Science.gov

Sample records for acidified forested catchment

  1. Seasonal isotope hydrology of Appalachian forest catchments

    Treesearch

    D. R. DeWalle; P. J. Edwards; B. R. Swistock; R. J. Drimmie; R. Aravena

    1995-01-01

    Seasonal hydrologic behavior of small forested catchments in the Appalachians was studied using oxygen-18 as a tracer. Oxygen-18 in samples of precipitation and streamflow were used to determine seasonal variations of subsurface water recharge and movement within two 30-40 ha forest catchments (Watershed 3 and 4) at the Fernow Experimental Forest in northcentral West...

  2. Hydrogeochemical responses of forested catchments

    NASA Astrophysics Data System (ADS)

    Robbins Church, M.; Hornberger, George; Driscoll, Charles; Sklash, Michael; Hemond, Harold

    The AGU Chapman Conference on Hydrogeochemical Responses of Forested Catchments was held September 18-21, 1989, in Bar Harbor, Maine, and brought together geochemists with interests in determining the effects of different geochemical processes on resulting surface water chemistry and hydrologists with interests in explaining flow generation in catchments with the aim of fostering better communication between the two groups on the topic of geochemical and hydrological interactions in intermediate-size watersheds. An important point of consideration was the emphasis on intermediate-size watersheds, which we defined operationally as watersheds of sufficient size to yield flow and habitat suitable for supporting at least a marginal recreational fishery, for example, on the order of at least a few square kilometers in the northeast United States. This emphasis is important because it is the potential effects of pollutants, as modified by watershed geochemical and hydrological processes, in watersheds of this scale that drive much of the concern of the nation's regulatory agencies with regard to adverse environmental effects and required water quality legislation. A good example of this is the current concern over potential adverse effects of acidic deposition on surface water quality, especially in streams that support upland sport fisheries.

  3. Nitrogen budgets on Appalachian forest catchments

    Treesearch

    David R. DeWalle

    1997-01-01

    Variations in nitrogen losses in streamflow on catchments in the Appalachians suggests that the level of nitrogen retention in hardwood forests varies widely. Stream losses of dissolved nitrate-N on several small experimental forested catchments range from about 0.2 to 8.5 kg ha-1 y-1. This wide range of losses is equivalent to less than 10% to nearly 100% of measured...

  4. Runoff responses to forest thinning at plot and catchment scales in a headwater catchment draining Japanese cypress forest

    NASA Astrophysics Data System (ADS)

    Dung, Bui Xuan; Gomi, Takashi; Miyata, Shusuke; Sidle, Roy C.; Kosugi, Kenichiro; Onda, Yuichi

    2012-06-01

    SummaryWe examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catchment M5), and left the control catchment (M4) untreated. In both catchments, we monitored overland flow from hillslope plots and stream runoff from catchments at basin outlets over a 2-year pre-thinning period and a 2-year post-thinning period. Paired catchment analysis revealed that annual catchment runoff increased 240.7 mm after thinning. Delayed runoff increased significantly, while quick runoff followed similar patterns in the pre- and post-thinning periods. Flow duration in the ephemeral channel in catchment M5 increased from 56.9% in the pre-thinning period to 73.3% in the post-thinning period. Despite the changes in hydrological responses at the catchment scale, increases in overland flow were not significant. The increased availability of water in the soil matrix, caused by decreased interception loss and evapotranspiration, increased base flow after thinning. Based on the summarized data of previous studies together with this study, the effects of forest thinning on increases in runoff were less than partial harvesting in which the managed areas were concentrated within a watershed. We demonstrated that the effect of forest thinning was strongly scale dependent, an important finding for optimizing water and forest management in forested watersheds.

  5. [Effect of limestone and magnesite application on remediation of acidified forest soil in Chongqing, China].

    PubMed

    Yang, Yong-sen; Duan, Lei; Jin, Teng; Zhao, Da-wei; Zhang, Dong-bao; Hao, Ji-ming

    2006-09-01

    Effect of limestone and magnesite application on remediation of a typical acidified soil under a masson pine (Pinus massoniana) forest at Tieshanping, Chongqing in southwest China was studied through field experiments. The changes of soil water chemistry in different layers within one year after application of limestone or magnesite indicated that the remediation agents leaded to the recovery of acidified soil by significant increase of pH value and concentration of relative cation, i.e., Ca2+ or Mg2+, and notable decrease of inorganic monomeric aluminum (Ali). However, the accelerated leaching of NO3- and SO4(2-) might somewhat counteract the positive effects. Since the limestone powder applied was much finer and thus more soluble than the magnesite powder, it seemed that the addition of limestone was more effective than that of magnesite. However, the application of magnesite could probably improve the nutrient uptake and growth of plant, and thus limestone and magnesite should be used together. The change of soil water chemistry was much more notable in upper layer of soil than lower, which means that it will take long time to achieve the whole profile soil remediation.

  6. Drivers of atmospheric nitrate processing and export in forested catchments

    Treesearch

    Lucy A. Rose; Stephen D. Sebestyen; Emily M. Elliott; Keisuke. Koba

    2015-01-01

    Increased deposition of reactive atmospheric N has resulted in the nitrogen saturation of many forested catchments worldwide. Isotope-based studies from multiple forest sites report low proportions (mean = ~10%) of unprocessed atmospheric nitrate in streams during baseflow, regardless of N deposition or nitrate export rates. Given similar proportions of...

  7. Multiple use forest management in a catchment context

    Treesearch

    Wayne T. Swank

    1998-01-01

    Over the past several decades there has been an acceleration of needs, uses, and expectations of forest lands in many countries. Indeed, foresters in the United States are faced with exciting opportunities to provide answers on complex issues of planning, policy, and science related to multiple use management. Integrated catchment management provides a powerful...

  8. Runoff Responses to Forest Thinning at Plot and Catchment Scales in a Headwater Catchment Draining Japanese Cypress Forest

    EPA Science Inventory

    We examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catc...

  9. Runoff Responses to Forest Thinning at Plot and Catchment Scales in a Headwater Catchment Draining Japanese Cypress Forest

    EPA Science Inventory

    We examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catc...

  10. Leaching of nitrogen from forested catchments in Finland

    NASA Astrophysics Data System (ADS)

    Kortelainen, Pirkko; Saukkonen, Sari; Mattsson, Tuija

    1997-12-01

    This study provides an assessment on the spatial variability of the long-term leaching (8-23 years) of nitrogen and organic carbon from 22 forested catchments (0.69-56 km2). The catchments are located throughout Finland excluding the northernmost regions. The Kruunuoja catchment is located in a national park; the other catchments represent typical Finnish forestry land. The leaching from the 21 forestry land catchments can be considered to represent average leaching from Finnish forestry land since the most important forestry practices (ditching, clear-cutting, scarification, and fertilization) since the 1960s have affected about 2.4% of the catchment area per year (compare 2.5% in the entire country in 1980 and 2% in 1991). Moreover, the mean annual runoff from the catchments, 230-420 mm yr-1, agree with the mean annual runoff from Finland (301 mm yr-1 from 1931 to 1990). The major part of the nitrogen transported from the catchments consisted of organic nitrogen (on average 79%). The average inorganic nitrogen proportion ((NO3-N + NH4-N)/Ntot) was lowest (7.3%) in the Kruunuoja catchment and was highest (54%) in the southernmost Teeressuonoja catchment located in the highest anthropogenic nitrogen deposition area. The median C/N ratio in the study streams was high, ranging from 34 to 66. Nitrate leaching from the catchments varied between 2.8 (Kruunuoja) and 100 kg km-2 yr-1 (Teeressuonoja) and was negatively related to C/N ratio in stream water and latitude. The stepwise multiple regression model selected C/N ratio and nitrogen deposition which together explained 72% of the variation in NO3-N leaching. Retention of NO3-N deposition (calculated as ((input-output)/input) was high in all catchments, ranging from 0.99 in Kruunuoja to 0.67 in Teeressuonoja.

  11. Effects of model structure and catchment discretization on discharge simulation in a small forest catchment

    NASA Astrophysics Data System (ADS)

    Spieler, Diana; Schwarze, Robert; Schütze, Niels

    2017-04-01

    In the past a variety of different modeling approaches has been developed in catchment hydrology. Even though there is no argument on the relevant processes taking place, there is no unified theory on how best to represent them computationally. Thus a vast number of models has been developed, varying from lumped models to physically based models. Most of them have a more or less fixed model structure and follow the "one fits all" paradigm. However, a more flexible approach could improve model realism by designing catchment specific model structures based on data availability. This study focuses on applying the flexible hydrological modelling framework RAVEN (Craig et al., 2013), to systematically test several conceptual model structures on the 19 km2 Große Ohe Catchment in the Bavarian Forest (Germany). By combining RAVEN with the DREAM algorithm (Vrugt et al., 2009), the relationship between catchment characteristics, model structure, parameter uncertainty and data availability are analyzed. The model structure is progressively developed based on the available data of the well observed forested catchment area. In a second step, the impact of the catchment discretization is analyzed by testing different spatial resolutions of topographic input data.

  12. Sediment dynamics in an overland flow-prone forest catchment

    NASA Astrophysics Data System (ADS)

    Zimmermann, Alexander; Elsenbeer, Helmut

    2010-05-01

    Vegetation controls erosion in many respects, and it is assumed that forest cover is an effective control. Currently, most literature on erosion processes in forest ecosystems support this impression and estimates of sediment export from forested catchments serve as benchmarks to evaluate erosion processes under different land uses. Where soil properties favor near-surface flow paths, however, vegetation may not mitigate surface erosion. In the forested portion of the Panama Canal watershed overland flow is widespread and occurs frequently, and indications of active sediment transport are hard to overlook. In this area we selected a 9.7 ha catchment for a high-resolution study of suspended sediment dynamics. We equipped five nested catchments to elucidate sources, drivers, magnitude and timing of suspended sediment export by continuous monitoring of overland flow and stream flow and by simultaneous, event-based sediment sampling. The support program included monitoring throughfall, splash erosion, overland-flow connectivity and a survey of infiltrability, permeability, and aggregate stability. This dataset allowed a comprehensive view on erosion processes. We found that overland flow controls the suspended-sediment dynamics in channels. Particularly, rainfalls of high intensity at the end of the rainy season have a superior impact on the overall sediment export. During these events, overland flow occurs catchment-wide up to the divide and so does erosion. With our contribution we seek to provide evidence that forest cover and large sediment yields are no contradiction in terms even in the absence of mass movements.

  13. Trends in stream nitrogen concentrations for forested reference catchments across the USA

    Treesearch

    A. Argerich; S.L. Johnson; S.D. Sebestyen; C.C. Rhoades; E. Greathouse; J.D. Knoepp; M.B. Adams; G.E. Likens; J.L. Campbell; W.H. McDowell; F.N. Scatena; G.G. Ice

    2013-01-01

    To examine whether stream nitrogen concentrations in forested reference catchments have changed over time and if patterns were consistent across the USA, we synthesized up to 44 yr of data collected from 22 catchments at seven USDA Forest Service Experimental Forests. Trends in stream nitrogen presented high spatial variability both among catchments at a site and among...

  14. Quantitative generalizations for catchment sediment yield following forest logging

    Treesearch

    James C. Bathurst; Andrés Iroumé

    2014-01-01

    Published data for temperate forests across the world are analyzed to investigate the potential for generalized quantitative expressions of catchment sediment yield impact in the years immediately following logging. Such generalizations would be useful in a variety of forestry and engineering tasks and would aid the spread of knowledge amongst both relevant...

  15. Catchment hydrological responses to forest harvest amount and spatial pattern

    Treesearch

    Alex Abdelnour; Marc Stieglitz; Feifei Pan; Robert. McKane

    2011-01-01

    Forest harvest effects on streamflow generation have been well described experimentally, but a clear understanding of process-level hydrological controls can be difficult to ascertain from data alone. We apply a new model, Visualizing Ecosystems for Land Management Assessments (VELMA), to elucidate how hillslope and catchment-scale processes control stream discharge in...

  16. Effects of calcite and magnesite application to a declining Masson pine forest on strongly acidified soil in Southwestern China.

    PubMed

    Huang, Yongmei; Kang, Ronghua; Ma, Xiaoxiao; Qi, Yu; Mulder, Jan; Duan, Lei

    2014-05-15

    Liming of strongly acidified soil under a Masson pine (Pinus massoniana Lamb.) forest was studied through a seven-year field manipulation experiment at Tieshanping, Chongqing in Southwestern China. To distinguish between the individual effects of Ca(2+) and Mg(2+) addition, we separately applied calcite (CaCO3) and magnesite (MgCO3), rather than using dolomite [CaMg(CO3)2]. Both calcite and magnesite additions caused a significant increase in pH and a decrease in dissolved inorganic monomeric aluminium (Ali) concentration of soil water. Ecological recovery included increases of herb biomass (both treatments) and Mg content in Masson pine needles (magnesite treatment only). However, the growth rate of Masson pine did not increase under either treatment, possibly because of nutrient imbalance due to phosphorus (P) deficiency or limited observation period. In China, acid deposition in forest ecosystems commonly coincides with large inputs of atmogenic Ca(2+), both enhancing Mg(2+) leaching. Calcite addition may further decrease the Mg(2+) availability in soil water, thereby exacerbating Mg(2+) deficiency in the acidified forest soils of southern and southwestern China. The effect of anthropogenic acidification of naturally acid forest soils on P availability needs further study. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Factors controlling mercury transport in an upland forested catchment

    USGS Publications Warehouse

    Scherbatskoy, T.; Shanley, J.B.; Keeler, G.J.

    1998-01-01

    Total mercury (Hg) deposition and input/output relationships were investigated in an 11-ha deciduous forested catchment in northern Vermont as part of ongoing evaluations of rig cycling and transport in the Lake Champlain basin. Atmospheric Hg deposition (precipitation + modeled vapor phase downward flux) was 425 mg ha-1 during the one-year period March 1994 through February 1995 and 463 mg ha-1 from March 1995 through February 1996. In the same periods, stream export of total Hg was 32 mg ha-1 and 22 mg ha-1, respectively. Thus, there was a net retention of Hg by the catchment of 92% the first year and 95% the second year. In the first year, 16.9 mg ha-1 or about half of the annual stream export, occurred on the single day of peak spring snowmelt in April. In contrast, the maximum daily export in the second year, when peak stream flow was somewhat lower, was 3.5 mg ha-1 during a January thaw. The fate of file Hg retained by this forested catchment is not known. Dissolved (< 0.22 ??m) Hg concentrations in stream water ranged from 0.5-2.6 ng L-1, even when total (unfiltered) concentrations were greater than 10 ng L-1 during high flow events. Total Hg concentrations in stream water were correlated with the total organic fraction of suspended sediment, suggesting the importance of organic material in Hg transport within the catchment. High flow events and transport with organic material may be especially important mechanisms for the movement of Hg through forested ecosystems.

  18. Effect of landscape form on export of dissolved organic carbon, iron, and phosphorus from forested stream catchments

    NASA Astrophysics Data System (ADS)

    Dillon, P. J.; Molot, L. A.

    1997-11-01

    Predicting the effects of climate change and atmospheric deposition on water quality requires predicting the effects of landscape form on export of substances downstream. In this paper, we present dissolved organic carbon (DOC), total phosphorus (TP), and iron (Fe) export data (1980-1992) for 20 relatively undisturbed, forested catchments draining into seven lakes in central Ontario and develop regression models of chemical export as functions of landscape composition. The extent of wetlands was correlated with export of DOC and TP; the proportion of the catchment covered by peatlands accounted for 78% of the variance in a regression model of long-term average DOC export and 76% of the variance in a model of color "export." Peatland coverage and Fe export together explained 76% of the variance in a long-term average TP export model, which is consistent with published experimental evidence that Fe facilitates P complexation with DOC in surface waters. The long-term average Fe export model was not significant when all 20 catchments were included. However, Fe export from the 14 catchments with thin tills was a function only of peatland coverage (R2 = 0.71), suggesting that Fe export is dependent to a large extent upon either the export of organic material or the reducing conditions. The long-term export models worked well when export of a substance was dominated by peatlands but was not very sensitive to the influence of mineral soils. The long-term average TP/DOC ratio was remarkably constant among most whole-lake catchments, ranging from 1.4 to 2.0 mg P/g C, the exception being the catchment of anthropogenically acidified Plastic Lake with a ratio of 0.8. Fe export to Plastic lake was also enriched relative to TP export compared with the other lakes. Therefore TP export to Plastic Lake may be limited by some mechanism related to acidification.

  19. Fate of organic contaminants in a boreal forest catchment

    NASA Astrophysics Data System (ADS)

    Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Ågren, Anneli; Laudon, Hjalmar; Köhler, Stephan; Jones, Kevin; Tysklind, Mats; Wiberg, Karin

    2010-05-01

    The aim of the study was to investigate and predict the impact of hydrological and atmospheric processes on the mobilisation of contaminants in a remote catchment where the major input is related to diffuse pollution. The project included priory substances according to the European water framework directive (WFD), such as the persistent organic pollutants (POPs) HCB, PCBs and dioxins. The study was conducted at a well-characterised catchment system in northern Sweden dominated by two landscape types: forest and mire. Chemical analyses of POPs in forest soil and mire peat at various depths were performed. Evaluation of POP composition by principal component analysis (PCA) showed distinct differences between surface and deeper samples. This was attributed to vertical transport, degradation and/or shifting sources over time. The calculated net vertical transport differed between surface (0.3% of the pollutant reservoir) and deeper soils (8.0 %), suggesting that vertical transport conditions and processes differ in the deeper layers compared to the surface layers.The fate of POPs in soils and waters was explored through the development of a chemical fate model. The northerly location of the studied catchment enabled a study on the impact of spring snow melt and associated hydrological processes on contaminant mobilization. Input was based on bulk atmospheric deposition and was dominated by accumulation in the winter snowpack. The model considered air-soil exchange and accumulation in forest and mire soil as well as export of dissolved and particle-bound POPs from soil to catchment surface water. The predicted export of POPs to catchment surface waters was up to 40 times higher the during snow melt period (three week during April/May) compared to the snow covered period (approximately 4 months), highlighting the importance of the seasonal snow pack as a source of these chemicals. Release from soils was governed by the POP concentration in soil, the fraction of soil

  20. Phytotoxic substances in runoff from forested catchment areas

    NASA Astrophysics Data System (ADS)

    Grimvall, Anders; Bengtsson, Maj-Britt; Borén, Hans; Wahlström, Dan

    Runoff from different catchment areas in southern Sweden was tested in a root bioassay based on solution cultures of cucumber seedlings. Water samples from agricultural catchment areas produced no signs at all or only weak signs of inhibited root growth, whereas several water samples from catchment areas dominated by mires or coniferous forests produced visible root injuries. The most severe root injuries (very short roots, discolouration, swelling of root tips and lack of root hairs) were caused by samples from a catchment area without local emissions and dominated by old stands of spruce. Fractionation by ultrafiltration showed that the phytotoxic effect of these samples could be attributed to organic matter with a nominal molecular-weight exceeding 1000 or to substances associated with organic macromolecules. Experiments aimed at concentrating phytotoxic compounds from surface water indicated that the observed growth inhibition was caused by strongly hydrophilic substances. Previous reports on phytotoxic, organic substances of natural origin have emphasized interaction between plants growing close together. The presence of phytotoxic substances in runoff indicates that there is also a large-scale dispersion of such compounds.

  1. Landscape dynamics in the Otterbach catchment (Bavarian Forest, Southern Germany)

    NASA Astrophysics Data System (ADS)

    Schwindt, Daniel; Scheck, Sebastian; Scholz, Emanuel; Waltl, Peter; Völkel, Jörg

    2017-04-01

    As part of the TUM-CZO (TU-Munich Critical Zone Observatory), the Otterbach Valley has been focus of numerous research approaches, focusing on soil carbon dynamics, hydrological processes as well as landscape dynamics. Aim of this contribution is the reconstruction of the landscape evolution of the Otterbach catchment in context with anthropogenic land use and natural process dynamics. Therefore, studies focus on alluvial and colluvial sediments which are usually regarded as correlated with anthropogenically induced erosion. Located in the western Bavarian Forest the Otterbach is a creek of 2nd stream order and runs directly into the Danube River. Geologically, most parts of the catchment are composed of granitic rocks, mylonites and saprolites. While agricultural land use is dominant in the upper and lower reaches of the Otterbach, the steep middle reaches are forested, floodplains are used as grasslands. Settlement history points out that the forest of the so-called "Thiergarten", covering large parts of the catchment, has been used invariably for forestry, makes this study site valuable for the reconstruction of anthropogenic impact on landscape evolution. Characterization of the shallow subsurface is based on the analysis of soil pits (up to 2 m depth), core samples (up to 18 m depth) and geophysical measurements (electrical resistivity tomography, seismic refraction tomography). Temporal contextualization of sediments is achieved using radiocarbon dating. As a result of illuvial processes, clay curtains are observed almost continuously up to 18 m depth within the slope sediments, suggesting a genesis during Pleistocene warm stages. Radiocarbon dating in the alluvial floodplain point to pronounced sedimentary relocation processes between around 2.400 and 1.000 BP. This emphasizes the importance of naturally caused process dynamics as population density in the surroundings of the Otterbach catchment was low during this period and the area was mostly forested

  2. Export of arsenic from forested catchments under easing atmospheric pollution

    SciTech Connect

    Lucie Erbanova; Martin Novak; Daniela Fottova; Barbora Dousova

    2008-10-01

    Massive lignite burning in Central European power plants peaked in the 1980s. Dissolved arsenic in runoff from upland forest ecosystems is one of the ecotoxicological risks resulting from power plant emissions. Maxima in As concentrations in runoff from four forest catchments have increased 2-5 times between 1995 and 2006, and approach the drinking water limit (10 {mu}g L{sup -1}). To assess the fate of anthropogenic As, we constructed input/output mass balances for three polluted and one relatively unpolluted forest catchment in the Czech Republic, and evaluated the pool size of soil As. The observation period was 11 years, and the sites spanned a 6-fold As pollution gradient. Two of the polluted sites exhibit large net As export via runoff solutes (mean of 4-5 g As ha{sup -1} yr{sup -1} for the 11-year period; up to 28 g As ha{sup -1} yr{sup -1} in 2005). This contrasts with previous studies which concluded that forest catchments are a net sink for atmogenic arsenic both at times of increasing and decreasing pollution. The amount of exported As is not correlated with the total As soil pool size, which is over 78% geogenic in origin, but correlates closely with water fluxes via runoff. Net arsenic release is caused by an interplay of hydrological conditions and retreating acidification which may mobilize arsenic by competitive ligand exchange. The effects of droughts and other aspects of climate change on subsequent As release from soil were not investigated. Between-site comparisons indicate that most pollutant As may be released from humus. 24 refs., 7 figs., 1 tab.

  3. Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover

    NASA Astrophysics Data System (ADS)

    Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-09-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response

  4. US Forest Service Experimental Forests and Ranges Network: a continental research platform for catchment-scale research

    Treesearch

    Daniel Neary; Deborah Hayes; Lindsey Rustad; James Vose; Gerald Gottfried; Stephen Sebesteyn; Sherri Johnson; Fred Swanson; Mary Adams

    2012-01-01

    The US Forest Service initiated its catchment research program in 1909 with the first paired catchment study at Wagon Wheel Gap, Colorado, USA. It has since developed the Experimental Forests and Ranges Network, with over 80 long-term research study sites located across the contiguous USA, Alaska, Hawaii, and the Caribbean. This network provides a unique, powerful...

  5. The hydrological regime of a forested tropical Andean catchment

    NASA Astrophysics Data System (ADS)

    Clark, K. E.; Torres, M. A.; West, A. J.; Hilton, R. G.; New, M.; Horwath, A. B.; Fisher, J. B.; Rapp, J. M.; Robles Caceres, A.; Malhi, Y.

    2014-12-01

    The hydrology of tropical mountain catchments plays a central role in ecological function, geochemical and biogeochemical cycles, erosion and sediment production, and water supply in globally important environments. There have been few studies quantifying the seasonal and annual water budgets in the montane tropics, particularly in cloud forests. We investigated the water balance and hydrologic regime of the Kosñipata catchment (basin area: 164.4 km2) over the period 2010-2011. The catchment spans over 2500 m in elevation in the eastern Peruvian Andes and is dominated by tropical montane cloud forest with some high-elevation puna grasslands. Catchment-wide rainfall was 3112 ± 414 mm yr-1, calculated by calibrating Tropical Rainfall Measuring Mission (TRMM) 3B43 rainfall with rainfall data from nine meteorological stations in the catchment. Cloud water input to streamflow was 316 ± 116 mm yr-1 (9.2% of total inputs), calculated from an isotopic mixing model using deuterium excess (Dxs) and δD of waters. Field streamflow was measured in 2010 by recording height and calibrating to discharge. River run-off was estimated to be 2796 ± 126 mm yr-1. Actual evapotranspiration (AET) was 688 ± 138 mm yr-1, determined using the Priestley and Taylor-Jet Propulsion Laboratory (PT-JPL) model. The overall water budget was balanced within 1.6 ± 13.7%. Relationships between monthly rainfall and river run-off follow an anticlockwise hysteresis through the year, with a persistence of high run-off after the end of the wet season. The size of the soil and shallow groundwater reservoir is most likely insufficient to explain sustained dry-season flow. Thus, the observed hysteresis in rainfall-run-off relationships is best explained by sustained groundwater flow in the dry season, which is consistent with the water isotope results that suggest persistent wet-season sources to streamflow throughout the year. These results demonstrate the importance of transient groundwater storage in

  6. Stormflow generation: A meta-analysis of field evidence from small, forested catchments

    NASA Astrophysics Data System (ADS)

    Barthold, Frauke K.; Woods, Ross A.

    2015-05-01

    Combinations of runoff characteristics are commonly used to represent distinct conceptual models of stormflow generation. In this study, three runoff characteristics: hydrograph response, time source of runoff water, and flow path are used to classify catchments. Published data from the scientific literature are used to provide evidence from small, forested catchments. Each catchment was assigned to one of the eight conceptual models, depending on the combination of quick/slow response, old/new water, and overland/subsurface flow. A standard procedure was developed to objectively diagnose the predominant conceptual model of stormflow generation for each catchment and assess its temporal and spatial support. The literature survey yielded 42 catchments, of which 30 catchments provide a complete set of qualitative runoff characteristics resulting in one of the eight conceptual models. The majority of these catchments classify as subsurface flow path dominated. No catchments were found for conceptual models representing combinations of quick response-new water-subsurface flow (SSF), slow-new-SSF, slow-old-overland flow (OF) nor new-slow-OF. Of the 30 qualitatively classified catchments, 24 provide a complete set of quantitative measures. In summary, the field support is strong for 19 subsurface-dominated catchments and is weak for 5 surface flow path dominated catchments (six catchments had insufficient quantitative data). Two alternative explanations exist for the imbalance of field support between the two flow path classes: (1) the selection of research catchments in past field studies was mainly to explain quick hydrograph response in subsurface dominated catchments; (2) catchments with prevailing subsurface flow paths are more common in nature. We conclude that the selection of research catchments needs to cover a wider variety of environmental conditions which should lead to a broader, and more widely applicable, spectrum of resulting conceptual models and process

  7. An ecohydrological framework for water yield changes of forested catchments due to forest decline and soil acidification

    SciTech Connect

    Caspary, H.J. )

    1990-06-01

    The effect of forest decline on water resources is not well described, for there have been no long-term measurements on catchments with declining forests. The precipitation/runoff relationship of the declining forests of the Eyach catchment in the Northern Black Forest/Federal Republic of Germany is analyzed. The uninhabited catchment is subdivided into four subcatchments (7, 10, 30, 52 km{sup 2}) and is totally covered with coniferous forest, mostly Norway spruce. Long-term monitoring from 1973 to 1986 indicates a significant increase in water yield and the runoff coefficient for the growing season, although there has been no extensive cutting in the catchment. An ecohydrological systems model was developed by the incorporation of field data and plant physiological processes to describe the increase in water yield. Field data include hydrological, hydrogeological, geological, soil-physical, soil-chemical, water-chemical, air-chemical, pollutant deposition, forest inventory, and forest decline field measurements from the Eyach catchment and comparable neighboring regions. The model indicates that the observed increase in water yield is likely to be caused by a reduction of forest transpiration. This change in water yield is linked to forest decline and soil acidification caused by anthropogenic sources of air pollution.

  8. Peak Flow Responses and Recession Flow Characteristics After Thinning of Japanese Cypress Forest in a Headwater Catchment

    EPA Science Inventory

    We evaluated the effects of forest thinning on peak flow and recession characteristics of storm runoff in headwater catchments at Mie Prefecture, Japan. In catchment M5, 58.3% of stems were removed, whereas catchment M4 remained untreated as a control catchment. Storm precipitati...

  9. Peak Flow Responses and Recession Flow Characteristics After Thinning of Japanese Cypress Forest in a Headwater Catchment

    EPA Science Inventory

    We evaluated the effects of forest thinning on peak flow and recession characteristics of storm runoff in headwater catchments at Mie Prefecture, Japan. In catchment M5, 58.3% of stems were removed, whereas catchment M4 remained untreated as a control catchment. Storm precipitati...

  10. Long-term forest paired catchment studies: What do they tell us that landscape-level monitoring does not?

    Treesearch

    Dan Neary

    2016-01-01

    Forested catchments throughout the world are known for producing high quality water for human use. In the 20th Century, experimental forest catchment studies played a key role in studying the processes contributing to high water quality. The hydrologic processes investigated on these paired catchments have provided the science base for examining water quality...

  11. pH sensitivity of Swedish forest streams related to catchment characteristics and geographical location - Implications for forest bioenergy harvest and ash return

    NASA Astrophysics Data System (ADS)

    Ågren, Anneli; Löfgren, Stefan

    2013-04-01

    Whole-tree harvesting acidifies forest soils more than conventional harvest of stems. There is concern that this excess acidification will also affect surface waters and counteract the well-documented recovery from acid deposition in streams and lakes. Here we present a first attempt to identify the landscape types within Sweden where the streams are most sensitive to acidification and potentially in need of protection from excessive biomass harvest or countermeasures such as ash application. Conservative estimates indicate that forest slash must be harvested from >30 ha to produce the amount of ash needed to restore 1 ha acidified surface water. This highlights the need for careful planning of where ash should be distributed. Streams with a high pH are well buffered by the bicarbonate system and not sensitive to a potential pH decline. Streams with a low pH are also well buffered by dissolved organic carbon and aluminum and are not likely affected by bioenergy harvest. However, streams in the intermediate pH range (5-6.2) are potentially sensitive to acidification from excess base cation removal due to whole-tree harvesting. In such streams a small change in acid neutralizing capacity (ANC) can change pH dramatically. The pH sensitivity of 218 streams in different regions (northern, central, southern, and southwest Sweden) was defined from stream water pH and related to catchment characteristics and stream water acid-base chemistry. At the national level, catchments with till soils and a large proportion of forested wetlands formed the most pH sensitive areas. Because of regional variability in acidification history, amount and distribution of quaternary deposits, vegetation cover, etc. pH sensitivity was determined by different landscape elements in different regions. For example, in northern Sweden streams draining forest mires were the most pH sensitive streams. The patchy spatial distribution of this landscape type, makes it difficult from an administrative

  12. Fluxes of inorganic carbon from two forested catchments in the Appalachian mountains

    Treesearch

    Fred Worrall; Wayne T. Swank; Tim Burt

    2005-01-01

    This study uses long-term records of stream chemistry, discharge and air temperature from two neighbouring forested catchments in the southern Appalachians in order to calculate production of dissolved C02 and dissolved inorganic carbon (DIC). One of the pair of catchments was clear-felled during the period of the study. The study shows that: (1...

  13. Quantifying soil and critical zone variability in a forested catchment through digital soil mapping

    USDA-ARS?s Scientific Manuscript database

    Quantifying catchment scale soil property variation yields insights into critical zone evolution and function. The objective of this study was to quantify and predict the spatial distribution of soil properties within a high elevation forested catchment in southern AZ, USA using a combined set of di...

  14. Effects of harvest on carbon and nitrogen dynamics in a Pacific Northwest forest catchment

    Treesearch

    Alex Abdelnour; Robert B. McKane; Marc Stieglitz; Feifei Pan; Yiwei. Cheng

    2013-01-01

    We used a new ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest on catchment carbon and nitrogen dynamics. We applied the model to a 10 ha headwater catchment in the western Oregon Cascade Range where two major disturbance events have occurred during the past 500 years: a stand-replacing fire...

  15. Effects of harvest on carbon and nitrogen dynamics in a Pacific Northwest forest catchment

    EPA Science Inventory

    We used a new ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest on catchment carbon and nitrogen dynamics. We applied the model to a 10 ha headwater catchment in the western Oregon Cascade Range where t...

  16. Effects of harvest on carbon and nitrogen dynamics in a Pacific Northwest forest catchment

    EPA Science Inventory

    We used a new ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest on catchment carbon and nitrogen dynamics. We applied the model to a 10 ha headwater catchment in the western Oregon Cascade Range where t...

  17. Seasonal changes of principal anions contents and other soil properties in acidified forest soils

    NASA Astrophysics Data System (ADS)

    Drabek, O.; Tejnecky, V.; Bradová, M.; Němeček, K.; Šebek, O.; Zenáhlíková, J.; Boruvka, L.

