake than after casein intake (P < 0.05). In conclusion, whey and casein intake immediately after resistance exercise results in an overall equal MPS response despite temporal differences in insulin and amino acid concentrations and 4E-BP1. PMID:21045172

  7. Recovery of Whey Proteins and Enzymatic Hydrolysis of Lactose Derived from Casein Whey Using a Tangential Flow Ultrafiltration Module

    NASA Astrophysics Data System (ADS)

    Das, Bipasha; Bhattacharjee, Sangita; Bhattacharjee, Chiranjib

    2013-09-01

    In this study, ultrafiltration (UF) of pretreated casein whey was carried out in a cross-flow module fitted with 5 kDa molecular weight cut-off polyethersulfone membrane to recover whey proteins in the retentate and lactose in the permeate. Effects of processing conditions, like transmembrane pressure and pH on permeate flux and rejection were investigated and reported. The polarised layer resistance was found to increase with time during UF even in this high shear device. The lactose concentration in the permeate was measured using dinitro salicylic acid method. Enzymatic kinetic study for lactose hydrolysis was carried out at three different temperatures ranging from 30 to 50 °C using β-galactosidase enzyme. The glucose formed during lactose hydrolysis was analyzed using glucose oxidase-peroxidase method. Kinetics of enzymatic hydrolysis of lactose solution was found to follow Michaelis-Menten model and the model parameters were estimated by Lineweaver-Burk plot. The hydrolysis rate was found to be maximum (with Vmax = 5.5091 mmol/L/min) at 30 °C.

  8. Effect of resveratrol or ascorbic acid on the stability of α-tocopherol in O/W emulsions stabilized by whey protein isolate: Simultaneous encapsulation of the vitamin and the protective antioxidant.

    PubMed

    Wang, Lei; Gao, Yahui; Li, Juan; Subirade, Muriel; Song, Yuanda; Liang, Li

    2016-04-01

    Food proteins have been widely used as carrier materials due to their multiple functional properties. Hydrophobic bioactives are generally dissolved in the oil phase of O/W emulsions. Ligand-binding properties provide the possibility of binding bioactives to the protein membrane of oil droplets. In this study, the influence of whey protein isolate (WPI) concentration and amphiphilic resveratrol or hydrophilic ascorbic acid on the decomposition of α-tocopherol in the oil phase of WPI emulsions is considered. Impact of ascorbic acid, in the continuous phase, on the decomposition depended on the vitamin concentration. Resveratrol partitioned into the oil-water interface and the cis-isomer contributed most of the protective effect of this polyphenol. About 94% of α-tocopherol and 50% of resveratrol were found in the oil droplets stabilized by 0.01% WPI. These results suggest the feasibility of using the emulsifying and ligand-binding properties of WPI to produce carriers for simultaneous encapsulation of bioactives with different physicochemical properties. PMID:26593516

  9. Dietary whey protein hydrolysates increase skeletal muscle glycogen levels via activation of glycogen synthase in mice.

    PubMed

    Kanda, Atsushi; Morifuji, Masashi; Fukasawa, Tomoyuki; Koga, Jinichiro; Kanegae, Minoru; Kawanaka, Kentaro; Higuchi, Mitsuru

    2012-11-14

    Previously, we have shown that consuming carbohydrate plus whey protein hydrolysates (WPHs) replenished muscle glycogen after exercise more effectively than consuming intact whey protein or branched-chain amino acids (BCAAs). The mechanism leading to superior glycogen replenishment after consuming WPH is unclear. In this 5 week intervention, ddY mice were fed experimental diets containing WPH, a mixture of whey amino acids (WAAs), or casein (control). After the intervention, gastrocnemius muscle glycogen levels were significantly higher in the WPH group (4.35 mg/g) than in the WAA (3.15 mg/g) or control (2.51 mg/g) groups. In addition, total glycogen synthase (GS) protein levels were significantly higher in the WPH group (153%) than in the WAA (89.2%) or control groups, and phosphorylated GS levels were significantly decreased in the WPH group (51.4%). These results indicate that dietary WPH may increase the muscle glycogen content through increased GS activity. PMID:23113736

  10. Partial Molecular Characterization of Arctium minus Aspartylendopeptidase and Preparation of Bioactive Peptides by Whey Protein Hydrolysis.

    PubMed

    Cimino, Cecilia V; Colombo, María Laura; Liggieri, Constanza; Bruno, Mariela; Vairo-Cavalli, Sandra

    2015-08-01

    In this article, we report the cloning of an aspartic protease (AP) from flowers of Arctium minus (Hill) Bernh. (Asteraceae) along with the use of depigmented aqueous flower extracts, as a source of APs, for the hydrolysis of whey proteins. The isolated cDNA encoded a protein product with 509 amino acids called arctiumisin, with the characteristic primary structure organization of typical plant APs. Bovine whey protein hydrolysates, obtained employing the enzyme extracts of A. minus flowers, displayed inhibitory angiotensin-converting enzyme (ACE) and antioxidant activities. Hydrolysates after 3 and 5 h of reaction (degree of hydrolysis 2.4 and 5.6, respectively) and the associated peptide fraction with molecular weight below 3 kDa were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, matrix-assisted laser desorption ionization/time of flight mass spectrometry, and reverse phase-high-performance liquid chromatography. The results obtained in this study demonstrate the viability of using proteases from A. minus to increase the antioxidant and inhibitory ACE capacity of whey proteins. PMID:25575270

  11. Fermented ammoniated condensed whey as a crude protein source for feedlot cattle

    SciTech Connect

    Crickenberger, R.G.; Henderson, H.E.; Reddy, C.A.

    1981-04-01

    Four feeding trials were conducted to evaluate fermented ammoniated condensed whey as a crude protein supplement for finishing cattle fed corn silage or corn - corn silage diets. Feed efficiencies and daily gains with protein treatments were noted. The trials indicate that fermented ammoniated condensed whey is comparable to soybean meal as a crude protein source for feedlot cattle. (Refs. 18).

  12. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men

    PubMed Central

    Mitchell, Cameron J.; McGregor, Robin A.; D’Souza, Randall F.; Thorstensen, Eric B.; Markworth, James F.; Fanning, Aaron C.; Poppitt, Sally D.; Cameron-Smith, David

    2015-01-01

    The differential ability of various milk protein fractions to stimulate muscle protein synthesis (MPS) has been previously described, with whey protein generally considered to be superior to other fractions. However, the relative ability of a whole milk protein to stimulate MPS has not been compared to whey. Sixteen healthy middle-aged males ingested either 20 g of milk protein (n = 8) or whey protein (n = 8) while undergoing a primed constant infusion of ring 13C6 phenylalanine. Muscle biopsies were obtained 120 min prior to consumption of the protein and 90 and 210 min afterwards. Resting myofibrillar fractional synthetic rates (FSR) were 0.019% ± 0.009% and 0.021% ± 0.018% h−1 in the milk and whey groups respectively. For the first 90 min after protein ingestion the FSR increased (p < 0.001) to 0.057% ± 0.018% and 0.052% ± 0.024% h−1 in the milk and whey groups respectively with no difference between groups (p = 0.810). FSR returned to baseline in both groups between 90 and 210 min after protein ingestion. Despite evidence of increased rate of digestion and leucine availability following the ingestion of whey protein, there was similar activation of MPS in middle-aged men with either 20 g of milk protein or whey protein. PMID:26506377

  13. Pilot-scale fractionation of whey proteins with supercritical CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new pilot-scale process is being developed and optimized for the separation of whey proteins into two enriched, highly functional fractions that are free of contaminants. The fractionation of whey protein isolate (WPI), which contains approximately 32% alpha-lactalbumin (alpha-LA) and 61% beta-lac...

  14. Production of Fungal Mycelial Protein in Submerged Culture of Soybean Whey

    PubMed Central

    Falanghe, Helcio; Smith, A. K.; Rackis, J. J.

    1964-01-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content. PMID:14199023

  15. Buffalo Cheese Whey Proteins, Identification of a 24 kDa Protein and Characterization of Their Hydrolysates: In Vitro Gastrointestinal Digestion

    PubMed Central

    Bassan, Juliana C.; Goulart, Antonio J.; Nasser, Ana L. M.; Bezerra, Thaís M. S.; Garrido, Saulo S.; Rustiguel, Cynthia B.; Guimarães, Luis H. S.; Monti, Rubens

    2015-01-01

    Milk whey proteins are well known for their high biological value and versatile functional properties, characteristics that allow its wide use in the food and pharmaceutical industries. In this work, a 24 kDa protein from buffalo cheese whey was analyzed by mass spectrometry and presented homology with Bos taurus beta-lactoglobulin. In addition, the proteins present in buffalo cheese whey were hydrolyzed with pepsin and with different combinations of trypsin, chymotrypsin and carboxypeptidase-A. When the TNBS method was used the obtained hydrolysates presented DH of 55 and 62% for H1 and H2, respectively. Otherwise for the OPA method the DH was 27 and 43% for H1 and H2, respectively. The total antioxidant activities of the H1 and H2 samples with and without previous enzymatic hydrolysis, determined by DPPH using diphenyl-p-picrylhydrazyl radical, was 4.9 and 12 mM of Trolox equivalents (TE) for H2 and H2Dint, respectively. The increased concentrations for H1 and H2 samples were approximately 99% and 75%, respectively. The in vitro gastrointestinal digestion efficiency for the samples that were first hydrolyzed was higher compared with samples not submitted to previous hydrolysis. After in vitro gastrointestinal digestion, several amino acids were released in higher concentrations, and most of which were essential amino acids. These results suggest that buffalo cheese whey is a better source of bioavailable amino acids than bovine cheese whey. PMID:26465145

  16. Buffalo Cheese Whey Proteins, Identification of a 24 kDa Protein and Characterization of Their Hydrolysates: In Vitro Gastrointestinal Digestion.

    PubMed

    Bassan, Juliana C; Goulart, Antonio J; Nasser, Ana L M; Bezerra, Thaís M S; Garrido, Saulo S; Rustiguel, Cynthia B; Guimarães, Luis H S; Monti, Rubens

    2015-01-01

    Milk whey proteins are well known for their high biological value and versatile functional properties, characteristics that allow its wide use in the food and pharmaceutical industries. In this work, a 24 kDa protein from buffalo cheese whey was analyzed by mass spectrometry and presented homology with Bos taurus beta-lactoglobulin. In addition, the proteins present in buffalo cheese whey were hydrolyzed with pepsin and with different combinations of trypsin, chymotrypsin and carboxypeptidase-A. When the TNBS method was used the obtained hydrolysates presented DH of 55 and 62% for H1 and H2, respectively. Otherwise for the OPA method the DH was 27 and 43% for H1 and H2, respectively. The total antioxidant activities of the H1 and H2 samples with and without previous enzymatic hydrolysis, determined by DPPH using diphenyl-p-picrylhydrazyl radical, was 4.9 and 12 mM of Trolox equivalents (TE) for H2 and H2Dint, respectively. The increased concentrations for H1 and H2 samples were approximately 99% and 75%, respectively. The in vitro gastrointestinal digestion efficiency for the samples that were first hydrolyzed was higher compared with samples not submitted to previous hydrolysis. After in vitro gastrointestinal digestion, several amino acids were released in higher concentrations, and most of which were essential amino acids. These results suggest that buffalo cheese whey is a better source of bioavailable amino acids than bovine cheese whey. PMID:26465145

  17. Phenylalanine flux and gastric emptying are not affected by replacement of casein with whey protein in the diet of adult cats consuming frequent small meals

    PubMed Central

    2014-01-01

    Background Decreasing the rate of protein emptying from the stomach may improve efficiency of utilization of dietary amino acids for protein deposition. Some studies in rats and humans have shown casein to be more slowly released from the stomach than whey protein. To test if casein induces a slower rate of gastric emptying in cats than whey protein, L-[1-13C]phenylalanine (Phe) was dosed orally into 9 adult cats to estimate gastric emptying and whole-body Phe flux. Results Concentrations of indispensable amino acids in plasma were not significantly affected by dietary protein source. First-pass splanchnic extraction of Phe was not different between diets and averaged 50% (SEM = 3.8%). The half-time for gastric emptying averaged 9.9 min with casein and 10.3 min with whey protein, and was not significantly different between diets (SEM = 1.7 min). Phenylalanine fluxes were 45.3 and 46.5 μmol/(min · kg) for casein- and whey-based diets, respectively (SEM = 4.7 μmol/(min · kg)). Conclusions In adult cats fed frequent small meals, the replacement of casein with whey protein in the diet does not affect supply or utilization of amino acids. These two milk proteins appear to be equally capable of meeting the dietary amino acid needs of cats. PMID:25266643

  18. Functional Biomaterials: Solution Electrospinning and Gelation of Whey Protein and Pullulan

    NASA Astrophysics Data System (ADS)

    Sullivan, Stephanie Tolstedt

    Utilizing biomaterials that are biodegradable, biocompatible and edible serve well for food products as well as biomedical applications. Biomaterials whey protein and pullulan both have these characteristics. Whey proteins (WP) have been used in food products for many years and more recently in pharmaceutical products. They have the ability to form both gels and stable foams. Pullulan (PULL) has also been used in both food and pharmaceutical products, and is a highly water soluble, non-gelling polysaccharide and has been used primarily as a film former. Herein, we investigate the ability of whey protein and pullulan to form nanofibers and gels. Combining their distinct properties allows the ability to uniquely manipulate nanofiber and gel characteristics and behavior for a variety of applications, from food to even tissue scaffolding. First, we determined the electrospinnability of aqueous whey protein solutions. Both whey protein isolate (WPI) and one of its major components beta--lactoglobulin (BLG), either in native or denatured form, yielded interesting micro and nanostructures when electrosprayed; while nanofiber production required blending with a spinnable polymer, poly(ethylene oxide) (PEO). WP:PEO solutions were also successfully electrospun at acidic pH (2≤pH≤3), which could improve shelf life. Fourier Transform Infrared Reflectance (FTIR) analysis of WP:PEO fiber mat indicated some variation in WP secondary structure with varying WPI concentration (as WPI increased, % alpha-helix increased and beta-turn decreased) and pH (as pH decreased from neutral (7.5) to acidic (2), % beta-sheet decreased and alpha-helix increased). X-ray Photoelectron Spectroscopy (XPS) also confirmed the presence of WP on the surface of the blend fibers, augmenting the FTIR analysis. Interestingly, WP:PEO composite nanofibers maintained its fibrous morphology at temperatures as high as 100 °C, above the 60 °C PEO melting point. Further, we show that the blend mats retained a

  19. Investigation of the protective effect of whey proteins on lactococcal phages during heat treatment at various pH.

    PubMed

    Geagea, Hany; Gomaa, Ahmed I; Remondetto, Gabriel; Moineau, Sylvain; Subirade, Muriel

    2015-10-01

    The incorporation of whey protein concentrates (WPC) into cheese is a risky process due to the potential contamination with thermo-resistant phages of lactic acid bacteria (LAB). Furthermore, whey proteins can protect phages during heat treatment, thereby increasing the above risk. The main objective of this work was to understand this protective effect in order to better control LAB phages and maximize whey recycling in the cheese industry. First, the inactivation of a previously characterized thermo-resistant lactococcal virulent phage (P1532) was investigated at 95 °C in WPC, in individual whey components β-lactoglobulin, α-lactalbumin, and bovine serum albumin as well as under different heat and pH conditions. The structural changes of the tested proteins were also monitored by transmission FTIR spectroscopy. Phage inactivation results indicated that the protective effect of whey proteins was pH and time dependent at 95 °C and was not restricted to one component. FTIR spectra suggest that the protection is related to protein molecular structures and to the level of protein aggregates, which was more pronounced in acidic conditions. Moreover, the molecular structure of the three proteins tested was differently influenced by pH and the duration of the heat treatment. This work confirms the protective effect of WPC on phages during heat treatment and offers the first hint to explain such phenomenon. Finding the appropriate treatment of WPC to reduce the phage risk is one of the keys to improving the cheese manufacturing process. PMID:26093988

  20. Formation and functionality of self-assembled whey protein microgels.

    PubMed

    Nicolai, Taco

    2016-01-01

    Whey proteins spontaneously form spherical particles when heated in aqueous solutions at conditions where their net charge density is below a critical value. The particles are microgels consisting of a hydrated crosslinked network of proteins with a diameter between 100nm and 1μm. Stable suspensions of these microgels can be formed in a narrow range of conditions when the protein charge density is low enough to induce their formation, but high enough to inhibit further association into larger clusters or macroscopic gels. The formation of microgels and their application to stabilize emulsions and foams; form core-shell particles; form gels; or modify the texture of polysaccharide solutions and gels are reviewed. PMID:26100353

  1. Pasting and extrusion properties of mixed carbohydrates and whey protein isolate matrices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixed systems of whey protein isolate (WPI) or texturized WPI (tWPI) and different starches may form weak or strong gel pastes or rigid matrices depending on interactions. The paste viscoelasticity of starches from amioca, barley, corn starch, Hylon VII, plantain, and pea starch, mixed with whey pro...

  2. Physical properties, molecular structures and protein quality of texturized whey protein isolate: effect of extrusion temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion is a powerful food processing operation, which utilizes high temperature and high shear force to produce a product with unique physical and chemical characteristics. Texturization of whey protein isolate (WPI) through extrusion for the production of protein fortified snack foods has provid...

  3. Fermentation of lactose in direct-acid-set cottage cheese whey

    SciTech Connect

    Demott, B.J.; Draughon, F.A.; Herald, P.J.

    1981-01-01

    Kluyveromyces fragilis was more suitable than Candida pseudotropicalis or K. lactis for production of EtOH from whey. Direct-acid-set cottage cheese whey and the supernatant fluid resulting from heat treatment of the whey at 95 degrees for 20 min showed similar rates of fermentation when inoculated with K. fragilis. Inoculation rates of 10, 12 and 14 mL of active K. fragilis culture/100 mL of media were not different in rate of EtOH production. Samples incubated with K. fragilis at 35, 37, 40 and 42 degrees showed more rapid reduction in specific gravity than samples incubated at room temperature or 30 degrees. Lactose conversion in whey was 83% complete and in whey supernatant fluid, 77%.

  4. Physical properties, molecular structures and protein quality of texturized whey protein isolate: effect of extrusion moisture content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey proteins, nutrient-rich by-products of the cheese manufacturing process, have many demonstrated functional and nutritional benefits. The environmental impact of disposing the large annual volumes (~25 billion pounds), can be mitigated by utilizing the whey proteins in foods. Successful extrusio...

  5. Formation of whey protein-polyphenol meso-structures as a natural means of creating functional particles.

    PubMed

    Schneider, Margaret; Esposito, Debora; Lila, Mary Ann; Foegeding, E Allen

    2016-03-01

    Whey proteins provide structure and nutritional properties in food, while berry juices are thought to have biological activity that can impart anti-inflammatory health effects. In combination, the two could be an excellent source of necessary and supplemental nutrients as well as expand the functionality of whey proteins in food structures. The objectives of this investigation were to (1) develop an approach for particle formation between whey protein and cranberry, blackcurrant, or muscadine grape juices, (2) determine resulting particle composition and physical characteristics, and (3) evaluate properties related to food structure stability and maintenance of phytochemical bioactivity. Particles were formed by combining 20% w/w whey protein with juice containing 50, 250, or 500 μg g(-1) total phenolics, adjusting pH to 4.5, and centrifuging to collect aggregated particles. Particles had an approximate molar ratio of 9-50 proteins per polyphenol, and the ratio increased with increasing phenolic content of the juice used to create the particles. Particle size ranged from 1-100 μm at pH 4.5, compared to 10 μm particles that formed when whey protein isolate alone was precipitated at pH 4.5. Polyphenols and other juice components, such as acids and sugars appeared to be involved in particle formation. Particles improved foam stability, and the anti-inflammatory properties of entrapped polyphenols were maintained in the particles. Highly functional protein-polyphenol particles can be designed to stabilize food structures and simultaneously deliver polyphenols associated with health benefits. PMID:26857696

  6. Bioconversion of Cheese Waste (Whey)

    SciTech Connect

    Bohnert, G.W.

    1998-03-11

    The US dairy industry produces 67 billion pounds of cheese whey annually. A waste by-product of cheese production, whey consists of water, milk sugar (lactose), casein (protein), and salts amounting to about 7% total solids. Ultrafiltration is used to concentrate cheese whey into a protein-rich foodstuff; however, it too produces a waste stream, known as ''whey permeate,'' (rejected water, lactose, and salts from the membrane). Whey permeate contains about 4.5% lactose and requires treatment to reduce the high BOD (biological oxygen demand) before disposal. Ab Initio, a small business with strong chemistry and dairy processing background, desired help in developing methods for bioconversion of whey permeate lactose into lactic acid. Lactic acid is an organic acid primarily used as an acidulant in the food industry. More recently it has been used to produce polylactic acid, a biodegradable polymer and as a new method to treat meat carcasses to combat E. coli bacteria. Conversion of whey permeate to lactic acid is environmentally sound because it produces a valued product from an otherwise waste stream. FM&T has expertise in bioconversion processes and analytical techniques necessary to characterize biomass functions. The necessary engineering and analytical services for pilot biomass monitoring, process development, and purification of crude lactic acid were available at this facility.

  7. [The Interaction of Oil Microcapsule Wall Materials between Whey Protein and Acacia].

    PubMed

    Shi, Yan; Li, Ru-yi; Wang, Hui; Li, Qian; Li, De-jun; Tu, Zong-cai

    2015-03-01

    The interaction between whey protein and acacia which were used as wall material was studied on the formation of the oils microcapsules by the FTIR Spectroscopy and Computer Aided Analysis. The results indicated that whey protein changed obviously in amide A and amide I by high pressured homogenization and spray-drying. The amide A moved from 3 406.5 cm(-1) to 3 425.4 cm(-1) which was possibly due to covalent cross-linking between whey protein and acacia. Furthermore the amide I moved from 1 648.6 cm(-1) to 1 654.7 cm(-1) for intramolecular hydrogen bonding of protein had been weaken. After Gaussian fitting on amide I , it was found that the content of secondary structure of α-helix content and β-folding in whey protein reduced from 19.55% to 17.50% and from 30.59% to 25.63%, respectively. This suggests that protein intramolecular hydrogen bonding force was abated, resulting in abating the rigid structure of the protein molecules and enhancing of the toughness structure. The protein molecules showed some flexibility. The result of SDS-PAGE electrophoresis showed that whey protein--gum Arabic complexes produced covalent products in larger molecular weight. During the spray-drying process, covalent cross-linking produced between whey protein and gum Arabic which improved emulsifying activity of the complex whey protein and gum Arabic produced covalent cross-linking and improved the complex emulsifying activity. Observing the surface structure of the fish oil microcapsule by SEM, the compound of whey protein and acacia as wall material was proved better toughness, less micropore, and more compact structure. PMID:26117866

  8. Yeasts that utilize lactose in sweet whey

    SciTech Connect

    Gholson, J.H.; Gough, R.H.

    1980-01-01

    Since processing costs are usually higher for whey than for other available food or feed nutrients, only about one-third of whey produced in the US is used by food and feed industries. As a result whey disposal costs are a problem. Further; when whey is disposed of through municipal sewerage systems, the lactose present is changed by bacteria to lactic acid which tends to act as a preservative and retards further oxidation of whey constituents. This article describes a method of utilizing lactose-fermenting yeasts to produce large quantities of yeast cells, single-cell protein. Kluveromyces fragilis was found to be the most effective yeast species and the yeast cells produced could be used as a natural food or feed additive. Results of this study determined that certain methods and yeast strains could reduce whey-related pollution and thus help reduce costs of whey disposal.

  9. Using state diagrams for predicting colloidal stability of whey protein beverages.

    PubMed

    Wagoner, Ty B; Ward, Loren; Foegeding, E Allen

    2015-05-01

    A method for evaluating aspects of colloidal stability of whey protein beverages after thermal treatment was established. Three state diagrams for beverages (pH 3-7) were developed representing protein solubility, turbidity, and macroscopic state after two ultrahigh-temperature (UHT) treatments. Key transitions of stability in the state diagrams were explored using electrophoresis and chromatography to determine aggregation propensities of β-lactoglobulin, α-lactalbumin, bovine serum albumin, and glycomacropeptide. The state diagrams present an overlapping view of high colloidal stability at pH 3 accompanied by high solubility of individual whey proteins. At pH 5, beverages were characterized by poor solubility, high turbidity, and aggregation/gelation of whey proteins with the exception of glycomacropeptide. Stability increased at pH 6, due to increased solubility of α-lactalbumin. The results indicate that combinations of state diagrams can be used to identify key regions of stability for whey protein containing beverages. PMID:25880701

  10. Influence of protein type on oxidation and digestibility of fish oil-in-water emulsions: gliadin, caseinate, and whey protein.

    PubMed

    Qiu, Chaoying; Zhao, Mouming; Decker, Eric Andrew; McClements, David Julian

    2015-05-15

    The influence of three surface-active proteins on the oxidative stability and lipase digestibility of emulsified ω-3 oils was examined: deamidated wheat gliadin (gliadin); sodium caseinate (CN); whey protein isolate (WPI). Gliadin and WPI were more effective at inhibiting lipid oxidation (hydroperoxides and TBARS) of fish oil-in-water emulsions than CN. Protein oxidation during storage was determined by measuring the loss of tryptophan fluorescence. The CN-emulsions exhibited the highest loss of tryptophan fluorescence during aging, as well as the highest amount of lipid oxidation. Potential reasons for the differences in oxidative stability of the emulsions with different proteins include differences in interfacial film thickness, protein chelating ability, and antioxidant amino acids profiles. During in vitro digestion, gliadin-stabilized emulsions had the lowest digestion rate of the three proteins. These results have important implications for using proteins to fabricate emulsion-based delivery systems for ω-3 oils. PMID:25577077

  11. Niosome-loaded cold-set whey protein hydrogels.

    PubMed

    Abaee, Arash; Madadlou, Ashkan

    2016-04-01

    The α-tocopherol-carrying niosomes with mean diameter of 5.7 μm were fabricated and charged into a transglutaminase-cross-linked whey protein solution that was subsequently gelled with glucono delta-lactone. Encapsulation efficiency of α-tocopherol within niosomes was ≈80% and encapsulation did not influence the radical scavenging activity of α-tocopherol. Fourier transform infrared (FTIR) spectroscopy suggested formation of ε-(γ-glutamyl) lysine cross-linkages by transglutaminase and that enzymatic cross-linking increased proteins hydrophobicity. FTIR also proposed hydrogen bonding between niosomes and proteins. Dynamic rheometry indicated that transglutaminase cross-linking and niosomes charging of the protein solution enhanced the gelation process. However, charging the cross-linked protein solution with niosomal suspension resulted in lower elastic modulus (G') of the subsequently formed gel compared with both non-cross-linked niosome-loaded and cross-linked niosome-free counterparts. Electron microscopy indicated a discontinuous network for the niosome-loaded cross-linked sample. Niosome loading into the protein gel matrix increased its swelling extent in the enzyme-free simulated gastric fluid. PMID:26593471

  12. The Reasearch on the Anti-Fatigue Effect of Whey Protein Powder in Basketball Training

    PubMed Central

    Ronghui, Sun

    2015-01-01

    In order to observe the effects of whey protein powder on hematological indexes of players majoring in physical education in the basketball training, the authors divided the players randomly into a control group and a nutrition group. Athletes complete the 30 minutes quantitative exercise using cycle ergometer respectively before the trial and after one month trial. Then we exsanguinated immediately after exercise, extracted heparin and measured hemoglobin, red blood cell count, hematocrit and mean corpuscular volume and other hematological indices. The results showed that after taking whey protein powder, the HB, RBC, HCT of nutrition group was significantly higher that the control group. This suggests that in high-intensity training, taking whey protein powder can cause changes of HB, RBC and HCT in human body, meanwhile MCV essentially the same. So whey protein powder can improve exercise capacity, and has anti-fatigue effect. PMID:26998184

  13. Effect of microparticulated whey proteins on milk coagulation properties.

    PubMed

    Sturaro, A; Penasa, M; Cassandro, M; Varotto, A; De Marchi, M

    2014-11-01

    The enhancement of milk coagulation properties (MCP) and the reuse of whey produced by the dairy industry are of great interest to improve the efficiency of the cheese-making process. Native whey proteins (WP) can be aggregated and denatured to obtain colloidal microparticulated WP (MWP). The objective of this study was to assess the effect of MWP on MCP; namely, rennet coagulation time (RCT), curd-firming time, and curd firmness 30 min after rennet addition. Six concentrations of MWP (vol/vol; 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0%) were added to 3 bulk milk samples (collected and analyzed during 3 d), and a sample without MWP was used as control. Within each day of analysis, 6 replicates of MCP for each treatment were obtained, changing the position of the treatment in the rack. For control samples, 2 replicates per day were performed. In addition to MCP, WP fractions were measured on each treatment during the 3 d of analysis. Milk coagulation properties were measured on 144 samples by using a Formagraph (Foss Electric, Hillerød, Denmark). Increasing the amount of MWP added to milk led to a longer RCT. In particular, significant differences were found between RCT of the control samples (13.5 min) and RCT of samples with 3.0% (14.6 min) or more MWP. A similar trend was observed for curd-firming time, which was shortest in the control samples and longest in samples with 9.0% MWP (21.4 min). No significant differences were detected for curd firmness at 30 min across concentrations of MWP. Adjustments in cheese processing should be made when recycling MWP, in particular during the coagulation process, by prolonging the time of rennet activity before cutting the curd. PMID:25151883

  14. Impacts of pH-mediated EPS structure on probiotic bacterial pili-whey proteins interactions.

    PubMed

    Burgain, Jennifer; Scher, Joel; Lebeer, Sarah; Vanderleyden, Jos; Corgneau, Magda; Guerin, Justine; Caillet, Céline; Duval, Jérôme F L; Francius, Gregory; Gaiani, Claire

    2015-10-01

    Probiotic bacteria are routinely incorporated into dairy foods because of the health benefits they can provide when consumed. In this work, the marked pH-dependence of the pili/EPS organization at the outer surface of Lactobacillus rhamnosus GG is characterized in detail by Single Cell Force Microscopy and cell electrophoretic mobility measurements analyzed according to formalisms for nanomechanical contact and soft particle electrokinetics, respectively. At pH 6.8, LGG pili are easily accessible by AFM tips functionalized with whey proteins for specific binding, while at pH 4.8 the collapsed EPS surface layer significantly immobilized the LGG pili. This resulted in their reduced accessibility to the specific whey-coated AFM tip, and to stronger whey protein-pili rupture forces. Thus, pili interactions with whey proteins are screened to an extent that depends on the pH-mediated embedment of the pili within the EPS layer. PMID:26209966

  15. In vitro bioactive properties of intact and enzymatically hydrolysed whey protein: targeting the enteroinsular axis.

    PubMed

    Power-Grant, O; Bruen, C; Brennan, L; Giblin, L; Jakeman, P; FitzGerald, R J

    2015-03-01

    Enzymatically hydrolysed milk proteins have a variety of biofunctional effects some of which may be beneficial in the management of type 2 diabetes mellitus. The purpose of this study was to evaluate the effect of commercially available intact and hydrolysed whey protein ingredients (DH 32, DH 45) on markers of the enteroinsular axis (glucagon like peptide-1 secretion, dipeptidyl peptidase IV inhibition, insulin secretion and antioxidant activity) before and after simulated gastrointestinal digestion (SGID). A whey protein hydrolysate, DH32, significantly enhanced (P < 0.05) insulin secretion from BRIN BD11 β-cells compared to the positive control (16.7 mM glucose and 10 mM Ala). The whey protein hydrolysates inhibited dipeptidyl peptidase IV activity, yielding half maximal inhibitory concentration values (IC50) of 1.5 ± 0.1 and 1.1 ± 0.1 mg mL(-1) for the DH 32 and DH 45, samples respectively, and were significantly more potent than the intact whey (P < 0.05). Enzymatic hydrolysis of whey protein significantly enhanced (P < 0.05) its antioxidant activity compared to intact whey, as measured by the oxygen radical absorbance capacity assay (ORAC). This antioxidant activity was maintained (DH 32, P > 0.05) or enhanced (DH 45, P < 0.05) following SGID. Intact whey stimulated GLP-1 secretion from enteroendocrine cells compared to vehicle control (P < 0.05). This data confirm that whey proteins and peptides can act through multiple targets within the enteroinsular axis and as such may have glucoregulatory potential. PMID:25666373

  16. Quantification of whey proteins by reversed phase-HPLC and effectiveness of mid-infrared spectroscopy for their rapid prediction in sweet whey.

    PubMed

    Sturaro, Alba; De Marchi, Massimo; Masi, Antonio; Cassandro, Martino

    2016-01-01

    In the dairy industry, membrane filtration is used to reduce the amount of whey waste and, simultaneously, to recover whey proteins (WP). The composition of WP can strongly affect the filtration treatment of whey, and rapid determination of WP fractions would be of interest for dairy producers to monitor WP recovery. This study aimed to develop mid-infrared spectroscopy (MIRS) prediction models for the rapid quantification of protein in sweet whey, using a validated rapid reversed phase (RP)-HPLC as a reference method. Quantified WP included α-lactalbumin (α-LA), β-lactoglobulin (β-LG) A and B, bovine serum albumin, caseinomacropeptides, and proteose peptone. Validation of RP-HPLC was performed by calculating the relative standard deviation (RSD) in repeatability and reproducibility tests for WP retention time and peak areas. Samples of liquid whey (n=187) were analyzed by RP-HPLC and scanned through MIRS to collect spectral information (900 to 4,000 cm(-1)); statistical analysis was carried out through partial least squares regression and random cross-validation procedure. Retention times in RP-HPLC method were stable (RSD between 0.03 and 0.80%), whereas the RSD of peak area (from 0.25 to 8.48%) was affected by WP relative abundance. Higher coefficients of determination in validation for MIRS model were obtained for protein fractions present in whey in large amounts, such as β-LG (0.58), total identified WP (0.58), and α-LA (0.56). Results of this study suggest that MIRS is an easy method for rapid quantification of detail protein in sweet whey, even if better resolution was achieved with the method based on RP-HPLC. The prediction of WP in sweet whey by MIRS might be used for screening and for classifying sweet whey according to its total and individual WP contents. PMID:26585472

  17. Short communication: Annatto in Cheddar cheese-derived whey protein concentrate is primarily associated with milk fat globule membrane.

    PubMed

    Zhu, D; Damodaran, S

    2012-02-01

    The yellow color of Cheddar cheese whey arises from a residual amount of annatto that partitions into the whey during Cheddar cheese manufacture. Bleaching of the color using hydrogen peroxide or benzoyl peroxide is often a prerequisite to produce an acceptable neutral-colored whey protein concentrate and isolate. However, the use of these strong oxidizing agents often generates off-flavors as a result of lipid oxidation and results in loss of nutritive value due to protein oxidation. The objective of this study was to determine the extent of partitioning of annatto between protein, milk fat globule membrane (MFGM), and aqueous (serum) phases of cheese whey so that a simple method can be developed to remove annatto from cheese whey. The MFGM was separated from Cheddar cheese whey using a recently developed novel method. Quantitative analysis of the distribution of annatto in the fat-free whey protein isolate (WPI), the MFGM fractions, and the serum phase revealed that annatto was not bound to the protein fraction but was mostly distributed between the serum phase and the MFGM fraction. The results showed that a colorless WPI or whey protein concentrate could be produced from Cheddar cheese whey by separation of MFGM from the whey, followed by diafiltration. This approach will negate the need for using bleaching agents. PMID:22281326

  18. Whey Protein Hydrolysate but not Whole Whey Protein Protects Against 7,12-Dimethylbenz(a)anthracene-Induced Mammary Tumors in Rats.

    PubMed

    Ronis, Martin J; Hakkak, Reza; Korourian, Soheila; Badger, Thomas M

    2015-01-01

    Effects of intact and processed bovine milk proteins on development of chemically induced mammary tumors in female rats were compared. AIN-93G diets were made with 20% casein (CAS), casein hydrolysate (CASH), intact whey protein (IWP), or whey protein hydrolysate (WPH). Pregnant Sprague-Dawley rats were fed the diets starting at Gestational Day 4. Offspring were fed the same diet. At 50 days, female offspring (44-49/group) were gavaged with sesame oil containing 80 mg/kg of the mammary carcinogen dimethylbenzanthracene (DMBA) and euthanized 62 days posttreatment. Rats fed WPH had an adenocarcinoma incidence of 17% compared to the rats fed CAS, CASH, and IWP diets (34%, 33%, and 36% respectively) (P < 0.001). Median palpable tumor latency for rats fed WPH was greater (61 days, P < 0.001) compared to CAS (44 days), CASH (42 days) and IWP (45 days). Tumor multiplicity was also lower (1.5 vs. 3.0, P < 0.05) in rats fed WPH than in CAS and CASH fed groups. Results demonstrate that hydrolytic processing of whey protein is required for this diet to be effective in reducing DMBA-induced mammary tumors. The bioactive compounds produced during whey protein processing and mechanisms underlying the anticancer effects of WPH are yet to be identified. PMID:26168336

  19. Fractionation of Whey Protein Isolate with Supercritical Carbon Dioxide—Process Modeling and Cost Estimation

    PubMed Central

    Yver, Alexandra L.; Bonnaillie, Laetitia M.; Yee, Winnie; McAloon, Andrew; Tomasula, Peggy M.

    2012-01-01

    An economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (sCO2) as an acid to produce enriched fractions of α-lactalbumin (α-LA) and β-lactoglobulin (β-LG) from a commercial whey protein isolate (WPI) containing 20% α-LA and 55% β-LG, through selective precipitation of α-LA. Pilot-scale experiments were performed around the optimal parameter range (T = 60 to 65 °C, P = 8 to 31 MPa, C = 5 to 15% (w/w) WPI) to quantify the recovery rates of the individual proteins and the compositions of both fractions as a function of processing conditions. Mass balances were calculated in a process flow-sheet to design a large-scale, semi-continuous process model using SuperproDesigner® software. Total startup and production costs were estimated as a function of processing parameters, product yield and purity. Temperature, T, pressure, P, and concentration, C, showed conflicting effects on equipment costs and the individual precipitation rates of the two proteins, affecting the quantity, quality, and production cost of the fractions considerably. The highest α-LA purity, 61%, with 80% α-LA recovery in the solid fraction, was obtained at T = 60 °C, C = 5% WPI, P = 8.3 MPa, with a production cost of $8.65 per kilogram of WPI treated. The most profitable conditions resulted in 57%-pure α-LA, with 71% α-LA recovery in the solid fraction and 89% β-LG recovery in the soluble fraction, and production cost of $5.43 per kilogram of WPI treated at T = 62 °C, C = 10% WPI and P = 5.5 MPa. The two fractions are ready-to-use, new food ingredients with a pH of 6.7 and contain no residual acid or chemical contaminants. PMID:22312250

  20. Use of acid whey and mustard seed to replace nitrites during cooked sausage production.

    PubMed

    Wójciak, Karolina M; Karwowska, Małgorzata; Dolatowski, Zbigniew J

    2014-02-01

    The aim was to determine the effects of sea salt, acid whey, native and autoclaved mustard seed on the physico-chemical properties, especially colour formation, microbial stability and sensory evaluation of non-nitrite cooked sausage during chilling storage. The cooked pork sausages were divided into 4 groups (group I--control sausages with curing salt (2.8%) and water (5%) added; group II--sausages with sea salt (2.8%) and acid whey (5%) added; group III--sausages with sea salt (2.8%), acid whey (5%) and mustard seed (1%) added; group IV--sausages with sea salt (2.8%), acid whey (5%) and autoclaved mustard seed (1%) added). Instrumental colour (L*, a*, b*), oxygenation index (ΔR), 650/570 nm ratio, heme iron, pH value and water activity (aw) were determined 1 day after production and after 10, 20 and 30 days of refrigerated storage (4 °C). Sensory analysis was conducted immediately after production (day 1). Microbial analysis (lactic acid bacteria, total viable count, Clostridium spp.) was determinated at the end of storage (30 days). The autoclaved mustard with acid whey can be used at 1.0% (w/w) of model cooked sausages with beneficial effect on physico-chemical and sensory qualities of no-nitrite sausage. This product can be stored at refrigeration temperature for up to 30 days, in vacuum, with good acceptability. The colour, visual appearance and overall quality of samples with autoclaved mustard seed and acid whey were similar to the control with curing agent. PMID:24200566

  1. High pressure thermal denaturation kinetics of whey proteins.

    PubMed

    Hinrichs, Jörg; Rademacher, Britta

    2004-11-01

    Pressure processing of foodstuff has been applied to produce or modify proteinaceous gel structures. In real pressure processing the treatment is non-isothermal, due to the adiabatic nature of the process and the heat loss from the product to the vessel. In order to estimate the effect of pressurization on milk constituents pressure and temperature dependent kinetics were determined separately from each other. In a detailed kinetic study whey protein isolate was treated under isobaric (200 to 800 MPa) and isothermal conditions (-2 to 70 degrees C), and the resulting degree of denaturation of beta-lactoglobulin A and B and alpha-lactalbumin was analysed. Kinetic parameters of denaturation were estimated using a one step non-linear regression method which allowed a global fit of the whole data set. The isobaric isothermal denaturation of beta-lactoglobulin and alpha-lactalbumin was found to follow third and second order kinetics, respectively. Isothermal pressure denaturation of both beta-lactoglobulin fractions do not differ significantly and were characterized by an activation volume decreasing with increasing temperature from -10 to about -30 ml mol(-1), which demonstrates that the denaturation rate is accelerated with increasing temperature. The activation energy of about 70 to 100 kJ mol(-1) obtained for beta-lactoglobulin A and B is not dependent to a great extent on the pressure which indicates that above 200 MPa denaturation rate is limited by the aggregation rate while pressure forces unfolding of the molecule. PMID:15605715

  2. Effects of Glucides on Thermal Denaturation and Coagulation of Whey Proteins Studied by Ultraviolet Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mongo Antoine, Etou; Abena, A. A.; Gbeassor, M.; Chaveron, H.

    The thermal coagulation of whey proteins concentrates was inhibited by various glucides. The disaccharides, saccharose and lactose, were most effective and the amino sugar, glucosamine, least effective in this respect. Ultraviolet absorption and light-scattering measurements on thermal denaturation and coagulation of both unfractionated and individual whey proteins (α-lactalbumin, ß-lactoglobulin and bovine serum albumin) showed that saccharose promotes the denaturation of these proteins but inhibits their subsequent coagulation. These results are interpreted in terms of the effect of saccharose on the hydrophobic interactions between solvent and protein.

  3. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemistry of whey protein concentrate (WPC) under adverse storage conditions was monitored to provide information on shelf life in hot, humid areas. WPC34 (34.9 g protein/100 g) and WPC80 (76.8 g protein/100 g) were stored for up to 18 mo under ambient conditions and at elevated temperature and...

  4. WHEY PROTEIN SUPPRESSES PLASMA GHRELIN CONCENTRATIONS IN OVERWEIGHT AND OBESE MEN AND WOMEN.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The most satiating macronutrient appears to be dietary protein; however, it is unclear if different dietary protein sources have differing effects on satiety. Few studies that have investigated the effects of whey protein on satiety hormones, such as plasma ghrelin, in overweight and obese men and w...

  5. Functional Biomaterials: Solution Electrospinning and Gelation of Whey Protein and Pullulan

    NASA Astrophysics Data System (ADS)

    Sullivan, Stephanie Tolstedt

    Utilizing biomaterials that are biodegradable, biocompatible and edible serve well for food products as well as biomedical applications. Biomaterials whey protein and pullulan both have these characteristics. Whey proteins (WP) have been used in food products for many years and more recently in pharmaceutical products. They have the ability to form both gels and stable foams. Pullulan (PULL) has also been used in both food and pharmaceutical products, and is a highly water soluble, non-gelling polysaccharide and has been used primarily as a film former. Herein, we investigate the ability of whey protein and pullulan to form nanofibers and gels. Combining their distinct properties allows the ability to uniquely manipulate nanofiber and gel characteristics and behavior for a variety of applications, from food to even tissue scaffolding. First, we determined the electrospinnability of aqueous whey protein solutions. Both whey protein isolate (WPI) and one of its major components beta--lactoglobulin (BLG), either in native or denatured form, yielded interesting micro and nanostructures when electrosprayed; while nanofiber production required blending with a spinnable polymer, poly(ethylene oxide) (PEO). WP:PEO solutions were also successfully electrospun at acidic pH (2≤pH≤3), which could improve shelf life. Fourier Transform Infrared Reflectance (FTIR) analysis of WP:PEO fiber mat indicated some variation in WP secondary structure with varying WPI concentration (as WPI increased, % alpha-helix increased and beta-turn decreased) and pH (as pH decreased from neutral (7.5) to acidic (2), % beta-sheet decreased and alpha-helix increased). X-ray Photoelectron Spectroscopy (XPS) also confirmed the presence of WP on the surface of the blend fibers, augmenting the FTIR analysis. Interestingly, WP:PEO composite nanofibers maintained its fibrous morphology at temperatures as high as 100 °C, above the 60 °C PEO melting point. Further, we show that the blend mats retained a

  6. Processing of whey modulates proliferative and immune functions in intestinal epithelial cells.

    PubMed

    Nguyen, Duc Ninh; Sangild, Per T; Li, Yanqi; Bering, Stine B; Chatterton, Dereck E W

    2016-02-01

    Whey protein concentrate (WPC) is often subjected to heat treatment during industrial processing, resulting in protein denaturation and loss of protein bioactivity. We hypothesized that WPC samples subjected to different degrees of thermal processing are associated with different levels of bioactive proteins and effects on proliferation and immune response in intestinal epithelial cells (IEC). The results showed that low-heat-treated WPC had elevated levels of lactoferrin and transforming growth factor-β2 compared with that of standard WPC. The level of aggregates depended on the source of whey, with the lowest level being found in WPC derived from acid whey. Following acid activation, WPC from acid whey enhanced IEC proliferation compared with WPC from sweet whey or nonactivated WPC. Low-heat-treated WPC from acid whey induced greater secretion of IL-8 in IEC than either standard WPC from acid whey or low-heat-treated WPC from sweet whey. Following acid activation (to activate growth factors), low-heat-treated WPC from sweet whey induced higher IL-8 levels in IEC compared with standard WPC from sweet whey. In conclusion, higher levels of bioactive proteins in low-heat-treated WPC, especially from acid whey, may enhance proliferation and cytokine responses of IEC. These considerations could be important to maintain optimal bioactivity of infant formulas, including their maturational and immunological effects on the developing intestine. PMID:26709184

  7. In vitro digestion of Pickering emulsions stabilized by soft whey protein microgel particles: influence of thermal treatment.

    PubMed

    Sarkar, Anwesha; Murray, Brent; Holmes, Melvin; Ettelaie, Rammile; Abdalla, Azad; Yang, Xinyi

    2016-04-13

    Emulsions stabilized by soft whey protein microgel particles have gained research interest due to their combined advantages of biocompatibility and a high degree of resistance to coalescence. We designed Pickering oil-in-water emulsions using whey protein microgels by a facile route of heat-set gel formation followed by mechanical shear and studied the influence of heat treatment on emulsions stabilized by these particles. The aim of this study was to compare the barrier properties of the microgel particles and heat-treated fused microgel particles at the oil-water interface in delaying the digestion of the emulsified lipids using an in vitro digestion model. A combination of transmission electron microscopy and surface coverage measurements revealed an increased coverage of heat-treated microgel particles at the interface. The heat-induced microgel particle aggregation and, therefore, a fused network at the oil-water interface were more beneficial to delay the rate of digestion in the presence of pure lipase and bile salts compared to intact whey protein microgel particles, as shown by the measurements of zeta potential and free fatty acid release, plus theoretical calculations. However, simulated gastric digestion with pepsin impacted significantly on such barrier effects, due to the proteolysis of the particle network at the interface irrespective of the heat treatment, as visualized using sodium dodecyl sulfate polyacryl amide gel electrophoresis measurements. PMID:26959339

  8. The effect of microfiltration on color, flavor, and functionality of 80% whey protein concentrate.

    PubMed

    Qiu, Y; Smith, T J; Foegeding, E A; Drake, M A

    2015-09-01

    The residual annatto colorant in fluid Cheddar cheese whey is bleached to provide a neutral-colored final product. Currently, hydrogen peroxide (HP) and benzoyl peroxide are used for bleaching liquid whey. However, previous studies have shown that chemical bleaching causes off-flavor formation, mainly due to lipid oxidation and protein degradation. The objective of this study was to evaluate the efficacy of microfiltration (MF) on norbixin removal and to compare flavor and functionality of 80% whey protein concentrate (WPC80) from MF whey to WPC80 from whey bleached with HP or lactoperoxidase (LP). Cheddar cheese whey was manufactured from colored, pasteurized milk. The fluid whey was pasteurized and fat separated. Liquid whey was subjected to 4 different treatments: control (no bleaching; 50°C, 1 h), HP (250 mg of HP/kg; 50°C, 1 h), and LP (20 mg of HP/kg; 50°C, 1 h), or MF (microfiltration; 50°C, 1 h). The treated whey was then ultrafiltered, diafiltered, and spray-dried to 80% concentrate. The entire experiment was replicated 3 times. Proximate analyses, color, functionality, descriptive sensory and instrumental volatile analysis were conducted on WPC80. The MF and HP- and LP-bleached WPC80 displayed a 39.5, 40.9, and 92.8% norbixin decrease, respectively. The HP and LP WPC80 had higher cardboard flavors and distinct cabbage flavor compared with the unbleached and MF WPC80. Volatile compound results were consistent with sensory results. The HP and LP WPC80 were higher in lipid oxidation compounds (especially heptanal, hexanal, pentanal, 1-hexen-3-one, 2-pentylfuran, and octanal) compared with unbleached and MF WPC80. All WPC80 had >85% solubility across the pH range of 3 to 7. The microstructure of MF gels determined by confocal laser scanning showed an increased protein particle size in the gel network. MF WPC80 also had larger storage modulus values, indicating higher gel firmness. Based on bleaching efficacy comparable to chemical bleaching with HP

  9. Breakfast high in whey protein or carbohydrates improves coping with workload in healthy subjects.

    PubMed

    Sihvola, Nora; Korpela, Riitta; Henelius, Andreas; Holm, Anu; Huotilainen, Minna; Müller, Kiti; Poussa, Tuija; Pettersson, Kati; Turpeinen, Anu; Peuhkuri, Katri

    2013-11-14

    Dietary components may affect brain function and influence behaviour by inducing the synthesis of neurotransmitters. The aim of the present study was to examine the influence of consumption of a whey protein-containing breakfast drink v. a carbohydrate drink v. control on subjective and physiological responses to mental workload in simulated work. In a randomised cross-over design, ten healthy subjects (seven women, median age 26 years, median BMI 23 kg/m(2)) participated in a single-blinded, placebo-controlled study. The subjects performed demanding work-like tasks after having a breakfast drink high in protein (HP) or high in carbohydrate (HC) or a control drink on separate sessions. Subjective states were assessed using the NASA Task Load Index (NASA-TLX), the Karolinska sleepiness scale (KSS) and the modified Profile of Mood States. Heart rate was recorded during task performance. The ratio of plasma tryptophan (Trp) to the sum of the other large neutral amino acids (LNAA) and salivary cortisol were also analysed. The plasma Trp:LNAA ratio was 30 % higher after the test drinks HP (median 0·13 (μmol/l)/(μmol/l)) and HC (median 0·13 (μmol/l)/(μmol/l)) than after the control drink (median 0·10 (μmol/l)/(μmol/l)). The increase in heart rate was smaller after the HP (median 2·7 beats/min) and HC (median 1·9 beats/min) drinks when compared with the control drink (median 7·2 beats/min) during task performance. Subjective sleepiness was reduced more after the HC drink (median KSS - 1·5) than after the control drink (median KSS - 0·5). There were no significant differences between the breakfast types in the NASA-TLX index, cortisol levels or task performance. We conclude that a breakfast drink high in whey protein or carbohydrates may improve coping with mental tasks in healthy subjects. PMID:23591085

  10. Production of extruded barley, cassava, corn and quinoa enriched with whey proteins and cashew pulp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Well-formulated snacks can play a positive role in enhancing health by providing essential nutrients, such as increased protein and fiber, that mitigate metabolic syndrome associated with obesity. Adding whey protein concentrate (WPC80) and cashew pulp (CP) to corn meal, a major ingredient in extru...

  11. PROCESSING WHEY PROTEIN ISOLATE AND CORN STARCH USING A TORQUE RHEOMETER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Processing a combination of starch and protein mixtures for food or nonfood applications involves shearing and heating to produce desired texture, appearance and thermo-mechanical properties. In this study, corn starch and whey protein isolate (WPI) were processed in a torque rheometer at varying ro...

  12. Short communication: The effect of liquid storage on the flavor of whey protein concentrate.

    PubMed

    Park, Curtis W; Parker, Megan; Drake, MaryAnne

    2016-06-01

    Unit operations in dried dairy ingredient manufacture significantly influence sensory properties and, consequently, their use and consumer acceptance in a variety of ingredient applications. In whey protein concentrate (WPC) manufacture, liquid can be stored as whey or WPC before spray drying. The objective of this study was to determine the effect of storage, composition, and bleaching on the flavor of spray-dried WPC80. Liquid whey was manufactured and subjected to the following treatments: bleached or unbleached and liquid whey or liquid WPC storage. The experiment was replicated 3 times and included a no-storage control. All liquid storage was performed at 4°C for 24h. Flavor of the final spray-dried WPC80 was evaluated by a trained panel and volatile compound analyses. Storage of liquids increased cardboard flavor, decreased sweet aromatic flavor, and resulted in increased volatile lipid oxidation products. Bleaching altered the effect of liquid storage. Storage of unbleached liquid whey decreased sweet aromatic flavor and increased cardboard flavor and volatile lipid oxidation products compared with liquid WPC80 and no storage. In contrast, storage of bleached liquid WPC decreased sweet aromatic flavor and increased cardboard flavor and associated volatile lipid oxidation products compared with bleached liquid whey or no storage. These results confirm that liquid storage increases off-flavors in spray-dried protein but to a variable degree, depending on whether bleaching has been applied. If liquid storage is necessary, bleached WPC80 should be stored as liquid whey and unbleached WPC80 should be stored as liquid WPC to mitigate off-flavors. PMID:27085401

  13. Whey Protein Isolate: A Potential Filler for the Leather Industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The upgrading of leather that presents loose areas and poor grain break is one of the most value adding opportunities for a tanner. Typically, petroleum-based products are used to improve the final appearance and feel of crust leather. In this study, we demonstrate that blends composed of whey pro...

  14. Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors.

    PubMed

    Tulipano, Giovanni; Sibilia, Valeria; Caroli, Anna Maria; Cocchi, Daniela

    2011-04-01

    Preclinical and clinical studies suggest that whey proteins can reduce postprandial glucose levels and stimulate insulin release in healthy subjects and in subjects with type 2 diabetes by reducing dipeptidyl peptidase-4 (DPP-4) activity in the proximal bowel and hence increasing intact incretin levels. Our aim was to identify DPP-4 inhibitors among short peptides occurring in hydrolysates of β-lactoglobulin, the major whey protein found in the milk of ruminants. We proved that the bioactive peptide Ile-Pro-Ala can be regarded as a moderate DPP-4 inhibitor. PMID:21256171

  15. The Relationship Between Creatine and Whey Protein Supplements Consumption and Anesthesia in Rats

    PubMed Central

    Saberi, Kianoush; Gorji Mahlabani, Mohammad Amin; Tashayoie, Mohammad; Nasiri Nejad, Farinaz

    2016-01-01

    Background: Because the trend of pharmacotherapy is toward controlling diet rather than administration of drugs, in our study we examined the probable relationship between Creatine (Cr) or Whey (Wh) consumption and anesthesia (analgesia effect of ketamine). Creatine and Wh are among the most favorable supplements in the market. Whey is a protein, which is extracted from milk and is a rich source of amino acids. Creatine is an amino acid derivative that can change to ATP in the body. Both of these supplements result in Nitric Oxide (NO) retention, which is believed to be effective in N-Methyl-D-aspartate (NMDA) receptor analgesia. Objectives: The main question of this study was whether Wh and Cr are effective on analgesic and anesthetic characteristics of ketamine and whether this is related to NO retention or amino acids’ features Materials and Methods: We divided 30 male Wistar rats to three (n = 10) groups; including Cr, Wh and sham (water only) groups. Each group was administered (by gavage) the supplements for an intermediate dosage during 25 days. After this period, they became anesthetized using a Ketamine-Xylazine (KX) and their time to anesthesia and analgesia, and total sleep time were recorded. Results: Data were analyzed twice using the SPSS 18 software with Analysis of Variance (ANOVA) and post hoc test; first time we expunged the rats that didn’t become anesthetized and the second time we included all of the samples. There was a significant P-value (P < 0.05) for total anesthesia time in the second analysis. Bonferroni multiple comparison indicated that the difference was between Cr and Sham groups (P < 0.021). Conclusions: The data only indicated that there might be a significant relationship between Cr consumption and total sleep time. Further studies, with rats of different gender and different dosage of supplement and anesthetics are suggested. PMID:27110533

  16. Emulsion properties of casein and whey protein hydrolysates and the relation with other hydrolysate characteristics.

    PubMed

    van der Ven, C; Gruppen, H; de Bont, D B; Voragen, A G

    2001-10-01

    Casein and whey protein were hydrolyzed using 11 different commercially available enzyme preparations. Emulsion-forming ability and emulsion stability of the digests were measured as well as biochemical properties with the objective to study the relations between hydrolysate characteristics and emulsion properties. All whey protein hydrolysates formed emulsions with bimodal droplet size distributions, signifying poor emulsion-forming ability. Emulsion-forming ability of some casein hydrolysates was comparable to that of intact casein. Emulsion instability was caused by creaming and coalescence. Creaming occurred mainly in whey hydrolysate emulsions and in casein hydrolysate emulsions containing large emulsion droplets. Coalescence was dominant in casein emulsions with a broad particle size distribution. Emulsion instability due to coalescence was related to apparent molecular weight distribution of hydrolysates; a relative high amount of peptides larger than 2 kDa positively influences emulsion stability. PMID:11600059

  17. Whey protein hydrolysates enhance water absorption in the perfused small intestine of anesthetized rats.

    PubMed

    Ito, Kentaro; Yamaguchi, Makoto; Noma, Teruyuki; Yamaji, Taketo; Itoh, Hiroyuki; Oda, Munehiro

    2016-08-01

    We evaluated the effect of whey protein hydrolysates (WPH) on the water absorption rate in the small intestine using a rat small intestine perfusion model. The rate was significantly higher with 5 g/L WPH than with 5 g/L soy protein hydrolysates or physiological saline (p < 0.05). WPH dose-dependently increased the water absorption rate in the range of 1.25-10.0 g/L. WPH showed a significantly higher rate than an amino acid mixture whose composition was equal to that of WPH (p < 0.05). The addition of 4-aminomethylbenzoic acid, an inhibitor of PepT1, significantly suppressed WPH's enhancement of water absorption (p < 0.05). The rate of water absorption was significantly correlated with that of peptides/amino acids absorption in WPH (r = 0.82, p < 0.01). These data suggest that WPH have a high water absorption-promoting effect, to which PepT1 contributes. PMID:27055721

  18. Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2011-10-01

    Lactobionic acid finds applications in the fields of pharmaceuticals, cosmetics and medicine. The production of lactobionic acid from whey by Pseudomonas taetrolens was studied in shake-flasks and in a bioreactor. Shake-flask experiments showed that lactobionic acid was a non-growth associated product. A two-stage pH-shift bioconversion strategy with a pH-uncontrolled above 6.5 during the growth phase and maintained at 6.5 during cumulative production was adopted in bioreactor batch cultures. An inoculation level of 30% promoted high cell culture densities that triggered lactobionic acid production at a rate of 1.12 g/Lh. This methodology displayed efficient bioconversion with cheese whey as an inexpensive substrate for lactobionic acid production. PMID:21862326

  19. Whey protein but not soy protein supplementation alters body weight and composition in free-living overweight and obese adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The most satiating macronutrient appears to be dietary protein; the source of the dietary protein may influence satiety and food intake. Few long-term clinical trials have investigated the effects of whey protein on biomarkers of satiety, such as plasma ghrelin, in overweight and obese adults. The e...

  20. Enrichment and purification of casein glycomacropeptide from whey protein isolate using supercritical carbon dioxide processing and membrane filtration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey protein concentrates (WPC) and isolates (WPI), which are dried, concentrated forms of cheese whey, are comprised mainly of beta–lactoglobulin (beta-LG), a–lactalbumin (a-LA), and glycomacropeptide (GLY), and are added to foods to boost their nutritional and functional properties. In previous st...