    2011-12-01

    Acidification of forest soil is a natural degradation process enhanced by anthropogenic activities. The depositions of principal inorganic anions are the main external acidity inputs to forest ecosystems. The aim of the study was to describe seasonal changes of sulphate and nitrate behaviour in soils and influence of their depositions on the selected forest soil properties. The following soil properties were investigated: soil pH, DOC, selected elements contents and Al species content. The Jizera Mountains area (Czech Republic) was chosen as a representative soil mountainous ecosystem affected by acidification. Soil and precipitation samples were collected at monthly intervals from April to October during the years 2008-2010 under beech and spruce stands. Prevailing soil types were classified as Alumic Cambisols under beech and Entic Podzols under spruce stands (according to FAO classification). Soil samples were collected from surface fermentation (F) and humified (H) organic horizons and subsurface B horizons (cambic or spodic). The collected soil samples were analyzed immediately in a "fresh" state. Unsieved fresh samples were extracted by deionised water and content of anions (sulphate, nitrate, chloride and fluoride) in these extracts were determined by ion-exchange chromatography (IC); the Al speciation was performed by means of HPLC/IC. The extracts were also used for determination of main elements content (Al, Ca, Mg, Ca, Na and Fe) by means of ICP-OES. Content of anions and main elements content, pH and conductivity were determined also in the precipitation samples (throughfall, stemflow and bulk). Statistically significant differences in distributions of monitored anions between the tested soil horizons were observed. The highest content of sulphate was determined in F and B horizons. On the contrary, contents of nitrate were highest in F horizons and lowest in B horizons. Higher annual variability in the investigated characteristics was proven for

  18. Sediment transport in steep forested catchments - An assessment of scale and disturbance

    NASA Astrophysics Data System (ADS)

    Hancock, G. R.; Hugo, J.; Webb, A. A.; Turner, L.

    2017-04-01

    Stream sediment loads (both bedload and suspended sediment) are problematic to measure due to the time and equipment needed. There is a dearth of such data sets globally let alone for Australia. However, such data are needed to quantify sediment transport type and rates, landscape evolution, effect of human disturbance as well as patterns and temporal response. Here we present the findings from 8 steepslope forested catchments dominated by headwater streams (size range 15-100 ha) in south-eastern Australia where both bedload and suspended load have been measured over multiple years. The results demonstrate that suspended load is the dominant component and there is no consistent suspended to bedload ratio for the catchments. The suspended sediment to bedload ratio appears to be catchment specific. There was no relationship between total load (or bedload/suspended load) and average catchment slope, stream length, shape or any geomorphic descriptor. However catchment total load was found to be significantly related to catchment area. Of the 8 catchments examined here, 6 had been harvested for timber in previous decades (with large areas of forest removed) while 2 catchments had minimal disturbance (Control catchments). There was no difference in sediment loads from the harvested and Control catchments. The results demonstrate that although land disturbance had previously occurred the management practices employed in each catchment were effective in the long term. This provides confidence that the forest harvesting and subsequent management do not produce detrimental effects in the medium to long term. An assessment of erosion rates and likely soil production rates suggests that the catchments are eroding soil at the rate it is being produced.

  19. Coupled forest growth-hydrology modelling as an instrument for the assessment of effects of forest management on hydrology in forested catchments

    NASA Astrophysics Data System (ADS)

    Sutmöller, J.; Hentschel, S.; Hansen, J.; Meesenburg, H.

    2011-03-01

    The type and intensity of forest management directly influences regional catchment hydrology. Future forest management must optimise the effects of its practices to achieve sustainable management. With scenario analysis of forestry practices, the effects of different forest utilisation strategies on the hydrology of forested catchments can be temporally and spatially quantified. The approach adopted in this study necessitated the development of an interactive system for the spatially distributed modelling of hydrology in relation to forest stand development. Consequently, a forest growth model was used to simulate stand development assuming various forest management activities. Selected simulated forest growth parameters were entered into the hydrological model to simulate water fluxes under different conditions of forest structure. The approach enables the spatially differentiated quantification of changes in the water regime (e.g. increased evapotranspiration). The results of hydrological simulations in the study area, the Oker catchment (northern Harz Mountains), show that forests contribute to the protection of water systems because they have a balancing effect on the hydrological regime. As scenario simulations also suggest, however, forestry practices can also lead to substantial changes in water budgets of forested catchments. The preservation of the hydrological services of forests requires a sustainable and long-term forest conversion on the basis of current management directives for near natural silviculture. Management strategies on basis of moderate harvesting regimes are preferred because of their limited impact on the water budget.

  20. Sulphate, nitrogen and base cation budgets at 21 forested catchments in Canada, the United States and Europe.

    PubMed

    Watmough, Shaun A; Aherne, Julian; Alewell, Christine; Arp, Paul; Bailey, Scott; Clair, Tom; Dillon, Peter; Duchesne, Louis; Eimers, Catherine; Fernandez, Ivan; Foster, Neil; Larssen, Thorjorn; Miller, Eric; Mitchell, Myron; Page, Stephen

    2005-10-01

    To assess the concern over declining base cation levels in forest soils caused by acid deposition, input-output budgets (1990s average) for sulphate (SO(4)), inorganic nitrogen (NO(3)-N; NH(4)-N), calcium (Ca), magnesium (Mg) and potassium (K) were synthesised for 21 forested catchments from 17 regions in Canada, the United States and Europe. Trend analysis was conducted on monthly ion concentrations in deposition and runoff when more than 9 years of data were available (14 regions, 17 sites). Annual average SO(4) deposition during the 1990s ranged between 7.3 and 28.4 kg ha(-1) per year, and inorganic nitrogen (N) deposition was between 2.8 and 13.8 kg ha(-1) per year, of which 41-67% was nitrate (NO(3)-N). Over the period of record, SO(4) concentration in deposition decreased in 13/14 (13 out of 14 total) regions and SO(4) in runoff decreased at 14/17 catchments. In contrast, NO(3)-N concentrations in deposition decreased in only 1/14 regions, while NH(4)-N concentration patterns varied; increasing at 3/14 regions and decreasing at 2/14 regions. Nitrate concentrations in runoff decreased at 4/17 catchments and increased at only 1 site, whereas runoff levels of NH(4)-N increased at 5/17 catchments. Decreasing trends in deposition were also recorded for Ca, Mg, and K at many of the catchments and on an equivalent basis, accounted for up to 131% (median 22%) of the decrease in acid anion deposition. Base cation concentrations in streams generally declined over time, with significant decreases in Ca, Mg and K occurring at 8, 9 and 7 of 17 sites respectively, which accounted for up to 133% (median 48%) of the decrease in acid anion concentration. Sulphate export exceeded input at 18/21 catchments, likely due to dry deposition and/or internal sources. The majority of N in deposition (31-100%; median 94%) was retained in the catchments, although there was a tendency for greater NO(3)-N leaching at sites receiving higher (<7 kg ha(-1) per year) bulk inorganic N

  1. Shopping for hydrologically representative connectivity metrics in a humid temperate forested catchment

    NASA Astrophysics Data System (ADS)

    Ali, GenevièVe A.; Roy, André G.

    2010-12-01

    In order for connectivity to serve as an effective diagnostic classification tool of hydrological behavior, it clearly matters (1) how it is measured and (2) whether the chosen measures are correlated not only to catchment-scale antecedent moisture conditions but also to streamflow discharges. Previous studies have advocated that connectivity in shallow soil moisture patterns induces threshold-like changes in runoff in temperate rangeland catchments but not in temperate humid forested catchments. We argue that in the latter environments, capturing critical spatial organization in soil moisture patterns depends on the way the chosen connectivity metric is built. We therefore tested a large selection of 2-D and 3-D connectivity measures in a temperate humid forested catchment (Laurentians, Canada). Computations were based on continuous soil moisture patterns collected on 16 occasions at four soil depths and then transformed into indicator patterns using either time-variable or time-invariant thresholds. Assessments of connectivity were variable depending on the computed metric, as just a few measures were significantly correlated with both antecedent moisture conditions and catchment discharges. In particular, topography-based connectivity metrics reflected changes in catchment macrostate and stormflow response better than omnidirectional methods. Also, source-to-stream connectivity metrics were more hydrologically sensitive than metrics that did not consider the spatial linkage to the stream channel. These conclusions stress the importance of searching for the right connectivity metric for hydrologic prediction, especially in humid forested environments that exhibit much larger variability in soil hydrologic properties than temperate rangeland catchments.

  2. Comparison of the characteristics of storm runoff and long-term discharge between a natural forest catchment and a complicated natural-artificial catchment in Japan

    NASA Astrophysics Data System (ADS)

    Hong, Lin

    2010-05-01

    Agricultural activities such as land reclamation, crop production, pesticide and fertilizer application, irrigation and drainage will cause impact on the hydrological cycle and water quality of the catchment. In this study, the hydrological characteristics during storm runoff and long-term discharges of a complicated natural-artificial terraced paddy field catchment, which is composed of natural forest (73% of the area) and terraced paddy field (27% of the area), are compared with those of a natural forest catchment. According to the theory of the rational formula, peak discharge is given as: Qp=fp rtpA/3.6 (1) where, Qp is peak discharge, in m3/s; fp is the runoff coefficient, for the natural forest catchment and the complicated natural-artificial Catchment, fp=0.60 and 0.55, respectively; rtp is the average intensity of actual rainfall during tp, in mm/h; tp is concentration time, in min; A is the area of the catchment, in km2. According to literature, tp is given as: tp=CA0.22(re)-0.35 (2) where, C is a coefficient depending on land use, for the natural forest catchment and the complicated natural-artificial catchment and natural forest catchment, C=107 and 175, respectively; re is effective rainfall intensity and it is equal to the specific peak discharge of a storm, mm/h. From the comprehensive effects of runoff coefficient and concentration time on peak discharge, we find that the peak discharge of the complicated natural-artificial catchment is about 1.5 times as much as that of the natural forest catchment. Analyses of the recession limbs for various storms in the 2 catchments reveals that the storm runoff decreases with an exponential decay constant of 0.024 h-1 from several hours after rainfall to one or two days later, and then continues to decay with a decay constant of 0.011 h-1. By analysis of the relationship between percolation and duration of percolation in the 2 catchments we find that a linear relationship between the percolation and the duration

  3. Pools and fluxes of mercury and methylmercury in two forested catchments in Germany.

    PubMed

    Schwesig, D; Matzner, E

    2000-10-09

    Mercury (Hg) and methylmercury (CH3Hg+) are global pollutants, but little information is available on rates of atmospheric input, distribution and mobility in soils and catchments of central Europe. The objectives of this study were to investigate input and output fluxes of these compounds in a deciduous and a coniferous catchment in NE Bavaria (Germany), and to estimate pools and mobility of total Hg (Hgtot) and CH3Hg+ at the catchment scale. Bulk precipitation, throughfall, litterfall and runoff were collected biweekly from April 1998 to April 1999. Several soil profiles were sampled to estimate pools of Hg compounds in the catchments. In both catchments highest contents of Hgtot were found in the Oa layer of the forest floor (up to 500 ng g(-1)) and the soil storage of Hgtot calculated for a soil depth of 60 cm was approximately 890 g ha(-1) in the coniferous and 190 g ha(-1) in the deciduous catchment. Highest contents of CH3Hg+ in upland soils were observed in the Oi layer of the forest floor, and soil storage of CH3Hg+ was 4.35 g ha(-1) in the coniferous and 0.59 g ha(-1) in the deciduous catchment. The annual total deposition of Hgtot (total deposition not measured directly but calculated from throughfall and litterfall) was 541 mg ha(-1) year(-1) in the coniferous and 618 mg ha(-1) year(-1) in the deciduous catchment. Total deposition rates of CH3Hg+ were 3.5 and 2.6 mg ha(-1) year(-1). The contribution of litterfall to the total deposition of Hgtot and CH3Hg+ was 55% in the deciduous catchment. In the coniferous catchment, the contribution of litterfall to total deposition was only 29% for Hgtot, but 55% for CH3Hg+. By far the largest proportion of the deposited CH3Hg+ and Hgtot remained in the catchments (85% in the coniferous, 95% in the deciduous). As compared to remote Swedish catchments, deposition and output via runoff of Hgtot, were higher, but deposition and output of CH3Hg+ were lower in our catchments. In contrast to other studies, the annual

  4. Temporal variation of aqueous-extractable Ca, Mg and K in acidified forest mountainous soils under different vegetation cover

    NASA Astrophysics Data System (ADS)

    Tejnecky, V.; Bradová, M.; Boruvka, L.; Vasat, R.; Nemecek, K.; Ash, C.; Sebek, O.; Rejzek, J.; Drabek, O.

    2012-12-01

    Acidification of forest soils is a natural degradation process which can be significantly enhanced by anthropogenic activities. Inputs of basic cations (BC - Ca, Mg and K) via precipitation, litter and soil organic matter decomposition and also via inter-soil weathering may partially mitigate the consequences of this degradation process. The aim of this study is to assess the temporal variation of aqueous-extractable Ca, Mg and K in acidified forest mountainous soils under different vegetation cover. The Jizera Mountains region (Czech Republic, northern Bohemia) was chosen as a representative soil mountainous ecosystem strongly affected by acidification. Soil and precipitation samples were collected at monthly basis from April till October/ November during the years 2009-2011. Study spots were delimited under two contrasting vegetation covers - beech and spruce monoculture. Prevailing soil types were classified as Alumic Cambisols under beech and Entic Podzols under spruce stands (according to FAO classification). Soil samples were collected from surface fermentation (F) and humified (H) organic horizons and subsurface B horizons (cambic or spodic). The collected soil samples were analyzed immediately under laboratory condition in a "fresh" state. Unsieved fresh samples were extracted by deionised water. The content of main elements (Ca, Mg, K, Al and Fe) was determined by ICP-OES. The content of major anions (SO42-, NO3-, Cl- and F-) was determined by ion-exchange chromatography (IC). Content of major anions and main elements were determined in the precipitation samples (throughfall, stemflow and bulk) as well. Besides computing the basic statistical parameters (mean, median, variance, maximum, minimum, etc.) we also employed other statistical methods such as T-test and ANOVA to assess the differences between beech and spruce vegetation spots. To carry out the temporal variability in the data we used the time series analysis and short-term forecasting by Holt

  5. Effects of Sloped Terrain and Forest Stand Maturity on Evapotranspiration in a Boreal Forested Catchment

    NASA Astrophysics Data System (ADS)

    Isabelle, P. E.; Nadeau, D.; Parent, A. C.; Rousseau, A. N.; Jutras, S.; Anctil, F.

    2015-12-01

    The boreal forests are the predominant landscape of Canada, occupying 49% of its boreal zone or 27% of the country. Despite the tremendous amount of literature on such ecosystems, some gaps persist in our understanding of boreal forest evapotranspiration (ET), given that direct measurements are costly to obtain and therefore scarce in these remote territories. This is especially the case on sloped terrain, since the eddy covariance method is not traditionally used in such situations. These gaps lead to the implementation of the EVAP experimental project, which intends to produce a major leap in our understanding of the water and energy budgets of a sloped boreal forest. Starting in summer 2015, we heavily instrumented a watershed in the Montmorency Forest (47°17' N; 71°10' W), Quebec, Canada. Located in the Laurentian Mountains, the forest has a mean elevation of 750 m with peaks at 1000 m. The setup includes a 20-m flux tower with two separate sets of eddy correlation and net radiation measurements facing opposite directions, located over an almost mature boreal forest (logged ~20 years ago, 8-10 m trees). Eddy fluxes are also measured under the canopy with a similar setup, while a sub-watershed is instrumented with a 10-m flux tower using homologous instruments, this time on a much younger forest stand (logged ~10 years ago, 4-5 m trees). Both sites are characterized by a significant slope (~20%), facing northeast for the 20-m tower and west for the 10-m tower. With several other instruments, we are measuring every major components of both water and energy budgets, including the outgoing discharge of the watershed and subwatershed. The different slope orientations and local topography of both sites allow us to quantify the relationships between solar exposition, topographic shading and ET rates; these relationships being transposable to other mountainous forested catchments. We also investigate the presence of slope flows and assess their impact on local ET

  6. Water flow paths in a forested catchment of the East Asian monsoon region

    NASA Astrophysics Data System (ADS)

    Payeur-Poirier, Jean-Lionel; Hopp, Luisa; Peiffer, Stefan

    2015-04-01

    The climate of South Korea is strongly influenced by the East Asian summer monsoon. It is hypothesized that the high precipitation regime of the summer monsoon causes significant changes in the hydrological behaviour of forested catchments, namely in water quantity, quality and flow paths. We conducted high frequency hydrometric, isotopic, hydrochemical and meteorological measurements in a forested catchment before, during and after the 2013 summer monsoon season. The catchment is located within the Lake Soyang watershed, where recent trends of increasing eutrophication, sediment load and organic carbon load have been observed. We studied the temporal variability of catchment runoff and the spatial and temporal variability of water flow paths in relation with the hydrological conditions of the hillslope, toeslope and riparian elements of the catchment. For the summer monsoon season, the runoff coefficient approximated 68%. During this period, for the 16 monitored individual storm events ranging between 13 mm and 126 mm in precipitation, the runoff coefficient greatly varied and a threshold relationship with soil moisture was observed. Analyses of hysteresis loops of catchment runoff also revealed threshold relationships with precipitation and soil moisture, as water flow paths were activated or not in different parts of the catchment. The variation of the electrical conductivity of catchment runoff through the summer monsoon also revealed the occurrence of threshold relationships. A principal component analysis (PCA) and an end-member mixing analysis (EMMA) were performed in order to quantify the contribution of the different landscape elements to catchment runoff. The combination of the hydrometric, isotopic and hydrochemical approaches allowed us to test our hypothesis and to shed light on the threshold relationships observed at the catchment. The findings of this study could be useful for the estimation of the water balance of the Lake Soyang watershed as well

  7. Connectivity of overland flow by drainage network expansion in a rain forest catchment

    NASA Astrophysics Data System (ADS)

    Zimmermann, Beate; Zimmermann, Alexander; Turner, Benjamin L.; Francke, Till; Elsenbeer, Helmut

    2014-02-01

    Soils in various places of the Panama Canal Watershed feature a low saturated hydraulic conductivity (Ks) at shallow depth, which promotes overland-flow generation and associated flashy catchment responses. In undisturbed forests of these areas, overland flow is concentrated in flow lines that extend the channel network and provide hydrological connectivity between hillslopes and streams. To understand the dynamics of overland-flow connectivity, as well as the impact of connectivity on catchment response, we studied an undisturbed headwater catchment by monitoring overland-flow occurrence in all flow lines and discharge, suspended sediment, and total phosphorus at the catchment outlet. We find that connectivity is strongly influenced by seasonal variation in antecedent wetness and can develop even under light rainfall conditions. Connectivity increased rapidly as rainfall frequency increased, eventually leading to full connectivity and surficial drainage of entire hillslopes. Connectivity was nonlinearly related to catchment response. However, additional information on factors such as overland-flow volume would be required to constrain relationships between connectivity, stormflow, and the export of suspended sediment and phosphorus. The effort to monitor those factors would be substantial, so we advocate applying the established links between rain event characteristics, drainage network expansion by flow lines, and catchment response for predictive modeling and catchment classification in forests of the Panama Canal Watershed and in similar regions elsewhere.

  8. Forest management effects on snow, runoff and evapotranspiration in Sierra Nevada mixed-conifer headwater catchments

    NASA Astrophysics Data System (ADS)

    Ray, R. L.; Saksa, P. C.; Bales, R. C.; Conklin, M. H.

    2012-12-01

    We used intensive field measurements and data-intensive hydro-ecological modeling to investigate the impact of forest vegetation management on the sensitivity of snow accumulation, evapotranspiration and discharge at seven headwater catchments in the Sierra Nevada. Catchments are located in dense mixed-conifer forest, at elevations of 1500 - 2100 m, and receive a mix of rain and snow precipitation. Management scenarios for reducing forest density by uniform thinning and forest clearings were implemented in the Regional Hydro-ecological Simulation System (RHESSys). Results obtained using inherent model equations to separate total precipitation into snow and rain underestimated snow water content in some of the catchments, requiring manual input of snow and rain for accurate simulations. Modeling precipitation phase accurately was critical for the current forest condition, as the change in vegetation has differing effects on rain, snow and snowmelt. Results using RHESSys show that light, uniform thinning alone (<20% canopy) may not be enough to change water yield significantly, but this threshold of canopy reduction is lowered by creating gaps in the forest alone or in combination with uniform thinning, and has potential to measurably increase water yield beyond background variation. Clarifying these specific impacts of forest vegetation on snow processes and water yield is essential for simulating forest management in the Sierra Nevada and it shows the forest structure has significant influence on the catchment water balance. However, modifying forest canopy density and canopy cover to calculate average levels of snow water equivalent at a basin-scale may not be detailed enough to incorporate all the complex forest structure effects on snow processes in mountain watersheds.

  9. Soil water dynamics of lateritic catchments as affected by forest clearing for pasture

    NASA Astrophysics Data System (ADS)

    Sharma, M. L.; Barron, R. J. W.; Williamson, D. R.

    1987-10-01

    Aspects of soil water dynamics as affected by land use changes were examined over a period of five years (1974-1979) in two groups of adjacent catchments located in 1200 mm yr -1 and 800 mm yr -1 rainfall zones near Collie, Western Australia. In the summer of 1976/1977, after three years of calibration, 100% of one high rainfall catchment, Wights, and 53% of one lower rainfall catchment, Lemon, was cleared of native eucalyptus forest and replaced with pasture. The soil water storage down to 6m was measured in-situ using a neutron probe in fifteen access tubes located at five stratified sites in each catchment. Considerable spatial variability in soil water storage was encountered within a site, between sites within a catchment, and between paired catchments; the dominant variability being between sites. Comparisons between the pre- and postclearing states within a catchment and between the cleared and uncleared control catchments were used to evaluate the effect of change in land use on soil water dynamics. Within two years of the change from forest to pasture, a significant increase in soil water storage had occurred in the profiles in both cleared catchments. Concurrently, there was a small decrease in the uncleared control catchments. The increases following clearing were greater in the higher than in the lower rainfall catchment, more pronounced in the first year than in the second year, and occurred mostly at depths greater than 2m. In Wights catchment, the increase in summer minimum soil water storage in the first and second years amounted to 220 and 58 mm respectively, whilst for Lemon catchment the increase for the first year was < 50 mm. This increased soil water storage was due to a substantially lower evapotranspiration from the shallow-rooted, seasonally active pasture which extracts water from the top 1 m or so, compared with the perennial native eucalyptus forest which extracts water from depths down to 6 m and beyond. Due to the relatively low water

  10. Tropical montane forest conversion affects spatial and temporal nitrogen dynamics in Kenyan headwater catchment

    NASA Astrophysics Data System (ADS)

    Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana

    2017-04-01

    Deforestation and land use change (LUC) are often stated as major contributors to changes in water quality, although other catchment characteristics such as topography, geology and climate can also play a role. Understanding how stream water chemistry is affected by LUC is essential for sustainable water management and land use planning. However, there is often a lack of reliable data, especially in less studied regions such as East Africa. This study focuses on three sub-catchments (27-36 km2) with different land use types (natural forest, smallholder agriculture and tea/tree plantations) nested in a 1023 km2 headwater catchment in the Mau Forest Complex, Kenya's largest closed-canopy indigenous tropical montane forest. In the past decades approx. 25% of the natural forest was lost due to land use change. We studied seasonal, diurnal and spatial patterns of total dissolved nitrogen (TDN), nitrate (NO3-N) and dissolved organic nitrogen (DON) using a combination of high-resolution in-situ measurements, bi-weekly stream water samples and spatial sampling campaigns. Multiple linear regression analysis of the spatial data indicates that land use shows a strong influence on TDN and nitrate, while DON is more influenced by precipitation. Highest TDN and nitrate concentrations are found in tea plantations, followed by smallholder agriculture and natural forest. This ranking does not change throughout the year, though concentrations of TDN and nitrate are respectively 27.6 and 25.4% lower in all catchments during the dry season. Maximum Overlap Discrete Wavelet Transform (MODWT) analysis of the high resolution nitrate data revealed a seasonal effect on diurnal patterns in the natural forest catchment, where the daily peak shifts from early morning in the wet season to mid-afternoon in the dry season. The smallholder and tea catchment do not exhibit clear diurnal patterns. The results suggest that land use affects dissolved nitrogen concentrations, leading to higher N

  11. Influence of topography and forest characteristics on snow distributions in a forested catchment

    NASA Astrophysics Data System (ADS)

    Fujihara, Yoichi; Takase, Keiji; Chono, Shunsuke; Ichion, Eiji; Ogura, Akira; Tanaka, Kenji

    2017-03-01

    Stored water within snowpack is important for the hydrological balance in many mountainous environments around the world. However, monitoring the spatial and temporal dynamics of snow in such mountainous environments remains rather challenging. We therefore developed a snow depth meter using small temperature loggers. Small temperature loggers were attached to poles at 20 cm intervals from the ground surface. Snow depths were estimated by assessing the daily variations in temperatures. Using this snow depth meter, we continuously observed snow depths at 21 stations in a forested catchment in Japan over three winter seasons. Using correlation analysis, we then analyzed the influence of topography (i.e., elevation and aspect) and forest (i.e., canopy openness) on snow depths. Moreover, we estimated daily snow distributions in the area using multi-regression analysis, thus describing seasonal characteristics of snow distributions. Finally we investigated the relation between number of stations and estimation accuracies of snow distributions using a Monte Carlo sensitivity analysis. We observed that the influence of topographical and forest characteristics changed considerably during the study period, with elevation having a major impact on snow depths. Further, aspect and forest cover had a great influence on the snow depths during the melting period. The regression of elevation slopes was 0.8-2.1 mm/m during rich snow years and 0.5-0.6 mm/m in little snow years. Also, the snow distribution during the melting period was found to be less uniform than during the snow accumulation period using histograms of snow depths. Monte Carlo sensitivity analysis shows that one station per 2.0-2.5 ha is enough to estimate accurate snow distributions. Given the above, we concluded that our proposed approach was quite useful for investigating the influence of topography and forest characteristics on snow accumulation and melting.

  12. Flowpaths, source water contributions and water residence times in a Mexican tropical dry forest catchment

    NASA Astrophysics Data System (ADS)

    Farrick, Kegan K.; Branfireun, Brian A.

    2015-10-01

    Runoff in forested tropical catchments has been frequently described in the literature as dominated by the rapid translation of rainfall to runoff through surface and shallow subsurface pathways. However, studies examining runoff generation in tropical catchments with highly permeable soils have received little attention, particularly in tropical dry forests. We present a study focused on identifying the dominant flowpaths, water sources and stream water residence times in a tropical dry forest catchment near the Pacific coast of central Mexico. During the wet season, pre-event water contributions to stormflow ranged from 72% to 97%, with the concentrations of calcium, magnesium, sodium and potassium closely coupling the geochemistry of baseflow and groundwater from the narrow riparian/near-stream zone. Baseflow from the intermittent stream showed a strongly damped isotopic signature and a mean baseflow residence time of 52-110 days was estimated. These findings all suggest that instead of the surface and near-surface subsurface lateral pathways observed over many tropical catchments, runoff is generated through vertical flow processes and the displacement and discharge of stored water from the saturated zone. As the wet season progressed, contributions from the saturated zone persisted; however, the stormflow and baseflow geochemistry suggests that the contributing area of the catchment increased. Our results show that during the early part of the wet season, runoff originated primarily from the headwater portion of the catchment. As the wet season progressed and catchment wetness increased, connectivity among sub-basin was improved, resulting in runoff contributions from across the entire catchment.

  13. Isotopic signals of summer denitrification in a northern hardwood forested catchment

    Treesearch

    Sarah K. Wexler; Christine L. Goodale; Kevin J. McGuire; Scott W. Bailey; Peter M. Groffman

    2014-01-01

    Despite decades of measurements, the nitrogen balance of temperate forest catchments remains poorly understood. Atmospheric nitrogen deposition often greatly exceeds streamwater nitrogen losses; the fate of the remaining nitrogen is highly uncertain. Gaseous losses of nitrogen to denitrification are especially poorly documented and are often ignored. Here, we provide...

  14. Catchment hydrological responses to forest harvest amount and spatial pattern - 2011

    EPA Science Inventory

    We used an ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest location and amount on ecosystem carbon (C) and nitrogen (N) dynamics in an intensively studied headwater catchment (WS10) in western Oregon,...

  15. Stable water isotopes suggest sub-canopy water recycling in a northern forested catchment

    Treesearch

    Mark B. Green; Bethany K. Laursen; John L. Campbell; Kevin J. McGuire; Eric P. Kelsey

    2015-01-01

    Stable water isotopes provide a means of tracing many hydrologic processes, including poorly understood dynamics like soil water interactions with the atmosphere. We present a four-year dataset of biweekly water isotope samples from eight fluxes and stores in a headwater catchment at the Hubbard Brook Experimental Forest, New Hampshire, USA. We use Dansgaard's...

  16. Catchment hydro-biogeochemical response to forest harvest intensity and spatial pattern

    EPA Science Inventory

    We apply a new model, Visualizing Ecosystems for Land Management Assessment (VELMA), to Watershed 10 (WS10) in the H.J. Andrews Experimental Forest to simulate the effects of harvest intensity and spatial pattern on catchment hydrological and biogeochemical processes. Specificall...

  17. Catchment hydrological responses to forest harvest amount and spatial pattern - 2011

    EPA Science Inventory

    We used an ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest location and amount on ecosystem carbon (C) and nitrogen (N) dynamics in an intensively studied headwater catchment (WS10) in western Oregon,...

  18. Catchment hydro-biogeochemical response to forest harvest intensity and spatial pattern

    EPA Science Inventory

    We apply a new model, Visualizing Ecosystems for Land Management Assessment (VELMA), to Watershed 10 (WS10) in the H.J. Andrews Experimental Forest to simulate the effects of harvest intensity and spatial pattern on catchment hydrological and biogeochemical processes. Specificall...

  19. Natural inactivation of phosphorus by aluminum in atmospherically acidified water bodies.

    PubMed

    Kopácek, J; Ulrich, K U; Hejzlar, J; Borovec, J; Stuchlik, E

    2001-11-01

    Atmospheric acidification of catchment-lake ecosystems may provide natural conditions for the in-lake control of P cycling. This process is based on the elevated transport of aluminum from acidified soils and its subsequent precipitation in the water body and is described for strongly acidified forest lakes, acidified and circumneutral reservoirs, and a moderately acidified alpine lake. In water bodies with episodically or permanently acidified inflows a pH gradient develops between lake water and tributaries due to: (i) neutralization of acidic inflows after mixing with waters with undepleted carbonate buffering system, and/or (ii) the in-lake alkalinity generation dominated by biochemical removal of NO3- and SO4(2-). With the pH increasing towards neutrality, ionic Al species hydrolyze and form colloidal Al hydroxides (Al(part)) with large specific surfaces and strong ability to bind orthophosphate from the liquid phase. Moreover, Alpart settles and increases the P sorption capacity of the sediment. The presence of Al(part) on the bottom reduces orthophosphate release from sediments after its liberation from ferric oxyhydroxides during anoxia because Al(part) is not sensitive to redox changes. Consequently, the natural in-lake P inactivation may be expected in any water body with elevated Al input and a pH gradient between its inlet and outlet.

  20. Comparing Hydrologic Response Times Between a Forested and Mountaintop Mined Catchment

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Zegre, N.

    2012-12-01

    Mountaintop removal mining (MTR) represents the largest land cover/landuse change in the Central Appalachian region. By 2012, the U.S. EPA estimates that MTR will have impacted approximately 6.8% of the predominately forested Appalachian Coalfield region of West Virginia, Kentucky, Tennessee, and Virginia with nearly 4,000 miles of headwater streams buried under valley fills. In spite of the scale and extent of MTR, its hydrologic impacts are poorly understood. While MTR has a well-established pattern of downstream water quality degradation, its effect on the quantity and timing of catchment runoff is less clear. Several devastating floods in the region have been attributed to MTR, but there is little evidence to either confirm or refute this belief. Existing research has focused on statistical analysis of catchment outlet responses, but results from these studies only offer evidence of differences in hydrologic behavior, not process understanding of how the system is changing. This study begins to address that research gap by exploring differences in hydrologic response times, a fundamental hydraulic parameter that controls the conversion of rainfall to runoff. A simple rainfall-runoff model was used to quantify differences in response times for storm events in a mined and predominantly forested catchment. Results showed that the mountaintop mined catchment responded more quickly to storm events than the forested catchment. The mined catchment also showed more variability in response time than the forested catchment. These patterns repeated using multiple model structures. The more rapid response of the mined catchment is likely attributed to increased impervious surface, preferential flow paths within valley fills that rapidly route water to the stream, or rapid displacement of water stored in valley fills upon the onset of rain. However, further research using tools such as isotope tracers is needed to offer insight about the processes responsible for streamflow

  1. Isotopic signals of summer denitrification in a northern hardwood forested catchment

    PubMed Central

    Wexler, Sarah K.; Goodale, Christine L.; Bailey, Scott W.; Groffman, Peter M.

    2014-01-01

    Despite decades of measurements, the nitrogen balance of temperate forest catchments remains poorly understood. Atmospheric nitrogen deposition often greatly exceeds streamwater nitrogen losses; the fate of the remaining nitrogen is highly uncertain. Gaseous losses of nitrogen to denitrification are especially poorly documented and are often ignored. Here, we provide isotopic evidence (δ15NNO3 and δ18ONO3) from shallow groundwater at the Hubbard Brook Experimental Forest indicating extensive denitrification during midsummer, when transient, perched patches of saturation developed in hillslopes, with poor hydrological connectivity to the stream, while streamwater showed no isotopic evidence of denitrification. During small rain events, precipitation directly contributed up to 34% of streamwater nitrate, which was otherwise produced by nitrification. Together, these measurements reveal the importance of denitrification in hydrologically disconnected patches of shallow groundwater during midsummer as largely overlooked control points for nitrogen loss from temperate forest catchments. PMID:25368188

  2. Factors controlling nitrogen release from two forested catchments with contrasting hydrochemical responses

    USGS Publications Warehouse

    Christopher, S.F.; Mitchell, M.J.; McHale, M.R.; Boyer, E.W.; Burns, Douglas A.; Kendall, C.

    2008-01-01

    Quantifying biogeochemical cycles of nitrogen (N) and the associated fluxes to surface waters remains challenging, given the need to deal with spatial and temporal variability and to characterize complex and heterogeneous landscapes. We focused our study on catchments S14 and S15 located in the Adirondack Mountains of New York, USA, which have similar topographic and hydrologic characteristics but contrasting stream nitrate (NO3- ) concentrations. We characterized the mechanisms by which NO3- reaches the streams during hydrological events in these catchments, aiming to reconcile our field data with our conceptual model of factors that regulate nutrient exports from forested catchments. Combined hydrometric, chemical and isotopic (??18O-H2O) data showed that the relative contributions of both soil and ground water sources were similar between the two catchments. Temporal patterns of stream chemistry were markedly different between S14 and S15, however, because the water sources in the two catchments have different solute concentrations. During late summer/fall, the largest source of NO3- in S14 was till groundwater, whereas shallow soil was the largest NO3- source in S15. NO3- concentrations in surface water decreased in S14, whereas they increased in S15 because an increasing proportion of stream flow was derived from shallow soil sources. During snowmelt, the largest sources of NO3- were in the near-surface soil in both catchments. Concentrations of NO3- increased as stream discharge increased and usually peaked before peak discharge, when shallow soil water sources made the largest contribution to stream discharge. The timing of peaks in stream NO3- concentrations was affected by antecedent moisture conditions. By elucidating the factors that affect sources and transport of N, including differences in the soil nutrient cycling and hydrological characteristics of S14 and S15, this study contributes to the overall conceptualization of NO3- release from temperate

  3. The hydrological behaviour of a forested catchment during two contrasting summer monsoon seasons

    NASA Astrophysics Data System (ADS)

    Payeur-Poirier, Jean-Lionel; Hopp, Luisa; Peiffer, Stefan

    2015-04-01

    The climate of South Korea is strongly influenced by the East Asian summer monsoon. It is hypothesized that the high precipitation regime of the summer monsoon causes significant changes in the hydrological behaviour of forested catchments, namely in water quantity, quality and flow paths. We conducted high frequency hydrometric, isotopic, hydrochemical and meteorological measurements in a forested catchment before, during and after two contrasting summer monsoon seasons. The catchment is located within the Lake Soyang watershed, where recent trends of increasing eutrophication, sediment load and organic carbon load have been observed. We studied the temporal variability of catchment runoff in relation with the spatial and temporal variability of water flow paths. The 2013 and 2014 summer monsoon seasons were, respectively, the longest and shortest that occurred in this region since 1973 and accounted for 206% and 32% of the average precipitation for the summer monsoon since 1973. For the period from June through August, the precipitation of 2014 was the lowest on record since 1973. Catchment runoff for the summer monsoon totalled 559 mm and 12 mm for 2013 and 2014, respectively. The Q50 of the flow duration curve for 2014 was more than four times lower than that for 2013. A total of 18 storm events were monitored, ranging between 13 mm and 126 mm in precipitation. A principal component analysis (PCA) and an end-member mixing analysis (EMMA) were performed in order to quantify the contribution of different end-members to catchment runoff and highlight the differences between both years. The combination of the hydrometric, isotopic and hydrochemical approaches allowed us to test our hypothesis and to shed light on the hydrological behaviour of the catchment under contrasting environmental conditions. The findings of this study could be useful for the estimation of the water balance of the Lake Soyang watershed as well as for the management of Lake Soyang.

  4. Modelling the effect of wildfire on forested catchment water quality using the SWAT model

    NASA Astrophysics Data System (ADS)

    Yu, M.; Bishop, T.; van Ogtrop, F. F.; Bell, T.

    2016-12-01

    Wildfire removes the surface vegetation, releases ash, increase erosion and runoff, and therefore effects the hydrological cycle of a forested water catchment. It is important to understand chnage and how the catchment recovers. These processes are spatially sensitive and effected by interactions between fire severity and hillslope, soil type and surface vegetation conditions. Thus, a distributed hydrological modelling approach is required. In this study, the Soil and Water Analysis Tool (SWAT) is used to predict the effect of 2001/02 Sydney wild fire on catchment water quality. 10 years pre-fire data is used to create and calibrate the SWAT model. The calibrated model was then used to simulate the water quality for the 10 years post-fire period without fire effect. The simulated water quality data are compared with recorded water quality data provided by Sydney catchment authority. The mean change of flow, total suspended solid, total nitrate and total phosphate are compare on monthly, three month, six month and annual basis. Two control catchment and three burn catchment were analysed.

  5. Storage controls on the generation of double peak hydrographs in a forested headwater catchment

    NASA Astrophysics Data System (ADS)

    Martínez-Carreras, Núria; Hissler, Christophe; Gourdol, Laurent; Klaus, Julian; Juilleret, Jérôme; Iffly, Jean François; Pfister, Laurent

    2016-12-01

    Double peak hydrographs are widespread phenomena but poorly understood mechanistically. In many cases, saturation-excess overland flow in the near-stream areas is assumed to control the initial peak, while the delayed peak is explained by subsurface flow in the soil or sediment cover or groundwater flow on fractured bedrock. Here we explore the mechanisms that control the generation of double peak hydrographs in a forested headwater catchment. We made use of the extensive high-resolution hydrometric time series collected in the catchment to estimate catchment storage and causal linkages. We found that double peak hydrographs occurred only after a certain amount of catchment storage was exceeded. The amount of this storage threshold was consistent over a 3-year period. The non-linear relationship between storage and discharge led to hysteretic relationships between both variables, and these hysteretic relationships were different for the different hydrograph types (single or double peak hydrographs). Discharge peaked before catchment storage during single peak hydrographs suggesting that single peaks were mainly generated by water quickly reaching the stream during precipitation pulses. It was catchment storage that peaked first during double peak hydrographs and consequently generated the delayed peak in the hydrograph. Our results also showed that double peak hydrographs were controlled in different proportions by contrasting landscape units (defined along a hillslope sequence). Hillslopes were connected to the stream at low discharge values, whereas the plateau dominated discharge generation when storage reached a certain threshold value.

  6. a Generic Framework for Water and Forest Management in Catchments Restoration in Latin America

    NASA Astrophysics Data System (ADS)

    Mintegui Aguirre, J. A.; Amezaga, J. M.; Robredo Sanchez, J. C.; Lopez Leiva, C.

    2007-05-01

    The document presents a generic framework for the analysis and development of a programme for catchment management and restoration that takes into account both the protection from the impact of extreme events and the sustainable use of land and water resources. The framework was originally developed for the restoration of mountain catchments in Europe between the end of the 19th century and the beginning of the 20th century and still provides the intellectual basis for the integrated assessment of hydraulic and land use factors in these countries. It is based on a thorough analysis of the behavior of a catchment in normal and extreme conditions. Recently, the authors have tested this generic framework in a number of catchments in Latin America, which present very different physical and socio-economic conditions. Fieldwork in Costa Rica, Ecuador, Chile and Argentina with particular catchments covering a whole range of climatological, geo-morphological and land used settings has provided new insights on the applicability of this generic framework. The paper discusses the role of vegetation, and in particular of forests, in catchment management taking a long-term view of cost and benefits under normal and extreme conditions. It also provides conclusions for the development of land use policies to optimize the practical use of vegetation of management purposes.

  7. Tracking channel bed resiliency in forested mountain headwater catchments using high-temporal-resolution bedload data

    NASA Astrophysics Data System (ADS)

    Martin, S.; Conklin, M. H.; Bales, R. C.; Womble, P.; Patel, T.

    2013-12-01

    A good understanding of sediment sources and underlying factors such as stability of the channel bed are important in constructing accurate sediment budgets in forested mountain headwater catchments. Bedload is a key component of sediment budgets, yet bedload data has been difficult, expensive, and time consuming to obtain, especially in remote locations. As such, bedload data in forested mountain catchments tends to be of coarse temporal resolution or very short term. In this study, load cell pressure sensors that can be deployed long term in remote locations to collect high temporal resolution data were utilized in four forested headwater streams in the Sierra Nevada of California. Two load cell sensors were deployed in each of the four catchments. These data were used to look at the resiliency of the channel bed to disturbance, the timescale of channel bed recovery following disturbance, and the role of the channel bed as a production area or as temporary storage in the overall sediment budget. It was found that the stream beds within the catchments tend to be stable over the long term, but disturbance and recovery cycles exist on yearly and weekly/monthly scales that seem to correspond to high background snowmelt flows of the annual hydrograph and to high flows associated with individual storm/melt events. Despite a high failure rate, the load cell sensors show potential for high temporal resolution bedload measurements that provide insight into short term cycles of bedload movement. Improvements to design and placement of the sensors are suggested.

  8. A Comparison of Runoff Pathways and Nutrient Export in Small Tropical Forest Catchments

    NASA Astrophysics Data System (ADS)

    Hamann, H. B.; Stallard, R. F.; Pullen, N. H.

    2004-12-01

    The Center for Tropical Forest Research (CTFS), a program of the Smithsonian Tropical Research Institute (STRI), has coordinated a global network of 17 tropical forest dynamics plots of approximately 50 hectares in order to collect baseline information and to monitor forest changes. Missing from most past studies of these plots is an integrated soil hydrology and water chemistry component. To fill this gap, we have developed and are testing rapid assessment methods to measure soil and hydrological properties for tropical forest catchments. This assessment includes gaging and sampling first to third order headwater streams with high frequency over several storm events within a 2-4 week period. Detailed flow separations enable us to test Elsenbeer's (2001) functional classification continuum for tropical soils and allow us to test the hypothesis that forest sites with greater overland flow experience greater nutrient loss during storm events. Data from a storm event for the steep Lutz Creek Catchment on Barro Colorado Island, Panama in September 1990 demonstrate that Na+ and Si, typical of most solutes, decrease in concentration with increasing discharge. In contrast, the nutrients, K+ and NO3- increase in concentration with increasing discharge. Results from a 20 ha catchment in Yasuni National Park, Ecuador from November 2003 show a similar pattern during several small events on relatively impermeable soils. Data collected from a more permeable 20 ha catchment in Lambir Hills National Park, Malaysia in July 2004 also show nutrient export, but suggest that rainfall amount, intensity and duration may play a large role in the magnitude of nutrient concentrations. Elsenbeer, H., 2001. Hydrological flowpaths in tropical rain forest soilscapes-a review. Hydrological Processes, 15: 1751-1759.

  9. Estimating the SCS runoff curve number in forest catchments of Korea

    NASA Astrophysics Data System (ADS)

    Choi, Hyung Tae; Kim, Jaehoon; Lim, Hong-geun

    2016-04-01

    To estimate flood runoff discharge is a very important work in design for many hydraulic structures in streams, rivers and lakes such as dams, bridges, culverts, and so on. So, many researchers have tried to develop better methods for estimating flood runoff discharge. The SCS runoff curve number is an empirical parameter determined by empirical analysis of runoff from small catchments and hillslope plots monitored by the USDA. This method is an efficient method for determining the approximate amount of runoff from a rainfall even in a particular area, and is very widely used all around the world. However, there is a quite difference between the conditions of Korea and USA in topography, geology and land use. Therefore, examinations in adaptability of the SCS runoff curve number need to raise the accuracy of runoff prediction using SCS runoff curve number method. The purpose of this study is to find the SCS runoff curve number based on the analysis of observed data from several experimental forest catchments monitored by the National Institute of Forest Science (NIFOS), as a pilot study to modify SCS runoff curve number for forest lands in Korea. Rainfall and runoff records observed in Gwangneung coniferous and broad leaves forests, Sinwol, Hwasoon, Gongju and Gyeongsan catchments were selected to analyze the variability of flood runoff coefficients during the last 5 years. This study shows that runoff curve numbers of the experimental forest catchments range from 55 to 65. SCS Runoff Curve number method is a widely used method for estimating design discharge for small ungauged watersheds. Therefore, this study can be helpful technically to estimate the discharge for forest watersheds in Korea with more accuracy.

  10. Importance of riparian forests in urban catchments contingent on sediment and hydrologic regimes

    USGS Publications Warehouse

    Roy, A.H.; Freeman, Mary C.; Freeman, B.J.; Wenger, S.J.; Meyer, J.L.; Ensign, W.E.

    2006-01-01

    Forested riparian corridors are thought to minimize impacts of landscape disturbance on stream ecosystems; yet, the effectiveness of streamside forests in mitigating disturbance in urbanizing catchments is unknown. We expected that riparian forests would provide minimal benefits for fish assemblages in streams that are highly impaired by sediment or hydrologic alteration. We tested this hypothesis in 30 small streams along a gradient of urban disturbance (1–65% urban land cover). Species expected to be sensitive to disturbance (i.e., fluvial specialists and “sensitive” species that respond negatively to urbanization) were best predicted by models including percent forest cover in the riparian corridor and a principal components axis describing sediment disturbance. Only sites with coarse bed sediment and low bed mobility (vs. sites with high amounts of fine sediment) had increased richness and abundances of sensitive species with higher percent riparian forests, supporting our hypothesis that response to riparian forests is contingent on the sediment regime. Abundances of Etheostoma scotti, the federally threatened Cherokee darter, were best predicted by models with single variables representing stormflow (r2 = 0.34) and sediment (r2 = 0.23) conditions. Lentic-tolerant species richness and abundance responded only to a variable representing prolonged duration of low-flow conditions. For these species, hydrologic alteration overwhelmed any influence of riparian forests on stream biota. These results suggest that, at a minimum, catchment management strategies must simultaneously address hydrologic, sediment, and riparian disturbance in order to protect all aspects of fish assemblage integrity.

  11. Effects of a rainstorm high in sea-salts on labile inorganic aluminium in drainage from the acidified catchments of Lake Terjevann, southernmost Norway

    NASA Astrophysics Data System (ADS)

    Andersen, D. O.; Seip, H. M.

    1999-10-01

    The acidification of many streams and lakes that has occurred in southern Norway during several decades is to a large extent caused by acid deposition. However, in coastal areas deposition events with high loading of sea-salts may result in increased acidity and aluminium concentration in the discharge. Since such episodes are difficult to predict and usually of short duration, the aluminium chemistry during such episodes has so far not been evaluated in detail. In January 1993, during monitoring of streams in the Lake Terjevann catchment, the area was exposed to an extraordinary high sea-salt loading. The Cl - concentration in the stream water more than doubled (reaching about 900 μeq/l), the labile inorganic aluminium (Al i) concentration almost quadrupled (reaching about 33 and 18 μM in the two streams), and the relative increase in the Al 3+ concentration was even higher. It took 3-4 months until the Al i concentration and almost a year until the Cl - concentration returned to pre-event levels. Simple equilibria with minerals such as gibbsite, jurbanite, kaolinite/halloysite or imogolite do not control aluminium concentration in the discharge from these catchments. Retention of Na + more than compensated for the desorption of Al 3+. The results strongly indicate that cation exchange in the organic soil layers was essential in controlling the aluminium chemistry in the stream waters especially during high flow. Similar, but less pronounced, effects of the sea-salt episode were seen at the Birkenes catchment about 37 km inland from Lake Terjevann.

  12. Impact of wildfire on stream nutrient chemistry and ecosystem metabolism in boreal forest catchments of interior Alaska

    Treesearch

    Emma F. Betts; Jeremy B. Jones

    2009-01-01

    With climatic warming, wildfire occurrence is increasing in the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales, fire can accelerate permafrost degradation, altering catchment hydrology and stream nutrient...

  13. Dissolved Organic Nitrogen Dynamics in Forested Catchments on the Precambrian Shield

    NASA Astrophysics Data System (ADS)

    Kothawala, D. N.; Dillon, P. J.

    2009-05-01

    We present preliminary data on nitrogen (N) mass balances for eleven forested catchments on the southern Ontario Precambrian Shield. Meteorological parameters, stream flow, precipitation and stream chemistry have been monitored since 1980-81. We focus on the most recent decade (1998 to 2008) and attempt to determine whether or not there are changes to N dynamics. In particular, we test whether changes have occurred to the concentrations, fluxes and percent of N species (NO3-, NH4+ and dissolved organic nitrogen (DON)) in precipitation and stream export. We also estimate the amount of N retained within forest stands and soils and test for changes in the rate of catchment scale N leaching. We place particular emphasis on patterns observed between catchments with differing amounts of wetland cover. As DON is the primary form of N exported from these catchments, we determine the relative age of stream DON. By examining the 15 N of soil organic matter within horizons of upland and wetland soils, we establish the extent to which organic forms of N are re-cycled within the catchment prior to being exported into the streams. We characterize soil organic N and DON to determine the proportion of proteinaceous material, amino sugars, and heterocyclic N. Both age and molecular composition may help reveal the primary source of DON. Currently it is unclear what proportion of DON is the product of fresh litter decomposition or aged soil organic matter. The export of stream DON is generally closely linked to dissolved organic carbon (DOC). However there is some evidence of seasonal de-coupling. We also identify changes to DOC:DON with movement through a catchment from throughfall, to soil and stream waters.

  14. Predicting forested catchment evapotranspiration and streamflow from stand sapwood area and Aridity Index

    NASA Astrophysics Data System (ADS)

    Lane, Patrick

    2016-04-01

    Estimating the water balance of ungauged catchments has been the subject of decades of research. An extension of the fundamental problem of estimating the hydrology is then understanding how do changes in catchment attributes affect the water balance component? This is a particular issue in forest hydrology where vegetation exerts such a strong influence on evapotranspiration (ET), and consequent streamflow (Q). Given the primacy of trees in the water balance, and the potential for change to species and density through logging, fire, pests and diseases and drought, methods that directly relate ET/Q to vegetation structure, species, and stand density are very powerful. Plot studies on tree water use routinely use sapwood area (SA) to calculate transpiration and upscale to the stand/catchment scale. Recent work in south eastern Australian forests have found stand-wide SA to be linearly correlated (R2 = 0.89) with long term mean annual loss (P-Q), and hence, long term mean annual catchment streamflow. Robust relationships can be built between basal area (BA), tree density and stand SA. BA and density are common forest inventory measurements. Until now, no research has related the fundamental stand attribute of SA to streamflow. The data sets include catchments that have been thinned and with varying age classes. Thus far these analyses have been for energy limited systems in wetter forest types. SA has proven to be a more robust biometric than leaf area index which varies seasonally. That long term ET/Q is correlated with vegetation conforms to the Budyko framework. Use of a downscaled (20 m) Aridity Index (AI) has shown distinct correlations with stand SA, and therefore T. Structural patterns at a the hillslope scale not only correlate with SA and T, but also with interception (I) and forest floor evaporation (Es). These correlations between AI and I and Es have given R2 > 0.8. The result of these studies suggest an ability to estimate mean annual ET fluxes at sub

  15. Dynamics of Phosphorus export from small forested catchments in low mountain ranges in Germany

    NASA Astrophysics Data System (ADS)

    Julich, Stefan; Julich, Dorit; Benning, Raphael; Feger, Karl-Heinz

    2017-04-01

    Phosphorus (P) plays an important role in the nutrition of forest ecosystem. The transport of P in forest soils predominantly occurs along preferential water flow pathways bypassing large parts of the soil matrix. Therefore, rapid flow processes by preferential flow and/or during storm events may lead to significant P losses from forest soils. However only little knowledge about the dynamics, magnitude and driving processes of P exports into surface water exist. In this contribution, we present the results of two studies where two small forested catchments have been monitored for a period around 3 years. Both catchments are situated in low mountain ranges in Saxony (catchment size 21 ha) and Thuringia (catchment size 5 ha) representing medium P contents in the topsoil of 1142 mg kg-1 and 834 mg kg-1 respectively. During the regular sampling (monthly to weekly sampling frequency), the mean Total-P concentrations of 23 μg L-1(Thuringian Site) and 8 μg L-1(Saxonian Site) have been measured. However, during single storm events Total-P concentrations increased considerably with maximum concentrations of 134 μg L-1(Thuringian Site) and 203 μg L-1(Saxonian Site). Our findings indicate that during storm events, especially after longer dry periods, significant amounts of phosphorus can be exported from forest ecosystems. Comparison of discharge-concentration patterns of Total-P, Nitrogen and DOC, as well as dye tracer experiments, suggest that preferential flow along biopores and stone surfaces, and the interface between mineral soil and litter layer are main pathways of export from forests. For the site in Saxony we calculated mean annual export rates of 32.8 to 33.5 g ha-1 a-1 based on the weekly sampling with different load calculation methods (flow weighted methods up to linear regression models). If the events are included into the annual load calculation the mean annual export fluxes increase from 47.8 to 58.6 g ha-1 a-1 based on the different load calculation

  16. Catchment hydrological responses to forest harvest amount and spatial pattern

    EPA Science Inventory

    Forest harvest effects on streamflow dynamics have been well described experimentally, but a clear understanding of process-level hydrological controls can be difficult to ascertain from data alone. We apply a new model, Visualizing Ecosystems for Land Management Assessments (VE...

  17. Catchment hydrological responses to forest harvest amount and spatial pattern

    EPA Science Inventory

    Forest harvest effects on streamflow dynamics have been well described experimentally, but a clear understanding of process-level hydrological controls can be difficult to ascertain from data alone. We apply a new model, Visualizing Ecosystems for Land Management Assessments (VE...

  18. Soil carbon and nitrogen erosion in forested catchments: implications for erosion-induced terrestrial carbon sequestration

    NASA Astrophysics Data System (ADS)

    Stacy, E. M.; Hart, S. C.; Hunsaker, C. T.; Johnson, D. W.; Berhe, A. A.

    2015-08-01

    Lateral movement of organic matter (OM) due to erosion is now considered an important flux term in terrestrial carbon (C) and nitrogen (N) budgets, yet most published studies on the role of erosion focus on agricultural or grassland ecosystems. To date, little information is available on the rate and nature of OM eroded from forest ecosystems. We present annual sediment composition and yield, for water years 2005-2011, from eight catchments in the southern part of the Sierra Nevada, California. Sediment was compared to soil at three different landform positions from the source slopes to determine if there is selective transport of organic matter or different mineral particle size classes. Sediment export varied from 0.4 to 177 kg ha-1, while export of C in sediment was between 0.025 and 4.2 kg C ha-1 and export of N in sediment was between 0.001 and 0.04 kg N ha-1. Sediment yield and composition showed high interannual variation. In our study catchments, erosion laterally mobilized OM-rich litter material and topsoil, some of which enters streams owing to the catchment topography where steep slopes border stream channels. Annual lateral sediment export was positively and strongly correlated with stream discharge, while C and N concentrations were both negatively correlated with stream discharge; hence, C : N ratios were not strongly correlated to sediment yield. Our results suggest that stream discharge, more than sediment source, is a primary factor controlling the magnitude of C and N export from upland forest catchments. The OM-rich nature of eroded sediment raises important questions about the fate of the eroded OM. If a large fraction of the soil organic matter (SOM) eroded from forest ecosystems is lost during transport or after deposition, the contribution of forest ecosystems to the erosion-induced C sink is likely to be small (compared to croplands and grasslands).

  19. Modeling long-term suspended-sediment export from an undisturbed forest catchment

    NASA Astrophysics Data System (ADS)

    Zimmermann, Alexander; Francke, Till; Elsenbeer, Helmut

    2013-04-01

    Most estimates of suspended sediment yields from humid, undisturbed, and geologically stable forest environments fall within a range of 5 - 30 t km-2 a-1. These low natural erosion rates in small headwater catchments (≤ 1 km2) support the common impression that a well-developed forest cover prevents surface erosion. Interestingly, those estimates originate exclusively from areas with prevailing vertical hydrological flow paths. Forest environments dominated by (near-) surface flow paths (overland flow, pipe flow, and return flow) and a fast response to rainfall, however, are not an exceptional phenomenon, yet only very few sediment yields have been estimated for these areas. Not surprisingly, even fewer long-term (≥ 10 years) records exist. In this contribution we present our latest research which aims at quantifying long-term suspended-sediment export from an undisturbed rainforest catchment prone to frequent overland flow. A key aspect of our approach is the application of machine-learning techniques (Random Forest, Quantile Regression Forest) which allows not only the handling of non-Gaussian data, non-linear relations between predictors and response, and correlations between predictors, but also the assessment of prediction uncertainty. For the current study we provided the machine-learning algorithms exclusively with information from a high-resolution rainfall time series to reconstruct discharge and suspended sediment dynamics for a 21-year period. The significance of our results is threefold. First, our estimates clearly show that forest cover does not necessarily prevent erosion if wet antecedent conditions and large rainfalls coincide. During these situations, overland flow is widespread and sediment fluxes increase in a non-linear fashion due to the mobilization of new sediment sources. Second, our estimates indicate that annual suspended sediment yields of the undisturbed forest catchment show large fluctuations. Depending on the frequency of large

  20. Quantifying soil and critical zone variability in a forested catchment through digital soil mapping

    NASA Astrophysics Data System (ADS)

    Holleran, M.; Levi, M.; Rasmussen, C.

    2015-01-01

    Quantifying catchment-scale soil property variation yields insights into critical zone evolution and function. The objective of this study was to quantify and predict the spatial distribution of soil properties within a high-elevation forested catchment in southern Arizona, USA, using a combined set of digital soil mapping (DSM) and sampling design techniques to quantify catchment-scale soil spatial variability that would inform interpretation of soil-forming processes. The study focused on a 6 ha catchment on granitic parent materials under mixed-conifer forest, with a mean elevation of 2400 m a.s.l, mean annual temperature of 10 °C, and mean annual precipitation of ~ 85 cm yr-1. The sample design was developed using a unique combination of iterative principal component analysis (iPCA) of environmental covariates derived from remotely sensed imagery and topography, and a conditioned Latin hypercube sampling (cLHS) scheme. Samples were collected by genetic horizon from 24 soil profiles excavated to the depth of refusal and characterized for soil mineral assemblage, geochemical composition, and general soil physical and chemical properties. Soil properties were extrapolated across the entire catchment using a combination of least-squares linear regression between soil properties and selected environmental covariates, and spatial interpolation or regression residual using inverse distance weighting (IDW). Model results indicated that convergent portions of the landscape contained deeper soils, higher clay and carbon content, and greater Na mass loss relative to adjacent slopes and divergent ridgelines. The results of this study indicated that (i) the coupled application of iPCA and cLHS produced a sampling scheme that captured the greater part of catchment-scale soil variability; (ii) application of relatively simple regression models and IDW interpolation of residuals described well the variance in measured soil properties and predicted spatial correlation of soil

  1. Changes in surface water chemistry caused by natural forest dieback in an unmanaged mountain catchment.

    PubMed

    Kopáček, J; Fluksová, H; Hejzlar, J; Kaňa, J; Porcal, P; Turek, J

    2017-04-15

    Ionic and nutrient compositions of throughfall, tributaries and lake outlet were analysed in the Plešné catchment-lake system (an unmanaged mountain forest in Central Europe) from 1997 to 2016. The aim was to evaluate changes in surface water chemistry after natural forest dieback. In the 2004-2008, 93% of the Norway spruce trees were killed by bark beetle outbreak, and all dead biomass remained in the catchment. Forest dieback changed the chemistry of all water fluxes, and the magnitude, timing, and duration of these changes differed for individual water constituents. The most pronounced decreases in throughfall concentrations occurred for K(+), dissolved organic carbon (DOC), Ca(2+) and Mg(2+), i.e. elements mostly originating from canopy leaching, while concentrations of NH4(+) and soluble reactive phosphorus (SRP) remained almost unaffected. In tributaries, the most rapid changes were increases in NO3(-), K(+), H(+) and ionic aluminium (Ali) concentrations, while terrestrial export of DOC and P forms started more slowly. Immediately after the forest dieback, increase in NO3(-) concentrations was delayed by elevated DOC availability in soils. NO3(-) became the dominant anion, with maximum concentrations up to 346μeqL(-1) within 5-7years after the bark beetle outbreak, and then started to decrease. Terrestrial exports of Ali, K(+), H(+), Mg(2+), and Ca(2+) accompanied NO3(-) leaching, but their trends differed due to their different sources. Elevated losses of SRP, DOC, and dissolved organic nitrogen continued until the end of the study. In the lake, microbial processes significantly decreased concentrations of NO3(-), organic acid anions, H(+) and Ali, and confounded the chemical trends observed in tributaries. Our results suggest that terrestrial losses of elements and the deterioration of waters after forest dieback are less pronounced in unmanaged than managed (clear-cut) catchments. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Seeps regulate stream nitrate concentration in a forested Appalachian catchment.

    PubMed

    O'Driscoll, Michael A; DeWalle, David R

    2010-01-01

    Surface seeps can be defined as locations where upwelling ground water saturates the surface for most of the year and excess ground water can be delivered to the stream channel via surface flowpaths. If a stream is predominantly fed by seeps, then ground water added to the stream via these surface flowpaths may result in reduced interactions with the subsurface riparian zone. It is generally believed that seep ground water that upwells and then flows along surface flowpaths can be subject to diminished denitrification and biologic uptake processes. Seep effects on stream nitrate (NO(3)) concentration were studied in Baldwin Creek (5.35 km(2)), southwestern Pennsylvania. Nitrate retention within seep zones was evaluated over a 1-yr period (May 2002-2003) using a monthly, nested (top and bottom of seep) sampling approach along 15 individual seeps. Seep samples were analyzed for NO(3)-N, NH(3)-N, and dissolved organic carbon, along with stream waters and streamflow measurements at seven stream stations. Seeps were generally NO(3) sinks with concentrations decreasing downseep: 31% median annual reduction and 73% maximum monthly reduction. During cold and wet periods, seeps frequently behaved as NO(3) sources to the stream (NO(3) concentrations increased or remained constant downseep). Seep temperature and discharge were related to seasonal variability in seep NO(3) retention. Seasonal variations in stream NO(3) concentration have been attributed to upland soil and vegetation processes in numerous watersheds. At Baldwin Creek, seep NO(3) processing regulated the seasonal variability of stream NO(3) concentrations. These results suggest that seeps provide important water quality functions and can modulate the effects of elevated regional N deposition in Appalachian catchments.

  3. Soil Collembola communities within Plešné Lake and Čertovo Lake catchments, the Bohemian Forest

    NASA Astrophysics Data System (ADS)

    Čuchta, Peter

    2016-04-01

    The soil Collembola communities were studied for three years in disturbed spruce forest stands in the catchments areas of Čertovo and Plešné Lakes in the Bohemian Forest, Czech Republic. The study was focused on the impact of the windthrow, bark beetle outbreak damage and consecutive changes in the forest stands including soil environment. Four different treatments were selected for the study on both study areas: undamaged (control) forest stands, "dead" forest stands damaged by bark beetle, slightly managed windthrown forest stands left for the natural succession, and freshly harvested windthrown stands. After two years of research a total of 7,294 Collembola specimens were recorded belonging to 93 species. We recorded the highest collembolan abundance and species richness in the reference stands within catchments of both lakes, while both given parameters were considerably lower in harmed forest stands. To summarize, the disturbance led to a general decrease of Collembola communities.

  4. Origin of particulate organic matter exported during storm events in a forested headwater catchment.

    NASA Astrophysics Data System (ADS)

    Jeanneau, Laurent; Rowland, Richard D.; Inamdar, Shreeram P.

    2016-04-01

    Particulate organic matter (POM) plays an important biogeochemical role towards ecology, ecotoxicology and carbon cycle. Moreover POM within the fluvial suspended sediment load during infrequent high flows can comprise a larger portion of long-term flux than dissolved species. It is well documented that storm events that constituted only 10-20% of the year contributed to >80% of POC exports. But the origin and composition of POM transferred during those hot moments remained unclear. In order to improve our knowledge on this topic we explore the variability in storm event-transported sediments' POM content and source down a continuum of catchment drainage locations. Wetland, upland and forest O horizons, litter, river banks and bed sediments were analyzed for their content in organic C, isotopic (13C) and molecular (thermochemiolysis-gas chromatography-mass spectrometry) fingerprints. The isotopic and molecular fingerprints recorded in suspended and deposited (differentiated into fine, medium and coarse particles) sediments sampled during different storm events down a continuum of catchment drainage locations (12 and 79 ha). This study highlights compositional differences between the catchment size (12 versus 79 ha), the particle size of deposited sediment (fine versus medium versus coarse) and the sampling time during a storm event (rising limb versus peak flow versus falling limb). Two sampling strategies were used. Suspended sediments sampled at a specific time during flood events allow evaluating changes along the hydrograph, while deposited sediments that integrate the entire event allow making comparisons with drainage scale. For deposited sediments, the proportion of OM coming from the endmembers wetland, litter and Forest O horizon decreases from the 12ha to the 79ha catchment, which exhibited a higher proportion of OM coming from stream bed sediment and river banks. For both catchments, from fine to coarse particles, the influence of stream bed sediments

  5. Pyro-eco-hydrologic feedbacks and catchment co-evolution in fire-prone forested uplands

    NASA Astrophysics Data System (ADS)

    Sheridan, Gary; Inbar, Assaf; Lane, Patrick; Nyman, Petter

    2017-04-01

    The south east Australian forested uplands are characterized by complex and inter-correlated spatial patterns in standing biomass, soil depth/quality, and fire regimes, even within areas with similar rainfall, geology and catenary position. These system properties have traditionally been investigated independently, however recent research in the areas of post fire hydrology and erosion, and new insights into forest structure, fuel moisture, and flammability, suggest the presence of critical co-evolutionary feedbacks between fire, soils and vegetation that may explain the observed system states. To test this hypothesis we started with a published ecohydrologic model, modifying and extending the algorithms to capture feedbacks between hyrology and fire, and between fire, vegetation and soil production and erosion. The model was parameterized and calibrated with new data from instrumented forested hillslopes across energy and rainfall gradients generated by selecting sites with a range of aspect (energy) and elevation (rainall). The calibrated model was able to reasonably replicate the observed patterns of standing biomass, water balance, fire interval, and soil depth. The catchment co-evolution/feedback modelling approach to understanding patterns of vegetation, soils and fire regimes provides a promising new paradigm for predicting the response of forested se Australian catchments to declining rainfall and increasing temperatures under climate change.