  1. Minimizing variations in functionality of whey protein concentrates from different sources.

    PubMed

    Onwulata, C I; Konstance, R P; Tomasula, P M

    2004-03-01

    Enhancement in processing technology has improved the nutritional and functional properties of whey protein concentrates by increasing the content and quality of the protein, leading to their increased use in different food products. The extent of heat treatment affects the quality of the whey protein concentrate, and wide variation in product quality exists due to the various means of manufacture and from the whey product history from farm to factory. The study was carried out with 6 commercial whey protein concentrates with 80% protein (WPC80) to determine variations in physical properties, particle size and density, and functional properties--solubility, gel strength, foam volume, and stability. Significant differences were observed among all the products for every property compared. Particulate size was the most important determinant of functional characteristics. Larger particulate WPC80 had significantly higher fat content and were less soluble with poor foam stability; but narrowing the particle size distribution through sieving, minimized variations. We determined that sieving all products within the particle size distribution range of 100 to 150 microns minimized variation in physical composition, making functionality uniform. WPC80 from different manufacturers can be made to perform uniformly within a narrow functionality range by reducing the particle size distribution through sieving. PMID:15202660

  2. Fractionation of sheep cheese whey by a scalable method to sequentially isolate bioactive proteins.

    PubMed

    Pilbrow, Jodi; Bekhit, Alaa El-din A; Carne, Alan

    2016-07-15

    This study reports a procedure for the simultaneous purification of glyco(caseino)macropeptide, immunoglobulin, lactoperoxidase, lactoferrin, α-lactalbumin and β-lactoglobulin from sheep cheese sweet whey, an under-utilized by-product of cheese manufacture generated by an emerging sheep dairy industry in New Zealand. These proteins have recognized value in the nutrition, biomedical and health-promoting supplements industries. A sequential fractionation procedure using economical anion and cation exchange chromatography on HiTrap resins was evaluated. The whey protein fractionation is performed under mild conditions, requires only the adjustment of pH between ion exchange chromatography steps, does not require buffer exchange and uses minimal amounts of chemicals. The purity of the whey protein fractions generated were analyzed by reversed phase-high performance liquid chromatography and the identity of the proteins was confirmed by mass spectrometry. This scalable procedure demonstrates that several proteins of recognized value can be fractionated in reasonable yield and purity from sheep cheese whey in one streamlined process. PMID:26948602

  3. Effect of whey protein on blood lipid profiles: a meta-analysis of randomized controlled trials.

    PubMed

    Zhang, J-W; Tong, X; Wan, Z; Wang, Y; Qin, L-Q; Szeto, I M Y

    2016-08-01

    Previous studies have suggested that whey supplementation may have beneficial effects on lipid profiles, although results were inconsistent. A literature search was performed in March 2015 for randomized controlled trials observing the effects of whey protein and its derivatives on circulating levels of triacylglycerol (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C). A meta-analysis was subsequently conducted. The meta-analysis results of 13 trials showed that whey supplementation significantly reduced the circulating TG level by 0.11 mmol/l (95% CI: -0.21, 0 mmol/l), whereas the whey protein had no effects on circulating TC (-0.11 mmol/l, 95% CI: -0.27, 0.05 mmol/l), LDL-C (-0.08 mmol/l, 95% CI: -0.23, 0.07 mmol/l) and HDL-C (0.01 mmol/l, 95% CI: -0.04, 0.05 mmol/l). Subgroup analysis showed that significant TG reduction disappeared in participants with low body mass index, low supplemental whey dose or under exercise training/energy restriction during the trial. No evidence of heterogeneity across studies and publication bias was observed. In conclusion, our findings demonstrated that the effects of whey protein supplementation were modest, with an overall lowering effect on TG but no effect on TC, LDL-C and HDL-C. PMID:27026427

  4. MALDI-TOF MS characterization of glycation products of whey proteins in a glucose/galactose model system and lactose-free milk.

    PubMed

    Carulli, Saverio; Calvano, Cosima D; Palmisano, Francesco; Pischetsrieder, Monika

    2011-03-01

    The major modifications induced by thermal treatment of whey proteins α-lactalbumin (α-La) and β-lactoglobulin (β-Lg) in a model system mimicking lactose-free milk (L(-) sugar mix) were investigated by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). The analysis of the intact α-La revealed species with up to 7 and 14 adducts from lactose and sugar mix, respectively, whereas for β-Lg 3 and up to 5 sugar moieties were observed in the case of lactose and sugar mix experiments, respectively. A partial enzymatic hydrolysis with endoproteinase AspN prior to mass spectrometric analysis allowed the detection of further modifications and their localization in the amino acid sequence. Using α-cyano-4-chlorocinnamic acid as MALDI matrix, it could be shown that heating α-La and β-Lg with glucose or galactose led to the modification of lysine residues that are not glycated by lactose. The higher glycation degree of whey proteins in a lactose-free milk system relative to normal milk with lactose reflects the higher reactivity of monosaccharides compared to the parent disaccharide. Finally, the analysis of the whey extract of a commercial lactose-free milk sample revealed that the two whey proteins were present as three main forms (native, single, and double hexose adducts). PMID:21319853

  5. Dataset of milk whey proteins of two indigenous greek goat breeds.

    PubMed

    Anagnostopoulos, Athanasios K; Katsafadou, Angeliki I; Pierros, Vasileios; Kontopodis, Evangelos; Fthenakis, George C; Arsenos, George; Karkabounas, Spyridon Ch; Tzora, Athina; Skoufos, Ioannis; Tsangaris, George Th

    2016-09-01

    Due to its rarity and unique biological traits, as well as its growing financial value, milk of dairy Greek small ruminants is continuously attracting interest from both the scientific community and industry. For the construction of the present dataset, cutting-edge proteomics methodologies were employed, in order to investigate and characterize, for the first time, the milk whey proteome from the two indigenous Greek goat breeds, Capra prisca and Skopelos. In total 822 protein groups were identified in milk whey of the two breeds, The present data are further discussed in the research article "Milk of Greek sheep and goat breeds; characterization by means of proteomics" [1]. PMID:27508219

  6. Utilization of concentrated cheese whey for the production of protein concentrate fuel alcohol and alcoholic beverages

    SciTech Connect

    Krishnamurti, R.

    1983-01-01

    The objective of this investigation was to recover the major components of whey and to develop food applications for their incorporation/conversion into acceptable products of commercial value. Reconstituted dried sweet whey with 36% solids was ultrafiltered to yield a protein concentrate (WPC) and a permeate containing 24% lactose and 3.7% ash. Orange juice fortified up to 2.07% and chocolate milks fortified up to 5.88% total protein levels with WPC containing 45% total protein were acceptable to about 90% of a panel of 24 individuals. Fermentation of demineralized permeate at 30/sup 0/C with Kluyveromyces fragilis NRRL Y 2415 adapted to 24% lactose levels, led to 13.7% (v/v) ethanol in the medium at the end of 34 hours. Batch productivity was 3.2 gms. ethanol per liter per hour and conversion efficiency was 84.26% of the theoretical maximum. Alcoholic fermentation of permeate and subsequent distillation produced compounds with desirable aroma characters in such products. This study suggests that there is potential for the production of protein fortified non-alcoholic products and alcoholic beverages of commercial value from whey, thus providing a cost effective solution to the whey utilization problem.

  7. Mechanical-Acoustic and Sensory Evaluations of Corn Starch-Whey Protein Isolate Extrudates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To study the mechanism that relates sensory perception of brittle food foams to their mechanical and acoustic properties during crushing, corn starch was extruded with four levels (0, 6, 12, and 18%) of whey protein isolate (WPI) and two levels of in-barrel moisture (23 and 27%). Texture of the exp...

  8. Changes in microbial populations of WPC34 and WPC80 whey protein during long term storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of whey protein (WPC34 and WPC80) as a food ingredient and as a base for making biodegradable products is increasing. The need to alleviate world hunger in arid and semi-arid regions demands that we investigate the behavior of native bacteria in these products, especially during long term st...

  9. PROPERTIES OF BIOPOLYMERS PRODUCED BY TRANSGLUTAMINASE TREATMENT OF WHEY PROTEIN ISOLATE AND GELATIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Byproduct utilization is an important consideration in the development of sustainable processes. Whey protein isolate (WPI), a byproduct of the cheese industry, and gelatin, a byproduct of the leather industry, were reacted individually and in blends with microbial transglutaminase (mTGase) at pH 7...

  10. Changes in volatile compounds in whey protein concentrate stored at elevated temperature and humidity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey protein concentrate (WPC) has been recommended for use in emergency aid programs, but it is often stored overseas without temperature and relative humidity (RH) control, which may cause it to be rejected because of yellowing, off-flavors, or clumping. Therefore, the volatile compounds present ...

  11. Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men

    PubMed Central

    Churchward-Venne, Tyler A; Burd, Nicholas A; Mitchell, Cameron J; West, Daniel W D; Philp, Andrew; Marcotte, George R; Baker, Steven K; Baar, Keith; Phillips, Stuart M

    2012-01-01

    Leucine is a nutrient regulator of muscle protein synthesis by activating mTOR and possibly other proteins in this pathway. The purpose of this study was to examine the role of leucine in the regulation of human myofibrillar protein synthesis (MPS). Twenty-four males completed an acute bout of unilateral resistance exercise prior to consuming either: a dose (25 g) of whey protein (WHEY); 6.25 g whey protein with total leucine equivalent to WHEY (LEU); or 6.25 g whey protein with total essential amino acids (EAAs) equivalent to WHEY for all EAAs except leucine (EAA-LEU). Measures of MPS, signalling through mTOR, and amino acid transporter (AAT) mRNA abundance were made while fasted (FAST), and following feeding under rested (FED) and post-exercise (EX-FED) conditions. Leucinaemia was equivalent between WHEY and LEU and elevated compared to EAA-LEU (P = 0.001). MPS was increased above FAST at 1–3 h post-exercise in both FED (P < 0.001) and EX-FED (P < 0.001) conditions with no treatment effect. At 3–5 h, only WHEY remained significantly elevated above FAST in EX-FED (WHEY 184%vs. LEU 55% and EAA-LEU 35%; P = 0.036). AAT mRNA abundance was increased above FAST after feeding and exercise with no effect of leucinaemia. In summary, a low dose of whey protein supplemented with leucine or all other essential amino acids was as effective as a complete protein (WHEY) in stimulating postprandial MPS; however only WHEY was able to sustain increased rates of MPS post-exercise and may therefore be most suited to increase exercise-induced muscle protein accretion. PMID:22451437

  12. A combination of whey protein and potassium bicarbonate supplements during head-down-tilt bed rest: Presentation of a multidisciplinary randomized controlled trial (MEP study)

    NASA Astrophysics Data System (ADS)

    Buehlmeier, Judith; Mulder, Edwin; Noppe, Alexandra; Frings-Meuthen, Petra; Angerer, Oliver; Rudwill, Floriane; Biolo, Gianni; Smith, Scott M.; Blanc, Stéphane; Heer, Martina

    2014-02-01

    Inactivity, as it appears during space flight and in bed rest, induces reduction of lean body and bone mass, glucose intolerance, and weakening of the cardiovascular system. Increased protein intake, whey protein in particular, has been proposed to counteract some of these effects, but has also been associated with negative effects on bone, likely caused by a correspondingly high ratio of acid to alkali precursors in the diet.

  13. Thermal stability and flame resistance of cotton fabrics treated with whey proteins.

    PubMed

    Bosco, Francesca; Carletto, Riccardo Andrea; Alongi, Jenny; Marmo, Luca; Di Blasio, Alessandro; Malucelli, Giulio

    2013-04-15

    It is well described in the literature that whey proteins are able to form coatings, which exhibit high mechanical and oxygen barrier properties, notwithstanding a great water vapour adsorption. These peculiarities have been exploited for applying a novel protein-based finishing treatment to cotton and for assessing the protein effect on the thermal and thermo-oxidative stability and on the flame retardant properties of the cellulosic fabric. Indeed, the deposited whey protein coatings have turned out to significantly affect the thermal degradation of cotton in inert and oxidative atmosphere, and to somehow modify its combustion when a flame has been applied. Furthermore, the influence of the secondary and tertiary structure of these proteins on the morphology of the deposited coating, and thus on the thermal and flame retardant properties of the treated fabrics, has been evaluated by performing a denaturation thermal treatment before the protein application. PMID:23544551

  14. The effect of acidification of liquid whey protein concentrate on the flavor of spray-dried powder.

    PubMed

    Park, Curtis W; Bastian, Eric; Farkas, Brian; Drake, MaryAnne

    2014-07-01

    Off-flavors in whey protein negatively influence consumer acceptance of whey protein ingredient applications. Clear acidic beverages are a common application of whey protein, and recent studies have demonstrated that beverage processing steps, including acidification, enhance off-flavor production from whey protein. The objective of this study was to determine the effect of preacidification of liquid ultrafiltered whey protein concentrate (WPC) before spray drying on flavor of dried WPC. Two experiments were performed to achieve the objective. In both experiments, Cheddar cheese whey was manufactured, fat-separated, pasteurized, bleached (250 mg/kg of hydrogen peroxide), and ultrafiltered (UF) to obtain liquid WPC that was 13% solids (wt/wt) and 80% protein on a solids basis. In experiment 1, the liquid retentate was then acidified using a blend of phosphoric and citric acids to the following pH values: no acidification (control; pH 6.5), pH 5.5, or pH 3.5. The UF permeate was used to normalize the protein concentration of each treatment. The retentates were then spray dried. In experiment 2, 150 μg/kg of deuterated hexanal (D₁₂-hexanal) was added to each treatment, followed by acidification and spray drying. Both experiments were replicated 3 times. Flavor properties of the spray-dried WPC were evaluated by sensory and instrumental analyses in experiment 1 and by instrumental analysis in experiment 2. Preacidification to pH 3.5 resulted in decreased cardboard flavor and aroma intensities and an increase in soapy flavor, with decreased concentrations of hexanal, heptanal, nonanal, decanal, dimethyl disulfide, and dimethyl trisulfide compared with spray drying at pH 6.5 or 5.5. Adjustment to pH 5.5 before spray drying increased cabbage flavor and increased concentrations of nonanal at evaluation pH values of 3.5 and 5.5 and dimethyl trisulfide at all evaluation pH values. In general, the flavor effects of preacidification were consistent regardless of the pH to

  15. Physical Stability of Octenyl Succinate-Modified Polysaccharides and Whey Proteins for Potential Use as Bioactive Carriers in Food Systems.

    PubMed

    Puerta-Gomez, Alex F; Castell-Perez, M Elena

    2015-06-01

    The high cost and potential toxicity of biodegradable polymers like poly(lactic-co-glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate-modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α-lactalbumin (α-L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim-Andersen-de Boer model indicated that native waxy corn had significantly (P < 0.05) higher water monolayer capacity followed by 3%-OSA-modified DWxCn, WPI, 3%-OSA-modified DWxRc, α-L, and native phytoglycogen. WPC had significantly lower water monolayer capacity. All Tg values matched with the solid-like appearance of the biopolymers. Native polysaccharides and whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%-OSA modification had a "melted" appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA-modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications. PMID:25922272

  16. Protein denaturation of whey protein isolates (WPIs) induced by high intensity ultrasound during heat gelation.

    PubMed

    Frydenberg, Rikke P; Hammershøj, Marianne; Andersen, Ulf; Greve, Marie T; Wiking, Lars

    2016-02-01

    In this study, the impact of high intensity ultrasound (HIU) on proteins in whey protein isolates was examined. Effects on thermal behavior, secondary structure and nature of intra- and intermolecular bonds during heat-induced gelling were investigated. Ultrasonication (24 kHz, 300 W/cm(2), 2078 J/mL) significantly reduced denaturation enthalpies, whereas no change in secondary structure was detected by circular dichroism. The thiol-blocking agent N-ethylmaleimide was applied in order to inhibit formation of disulfide bonds during gel formation. Results showed that increased contents of α-lactalbumin (α-La) were associated with increased sensitivity to ultrasonication. The α-La:β-lactoglobulin (β-Lg) ratio greatly affected the nature of the interactions formed during gelation, where higher amounts of α-La lead to a gel more dependent on disulfide bonds. These results contribute to clarifying the mechanisms mediating the effects of HIU on whey proteins on the molecular level, thus moving further toward implementing HIU in the processing chain in the food industry. PMID:26304368

  17. Effect of whey and soy protein supplementation combined with resistance training in young adults.

    PubMed

    Candow, Darren G; Burke, Natalie C; Smith-Palmer, T; Burke, Darren G

    2006-06-01

    The purpose was to compare changes in lean tissue mass, strength, and myofibrillar protein catabolism resulting from combining whey protein or soy protein with resistance training. Twenty-seven untrained healthy subjects (18 female, 9 male) age 18 to 35 y were randomly assigned (double blind) to supplement with whey protein (W; 1.2 g/kg body mass whey protein + 0.3 g/kg body mass sucrose power, N = 9: 6 female, 3 male), soy protein (S; 1.2 g/kg body mass soy protein + 0.3 g/kg body mass sucrose powder, N= 9: 6 female, 3 male) or placebo (P; 1.2 g/kg body mass maltodextrine + 0.3 g/kg body mass sucrose powder, N = 9: 6 female, 3 male) for 6 wk. Before and after training, measurements were taken for lean tissue mass (dual energy X-ray absorptiometry), strength (1-RM for bench press and hack squat), and an indicator of myofibrillar protein catabolism (urinary 3-methylhistidine). Results showed that protein supplementation during resistance training, independent of source, increased lean tissue mass and strength over isocaloric placebo and resistance training (P < 0.05). We conclude that young adults who supplement with protein during a structured resistance training program experience minimal beneficial effects in lean tissue mass and strength. PMID:16948480

  18. Different digestion of caprine whey proteins by human and porcine gastrointestinal enzymes.

    PubMed

    Eriksen, Ellen K; Holm, Halvor; Jensen, Einar; Aaboe, Ragnhild; Devold, Tove G; Jacobsen, Morten; Vegarud, Gerd E

    2010-08-01

    The objective of the present study was twofold: first to compare the degradation patterns of caprine whey proteins digested with either human digestive juices (gastric or duodenal) or commercial porcine enzymes (pepsin or pancreatic enzymes) and second to observe the effect of gastric pH on digestion. An in vitro two-step assay was performed at 37 degrees C to simulate digestion in the stomach (pH 2, 4 or 6) and the duodenum (pH 8). The whey proteins were degraded more efficiently by porcine pepsin than by human gastric juice at all pH values. Irrespective of the enzyme source, gastric digestion at pH 2 followed by duodenal digestion resulted in the most efficient degradation. Lactoferrin, serum albumin and the Ig heavy chains were highly degraded with less than 6 % remaining after digestion. About 15, 56 and 50 % Ig light chains, beta-lactoglobulin (beta-LG) and alpha-lactalbumin remained intact, respectively, when digested with porcine enzymes compared with 25, 74 and 81 % with human digestive juices. For comparison, purified bovine beta-LG was digested and the peptide profiles obtained were compared with those of the caprine beta-LG in the digested whey. The bovine beta-LG seemed to be more extensively cleaved than the caprine beta-LG in the whey. Commercial enzymes appear to digest whey proteins more efficiently compared with human digestive juices when used at similar enzyme activities. This could lead to conflicting results when comparing human in vivo protein digestion with digestion using purified enzymes of non-human species. Consequently the use of human digestive juices might be preferred. PMID:20307348

  19. Direct estimation of sialic acid in milk and milk products by fluorimetry and its application in detection of sweet whey adulteration in milk.

    PubMed

    Neelima; Rao, Priyanka Singh; Sharma, Rajan; Rajput, Yudhishthir S

    2012-11-01

    Sialic acid, being a biologically active compound, is recognised as an important component of milk and milk products. Almost all the sialic acid estimation protocols in milk require prior hydrolysis step to release the bound sialic acid followed by its estimation. The objective of this work was to estimate sialic acid in milk and milk products by fluorimetric assay which does not require a prior hydrolysis step thus decreasing the estimation time. The recovery of added sialic acid in milk was 91·6 to 95·8%. Sialic acid in milk was found to be dependent on cattle breed and was in the range of 1·68-3·93 g/kg (dry matter basis). The assay was further extended to detect adulteration of milk with sweet whey which is based on the detection of glycomacropeptide (GMP) bound sialic acid in adulterated milk. GMP is the C-terminal part of κ-casein which is released into the whey during cheese making. For detection of adulteration, selective precipitation of GMP was done using trichloroacetic acid (TCA). TCA concentration in milk was first raised to 5% to precipitate milk proteins, especially κ-casein, followed by raising the TCA concentration to 14% to precipitate out GMP. In the precipitates GMP bound sialic acid was estimated using fluorimetric method and the fluorescence intensity was found to be directly proportional to the level of sweet whey in adulterated milk samples. The method was found to detect the presence of 5% sweet whey in milk. PMID:23089266

  20. Properties of whey protein isolate nanocomposite films reinforced with nanocellulose isolated from oat husk.

    PubMed

    Qazanfarzadeh, Zeinab; Kadivar, Mahdi

    2016-10-01

    Whey protein isolate (WPI)-based composite films with varying proportions of oat husk nanocellulose (ONC) obtained from acid sulfuric hydrolysis were prepared using a solution casting method. The obtained material after each step of the isolating cellulose, morphological and crystallinity of the ONC were studied by Fourier transform infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The effect of ONC content (0, 2.5, 5 and 7.5wt% of WPI) on physical, mechanical and barrier properties of the nanocomposite were then evaluated. FTIR spectroscopy indicated the progressive removal of non-cellulosic components from the oat husk. SEM images showed the mean width of ONC was about 76nm and XRD analysis revealed the crystallinity increased after acid hydrolysis. The films prepared with up to 5wt% ONC showed the highest tensile strength, Young's modulus, solubility and the lowest elongation at break and moisture content. At high level (7.5wt%), tensile strength, Young's modulus and solubility of the films decreased and elongation at break and moisture content increased due to agglomeration of the fillers. Nevertheless, film transparency and water vapor permeability decreased with ONC incorporation. PMID:27349890

  1. Functional properties of whey proteins microparticulated at low pH.

    PubMed

    Dissanayake, M; Liyanaarachchi, S; Vasiljevic, T

    2012-04-01

    The main aim of the study was to assess the effect of microparticulation at low pH on the functionality of heat-denatured whey proteins (WP). Spray-dried, microparticulated WP (MWP) powders were produced from 7% (wt/wt) WP dispersions at pH 3, acidified with citric or lactic acid, and microfluidized with or without heat denaturation. Nonmicroparticulated, spray-dried powders produced at neutral pH or pH 3 served as controls. The powders were examined for their functional and physicochemical properties. Denatured MWP had an approximately 2 orders of magnitude reduction in particle size compared with those produced at neutral pH, with high colloidal stability indicated by substantially improved solubility. The detection of monomeric forms of WP in PAGE also confirmed the particle size reduction. Microparticulated WP exhibited enhanced heat stability, as indicated by thermograms, along with better emulsifying properties compared with those produced at neutral pH. However, MWP powders created weaker heat-induced gels at neutral pH compared with controls. However, they created comparatively strong cold acid-set gels. At low pH, a combination of heat and high hydrodynamic pressure produced WP micro-aggregates with improved colloidal stability that affects other functionalities. PMID:22459815

  2. Studies on the application of temperature-responsive ion exchange polymers with whey proteins.

    PubMed

    Maharjan, Pankaj; Campi, Eva M; De Silva, Kirthi; Woonton, Brad W; Jackson, W Roy; Hearn, Milton T W

    2016-03-18

    Several new types of temperature-responsive ion exchange resins of different polymer composition have been prepared by grafting the products from the co-polymerisation of N-phenylacrylamide, N-iso-propylacrylamide and acrylic acid derivatives onto cross-linked agarose. Analysis of the binding isotherms for these different resins obtained under batch adsorption conditions indicated that the resin based on N-iso-propylacrylamide containing 5% (w/w) N-phenylacrylamide and 5% (w/w) acrylic acid resulted in the highest adsorption capacity, Bmax, for the whey protein, bovine lactoferrin, e.g. 14 mg bovine lactoferrin/mL resin at 4 °C and 62 mg bovine lactoferrin/mL resin at 40 °C, respectively. Under dynamic loading conditions at 40 °C, 94% of the loaded bovine lactoferrin on a normalised mg protein per mL resin basis was adsorbed by this new temperature-responsive ion-exchanger, and 76% was eluted by a single cycle temperature shift to 4 °C without varying the composition of the 10mM sodium dihydrogen phosphate buffer, pH 6.5, or the flow rate. The binding characteristics of these different ion exchange resins with bovine lactoferrin were also compared to results obtained using other resins based on N-isopropylacrylamide but contained N-tert-butylacrylamide rather than N-phenylacrylamide, where the corresponding dynamic capture and release properties for bovine lactoferrin required different temperature conditions of 20 °C and 50 °C, respectively for optimal desorption/adsorption. The cationic protein, bovine lactoperoxidase, was also adsorbed and desorbed with these temperature-responsive resins under similar conditions of changing temperature, whereas the anionic protein, bovine β-lactoglobulin, was not adsorbed under this regime of temperature conditions but instead eluted in the flow-through. PMID:26905884

  3. Effectiveness of esterified whey proteins fractions against Egyptian Lethal Avian Influenza A (H5N1)

    PubMed Central

    2010-01-01

    Background Avian influenza A (H5N1) virus is one of the most important public health concerns worldwide. The antiviral activity of native and esterified whey proteins fractions (α- lactalbumin, β- lactoglobulin, and lactoferrin) was evaluated against A/chicken/Egypt/086Q-NLQP/2008 HPAI (H5N1) strain of clade 2.2.1 (for multiplicity of infection (1 MOI) after 72 h of incubation at 37°C in the presence of 5% CO2) using MDCK cell lines. Result Both the native and esterified lactoferrin seem to be the most active antiviral protein among the tested samples, followed by β- lactoglobulin. α-Lactalbumin had less antiviral activity even after esterification. Conclusion Esterification of whey proteins fractions especially lactoferrin and β-lactoglobulin enhanced their antiviral activity against H5N1 in a concentration dependent manner. PMID:21092081

  4. Removal of milk fat globules from whey protein concentrate 34% to prepare clear and heat-stable protein dispersions.

    PubMed

    Liu, Gang; Zhong, Qixin

    2014-10-01

    Whey protein concentrates (WPC) are low-cost protein ingredients, but their application in transparent ready-to-drink beverages is limited due to turbidity caused by fat globules and heat instability. In this work, fat globules were removed from WPC 34% (WPC-34) to prepare heat-stable ingredients via the Maillard reaction. The removal of fat globules by acid precipitation and centrifugation was observed to be the most complete at pH 4.0, and the loss of protein was caused by micrometer-sized fat globules and protein aggregates. Spray-dried powder prepared from the transparent supernatant was glycated at 130°C for 20 and 30min or 60°C for 24 and 48h. The 2 groups of samples had comparable heat stability and degree of glycation, evaluated by free amino content and analytical ultracentrifugation, but high-temperature, short-time treatment reduced the color formation during glycation. Therefore, WPC-34 can be processed for application in transparent beverages. PMID:25108870

  5. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise

    PubMed Central

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-01-01

    Whey protein (WP) is characterized as a “fast” protein and caseinate (CA) as a “slow” protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p < 0.05) in FSR compared with SP at different times (WP, 60 min; MP, 90 and 120 min; CA, 120 min). Although statistical analysis could not be performed, the calculated the area under the curve (AUC) values for FSR following this trend were: MP, 534.61; CA, 498.22; WP, 473.46; and SP, 406.18. We conclude that ingestion of MP, CA or WP causes the initial peak time in muscle protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP. PMID:27271661

  6. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise.

    PubMed

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-01-01

    Whey protein (WP) is characterized as a "fast" protein and caseinate (CA) as a "slow" protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p < 0.05) in FSR compared with SP at different times (WP, 60 min; MP, 90 and 120 min; CA, 120 min). Although statistical analysis could not be performed, the calculated the area under the curve (AUC) values for FSR following this trend were: MP, 534.61; CA, 498.22; WP, 473.46; and SP, 406.18. We conclude that ingestion of MP, CA or WP causes the initial peak time in muscle protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP. PMID:27271661

  7. Fabrication and characterization of the nano-composite of whey protein hydrolysate chelated with calcium.

    PubMed

    Xixi, Cai; Lina, Zhao; Shaoyun, Wang; Pingfan, Rao

    2015-03-01

    The nano-composites of whey protein hydrolysate (WPH) chelated with calcium were fabricated in aqueous solution at 30 °C for 20 min, with the ratio of hydrolysate to calcium 15 : 1 (w/w). UV scanning spectroscopy, fluorescent spectroscopy, Fourier transform infrared spectroscopy, dynamic light scattering and atomic force microscopy were applied to characterize the structure of the WPH-calcium chelate. The nano-composites showed the successful incorporation of calcium into the WPH, indicating the interaction between calcium and WPH. The chelation of calcium ions to WPH caused molecular folding and aggregation which led to the formation of a WPH-calcium chelate of nanoparticle size, and the principal sites of calcium-binding corresponded to the carboxyl groups and carbonyl groups of WPH. The WPH-calcium chelate demonstrated excellent stability and absorbability under both acidic and basic conditions, which was beneficial for calcium absorption in the gastrointestinal tract of the human body. Moreover, the calcium absorption of the WPH-calcium chelate on Caco-2 cells was significantly higher than those of calcium gluconate and CaCl₂ in vitro, suggesting the possible increase in calcium bioavailability. The findings suggest that the WPH-calcium chelate has the potential in making dietary supplements for improving bone health of the human body. PMID:25588126

  8. Dietary whey protein lessens several risk factors for metabolic diseases: a review

    PubMed Central

    2012-01-01

    Obesity and type 2 diabetes mellitus (DM) have grown in prevalence around the world, and recently, related diseases have been considered epidemic. Given the high cost of treatment of obesity/DM-associated diseases, strategies such as dietary manipulation have been widely studied; among them, the whey protein diet has reached popularity because it has been suggested as a strategy for the prevention and treatment of obesity and DM in both humans and animals. Among its main actions, the following activities stand out: reduction of serum glucose in healthy individuals, impaired glucose tolerance in DM and obese patients; reduction in body weight; maintenance of muscle mass; increases in the release of anorectic hormones such as cholecystokinin, leptin, and glucagon like-peptide 1 (GLP-1); and a decrease in the orexigenic hormone ghrelin. Furthermore, studies have shown that whey protein can also lead to reductions in blood pressure, inflammation, and oxidative stress. PMID:22676328

  9. Whey Protein Hydrolysate Increases Translocation of GLUT-4 to the Plasma Membrane Independent of Insulin in Wistar Rats

    PubMed Central

    Morato, Priscila Neder; Lollo, Pablo Christiano Barboza; Moura, Carolina Soares; Batista, Thiago Martins; Camargo, Rafael Ludemann; Carneiro, Everardo Magalhães; Amaya-Farfan, Jaime

    2013-01-01

    Whey protein (WP) and whey protein hydrolysate (WPH) have the recognized capacity to increase glycogen stores. The objective of this study was to verify if consuming WP and WPH could also increase the concentration of the glucose transporters GLUT-1 and GLUT-4 in the plasma membrane (PM) of the muscle cells of sedentary and exercised animals. Forty-eight Wistar rats were divided into 6 groups (n = 8 per group), were treated and fed with experimental diets for 9 days as follows: a) control casein (CAS); b) WP; c) WPH; d) CAS exercised; e) WP exercised; and f) WPH exercised. After the experimental period, the animals were sacrificed, muscle GLUT-1 and GLUT-4, p85, Akt and phosphorylated Akt were analyzed by western blotting, and the glycogen, blood amino acids, insulin levels and biochemical health indicators were analyzed using standard methods. Consumption of WPH significantly increased the concentrations of GLUT-4 in the PM and glycogen, whereas the GLUT-1 and insulin levels and the health indicators showed no alterations. The physical exercise associated with consumption of WPH had favorable effects on glucose transport into muscle. These results should encourage new studies dealing with the potential of both WP and WPH for the treatment or prevention of type II diabetes, a disease in which there is reduced translocation of GLUT-4 to the plasma membrane. PMID:24023607

  10. Thermal Transitions and Extrusion of Glycerol-Plasticized Whey Protein Mixtures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of glycerol and moisture contents on the thermal transitions of whey protein isolate (WPI) powder-glycerol-water mixtures were studied. Mixtures with ratios of 100:0, 70:30, 60:40 and 50:50 WPI:glycerol on a dry basis (db) were pre-conditioned to 0.34+/-0.01 (25.4±0.4ºC) and 0.48+/-0.02...

  11. Rapid separation and quantification of major caseins and whey proteins of bovine milk by capillary electrophoresis.

    PubMed

    Vallejo-Cordoba, B

    1997-01-01

    A rapid capillary zone electrophoresis (CZE) method was established for separating and quantifying major casein and whey proteins in milk. Optimum sample preparation and electrophoretic conditions in a coated capillary maintained at 40 degrees C allowed accurate and reproducible quantification of milk proteins in a single analysis. Sample and run buffer allowed caseins to be maintained in solution by using a combination of urea and a nonionic detergent in phosphate buffer at pH 2.5. Quantitative CZE protein data were derived by calculating percentages and concentrations (mg/mL) of alpha-casein, beta-casein, alpha-lactalbumin, and beta-lactoglobulin. Calibration curves followed linear relationships with highly significant (p < 0.1) correlation coefficients. Relative standard deviations of less than 0.82 (%) for migration times and 2.18 (%) for percent protein indicated that the technique was reproducible. Electrophoretic protein profiles of fresh bovine milk and rehydrated dry milk showed marked quantitative differences in whey protein concentrations. Whey protein represented 12.37 +/- 0.07% beta-lactoglobulin and 3.05 +/- 0.08% alpha-lactalbumin of total protein in typical fresh milk, while only 1.90 +/- 0.16% beta-lactoglobulin and 0.86 +/- 0.04% alpha-lactalbumin of total protein were detected in a commercial rehydrated milk powder. By quantifying these differences, the established technique may allow the detection of substitution of fresh milk with rehydrated milk powder. The accuracy and reproducibility of the technique permitted the quantitation of individual protein concentrations in milk samples, which agreed with ranges reported in the literature. CZE may be well suited for routine use by dairies and regulatory agencies, since it allows the determination of milk proteins in less than 60 min. PMID:9725120

  12. Inhibition of Tomato Yellow Leaf Curl Virus (TYLCV) using whey proteins

    PubMed Central

    2010-01-01

    The antiviral activity of native and esterified whey proteins fractions (α-lactalbumin, β-lactoglobulin, and lactoferrin) was studied to inhibit tomato yellow leaf curl virus (TYLCV) on infected tomato plants. Whey proteins fractions and their esterified derivatives were sprayed into TYLCV-infected plants. Samples were collected from infected leaves before treatment, 7 and 15 days after treatment for DNA and molecular hybridization analysis. The most evident inhibition of virus replication was observed after 7 and 15 days using α-lactoferrin and α-lactalbumin, respectively. Native and esterified lactoferrin showed complete inhibition after 7 days. On the other hand, native β-lactoglobulin showed inhibition after 7 and 15 days whereas esterified β-lactoglobulin was comparatively more effective after 7 days. The relative amount of viral DNA was less affected by the esterified α-lactalbumin whereas native α-lactalbumin inhibited virus replication completely after 15 days. These results indicate that native or modified whey proteins fractions can be used for controlling the TYLCV-infected plants. PMID:20128897

  13. Kinetic modeling of lactic acid production from batch submerged fermentation of cheese whey

    SciTech Connect

    Tango, M.S.A.; Ghaly, A.E.

    1999-12-01

    A kinetic model for the production of lactic acid through batch submerged fermentation of cheese whey using Lactobacillus helveticus was developed. The model accounts for the effect of substrate limitation, substrate inhibition, lactic acid inhibition, maintenance energy and cell death on the cell growth, substrate utilization, and lactic acid production during the fermentation process. The model was evaluated using experimental data from Tango and Ghaly (1999). The predicted results obtained from the model compared well with experimental (R{sup 2} = 0.92--0.98). The model was also used to investigate the effect of the initial substrate concentration on the lag period, fermentation time, specific growth rate, and cell productivity during batch fermentation. The maximum specific growth rate ({micro}{sub m}), the saturation constant (K{sub S}), the substrate inhibition constant (K{sub IS}), and the lactic acid inhibition constant (K{sub IP}) were found to be 0.25h{sup {minus}1}, 0.9 g/L, 250.0 g/L, and 60.0 g/L, respectively. High initial lactose concentration in cheese whey reduced both the specific growth rate and substrate utilization rate due to the substrate inhibition phenomenon. The maximum lactic acid production occurred at about 100 g/L initial lactose concentration after 40 h of fermentation. The maximum lactic acid concentration above which Lactobacillus helveticus did not grow was found to be 80.0 g/L.

  14. Milk whey proteins and xanthan gum interactions in solution and at the air-water interface: a rheokinetic study.

    PubMed

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2010-11-01

    In this contribution, we present experimental information about the effect of xanthan gum (XG) on the adsorption behaviour of two milk whey protein samples (MWP), beta-lactoglobulin (beta-LG) and whey protein concentrate (WPC), at the air-water interface. The MWP concentration studied corresponded to the protein bulk concentration which is able to saturate the air-water interface (1.0 wt%). Temperature, pH and ionic strength of aqueous systems were kept constant at 20 degrees C, pH 7 and 0.05 M, respectively, while the XG bulk concentration varied in the range 0.00-0.25 wt%. Biopolymer interactions in solution were analyzed by extrinsic fluorescence spectroscopy using 1-anilino-8-naphtalene sulphonic acid (ANS) as a protein fluorescence probe. Interfacial biopolymer interactions were evaluated by dynamic tensiometry and surface dilatational rheology. Adsorption behaviour was discussed from a rheokinetic point of view in terms of molecular diffusion, penetration and conformational rearrangement of adsorbed protein residues at the air-water interface. Differences in the interaction magnitude, both in solution and at the interface vicinity, and in the adsorption rheokinetic parameters were observed in MWP/XG mixed systems depending on the protein type (beta-LG or WPC) and biopolymer relative concentration. beta-LG adsorption in XG presence could be promoted by mechanisms based on biopolymer segregative interactions and thermodynamic incompatibility in the interface vicinity, resulting in better surface and viscoelastic properties. The same mechanism could be responsible of WPC interfacial adsorption in the presence of XG. The interfacial functionality of WPC was improved by the synergistic interactions with XG, although WPC chemical complexity might complicate the elucidation of molecular events that govern adsorption dynamics of WPC/XG mixed systems at the air-water interface. PMID:20692133

  15. Sensing Small Changes in Protein Abundance: Stimulation of Caco-2 Cells by Human Whey Proteins.

    PubMed

    Cundiff, Judy K; McConnell, Elizabeth J; Lohe, Kimberly J; Maria, Sarah D; McMahon, Robert J; Zhang, Qiang

    2016-01-01

    Mass spectrometry (MS)-based proteomic approaches have largely facilitated our systemic understanding of cellular processes and biological functions. Cutoffs in protein expression fold changes (FCs) are often arbitrarily determined in MS-based quantification with no demonstrable determination of small magnitude changes in protein expression. Therefore, many biological insights may remain veiled due to high FC cutoffs. Herein, we employ the intestinal epithelial cell (IEC) line Caco-2 as a model system to demonstrate the dynamicity of tandem-mass-tag (TMT) labeling over a range of 5-40% changes in protein abundance, with the variance controls of ± 5% FC for around 95% of TMT ratios when sampling 9-12 biological replicates. We further applied this procedure to examine the temporal proteome of Caco-2 cells upon exposure to human whey proteins (WP). Pathway assessments predict subtle effects due to WP in moderating xenobiotic metabolism, promoting proliferation and various other cellular functions in differentiating enterocyte-like Caco-2 cells. This demonstration of a sensitive MS approach may open up new perspectives in the system-wide exploration of elusive or transient biological effects by facilitating scrutiny of narrow windows of proteome abundance changes. Furthermore, we anticipate this study will encourage more investigations of WP on infant gastrointestinal tract development. PMID:26586228

  16. Incorporation of radiolabeled whey proteins into casein micelles by heat processing

    SciTech Connect

    Noh, B.; Richardson, T. )

    1989-07-01

    Skim milk was heated at .70, 95, and 140{degree}C to simulate the processes of pasteurization, forewarming, and UHT sterilization, and the specific interactions between {alpha}-lactalbumin or {beta}-lactoglobulin and the caseins studied using tracer amounts of added {sup 14}C-labeled whey protein. Radioactivities of the whey and of the washed casein pellets from renneted skim milk were measured and the extent of the interaction estimated. Upon heating skim milk at 70{degree}C for 45 s, less than 2% {beta}-lactoglobulin and less than .3% {alpha}-lactalbumin were incorporated into the curd. Heating at 95{degree}C for .5 to 20 min resulted in 58 to 85% of the {beta}-lactoglobulin and 8 to 55% of the {alpha}-lactalbumin becoming associated with the curd. Heating at 140{degree}C for 2 and 4 s caused 43 and 54% of the {beta}-lactoglobulin and 9 and 12% of the {alpha}-lactalbumin, respectively, to be bound to the curd fraction. The radiolabeling technique is very sensitive and useful for tracing low levels of interaction between whey proteins and casein in heated milk systems.

  17. Free and immobilized Lactobacillus casei ATCC 393 on whey protein as starter cultures for probiotic Feta-type cheese production.

    PubMed

    Dimitrellou, Dimitra; Kandylis, Panagiotis; Sidira, Marianthi; Koutinas, Athanasios A; Kourkoutas, Yiannis

    2014-01-01

    The use of free and immobilized Lactobacillus casei ATCC 393 on whey protein as starter culture in probiotic Feta-type cheese production was evaluated. The probiotic cultures resulted in significantly higher acidity; lower pH; reduced counts of coliforms, enterobacteria, and staphylococci; and improved quality characteristics compared with cheese with no culture. Microbiological and strain-specific multiplex PCR analysis showed that both free and immobilized L. casei ATCC 393 were detected in the novel products at levels required for conferring a probiotic effect at the end of the ripening. The effect of starter culture on production of volatile compounds was investigated by the solid-phase microextraction gas chromatography-mass spectrometry analysis technique. The immobilized cells resulted in an improved profile of aroma-related compounds and the overall high quality of the novel products was ascertained by the preliminary sensory test. Finally, the high added value produced by exploitation of whey, which is an extremely polluting industrial waste, was highlighted and assessed. PMID:24931523

  18. Functional properties of whey protein and its application in nanocomposite materials and functional foods

    NASA Astrophysics Data System (ADS)

    Walsh, Helen

    Whey is a byproduct of cheese making; whey proteins are globular proteins which can be modified and polymerized to add functional benefits, these benefits can be both nutritional and structural in foods. Modified proteins can be used in non-foods, being of particular interest in polymer films and coatings. Food packaging materials, including plastics, can linings, interior coatings of paper containers, and beverage cap sealing materials, are generally made of synthetic petroleum based compounds. These synthetic materials may pose a potential human health risk due to presence of certain chemicals such as Bisphenol A (BPA). They also add to environmental pollution, being difficult to degrade. Protein-based materials do not have the same issues as synthetics and so can be used as alternatives in many packaging types. As proteins are generally hydrophilic they must be modified structurally and their performance enhanced by the addition of waterproofing agents. Polymerization of whey proteins results in a network, adding both strength and flexibility. The most interesting of the food-safe waterproofing agents are the (large aspect ratio) nanoclays. Nanoclays are relatively inexpensive, widely available and have low environmental impact. The clay surface can be modified to make it organophilic and so compatible with organic polymers. The objective of this study is the use of polymerized whey protein (PWP), with reinforcing nanoclays, to produce flexible surface coatings which limit the transfer of contents while maintaining food safety. Four smectite and kaolin type clays, one treated and three natural were assessed for strengthening qualities and the potential waterproofing and plasticizing benefits of other additives were also analyzed. The nutritional benefits of whey proteins can also be used to enhance the protein content of various foodstuffs. Drinkable yogurt is a popular beverage in the US and other countries and is considered a functional food, especially when

  19. Feeding strategies for enhanced lactobionic acid production from whey by Pseudomonas taetrolens.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2013-04-01

    High-level production of lactobionic acid from whey by Pseudomonas taetrolens under fed-batch fermentation was achieved in this study. Different feeding strategies were evaluated according to the physiological status and fermentation performance of P. taetrolens. A lactobionic acid titer of 164 g/L was obtained under co-feeding conditions affording specific and volumetric productivities of 1.4 g/g h and 2.05 g/L h, respectively. Flow cytometry assessment revealed that P. taetrolens cells exhibited a robust physiological status, which makes them particularly well-suited for employing concentrated nutrient solutions to further prolong the growth and production phases. Such detailed knowledge of the physiological status has been revealed to be a key issue to further support the development of high-yield lactobionic acid production processes under feeding strategies. The present study has demonstrated the feasibility of P. taetrolens to achieve high-level bio-production of lactobionic acid from whey through fed-batch cultivation, suggesting its major potential for industrial-scale implementation. PMID:23500570

  20. Effect of hydrolyzed whey protein on surface morphology, water sorption, and glass transition temperature of a model infant formula.

    PubMed

    Kelly, Grace M; O'Mahony, James A; Kelly, Alan L; O'Callaghan, Donal J

    2016-09-01

    Physical properties of spray-dried dairy powders depend on their composition and physical characteristics. This study investigated the effect of hydrolyzed whey protein on the microstructure and physical stability of dried model infant formula. Model infant formulas were produced containing either intact (DH 0) or hydrolyzed (DH 12) whey protein, where DH=degree of hydrolysis (%). Before spray drying, apparent viscosities of liquid feeds (at 55°C) at a shear rate of 500 s(-1) were 3.02 and 3.85 mPa·s for intact and hydrolyzed infant formulas, respectively. On reconstitution, powders with hydrolyzed whey protein had a significantly higher fat globule size and lower emulsion stability than intact whey protein powder. Lactose crystallization in powders occurred at higher relative humidity for hydrolyzed formula. The Guggenheim-Anderson-de Boer equation, fitted to sorption isotherms, showed increased monolayer moisture when intact protein was present. As expected, glass transition decreased significantly with increasing water content. Partial hydrolysis of whey protein in model infant formula resulted in altered powder particle surface morphology, lactose crystallization properties, and storage stability. PMID:27320674

  1. Whey protein supplementation does not alter plasma branched-chained amino acid profiles but results in unique metabolomics patterns in obese women enrolled in an 8-week weight loss trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: It has been suggested that perturbations in branched-chain amino acid (BCAA) catabolism are associated with insulin resistance and contribute to elevated systemic BCAAs. Evidence in rodents suggests dietary protein rich in BCAAs can increase BCAA catabolism, but there is limited evidence...

  2. Hydrolysis of whey protein isolate with Bacillus licheniformis protease: aggregating capacities of peptide fractions.

    PubMed

    Creusot, Nathalie; Gruppen, Harry

    2008-11-12

    In a previous study, peptides aggregating at pH 7.0 derived from a whey protein hydrolysate made with Bacillus licheniformis protease were fractionated and identified. The objective of the present work was to investigate the solubility of the fractionated aggregating peptides, as a function of concentration, and their aggregating capacities toward added intact proteins. The amount of aggregated material and the composition of the aggregates obtained were measured by nitrogen concentration and size exclusion chromatography, respectively. The results showed that of the four fractions obtained from the aggregating peptides, two were insoluble, while the other two consisted of 1:1 mixture of low and high solubility peptides. Therefore, insoluble peptides coaggregated, assumedly via hydrophobic interactions, other relatively more soluble peptides. It was also shown that aggregating peptides could aggregate intact protein nonspecifically since the same peptides were involved in the aggregation of whey proteins, beta-casein, and bovine serum albumin. Both insoluble and partly insoluble peptides were required for the aggregation of intact protein. These results are of interest for the applications of protein hydrolysates, as mixtures of intact protein and peptides are often present in these applications. PMID:18922012

  3. Capillary zone electrophoresis for fatty acids with chemometrics for the determination of milk adulteration by whey addition.

    PubMed

    de Oliveira Mendes, Thiago; Porto, Brenda Lee Simas; Bell, Maria José Valenzuela; Perrone, Ítalo Tuler; de Oliveira, Marcone Augusto Leal

    2016-12-15

    Adulteration of milk with whey is difficult to detect because these two have similar physical and chemical characteristics. The traditional methodologies to monitor this fraud are based on the analysis of caseinomacropeptide. The present study proposes a new approach to detect and quantify this fraud using the fatty acid profiles of milk and whey. Fatty acids C14:0, C16:0, C18:0, C18:1, C18:2 and C18:3 were selected by gas chromatography associated with discriminant analysis to differentiate milk and whey, as they are present in quite different amounts. These six fatty acids were quantified within a short time by capillary zone electrophoresis in a set of adulterated milk samples. The correlation coefficient between the true values of whey addition and the experimental values obtained by this technique was 0.973. The technique is thus useful for the evaluation of milk adulteration with whey, contributing to the quality control of milk in the dairy industry. PMID:27451230

  4. Whey cheese: membrane technology to increase yields.

    PubMed

    Riera, Francisco; González, Pablo; Muro, Claudia

    2016-02-01

    Sweet cheese whey has been used to obtain whey cheese without the addition of milk. Pre-treated whey was concentrated by nanofiltration (NF) at different concentration ratios (2, 2.5 and 2.8) or by reverse osmosis (RO) (2-3 times). After the concentration, whey was acidified with lactic acid until a final pH of 4.6-4.8, and heated to temperatures between 85 and 90 °C. The coagulated fraction (supernatant) was collected and freely drained over 4 h. The cheese-whey yield and protein, fat, lactose and ash recoveries in the final product were calculated. The membrane pre-concentration step caused an increase in the whey-cheese yield. The final composition of products was compared with traditional cheese-whey manufacture products (without membrane concentration). Final cheese yields found were to be between 5 and 19.6%, which are higher than those achieved using the traditional 'Requesón' process. PMID:26869115

  5. FTIR Examination Of Thermal Denaturation And Gel-Formation In Whey Proteins

    NASA Astrophysics Data System (ADS)

    Byler, D. M.; Purcell, James M.

    1989-12-01

    Second derivative Fourier-transform infrared [DR2-FTIR] spectra of β-lactoglobulin [RIG], serum albumin [BSA], and a-lactalbumin [aLA], three proteins found in bovine whey, are markedly different before and after thermal denaturation. In no case, however, do the heat-treated proteins unfold as completely as does alkaline-denatured RLG [1]. The spectra also suggest that, for RLG and BSA, formation of intermolecularly hydrogen-bonded (β-strands precedes the onset of heat-induced gelation.

  6. Whey Texturization for Snacks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion processing is used to modify the physical texture (texturization) of whey proteins, expanding their potential use in snack foods. Texturization changes the globular folding of proteins improving their interaction with other ingredients, and is the basis for creating new whey enriched snack...

  7. Modulatory effect of whey proteins in some cytokines involved in wound healing in male diabetic albino rats.

    PubMed

    Abdel-Salam, Bahaa Kenawy Abuel-Hussien

    2014-10-01

    The anti-inflammatory cytokines (interleukin (IL)-4 and IL-10) and the pro-inflammatory cytokines (IL-1β, IL-6, and tumor necroses factor-alpha (TNF-α)) have important functions in wound healing. Thus, the aim of this study was to determine whether dietary supplementation with whey protein could enhance normal inflammatory responses during wound healing in diabetic rats. In this study, male albino rats were divided into a wounded control group, a wounded diabetic group, and a wounded diabetic group supplemented with whey protein orally at a dose of 100 mg/kg body weight. Tested rats showed increasing wound closure in rats treated with whey protein. In addition, after 4 days of wound, modulation in IL-4, IL-10, IL-1β, IL-6, and TNF-α levels were detected. Statistical analysis of data showed significant difference between the whey-protein-treated group and either control or diabetic groups (P < 0.05). Dietary supplementation with whey protein enhances the normal inflammatory responses during wound healing in diabetic rats by modulating the levels of some anti-inflammatory and inflammatory cytokines. PMID:24760706

  8. High whey protein intake delayed the loss of lean body mass in healthy old rats, whereas protein type and polyphenol/antioxidant supplementation had no effects.

    PubMed

    Mosoni, Laurent; Gatineau, Eva; Gatellier, Philippe; Migné, Carole; Savary-Auzeloux, Isabelle; Rémond, Didier; Rocher, Emilie; Dardevet, Dominique

    2014-01-01

    Our aim was to compare and combine 3 nutritional strategies to slow down the age-related loss of muscle mass in healthy old rats: 1) increase protein intake, which is likely to stimulate muscle protein anabolism; 2) use leucine rich, rapidly digested whey proteins as protein source (whey proteins are recognized as the most effective proteins to stimulate muscle protein anabolism). 3) Supplement animals with a mixture of chamomile extract, vitamin E, vitamin D (reducing inflammation and oxidative stress is also effective to improve muscle anabolism). Such comparisons and combinations were never tested before. Nutritional groups were: casein 12% protein, whey 12% protein, whey 18% protein and each of these groups were supplemented or not with polyphenols/antioxidants. During 6 months, we followed changes of weight, food intake, inflammation (plasma fibrinogen and alpha-2-macroglobulin) and body composition (DXA). After 6 months, we measured muscle mass, in vivo and ex-vivo fed and post-absorptive muscle protein synthesis, ex-vivo muscle proteolysis, and oxidative stress parameters (liver and muscle glutathione, SOD and total antioxidant activities, muscle carbonyls and TBARS). We showed that although micronutrient supplementation reduced inflammation and oxidative stress, the only factor that significantly reduced the loss of lean body mass was the increase in whey protein intake, with no detectable effect on muscle protein synthesis, and a tendency to reduce muscle proteolysis. We conclude that in healthy rats, increasing protein intake is an effective way to delay sarcopenia. PMID:25268515

  9. High Whey Protein Intake Delayed the Loss of Lean Body Mass in Healthy Old Rats, whereas Protein Type and Polyphenol/Antioxidant Supplementation Had No Effects

    PubMed Central

    Mosoni, Laurent; Gatineau, Eva; Gatellier, Philippe; Migné, Carole; Savary-Auzeloux, Isabelle; Rémond, Didier; Rocher, Emilie; Dardevet, Dominique

    2014-01-01

    Our aim was to compare and combine 3 nutritional strategies to slow down the age-related loss of muscle mass in healthy old rats: 1) increase protein intake, which is likely to stimulate muscle protein anabolism; 2) use leucine rich, rapidly digested whey proteins as protein source (whey proteins are recognized as the most effective proteins to stimulate muscle protein anabolism). 3) Supplement animals with a mixture of chamomile extract, vitamin E, vitamin D (reducing inflammation and oxidative stress is also effective to improve muscle anabolism). Such comparisons and combinations were never tested before. Nutritional groups were: casein 12% protein, whey 12% protein, whey 18% protein and each of these groups were supplemented or not with polyphenols/antioxidants. During 6 months, we followed changes of weight, food intake, inflammation (plasma fibrinogen and alpha-2-macroglobulin) and body composition (DXA). After 6 months, we measured muscle mass, in vivo and ex-vivo fed and post-absorptive muscle protein synthesis, ex-vivo muscle proteolysis, and oxidative stress parameters (liver and muscle glutathione, SOD and total antioxidant activities, muscle carbonyls and TBARS). We showed that although micronutrient supplementation reduced inflammation and oxidative stress, the only factor that significantly reduced the loss of lean body mass was the increase in whey protein intake, with no detectable effect on muscle protein synthesis, and a tendency to reduce muscle proteolysis. We conclude that in healthy rats, increasing protein intake is an effective way to delay sarcopenia. PMID:25268515

  10. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    PubMed

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety. PMID:26987021

  11. Novel peptide with a specific calcium-binding capacity from whey protein hydrolysate and the possible chelating mode.

    PubMed

    Zhao, Lina; Huang, Qimin; Huang, Shunli; Lin, Jiaping; Wang, Shaoyun; Huang, Yifan; Hong, Jing; Rao, Pingfan

    2014-10-22

    A novel peptide with a specific calcium-binding capacity was isolated from whey protein hydrolysates. The isolation procedures included diethylaminoethyl (DEAE) anion-exchange chromatography, Sephadex G-25 gel filtration, and reversed-phase high-performance liquid chromatography (HPLC). A peptide with a molecular mass of 237.99 Da was identified by liquid chromatography-electrospray ionization/mass spectrometry (LC-ESI/MS), and its amino acid sequence was confirmed to be Gly-Tyr. The calcium-binding capacity of Gly-Tyr reached 75.38 μg/mg, increasing by 122% when compared to the hydrolysate complex. The chelating interaction mode between the Gly-Tyr and calcium ion was investigated, indicating that the major binding sites included the oxygen atom of the carbonyl group and nitrogen of the amino or imino group. The folding and structural modification of the peptide arose along with the addition of the calcium ion. The profile of (1)H nuclear magnetic resonance (NMR) spectroscopy demonstrated that the electron cloud density around the hydrogen nucleus in the peptide changed was caused by the calcium ion. The results of ζ potential showed that the Gly-Tyr-Ca chelate was a neutral molecule in which the calcium ion was surrounded by the specific binding sites of the peptide. Moreover, thermogravimetry-differential scanning calorimetry (TG-DSC) and calcium-releasing assay revealed that the Gly-Tyr-Ca chelate exerted excellent thermal stability and solubility in both acidic and basic conditions, which were beneficial to calcium absorption in the gastrointestinal tract of the human body and, therefore, improved its bioavailability. These findings further the progress in the research of whey protein, suggesting the potential in making peptide-calcium chelate as a dietary supplement. PMID:25265391

  12. Efficacy of whey protein supplementation on resistance exercise-induced changes in muscle strength, lean mass, and function in mobility-limited older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey protein supplementation may augment resistance exercise-induced increases in muscle strength and mass. Further studies are required to determine whether this effect extends to functionally compromised older adults. The objectives of the study were to compare the effects of whey protein concent...

  13. Amaltheys: A fluorescence-based analyzer to assess cheese milk denatured whey proteins.

    PubMed

    Lacotte, Pierre; Gomez, Franck; Bardeau, Floriane; Muller, Sabine; Acharid, Abdelhaq; Quervel, Xavier; Trossat, Philippe; Birlouez-Aragon, Inès

    2015-10-01

    The cheese industry faces many challenges to optimize cheese yield and quality. A very precise standardization of the cheese milk is needed, which is achieved by a fine control of the process and milk composition. Thorough analysis of protein composition is important to determine the amount of protein that will be retained in the curd or lost in the whey. The fluorescence-based Amaltheys analyzer (Spectralys Innovation, Romainville, France) was developed to assess pH 4.6-soluble heat-sensitive whey proteins (sWP*) in 5 min. These proteins are those that can be denatured upon heat-treatment and further retained in the curd after coagulation. Monitoring of sWP* in milk and subsequent adaptation of the process is a reliable solution to achieve stable cheese yield and quality. Performance of the method was evaluated by an accredited laboratory on a 0 to 7 g/L range. Accuracy compared with the reference Kjeldahl method is also provided with a standard error of 0.25 g/L. Finally, a 4-mo industrial trial in a cheese plant is described, where Amaltheys was used as a process analytical technology to monitor sWP* content in ingredients and final cheese milk. Calibration models over quality parameters of final cheese were also built from near-infrared and fluorescence spectroscopic data. The Amaltheys analyzer was found to be a rapid, compact, and accurate device to help implementation of standardization procedures in the dairy industry. PMID:26210276

  14. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity.

    PubMed

    Tunick, Michael H; Thomas-Gahring, Audrey; Van Hekken, Diane L; Iandola, Susan K; Singh, Mukti; Qi, Phoebe X; Ukuku, Dike O; Mukhopadhyay, Sudarsan; Onwulata, Charles I; Tomasula, Peggy M

    2016-03-01

    In a case study, we monitored the physical properties of 2 batches of whey protein concentrate (WPC) under adverse storage conditions to provide information on shelf life in hot, humid areas. Whey protein concentrates with 34.9 g of protein/100g (WPC34) and 76.8 g of protein/100g (WPC80) were stored for up to 18 mo under ambient conditions and at elevated temperature and relative humidity. The samples became yellower with storage; those stored at 35 °C were removed from the study by 12 mo because of their unsatisfactory appearance. Decreases in lysine and increases in water activity, volatile compound formation, and powder caking values were observed in many specimens. Levels of aerobic mesophilic bacteria, coliforms, yeast, and mold were <3.85 log10 cfu/g in all samples. Relative humidity was not a factor in most samples. When stored in sealed bags, these samples of WPC34 and WPC80 had a shelf life of 9 mo at 35 °C but at least 18 mo at lower temperatures, which should extend the market for these products. PMID:26778305

  15. Monte Carlo simulations of flexible polyanions complexing with whey proteins at their isoelectric point

    NASA Astrophysics Data System (ADS)

    de Vries, R.

    2004-02-01

    Electrostatic complexation of flexible polyanions with the whey proteins α-lactalbumin and β-lactoglobulin is studied using Monte Carlo simulations. The proteins are considered at their respective isoelectric points. Discrete charges on the model polyelectrolytes and proteins interact through Debye-Hückel potentials. Protein excluded volume is taken into account through a coarse-grained model of the protein shape. Consistent with experimental results, it is found that α-lactalbumin complexes much more strongly than β-lactoglobulin. For α-lactalbumin, strong complexation is due to localized binding to a single large positive "charge patch," whereas for β-lactoglobulin, weak complexation is due to diffuse binding to multiple smaller charge patches.

  16. Macromolecular crowding conditions enhance glycation and oxidation of whey proteins in ultrasound-induced Maillard reaction.

    PubMed

    Perusko, Marija; Al-Hanish, Ayah; Cirkovic Velickovic, Tanja; Stanic-Vucinic, Dragana

    2015-06-15

    High intensity ultrasound (HIUS) can promote Maillard reaction (MR). Macromolecular crowding conditions accelerate reactions and stabilise protein structure. The aim of this study was to investigate if combined application of ultrasound and macromolecular crowding can improve efficiency of MR. The presence of crowding agent (polyethylene glycol) significantly increased ultrasound-induced whey protein (WP) glycation by arabinose. An increase in glycation efficiency results only in slight change of WP structure. Macromolecular crowding intensifies oxidative modifications of WP, as well as formation of amyloid-like structures by enhancement of MR. Solubility at different pH, thermal stability and antioxidative capacity of glycated WP were increased, especially in the presence of crowding agent, compared to sonicated nonglycated proteins. The application of HIUS under crowding conditions can be a new approach for enhancement of reactions in general, enabling short processing time and mild conditions, while preserving protein structure and minimising protein aggregation. PMID:25660883

  17. Continuous protein recovery from whey using liquid-solid circulating fluidized bed ion-exchange extraction.

    PubMed

    Lan, Qingdao; Bassi, Amarjeet; Zhu, Jing-Xu Jesse; Margaritis, Argyrios

    2002-04-20

    A liquid-solid circulating fluidized bed (LSCFB) continuous ion-exchange extraction system has been investigated for total protein recovery from whey solutions under various operating conditions. The effectiveness of a dynamic seal was evaluated between the riser and the downcomer, and the best conditions for the establishment of this seal were established. Start-up studies indicated that the system is robust and stable. Under optimal conditions, a productivity of 8.2 g of total protein removed per hour per kilogram of resin was achieved with a protein removal efficiency of 78.4%. However, higher overall protein recovery of up to 90% was also achieved under other conditions, with lower protein concentration in the effluent and a lower overall productivity. PMID:11870606

  18. Short communication: Potential of Fresco-style cheese whey as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme inhibitory activities.