  6. Snow-covered soils produce N2O that is lost from forested catchments

    NASA Astrophysics Data System (ADS)

    Enanga, E. M.; Creed, I. F.; Fairweather, T.; Casson, N. J.

    2016-09-01

    The magnitude of net soil nitrous oxide (N2O) production from a snow-covered catchment in a northern temperate forest was investigated. There was considerable net soil N2O-N production and consumption through the snowpack, ranging from -6.6 to 26.2 g-N ha-1 d-1. There was no difference in net N2O production among topographic positions despite significant variation in soil moisture, reduction-oxidation conditions, and pore water dissolved organic carbon and nitrate. Soil temperatures did not vary among topographic positions, suggesting that temperatures at or above the freezing point allow N2O production to proceed under the snowpack. Redox conditions were lower at wetland positions compared to lowlands and uplands, suggesting that the biogeochemical pathway of N2O production varies with topography. Over the entire nongrowing season, 1.5 kg of N2O-N was exported to the atmosphere from the 6.33 ha catchment, representing 31% of the growing season N2O-N production. These results suggest that winter is an active time for gaseous N production in these forests and that N2O production under the snowpack represents an often unmonitored flux of N from catchments.

  7. Evaluating the Impacts of Unexpected Forest Disturbances on Paired Catchment Calibrations of Sediment Yield and Turbidity

    NASA Astrophysics Data System (ADS)

    Herlein, K.; Silins, U.; Williams, C.; Wagner, M. J.; Martens, A. M.

    2015-12-01

    The paired catchment approach of studying the impacts of disturbance on catchment hydrology remains as perhaps the most powerful approach for direct verification of catchment scale impacts from disturbance. However, paired catchment studies are also dependent on the stability of the relationships between treated and reference catchments during calibration and evaluation periods. A long-term paired catchment study of forest harvest impacts on sediment yield and turbidity in the Rocky Mountains of southwestern Alberta, Canada has a robust 11-year pre-treatment data record. The study intends to evaluate three alternative logging practices: clear-cutting, strip-shelterwood, and partial cutting. 3 sub-catchments in Star Creek (1035 ha) underwent harvest treatments while North York Creek (865 Ha) serves as the reference. The objective of this particular study was to explore the potential effects of unplanned and unanticipated watershed changes in two watersheds during an 11-year calibration. Sediment yield (kg ha-1 d-1) and turbidity (NTU) were monitored throughout the calibration period (2004-2014) prior to the 2015 harvest in Star Creek. Two unanticipated disturbances including backcountry trail rehabilitation in North York (2010) followed by a >100 year storm event in both watersheds in June 2013 may have affected the sediment yield and turbidity calibration relationships. Analysis of covariance (ANCOVA) was used to evaluate the effects of this trail rehabilitation and flooding by comparing the calibration relationships before and after these disturbances. Despite qualitative field observations of periodically affected sediment regimes, no impact on pre- or post- calibration relationships was observed. Backcountry trail rehabilitation in North York (p=0.904 and 0.416 for sediment yield and turbidity, respectively) or flooding in both watersheds (p=0.364 and 0.204 for sediment yield and turbidity, respectively) did not produce significant changes to the calibrations

  8. Nutrient export from catchments on forested landscapes reveals complex nonstationary and stationary climate signals

    NASA Astrophysics Data System (ADS)

    Mengistu, Samson G.; Quick, Christopher G.; Creed, Irena F.

    2013-06-01

    Headwater catchment hydrology and biogeochemistry are influenced by climate, including linear trends (nonstationary signals) and climate oscillations (stationary signals). We used an analytical framework to detect nonstationary and stationary signals in yearly time series of nutrient export [dissolved organic carbon (DOC), dissolved organic nitrogen (DON), nitrate (NO3--N), and total dissolved phosphorus (TDP)] in forested headwater catchments with differential water loading and water storage potential at the Turkey Lakes Watershed in Ontario, Canada. We tested the hypotheses that (1) climate has nonstationary and stationary effects on nutrient export, the combination of which explains most of the variation in nutrient export; (2) more metabolically active nutrients (e.g., DON, NO3--N, and TDP) are more sensitive to these signals; and (3) catchments with relatively low water loading and water storage capacity are more sensitive to these signals. Both nonstationary and stationary signals were identified, and the combination of both explained the majority of the variation in nutrient export data. More variation was explained in more labile nutrients (DON, NO3--N, and TDP), which were also more sensitive to climate signals. The catchment with low-water storage potential and low water loading was most sensitive to nonstationary and stationary climatic oscillations, suggesting that these hydrologic features are characteristic of the most effective sentinels of climate change. The observed complex links between climate change, climatic oscillations, and water nutrient fluxes in headwater catchments suggest that climate may have considerable influence on the productivity and biodiversity of surface waters, in addition to other drivers such as atmospheric pollution.

  9. Catchment Hydro-biogeochemical Responses to Forest Harvest Intensity and Spatial Pattern

    NASA Astrophysics Data System (ADS)

    Abdelnour, A.; Stieglitz, M.; Pan, F.; McKane, R.

    2009-12-01

    We apply a new model, Visualizing Ecosystems for Land Management Assessment (VELMA), to Watershed 10 (WS10) in the H.J. Andrews Experimental Forest to simulate the effects of harvest intensity and spatial pattern on catchment hydrological and biogeochemical processes. Specifically, we test for the occurrence of hydrological and biogeochemical threshold behavior in the catchment response. VELMA is a spatially-distributed eco-hydrology model that simulates the effects of climate, and land cover on daily changes in soil water storage, surface and subsurface runoff, vertical drainage, evapotranspiration, vegetation and soil C and N dynamics, and transport of nitrate, ammonium, DON, and DOC to streams. We simulate pre- and post-disturbance hydrological and biogeochemical responses of the WS10 catchment. Model parameters were initialized to simulate the post-fire build-up of ecosystem C and N stocks from 1725 to 1975. These parameters are then fixed and used to simulate the hydro-biogeochemical response after the 1975 clear-cut. Comparison of modeled and observed soil moisture, streamflow, DIN, DON and DOC losses for the post-clear-cut period (1975-2007) show that VELMA accurately captures spatial and temporal dynamics of hydrological and biogeochemical processes in WS10. We then examine the catchment response to alternative clear-cut scenarios for which the location and fraction of harvested area varied. These alternative clear-cut simulations suggest that the streamflow and harvest area relationship in this rain-dominated catchment is nearly linear, irrespective of clear-cut area and location. Simulations designed to identify threshold responses of DOC, DON and DIN export in relation to harvest area and location will be presented.

  10. Sediment source fingerprinting to quantify fine sediment sources in forested catchments, Chile.

    NASA Astrophysics Data System (ADS)

    Schuller, P.; Walling, D. E.; Iroume, A.; Castillo, A.; Quilodran, C.

    2012-04-01

    A study to improve the understanding of the primary sediment sources and transfer pathways in catchments disturbed following forest plantation harvesting is being undertaken in South-Central Chile. The study focuses on two sets of paired experimental catchments (treatment and control), located about 400 km apart, with similar soil type but contrasting mean annual rainfall: Nacimiento (1,200 mm year-1) and Los Ulmos (2,500 mm year-1). Sediment source fingerprinting techniques are being used to document the primary fine sediment sources. In each catchment, three potential sediment sources were defined: clearcut slopes (Z1), forest roads (Z2) and the stream channel (Z3). In each catchment, multiple representative composite samples of the different potential source materials were collected before harvest operations from the upper 1 cm layer in Z1, Z2, and from the channel bank and bed for Z3. A time-integrating trap sampler installed in the discharge monitoring station constructed at the outlet of each catchment has been used to collect samples of the suspended sediment and these have been supplemented by sediment collected from the weir pools. Total suspended sediment load is been quantified in the monitoring stations using discharge records and integrated water sampling. Caesium-137 (137Cs), excess lead-210 (210Pbex) and other sediment properties are being used as fingerprints. After air-drying, oven-drying at 40°C and disaggregation, both the source material samples and the sediment samples collected in the discharge monitoring stations were sieved through a 63-μm sieve and the <63-μm fractions were used for subsequent analyses. For radionuclide assay, the samples were sealed in Petri dishes and after 4 weeks the mass activity density (activity concentration) of 137Cs and 210Pbex was determined by gamma analysis, using an ORTEC extended range Ge detector of 53% relative efficiency. The 137Cs and 210Pbex activity and organic carbon (Corg) concentration associated

  11. Two water worlds in temperate forests? Partitioning of water sources in two forested headwater catchments in Germany

    NASA Astrophysics Data System (ADS)

    Schmid, Bettina; Dubbert, Maren; Werner, Christiane; Hopp, Luisa

    2016-04-01

    Recent ecohydrological studies using stable isotopes have suggested that water used by plants is largely separated from water that is returned to streams and groundwater. These observations have led to the postulation of a "two water worlds hypothesis" with distinct reservoirs of water in the subsurface that are not well mixed. This has major implications for our understanding of the water cycle and its conceptualization. Most of the studies to date have been conducted in forested catchments located in regions with a pronounced seasonal distribution of precipitation. Here we present findings from a study of the ecological separation of water in two forested headwater catchments in Germany where precipitation is distributed rather evenly throughout the year. Over the course of 18 months we sampled plant water, soil water, groundwater and stream runoff monthly to analyze isotope ratios of 18O and 2H. Plant and soil water were cryogenically extracted, and isotope ratios in the water samples were analyzed using cavity ring-down spectroscopy and isotope-ratio mass spectrometry. The isotope ratios of the different water sources were used to test the hypothesis that separate water worlds also exist in climates that do not exhibit a seasonal distribution of precipitation. First findings indicate distinct differences in isotope ratios between tree species, suggesting complex processes at the biosphere-hydrosphere interface, but otherwise little evidence for the existence of separate water reservoirs.

  12. Evaluating hillslope and riparian contributions to dissolved nitrogen (N) export from a boreal forest catchment

    NASA Astrophysics Data System (ADS)

    Blackburn, M.; Ledesma, José L. J.; Näsholm, Torgny; Laudon, Hjalmar; Sponseller, Ryan A.

    2017-02-01

    Catchment science has long held that the chemistry of small streams reflects the landscapes they drain. However, understanding the contribution of different landscape units to stream chemistry remains a challenge which frequently limits our understanding of export dynamics. For limiting nutrients such as nitrogen (N), an implicit assumption is that the most spatially extensive landscape units (e.g., uplands) act as the primary sources to surface waters, while near-stream zones function more often as sinks. These assumptions, based largely on studies in high-gradient systems or in regions with elevated inputs of anthropogenic N, may not apply to low-gradient, nutrient-poor, and peat-rich catchments characteristic of many northern ecosystems. We quantified patterns of N mobilization along a hillslope transect in a northern boreal catchment to assess the extent to which organic matter-rich riparian soils regulate the flux of N to streams. Contrary to the prevailing view of riparian functioning, we found that near-stream, organic soils supported concentrations and fluxes of ammonium (NH4+) and dissolved organic nitrogen that were much higher than the contributing upslope forest soils. These results suggest that stream N chemistry is connected to N mobilization and mineralization within the riparian zone rather than the wider landscape. Results further suggest that water table fluctuation in near-surface riparian soils may promote elevated rates of net N mineralization in these landscapes.

  13. Merging perspectives in the catchment sciences: the US-Japan Joint Seminar on catchment hydrology and forest biogeochemistry

    Treesearch

    Kevin J. McGuire; Stephen D. Sebestyen; Nobuhito Ohte; Emily M. Elliott; Takashi Gomi; Mark B. Green; Brian L. McGlynn; Naoko. Tokuchi

    2014-01-01

    Japan has strong research programmes in the catchment sciences that overlap with interests in the US catchment science community, particularly in experimental and field-based research. Historically, however, there has been limited interaction between these two hydrologic science communities because of differences in language, culture, and research approaches. These...

  14. The origin and dynamics of 137Cs discharge from a coniferous forest catchment

    NASA Astrophysics Data System (ADS)

    Nyléna, Torbjörn; Grip, Harald

    1997-05-01

    The turnover of radioactive caesium was studied experimentally and theoretically in a forested catchment that was covered by snow during the wet deposition of radioactive nuclides from the Chernobyl accident. The study spans from 1 week before to 8 years after the deposition event. A fraction of the catchment is covered by a mire (16010). From the edge of the mire a stream channel runs to the outlet of the catchment. Two phases of decreasing activity concentration in the stream water were found in addition to a positive influence of runoff on the activity concentration in the stream. The half-lives for 137CS in the stream water corresponding to the early and the later phase were estimated by non-linear regression to be 6.5 days and 4 years, respectively. During the first phase, which corresponded to the initial snow melt in 1986, 6.8% of the deposition was lost from the catchment, whereas the slow secondary loss during the following 8 years was 1.8%. The main contribution to the yearly discharge of 137Cs occurred during spring and autumn when the areal contribution to saturated surface runoff was highest. The remaining deposition in soil a few years after the fallout was significantly lower in the mire than in the surrounding forest. By using the calculated activity concentration of 137Cs in the stream water together with the remaining deposition in the different biotopes and information on stream flow for the catchment it was concluded that the loss originated from the mire. During the initial phase 44% of the deposition was lost from the mire, and during the following years the yearly loss was 30% from the fraction that constantly undergoes saturated surface runoff and 2% from the drier fractions of the mire. Until the end of the study it was not possible to demonstrate any loss from the recharge areas (podzol and cambisol soils), which means that physical decay will govern the decrease in activity in these areas.

  15. Effects of harvest on carbon and nitrogen dynamics in a Pacific Northwest forest catchment

    NASA Astrophysics Data System (ADS)

    Abdelnour, Alex; McKane, Robert; Stieglitz, Marc; Pan, Feifei; Cheng, Yiwei

    2013-03-01

    We used a new ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest on catchment carbon and nitrogen dynamics. We applied the model to a 10 ha headwater catchment in the western Oregon Cascade Range where two major disturbance events have occurred during the past 500 years: a stand-replacing fire circa 1525 and a clear-cut in 1975. Hydrological and biogeochemical data from this site and other Pacific Northwest forest ecosystems were used to calibrate the model. Model parameters were first calibrated to simulate the postfire buildup of ecosystem carbon and nitrogen stocks in plants and soil from 1525 to 1969, the year when stream flow and chemistry measurements were begun. Thereafter, the model was used to simulate old-growth (1969-1974) and postharvest (1975-2008) temporal changes in carbon and nitrogen dynamics. VELMA accurately captured observed changes in carbon and nitrogen dynamics before and after harvest. The interaction of hydrological and biogeochemical processes in the model provided a means for interpreting these changes. Results show that (1) losses of dissolved nutrients in the preharvest old-growth forest were generally low and consisted primarily of organic nitrogen and carbon; (2) following harvest, carbon and nitrogen losses from the terrestrial system to the stream and atmosphere increased as a result of reduced plant nitrogen uptake, increased soil organic matter decomposition, and high soil moisture; and (3) the rate of forest regrowth following harvest was lower than that after fire because post-clear-cut stocks and turnover of detritus nitrogen were substantially lower than after fire.

  16. Linking nitrogen cycling and export with variable source area dynamics in forested and urbanizing catchments

    NASA Astrophysics Data System (ADS)

    Band, L. E.; Tague, C. E.; Groffman, P.; Belt, K.

    2001-05-01

    One of the goals of the Baltimore Urban LTER site is to investigate how interactions between ecological processes and urban land use effect ecosystem functions, such as the cycling and export of nutrients. As part of this project, nitrogen export from Pond Branch, a 41 hectare forested catchment in Baltimore County, has been monitored since 1998 and is compared with nitrogen export from neighboring agricultural and urbanizing catchments. To better understand the spatial structure of nitrogen cycling and export processes in this region, a GIS and physically based, hydro-ecological model is used to investigate the interactions between soil water levels, flowpath dynamics and nitrogen cycling and export in Pond Branch. Rates of key ecosystem processes including vegetation uptake, litterfall, decomposition, mineralization, nitrification and denitrification vary in regular spatial and temporal patterns in response to meteorologically driven variations in soil water, temperature and biological activity as well as decadal level variations in canopy composition and extent. Alteration in the distribution of nitrogen sinks and sources in the landscape are particularly manifest in the dynamics of riparian areas that result in peak nitrogen export during the active growing season in this catchment. Urbanization effects can be added to the simulation by altering irrigation and fertilization rates, vegetation patterns and by altering hydrologic flowpaths through the construction of roads and sewer networks. The model is used to investigate current nitrogen cycling and export patterns and scenarios for urbanization of the Pond Branch catchment. Variation in the pattern of land cover change and infrastructure development with respect to the existing pattern of vegetation and topographic controls on nitrogen cycling is shown by the model to influence the impact of urbanization on nitrogen export.

  17. The role of seasonal and hydrological conditions in regulating dissolved inorganic nitrogen budgets in a forested catchment in SW Slovenia.

    PubMed

    Rusjan, Simon; Vidmar, Andrej

    2017-01-01

    During two consecutive years the monitoring of rainfall nitrate (NO3(-)) and ammonium (NH4(+)) concentrations, combined with high-frequency measurements of streamwater NO3(-) concentrations, provided insight into the mechanisms controlling the dissolved inorganic nitrogen (DIN) budgets of the forested Padež stream catchment in SW Slovenia. During both years, the catchment's annual wet atmospheric DIN deposition (12.6 and 13.8kg-N/ha) exceeded the annual DIN export (10.7kg-N/ha and 8.8kg-N/ha). The analysis of the monthly DIN budgets discloses seasonal patterns. In winter and early spring, the catchment behaves as a net source of DIN, whereas during late spring, summer, and early fall the catchment generally behaves as a net sink of the atmospheric DIN. Due to large evapotranspiration in the growth period, most of the DIN remains in the catchment and is flushed during the dormant season. Despite high evapotranspiration and consequently low runoff coefficients characteristic for the Mediterranean climate, large rainfall events in the growth period can cause intensive washout of DIN from the catchment. At a monthly basis, the DIN flushing might exceed the catchment's DIN retention capacity and the catchment might behave as a net source of DIN. Therefore, the hydrological conditions have the ability to shift the catchment's role in regulating the DIN budgets. The high responsiveness of the streamwater NO3(-) concentration in the growth period indicates a large pool of DIN in the forest soils which can become mobile by runoff formation. Wet atmospheric DIN deposition at the Padež catchment is considerable; highest DIN inputs can be expected when air masses approach the catchment from the southwest to southeast where there are extensive urban areas along the Italian, Slovenian and Croatian coast. However, the Padež catchment does not appear to be approaching N saturation, presumably due to strong internal N cycle in the forest soils. Copyright © 2016 Elsevier B

  18. Post-fire water quality in forest catchments: a review with implications for potable water supply

    NASA Astrophysics Data System (ADS)

    Smith, Hugh; Sheridan, Gary; Lane, Patrick; Nyman, Petter; Haydon, Shane

    2010-05-01

    In many locations fire-prone forest catchments are utilised for the supply of potable water to small communities up to large cities. For example, in south-eastern Australia, wildfires have burned part or all of forest catchments supplying drinking water to Sydney (2001 wildfire), Canberra (2003), Adelaide (2007), Melbourne (2009), as well as various regional towns. Generally, undisturbed forest catchments are a source of high quality water. However, increases in erosion and sediment flux, runoff generation, and changes to the supply of key constituents after wildfire may result in contamination of water supplies. In this review, we present key physical and chemical constituents from a drinking water perspective that may be generated in burned forest catchments and examine post-fire changes to concentrations of these constituents in streams and reservoirs. The World Health Organisation (WHO) drinking water guideline values were used to assess reported post-fire constituent concentrations. Constituents examined include suspended sediment, ash, nutrients, trace metals, anions (Cl-, SO42-), cyanides, and polycyclic aromatic hydrocarbons (PAHs). Constituent concentrations in streams and reservoirs vary substantially following wildfire. In streams, maximum reported total suspended solid concentrations (SSC) in the first year after fire ranged from 11 to 143,000 mg L-1. SSC is often measured in studies of post-fire stream water quality, whereas turbidity is used in drinking water guidelines and more commonly monitored in water supply reservoirs. For burned catchment reservoirs in south-eastern Australia, peak turbidities increased over pre-fire conditions, as did the frequency of exceedance of the turbidity guideline. NO3-, NO2-, and NH4+ may increase after wildfire but maximum recorded concentrations have not exceeded WHO guideline values. Large post-fire increases in total N and total P concentrations in streams and reservoirs have been observed, although there are no

  19. Estimating the collapse of aggregated fine soil structure in a mountainous forested catchment.

    PubMed

    Mouri, Goro; Shinoda, Seirou; Golosov, Valentin; Chalov, Sergey; Shiiba, Michiharu; Hori, Tomoharu; Oki, Taikan

    2014-06-01

    This paper describes the relationship of forest soil dryness and antecedent rainfall with suspended sediment (SS) yield due to extreme rainfall events and how this relationship affects the survival of forest plants. Several phenomena contribute to this relationship: increasing evaporation (amount of water vapour discharged from soil) due to increasing air temperature, decreasing moisture content in the soil, the collapse of aggregates of fine soil particles, and the resulting effects on forest plants. To clarify the relationships among climate variation, the collapse of soil particle aggregates, and rainfall-runoff processes, a numerical model was developed to reproduce such aggregate collapse in detail. The validity of the numerical model was confirmed by its application to the granitic mountainous catchment of the Nagara River basin in Japan and by comparison with observational data. The simulation suggests that important problems, such as the collapse of forest plants in response to decreases in soil moisture content and antecedent rainfall, will arise if air temperature continues to increase.

  20. Nitrogen and Carbon Cycling in Deforested and Pristine Upland (2400m) Forest Catchments in the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Townsend-Small, A.; Haberer, J.; McClain, M.; Ramos, O.; Gardner, W.; McCarthy, M.; Brandes, J.

    2001-12-01

    Nitrogen and carbon cycling were examined within two upland (2400m) forest catchments in the Peruvian Andes. One catchment was partially deforested within the last 3 years, while the other has remained untouched. Tracer amended samples were analyzed to determine the pathways and rates of nitrogen cycling in streams draining each catchment. Both streams exhibited very low inorganic nitrogen levels, on the order of 1 to 2 uM. A large percentage (>1/3) of the total fixed nitrogen flux from these systems was in the form of particulates. Preliminary results suggest a very high rate of nitrogen cycling in these systems. Isotopic measurements of plant samples from both catchments also suggest that these forests are highly efficient in trapping and using atmospheric nitrogen sources. The partially deforested catchment had significantly more species using C4 and CAM carbon fixation pathways. Leaf litter from both streams and leaves from trees in the area were also analyzed for carbon and nitrogen isotopes to compare and contrast nitrogen and carbon cycling between the two sites. This and other data to be presented suggest that deforestation has subtle but significant effects upon the ability of tropical upland forests to retain and use nutrients.

  1. Aluminium concentrations in Swedish forest streams and co-variations with catchment characteristics.

    PubMed

    Löfgren, Stefan; Cory, Neil; Zetterberg, Therese

    2010-07-01

    The negative effects of elevated concentrations of inorganic aluminium on aquatic organisms are well documented. Acid deposition is often cited as a main driver behind the mobilisation and speciation of aluminium in soils and surface waters. In the study, we tested the hypothesis that sulphur deposition is the main driver for elevated concentrations of inorganic aluminium in 114 base poor, boreal Swedish streams. However, the deposition of anthropogenic sulphate has decreased substantially since it peaked in the 1970s, and at the current deposition levels, we hypothesise that local site parameters play an important role in determining vulnerability to elevated concentrations of inorganic aluminium in boreal stream waters. Presented here are the results of a principal components analysis of stream water chemistry, acid deposition data and local site variables, including forest composition and stem volume. It is shown that the concentrations of both organic and inorganic aluminium are not explained by either historical or current acid deposition, but are instead explained by a combination of local site characteristics. Sites with elevated concentrations of inorganic aluminium were characterised by small catchments (<500 ha) dominated by mature stands of Norway spruce with high stem volume. Using data from the Swedish National Forest Inventory the area of productive forest land in Sweden with a higher vulnerability for elevated inorganic aluminium concentrations in forests streams is approximately 1.5 million hectares or 7% of the total productive forest area; this is higher in the south of Sweden (10%) and lower in the north (2%). A better understanding of the effects of natural processes and forest management in controlling aquatic inorganic aluminium concentrations is therefore important in future discussions about measures against surface water acidification.

  2. Trends of precipitation and streamwater chemistry at a subtropical forested catchment, northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, Chung-Te; Huang, -Chuan, Jr.; Lin, Teng-Chiu

    2016-04-01

    The assessment of long-term input-output budgets has been widely used to examine the impacts of acidic deposition on temperature forest ecosystems, but rarely in subtropical forest ecosystem. In this study, we used weekly bulk precipitation and streamwater chemistry data collected between 1994 and 2013 in a small catchment in northeastern Taiwan. The long-term volume-weighted mean pH of precipitation and streamwater were 4.64 and 6.79 respectively which indicated that the stream was capable of neutralizing common acidic deposition. Precipitation revealed a significant decline trend in Ca2+, NH4+, and NO3- concentration and fluxes in the summer possibly due to decreases of local emissions in Taiwan. But the persistent high levels of NO3- and SO42- during winter period over the past 20 years could a potential threat to forest ecosystems in the region. Although the concentrations and fluxes of all elements in streamwater showed high intern-annual variation, there were no significant trends. The long-term nutrient budget indicates net loss for Na+, Mg2+, Ca2+, NO3- and SO42-, net retention for NH4+ and Cl- and near balance for K+. The significant trend of net export of NO3- during the study period calls for further investigation to clarify if nitrogen saturation is occurring due to the high acid deposition or if other factors such as typhoon disturbance are driving its dynamics. From the comparisons between seasonal and annual budgets, it is clear that hydrological flux instead of biological activities dominated the biogeochemical processes and this is very different from the biotic control of biogeochemistry in temperate forest ecosystem (e.g. Hubbard Brook Experimental Forest). Our results also have important implications on the effects of climate change on biogeochemical cycles. Keywords: acid deposition, nutrient budget, biogeochemistry, forest ecosystem, subtropical mountainous island.

  3. Incorporating preferential flow into a 3D model of a forested headwater catchment

    NASA Astrophysics Data System (ADS)

    Glaser, Barbara; Jackisch, Conrad; Hopp, Luisa; Pfister, Laurent; Klaus, Julian

    2016-04-01

    Preferential flow plays an important role for water flow and solute transport. The inclusion of preferential flow, for example with dual porosity or dual permeability approaches, is a common feature in transport simulations at the plot scale. But at hillslope and catchment scales, incorporation of macropore and fracture flow into distributed hydrologic 3D models is rare, often due to limited data availability for model parameterisation. In this study, we incorporated preferential flow into an existing 3D integrated surface subsurface hydrologic model (HydroGeoSphere) of a headwater region (6 ha) of the forested Weierbach catchment in western Luxembourg. Our model philosophy was a strong link between measured data and the model setup. The model setup we used previously had been parameterised and validated based on various field data. But existing macropores and fractures had not been considered in this initial model setup. The multi-criteria validation revealed a good model performance but also suggested potential for further improvement by incorporating preferential flow as additional process. In order to pursue the data driven model philosophy for the implementation of preferential flow, we analysed the results of plot scale bromide sprinkling and infiltration experiments carried out in the vicinity of the Weierbach catchment. Three 1 sqm plots were sprinkled for one hour and excavated one day later for bromide depth profile sampling. We simulated these sprinkling experiments at the soil column scale, using the parameterisation of the base headwater model extended by a second permeability domain. Representing the bromide depth profiles was successful without changing this initial parameterisation. Moreover, to explain the variability between the three bromide depth profiles it was sufficient to adapt the dual permeability properties, indicating the spatial heterogeneity of preferential flow. Subsequently, we incorporated the dual permeability simulation in the

  4. Comparing erosion rates in burnt forests and agricultural fields for a mountain catchment in NW Iberia

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Marisa Santos, Juliana; Bernard-Jannin, Léonard; Keizer, Jan Jacob

    2013-04-01

    A large part of northwestern Iberia is nowadays covered by commercial forest plantations of eucalypts and maritime pines, which have partly replaced traditional agricultural land-uses. The humid Mediterranean climate, with mild wet winters and warm dry summers, creates favorable conditions for the occurrence of frequent and recurrent forest fires. Erosion rates in recently burnt areas have been the subject of numerous studies; however, there is still a lack of information on their relevance when compared with agricultural erosion rates, impairing a comprehensive assessment of the role of forests for soil protection. This study focuses on Macieira de Alcoba, head-water catchment in the Caramulo Mountain Range, north-central Portugal, with a mixture of agricultural fields (mostly a rotation between winter pastures and summer cereals) on the lower slopes and forest plantations (mostly eucalypts) on the upper slopes. Agricultural erosion in this catchment has been monitored since 2010; a forest fire in 2011 presented an opportunity to compare post-fire and agricultural erosion rates at nearby sites with comparable soil and climatic conditions. Erosion rates were monitored between 2010 and 2013 by repeated surveys of visible erosion features and, in particular, by mapping and measuring rills and gullies after important rainfall events. During the 2011/2012 hydrological year, erosion rates in the burnt forest were two orders of magnitude above those in agricultural fields, amounting to 17.6 and. 0.1 Mg ha-1, respectively. Rills were widespread in the burnt area, while in the agricultural area they were limited to a small number of fields with higher slope; these particular fields experienced an erosion rate of 2.3 Mg ha-1, still one order of magnitude lower than at the burnt forest site. The timing of the erosion features was also quite distinct for the burnt area and the agricultural fields. During the first nine months after the fire, rill formation was not observed in

  5. Catchment-scale modeling of nitrogen dynamics in a temperate forested watershed, Oregon. An interdisciplinary communication strategy.

    Treesearch

    Kellie Vache; Lutz Breuer; Julia Jones; Phil Sollins

    2015-01-01

    We present a systems modeling approach to the development of a place-based ecohydrological model. The conceptual model is calibrated to a variety of existing observations, taken in watershed 10 (WS10) at the HJ Andrews Experimental Forest (HJA) in Oregon, USA, a long term ecological research (LTER) site with a long history of catchment-...

  6. Effect of tree thinning and skidding trails on hydrological connectivity in two Japanese forest catchments

    NASA Astrophysics Data System (ADS)

    López-Vicente, Manuel; Sun, Xinchao; Onda, Yuichi; Kato, Hiroaki; Gomi, Takashi; Hiraoka, Marino

    2017-09-01

    Land use composition and patterns influence the hydrological response in mountainous and forest catchments. In plantation forest, management operations (FMO) modify the spatial and temporal dynamics of overland flow processes. However, we found a gap in the literature focussed on modelling hydrological connectivity (HC) in plantation forest under different FMO. In this study, we simulated HC in two steep paired forest subcatchments (K2 and K3, 33.2 ha), composed of Japanese cypress (Chamaecyparis obtusa Endl.) and Japanese cedar (Cryptomeria japonica D. Don) plantations (59% of the total area) against a tree thinning intensity of 50% at different time. Additionally, construction of new skidding trails and vegetation recovery was simulated on five thinning-based scenarios that covered a 40-month test period (July 2010 - October 2013). As a future scenario, six check-dams located in the main streams were proposed to reduce sediment and radionuclide delivery. An updated version of Borselli's index of runoff and sediment connectivity was run, using the D-infinity flow accumulation algorithm and exploiting three 0.5-m resolution digital elevation models. On the basis of the pre-FMO scenario, HC increased at catchment scale owing to tree thinning and the new skidding trails. This change was more noticeable within the area affected by the FMO, where HC increased by 11.4% and 10.5% in the cypress and cedar plantations in K2 respectively and by 8.8% in the cedar plantation in K3. At hillslope plot and stream scales, the evolution in the values of HC was less evident, except the increment (by 5.4%) observed in the streams at K2 after the FMO. Progressive vegetation recovery after the FMO triggered a slight reduction of connectivity in all compartments of both subcatchments. Forest roads and especially skidding trails presented the highest values of HC, appearing as the most efficient features connecting the different vegetation patches with the stream network. The spatial

  7. Understanding the spatial and temporal variability of water sources in a humid forested catchment

    NASA Astrophysics Data System (ADS)

    Pianezzola, Luisa; Zuecco, Giulia; Pozzoni, Santiago; Penna, Daniele; Borga, Marco

    2016-04-01

    The detailed understanding of the hydrological response of humid forested catchments is hampered by the marked spatial and temporal variability of water sources. In this work, we use environmental tracers (major ions, electrical conductivity and stable isotopes of water) coupled to hydrometric data to infer the main contributors to streamflow and their spatio-temporal variability during rainfall events in a small forested catchment in the Italian pre-Alps. Specifically, we aim to i) identify the main end-members for stream runoff; ii) evaluate their spatial and temporal variability, and iii) quantify the component fractions in stream runoff. Data collection took place in the 1.96-ha Ressi catchment between August 2012 and November 2015. Streamflow, precipitation, air temperature, shallow groundwater levels at six spatially-distributed locations and soil moisture at four locations along a riparian-hillslope transect were continuously measured. Monthly water samples were collected from precipitation, stream, shallow groundwater, soil water at 20 cm depth in two suction cups in the riparian and hillslope zone. Electrical conductivity was measured in the field by a portable meter, isotopic composition was determined by laser absorption spectroscopy and ionic concentrations by ion-chromatography. Samples for major ions were collected from September 2015 also during three rainfall-runoff events at high temporal frequency. End-member mixing analysis and tracer-based two- and three-component hydrograph separation techniques were employed, providing different scenarios of streamflow component fractions according to the use of isotopic data and of the three cations with largest concentrations (calcium, magnesium and sodium), and groundwater in different wells. Preliminary results reveal that precipitation, soil water in the riparian zone, and shallow groundwater are the main contributors to stream runoff. Riparian groundwater in the lower part of the catchment sustains

  8. Confidence interval in estimating solute loads from a small forested catchment

    NASA Astrophysics Data System (ADS)

    Tada, A.; Tanakamaru, H.

    2007-12-01

    The evaluation of uncertainty in estimating mass flux (load) from catchments plays the important role in the evaluation of chemical weathering, TMDLs implementation, and so on. Loads from catchments are estimated with many methods such as weighted average, rating curve, regression model, ratio estimator, and composite method, considering the appropriate sampling strategy. Total solute loads for 10 months from a small forested catchment were calculated based on the high-temporal resolution data and used in evaluating the validity of 95% confidence intervals (CIs) of estimated loads. The effect of employing random and flow-stratified sampling methods on 95% CIs was also evaluated. Water quality data of the small forested catchment (12.8 ha) in Japan was collected every 15 minutes during 10 months in 2004 to acquire the 'true values' of solute loads. Those data were measured by the monitoring equipment using FIP (flow injection potentiometry) method with ion-selective electrodes. Measured indices were sodium, potassium, and chloride ion in the stream water. Water quantity (discharge rate) data were measured continuously by the V-notch weir at the catchment outlet. The Beale ratio estimator was employed as the estimation method of solute loads because it was known as unbiased estimator. The bootstrap method was also used for calculating the 95% confidence intervals of solute loads with 2,000 bootstrap replications. Both flow-stratified and random sampling was adopted as sampling strategy which extracted sample data sets from the entire observations. Discharge rate seemed to be a dominant factor of solute concentration because the catchment was almost undisturbed. The validity of 95% CIs were evaluated using the number of inclusion of 'true value' inside CIs out of 1,000 estimations derived from independently and iteratively extracted sample data sets. The number of samples in each data set was set to 5,500, 950, 470, 230, 40, and 20, equivalent to hourly, 6-hourly, 12

  9. Analysis on DOC transformation in a forested catchment using stable carbon isotope values

    NASA Astrophysics Data System (ADS)

    Ohte, N.; Takahashi, Y.; Itoh, M.; Katsuyama, M.; Fujimoto, M.; Matsuo, N.; Tani, M.

    2009-12-01

    In order to elucidate the production, consumption and transformation mechanisms of dissolved organic carbon (DOC) in temperate forested catchment , time and spatial variations in several parameters which characterize the DOC quality were surveyed in various hydrological processes in a headwater catchment in central Japan. Rain, through fall, soil waters in various depths, groundwater and streamwater were sampled since June 2006 to November 2008. Concentration, δ13C, fluorescence spectrum and UV absorbance of DOC were measured. We measured the δ13C-DOC values using an IRMS with a CO2 purifying system connected to a TOC analyzer. Combined discussions on the profiles of concentration, δ13C and fluorescence characteristics provided following findings: 1) Microbial decomposition of DOC was commonly predominant for consumption in relatively shallower soil horizons (0 to 30 cm in depth) regardless of the soil moisture condition among the soil profiles at the different parts in hillslope, while adsorption was significant in the relatively dry soil profile. 2) During this process, persistent portions remained preferentially in the soil solution. 3) In the groundwater body, two different processes caused; protein-like dissolved organic carbon was added in the relatively oxygen rich part and the δ13C value decreased with the anoxic DOC decomposition in the oxygen poor part, suggesting the methanogenic activity related DOC production (Figure 1). Stream DOC characteristics were determined by relative contributions of subsurface water and groundwater. Then, it received fresh DOC with high fulvic fluorescence peak from bank side or riparian zones again. These indicated that the stream DOC characteristics were influenced not only by in stream and streamside organic supply, but also terrestrial DOC formation through the groundwater discharge. Figure 1. Relationship between UV/DOC and δ13C-DOC of soil water at three different soil profiles. G1, G34 and G27 were located in the

  10. Sulfate exports from multiple catchments in a glaciated forested watershed in western New York, USA.

    PubMed

    Inamdar, Shreeram P; Mitchell, Myron J

    2008-04-01

    Sulfate (SO4(2-)) concentrations and fluxes were studied for multiple storm events in the Point Peter Brook watershed, a glaciated, forested watershed located in Western New York, USA. Investigations were performed across one large (696 ha) and three small (1.6-3.4 ha) catchments with varying extent of riparian and wetland areas. Concentrations of SO4(2-) in groundwater sources (mean values: 238-910 micromol(c) L(-1)) were considerably greater than concentrations recorded for rainfall (60 micromol(c) L(-1)) and throughfall (72-129 micromol(c) L(-1)). Seasonality in SO4(2-) concentrations was most pronounced for valley-bottom riparian waters with maximum concentrations in late winter-spring (February-March) and a minimum in late summer (August). Concentrations of SO4(2-) in wetland water were considerably less than riparian water indicating the likelihood of SO4(2-) reduction in anoxic wetland conditions. Storm events displayed a dilution pattern in SO4(2-) concentrations with a minimum coinciding with the maximum in throughfall contributions. End member mixing analysis (EMMA) was able to predict the storm event concentrations of SO4(2-) for four of the six comparisons. Concentrations of SO4(2-) at the outlet of the large (696 ha) catchment were much greater than values recorded for the smaller catchments. Exports of SO4(2-) in streamflow exceeded the inputs from atmospheric deposition suggesting that watersheds like Point Peter Brook may not show any immediate response to decreases in atmospheric SO4(2-) deposition.

  11. Identifying the role of environmental drivers in organic carbon export from a forested peat catchment.

    PubMed

    Ryder, Elizabeth; de Eyto, Elvira; Dillane, Mary; Poole, Russell; Jennings, Eleanor

    2014-08-15

    Carbon export in streams draining peat catchments represents a potential loss of carbon from long-term stores to downstream aquatic systems and ultimately, through mineralisation, to the atmosphere. There is now a large body of evidence that dissolved organic carbon (DOC) export has increased significantly in recent decades at many sites, although there is still debate about the drivers of this increase. In this study, DOC export and particulate organic carbon (POC) export were quantified from a forested peatland catchment in the west of Ireland over two years at a fine temporal resolution. The principle drivers of change in stream DOC and POC concentrations were investigated using a general additive modelling (GAM) approach. The study period included drought conditions in the early summer of 2010 and clearfelling of some commercial forestry in early 2011. The results indicated that annual loads of 9.5 t DOC km(2) year(-1) and 6.2 t POC km(2) year(-1) were exported from the catchment in 2010. This combined annual load of 15.7 t C km(2) year(-1) would represent between 0.01% and 0.02% of typical estimates for peat soil carbon storage in the region. Soil temperature, river discharge and drought explained 59.7% the deviance in DOC concentrations, while soil temperature, river discharge, and rainfall were the significant drivers of variation in POC concentrations, explaining 58.3% of deviance. Although clearfelling was not a significant factor in either model, large spikes in POC export occurred in 2011 after the first forestry clearance. The results illustrate the complexity of the interactions between climate and land management in driving stream water carbon export. They also highlight the sensitivity of peatland carbon stores to changes in temperature and precipitation, which are projected to be more extreme and variable under future climate scenarios.

  12. Unravelling past flash flood activity in a forested mountain catchment of the Spanish Central System

    NASA Astrophysics Data System (ADS)

    Ballesteros-Cánovas, Juan A.; Rodríguez-Morata, Clara; Garófano-Gómez, Virginia; Rubiales, Juan M.; Sánchez-Salguero, Raúl; Stoffel, Markus

    2015-10-01

    Flash floods represent one of the most common natural hazards in mountain catchments, and are frequent in Mediterranean environments. As a result of the widespread lack of reliable data on past events, the understanding of their spatio-temporal occurrence and their climatic triggers remains rather limited. Here, we present a dendrogeomorphic reconstruction of past flash flood activity in the Arroyo de los Puentes stream (Sierra de Guadarrama, Spanish Central System). We analyze a total of 287 increment cores from 178 disturbed Scots pine trees (Pinus sylvestris L.) which yielded indications on 212 growth disturbances related to past flash flood impact. In combination with local archives, meteorological data, annual forest management records and highly-resolved terrestrial data (i.e., LiDAR data and aerial imagery), the dendrogeomorphic time series allowed dating 25 flash floods over the last three centuries, with a major event leaving an intense geomorphic footprint throughout the catchment in 1936. The analysis of meteorological records suggests that the rainfall thresholds of flash floods vary with the seasonality of events. Dated flash floods in the 20th century were primarily related with synoptic troughs owing to the arrival of air masses from north and west on the Iberian Peninsula during negative indices of the North Atlantic Oscillation. The results of this study contribute considerably to a better understanding of hazards related with hydrogeomorphic processes in central Spain in general and in the Sierra de Guadarrama National Park in particular.

  13. Biogeochemistry of organic and inorganic arsenic species in a forested catchment in Germany.

    PubMed

    Huang, Jen-How; Matzner, Egbert

    2007-03-01

    Little is known about the fate and behavior of diffuse inputs of arsenic (As) species in forested catchments which often are the sources of drinking water. The objective of this study was to investigate the mobility and transformation of different As species in forest ecosystems to assess the environmental risk related to the diffuse pollution of As. We determined concentrations and fluxes in precipitation, litterfall, soil solutions (Oa horizon and 20- and 90-cm depth), and runoff of organic and inorganic As species and Astotal in a forest ecosystem in NE-Bavaria, Germany. The concentrations of Astotal were mostly <1 microg As L(-1) in aqueous samples and were highest in forestfloor percolates (7.6 microg As L(-1)). In litterfall, the concentrations of As species never exceeded 0.1 microg As g(-1). Arsenate and arsenite were the prevalent As species in all samples. Organic As species, comprising monomethylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, arsenobetaine, and three unidentified organic As species, were mostly found in throughfall reaching up to 45% of Astotal. The total deposition of Astotal (calculated as throughfall + litterfall) was 5.6 g As ha(-1) yr(-1) with 16% contribution of litterfall. The annual Astotal fluxes were 30 g As ha(-1) yr(-1) for forest floor percolates, 8.0 g As ha(-1) yr(-1) at 20-cm soil depth, and 1.4 g As ha(-1) yr(-1) at 90-cm soil depth. The annual runoff of Astotal from the catchment amounted to 3.8 g As ha(-1) yr(-1). The annual fluxes of total organic As species was highest in total deposition (1.1 g As ha(-1) yr(-1)) and decreased largely with depth in the soil profile. The annual runoff of total organic As species was only 0.08 g As ha(-1) yr(-1). Significant correlations in soil solutions and runoff were found between Astotal and dissolved organic C and Fe. Correlations between Astotal concentrations in runoff and water fluxes were seasonally dependent and with a steeper slope in the growing season than in

  14. Soil processes drive seasonal variation in retention of 15N tracers in a deciduous forest catchment.

    PubMed

    Goodale, Christine L; Fredriksen, Guinevere; Weiss, Marissa S; McCalley, K; Sparks, Jed P; Thomas, Steven A

    2015-10-01

    Seasonal patterns of stream nitrate concentration have long been interpreted as demonstrating the central role of plant uptake in regulating stream nitrogen loss from forested catchments. Soil processes are rarely considered as important drivers of these patterns. We examined seasonal variation in N retention in a deciduous forest using three whole-ecosystem 15N tracer additions: in late April (post-snowmelt, pre-leaf-out), late July (mid-growing- season), and late October (end of leaf-fall). We expected that plant 15N uptake would peak in late spring and midsummer, that immobilization in surface litter and soil would peak the following autumn leaf-fall, and that leaching losses would vary inversely with 15N retention. Similar to most other 15N tracer studies, we found that litter and soils dominated ecosystem retention of added 15N. However, 15N recovery in detrital pools varied tremendously by season, with > 90% retention in spring and autumn and sharply reduced 15N retention in late summer. During spring, over half of the 15N retained in soil occurred within one day in the heavy (mineral-associated) soil fraction. During summer, a large decrease in 15N retention one week after addition coincided with increased losses of 15NO3- to soil leachate and seasonal increases in soil and stream NO3- concentrations, although leaching accounted for only a small fraction of the lost 15N (< 0.2%). Uptake of 15N into roots did not vary by season and accounted for < 4% of each tracer addition. Denitrification or other processes that lead to N gas loss may have consumed the rest. These measurements of 15N movement provide strong evidence for the dominant role of soil processes in regulating seasonal N retention and losses in this catchment and perhaps others with similar soils.

  15. Increasing erosion risk due to the climate change in a small forested catchment of Sopron Hills

    NASA Astrophysics Data System (ADS)

    Csáfordi, Péter; Gálos, Borbála; Kalicz, Péter; Gribovszki, Zoltán

    2013-04-01

    According to the climate predictions, hydro-meteorological conditions expected to change in the future, leading to the alteration of erosion dynamics. Based on regional climate projections, climatic extremes may become more frequent for the end of the 21st century. Intensive rainfall events may increase soil loss on the sloping areas resulting in potentially significant on-site and off-site ecological and economical damages as well. The aim of our study was to determine the erosion impact of single rainfall events in a selected hydrologic year (2008-2009) for a 0.6 km2 forested catchment in the Sopron Hills using the erosion model EROSION-3D. Furthermore the probability of intense and erosive rainfall events has been analyzed for the time period 2071-2100, applying the regional climate model REMO (developed at the Max Planck Institute for Meteorology, Hamburg). Those rainfall events, where maximal 1-hour precipitation exceeded the 90th percentile value (6 mm), have been classified as intensive rainfall events. The erosion-accumulation maps based on the EROSION-3D model demonstrate well, that higher 1-hour precipitation may cause higher rate of soil loss if every other influencing factor are fixed (e.g. land cover, relief and runoff conditions) and the extension of erosion threatened area increases. Simulation results of the regional climate model REMO show no significant change of the yearly precipitation sum for the time period 2071-2100 compared to the reference period 1961-1990, but this tendency can differ on seasonal scale. The largest changes are expected for summer, both for the precipitation means and extremes. For the end of the 21st century summer precipitation sum is projected to decrease by 18 %. The frequency of hourly precipitation sums exceeding 0.1 mm can decrease by up to 30 %. The 95th percentile value may be higher, which refer to the increase of the rainfall intensity. The projected change of the temporal distribution of precipitation, the

  16. Summer storms trigger soil N2O efflux episodes in forested catchments

    NASA Astrophysics Data System (ADS)

    Enanga, E. M.; Creed, I. F.; Casson, N. J.; Beall, F. D.

    2016-01-01

    Climate change and climate-driven feedbacks on catchment hydrology and biogeochemistry have the potential to alter the aquatic versus atmospheric fate of nitrogen (N) in forests. This study investigated the hypothesis that during the forest growth season, topography redistributes water and water-soluble precursors (i.e., dissolved organic carbon and nitrate) for the formation of gaseous N species. Soil nitrous oxide (N2O) and nitrogen (N2) efflux and soil physical and chemical properties were measured in a temperate forest in Central Ontario, Canada from 2005 to 2010. Hotspots and hot moments of soil N2O and N2 efflux were observed in topographic positions that accumulate precipitation, which likely triggered the formation of redox conditions and in turn intercepted the conversion of nitrate N flowing to the stream by transforming it to N2O and N2. There was a strong relationship between precipitation and N2O efflux (y = 0.44x1.22, r2 = 0.618, p < 0.001 in the inner wetland; y = 1.30x1.16 r2 = 0.72, p < 0.001 in the outer wetland) and significantly different N2:N2O ratios in different areas of the wetland (19.6 in the inner wetland and 10.1 in the outer wetland). Soil N2O + N2 efflux in response to precipitation events accounted for 16.1% of the annual N input. A consequence of the higher frequency of extreme precipitation events predicted under climate change scenarios is the shift from an aquatic to atmospheric fate for N, resulting in a significant forest N efflux. This in turn creates feedbacks for even warmer conditions due to increased effluxes of potent greenhouse gases.

  17. Effects of wildfire on catchment runoff response: a modeling approach to detect changes in snow-dominated forested catchments

    Treesearch

    Jan Seibert; Jeffrey J. McDonnell; Richard D. Woodsmith

    2010-01-01

    Wildfire is an important disturbance affecting hydrological processes through alteration of vegetation cover and soil characteristics. The effects of fire on hydrological systems at the catchment scale are not well known, largely because site specific data from both before and after wildfire are rare. In this study a modelling approach was employed for change detection...

  18. Exploring functional similarity in the export of Nitrate-N from forested catchments: A mechanistic modeling approach

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Band, L. E.

    1998-11-01

    Functional similarity of catchments implies that we are able to identify the combination of processes that creates a similar response of a specific characteristic of a catchment. We applied the concept of functional similarity to the export of NO3--N from catchments situated within the Turkey Lakes Watershed, a temperate forest in central Ontario, Canada. Despite the homogeneous nature of the forest, these catchments exhibit substantial variability in the concentrations of NO3--N in discharge waters, over both time and space. We hypothesized that functional similarity in the export of NO3--N can be expressed as a function of topographic complexity as topography regulates both the formation and flushing of NO3--N within the catchment. We tested this hypothesis by exploring whether topographically based similarity indices of the formation and flushing of NO3--N capture the observed export of NO3--N over a set of topographically diverse catchments. For catchments with no elevated base concentrations of NO3--N the similarity indices explained up to 58% of the variance in the export of NO3--N. For catchments with elevated base concentrations of NO3--N, prediction of the export of NO3--N may have been complicated by the fact that hydrology was governed by a two-component till, with an ablation till overlying a basal till. While the similarity indices captured peak NO3--N concentrations exported from shallow flow paths emanating from the ablation till, they did not capture base NO3--N concentrations exported from deep flow paths emanating from the basal till, emphasizing the importance of including shallow and deep flow paths in future similarity indices. The strength of the similarity indices is their potential ability to enable us to discriminate catchments that have visually similar surface characteristics but show distinct NO3--N export responses and, conversely, to group catchments that have visually dissimilar surface characteristics but are functionally similar

  19. Impact of forest disturbance on the runoff response in headwater catchments. Case study: Sumava mountains, Czech republic

    NASA Astrophysics Data System (ADS)

    Langhammer, Jakub; Hais, Martin; Bartunkova, Kristyna; Su, Ye

    2013-04-01

    The forest disturbance and stream modifications are important phenomenon affecting the natural dynamics of erosion and sedimentation processes on montane and submontane streams. The changes in land use, land cover structure, forest cover and stream modifications, occurring in the cultural landscape have significant effect on the dynamics of fluvial processes, especially in relation to the extreme runoff events. The contribution discusses the relations between forest disturbance and fluvial dynamics, stemming from the research in Sumava Mountains, located at the border between Czech Republic and Germany, Central Europe. The study area is located in headwater region, affected by different types of forest disturbance in past three decades - bark beetle outbreak, repeated windstorms and clear-cut forest management. The streams in experimental catchments here displayed extensive dynamics of erosion and sedimentation after the extreme floods in 2002 and 2009 and were affected by artificial modifications. The analysis is based on the combination of different research techniques, including remote sensed data processing, network of automated high frequency rainfall-runoff monitoring or field survey of stream modifications and geomorphologic changes on riverbeds after extreme events. Using landsat satellite data and aerial photographs we created model of Bark beetle dispersion and clear-cutting between 1985 and 2007. This model enables to describe disturbance dynamic, which is needed for understanding of nature those processes. Next analysis of Landsat satellite data was used to detect the effect of forest disturbance on the wetness and temperature properties of land cover, affected by two significant different types of forest disturbance - bark beetle outbreak and clear cut. The rainfall-runoff analysis using multivariate geostatistical techniques was focused on experimental catchments with similar conditions of climate, physiography and topography but different type

  20. Wildfire effects on water quality in forest catchments: A review with implications for water supply

    NASA Astrophysics Data System (ADS)

    Smith, Hugh G.; Sheridan, Gary J.; Lane, Patrick N. J.; Nyman, Petter; Haydon, Shane

    2011-01-01

    SummaryWildfires burn extensive forest areas around the world each year. In many locations, fire-prone forest catchments are utilised for the supply of potable water to small communities up to large cities. Following wildfire, increased erosion rates and changes to runoff generation and pollutant sources may greatly increase fluxes of sediment, nutrients and other water quality constituents, potentially contaminating water supplies. Most research to date has focused on suspended sediment exports and concentrations after wildfire. Reported first year post-fire suspended sediment exports varied from 0.017 to 50 t ha -1 year -1 across a large range of catchment sizes (0.021-1655 km 2). This represented an estimated increase of 1-1459 times unburned exports. Maximum reported concentrations of total suspended solids in streams for the first year after fire ranged from 11 to ˜500,000 mg L -1. Similarly, there was a large range in first year post-fire stream exports of total N (1.1-27 kg ha -1 year -1) and total P (0.03-3.2 kg ha -1 year -1), representing a multiple change of 0.3-431 times unburned, while NO3- exports of 0.04-13.0 kg ha -1 year -1 (3-250 times unburned) have been reported. NO3-, NO2-, and NH 3/ NH4+ concentrations in streams and lakes or reservoirs may increase after wildfire but appear to present a generally low risk of exceeding drinking water guidelines. Few studies have examined post-fire exports of trace elements. The limited observations of trace element concentrations in streams after wildfire found high levels (well over guidelines) of Fe, Mn, As, Cr, Al, Ba, and Pb, which were associated with highly elevated sediment concentrations. In contrast, Cu, Zn, and Hg were below or only slightly above guideline values. Elevated Na +, Cl - and SO42- solute yields have been recorded soon after fire, while reports of concentrations of these constituents were mostly confined to coniferous forest areas in North America, where maximum sampled values were well

  1. Determining source areas of biodegradable dissolved organic matter in two peatland catchments with different upland forest types, Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Funke, M.; Cotner, J.

    2016-12-01

    Long-term studies at the Marcell Experimental Forest in Minnesota have shown that peatland catchments have distinct landscape areas (peatlands or upland mineral soils), with unique hydrological and biogeochemical processes that affect flows of water and solutes. Nonetheless, little has been known about the relative importance of source areas or forest cover types on the biodegradability of dissolved organic matter (DOM) as waters water move from bogs or uplands to outlet streams. In this study, we measured biodegradable dissolved organic carbon (BDOC) from multiple sources (upland surface and subsurface runoff, upland-peatland interfaces in laggs, and stream outlets) in two catchments having different upland forest types, deciduous or coniferous. We measured: total organic carbon (TOC), total nitrogen (TN), and dissolved organic nitrogen (DON) to calculate DOC:TN and DOC:DON; short-term (48-hour) bacterial respiration (BR); long-term (one-year), bottle incubation assays of BDOC; streamflow; and volumes of upland runoff along surface and subsurface flowpaths. We also experimented by mixing various waters to assess priming effects on BDOC concentrations and BR. The BDOC concentrations and BR were greater in upland surface runoff than in subsurface flow, laggs, or outlets, indicating that DOC in the upland surface runoff was most biodegradable. We did not observe priming effects with the mixing of any waters. In terms of catchment hydrology, most streamflow (43 to 87%) was derived from bogs, not uplands. Consequently, bogs were more important sources of biodegradable DOC. Nonetheless, there was some effect of upland cover type: BDOC concentrations and BR were greater in the outlet of the coniferous catchment than the deciduous catchment, which could be due to greater TN relative to carbon in the coniferous than in the deciduous upland catchment (C:N < 100 versus 130-150; respectively). The results show that source areas and compositional differences among catchments

  2. Forest Ecosystem Processes at the Watershed Scale: Ecosystem services, feedback and evolution in developing mountainous catchments

    NASA Astrophysics Data System (ADS)

    Band, Larry

    2010-05-01

    Mountain watersheds provide significant ecosystem services both locally and for surrounding regions, including the provision of freshwater, hydropower, carbon sequestration, habitat, forest products and recreational/aesthetic opportunities. The hydrologic connectivity along hillslopes in sloping terrain provides an upslope subsidy of water and nutrients to downslope ecosystem patches, producing characteristic ecosystem patterns of vegetation density and type, and soil biogeochemical cycling. Recent work suggests that optimal patterns of forest cover evolve along these flowpaths which maximize net primary productivity and carbon sequestration at the hillslope to catchment scale. These watersheds are under significant pressure from potential climate change, changes in forest management, increasing population and development, and increasing demand for water export. As water balance and flowpaths are altered by shifting weather patterns and new development, the spatial distribution and coupling of water, carbon and nutrient cycling will spur the evolution of different ecosystem patterns. These issues have both theoretical and practical implications for the coupling of water, carbon and nutrient cycling at the landscape level, and the potential to manage watersheds for bundled ecosystem services. If the spatial structure of the ecosystem spontaneously adjusts to maximize landscape level use of limiting resources, there may be trade-offs in the level of services provided. The well known carbon-for-water tradeoff reflects the growth of forests to maximize carbon uptake, but also transpiration which limits freshwater availability in many biomes. We provide examples of the response of bundled ecosystem services to climate and land use change in the Southern Appalachian Mountains of the United States. These mountains have very high net primary productivity, biodiversity and water yields, and provide significant freshwater resources to surrounding regions. There has been a

  3. Measured and Modeled Water Balances For Three Snow Dominated Forested Catchments With Different Canopy Cover In The Inland Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Hubbart, J. A.; Link, T.; Du, E.

    2007-12-01

    There is a need to better understand the dominant components of the catchment water balance in complex vegetated terrain to advance our understanding of basic hydrological processes and develop effective land management practices. A lack of paired or other detailed watershed studies in the inland Pacific Northwest has limited our understanding of this hydroclimatically, biophysically, and topographically complex region. Empirical analyses of long term data sets, and results from detailed investigations were used to assess impacts of contemporary timber harvest practices on the water balance components of the Mica Creek Experimental Watershed (MCEW). Measurements at the MCEW include precipitation, rainfall interception, snow water equivalent, sap flux, soil moisture, and streamflow. Results were applied to annual averages for the 2002 through 2005 water years directly following canopy removal. Of total precipitation (1401 mm/wy), 755 mm, 628 mm, and 475 mm/yr resulted in streamflow from clearcut, partial cut, and fully forested catchments respectively. Study results showed that canopy interception of rain was 17.2 % of rainfall for a full canopy, and 13.3 % for a partial cut (i.e. 50 % harvest) canopy. Canopy interception of snow was calculated as 43 % and 60 % for partial cut and full forest respectively. Based on sap flow measurements, transpiration was calculated to be 1.5 mm/day for approximately 200 days per year, or 300 mm/year. Based on these findings, estimates of evaporation (including sublimation) were 161 mm, 361 mm, and 470 mm/yr, and estimates of transpiration were 148 mm, 221 mm, and 296 mm/yr, for clearcut, partial cut, and fully forested catchments respectively. This suggests that water yield increased 30 % following clearcut harvest, and 20 % following partial cut harvest, and evaporation dropped to nearly 30 % of pre-harvest evaporation following clearcut, and nearly 60 % of pre-harvest evaporation following partial cut harvest. Soil evaporation

  4. Sulfur Mass Balances of Forested Catchments: Improving Predictions of Stream Sulfate Concentrations Through Better Representation of Soil Storage and Release

    NASA Astrophysics Data System (ADS)

    Scanlon, T. M.; Rice, K. C.; Riscassi, A.; Cosby, B. J., Jr.

    2015-12-01

    Sulfur dioxide (SO2) emissions in the eastern United States have declined by more than 80% since 1970, when the Clean Air Act first established limits on emissions from stationary and mobile sources. In many areas throughout the northeastern U.S., the resulting declines in sulfate (SO42-) deposition have been accompanied by declines in stream SO42- concentrations. In the southeastern U.S., however, declines in stream SO42- concentrations have not been observed on a widespread basis. In fact, SO42- concentrations continue to increase in many southeastern streams despite decades of declining deposition. This difference in behavior between northeastern and southeastern streams, owing to the distinct geological histories of their catchment soils, was anticipated by the Direct/Delayed Response Project initiated by the U.S. EPA during the early 1980s. At that time, understanding of how catchments store and release SO42- was mostly grounded in theory. Now, with the accumulation of long-term stream chemistry and hydrological datasets in forested catchments, we may develop an empirical basis for characterizing catchment storage and release of SO42-. In particular, are whole-catchment isotherms that described the partitioning between adsorbed and dissolved SO42- (1) linear or non-linear and (2) reversible or irreversible? How do these isotherms vary on a geographical basis? We apply mass balance combined with a simple theoretical framework to infer whole-catchment SO42- isotherms in Virginia and New England. Knowledge of this key soil geochemical property is needed to improve predictions of how catchments will store and export SO42- under changing levels of atmospheric deposition.

  5. The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo.

    PubMed

    Luke, Sarah H; Barclay, Holly; Bidin, Kawi; Chey, Vun Khen; Ewers, Robert M; Foster, William A; Nainar, Anand; Pfeifer, Marion; Reynolds, Glen; Turner, Edgar C; Walsh, Rory P D; Aldridge, David C

    2017-06-01

    Freshwaters provide valuable habitat and important ecosystem services but are threatened worldwide by habitat loss and degradation. In Southeast Asia, rainforest streams are particularly threatened by logging and conversion to oil palm, but we lack information on the impacts of this on freshwater environmental conditions, and the relative importance of catchment versus riparian-scale disturbance. We studied 16 streams in Sabah, Borneo, including old-growth forest, logged forest, and oil palm sites. We assessed forest quality in riparian zones and across the whole catchment and compared it with stream environmental conditions including water quality, structural complexity, and organic inputs. We found that streams with the highest riparian forest quality were nearly 4 °C cooler, over 20 cm deeper, had over 40% less sand, greater canopy cover, more stored leaf litter, and wider channels than oil palm streams with the lowest riparian forest quality. Other variables were significantly related to catchment-scale forest quality, with streams in the highest quality forest catchments having 40% more bedrock and 20 times more dead wood, along with higher phosphorus, and lower nitrate-N levels compared to streams with the lowest catchment-scale forest quality. Although riparian buffer strips went some way to protecting waterways, they did not maintain fully forest-like stream conditions. In addition, logged forest streams still showed signs of disturbance 10-15 years after selective logging. Our results suggest that maintenance and restoration of buffer strips can help to protect healthy freshwater ecosystems but logging practices and catchment-scale forest management also need to be considered.

  6. Understanding the Combined Influence of Boreal Landuse and Climate Change on Catchment Functioning through Virtual Forest Alterations

    NASA Astrophysics Data System (ADS)

    Teutschbein, Claudia; Grabs, Thomas; Karlsen, Reinert H.; Laudon, Hjalmar; Bishop, Kevin

    2017-04-01

    changes in streamflow signatures, which were then used to analyse hydrological consequences of physical catchment perturbations in a climate change context. We created three virtual forest change cases and made an attempt to predict the combined influence of boreal landscape forms and climate change in these cases. Our analysis showed a strong connection between the forest cover extend and the sensitivity of different components of a catchment's hydrological regime to changing climate conditions, which emphasizes the need to redefine forestry goals and practices in advance given climate change-related risks and uncertainties.

  7. Spatial and temporal variability of N2O emissions in a subtropical forest catchment in China

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Mulder, J.; Wu, L. P.; Meng, X. X.; Wang, Y. H.; Dörsch, P.

    2013-03-01

    Subtropical forests in southern China have received chronically large amounts of atmogenic nitrogen (N), causing N saturation. Recent studies suggest that a significant proportion of the N input is returned to the atmosphere, in part as nitrous oxide (N2O). We measured N2O emission fluxes by closed chamber technique throughout two years in a Masson pine-dominated headwater catchment with acrisols (pH ~ 4) at Tieshanping (Chongqing, SW China) and assessed the spatial and temporal variability in two landscape elements typical for this region: a mesic forested hillslope (HS) and a hydrologically connected, terraced groundwater discharge zone (GDZ) in the valley bottom. High emission rates of up to 1800 μg N2O-N m-2 h-1 were recorded on the HS shortly after rain storms during monsoonal summer, whereas emission fluxes during the dry winter season were generally low. Overall, N2O emission was lower in GDZ than on HS, rendering the mesic HS the dominant source of N2O in this landscape. Temporal variability of N2O emissions on HS was largely explained by soil temperature (ST) and moisture, pointing at denitrification as a major process for N removal and N2O production. The concentration of nitrate (NO3-) in pore water on HS was high even in the rainy season, apparently never limiting denitrification and N2O production. The concentration of NO3- decreased along the terraced GDZ, indicating efficient N removal, but with moderate N2O-N loss. The extrapolated annual N2O fluxes from soils on HS (0.54 and 0.43 g N2O-N m-2 yr-1 for a year with a wet and a dry summer, respectively) are among the highest N2O fluxes reported from subtropical forests so far. Annual N2O-N emissions amounted to 8-10% of the annual atmogenic N deposition, suggesting that forests on acid soils in southern China are an important, hitherto overlooked component of the anthropogenic N2O budget.