    PubMed

    Tarango-Hernández, S; Alarcón-Rojo, A D; Robles-Sánchez, M; Gutiérrez-Méndez, N; Rodríguez-Figueroa, J C

    2015-11-01

    Recently, traditional Mexican Fresco-style cheese production has been increasing, and the volume of cheese whey generated represents a problem. In this study, we investigated the chemical composition of Fresco-style cheese wheys and their potential as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme (ACE)-inhibitory activities. Three samples from Fresco, Panela, and Ranchero cheeses whey were physicochemically characterized. Water-soluble extracts were fractionated to obtain whey fractions with different molecular weights: 10-5, 5-3, 3-1 and <1 kDa. The results indicated differences in the lactose, protein, ash, and dry matter contents (% wt/wt) in the different Fresco-style cheese wheys. All whey fractions had antioxidant and ACE-inhibitory activities. The 10-5 kDa whey fraction of Ranchero cheese had the highest Trolox equivalent antioxidant capacity (0.62 ± 0.00 mM), and the 3-1 kDa Panela and Fresco cheese whey fractions showed the highest ACE-inhibitory activity (0.57 ± 0.02 and 0.59 ± 0.04 μg/mL 50%-inhibitory concentration values, respectively). These results suggest that Fresco-style cheese wheys may be a source of protein fractions with bioactivity, and thus could be useful ingredients in the manufacture of functional foods with increased nutritional value. PMID:26364114

  19. Application of Kevin-Voigt Model in Quantifying Whey Protein Adsorption on Polyethersulfone Using QCM-D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study of protein adsorption on the membrane surface is of great importance to cheese-making processors that use polymeric membrane-based processes to recover whey protein from the process waste streams. Quartz crystal microbalance with dissipation (QCM-D) is a lab-scale, fast analytical techniq...

  20. Whey drying on porous carriers

    SciTech Connect

    Mitura, E.; Kaminski, W.

    1996-05-01

    Whey is treated very often as a waste which pollutes the natural environment. Whey which is a valuable source of protein, lacrose, vitamins and mineral salts should be utilized completely. The present paper is a proposal of whey drying on porous carriers. It is proved experimentally that the proposed drying method guarantees good product quality.

  1. UTILIZATION OF CHEESE WHEY FOR WINE PRODUCTION

    EPA Science Inventory

    Wine was successfully produced in the laboratory from cheese whey. The method used involves the deproteinization of either sweet (cheddar cheese) whey or acid (cottage cheese) whey by heat or ultrafiltration, the addition of sulfur dioxide to stabilize the whey by Kruyveromyces f...

  2. Potential sources of mouth drying in beverages fortified with dairy proteins: A comparison of casein- and whey-rich ingredients.

    PubMed

    Withers, C A; Lewis, M J; Gosney, M A; Methven, L

    2014-03-01

    Oral nutritional supplement drinks (ONS) are beverages high in dairy proteins that are prescribed to individuals at risk of malnutrition. Consumption of ONS is poor in elderly care facilities, with patients commenting that the sensory attributes of these drinks reduce their enjoyment and willingness to consume. Mouth drying is an attribute of ONS found to build with repeated consumption, which may further limit liking of these products. This study investigated the sources of drying sensations by sequential profiling, with a trained sensory panel rating a range of model milk systems and ONS over repeated sips and during after-effects. Sequential profiling found that fortification of milk with both caseinate and whey protein concentrate significantly increased the perception of mouth drying over repeated consumption, increasing by between 35 and 85% over consumption of 40mL. Enrichment of ONS with either whey protein concentrate or milk protein concentrate to a total protein content of 8.7% (wt/wt) resulted in whey and casein levels of 4.3:4.4% and 1.7:7.0% respectively. The product higher in whey protein was substantially more mouth drying, implying that whey proteins may be the most important contributor to mouth drying in ONS. However, efforts to mask mouth drying of protein-fortified milk by increasing sweetness or fat level were unsuccessful at the levels tested. Increasing the viscosity of protein-fortified milk led to a small but significant reduction in mouth drying. However, this approach was not successful when tested within complete ONS. Further analysis is required into the mechanism of protein-derived mouth drying to mask negative sensations and improve the enjoyment and consumption of protein-rich ONS. PMID:24440265

  3. Composition and functionality of whey protein phospholipid concentrate and delactosed permeate.

    PubMed

    Levin, M A; Burrington, K J; Hartel, R W

    2016-09-01

    Whey protein phospholipid concentrate (WPPC) and delactosed permeate (DLP) are 2 coproducts of cheese whey processing that are currently underused. Past research has shown that WPPC and DLP can be used together as a functional dairy ingredient in foods such as ice cream, soup, and caramel. However, the scope of the research has been limited to 1 WPPC supplier. The objective of this research was to fully characterize a range of WPPC. Four WPPC samples and 1 DLP sample were analyzed for chemical composition and functionality. This analysis showed that WPPC composition was highly variable between suppliers and lots. In addition, the functionality of the WPPC varies depending on the supplier and testing pH, and cannot be correlated with fat or protein content because of differences in processing. The addition of DLP to WPPC affects functionality. In general, WPPC has a high water-holding capacity, is relatively heat stable, has low foamability, and does not aid in emulsion stability. The gel strength and texture are highly dependent on the amount of protein. To be able to use these 2 dairy products, the composition and functionality must be fully understood. PMID:27394941

  4. Non-wheat pasta based on pearl millet flour containing barley and whey protein concentrate.

    PubMed

    Yadav, Deep N; Balasubramanian, S; Kaur, Jaspreet; Anand, Tanupriya; Singh, Ashish K

    2014-10-01

    Non-wheat pasta was prepared with pearl millet supplemented with 10-30 % barley flour, 5-15 % whey protein concentrate, 2.5-4 % carboxy methyl cellulose and 27-33 % water using response surface methodology (RSM) following central composite rotatable design (CCRD). Results showed that barley flour and whey protein concentrate (WPC) had significant (p ≤ 0.05) positive effect on lightness and negative effect on stickiness of pasta, thus improved the overall acceptability (OAA). Carboxymethyl cellulose (CMC) improved the textural attributes i.e. increased firmness and decreased stickiness significantly (P ≤ 0.05) and caused a significant (P ≤ 0.05) reduction in solids losses in gruel. Based upon the experiments, the optimized level of ingredients were barley flour 13.80 g 100 g(-1) pearl millet flour (PMF), WPC 12.27 g 100 g(-1) PMF, CMC 3.45 g 100 g(-1) PMF and water 27.6 mL 100 g(-1) ingredients premix with 88 % desirability. The developed pasta had protein 16.47 g, calcium 98.53 mg, iron 5.43 mg, phosphorus 315.5 mg and β-glucan 0.33 g 100 g(-1) pasta (db). PMID:25328200

  5. Microencapsulation of Lactobacillus plantarum MTCC 5422 in fructooligosaccharide and whey protein wall systems and its impact on noodle quality.

    PubMed

    Rajam, R; Kumar, S Bharath; Prabhasankar, P; Anandharamakrishnan, C

    2015-07-01

    Noodles are staple cereal food in many countries; however addition of encapsulated probiotics into noodle formulation, its effect on noodle quality and cell viability has not yet been reported. The aim of this study was to prepare microencapsulated Lactobacillus plantarum (MTCC 5422) by freeze drying with wall material combinations such as fructooligosaccharide (FOS), FOS + whey protein isolate (WPI), and FOS + denatured whey protein isolate (DWPI) to evaluate best wall system. Results showed that FOS + DWPI wall system provided better protection to cells after drying, during storage (60 days, 4 °C) and in simulated acidic and bile conditions. Further, FOS + DWPI encapsulates were incorporated into noodle formulation and evaluated the noodle quality and probiotic cell viability of cooked noodle obtained from two different production methods: (i) fresh and (ii) dried (room temperature dried - RTD, 28 °C and high temperature dried - HTD, 55 °C). The quality characteristics (cooking time, solid loss, texture, colour and sensory profiles) of FOS + DWPI encapsulates incorporated cooked noodles (both fresh and dried) were found to be acceptable. On evaluation of encapsulated probiotic bacteriaL. plantarum cell viability, 93.63 % and 62.42 % cell survival was obtained in fresh noodles before and after cooking respectively. However, 80.29 % (RTD) and 64.74 % (HTD) of encapsulated cells were viable in dried noodles, after cooking there was complete survival loss. This study suggested that fresh noodle was found to be a suitable carrier system to deliver viable cells. This is first report on influence of probiotic microcapsules in noodle processing. PMID:26139869

  6. Skeletal effect of casein and whey protein intake during catch-up growth in young male Sprague-Dawley rats.

    PubMed

    Masarwi, Majdi; Gabet, Yankel; Dolkart, Oleg; Brosh, Tamar; Shamir, Raanan; Phillip, Moshe; Gat-Yablonski, Galia

    2016-07-01

    The aim of the present study was to determine whether the type of protein ingested influences the efficiency of catch-up (CU) growth and bone quality in fast-growing male rats. Young male Sprague-Dawley rats were either fed ad libitum (controls) or subjected to 36 d of 40 % food restriction followed by 24 or 40 d of re-feeding with either standard rat chow or iso-energetic, iso-protein diets containing milk proteins - casein or whey. In terms of body weight, CU growth was incomplete in all study groups. Despite their similar food consumption, casein-re-fed rats had a significantly higher body weight and longer humerus than whey-re-fed rats in the long term. The height of the epiphyseal growth plate (EGP) in both casein and whey groups was greater than that of rats re-fed normal chow. Microcomputed tomography yielded significant differences in bone microstructure between the casein and whey groups, with the casein-re-fed animals having greater cortical thickness in both the short and long term in addition to a higher trabecular bone fraction in the short term, although this difference disappeared in the long term. Mechanical testing confirmed the greater bone strength in rats re-fed casein. Bone quality during CU growth significantly depends on the type of protein ingested. The higher EGP in the casein- and whey-re-fed rats suggests a better growth potential with milk-based diets. These results suggest that whey may lead to slower bone growth with reduced weight gain and, as such, may serve to circumvent long-term complications of CU growth. PMID:27189324

  7. Promotion of bone growth by dietary soy protein isolate: Comparision with dietary casein, whey hydrolysate and rice protein isolate in growing female rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of different dietary protein sources(casein (CAS), soy protein isolate (SPI), whey protein hydrolysate (WPH) and rice protein isolate (RPI)) on bone were studied in intact growing female rats and in ovarectomized (OVX) rats showing sex steroid deficiency-induced bone loss. In addition, S...

  8. Effects of exercise on leukocyte death: prevention by hydrolyzed whey protein enriched with glutamine dipeptide.

    PubMed

    Cury-Boaventura, Maria Fernanda; Levada-Pires, Adriana C; Folador, Alessandra; Gorjão, Renata; Alba-Loureiro, Tatiana C; Hirabara, Sandro M; Peres, Fabiano P; Silva, Paulo R S; Curi, Rui; Pithon-Curi, Tania C

    2008-06-01

    Lymphocyte and neutrophil death induced by exercise and the role of hydrolyzed whey protein enriched with glutamine dipeptide (Gln) supplementation was investigated. Nine triathletes performed two exhaustive exercise trials with a 1-week interval in a randomized, double blind, crossover protocol. Thirty minutes before treadmill exhaustive exercise at variable speeds in an inclination of 1% the subjects ingested 50 g of maltodextrin (placebo) or 50 g of maltodextrin plus 4 tablets of 700 mg of hydrolyzed whey protein enriched with 175 mg of glutamine dipeptide dissolved in 250 mL water. Cell viability, DNA fragmentation, mitochondrial transmembrane potential and production of reactive oxygen species (ROS) were determined in lymphocytes and neutrophils. Exhaustive exercise decreased viable lymphocytes but had no effect on neutrophils. A 2.2-fold increase in the proportion of lymphocytes and neutrophils with depolarized mitochondria was observed after exhaustive exercise. Supplementation of maltodextrin plus Gln (MGln) prevented the loss of lymphocyte membrane integrity and the mitochondrial membrane depolarization induced by exercise. Exercise caused an increase in ROS production by neutrophils, whereas supplementation of MGln had no additional effect. MGln supplementation partially prevented lymphocyte apoptosis induced by exhaustive exercise possibly by a protective effect on mitochondrial function. PMID:18320208

  9. Preventive Effects of Chitosan Coacervate Whey Protein on Body Composition and Immunometabolic Aspect in Obese Mice

    PubMed Central

    de Souza, Gabriel Inácio de Morais Honorato; Santamarina, Aline Boveto; de Santana, Aline Alves; Lira, Fábio Santos; de Laquila, Rachel; Moreno, Mayara Franzoi; do Nascimento, Claudia Maria da Penha Oller; Esposito, Elisa; Oyama, Lila Missae

    2014-01-01

    Functional foods containing bioactive compounds of whey may play an important role in prevention and treatment of obesity. The aim of this study was to investigate the prospects of the biotechnological process of coacervation of whey proteins (CWP) in chitosan and test its antiobesogenic potential. Methods. CWP (100 mg·kg·day) was administered in mice with diet-induced obesity for 8 weeks. The animals were divided into four groups: control normocaloric diet gavage with water (C) or coacervate (C-CWP), and high fat diet gavage with water (HF) or coacervate (HF-CWP). Results. HF-CWP reduced weight gain and serum lipid fractions and displayed reduced adiposity and insulin. Adiponectin was significantly higher in HF-CWP group when compared to the HF. The level of LPS in HF-W group was significantly higher when compared to HF-CWP. The IL-10 showed an inverse correlation between the levels of insulin and glucose in the mesenteric adipose tissue in the HF-CWP group. CWP promoted an increase in both phosphorylation AMPK and the amount of ATGL in the mesenteric adipose tissue in HF-CWP group. Conclusion. CWP was able to modulate effects, possibly due to its high biological value of proteins. We observed a protective effect against obesity and improved the inflammatory milieu of white adipose tissue. PMID:25309049

  10. Characterization of whey protein-carboxymethylated chitosan composite films with and without transglutaminase treatment.

    PubMed

    Jiang, Shu-Juan; Zhang, Xuan; Ma, Ying; Tuo, Yanfeng; Qian, Fang; Fu, Wenjia; Mu, Guangqing

    2016-11-20

    Edible composite packaging has the advantage of complementary functional properties over its each bio-components. However, reports on whey protein concentrates (WPC)-carboxymethylated chitosan (CMC) composite films have not yet been released. To investigate the preparation of WPC-CMC composite films and its functional properties, four types of WPC-CMC composite films were prepared with and without Transglutaminase (TGase) treatment by mixing WPC aqueous solutions (10%, w/v) with CMC aqueous solutions (3%, w/v) at WPC to CMC volume ratios of (100:0), (75:25), (50:50), and (25:75). SDS-PAGE confirmed that TGase catalyzed crosslinking of whey protein. Results revealed that CMC incorporation conferred a smooth and even surface microstructure on the films and markedly improved the transparency, water barrier properties, mechanical properties and solubility of the composite film. Furthermore, TGase resulted in an improvement in the water vapor barrier properties and mechanical properties of WPC-CMC (75:25 and 50:50, v/v) composite films, and there was no impairment of thermal stability of composite films. Therefore, TGase successfully facilitated the formation of WPC-CMC composite films with some improved functional properties. This offers potential applications as an alternative approach to the preparation of edible packaging films. PMID:27561482

  11. Physicochemical and sensory characteristics of whey protein hydrolysates generated at different total solids levels.

    PubMed

    Spellman, David; O'Cuinn, Gerard; FitzGerald, Richard J

    2005-05-01

    Whey protein hydrolysates were generated at different total solids (TS) levels (50-300 g/l) using the commercially available proteolytic preparation Debitrase HYW20, while enzyme to substrate ratio, pH and temperature were maintained constant. Hydrolysis proceeded at a faster rate at lower TS reaching a degree of hydrolysis (DH) of 16.6% at 300 g TS/l, compared with a DH of 22.7% at 50 g TS/l after 6 h hydrolysis. The slower breakdown of intact whey proteins at high TS was quantified by gel-permeation HPLC. Reversed-phase (RP) HPLC of hydrolysate samples of equivalent DH (approximately 15%) generated at different TS levels indicated that certain hydrophobic peptide peaks were present at higher levels in hydrolysates generated at low TS. Sensory evaluation showed that hydrolysates with equivalent DH values were significantly (P < 0.0005) less bitter when generated at 300 g TS/l (mean bitterness score = 25.4%) than hydrolysates generated at 50 g TS/l (mean bitterness score = 39.9%). A specific hydrophobic peptide peak present at higher concentrations in hydrolysates generated at low TS was isolated and identified as beta-lactoglobulin f(43-57), a fragment having the physical and chemical characteristics of a bitter peptide. PMID:15909678

  12. Evaluation of antimicrobial edible coatings from a whey protein isolate base to improve the shelf life of cheese.

    PubMed

    Ramos, Ó L; Pereira, J O; Silva, S I; Fernandes, J C; Franco, M I; Lopes-da-Silva, J A; Pintado, M E; Malcata, F X

    2012-11-01

    The objective of this work was to evaluate the effectiveness of antimicrobial edible coatings to wrap cheeses, throughout 60 d of storage, as an alternative to commercial nonedible coatings. Coatings were prepared using whey protein isolate, glycerol, guar gum, sunflower oil, and Tween 20 as a base matrix, together with several combinations of antimicrobial compounds-natamycin and lactic acid, natamycin and chitooligosaccharides (COS), and natamycin, lactic acid, and COS. Application of coating on cheese decreased water loss (~10%, wt/wt), hardness, and color change; however, salt and fat contents were not significantly affected. Moreover, the antimicrobial edible coatings did not permit growth of pathogenic or contaminant microorganisms, while allowing regular growth of lactic acid bacteria throughout storage. Commercial nonedible coatings inhibited only yeasts and molds. The antimicrobial edible coating containing natamycin and lactic acid was the best in sensory terms. Because these antimicrobial coatings are manufactured from food-grade materials, they can be consumed as an integral part of cheese, which represents a competitive advantage over nonedible coatings. PMID:22939797

  13. Effect of whey protein hydrolysate on performance and recovery of top-class orienteering runners.

    PubMed

    Hansen, Mette; Bangsbo, Jens; Jensen, Jørgen; Bibby, Bo Martin; Madsen, Klavs

    2015-04-01

    This trial aimed to examine the effect of whey protein hydrolysate intake before and after exercise sessions on endurance performance and recovery in elite orienteers during a training camp. Eighteen elite orienteers participated in a randomized controlled intervention trial during a 1-week training camp (13 exercise sessions). Half of the runners (PRO-CHO) ingested a protein drink before (0.3 g kg(-1)) and a protein-carbohydrate drink after (0.3 g protein kg(-1) and 1 g carbohydrate kg(-1)) each exercise session. The others ingested energy and time-matched carbohydrate drinks (CHO). A 4-km run-test with 20 control points was performed before and on the last day of the intervention. Blood and saliva were obtained in the mornings, before and after run-tests, and after the last training session. During the intervention, questionnaires were fulfilled regarding psychological sense of performance capacity and motivation. PRO-CHO and not CHO improved performance in the 4-km run-test (interaction p < .05). An increase in serum creatine kinase was observed during the week, which was greater in CHO than PRO-CHO (interaction p < .01). Lactate dehydrogenase (p < .001) and cortisol (p = .057) increased during the week, but the change did not differ between groups. Reduction in sense of performance capacity during the intervention was greater in CHO (p < .05) than PRO-CHO. In conclusion, ingestion of whey protein hydrolysate before and after each exercise session improves performance and reduces markers of muscle damage during a strenuous 1-week training camp. The results indicate that protein supplementation in conjunction with each exercise session facilitates the recovery from strenuous training in elite orienteers. PMID:25029703

  14. Discordance between in silico & in vitro analyses of ACE inhibitory & antioxidative peptides from mixed milk tryptic whey protein hydrolysate.

    PubMed

    Chatterjee, Alok; Kanawjia, S K; Khetra, Yogesh; Saini, Prerna

    2015-09-01

    ACE inhibitory and antioxidative peptides identified by LCMS/MS, from mixed milk (Bubalus bubalis and Bos taurus) tryptic whey protein hydrolysate, were compared with the in silico predictions. α la and ß lg sequences, both from Bubalus bubalis and Bos taurus, were used for in silico study. SWISS-PROT and BIOPEP protein libraries were accessed for prediction of peptide generation. Study observed gaps in the prediction versus actual results, which remain unaddressed in the literature. Many peptides obtained in vitro, were not reflected in in silico predictions. Differences in identified peptides in separate libraries were observed too. In in silico prediction, peptides with known biological activities were also not reflected. Predictions, towards generation of bioactive peptides, based upon in silico release of proteins and amino acid sequences from different sources and thereupon validation in relation to actual results has often been reported in research literature. Given that computer aided simulation for prediction purposes is an effective research direction, regular updating of protein libraries and an effectual integration, for more precise results, is critical. The gaps addressed between these two techniques of research, have not found any address in literature. Inclusion of more flexibility with the variables, within the tools being used for prediction, and a hierarchy based database with search options for various peptides, will further enhance the scope and strength of research. PMID:26344975

  15. Review: elimination of bacteriophages in whey and whey products

    PubMed Central

    Atamer, Zeynep; Samtlebe, Meike; Neve, Horst; J. Heller, Knut; Hinrichs, Joerg

    2013-01-01

    As the cheese market faces strong international competition, the optimization of production processes becomes more important for the economic success of dairy companies. In dairy productions, whey from former cheese batches is frequently re-used to increase the yield, to improve the texture and to increase the nutrient value of the final product. Recycling of whey cream and particulated whey proteins is also routinely performed. Most bacteriophages, however, survive pasteurization and may re-enter the cheese manufacturing process. There is a risk that phages multiply to high numbers during the production. Contamination of whey samples with bacteriophages may cause problems in cheese factories because whey separation often leads to aerosol-borne phages and thus contamination of the factory environment. Furthermore, whey cream or whey proteins used for recycling into cheese matrices may contain thermo-resistant phages. Drained cheese whey can be contaminated with phages as high as 109 phages mL-1. When whey batches are concentrated, phage titers can increase significantly by a factor of 10 hindering a complete elimination of phages. To eliminate the risk of fermentation failure during recycling of whey, whey treatments assuring an efficient reduction of phages are indispensable. This review focuses on inactivation of phages in whey by thermal treatment, ultraviolet (UV) light irradiation, and membrane filtration. Inactivation by heat is the most common procedure. However, application of heat for inactivation of thermo-resistant phages in whey is restricted due to negative effects on the functional properties of native whey proteins. Therefore an alternative strategy applying combined treatments should be favored – rather than heating the dairy product at extreme temperature/time combinations. By using membrane filtration or UV treatment in combination with thermal treatment, phage numbers in whey can be reduced sufficiently to prevent subsequent phage accumulations

  16. COST ESTIMATES OF TWIN SCREW EXTRUDED PRODUCTS: TEXTURIZED WHEY PROTEIN SNACKS AND CORN-SOY BLEND USED FOR EMERGENCY FEEDING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The operating costs associated with twin screw extrusion cooking of various foods are fixed for a given size and production capacity for any class of products; the greater percentage of costs arise from the choice of ingredients and the product end use. For example, extruder texturized whey proteins...

  17. Behavior of Escherichia coli bacteria in whey protein and corn meal during twin screw extrusion processing at different temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many studies on the development of new and/ or value added nutritional meal corn and whey protein isolates for US consumers have been reported. However, information on the effect of treatment parameters on microbial safety of foods extruded below 100 deg C is limited. In this study, we investigated ...

  18. Behavior of native microbial populations of WPC-34 and WPC-80 whey protein stored at different temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey protein (WPC34 and 80) has been used as food ingredients and as a base for making biodegradable product. However, there is limited information on the behavior of native microflora associated with these products. WPC 34 and WPC80 were obtained from the manufacturer, and were stored at 5, 10, 15,...

  19. Technological optimization of manufacture of probiotic whey cheese matrices.

    PubMed

    Madureira, Ana R; Brandão, Teresa; Gomes, Ana M; Pintado, Manuela E; Malcata, F Xavier

    2011-03-01

    In attempts to optimize their manufacture, whey cheese matrices obtained via thermal processing of whey (leading to protein precipitation) and inoculated with probiotic cultures were tested. A central composite, face-centered design was followed, so a total of 16 experiments were run using fractional addition of bovine milk to feedstock whey, homogenization time, and storage time of whey cheese as processing parameters. Probiotic whey cheese matrices were inoculated with Lactobacillus casei LAFTIL26 at 10% (v/v), whereas control whey cheese matrices were added with skim milk previously acidified with lactic acid to the same level. All whey cheeses were stored at 7 °C up to 14 d. Chemical and sensory analyses were carried out for all samples, as well as rheological characterization by oscillatory viscometry and textural profiling. As expected, differences were found between control and probiotic matrices: fractional addition of milk and storage time were the factors accounting for the most important effects. Estimation of the best operating parameters was via response surface analysis: milk addition at a rate of 10% to 15% (v/v), and homogenization for 5 min led to the best probiotic whey cheeses in terms of texture and organoleptic properties, whereas the best time for consumption was found to be by 9 d of storage following manufacture. PMID:21535760

  20. Whey protein phospholipid concentrate and delactosed permeate: Applications in caramel, ice cream, and cake.

    PubMed

    Levin, M A; Burrington, K J; Hartel, R W

    2016-09-01

    Whey protein phospholipid concentrate (WPPC) and delactosed permeate (DLP) are 2 coproducts of cheese whey processing that are currently underutilized. Past research has shown that WPPC and DLP can be used together as a functional dairy ingredient in foods such as ice cream, soup, and caramel. However, the scope of the research has been limited to a single WPPC supplier. The variability of the composition and functionality of WPPC was previously studied. The objective of this research was to expand on the previous study and examine the potential applications of WPPC and DLP blends in foods. In ice cream, WPPC was added as a natural emulsifier to replace synthetic emulsifiers. The WPPC decreased the amount of partially coalesced fat and increased the drip-through rate. In caramel, DLP and WPPC replaced sweetened condensed skim milk and lecithin. Cold flow increased significantly, and hardness and stickiness decreased. In cake, DLP and WPPC were added as a total replacement of eggs, with no change in yield, color, or texture. Overall, WPPC and DLP can be utilized as functional dairy ingredients at a lower cost in ice cream and cake but not in chewy caramel. PMID:27344387

  1. Milk whey culture with Propionibacterium freudenreichii ET-3 is effective on the colitis induced by 2,4,6-trinitrobenzene sulfonic acid in rats.

    PubMed

    Uchida, Masayuki; Mogami, Orie

    2005-12-01

    This study aimed to evaluate whether milk whey culture with Propinibacterium freudenreichii ET-3 (milk whey culture), which has been reported to have Bifidogenic activity, is effective on the colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in rats. For the induction of colitis, the colon was clamped and 0.1 M TNBS in 35% ethanol was injected into the luminal side of the clamped portion under pentobarbital anesthesia. From the next day of colitis induction, milk whey culture was administered orally at doses of 1 and 3 g/kg, twice a day for 9 days. On the 10th day, rats were sacrificed and ulcer size was measured. Milk whey culture significantly accelerated the healing of the colitis in a dose-dependent manner, but culture medium did not. To clarify the active substance, the effects of propionic acid and acetic acid contained in milk whey culture was tested. Sodium propionate significantly accelerated the healing of TNBS-induced colitis, but sodium acetate did not. The above results show that milk whey culture may become a useful prebiotic for the therapy of inflammatory bowel disease and that propionic acid may be one of the active substances contained in milk whey culture. PMID:16314691

  2. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.

    PubMed

    Cai, B; Ikeda, S

    2016-08-01

    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after

  3. Purification and characterization of the major whey proteins from the milks of the bottlenose dolphin (Tursiops truncatus), the Florida manatee (Trichechus manatus latirostris), and the beagle (Canis familiaris).

    PubMed

    Pervaiz, S; Brew, K

    1986-05-01

    The major whey proteins of the milks of the dolphin, manatee, and beagle were purified by gel filtration and ion exchange chromatography and characterized and identified by molecular weight determination, amino acid analysis, N-terminal sequencing, and activity measurements. The major whey protein components from all three species were found to be monomeric beta-lactoglobulins. These proteins were all active in binding retinol. Dolphin milk contained two beta-lactoglobulins (designated 1 and 2) which showed a slight difference in molecular weight and considerably divergent N-terminal sequences, whereas the other milks only contained a single form of beta-lactoglobulin. alpha-Lactalbumins were purified from dolphin and dog milks and were active in promoting lactose synthesis by bovine galactosyltransferase. The dolphin protein had an N-terminal sequence more similar to ruminant alpha-lactalbumins than to those known from other species. Although alpha-lactalbumin activity has been detected in manatee milk at low levels, the corresponding protein was not isolated. In addition, dog milk was found to contain high levels of lysozyme (greater than 1.0 mg/ml), which were identified by activity and sequencing. The functional and evolutionary implications of these results are discussed. PMID:3707136

  4. Role of dissolved oxygen availability on lactobionic acid production from whey by Pseudomonas taetrolens.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2012-04-01

    The influence of dissolved oxygen availability on cell growth and lactobionic acid production from whey by Pseudomonas taetrolens has been investigated for the first time. Results from pH-shift bioreactor cultivations have shown that high agitation rate schemes stimulated cell growth, increased pH-shift values and the oxygen uptake rate by cells, whereas lactobionic acid production was negatively affected. Conversely, higher aeration rates than 1.5 Lpm neither stimulated cell growth nor lactobionic acid production (22% lower for an aeration rate of 2 Lpm). Overall insights into bioprocess performance enabled the implementation of 350 rpm as the optimal agitation strategy during cultivation, which increased lactobionic productivity 1.2-fold (0.58-0.7 g/Lh) compared to that achieved at 1000 rpm. Oxygen supply has been shown to be a key bioprocess parameter for enhanced overall efficiency of the system, representing essential information for the implementation of lactobionic acid production at a large scale. PMID:22310213

  5. Whey proteins have beneficial effects on intestinal enteroendocrine cells stimulating cell growth and increasing the production and secretion of incretin hormones.

    PubMed

    Gillespie, Anna L; Calderwood, Danielle; Hobson, Laura; Green, Brian D

    2015-12-15

    Whey protein has been indicated to curb diet-induced obesity, glucose intolerance and delay the onset of type 2 diabetes mellitus. Here the effects of intact crude whey, intact individual whey proteins and beta-lactoglobulin hydrolysates on an enteroendocrine (EE) cell model were examined. STC-1 pGIP/neo cells were incubated with several concentrations of yogurt whey (YW), cheese whey (CW), beta-lactoglobulin (BLG), alpha-lactalbumin (ALA) and bovine serum albumin (BSA). The findings demonstrate that BLG stimulates EE cell proliferation, and also GLP-1 secretion (an effect which is lost following hydrolysis with chymotrypsin or trypsin). ALA is a highly potent GLP-1 secretagogue which also increases the intracellular levels of GLP-1. Conversely, whey proteins and hydrolysates had little impact on GIP secretion. This appears to be the first investigation of the effects of the three major proteins of YW and CW on EE cells. The anti-diabetic potential of whey proteins should be further investigated. PMID:26190610

  6. Influence of olive oil phenolic compounds on headspace aroma release by interaction with whey proteins.

    PubMed

    Genovese, Alessandro; Caporaso, Nicola; De Luca, Lucia; Paduano, Antonello; Sacchi, Raffaele

    2015-04-22

    The release of volatile compounds in an oil-in-water model system obtained from olive oil-whey protein (WP) pairing was investigated by considering the effect of phenolic compounds. Human saliva was used to simulate mouth conditions by retronasal aroma simulator (RAS) analysis. Twelve aroma compounds were quantified in the dynamic headspace by SPME-GC/MS. The results showed significant influences of saliva on the aroma release of virgin olive oil (VOO) volatiles also in the presence of WP. The interaction between WP and saliva leads to lower headspace release of ethyl esters and hexanal. Salivary components caused lower decrease of the release of acetates and alcohols. A lower release of volatile compounds was found in the RAS essay in comparison to that in orthonasal simulation of only refined olive oil (without addition of saliva or WP), with the exception of hexanal and 1-penten-3-one, where a significantly higher release was found. Our results suggest that the extent of retronasal odor (green, pungent) of these two volatile compounds is higher than orthonasal odor. An extra VOO was used to verify the release in model systems, indicating that WP affected aroma release more than model systems, while saliva seems to exert an opposite trend. A significant increase in aroma release was found when phenolic compounds were added to the system, probably due to the contrasting effects of binding of volatile compounds caused by WP, for the polyphenol-protein interaction phenomenon. Our study could be applied to the formulation of new functional foods to enhance flavor release and modulate the presence and concentrations of phenolics and whey proteins in food emulsions/dispersions. PMID:25832115

  7. Growth and viability of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in traditional yoghurt enriched by honey and whey protein concentrate.

    PubMed

    Glušac, J; Stijepić, M; Đurđević-Milošević, D; Milanović, S; Kanurić, K; Vukić, V

    2015-01-01

    The ability of whey protein concentrate (WPC) (1% w/v) and/or honey (2% and 4% w⁄v) to improve lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) growth and viability in yoghurt during a 21 day period of storage was investigated. Another focus of this study was to examine fermentation kinetics and post-acidification rates through pH and lactic acid content measurements over the 21 day period. The addition of WPC and acacia honey accelerated fermentation and improved lactic acid bacteria (LAB) growth over the 21 days, but honey proportion did not significantly affect the viability of LAB. Moreover, adding honey and WPC did not support the overproduction of lactic acid, which positively influenced yoghurt stability during the 21 day storage period. PMID:27175184

  8. Growth and viability of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in traditional yoghurt enriched by honey and whey protein concentrate

    PubMed Central

    Glušac, J; Stijepić, M; Đurđević-Milošević, D; Milanović, S; Kanurić, K; Vukić, V

    2015-01-01

    The ability of whey protein concentrate (WPC) (1% w/v) and/or honey (2% and 4% w⁄v) to improve lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) growth and viability in yoghurt during a 21 day period of storage was investigated. Another focus of this study was to examine fermentation kinetics and post-acidification rates through pH and lactic acid content measurements over the 21 day period. The addition of WPC and acacia honey accelerated fermentation and improved lactic acid bacteria (LAB) growth over the 21 days, but honey proportion did not significantly affect the viability of LAB. Moreover, adding honey and WPC did not support the overproduction of lactic acid, which positively influenced yoghurt stability during the 21 day storage period. PMID:27175184

  9. Effects of hydrolysed casein, intact casein and intact whey protein on energy expenditure and appetite regulation: a randomised, controlled, cross-over study.

    PubMed

    Bendtsen, Line Q; Lorenzen, Janne K; Gomes, Sisse; Liaset, Bjørn; Holst, Jens J; Ritz, Christian; Reitelseder, Søren; Sjödin, Anders; Astrup, Arne

    2014-10-28

    Casein and whey differ in amino acid composition and in the rate of absorption; however, the absorption rate of casein can be increased to mimic that of whey by exogenous hydrolysis. The objective of the present study was to compare the effects of hydrolysed casein (HC), intact casein (IC) and intact whey (IW) on energy expenditure (EE) and appetite regulation, and thereby to investigate the influence of amino acid composition and the rate of absorption. In the present randomised cross-over study, twenty-four overweight and moderately obese young men and women consumed three isoenergetic dietary treatments that varied in protein source. The study was conducted in a respiration chamber, where EE, substrate oxidation and subjective appetite were measured over 24 h at three independent visits. Moreover, blood and urine samples were collected from the participants. The results showed no differences in 24 h and postprandial EE or appetite regulation. However, lipid oxidation, estimated from the respiratory quotient (RQ), was found to be higher after consumption of IW than after consumption of HC during daytime (P= 0·014) as well as during the time after the breakfast meal (P= 0·008) when the food was provided. Likewise, NEFA concentrations were found to be higher after consumption of IW than after consumption of HC and IC (P< 0·01). However, there was no overall difference in the concentration of insulin or glucagon-like peptide 1. In conclusion, dietary treatments when served as high-protein mixed meals induced similar effects on EE and appetite regulation, except for lipid oxidation, where RQ values suggest that it is higher after consumption of IW than after consumption of HC. PMID:25191896

  10. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    NASA Astrophysics Data System (ADS)

    He, Jin-Song; Yang, Hongwei; Zhu, Wanpeng; Mu, Tai-Hua

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum Im and the corresponding wavenumber qm could be described in terms of the power-law relationship as Im~fβ and qm~f-α, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  11. Alcohol and single-cell protein production by Kluyveromyces in concentrated whey permeates with reduced ash

    SciTech Connect

    Mahmoud, M.M.; Kosikowski, F.V.

    1982-01-01

    Five Kluyveromyces yeasts were grown in concentrated whey permeates under aerobic and anaerobic conditions to produce single-cell protein and ethanol. K. fragilis NRRL Y2415 produced the highest yield of alcohol, 9.1%, and K. bulgaricus ATCC 1605 gave the highest yield of biomass, 13.5 mg/mL. High ash, apparently through Na and K effects, inhibited production of biomass and alcohol. A 0.77% ash was optimum. Lactose utilization was more rapid under aerobic than anaerobic conditions. (NH/sub 4/)/sub 2/SO/sub 4/ and urea supplementation were without effect on yeast growth or were slightly inhibitory. A 1% peptone inclusion gave the highest biomass yield with minimum alcohol production.

  12. Dataset of milk whey proteins of three indigenous Greek sheep breeds.

    PubMed

    Anagnostopoulos, Athanasios K; Katsafadou, Angeliki I; Pierros, Vasileios; Kontopodis, Evangelos; Fthenakis, George C; Arsenos, George; Karkabounas, Spyridon Ch; Tzora, Athina; Skoufos, Ioannis; Tsangaris, George Th

    2016-09-01

    The importance and unique biological traits, as well as the growing financial value, of milk from small Greek ruminants is continuously attracting interest from both the scientific community and industry. In this regard the construction of a reference dataset of the milk of the Greek sheep breeds is of great interest. In order to obtain such a dataset we employed cutting-edge proteomics methodologies to investigate and characterize, the proteome of milk from the three indigenous Greek sheep breeds Mpoutsko, Karagouniko and Chios. In total, more than 1300 protein groups were identified in milk whey from these breeds, reporting for the first time the most detailed proteome dataset of this precious biological material. The present results are further discussed in the research paper "Milk of Greek sheep and goat breeds; characterization by means of proteomics" (Anagnostopoulos et al. 2016) [1]. PMID:27508236

  13. The impact of whey protein preheating on the properties of emulsion gel bead.

    PubMed

    Ruffin, Emilie; Schmit, Tiffany; Lafitte, Géraldine; Dollat, Jean-Marie; Chambin, Odile

    2014-05-15

    Thermal treatment effect (70 or 80 °C for 5 or 30 min) was evaluated on functional properties of whey protein isolate (WPI) dispersions used for the development of novel vitamin A delivery systems based on emulsion gel beads. This process combines an (O/W) emulsion diluted by a polysaccharide solution and a cold-set gelation induced by salt addition. Pre-heated WPI had a significant impact on the denaturation degree and on the surface hydrophobicity, respectively studied by differential scanning calorimetry and fluorescence. Stronger heating conditions (i.e. duration or temperature) induced complete denaturation, an increase of surface hydrophobicity and of viscosity. Under these conditions, the final emulsion showed a decrease particle size and an enhancement of stability. The resulting beads offered better vitamin A yield and stability during storage. These delivery systems bring a good protection of vitamin A to pH changes and control the release of this lipophilic component. PMID:24423540

  14. Modification of functional properties of pullulan-whey protein bionanocomposite films with nanoclay.

    PubMed

    Hassannia-Kolaee, Mahbobeh; Khodaiyan, Faramarz; Shahabi-Ghahfarrokhi, Iman

    2016-02-01

    In this study, biodegradable nanocomposite film composed of pullulan - whey protein isolate (WPI) - montmorillonite (MMT) were developed and characterized as a function of incorporating various amounts of MMT nanoparticles (0, 1, 3 and 5 % wt). Results showed that the water-vapor permeability, moisture content, moisture absorption and water solubility decreased when the nano-MMT content was increased. Tensile strength improved and elongation at break simultaneously decreased with increasing MMT content. The glass transition temperature (Tg(and melting-point temperature (Tm) increased with increasing nano-MMT content. Scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis revealed uniform distribution of MMT into the polymer matrix. Atomic force microscopy (AFM) showed enhancement of films' roughness with increasing MMT content. PMID:27162410

  15. Preparation and Characterization of Nanocomposites from Whey Protein Concentrate Activated with Lycopene.

    PubMed

    Pereira, Rafaela Corrêa; de Deus Souza Carneiro, João; Borges, Soraia Vilela; Assis, Odílio Benedito Garrido; Alvarenga, Gabriela Lara

    2016-03-01

    The production and characterization of nanocomposites based on whey protein concentrate (WPC) and montmorilonite (MMT) incorporated with lycopene as a functional substance is presented and discussed as an alternative biomaterial for potential uses in foodstuff applications. A full factorial design with varying levels of MMT (0% and 2% in w/w) and lycopene (0%, 6%, and 12% in w/w) was used. Color, light transmission, film transparency, moisture, density, solubility, water vapor permeability, and antioxidant activity of the resulting materials were evaluated. Results indicated that lycopene and MMT nanoparticles were successfully included in WPC films using the casting/evaporation method. Inclusion of 2% w/w of MMT in the polymeric matrix significantly improved barrier property against water vapor. Lycopene, besides its good red coloring ability, provided to the films antioxidant activity and UV-vis light protection. These findings open a new perspective for the use of materials for bioactive packaging applications. PMID:26814439

  16. Cold-set hydrogels made of whey protein nanofibrils with different divalent cations.

    PubMed

    Mohammadian, Mehdi; Madadlou, Ashkan

    2016-08-01

    Whey protein nanofibrils are gaining interest to fabricate cold-set hydrogels due to their ability to gel at lower concentrations than parent proteins. In the present research, fibrillated protein solution was gelled with three different divalent cation salts including CaCl2, MnCl2 and ZnCl2 and the textural and functional characteristics of the resulting hydrogel samples were studied. Atomic force microscopy indicated that the flexible micron-scaled fibrils with nanometric thickness (up to 8.0nm) that formed at pH 2.0 underwent breaking in length upon post-formation pH rise to 7.5. Whilst heat-denatured protein solution failed to form self-supporting gel at pH 7.5, fibrillated protein solution gelled by all three types of cations. Fibrillation increased the protein solution consistency coefficient (K) much more than heat denaturation. It was suggested based on Fourier-transform infra-red (FT-IR) spectra that some hydrogen bonds were disrupted by fibrillation. Zn(2+)-induced gel was firmer, had a higher water holding capacity and a more compact microstructure, as well, required a higher compressive stress to fracture than its counterparts. Nonetheless, the Mn(2+)- and Ca(2+)-induced gels disintegrated to a much lesser extent in both pepsin-free and pepsin-present simulated gastric juice than Zn(2+)-induced sample. Chitosan coating approximately halved the simulated degradability of all gel samples. PMID:27155233

  17. Use of /γ-irradiation to produce films from whey, casein and soya proteins: structure and functionals characteristics

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Le, T. C.; Ouattara, B.; Yu, H.; Letendre, M.; Sabato, S. F.; Mateescu, M. A.; Patterson, G.

    2002-03-01

    γ-irradiation and thermal treatments have been used to produce sterilized cross-linked films. Formulations containing variable concentrations of calcium caseinate and whey proteins (whey protein isolate (WPI) and commercial whey protein concentrate) or mixture of soya protein isolate (SPI) with WPI was investigated on the physico-chemical properties of these films. Results showed that the mechanical properties of cross-linked films improved significantly the puncture strength for all types of films. Size-exclusion chromatography showed for no cross-linked proteins, a molecular mass of around 40 kDa. The soluble fractions of the cross-linked proteins molecular distributions were between 600 and 3800 kDa. γ-irradiation seems to modify to a certain extent the conformation of proteins which will adopt structures more ordered and more stable, as suggested by X-ray diffraction analysis. Microstructure observations showed that the mechanical characteristics of these films are closely related to their microscopic structure. Water vapor permeability of films based on SPI was also significantly decreased when irradiated. Microbial resistance was also evaluated for cross-linked films. Results showed that the level of biodegradation of cross-linked films was 36% after 60 d of fermentation in the presence of Pseudomonas aeruginosa.

  18. Whey protein gel composites in the diet of goats increased the omega-3 and omega-6 content of milk fat.

    PubMed

    Weinstein, J A; Taylor, S J; Rosenberg, M; DePeters, E J

    2016-08-01

    Previously, feeding whey protein gels containing polyunsaturated fatty acids (PUFA) reduced their rumen biohydrogenation and increased their concentration in milk fat of Holstein cows. Our objective was to test the efficacy of whey protein isolate (WPI) gels produced in a steam tunnel as a method to alter the fatty acid (FA) composition of the milk lipids. Four primiparous Lamancha goats in midlactation were fed three diets in a 3 × 4 Latin square design. The WPI gels were added to a basal concentrate mix that contained one of three lipid sources: (i) 100% soya bean oil (S) to create (WPI/S), (ii) a 1:1 (wt/wt) mixture of S and linseed (L) oil to create (WPI/SL), or (iii) 100% L to create (WPI/L). Periods were 22 days with the first 10 days used as an adjustment phase followed by a 12-day experimental phase. During the adjustment phase, all goats received a rumen available source of lipid, yellow grease, to provide a baseline for milk FA composition. During the experimental phase, each goat received its assigned WPI. Milk FA concentration of C18:2 n-6 and C18:3 n-3 reached 9.3 and 1.64 g/100 g FA, respectively, when goats were fed WPI/S. Feeding WPI/SL increased the C18:2 n-6 and C18:3 n-3 concentration to 6.22 and 4.36 g/100 g FA, and WPI/L increased C18:2 n-6 and C18:3 n-3 to 3.96 and 6.13 g/100 g FA respectively. The adjusted transfer efficiency (%) of C18:3 n-3 to milk FA decreased significantly as dietary C18:3 n-3 intake increased. Adjusted transfer efficiency for C18:2 n-6 did not change with increasing intake of C18:2 n-6. The WPI gels were effective at reducing rumen biohydrogenation of PUFA; however, we observed a change in the proportion increase of C18:3 n-3 in milk FA suggesting possible regulation of n-3 FA to the lactating caprine mammary gland. PMID:26249647

  19. Efficacy of fermented milk and whey proteins in Helicobacter pylori eradication: A review

    PubMed Central

    Sachdeva, Aarti; Rawat, Swapnil; Nagpal, Jitender

    2014-01-01

    Helicobacter pylori (H. pylori) eradication is considered a necessary step in the management of peptic ulcer disease, chronic gastritis, gastric adenocarcinoma and mucosa associated lymphoid tissue lymphoma. Standard triple therapy eradication regimens are inconvenient and achieve unpredictable and often poor results. Eradication rates are decreasing over time with increase in antibiotic resistance. Fermented milk and several of its component whey proteins have emerged as candidates for complementary therapy. In this context the current review seeks to summarize the current evidence available on their role in H. pylori eradication. Pertinent narrative/systematic reviews, clinical trials and laboratory studies on individual components including fermented milk, yogurt, whey proteins, lactoferrin, α-lactalbumin (α-LA), glycomacropeptide and immunoglobulin were comprehensively searched and retrieved from Medline, Embase, Scopus, Cochrane Controlled Trials Register and abstracts/proceedings of conferences up to May 2013. A preponderance of the evidence available on fermented milk-based probiotic preparations and bovine lactoferrin suggests a beneficial effect in Helicobacter eradication. Evidence for α-LA and immunoglobulins is promising while that for glycomacropeptide is preliminary and requires substantiation. The magnitude of the potential benefit documented so far is small and the precise clinical settings are ill defined. This restricts the potential use of this group as a complementary therapy in a nutraceutical setting hinging on better patient acceptability/compliance. Further work is necessary to identify the optimal substrate, fermentation process, dose and the ideal clinical setting (prevention/treatment, first line therapy/recurrence, symptomatic/asymptomatic, gastritis/ulcer diseases etc.). The potential of this group in high antibiotic resistance or treatment failure settings presents interesting possibilities and deserves further exploration. PMID

  20. Lesser suppression of energy intake by orally ingested whey protein in healthy older men compared with young controls.

    PubMed

    Giezenaar, Caroline; Trahair, Laurence G; Rigda, Rachael; Hutchison, Amy T; Feinle-Bisset, Christine; Luscombe-Marsh, Natalie D; Hausken, Trygve; Jones, Karen L; Horowitz, Michael; Chapman, Ian; Soenen, Stijn

    2015-10-15

    Protein-rich supplements are used widely for the management of malnutrition in young and older people. Protein is the most satiating of the macronutrients in young. It is not known how the effects of oral protein ingestion on energy intake, appetite, and gastric emptying are modified by age. The aim of the study was to determine the suppression of energy intake by protein compared with control and underlying gastric-emptying and appetite responses of oral whey protein drinks in eight healthy older men (69-80 yr) compared with eight young male controls (18-34 yr). Subjects were studied on three occasions to determine the effects of protein loads of 30 g/120 kcal and 70 g/280 kcal compared with a flavored water control-drink (0 g whey protein) on energy intake (ad libitum buffet-style meal), and gastric emptying (three-dimensional-ultrasonography) and appetite (0-180 min) in a randomized, double-blind, cross-over design. Energy intake was suppressed by the protein compared with control (P = 0.034). Suppression of energy intake by protein was less in older men (1 ± 5%) than in young controls (15 ± 2%; P = 0.008). Cumulative energy intake (meal+drink) on the protein drink days compared with the control day increased more in older (18 ± 6%) men than young (1 ± 3%) controls (P = 0.008). Gastric emptying of all three drinks was slower in older men (50% gastric-emptying time: 68 ± 5 min) than young controls (36 ± 5 min; P = 0.007). Appetite decreased in young, while it increased in older (P < 0.05). In summary, despite having slower gastric emptying, elderly men exhibited blunted protein-induced suppression of energy intake by whey protein compared with young controls, so that in the elderly men, protein ingestion increased overall energy intake more than in the young men. PMID:26290103

  1. Milk Whey Processes: Current and Future Trends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced whey processing technologies are yielding a wealth of quality ingredients with recognized positive health benefits. Processes such as ultrafiltration and extrusion are providing potential advancements in functional properties and enabling creation of healthy products containing whey protein...

  2. Toward Separating Alpha-lactalbumin and Beta-lactoglobulin Proteins from Whey through Cation-exchange Adsorption

    NASA Astrophysics Data System (ADS)

    El-Sayed, Mayyada; Chase, Howard

    2009-05-01

    This paper describes the cation-exchange adsorption of the two major whey proteins, alpha-lactalbumin (ALA) and beta-lactoglobulin (BLG) with the purpose of establishing a process for isolating them from cow's milk whey. The single- and two-component adsorption of 1.5 mg/ml ALA and 3 mg/ml BLG to the cation-exchanger SP Sepharose FF at 20° C using 0.1 M acetate buffer of pH 3.7 was studied. Langmuir isotherm parameters were determined for the pure proteins. In two-component systems, BLG breakthrough curve exhibited an overshoot phenomenon that gave evidence for the presence of a competitive adsorption between the two proteins. Complete separation occurred and it was possible to obtain each of the two proteins in a pure form. The process was then applied to a whey concentrate mixture where incomplete separation took place. However, BLG was produced with 95% purity and a recovery of 80%, while ALA showed an 84% recovery with low purity.

  3. Isolation and characterization of anti-inflammatory peptides derived from whey protein.

    PubMed

    Ma, Ye; Liu, Jie; Shi, Haiming; Yu, Liangli Lucy

    2016-09-01

    The present study was conducted to isolate and characterize anti-inflammatory peptides from whey protein hydrolysates using alcalase. Nine subfractions were obtained after sequential purification by ultrafiltration, Sephadex G-25 gel (GE Healthcare, Uppsala, Sweden) filtration chromatography, and preparative HPLC. Among them, subfraction F4e showed the strongest inhibitory activity on interleukin-1β (IL-1β), cyclooxygenase-2, and tumor necrosis factor-α (TNF-α) mRNA expression in lipopolysaccharide-induced RAW 264.7 mouse macrophages. Eight peptides, including 2 new peptides-Asp-Tyr-Lys-Lys-Tyr (DYKKY) and Asp-Gln-Trp-Leu (DQWL)-were identified from subfractions F4c and F4e, respectively, using ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Peptide DQWL showed the strongest inhibitory ability on IL-1β, cyclooxygenase-2, and TNF-α mRNA expression and production of IL-1β and TNF-α proteins at concentrations of 10 and 100μg/mL, respectively. Additionally, DQWL treatment significantly inhibited nuclear factor-κB activation by suppressing nuclear translocation of nuclear factor-κB p65 and blocking inhibitor κB kinase phosphorylation and inhibitor κB degradation together with p38 mitogen-activated protein kinase activation. Our study suggests that peptide DQWL has anti-inflammatory potential; further confirmation using an in vivo model is needed. PMID:27394940

  4. Prolonged ingestion of prehydrolyzed whey protein induces little or no change in digestive enzymes, but decreases glutaminase activity in exercising rats.

    PubMed

    Nery-Diez, Ana Cláudia C; Carvalho, Iara R; Amaya-Farfán, Jaime; Abecia-Soria, Maria Inés; Miyasaka, Célio K; Ferreira, Clécio da S

    2010-08-01

    Because consumption of whey protein hydrolysates is on the increase, the possibility that prolonged ingestion of whey protein hydrolysates affect the digestive system of mammals has prompted us to evaluate the enzymatic activities of pepsin, leucine-aminopeptidase, chymotrypsin, trypsin, and glutaminase in male Wistar rats fed diets containing either a commercial whey isolate or a whey protein hydrolysate with medium degree of hydrolysis and to compare the results with those produced by physical training (sedentary, sedentary-exhausted, trained, and trained-exhausted) in the treadmill for 4 weeks. The enzymatic activities were determined by classical procedures in all groups. No effect due to the form of the whey protein in the diet was seen in the activities of pepsin, trypsin, chymotrypsin, and leucine-aminopeptidase. Training tended to increase the activity of glutaminase, but exhaustion promoted a decrease in the trained animals, and consumption of the hydrolysate decreased it even further. The results are consistent with the conclusion that chronic consumption of a whey protein hydrolysate brings little or no modification of the proteolytic digestive system and that the lowering of glutaminase activity may be associated with an antistress effect, counteracting the effect induced by training in the rat. PMID:20482282

  5. The effect of pH on the rheology of mixed gels containing whey protein isolate and xanthan-curdlan hydrogel.

    PubMed

    Shiroodi, Setareh Ghorban; Lo, Y Martin

    2015-11-01

    The ultimate goal of this work was to examine the effect of xanthan-curdlan hydrogel complex (XCHC) on the rheology of whey protein isolate (WPI) within the pH range of 4-7 upon heating and cooling. Dynamic rheological properties of WPI and XCHC were studied individually and in combination, as a function of time or temperature. For pure WPI, gels were pH-dependent, and in all pH values except 7, gels formed upon first heating from 40 to 90 °C. At pH 7, WPI did not form gel upon first heating, and the storage modulus (G') started to increase during the holding time at 90 °C. The onset of gelation temperature of WPI was lower in acidic pH ranges compared to the neutral pH. In mixed gels, the presence of XCHC increased the G' of the gels. The rheological behaviour was pH-dependent and initially was controlled by XCHC; however, after the consolidation of WPI network, the behaviour was led by the whey protein isolate. Results showed that XCHC had a synergistic effect on enhancing the elastic modulus of the gels after the consolidation of WPI network. Based on the results of this study, it is possible to use these biopolymers in the formulation of frozen dairy-based products and enable food manufactures to improve the textural and physicochemical properties, and as a result the consumer acceptance of the food product. PMID:26234882

  6. Whey protein supplementation does not alter plasma branched-chained amino acid profiles but results in unique metabolomics patterns in obese women enrolled in an 8-week weight loss trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Elevations of plasma concentrations of branched-chain amino acids (BCAA) are correlated with insulin resistance. Reduction in the activity of branched-chain ketoacid dehydrogenase complex (BCKDC) activity and impaired complete mitochondrial BCAA catabolism may contribute to this phenoty...

  7. Alginate-whey protein dry powder optimized for target delivery of essential oils to the intestine of chickens.

    PubMed

    Zhang, Y; Gong, J; Yu, H; Guo, Q; Defelice, C; Hernandez, M; Yin, Y; Wang, Q

    2014-10-01

    In poultry production, there is a lack of effective and convenient approaches to deliver bioactive compounds such as some essential oils, which have been proposed as alternatives to antibiotic growth promoters. The objective of this research was to develop a method for target delivery of essential oils in feed to the lower intestines of chickens. Carvacrol was used as a model essential oil, and 2 food-grade biopolymers, alginate and whey protein, were selected to encapsulate carvacrol in microparticles. The effects of a medium molecular weight alginate, a low molecular weight alginate (LBA), and whey protein concentrations on the properties of carvacrol-loaded microparticles were investigated using response surface methodology. The encapsulation efficiencies for all the tested formulations were ≥ 98% and carvacrol content in the dry microparticles was 72 ± 2% (wt/wt). The microparticles showed good gastric resistance and rapid intestinal release under simulated gastrointestinal conditions. Alginate concentrations had the strongest influence on the gastric resistance of microparticles, whereas whey protein was the dominant parameter in controlling the intestinal release. The concentration of LBA was found to be the critical factor affecting the mechanical strength of the microparticles. A predicted optimum formulation from in vitro optimization was tested in chickens. It was found that a negligible amount of carvacrol was detected in the intestines of chickens fed with unencapsulated carvacrol. Microparticles of predicted optimum formulation delivered a remarkably higher concentration of carvacrol to the jejunum and ileum regions. The high concentration was sustained for more than 3 h after oral administration. The in vivo release of carvacrol from the microparticles appeared faster than release from in vitro simulation. Nonetheless, the in vitro simulation provided good indications of the in vivo performance, and thus may serve as a useful tool for formula

  8. Peptic and tryptic hydrolysis of native and heated whey protein to reduce its antigenicity.

    PubMed

    Kim, S B; Ki, K S; Khan, M A; Lee, W S; Lee, H J; Ahn, B S; Kim, H S

    2007-09-01

    This study examined the effects of enzymes on the production and antigenicity of native and heated whey protein concentrate (WPC) hydrolysates. Native and heated (10 min at 100 degrees C) WPC (2% protein solution) were incubated at 50 degrees C for 30, 60, 90, and 120 min with 0.1, 0.5, and 1% pepsin and then with 0.1, 0.5, and 1% trypsin on a protein-equivalent basis. A greater degree of hydrolysis was achieved and greater nonprotein nitrogen concentrations were obtained in heated WPC than in native WPC at all incubation times. Hydrolysis of WPC was increased with an increasing level of enzymes and higher incubation times. The highest hydrolysis (25.23%) was observed in heated WPC incubated with 1% pepsin and then with 1% trypsin for 120 min. High molecular weight bands, such as BSA, were completely eliminated from sodium dodecyl sulfate-PAGE of both native and heated WPC hydrolysates produced with pepsin for the 30-min incubation. The alpha-lactalbumin in native WPC was slightly degraded when incubated with 0.1% pepsin and then with 0.1% trypsin; however, it was almost completely hydrolyzed within 60 min of incubation with 0.5% pepsin and then with 0.5% trypsin. Incubation of native WPC with 1% pepsin and then with 1% trypsin for 30 min completely removed the BSA and alpha-lactalbumin. The beta-lactoglobulin in native WPC was not affected by the pepsin and trypsin treatments. The beta-lactoglobulin in heated WPC was partially hydrolyzed by the 0.1 and 0.5% pepsin and trypsin treatments and was completely degraded by the 1% pepsin and trypsin treatment. Antigenicity reversibly mimicked the hydrolysis of WPC and the removal of beta-lactoglobulin from hydrolysates. Antigenicity in heated and native WPC was reduced with an increasing level of enzymes. A low antigenic response was observed in heated WPC compared with native WPC. The lowest antigenicity was observed when heated WPC was incubated with 1% pepsin and then with 1% trypsin. These results suggested that

  9. Effect of water content on thermal behavior of freeze-dried soy whey and their isolated proteins.

    PubMed

    Sobral, Pablo A; Palazolo, Gonzalo G; Wagner, Jorge R

    2011-04-27

    Thermal behavior of lyophilized soy whey (LSW) and whey soy proteins (WSP) at different water contents (WC) was studied by DSC. In anhydrous condition, Kunitz trypsin inhibitor (KTI) and lectin (L) were more heat stable for WSP with respect to LSW sample. The increase of WC destabilized both proteins but differently depending on the sample analyzed. Thermal stability inversion of KTI and L was observed for WSP and LSW at 50.0% and 17.0% WC, respectively, which correspond to the same water-protein content mass ratio (W/P ≈ 1.9). At W/P < 1.9, KTI was more heat stable than L. Before the inversion point, WC strongly modified the peak temperatures (T(p)) of KTI and L for WSP, whereas this behavior was not observed for LSW. The high sugar content was responsible for the thermal behavior of KTI and L in LSW under anhydrous condition and low WC. These results have important implications for the soy whey processing and inactivation of antinutritional factors. PMID:21413812

  10. Optical backscatter method for determining thermal denaturation of β-lactoglobulin and other whey proteins in milk.

    PubMed

    Lamb, Alisa; Payne, Fred; Xiong, Youling L; Castillo, Manuel

    2013-03-01

    The heat denaturation of whey proteins affects the functional properties of milk. Correlations of β-lactoglobulin (β-LG) denaturation to gelation time, gel firmness, and gel moisture content have been widely documented. Currently, no technique is available for quantifying β-LG denaturation in milk without altering its native composition or requiring a laborious procedure. The goal of this study was to establish if an optical backscatter response of whey protein denaturation during milk heat treatment could be determined that would be the basis for an inline optical measurement technology. The experimental design consisted of 1 factor (time at 80°C) and 6 levels (0, 3, 5, 7, 12, and 25 min). Physicochemical analysis performed indicated that β-LG denaturation followed a first-order response during thermal treatment. The light backscatter response, measured as a ratio of two 25-nm wave bands (832.5 nm/382.5 nm), significantly correlated to β-LG denaturation and had a 14% increase for milk with 75% β-LG denaturation. The strength of the optical response at the proposed wave bands and their correlation to denaturation suggests that light backscatter could potentially be used to measure β-LG and other whey protein denaturation inline. PMID:23357014

  11. Heat-induced changes in the properties of modified skim milks with different casein to whey protein ratios.

    PubMed

    Singh, Mandeep Jeswan; Chandrapala, Jayani; Udabage, Punsandani; McKinnon, Ian; Augustin, Mary Ann

    2015-05-01

    The heat-induced changes in pH, Ca activity and viscosity after heating at 90 °C for 10 min of five modified skim milks were studied as a function of the initial pH of the milks at 25 °C. The milks had (i) different ratios of casein : whey protein (0.03, 1.74, 3.97, 5.27 and 7.25), (ii) the same total solids concentration (9% w/w) and (iii) prior to the adjustment of the pH, similar values of pH (6.67-6.74), concentration of serum calcium, and calcium activity, suggesting that the sera have similar mineral composition. The total protein concentrations of the milks differ (2.8-4.0%, w/w). The pH decrease in situ upon heating from 25-90 °C was similar for all the modified skim milks with the same starting pH, suggesting that the pH changes to milk on heating were primarily mediated by the initial mineral composition of the serum and were unaffected by the casein : whey protein ratio or the total protein content of the milk. The heat-induced changes in pH and calcium activity were largely reversible on cooling. The two milks with the lowest ratios of casein to whey protein gelled on heating to 90 °C for 10 min and cooling to 25 °C when the pH was adjusted to pH = 6.2 prior to heating. The viscosities of all other milks with casein to whey protein ratio of 3.97, 5.27 and 7.25 and/or pH ≥6.7 prior to heating did not change significantly. The effect of casein : whey protein ratio and the pH are the dominant factors in controlling the susceptibility to thickening of the milks on heating in this study. PMID:25499614

  12. Unexpected high pressure effects on the structural properties of condensed whey protein systems.

    PubMed

    Dissanayake, Muditha; Kasapis, Stefan; Chaudhary, Vinita; Adhikari, Benu; Palmer, Martin; Meurer, Barbara

    2012-12-01

    We show that application of high hydrostatic pressure (600 MPa for 15 min) on condensed whey protein (WP) systems (e.g., 80% w/w solids content) results in unexpected structure-function behavior when compared with conventional thermal treatment. Unraveling the relaxation properties in first-order thermodynamic transitions, the manifestation of glass transition phenomena and the preservation of native conformation in condensed preparations were recorded using small-deformation dynamic oscillation in shear, modulated differential scanning calorimetry, and infrared spectroscopy. Informed temperature application results in the formation of continuous networks at the denaturation temperature, which undergo vitrification at subzero temperatures. In contrast, high-pressure-treated WPs resist physicochemical denaturation, hence preserving the native conformation of secondary and tertiary structures. This was rationalized on the basis of a critical concentration threshold where transfer of water molecules to nonpolar residues in the protein interior is minimized because of low moisture content and restricted molecular mobility. The physical state and morphology of these high-solid preparations were further examined by the combined framework of reduced variables and Williams, Landel, and Ferry equation/free volume theory. Theoretical treatment of experimental observations unveils the dynamic range of the mechanical manifestation of the glass transition region in samples subjected to heat or pressure. In addition to preserving native conformation, WPs subjected to high pressure form glassy systems at parity with the structural functionality of the thermally treated counterparts. PMID:22987587

  13. Effectiveness of partially hydrolyzed rice glutelin as a food emulsifier: Comparison to whey protein.

    PubMed

    Xu, Xingfeng; Zhong, Junzhen; Chen, Jun; Liu, Chengmei; Luo, Liping; Luo, Shunjing; Wu, Lixin; McClements, David Julian

    2016-12-15

    The emulsifying properties of partially hydrolyzed rice glutelin (H-RG, 2% degree of hydrolysis) were compared to those of whey isolate protein (WPI), a commonly used protein-based emulsifier. The surface load of WPI (1% emulsifier, d32=167.5nm) was 2.8 times lower than that of H-RG (3% emulsifier, d32=159.0nm). Emulsions containing WPI-coated lipid droplets had better stability to pH changes (2-8), NaCl addition (0-500mM) and thermal processing (30-90°C, 0 or 200mM NaCl). Nevertheless, H-RG emulsions were stable over a range of conditions: pH 6-8; NaCl≤200 (pH 7); temperatures≤90°C in the absence of salt (pH 7); and temperatures≤50°C in the presence of 200mM NaCl (pH 7). This study indicates that H-RG may be utilized as a natural emulsifier in the development of label-friendly emulsion-based food products, but that further work is needed to increase the range of applications. PMID:27451237

  14. Whey protein concentrate doped electrospun poly(epsilon-caprolactone) fibers for antibiotic release improvement.

    PubMed

    Ahmed, Said Mahmoud; Ahmed, Hanaa; Tian, Chang; Tu, Qin; Guo, Yadan; Wang, Jinyi

    2016-07-01

    Design and fabrication of scaffolds using appropriate biomaterials are a key step for the creation of functionally engineered tissues and their clinical applications. Poly(epsilon-caprolactone) (PCL), a biodegradable and biocompatible material with negligible cytotoxicity, is widely used to fabricate nanofiber scaffolds by electrospinning for the applications of pharmaceutical products and wound dressings. However, the use of PCL as such in tissue engineering is limited due to its poor bioregulatory activity, high hydrophobicity, lack of functional groups and neutral charge. With the attempt to found nanofiber scaffolds with antibacterial activity for skin tissue engineering, in this study, whey protein concentrate (WPC) was used to modify the PCL nanofibers by doping it in the PCL electrospun solution. By adding proteins into PCL nanofibers, the degradability of the fibers may be increased, and this further allows an antibiotic incorporated in the fibers to be efficiently released. The morphology, wettability and degradation of the as-prepared PCL/WPC nanofibers were carefully characterized. The results showed that the PCL/WPC nanofibers possessed good morphology and wettability, as well as high degradation ability to compare with the pristine PCL fibers. Afterwords, tetracycline hydrochloride as a model antibiotic drug was doped in the PCL/WPC nanofibers. In vitro drug release assays demonstrated that PCL/WPC nanofibers had higher antibiotic release capability than the PCL nanofibers. Also, antibacterial activity evaluation against various bacteria showed that the drug-doped PCL/WPC fibers possessed more efficient antibacterial activity than the PCL nanofibers. PMID:27022878

  15. Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil.