  8. Spatial and temporal variability of N2O emissions in a subtropical forest catchment in China

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Mulder, J.; Wu, L. P.; Meng, X. X.; Wang, Y. H.; Dörsch, P.

    2012-10-01

    Subtropical forests in South China have received chronically large amounts of atmogenic nitrogen (N) causing N saturation. Recent studies suggest that a significant proportion of the N input is returned to the atmosphere, in part as nitrous oxide (N2O). We measured N2O emission fluxes by closed chamber technique throughout two years in a Masson pine-dominated headwater catchment with acrisols (pH ~ 4) at TieShanPing (Chongqing, SW China) and assessed the spatial and temporal variability in two landscape elements typical for this region: a mesic forested hill slope (HS) and a hydrologically connected, terraced groundwater discharge zone (GDZ) in the valley bottom. High emission rates of up to 1800 μg N2O-N m-2 h-1 were recorded on the HS shortly after rain storms during monsoonal summer, whereas emission fluxes during the dry winter season were generally low. Overall, N2O emission was lower in GDZ than in HS, rendering the mesic HS the dominant source of N2O in this landscape. Temporal variability of N2O emissions on HS was largely explained by soil temperature and moisture, pointing at denitrification as a major process for N removal and N2O production. The concentration of nitrate (NO3-) in pore water on HS was high even in the rainy season, apparently never limiting denitrification and N2O production. The concentration of NO3- decreased along the terraced GDZ, indicating efficient N removal, but with moderate N2O-N loss. The extrapolated annual N2O fluxes from soils on HS (0.50 and 0.41 g N2O-N m-2 yr-1 for a year with a wet and a dry summer, respectively) are among the highest N2O fluxes reported from subtropical forests so far. Annual N2O-N emissions amounted to 8-10% of the annual atmogenic N-deposition, suggesting that forests on acid soils in South China are an important, hitherto overlooked component of the anthropogenic N2O budget.

  9. Rain-Induced Bursts Of Nitrous Oxide May Account For Differences In Dissolved Nitrogen Export From Forested Catchments

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Casson, N. J.; Enanga, E.

    2009-05-01

    Despite nearly 30 years of research, we are unable to account for differences in dissolved nitrogen (N) export among catchments in the sugar maple forest of the Turkey Lakes Watershed. Neighboring catchments with similar N inputs show major discrepancies in dissolved N (nitrate + ammonium + dissolved organic nitrogen) export. In this study, we hypothesized that gaseous N export from wetland soils accounts for this discrepancy. To test this hypothesis, soil nitrous oxide (N2O) efflux was measured during the snow free season (May 1 to October 30) in 2006, 2007, and 2008. Minimal N2O efflux (<1 g N/ha/day) was observed on days without rain. However, on days with rain, soil N2O efflux was significant from wetland area soils, with a linear increase of 0.016 g N/ha/day per millimeter of rain (r2 = 0.60, p<0.001); N2O efflux from upland soils was not significant. Process based monitoring of the wetland soil profile suggests that rain delivers water to the surface layers of the wetlands creating an oxygen poor environment where accumulated nitrate is first transformed to N2O and then to dinitrogen (N2). We could not measure N2. However, if we assumed a N2:N2O ratio of 10:1 from the literature, the discrepancy in dissolved N export among the catchments could be explained. Our findings suggest that rain can produce substantial bursts of N2O and N2 from forest soils and that failure to account for gaseous N export may lead to an underestimation of N loss from forested catchments.

  10. Nitrogen deposition and leaching from two forested catchments in Southwest China--preliminary data and research needs.

    PubMed

    Larssen, T; Mulder, J; Wang, Y; Chen, X; Xiao, J; Zhao, D

    2001-11-15

    Increased nitrogen deposition has resulted in increased nitrogen pools and nitrogen leaching in European and North American forest soils. The development in Asia in general, and China in particular, suggests increased deposition of reduced nitrogen from changes in agricultural practices and of oxidized nitrogen from rapid growth of the transportation sector. Decreased nitrogen retention in forested areas in the future may cause increased NO3- leaching and, thus, acidification and eutrophication in surface waters. The differences in climate, ecosystems, land use, and deposition history make direct application of knowledge from studies in Europe and North America difficult. In Southwest China the potential for nitrogen mobilization from forest soils may be high because of the warm and humid climate, resulting in high decomposition rates of soil organic matter. However, there are very few data available for quantifying the suspected potential for increased nitrogen leaching in forest ecosystems. Here we present data from two forested catchments, dominated by Masson pine (Pinus massoniana), near Guiyang and Chongqing, respectively, in Southwest China. The present nitrogen deposition is moderate, estimated in the range from 10 to 40 kg N ha(-1) year(-1). The C/N ratios of the soils are generally below 15. Nitrate concentrations in soil water are rather variable in space, with highest values of several hundred microequivalents per liter. The turnover rate of nitrogen in the forest ecosystem is quite high compared to the atmospheric deposition rate. At present, nitrate runoff from the catchments is low and intermediate in Guiyang and Chongqing, respectively. More research is needed to improve our ability to predict future nitrogen leaching from subtropical Asian coniferous forests.

  11. Headwater thermal response to partial-retention forest harvesting: a process-based paired-catchment experiment

    NASA Astrophysics Data System (ADS)

    Moore, R. D.; Guenther, S. M.; Gomi, T.

    2008-12-01

    Paired-catchment experiments are the most rigorous empirical research design for estimating the effects of land use on aquatic systems. However, they have recently come under increasing criticism, in part because past studies typically treated catchments as black boxes. As a result, investigators could only speculate about the factors responsible for any observed effects, limiting their ability to generalize the experimental results in space and time. This study used a paired-catchment approach to investigate the effects of partial- retention forest harvesting with no riparian buffer on the thermal regime of a headwater stream in coastal British Columbia. In addition to monitoring stream temperature at three locations within the treatment reach, we monitored above-stream microclimate, water surface evaporation, bed temperature profiles, groundwater temperature, and reach-scale surface-subsurface interaction. Daily maximum stream temperatures increased after harvesting by over 5 °C during summer, with little effect in winter. The major driver of post- harvest warming was an increase in solar radiation, which was partially moderated by the increased effects of hyporheic exchange, bed heat conduction and evaporation. Incorporating process-based measurements into paired-catchment experiments not only allows the causes of treatment response to be assessed, but they provide a valuable data set for testing predictive models.

  12. Geochemical responses of forested catchments to bark beetle infestation: Evidence from high frequency in-stream electrical conductivity monitoring

    NASA Astrophysics Data System (ADS)

    Su, Ye; Langhammer, Jakub; Jarsjö, Jerker

    2017-07-01

    Under the present conditions of climate warming, there has been an increased frequency of bark beetle-induced tree mortality in Asia, Europe, and North America. This study analyzed seven years of high frequency monitoring of in-stream electrical conductivity (EC), hydro-climatic conditions, and vegetation dynamics in four experimental catchments located in headwaters of the Sumava Mountains, Central Europe. The aim was to determine the effects of insect-induced forest disturbance on in-stream EC at multiple timescales, including annual and seasonal average conditions, daily variability, and responses to individual rainfall events. Results showed increased annual average in-stream EC values in the bark beetle-infected catchments, with particularly elevated EC values during baseflow conditions. This is likely caused by the cumulative loading of soil water and groundwater that discharge excess amounts of substances such as nitrogen and carbon, which are released via the decomposition of the needles, branches, and trunks of dead trees, into streams. Furthermore, we concluded that infestation-induced changes in event-scale dynamics may be largely responsible for the observed shifts in annual average conditions. For example, systematic EC differences between baseflow conditions and event flow conditions in relatively undisturbed catchments were essentially eliminated in catchments that were highly disturbed by bark beetles. These changes developed relatively rapidly after infestation and have long-lasting (decadal-scale) effects, implying that cumulative impacts of increasingly frequent bark beetle outbreaks may contribute to alterations of the hydrogeochemical conditions in more vulnerable mountain regions.

  13. Subtropical forest catchments in South China provide an efficient biological N sink alleviating regional N pollution: evidence from dual nitrate isotopes

    NASA Astrophysics Data System (ADS)

    Yu, L.; Mulder, J.; Zhu, J.; Zhang, X. S.; Dörsch, P.

    2016-12-01

    In warm-humid subtropics of South China, enhanced N deposition has led to extreme N saturation in a wide range of forests, with significant nitrate (NO3-) leaching from well-drained soils. Yet, the imbalanced N budget, with limited N export by stream runoff, reveals strong N retention in these forest catchments. Here, to strengthen our understanding of catchment-scale N turnover, we combine a dual NO3- isotope study with weekly inorganic N flux monitoring for two years, across five southern forest catchments in China. In each catchment, data were collected along a hydrological continuum consisting of a hill slope (HS), a groundwater discharge zone (GDZ) and a stream outlet. Combined for all catchments, the data show that the atmogenic ammonium (NH4+) is efficiently removed in the soil pore water of HS, while NO3- is produced. Depleted δ15N and δ18O signals in NO3- on the HS suggested the occurrence of efficient nitrification. In the GDZ, the strong decline in NO3- concentration associated with significant increase in δ15N and δ18O of NO3- indicated denitrification as the dominant N sink. Such uniform N turnover pattern may be attributed to similar climatic and topographic conditions, which facilitate efficient N transformation and transport along the hydrological continuum. In-out N budgets across these sites revealed that elevated N deposition stimulated catchment N retention, which was matched by increasing difference in 15N enrichment of NO3- between HS and GDZ. Thus, N attenuation by denitrification in South Chinese forest catchments appears to be driven by N deposition load in a range of 10 to 50 kg ha-1 yr-1. Our study demonstrates widely overlooked N sink function of subtropical forest catchments, which may be of great importance for alleviating regional N pollution.

  14. Radioactive Cs-137 discharge from Headwater Forested Catchment in Fukushima after Fukushima Dai-ichi Nuclear Power Plant Accident

    NASA Astrophysics Data System (ADS)

    Iwagami, S.; Onda, Y.; Tsujimura, M.; Sakakibara, K.; Konuma, R.

    2015-12-01

    Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, Cs-137 concentration of dissolved water, suspended sediment and coarse organic matter such as leaf and branch were monitored. Discharge amount of stream water, suspended sediment and coarse organic matter were measured to investigate the discharge amount of radiocesium and composition of radiocesium discharge form through the headwater stream. Observation were conducted at stream site in four headwater catchments in Yamakiya district, located ~35 km north west of FDNPP from June 2011 (suspended sediment and coarse organic matter: August 2012) to December 2014.The Cs-137 concentration of dissolved water was around 1Bq/l at June 2011. Then declined to 0.1 Bq/l at December 2011. And in December 2014, it declined to 0.01 Bq/l order. Declining trend of Cs-137 concentration in dissolved water was expressed in double exponential model. Also temporary increase was observed in dissolved Cs-137 during the rainfall event. The Cs-137 concentration of suspended sediment and coarse organic matter were 170-49000 Bq/kg and 350-14000 Bq/kg respectably. The Cs-137 concentration of suspended sediment showed good correlation with average deposition density of catchment. The effect of decontamination works appeared in declining of Cs-137 concentration in suspended sediment. Contribution rate of Cs-137 discharge by suspended sediment was 96-99% during a year. Total annual Cs-137 discharge from the catchment were 0.02-0.3% of the deposition.

  15. The transformations and fates of deposited N in an N saturated subtropical forested catchment, SW China

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Mulder, Jan; Dörsch, Peter

    2015-04-01

    Subtropical forests in south China are receiving long-term elevated nitrogen (N) deposition. Previous field observations in the N-saturated forested headwater catchment at Tieshanping (TSP), Chongqing, SW China, found apparent fast NH4+ disappearance in the top soil on the hillslope, but lab incubation for nitrification potentials did not support such disappearance. Meanwhile, large unaccounted N sinks were suggested by fast NO3- disappearance along the flow path in the groundwater discharge zone (GDZ), possibly due to denitrification and subsequent N2 emission. In this study, we investigated the fates of deposited N (mainly in the forms of NH4+ and NO3-) and the nature of the N transformations using isotopic tracer approach. 15N-labeled NH4+ or NO3- (99 atom% 15N) were amended to repacked surface soil columns from the hillslope and GDZ of TSP. The changes of the N forms of NH4+, NO3-, dissolved organic N, microbial biomass N and bulk N in soil were traced in a period of 15 days, representing transient (0.5 hr, 6 hr and 1 day) and mid-term (5 days and 15 days) N transformations. The soil moistures were kept at the typical field conditions (55% and 95% WFPS for hillslope soil and GDZ soil, respectively). Opposite to the field observations, the amount of added NH4+ decreased gradually on hillslope. 85% and 30% of the added 15N-NH4+ kept in the form of NH4+ after 1 day and 15 days. 15N-NO3- was produced gradually on hillslope, up to 26% of added 15N-NH4+ after 15 days incubation. About half of the added 15N-NH4+ was incorporated to organic N. The added 15N-NO3- showed a similar picture, with 55% left in the soil of hillslope after the whole incubation. Interestingly, although soil in GDZ had much higher WFPS, the nitrification rate of it was much higher than that on hillslope. Apparently the added 15N-NH4+ was incorporated immediately into organic matter in GDZ soil and being denitrified gradually along the time. The incorporation of the added 15N-NO3- into soil

  16. Terrestrial and in-stream influences on the spatial variability of nitrate in a forested headwater catchment

    NASA Astrophysics Data System (ADS)

    Scanlon, Todd M.; Ingram, Spencer M.; Riscassi, Ami L.

    2010-06-01

    A vast majority of monitoring programs designed to assess nutrient fluxes from headwater systems rely upon temporally intensive sampling at a single position within the stream network, essentially measuring the integrated response of the catchment. Missing from such an approach is spatial information related to how nutrient availability varies throughout the network, where freshwater biota live and where biogeochemical processes ultimately shape the downstream water chemistry. Here, we examine the spatial distribution of nitrate (NO3-) concentrations within the Paine Run catchment, a forested headwater catchment in Shenandoah National Park, Virginia. Nitrate concentrations throughout the stream network were measured as part of synoptic surveys conducted in 1992-1994, in the aftermath of region-wide gypsy moth defoliation that caused dramatic increases in stream water NO3- concentrations. A follow-up synoptic survey was conducted in 2007, when the stream water NO3- concentrations had returned to predefoliation levels. Common to each of the eight synoptic surveys were observations of multiple-fold declines in NO3- concentration along the main stem of the stream network from the headwaters to the catchment outlet. A portion of this decline was caused by dilution, as water input by tributaries at the lower elevations of the catchment tended to have lower NO3- concentrations. A stream network model was applied to determine the relative contributions of terrestrial versus in-stream processes to the spatial variability of the NO3- concentrations. Model results suggest that even though nitrate removal within the stream network can be substantial, terrestrial factors that determine the NO3- inputs to streams account for the vast majority of the spatial variability in stream water NO3- concentrations.

  17. Temporal change of SF6 age in spring during rainstorms in a forested headwater catchment, Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Sakakibara, Koichi; Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Sato, Yutaro; Nagano, Kosuke

    2017-04-01

    Time variant water age in catchments can fundamentally describe catchment function, controlling rainfall-runoff generation, groundwater flow pathway, and water storage. We observed sulfur hexafluoride concentration in the stream and groundwater with 1 - 2 hours interval during rainstorm events in order to reveal temporal variations of rainfall-runoff water age. Target's spring is perennial in a forested headwater catchment with an area of 0.045 square km, Fukushima, Japan. The observed hydrological data and tracer data of water in the catchment (stable isotopic compositions, inorganic solute concentrations) were used for clarifying rainfall-runoff processes related to water age variances. The storm hydrograph and groundwater table clearly responded to rainfall especially with more than 30 mm per day throughout the monitoring period (May 2015 - October 2016). Large variations of SF6 age in spring ranging from zero to 14 years were found in the short period during rainstorms. In particular, the SF6 age in spring was evidently old when the runoff was over 2 mm per day. At the high runoff condition, the SF6 age in spring positively correlated with discharge rate: the spring age became older as the discharge rate increased. With regard to spatial distributions of SF6 age in groundwater, the old groundwater age (9 - 13 years) in the shallow subsurface area along the valley was confirmed after heavy rainfall. This groundwater age was similar age to the deep groundwater at no-rainfall conditions. In addition, inorganic solute concentrations such as chloride ion, sodium ion, and silica in spring water showed dominant levels in the deep and ridge groundwater. All facts suggest that the old groundwater, stored in the ridge or deeper subsurface area, replaced the shallow groundwater in the vicinity of the spring due to heavy rainfall, then it contributed to the spring discharge. Therefore, rainstorm events play important roles as triggers for discharging older water stored in

  18. Thirty-year results from a paired-catchment study of upland flowpath responses to forest cover conversion in northern Minnesota

    Treesearch

    Stephen Sebestyen; Randy Kolka

    2016-01-01

    Long-term studies on paired-research catchments have often showed periods of changes to water yields and peak stormflow after forest harvesting. Most studies have focused on wholecatchment or downstream responses. In contrast, few studies have ever been established to measure and investigate specific pathways of water routing through catchment soils or how sub-...

  19. Vegetation correlates of gibbon density in the peat-swamp forest of the Sabangau catchment, Central Kalimantan, Indonesia.

    PubMed

    Hamard, Marie; Cheyne, Susan M; Nijman, Vincent

    2010-06-01

    Understanding the complex relationship between primates and their habitats is essential for effective conservation plans. Peat-swamp forest has recently been recognized as an important habitat for the Southern Bornean gibbon (Hylobates albibarbis), but information is scarce on the factors that link gibbon density to characteristics of this unique ecosystem. Our aims in this study were firstly to estimate gibbon density in different forest subtypes in a newly protected, secondary peat-swamp forest in the Sabangau Catchment, Indonesia, and secondly to identify which vegetation characteristics correlate with gibbon density. Data collection was conducted in a 37.1 km(2) area, using auditory sampling methods and vegetation "speed plotting". Gibbon densities varied between survey sites from 1.39 to 3.92 groups/km(2). Canopy cover, tree height, density of large trees and food availability were significantly correlated with gibbon density, identifying the preservation of tall trees and good canopy cover as a conservation priority for the gibbon population in the Sabangau forest. This survey indicates that selective logging, which specifically targets large trees and disrupts canopy cover, is likely to have adverse effects on gibbon populations in peat-swamp forests, and calls for greater protection of these little-studied ecosystems.

  20. Spatial pattern of dissolved organic matter (DOM) along a stream drainage in a forested, Piedmont catchment

    NASA Astrophysics Data System (ADS)

    Inamdar, S. P.; Singh, S.

    2013-12-01

    Understanding how dissolved organic matter (DOM) varies spatially in catchments and the processes and mechanisms that regulate this variation is critical for developing accurate and reliable models of DOM. We determined the concentrations and composition of DOM at multiple locations along a stream drainage network in a 79 ha forested, Piedmont, watershed in Maryland, USA. DOM concentrations and composition was compared for five stream locations during baseflow (drainage areas - 0.62, 3.5, 4.5, 12 and 79 ha) and three locations (3.5, 12, 79 ha) for storm flow. Sampling was conducted by manual grab samples and automated ISCO samplers. DOM composition was characterized using a suite of spectrofluorometric indices which included - HIX, a254, and FI. A site-specific PARAFAC model was also developed for DOM fluorescence to determine the humic-, fulvic-, and protein-like DOM constituents. Hydrologic flow paths during baseflow and stormflow were characterized for all stream locations using an end-member mixing model (EMMA). DOM varied notably across the sampled positions for baseflow and stormflow. During baseflow, mean DOC concentrations for the sampled locations ranged between 0.99-3.1 mg/L whereas for stormflow the range was 5.22-8.11 mg/L. Not surprisingly, DOM was more humic and aromatic during stormflow versus baseflow. The 3.5 ha stream drainage location that contained a large wetland yielded the highest DOC concentration as well as the most humic and aromatic DOM, during both, baseflow and stormflow. In contrast, a headwater stream location (0.62 ha) that received runoff from a groundwater seep registered the highest mean value for % protein-like DOM (30%) and the lowest index for aromaticity (mean a254 = 6.52) during baseflow. During stormflow, the mean % protein-like DOM was highest at the largest 79 ha drainage location (mean = 11.8%) and this site also registered the lowest mean value for a254 (46.3). Stream drainage locations that received a larger proportion

  1. Assessing colloid-bound metal export in response to short term changes in runoff from a forested catchment

    NASA Astrophysics Data System (ADS)

    Neubauer, E.; Kammer, F. v. d.; Knorr, K.-H.; Pfeiffer, S.; Reichert, M.; Hofmann, T.

    2012-04-01

    Soils can act as a source of metals and natural organic matter (NOM) in runoff from catchments. Amounts and intensity of rainfall may influence NOM export from catchments. The presence of NOM and other colloids in water may not only enhance metal export, but also significantly change metal speciation. In this study, we investigated the response of metal-colloid associations to short-term discharge variations in the runoff from a small forested catchment (Lehstenbach, Bavaria, Germany). Here, the discharge from the catchment outlet responds within hours to rain events. Near-surface flow in organic-rich layers and peat soils has been identified to increase dissolved organic carbon (DOC) concentrations during stormwater runoff. Flow Field-Flow Fractionation coupled to ICP-MS (FlowFFF-ICPMS) is a high-resolution size separation technique which was used for the detection and quantification of colloids and associated metals. Colloid-associated metals, dissolved metals and metals associated with low-molecular weight organic ligands were also separated by filtration (0.2 µm) and ultrafiltration (1000 g/mol MWCO). During baseflow DOC concentration was <6 mg/L and the pH ranged between 4.6 and 5.0. The DOC concentration exported at a given discharge was subject to strong seasonal variation and depended on the water level before the discharge event. DOC concentrations were up to 8 fold higher during stormwater runoff compared to baseflow. The export of aluminum, arsenic, rare earth elements (REE) and uranium from the catchment increased during stormwater runoff showing a strong correlation with NOM concentrations. This result was supported by FlowFFF-ICPMS data revealing that NOM was the only colloid type available for metal complexation during all hydrological conditions. A clear temporal pattern in the association with the NOM was observed for most of the metals under study: During baseflow, 70-100% (Fe), 90% (Al), 60-100% (REE) and 80-85% (U) were associated with the NOM

  2. Temporal variation in end-member chemistry and its influence on runoff mixing patterns in a forested, Piedmont catchment

    NASA Astrophysics Data System (ADS)

    Inamdar, Shreeram; Dhillon, Gurbir; Singh, Shatrughan; Dutta, Sudarshan; Levia, Delphis; Scott, Durelle; Mitchell, Myron; Van Stan, John; McHale, Patrick

    2013-04-01

    Runoff mixing patterns for base flow and 42 storm events were investigated for a 3 year period (2008-2010) in a 12 ha forested catchment in the mid-Atlantic, Piedmont region of the USA. Eleven distinct runoff sources were sampled independently and included: precipitation, throughfall, stemflow, litter leachate, wetland soil water, tension soil water, shallow groundwater, groundwater seeps, hyporheic water, riparian groundwater, and deep groundwater. A rigorous end-member mixing analysis (EMMA) was implemented and all base flow, storm-flow, and end-member chemistries were evaluated in a two-dimensional mixing space. End-members enclosed stream water chemistry and displayed a systematic continuum in EMMA space. Base-flow chemistry of stream waters was similar to groundwater seeps. Storm-event runoff was attributed to contributions from surficial sources (precipitation, throughfall, stemflow, and litter leachate) on the rising limb of the discharge hydrograph that was followed by soil and shallow groundwater sources on the recession limb of the hydrograph. The shapes of the storm-event hysteresis loops (wide versus tight, linear patterns) varied with hydrologic conditions from wet, hydrologically well-connected conditions to a dry, disconnected state. Detailed temporal data on end-member chemistry allowed us to explain the changes in stream water hysteresis patterns and runoff mixing space to shifts in end-member chemistry that occurred as the catchment became hydrologically disconnected. These results highlight the need to recognize the temporal variation in end-member chemistry as a function of catchment wetness and the need to collect high-frequency data on both-stream water as well as potential runoff end-members to better characterize catchment flow paths and mixing responses.

  3. Catchment-scale distribution of radiocesium air dose rate in a mountainous deciduous forest and its relation to topography.

    PubMed

    Atarashi-Andoh, Mariko; Koarashi, Jun; Takeuchi, Erina; Tsuduki, Katsunori; Nishimura, Syusaku; Matsunaga, Takeshi

    2015-09-01

    A large number of air dose rate measurements were collected by walking through a mountainous area with a small gamma-ray survey system, KURAMA-II. The data were used to map the air dose rate of a mountainous deciduous forest that received radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. Measurements were conducted in a small stream catchment (0.6 km(2) in area) in August and September 2013, and the relationship between air dose rates and the mountainous topography was examined. Air dose rates increased with elevation, indicating that more radiocesium was deposited on ridges, and suggesting that it had remained there for 2.5 y with no significant downslope migration by soil erosion or water drainage. Orientation in relation to the dominant winds when the radioactive plume flowed to the catchment also strongly affected the air dose rates. Based on our continuous measurements using the KURAMA-II, we describe the variation in air dose rates in a mountainous forest area and suggest that it is important to consider topography when determining sampling points and resolution to assess the spatial variability of dose rates and contaminant deposition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Chemical Composition of Aquatic Dissolved Organic Matter in Five Boreal Forest Catchments Sampled in Spring and Fall Seasons

    SciTech Connect

    Schumacher,M.; Christl, I.; Vogt, R.; Barmettler, K.; Jacobsen, C.; Kretzschmar, R.

    2006-01-01

    The chemical composition and carbon isotope signature of aquatic dissolved organic matter (DOM) in five boreal forest catchments in Scandinavia were investigated. The DOM was isolated during spring and fall seasons using a reverse osmosis technique. The DOM samples were analyzed by elemental analysis, FT-IR, solid-state CP-MAS {sup 13}C-NMR, and C-1s NEXAFS spectroscopy. In addition, the relative abundance of carbon isotopes ({sup 12}C, {sup 13}C, {sup 14}C) in the samples was measured. There were no significant differences in the chemical composition or carbon isotope signature of the DOM sampled in spring and fall seasons. Also, differences in DOM composition between the five catchments were minor. Compared to reference peat fulvic and humic acids, all DOM samples were richer in O-alkyl carbon and contained less aromatic and phenolic carbon, as shown by FT-IR, {sup 13}C-NMR, and C-1s NEXAFS spectroscopy. The DOM was clearly enriched in {sup 14}C relative to the NBS oxalic acid standard of 1950, indicating that the aquatic DOM contained considerable amounts of organic carbon younger than about 50 years. The weight-based C:N ratios of 31 {+-} 6 and the {delta}{sup 13}Cvalues of -29 {+-} 2{per_thousand}indicate that the isolated DOM is of terrestrial rather than aquatic origin. We conclude that young, hydrophilic carbon compounds of terrestrial origin are predominant in the samples investigated, and that the composition of the aquatic DOM in the studied boreal forest catchments is rather stable during low to intermediate flow conditions.

  5. Modelling mean transit time of stream base flow during tropical cyclone rainstorm in a steep relief forested catchment

    NASA Astrophysics Data System (ADS)

    Lee, Jun-Yi; Huang, -Chuan, Jr.

    2017-04-01

    Mean transit time (MTT) is one of the of fundamental catchment descriptors to advance understanding on hydrological, ecological, and biogeochemical processes and improve water resources management. However, there were few documented the base flow partitioning (BFP) and mean transit time within a mountainous catchment in typhoon alley. We used a unique data set of 18O isotope and conductivity composition of rainfall (136 mm to 778 mm) and streamflow water samples collected for 14 tropical cyclone events (during 2011 to 2015) in a steep relief forested catchment (Pinglin, in northern Taiwan). A lumped hydrological model, HBV, considering dispersion model transit time distribution was used to estimate total flow, base flow, and MTT of stream base flow. Linear regression between MTT and hydrometric (precipitation intensity and antecedent precipitation index) variables were used to explore controls on MTT variation. Results revealed that both the simulation performance of total flow and base flow were satisfactory, and the Nash-Sutcliffe model efficiency coefficient of total flow and base flow was 0.848 and 0.732, respectively. The event magnitude increased with the decrease of estimated MTTs. Meanwhile, the estimated MTTs varied 4-21 days with the increase of BFP between 63-92%. The negative correlation between event magnitude and MTT and BFP showed the forcing controls the MTT and BFP. Besides, a negative relationship between MTT and the antecedent precipitation index was also found. In other words, wetter antecedent moisture content more rapidly active the fast flow paths. This approach is well suited for constraining process-based modeling in a range of high precipitation intensity and steep relief forested environments.

  6. Responses of evapotranspiration at different topographic positions and catchment water balance following a pronounced drought in a mixed species eucalypt forest, Australia

    NASA Astrophysics Data System (ADS)

    Mitchell, Patrick J.; Benyon, Richard G.; Lane, Patrick N. J.

    2012-05-01

    SummaryAcross southern Australia, a large proportion of urban water supply is sourced from mountainous catchments forested with native eucalypts. Mixed species eucalypt forest (MSEF) is the most common forest type in this region and occurs on relatively dry, fire prone sites, yet factors controlling forest water use and stream flow in response to topography, disturbance and drought are poorly understood. This study investigated the patterns and drivers of water balance over a 4 year period in a 1.36 km2, MSEF catchment by: quantifying spatial and temporal variability in evapotranspiration (Et) and its components; evaluating the abiotic, structural and physiological factors controlling water use across the catchment; and testing the effects of antecedent soil water conditions on water fluxes after drought. This was done using a 'bottom up' measurement approach that included stream flow and Et (sap flow, interception troughs and evaporation dome) and a simple empirical model of Et to track catchment response to drought. Spatial variability was considerable, with 40% lower rates of Et at an up slope plot compared to mid and bottom slope plots. Tree transpiration was the dominant flux annually and was correlated to reference Et (r2 = 0.35-0.80), implying strong limitation by atmospheric demand across the catchment. Annual Et totals were relatively consistent between years (841 ± 34 mm) despite large variation in rainfall (463-1179 mm y-1). Annual stream flow represented a very small proportion of the water budget (<2% of rainfall) and showed little recovery from the drought period. The modelling showed that the change in soil water storage following drought was large (up to -330 mm) and was responsible for decreased rates of stream flow. These findings show that Et in the MSEF is sensitive to topography and demand limitation and suggests that water yield in this forest type may be particularly sensitive to future climatic change as shown by the sustained effect of

  7. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Forest Loss

    EPA Pesticide Factsheets

    This dataset represents the characterization of global forest extent and change from 2000 through 2013 within individual local NHDPlusV2 catchments and upstream, contributing watersheds based on Landsat images in characterizing global forest extent and change (See Supplementary Info for Glossary of Terms). These data are based on global tree cover loss for the period from 2000 to 2012 at a spatial resolution of 30m. The analysis used to create the landscape layer is based on Landsat data. Forest loss was defined as a stand-replacement disturbance or the complete removal of tree cover canopy at the Landsat pixel scale. The forest loss characteristics (%) were summarized to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).

  8. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 (Version 2.1) Catchments Riparian Buffer for the Conterminous United States: Forest Loss

    EPA Pesticide Factsheets

    This dataset represents the characterization of global forest extent and change from 2000 through 2013 within individual local NHDPlusV2 catchments and upstream, contributing watersheds riparian buffers based on Landsat images in characterizing global forest extent and change (See Supplementary Info for Glossary of Terms). These data are based on global tree cover loss for the period from 2000 to 2012 at a spatial resolution of 30m. The analysis used to create the landscape layer is based on Landsat data. Forest loss was defined as a stand-replacement disturbance or the complete removal of tree cover canopy at the Landsat pixel scale. The forest loss characteristics (%) were summarized to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).

  9. Long Term Pattern in Runoff Doc Fluxes in Two Boreal Upland Forested Catchments: does the Increasing Nee Affect Doc Fluxes?

    NASA Astrophysics Data System (ADS)

    Pumpanen, J. S.; Lindén, A.; Miettinen, H.; Kolari, P.; Ilvesniemi, H.; Hari, P.; Heinonsalo, J.; Vesala, T.; Back, J. K.; Berninger, F.; Ojala, A.

    2013-12-01

    with NEE (P<0.062) and TER (P<0.056). The annual DOC fluxes were highly correlated in both catchments (correlation coefficients 0.75 and 0.8) with runoff, thus the catchment water balance largely determines the amount of DOC leaving the catchment. In order to get a more comprehensive picture of the long-term trends in the runoff DOC fluxes and their correlation with other ecosystem carbon fluxes, long time series are needed to cover the inter-annual variation in weather conditions. Our results indicate that the DOC concentration, especially in the spring runoff fluxes is increasing, which seems to increase the annual DOC fluxes during wet years, thus decreasing the carbon sinks of upland forest ecosystems and increasing the atmospheric CO2 flux from aquatic ecosystems.

  10. A comparative analysis of forest cover and catchment water yield relationships in northern China

    Treesearch

    Shuai Wang; Bo-Jie Fu; Chan-Sheng He; Ge Sun; Guang-Yao Gao

    2011-01-01

    During the past few decades, China has implemented several large-scale forestation programs that have increased forest cover from 16.0% in the 1980s to 20.4% in 2009. In northern China, water is the most sensitive and limiting ecological factor. Understanding the dynamic interactions between forest ecosystems and water in different regions is essential for maximizing...

  11. Element export from a small catchment in the tropical montane forest of Ecuador responds to climate change

    NASA Astrophysics Data System (ADS)

    Leimer, Sophia; Willimann, Elias; Alaoui, Abdallah; Trachte, Katja; Wilcke, Wolfgang

    2015-04-01

    In a very remote tropical montane rain forest in the Ecuadorian Andes on the rim of the Amazon basin, increasing temperatures, longer dry spells, and an associated reduction in soil moisture were observed in the past 15 years. In the study ecosystem, element exports from a 9-ha large catchment with stream water are linked to the depth of water flow through soil because of vertical variations in soil chemical properties. The further increase in temperature and precipitation, as predicted by climate models, will have an impact on the water flow paths in soil and therefore alter element exports. Hence, we investigated how future element exports from this catchment in Ecuador will develop under the emission scenarios A1B and B1 for the decades 2050-2059 and 2090-2099 compared to current element exports. Discharge from the study catchment was measured in 1998-2013, partly in high resolution. Element concentrations in stream water (total organic carbon, NO3-N, NH4-N, dissolved organic nitrogen, PO4-P, total dissolved phosphorus, S, Cl, K, Ca, Mg, Na, Zn, Al, Mn) were measured in 1998-2012 in weekly resolution. Based on catchment properties, measured climate, and water flow data, discharge in 1998-2013 was simulated in daily resolution with the hydrological model WaSiM. From the hydrograph of surface flow, three flow classes (baseflow, intermediate, storm) were separated and linked with stream chemical properties. Element concentrations in stream water were grouped according to the flow classes and mean concentrations per flow class were calculated. Subsequently, the mean element concentration was multiplied with the mean of the annual discharge sums per flow class resulting in current element exports. For estimations of future element exports with stream water, discharge was simulated under the emission scenarios A1B and B1 for the decades 2050-2059 and 2090-2099 and separated into the three flow classes. Future element exports per scenario were calculated according to

  12. Influence of climate, fire severity and forest mortality on predictions of long term streamflow: Potential effect of the 2009 wildfire on Melbourne's water supply catchments

    NASA Astrophysics Data System (ADS)

    Feikema, Paul M.; Sherwin, Christopher B.; Lane, Patrick N. J.

    2013-04-01

    SummaryIn February 2009, wildfire affected nine catchments, or approximately 28% of forested catchment area that supplies water to the city of Melbourne, Australia. This has potential to significantly affect the long term water use of these Eucalyptus forests and the consequential water yield because of the ecohydrologic response of some eucalypt species. Approximately 11% of the catchment area was severely burnt by intense fire, where vegetation mortality is higher. Catchment scale models using a physically-based approach were developed for the fire-affected water supply catchments. Different inputs of climate and forest mortality after fire were used to examine the relative contributions of rainfall, fire severity, forest type and forest age on post-fire streamflow. Simulations show the effect of fire on long term streamflow is likely to depend on a number of factors, the relative influence of which changes as rainfall becomes more limiting. Under average rainfall conditions, total reduction in post-fire streamflow after 100 years estimated to be between 1.4% (˜12 GL year-1) and 2.8% (˜24 GL year-1) are an order of magnitude lower than reductions in total catchment inflow during the period of low rainfall between 1997 and 2009, in which reservoir inflow was reduced by nearly 37%. The main reasons for the lower than expected changes in water yield are that a lower proportion of the catchments were affected by severe fire, and so mortality within the fire area was relatively low, and that the average age of the forest canopy (93 years) is younger than what is generally considered old growth forest. This means that the baseline (no-fire) streamflow used for reference is lower than would be expected with older, mature forest. The greatest post-fire affect on total water yield was predicted for the O'Shannassy catchment. This is due to the average forest age, which is the oldest of any of the catchments, that it has the highest average rainfall (1680 mm year-1), and

  13. Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment

    EPA Science Inventory

    Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...

  14. Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment

    EPA Science Inventory

    Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...

  15. THE DOWNSLOPE PROPAGATION OF A DISTURBANCE IN A FORESTED CATCHMENT: AN ECO-HYDROLOGIC SIMULATION STUDY

    EPA Science Inventory

    We developed and applied a spatially-explicit, eco-hydrologic model to examine how a landscape disturbance affects hydrologic processes, ecosystem cycling of C and N, and ecosystem structure. We simulated how the pattern and magnitude of tree removal in a catchment influences fo...

  16. Hydrochemistry in the Tropical Forested River: A Case Study in Nee Soon Catchment Streams

    NASA Astrophysics Data System (ADS)

    Nguyen, T. C. T.; WIN, S. H.; Lim, M. H.; Pai, K.; Khairun Nisha, B. M. R.; Ziegler, A. D.; Wasson, R.; Cantarero, S. I.

    2016-12-01

    A total of 779 water samples from the Nee Soon Nature Reserve, a 5km2 catchment in humid tropical Singapore, were collected in low-flow (May 2014 to Nov 2015) and high-flow (May 2014 to June 2015) conditions for determination of spatial and temporal distributions of major ions (Na+, Ca2+, K+, Mg2+, Cl-, HCO3-, NO3-, SO42- and F-) in the streams. In low-flow conditions all cations and Cl-, HCO3-, SO42- showed significant enrichment in the lower compared to the upper catchment, whereas, NO3- and F- had the opposite pattern. In high-flow conditions, the spatial distribution patterns of the ions was largely unchanged across the catchment except that F- was enriched in the lower compared to the upper catchment. Except for Cl-, HCO3- and NO3-, all other ions were higher in storm periods. Among possible sources (atmospheric input, anthropogenic impact and rock weathering), rainfall played an important role in controlling river Cl- and Na+; silicate rock weathering was possibly the source for Ca2+,Mg2+, HCO3- and some of the Na+; all of the SO42- probably comes from pollution by anthropogenic activities. This study provides new data and insights for the understudied South East Asia region.

  17. THE DOWNSLOPE PROPAGATION OF A DISTURBANCE IN A FORESTED CATCHMENT: AN ECO-HYDROLOGIC SIMULATION STUDY

    EPA Science Inventory

    We developed and applied a spatially-explicit, eco-hydrologic model to examine how a landscape disturbance affects hydrologic processes, ecosystem cycling of C and N, and ecosystem structure. We simulated how the pattern and magnitude of tree removal in a catchment influences fo...

  18. Synchronicity of long-term nitrate patterns in forested catchments across the northeastern U.S.

    EPA Science Inventory

    Nitrogen movement through minimally-disturbed catchments can be affected by a variety of biogeochemical processes, climatic effects, hydrology and in-stream or in-lake processes. These combine to create dizzying complexity in long-term and seasonal nitrate patterns, with adjacen...

  19. Synchronicity of long-term nitrate patterns in forested catchments across the northeastern U.S.

    EPA Science Inventory

    Nitrogen movement through minimally-disturbed catchments can be affected by a variety of biogeochemical processes, climatic effects, hydrology and in-stream or in-lake processes. These combine to create dizzying complexity in long-term and seasonal nitrate patterns, with adjacen...

  20. Stormflow generation in a small rainforest catchment in the Luquillo Experimental Forest, Puerto Rico.

    Treesearch

    J. Schellekens; F. N. Scatena; L.A. Bruijnzee; A. I. J. M. van Dijk; M. M. A. Groen; R. J. P. van Hogezand

    2004-01-01

    Various complementary techniques were used to investigate the stormflow generating processes in a small headwater catchment in northeastern Puerto Rico. Over 100 samples were taken of soil matrix water, macropore flow, streamflow and precipitation, mainly during two storms of contrasting magnitude, for the analysis of calcium, magnesium, silicon, potassium, sodium and...

  1. Spatial and temporal occurrence of preferential flow in a forested headwater catchment

    NASA Astrophysics Data System (ADS)

    Wiekenkamp, I.; Huisman, J. A.; Bogena, H. R.; Lin, H. S.; Vereecken, H.

    2016-03-01

    The highly dynamic nature of preferential flow in time and space makes it challenging to identify and analyze its occurrence at the catchment scale. Novel analysis methods using soil moisture sensor response times offer an opportunity to investigate catchment-wide controls on preferential flow. The aim of this study was to identify factors that control preferential flow occurrence based on 3-year soil moisture monitoring using a wireless sensor network in the Wüstebach catchment, Germany. At 101 locations, the sensor response times at three depths (5, 20, and 50 cm) were classified into one of four classes: (1) non-sequential preferential flow, (2) velocity-based preferential flow, (3) sequential flow, and (4) no response. A conceptual model, postulating that preferential flow in the Wüstebach catchment is dominated by differences in soil type, landscape position, and rainfall input, was proposed for hypothesis testing. To test the conceptual model, the classification results were combined with spatial and event-based data to understand and identify controlling factors. Spatial parameters consisted of hydrological, topographical, and soil physical and chemical parameters. Temporal factors included precipitation characteristics and antecedent soil moisture conditions. The conceptual model as proposed could only be partly confirmed. Event-based occurrence of preferential flow was highly affected by precipitation amount, with a nearly catchment-wide preferential response during large storm events. During intermediate events, preferential flow was controlled by small-scale heterogeneity, instead of showing catchment-wide patterns. The effect of antecedent catchment wetness on the occurrence of preferential flow was generally less profound, although a clear negative relationship was found for precipitation events with more than 25 mm. It was found that spatial occurrence of preferential flow was however governed by small-scale soil and biological features and local

  2. Ecosystem processes at the watershed scale: Geomorphic patterns and stability of forest catchment water, energy and nitrogen use efficiency in the southern Appalachians

    NASA Astrophysics Data System (ADS)

    Band, L. E.; Hwang, T.; Hales, T. C.; Ford, C. R.

    2012-12-01

    Since the classic work by Hack in Goodlett in 1960, it has been recognized that there is a close coupling of geomorphic, forest ecosystem and soil development in humid mountainous catchments, with the magnitude and frequency of mass wasting events. In the southern Appalachians of the southeast United States, dense forest cover limits erosion and sediment transport during moderate events in undisturbed catchments, with most sediment delivery to streams by mass wasting processes, including the interaction of diffusive processes (soil creep) and debris avalanches. We hypothesize that debris avalanches are frequently triggered in a zone with moderate concavity at the head or just above hollows where a critical combination of sufficient gradient, colluvial soil accumulation, storm throughflow convergence and canopy root strength are achieved. The forest ecosystem adjusts patterns of foliar and root biomass in response to accessible light, water and nutrient resources, which are in turn conditioned by hydroclimate and geomorphically mediated flowpath and transport dynamics. Long term adjustment of drainage network form and density by colluvial and fluvial transport mass budgets provide slowly varying boundary conditions to hillslope hydrologic and geomorphic dynamics. We use a combination of detailed empirical observations and simulation modeling of coupled ecosystem, hydroclimate and geomorphic systems to derive the co-evolution of patterns of forest catchment water, energy and nutrient use efficiency, and the stability and response catchment form to long and short term climate perturbations.

  3. Nitrate Variability in Hydrological Flowpaths for a Mid-Appalachian Forested Catchment Following a Large-Scale Defoliation

    NASA Astrophysics Data System (ADS)

    Riscassi, A. L.; Scanlon, T. M.

    2007-12-01

    Nitrogen (N) leakage from forested watersheds due to disturbance is a well-documented, but not well understood process that contributes to the degradation of receiving waters through eutrophication. Several studies have shown that large scale defoliation events in small forested watersheds in the Eastern U.S. cause immediate and dramatic increases in N flux to streams. Recovery times can differ dramatically depending upon location. Reasons for these differences are not well understood, however, because N transport and transformation processes are difficult to track over these long recovery timescales. This research focuses on a large-scale gypsy moth defoliation event that impacted Shenandoah National Park (SNP) in the late 1980s to early 1990s. Water chemistry and discharge have been monitored at a number of catchments within SNP over the timeframe since the defoliation. Recovery of these systems to pre-defoliation N levels has been observed to be unusually slow, lasting over a decade. Availability of high-frequency (i.e. hourly) stream chemistry and discharge data during storm events throughout the period of recovery allows us to investigate short- and long-term mechanisms for N "leaks" from forested watersheds. Through geochemical hydrograph separation techniques, we can determine how nitrate concentrations vary between event, soil, and groundwater during and in the years following a disturbance. Analyses focus on Paine Run, a 12.4 km2 catchment where over 50 storms have been characterized since the 1990-1992 defoliation. Standard geochemical hydrograph separation is performed using conservative tracers to determine the relative flow contributions from the three flow components for each measurement time step. Computed discharge components, along with measured steam nitrate concentrations (NO3 -) at each time-step, were used to solve for the relative concentration of NO3 - in each of the hydrologic zones for storms by solving the over-determined set of mixing

  4. The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo

    PubMed Central

    Barclay, Holly; Bidin, Kawi; Chey, Vun Khen; Ewers, Robert M.; Foster, William A.; Nainar, Anand; Pfeifer, Marion; Reynolds, Glen; Turner, Edgar C.; Walsh, Rory P. D.; Aldridge, David C.

    2017-01-01

    Abstract Freshwaters provide valuable habitat and important ecosystem services but are threatened worldwide by habitat loss and degradation. In Southeast Asia, rainforest streams are particularly threatened by logging and conversion to oil palm, but we lack information on the impacts of this on freshwater environmental conditions, and the relative importance of catchment versus riparian‐scale disturbance. We studied 16 streams in Sabah, Borneo, including old‐growth forest, logged forest, and oil palm sites. We assessed forest quality in riparian zones and across the whole catchment and compared it with stream environmental conditions including water quality, structural complexity, and organic inputs. We found that streams with the highest riparian forest quality were nearly 4 °C cooler, over 20 cm deeper, had over 40% less sand, greater canopy cover, more stored leaf litter, and wider channels than oil palm streams with the lowest riparian forest quality. Other variables were significantly related to catchment‐scale forest quality, with streams in the highest quality forest catchments having 40% more bedrock and 20 times more dead wood, along with higher phosphorus, and lower nitrate‐N levels compared to streams with the lowest catchment‐scale forest quality. Although riparian buffer strips went some way to protecting waterways, they did not maintain fully forest‐like stream conditions. In addition, logged forest streams still showed signs of disturbance 10–15 years after selective logging. Our results suggest that maintenance and restoration of buffer strips can help to protect healthy freshwater ecosystems but logging practices and catchment‐scale forest management also need to be considered. PMID:28706573

  5. Do agricultural terraces and forest fires recurrence in Mediterranean afforested micro-catchments alter soil quality and soil nutrient content?

    NASA Astrophysics Data System (ADS)

    E Lucas-Borja, Manuel; Calsamiglia, Aleix; Fortesa, Josep; García-Comendador, Julián; Gago, Jorge; Estrany, Joan

    2017-04-01

    Bioclimatic characteristics and intense human pressure promote Mediterranean ecosystems to be fire-prone. Afforestation processes resulting from the progressive land abandonment during the last decades led to greater biomass availability increasing the risk of large forest fires. Likewise, the abandonment and lack of maintenance in the terraced lands constitute a risk of land degradation in terms of soil quantity and quality. Despite the effects of fire and the abandonment of terraced lands on soil loss and physico-chemical properties are identified, it is not clearly understood how wildfires and abandonment of terraces affect soil quality and nutrients content. Microbiological soil parameters and soil enzymes activities are biomarkers of the soil microbial communitýs functional ability, which potentially enables them as indicators of change, disturbance or stress within the soil community. The objective of this study was to investigate the effects of terracing (abandoned and non-abandoned) on the soil enzyme activities, microbiological soil parameters and soil nutrients dynamics in three Mediterranean afforested micro-catchments (i.e., < 2 ha) under different forest fire recurrence in the last 20 years; i.e., unburned areas, burned once and burned twice. The combination of the presence of terraces and the recurrence of forest fire, thirty-six plots of 25 m2 were sampled along the these three micro-catchments collecting four replicas at the corners of each plot. The results elucidated how non-terraced and unburned plots presented the highest values of soil respiration rate and extracellular soil enzymes. Differences between experimental plots with different forest fire recurrence or comparing terraced and unburned plots with burned plots were weaker in relation to biochemical and microbiological parameters. Soil nutrient content showed an opposite trend with higher values in terraced plots, although differences were weaker. We conclude that terraced landscapes

  6. Processes affecting oxygen isotope ratios of atmospheric and ecosystem sulfate in two contrasting forest catchments in Central Europe

    SciTech Connect

    Martin Novak; Myron J. Mitchell; Iva Jackova; Frantisek Buzek; Jana Schweigstillova; Lucie Erbanova; Richard Prikryl; Daniela Fottova

    2007-02-15

    Sulfate aerosols are harmful as respirable particles. They also play a role as cloud condensation nuclei and have radiative effects on global climate. A combination of {delta}{sup 18}O-SO{sub 4} data with catchment sulfur mass balances was used to constrain processes affecting S cycling in the atmosphere and spruce forests of the Czech Republic. Extremely high S fluxes via spruce throughfall and runoff were measured at Jezeri (49 and 80 kg S ha{sup -1} yr{sup -1}, respectively). The second catchment, Na Lizu, was 10 times less polluted. In both catchments, {delta}{sup 18}O-SO{sub 4} decreased in the following order: open-area precipitation {gt} throughfall {gt} runoff. The 180-SO{sub 4} values of throughfall exhibited a seasonal pattern at both sites, with maxima in summer and minima in winter. This seasonal pattern paralleled {delta}{sup 18}O-H{sub 2}O values, which were offset by -18{per_thousand}. Sulfate in throughfall was predominantly formed by heterogeneous (aqueous) oxidation of SO{sub 2}. Wet-deposited sulfate in an open area did not show systematic {delta}{sup 18}O-SO{sub 4} trends, suggesting formation by homogeneous (gaseous) oxidation and/or transport from large distances. The percentage of incoming S that is organically cycled in soil was similar under the high and the low pollution. High-temperature {sup 18}O-rich sulfate was not detected, which contrasts with North American industrial sites. 29 refs., 4 figs., 3 tabs.

  7. Exports of dissolved ammonium (NH(4)(+)) during storm events across multiple catchments in a glaciated forested watershed.

    PubMed

    Inamdar, Shreeram

    2007-10-01

    Storm event exports of dissolved NH(4)(+) were explored for multiple events in the Point Peter Brook watershed (PPBW), a glaciated, forested watershed located in Western New York, USA. Investigations were performed across four catchments (1.6-696 ha) with varying topography and the extent of surface-saturated areas. While wetland and riparian waters were important sources of NH(4)(+) during non-storm periods, throughfall and litter leachate were the dominant contributors of NH(4)(+) during storm events. Ammonium concentrations in catchment discharge displayed a sinusoidal seasonal pattern with a maximum during early spring (March) and a minimum in late summer (August-September). Storm event concentrations of NH(4)(+) in streamflow were much greater than baseflow values and showed a consistent temporal pattern with an increase in concentrations on the hydrograph rising limb, a peak at or before the discharge peak, followed by a decline in concentrations. Storm event patterns of DON were similar to NH(4)(+) while the patterns of [Formula: see text]differed from NH(4)(+) for the summer and fall events. The storm event expression of NH(4)(+) was attributed to throughfall and throughfall-mediated leaching of the litter layer. The reactive behavior of NH(4)(+) precluded its use in an end member mixing model (EMMA) for predicting streamflow concentrations. While concentrations of NH(4)(+) in precipitation and streamflow were high for the spring events, exports of NH(4)(+) in streamflow were highest for the large and intense storm events. Baseflow NH(4)(+) concentrations increased with the percent wetland/saturated area in the catchment but the same trend did not hold for storm-event concentrations.

  8. Surface resistance calibration for a hydrological model using evapotranspiration retrieved from remote sensing data in Nahe catchment forest area

    NASA Astrophysics Data System (ADS)

    Bie, W.; Casper, M. C.; Reiter, P.; Vohland, M.

    2015-05-01

    In this paper, a method combining graphical and statistical techniques is proposed for surface resistance calibration in a distributed hydrological model, WaSiM-ETH, by comparing daily evapotranspiration simulated by model WaSiM-ETH with corresponding daily evapotranspiration retrieved from remote sensing images. The study area locates in Nahe catchment (Rhineland-Palatinate, Germany, 4065 km2) forest regions. The remote sensing based observations are available for a very limited number of days but representative for most soil moisture conditions. By setting canopy resistance (rc) at 150 s/m, soil surface resistance (rse) at 250 s/m or at 300 s/m for deciduous forest and setting rc at 300 s/m, rse at 600 s/m or at 650 s/m for pine forest, the model exhibits its best overall performance in space and time. It is also found that with sufficient soil moisture, the model exhibits its best performance in space scale.

  9. Determining hillslope-channel connectivity in an agricultural catchment using rare-earth oxide tracers and random forests.

    NASA Astrophysics Data System (ADS)

    Masselink, Rens; Temme, Arnaud; Giménez, Rafael; Casalí, Javier; Keesstra, Saskia

    2017-04-01

    Soil erosion from agricultural areas is a large problem, because of off-site effects like the rapid filling of reservoirs. To mitigate the problem of sediments from agricultural areas reaching the channel, reservoirs and other surface waters, it is important to understand hillslope-channel connectivity and catchment connectivity. To determine the functioning of hillslope-channel connectivity and the continuation of transport of these sediments in the channel, it is necessary to obtain data on sediment transport from the hillslopes to the channels. Simultaneously, the factors that influence sediment export out of the catchment need to be studied. For measuring hillslope-channel sediment connectivity, Rare-Earth Oxide (REO) tracers were applied to a hillslope in an agricultural catchment in Navarre, Spain, preceding the winter of 2014-2015. The results showed that during the winter there was no sediment transport from the hillslope to the channel. Analysis of precipitation data showed that total precipitation quantities did not differ much from the mean. However, precipitation intensities were low, causing little sediment mobilisation. To test the implication of the REO results at the catchment scale, two conceptual models for sediment connectivity were assessed using a Random Forest (RF) machine learning method. One model proposes that small events provide sediment for large events, while the other proposes that only large events cause sediment detachment and small events subsequently remove these sediments from near and in the channel. The RF method was applied to a daily dataset of sediment yield from the catchment (N=2451 days), and two subsets of the whole dataset: small events (N=2319) and large events (N=132). For sediment yield prediction of small events, variables related to large preceding events were the most important. The model for large events underperformed and, therefore, we could not draw any immediate conclusions whether small events influence the

  10. Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran

    NASA Astrophysics Data System (ADS)

    H. Kashani, Mahsa; Ghorbani, Mohammad Ali; Dinpashoh, Yagob; Shahmorad, Sedaghat

    2016-09-01

    Rainfall-runoff simulation is an important task in water resources management. In this study, an integrated Volterra model with artificial neural networks (IVANN) was presented to simulate the rainfall-runoff process. The proposed integrated model includes the semi-distributed forms of the Volterra and ANN models which can explore spatial variation in rainfall-runoff process without requiring physical characteristic parameters of the catchments, while taking advantage of the potential of Volterra and ANNs models in nonlinear mapping. The IVANN model was developed using hourly rainfall and runoff data pertaining to thirteen storms to study short-term responses of a forest catchment in northern Iran; and its performance was compared with that of semi-distributed integrated ANN (IANN) model and lumped Volterra model. The Volterra model was applied as a nonlinear model (second-order Volterra (SOV) model) and solved using the ordinary least square (OLS) method. The models performance were evaluated and compared using five performance criteria namely coefficient of efficiency, root mean square error, error of total volume, relative error of peak discharge and error of time for peak to arrive. Results showed that the IVANN model performs well than the other semi-distributed and lumped models to simulate the rainfall-runoff process. Comparing to the integrated models, the lumped SOV model has lower precision to simulate the rainfall-runoff process.

  11. Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran

    NASA Astrophysics Data System (ADS)

    Kashani, Mahsa H.; Ghorbani, Mohammad Ali; Dinpashoh, Yagob; Shahmorad, Sedaghat

    2016-09-01

    Rainfall-runoff simulation is an important task in water resources management. In this study, an integrated Volterra model with artificial neural networks (IVANN) was presented to simulate the rainfall-runoff process. The proposed integrated model includes the semi-distributed forms of the Volterra and ANN models which can explore spatial variation in rainfall-runoff process without requiring physical characteristic parameters of the catchments, while taking advantage of the potential of Volterra and ANNs models in nonlinear mapping. The IVANN model was developed using hourly rainfall and runoff data pertaining to thirteen storms to study short-term responses of a forest catchment in northern Iran; and its performance was compared with that of semi-distributed integrated ANN (IANN) model and lumped Volterra model. The Volterra model was applied as a nonlinear model (second-order Volterra (SOV) model) and solved using the ordinary least square (OLS) method. The models performance were evaluated and compared using five performance criteria namely coefficient of efficiency, root mean square error, error of total volume, relative error of peak discharge and error of time for peak to arrive. Results showed that the IVANN model performs well than the other semi-distributed and lumped models to simulate the rainfall-runoff process. Comparing to the integrated models, the lumped SOV model has lower precision to simulate the rainfall-runoff process.

  12. Shallow subsurface storm flow in a forested headwater catchment: Observations and modeling using a modified TOPMODEL

    USGS Publications Warehouse

    Scanlon, T.M.; Raffensperger, J.P.; Hornberger, G.M.; Clapp, R.B.

    2000-01-01

    Transient, perched water tables in the shallow subsurface are observed at the South Fork Brokenback Run catchment in Shenandoah National Park, Virginia. Crest piezometers installed along a hillslope transect show that the development of saturated conditions in the upper 1.5 m of the subsurface is controlled by total precipitation and antecedent conditions, not precipitation intensity, although soil heterogeneities strongly influence local response. The macroporous subsurface storm flow zone provides a hydrological pathway for rapid runoff generation apart from the underlying groundwater zone, a conceptualization supported by the two-storage system exhibited by hydrograph recession analysis. A modified version of TOPMODEL is used to simulate the observed catchment dynamics. In this model, generalized topographic index theory is applied to the subsurface storm flow zone to account for logarithmic storm flow recessions, indicative of linearly decreasing transmissivity with depth. Vertical drainage to the groundwater zone is required, and both subsurface reservoirs are considered to contribute to surface saturation.

  13. Hydrologic monitoring in 1-km2 headwater catchments in Sierra Nevada forests for predictive modeling of hydrologic response to forest treatments across 140-km2 firesheds

    NASA Astrophysics Data System (ADS)

    Saksa, P. C.; Bales, R. C.; Conklin, M. H.; Martin, S. E.; Rice, R.

    2010-12-01

    As part of the Sierra Nevada Adaptive Management Project, an eight-year study designed to measure the impacts of forest treatments (thinning, mastication, controlled burns) on multiple forest attributes, four headwater catchments were established to provide data on hydrologic response to treatments. These 1-km2 study catchments are each sited within 40-100 km2 firesheds, which in this case largely follow watershed boundaries, and which are the larger study areas for informing adaptive management of approximately 3,000 km2 of mixed-conifer forest in California’s central and southern Sierra Nevada. The aim of the hydrologic design was to put in place a ground-based monitoring network that would measure hydrologic attributes at representative locations, and when combined with remotely sensed data, provide a basis for predictive modeling of the larger study area. The selected locations employ instrument clusters, or groupings of instruments in a compact arrangement, to maximize the number of measurements possible and accessibility to the monitoring sites. The two study firesheds , located in the Tahoe and Sierra National Forests, cover a total of about 140-km2. Within each fireshed, two meteorological stations were placed near 1650-m and 2150-m, spanning the precipitation gradient from lower-elevation rain-dominated to higher-elevation snow-dominated systems. Two headwater streams draining approximately 1-km2 are monitored for stage, discharge, electrical conductivity, and sediment movement. Additionally, instrument nodes to monitor temperature, snow depth and soil moisture are installed within 0.5-1 km of the outlet and meterological stations. These nodes were placed to monitor end members of aspect, slope, elevation and canopy cover, which set the boundaries for the model outputs. High-resolution LiDAR provides the topographic and distributed vegetation characteristics, which are combined with field surveys and standard soils information to define the modeling

  14. Evaluation of the cosmic-ray neutron method for measuring integral soil moisture dynamics of a forested head water catchment

    NASA Astrophysics Data System (ADS)

    Bogena, H. R.; Metzen, D.; Baatz, R.; Hendricks Franssen, H.; Huisman, J. A.; Montzka, C.; Vereecken, H.

    2011-12-01

    Measurements of low-energy secondary neutron intensity above the soil surface by cosmic-ray soil moisture probes (CRP) can be used to estimate soil moisture content. CRPs utilise the fact that high-energy neutrons initiated by cosmic rays are moderated (slowed to lower energies) most effectively by collisions with hydrogen atoms contained in water molecules in the soil. The conversion of neutron intensity to soil moisture content can potentially be complicated because neutrons are also moderated by aboveground water storage (e.g. vegetation water content, canopy storage of interception). Recently, it was demonstrated experimentally that soil moisture content derived from CRP measurements agrees well with average moisture content from gravimetric soil samples taken within the footprint of the cosmic ray probe, which is proposed to be up to several hundred meters in size [1]. However, the exact extension and shape of the CRP integration footprint is still an open question and it is also unclear how CRP measurements are affected by the soil moisture distribution within the footprint both in horizontal and vertical directions. In this paper, we will take advantage of an extensive wireless soil moisture sensor network covering most of the estimated footprint of the CRP. The network consists of 150 nodes and 900 soil moisture sensors which were installed in the small forested Wüstebach catchment (~27 ha) in the framework of the Transregio32 and the Helmholtz initiative TERENO (Terrestrial Environmental Observatories) [2]. This unique soil moisture data set provides a consistent picture of the hydrological status of the catchment in a high spatial and temporal resolution and thus the opportunity to evaluate the CRP measurements in a rigorous way. We will present first results of the comparison with a specific focus on the sensitivity of the CRP measurements to soil moisture variation in both the horizontal and vertical direction. Furthermore, the influence of forest

  15. Determining Solute Sources and Water Flowpaths in a Forested Headwater Catchment: Advances With the Ca-Sr-Ba Multi-tracer

    NASA Astrophysics Data System (ADS)

    Bullen, T. D.; Bailey, S. W.; McGuire, K. J.; Zimmer, M. A.; Ross, D. S.

    2011-12-01

    Determining solute sources and water flowpaths in catchments is of critical importance to development of models that effectively describe catchment function. For solutes in soil water and stream water, simple mass balance models that compare precipitation input to catchment outlet compositions can predict average mineral weathering contributions for the catchment as a whole, but fail to provide information about either variability of contributions from different portions of the catchment and different soil depths or processes such as ion exchange and biological cycling. In order to better understand how forested headwater catchments function, we are interpreting concentration and isotope ratios of the alkaline earth elements Ca, Sr and Ba in streamwater, groundwater, the soil ion exchange pool and plants in a hydropedologic context at the 41 hectare hydrologic reference catchment (Watershed 3) at the Hubbard Brook Experimental Forest, New Hampshire, USA. This forested headwater catchment consists of a beech-birch-maple-spruce forest growing on vertically- and laterally-developed Spodosols and Inceptisols formed on granitoid glacial till that mantles Paleozoic metamorphic bedrock. Across the watershed in terms of the soil ion exchange pool, the forest floor has high Sr/Ba and Ca/Sr ratios, mineral soils have intermediate Sr/Ba and low Ca/Sr, and relatively unweathered till in the C horizon has low Sr/Ba and high Ca/Sr. Waters moving through these various compartments will obtain Sr/Ba and Ca/Sr ratios reflecting these characteristics, and thus variations of Sr/Ba and Ca/Sr of streamwater provide evidence of the depth of water flowpaths feeding the streams. 87Sr/86Sr of exchangeable Sr spans a broad range from 0.715 to 0.725, with highest values along the mid-to upper flanks of the catchment and lowest values in a broad zone along the central axis of the catchment associated with numerous groundwater seeps. Thus, variations of 87Sr/86Sr in streamwater provide

  16. Interpretation of concentration-discharge patterns in acid-neutralizing capacity during storm flow in three small, forested catchments in Shenandoah National Park, Virginia

    USGS Publications Warehouse

    Rice, Karen C.; Chanat, Jeffrey G.; Hornberger, George M.; Webb, James R.

    2004-01-01

    Episodic concentration-discharge (c-Q) plots are a popular tool for interpreting the hydrochemical response of small, forested catchments. Application of the method involves assuming an underlying conceptual model of runoff processes and comparing observed c-Q looping patterns with those predicted by the model. We analyzed and interpreted c-Q plots of acid-neutralizing capacity (ANC) for 133 storms collected over a 7-year period from three catchments in Shenandoah National Park, Virginia. Because of their underlying lithologies the catchments represent a gradient in both hydrologic and geochemical behavior, ranging from a flashy, acidic, poorly buffered catchment to a moderate, neutral, well-buffered catchment. The relative frequency of observed anticlockwise c-Q loops in each catchment decreased along this gradient. Discriminant function analysis indicated that prestorm base flow ANC was an important predictor of loop rotation direction; however, the strength of the predictive relationship decreased along the same gradient. The trends were consistent with several equally plausible three-component mixing models. Uncertainty regarding end-member timing and relative volume and possible time variation in end-member concentrations were key factors precluding identification of a unique model. The inconclusive results obtained on this large data set suggest that identification of underlying runoff mechanisms on the basis of a small number of c-Q plots without additional supporting evidence is likely to be misleading.

  17. Impacts of forest thinning and climate change on transpiration and runoff rates in Sierra Nevada mixed-conifer headwater catchments

    NASA Astrophysics Data System (ADS)

    Saksa, P. C.; Ray, R. L.; Bales, R. C.; Conklin, M. H.