    PubMed

    Ahmadi, Maede; Madadlou, Ashkan; Saboury, Ali Akbar

    2016-04-01

    Whey protein hydrogels blended with nanocrystalline and microcrystalline cellulose particles (NCC and MCC, respectively) were prepared, followed by freeze-drying, to produce aerogels. NCC blending increased the Young's modulus, and elastic character, of the protein aerogel. Aerogels were microporous and mesoporous materials, as characterized by the pores sizing 1.2 nm and 12.2 nm, respectively. Blending with NCC decreased the count of both microporous and mesoporous-classified pores at the sub-100 nm pore size range investigated. In contrast, MCC blending augmented the specific surface area and pores volume of the aerogel. It also increased moisture sorption affinity of aerogel. The feasibility of conveying hydrophobic nutraceuticals by aerogels was evaluated through loading fish oil into the non-blended aerogel. Oil loading altered its microstructure, corresponding to a peak displacement in Fourier-transform infra-red spectra, which was ascribed to increased hydrophobic interactions. Surface coating of aerogel with zein decreased the oxidation susceptibility of the loaded oil during subsequent storage. PMID:26593584

  16. Effect of enzymatic deamidation on the heat-induced conformational changes in whey protein isolate and its relation to gel properties.

    PubMed

    Miwa, Noriko; Yokoyama, Keiichi; Nio, Noriki; Sonomoto, Kenji

    2013-03-01

    The effect of protein-glutaminase (PG) on the heat-induced conformational changes in whey protein isolate (WPI) and its relation to gel properties was investigated. The structural properties of WPI treated with PG were examined by several analytical methods. The analysis of the fluorescence spectrum and the binding capacity of a fluorescent probe demonstrated that deamidation prevented the increase in the fluorescence intensity caused by subsequent heat treatment. Measurements of the molecular weight distribution of WPI showed that PG-treated WPI was not likely to polymerize even after heating. This is thought to be due to an increase in electrostatic repulsion between carboxylic acid groups and a decrease in the formation of disulfide bonds, which results in the decrease in heat-induced aggregation. The properties of heat-induced WPI gels were modified by deamidation. PG-treated WPI gels had a soft texture and a high water-holding capacity in the presence of salts. PMID:23379844

  17. Fuel alcohol from whey

    SciTech Connect

    Lyons, T.P.; Cunningham, J.D.

    1980-01-01

    According to the 'Report on alcohol fuels policy review', published in 1979 by the US Department of Energy, cheese whey had a very low net feedstock cost/gal of ethanol produced ($0.22) and the production potential in the USA is 90 million gal ethanol/yr. Three processes are described, i.e. the Milbrew whey fermentation process using Kluyveromyces fragilis with whey of 10-15% TS under sterile or non-sterile conditions and in batch, semi-continuous or continuous operation (primarily, designed for the production of single-cell protein), the continuous Carbery process in commercial operation in Ireland (DSA 42, 7856) and the Danish process (Dansk Gaerings-industri, Copenhagen) producing edible alcohol from whey permeate, and methane from distillation wastes for use as fuel for heating the distillation units.

  18. Microencapsulation of Lactobacillus acidophilus NCFM using polymerized whey proteins as wall material.

    PubMed

    Jiang, Yujun; Zheng, Zhe; Zhang, Tiehua; Hendricks, Gregory; Guo, Mingruo

    2016-09-01

    Survivability of probiotics in foods is essential for developing functional food containing probiotics. We investigated polymerized whey protein (PWP)-based microencapsulation process which is developed for protecting probiotics like Lactobacillus acidophilus NCFM and compared with the method using sodium alginate (SA). The entrapment rate was 89.3 ± 4.8% using PWP, while it was 73.2 ± 1.4% for SA. The microencapsulated NCFM by PWP and SA were separately subjected to digestion juices and post-fermentation storage of fermented cows' and goats' milk using the encapsulated culture. The log viable count of NCFM in PWP-based microencapsulation was 4.56, compared with that of 4.26 in SA-based ones and 3.13 for free culture. Compared with using SA as wall material, PWP was more effective in protecting probiotic. Microencapsulation of L. acidophilus NCFM using PWP as wall material can be exploited in the development of fermented dairy products with better survivability of probiotic organism. PMID:27309796

  19. Sour cherry pomace extract encapsulated in whey and soy proteins: Incorporation in cookies.

    PubMed

    Tumbas Šaponjac, Vesna; Ćetković, Gordana; Čanadanović-Brunet, Jasna; Pajin, Biljana; Djilas, Sonja; Petrović, Jovana; Lončarević, Ivana; Stajčić, Slađana; Vulić, Jelena

    2016-09-15

    One of the potential sources of valuable bioactives is pomace, a by-product from fruit juice processing industry. In the presented study, bioactive compounds extracted from cherry pomace, encapsulated in whey and soy proteins, have been incorporated in cookies, replacing 10% (WE10 and SE10) and 15% (WE15 and SE15) of flour. Total polyphenols, anthocyanins, antioxidant activity and colour characteristics of enriched cookies were followed during 4 months of storage. Total polyphenols of WE10, SE10, WE15 and SE15 have shown a slight increase (23.47, 42.00, 4.12 and 1.16%, respectively), while total anthocyanins (67.92, 64.33, 58.75 and 35.91%, respectively) and antioxidant activity (9.31, 24.30, 11.41 and 12.98%, respectively) decreased. Colour parameters (L(∗), a(∗) and b(∗)) of cookies were influenced by the colour of encapsulates. Fortified cookies received satisfactory sensory acceptance as well. Encapsulated sour cherry pomace bioactives have positively influenced functional characteristics of fortified cookies and their preservation. PMID:27080876

  20. Drying and denaturation characteristics of whey protein isolate in the presence of lactose and trehalose.

    PubMed

    Haque, M Amdadul; Chen, Jie; Aldred, Peter; Adhikari, Benu

    2015-06-15

    The denaturation kinetics of whey protein isolate (WPI), in the presence and absence of lactose and trehalose, was quantified in a convective air-drying environment. Single droplets of WPI, WPI-lactose and WPI-trehalose were dried in conditioned air (2.5% RH, 0.5m/s air velocity) at two temperatures (65°C and 80°C) for 500s. The initial solid concentration of these solutions was 10% (w/v) in all the samples. Approximately 68% of WPI was denatured when it was dried in the absence of sugars. Addition of 20% trehalose prevented the irreversible denaturation of WPI at both temperatures. Thirty percent lactose was required to prevent denaturation of WPI at 65°C and the same amount of lactose protected only 70% of WPI from denaturation at 80°C. The secondary structures of WPI were found to be altered by the drying-induced stresses, even in the presence of 20% trehalose and 30% lactose. PMID:25660851

  1. Whey protein isolate modified by transglutaminase aggregation and emulsion gel properties

    NASA Astrophysics Data System (ADS)

    Qi, Weiwei; Chen, Chong; Liu, Mujun; Yu, Guoping; Cai, Xinghang; Guo, Peipei; Yao, Yuxiu; Mei, Sijie

    2015-07-01

    Whey protein isolate and commercial soybean salad oil were used to produce the WPI emulsion dispersions. The properties of TG-catalyzed emulsion gelation produced from WPI emulsion dispersions were investigated by the amount of TG, temperature, pH and reaction time. Specifically, the texture properties (hardness and springiness), water-holding capacity and rheological properties (G' and G") were assessed. The result of Orthogonal tests showed WPI emulsion can form better hardness and springiness gel when the ratio of TG and WPI was 20U/g, pH 7.5, treatment temperature and time were 50°C and 3 h, respectively. The microstructure of TG emulsion gels was more compact, gel pore is smaller, distribution more uniform, the oil droplets size smaller compared with untreated emulsion gels. Compared to the control of rheological properties, G' and G" were significantly increased and G' > G", results showed that the gel was solid state, and TG speeded up the process of gelation.

  2. The influence of chitosan on the structural properties of whey protein and wheat starch composite systems.

    PubMed

    Yang, Natasha; Ashton, John; Kasapis, Stefan

    2015-07-15

    The structural properties of medium molecular weight chitosan (CHT), whey protein isolate (WPI) and native wheat starch (WS) from low- to intermediate-solid single systems and composite matrices were investigated. Analysis involved monitoring the thermal behavior of these biopolymers during controlled heating from 25 up to 95 °C and subsequent cooling to 5 °C under small deformation dynamic oscillation in-shear and micro differential scanning calorimetry experiments. Further information regarding the molecular interactions of components and overall network morphology of the systems was revealed through subjecting thermally developed gels to large deformation compression testing, scanning electron microscopy and infrared spectroscopy. Our study found a significant change in the structure of WPI networks upon incorporation of CHT in preparations due to electrostatic forces developing between the two polymeric constituents. In the tertiary system, the presence of low levels of starch contributed to a reduction in the firmness of the gel matrix. However, at higher additions of the polysaccharide, a recovery in the stored energy of composite materials was apparent, as recorded in the thermomechanical protocol. PMID:25722139

  3. Development of ecofriendly bionanocomposite: Whey protein isolate/pullulan films with nano-SiO2.

    PubMed

    Hassannia-Kolaee, Mahbobeh; Khodaiyan, Faramarz; Pourahmad, Rezvan; Shahabi-Ghahfarrokhi, Iman

    2016-05-01

    During the past decade, the limitation of petroleum based polymers, the high price of oil, and the environmental concern were attracted the attention of researchers to develop biobased polymers. The composition of different biopolymers and the reinforcement with nano filler are common methods to improve the drawbacks of biopolymers. In this study whey protein isolate/pullulan (WPI/PUL) films contain 1%, 3%, and 5% (w/w) nano-SiO2 (NS) were prepared by a casting method. Tensile strength of nanocomposite films increased after increasing NS content, but elongation at break decreased, simultaneously. Water absorption, moisture content, solubility in water improved in the wake of increasing NS content because NS increase the cohesiveness of the polymer matrix and improved the barrier and water resistance properties of the films. water vapor permeability of film specimens decreased by increasing NS content. Uniform distribution of NS into polymer matrix was confirmed by scanning electron microscopy (SEM). XRD pattern and thermal analysis revealed increasing crystallinity and increasing Tg of film specimens with increasing NS content, respectively. According to our result WPI/PUL/NS films possess potential to be used as environment friendly packaging films to improve shelf life of food and can be used as promising alternative to petroleum based packaging films. PMID:26774376

  4. Generation of Soluble Advanced Glycation End Products Receptor (sRAGE)-Binding Ligands during Extensive Heat Treatment of Whey Protein/Lactose Mixtures Is Dependent on Glycation and Aggregation.

    PubMed

    Liu, Fahui; Teodorowicz, Małgorzata; Wichers, Harry J; van Boekel, Martinus A J S; Hettinga, Kasper A

    2016-08-24

    Heating of protein- and sugar-containing materials is considered the primary factor affecting the formation of advanced glycation end products (AGEs). This study aimed to investigate the influence of heating conditions, digestion, and aggregation on the binding capacity of AGEs to the soluble AGE receptor (sRAGE). Samples consisting of mixtures of whey protein and lactose were heated at 130 °C. An in vitro infant digestion model was used to study the influence of heat treatment on the digestibility of whey proteins. The amount of sRAGE-binding ligands before and after digestion was measured by an ELISA-based sRAGE-binding assay. Water activity did not significantly affect the extent of digestibility of whey proteins dry heated at pH 5 (ranging from 3.3 ± 0.2 to 3.6 ± 0.1% for gastric digestion and from 53.5 ± 1.5 to 64.7 ± 1.1% for duodenal digestion), but there were differences in cleavage patterns of peptides among the samples heated at different pH values. Formation of sRAGE-binding ligands depended on the formation of aggregates and was limited in the samples heated at pH 5. Moreover, the sRAGE-binding activity of digested sample was changed by protease degradation and correlated with the digestibility of samples. In conclusion, generation of sRAGE-binding ligands during extensive heat treatment of whey protein/lactose mixtures is limited in acidic heating condition and dependent on glycation and aggregation. PMID:27460534

  5. Anti-Helicobacter pylori activity of crude N-acetylneuraminic acid isolated from glycomacropeptide of whey

    PubMed Central

    Kim, Dong-Jae; Kang, Min-Jung; Choi, Jin-A; Na, Dae-Seung; Kim, Jin-Beom; Na, Chun-Soo

    2016-01-01

    Helicobacter pylori colonizes the gastric mucosa of about half of the world's population, causing chronic gastritis and gastric cancer. An increasing emergence of antibiotic-resistant H. pylori arouses demand on alternative non-antibiotic-based therapies. In this study, we freshly prepared crude N-acetylneuraminic acid obtained from glycomacropeptide (G-NANA) of whey through a neuraminidase-mediated reaction and evaluated its antibacterial ability against H. pylori and H. felis. Overnight cultures of the H. pylori were diluted with fresh media and different concentrations (1-150 mg/mL) of crude G-NANA were added directly to the culture tube. Bacterial growth was evaluated by measuring the optical density of the culture medium and the number of viable bacteria was determined by a direct count of the colony forming units (CFU) on agar plates. For the in vivo study, mice were orally infected with 100 µL (5×108 cfu/mL) of H. felis four times at a day's interval, accompanied by a daily administration of crude G-NANA or vehicle. A day after the last infection, the mice were daily administered the crude G-NANA (0, 75, and 300 mg/mL) for 10 days and euthanized. Their stomachs were collected and bacterial colonization was determined by quantitative real-time PCR. Crude G-NANA inhibited H. pylori's growth and reduced the number of viable bacteria in a dose-dependent manner. Furthermore, crude G-NANA inhibited bacterial colonization in the mice. These results showed that crude G-NANA has antibacterial activity against Helicobacter and demonstrated its therapeutic potential for the prevention of chronic gastritis and gastric carcinogenesis induced by Helicobacter infection in humans. PMID:27382378

  6. Simultaneous production of lactobionic and gluconic acid in cheese whey/glucose co-fermentation by Pseudomonas taetrolens.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2015-11-01

    Substrate versatility of Pseudomonas taetrolens was evaluated for the first time in a co-fermentation system combining cheese whey and glucose, glycerol or lactose as co-substrates. Results showed that P. taetrolens displayed different production patterns depending on the co-substrate supplied. Whereas the presence of glucose led to a simultaneous co-production of lactobionic (78g/L) and gluconic acid (8.8g/L), lactose feeding stimulated the overproduction of lactobionic acid from whey with a high specific productivity (1.4g/gh) and yield (100%). Co-substrate supply of glycerol conversely led to reduced lactobionic acid yield (82%) but higher cell densities (1.8g/L), channelling the carbon source towards cell growth and maintenance. Higher carbon availability impaired the metabolic activity as well as membrane integrity, whereas lactose feeding improved the cellular functionality of P. taetrolens. Insights into these mixed carbon source strategies open up the possibility of co-producing lactobionic and gluconic acid into an integrated single-cell biorefinery. PMID:26253915

  7. Proteins and Amino Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the most abundant substances in living organisms and cells. All proteins are constructed from the same twenty amino acids that are linked together by covalent bonds. Shorter chains of two or more amino acids can be linked by covalent bonds to form polypeptides. There are twenty amino...

  8. Emulsions stabilised by whey protein microgel particles: towards food-grade Pickering emulsions.

    PubMed

    Destribats, Mathieu; Rouvet, Martine; Gehin-Delval, Cécile; Schmitt, Christophe; Binks, Bernard P

    2014-09-28

    We have investigated a new class of food-grade particles, whey protein microgels, as stabilisers of triglyceride-water emulsions. The sub-micron particles stabilized oil-in-water emulsions at all pH with and without salt. All emulsions creamed but exhibited exceptional resistance to coalescence. Clear correlations exist between the properties of the microgels in aqueous dispersion and the resulting emulsion characteristics. For conditions in which the particles were uncharged, fluid emulsions with relatively large drops were stabilised, whereas emulsions stabilized by charged particles contained smaller flocculated drops. A combination of optical microscopy of the drops and spectrophotometry of the resolved aqueous phase allowed us to estimate the interfacial adsorption densities of the particles using the phenomenon of limited coalescence. We deduce two classes of particle arrangement. Complete adsorption of the particles was obtained when they were neutral or when their charges were screened by salt resulting in at least one particle monolayer at the interface. By contrast, only around 50% of the particles adsorbed when they were charged with emulsion drops being covered by less than half a monolayer. These findings were supported by direct visualization of drop interfaces using cryo-scanning electron microscopy. Uncharged particles were highly aggregated and formed a continuous 2-D network at the interface. Otherwise particles organized as individual aggregates separated by particle-free regions. In this case, we suggest that some particles spread at the interface leading to the formation of a continuous protein membrane. Charged particles displayed the ability to bridge opposing interfaces of neighbouring drops to form dense particle disks protecting drops against coalescence; this is the main reason for the flocculation and stability of emulsions containing sparsely covered drops. PMID:24675994

  9. On the confocal images and the rheology of whey protein isolated and modified pectins associated complex.

    PubMed

    Lutz, Rachel; Aserin, Abraham; Portnoy, Yariv; Gottlieb, Moshe; Garti, Nissim

    2009-02-15

    The conditions necessary to form an associated complex between whey protein isolate (WPI) and enzymatically modified pectin in water, at pH values above the isoelectric point of the protein, have been documented. The existence of the complex is not easily verified and its characterization in solution is even more complicated, since the structure is an intermediate entity between the non-interacting, incompatible aqueous soluble mixture of the biopolymers, and a strongly interacting coacervated precipitating complex. Evidence for the formation of this associated complex is provided from confocal laser scanning microscope images and rheological behavior of the aqueous mixtures. The associated complex is characterized by small fluorescent "patches" interpreted as small aggregates. The viscosity of this solution is greater than that of its individual biopolymer constituents, indicating a synergy of attractive interactions that occurs in the solution. While individually, the pectin and the WPI solutions at the studied range of concentrations exhibit moderately non-Newtonian behavior, at specific weight ratios, mixtures of the two behave either as highly entangled polymeric structures or as weak gels. The values of the storage modulus G' are equal to or greater than those of the loss modulus G''. We conclude that the associated complexes are formed at pH 6, and at 4 wt% WPI with a pectin concentration ranging from 0.1 to 0.75 wt%. The influence of the charge distribution (degree of order of the carboxylic groups) of pectin on the associated complex was also investigated, and it was found that the more "ordered" pectin (U63) favors the formation of the associated soluble complex. PMID:19070469

  10. Whey protein processing influences formula-induced gut maturation in preterm pigs.

    PubMed

    Li, Yanqi; Østergaard, Mette V; Jiang, Pingping; Chatterton, Dereck E W; Thymann, Thomas; Kvistgaard, Anne S; Sangild, Per T

    2013-12-01

    Immaturity of the gut predisposes preterm infants to nutritional challenges potentially leading to clinical complications such as necrotizing enterocolitis. Feeding milk formulas is associated with greater risk than fresh colostrum or milk, probably due to loss of bioactive proteins (e.g., immunoglobulins, lactoferrin, insulin-like growth factor, transforming growth factor-β) during industrial processing (e.g., pasteurization, filtration, spray-drying). We hypothesized that the processing method for whey protein concentrate (WPC) would affect gut maturation in formula-fed preterm pigs used as a model for preterm infants. Fifty-five caesarean-delivered preterm pigs were distributed into 4 groups given 1 of 4 isoenergetic diets: formula containing conventional WPC (filtration, multi-pasteurization, standard spray-drying) (CF); formula containing gently treated WPC (reduced filtration and pasteurization, gentle spray-drying) (GF); formula containing minimally treated WPC (rennet precipitation, reduced filtration, heat treatment <40°C, freeze-drying) (MF); and bovine colostrum (used as a positive reference group) (BC). Relative to CF, GF, and MF pigs, BC pigs had greater villus heights, lactose digestion, and absorption and lower gut permeability (P < 0.05). MF and BC pigs had greater plasma citrulline concentrations than CF and GF pigs and intestinal interleukin-8 was lower in BC pigs than in the other groups (P < 0.05). MF pigs had lower concentrations of intestinal claudin-4, cleaved caspase-3, and phosphorylated c-Jun than CF pigs (P < 0.05). The conventional and gently treated WPCs had similar efficacy in stimulating proliferation of porcine intestinal epithelial cells. We conclude that processing of WPC affects intestinal structure, function, and integrity when included in formulas for preterm pigs. Optimization of WPC processing technology may be important to preserve the bioactivity and nutritional value of formulas for sensitive newborns. PMID:24047702

  11. Foaming Properties of Whey Protein Isolate and λ-Carrageenan Mixed Systems.

    PubMed

    Wang, Zhengshan; Zhang, Sha; Vardhanabhuti, Bongkosh

    2015-08-01

    Heating protein with polysaccharide under neutral or near neutral pH can induce the formation of soluble complex with improved functional properties. The objective of our research was to investigate the effects of λ-carrageenan (λC) concentrations and pH on foaming properties of heated whey protein isolate (WPI) and λC soluble complex (h-cpx) in comparison to heated WPI with added λC (pWPI-λC), and unheated WPI with λC (WPI-λC). In all 3 WPI-λC systems at pH 7, increasing λC concentration led to improved foamability until a certain concentration before it decreased. Despite their higher viscosity, both heated systems (pWPI-λC and h-cpx) showed significantly better foamability and foam stability compared to WPI-λC. Rheological results of foams with 0.25% λC suggested that higher elasticity and viscous films were produced in h-cpx and pWPI-λC systems corresponding to better foam stability. Foam microstructure images indicated that foams produced from h-cpx had thicker film and consisted of smaller initial bubble area and more uniform bubble size. Results from the effect of pH (6.2, 6.5, and 7.0) further confirmed that stronger interactions between WPI and λC during heating contributed to the improved foaming properties. Foam stability was higher in h-cpx system at all 3 pH levels, especially under pH 6.2 where there were strongest interactions between the biopolymers. PMID:26121991

  12. Whey protein isolate gel for separation: A formation, characterization, and application study

    NASA Astrophysics Data System (ADS)

    Teo, Jiunn Yeong

    Novel microporous membranes made of whey protein isolate (WPI) were developed. Aggregates of WPI comprised the bulk of the membrane, the size and packing density of which were varied by changing CaCl2 concentration (0.05--0.3M) and WPI concentration (30--40wt%), respectively. Aggregate sizes of the membranes made with 0.3M, 0.1M, 0.05M CaCl2 were roughly 1.5mum, 1mum, and 0.8mum, respectively. Skin layer of thickness about 0.5mum was found on either side of the membrane, but the thickness could reach 5mum at 0.3M CaCl2. Additionally, the porosity of the skin layer was shown to be modifiable with the addition of surfactant. Membranes were stable in hexane with flux values on the order of 1--1000gal/ft 2·d depending on the morphology of the membrane. The molecular weight cutoffs (MWCOs) of the WPI membranes with skins were evaluated using two different methods: (i) dextran marker method and (ii) protein/vitamin marker method. Membranes were found to have MWCOs of 1,000 or greater with variations when the concentration of salt used to control aggregate size, or surfactant used to modify skin properties were selected. The microporous WPI gel was also used as a cation exchanger and a hydrophobic adsorbent. The WPI cation exchanger has a maximum capacity of 68mg cupric chloride per gram dry WPI gel at neutral pH and can be regenerated effectively by reducing the pH of the solution. The WPI gel has also been found to be an excellent adsorbent for total phenolic compounds from grape extract with a partition coefficient higher than 1000 in aqueous system. The mechanism for total phenolic compounds adsorption is believed to be physical sorption, particularly sorption/condensation of total phenolic compounds in the pores and on all surfaces of WPI gel. The gel has a low extractables of 1ng/ml.g gel, and has an isoelectric point of 5.5. Although WPI gel was made into a monolith for continuous bed chromatography, channeling problems have made it very hard to evaluate the

  13. Corning and Kroger turn whey to yeast

    SciTech Connect

    Not Available

    1981-11-16

    It is reported that Corning and Kroger intend to build a 35,000 sq. ft. plant in Winchester, Ky., that will turn whey into bakers' yeast. The plant will convert whey from Kroger's dairies into bakers' yeast, supplying about 60% of the yeast needed for nine Kroger bakeries. It will also produce syrups and whey protein concentrate for use in other food processing activities. In addition to making useful products, the project will convert the whey to glucose and galactose. The protein component of the whey will be concentrated and used in various foods and feeds.

  14. Effect of heating strategies on whey protein denaturation--Revisited by liquid chromatography quadrupole time-of-flight mass spectrometry.

    PubMed

    Akkerman, M; Rauh, V M; Christensen, M; Johansen, L B; Hammershøj, M; Larsen, L B

    2016-01-01

    Previous standards in the area of effect of heat treatment processes on milk protein denaturation were based primarily on laboratory-scale analysis and determination of denaturation degrees by, for example, electrophoresis. In this study, whey protein denaturation was revisited by pilot-scale heating strategies and liquid chromatography quadrupole time-of-flight mass spectrometer (LC/MC Q-TOF) analysis. Skim milk was heat treated by the use of 3 heating strategies, namely plate heat exchanger (PHE), tubular heat exchanger (THE), and direct steam injection (DSI), under various heating temperatures (T) and holding times. The effect of heating strategy on the degree of denaturation of β-lactoglobulin and α-lactalbumin was determined using LC/MC Q-TOF of pH 4.5-soluble whey proteins. Furthermore, effect of heating strategy on the rennet-induced coagulation properties was studied by oscillatory rheometry. In addition, rennet-induced coagulation of heat-treated micellar casein concentrate subjected to PHE was studied. For skim milk, the whey protein denaturation increased significantly as T and holding time increased, regardless of heating method. High denaturation degrees were obtained for T >100°C using PHE and THE, whereas DSI resulted in significantly lower denaturation degrees, compared with PHE and THE. Rennet coagulation properties were impaired by increased T and holding time regardless of heating method, although DSI resulted in less impairment compared with PHE and THE. No significant difference was found between THE and PHE for effect on rennet coagulation time, whereas the curd firming rate was significantly larger for THE compared with PHE. Micellar casein concentrate possessed improved rennet coagulation properties compared with skim milk receiving equal heat treatment. PMID:26506552

  15. Thermal properties of milk fat, xanthine oxidase, caseins and whey proteins in pulsed electric field-treated bovine whole milk.

    PubMed

    Sharma, Pankaj; Oey, Indrawati; Everett, David W

    2016-09-15

    Thermodynamics of milk components (milk fat, xanthine oxidase, caseins and whey proteins) in pulsed electric field (PEF)-treated milk were compared with thermally treated milk (63 °C for 30 min and 73 °C for 15s). PEF treatments were applied at 20 or 26 kV cm(-1) for 34 μs with or without pre-heating of milk (55 °C for 24s), using bipolar square wave pulses in a continuous mode of operation. PEF treatments did not affect the final temperatures of fat melting (Tmelting) or xanthine oxidase denaturation (Tdenaturation), whereas thermal treatments increased both the Tmelting of milk fat and the Tdenaturation for xanthine oxidase by 2-3 °C. Xanthine oxidase denaturation was ∼13% less after PEF treatments compared with the thermal treatments. The enthalpy change (ΔH of denaturation) of whey proteins decreased in the treated-milk, and denaturation increased with the treatment intensity. New endothermic peaks in the calorimetric thermograms of treated milk revealed the formation of complexes due to interactions between MFGM (milk fat globule membrane) proteins and skim milk proteins. Evidence for the adsorption of complexes onto the MFGM surface was obtained from the increase in surface hydrophobicity of proteins, revealing the presence of unfolded hydrophobic regions. PMID:27080877

  16. Anti-obesity Effect of Fermented Whey Beverage using Lactic Acid Bacteria in Diet-induced Obese Rats

    PubMed Central

    2015-01-01

    High-protein fermented whey beverage (FWB) was manufactured using whey protein concentrate (WPC) and Lactobacillus plantarum DK211 isolated from kimchi. This study was designed to evaluate the anti-obesity activity of FWB in male rats fed a high-fat diet. Male Sprague-Dawley rats were randomly assigned to three groups (n=8 per group). The three groups differed in their diet; one group received a normal diet (ND), another, a high-fat diet (HD), and the third, a HD plus fermented whey beverage (HDFWB), for 4 wk. Supplementation with FWB (the HDFWB group) prevented weight gain and body fat accumulation. The food intake in the HDWFB group was significantly lower (p<0.05) than that of the HD group. The HDWFB group also showed a significant decrease in organ weights (p<0.05), except for the weight of the testis. There was a significant decrease in total cholesterol, LDL-cholesterol, and triglycerides in the HDFWB group compared with the HD group (p<0.05), but there was no significant difference in serum HDL-cholesterol levels among the experimental groups. Rats ingesting FWB (the HDFWB group) also showed a significant decrease in blood glucose levels, and plasma levels of insulin, leptin, and ghrelin compared to HD group (p<0.05). These results indicate that FWB has beneficial effects on dietary control, weight control, and reduction in fat composition and serum lipid level; consequently, it may provide antiobesity and hypolipidemic activity against high fat diet-induced obesity in rats. PMID:26761894

  17. Fundamental studies on the structural functionality of whey protein isolate in the presence of small polyhydroxyl compounds as co-solute.

    PubMed

    George, Paul; Lundin, Leif; Kasapis, Stefan

    2013-08-15

    The present work deals with the changing network morphology of whey protein isolate (15%, w/w) in the presence of glucose syrup (co-solute) with concentrations ranging from 0% to 65% (w/w) in 10 mM CaCl2 solution, thus producing formulations with a total level of solids of up to 80% (w/w). Denaturation behaviour and aggregation of whey protein systems were investigated using small deformation dynamic oscillation on shear, micro and modulated differential scanning calorimetry, and confocal laser scanning microscopy. A progression in the mechanical strength of protein aggregates was observed resulting from enhanced protein-protein interactions in the presence of glucose syrup. Addition of the co-solute resulted in better thermal stability of protein molecules by shifting the process of denaturation to higher temperature, as observed by calorimetry. Observations are supported by micrographs showing coherent networks with reduced size of whey protein aggregates in the presence of high levels of glucose syrup, as opposed to thick and random clusters for systems of whey protein by itself. Glass transition phenomenon was observed for condensed protein/co-solute systems, which were treated with theoretical concepts adapted from synthetic polymer research to pinpoint the mechanical glass transition temperature. PMID:23561126

  18. Coingestion of whey protein and casein in a mixed meal: demonstration of a more sustained anabolic effect of casein

    PubMed Central

    Soop, Mattias; Nehra, Vandana; Henderson, Gregory C.; Boirie, Yves; Ford, G. Charles

    2012-01-01

    When consumed separately, whey protein (WP) is more rapidly absorbed into circulation than casein (Cas), which prompted the concept of rapid and slow dietary protein. It is unclear whether these proteins have similar metabolic fates when coingested as in milk. We determined the rate of appearance across the splanchnic bed and the rate of disappearance across the leg of phenylalanine (Phe) from coingested, intrinsically labeled WP and Cas. Either [15N]Phe or [13C-ring C6]Phe was infused in lactating cows, and the labeled WP and Cas from their milk were collected. To determine the fate of Phe derived from different protein sources, 18 healthy participants were studied after ingestion of one of the following: 1) [15N]WP, [13C]Cas, and lactose; 2) [13C]WP, [15N]Cas, and lactose; 3) lactose alone. At 80–120 min, the rates of appearance (Ra) across the splanchnic bed of Phe from WP and Cas were similar [0.068 ± 0.010 vs. 0.070 ± 0.009%/min; not significant (ns)]. At time 220–260 min, Phe appearance from WP had slowed (0.039 ± 0.008%/min, P < 0.05) whereas Phe appearance from Cas was sustained (0.068 ± 0.013%/min). Similarly, accretion rates across the leg of Phe absorbed from WP and Cas were not different at 80–120 min (0.011 ± 0.002 vs. 0.012 ± 0.003%/min; ns), but they were significantly lower for WP (0.007 ± 0.002%/min) at 220–260 min than for Cas (0.013 ± 0.002%/min) at 220–260 min. Early after meal ingestion, amino acid absorption and retention across the leg were similar for WP and Cas, but as rates for WP waned, absorption and assimilation into skeletal muscle were better retained for Cas. PMID:22569072

  19. Physicochemical Characterization and Potential Prebiotic Effect of Whey Protein Isolate/Inulin Nano Complex.

    PubMed

    Ha, Ho-Kyung; Jeon, Na-Eun; Kim, Jin Wook; Han, Kyoung-Sik; Yun, Sung Seob; Lee, Mee-Ryung; Lee, Won-Jae

    2016-01-01

    The purposes of this study were to investigate the impacts of concentration levels of whey protein isolate (WPI) and inulin on the formation and physicochemical properties of WPI/inulin nano complexes and to evaluate their potential prebiotic effects. WPI/inulin nano complexes were produced using the internal gelation method. Transmission electron microscopy (TEM) and particle size analyzer were used to assess the morphological and physicochemical characterizations of nano complexes, respectively. The encapsulation efficiency of resveratrol in nano complexes was studied using HPLC while the potential prebiotic effects were investigated by measuring the viability of probiotics. In TEM micrographs, the globular forms of nano complexes in the range of 10 and 100 nm were successfully manufactured. An increase in WPI concentration level from 1 to 3% (w/v) resulted in a significant (p<0.05) decrease in the size of nano complexs while inulin concentration level did not affect the size of nano complexes. The polydispersity index of nano complexes was below 0.3 in all cases while the zeta-potential values in the range of -2 and -12 mV were observed. The encapsulation efficiency of resveratrol was significantly (p<0.05) increased as WPI and inulin concentration levels were increased from 1 to 3% (w/v). During incubation at 37℃ for 24 h, WPI/inulin nano complexes exhibited similar viability of probiotics with free inulin and had significantly (p<0.05) higher viability than negative control. In conclusions, WPI and inulin concentration levels were key factors affecting the physicochemical properties of WPI/inulin nano complexes and had potential prebiotic effect. PMID:27194937

  20. The effect of bovine whey protein on ectopic bone formation in young growing rats.

    PubMed

    Kelly, Owen; Cusack, Siobhan; Cashman, Kevin D

    2003-09-01

    The beneficial effect of bovine whey protein (WP) on bone metabolism has been shown in adult human subjects and ovariectomised rats. However, its effect on bone formation in earlier life, particularly during periods of bone mineral accrual, has not been investigated. Twenty-one male rats (4 weeks old, Wistar strain) were randomised by weight into three groups of seven rats each and fed ad libitum on a semi-purified low-Ca diet (3.0 g Ca/kg diet) containing 0 (control), 10 (diet WP1) or 20 (diet WP2) g bovine WP/kg for 47 d. On day 34 of the dietary intervention, all rats had two gelatine capsules containing demineralised bone powder implanted subcutaneously in the thorax region (a well-established in vivo model of ectopic bone formation). At 14 d after implantation, alkaline phosphatase activity (reflective of bone formation) in the bone implants from animals fed WP1 and -2 diets was almost 2-fold (P<0.01) that of control animals. Insulin-like growth factor (IGF)-I mRNA levels were about 3-fold (P<0.05) higher in implants from animals fed the WP diets compared with those from control animals. Serum- and urine-based biomarkers of bone metabolism and bone mineral composition in intact femora were unaffected by WP supplementation. In conclusion, the present findings suggest that bovine WP can enhance the rate of ectopic bone formation in young growing rats fed a Ca-restricted diet. This effect may be mediated by an increased synthesis of IGF-I in growing bone. The effect of WP on bone formation warrants further investigation. PMID:13129461

  1. Low-fat mozzarella as influenced by microbial exopolysaccharides, preacidification, and whey protein concentrate.

    PubMed

    Zisu, B; Shah, N P

    2005-06-01

    Low-fat Mozzarella cheeses containing 6% fat were made by preacidification of milk, preacidification combined with exopolysaccharide- (EPS-) producing starter, used independently or as a coculture with non-EPS starter, and preacidification combined with whey protein concentrate (WPC) and EPS. The impact of these treatments on moisture retention, changes in texture profile analysis, cheese melt, stretch, and on pizza bake performance were investigated over 45 d of storage at 4 degrees C. Preacidified cheeses without EPS (control) had the lowest moisture content (53.75%). These cheeses were hardest and exhibited greatest springiness and chewiness. The meltability and stretchability of these cheeses increased most during the first 28 d of storage. The moisture content in cheeses increased to 55.08, 54.79, and 55.82% with EPS starter (containing 41.18 mg/g of EPS), coculturing (containing 28.61 mg/g of EPS), and WPC (containing 44.23 mg/g of EPS), respectively. Exopolysaccharide reduced hardness, springiness, and chewiness of low-fat cheeses made with preacidified milk in general and such cheeses exhibited an increase in cohesiveness and meltability. Although stretch distance was similar in all cheeses, those containing EPS were softer than the control. Cocultured cheeses exhibited the greatest meltability. Cheeses containing WPC were softest in general; however, hardness remained unchanged over 45 d. Cheeses made with WPC had the least increase in meltability over time. Incorporation of WPC did not reduce surface scorching or increase shred fusion of cheese shreds during pizza baking; however, there was an improvement in these properties between d 7 and 45. Coating of the cheese shreds with oil was necessary for adequate browning, melt, and flow characteristics in all cheese types. PMID:15905427

  2. Physicochemical Characterization and Potential Prebiotic Effect of Whey Protein Isolate/Inulin Nano Complex

    PubMed Central

    Han, Kyoung-Sik; Yun, Sung Seob; Lee, Mee-Ryung

    2016-01-01

    The purposes of this study were to investigate the impacts of concentration levels of whey protein isolate (WPI) and inulin on the formation and physicochemical properties of WPI/inulin nano complexes and to evaluate their potential prebiotic effects. WPI/inulin nano complexes were produced using the internal gelation method. Transmission electron microscopy (TEM) and particle size analyzer were used to assess the morphological and physicochemical characterizations of nano complexes, respectively. The encapsulation efficiency of resveratrol in nano complexes was studied using HPLC while the potential prebiotic effects were investigated by measuring the viability of probiotics. In TEM micrographs, the globular forms of nano complexes in the range of 10 and 100 nm were successfully manufactured. An increase in WPI concentration level from 1 to 3% (w/v) resulted in a significant (p<0.05) decrease in the size of nano complexs while inulin concentration level did not affect the size of nano complexes. The polydispersity index of nano complexes was below 0.3 in all cases while the zeta-potential values in the range of -2 and -12 mV were observed. The encapsulation efficiency of resveratrol was significantly (p<0.05) increased as WPI and inulin concentration levels were increased from 1 to 3% (w/v). During incubation at 37℃ for 24 h, WPI/inulin nano complexes exhibited similar viability of probiotics with free inulin and had significantly (p<0.05) higher viability than negative control. In conclusions, WPI and inulin concentration levels were key factors affecting the physicochemical properties of WPI/inulin nano complexes and had potential prebiotic effect. PMID:27194937

  3. Evaluation of bromine and iodine content of milk whey proteins combining digestion by microwave-induced combustion and ICP-MS determination.

    PubMed

    da Silva, Sabrina Vieira; Picoloto, Rochele Sogari; Flores, Erico Marlon Moraes; Wagner, Roger; dos Santos Richards, Neila Silvia Pereira; Barin, Juliano Smanioto

    2016-01-01

    The bromine and iodine content of whey protein concentrate (WPC), hydrolysate (WPH), and isolate (WPI) was evaluated combining microwave-induced combustion (MIC) digestion with inductively coupled plasma mass spectrometry (ICP-MS) determination. MIC digestion allowed the decomposition of up to 500 mg of samples using diluted NH4OH solution (25 mmol L(-1)) for absorption of analytes, assuring the compatibility with ICP-MS determination. Accuracy was evaluated using milk powder certified reference material (NIST 8435) with good agreements for Br and I (102% and 105%, respectively). For Br and I, the limit of quantification obtained by ICP-MS was 7 and 281 times lower in comparison with ion chromatography determination, respectively. Iodine could be enriched in whey protein production and up to 70% of the tolerable upper intake level was found, thus revealing the need to monitor it in whey proteins. On the other hand, the concentration of Br was below its acceptable daily intake. PMID:26212983

  4. 21 CFR 184.1979 - Whey.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a significant amount of lactose is converted to lactic acid, or from the curd formation by direct... conversion of lactose to lactic acid is known as sweet whey. Sweet whey has a maximum titratable acidity of not more than 0.16 percent, calculated as lactic acid, and an alkalinity of ash of not more than...

  5. TRIXcell+, a new long-term boar semen extender containing whey protein with higher preservation capacity and litter size

    PubMed Central

    van den Berg, B.M.; Reesink, J.; Reesink, W.

    2014-01-01

    It was the aim of the present study to test whey as protective protein for the sperm cell in the long-term boar semen preservation medium TRIXcell. Analyses of sperm cell motility using computer-assisted semen analysis (CASA) indicated that the whey protein Porex has a similar protective effect as bovine serum albumin (BSA) in maintaining viability of stored boar sperm. Boar sperm diluted in TRIXcell+ maintains commercially acceptable motility (>60%) for 10 days, while swine sperm diluted in the semen preservation medium Beltsville Thawing Solution (BTS) maintains commercially acceptable motility (>60%) for 3-5 days for most boars. To test the on-farm fertility performance of TRIXcell+ compared to BTS, inseminations were started on 35 commercial pig production farms in the summer of 2006. During the period of July 2006 until July 2012 for each farm and each calendar year the mean farrowing rate and litter size for semen diluted in TRIXcell+ and stored for 3-5 days was found higher than that of semen stored for 1-2 days in BTS. Based on data gained from a total of 583.749 sows inseminated through the years 2006-2012, the mean farrowing rate for semen diluted in TRIXcell+ and BTS was 90.4 ± 4.0 and 87.9 ± 3.6, respectively, which is not significantly different. Based on the same data, the mean total number of piglets born alive for semen diluted in TRIXcell+ and BTS was 14.2 ± 0.7 and 13.6 ± 0.6, respectively, which is significantly different. We conclude that whey protein can effectively be used in the long-term preservation medium TRIXcell resulting in a higher litter size. PMID:26623335

  6. TRIXcell+, a new long-term boar semen extender containing whey protein with higher preservation capacity and litter size.

    PubMed

    van den Berg, B M; Reesink, J; Reesink, W

    2014-01-01

    It was the aim of the present study to test whey as protective protein for the sperm cell in the long-term boar semen preservation medium TRIXcell. Analyses of sperm cell motility using computer-assisted semen analysis (CASA) indicated that the whey protein Porex has a similar protective effect as bovine serum albumin (BSA) in maintaining viability of stored boar sperm. Boar sperm diluted in TRIXcell+ maintains commercially acceptable motility (>60%) for 10 days, while swine sperm diluted in the semen preservation medium Beltsville Thawing Solution (BTS) maintains commercially acceptable motility (>60%) for 3-5 days for most boars. To test the on-farm fertility performance of TRIXcell+ compared to BTS, inseminations were started on 35 commercial pig production farms in the summer of 2006. During the period of July 2006 until July 2012 for each farm and each calendar year the mean farrowing rate and litter size for semen diluted in TRIXcell+ and stored for 3-5 days was found higher than that of semen stored for 1-2 days in BTS. Based on data gained from a total of 583.749 sows inseminated through the years 2006-2012, the mean farrowing rate for semen diluted in TRIXcell+ and BTS was 90.4 ± 4.0 and 87.9 ± 3.6, respectively, which is not significantly different. Based on the same data, the mean total number of piglets born alive for semen diluted in TRIXcell+ and BTS was 14.2 ± 0.7 and 13.6 ± 0.6, respectively, which is significantly different. We conclude that whey protein can effectively be used in the long-term preservation medium TRIXcell resulting in a higher litter size. PMID:26623335

  7. The effect of calcium on the composition and physical properties of whey protein particles prepared using emulsification.

    PubMed

    Westerik, Nieke; Scholten, Elke; Corredig, Milena

    2015-06-15

    Protein microparticles were formed through emulsification of 25% (w/w) whey protein isolate (WPI) solutions containing various concentrations of calcium (0.0-400.0mM) in an oil phase stabilized by polyglycerol polyricinoleate (PGPR). The emulsions were heated (at 80°C) and the microparticles subsequently re-dispersed in an aqueous phase. Light microscopy and scanning electron microscopy (SEM) images revealed that control particles and those prepared with 7.4mM calcium were spherical and smooth. Particles prepared with 15.0mM calcium gained an irregular, cauliflower-like structure, and at concentrations larger than 30.0mM, shells formed and the particles were no longer spherical. These results describe, for the first time, the potential of modulating the properties of dense whey protein particles by using calcium, and may be used as structuring agents for the design of functional food matrices with increased protein and calcium content. PMID:25660860

  8. Effects of Whey Proteins on Glucose Metabolism in Normal Wistar Rats and Zucker Diabetic Fatty (ZDF) Rats

    PubMed Central

    Gregersen, Soren; Bystrup, Sara; Overgaard, Ann; Jeppesen, Per B.; Sonderstgaard Thorup, Anne C.; Jensen, Erik; Hermansen, Kjeld

    2013-01-01

    BACKGROUND: Beneficial effects of milk protein on glucose metabolism have been reported. OBJECTIVES: We hypothesized that dietary supplementation with specific milk protein fractions could prevent diabetes and differentially alter tissue gene expression. Therefore, we studied the effects of supplementing the diet with whey isolate, whey hydrolysate, Α-lactalbumin, and casein proteins in Zucker Diabetic Fatty rats (ZDF) and normal Wistar rats. A chow diet was included as well. METHODS: Six week old male ZDF (n = 60) and Wistar rats (n = 44) were used in a 13 week study. P-glucose, p-insulin, p-glucagon, HbA1c, total-cholesterol, HDL-cholesterol, and triglycerides were measured. An oral glucose tolerance test (OGTT) was performed. Liver, muscle, and adipose samples were used for RT-PCR. One-way ANOVA and multiple comparison tests were performed. RESULTS: HbA1c increased during intervention, and was significantly lower for all milk protein fractions compared to chow in the ZDF rats (p < 0.05). At week 18, iAUCs during OGTT in the ZDF rats were similar for all milk protein-treated groups and significantly lower than in the chow fed group (p < 0.01). In the chow-fed group of ZDF rats, p-glucagon increased significantly compared to all milk protein fed animals. Total and HDL cholesterol were increased in the milk protein-treated ZDF rats compared with the control group. Expression of liver GYS2 and SREBP-2 were downregulated in the milk protein-fed ZDF groups compared with chow. CONCLUSIONS: We conclude that milk protein fractions improve glycemic indices in diabetic rats. No major differences were seen between the milk protein fractions. However, the fractions had a differential impact on tissue gene expression, most pronounced in ZDF rats. PMID:24841879

  9. Fuzzy Clustering-Based Modeling of Surface Interactions and Emulsions of Selected Whey Protein Concentrate Combined to i-Carrageenan and Gum Arabic Solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gums and proteins are valuable ingredients with a wide spectrum of applications. Surface properties (surface tension, interfacial tension, emulsion activity index “EAI” and emulsion stability index “ESI”) of 4% whey protein concentrate (WPC) in a combination with '- carrageenan (0.05%, 0.1%, and 0.5...

  10. Effect of homogenization and pasteurization on the structure and thermal stability of whey protein in milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of homogenization alone or in combination with high temperature, short time (HTST) pasteurization or UHT processing on the whey fraction of milk was investigated using highly sensitive spectroscopic techniques. In pilot plant trials, 1-L quantities of whole milk were homogenized in a two-...

  11. Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters.

    PubMed

    Bottari, Benedetta; Agrimonti, Caterina; Gatti, Monica; Neviani, Erasmo; Marmiroli, Nelson

    2013-01-01

    A multiplex real time PCR (mRealT-PCR) useful to rapidly screen microbial composition of thermophilic starter cultures for hard cooked cheeses and to compare samples with potentially different technological properties was developed. Novel primers directed toward pheS gene were designed and optimized for multiple detection of Lactobacillus helveticus, Lactobacillus delbrueckii, Streptococcus thermophilus and Lactobacillus fermentum. The assay was based on SYBR Green chemistry followed by melting curves analysis. The method was then evaluated for applications in the specific detection of the 4 lactic acid bacteria (LAB) in 29 different natural whey starters for Parmigiano Reggiano cheese production. The results obtained by mRealT-PCR were also compared with those obtained on the same samples by Fluorescence in Situ Hybridization (FISH) and Length-Heterogeneity PCR (LH-PCR). The mRealT-PCR developed in this study, was found to be effective for analyzing species present in the samples with an average sensitivity down to less than 600 copies of DNA and therefore sensitive enough to detect even minor LAB community members of thermophilic starter cultures. The assay was able to describe the microbial population of all the different natural whey starter samples analyzed, despite their natural variability. A higher number of whey starter samples with S. thermophilus and L. fermentum present in their microbial community were revealed, suggesting that these species could be more frequent in Parmigiano Reggiano natural whey starter samples than previously shown. The method was more effective than LH-PCR and FISH and, considering that these two techniques have to be used in combination to detect the less abundant species, the mRealT-PCR was also faster. Providing a single step sensitive detection of L. helveticus, L. delbrueckii, S. thermophilus and L. fermentum, the developed mRealT-PCR could be used for screening thermophilic starter cultures and to follow the presence of

  12. Is it possible to screen for milk or whey protein adulteration with melamine, urea and ammonium sulphate, combining Kjeldahl and classical spectrophotometric methods?

    PubMed

    Finete, Virgínia de Lourdes Mendes; Gouvêa, Marcos Martins; Marques, Flávia Ferreira de Carvalho; Netto, Annibal Duarte Pereira

    2013-12-15

    The Kjeldahl method and four classic spectrophotometric methods (Biuret, Lowry, Bradford and Markwell) were applied to evaluate the protein content of samples of UHT whole milk deliberately adulterated with melamine, ammonium sulphate or urea, which can be used to defraud milk protein and whey contents. Compared with the Kjeldahl method, the response of the spectrophotometric methods was unaffected by the addition of the nitrogen compounds to milk or whey. The methods of Bradford and Markwell were most robust and did not exhibit interference subject to composition. However, the simultaneous interpretation of results obtained using these methods with those obtained using the Kjeldahl method indicated the addition of nitrogen-rich compounds to milk and/or whey. Therefore, this work suggests a combination of results of Kjeldahl and spectrophotometric methods should be used to screen for milk adulteration by these compounds. PMID:23993532

  13. Foams prepared from whey protein isolate and egg white protein: 2. Changes associated with angel food cake functionality.

    PubMed

    Berry, Tristan K; Yang, Xin; Foegeding, E Allen

    2009-06-01

    The effects of sucrose on the physical properties and thermal stability of foams prepared from 10% (w/v) protein solutions of whey protein isolate (WPI), egg white protein (EWP), and their combinations (WPI/EWP) were investigated in wet foams and angel food cakes. Incorporation of 12.8 (w/v) sucrose increased EWP foam stability (drainage 1/2 life) but had little effect on the stability of WPI and WPI/EWP foams. Increased stability was not due to viscosity alone. Sucrose increased interfacial elasticity (E ') of EWP and decreased E' of WPI and WPI/EWP combinations, suggesting that altered interfacial properties increased stability in EWP foams. Although 25% WPI/75% EWP cakes had similar volumes as EWP cakes, cakes containing WPI had larger air cells. Changes during heating showed that EWP foams had network formation starting at 45 degrees C, which was not observed in WPI and WPI/EWP foams. Moreover, in batters, which are foams with additional sugar and flour, a stable foam network was observed from 25 to 85 degrees C for batters made from EWP foams. Batters containing WPI or WPI/EWP mixtures showed signs of destabilization starting at 25 degrees C. These results show that sucrose greatly improved the stability of wet EWP foams and that EWP foams form network structures that remain stable during heating. In contrast, sucrose had minimal effects on stability of WPI and WPI/EWP wet foams, and batters containing these foams showed destabilization prior to heating. Therefore, destabilization processes occurring in the wet foams and during baking account for differences in angel food cake quality. PMID:19646042

  14. Structural markers of the evolution of whey protein isolate powder during aging and effects on foaming properties.

    PubMed

    Norwood, E-A; Le Floch-Fouéré, C; Briard-Bion, V; Schuck, P; Croguennec, T; Jeantet, R

    2016-07-01

    The market for dairy powders, including high added-value products (e.g., infant formulas, protein isolates) has increased continuously over the past decade. However, the processing and storage of whey protein isolate (WPI) powders can result in changes in their structural and functional properties. It is therefore of great importance to understand the mechanisms and to identify the structural markers involved in the aging of WPI powders to control their end use properties. This study was performed to determine the effects of different storage conditions on protein lactosylations, protein denaturation in WPI, and in parallel on their foaming and interfacial properties. Six storage conditions involving different temperatures (θ) and water activities (aw) were studied for periods of up to 12mo. The results showed that for θ≤20°C, foaming properties of powders did not significantly differ from nonaged whey protein isolates (reference), regardless of the aw. On the other hand, powders presented significant levels of denaturation/aggregation and protein modification involving first protein lactosylation and then degradation of Maillard reaction products, resulting in a higher browning index compared with the reference, starting from the early stage of storage at 60°C. These changes resulted in a higher foam density and a slightly better foam stability (whisking) at 6mo. At 40°C, powders showed transitional evolution. The findings of this study will make it possible to define maximum storage durations and to recommend optimal storage conditions in accordance with WPI powder end-use properties. PMID:27179854

  15. Effect of high pressure--low temperature treatments on structural characteristics of whey proteins and micellar caseins.

    PubMed

    Baier, Daniel; Purschke, Benedict; Schmitt, Christophe; Rawel, Harshadrai M; Knorr, Dietrich

    2015-11-15

    In this study, structural changes in micellar caseins and whey proteins due to high pressure--low temperature treatments (HPLT) were investigated and compared to changes caused by high pressure treatments at room temperature. Whey protein isolate (WPI) solutions as well as micellar casein (MC) dispersions and mixtures were treated at 500 MPa (pH 7.0 and 5.8) at room temperature, -15 °C and -35 °C. Surface hydrophobicity and accessible thiol groups remained nearly unchanged after HPLT treatments whereas HP treatments at room temperature caused an unfolding of the WPI, resulting in an increase in surface hydrophobicity and exposure of the thiol groups. For HPLT treatments, distinct changes in the secondary structure (increase in the amount of β-sheets) were observed while the tertiary structure remained unchanged. Large flocs, stabilized by hydrophobic interactions and hydrogen bonds, were formed in casein containing samples due to HPLT treatments. Depending on the pH and the applied HPLT treatment parameters, these interactions differed significantly from the interactions determined in native micelles. PMID:25977037

  16. Controlling the pH of acid cheese whey in a two-stage anaerobic digester with sodium hydroxide

    SciTech Connect

    Ghaly, A.E.; Ramkumar, D.R.

    1999-07-01

    Anaerobic digestion of cheese whey offers a two-fold benefit: pollution potential reduction and biogas production. The biogas, as an energy source, could be used to reduce the consumption of traditional fuels in the cheese plant. However, as a result of little or no buffering capacity of whey, the pH of the anaerobic digester drops drastically and the process is inhibited. In this study, the effect of controlling the pH of the second chamber of a two-stage, 150 L anaerobic digester operating on cheese whey on the quality and quantity of biogas and the pollution potential reduction, was investigated using sodium hydroxide. The digester was operated at a temperature of 35 C and a hydraulic retention time of 15 days for three runs (no pH control, pH control with no reseeding, and ph control with reseeding) each lasting 50 days. The results indicated that operating the digester without pH control resulted in a low pH (3.3) which inhibited the methanogenic bacteria. The inhibition was irreversible and the digester did not recover (no methane production) when the pH was restored to 7.0 without reseeding, as the observed increased gas production was a false indication of recovery because the gas was mainly carbon dioxide. The addition of base resulted in a total alkalinity of 12,000 mg/L as CaCO{sub 3}. When the system was reseeded and the pH controlled, the total volatile acid concentration was 15,100 mg/L (as acetic acid), with acetic (28%), propionic (21%), butyric (25%), valeric (8%), and caproic (15%) acids as the major constituents. The biogas production was 62.6 L/d (0.84 m{sup 3}/m{sup 3}/d) and the methane content was 60.7%. Reductions of 27.3, 30.4 and 23.3% in the total solids, chemical oxygen demand and total kjeldahl nitrogen were obtained, respectively. The ammonium nitrogen content increased significantly (140%).

  17. Effect of dietary supplementation with a formulated nutrient mixture together with whey-based protein on immune response of young and old mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aging is associated with dysregulation of the immune response. Nutrient supplementation has been shown to help maintain a healthy immune system during aging. In this study we fed young (4-5 mo) and old (23-24 mo) C57BL/6 mice, a diet supplemented with a formulated nutrient mixture and whey proteins ...

  18. Effect of storage temperature on survival and recovery of thermal and extrusion injured Escherichia coli populations in whey protein concentrate and corn meal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a previous study, we reported viability loss of Escherichia coli populations in corn (CP) and whey protein products (WPP) extruded at different temperatures. However, information on the effect of storage temperatures on injured bacterial populations was not addressed. The objective of this study ...

  19. Contrarily to whey and high protein diets, dietary free leucine supplementation cannot reverse the lack of recovery of muscle mass after prolonged immobilization during ageing

    PubMed Central

    Magne, Hugues; Savary-Auzeloux, Isabelle; Migné, Carole; Peyron, Marie-Agnès; Combaret, Lydie; Rémond, Didier; Dardevet, Dominique

    2012-01-01

    During ageing, immobilization periods increase and are partially responsible of sarcopaenia by inducing a muscle atrophy which is hardly recovered from. Immobilization-induced atrophy is due to an increase of muscle apoptotic and proteolytic processes and decreased protein synthesis. Moreover, previous data suggested that the lack of muscle mass recovery might be due to a defect in protein synthesis response during rehabilitation. This study was conducted to explore protein synthesis during reloading and leucine supplementation effect as a nutritional strategy for muscle recovery. Old rats (22–24 months old) were subjected to unilateral hindlimb casting for 8 days (I8) and allowed to recover for 10–40 days (R10–R40). They were fed a casein (±leucine) diet during the recovery. Immobilized gastrocnemius muscles atrophied by 20%, and did not recover even at R40. Amount of polyubiquitinated conjugates and chymotrypsin- and trypsin-like activities of the 26S proteasome increased. These changes paralleled an ‘anabolic resistance’ of the protein synthesis at the postprandial state (decrease of protein synthesis, P-S6 and P-4E-BP1). During the recovery, proteasome activities remained elevated until R10 before complete normalization and protein synthesis was slightly increased. With free leucine supplementation during recovery, if proteasome activities were normalized earlier and protein synthesis was higher during the whole recovery, it nevertheless failed in muscle mass gain. This discrepancy could be due to a ‘desynchronization’ between the leucine signal and the availability of amino acids coming from casein digestion. Thus, when supplemented with leucine-rich proteins (i.e. whey) and high protein diets, animals partially recovered the muscle mass loss. PMID:22351629

  20. Influence of whey protein-beet pectin conjugate on the properties and digestibility of β-carotene emulsion during in vitro digestion.

    PubMed

    Xu, Duoxia; Yuan, Fang; Gao, Yanxiang; Panya, Atikorn; McClements, David Julian; Decker, Eric Andrew

    2014-08-01

    The impact of a whey protein isolate (WPI)-beet pectin (BP) conjugate (formed by dry-heating) on the physical properties and digestibilities of β-carotene and carrier oil in oil-in-water emulsions was studied when they passed through a model gastrointestinal system. β-Carotene emulsions were stabilized by WPI, unconjugated and conjugated WPI-BP, separately. The emulsions were then passed through an in vitro digestion model and the mean droplet size, droplet distribution, zeta-potential, free fatty acids and β-carotene released were measured. The stability to droplet flocculation and coalescence during digestion was increased for the WPI-BP conjugate stabilized emulsion. Addition of BP onto the WPI stabilized emulsions could inhibit the releases of carrier oil (MCT) and β-carotene. The releases of free fatty acids and β-carotene did not differ greatly between the unconjugated and conjugated WPI-BP stabilized emulsions. These results have important implications for protein-polysaccharide stabilized emulsions and conjugates used for the protection and delivery of bioactive compounds. PMID:24629983

  1. Conversion of dried Aspergillus candidus mycelia grown on waste whey to biodiesel by in situ acid transesterification.

    PubMed

    Kakkad, Hardik; Khot, Mahesh; Zinjarde, Smita; RaviKumar, Ameeta; Ravi Kumar, V; Kulkarni, B D

    2015-12-01

    This study reports optimization of the transesterification reaction step on dried biomass of an oleaginous fungus Aspergillus candidus grown on agro-dairy waste, whey. Acid catalyzed transesterification was performed and variables affecting esterification, viz., catalyst methanol and chloroform concentrations, temperature, time, and biomass were investigated. Statistical optimization of the transesterification reaction using Plackett-Burman Design showed biomass to be the predominant factor with a 12.5-fold increase in total FAME from 25.6 to 320mg. Studies indicate that the transesterification efficiency in terms of conversion is favored by employing lower biomass loadings. A. candidus exhibited FAME profiles containing desirable saturated (30.2%), monounsaturated (31.5%) and polyunsaturated methyl esters (38.3%). The predicted and experimentally determined biodiesel properties (density, kinematic viscosity, iodine value, cetane number, TAN, water content, total and free glycerol) were in accordance with international (ASTM D6751, EN 14214) and national (IS 15607) standards. PMID:26362462

  2. A study of different indicators of Maillard reaction with whey proteins and different carbohydrates under adverse storage conditions.

    PubMed

    Leiva, Graciela E; Naranjo, Gabriela B; Malec, Laura S

    2017-01-15

    This study examined different indicators of each stage of Maillard reaction under adverse storage conditions in a system with whey proteins and lactose or glucose. The analysis of lysine loss by the o-phthaldialdehyde method can be considered a good indicator of the early stage, showing considerable differences in reactivity when systems with mono and disaccharides were analyzed. Capillary electrophoresis proved to be a sensitive method for evaluating the extent of glycosylation of the native proteins, providing valuable information when the loss of lysine was not significant. The estimation of the Amadori compound from the determination of total 5-hydroxymethyl-2-furfuraldehyde would have correlate well with reactive lysine content if the advanced stages of the reaction had not been reached. For assessing the occurrence of the intermediate and final stages, the measurement of free 5-hydroxymethyl-2-furfuraldehyde and color, proved not to be suitable for storage conditions. PMID:27542493

  3. Influence of maltodextrin and environmental stresses on stability of whey protein concentrate/κ-carrageenan stabilized sesame oil-in-water emulsions.

    PubMed

    Onsaard, E; Putthanimon, J; Singthong, J; Thammarutwasik, P

    2014-12-01

    The influence of maltodextrin with different concentrations (0-30%) and dextrose equivalent (dextrose equivalent 10 and dextrose equivalent 15) under different environmental stresses (pH 3-8, NaCl 0-500 mM, and sucrose 0-20%) on the stability of whey protein concentrate/κ-carrageenan stabilized sesame oil-in-water emulsions was investigated by mean particle diameter, particle size distribution, ζ-potential, microstructure, and viscosity. Sesame oil-in-water emulsions containing anionic droplets stabilized by interfacial membranes comprising whey protein concentrate/κ-carrageenan/maltodextrin (15% sesame oil, 0.5% whey protein concentrate, 0.2% κ-carrageenan, 0.02% sodium azide and 0-30% maltodextrin with dextrose equivalent of 10 and 15, 5 mM phosphate buffer, pH 7) were produced using a homogenizer. The primary emulsion (1°) containing whey protein concentrate-coated droplets was prepared by homogenizing. The secondary emulsion (2°) containing whey protein concentrate-κ-carrageenan in the absence or presence of maltodextrin was produced by mixing the 1° emulsion with an aqueous κ-carrageenan in the absence or presence of maltodextrin solution. There were no significant changes in mean droplet diameter and ζ-potential of droplets at any maltodextrin concentration (0-30%) or dextrose equivalent (10 and 15) after 24 h storage. The apparent viscosity of emulsions increased when the maltodextrin concentration increased. The 2° emulsion containing 15% maltodextrin with dextrose equivalent of 10 had the stability to aggregation at pH 6-8, NaCl ≤ 300 mM, and sucrose 0-20%. The addition of maltodextrin to emulsion can be used to form emulsions with different physicochemical properties for various applications in food processing (for example, encapsulation). PMID:23922288

  4. Short communication: Casein hydrolysate and whey proteins as excipients for cyanocobalamin to increase intestinal absorption in the lactating dairy cow.

    PubMed

    Artegoitia, V M; de Veth, M J; Harte, F; Ouellet, D R; Girard, C L

    2015-11-01

    Bioavailability of vitamin B12 is low in humans and animals. Improving vitamin B12 absorption is important for optimal performance in dairy cows and for increasing vitamin B12 concentrations in milk for human consumption. However, when supplemented in the diet, 80% of synthetic vitamin B12, cyanocobalamin (CN-CBL), is degraded in the rumen of dairy cows and only 25% of the amount escaping destruction in the rumen disappears from the small intestine between the duodenal and ileal cannulas. In pigs, vitamin B12 from milk is more efficiently absorbed than synthetic CN-CBL. The objective of this study was to determine the efficacy of casein hydrolysate and whey proteins as excipients for CN-CBL to increase portal-drained viscera (PDV) flux of the vitamin in lactating dairy cows. Four multiparous lactating Holstein cows (237 ± 17 DIM) equipped with a rumen cannula and catheters in the portal vein and a mesenteric artery were used in a randomized Youden square design. They were fed every 2 h to maintain steady digesta flow. On experimental days, they received a postruminal bolus of (1) CN-CBL alone (0.1 g), (2) CN-CBL (0.1 g) + casein hydrolysate (10 g), or (3) CN-CBL (0.1 g) + whey proteins (10 g). Starting 30 min after the bolus, blood samples were taken simultaneously from the 2 catheters every 15 min during the first 2 h and then every 2 h until 24 h postbolus. Milk yield, DMI, and vitamin B12 portal-arterial difference and PDV flux were analyzed using the MIXED procedure of SAS. Milk yield and DMI were not affected by treatments. The portal-arterial difference of vitamin B12 during the 24-h period following the bolus of vitamin was greater when the vitamin was given in solution with casein hydrolysate (2.9 ± 4.6 pg/mL) than alone (-17.5 ± 5.2 pg/mL) or with whey protein (-13.4 ± 4.2 pg/mL). The treatment effects were similar for the PDV flux. The present results suggest that CN-CBL given with casein hydrolysate increases vitamin B12 absorption as compared with

  5. Homo-fermentative production of D-lactic acid by Lactobacillus sp. employing casein whey permeate as a raw feed-stock.

    PubMed

    Prasad, Saurav; Srikanth, Katla; Limaye, Anil M; Sivaprakasam, Senthilkumar

    2014-06-01

    Casein whey permeate (CWP), a lactose-enriched dairy waste effluent, is a viable feed stock for the production of value-added products. Two lactic acid bacteria were cultivated in a synthetic casein whey permeate medium with or without pH control. Lactobacillus lactis ATCC 4797 produced D-lactic acid (DLA) at 12.5 g l(-1) in a bioreactor. The values of Leudking-Piret model parameters suggested that lactate was a growth-associated product. Batch fermentation was also performed employing CWP (35 g lactose l(-1)) with casein hydrolysate as a nitrogen supplement in a bioreactor. After 40 h, L. lactis produced 24.3 g lactic acid l(-1) with an optical purity >98 %. Thus CWP may be regarded as a potential feed-stock for DLA production. PMID:24563313

  6. Immobilization of halophilic Bacillus sp. EMB9 protease on functionalized silica nanoparticles and application in whey protein hydrolysis.

    PubMed

    Sinha, Rajeshwari; Khare, S K

    2015-04-01

    The present work targets the fabrication of an active, stable, reusable enzyme preparation using functionalized silica nanoparticles as an effective enzyme support for crude halophilic Bacillus sp. EMB9 protease. The immobilization efficiency under optimized conditions was 60%. Characterization of the immobilized preparation revealed marked increase in pH and thermal stability. It retained 80% of its original activity at 70 °C while t 1/2 at 50 °C showed a five-fold enhancement over that for the free protease. Kinetic constants K m and V max were indicative of a higher reaction velocity along with decreased affinity for substrate. The preparation could be efficiently reused up to 6 times and successfully hydrolysed whey proteins with high degree of hydrolysis. Immobilization of a crude halophilic protease on a nanobased scaffold makes the process cost effective and simple. PMID:25385659

  7. Surface adsorption behaviour of milk whey protein and pectin mixtures under conditions of air-water interface saturation.

    PubMed

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2011-07-01

    Milk whey proteins (MWP) and pectins (Ps) are biopolymer ingredients commonly used in the manufacture of colloidal food products. Therefore, knowledge of the interfacial characteristics of these biopolymers and their mixtures is very important for the design of food dispersion formulations (foams and/or emulsions). In this paper, we examine the adsorption and surface dilatational behaviour of MWP/Ps systems under conditions in which biopolymers can saturate the air-water interface on their own. Experiments were performed at constant temperature (20 °C), pH 7 and ionic strength 0.05 M. Two MWP samples, β-lactoglobulin (β-LG) and whey protein concentrate (WPC), and two Ps samples, low-methoxyl pectin (LMP) and high-methoxyl pectin (HMP) were evaluated. The contribution of biopolymers (MWP and Ps) to the interfacial properties of mixed systems was evaluated on the basis of their individual surface molecular characteristics. Biopolymer bulk concentration capable of saturating the air-water interface was estimated from surface pressure isotherms. Under conditions of interfacial saturation, dynamic adsorption behaviour (surface pressure and dilatational rheological characteristics) of MWP/Ps systems was discussed from a kinetic point of view, in terms of molecular diffusion, penetration and configurational rearrangement at the air-water interface. The main adsorption mechanism in MWP/LMP mixtures might be the MWP interfacial segregation due to the thermodynamic incompatibility between MWP and LMP (synergistic mechanism); while the interfacial adsorption in MWP/HMP mixtures could be characterized by a competitive mechanism between MWP and HMP at the air-water interface (antagonistic mechanism). The magnitude of these phenomena could be closely related to differences in molecular composition and/or aggregation state of MWP (β-LG and WPC). PMID:21440425

  8. Survey of salty and sweet whey composition from various cheese plants in Wisconsin.

    PubMed

    Blaschek, K M; Wendorff, W L; Rankin, S A

    2007-04-01

    Salty whey is currently underutilized in the dairy industry because of its high salt content and increased processing and disposal costs. Salty whey accounts for 2 to 5% of the total whey generated during Cheddar and other dry-salted cheese manufacture. Because relatively little information is available on salty whey, this study was conducted to determine the range of compositional components in salty whey from commercial cheese plants. Gross compositional differences in percent protein, salt, solids, and fat between sweet whey and salty whey from various dry-salted cheeses from 8 commercial plants were determined. Differences between individual whey protein compositions were determined using sodium dodecyl sulfate-PAGE. Average total solids, fat, and salt content were significantly greater in the salty whey compared with the corresponding sweet whey. True protein was reduced in salty whey although great variability existed among samples. Individual whey proteins identified included lactoferrin (Lf), BSA, immunoglobulin G, beta-lactoglobulin, and alpha-lactalbumin. Salty whey showed an increase in Lf content and a decrease in alpha-lactalbumin and beta-lactoglobulin content when compared with sweet whey. Salty whey may be a source of Lf, potentially increasing its value to whey processors. However, the compositional assessments showed that commercial salty whey is a highly variable waste stream. PMID:17369245

  9. Transforming growth factor-β, a whey protein component, strengthens the intestinal barrier by upregulating claudin-4 in HT-29/B6 cells.

    PubMed

    Hering, Nina A; Andres, Susanne; Fromm, Anja; van Tol, Eric A; Amasheh, Maren; Mankertz, Joachim; Fromm, Michael; Schulzke, Joerg D

    2011-05-01

    TGFβ (isoforms 1-3) has barrier-protective effects in the intestine. The mechanisms involved in regulating tight junction protein expression are poorly understood. The aim of this study was to elucidate TGFβ-dependent protective effects with special attention to promoter regulation of tight junction proteins using the HT-29/B6 cell model. In addition, the effects of whey protein concentrate 1 (WPC1), a natural source of TGFβ in human nutrition, were examined. For this purpose, the claudin-4 promoter was cloned and tested for its activity. It exhibited transactivation in response to TGFβ1, which was intensified when Smad-4 was cotransfected, indicating a Smad-4-dependent regulatory component. Shortening and mutation of the promoter altered and attenuated this effect. WPC1 induced an increase in the claudin-4 protein level and resistance of HT-29/B6 cell monolayers. Anti-TGFβ(1-3) antibodies blocked these whey protein effects, suggesting that a main part of this function was mediated through TGFβ. This effect was observed on intact monolayers as well as when barrier function was impaired by preexposure to IFNγ. In conclusion, TGFβ1 affects claudin-4 gene expression via Smad-4-dependent and -independent transcriptional regulation, resulting in barrier protection, a cytokine effect that is also found in whey protein concentrates used in enteral nutrition. PMID:21430244

  10. In vitro studies of the digestion of caprine whey proteins by human gastric and duodenal juice and the effects on selected microorganisms.

    PubMed

    Almaas, Hilde; Holm, Halvor; Langsrud, Thor; Flengsrud, Ragnar; Vegarud, Gerd E

    2006-09-01

    The in vitro digestion of caprine whey proteins was investigated by a two-step degradation assay, using human gastric juice (HGJ) at pH 2.5 and human duodenal juice (HDJ) at pH 7.5. Different protein and peptide profiles were observed after the first (HGJ) and second (HDJ) enzymatic degradation. The minor whey proteins serum albumin, lactoferrin and Ig were rapidly degraded by HGJ, while alpha-lactalbumin (alpha-LA) and beta-lactoglobulin (beta-LG) were more resistant and survived both 30 and 45 min of the enzymatic treatment. Further digestion with HDJ still showed intact beta-LG, and the main part of alpha-LA also remained unchanged. The protein degradation by HGJ and HDJ was also compared with treatment by commercial enzymes, by using pepsin at pH 2.5, and a mixture of trypsin and chymotrypsin at pH 7.5. The two methods resulted in different caprine protein and peptide profiles. The digests after treatment with HGJ and HDJ were screened for antibacterial effects on some selected microorganisms, Escherichia coli, Bacillus cereus, Lactobacillus rhamnosus GG and Streptococcus mutans. Active growing cells of E. coli were inhibited by the digestion products from caprine whey obtained after treatment with HGJ and HDJ. Cells of B. cereus were inhibited only by whey proteins obtained after reaction with HGJ, while the products after further degradation with HDJ demonstrated no significant effect. Screenings performed on cells of Lb. rhamnosus GG and S. mutans all showed no signs of inhibition. PMID:16925863

  11. Partially hydrolyzed 100% whey protein infant formula and atopic dermatitis risk reduction: a systematic review of the literature.

    PubMed

    Alexander, Dominik D; Schmitt, Donald F; Tran, Nga L; Barraj, Leila M; Cushing, Colleen A

    2010-04-01

    The incidence of atopic dermatitis (AD) is increasing worldwide. Clinical studies have observed reduced risks of AD among infants fed with 100% whey partially hydrolyzed infant formula (PHF-W) compared with intact protein cow's milk formula. To evaluate this potential relationship more comprehensively, a systematic review of the literature was conducted. Studies (n = 18, representing 12 distinct study populations) that specified the protein source of the formula, evaluated healthy-term infants, compared the use of PHF-W with intact protein cow's milk formula, and reported results for AD were included. A critical assessment of the methodological quality of studies was conducted. In all studies, a reduced incidence of AD and/or atopic manifestations that included AD was observed. The cumulative incidence of AD was significantly lower among infants over at least 3 years of follow-up in the PHF-W group compared with the intact protein cow's milk group. Exclusive breastfeeding should be encouraged as the primary means to prevent atopic risk. However, when infants are not exclusively breastfed, PHF-W may be considered an effective measure to potentially reduce the risk of developing AD. PMID:20416019

  12. Dietary exposure to soy or whey proteins alters colonic global gene expression profiles during rat colon tumorigenesis

    PubMed Central

    Xiao, Rijin; Badger, Thomas M; Simmen, Frank A

    2005-01-01

    Background We previously reported that lifetime consumption of soy proteins or whey proteins reduced the incidence of azoxymethane (AOM)-induced colon tumors in rats. To obtain insights into these effects, global gene expression profiles of colons from rats with lifetime ingestion of casein (CAS, control diet), soy protein isolate (SPI), and whey protein hydrolysate (WPH) diets were determined. Results Male Sprague Dawley rats, fed one of the three purified diets, were studied at 40 weeks after AOM injection and when tumors had developed in some animals of each group. Total RNA, purified from non-tumor tissue within the proximal half of each colon, was used to prepare biotinylated probes, which were hybridized to Affymetrix RG_U34A rat microarrays containing probes sets for 8799 rat genes. Microarray data were analyzed using DMT (Affymetrix), SAM (Stanford) and pair-wise comparisons. Differentially expressed genes (SPI and/or WPH vs. CAS) were found. We identified 31 induced and 49 repressed genes in the proximal colons of the SPI-fed group and 44 induced and 119 repressed genes in the proximal colons of the WPH-fed group, relative to CAS. Hierarchical clustering identified the co-induction or co-repression of multiple genes by SPI and WPH. The differential expression of I-FABP (2.92-, 3.97-fold down-regulated in SPI and WPH fed rats; P = 0.023, P = 0.01, respectively), cyclin D1 (1.61-, 2.42-fold down-regulated in SPI and WPH fed rats; P = 0.033, P = 0.001, respectively), and the c-neu proto-oncogene (2.46-, 4.10-fold down-regulated in SPI and WPH fed rats; P < 0.001, P < 0.001, respectively) mRNAs were confirmed by real-time quantitative RT-PCR. SPI and WPH affected colonic neuro-endocrine gene expression: peptide YY (PYY) and glucagon mRNAs were down-regulated in WPH fed rats, whereas somatostatin mRNA and corresponding circulating protein levels, were enhanced by SPI and WPH. Conclusions The identification of transcripts co- or differentially-regulated by SPI

  13. Stabilization of water in oil in water (W/O/W) emulsion using whey protein isolate-conjugated durian seed gum: enhancement of interfacial activity through conjugation process.

    PubMed

    Tabatabaee Amid, Bahareh; Mirhosseini, Hamed

    2014-01-01

    The present work was conducted to investigate the effect of purification and conjugation processes on functional properties of durian seed gum (DSG) used for stabilization of water in oil in water (W/O/W) emulsion. Whey protein isolate (WPI) was conjugated to durian seed gum through the covalent linkage. In order to prepare WPI-DSG conjugate, covalent linkage of whey protein isolate to durian seed gum was obtained by Maillard reaction induced by heating at 60 °C and 80% (±1%) relative humidity. SDS-polyacrylamide gel electrophoresis was used to test the formation of the covalent linkage between whey protein isolate and durian seed gum after conjugation process. In this study, W/O/W stabilized by WPI-conjugated DSG A showed the highest interface activity and lowest creaming layer among all prepared emulsions. This indicated that the partial conjugation of WPI to DSG significantly improved its functional characteristics in W/O/W emulsion. The addition of WPI-conjugated DSG to W/O/W emulsion increased the viscosity more than non-conjugated durian seed gum (or control). This might be due to possible increment of the molecular weight after linking the protein fraction to the structure of durian seed gum through the conjugation process. PMID:24060935

  14. Effect of xanthan/enzyme-modified guar gum mixtures on the stability of whey protein isolate stabilized fish oil-in-water emulsions.

    PubMed

    Chityala, Pavan Kumar; Khouryieh, Hanna; Williams, Kevin; Conte, Eric

    2016-12-01

    The effect of xanthan gum (XG) and enzyme-modified guar (EMG) gum mixtures on the physicochemical properties and oxidative stability of 2wt% whey protein isolate (WPI) stabilized oil-in-water (O/W) emulsions containing 20%v/v fish oil was investigated. EMG was obtained by hydrolyzing native guar gum using α-galactosidase enzyme. At higher gum concentrations (0.2 and 0.3wt%), the viscosity of the emulsions containing XG/EMG gum mixtures was significantly higher (P<0.05) of all emulsions. Increasing concentrations (0-0.3wt%) of XG/EMG gum mixtures did not affect the droplet size of emulsions. Microstructure images revealed decreased flocculation at higher concentrations. Primary and secondary lipid oxidation measurements indicated a slower rate of oxidation in emulsions containing XG/EMG gum mixtures, compared to XG, guar (GG), and XG/GG gum mixtures. These results indicate that XG/EMG gum mixtures can be used in O/W emulsions to increase physical and oxidative stabilities of polyunsaturated fatty acids in foods. PMID:27374540

  15. Physicochemical properties of whey protein, lactoferrin and Tween 20 stabilised nanoemulsions: Effect of temperature, pH and salt.

    PubMed

    Teo, Anges; Goh, Kelvin K T; Wen, Jingyuan; Oey, Indrawati; Ko, Sanghoon; Kwak, Hae-Soo; Lee, Sung Je

    2016-04-15

    Oil-in-water nanoemulsions were prepared by emulsification and solvent evaporation using whey protein isolate (WPI), lactoferrin and Tween 20 as emulsifiers. Protein-stabilised nanoemulsions showed a decrease in particle size with increasing protein concentration from 0.25% to 1% (w/w) level with Z-average diameter between 70 and 90 nm. However, larger droplets were produced by Tween 20 (120-450 nm) especially at concentration above 0.75% (w/w). The stability of nanoemulsions to temperature (30-90°C), pH (2-10) and ionic strength (0-500 mM NaCl or 0-90 mM CaCl2) was also tested. Tween 20 nanoemulsions were unstable to heat treatment at 90°C for 15 min. WPI-stabilised nanoemulsions exhibited droplet aggregation near the isoelectric point at pH 4.5 and 5 and they were also unstable at salt concentration above 30 mM CaCl2. These results indicated that stable nanoemulsions can be prepared by careful selection of emulsifiers. PMID:26616953

  16. Computer modelling integrated with micro-CT and material testing provides additional insight to evaluate bone treatments: Application to a beta-glycan derived whey protein mice model.

    PubMed

    Sreenivasan, D; Tu, P T; Dickinson, M; Watson, M; Blais, A; Das, R; Cornish, J; Fernandez, J

    2016-01-01

    The primary aim of this study was to evaluate the influence of a whey protein diet on computationally predicted mechanical strength of murine bones in both trabecular and cortical regions of the femur. There was no significant influence on mechanical strength in cortical bone observed with increasing whey protein treatment, consistent with cortical tissue mineral density (TMD) and bone volume changes observed. Trabecular bone showed a significant decline in strength with increasing whey protein treatment when nanoindentation derived Young׳s moduli were used in the model. When microindentation, micro-CT phantom density or normalised Young׳s moduli were included in the model a non-significant decline in strength was exhibited. These results for trabecular bone were consistent with both trabecular bone mineral density (BMD) and micro-CT indices obtained independently. The secondary aim of this study was to characterise the influence of different sources of Young׳s moduli on computational prediction. This study aimed to quantify the predicted mechanical strength in 3D from these sources and evaluate if trends and conclusions remained consistent. For cortical bone, predicted mechanical strength behaviour was consistent across all sources of Young׳s moduli. There was no difference in treatment trend observed when Young׳s moduli were normalised. In contrast, trabecular strength due to whey protein treatment significantly reduced when material properties from nanoindentation were introduced. Other material property sources were not significant but emphasised the strength trend over normalised material properties. This shows strength at the trabecular level was attributed to both changes in bone architecture and material properties. PMID:26599826

  17. Production of Functional High-protein Beverage Fermented with Lactic Acid Bacteria Isolated from Korean Traditional Fermented Food.

    PubMed

    Cho, Young-Hee; Shin, Il-Seung; Hong, Sung-Moon; Kim, Cheol-Hyun

    2015-01-01

    The aim of this study was to manufacture functional high protein fermented beverage, using whey protein concentrate (WPC) and Lactobacillus plantarum DK211 isolated from kimchi, and to evaluate the physicochemical, functional, and sensory properties of the resulting product. The fermented whey beverage (FWB) was formulated with whey protein concentrate 80 (WPC 80), skim milk powder, and sucrose; and fermented with Lactobacillus plantarum DK211 as single, or mixed with Lactococcus lactis R704, a commercial starter culture. The pH, titratable acidity, and viable cell counts during fermentation and storage were evaluated. It was found that the mixed culture showed faster acid development than the single culture. The resulting FWB had high protein (9%) and low fat content (0.2%). Increased viscosity, and antioxidant and antimicrobial activity were observed after fermentation. A viable cell count of 10(9) CFU/mL in FWB was achieved within 10 h fermentation, and it remained throughout storage at 15℃ for 28 d. Sensory analysis was also conducted, and compared to that of a commercial protein drink. The sensory scores of FWB were similar to those of the commercial protein drink in most attributes, except sourness. The sourness was highly related with the high lactic acid content produced during fermentation. The results showed that WPC and vegetable origin lactic acid bacteria isolated from kimchi might be used for the development of a high protein fermented beverage, with improved functionality and organoleptic properties. PMID:26761827

  18. Production of Functional High-protein Beverage Fermented with Lactic Acid Bacteria Isolated from Korean Traditional Fermented Food

    PubMed Central

    2015-01-01

    The aim of this study was to manufacture functional high protein fermented beverage, using whey protein concentrate (WPC) and Lactobacillus plantarum DK211 isolated from kimchi, and to evaluate the physicochemical, functional, and sensory properties of the resulting product. The fermented whey beverage (FWB) was formulated with whey protein concentrate 80 (WPC 80), skim milk powder, and sucrose; and fermented with Lactobacillus plantarum DK211 as single, or mixed with Lactococcus lactis R704, a commercial starter culture. The pH, titratable acidity, and viable cell counts during fermentation and storage were evaluated. It was found that the mixed culture showed faster acid development than the single culture. The resulting FWB had high protein (9%) and low fat content (0.2%). Increased viscosity, and antioxidant and antimicrobial activity were observed after fermentation. A viable cell count of 109 CFU/mL in FWB was achieved within 10 h fermentation, and it remained throughout storage at 15℃ for 28 d. Sensory analysis was also conducted, and compared to that of a commercial protein drink. The sensory scores of FWB were similar to those of the commercial protein drink in most attributes, except sourness. The sourness was highly related with the high lactic acid content produced during fermentation. The results showed that WPC and vegetable origin lactic acid bacteria isolated from kimchi might be used for the development of a high protein fermented beverage, with improved functionality and organoleptic properties. PMID:26761827

  19. Temperature resistance of Salmonella in low-water activity whey protein powder as influenced by salt content.

    PubMed

    Santillana Farakos, S M; Hicks, J W; Frank, J F

    2014-04-01

    Salmonella can survive in low-water activity (a(w)) foods for long periods of time. Water activity and the presence of solutes may affect its survival during heating. Low-a(w) products that contain sodium levels above 0.1 % (wt/wt) and that have been involved in major Salmonella outbreaks include peanut products and salty snacks. Reduced a(w) protects against thermal inactivation. There is conflicting information regarding the role of salt. The aim of this study was to determine whether NaCl influences the survival of Salmonella in low-a(w) whey protein powder independent of a(w) at 70 and 80 °C. Whey protein powders of differing NaCl concentrations (0, 8, and 17 % [wt/wt]) were equilibrated to target a(w) levels 0.23, 0.33, and 0.58. Powders were inoculated with Salmonella, vacuum sealed, and stored at 70 and 80 °C for 48 h. Cells were recovered on nonselective differential media. Survival data were fit with the Weibull model, and first decimal reduction times (δ) (measured in minutes) and shape factor values (β) were estimated. The influence of temperature, a(w), and salinity on Weibull model parameters (δ and β) was analyzed using multiple linear regression. Results showed that a(w) significantly influenced the survival of Salmonella at both temperatures, increasing resistance at decreasing a(w). Sodium chloride did not provide additional protection or inactivation of Salmonella at any temperature beyond that attributed to a(w). The Weibull model described the survival kinetics of Salmonella well, with R2 adj and root mean square error values ranging from 0.59 to 0.97 and 0.27 to 1.07, respectively. Temperature and a(w) influenced δ values (P < 0.05), whereas no significant differences were found between 70 and 80 °C among the different salt concentrations (P > 0.05). β values were not significantly influenced by temperature, a(w), or % NaCl (P > 0.05). This study indicates that information on salt content in food may not help improve predictions on the

  20. Fuel alcohol from whey

    SciTech Connect

    Lyons, T.P.; Cunningham, J.D.

    1980-11-01

    Whey disposal has become a serious environmental problem and loss of revenue to the cheese industry. The U.S. Dept. of Energy has indicated that cheese whey has one of the lowest net feedstock costs per gallon of ethanol. The manufacture of ethanol is accomplished by specially selected yeast fermentation of lactose via the glycolytic pathway. Three commercial processes are described, the Milbrew process which produces single cell protein and alcohol, and the Carbery and Denmark processes which produce potable alcohol. Selected strains of Kluveromyces fragilis are used in all processes and in the latter process, effluents are treated under anaerobic conditions to produce methane, which replaces 17-20% of the fuel oil required by the distillation plant.

  1. Correlation between lactosylation and denaturation of major whey proteins: an investigation by liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Losito, Ilario; Stringano, Elisabetta; Carulli, Saverio; Palmisano, Francesco

    2010-03-01

    The Maillard-reaction-induced lactosylation of the major whey proteins, alpha-lactalbumin (alpha-La) and beta-lactoglobulins (beta-Lg) A and B, occurring upon heating at 70, 80 and 90 degrees C for 1 to 5 h in the presence of lactose excess, was studied by HPLC coupled to electrospray ionization single and tandem mass spectrometry (HPLC-ESI-MS, MS/MS). The presence of significant amounts of mono and bi-lactosylated forms of the three proteins and their increase with heating temperature and time were assessed from MS data. Evidences for a concomitant, significant denaturation, involving partial tertiary structure unfolding, were also obtained in the case of beta-lactoglobulins. A subsequent ESI-MS and MS/MS investigation on the tryptic digests of heated protein solutions exhibiting high percentages of mono and bi-lactosylated forms provided information on lactosylation sites. In particular, the latter were identified both on tryptic and on aspecific peptides, whose unusual relevance (compared to similar studies) was found to be due mainly to heat-induced protein degradation, occurring before protein digestion with trypsin. Among lactosylation sites identified only on tryptic peptides, i.e., those reasonably related to intact protein lactosylation, two lysines residues were found for alpha-La, both located in accessible regions of its tertiary structure. In the case of beta-Lg, besides three sites common to variants A and B (leucine 1, lysines 70, and 75), lysine 69 was found to be lactosylated only in variant B. Its proximity to a critical region of beta-Lg tertiary structure suggests that the difference between the two variants could be ascribed to a different evolution of their conformation upon heating. PMID:20151114

  2. Enhanced physicochemical properties of chitosan/whey protein isolate composite film by sodium laurate-modified TiO2 nanoparticles.

    PubMed

    Zhang, Wei; Chen, Jiwang; Chen, Yue; Xia, Wenshui; Xiong, Youling L; Wang, Hongxun

    2016-03-15

    Chitosan/whey protein isolate film incorporated with sodium laurate-modified TiO2 nanoparticles was developed. The nanocomposite film was characterized by scanning electron microscopy, X-ray diffraction and differential scanning calorimetry, and investigated in physicochemical properties as color, tensile strength, elongation at break, water vapor permeability and water adsorption isotherm. Our results showed that the nanoparticles improved the compatibility of whey protein isolate and chitosan. Addition of nanoparticles increased the whiteness of chitosan/whey protein isolate film, but decreased its transparency. Compared with binary film, the tensile strength and elongation at break of nanocomposite film were increased by 11.51% and 12.01%, respectively, and water vapor permeability was decreased by 7.60%. The equilibrium moisture of nanocomposite film was lower than binary film, and its water sorption isotherm of the nanocomposite film fitted well to Guggenheim-Anderson-deBoer model. The findings contributed to the development of novel food packaging materials. PMID:26794738

  3. Timed-daily ingestion of whey protein and exercise training reduces visceral adipose tissue mass and improves insulin resistance: the PRISE study.

    PubMed

    Arciero, Paul J; Baur, Daniel; Connelly, Scott; Ormsbee, Michael J

    2014-07-01

    The present study examined the effects of timed ingestion of supplemental protein (20-g servings of whey protein, 3×/day), added to the habitual diet of free-living overweight/obese adults and subsequently randomized to either whey protein only (P; n = 24), whey protein and resistance exercise (P + RT; n = 27), or a whey protein and multimode exercise training program [protein and resistance exercise, intervals, stretching/yoga/Pilates, endurance exercise (PRISE); n = 28]. Total and regional body composition and visceral adipose tissue (VAT) mass (dual-energy X-ray absorptiometry), insulin sensitivity [homeostasis model assessment-estimated insulin resistance (HOMA-IR)], plasma lipids and adipokines, and feelings of hunger and satiety (visual analog scales) were measured before and after the 16-wk intervention. All groups lost body weight, fat mass (FM), and abdominal fat; however, PRISE lost significantly (P < 0.01) more body weight (3.3 ± 0.7 vs. 1.1 ± 0.7 kg, P + RT) and FM (2.8 ± 0.7 vs. 0.9 ± 0.5 kg, P + RT) and gained (P < 0.05) a greater percentage of lean body mass (2 ± 0.5 vs. 0.9 ± 0.3 and 0.6 ± 0.4%, P + RT and P, respectively). Only P + RT (0.1 ± 0.04 kg) and PRISE (0.21 ± 0.07 kg) lost VAT mass (P < 0.05). Fasting glucose decreased only in P + RT (5.1 ± 2.5 mg/dl) and PRISE (15.3 ± 2.1 mg/dl), with the greatest decline occurring in PRISE (P < 0.05). Similarly, HOMA-IR improved (0.6 ± 0.3, 0.6 ± 0.4 units), and leptin decreased (4.7 ± 2.2, 4.7 ± 3.1 ng/dl), and adiponectin increased (3.8 ± 1.1, 2.4 ± 1.1 μg/ml) only in P + RT and PRISE, respectively, with no change in P. In conclusion, we find evidence to support exercise training and timed ingestion of whey protein added to the habitual diet of free-living overweight/obese adults, independent of caloric restriction on total and regional body fat distribution, insulin resistance, and adipokines. PMID:24833780

  4. Contribution to the production of lactulose-rich whey by in situ electro-isomerization of lactose and effect on whey proteins after electro-activation as confirmed by matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    PubMed

    Kareb, Ourdia; Champagne, Claude P; Aïder, Mohammed

    2016-04-01

    Cheese-whey, a major co-product of the dairy industry, has recently been the subject of many technological applications. We studied the bioconversion of whey into valuable bio-products such as a potential lactulose prebiotic and compounds with antioxidant properties. This paper examines efficiency, safety, and economics of electro-activation as an eco-friendly technology for a maximum valorization of whey. Thus, a bottom-up approach was therefore addressed. The effect of 4 experimental parameters-low working temperatures (0, 10, and 25°C), current intensities (400, 600, and 800mA), volume conditions (100, 200, and 300mL), and feed concentrations [7, 14, and 28% (wt/vol)]-on lactose-whey isomerization to lactulose under electro-activation process were studied. Structural characteristics of whey proteins and antioxidant functionality were also investigated. The results showed a compromise to be reached between both parameters. Therefore, the maximum yield of 35% of lactulose was achieved after 40min of reaction at the working temperature of 10°C under 400mA electric current field and 100-mL volume conditions with using feed solution at 7% (wt/vol). The isomerization of lactose to lactulose is accomplished by subsequent degradation to galactose, but only at a very small amount. Additionally, whey electro-activation showed significantly elevated antioxidant capacity compared with the untreated samples. The enhancement of antioxidant functionality of whey electro-activation resulted from the synergistic effect of its partial hydrolysis and the formation of antioxidant components that were able to scavenge free radicals. In conclusion, the findings of this study reveal that the whey treated by the safety electro-activation technology has both lactulose-prebiotic and antioxidant properties and could have a substantial application in the manufacture of pharmaceutical and functional foods. PMID:26830750

  5. Design and characterization of controlled-release edible packaging films prepared with synergistic whey-protein polysaccharide complexes.

    PubMed

    Liu, Fei; Jiang, Yanfeng; Du, Bingjian; Chai, Zhi; Jiao, Tong; Zhang, Chunyue; Ren, Fazheng; Leng, Xiaojing

    2013-06-19

    This paper describes an investigation into the properties of a doubly emulsified film incorporated with protein-polysaccharide microcapsules, which serves as a multifunctional food packaging film prepared using common edible materials in place of petroleum--based plastics. The relationships between the microstructural properties and controlled release features of a series of water-in-oil-in-water (W/O/W) microcapsulated edible films prepared in thermodynamically incompatible conditions were analyzed. The hydrophilic riboflavin (V(B2)) nano-droplets (13-50 nm) dispersed in α-tocopherol (V(E)) oil phase were embedded in whey protein-polysaccharide (WPs) microcapsules with a shell thickness of 20-56 nm. These microcapsules were then integrated in 103 μm thick WPs films. Different polysaccharides, including gum arabic (GA), low-methoxyl pectin (LMP), and κ-carrageenan (KCG), exhibited different in vitro synergistic effects on the ability of both films to effect enteric controlled release of both vitamins. GA, which showed a strong emulsifying ability, also showed better control of V(E) than other polysaccharides, and the highly charged KCG showed better control of V(B2) than GA did. PMID:23718814

  6. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic.

    PubMed

    Ozturk, Bengu; Argin, Sanem; Ozilgen, Mustafa; McClements, David Julian

    2015-12-01

    Natural biopolymers, whey protein isolate (WPI) and gum arabic (GA), were used to fabricate emulsion-based delivery systems for vitamin E-acetate. Stable delivery systems could be formed when vitamin E-acetate was mixed with sufficient orange oil prior to high pressure homogenization. WPI (d32=0.11 μm, 1% emulsifier) was better than GA (d32=0.38 μm, 10% emulsifier) at producing small droplets at low emulsifier concentrations. However, WPI-stabilized nanoemulsions were unstable to flocculation near the protein isoelectric point (pH 5.0), at high ionic strength (>100mM), and at elevated temperatures (>60 °C), whereas GA-stabilized emulsions were stable. This difference was attributed to differences in emulsifier stabilization mechanisms: WPI by electrostatic repulsion; GA by steric repulsion. These results provide useful information about the emulsifying and stabilizing capacities of natural biopolymers for forming food-grade vitamin-enriched delivery systems. PMID:26041190

  7. Protein-Protein Multilayer Oil-in-Water Emulsions for the Microencapsulation of Flaxseed Oil: Effect of Whey and Fish Gelatin Concentration.

    PubMed

    Fustier, Patrick; Achouri, Allaoua; Taherian, Ali R; Britten, Michel; Pelletier, Marylène; Sabik, Hassan; Villeneuve, Sébastien; Mondor, Martin

    2015-10-28

    The impact of whey protein isolate (WPI) and fish gelatin (FG) deposited sequentially at concentrations of 0.1, 0.5, and 0.75% on the surface of primary oil-in-water emulsions containing 5% flaxseed oil stabilized with either 0.5% fish gelatin or whey protein, respectively, was investigated. The results revealed that the adsorption of WPI/FG or FG/WPI complexes to the emulsion interface led to the formation of oil-in-water (o/w) emulsions with different stabilities and different protection degrees of the flaxseed oil. Deposition of FG on the WPI primary emulsion increased the particle size (from 0.53 to 1.58 μm) and viscosity and decreased electronegativity (from -23.91 to -11.15 mV) of the complexes. Different trends were noted with the deposition of WPI on the FG primary emulsion, resulting in decreasing particle size and increasing electronegativity and viscosity to a lower extent. Due to the superior tension-active property of WPI, the amount of protein load in the WPI primary emulsion as well as in WPI/FG complex was significantly higher than the FG counterparts. A multilayer emulsion made with 0.5% WPI/0.75% FG exhibited the lowest oxidation among all of the multilayered emulsions tested (0.32 ppm of hexanal) after 21 days, likely due to the charge effect of FG that may prevent pro-oxidant metals to interact with the flaxseed oil. PMID:26457588

  8. Self-emulsification of alkaline-dissolved clove bud oil by whey protein, gum arabic, lecithin, and their combinations.

    PubMed

    Luo, Yangchao; Zhang, Yue; Pan, Kang; Critzer, Faith; Davidson, P Michael; Zhong, Qixin

    2014-05-14

    Low-cost emulsification technologies using food ingredients are critical to various applications. In the present study, a novel self-emulsification technique was studied to prepare clove bud oil (CBO) emulsions, without specialized equipment or organic solvents. CBO was first dissolved in hot alkaline solutions, added at 1% v/v into neutral solutions with 1% w/v emulsifier composed of whey protein concentrate (WPC), gum arabic, lecithin, or their equal mass mixtures, and adjusted to pH 7.0. The self-emulsification process did not affect UV-vis absorption spectrum, reversed-phase HPLC chromatogram, or antimicrobial activity of CBO against Escherichia coli O157:H7, Listeria monocytogenes Scott A, and Salmonella Enteritidis. The entrapment efficiency after extraction by petroleum ether was determined to be about 80%. Most emulsions were stable during 7 days of storage. Emulsions prepared with WPC had smaller particles, whereas emulsions prepared with emulsifier mixtures had more stable particle dimensions. The studied self-emulsification technique may find numerous applications in the preparation of low-cost food emulsions. PMID:24758517

  9. Antimicrobial activity and hydrophobicity of edible whey protein isolate films formulated with nisin and/or glucose oxidase.

    PubMed

    Murillo-Martínez, María M; Tello-Solís, Salvador R; García-Sánchez, Miguel A; Ponce-Alquicira, Edith

    2013-04-01

    The use of edible antimicrobial films has been reported as a means to improve food shelf life through gradual releasing of antimicrobial compounds on the food surface. This work reports the study on the incorporation of 2 antimicrobial agents, nisin (N), and/or glucose oxidase (GO), into the matrix of Whey protein isolate (WPI) films at pH 5.5 and 8.5. The antimicrobial activity of the edible films was evaluated against Listeria innocua (ATCC 33090), Brochothrix thermosphacta (NCIB10018), Escherichia coli (JMP101), and Enterococcus faecalis (MXVK22). In addition, the antimicrobial activity was related to the hydrophobicity and water solubility of the WPI films. The greatest antibacterial activity was observed in WPI films containing only GO. The combined addition of N and GO resulted in films with lower antimicrobial activity than films with N or GO alone. In most cases, a pH effect was observed as greater antimicrobial response at pH 5.5 as well as higher film matrix hydrophobicity. WPI films supplemented with GO can be used in coating systems suitable for food preservation. PMID:23488765

  10. Microwave-assisted isomerisation of lactose to lactulose and Maillard conjugation of lactulose and lactose with whey proteins and peptides.

    PubMed

    Nooshkam, Majid; Madadlou, Ashkan

    2016-06-01

    Lactose was isomerised to lactulose by microwave heating and purified by a methanolic procedure to a product with approximately 72% lactulose content. Afterwards, lactose and the lactulose-rich product (PLu) were conjugated with either whey protein isolate (WPI) or its antioxidant hydrolysate (WPH) through microwaving. Lactose had a higher Maillard reactivity than PLu, and WPH was more reactive than WPI. The browning intensity of WPI-sugar systems was however higher than that of WPH-sugar pairs. Atomic force microscopy showed larger (up to ≈103 nm) particles for WPI-PLu conjugates compared to WPH-PLu counterparts (up to ≈39 nm). The Maillard conjugation progressively increased the radical-scavenging activity of WPI/WPH-sugar pairs with increasing conjugation time and improved the foaming properties of WPI and WPH. The WPI/WPH-sugar conjugates showed higher solubility and emulsification index than unreacted counterpart pairs. For native WPI, β-lactoglobulin was not degraded by in vitro gastric digestion, whereas for WPH-PLu conjugates degraded completely. PMID:26830553

  11. pH-stat vs. free-fall pH techniques in the enzymatic hydrolysis of whey proteins.

    PubMed

    Fernández, Ayoa; Kelly, Phil

    2016-05-15

    Enzymatic hydrolysis of a commercial whey protein isolate (WPI) using either trypsin or Protamex® was compared using controlled (pH-stat) and uncontrolled (free-fall) pH conditions. pH-stat control at the enzyme's optimum value led to a more rapid rate of WPI hydrolysis by trypsin, while the opposite was the case when Protamex® was used. Furthermore, the choice of alkaline solution used to maintain constant pH during pH-stat experiments appeared to affect the reaction rate, being higher when KOH is added to the reaction mixture instead of NaOH. It would appear that potassium may play a role as co-factor or activator for the activity of this particular protease preparation. Although pH-stat techniques are usually considered to yield better hydrolysis kinetics, these findings suggest that the response of proteolytic enzyme preparations to static or free-fall pH control should be checked in advance, particularly when undertaking large scale production of WPI hydrolysates. PMID:26775989

  12. Safety evaluation of a whey protein fraction containing a concentrated amount of naturally occurring TGF-β2.

    PubMed

    Forster, Roy; Bourtourault, Michel; Chung, Yong Joo; Silvano, Jérémy; Sire, Guillaume; Spezia, François; Puel, Caroline; Descotes, Jacques; Mikogami, Takashi

    2014-08-01

    TM0601p is a whey protein isolate derived from cow milk, containing a concentrated amount of transforming growth factor β2 (TGF-β2), and is intended for nutritional use in infants and adults. In vivo and in vitro studies have been performed to evaluate the safety of this product. In a 13-week toxicity study, treatment of adult Sprague-Dawley rats by gavage at up to 2000mg/kg/day did not result in any significant findings other than minor non-adverse changes in urinary parameters in females. The no-observed-adverse-effect level (NOAEL) was established as 2000mg/kg/day. In a juvenile toxicity study, rat pups received 600mg/kg/day by gavage from postnatal day (PND) 7 to PND 49. Transient lower bodyweight gain in the pre-weaning period was attributed to gastrointestinal effects of the viscous test material; following weaning, bodyweight gain was comparable to the vehicle controls. Reduced eosinophil counts and changes in urinary parameters (females) were recorded in treated pups at PND 49, and higher thymus weights were recorded in males only at the end of the recovery period (Day 77). None of the findings were considered adverse. There were no other significant findings and the NOAEL was established as 600mg/kg/day. No evidence of genotoxicity was seen in the bacterial reverse mutation test or the in vitro micronucleus test. Overall the results obtained present a reassuring safety profile for TM0601p. PMID:24842704

  13. Thymol nanoemulsified by whey protein-maltodextrin conjugates: the enhanced emulsifying capacity and antilisterial properties in milk by propylene glycol.

    PubMed

    Xue, Jia; Davidson, P Michael; Zhong, Qixin

    2013-12-26

    The objective of this research was to enhance the capability of whey protein isolate-maltodextrin conjugates in nanoemulsifying thymol using propylene glycol to improve antilisterial properties in milk. Thymol was predissolved in PG and emulsified in 7% conjugate solution. Transparent dispersions with mean diameters of <30 nm were observed up to 1.5%w/v thymol. In skim and 2% reduced fat milk, Listeria monocytogenes Scott A was reduced from ∼5 log CFU/mL to below the detection limit in 6 h by 0.1% w/v and 0.45% w/v nanoemulsified thymol, respectively, contrasting with gradual reductions to 1.15 and 2.26 log CFU/mL after 48 h by same levels of free thymol. In full fat milk, L. monocytogenes was gradually reduced to be undetectable after 48 h by 0.6% w/v nanoemulsified thymol, contrasting with the insignificant reduction by free thymol. The improved antilisterial activities of nanoemulsified thymol resulted from the increased solubility in milk and synergistic activity with propylene glycol. PMID:24328082

  14. A combination of probiotics and whey proteins enhances anti-obesity effects of calcium and dairy products during nutritional energy restriction in aP2-agouti transgenic mice.

    PubMed

    Yoda, Kazutoyo; Sun, Xiaocum; Kawase, Manabu; Kubota, Akira; Miyazawa, Kenji; Harata, Gaku; Hosoda, Masataka; Hiramatsu, Masaru; He, Fang; Zemel, Michael B

    2015-06-14

    Lactobacillus rhamnosus GG, Lactobacillus paracasei TMC0409, Streptococcus thermophilus TMC1543 and whey proteins were used to prepare fermented milk. For the experiment aP2- agouti transgenic mice were pre-treated with a high-sucrose/high-fat diet for 6 weeks to induce obesity. The obese mice were fed a diet containing 1·2% Ca and either non-fat dried milk (NFDM) or probiotic-fermented milk (PFM) with nutritional energy restriction for 6 weeks. The animals were examined after the treatment for changes in body weight, fat pad weight, fatty acid synthase (FAS) activity, lypolysis, the expression levels of genes related to lipid metabolism, insulin sensitivity in adipocytes and skeletal muscle and the presence of biomarkers for oxidative and inflammatory stress in plasma. It was found that the PFM diet significantly reduced body weight, fat accumulation, and adipocyte FAS activity, and increased adipocyte lipolysis as compared with the effects of the NFDM diet (P<0·05). The adipose tissue gene expression of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) was significantly suppressed in mice that were fed PFM as compared with those that were fed NFDM (P<0·05). PFM caused a greater up-regulation of skeletal muscle PPARα, PPARδ, uncoupling protein 3 (UCP3) and GLUT4 expression and a significant decrease in the plasma concentration of insulin, malondialdehyde, TNF-α, monocyte chemotactic protein-1 and C-reactive protein as compared with the effects of NFDM (P<0·05). Fermentation of milk with selected probiotics and supplementation of milk with whey proteins may thus enhance anti-obesity effects of Ca and dairy products by the suppression of adipose tissue lipogenesis, activation of fat oxidation in skeletal muscle and reduction of oxidative and inflammatory stress. PMID:25871498

  15. The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein.

    PubMed

    Macnaughton, Lindsay S; Wardle, Sophie L; Witard, Oliver C; McGlory, Chris; Hamilton, D Lee; Jeromson, Stewart; Lawrence, Clare E; Wallis, Gareth A; Tipton, Kevin D

    2016-08-01

    The currently accepted amount of protein required to achieve maximal stimulation of myofibrillar protein synthesis (MPS) following resistance exercise is 20-25 g. However, the influence of lean body mass (LBM) on the response of MPS to protein ingestion is unclear. Our aim was to assess the influence of LBM, both total and the amount activated during exercise, on the maximal response of MPS to ingestion of 20 or 40 g of whey protein following a bout of whole-body resistance exercise. Resistance-trained males were assigned to a group with lower LBM (≤65 kg; LLBM n = 15) or higher LBM (≥70 kg; HLBM n = 15) and participated in two trials in random order. MPS was measured with the infusion of (13)C6-phenylalanine tracer and collection of muscle biopsies following ingestion of either 20 or 40 g protein during recovery from a single bout of whole-body resistance exercise. A similar response of MPS during exercise recovery was observed between LBM groups following protein ingestion (20 g - LLBM: 0.048 ± 0.018%·h(-1); HLBM: 0.051 ± 0.014%·h(-1); 40 g - LLBM: 0.059 ± 0.021%·h(-1); HLBM: 0.059 ± 0.012%·h(-1)). Overall (groups combined), MPS was stimulated to a greater extent following ingestion of 40 g (0.059 ± 0.020%·h(-1)) compared with 20 g (0.049 ± 0.020%·h(-1); P = 0.005) of protein. Our data indicate that ingestion of 40 g whey protein following whole-body resistance exercise stimulates a greater MPS response than 20 g in young resistance-trained men. However, with the current doses, the total amount of LBM does not seem to influence the response. PMID:27511985

  16. Changes in antioxidant status and cardiovascular risk factors of overweight young men after six weeks supplementation of whey protein isolate and resistance training.

    PubMed

    Sheikholeslami Vatani, Dariush; Ahmadi Kani Golzar, Farhad

    2012-12-01

    The study's purpose was to examine the effects of whey protein supplementation and resistance training on antioxidant status and cardiovascular risk factors in overweight young men. Thirty healthy male subjects (age, 23.4±3.6years; body mass index, 25-30kg/m(2)) were randomly divided into three groups of 10 persons including; Experimental group 1: resistance training+whey supplement (RW); Experimental group 2: resistance training+placebo (RP), and Control group (C). Subjects in intervention groups underwent 3 resistance training sessions per week, each session with 60-70% 1RM, for 6weeks. No significant changes in fibrinogen level, fasting blood glucose, resting systolic and diastolic blood pressures, waist to hip ratio (WHR), and body mass index were observed in any of the groups. Total antioxidant capacity (TAC), cholesterol and HDL varied significantly in the RW group compared with the pre-test. We found significant changes in both RW and RP groups for glutathione, vitamin C, LDL, and triglyceride levels. In addition, in the post-test, TAC, glutathione, and HDL levels were higher in the RW in comparison to C group. Research findings showed that although exercise can lead to antioxidant system improvement and reduce some cardiovascular risk factors among overweight subjects, the combination of resistance training and whey consumption is more effective. PMID:22889987

  17. Whey as a brewing material. III. Fermentation of wort containing hydrolyzed whey permeate

    SciTech Connect

    Tenney, R.I.

    1981-01-01

    Ultrafiltration of whey removes most of the protein, leaving lactose and minerals in the permeate. Salinity may be controlled by demineralization, resulting in a product that ferments easily, yielding beers of normal and controllable composition and character. Up to 30% extracts may be derived from whey. Several strains of yeast isolated from breweries are capable of the fermentation.

  18. Stable nanoparticles prepared by heating electrostatic complexes of whey protein isolate-dextran conjugate and chondroitin sulfate.

    PubMed

    Dai, Qingyuan; Zhu, Xiuling; Abbas, Shabbar; Karangwa, Eric; Zhang, Xiaoming; Xia, Shuqin; Feng, Biao; Jia, Chengsheng

    2015-04-29

    A simple and green method was developed for preparing the stable biopolymer nanoparticles with pH and salt resistance. The method involved the macromolecular crowding Maillard process and heat-induced gelation process. The conjugates of whey protein isolate (WPI) and dextran were produced by Maillard reaction. The nanoparticles were fabricated by heating electrostatic complexes of WPI-dextran conjugate and chondroitin sulfate (ChS) above the denaturation temperature and near the isoelectric point of WPI. Then, the nanoparticles were characterized by spectrophotometry, dynamic laser scattering, zeta potential, transmission electron microscopy, atomic force microscopy, and scanning electron microscopy. Results showed that the nanoparticles were stable in the pH range from 1.0 to 8.0 and in the presence of high salt concentration of 200 mM NaCl. WPI-dextran conjugate, WPI, and ChS were assembled into the nanoparticles with dextran conjugated to WPI/ChS shell and WPI/ChS core. The repulsive steric interactions, from both dextran covalently conjugated to WPI and ChS electrostatically interacted with WPI, were the major formation mechanism of the stable nanoparticles. As a nutrient model, lutein could be effectively encapsulated into the nanoparticles. Additionally, the nanoparticles exhibited a spherical shape and homogeneous size distribution regardless of lutein loading. The results suggested that the stable nanoparticles from proteins and strong polyelectrolyte polysaccharides would be used as a promising target delivery system for hydrophobic nutrients and drugs at physiological pH and salt conditions. PMID:25844903

  19. One-Pot Procedure for Recovery of Gallic Acid from Wastewater and Encapsulation within Protein Particles.

    PubMed

    Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram; Mousavi, Mohammad E

    2016-02-24

    A whey protein isolate solution was heat-denatured and treated with the enzyme transglutaminase, which cross-linked ≈26% of the amino groups and increased the magnitude of the ζ-potential value. The protein solution was microemulsified, and then the resulting water-in-oil microemulsion was dispersed within a gallic acid-rich model wastewater. Gallic acid extraction by the outlined microemulsion liquid membrane (MLM) from the exterior aqueous phase (wastewater) and accumulation within the internal aqueous nanodroplets induced protein cold-set gelation and resulted in the formation of gallic acid-enveloping nanoparticles. Measurements with a strain-controlled rheometer indicated a progressive increase in the MLM viscosity during gallic acid recovery corresponding to particle formation. The mean hydrodynamic size of the nanoparticles made from the heat-denatured and preheated enzymatically cross-linked proteins was 137 and 122 nm, respectively. The enzymatic cross-linking of whey proteins led to a higher gallic acid recovery yield and increased the glass transition enthalpy and temperature. A similar impact on glass transition indices was observed by the gallic acid-induced nanoparticulation of proteins. Scanning electron microscopy showed the existence of numerous jammed/fused nanoparticles. It was suggested on the basis of the results of Fourier transform infrared spectroscopy that the in situ nanoparticulation of proteins shifted the C-N stretching and C-H bending peaks to higher wavenumbers. X-ray diffraction results proposed a decreased β-sheet content for proteins because of the acid-induced particulation. The nanoparticles made from the enzymatically cross-linked protein were more stable against the in vitro gastrointestinal digestion and retained almost 19% of the entrapped gallic acid after 300 min sequential gastric and intestinal digestions. PMID:26862880

  20. Short communication: The influence of solids concentration and bleaching agent on bleaching efficacy and flavor of sweet whey powder.

    PubMed

    Jervis, M G; Smith, T J; Drake, M A

    2015-04-01

    Recent studies have demonstrated the effect of bleaching conditions and bleaching agent on flavor and functional properties of whey protein ingredients. Solids concentration at bleaching significantly affected bleaching efficacy and flavor effects of different bleaching agents. It is not known if these parameters influence quality of sweet whey powder (SWP). The purpose of this study was to determine the effects of solids concentration and bleaching agent on the flavor and bleaching efficacy of SWP. Colored cheddar whey was manufactured, fat separated, and pasteurized. Subsequently, the whey (6.7% solids) was bleached, concentrated using reverse osmosis (RO) to 14% solids, and then spray dried, or whey was concentrated before bleaching and then spray dried. Bleaching treatments included a control (no bleaching, 50 °C, 60 min), hydrogen peroxide (HP; 250 mg/kg, 50 °C, 60 min), benzoyl peroxide (50 mg/kg, 50 °C, 60 min), lactoperoxidase (20 mg/kg of HP, 50 °C, 30 min), and external peroxidase (MaxiBright, DSM Food Specialties, Delft, the Netherlands; 2 dairy bleaching units/mL, 50 °C, 30 min). The experiment was repeated in triplicate. Sensory properties and volatile compounds of SWP were evaluated by a trained panel and gas chromatography-mass spectrometry, respectively. Bleaching efficacy (norbixin destruction) and benzoic acid were measured by HPLC. Differences in bleaching efficacy, sensory and volatile compound profiles, and benzoic acid were observed with different bleaching agents, consistent with previous studies. Solids concentration affected bleaching efficacy of HP, but not other bleaching agents. The SWP from whey bleached with HP or lactoperoxidase following RO had increased cardboard and fatty flavors and higher concentrations of lipid oxidation compounds compared with SWP from whey bleached before RO. The SWP bleached with benzoyl peroxide after RO contained less benzoic acid than SWP from whey bleached before RO. These results indicate that

  1. Effects of preoperative feeding with a whey protein plus carbohydrate drink on the acute phase response and insulin resistance. A randomized trial

    PubMed Central

    2011-01-01

    Background Prolonged preoperative fasting increases insulin resistance and current evidence recommends carbohydrate (CHO) drinks 2 hours before surgery. Our hypothesis is that the addition of whey protein to a CHO-based drink not only reduces the inflammatory response but also diminish insulin resistance. Methods Seventeen patients scheduled to cholecystectomy or inguinal herniorraphy were randomized and given 474 ml and 237 ml of water (CO group) or a drink containing CHO and milk whey protein (CHO-P group) respectively, 6 and 3 hours before operation. Blood samples were collected before surgery and 24 hours afterwards for biochemical assays. The endpoints of the study were the insulin resistance (IR), the prognostic inflammatory and nutritional index (PINI) and the C-reactive protein (CRP)/albumin ratio. A 5% level for significance was established. Results There were no anesthetic or postoperative complications. The post-operative IR was lower in the CHO-P group when compared with the CO group (2.75 ± 0.72 vs 5.74 ± 1.16; p = 0.03). There was no difference between the two groups in relation to the PINI. The CHO-P group showed a decrease in the both CRP elevation and CRP/albumin ratio (p < 0.05). The proportion of patients who showed CRP/albumin ratio considered normal was significantly greater (p < 0.05) in the CHO-P group (87.5%) than in the CO group (33.3%). Conclusions Shortening the pre-operative fasting using CHO and whey protein is safe and reduces insulin resistance and postoperative acute phase response in elective moderate operations. Trial registration ClinicalTrail.gov NCT01354249 PMID:21668975

  2. Tocotrienols and Whey Protein Isolates Substantially Increase Exercise Endurance Capacity in Diet -Induced Obese Male Sprague-Dawley Rats

    PubMed Central

    Aguila, Jay; McConell, Glenn K.; McAinch, Andrew J.; Mathai, Michael L.

    2016-01-01

    Background and Aims Obesity and impairments in metabolic health are associated with reductions in exercise capacity. Both whey protein isolates (WPIs) and vitamin E tocotrienols (TCTs) exert favorable effects on obesity-related metabolic parameters. This research sought to determine whether these supplements improved exercise capacity and increased glucose tolerance in diet-induced obese rats. Methods Six week old male rats (n = 35) weighing 187 ± 32g were allocated to either: Control (n = 9), TCT (n = 9), WPI (n = 8) or TCT + WPI (n = 9) and placed on a high-fat diet (40% of energy from fat) for 10 weeks. Animals received 50mg/kg body weight and 8% of total energy intake per day of TCTs and/or WPIs respectively. Food intake, body composition, glucose tolerance, insulin sensitivity, exercise capacity, skeletal muscle glycogen content and oxidative enzyme activity were determined. Results Both TCT and WPI groups ran >50% longer (2271 ± 185m and 2195 ± 265m respectively) than the Control group (1428 ± 139m) during the run to exhaustion test (P<0.05), TCT + WPI did not further improve exercise endurance (2068 ± 104m). WPIs increased the maximum in vitro activity of beta-hydroxyacyl-CoA in the soleus muscle (P<0.05 vs. Control) but not in the plantaris. Citrate synthase activity was not different between groups. Neither supplement had any effect on weight gain, adiposity, glucose tolerance or insulin sensitivity. Conclusion Ten weeks of both TCTs and WPIs increased exercise endurance by 50% in sedentary, diet-induced obese rats. These positive effects of TCTs and WPIs were independent of body weight, adiposity or glucose tolerance. PMID:27058737

  3. Fuel ethanol and high protein feed from corn and corn-whey mixtures in a farm-scale plant

    SciTech Connect

    Gibbons, W.R.; Westby, C.A.

    1983-09-01

    Distiller's wet grain (DWG) and 95% ethanol were produced from corn in a farm-scale process involving batch cooking-fermentation and continuous distillation-centrifugation. The energy balance was 2.26 and the cost was $1.86/gal (1981 cost). To improve the energy balance and reduce costs, various modifications were made in the plant. The first change, back-end (after liquefaction) serial recycling of stillage supernatant at 20 and 40% strengths, produced beers with 0.2 and 0.4% (v/v) more ethanol, respectively, than without recycling. This increased the energy balance by 0.22-0.43 units and reduced costs by $0.07-$0.10/gal. The DWGs from back-end recycling had increased fat. The second change, increasing the starch content from 17-19% to 27.5%, increased the ethanol in the beer from 10.5-14.9% at a cost savings of $0.41/gal. The energy balance increased by 1.08 units. No significant change was seen in DWG composition. The third change, using continuous cascade rather than batch fermentation, permitted batch-levels of ethanol (10%) in the beer but only at low dilution rates. Both the cost and energy balance were decreased slightly. The DWG composition remained constant. The last change, replacing part of the corn and all of the tap water in the mash with whole whey and using Kluyveromyces fragilis instead of Saccharomyces cerevisiae during fermentation, resulted in an energy balance increase of 0.16 units and a $0.27/gal cost reduction. Here, 10% ethanolic beers were produced and the DWGs showed increased protein and fat. Recommendations for farm-scale plants are provided.

  4. Fuel ethanol and high protein feed from corn and corn-whey mixtures in a farm-scale plant

    SciTech Connect

    Gibbons, W.R.; Westby, C.A.

    1983-09-01

    Distiller's wet grain (DWG) and 95% ethanol were produced from corn in a farm-scale process involving batch cooking-fermentation and continuous distillation-centrifugation. The energy balance was 2.26 and the cost was $1.86/gal (1981 cost). To improve the energy balance and reduce costs, various modifications were made in the plant. The first change, back-end (after liquefaction) serial recycling of stillage supernatant at 20 and 40% strengths, produced beers with 0.2 and 0.4% (v/v) more ethanol, respectively, than without recycling. This increased the energy balance by 0.22-0.43 units and reduced costs by $0.07-$0.10/gal. The DWGs from back-end recycling had increased fat. The second change, increasing the starch content from 17-19% to 27.5%, increased the ethanol in the beer from 10.5-14.9% at a cost savings of $0.41/gal. The energy balance increased by 1.08 units. No significant change was seen in DWG composition. The third change, using continuous cascade rather than batch fermentation, permitted batch-levels of ethanol (10%) in the beer but only at low dilution rates. Both the cost and energy balance were decreased slightly. The DWG composition remained constant. The last change, replacing part of the corn and all of the tap water in the mash with whole whey and using Kluyveromyces fragilis instead of Saccharomyces cerevisiae during fermentation, resulted in an energy balance increase of 0.16 units and a $0.27/gal cost reduction. Here, 10% ethanolic beers were produced and the DWGs showed increased protein and fat. Recommendations for farm-scale plants are provided. (Refs. 46).

  5. Comparative study of denaturation of whey protein isolate (WPI) in convective air drying and isothermal heat treatment processes.

    PubMed

    Haque, M Amdadul; Aldred, Peter; Chen, Jie; Barrow, Colin J; Adhikari, Benu

    2013-11-15

    The extent and nature of denaturation of whey protein isolate (WPI) in convective air drying environments was measured and analysed using single droplet drying. A custom-built, single droplet drying instrument was used for this purpose. Single droplets having 5±0.1μl volume (initial droplet diameter 1.5±0.1mm) containing 10% (w/v) WPI were dried at air temperatures of 45, 65 and 80°C for 600s at constant air velocity of 0.5m/s. The extent and nature of denaturation of WPI in isothermal heat treatment processes was measured at 65 and 80°C for 600s and compared with those obtained from convective air drying. The extent of denaturation of WPI in a high hydrostatic pressure environment (600MPa for 600s) was also determined. The results showed that at the end of 600s of convective drying at 65°C the denaturation of WPI was 68.3%, while it was only 10.8% during isothermal heat treatment at the same medium temperature. When the medium temperature was maintained at 80°C, the denaturation loss of WPI was 90.0% and 68.7% during isothermal heat treatment and convective drying, respectively. The bovine serum albumin (BSA) fraction of WPI was found to be more stable in the convective drying conditions than β-lactoglobulin and α-lactalbumin, especially at longer drying times. The extent of denaturation of WPI in convective air drying (65 and 80°C) and isotheral heat treatment (80°C) for 600s was found to be higher than its denaturation in a high hydrostatic pressure environment at ambient temperature (600MPa for 600s). PMID:23790837

  6. Physical properties of emulsion-based hydroxypropyl methylcellulose/whey protein isolate (HPMC/WPI) edible films.

    PubMed

    Rubilar, Javiera F; Zúñiga, Rommy N; Osorio, Fernando; Pedreschi, Franco

    2015-06-01

    The objective of this research was to study the effect of the film microstructure of oil-in-water emulsions stabilized by hydroxypropyl methyl cellulose/whey protein isolate (HPMC/WPI) with or without sodium dodecyl sulfate (SDS) over physical properties of HPMC/WPI emulsion-based films. The films were prepared with different HPMC/WPI-oil-SDS combinations (%w/w for 100g of dispersion): HPMC; WPI; HPMC/1WPI-0.5-SDS; HPMC/1WPI-1; HPMC/2WPI-0.5; HPMC/2WPI-1-SDS. Physical properties of films were evaluated. The results showed no statistical differences (p>0.05) between the thicknesses of EFs (0.156 ± 0.004 mm). The effect of oil content and incorporation of SDS showed the inverse trend for WI and ΔE, the increasing order of change, for WI and ΔE, among the formulation evaluated was: HPMC/1WPI-1>HPMC/2WPI-0.5>HPMC/2WPI-1.0-SDS≈HPMC/1WPI-0.5-SDS≈WPI>HPMC for WI and HPMC/1WPI-0.5-SDS>HPMC/2WPI-1.0-SDS>HPMC/2WPI-0.5>HPMC/1WPI-1 for ΔE, respectively. The addition of oil and SDS decreased the TS and EB, because oil addition into EF induces the development of structural discontinuities, producing an EF with less chain mobility, and consequently, with less flexibility and resistance to fracture. PMID:25843831

  7. Preparation and characterization of water/oil/water emulsions stabilized by polyglycerol polyricinoleate and whey protein isolate.

    PubMed

    Mun, Saehun; Choi, Yongdoo; Rho, Shin-Joung; Kang, Choon-Gil; Park, Chan-Ho; Kim, Yong-Ro

    2010-03-01

    In this study we tried to prepare stable water-in-oil-in-water (W/O/W) emulsions using polyglycerol polyricinoleate (PGPR) as a hydrophobic emulsifier and whey protein isolate (WPI) as a hydrophilic emulsifier. At first, water-in-oil (W/O) emulsions was prepared, and then 40 wt% of this W/O emulsion was homogenized with 60 wt% aqueous solution of different WPI contents (2, 4, and 6 wt% WPI) using a high-pressure homogenizer (14 and 22 MPa) to produce W/O/W emulsions. The mean size of final W/O/W droplets ranged from 3.3 to 9.9 microm in diameter depending on the concentrations of PGPR and WPI. It was shown that most of the W/O/W droplets were small (<5 microm) in size but a small population of large oil droplets (d > 20 microm) was also occasionally observed. W/O/W emulsions prepared at the homogenization pressure of 22 MPa had a larger mean droplet size than that prepared at 14 MPa, and showed a microstructure consisting of mainly approximately 6 to 7-microm droplets. When a water-soluble dye PTSA as a model ingredient was loaded in the inner water phase, all W/O/W emulsions showed a high encapsulation efficiency of the dye (>90%) in the inner water phase. Even after 2 wk of storage, >90% of the encapsulated dye still remained in the inner water phase; however, severe droplet aggregation was observed at relatively high PGPR and WPI concentrations. PMID:20492231

  8. The decrease in the IgG-binding capacity of intensively dry heated whey proteins is associated with intense Maillard reaction, structural changes of the proteins and formation of RAGE-ligands.

    PubMed

    Liu, Fahui; Teodorowicz, Małgorzata; van Boekel, Martinus A J S; Wichers, Harry J; Hettinga, Kasper A

    2016-01-01

    Heat treatment is the most common way of milk processing, inducing structural changes as well as chemical modifications in milk proteins. These modifications influence the immune-reactivity and allergenicity of milk proteins. This study shows the influence of dry heating on the solubility, particle size, loss of accessible thiol and amino groups, degree of Maillard reaction, IgG-binding capacity and binding to the receptor for advanced glycation end products (RAGE) of thermally treated and glycated whey proteins. A mixture of whey proteins and lactose was dry heated at 130 °C up to 20 min to mimic the baking process in two different water activities, 0.23 to mimic the heating in the dry state and 0.59 for the semi-dry state. The dry heating was accompanied by a loss of soluble proteins and an increase in the size of dissolved aggregates. Most of the Maillard reaction sites were found to be located in the reported conformational epitope area on whey proteins. Therefore the structural changes, including exposure of the SH group, SH-SS exchange, covalent cross-links and the loss of available lysine, subsequently resulted in a decreased IgG-binding capacity (up to 33%). The binding of glycation products to RAGE increased with the heating time, which was correlated with the stage of the Maillard reaction and the decrease in the IgG-binding capacity. The RAGE-binding capacity was higher in samples with a lower water activity (0.23). These results indicate that the intensive dry heating of whey proteins as it occurs during baking may be of importance to the immunological properties of allergens in cow's milk, both due to chemical modifications of the allergens and formation of AGEs. PMID:26524422

  9. Co-Ingestion of Whey Protein with a Carbohydrate-Rich Breakfast Does Not Affect Glycemia, Insulinemia or Subjective Appetite Following a Subsequent Meal in Healthy Males

    PubMed Central

    Allerton, Dean M.; Campbell, Matthew D.; Gonzalez, Javier T.; Rumbold, Penny L. S.; West, Daniel J.; Stevenson, Emma J.

    2016-01-01

    We aimed to assess postprandial metabolic and appetite responses to a mixed-macronutrient lunch following prior addition of whey protein to a carbohydrate-rich breakfast. Ten healthy males (age: 24 ± 1 years; body mass index (BMI): 24.5 ± 0.7 kg/m2) completed three trials in a non-isocaloric, crossover design. A carbohydrate-rich breakfast (93 g carbohydrate; 1799 kJ) was consumed with (CHO + WP) or without (CHO) 20 g whey protein isolate (373 kJ), or breakfast was omitted (NB). At 180 min, participants consumed a mixed-macronutrient lunch meal. Venous blood was sampled at 15 min intervals following each meal and every 30 min thereafter, while subjective appetite sensations were collected every 30 min throughout. Post-breakfast insulinemia was greater after CHO + WP (time-averaged area under the curve (AUC0–180 min): 193.1 ± 26.3 pmol/L), compared to CHO (154.7 ± 18.5 pmol/L) and NB (46.1 ± 8.0 pmol/L; p < 0.05), with no difference in post-breakfast (0–180 min) glycemia (CHO + WP, 3.8 ± 0.2 mmol/L; CHO, 4.2 ± 0.2 mmol/L; NB, 4.2 ± 0.1 mmol/L; p = 0.247). There were no post-lunch (0–180 min) effects of condition on glycemia (p = 0.492), insulinemia (p = 0.338) or subjective appetite (p > 0.05). Adding whey protein to a carbohydrate-rich breakfast enhanced the acute postprandial insulin response, without influencing metabolic or appetite responses following a subsequent mixed-macronutrient meal. PMID:26927166

  10. Co-Ingestion of Whey Protein with a Carbohydrate-Rich Breakfast Does Not Affect Glycemia, Insulinemia or Subjective Appetite Following a Subsequent Meal in Healthy Males.

    PubMed

    Allerton, Dean M; Campbell, Matthew D; Gonzalez, Javier T; Rumbold, Penny L S; West, Daniel J; Stevenson, Emma J

    2016-01-01

    We aimed to assess postprandial metabolic and appetite responses to a mixed-macronutrient lunch following prior addition of whey protein to a carbohydrate-rich breakfast. Ten healthy males (age: 24 ± 1 years; body mass index (BMI): 24.5 ± 0.7 kg/m²) completed three trials in a non-isocaloric, crossover design. A carbohydrate-rich breakfast (93 g carbohydrate; 1799 kJ) was consumed with (CHO + WP) or without (CHO) 20 g whey protein isolate (373 kJ), or breakfast was omitted (NB). At 180 min, participants consumed a mixed-macronutrient lunch meal. Venous blood was sampled at 15 min intervals following each meal and every 30 min thereafter, while subjective appetite sensations were collected every 30 min throughout. Post-breakfast insulinemia was greater after CHO + WP (time-averaged area under the curve (AUC0--180 min): 193.1 ± 26.3 pmol/L), compared to CHO (154.7 ± 18.5 pmol/L) and NB (46.1 ± 8.0 pmol/L; p < 0.05), with no difference in post-breakfast (0-180 min) glycemia (CHO + WP, 3.8 ± 0.2 mmol/L; CHO, 4.2 ± 0.2 mmol/L; NB, 4.2 ± 0.1 mmol/L; p = 0.247). There were no post-lunch (0-180 min) effects of condition on glycemia (p = 0.492), insulinemia (p = 0.338) or subjective appetite (p > 0.05). Adding whey protein to a carbohydrate-rich breakfast enhanced the acute postprandial insulin response, without influencing metabolic or appetite responses following a subsequent mixed-macronutrient meal. PMID:26927166

  11. Effect of whey and casein protein hydrolysates on rheological, textural and sensory properties of cookies.

    PubMed

    Gani, Adil; Broadway, A A; Ahmad, Mudasir; Ashwar, Bilal Ahmad; Wani, Ali Abas; Wani, Sajad Mohd; Masoodi, F A; Khatkar, Bupinder Singh

    2015-09-01

    Milk proteins were hydrolyzed by papain and their effect on the rheological, textural and sensory properties of cookies were investigated. Water absorption (%) decreased significantly as the amount of milk protein concentrates and hydrolysates increased up to a level of 15 % in the wheat flour. Dough extensibility decreased with inrease in parental proteins and their hydrolysates in wheat flour, significantly. Similarly, the pasting properties also varied significantly in direct proportion to the quantity added in the wheat flour. The colour difference (ΔE) of cookies supplemented with milk protein concentrates and hydrolysates were significantly higher than cookies prepared from control. Physical and sensory characteristics of cookies at 5 % level of supplementation were found to be acceptable. Also the scores assigned by the judges for texture and colour were in good agreement with the measurements derived from the physical tests. PMID:26344985

  12. A novel technique for differentiation of proteins in the development of acid gel structure from control and heat treated milk using confocal scanning laser microscopy.

    PubMed

    Dubert-Ferrandon, Alix; Niranjan, Keshaven; Grandison, Alistair S

    2006-11-01

    The incorporation of caseins and whey proteins into acid gels produced from unheated and heat treated skimmed milk was studied by confocal scanning laser microscopy (CSLM) using fluorescent labelled proteins. Bovine casein micelles were labelled using Alexa Fluor 594, while whey proteins were labelled using Alexa Fluor 488. Samples of the labelled protein solutions were introduced into aliquots of pasteurised skim milk, and skim milk heated to 90 degrees C for 2 min and 95 degrees C for 8 min. The milk was acidified at 40 degrees C to a final pH of 4.4 using 20 g glucono-delta-lactone/l (GDL). The formation of gels was observed with CSLM at two wavelengths (488 nm and 594 nm), and also by visual and rheological methods. In the control milk, as pH decreased distinct casein aggregates appeared, and as further pH reduction occurred, the whey proteins could be seen to coat the casein aggregates. With the heated milks, the gel structure was formed of continuous strands consisting of both casein and whey protein. The formation of the gel network was correlated with an increase in the elastic modulus for all three treatments, in relation to the severity of heat treatment. This model system allows the separate observation of the caseins and whey proteins, and the study of the interactions between the two protein fractions during the formation of the acid gel structure, on a real-time basis. The system could therefore be a valuable tool in the study of structure formation in yoghurt and other dairy protein systems. PMID:16834815

  13. Efficacy of sweet whey containing final dips in reducing protein oxidation in retail-cut cubed beefsteak

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative degradation results in extensive deterioration of shelf-life and quality of retail-cut muscle foods. Use of antioxidants, especially the ones of natural origin, can markedly reduce this process without adverse health consequences to the consumer. Sweet whey originating from Cheddar (CW) an...

  14. Changes in protein expression in Escherichia coli as a consequence of growth in milk whey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding changes in protein expression by bacteria as they adapt to their environment and the pressures exerted by the host immune system to eliminate the bacteria will become a foundation to research into better therapeutics for treatment of bacterial infections. Shotgun Proteomics, using ami...

  15. Post-exercise impact of ingested whey protein hydrolysate on gene expression profiles in rat skeletal muscle: activation of extracellular signal-regulated kinase 1/2 and hypoxia-inducible factor-1α.

    PubMed

    Kanda, Atsushi; Ishijima, Tomoko; Shinozaki, Fumika; Nakayama, Kyosuke; Fukasawa, Tomoyuki; Nakai, Yuji; Abe, Keiko; Kawahata, Keiko; Ikegami, Shuji

    2014-06-28

    We have previously shown that whey protein hydrolysate (WPH) causes a greater increase in muscle protein synthesis than does a mixture of amino acids that is identical in amino acid composition. The present study was conducted to investigate the effect of WPH on gene expression. Male Sprague-Dawley rats subjected to a 2 h swimming exercise were administered either a carbohydrate-amino acid diet or a carbohydrate-WPH diet immediately after exercise. At 1 h after exercise, epitrochlearis muscle mRNA was sampled and subjected to DNA microarray analysis. We found that ingestion of WPH altered 189 genes after considering the false discovery rate. Among the up-regulated genes, eight Gene Ontology (GO) terms were enriched, which included key elements such as Cd24, Ccl2, Ccl7 and Cxcl1 involved in muscle repair after exercise. In contrast, nine GO terms were enriched in gene sets that were down-regulated by the ingestion of WPH, and these GO terms fell into two clusters, 'regulation of ATPase activity' and 'immune response'. Furthermore, we found that WPH activated two upstream proteins, extracellular signal-regulated kinase 1/2 (ERK1/2) and hypoxia-inducible factor-1α (HIF-1α), which might act as key factors for regulating gene expression. These results suggest that ingestion of WPH, compared with ingestion of a mixture of amino acids with an identical amino acid composition, induces greater changes in the post-exercise gene expression profile via activation of the proteins ERK1/2 and HIF-1α. PMID:24598469

  16. Use of microparticulated whey protein concentrate, exopolysaccharide-producing Streptococcus thermophilus, and adjunct cultures for making low-fat Italian Caciotta-type cheese.

    PubMed

    Di Cagno, R; De Pasquale, I; De Angelis, M; Buchin, S; Rizzello, C G; Gobbetti, M

    2014-01-01

    Low-fat Caciotta-type cheeses were manufactured with partially skim milk (fat content of ~0.3%) alone (LFC); with the supplementation of 0.5% (wt/vol) microparticulated whey protein concentrate (MWPC) (LFC-MWPC); with MWPC and exopolysaccharides (EPS)-producing Streptococcus thermophilus ST446 (LFC-MWPC-EPS); and with MWPC, EPS-producing strain ST446, and Lactobacillus plantarum LP and Lactobacillus rhamnosus LRA as adjunct cultures (LFC-MWPC-EPS-A). The non-EPS-producing isogenic variant Streptococcus thermophilus ST042 was used for making full-fat Caciotta-type cheese (FFC), LFC, and LFC-MWPC. Cheeses were characterized based on compositional, microbiological, biochemical, texture, volatile components (purge and trap, and solid-phase microextraction coupled with gas chromatography-mass spectrometry), and sensory analyses. Compared with FFC and LFC (51.6 ± 0.7 to 53.0 ± 0.9%), the other cheese variants retained higher levels of moisture (60.5 ± 1.1 to 67.5 ± 0.5%). The MWPC mainly contributed to moisture retention. Overall, all LFC had approximately one-fourth (22.6 ± 0.8%) of the fat of FFC. Hardness of cheeses slightly varied over 7d of ripening. Microbial EPS positively affected cheese texture, and the texture of LFC without MWPC or microbial EPS was excessively firm. Free amino acids were at the highest levels in LFC treatments (2,705.8 ± 122 to 3,070.4 ± 123 mg/kg) due to the addition of MWPC and the peptidase activity of adjunct cultures. Aldehydes, alcohols, ketones, sulfur compounds, and short- to medium-chain carboxylic acids differentiated LFC variants and FFC. The sensory attributes pleasant to taste, intensity of flavor, overall acceptability, and pleasant to chew variously described LFC-MWPC-EPS and LFC-MWPC-EPS-A. Based on the technology options used, low-fat Caciotta-type cheese (especially ripened for 14 d) has promising features to be further exploited as a suitable alternative to the full-fat variant. PMID:24183686

  17. Chitosan/whey Protein (CWP) Edible Films Efficiency for Controlling Mould Growth and on Microbiological, Chemical and Sensory Properties During Storage of Göbek Kashar Cheese

    PubMed Central

    2015-01-01

    The objective of present study was to evaluate the effects of the application of chitosan and chitosan/whey protein on the chemical, microbial and organoleptic properties of Göbek Kashar cheese during ripening time (on 3rd, 30th, 60th and 90th d). Difference in microbiological and chemical changes between samples was found to be significant (p<0.05) during ripening period. Cheese samples with edible coating had statistically lower mould counts compared to the uncoated samples. Furthermore the highest and lowest mould counts were determined in control (4.20 Log CFU/g) and other samples (<1 Log CFU/g) at 60th and 90th d of storage. All samples exhibited higher levels of water soluble nitrogen and ripening index at the end of storage process. At the end of 90 day storage period, no signicant dierences in salt and fat values were observed among the cheeses studied. The edible coatings had a beneficial effect on the sensory quality of cheese samples. In the result of sensory analysis, while cheese C and the chitosan coated cheese samples were more preferred by the panellists, the chitosan/whey protein film-coated cheese samples received the lowest scores. This study shows coating suggests could be used to improve the quality of cheese during ripening time. PMID:26761831

  18. Implications of partial conjugation of whey protein isolate to durian seed gum through Maillard reactions: foaming properties, water holding capacity and interfacial activity.

    PubMed

    Amid, Bahareh Tabatabaee; Mirhosseini, Hamed; Poorazarang, Hashem; Mortazavi, Seyed Ali

    2013-01-01

    This paper deals with the conjugation of durian seed gum (DSG) with whey protein isolate (WPI) through Maillard reactions. Subsequently, the functional properties of durian seed gum in the non-conjugated (control sample) and conjugated forms were compared with several commercial gums (i.e., Arabic gum, sodium alginate, kappa carrageenan, guar gum, and pectin). The current study revealed that the conjugation of durian seed gum with whey protein isolate significantly (p < 0.05) improved its foaming properties. In this study, the conjugated durian seed gum produced the most stable foam among all samples. On the other hand, the emulsion stabilized with the conjugated durian seed gum also showed more uniform particles with a larger specific surface area than the emulsion containing the non-conjugated durian seed gum. The conjugated durian seed gum showed significant different foaming properties, specific surface area, particle uniformity and water holding capacity (WHC) as compared to the target polysaccharide gums. The conjugated durian seed gum showed more similar functional properties to Arabic gum rather than other studied gums. PMID:24322494

  19. Chitosan/whey Protein (CWP) Edible Films Efficiency for Controlling Mould Growth and on Microbiological, Chemical and Sensory Properties During Storage of Göbek Kashar Cheese.

    PubMed

    Yangılar, Filiz

    2015-01-01

    The objective of present study was to evaluate the effects of the application of chitosan and chitosan/whey protein on the chemical, microbial and organoleptic properties of Göbek Kashar cheese during ripening time (on 3(rd), 30(th), 60(th) and 90(th) d). Difference in microbiological and chemical changes between samples was found to be significant (p<0.05) during ripening period. Cheese samples with edible coating had statistically lower mould counts compared to the uncoated samples. Furthermore the highest and lowest mould counts were determined in control (4.20 Log CFU/g) and other samples (<1 Log CFU/g) at 60(th) and 90(th) d of storage. All samples exhibited higher levels of water soluble nitrogen and ripening index at the end of storage process. At the end of 90 day storage period, no signicant dierences in salt and fat values were observed among the cheeses studied. The edible coatings had a beneficial effect on the sensory quality of cheese samples. In the result of sensory analysis, while cheese C and the chitosan coated cheese samples were more preferred by the panellists, the chitosan/whey protein film-coated cheese samples received the lowest scores. This study shows coating suggests could be used to improve the quality of cheese during ripening time. PMID:26761831

  20. Chemical characterisation and determination of sensory attributes of hydrolysates produced by enzymatic hydrolysis of whey proteins following a novel integrative process.

    PubMed

    Welderufael, Fisseha Tesfay; Gibson, Trevor; Methven, Lisa; Jauregi, Paula

    2012-10-15

    The overall aim of this work was to characterise the major angiotensin-converting enzyme (ACE) inhibitory peptides produced by enzymatic hydrolysis of whey proteins, through the application of a novel integrative process. This process consisted of the combination of adsorption and microfiltration within a stirred cell unit for the selective immobilisation of β-lactoglobulin and casein-derived peptides (CDP) from whey. The adsorbed proteins were hydrolysed in situ, which resulted in the separation of peptide products from the substrate and fractionation of peptides. Two different hydrolysates were produced: (i) from CDP (IC(50)=287 μg/mL) and (ii) from β-lactoglobulin (IC(50)=128 μg/mL). The well-known antihypertensive peptide IPP and several novel peptides that have structural similarities with reported ACE inhibitory peptides were identified and characterised in both hydrolysates. Furthermore, the hydrolysates were assessed for bitterness. No significant difference was found between the bitterness of the control (milk with no hydrolysate) and hydrolysate samples at different concentrations (at, below and above the IC(50)). PMID:23442643

  1. Promotion of immune and glycaemic functions in streptozotocin-induced diabetic rats treated with un-denatured camel milk whey proteins.

    PubMed

    Ebaid, Hossam

    2014-01-01

    T cell mediated autoimmune diabetes is characterized by immune cell infiltration of pancreatic islets and destruction of insulin-producing β-cells. This study was designed to assess the effect of whey proteins (WP) on the responsiveness of lymphocytes in rats after four months of Streptozotocin (STZ)-induced Type 1 diabetes (T1D). A diabetic group was supplemented with WP daily for five weeks at a dose of 100 mg/kg. Ribonucleic acid (RNA) was extracted from stimulated lymphocytes in order to analyse gene expressions using real time PCR and RT-PCR. PCR results were confirmed with ELISA. The proliferation capacity of lymphocytes and their homing to the spleen were studied. Antigen-activated lymphocytes showed that diabetes impaired the mRNA expression of the protein kinase B (Akt1), Cdc42, and the co-stimulatory molecule, CD28, which are important for cell survival, actin polymerization and T cell activation, respectively. Accordingly, proliferation of lymphocytes was found to be suppressed in diabetic rats, both in vivo and in vitro. WP was found to restore Akt1, Cdc42 and CD28 mRNA expression during diabetes to normal levels. WP, therefore, served to activate the proliferation of B lymphocytes in diabetic rats both in vivo and in vitro. Although WP was found to up-regulate mRNA expression of both interleukin (IL)-2 and interferon gamma (IFN-γ), it suppressed the proliferation activity of almost all T cell subsets. This was confirmed by WP normalizing the structure and function of ß cells. Meanwhile, WP was found to down regulate the mRNA expression of Tumor necrosis factor-alpha (TNF-α) and its programmed cell death-receptor (Fas). Taken together, the results of this study provide evidence for the potential impact of WP in the treatment of immune impairment in T1D, suggesting that it serves to reverse autoimmunity by suppressing autoreactive T cells and down regulating TNF-α and Fas, resulting in improved pancreatic ß cell structure and function. PMID

  2. Promotion of immune and glycaemic functions in streptozotocin-induced diabetic rats treated with un-denatured camel milk whey proteins

    PubMed Central

    2014-01-01

    T cell mediated autoimmune diabetes is characterized by immune cell infiltration of pancreatic islets and destruction of insulin-producing β-cells. This study was designed to assess the effect of whey proteins (WP) on the responsiveness of lymphocytes in rats after four months of Streptozotocin (STZ)-induced Type 1 diabetes (T1D). A diabetic group was supplemented with WP daily for five weeks at a dose of 100 mg/kg. Ribonucleic acid (RNA) was extracted from stimulated lymphocytes in order to analyse gene expressions using real time PCR and RT-PCR. PCR results were confirmed with ELISA. The proliferation capacity of lymphocytes and their homing to the spleen were studied. Antigen-activated lymphocytes showed that diabetes impaired the mRNA expression of the protein kinase B (Akt1), Cdc42, and the co-stimulatory molecule, CD28, which are important for cell survival, actin polymerization and T cell activation, respectively. Accordingly, proliferation of lymphocytes was found to be suppressed in diabetic rats, both in vivo and in vitro. WP was found to restore Akt1, Cdc42 and CD28 mRNA expression during diabetes to normal levels. WP, therefore, served to activate the proliferation of B lymphocytes in diabetic rats both in vivo and in vitro. Although WP was found to up-regulate mRNA expression of both interleukin (IL)-2 and interferon gamma (IFN-γ), it suppressed the proliferation activity of almost all T cell subsets. This was confirmed by WP normalizing the structure and function of ß cells. Meanwhile, WP was found to down regulate the mRNA expression of Tumor necrosis factor-alpha (TNF-α) and its programmed cell death-receptor (Fas). Taken together, the results of this study provide evidence for the potential impact of WP in the treatment of immune impairment in T1D, suggesting that it serves to reverse autoimmunity by suppressing autoreactive T cells and down regulating TNF-α and Fas, resulting in improved pancreatic ß cell structure and function. PMID

  3. Cell-free supernatants obtained from fermentation of cheese whey hydrolyzates and phenylpyruvic acid by Lactobacillus plantarum as a source of antimicrobial compounds, bacteriocins, and natural aromas.

    PubMed

    Rodríguez-Pazo, Noelia; Vázquez-Araújo, Laura; Pérez-Rodríguez, Noelia; Cortés-Diéguez, Sandra; Domínguez, José Manuel

    2013-10-01

    Cheese whey hydrolyzates supplemented with phenylpyruvic acid (PPA) and commercial nutrients can be efficiently metabolized by Lactobacillus plantarum CECT-221 to biosynthesize some compounds with attractive applications in the food market. The main metabolites of cell-free extracts were antimicrobial compounds such as phenyllactic acid (PLA) and lactic acid (LA). The production of PLA by L. plantarum CECT-221 was evaluated in the Man-Rogosa-Sharpe broth supplemented with two biosynthetic precursors: phenylalanine or PPA. Using 30.5 mM PPA, the microorganism increased sevenfold the concentration of PLA producing 16.4 mM PLA in 46 h. A concentration of 40 mM PPA was a threshold to avoid substrate inhibition. The biosynthesis of whey hydrolyzates as a carbon source was enhanced by fed-batch fermentation of PPA; the average productivity of PLA increased up to 45.4 ± 3.02 mM after 120 h with a product yield of 0.244 mM mM(-1); meanwhile, LA reached 26.1 ± 1.3 g L(-1) with a product yield of 0.72 g g(-1). Cell-free fed-batch extracts charged in wells showed bacteriocin activity with halos of 7.49 ± 1.44 mm in plates inoculated with Carnobacterium piscicola and antimicrobial activity against Staphylococcus aureus (11.54 ± 1.14 mm), Pseudomonas aeruginosa (10.17 ± 2.46 mm), Listeria monocytogenes (7.75 ± 1.31 mm), and Salmonella enterica (3.60 ± 1.52 mm). Additionally, the analysis of the volatile composition of the headspace of this cell-free extract revealed that L. plantarum is a potential producer for natural aromas, such as acetophenone, with high price in the market. This is the first report of PLA production from cheese whey and PPA. The extracts showed bacteriocin activity and potential to be applied as an antimicrobial in the elaboration of safer foods. PMID:23934083

  4. Effect of human and simulated gastric juices on the digestion of whey proteins and carboxymethylcellulose-stabilised O/W emulsions.

    PubMed

    Malinauskytė, Ernesta; Ramanauskaitė, Jovita; Leskauskaitė, Daiva; Devold, Tove G; Schüller, Reidar B; Vegarud, Gerd E

    2014-12-15

    In this study, we analysed the impact of carboxymethylcellulose (CMC) on lipid digestion and physicochemical properties of whey proteins (WP)-stabilised emulsions during in vitro digestion with either artificial or human gastrointestinal juices. The emulsions were made by adsorbing WP on the fat droplets and subsequently adding CMC, which does not interact with the adsorbed proteins. The limited hydrolysis of lipids and their higher physical stability was recorded for WP-stabilised emulsions in the presence of CMC under simulated gastrointestinal conditions. The possible mechanism by which CMC lowers the digestion of WP-stabilised emulsions is related to the limited interaction of fat droplets with gastrointestinal fluids due to the extended thickening network formed by CMC in the continuous phase. The digestion of WP- and CMC-stabilised emulsions in the in vitro model with human gastric fluids led to greater lipid hydrolysis, although the enzymatic activity in both in vitro models was observed at the same level. PMID:25038655

  5. Differentiating Milk and Non-milk Proteins by UPLC Amino Acid Fingerprints Combined with Chemometric Data Analysis Techniques.

    PubMed

    Lu, Weiying; Lv, Xiaxia; Gao, Boyan; Shi, Haiming; Yu, Liangli Lucy

    2015-04-22

    Amino acid fingerprinting combined with chemometric data analysis was used to differentiate milk and non-milk proteins in this study. Microwave-assisted hydrolysis and ultraperformance liquid chromatography (UPLC) were used to obtain the amino acid fingerprints. Both univariate and multivariate chemometrics methods were applied for differentiation. The confidence boundary of amino acid concentration, principal component analysis (PCA), and partial least-squares-discriminant analysis (PLS-DA) of the amino acid fingerprints demonstrated that there were significant differences between milk proteins and inexpensive non-milk protein powders from other biological sources including whey, peanut, corn, soy, fish, egg yolk, beef extract, collagen, and cattle bone. The results indicate that the amino acid compositions with the chemometric techniques could be applied for the detection of potential protein adulterants in milk. PMID:25835028

  6. Unilateral Hindlimb Casting Induced a Delayed Generalized Muscle Atrophy during Rehabilitation that Is Prevented by a Whey or a High Protein Diet but Not a Free Leucine-Enriched Diet

    PubMed Central

    Magne, Hugues; Savary-Auzeloux, Isabelle; Migné, Carole; Peyron, Marie-Agnès; Combaret, Lydie; Rémond, Didier; Dardevet, Dominique

    2013-01-01

    Sarcopenia is the general muscle mass and strength loss associated with ageing. Muscle atrophy could be made worse by exposure to acute periods of immobilization, because muscle disuse by itself is a stimulus for atrophy. Using a model of unilateral hindlimb casting in old adult rats, we have already demonstrated that the primary effect of immobilization was atrophy in the casted leg, but was also surprisingly associated with a retarded atrophy in the non-casted leg during rehabilitation. In search of mechanisms involved in this generalized atrophy, we demonstrated in the present study that contrary to pair-fed non-immobilized control animals, muscle protein synthesis in the non-immobilized limb was unable to adapt and to respond positively to food intake. Because pair-fed control rats did not lose muscle mass, this defect in muscle protein synthesis may represent one of the explanation for the muscle mass loss observed in the non-immobilized rats. Nevertheless, in order to stimulate protein turn over and generate a positive nitrogen balance required to maintain the whole muscle mass in immobilized rats, we tested a dietary free leucine supplementation (an amino acid known for its stimulatory effect on protein metabolism) during the rehabilitation period. Leucine supplementation was able to overcome the anabolic resistance in the non-immobilized limb. A greater muscle protein synthesis up-regulation associated with a stimulation of the mTOR signalling pathway was indeed recorded but it remained inefficient to prevent the loss of muscle in the non-immobilized limb. By contrast, we demonstrated here that whey protein or high protein diets were able to prevent the muscle mass loss of the non-immobilized limb by sustaining muscle protein synthesis during the entire rehabilitation period. PMID:24015173

  7. Drying of sweet whey using drum dryer technique and utilization of the produced powder in French-type bread and butter cookies.

    PubMed

    Mustafa, L; Alsaed, A K; Al-Domi, H

    2014-06-01

    The objective of this study was to dry sweet liquid whey using drum dryer and to utilize the whey powder in French-type bread and cookies as a sugar substitute. The sweet whey powder was characterized chemically for ash, moisture, water activity, protein, salt, acidity and lactose contents. Optimization parameters including drying temperature, drum speed and starch addition for whey drying by drum dryer were tested to produce the best powder characteristics. The optimum temperature was 140°C at a drum speed of 20 rpm with a corn starch level of 2% (weight per weight). Sweet whey powder produced was used as a sugar replacer in French-type bread and butter cookies at substitution levels of 25, 50 and 75% of total sugars. The developed products were analyzed chemically and sensorially. The two developed products were relatively high in protein, ash, lactose and salts compared to the control samples. Regarding the sensory evaluation, the results showed that the sugar substitution of 25 and 50% in bread and cookies were significantly (p<0.05) better than the control. It can be concluded that sweet whey powder can significantly improve the quality of the studied bakery items. PMID:26035954

  8. Chymotrypsin selectively digests β-lactoglobulin in whey protein isolate away from enzyme optimal conditions: potential for native α-lactalbumin purification.

    PubMed

    Lisak, Katarina; Toro-Sierra, Jose; Kulozik, Ulrich; Božanić, Rajka; Cheison, Seronei Chelulei

    2013-02-01

    The present study examines the resistance of the α-lactalbumin to α-chymotrypsin (EC 3.4.21.1) digestion under various experimental conditions. Whey protein isolate (WPI) was hydrolysed using randomised hydrolysis conditions (5 and 10% of WPI; pH 7.0, 7.8 and 8.5; temperature 25, 37 and 50 °C; enzyme-to-substrate ratio, E/S, of 0.1%, 0.5 and 1%). Reversed-phase high performance liquid chromatography (RP-HPLC) was used to analyse residual proteins. Heat, pH adjustment and two inhibitors (Bowman-Birk inhibitor and trypsin inhibitor from chicken egg white) were used to stop the enzyme reaction. While operating outside of the enzyme optimum it was observed that at pH 8.5 selective hydrolysis of β-lactoglobulin was improved because of a dimer-to-monomer transition while α-la remained relatively resistant. The best conditions for the recovery of native and pure α-la were at 25 °C, pH 8.5, 1% E/S ratio, 5% WPI (w/v) while the enzyme was inhibited using Bowman-Birk inhibitor with around 81% of original α-la in WPI was recovered with no more β-lg. Operating conditions for hydrolysis away from the chymotrypsin optimum conditions offers a great potential for selective WPI hydrolysis, and removal, of β-lg with production of whey protein concentrates containing low or no β-lg and pure native α-la. This method also offers the possibility for production of β-lg-depleted milk products for sensitive populations. PMID:23317562

  9. Comparison of heat and pressure treatments of skim milk, fortified with whey protein concentrate, for set yogurt preparation: effects on milk proteins and gel structure.

    PubMed

    Needs, E C; Capellas, M; Bland, A P; Manoj, P; MacDougal, D; Paul, G

    2000-08-01

    Heat (85 degrees C for 20 min) and pressure (600 MPa for 15 min) treatments were applied to skim milk fortified by addition of whey protein concentrate. Both treatments caused > 90 % denaturation of beta-lactoglobulin. During heat treatment this denaturation took place in the presence of intact casein micelles; during pressure treatment it occurred while the micelles were in a highly dissociated state. As a result micelle structure and the distribution of beta-lactoglobulin were different in the two milks. Electron microscopy and immunolabelling techniques were used to examine the milks after processing and during their transition to yogurt gels. The disruption of micelles by high pressure caused a significant change in the appearance of the milk which was quantified by measurement of the colour values L*, a* and b*. Heat treatment also affected these characteristics. Casein micelles are dynamic structures, influenced by changes to their environment. This was clearly demonstrated by the transition from the clusters of small irregularly shaped micelle fragments present in cold pressure-treated milk to round, separate and compact micelles formed on warming the milk to 43 degrees C. The effect of this transition was observed as significant changes in the colour indicators. During yogurt gel formation, further changes in micelle structure, occurring in both pressure and heat-treated samples, resulted in a convergence of colour values. However, the microstructure of the gels and their rheological properties were very different. Pressure-treated milk yogurt had a much higher storage modulus but yielded more readily to large deformation than the heated milk yogurt. These changes in micelle structure during processing and yogurt preparation are discussed in terms of a recently published micelle model. PMID:11037230

  10. Physiochemical properties, microstructure, and probiotic survivability of nonfat goats' milk yogurt using heat-treated whey protein concentrate as fat replacer.

    PubMed

    Zhang, Tiehua; McCarthy, James; Wang, Guorong; Liu, Yanyan; Guo, Mingruo

    2015-04-01

    There is a market demand for nonfat fermented goats' milk products. A nonfat goats' milk yogurt containing probiotics (Lactobacillus acidophilus, and Bifidobacterium spp.) was developed using heat-treated whey protein concentrate (HWPC) as a fat replacer and pectin as a thickening agent. Yogurts containing untreated whey protein concentrate (WPC) and pectin, and the one with only pectin were also prepared. Skim cows' milk yogurt with pectin was also made as a control. The yogurts were analyzed for chemical composition, water holding capacity (syneresis), microstructure, changes in pH and viscosity, mold, yeast and coliform counts, and probiotic survivability during storage at 4 °C for 10 wk. The results showed that the nonfat goats' milk yogurt made with 1.2% HWPC (WPC solution heated at 85 °C for 30 min at pH 8.5) and 0.35% pectin had significantly higher viscosity (P < 0.01) than any of the other yogurts and lower syneresis than the goats' yogurt with only pectin (P < 0.01). Viscosity and pH of all the yogurt samples did not change much throughout storage. Bifidobacterium spp. remained stable and was above 10(6) CFU g(-1) during the 10-wk storage. However, the population of Lactobacillus acidophilus dropped to below 10(6) CFU g(-1) after 2 wk of storage. Microstructure analysis of the nonfat goats' milk yogurt by scanning electron microscopy revealed that HWPC interacted with casein micelles to form a relatively compact network in the yogurt gel. The results indicated that HWPC could be used as a fat replacer for improving the consistency of nonfat goats' milk yogurt and other similar products. PMID:25808084

  11. Whey protein concentrate enhances intestinal integrity and influences transforming growth factor-β1 and mitogen-activated protein kinase signalling pathways in piglets after lipopolysaccharide challenge.

    PubMed

    Xiao, Kan; Jiao, Lefei; Cao, Shuting; Song, Zehe; Hu, Caihong; Han, Xinyan

    2016-03-28

    Whey protein concentrate (WPC) has been reported to have protective effects on the intestinal barrier. However, the molecular mechanisms involved are not fully elucidated. Transforming growth factor-β1 (TGF-β1) is an important component in the WPC, but whether TGF-β1 plays a role in these processes is not clear. The aim of this study was to investigate the protective effects of WPC on the intestinal epithelial barrier as well as whether TGF-β1 is involved in these protection processes in a piglet model after lipopolysaccharide (LPS) challenge. In total, eighteen weanling pigs were randomly allocated to one of the following three treatment groups: (1) non-challenged control and control diet; (2) LPS-challenged control and control diet; (3) LPS+5 %WPC diet. After 19 d of feeding with control or 5 %WPC diets, pigs were injected with LPS or saline. At 4 h after injection, pigs were killed to harvest jejunal samples. The results showed that WPC improved (P<0·05) intestinal morphology, as indicated by greater villus height and villus height:crypt depth ratio, and intestinal barrier function, which was reflected by increased transepithelial electrical resistance and decreased mucosal-to-serosal paracellular flux of dextran (4 kDa), compared with the LPS group. Moreover, WPC prevented the LPS-induced decrease (P<0·05) in claudin-1, occludin and zonula occludens-1 expressions in the jejunal mucosae. WPC also attenuated intestinal inflammation, indicated by decreased (P<0·05) mRNA expressions of TNF-α, IL-6, IL-8 and IL-1β. Supplementation with WPC also increased (P<0·05) TGF-β1 protein, phosphorylated-Smad2 expression and Smad4 and Smad7 mRNA expressions and decreased (P<0·05) the ratios of the phosphorylated to total c-jun N-terminal kinase (JNK) and p38 (phospho-JNK:JNK and p-p38:p38), whereas it increased (P<0·05) the ratio of extracellular signal-regulated kinase (ERK) (phospho-ERK:ERK). Collectively, these results suggest that dietary inclusion of WPC

  12. Utilization of Condensed Distillers Solubles as Nutrient Supplement for Production of Nisin and Lactic Acid from Whey

    NASA Astrophysics Data System (ADS)

    Liu, Chuanbin; Hu, Bo; Chen, Shulin; Glass, Richard W.

    The major challenge associated with the rapid growth of the ethanol industry is the usage of the coproducts, i.e., condensed distillers solubles (CDS) and distillers dried grains, which are currently sold as animal feed supplements. As the growth of the livestock industries remains flat, alternative usage of these coproducts is urgently needed. CDS is obtained after the removal of ethanol by distillation from the yeast fermentation of a grain or a grain mixture by condensing the thin stillage fraction to semisolid. In this work, CDS was first characterized and yeast biomass was proven to be the major component of CDS. CDS contained 7.50% crude protein but with only 42% of that protein being water soluble. Then, CDS was applied as a nutrient supplement for simultaneous production of nisin and lactic acid by Lactococcus lactis subsp. lactis (ATCC 11454). Although CDS was able to support bacteria growth and nisin production, a strong inhibition was observed when CDS was overdosed. This may be caused by the existence of the major ethanol fermentation byproducts, especially lactate and acetate, in CDS. In the final step, the CDS based medium composition for nisin and lactic acid production was optimized using response surface methodology.

  13. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose-positive and cold-adapted Yarrowia lipolytica B9.

    PubMed

    Arslan, Nazli Pinar; Aydogan, Mehmet Nuri; Taskin, Mesut

    2016-08-10

    The present study was performed to produce citric acid (CA) from partly deproteinized cheese whey (DPCW) under non-sterile culture conditions using immobilized cells of the cold-adapted and lactose-positive yeast Yarrowia lipolytica B9. DPCW was prepared using the temperature treatment of 90°C for 15min. Sodium alginate was used as entrapping agent for cell immobilization. Optimum conditions for the maximum CA production (33.3g/L) in non-sterile DPCW medium were the temperature of 20°C, pH 5.5, additional lactose concentration of 20g/L, sodium alginate concentration of 2%, number of 150 beads/100mL and incubation time of 120h. Similarly, maximum citric acid/isocitric acid (CA/ICA) ratio (6.79) could be reached under these optimal conditions. Additional nitrogen and phosphorus sources decreased CA concentration and CA/ICA ratio. Immobilized cells were reused in three continuous reaction cycles without any loss in the maximum CA concentration. The unique combination of low pH and temperature values as well as cell immobilization procedure could prevent undesired microbial contaminants during CA production. This is the first work on CA production by cold-adapted microorganisms under non-sterile culture conditions. Besides, CA production using a lactose-positive strain of the yeast Y. lipolytica was investigated for the first time in the present study. PMID:27234881

  14. Direct capture of lactoferrin from cheese whey on supermacroporous column of polyacrylamide cryogel with copper ions.

    PubMed

    Carvalho, B M A; Carvalho, L M; Silva, W F; Minim, L A; Soares, A M; Carvalho, G G P; da Silva, S L

    2014-07-01

    Lactoferrin is a protein that is present in cheese whey (a waste product from the dairy industry) and has several biological activities. However, its production from whey must have a high yield and low cost for industrial applications. As such, this study reports the use of polyacrylamide cryogel, loaded with Cu(2+) (through the bond with iminodiacetic acid (IDA)), as an adsorbent for the chromatographic process to capture lactoferrin whey. Ultrafiltered cheese whey was passed through the cryogel-IDA-Cu(2+) system. The eluates were subjected to analysis of total protein, SDS-PAGE and size exclusion chromatography. The results showed an axial dispersion coefficients, at different superficial velocities of liquid, in a range of 10(-6)-10(-5)m(2)/s. The cryogel demonstrated good hydraulic permeability (4.7086×10(-13)m(2)) and a porosity of approximately 78.2%. The IDA-Cu(2+) cryogel system was also able to capture lactoferrin in high purity. PMID:24518347

  15. Comparative effects of whey protein versus L-leucine on skeletal muscle protein synthesis and markers of ribosome biogenesis following resistance exercise.

    PubMed

    Mobley, C Brooks; Fox, Carlton D; Thompson, Richard M; Healy, James C; Santucci, Vincent; Kephart, Wesley C; McCloskey, Anna E; Kim, Mike; Pascoe, David D; Martin, Jeffrey S; Moon, Jordan R; Young, Kaelin C; Roberts, Michael D

    2016-03-01

    We compared immediate post-exercise whey protein (WP, 500 mg) versus L-leucine (LEU, 54 mg) feedings on skeletal muscle protein synthesis (MPS) mechanisms and ribosome biogenesis markers 3 h following unilateral plantarflexor resistance exercise in male, Wistar rats (~250 g). Additionally, in vitro experiments were performed on differentiated C2C12 myotubes to compare nutrient (i.e., WP, LEU) and 'exercise-like' treatments (i.e., caffeine, hydrogen peroxide, and AICAR) on ribosome biogenesis markers. LEU and WP significantly increased phosphorylated-rpS6 (Ser235/236) in the exercised (EX) leg 2.4-fold (P < 0.01) and 2.7-fold (P < 0.001) compared to the non-EX leg, respectively, whereas vehicle-fed control (CTL) did not (+65 %, P > 0.05). Compared to the non-EX leg, MPS levels increased 32 % and 52 % in the EX leg of CTL (P < 0.01) and WP rats (P < 0.001), respectively, but not in LEU rats (+15 %, P > 0.05). Several genes associated with ribosome biogenesis robustly increased in the EX versus non-EX legs of all treatments; specifically, c-Myc mRNA, Nop56 mRNA, Bop1 mRNA, Ncl mRNA, Npm1 mRNA, Fb1 mRNA, and Xpo-5 mRNA. However, only LEU significantly increased 45S pre-rRNA levels in the EX leg (63 %, P < 0.001). In vitro findings confirmed that 'exercise-like' treatments similarly altered markers of ribosome biogenesis, but only LEU increased 47S pre-rRNA levels (P < 0.01). Collectively, our data suggests that resistance exercise, as well as 'exercise-like' signals in vitro, acutely increase the expression of genes associated with ribosome biogenesis independent of nutrient provision. Moreover, while EX with or without WP appears superior for enhancing translational efficiency (i.e., increasing MPS per unit of RNA), LEU administration (or co-administration) may further enhance ribosome biogenesis over prolonged periods with resistance exercise. PMID:26507545

  16. A comparative in vitro study of the digestibility of heat- and high pressure-induced gels prepared from industrial milk whey proteins

    NASA Astrophysics Data System (ADS)

    He, Jin-Song; Mu, Tai-Hua; Wang, Juan

    2013-06-01

    We undertook this study to compare the digestibility of heat- and high pressure-induced gels produced from whey protein isolate (WPI). To simulate in vivo gastrointestinal digestion of WPI gels, a pepsin-trypsin digestion system was used. The in vitro protein digestibility of WPI gels induced by high pressure (400 MPa and 30 min; P-gel) and those induced by heat (80°C and 30 min; H-gel) was compared using a protein concentration of 0.14 g mL-1. The in vitro protein digestibility of P-gels was significantly greater than that of H-gels (p<0.05). The size-exclusion chromatography profiles of the hydrolysates showed that the P-gel generated more and smaller peptides than natural WPI and H-gels. Furthermore, Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed some soluble disulfide-mediated aggregation in the P-gel, while there was more insoluble aggregation in the H-gel than the P-gel. The P-gel was more sensitive to proteinase than the H-gel, which was related to the content of S-S bonds, and this in turn could be attributed to the differences in the gelation mechanism between the H-gel and P-gel.

  17. Influence of the molecular weight of carboxymethylcellulose on properties and stability of whey protein-stabilized oil-in-water emulsions.

    PubMed

    Huan, Yan; Zhang, Sha; Vardhanabhuti, Bongkosh

    2016-05-01

    The influence of the molecular weight (Mw; 270, 750, and 2,500 kDa) and concentration of carboxymethylcellulose (CMC) on the stability and properties of whey protein isolate (WPI)-stabilized oil-in-water emulsions were assessed by measuring ζ-potential, droplet size, apparent viscosity, protein surface coverage, and creaming stability. Emulsions were prepared to contain 5% oil, 0.5% WPI, and 0 to 0.5% CMC at pH 7. After emulsification, pH was adjusted to 5.2. In the absence of CMC, the WPI-stabilized emulsion was unstable to droplet flocculation and coalescence due to the relatively low droplet charge. Emulsions stabilized by mixed WPI-CMC had improved surface properties as well as reduced droplet flocculation, as indicated by increased negative charges and protein surface coverage as well as smaller droplet size. Increased viscosity due to nonadsorbed CMC also contributed to increased stability at high CMC concentration. The high-Mw CMC was more effective in enhancing surface properties and providing better stability against creaming compared with lower-Mw CMC. Maximum stability was achieved with mixed WPI-CMC stabilized emulsion containing 0.08% CMC 2,500 kDa. PMID:26947286

  18. Short communication: Identification of iron-binding peptides from whey protein hydrolysates using iron (III)-immobilized metal ion affinity chromatography and reversed phase-HPLC-tandem mass spectrometry.

    PubMed

    Cruz-Huerta, Elvia; Martínez Maqueda, Daniel; de la Hoz, Lucia; da Silva, Vera S Nunes; Pacheco, Maria Teresa Bertoldo; Amigo, Lourdes; Recio, Isidra

    2016-01-01

    Peptides with iron-binding capacity obtained by hydrolysis of whey protein with Alcalase (Novozymes, Araucaria, PR, Brazil), pancreatin, and Flavourzyme (Novozymes) were identified. Hydrolysates were subjected to iron (III)-immobilized metal ion affinity chromatography, and the bound peptides were sequenced by mass spectrometry. Regardless of the enzyme used, the domains f(42-59) and f(125-137) from β-lactoglobulin enclosed most of identified peptides. This trend was less pronounced in the case of peptides derived from α-lactalbumin, with sequences deriving from diverse regions. Iron-bound peptides exhibited common structural characteristics, such as an abundance of Asp, Glu, and Pro, as revealed by mass spectrometry and AA analysis. In conclusion, this characterization of iron-binding peptides helps clarify the relationship between peptide structure and iron-chelating activity and supports the promising role of whey protein hydrolysates as functional ingredients in iron supplementation treatments. PMID:26601589

  19. Human Protein and Amino Acid Requirements.

    PubMed

    Hoffer, L John

    2016-05-01

    Human protein and amino acid nutrition encompasses a wide, complex, frequently misunderstood, and often contentious area of clinical research and practice. This tutorial explains the basic biochemical and physiologic principles that underlie our current understanding of protein and amino acid nutrition. The following topics are discussed: (1) the identity, measurement, and essentiality of nutritional proteins; (2) the definition and determination of minimum requirements; (3) nutrition adaptation; (4) obligatory nitrogen excretion and the minimum protein requirement; (5) minimum versus optimum protein intakes; (6) metabolic responses to surfeit and deficient protein intakes; (7) body composition and protein requirements; (8) labile protein; (9) N balance; (10) the principles of protein and amino acid turnover, including an analysis of the controversial indicator amino acid oxidation technique; (11) general guidelines for evaluating protein turnover articles; (12) amino acid turnover versus clearance; (13) the protein content of hydrated amino acid solutions; (14) protein requirements in special situations, including protein-catabolic critical illness; (15) amino acid supplements and additives, including monosodium glutamate and glutamine; and (16) a perspective on the future of protein and amino acid nutrition research. In addition to providing practical information, this tutorial aims to demonstrate the importance of rigorous physiologic reasoning, stimulate intellectual curiosity, and encourage fresh ideas in this dynamic area of human nutrition. In general, references are provided only for topics that are not well covered in modern textbooks. PMID:26796095

  20. Whey-derived valuable products obtained by microbial fermentation.

    PubMed

    Pescuma, Micaela; de Valdez, Graciela Font; Mozzi, Fernanda

    2015-08-01

    Whey, the main by-product of the cheese industry, is considered as an important pollutant due to its high chemical and biological oxygen demand. Whey, often considered as waste, has high nutritional value and can be used to obtain value-added products, although some of them need expensive enzymatic synthesis. An economical alternative to transform whey into valuable products is through bacterial or yeast fermentations and by accumulation during algae growth. Fermentative processes can be applied either to produce individual compounds or to formulate new foods and beverages. In the first case, a considerable amount of research has been directed to obtain biofuels able to replace those derived from petrol. In addition, the possibility of replacing petrol-derived plastics by biodegradable polymers synthesized during bacterial fermentation of whey has been sought. Further, the ability of different organisms to produce metabolites commonly used in the food and pharmaceutical industries (i.e., lactic acid, lactobionic acid, polysaccharides, etc.) using whey as growth substrate has been studied. On the other hand, new low-cost functional whey-based foods and beverages leveraging the high nutritional quality of whey have been formulated, highlighting the health-promoting effects of fermented whey-derived products. This review aims to gather the multiple uses of whey as sustainable raw material for the production of individual compounds, foods, and beverages by microbial fermentation. This is the first work to give an overview on the microbial transformation of whey as raw material into a large repertoire of industrially relevant foods and products. PMID:26124070

  1. An X-ray diffraction analysis of crystallised whey and whey-permeate powders.

    PubMed

    Nijdam, Justin; Ibach, Alexander; Eichhorn, Klaus; Kind, Matthias

    2007-11-26

    Amorphous whey, whey-permeate and lactose powders have been crystallised at various air temperatures and humidities, and these crystallised powders have been examined using X-ray diffraction. The most stable lactose crystal under normal storage conditions, alpha-lactose monohydrate, forms preferentially in whey and whey-permeate powders at 50 degrees C, provided sufficient moisture is available, whereas anhydrous beta-lactose and mixed anhydrous lactose crystals, which are unstable under normal storage conditions, form preferentially at 90 degrees C. Thus, faster crystallisation at higher temperatures is offset by the formation of lactose-crystal forms that are less stable under normal storage conditions. Very little alpha-lactose monohydrate crystallised in the pure lactose powders over the range of temperatures and humidities tested, because the crystallisation of alpha- and beta-lactose is considerably more rapid than the mutarotation of beta- to alpha-lactose in the amorphous phase and the hydration of alpha-lactose during crystallisation. Protein and salts hinder the crystallisation process, which provides more time for mutarotation and crystal hydration in the whey and whey-permeate powders. PMID:17719020

  2. Compositional analysis of developed whey based fructooligosaccharides supplemented low- calorie drink.

    PubMed

    Yasmin, Adeela; Butt, Masood Sadiq; Yasin, Muhammad; Qaisrani, Tahira Batool

    2015-03-01

    Array of evidences have indicated that the supplementation of diet with functional and nutritional components to provide numerous health benefits. In this context, fortification with novel constituents as prebiotics i.e. fructooligosaccharides (FOS) is an encouraging trend all over the world. In the current exploration, FOS was used as a prebiotic in whey based functional drinks. For drink formulation, four samples were prepared i.e. whey based drink (T1) and FOS supplemented whey drinks @ 0.5, 1.0 and 1.5 % referred as T2, T3 and T4, respectively. The formulated drinks were evaluated for compositional analysis with special reference to amino acids and mineral profiles. The functional drinks showed momentous impact on total solids (TS) whilst, pH, acidity, crude protein and fat were affected non-significantly. However, pH, TS, fat and protein contents of prepared drinks were decreased substantially (p < 0.05) during storage period. However, prepared drinks showed non-significant variations in essential and non-essential amino acids. PMID:25745267

  3. Disorder in Milk Proteins: α-Lactalbumin. Part B. A Multifunctional Whey Protein Acting as an Oligomeric Molten Globular "Oil Container" in the Anti-Tumorigenic Drugs, Liprotides.

    PubMed

    Uversky, Vladimir N; Permyakov, Serge E; Breydo, Leonid; Redwan, Elrashdy M; Almehdar, Hussein A; Permyakov, Eugene A

    2016-07-15

    This is a second part of the three-part article from a series of reviews on the abundance and roles of intrinsic disorder in milk proteins. We continue to describe α-lactalbumin, a small globular Ca2+-binding protein, which besides being one of the two components of lactose synthase that catalyzes the final step of the lactose biosynthesis in the lactating mammary gland, possesses a multitude of other functions. In fact, recent studies indicated that some partially folded forms of this protein possess noticeable bactericidal activity and other forms might be related to induction of the apoptosis of tumor cells. In its anti-tumorigenic function, oligomeric α-lactalbumin serves as a founding member of a new family of anticancer drugs termed liprotides (for lipids and partially denatured proteins), where an oligomeric molten globular protein acts as an "oil container" or cargo for the delivery of oleic acid to the cell membranes. PMID:26916155

  4. Alcohol from membrane processed concentrated cheese whey

    SciTech Connect

    Rajagopalan, K.; Kosikowskik, F.V.

    1982-01-01

    A fermentable whey substrate in the form of a high solids permeate was obtained by reconstituting spray-dried whey powder to 36% total solids followed by ultrafiltration to separate the protein. The high solids permeate was demineralized to permit rapid yeast growth. The final permeate with 24% lactose and at pH 4.8 gave high yields of EtOH rapidly upon inoculation with lactose-fermenting yeasts. One yeast species, Kluyveromyces fragilis NRRL Y 2415, yielded 108.8 g of EtOH/L, giving 84.3% of the theoretical maximum. Batch EtOH productivity was 3.2 g/L/h. The cost analysis of the ultrafiltration-fermentation process is highly favorable, if evaporation instead of the widely used reverse osmosis is employed for preconcentration of whey.

  5. Whey protein-based coatings on frozen Atlantic salmon (Salmo salar): Influence of the plasticiser and the moment of coating on quality preservation.

    PubMed

    Rodriguez-Turienzo, Laura; Cobos, Angel; Moreno, Vanesa; Caride, Amado; Vieites, Juan M; Diaz, Olga

    2011-09-01

    The effects of different whey protein concentrate coating formulations (with or without glycerol or sorbitol in two proportions) on frozen Atlantic salmon quality parameters were evaluated. The influence of the moment of coating application (before or after freezing) was also studied. The coating application after freezing increased the thaw yield, decreased the drip loss, and modified colour parameters of frozen and thawed fillets, in comparison with application before freezing. The moment of coating also influenced the colour of cooked fish fillets. The type of plasticiser affects the colour of thawed and cooked samples, but not the colour of frozen samples. The protein coatings delayed lipid oxidation of salmon fillets, providing better protection against it than water glazing, and this effect was more pronounced when glycerol instead of sorbitol was used in the coating formulation. WPC+glycerol (1:1) coating was the best for frozen Atlantic salmon protection. The sensory properties of salmon fillets were not modified by the use of this coating. PMID:25214347

  6. The effects of a two-year randomized, controlled trial of whey protein supplementation on bone structure, IGF-1, and urinary calcium excretion in older postmenopausal women.

    PubMed

    Zhu, Kun; Meng, Xingqiong; Kerr, Deborah A; Devine, Amanda; Solah, Vicky; Binns, Colin W; Prince, Richard L

    2011-09-01

    The effects of dietary protein on bone structure and metabolism have been controversial, with evidence for and against beneficial effects. Because no long-term randomized, controlled studies have been performed, a two-year study of protein supplementation in 219 healthy ambulant women aged 70 to 80 years was undertaken. Participants were randomized to either a high-protein drink containing 30 g of whey protein (n = 109) or a placebo drink identical in energy content, appearance, and taste containing 2.1 g of protein (n = 110). Both drinks provided 600 mg of calcium. Dual-energy X-ray absorptiometric (DXA) hip areal bone mineral density (aBMD), 24-hour urinary calcium excretion, and serum insulin-like growth factor 1 (IGF-1) were measured at baseline and at 1 and 2 years. Quantitative computed tomographic (QCT) hip volumetric bone mineral density (vBMD) and a femoral neck engineering strength analysis were undertaken at baseline and at 2 years. Baseline average protein intake was 1.1 g/kg of body weight per day. There was a significant decrease in hip DXA aBMD and QCT vBMD over 2 years with no between-group differences. Femoral neck strength was unchanged in either group over time. The 24-hour urinary calcium excretion increased significantly from baseline in both groups at 1 year but returned to baseline in the placebo group at 2 years, at which time the protein group had a marginally higher value. Compared with the placebo group, the protein group had significantly higher serum IGF-1 level at 1 and 2 years (7.3% to 8.0%, p < .05). Our study showed that in protein-replete healthy ambulant women, 30 g of extra protein increased IGF-1 but did not have beneficial or deleterious effects on bone mass or strength. The effect of protein supplementation in populations with low dietary protein intake requires urgent attention. PMID:21590739

  7. Corn steep liquor and fermented ammoniated condensed whey as protein sources for lactating cows and yearling heifers grazing winter native range

    SciTech Connect

    Wagner, J.J.; Lusby, K.S.; Horn, G.W.; Dvorak, M.J.

    1982-06-01

    Corn steep liquor (CSL) and fermented ammoniated condensed whey (FACW) were compared to cottonseed meal (CSM) as protein sources for wintering 61 lactating first-calf Hereford heifers and 32 yearling Hereford heifers on native range. Cattle were allotted by weight and individually fed 6 days per week for 12 weeks one of four protein treatments: negative control (NC), positive control (PC), CSL and FACW to provide .7, 1.5, .15 and 1.5 lb crude protein (CP) per day, respectively, to the lacating heifers and .2, .4, .4 and .4lb cP per day, respectively, to the yearling heifers. CMS was supplied in the CSL and FACW treatments at the same level as in the negative control. Lactating heifers fed the NC lost more (P less than .005) weight and body condition (120 lb and 1.6 units) than those fed the PC (45.8 lb and .9 units). Weight and condition losses were similar (P more than .05) for lactating heifers fed PC, CSL and FACW. Yearling heifers fed the NC lost more (P less than .005) weight than those fed the PC (49.4 vs 10.6 lb). Yearling heifers fed CSL and FACW gained more (P less than .005) weight than those fed the PC (17.6 and 9.3 vs - 10.6 lb). Feeding CSL resulted in signficantly lower rumen pH, lower ruminal acetate and higher ruminal butyrate, isovalerate and caproate levels than did feeding either control. Supplementing with FACW produced significantly lower rumen pH, higher rumen ammonia and soluble carbohydrate levels, lower ruminal acetate, and higher ruminal propionate and butyrate concentrations than did either control supplement. Corn steep liquor and FDCW appear to be effective protein sources for cows and heifers grazing winter native range.

  8. Effect of whey protein isolate-pullulan edible coatings on the quality and shelf life of freshly roasted and freeze-dried Chinese chestnut.

    PubMed

    Gounga, M E; Xu, S-Y; Wang, Z; Yang, W G

    2008-05-01

    Harvested chestnut is characterized by a short shelf life, exposing many Chinese producers to a storage problem as product losses are very high. The objective of this study was to develop a suitable technology to extend the shelf life of harvested chestnut fruits for commercial use. The effect of whey protein isolate-pullulan (WPI-Pul) coating on fresh-roasted chestnuts (FRC) and roasted freeze-dried chestnut (RFDC) quality and shelf life was studied under 2 different storage temperature (4 and 20 degrees C) conditions. Coatings were formed directly onto the surface of the fruits by dipping them into a film solution. SEM micrographs showed homogeneous WPI-Pul to cover the whole surface of chestnut with good adherence and perfect integrity. Moisture loss or gain, fruit quality, and shelf life were evaluated by weight loss or gain, surface color development, and visible decay during the storage period of 15 to 120 d at 4 and 20 degrees C, respectively. WPI-Pul coating had a low, yet significant effect on reducing moisture loss and decay incidence of FRC, hence delaying changes in their external color. The results were satisfactory when the coating was done with freeze-drying at low temperature storage, thus improving the quality and increasing the shelf life. This provides an alternative strategy to minimize the significant losses in harvested chestnut. PMID:18460124

  9. Effects of Glycated Whey Protein Concentrate on Pro-inflammatory Cytokine Expression and Phagocytic Activity in RAW264.7 Macrophages.

    PubMed

    Chun, Su-Hyun; Lee, Hyun Ah; Lee, Keon Bong; Kim, Sae Hun; Park, Kun-Young; Lee, Kwang-Won

    2016-01-01

    The aim of this study was to determine the stimulatory effects of Maillard reaction, a non-enzymatic browning reaction on the expression of pro-inflammatory cytokines and phagocytic activity induced by whey protein concentrate (WPC). Glycated WPC (G-WPC) was prepared by a reaction between WPC and the lactose it contained. The fluorescence intensity of G-WPC dramatically increased after one day, and high molecular weight complexes formed via the Maillard reaction were also observed in the sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles. G-WPC demonstrated immunomodulatory effects, including stimulation of increased nitric oxide production and cytokine expressions (i.e., tumor necrosis factor-α, interleukin (IL)-1β, and IL-6), compared to WPC. Furthermore, the phagocytic activity of RAW264.7 cells was significantly increased upon treatment with G-WPC, compared to WPC. Therefore, we suggest that G-WPC can be utilized as an improved dietary source for providing immune modulating activity. PMID:26830480

  10. Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray-freeze drying method.

    PubMed

    Hundre, Swetank Y; Karthik, P; Anandharamakrishnan, C

    2015-05-01

    Vanillin flavour is highly volatile in nature and due to that application in food incorporation is limited; hence microencapsulation of vanillin is an ideal technique to increase its stability and functionality. In this study, vanillin was microencapsulated for the first time by non-thermal spray-freeze-drying (SFD) technique and its stability was compared with other conventional techniques such as spray drying (SD) and freeze-drying (FD). Different wall materials like β-cyclodextrin (β-cyd), whey protein isolate (WPI) and combinations of these wall materials (β-cyd + WPI) were used to encapsulate vanillin. SFD microencapsulated vanillin with WPI showed spherical shape with numerous fine pores on the surface, which in turn exhibited good rehydration ability. On the other hand, SD powder depicted spherical shape without pores and FD encapsulated powder yielded larger particle sizes with flaky structure. FTIR analysis confirmed that there was no interaction between vanillin and wall materials. Moreover, spray-freeze-dried vanillin + WPI sample exhibited better thermal stability than spray dried and freeze-dried microencapsulated samples. PMID:25529646

  11. Enzymatic generation of whey protein hydrolysates under pH-controlled and non pH-controlled conditions: Impact on physicochemical and bioactive properties.

    PubMed

    Le Maux, Solène; Nongonierma, Alice B; Barre, Chloé; FitzGerald, Richard J

    2016-05-15

    Enzymatic hydrolysis of whey protein (WP) was carried out under pH-controlled and non pH-controlled conditions using papain and a microbial-derived alternative (papain-like activity). The impact of such conditions on physicochemical and bioactive properties was assessed. WP hydrolysates (WPH) generated with the same enzyme displayed similar degree of hydrolysis. However, their reverse-phase liquid chromatograph mass spectrometry peptide profiles differed. A significantly higher oxygen radical absorbance capacity (ORAC) value was obtained for WP hydrolysed with papain at constant pH of 7.0 compared to the associated WPH generated without pH regulation. In contrast, there was no significant effect of pH regulation on dipeptidyl peptidase IV (DPP-IV) properties. WP hydrolysed with papain-like activity under pH regulation at 7.0 displayed higher ORAC activity and DPP-IV inhibitory properties compared to the associated WPH generated without pH regulation. This study has demonstrated that pH conditions during WPH generation may impact on peptide release and therefore on WPH bioactive properties. PMID:26775967

  12. Use of gamma-irradiation to reduce high levels of Staphylococcus aureus on casein-whey protein coated moist beef biltong.

    PubMed

    Nortjé, K; Buys, E M; Minnaar, A

    2006-12-01

    Moist beef biltong strips (mean moisture content = 53.6%, NaCl content = 1.91% and a(w) = 0.979) was inoculated with Staphylococcus aureus ATCC 9441 (10(6)-10(7) cfu/g), or sprayed with distilled water (non-inoculated controls). Both non-inoculated and inoculated biltong strips were coated with a casein-whey protein (1:1) edible coating followed by irradiation to a target dose of 4 kGy. S. aureus, aerobic plate, yeast and mould counts were performed to determine the effect of gamma-irradiation and the edible coating on inoculated S. aureus and the spoilage flora of the biltong. Moisture and NaCl content, a(w) and pH measurements were also performed. None of the intrinsic properties were affected to a practically significant extent. Irradiation reduced all microbial counts (P < 0.05), i.e. inoculated S. aureus (6 log cycles), aerobic plate count (5-6 log cycles) and yeast and mould counts (1-2 log cycles). Irradiation at 4 kGy is thus effective to ensure safety of moist beef biltong, and provided that initial fungal counts are not excessive, may extend the shelf-life. The edible coating had no significant effect (P > 0.05) on microbial counts, possibly because the high moisture content of the biltong diminished its oxygen barrier properties. PMID:16943075

  13. Physicochemical stability, microrheological properties and microstructure of lutein emulsions stabilized by multilayer membranes consisting of whey protein isolate, flaxseed gum and chitosan.

    PubMed

    Xu, Duoxia; Aihemaiti, Zulipiya; Cao, Yanping; Teng, Chao; Li, Xiuting

    2016-07-01

    The impact of chitosan (CTS) on the physicochemical stability, microrheological property and microstructure of whey protein isolate (WPI)-flaxseed gum (FG) stabilized lutein emulsions at pH 3.0 was studied. A layer-by-layer electrostatic deposition method was used to prepare multilayered lutein emulsions. Droplet size, zeta-potential, instability index, microstructure and microrheological behavior of lutein emulsions were measured. The influences of interfacial layer, metal chelator and free radical scavenger on the chemical stability of lutein emulsions were also investigated. It was found that multilayer emulsions had better physical stability showing the pronounced effect of 1wt% CTS. The mean square displacement analysis demonstrated that CTS led to increases of macroscopic viscosity and elasticity index for WPI-FG stabilized lutein emulsions due to CTS embedding in the network. CTS also helped to chemically stabilize the lutein emulsions against degradation. The combination of interfacial membrane and prooxidative metal chelator or free radical scavenger was an effective method to control lutein degradation. PMID:26920280

  14. Physical and oxidative stability of functional olive oil-in-water emulsions formulated using olive mill wastewater biophenols and whey proteins.

    PubMed

    Caporaso, Nicola; Genovese, Alessandro; Burke, Róisín; Barry-Ryan, Catherine; Sacchi, Raffaele

    2016-01-01

    The present paper reports on the use of phenolic extracts from olive mill wastewater (OMW) in model olive oil-in-water (O/W) emulsions to study their effect on their physical and chemical stability. Spray-dried OMW polyphenols were added to a model 20% olive O/W emulsion stabilized with whey protein isolate (WPI) and xanthan gum, in phosphate buffer solution at pH 7. The emulsions were characterised under accelerated storage conditions (40 °C) up to 30 days. Physical stability was evaluated by analysing the creaming rate, mean particle size distribution and mean droplet size, viscosity and rheological properties, while chemical stability was assessed through the measurement of primary and secondary oxidation products. The rheological behaviour and creaming stability of the emulsions were dramatically improved by using xanthan gum, whereas the concentration of WPI and the addition of encapsulated OMW phenolics did not result in a significant improvement of physical stability. The formation of oxidation products was higher when higher concentrations of encapsulated polyphenols were used, indicating a possible binding with the WPI added in the system as a natural emulsifier. This paper might help in solving the issue of using the olive mill wastewater from olive processing in formulating functional food products with high antioxidant activity and improved health properties. PMID:26692051

  15. Effect of milk fat, cocoa butter, and whey protein fat replacers on the sensory properties of lowfat and nonfat chocolate ice cream.

    PubMed

    Prindiville, E A; Marshall, R T; Heymann, H

    2000-10-01

    Lowfat and nonfat chocolate ice creams were made with 2.5% of milk fat, cocoa butter, or one of two whey protein-based fat replacers, Dairy Lo or Simplesse. Polydextrose was added as required so that all formulations contained the same amount of total solids. Ice cream was stored at a control temperature of-30 degrees C. Hardness, viscosity, and melting rate were measured by physical methods. Trained panelists conducted descriptive sensory analyses of the samples at 0, 6, and 12 wk. Attribute ratings were analyzed by analysis o variance with least significant difference mean separation and orthogonal contrasting. Data were also analyzed by multivariate analysis of variance with canonical variate analysis. Consumer acceptance (n = 50) did not differ among the fresh ice creams (wk 0). Ice cream containing milk fat had less intense cocoa flavor and was more resistant to textural changes over time compared with the other ice creams. Simplesse was more similar to milk fat than was Dairy Lo in its effect on brown color, cocoa flavor, cocoa character, and textural stability but was less similar in terms of thickness and mouthcoating. PMID:11049061

  16. Effects of xanthan-locust bean gum mixtures on the physicochemical properties and oxidative stability of whey protein stabilised oil-in-water emulsions.

    PubMed

    Khouryieh, Hanna; Puli, Goutham; Williams, Kevin; Aramouni, Fadi

    2015-01-15

    The effects of xanthan gum (XG)-locust bean gum (LBG) mixtures (0.05, 0.1, 0.15, 0.2 and 0.5 wt%) on the physicochemical properties of whey protein isolate (WPI) stabilised oil-in-water (O/W) emulsions containing 20% v/v menhaden oil was investigated. At higher concentrations, the apparent viscosity of the emulsions containing XG/LBG mixtures was significantly higher (p<0.05) than the emulsions containing either XG or LBG alone. Locust bean gum showed the greatest phase separation, followed by XG. Microstructure images showed depletion flocculation at lower biopolymer concentrations, and thus led to an increase in creaming instability and apparent viscosity of the emulsions. Addition of 0.15, 0.2 and 0.5 wt% XG/LBG mixtures greatly decreased the creaming of the emulsions. The rate of lipid oxidation for 8-week storage was significantly lower (p<0.05) in emulsions containing XG/LBG mixtures than in emulsions containing either of the biopolymer alone. PMID:25148996

  17. Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate.

    PubMed

    Vieira Salla, Ana Cláudia; Margarites, Ana Cláudia; Seibel, Fábio Ivan; Holz, Luiz Carlos; Brião, Vandré Barbosa; Bertolin, Telma Elita; Colla, Luciane Maria; Costa, Jorge Alberto Vieira

    2016-06-01

    Non-renewable sources that will end with time are the largest part of world energy consumption, which emphasizes the necessity to develop renewable sources of energy. This necessity has created opportunities for the use of microalgae as a biofuel. The use of microalgae as a feedstock source for bioethanol production requires high yields of both biomass and carbohydrates. With mixotrophic cultures, wastewater can be used to culture algae. The aim of the study was to increase the carbohydrate content in the microalgae Spirulina with the additions of residues from the ultra and nanofiltration of whey protein. The nutrient deficit in the Zarrouk medium diluted to 20% and the addition of 2.5% of both residue types led to high carbohydrate productivity (60 mg L(-1) d(-1)). With these culture conditions, the increase in carbohydrate production in Spirulina indicated that the conditions were appropriate for use with microalgae as a feedstock in the production of bioethanol. PMID:26967336

  18. Protein biosynthesis with conformationally restricted amino acids

    SciTech Connect

    Mendel, D. Lawrence Berkeley Lab., CA ); Ellman, J.; Schultz, P.G. )

    1993-05-19

    The incorporation of conformationally constrained amino acids into peptides is a powerful approach for generating structurally defined peptides as conformational probes and bioactive agents. The ability to site-specifically introduce constrained amino acids into large polypeptide chains would provide a similar opportunity to probe the flexibility, conformation, folding and stability of proteins. To this end, we have examined the competence of the Escherichia coli protein biosynthetic machinery to incorporate a number of these unnatural amino acids into the 164 residue protein T4 lysozyme (T4L). Results clearly demonstrate that the protein biosynthetic machinery can accommodate a wide variety of conformationally constrained amino acids. The expansion of structural motifs that can be biosynthetically incorporated into proteins to include a large number of conformationally constrained amino acids significantly increases the power of mutagenesis methods as probes of protein structure and function and provides additional insights into the steric requirements of the translational machinery. 13 refs., 2 figs.

  19. Distinguishing Proteins From Arbitrary Amino Acid Sequences

    PubMed Central

    Yau, Stephen S.-T.; Mao, Wei-Guang; Benson, Max; He, Rong Lucy

    2015-01-01

    What kinds of amino acid sequences could possibly be protein sequences? From all existing databases that we can find, known proteins are only a small fraction of all possible combinations of amino acids. Beginning with Sanger's first detailed determination of a protein sequence in 1952, previous studies have focused on describing the structure of existing protein sequences in order to construct the protein universe. No one, however, has developed a criteria for determining whether an arbitrary amino acid sequence can be a protein. Here we show that when the collection of arbitrary amino acid sequences is viewed in an appropriate geometric context, the protein sequences cluster together. This leads to a new computational test, described here, that has proved to be remarkably accurate at determining whether an arbitrary amino acid sequence can be a protein. Even more, if the results of this test indicate that the sequence can be a protein, and it is indeed a protein sequence, then its identity as a protein sequence is uniquely defined. We anticipate our computational test will be useful for those who are attempting to complete the job of discovering all proteins, or constructing the protein universe. PMID:25609314

  20. Utilization of lactose and production of corrinoids in selected strains of propionic acid bacteria in cheese-whey and casein media.

    PubMed

    Janicka, I; Maliszewska, M; Pedziwilk, F

    1976-01-01

    Comparative studies were carried out with 23 strains (14 species) of propionibacteria in two media-cheese-whey and casein. The degree of lactose fementation and the efficiency of the corrinoids synthesis were studied. Lactose fermentation showed great differences even within one species (e.g. 13.3% and 66.1% for various strains of P. shermanii). The differences were particularly sharp in casein medium (0% or 100%). The highest capacity for utilizing cheese-whey lactose (70--80%) was found in two strains of P. shermanii and P. petersonii and P. arabinosum. No definite correlation, however, was found either in the cheese-whey or in the casein medium, between the capability of lactose fermentation and the efficiency of the corrinoids. As the most technologically effective strains have been recognized P. shermanii 1, P. shermanii 566 and P. petersonii J. PMID:62496

  1. Formulation and physico-chemical analysis of whey-soymilk dahi.

    PubMed

    Rathi, Mamta; Upadhyay, Neelam; Dabur, R S; Goyal, Ankit

    2015-02-01

    The present investigation was undertaken to use whey for the production of nutritious whey-soya milk dahi. Neutralized whey (pH 7.0 ± 0.2) was used to extract soya milk from cleaned, dried, dehulled and steamed soybean in soya milk extraction plant. Whey-soya milk was extracted having whey to soybean ratio of 5:1. It was further diluted with whey to get different whey to soybean ratios i.e. 9:1, 8:1, 7:1 and 6:1. To set dahi, skim milk powder was added to whey-soya milk so as to make the final total solid concentration of 16, 18 and 20 %. Dahi was prepared by inoculating different whey-soya milk ratios with vita brand of dahi. Results revealed that whey-soya milk having whey to soybean ratio of 5:1 and 20 % total solids was found to be most appropriate for preparation of dahi on the basis of time taken for firmly setting of dahi (5 h) and sensory evaluation scores (7.7 on 9 point hedonic scale). Whey-soya milk dahi was found to be at par with milk dahi (control) based on the sensory scores. Whey-soya milk dahi and milk dahi samples were stored at refrigeration temperature and evaluated for changes in physico-chemical (fat, protein, total sugar, total solids, pH, viscosity and syneresis) and sensory (color and appearance, flavor, consistency and overall acceptability) properties at an interval of 2 days up to 10 days. The results of the study revealed that whey-soya milk dahi could be stored up to 10 days with good sensory quality. PMID:25694707

  2. A whey-protein supplement increases fat loss and spares lean muscle in obese subjects: a randomized human clinical study

    PubMed Central

    Frestedt, Joy L; Zenk, John L; Kuskowski, Michael A; Ward, Loren S; Bastian, Eric D

    2008-01-01

    Background This study evaluated a specialized whey fraction (Prolibra™, high in leucine, bioactive peptides and milk calcium) for use as a dietary supplement to enhance weight loss. Methods This was a randomized, double-blind, parallel-arm, 12-week study. Caloric intake was reduced 500 calories per day. Subjects consumed Prolibra or an isocaloric ready-to-mix beverage 20 minutes before breakfast and 20 minutes before dinner. Body fat and lean muscle tissue were measured by dual-energy x-ray absorptiometry (DEXA). Body weight and anthropometric measurements were recorded every 4 weeks. Blood samples were taken at the beginning and end of the study. Statistical analyses were performed on all subjects that completed (completer analysis) and all subjects that lost at least 2.25 kg of body weight (responder analysis). Within group significance was determined at P < 0.05 using a two-tailed paired t-test and between group significance was determined using one way analysis of covariance with baseline data as a covariate. Results Both groups lost a significant amount of weight and the Prolibra group tended to lose more weight than the control group; however the amount of weight loss was not significantly different between groups after 12 weeks. Prolibra subjects lost significantly more body fat compared to control subjects for both the completer (2.81 vs. 1.62 kg P = 0.03) and responder (3.63 vs. 2.11 kg, P = 0.01) groups. Prolibra subjects lost significantly less lean muscle mass in the responder group (1.07 vs. 2.41 kg, P = 0.02). The ratio of fat to lean loss (kg fat lost/kg lean lost) was much larger for Prolibra subjects for both completer (3.75 vs. 1.05) and responder (3.39 vs. 0.88) groups. Conclusion Subjects in both the control and treatment group lost a significant amount of weight with a 500 calorie reduced diet. Subjects taking Prolibra lost significantly more body fat and showed a greater preservation of lean muscle compared to subjects consuming the control

  3. No protein intake compensation for insufficient indispensable amino acid intake with a low-protein diet for 12 days

    PubMed Central

    2014-01-01

    Background Protein quality evaluation aims to determine the capacity of food sources and diets to meet protein and indispensable amino acid (IAA) requirements. This study determined whether nitrogen balance was affected and whether dietary IAA were adequately obtained from the ad libitum consumption of diets at three levels of protein from different primary sources for 12 days. Methods Two 12-day randomized crossover design trials were conducted in healthy subjects [n = 70/67 (M/F); age: 19-70 y; BMI: 18.2-38.7 kg/m2]. The relative dietary protein content was lower than [5% of energy (En%)], similar to (15En%), and higher than (30En%) customary diets. These diets had a limited variety of protein sources, containing wheat protein as a single protein source (5En%-protein diet) or 5En% from wheat protein with 10En% (15En%-protein diets) or 25En% (30En%-protein diets) added from whey with α-lactalbumin, soy or beef protein. Results There was a dose-dependent increase in nitrogen excretion with increasing dietary protein content, irrespective of the protein sources (P = 0.001). Nitrogen balance was maintained on the 5En%-protein diet, and was positive on the 15En%- and 30En%-protein diets (P < 0.001) over 12 days. Protein intake from the 5En%-protein diet did not reach the amount necessary to meet the calculated minimal IAA requirements, but IAA were sufficiently obtained from the 15En%- and 30En%-protein diets. In the 15En%- and 30En%-protein conditions, a higher protein intake from the soy-containing diets than from the whey with α-lactalbumin or beef containing diets was needed to meet the minimal IAA requirements. Conclusion Protein intake did not compensate for an insufficient indispensable amino acid intake with a low-protein diet for 12 days. Trial registration These trials were registered at clinicaltrials.gov as NCT01320189 and NCT01646749. PMID:25183991

  4. Production of Monoclonal Antibodies against the Major Capsid Protein of the Lactococcus Bacteriophage ul36 and Development of an Enzyme-Linked Immunosorbent Assay for Direct Phage Detection in Whey and Milk

    PubMed Central

    Moineau, Sylvain; Bernier, Denis; Jobin, Marie; Hébert, Jacques; Klaenhammer, Todd R.; Pandian, Sithian

    1993-01-01

    The only major structural protein (35 kDa) of the lactococcal small isometric-headed bacteriophage ul36, a member of the P335 species, was isolated from a preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Monoclonal antibodies (MAbs) were raised against the denatured 35-kDa protein. Six MAbs were selected and characterized. Western blots (immunoblots) showed that all MAbs recognized the 35 kDa but also a 45 kDa that is in lower concentration in the phage structure. Binding inhibition assays identified five families of MAbs that recognized nonoverlapping epitopes of the 35- and 45-kDa proteins. Immunoelectron microscopy showed that these two proteins are localized within the phage head, therefore indicating that the 35 kDa is a major capsid protein of ul36 and that the 45 kDa is a minor capsid protein. With two MAbs, a sandwich enzyme-linked immunosorbent assay (ELISA) was developed for direct detection of lactococcal phages in whey and milk samples. Whey and milk components, however, interfered with the conduct of the assay. Partial denaturation of milk samples by heat treatment in the presence of SDS and β-mercaptoethanol removed the masking effect and increased the sensitivity of the assay by 100-fold. With the method used here, 107 PFU/ml were detected by the ELISA within 2 h without any steps to enrich or isolate bacteriophages. Images PMID:16348980

  5. Neutrophil depletion in the early inflammatory phase delayed cutaneous wound healing in older rats: improvements due to the use of un-denatured camel whey protein

    PubMed Central

    2014-01-01

    Background While it is known that advanced age alters the recruitment of neutrophils during wound healing, thereby delaying the wound healing process, little is known about prolonged wound healing in advanced ages. Thus, we investigated the correlation of neutrophil recruitment with healing events, and the impact of whey protein (WP) on neutrophil activation. Methods The animals were allocated into wounded young group, wounded older group and wounded older rats with daily treatment of WP at a dose of 100 mg/kg of body weight. Results Our results pointed to a marked deficiency in the number of neutrophils in the wounds of older rats, which was accompanied with impairment of the healing process. In the group of older rats, phagocytic activity, as tested by fluorescence microscopy, declined throughout the first 24 hours after wounding. Both the neutrophil number and the phagocytic activity recovered in older rats which received WP supplementation. Interestingly, WP was found to significantly up-regulate the MIP-1α and CINC-1 mRNA expression in old rats. On the other hand, the wound size in older rats was significantly higher than that in younger ones. Blood angiogenesis was also significantly delayed in the older group as opposed to the young rats. WP, however, was found to return these indices to normal levels in the older rats. Proliferation and epidermal migration of the keratinocytes and the collagen deposition were also returned to the normal rates. Conclusions This data confirms the critical role of neutrophil recruitment in the early inflammatory phase of wound healing in older rats. In addition, WP protein was used to improve neutrophil function in older rats, healing events returned to a more normal profile. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2100966986117779. PMID:24593823

  6. Two firms to win three products from whey

    SciTech Connect

    Not Available

    1981-12-14

    A joint venture between Corning Glass Works and Kroger Co. is reported that will convert whey into hydrolyzed lactose. Part of the sweet syrup will be converted into bakers' yeast while the rest of the syrup will be used by Kroger as-such, and so will a byproduct, whey-protein concentrate. A 35,000 sq. ft. plant will be built at Winchester, Ky and is due for operation in 1983.

  7. Effects of Resistive Vibration Exercise Combined with Whey Protein and KHCO3 on Bone Tturnover Markers in Head-down Tilt Bed Rest (MTBR-MNX Study)

    NASA Technical Reports Server (NTRS)

    Graf, Sonja; Baecker, Natalie; Buehlmeier, Judith; Fischer, Annelie; Smith, Scott M.; Heer, Martina

    2014-01-01

    High protein intake further increases bone resorption markers in head-down tilt bed rest (HDBR), most likely induced by low-grade metabolic acidosis. Adding an alkaline salt to a diet with high protein content prevents this additional rise of bone resorption markers in HDBR. In addition, high protein intake, specifically whey protein, increases muscle protein synthesis and improves glucose tolerance, which both are affected by HDBR. Resistive vibration exercise (RVE) training counteracts the inactivity-induced bone resorption during HDBR. To test the hypothesis that WP plus alkaline salt (KHCO3) together with RVE during HDBR will improve bone turnover markers, we conducted a randomized, three-campaign crossover design study with 12 healthy, moderately fit male subjects (age 34+/-8 y, body mass [BM] 70 +/- 8 kg). All study campaigns consisted of a 7-d ambulatory period, 21days of -6 deg. head-down tilt bed rest (HDBR), and a 6-d recovery period. Diet was standardized and identical across phases. In the control (CON) campaign, subjects received no supplement or RVE. In the intervention campaigns, subjects received either RVE alone or combined with WP and KHCO3 (NEX). WP was applied in 3 doses per day of 0.6 g WP/kg BM together with 6 doses of 15 mmol KHCO3 per day. Eleven subjects completed the RVE and CON campaign, 8 subjects completed all three campaigns. On day 21 of HDBR excretion of the bone resorption marker C-telopeptide (CTX) was 80+/-28% (p<0.001) higher than baseline, serum calcium concentrations increased by 12 +/- 29% (p<0.001) and serum osteocalcin concentrations decreased by 6+/-12% (p=0.001). Urinary CTX excretion was 11+/- 25% (p=0.02) lower on day 21 of HDBR in the RVE- and tended to decrease by 3+/- 22% (p=0.06) in the NEX campaign compared to CON. Urinary calcium excretion was higher on day 21 in HDBR in the RVE and NEX (24+/- 43% p=0.01; 25+/- 37% p=0.03) compared to the CON campaign. We conclude that combination of RVE with WP/KHCO3 was not

  8. Ultrasonic energy input influence οn the production of sub-micron o/w emulsions containing whey protein and common stabilizers.

    PubMed

    Kaltsa, O; Michon, C; Yanniotis, S; Mandala, I

    2013-05-01

    Ultrasonication may be a cost-effective emulsion formation technique, but its impact on emulsion final structure and droplet size needs to be further investigated. Olive oil emulsions (20wt%) were formulated (pH∼7) using whey protein (3wt%), three kinds of hydrocolloids (0.1-0.5wt%) and two different emulsification energy inputs (single- and two-stage, methods A and B, respectively). Formula and energy input effects on emulsion performance are discussed. Emulsions stability was evaluated over a 10-day storage period at 5°C recording the turbidity profiles of the emulsions. Optical micrographs, droplet size and viscosity values were also obtained. A differential scanning calorimetric (DSC) multiple cool-heat cyclic method (40 to -40°C) was performed to examine stability via crystallization phenomena of the dispersed phase. Ultrasonication energy input duplication from 11kJ to 25kJ (method B) resulted in stable emulsions production (reduction of back scattering values, dBS∼1% after 10days of storage) at 0.5wt% concentration of any of the stabilizers used. At lower gum amount samples became unstable due to depletion flocculation phenomena, regardless of emulsification energy input used. High energy input during ultrasonic emulsification also resulted in sub-micron oil-droplets emulsions (D(50)=0.615μm compared to D(50)=1.3μm using method A) with narrower particle size distribution and in viscosity reduction. DSC experiments revealed no presence of bulk oil formation, suggesting stability for XG 0.5wt% emulsions prepared by both methods. Reduced enthalpy values found when method B was applied suggesting structural modifications produced by extensive ultrasonication. Change of ultrasonication conditions results in significant changes of oil droplet size and stability of the produced emulsions. PMID:23266492

  9. Resistance to moist conditions of whey protein isolate and pea starch biodegradable films and low density polyethylene nondegradable films: a comparative study

    NASA Astrophysics Data System (ADS)

    Mehyar, G. F.; Bawab, A. Al

    2015-10-01

    Biodegradable packaging materials are degraded under the natural environmental conditions. Therefore using them could alleviate the problem of plastics accumulation in nature. For effective replacement of plastics, with biodegradable materials, biodegradable packages should keep their properties under the high relative humidity (RH) conditions. Therefore the objectives of the study were to develop biodegradable packaging material based on whey protein isolate (WPI) and pea starch (PS). To study their mechanical, oxygen barrier and solubility properties under different RHs compared with those of low density polyethylene (LDPE), the most used plastic in packaging. Films of WPI and PS were prepared separately and conditioned at different RH (30-90%) then their properties were studied. At low RHs (<50%), WPI films had 2-3 times lower elongation at break (E or stretchability) than PS and LDPE. Increasing RH to 90% significantly (P<0.01) increased the elongation of PS but not WPI and LDPE films. LDPE and WPI films kept significantly (P<0.01) higher tensile strength (TS) than PS films at high RH (90%). Oxygen permeability (OP) of all films was very low (<0.5 cm3 μm m-2 d-1 kPa-1) below 40% RH but increased for PS films and became significantly (P<0.01) different than that of LDPE and WPI at > 40% RH. Oxygen permeability of WPI and LDPE did not adversely affected by increasing RH to 65%. Furthermore, WPI and LDPE films had lower degree of hydration at 50% and 90% RH and total soluble matter than PS films. These results suggest that WPI could be successfully replacing LDPE in packaging of moist products.

  10. A bovine whey protein extract can induce the generation of regulatory T cells and shows potential to alleviate asthma symptoms in a murine asthma model.

    PubMed

    Chen, Jiunn-Horng; Huang, Po-Han; Lee, Chen-Chen; Chen, Pin-Yu; Chen, Hui-Chen

    2013-05-28

    The number of people with asthma has dramatically increased over the past few decades and the cost of care is more than $11·3 billion per year. The use of steroids is the major treatment to control asthma symptoms, but the side effects are often devastating. Seeking new drugs or new strategies to reduce the dose of steroid taken has always been an important task. A bovine whey protein extract (WPE), which is enriched in transforming growth factor-β (TGF-β), has been demonstrated to have the potential for reducing symptoms associated with mild-to-moderate T-helper cell type 1-mediated psoriasis in human subjects. However, whether WPE also has potential for inhibiting T-helper cell type 2 (Th2)-mediated disease remains unclear. In the present study, using a murine asthma model, we found that sensitised mice fed WPE daily, before they were challenged, resulted in reducing airway inflammation, serum ovalbumin-specific IgE, Th2-related cytokine production and airway hyperresponsiveness. Increase in the regulatory T cell (Treg) population in vitro and in vivo was observed when treated with WPE. According to the results from the TGF-β-blocking antibody study, we suggest that TGF-β is the main component that endows WPE with the potential to reduce the generation of Treg. Thus, the present data suggest that WPE has the potential to alleviate the symptoms of asthma by inducing the generation of Treg. Therefore, regular administration of WPE might be potentially beneficial for patients with asthma. PMID:23068908

  11. Eight weeks of pre- and postexercise whey protein supplementation increases lean body mass and improves performance in Division III collegiate female basketball players.

    PubMed

    Taylor, Lemuel W; Wilborn, Colin; Roberts, Michael D; White, Andrew; Dugan, Kristen

    2016-03-01

    We examined if 8 weeks of whey protein (WP) supplementation improved body composition and performance measures in NCAA Division III female basketball players. Subjects were assigned to consume 24 g WP (n = 8; age, 20 ± 2 years; height, 170 ± 6 cm; weight, 66.0 ± 3.1 kg) or 24 g of maltodextrin (MD) (n = 6; age, 21 ± 3 years; height, 169 ± 6 cm; weight, 68.2 ± 7.6 kg) immediately prior to and following training (4 days/week anaerobic and resistance training) for 8 weeks. Prior to (T1) and 8 weeks following supplementation (T2), subjects underwent dual X-ray absorptiometry body composition assessment as well as performance tests. The WP group gained lean mass from T1 to T2 (+1.4 kg, p = 0.003) whereas the MD group trended to gain lean mass (+0.4 kg, p = 0.095). The WP group also lost fat mass from T1 to T2 (-1.0 kg, p = 0.003) whereas the MD group did not (-0.5 kg, p = 0.41). The WP group presented greater gains in 1-repetition maximum (1RM) bench press (+4.9 kg) compared with the MD group (+2.3 kg) (p < 0.05). Moreover, the WP group improved agility from T1 to T2 (p = 0.001) whereas the MD group did not (p = 0.38). Both groups equally increased leg press 1RM, vertical jump, and broad jump performances. This study demonstrates that 8 weeks of WP supplementation improves body composition and select performance variables in previously trained female athletes. PMID:26842665

  12. Co-ingestion of carbohydrate and whey protein isolates enhance PGC-1α mRNA expression: a randomised, single blind, cross over study

    PubMed Central

    2013-01-01

    Background Whey protein isolates (WPI) supplementation is known to improve resistance training adaptations. However, limited information is available on the effects of WPI plus carbohydrate (CHO) supplementation on endurance training adaptations. Method Six endurance trained male cyclists and triathletes (age 29 ± 4 years, weight 74 ± 2 kg, VO2 max 63 ± 3 ml oxygen. kg-1. Min-1, height 183 ± 5 cm; mean ± SEM) were randomly assigned to one of two dietary interventions in a single blind cross over design; CHO or CHO + WPI. Each dietary intervention was followed for 16 days which included the last 2 days having increased CHO content, representing a CHO loading phase. The dietary interventions were iso-caloric and carbohydrate content matched. On completion of the dietary intervention, participants performed an exercise bout, consisting of cycling for 60 min at 70% VO2 max, followed by time trial to exhaustion at 90% VO2 max and recovered in the laboratory for 6 hours. Blood samples and muscle biopsies were taken at various time points at rest and through the exercise trial and recovery. Results Compared to CHO, CHO + WPI increased plasma insulin during recovery at 180 mins (P < 0.05) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) mRNA expression at the end of 6 hours of recovery (P < 0.05). Muscle glycogen did not differ between the two trials. Conclusion This study showed co-ingestion of CHO + WPI may have beneficial effects on recovery and adaptations to endurance exercise via, increased insulin response and up regulation of PGC-1α mRNA expression. PMID:23402493

  13. In-Depth Characterization of Sheep (Ovis aries) Milk Whey Proteome and Comparison with Cow (Bos taurus)

    PubMed Central

    Ha, Minh; Sabherwal, Manya; Duncan, Elizabeth; Stevens, Stewart; Stockwell, Peter; McConnell, Michelle; Bekhit, Alaa El-Din; Carne, Alan

    2015-01-01

    An in-depth proteomic study of sheep milk whey is reported and compared to the data available in the literature for the cow whey proteome. A combinatorial peptide ligand library kit (ProteoMiner) was used to normalize protein abundance in the sheep whey proteome followed by an in-gel digest of a 1D-PAGE display and an in-solution digestion followed by OFFGEL isoelectric focusing fractionation. The peptide fractions obtained were then analyzed by LC-MS/MS. This enabled identification of 669 proteins in sheep whey that, to our knowledge, is the largest inventory of sheep whey proteins identified to date. A comprehensive list of cow whey proteins currently available in the literature (783 proteins from unique genes) was assembled and compared to the sheep whey proteome data obtained in this study (606 proteins from unique genes). This comparison revealed that while the 233 proteins shared by the two species were significantly enriched for immune and inflammatory responses in gene ontology analysis, proteins only found in sheep whey in this study were identified that take part in both cellular development and immune responses, whereas proteins only found in cow whey in this study were identified to be associated with metabolism and cellular growth. PMID:26447763

  14. In-Depth Characterization of Sheep (Ovis aries) Milk Whey Proteome and Comparison with Cow (Bos taurus).

    PubMed

    Ha, Minh; Sabherwal, Manya; Duncan, Elizabeth; Stevens, Stewart; Stockwell, Peter; McConnell, Michelle; Bekhit, Alaa El-Din; Carne, Alan

    2015-01-01

    An in-depth proteomic study of sheep milk whey is reported and compared to the data available in the literature for the cow whey proteome. A combinatorial peptide ligand library kit (ProteoMiner) was used to normalize protein abundance in the sheep whey proteome followed by an in-gel digest of a 1D-PAGE display and an in-solution digestion followed by OFFGEL isoelectric focusing fractionation. The peptide fractions obtained were then analyzed by LC-MS/MS. This enabled identification of 669 proteins in sheep whey that, to our knowledge, is the largest inventory of sheep whey proteins identified to date. A comprehensive list of cow whey proteins currently available in the literature (783 proteins from unique genes) was assembled and compared to the sheep whey proteome data obtained in this study (606 proteins from unique genes). This comparison revealed that while the 233 proteins shared by the two species were significantly enriched for immune and inflammatory responses in gene ontology analysis, proteins only found in sheep whey in this study were identified that take part in both cellular development and immune responses, whereas proteins only found in cow whey in this study were identified to be associated with metabolism and cellular growth. PMID:26447763

  15. Aroma compounds in sweet whey powder.

    PubMed

    Mahajan, S S; Goddik, L; Qian, M C

    2004-12-01

    Aroma compounds in sweet whey powder were investigated in this study. Volatiles were isolated by solvent extraction followed by solvent-assisted flavor evaporation. Fractionation was used to separate acidic from nonacidic volatiles. Gas chromatography/mass spectrometry and gas chromatography/olfactometry were used for the identification of aroma compounds. Osme methodology was applied to assess the relative importance of each aroma compound. The most aroma-intense free fatty acids detected were acetic, propanoic, butanoic, hexanoic, heptanoic, octanoic, decanoic, dodecanoic, and 9-decenoic acids. The most aroma-intense nonacidic compounds detected were hexanal, heptanal, nonanal, phenylacetaldehyde, 1-octen-3-one, methional, 2,6-dimethylpyrazine, 2,5-dimethylpyrazine, 2,3-dimethylpyrazine, 2,3,5-trimethylpyrazine, furfuryl alcohol, p-cresol, 2-acetylpyrrole, maltol, furaneol, and several lactones. This study suggested that the aroma of whey powder could comprise compounds originating from milk, compounds generated by the starter culture during cheese making, and compounds formed during the manufacturing process of whey powder. PMID:15545366

  16. Optimized batch fermentation of cheese whey. Supplemented feedlot waste filtrate to produce a nitrogen-rich feed supplement for ruminants

    SciTech Connect

    Erdman, M.D.; Reddy, C.A.

    1986-03-01

    An optimized batch fermentation process for the conversion of cattle feedlot waste filtrate, supplemented with cheese whey, into a nitrogenous feed supplement for ruminants is described. Feedlot waste filtrate supplemented with cheese whey (5 g of whey per 100 ml) was fermented by the indigenous microbial flora in the feedlot waste filtrate. Ammonium hydroxide was added to the fermentation not only to maintain a constant pH but also to produce ammonium salts of organic acids, which have been shown to be valuable as nitrogenous feed supplements for ruminants. The utilization of substrate carbohydrate at pH 7.0 and 43 degrees C was greater than 94% within 8 h, and the crude protein (total N X 6.25) content of the product was 70 to 78% (dry weight basis). About 66 to 69% of the crude protein was in the form of ammonia nitrogen. Lactate and acetate were the predominant acids during the first 6 to 8 hours of fermentation, but after 24 hours, appreciable levels of propionate and butyrate were also present. The rate of fermentation and the crude protein content of the product were optimal at pH 7.0 and decreased at a lower pH. For example, fermentation did not go to completion even after 24 hours at pH 4.5. Fermentation proceeded optimally at 43 degrees C, less so at 37 degrees C, and considerably more slowly at 23 and 50 degrees C. Concentrations of up to 15 g of cheese whey per 100 ml of feedlot waste filtrate were fermented efficiently. Fermentation of feedlot waste filtrate obtained from animals fed low silage-high grain, high silage-low grain, or dairy rations resulted in similar products in terms of total nitrogen and organic acid composition.

  17. The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training.

    PubMed

    Kerksick, Chad M; Rasmussen, Christopher J; Lancaster, Stacy L; Magu, Bharat; Smith, Penney; Melton, Charles; Greenwood, Michael; Almada, Anthony L; Earnest, Conrad P; Kreider, Richard B

    2006-08-01

    The purpose of this study was to examine the effects of whey protein supplementation on body composition, muscular strength, muscular endurance, and anaerobic capacity during 10 weeks of resistance training. Thirty-six resistance-trained males (31.0 +/- 8.0 years, 179.1 +/- 8.0 cm, 84.0 +/- 12.9 kg, 17.8 +/- 6.6%) followed a 4 days-per-week split body part resistance training program for 10 weeks. Three groups of supplements were randomly assigned, prior to the beginning of the exercise program, in a double-blind manner to all subjects: 48 g per day (g.d(-1)) carbohydrate placebo (P), 40 g.d(-1) of whey protein + 8 g.d(-1) of casein (WC), or 40 g.d(-1) of whey protein + 3 g.d(-1) branched-chain amino acids + 5 g.d(-1) L-glutamine (WBG). At 0, 5, and 10 weeks, subjects were tested for fasting blood samples, body mass, body composition using dual-energy x-ray absorptiometry (DEXA), 1 repetition maximum (1RM) bench and leg press, 80% 1RM maximal repetitions to fatigue for bench press and leg press, and 30-second Wingate anaerobic capacity tests. No changes (p > 0.05) were noted in all groups for energy intake, training volume, blood parameters, and anaerobic capacity. WC experienced the greatest increases in DEXA lean mass (P = 0.0 +/- 0.9; WC = 1.9 +/- 0.6; WBG = -0.1 +/- 0.3 kg, p < 0.05) and DEXA fat-free mass (P = 0.1 +/- 1.0; WC = 1.8 +/- 0.6; WBG = -0.1 +/- 0.2 kg, p < 0.05). Significant increases in 1RM bench press and leg press were observed in all groups after 10 weeks. In this study, the combination of whey and casein protein promoted the greatest increases in fat-free mass after 10 weeks of heavy resistance training. Athletes, coaches, and nutritionists can use these findings to increase fat-free mass and to improve body composition during resistance training. PMID:16937979

  18. Protein turnover, amino acid requirements and recommendations for athletes and active populations.

    PubMed

    Poortmans, J R; Carpentier, A; Pereira-Lancha, L O; Lancha Jr, A

    2012-10-01

    Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers ((13)C-lysine, (15)N-glycine, ²H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g · kg(-1) · day(-1) compared to 0.8 g · kg(-1) · day(-1) in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h. PMID:22666780

  19. Protein turnover, amino acid requirements and recommendations for athletes and active populations

    PubMed Central

    Poortmans, J.R.; Carpentier, A.; Pereira-Lancha, L.O.; Lancha, A.

    2012-01-01

    Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers (13C-lysine, 15N-glycine, 2H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g·kg−1·day−1 compared to 0.8 g·kg−1·day−1 in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h. PMID:22666780

  20. Probing protein stability with unnatural amino acids

    SciTech Connect

    Mendel, D.; Ellman, J.A.; Zhiyuh Chang; Veenstra, D.L.; Kollman, P.A.; Schultz, P.G. )

    1992-06-26

    Unnatural amino acid mutagenesis, in combination with molecular modeling and simulation techniques, was used to probe the effect of side chain structure on protein stability. Specific replacements at position 133 in T4 lysozyme included (1) leucine (wt), norvaline, ethylglycine, and alanine to measure the cost of stepwise removal of methyl groups from the hydrophobic core, (2) norvaline and O-methyl serine to evaluate the effects of side chain solvation, and (3) leucine, S,S-2-amino-4-methylhexanoic acid, and S-2-amino-3-cyclopentylpropanoic acid to measure the influence of packing density and side chain conformational entropy on protein stability. All of these factors (hydrophobicity, packing, conformational entropy, and cavity formation) significantly influence protein stability and must be considered when analyzing any structural change to proteins.

  1. The Evaluation of Dipeptidyl Peptidase (DPP)-IV, α-Glucosidase and Angiotensin Converting Enzyme (ACE) Inhibitory Activities of Whey Proteins Hydrolyzed with Serine Protease Isolated from Asian Pumpkin (Cucurbita ficifolia).

    PubMed

    Konrad, Babij; Anna, Dąbrowska; Marek, Szołtysik; Marta, Pokora; Aleksandra, Zambrowicz; Józefa, Chrzanowska

    2014-01-01

    In the present study, whey protein concentrate (WPC-80) and β-lactoglobulin were hydrolyzed with a noncommercial serine protease isolated from Asian pumpkin (Cucurbita ficifolia). Hydrolysates were further fractionated by ultrafiltration using membranes with cut-offs equal 3 and 10 kDa. Peptide fractions of molecular weight lower than 3 and 3-10 kDa were further subjected to the RP-HPLC. Separated preparations were investigated for their potential as the natural inhibitors of dipeptidyl peptidase (DPP-IV), α-glucosidase and angiotensin converting enzyme (ACE). WPC-80 hydrolysate showed higher inhibitory activities against the three tested enzymes than β-lactoglobulin hydrolysate. Especially high biological activities were exhibited by peptide fractions of molecular weight lower than 3 kDa, with ACE IC50 <0.64 mg/mL and DPP-IV IC50 <0.55 mg/mL. This study suggests that peptides generated from whey proteins may support postprandial glycemia regulation and blood pressure maintenance, and could be used as functional food ingredients in the diet of patients with type 2 diabetes. PMID:25364320

  2. Dietary supplementation with pressurized whey in patients with cystic fibrosis.

    PubMed

    Lands, L C; Iskandar, M; Beaudoin, N; Meehan, B; Dauletbaev, N; Berthiuame, Y

    2010-02-01

    Cystic fibrosis (CF) is characterized by malnutrition, chronic pulmonary inflammation, and oxidative stress. Whey protein is rich in sulfhydryl groups and is recognized for its ability to increase glutathione and reduce oxidative stress. Previously, we have shown that supplementation with whey increased intracellular glutathione levels in patients with CF. We have subsequently shown that hyperbaric pressure treatment of whey protein promotes the release of novel peptides for absorption, increases intracellular glutathione in healthy subjects, and reduces in vitro production of interleukin (IL)-8. We hypothesized that pressurized whey supplementation in children and adults with CF could have significant nutritional and anti-inflammatory benefits. A pilot open-label study of 1-month dietary supplementation with pressurized whey in CF patients was undertaken to assess the effects. Twenty-seven patients with CF (nine children, 18 adults) were enrolled. The dose of pressurized whey was 20 g/day in patients less than 18 years of age and 40 g/day in older patients. Anthropometric measures, pulmonary function, serum C-reactive protein (CRP), whole blood glutathione, and whole blood IL-8 and IL-6 responses to phytohemagglutinin (PHA) stimulation were measured at baseline and at 1 month. Three adults withdrew (one with gastrointestinal side effects, two with acute infection). Both children and adults showed enhancements in nutritional status, as assessed by body mass index. Children showed improvement in lung function (forced expiratory volume in 1 second). The majority of patients with an initially elevated CRP showed a decrease. PHA-stimulated IL-8 responses tended to decrease in the adults. Whole blood glutathione levels did not change. Thus, oral supplementation with pressurized whey improves nutritional status and can have additional beneficial effects on inflammation in patients with CF. PMID:20136439

  3. Effect of storage temperature on survival and recovery of thermal and extrusion injured Escherichia coli K-12 in whey protein concentrate and corn meal.

    PubMed

    Ukuku, Dike O; Mukhopadhyay, Sudarsan; Onwulata, Charles

    2013-01-01

    Previously, we reported inactivation of Escherichia coli populations in corn product (CP) and whey protein product (WPP) extruded at different temperatures. However, information on the effect of storage temperatures on injured bacterial populations was not addressed. In this study, the effect of storage temperatures on the survival and recovery of thermal death time (TDT) disks and extrusion injured E. coli populations in CP and WPP was investigated. CP and WPP inoculated with E. coli bacteria at 7.8 log(10) CFU/g were conveyed separately into the extruder with a series 6300 digital type T-35 twin screw volumetric feeder set at a speed of 600 rpm and extruded at 35°C, 55°C, 75°C, and 95°C, or thermally treated with TDT disks submerged into water bath set at 35°C, 55°C, 75°C, and 95°C for 120 s. Populations of surviving bacteria including injured cells in all treated samples were determined immediately and every day for 5 days, and up to 10 days for untreated samples during storage at 5°C, 10°C, and 23°C. TDT disks treatment at 35°C and 55°C did not cause significant changes in the population of the surviving bacteria including injured populations. Extrusion treatment at 35°C and 55°C led to significant (p<0.05) reduction of E. coli populations in WPP as opposed to CP. The injured populations among the surviving E. coli cells in CP and WPP extruded at all temperatures tested were inactivated during storage. Population of E. coli inactivated in samples extruded at 75°C was significantly (p<0.05) different than 55°C during storage. Percent injured population could not be determined in samples extruded at 95°C due to absence of colony forming units on the agar plates. The results of this study showed that further inactivation of the injured populations occurred during storage at 5°C for 5 days suggesting the need for immediate storage of 75°C extruded CP and WPP at 5°C for at least 24 h to enhance their microbial safety. PMID:23320425

  4. The use of lactoperoxidase for the bleaching of fluid whey.

    PubMed

    Campbell, R E; Kang, E J; Bastian, E; Drake, M A

    2012-06-01

    Lactoperoxidase (LP) is the second most abundant enzyme in bovine milk and has been used in conjunction with hydrogen peroxide (H₂O₂) and thiocyanate (SCN⁻) to work as an antimicrobial in raw milk where pasteurization is not feasible. Thiocyanate is naturally present and the lactoperoxidase system purportedly can be used to bleach dairy products, such as whey, with the addition of very little H₂O₂ to the system. This study had 3 objectives: 1) to quantify the amount of H₂O₂ necessary for bleaching of fluid whey using the LP system, 2) to monitor LP activity from raw milk through manufacture of liquid whey, and 3) to compare the flavor of whey protein concentrate 80% (WPC80) bleached by the LP system to that bleached by traditional H₂O₂ bleaching. Cheddar cheese whey with annatto (15 mL of annatto/454 kg of milk, annatto with 3% wt/vol norbixin content) was manufactured using a standard Cheddar cheesemaking procedure. Various levels of H₂O₂ (5-100 mg/kg) were added to fluid whey to determine the optimum concentration of H₂O₂ for LP activity, which was measured using an established colorimetric method. In subsequent experiments, fat-separated whey was bleached for 1h with 250 mg of H₂O₂/kg (traditional) or 20 mg of H₂O₂/kg (LP system). The WPC80 was manufactured from whey bleached with 250 mg of H₂O₂/kg or 20mg of H₂O₂/kg. All samples were subjected to color analysis (Hunter color values and norbixin extraction) and proximate analysis (fat, protein, and moisture). Sensory and instrumental volatile analyses were conducted on WPC80. Optimal LP bleaching in fluid whey occurred with the addition of 20mg of H₂O₂/kg. Bleaching of fluid whey at either 35 or 50°C for 1 h with LP resulted in > 99% norbixin destruction compared with 32 or 47% destruction from bleaching with 250 mg of H₂O₂/kg, at 35 or 50°C for 1 h, respectively. Higher aroma intensity and increased lipid oxidation compounds were documented in WPC80 from

  5. WINE PRODUCTION FROM CHEESE WHEY

    EPA Science Inventory

    The objective of this project was to demonstrate commercial feasibility of producing an alcoholic beverage by wine yeast fermentation of supplemented cheese and cottage cheese wheys. Results indicated that the preferred processing route was (1) fractionation of the whey into prot...

  6. Detection of non-protein amino acids in the presence of protein amino acids. II.

    NASA Technical Reports Server (NTRS)

    Shapshak, P.; Okaji, M.

    1972-01-01

    Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.

  7. Protein and amino Acid supplementation in athletes.

    PubMed

    Armsey, Thomas D; Grime, Todd E

    2002-08-01

    Amino acid supplementation is practiced by numerous individuals with the hope of increasing muscle mass and function by increasing available proteins. Theoretically, this makes a great deal of sense; the scientific facts, however, fail to conclusively prove that ingesting more than the recommended dietary allowance of protein has any effect on otherwise healthy adults. Athletes may be the exception to this rule. This review examines the most current literature pertaining to amino acid supplementation, and reports on the potential benefits and risks of this common practice. PMID:12831703

  8. Nutritional management of PKU with glycomacropeptide from cheese whey.

    PubMed

    Ney, D M; Gleason, S T; van Calcar, S C; MacLeod, E L; Nelson, K L; Etzel, M R; Rice, G M; Wolff, J A

    2009-02-01

    Individuals with phenylketonuria (PKU) must follow a lifelong low-phenylalanine (Phe) diet to prevent neurological impairment. Compliance with the low-Phe diet is often poor owing to restriction in natural foods and the requirement for consumption of a Phe-free amino acid formula or medical food. Glycomacropeptide (GMP), a natural protein produced during cheese-making, is uniquely suited to a low-Phe diet because when isolated from cheese whey it contains minimal Phe (2.5-5 mg Phe/g protein). This paper reviews progress in evaluating the safety, acceptability and efficacy of GMP in the nutritional management of PKU. A variety of foods and beverages can be made with GMP to improve the taste, variety and convenience of the PKU diet. Sensory studies in individuals with PKU demonstrate that GMP foods are acceptable alternatives to amino acid medical foods. Studies in the PKU mouse model demonstrate that GMP supplemented with limiting indispensable amino acids provides a nutritionally adequate source of protein and improves the metabolic phenotype by reducing concentrations of Phe in plasma and brain. A case report in an adult with classical PKU who followed the GMP diet for 10 weeks at home indicates safety, acceptability of GMP food products, a 13-14% reduction in blood Phe levels (p<0.05) and improved distribution of dietary protein throughout the day compared with the amino acid diet. In summary, food products made with GMP that is supplemented with limiting indispensable amino acids provide a palatable alternative source of protein that may improve dietary compliance and metabolic control of PKU. PMID:18956251

  9. Nucleic acids, proteins, and chirality

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Profy, A. T.; Walstrum, S. A.; Needels, M. C.; Bulack, S. C.; Lo, K. M.

    1984-01-01

    The present investigation is concerned with experimental results related, in one case, to the chirality of nucleotides, and, in another case, to the possibility of a link between the chirality of nucleic acids, and that of peptides. It has been found that aminoacylation of the 'internal' hydroxyl group of a dinucleoside monophosphate can occur stereoselectively. However, this reaction has not yet been made a part of a working peptide synthesis scheme. The formation and cleavage of oligonucleotides is considered. In the event of the formation of a helical complex between the oligonucleotide and the polymer, 1-prime,5-prime-bonds in the oligomer are found to become more resistant towards cleavage. The conditions required for peptide bond formation are examined, taking into account the known structures of RNA and possible mechanisms for prebiotic peptide bond formation. The possibility is considered that the 2-prime,5-prime-internucleotide linkage could have played an important part in the early days of biological peptide synthesis.

  10. Acute effects of ingestion of a novel whey-derived extract on vascular endothelial function in overweight, middle-aged men and women.

    PubMed

    Ballard, Kevin D; Kupchak, Brian R; Volk, Brittanie M; Mah, Eunice; Shkreta, Aida; Liptak, Cary; Ptolemy, Adam S; Kellogg, Mark S; Bruno, Richard S; Seip, Richard L; Maresh, Carl M; Kraemer, William J; Volek, Jeff S

    2013-03-14

    Whey protein intake reduces CVD risk, but little is known whether whey-derived bioactive peptides regulate vascular endothelial function (VEF). We determined the impact of a whey-derived extract (NOP-47) on VEF in individuals with an increased cardiovascular risk profile. Men and women with impaired brachial artery flow-mediated dilation (FMD) (n 21, age 55 (sem 1·3) years, BMI 27·8 (sem 0·6) kg/m2, FMD 3·7 (sem 0·4) %) completed a randomised, cross-over study to examine whether ingestion of NOP-47 (5 g) improves postprandial VEF. Brachial artery FMD, plasma amino acids, insulin, and endothelium-derived vasodilators and vasoconstrictors were measured for 2 h after ingestion of NOP-47 or placebo. Acute NOP-47 ingestion increased FMD at 30 min (4·6 (sem 0·5) %) and 120 min (5·1 (sem 0·5) %) post-ingestion (P< 0·05, time × trial interaction), and FMD responses at 120 min were significantly greater in the NOP-47 trial compared with placebo (4·3 (sem 0·5) %). Plasma amino acids increased at 30 min following NOP-47 ingestion (P< 0·05). Serum insulin increased at 15, 30 and 60 min (P< 0·001) following NOP-47 ingestion. No changes were observed between the trials for plasma NO∙ and prostacyclin metabolites or endothelin-1. Ingestion of a rapidly absorbed extract derived from whey protein improved endothelium-dependent dilation in older adults by a mechanism independent of changes in circulating vasoactive compounds. Future investigation is warranted in individuals at an increased CVD risk to further elucidate potential health benefits and the underlying mechanisms of extracts derived from whey. PMID:22691263

  11. Dihydrolipoic acid reduces cytochrome b561 proteins.

    PubMed

    Bérczi, Alajos; Zimányi, László; Asard, Han

    2013-03-01

    Cytochrome b561 (Cyt-b561) proteins constitute a family of trans-membrane proteins that are present in a wide variety of organisms. Two of their characteristic properties are the reducibility by ascorbate (ASC) and the presence of two distinct b-type hemes localized on two opposite sides of the membrane. Here we show that the tonoplast-localized and the putative tumor suppressor Cyt-b561 proteins can be reduced by other reductants than ASC and dithionite. A detailed spectral analysis of the ASC-dependent and dihydrolipoic acid (DHLA)-dependent reduction of these two Cyt-b561 proteins is also presented. Our results are discussed in relation to the known antioxidant capability of DHLA as well as its role in the regeneration of other antioxidant compounds of cells. These results allow us to speculate on new biological functions for the trans-membrane Cyt-b561 proteins. PMID:22526465

  12. Lactobacillus gasseri requires peptides, not proteins or free amino acids, for growth in milk.

    PubMed

    Arakawa, K; Matsunaga, K; Takihiro, S; Moritoki, A; Ryuto, S; Kawai, Y; Masuda, T; Miyamoto, T

    2015-03-01

    Lactobacillus gasseri is a widespread commensal lactic acid bacterium inhabiting human mucosal niches and has many beneficial effects as a probiotic. However, L. gasseri is difficult to grow in milk, which hurts usability for the food industry. It had been previously reported that supplementation with yeast extract or proteose peptone, including peptides, enables L. gasseri to grow well in milk. In this study, our objective was to confirm peptide requirement of L. gasseri and evaluate efficacy of peptide release by enzymatic proteolysis on growth of L. gassei in milk. Three strains of L. gasseri did not grow well in modified DeMan, Rogosa, Sharpe broth without any nitrogen sources (MRS-N), but addition of a casein-derived peptide mixture, tryptone, promoted growth. In contrast, little effect was observed after adding casein or a casein-derived amino acid mixture, casamino acids. These results indicate that L. gasseri requires peptides, not proteins or free amino acids, among milk-derived nitrogen sources for growth. Lactobacillus gasseri JCM 1131T hardly had growth capacity in 6 kinds of milk-based media: bovine milk, human milk, skim milk, cheese whey, modified MRS-N (MRSL-N) supplemented with acid whey, and MRSL-N supplemented with casein. Moreover, treatment with digestive proteases, particularly pepsin, to release peptides made it grow well in each milk-based medium. The pepsin treatment was the most effective for growth of strain JCM 1131T in skim milk among the tested food-grade proteases such as trypsin, α-chymotrypsin, calf rennet, ficin, bromelain, and papain. As well as strain JCM 1131T, pepsinolysis of milk improved growth of other L. gasseri strains and some strains of enteric lactobacilli such as Lactobacillus crispatus, Lactobacillus gallinarum, Lactobacillus johnsonii, and Lactobacillus reuteri. These results suggest that some relatives of L. gasseri also use peptides as desirable nitrogen sources, and that milk may be a good supplier of nutritious

  13. Combining cottage cheese whey and straw reduces erosion while increasing infiltration in furrow irrigation

    SciTech Connect

    Brown, M.J.; Robbins, C.W.; Freeborn, L.L.

    1998-12-31

    Loose straw in irrigation furrows can decrease irrigation induced erosion, and acid cottage cheese whey can increase soil aggregate stability and soil infiltration. A field study was conducted at two sites where these materials were compared alone and in combination to determine their effectiveness in increasing infiltration and reducing irrigation induced erosion. Straw was applied by hand and whey was applied by gravity flow down irrigation furrows, 76 cm apart, and the field was planted to sweet corn (Zea Mays L.). Straw + whey was the most effective treatment for controlling erosion and sediment loss. Seasonal infiltration was significantly higher for straw + whey than for other treatments at the first site, and all three treatments increased infiltration over that of the control at the second site. These studies showed that two inexpensive agricultural byproducts, cottage cheese whey and straw, applied to irrigation furrows of different slopes can significantly reduce soil loss and increase infiltration.

  14. Biobutanol from cheese whey.

    PubMed

    Becerra, Manuel; Cerdán, María Esperanza; González-Siso, María Isabel

    2015-01-01

    At present, due to environmental and economic concerns, it is urgent to evolve efficient, clean and secure systems for the production of advanced biofuels from sustainable cheap sources. Biobutanol has proved better characteristics than the more widely used bioethanol, however the main disadvantage of biobutanol is that it is produced in low yield and titer by ABE (acetone-butanol-ethanol) fermentation, this process being not competitive from the economic point of view. In this review we summarize the natural metabolic pathways for biobutanol production by Clostridia and yeasts, together with the metabolic engineering efforts performed up to date with the aim of either enhancing the yield of the natural producer Clostridia or transferring the butanol production ability to other hosts with better attributes for industrial use and facilities for genetic manipulation. Molasses and starch-based feedstocks are main sources for biobutanol production at industrial scale hitherto. We also review herewith (and for the first time up to our knowledge) the research performed for the use of whey, the subproduct of cheese making, as another sustainable source for biobutanol production. This represents a promising alternative that still needs further research. The use of an abundant waste material like cheese whey, that would otherwise be considered an environmental pollutant, for biobutanol production, makes economy of the process more profitable. PMID:25889728

  15. The Exchangeability of Amino Acids in Proteins

    PubMed Central

    Yampolsky, Lev Y.; Stoltzfus, Arlin

    2005-01-01

    The comparative analysis of protein sequences depends crucially on measures of amino acid similarity or distance. Many such measures exist, yet it is not known how well these measures reflect the operational exchangeability of amino acids in proteins, since most are derived by methods that confound a variety of effects, including effects of mutation. In pursuit of a pure measure of exchangeability, we present (1) a compilation of data on the effects of 9671 amino acid exchanges engineered and assayed in a set of 12 proteins; (2) a statistical procedure to combine results from diverse assays of exchange effects; (3) a matrix of “experimental exchangeability” values EXij derived from applying this procedure to the compiled data; and (4) a set of three tests designed to evaluate the power of an exchangeability measure to (i) predict the effects of amino acid exchanges in the laboratory, (ii) account for the disease-causing potential of missense mutations in the human population, and (iii) model the probability of fixation of missense mutations in evolution. EX not only captures useful information on exchangeability while remaining free of other effects, but also outperforms all measures tested except for the best-performing alignment scoring matrix, which is comparable in performance. PMID:15944362

  16. Digestion kinetics of potato protein isolates in vitro and in vivo.

    PubMed

    He, Tao; Spelbrink, Robin E J; Witteman, Ben J; Giuseppin, Marco L F

    2013-11-01

    Recently, an industrial process was developed to isolate native protein fractions from potato: a high (HMW) and a low (LMW) molecular weight fraction. Digestion kinetics of HMW and LMW was studied in vitro and in vivo and compared with reference proteins. Under simulated conditions, highest digestion was found for whey protein, followed by soy, pea, HMW, casein and LMW. Ingestion of 20 g of proteins by eight healthy subjects (following a randomized, double-blind, cross-over design) induced a slow and moderate increase with HMW and LMW, while a peaked and high increase with whey protein, in postprandial plasma amino acid levels. Casein gave a similar profile as HMW, with higher levels. Contrary to whey and casein, HMW and LMW did not result in any changes in plasma insulin or glucose levels. This study provides insights in digestion of native potato protein isolates to assist their use as protein sources in food applications. PMID:23713493

  17. Protein and Amino Acid Requirements during Pregnancy.

    PubMed

    Elango, Rajavel; Ball, Ronald O

    2016-07-01

    Protein forms an essential component of a healthy diet in humans to support both growth and maintenance. During pregnancy, an exceptional stage of life defined by rapid growth and development, adequate dietary protein is crucial to ensure a healthy outcome. Protein deposition in maternal and fetal tissues increases throughout pregnancy, with most occurring during the third trimester. Dietary protein intake recommendations are based on factorial estimates because the traditional method of determining protein requirements, nitrogen balance, is invasive and undesirable during pregnancy. The current Estimated Average Requirement and RDA recommendations of 0.88 and 1.1 g · kg(-1) · d(-1), respectively, are for all stages of pregnancy. The single recommendation does not take into account the changing needs during different stages of pregnancy. Recently, with the use of the minimally invasive indicator amino acid oxidation method, we defined the requirements to be, on average, 1.2 and 1.52 g · kg(-1) · d(-1) during early (∼16 wk) and late (∼36 wk) stages of pregnancy, respectively. Although the requirements are substantially higher than current recommendations, our values are ∼14-18% of total energy and fit within the Acceptable Macronutrient Distribution Range. Using swine as an animal model we showed that the requirements for several indispensable amino acids increase dramatically during late gestation compared with early gestation. Additional studies should be conducted during pregnancy to confirm the newly determined protein requirements and to determine the indispensable amino acid requirements during pregnancy in humans. PMID:27422521

  18. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    PubMed

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used. PMID:25827218

  19. Quality of whey powders stored under adverse conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey protein concentrate powder (WPC) is exported by the U.S. and is included in emergency aid foods, but the bags sent overseas are usually stored without refrigeration and under elevated temperature and relative humidity (RH). The shelf life of WPC under adverse conditions must be known to preven...

  20. Changes in the bovine whey proteome during the early lactation period.

    PubMed

    Senda, Akitsugu; Fukuda, Kenji; Ishii, Toshiaki; Urashima, Tadasu

    2011-10-01

    To investigate time-dependent change in the bovine whey proteome during the early lactation period, a two-dimensional gel-based approach was used in this study. Milk samples were collected from five healthy Friesian-Holstein dairy cows up to 10 days postpartum. Spot patterns of whey proteins varied drastically from immediately after parturition to 48 h, but no significant changes occurred thereafter. Protein identification by mass spectrometry revealed that the ratios of caseins and immunoglobulins drastically decreased during 48 h postpartum, while those of lower molecular mass proteins such as α-lactalbumin and β-lactoglobulin increased. More than 100 spots were detected, being much more abundant in colostral whey than in mature milk whey. Of a total of 25 proteins identified, four, viz. zinc-α-2-glycoprotein, vitamin D-binding protein, immunoglobulin G2 chain C and β2-microglobulin, were detectable only in colostrum. Our results indicate that most of the minor whey proteins in colostrum relate to the passive immunity of newborn calves, but some of them play significant roles in nutritional supplementation of the neonate. The characteristics of whey proteins in transition imply that enhancement of innate immunity becomes more important than protection of the neonate against pathogens via passive immunity after 48 h postpartum. PMID:21951907

  1. Determination of whey adulteration in milk powder by using laser induced breakdown spectroscopy.

    PubMed

    Bilge, Gonca; Sezer, Banu; Eseller, Kemal Efe; Berberoglu, Halil; Topcu, Ali; Boyaci, Ismail Hakki

    2016-12-01

    A rapid and in situ method has been developed to detect and quantify adulterated milk powder through adding whey powder by using laser induced breakdown spectroscopy (LIBS). The methodology is based on elemental composition differences between milk and whey products. Milk powder, sweet and acid whey powders were produced as standard samples, and milk powder was adulterated with whey powders. Based on LIBS spectra of standard samples and commercial products, species was identified using principle component analysis (PCA) method, and discrimination rate of milk and whey powders was found as 80.5%. Calibration curves were obtained with partial least squares regression (PLS). Correlation coefficient (R(2)) and limit of detection (LOD) values were 0.981 and 1.55% for adulteration with sweet whey powder, and 0.985 and 0.55% for adulteration with acid whey powder, respectively. The results were found to be consistent with the data from inductively coupled plasma - mass spectrometer (ICP-MS) method. PMID:27374522

  2. Evaluation of Dairy Whey as a Subsurface Reactive Barrier Material

    NASA Astrophysics Data System (ADS)

    Semkiw, E.; Barcelona, M.; Kim, M.

    2006-05-01

    Subsurface permeable reactive barriers (PRBs) in remediation of contaminated ground water are currently being utilized and refined as an alternative/supplement to costly pump-and-treat remediation. Identification of efficient reactive materials that are effective in the long-term is essential for the ultimate success of PRBs in ground water remediation. A variety of enhancements have been used: oxidants, reductants or sorbents. Electron donors create/strengthen reducing conditions that are favorable for microbial degradation of chlorinated hydrocarbons. Inexpensive, food-grade electron donors effectively enhance dechlorination activity, and those that are solids that can be slurried and then pressure grouted are the best candidates for maintaining an active biobarrier at low cost. Dried dairy whey (~70% alpha-lactose), a slowly dissolving solid, is a prime candidate. To determine the efficiency of whey in promoting dechlorination, it is essential to identify the aerobic and anaerobic metabolic pathways and perform quantitative analysis of breakdown products. We hypothesize that dissolved whey will undergo microbial degradation (aerobic and anaerobic) to form carboxylic acids, and that in a suboxic/reducing environment the anaerobic products will stimulate the microbial dechlorination of chlorinated hydrocarbons PCE, TCE, and DCE. Analysis of the breakdown products in the absence as well as the presence of chlorinated hydrocarbons will result in the calculation of rate constants. Kinetics will, in turn, provide us with residence time, loading (whey mass), and projected lifetime of the whey PRB under estimated loads of total chlorinated hydrocarbon contamination. Early results from our field-scale effort to treat a TCE-contaminated site show increased concentrations of cis- DCE and VC downgradient from the whey PRBs, indicative of enhanced TCE dechlorination. Results from an initial microcosm experiment show complete disappearance of chlorinated hydrocarbons in the

  3. Including whey protein and whey permeate in ready-to-use supplementary food improves recovery rates in children with moderate acute malnutrition: A randomized, double-blind clinical trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utility of dairy ingredients in the supplementary foods used in the treatment of childhood moderate acute malnutrition (MAM) remains unsettled. We evaluated the effectiveness of a peanut-based ready-to-use supplementary food (RUSF) with soy protein compared with a novel RUSF containing dairy in...

  4. Anaerobic expanded bed treatment of whey

    SciTech Connect

    Switzenbaum, M.S.; Danskin, S.C.

    1982-01-01

    The use of anaerobic attached film expanded bed (AAFEB) for whey treatment is described and the potential for implementation of substitute natural gas from whey is discussed. A significant portion (less than or equal to 46%) of the energy needs at cheese-production plants could be recovered by CH/sub 4/ manufactured from whey. Efficient treatment of whey is possible by AAFEB at low retention times and at high organic loading rates.

  5. Effect of combined treatments on viscosity of whey dispersions

    NASA Astrophysics Data System (ADS)

    Camillo, A.; Sabato, S. F.

    2004-09-01

    Whey proteins, enriched protein fractions from milk, are of great interest as ingredients due to nutritional value associated with its functional properties. These proteins could have their structural properties improved when some treatments are applied, such as thermal and gamma irradiation or when some compounds are added. The current work aimed to study the viscometer behavior of whey dispersions submitted to two different combined treatments: (1) thermal plus irradiation and (2) thermal plus vacuum and N 2 plus irradiation. Dispersions of whey protein in water (5% and 8% protein (w/v) base) and containing proteins and glycerol at ratios 1:1 and 2:1 (protein:glycerol) were submitted to both combined treatments. The irradiation doses were 0, 5, 15 and 25 kGy. The viscosity of the two combined treatments and for four levels of absorbed doses is presented and the combined effects are discussed. The thermal treatment combined with gamma irradiation contributed to increase the viscosity as irradiation doses increases for both (5% and 8%) concentrations of proteins ( p<0.05). For protein and glycerol solutions, the irradiation dose seemed to result in a slightly increase. The vacuum applied before the irradiation showed a small contribution.

  6. Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey.

    PubMed

    Barrett, Eoin; Stanton, Catherine; Zelder, Oskar; Fitzgerald, Gerald; Ross, R Paul

    2004-05-01

    The genetic determinants for lactose utilization from Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 and galactose utilization from Lactococcus lactis subsp. cremoris MG 1363 were heterologously expressed in the lysine-overproducing strain Corynebacterium glutamicum ATCC 21253. The C. glutamicum strains expressing the lactose permease and beta-galactosidase genes of L. delbrueckii subsp. bulgaricus exhibited beta-galactosidase activity in excess of 1000 Miller units/ml of cells and were able to grow in medium in which lactose was the sole carbon source. Similarly, C. glutamicum strains containing the lactococcal aldose-1-epimerase, galactokinase, UDP-glucose-1-P-uridylyltransferase, and UDP-galactose-4-epimerase genes in association with the lactose permease and beta-galactosidase genes exhibited beta-galactosidase levels in excess of 730 Miller units/ml of cells and were able to grow in medium in which galactose was the sole carbon source. When grown in whey-based medium, the engineered C. glutamicum strain produced lysine at concentrations of up to 2 mg/ml, which represented a 10-fold increase over the results obtained with the lactose- and galactose-negative control, C. glutamicum 21253. Despite their increased catabolic flexibility, however, the modified corynebacteria exhibited slower growth rates and plasmid instability. PMID:15128544

  7. Fluorinated amino acids: compatibility with native protein structures and effects on protein-protein interactions.

    PubMed

    Salwiczek, Mario; Nyakatura, Elisabeth K; Gerling, Ulla I M; Ye, Shijie; Koksch, Beate

    2012-03-21

    Fluorinated analogues of the canonical α-L-amino acids have gained widespread attention as building blocks that may endow peptides and proteins with advantageous biophysical, chemical and biological properties. This critical review covers the literature dealing with investigations of peptides and proteins containing fluorinated analogues of the canonical amino acids published over the course of the past decade including the late nineties. It focuses on side-chain fluorinated amino acids, the carbon backbone of which is identical to their natural analogues. Each class of amino acids--aliphatic, aromatic, charged and polar as well as proline--is presented in a separate section. General effects of fluorine on essential properties such as hydrophobicity, acidity/basicity and conformation of the specific side chains and the impact of these altered properties on stability, folding kinetics and activity of peptides and proteins are discussed (245 references). PMID:22130572

  8. Correlations between biochemical characteristics and foam-forming and -stabilizing ability of whey and casein hydrolysates.

    PubMed

    van der Ven, Cornelly; Gruppen, Harry; de Bont, Dries B A; Voragen, Alphons G J

    2002-05-01

    Whey protein and casein were hydrolyzed with 11 commercially available enzymes. Foam properties of 44 samples were measured and were related to biochemical properties of the hydrolysates using statistical data analysis. All casein hydrolysates formed high initial foam levels, whereas whey hydrolysates differed in their foam-forming abilities. Regression analysis using the molecular weight distribution of whey hydrolysates as predictors showed that the hydrolysate fraction containing peptides of 3-5 kDa was most strongly related to foam formation. Foam stability of whey hydrolysates and of most casein hydrolysates was inferior to that of the intact proteins. The foam stability of casein hydrolysate foams was correlated to the molecular weight distribution of the hydrolysates; a high proportion of peptides >7 kDa, composed of both intact casein and high molecular weight peptides, was positively related to foam stability. PMID:11982423

  9. Intensified recovery of valuable products from whey by use of ultrasound in processing steps - A review.

    PubMed

    Gajendragadkar, Chinmay N; Gogate, Parag R

    2016-09-01

    The current review focuses on the analysis of different aspects related to intensified recovery of possible valuable products from cheese whey using ultrasound. Ultrasound can be used for process intensification in processing steps such as pre-treatment, ultrafiltration, spray drying and crystallization. The combination of low-frequency, high intensity ultrasound with the pre-heat treatment minimizes the thickening or gelling of protein containing whey solutions. These characteristics of whey after the ultrasound assisted pretreatment helps in improving the efficacy of ultrafiltration used for separation and also helps in preventing the blockage of orifice of spray dryer atomizing device. Further, the heat stability of whey proteins is increased. In the subsequent processing step, use of ultrasound assisted atomization helps to reduce the treatment times as well as yield better quality whey protein concentrate (WPC) powder. After the removal of proteins from the whey, lactose is a major constituent remaining in the solution which can be efficiently recovered by sonocrystallization based on the use of anti-solvent as ethanol. The scale-up parameters to be considered during designing the process for large scale applications are also discussed along with analysis of various reactor designs. Overall, it appears that use of ultrasound can give significant process intensification benefits that can be harnessed even at commercial scale applications. PMID:27150751

  10. [Production of Kluyveromices fragilis biomass in deproteinized milk whey].

    PubMed

    Chinappi, I; Sánchez Crispín, J A

    2000-01-01

    The milk whey from a mature cheese factory deproteinised by acid thermic coagulation (pH 4.5 and 90 degrees C), provides a good culture media for the production of Kluyveromices fragilis biomass. The optimal experimental conditions for the maximal production of biomass were established by using fermenters with different capacity and design. For lactose concentration of 15 g/l, pH 4.5, 30 degrees C and aireation between 0.25 and 1 VVM, the duplication time was below two hours and 98% of the lactose was consumed. The obtained yield in dried weight was between 36 and 49% (g biomass/g lactose). The biomass (without broken cell) contain 46% protein on dry base and showed an "in vitro" digestibility of 65%. The organic mass decreased 80% after 12 hour of fermentation. This process eliminates a polluting agent and simultaneously, produces a biomass that could have industrial use as a protein complement in feeds. PMID:11460792

  11. Nucleic acids encoding human trithorax protein

    DOEpatents

    Evans, Glen A.; Djabali, Malek; Selleri, Licia; Parry, Pauline

    2001-01-01

    In accordance with the present invention, there is provided an isolated peptide having the characteristics of human trithorax protein (as well as DNA encoding same, antisense DNA derived therefrom and antagonists therefor). The invention peptide is characterized by having a DNA binding domain comprising multiple zinc fingers and at least 40% amino acid identity with respect to the DNA binding domain of Drosophila trithorax protein and at least 70% conserved sequence with respect to the DNA binding domain of Drosophila trithorax protein, and wherein said peptide is encoded by a gene located at chromosome 11 of the human genome at q23. Also provided are methods for the treatment of subject(s) suffering from immunodeficiency, developmental abnormality, inherited disease, or cancer by administering to said subject a therapeutically effective amount of one of the above-described agents (i.e., peptide, antagonist therefor, DNA encoding said peptide or antisense DNA derived therefrom). Also provided is a method for the diagnosis, in a subject, of immunodeficiency, developmental abnormality, inherited disease, or cancer associated with disruption of chromosome 11 at q23.

  12. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  13. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  14. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  15. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  16. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2009-04-28

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  17. Effect of Dairy Proteins on Appetite, Energy Expenditure, Body Weight, and Composition: a Review of the Evidence from Controlled Clinical Trials1

    PubMed Central

    Bendtsen, Line Q.; Lorenzen, Janne K.; Bendsen, Nathalie T.; Rasmussen, Charlotte; Astrup, Arne

    2013-01-01

    Evidence supports that a high proportion of calories from protein increases weight loss and prevents weight (re)gain. Proteins are known to induce satiety, increase secretion of gastrointestinal hormones, and increase diet-induced thermogenesis, but less is known about whether various types of proteins exert different metabolic effects. In the Western world, dairy protein, which consists of 80% casein and 20% whey, is a large contributor to our daily protein intake. Casein and whey differ in absorption and digestion rates, with casein being a “slow” protein and whey being a “fast” protein. In addition, they differ in amino acid composition. This review examines whether casein, whey, and other protein sources exert different metabolic effects and targets to clarify the underlying mechanisms. Data indicate that whey is more satiating in the short term, whereas casein is more satiating in the long term. In addition, some studies indicate that whey stimulates the secretion of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide more than other proteins. However, for the satiety (cholecystokinin and peptide YY) and hunger-stimulating (ghrelin) hormones, no clear evidence exists that 1 protein source has a greater stimulating effect compared with others. Likewise, no clear evidence exists that 1 protein source results in higher diet-induced thermogenesis and promotes more beneficial changes in body weight and composition compared with other protein sources. However, data indicate that amino acid composition, rate of absorption, and protein/food texture may be important factors for protein-stimulated metabolic effects. PMID:23858091

  18. Use of immobilised biocatalysts in the processing of cheese whey.

    PubMed

    Kosseva, Maria R; Panesar, Parmjit S; Kaur, Gurpreet; Kennedy, John F

    2009-12-01

    Food processing industry operations need to comply with increasingly more stringent environmental regulations related to the disposal or utilisation of by-products and wastes. These include growing restrictions on land spraying with agro-industrial wastes, and on disposal within landfill operations, and the requirements to produce end products that are stabilised and hygienic. Much of the material generated as wastes by the dairy processing industries contains components that could be utilised as substrates and nutrients in a variety of microbial/enzymatic processes, to give rise to added-value products. A good example of a waste that has received considerable attention as a source of added-value products is cheese whey. The carbohydrate reservoir of lactose (4-5%) in whey and the presence of other essential nutrients make it a good natural medium for the growth of microorganisms and a potential substrate for bioprocessing through microbial fermentation. Immobilised cell and enzyme technology has also been applied to whey bioconversion processes to improve the economics of such processes. This review focuses upon the elaboration of a range of immobilisation techniques that have been applied to produce valuable whey-based products. A comprehensive literature survey is also provided to illustrate numerous immobilisation procedures with particular emphasis upon lactose hydrolysis, and ethanol and lactic acid production using immobilised biocatalysts. PMID:19766668

  19. Effect of storage temperatures on injured escherichia coli cell populations in whey and corn meal snacks treated with a twin screw extruder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of extrusion treatment parameters on injured populations of corn meal and whey protein isolate inoculated with surrogate E. coli populations has been reported. However, information on the effect of treatment parameters on injured bacterial populations of treated corn and whey protein prod...

  20. Microspectrophotometric quantitation of nucleic acid and protein in irradiated epidermis.

    PubMed

    Conti, C J; Giménez, I B; Cabrini, R L

    1976-03-01

    Nucleic acid and proteins of newborn rat tail subjected to local X-irradiation were microspectrophotometrically studied. Feulgen, gallocyanine chrom-alum and naphthol yellow S methods were performed for demonstration of DNA, total nucleic acid and proteins respectively. The amount of proteins and total nucleic acid increases concomitantly with reactional acanthosis. However, the proteins and nucleic acid decrease as from day 3 post-irradiation. A tentative interpretation of the results would point to a giantization of the epidermic cells not only caused by aqueous imbition but also by an actual increase of the cellular protoplasm. PMID:1258094

  1. Relatedness of acyl carrier proteins shown by amino acid compositions.

    PubMed

    Walker, T A; Ernst-Fonberg, M L

    1982-01-01

    1. Relatedness among the following carrier proteins was assessed on the basis of amino acid compositions: eight acyl carrier proteins (ACP's) associated with fatty acid synthesis, ACP's associated with citrate lyase and citramalate lyase, a biotin carboxyl carrier protein and cytochrome 552. Two independent indices of amino acid composition were used. 2. The fatty acid synthesis-associated ACP's of many organisms and the lyase-associated ACP's show a high degree of relatedness among one another. 3. The ACP's show no relatedness to biotin carboxyl carrier protein or cytochrome 552. PMID:7128903

  2. Rapid detection of whey in milk powder samples by spectrophotometric and multivariate calibration.

    PubMed

    de Carvalho, Bruna Mara Aparecida; de Carvalho, Lorendane Millena; dos Reis Coimbra, Jane Sélia; Minim, Luis Antônio; de Souza Barcellos, Edilton; da Silva Júnior, Willer Ferreira; Detmann, Edenio; de Carvalho, Gleidson Giordano Pinto

    2015-05-01

    A rapid method for the detection and quantification of the adulteration of milk powder by the addition of whey was assessed by measuring glycomacropeptide protein using mid-infrared spectroscopy (MIR). Fluid milk samples were dried and then spiked with different concentrations of GMP and whey. Calibration models were developed using multivariate techniques, from spectral data. For the principal component analysis and discriminant analysis, excellent percentages of correct classification were achieved in accordance with the increase in the proportion of whey samples. For partial least squares regression analysis, the correlation coefficient (r) and root mean square error of prediction (RMSEP) in the best model were 0.9885 and 1.17, respectively. The rapid analysis, low cost monitoring and high throughput number of samples tested per unit time indicate that MIR spectroscopy may hold potential as a rapid and reliable method for detecting milk powder frauds using cheese whey. PMID:25529644

  3. Mass spectrometry detection of fraudulent use of cow whey in water buffalo, sheep, or goat Italian ricotta cheese.

    PubMed

    Camerini, Serena; Montepeloso, Emanuela; Casella, Marialuisa; Crescenzi, Marco; Marianella, Rosa Maria; Fuselli, Fabio

    2016-04-15

    Ricotta cheese is a typical Italian product, made with whey from various species, including cow, buffalo, sheep, and goat. Ricotta cheese nominally manufactured from the last three species may be fraudulently produced using the comparatively cheaper cow whey. Exposing such food frauds requires a reliable analytical method. Despite the extensive similarities shared by whey proteins of the four species, a mass spectrometry-based analytical method was developed that exploits three species-specific peptides derived from β-lactoglobulin and α-lactalbumin. This method can detect as little as 0.5% bovine whey in ricotta cheese from the other three species. Furthermore, a tight correlation was found (R(2)>0.99) between cow whey percentages and mass spectrometry measurements throughout the 1-50% range. Thus, this method can be used for forensic detection of ricotta cheese adulteration and, if properly validated, to provide quantitative evaluations. PMID:26675863

  4. [Immune stimulative potency of milk proteins].

    PubMed

    Ambroziak, Adam; Cichosz, Grazyna

    2014-02-01

    Milk proteins are characterized by the highest immune stimulative potency from among all the proteins present in human diet. Whey proteins and numerous growth factors that regulate insulin secretion, differentiation of intestine epithelium cells, and also tissue restoration, are priceless in stimulation the immune system. Lactoferrin shows the most comprehensive pro-health properties: antioxidative, anticancer, immune stimulative and even chemopreventive. Also peptides and amino acids formed from casein and whey proteins possess immune stimulative activity. The most valuable proteins, i.e. lactoferrin, immune globulins, lactoperoxidase and lisozyme, together with bioactive peptides, are resistant to pepsin and trypsin activity. This is why they maintain their exceptional biological activity within human organism. Properly high consumption of milk proteins conditions correct function of immune system, especially at children and elderly persons. PMID:24720113

  5. Production of low-cost calcium magnesium acetate (CMA) as an environmentally friendly deicer from cheese whey

    SciTech Connect

    Yang, S.T.; Zhu, H.; Li, Y.; Tang, I.C.

    1993-12-31

    About 28 billion lbs of cheese whey are being wasted in the US because of the high biological oxygen demand (BOD) of whey, disposing of surplus whey is a pollution problem. An innovative, wide-scale solution to the whey disposal problem is to use whey as a zero- or low-cost feedstock for the production of an environmentally safe, noncorrosive, road deicer-calcium magnesium acetate (CMA). CMA can be used to replace some of the 10 to 14 million tons road salt used in the North America for deicing. A novel anaerobic fermentation process is developed to produce calcium magnesium acetate (CMA) from whey permeate. A co-culture consisting of homolactic (S. lactis) and homoacetic (C. formicoaceticum) bacteria was used to convert whey lactose to lactate and then to acetate in continuous, immobilized cell bioreactors. The acetate yield from lactose was {approximately}95% (wt/wt), and the final concentration of acetic acid was 4%. The acetic acid present in the fermentation broth can be recovered by solvent-extraction with a tertiary amine and reacted with dolomitic lime (Ca/MgO) to form a concentrated (>25%) CMA solution. About 25 tons CMA can be produced from a plant processing 1 million lbs whey permeate (4.5% lactose) per day. The production costs are estimated at {approximately}$220/ton CMA, which is only about one third of the present market price for CMA deicer. Therefore, about 0.8 million tons/yr CMA deicer can be produced from the currently unused whey. This will partially fulfill market demand for economically and environmentally sound chemicals for roadway deicing. This also will provide a viable solution to the whey disposal problem currently facing many dairies in the North America.

  6. The glycemic, insulinemic and plasma amino acid responses to equi-carbohydrate milk meals, a pilot- study of bovine and human milk

    PubMed Central

    2012-01-01

    Background Dairy proteins, in particular the whey fraction, exert insulinogenic properties and facilitate glycemic regulation through a mechanism involving elevation of certain plasma amino acids, and stimulation of incretins. Human milk is rich in whey protein and has not been investigated in this respect. Method Nine healthy volunteers were served test meals consisting of human milk, bovine milk, reconstituted bovine whey- or casein protein in random order. All test meals contributed with 25g intrinsic or added lactose, and a white wheat bread (WWB) meal was used as reference, providing 25g starch. Post-prandial levels in plasma of glucose, insulin, incretins and amino acids were investigated at time intervals for up to 2 h. Results All test meals elicited lower postprandial blood glucose responses, expressed as iAUC 0–120 min compared with the WWB (P < 0.05). The insulin response was increased following all test meals, although only significantly higher after whey. Plasma amino acids were correlated to insulin and incretin secretion (iAUC 0–60 min) (P ≤ 0.05). The lowered glycemia with the test meals (iAUC 0–90 min) was inversely correlated to GLP-1 (iAUC 0–30 min) (P ≤ 0.05). Conclusion This study shows that the glycemic response was significantly lower following all milk/milk protein based test meals, in comparison with WWB. The effect appears to originate from the protein fraction and early phase plasma amino acids and incretins were involved in the insulin secretion. Despite its lower protein content, the human milk was a potent GLP-1 secretagogue and showed insulinogenic properties similar to that seen with reconstituted bovine whey-protein, possibly due to the comparatively high proportion of whey in human milk. PMID:23057765

  7. Nanotubular structures developed from whey-based α-lactalbumin fractions for food applications.

    PubMed

    Tarhan, Ozgür; Harsa, Sebnem

    2014-01-01

    Whey proteins have high nutritional value providing use in dietary purposes and improvement of technological properties in processed foods. Functionality of the whey-based α-lactalbumin (α-La) may be increased when assembled in the form of nanotubes, promising novel potential applications subject to investigation. The purpose of this study was to extract highly pure α-La from whey protein isolate (WPI) and whey powder (WP) and to construct protein nanotubes from them for industrial applications. For protein fractionation, WPI was directly fed to chromatography, however, WP was first subjected to membrane filtration and the retentate fraction, whey protein concentrate (WPC), was obtained and then used for chromatographic separation. α-La and, additionally β-Lg, were purified at the same batches with the purities in the range of 95%-99%. After enzymatic hydrolysis, WPI-based α-La produced chain-like and long nanotubules with ∼20 nm width while WPC-based α-La produced thinner, miscellaneous, and fibril-like nanostructures by self-assembly. Raman and FT-IR spectroscopies revealed that α-La fractions, obtained from both sources and the nanostructures, developed using both fractions have some structural differences due to conformation of secondary structure elements. Nanotube formation induced gelation and nanotubular gel network entrapped a colorant uniformly with a transparent appearance. Dairy-based α-La protein nanotubules could be served as alternative gelling agents and the carriers of natural colorants in various food processes. PMID:25079253

  8. Strained cycloalkynes as new protein sulfenic acid traps.

    PubMed

    Poole, Thomas H; Reisz, Julie A; Zhao, Weiling; Poole, Leslie B; Furdui, Cristina M; King, S Bruce

    2014-04-30

    Protein sulfenic acids are formed by the reaction of biologically relevant reactive oxygen species with protein thiols. Sulfenic acid formation modulates the function of enzymes and transcription factors either directly or through the subsequent formation of protein disulfide bonds. Identifying the site, timing, and conditions of protein sulfenic acid formation remains crucial to understanding cellular redox regulation. Current methods for trapping and analyzing sulfenic acids involve the use of dimedone and other nucleophilic 1,3-dicarbonyl probes that form covalent adducts with cysteine-derived protein sulfenic acids. As a mechanistic alternative, the present study describes highly strained bicyclo[6.1.0]nonyne (BCN) derivatives as concerted traps of sulfenic acids. These strained cycloalkynes react efficiently with sulfenic acids in proteins and small molecules yielding stable alkenyl sulfoxide products at rates more than 100× greater than 1,3-dicarbonyl reagents enabling kinetic competition with physiological sulfur chemistry. Similar to the 1,3-dicarbonyl reagents, the BCN compounds distinguish the sulfenic acid oxoform from the thiol, disulfide, sulfinic acid, and S-nitrosated forms of cysteine while displaying an acceptable cell toxicity profile. The enhanced rates demonstrated by these strained alkynes identify them as new bioorthogonal probes that should facilitate the discovery of previously unknown sulfenic acid sites and their parent proteins. PMID:24724926

  9. Yeast makes whey into edible oil

    SciTech Connect

    Not Available

    1980-05-19

    Researchers from Iowa State University have found that after the ultrafiltration of whey, the remaining liquid can make an excellent growth medium for yeast. The yeast can efficiently convert nutrients in the whey into an edible oil. As much as 65% of the dry weight of the yeast cells is edible oil. The fermentation is also reported to reduce the organic material in the whey liquid about 90% thereby alleviating a pollution problem.

  10. 21 CFR 184.1979 - Whey.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Chemists,” 13th ed. (1980), which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, Box 285... Substances Affirmed as GRAS § 184.1979 Whey. (a)(1) Whey. Whey is the liquid substance obtained by...

  11. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. PMID:26873273

  12. Photoaffinity labeling of retinoic acid-binding proteins.

    PubMed Central

    Bernstein, P S; Choi, S Y; Ho, Y C; Rando, R R

    1995-01-01

    Retinoid-binding proteins are essential mediators of vitamin A function in vertebrate organisms. They solubilize and stabilize retinoids, and they direct the intercellular and intracellular trafficking, transport, and metabolic function of vitamin A compounds in vision and in growth and development. Although many soluble retinoid-binding proteins and receptors have been purified and extensively characterized, relatively few membrane-associated enzymes and other proteins that interact with retinoids have been isolated and studied, due primarily to their inherent instabilities during purification. In an effort to identify and purify previously uncharacterized retinoid-binding proteins, it is shown that radioactively labeled all-trans-retinoic acid can be used as a photoaffinity labeling reagent to specifically tag two known retinoic acid-binding proteins, cellular retinoic acid-binding protein and albumin, in complex mixtures of cytosolic proteins. Additionally, a number of other soluble and membrane-associated proteins that bind all-trans-[11,12-3H]retinoic acid with high specificity are labeled utilizing the same photoaffinity techniques. Most of these labeled proteins have molecular weights that do not correspond to any known retinoid-binding proteins. Thus, photoaffinity labeling with all-trans-retinoic acid and related photoactivatable retinoids is a method that should prove extremely useful in the identification and purification of novel soluble and membrane-associated retinoid-binding proteins from ocular and nonocular tissues. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7846032

  13. Texturized dairy proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy proteins are amenable to structural modifications induced by high temperature, shear and moisture; in particular, whey proteins can change conformation to new unfolded states. The change in protein state is a basis for creating new foods. The dairy products, nonfat dried milk (NDM), whey prote...

  14. Amino acid metabolism and protein synthesis in malarial parasites*

    PubMed Central

    Sherman, I. W.

    1977-01-01

    Malaria-infected red cells and free parasites have limited capabilities for the biosynthesis of amino acids. Therefore, the principal amino acid sources for parasite protein synthesis are the plasma free amino acids and host cell haemoglobin. Infected cells and plasmodia incorporate exogenously supplied amino acids into protein. However, the hypothesis that amino acid utilization (from an external source) is related to availability of that amino acid in haemoglobin is without universal support: it is true for isoleucine and for Plasmodium knowlesi and P. falciparum, but not for methionine, cysteine, and other amino acids, and it does not apply to P. lophurae. More by default than by direct evidence, haemoglobin is believed to be the main amino acid reservoir available to the intraerythrocytic plasmodium. Haemoglobin, ingested via the cytostome, is held in food vacuoles where auto-oxidation takes place. As a consequence, haem is released and accumulates in the vacuole as particulate haemozoin (= malaria pigment). Current evidence favours the view that haemozoin is mainly haematin. Acid and alkaline proteases (identified in crude extracts from mammalian and avian malarias) are presumably secreted directly into the food vacuole. They then digest the denatured globin and the resulting amino acids are incorporated into parasite protein. Cell-free protein synthesizing systems have been developed using P. knowlesi and P. lophurae ribosomes. In the main these systems are typically eukaryotic. Studies of amino acid metabolism are exceedingly limited. Arginine, lysine, methionine, and proline are incorporated into protein, whereas glutamic acid is metabolized via an NADP-specific glutamic dehydrogenase. Glutamate oxidation generates NADPH and auxiliary energy (in the form of α-ketoglutarate). The role of red cell glutathione in the economy of the parasite remains obscure. Important goals for future research should be: quantitative assessment of the relative importance of

  15. Phosphate acceptor amino acid residues in structural proteins of rhabdoviruses.

    PubMed

    Sokol, F; Tan, K B; McFalls, M L; Madore, P

    1974-07-01

    Partial acid hydrolysates of the [(32)P]phosphate- or [(3)H]serine-labeled proteins of purified vesicular stomatitis, rabies, Lagos bat, Mokola, or spring viremia of carp virions and of purified intracellular nucleocapsids of these viruses have been analyzed by paper electrophoresis for the presence of phosphorylated amino acids. Both phosphoserine and phosphothreonine, with the former predominant, were present in virion and nucleocapsid preparations that contained phosphoproteins. An exception was the fish rhabdovirus, which contained only phosphoserine. When vesicular stomatitis or rabies virus proteins were phosphorylated in a cell-free system by the virion-associated protein kinase and analyzed for the presence of phosphorylated amino acid residues, phosphoserine was again found to be more abundant than phosphothreonine. After in vitro protein phosphorylation, another phospho-compound, possibly a third phosphoamino acid, was detected in the partial acid hydrolysates of these viruses. PMID:4365328

  16. Protein and amino acid metabolism and requirements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells of the body. Enzymes, membrane carriers, blood transport molecules, intracellular matrix, and even hair and fingernails are proteins, as are many hormones. Proteins also constitute a major portion of all membranes, and the cons...

  17. Use of cheese whey for vitamin B12 production. 3. Growth studies and dry-weight activity.

    PubMed

    Bullerman, L B; Berry, E C

    1966-05-01

    The patterns of growth and vitamin formation by Propionibacterium shermanii in whey were similar to the patterns established in other substrates. The vitamin formation was observed during the latter part of the fermentation after the organism approached maximal growth. Lactose utilization by the organism corresponded to the logarithmic-growth phase of the organism. Analyses of the dried culture showed a large increase of vitamin B(12) in the fermentation solids compared with unfermented dried whey. A feed analysis showed a notable increase of protein and a large decrease in nitrogen-free extract of the dried fermentation solid compared with dried whey. PMID:5970819

  18. 21 CFR 184.1979 - Whey.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... is the liquid substance obtained by the partial removal of water from whey, while leaving all other... substance obtained by the removal of water from whey, while leaving all other constituents in the same... Chemists,” 13th ed. (1980), which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1...

  19. 21 CFR 184.1979 - Whey.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... is the liquid substance obtained by the partial removal of water from whey, while leaving all other... substance obtained by the removal of water from whey, while leaving all other constituents in the same... Chemists,” 13th ed. (1980), which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1...

  20. MEMBRANE PROCESSING OF COTTAGE CHEESE WHEY

    EPA Science Inventory

    A full-scale whey processing plant using membranes was constructed to process 300,000 pounds per day of cottage cheese whey. The two-step system uses ultrafiltration (UF) and reverse osmosis (RO) according to a design previously demonstrated in the Phase I portion of this project...

  1. Assessment of stability of binary sweetener blend (aspartame x acesulfame-K) during storage in whey lemon beverage.

    PubMed

    Arora, Sumit; Shendurse, Ashish M; Sharma, Vivek; Wadhwa, Balbir K; Singh, Ashish K

    2013-08-01

    In the present study, artificial sweeteners-aspartame, acesulfame-K and binary sweetener blend of aspartame x acesulfame-K were assessed for stability during storage in whey lemon beverage. A solid phase extraction method using C18 cartridges was standardized for the isolation of aspartame, acesulfame-K and their degradation products in whey lemon beverage. HPLC analytical conditions were standardized over C18 column for simultaneous separation of multiple sweeteners and their degradation products in sample isolates. Storage studies revealed that increase in acidity and viscosity and decrease in pH and ascorbic acid content of artificially sweetened whey lemon beverage samples were similar to the changes occurring in control samples during storage. Analysis using HPLC showed that aspartame (added either singly or in a blend) and acesulfame-K (added in a blend) were stable in whey lemon beverage under refrigerated condition for 15 days. PMID:24425980

  2. Measuring protein-protein and protein-nucleic Acid interactions by biolayer interferometry.

    PubMed

    Sultana, Azmiri; Lee, Jeffrey E

    2015-01-01

    Biolayer interferometry (BLI) is a simple, optical dip-and-read system useful for measuring interactions between proteins, peptides, nucleic acids, small molecules, and/or lipids in real time. In BLI, a biomolecular bait is immobilized on a matrix at the tip of a fiber-optic sensor. The binding between the immobilized ligand and another molecule in an analyte solution produces a change in optical thickness at the tip and results in a wavelength shift proportional to binding. BLI provides direct binding affinities and rates of association and dissociation. This unit describes an efficient approach using streptavidin-based BLI to analyze DNA-protein and protein-protein interactions. A quantitative set of equilibrium binding affinities (K(d)) and rates of association and dissociation (k(a)/k(d)) can be measured in minutes using nanomole quantities of sample. PMID:25640894

  3. Effects of Whey Powder Supplementation on Dry-Aged Meat Quality

    PubMed Central

    2016-01-01

    The objective of this study was to determine the effect of dietary supplementation with whey powder (WP, 1g/kg feed) from weaning to slaughter (150 d) on dry-aged loin quality of pigs. Fifty-eight pigs were randomly divided into two dietary treatment groups (seven replications of four pigs per treatments). Basal diet with 0.1% whey powder was supplied to the WP group. Basal diet was used for the control group (CON). Diet whey protein did not appear to influence the moisture or protein contents. However, ash and fat contents were significantly (p<0.05) decreased in the WP group compared to the control group. Drip loss was significantly (p<0.05) lower in the WP group than that of the control group. Increasing redness with decreasing lightness was found in the inner loin of the WP group. Calcium and iron contents in the WP group were significantly higher than those in the control group. Protein degradation was higher in the WP group than that in the control group (p<0.05), whereas shear force was lower in the WP group than that in the control group (p<0.05). In conclusion, the basal diet supplemented with 0.1% whey powder influence negatively the lipid oxidation of meat whereas the texture property and mineral composition of meat from whey powder fed pigs are developed. PMID:27433111

  4. FLOW BEHAVIOR OF PROTEIN BLENDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blending proteins can increase textural strength or enhance taste or mouth feel, such as blending soy with whey to improve taste. In this study, we measured the viscosity of various combinations of six proteins (whey protein isolates, calcium caseinate, soy protein isolates, wheat gluten, egg album...

  5. Protein Ingestion Induces Muscle Insulin Resistance Independent of Leucine-Mediated mTOR Activation

    PubMed Central

    Smith, Gordon I.; Yoshino, Jun; Stromsdorfer, Kelly L.; Klein, Seth J.; Magkos, Faidon; Reeds, Dominic N.; Klein, Samuel

    2015-01-01

    Increased plasma branched-chain amino acid concentrations are associated with insulin resistance, and intravenous amino acid infusion blunts insulin-mediated glucose disposal. We tested the hypothesis that protein ingestion impairs insulin-mediated glucose disposal by leucine-mediated mTOR signaling, which can inhibit AKT. We measured glucose disposal and muscle p-mTORSer2448, p-AKTSer473, and p-AKTThr308 in 22 women during a hyperinsulinemic-euglycemic clamp procedure with and without concomitant ingestion of whey protein (0.6 g/kg fat-free mass; n = 11) or leucine that matched the amount given with whey protein (n = 11). Both whey protein and leucine ingestion raised plasma leucine concentration by approximately twofold and muscle p-mTORSer2448 by ∼30% above the values observed in the control (no amino acid ingestion) studies; p-AKTSer473 and p-AKTThr308 were not affected by whey protein or leucine ingestion. Whey protein ingestion decreased insulin-mediated glucose disposal (median 38.8 [quartiles 30.8, 61.8] vs. 51.9 [41.0, 77.3] µmol glucose/µU insulin · mL−1 · min−1; P < 0.01), whereas ingestion of leucine did not (52.3 [43.3, 65.4] vs. 52.3 [43.9, 73.2]). These results indicate that 1) protein ingestion causes insulin resistance and could be an important regulator of postprandial glucose homeostasis and 2) the insulin-desensitizing effect of protein ingestion is not due to inhibition of AKT by leucine-mediated mTOR signaling. PMID:25475435

  6. Strawberry-flavored yogurts and whey beverages: What is the sensory profile of the ideal product?

    PubMed

    Janiaski, D R; Pimentel, T C; Cruz, A G; Prudencio, S H

    2016-07-01

    This study aimed to evaluate the sensory profile and Brazilian consumers' liking of strawberry-flavored yogurts and whey beverages (fermented or nonfermented) with different fat contents that were sweetened with sugar or nonsugar sweeteners. We also determined the influence of sensory attributes on consumer preferences and the profile of the ideal product. Nonfermented whey beverages (NFWB) and "light" yogurt were less liked. The NFWB were less acidic, less viscous, and with lower smoothness of mouthcoating, sweeter and with a more intense artificial strawberry aroma (ASA) than the fermented products. Low-fat yogurts were more liked, more viscous, and had higher smoothness of mouthcoating than nonfat yogurts. Fermented-whey beverages were as liked as yogurts. Viscosity and smoothness of mouthcoating positively influenced consumer liking. The ideal product had higher levels of brightness, artificial strawberry taste, artificial strawberry aroma, and sweet taste; intermediate smoothness of mouthcoating, color, and viscosity; and low particles, acid taste, and aroma. PMID:27157581

  7. Isothermal calorimetry study of calcium caseinate and whey protein isolate edible films cross-linked by heating and gamma-irradiation.

    PubMed

    Letendre, M; D'Aprano, G; Delmas-Patterson, G; Lacroix, M

    2002-10-01

    The contribution of thermal and radiative treatments as well as the presence of some excipients, namely glycerol, carboxymethylcellulose (CMC), pectin, and agar, on the formation of protein-protein interactions as well as the formation and loss of protein-water interactions was investigated by means of differential scanning calorimetry in an isothermal mode. Protein-water interactions were assessed through measurement of the heat of the wetting parameter. Isothermal calorimetry measurements pointed out that gamma-irradiation does not favor protein-water interactions, as reflected by its endothermic contribution (P < or = 0.05) to the heat of wetting values. Although significant (P < or = 0.05), the effect of the thermal treatment on endothermic responses using isothermal calorimetry was found to be somewhat lower. Among excipients added to biofilm formulations, glycerol generated the most important losses of protein-water interactions, as inferred by its significant (P < or = 0.05) endothermic impact on the heat of wetting values. PMID:12358479

  8. Hydrolysis of lactose in whey permeate for subsequent fermentation to ethanol.

    PubMed

    Coté, A; Brown, W A; Cameron, D; van Walsum, G P

    2004-06-01

    Fermentation of lactose in whey permeate directly into ethanol has had only limited commercial success, as the yields and alcohol tolerances of the organisms capable of directly fermenting lactose are low. This study proposes an alternative strategy: treat the permeate with acid to liberate monomeric sugars that are readily fermented into ethanol. We identified optimum hydrolysis conditions that yield mostly monomeric sugars and limit formation of fermentation inhibitors such as hydroxymethyl furfural by caramelization reactions. Both lactose solutions and commercial whey permeates were hydrolyzed using inorganic acids and carbonic acid. In all cases, more glucose was consumed by secondary reactions than galactose. Galactose was recovered in approximately stoichiometric proportions. Whey permeate has substantial buffering capacity-even at high partial pressures (>5500 kPa[g]), carbon dioxide had little effect on the pH in whey permeate solutions. The elevated temperatures required for hydrolysis with CO2-generated inhibitory compounds through caramelization reactions. For these reasons, carbon dioxide was not a feasible acidulant. With mineral acids reversion reactions dominated, resulting in a stable amount of glucose released. However, the Maillard browning reactions also appeared to be involved. By applying Hammet's acidity function, kinetic data from all experiments were described by a single line. With concentrated inorganic acids, low reaction temperatures allowed lactose hydrolysis with minimal by-product formation and generated a hexose-rich solution amenable to fermentation. PMID:15453474

  9. Non-protein amino acids and neurodegeneration: the enemy within.

    PubMed

    Rodgers, Kenneth J

    2014-03-01

    Animals, in common with plants and microorganisms, synthesise proteins from a pool of 20 protein amino acids (plus selenocysteine and pyrolysine) (Hendrickson et al., 2004). This represents a small proportion (~2%) of the total number of amino acids known to exist in nature (Bell, 2003). Many 'non-protein' amino acids are synthesised by plants, and in some cases constitute part of their chemical armoury against pathogens, predators or other species competing for the same resources (Fowden et al., 1967). Microorganisms can also use selectively toxic amino acids to gain advantage over competing organisms (Nunn et al., 2010). Since non-protein amino acids (and imino acids) are present in legumes, fruits, seeds and nuts, they are ubiquitous in the diets of human populations around the world. Toxicity to humans is unlikely to have been the selective force for their evolution, but they have the clear potential to adversely affect human health. In this review we explore the links between exposure to non-protein amino acids and neurodegenerative disorders in humans. Environmental factors play a major role in these complex disorders which are predominantly sporadic (Coppede et al., 2006). The discovery of new genes associated with neurodegenerative diseases, many of which code for aggregation-prone proteins, continues at a spectacular pace but little progress is being made in identifying the environmental factors that impact on these disorders. We make the case that insidious entry of non-protein amino acids into the human food chain and their incorporation into protein might be contributing significantly to neurodegenerative damage. PMID:24374297

  10. Heat capacities of amino acids, peptides and proteins.

    PubMed

    Makhatadze, G I

    1998-04-20

    The heat capacity is one of the fundamental parameters describing thermodynamic properties of a system. It has wide applications in a number of areas such as polymer chemistry, protein folding and DNA stability. To aid the scientific community in the analysis of such data, I have compiled a database on the experimentally measured heat capacities of amino acids, polyamino acids, peptides, and proteins in solid state and in aqueous solutions. PMID:9648205

  11. Phthalic acid chemical probes synthesized for protein-protein interaction analysis.

    PubMed

    Liang, Shih-Shin; Liao, Wei-Ting; Kuo, Chao-Jen; Chou, Chi-Hsien; Wu, Chin-Jen; Wang, Hui-Min

    2013-01-01

    Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid) is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP). According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES) was deposited on silicon dioxides (SiO2) particles and phthalate chemical probes were manufactured from phthalic acid and APTES-SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells) to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA) software showed that these chemical probes were a practical technique for protein-protein interaction analysis. PMID:23797655

  12. HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO. MR Blanton and ES Hunter. Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC, USA.
    Sponsor: JM Rogers.
    Haloacetic Acids (HAAs) formed during the disinfection process are present in drin...

  13. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads

    PubMed Central

    Baruah, Anupaul; Rani, Pooja; Biswas, Parbati

    2015-01-01

    This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory’s isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method. PMID:26138206

  14. Anaerobic in situ biodegradation of TNT using whey as an electron donor: a case study.

    PubMed

    Innemanová, Petra; Velebová, Radka; Filipová, Alena; Čvančarová, Monika; Pokorný, Petr; Němeček, Jan; Cajthaml, Tomáš

    2015-12-25

    Contamination by 2,4,6-trinitrotoluene (TNT), an explosive extensively used by the military, represents a serious environmental problem. In this study, whey has been selected as the most technologically and economically suitable primary substrate for anaerobic in situ biodegradation of TNT. Under laboratory conditions, various additions of whey, molasses, acetate and activated sludge as an inoculant were tested and the process was monitored using numerous chemical analyses including phospholipid fatty acid analysis. The addition of whey resulted in the removal of more than 90% of the TNT in real contaminated soil (7 mg kg(-1) and 12 mg kg(-1) of TNT). The final bioremediation strategy was suggested on the basis of the laboratory results and tested under real conditions at a TNT contaminated site in the Czech Republic. During the pilot test, three repeated injections of whey suspension into the sandy aquifer were performed over a 10-month period. In total, approximately 5m(3) of whey were used. A substantial decrease in the TNT groundwater concentration from the original levels (equalling 1.49 mg l(-1) to 8.58 mg l(-1)) was observed in most of the injection wells, while the concentrations of the TNT biotransformation products were found to be elevated. Pilot-scale application results showed that the anoxic and/or anaerobic conditions in the aquifer were sufficient for TNT bio-reduction by autochthonous microorganisms. Whey application was not accompanied by undesirable effects such as a substantial decrease in the pH or clogging of the wells. The results of the study document the suitability of application of whey to bioremediate TNT contaminated sites in situ. PMID:25882606

  15. Identifying Key Attributes for Protein Beverages.

    PubMed

    Oltman, A E; Lopetcharat, K; Bastian, E; Drake, M A

    2015-06-01

    This study identified key attributes of protein beverages and evaluated effects of priming on liking of protein beverages. An adaptive choice-based conjoint study was conducted along with Kano analysis to gain insight on protein beverage consumers (n = 432). Attributes evaluated included label claim, protein type, amount of protein, carbohydrates, sweeteners, and metabolic benefits. Utility scores for levels and importance scores for attributes were determined. Subsequently, two pairs of clear acidic whey protein beverages were manufactured that differed by age of protein source or the amount of whey protein per serving. Beverages were evaluated by 151 consumers on two occasions with or without priming statements. One priming statement declared "great flavor," the other priming statement declared 20 g protein per serving. A two way analysis of variance was applied to discern the role of each priming statement. The most important attribute for protein beverages was sweetener type, followed by amount of protein, followed by type of protein followed by label claim. Beverages with whey protein, naturally sweetened, reduced sugar and ≥15 g protein per serving were most desired. Three consumer clusters were identified, differentiated by their preferences for protein type, sweetener and amount of protein. Priming statements positively impacted concept liking (P < 0.05) but had no effect on overall liking (P > 0.05). Consistent with trained panel profiles of increased cardboard flavor with higher protein content, consumers liked beverages with 10 g protein more than beverages with 20 g protein (6.8 compared with 5.7, P < 0.05). Protein beverages must have desirable flavor for wide consumer appeal. PMID:25943857

  16. A Soluble, Folded Protein without Charged Amino Acid Residues.

    PubMed

    Højgaard, Casper; Kofoed, Christian; Espersen, Roall; Johansson, Kristoffer Enøe; Villa, Mara; Willemoës, Martin; Lindorff-Larsen, Kresten; Teilum, Kaare; Winther, Jakob R

    2016-07-19

    Charges are considered an integral part of protein structure and function, enhancing solubility and providing specificity in molecular interactions. We wished to investigate whether charged amino acids are indeed required for protein biogenesis and whether a protein completely free of titratable side chains can maintain solubility, stability, and function. As a model, we used a cellulose-binding domain from Cellulomonas fimi, which, among proteins of more than 100 amino acids, presently is the least charged in the Protein Data Bank, with a total of only four titratable residues. We find that the protein shows a surprising resilience toward extremes of pH, demonstrating stability and function (cellulose binding) in the pH range from 2 to 11. To ask whether the four charged residues present were required for these properties of this protein, we altered them to nontitratable ones. Remarkably, this chargeless protein is produced reasonably well