    2013-12-01

    Using a spatially explicit hydro-ecological model, impacts from forest thinning and climate change on snowpack, evapotranspiration (ET) rates, soil moisture storage, and runoff were investigated in Sierra Nevada headwater catchments spanning elevations of 1,500 to 2,000-m. Along this elevation gradient, precipitation changes from rain-dominated to snow-dominated, so precipitation phase will be strongly impacted by increases in temperature. Mixed-conifer forests in the Sierra Nevada near the 2,000-m elevation band also transpire at a high rate relative to upper elevation forests that are more restricted by colder winter temperatures and lower elevation forests that are more restricted by lower summer soil moisture, increasing the potential of reduced transpiration with vegetation thinning. Forest treatment and climate change scenarios were modeled using the Regional Hydro-Ecological Simulation System (RHESSys), calibrated with two years of snow, soil moisture, and streamflow observations. Simulations of forest thinning at moderate (66% of current vegetation density) and restoration (33% density) levels were combined with precipitation changes up to 20% and temperature increases up to 6οC for projecting impacts on ET and runoff rates. Model results indicated that moderate thinning alone could increase runoff by 3%, but additional temperature increases of 2-4οC could increase runoff rates another 6% - similar to a restoration level thinning. Modifying temperature and precipitation separately showed that the two methods of climate forcing both led to fluctuations in soil moisture, caused by changes in precipitation phase (snow/rain) and final day of snowpack melt. The snowmelt timing affected runoff rates by causing changes in the spring soil moisture recession, and showed that it may be one of the critical processes that affects annual runoff rates, not just runoff timing. Simulations of precipitation and temperature changes together showed that precipitation would

  18. Afforestation, subsequent forest fires and provision of hydrological services: a model-based analysis for a Mediterranean mountainous catchment

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Naranjo Quintanilla, Paula; Santos, Juliana; Serpa, Dalila; Carvalho-Santos, Cláudia; Rocha, João; Keizer, Jan Jacob; Keesstra, Saskia

    2017-04-01

    Mediterranean landscapes have experienced extensive abandonment and reforestation in recent decades, which should have improved the provision of hydrological services, such as flood mitigation, soil erosion protection and water quality regulation. However, these forests are fire-prone, and the post-fire increase in runoff, erosion and sediment exports could negatively affect service provision. This issue was assessed using the SWAT model for a small mountain agroforestry catchment, which was monitored between 2010 and 2014 and where some eucalypt stands burned in 2011 and were subsequently plowed for replanting. The model was calibrated and validated for streamflow, sediment yield and erosion in agricultural fields and the burnt hillslopes, showing that it can be adapted for post-fire simulation. It was then used to perform a decadal assessment of surface runoff, erosion, and sediment exports between 2004 and 2014. Results show that the fire did not noticeably affect flood mitigation but that it increased erosion by 3 orders of magnitude, which subsequently increased sediment yield. Erosion in the burnt forest during this decade was one order of magnitude above that in agricultural fields. SWAT was also used to assess different fire and land-use scenarios during the same period. Results indicate that the impacts of fire were lower without post-fire soil management, and when the fire occurred in pine forests (i.e. before the 1990s) or in shrublands (i.e. before afforestation in the 1930s). These impacts were robust to changes in post-fire weather conditions and to a lower fire frequency (20-year intervals). The results suggest that, in the long term, fire-prone forests might not provide the anticipated soil protection and water quality regulation services in wet Mediterranean regions.

  19. Looking Beyond the Old Water Paradox: Does New Water Dominate Quick Hydrographs where Surface Flowpaths Prevail? - A Meta-Analysis of Field Evidence from Small, Forested Catchments

    NASA Astrophysics Data System (ADS)

    Barthold, F. K.; Woods, R. A.

    2015-12-01

    The old water paradox describes the rapid mobilization of previously stored water via subsurface flowpaths during a storm event. Old water is usually stored in the subsurface storages. Thus, old water should dominate storm runoff where subsurface flowpaths prevail if mixing with new water is limited. The argumentum e contrario from this understanding raises the following hypothesis: storm hydrographs of catchments with prevailing near surface flowpaths are dominated by new water. We test this hypothesis using data from the scientific literature. The three runoff characteristics hydrograph response (quick or slow), flowpath (surface or subsurface) and time source (old or new water) serve as basis for a conceptual framework of catchment classification where each possible combination of the three characteristics represents a distinct stormflow generation conceptual model. Small forested research catchments for which conceptual models were developed based on field studies were reviewed and assigned to this classification system. Of the 42 reviewed catchments, 30 provide a complete set of the three characteristics resulting in one of the 8 conceptual models. Four catchments support our hypothesis, however, a larger field support exists for subsurface than for surface flowpath dominated sites. Hence, the resulting theory that hydrographs are dominated by new water where surface flowpaths prevail remains highly uncertain. Two explanations exist for the imbalance of field support between the two flowpath classes: 1) the selection of sites in past field studies was mainly to explain quick hydrograph response in subsurface flowpaths dominated catchments; 2) sites with prevailing subsurface flowpaths are more common in nature. We conclude that field studies at sites covering a broader range of characteristics are necessary to understand stormflow generation. The collection of catchments also allows us to test how the three runoff characteristics relate to climate, soils and

  20. Erosion process contribution to sediment yield before and after the establishment of exotic forest: Waipaoa catchment, New Zealand

    NASA Astrophysics Data System (ADS)

    Marden, M.; Herzig, A.; Basher, L.

    2014-12-01

    The East Coast region of the North Island, New Zealand, is well known for its severe erosion, high sediment yields, flooding, and sedimentation following extensive deforestation of its indigenous forest during the late 19th and early 20th centuries. For six decades thereafter, extensive grazing (cattle and sheep) left a legacy of highly degraded hill country, much of which has since been retired and planted in exotic forest, primarily to control erosion. Previous studies have documented the extent of gully erosion, calculated erosion rates and sediment delivery from gullies to the channel load within the study basin, but this has not been quantified for the more extensive mass movement processes including slump, earthflow, and shallow landslides. Additionally, the magnitude of the effect of reforestation on sediment load at subcatchment level and, ultimately on sediment yield at catchment scale, for this combination of erosion processes and, over the time frame of a rotation of exotic forest (~ 28 years), is unknown. For a 140-km2 study basin located in the headwaters of the 2150 km2 Waipaoa River catchment, we establish the contribution to basin sediment load by each of these erosion processes, spanning a ~ 50-year period that includes a ~ 28-year reforestation effort. We quantified the effectiveness of exotic reforestation as an erosion control strategy by using the mapped extent of each of the erosion processes before planting (i.e. 1939-59), as the benchmark against which any subsequent change in eroded area (km2) was measured. Based on this, process-based erosion load was calculated for the pre-planting period (1939-59), for the period 10 years after planting commenced (1960-69), and again for the period 1970-88, which marked the completion of planting within the study basin. The study basin sediment load is then expressed as a proportion (percentage) of the measured sediment yield (Mt y- 1) of the wider Waipaoa River catchment. The net area affected by

  1. Using (137)Cs and (210)Pbex and other sediment source fingerprints to document suspended sediment sources in small forested catchments in south-central Chile.

    PubMed

    Schuller, P; Walling, D E; Iroumé, A; Quilodrán, C; Castillo, A; Navas, A

    2013-10-01

    A study of the impact of forest harvesting operations on sediment mobilization from forested catchments has been undertaken in south-central Chile. The study focused on two sets of small paired catchments (treatment and control), with similar soil type, but contrasting mean annual rainfall, located about 400 km apart at Nacimiento (1200 mm yr(-1)) and Los Ulmos (2500 mm yr(-1)). The objective was to study the changes in the relative contribution of the primary sources of fine sediment caused by forestry operations. Attention focused on the pre-harvest and post-harvest periods and the post-replanting period was included for the Nacimiento treatment catchment. The sediment source fingerprinting technique was used to document the contributions of the potential sources. Emphasis was placed on discriminating between the forest slopes, forest roads and channel erosion as potential sources of fine sediment and on assessing the relative contributions of these three sources to the sediment yield from the catchments. The fallout radionuclides (FRNs) (137)Cs and excess lead-210, the environmental radionuclides (226)Ra and (40)K and soil organic matter (SOM) were tested as possible fingerprints for discriminating between potential sediment sources. The Kruskal-Wallis test and discriminant function analysis were used to guide the selection of the optimum fingerprint set for each catchment and observation period. Either one or both of the FRNs were selected for inclusion in the optimum fingerprint for all datasets. The relative contribution of each sediment source to the target sediment load was estimated using the selected fingerprint properties, and a mixing model coupled with a Monte Carlo simulation technique that takes account of uncertainty in characterizing sediment source properties. The goodness of fit of the mixing model was tested by comparing the measured and simulated fingerprint properties for the target sediment samples. In the Nacimiento treatment catchment

  2. The effect of nitrate addition on abundance of nirK, nirS and gln genes in acidified Norway spruce forest soil

    NASA Astrophysics Data System (ADS)

    Bárta, Jiří; Tahovská, Karolina; Kaåa, Jiří; Antrå¯Čková, Hana Å.

    2010-05-01

    The denitrification is the main biotic process leading to loses of fixed nitrogen as well as removal of excess of nitrate (NO3-) from the soil environment. The reduction of NO2- to nitric oxide (NO) distinguishes the 'true' denitrifiers from other nitrate-respiring bacteria. This reaction is catalyzed by two different types of nitrite reductases, either a cytochrome cd1 encoded by nirS gene (nirS denitrifiers) or a Cu-containing enzyme encoded by nirK gene (nirK denitrifiers). The nirS denitrifiers are located mostly in rhizosphere, while the nirK denitrifiers are more abundant in bulk soil. These two groups can be also classified as markers of denitrification. Glutamine synthetase is one of the main bacterial NH4+ assimilating enzymes; it is coded by glnI gene. Glutamine synthetase is mostly active when N is the limiting factor for bacterial growth. There is recent evidence that the activity may be affected by the presence of alternative N source (i.e. NO3-). However, in anaerobic condition NO3- can be used also by the denitrifying bacteria so there may be strong competition for this nutrient. The laboratory experiment was performed to evaluate the effect of nitrates (NO3-) on abundance of nirK, nirS and gln gene copy numbers. The amount of NO3- corresponded to the actual atmospheric depositions on experimental sites in the Bohemian Forest. Litter organic layer (0-5cm of soil) was used for laboratory incubation experiment. Four replicates of control (no addition of NO3-), and NO3-addition were incubated anaerobically for one month. After the incubation DNA was extracted and the number of nirK, nirS and gln gene copies was determined using qPCR (SYBRGreen methodology). Results showed that the addition of NO3- significantly increased the number of nirK and nirS denitrifiers from 5.9x106 to 1.1x107 and from not detectable amount to 1.4x106, respectively. The gln gene copy number was also higher after NO3-addition. However, the difference was not statistically

  3. Spatial Analysis of Soil Hydraulic Conductivity in a Tropical Rain Forest Catchment

    NASA Astrophysics Data System (ADS)

    Elsenbeer, Helmut; Cassel, Keith; Castro, Jorge

    1992-12-01

    The topography of first-order catchments in a region of western Amazonia was found to exhibit distinctive, recurrent features: a steep, straight lower side slope, a flat or nearly flat terrace at an intermediate elevation between valley floor and interfluve, and an upper side slope connecting interfluve and intermediate terrace. A detailed survey of soil-saturated hydraulic conductivity (Ksat)-depth relationships, involving 740 undisturbed soil cores, was conducted in a 0.75-ha first-order catchment. The sampling approach was stratified with respect to the above slope units. Exploratory data analysis suggested fourth-root transformation of batches from the 0-0.1 m depth interval, log transformation of batches from the subsequent 0.1 m depth increments, and the use of robust estimators of location and scale. The Ksat of the steep lower side slope decreased from 46 to 0.1 mm/h over the overall sampling depth of 0.4 m. The corresponding decrease was from 46 to 0.1 mm/h on the intermediate terrace, from 335 to 0.01 mm/h on the upper side slope, and from 550 to 0.015 mm/h on the interfluve. A depthwise comparison of these slope units led to the formulation of several hypotheses concerning the link between Ksat and topography.

  4. Tracing Nitrogen Sources in Forested Catchments Under Varying Flow Conditions: Seasonal and Event Scale Patterns

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.

    2004-12-01

    Our ability to assess how stream nutrient concentrations respond to biogeochemical transformations and stream flow dynamics is often limited by datasets that do not include all flow conditions that occur over event, monthly, seasonal, and yearly time scales. At the Sleepers River Research Watershed in northeastern Vermont, USA, nitrate, DOC (dissolved organic carbon), and major ion concentrations were measured on samples collected over a wide range of flow conditions from summer 2002 through summer 2004. Nutrient flushing occurred at the W-9 catchment and high-frequency sampling revealed critical insights into seasonal and event-scale controls on nutrient concentrations. In this seasonally snow-covered catchment, the earliest stage of snowmelt introduced nitrogen directly to the stream from the snowpack. As snowmelt progressed, the source of stream nitrate shifted to flushing of soil nitrate along shallow subsurface flow paths. In the growing season, nitrogen flushing to streams varied with antecedent moisture conditions. More nitrogen was available to flush to streams when antecedent moisture was lowest, and mobile nitrogen stores in the landscape regenerated under baseflow conditions on times scales as short as 7 days. Leaf fall was another critical time when coupled hydrological and biogeochemical processes controlled nutrient fluxes. With the input of labile organic carbon from freshly decomposing leaves, nitrate concentrations declined sharply in response to in-stream immobilization or denitrification. These high-resolution hydrochemical data from multiple flow regimes are identifying "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nutrient fluxes in streams.

  5. Calibration of a lumped nitrogen model in a Mediterranean forested catchment named Fuirosos, (Catalonia).

    NASA Astrophysics Data System (ADS)

    Medici, C.; Butturini, A.; Bernal, S.; Sabater, F.; Martin, M.; Wade, A.; Frances, F.

    2009-04-01

    Following the philosophy of the process-based INCA-N model (Wade et al., 2004), a recently developed hydrological model, LU4 was extended through the inclusion of processes representing the inorganic nitrogen cycle to create a new model of nitrogen dynamics LU4-N capable of application in Mediterranean systems, which share processes from both wet and arid/semiarid environments (Gallart et al., 2002). This new model represents an advance on the INCA-N model for which problems where observed when simulating the hydrology of Mediterranean catchments (Bernal et al., 2004). The LU4-N model integrates hydrological and N processes in catchment and simulates daily discharge and daily NO3-N and NH4-N concentration. The lumped hydrological model LU4 has been already applied to the Fuirosos catchment giving acceptable results (Medici et al., 2008). The model provides a simplified conceptualization of nitrogen cycle in soil and into the shallow perched saturated zone. It uses a zero order reaction kinetic equation to simulate the mineralization process and first order equation to simulate non-biological fixation, nitrification, denitrification, plant uptake and immobilization. The model structure includes a soil moisture threshold for all the considered soil biological processes. The model also includes two first order reaction equations to simulate the adsorption/desorption dynamic in soil. In the shallow perched aquifer, nitrification and denitrification are the only processes allowed to occur. The calibration period for the N-submodel was the same considered for the calibration of the hydrological model LU4 and it covers approximately three hydrological years (from October 1999 to August 2002). The LU4-N model was also tested against observed data recorded at Fuirosos from August 2002 to June 2003. The LU4-N model was able to match the observed daily pattern for the calibration period, while it was unable to match satisfactorily the daily observed ammonium concentration

  6. 7 CFR 58.720 - Acidifying agents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.720 Acidifying agents. Acidifying agents if used shall be those permitted by the Food...

  7. 7 CFR 58.720 - Acidifying agents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.720 Acidifying agents. Acidifying agents if used shall be those permitted by the Food...

  8. 7 CFR 58.720 - Acidifying agents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.720 Acidifying agents. Acidifying agents if used shall be those permitted by the Food...

  9. 7 CFR 58.720 - Acidifying agents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.720 Acidifying agents. Acidifying agents if used shall be those permitted by the Food...

  10. Runoff generation processes and fraction of young water for streamflow and groundwater in a pre-alpine forested catchment

    NASA Astrophysics Data System (ADS)

    Zuecco, Giulia; Penna, Daniele; van Meerveld, Ilja; Borga, Marco

    2017-04-01

    Understanding of runoff generation mechanisms and storage dynamics is needed for sustainable management of water resources, particularly in catchments characterized by marked seasonality in rainfall. However, temporal and spatial variability of hydrological processes can hinder a detailed comprehension of catchment functioning. In this study, we use hydrometric data and stable isotope data from a 2-ha forested catchment in the Italian pre-Alps to i) identify seasonal changes in runoff generation, ii) determine the factors that affect the hysteretic relations between streamflow and soil moisture and between streamflow and shallow groundwater, and iii) estimate the fraction of young water in stream water and shallow groundwater. Streamflow, soil moisture and groundwater levels were measured continuously between August 2012 and December 2015. Soil moisture was measured at 0-30 cm depth by four time domain reflectometers installed at different locations along a riparian-hillslope transect. Depth to water table was measured in two piezometers installed at a depth of 2.0 and 1.8 m in the riparian zone. Water samples for isotopic analysis were taken monthly from bulk precipitation and approximately biweekly from stream water and groundwater. The relations between streamflow (independent variable), soil moisture and depth to water table (dependent variables) were analyzed by computing a hysteresis index that provides information on the direction, the extent and the shape of the loops for 103 rainfall-runoff events. The temporal variability of the hysteresis index was related to event characteristics (mean and maximum rainfall intensity, rainfall amount and total stormflow) and antecedent soil moisture conditions. We observed threshold-like relations between stormflow and the sum of rainfall and the antecedent soil moisture index and an exponential relation between the change in groundwater level and stormflow. Clockwise hysteretic relations were common between streamflow

  11. Analysis of runoff sources and water uptake by trees using isotopic data in a small forested catchment

    NASA Astrophysics Data System (ADS)

    Mantese, N.; Penna, D.; Zuecco, G.; Borga, M.; Anfodillo, T.; Carraro, V.; Dalla Fontana, G.

    2012-04-01

    Plant transpiration is an important component of the hydrological cycle. Particularly, in densely vegetated areas, climatic and land-use changes might have significant hydrological (and ecological) implications. This leads to the need to identify the main water sources for tree transpiration and to evaluate how the flux exchanges between soil, vegetation and atmosphere possibly affect the runoff response of forested watersheds. Specifically, this study took advantage of the natural presence of water stable isotopes in the hydrological cycle to assess: i) the sources of water uptake by trees, and ii) the origin of water contributing to runoff in a small and densely forested catchment in the Italian Pre-Alps. Field surveys were carried out during late summer and early autumn of 2011 in the Ressi catchment (1.9 ha, North-Eastern Italy, mean elevation of 660 m a.s.l.). Beeches, chestnuts, maples and hazels represent the main tree species in the area, with sparse presence of hornbeams and ashes. Stream water stage, soil moisture at 0-30 cm depth at four locations, and water table level at three locations were continuously recorded. Bulk precipitation was collected from plastic bottles sealed with mineral oil and weekly manual sampling of stream water, soil water (by means of suction cups), groundwater and water in the xylem conduits (sap) from six beeches was performed for isotopic analyses. Sap was extracted in situ from beech twigs by using a pressure bomb. The isotopic composition of liquid samples (δ2H and δ18O) was determined by laser absorption spectroscopy. Additionally, water electrical conductivity was measured in the field (only for stream water, groundwater and rainfall) by a portable conductivity meter. Preliminary results showed a marked difference in the tracer concentration among the various water components in the catchment. Particularly, the average isotopic signal of tree water (-38.1 per mil δ2H and -5.95 δ18O) was statistically similar to soil

  12. Community structures and activity of denitrifying microbes in a forested catchment in central Japan: survey using nitrite reductase genes

    NASA Astrophysics Data System (ADS)

    Ohte, N.; Aoki, M.; Katsuyama, C.; Suwa, Y.; Tange, T.

    2012-12-01

    To elucidate the mechanisms of denitrification processes in the forested catchment, microbial ecological approaches have been applied in an experimental watershed that has previously investigated its hydrological processes. The study catchment is located in the Chiba prefecture in central Japan under the temperate Asian monsoon climate. Potential activities of denitrification of soil samples were measured by incubation experiments under anoxic condition associated with Na15NO3 addition. Existence and variety of microbes having nitrite reductase genes were investigated by PCR amplification, cloning and sequencings of nirK and nirS fragments after DNA extraction. Contrary to our early expectation that the potential denitrification activity was higher at deeper soil horizon with consistent groundwater residence than that in the surface soil, denitrification potential was higher in shallower soil horizons than deeper soils. This suggested that the deficiency of NO3- as a respiratory substrate for denitrifier occurred in deeper soils especially in the summer. However, high denitrification activity and presence of microbes having nirK and nirS in surface soils usually under aerobic condition was explainable by the fact that the majority of denitrifying bacteria have been recognized as a facultative anaerobic bacterium. This also suggests the possibility of that denitrification occurs even in the surface soils if the wet condition is provided by rainwater during and after a storm event. Community structures of microbes having nirK were different between near surface and deeper soil horizons, and ones having nirS was different between saturated zone (under groundwater table) and unsaturated soil horizons. These imply that microbial communities with nisK are sensitive to the concentration of soil organic matters and ones with nirS is sensitive to soil moisture contents.

  13. Distributed modeling of storm flow generation in an Amazonian rain forest catchment: Effects of model parameterization

    NASA Astrophysics Data System (ADS)

    Vertessy, Robert A.; Elsenbeer, Helmut

    1999-07-01

    We describe a process-based storm flow generation model, Topog_SBM consisting of a simple bucket model for soil water accounting, a one-dimensional kinematic wave overland flow scheme, and a contour-based element network for routing surface and subsurface flows. Aside from topographic data and rainfall the model has only six input parameters: soil depth (z), saturated hydraulic conductivity at the soil surface (K0), the rate of decay in K0 with depth (m), the Manning surface roughness parameter (n), the maximum (saturated) soil water content (θs), and the minimum (residual) soil water content (θr). However, the model is fully distributed, so these values can vary in magnitude across space. The model was applied to La Cuenca, a very small rainforest catchment in western Amazonia that has been well characterized in several hydrometric and hydrochemical investigations. Total runoff, peak runoff, time of rise, and lag time were predicted for 34 events of varying magnitudes and antecedent moisture conditions. We compared results for eight different model parameterizations or "sets"; four of these were freely calibrated to yield the best possible model fit to runoff data, whereas the other four were constrained (in various ways) by the use of actual K0 data gathered for the catchment. The eight sets were calibrated on either one of three events or on the three events jointly to illustrate the importance of calibration event selection on model performance. Model performance was evaluated by comparing observed and predicted (1) storm flow hydrograph attributes and (2) spatiotemporal patterns of overland flow occurrence across the catchment. The model generally predicted the right amount of runoff but usually underpredicted the peak runoff rate and overpredicted the time of rise. The "best" parameterization could credibly predict hydrographs for only about half of the events. Significant, and sometimes gross, errors were encountered for about one fourth of the events

  14. Evaluation of Load Estimation Methods and Sampling Strategies by Confidence Intervals in Estimating Solute Flux from a Small Forested Catchment

    NASA Astrophysics Data System (ADS)

    Tada, A.; Tanakamaru, H.

    2008-12-01

    Total mass flux (load) from a catchment is a basic factor in evaluating chemical weathering or in TMDLs implementation. So far, many combinations of load estimation methods with sampling strategies were tested to obtain an unbiased flux estimate. To utilize such flux estimates in the political or scientific application, the information of uncertainty of flux estimates should also be provided. Giving the interval estimate of total flux may be a desirable solution to this situation. Total solute flux from a small, undisturbed forested catchment (12.8ha) during 10 months were calculated based on high-temporal resolution data and used in validation of 95% confidence intervals (CIs) of flux estimates. Water quality data (sodium, potassium, and chloride concentration) were collected and measured every 15 minutes during 10 months in 2004 by the on-site monitoring system using FIP (flow injection potentiometry) method with ion-selective electrodes. Water quantity data (the flow rate data) were measured continuously by V-notch weir at the catchment outlet. Flux estimates and 95% CIs were calculated for three indices with 41 methods; sample average, flow- weighted average, the Beale ratio estimator, rating curve method with simple linear regression between flux and the flow rate, and nine regression models in the USGS Load Estimator (Loadest). Smearing estimates, MVUE estimates, and estimates by composite method were also evaluated concerning nine regression models in Load Estimator. Two sampling strategies were tested; periodical sampling (daily and weekly) and flow stratified sampling. After data were sorted in ascending order of the flow rate, five strata were configured so that each stratum contained same number of data in flow stratified sampling. The performance of these 95% CIs was evaluated by the rate of inclusion of true flux value within these CIs, which should be expected as 0.95. A simple bootstrap method was adopted to construct the CIs with 2,000 bootstrap

  15. Survey of Hylobates agilis albibarbis in a logged peat-swamp forest: Sabangau catchment, Central Kalimantan.

    PubMed

    Buckley, Cara; Nekaris, K A I; Husson, Simon John

    2006-10-01

    Few data are available on gibbon populations in peat-swamp forest. In order to assess the importance of this habitat for gibbon conservation, a population of Hylobates agilis albibarbis was surveyed in the Sabangau peat-swamp forest, Central Kalimantan, Indonesia. This is an area of about 5,500 km(2) of selectively logged peat-swamp forest, which was formally gazetted as a national park during 2005. The study was conducted during June and July 2004 using auditory sampling methods. Five sample areas were selected and each was surveyed for four consecutive days by three teams of researchers at designated listening posts. Researchers recorded compass bearings of, and estimated distances to, singing groups. Nineteen groups were located. Population density is estimated to be 2.16 (+/-0.46) groups/km(2). Sightings occurring either at the listening posts or that were obtained by tracking in on calling groups yielded a mean group size of 3.4 individuals, hence individual gibbon density is estimated to be 7.4 (+/-1.59) individuals/km(2). The density estimates fall at the mid-range of those calculated for other gibbon populations, thus suggesting that peat-swamp forest is an important habitat for gibbon conservation in Borneo. A tentative extrapolation of results suggests a potential gibbon population size of 19,000 individuals within the mixed-swamp forest habitat sub-type in the Sabangau. This represents one of the largest remaining continuous populations of Bornean agile gibbons. The designation of the Sabangau forest as a national park will hopefully address the problem of illegal logging and hunting in the region. Further studies should note any difference in gibbon density post protection.

  16. 7 CFR 58.720 - Acidifying agents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Acidifying agents. 58.720 Section 58.720 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.720 Acidifying agents. Acidifying agents if used shall be those permitted by the Food and...

  17. Investigating the applicability of end-member mixing analysis (EMMA) across scale: A study of eight small, nested catchments in a temperate forested watershed

    NASA Astrophysics Data System (ADS)

    James, April L.; Roulet, Nigel T.

    2006-08-01

    Current interest in multicatchment hydrologic studies challenges the use of geochemical mixing models across scale, where changes in stream water chemistry from catchment to catchment may indicate (1) changes in the proportional contributions of end-members, (2) changes in the geochemical signatures of end-members in space, or (3) changes in the geochemical signatures of end-members in time. In this study we examine stream water chemistry from a series of eight nested catchments in a 1.47 km2 temperate forest watershed in southern Quebec for evidence of contributing end-members. We use eigenvector and residual analysis (Hooper, 2003) of the multivariate stream water chemistry records to estimate the dimensionality of the mixing space for each individual catchment, indicating the number of contributing end-members. Using the mixing space of the largest, highest-order catchment (1.47 km2), we evaluate its ability to predict stream water chemistry in the seven upstream catchments, representing progressively smaller areas. We observe significant spatial variation in ionic mixing ratios within the 147 ha watershed. Only spatial testing across catchments allowed us to identify appropriate conservative tracers most compatible with the application of a single mixing model across scale. On the seasonal timescale, groundwater geochemistry changes significantly due to the recharge from spring snowmelt, indicating a mixture of two groundwater end-members of varying age. On the timescale of storm events, shallow perched water and throughfall provide geochemical signatures consistent with physical mixing while unsaturated zone soil water sampled from local pockets of glacial till does not. Our results suggest cautious application of end-member mixing analysis (EMMA) for multicatchment studies.

  18. Using the INCA-Hg model of mercury cycling to simulate total and methyl mercury concentrations in forest streams and catchments.

    PubMed

    Futter, M N; Poste, A E; Butterfield, D; Dillon, P J; Whitehead, P G; Dastoor, A P; Lean, D R S

    2012-05-01

    We present a new, catchment-scale, process-based dynamic model for simulating mercury (Hg) in soils and surface waters. The Integrated Catchments Model for Mercury (INCA-Hg) simulates transport of gaseous, dissolved and solid Hg and transformations between elemental (Hg(0)), ionic (Hg(II)) and methyl (MeHg) Hg in natural and semi-natural landscapes. The mathematical description represents the model as a series of linked, first-order differential equations describing chemical and hydrological processes in catchment soils and waters which we believe control surface water Hg dynamics. The model simulates daily time series between one and 100 years long and can be applied to catchments ranging in size from <1 to ~10,000 km(2). Here we present applications of the model to two boreal forest headwater catchments in central Canada where we were able to reproduce observed patterns of stream water total mercury (THg) and MeHg fluxes and concentrations. Model performance was assessed using Monte Carlo techniques. Simulated in-stream THg and MeHg concentrations were sensitive to hydrologic controls and terrestrial and aquatic process rates.

  19. Climate response of the soil nitrogen cycle in three forest types of a headwater Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Lupon, Anna; Gerber, Stefan; Sabater, Francesc; Bernal, Susana

    2015-05-01

    Future changes in climate may affect soil nitrogen (N) transformations, and consequently, plant nutrition and N losses from terrestrial to stream ecosystems. We investigated the response of soil N cycling to changes in soil moisture, soil temperature, and precipitation across three Mediterranean forest types (evergreen oak, beech, and riparian) by fusing a simple process-based model (which included climate modifiers for key soil N processes) with measurements of soil organic N content, mineralization, nitrification, and concentration of ammonium and nitrate. The model describes sources (atmospheric deposition and net N mineralization) and sinks (plant uptake and hydrological losses) of inorganic N from and to the 0-10 cm soil pool as well as net nitrification. For the three forest types, the model successfully recreated the magnitude and temporal pattern of soil N processes and N concentrations (Nash-Sutcliffe coefficient = 0.49-0.96). Changes in soil water availability drove net N mineralization and net nitrification at the oak and beech forests, while temperature and precipitation were the strongest climatic factors for riparian soil N processes. In most cases, net N mineralization and net nitrification showed a different sensitivity to climatic drivers (temperature, soil moisture, and precipitation). Our model suggests that future climate change may have a minimal effect on the soil N cycle of these forests (<10% change in mean annual rates) because positive warming and negative drying effects on the soil N cycle may counterbalance each other.

  20. Soil carbon and nitrogen erosion in forested catchments: implications for erosion-induced terrestrial carbon sequestration

    Treesearch

    E. M. Stacy; S. C. Hart; C. T. Hunsaker; D. W. Johnson; A. A. Berhe

    2015-01-01

    Lateral movement of organic matter (OM) due to erosion is now considered an important flux term in terrestrial carbon (C) and nitrogen (N) budgets, yet most published studies on the role of erosion focus on agricultural or grassland ecosystems. To date, little information is available on the rate and nature of OM eroded from forest ecosystems. We present annual...

  1. An ordination of the forest communities in Nainital catchment of Kumaun Himalaya.

    PubMed

    Kharkwal, Geeta; Rawat, Yashwant Singh; Pangtey, Yashpal Singh

    2009-09-01

    Evergreen forest communities distributed within 1580-2600 m above sea level (asl) in Kumaun Himalaya were studied. Quercus leucotrichophora A. Campus, Q. floribunda Lindl. ex Rehder Q. semecarpifolia J.E. Smith and Pinus roxburghii Sarg. are the dominant tree species in banj-oak, tilonj-oak, kharsu-oak and chir-pine forests, respectively. Total density for tree, shrub and herb layer varied from 3.7 to 10.5 (individual 100 m(-2)), 2.0 to 38.8 (individual 100 m(-2)) and 5.5 to 44.0 (individual m(-2)), respectively. A total of five forests types (27 stands) were identified in the field on the basis of species richness and species diversity by applying polar ordination method. The diversity value fortree, shrub and herb layer ranged from 0 to 3.62, 0.36 to 3.85 and 1.23 to 4.21, respectively. Present study indicates the spatial patterns of vegetation in different forest communities at different altitudes.

  2. Modelling the fate of hydrophobic organic contaminants in a boreal forest catchment: a cross disciplinary approach to assessing diffuse pollution to surface waters.

    PubMed

    Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Agren, Anneli; Laudon, Hjalmar; Köhler, Stephan; Jones, Kevin C; Tysklind, Mats; Wiberg, Karin

    2010-09-01

    The fate of hydrophobic organic compounds (HOCs) in soils and waters in a northern boreal catchment was explored through the development of a chemical fate model in a well-characterised catchment system dominated by two land types: forest and mire. Input was based solely on atmospheric deposition, dominated by accumulation in the winter snowpack. Release from soils was governed by the HOC concentration in soil, the soil organic carbon fraction and soil-water DOC content. The modelled export of selected HOCs in surface waters ranged between 11 and 250 ng day(-1) during the snow covered period, compared to 200 and 9600 ng/d during snow-melt; highlighting the importance of the snow pack as a source of these chemicals. The predicted levels of HOCs in surface water were in reasonable agreement to a limited set of measured values, although the model tended to over predict concentrations of HOCs for the forested sub-catchment, by over an order of magnitude in the case of hexachlorobenzene and PCB 180. This possibly reflects both the heterogeneity of the forest soils and the complicated and changing hydrology experienced between the different seasons.

  3. Sulphate leaching from diffuse agricultural and forest sources in a large central European catchment during 1900-2010.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Porcal, Petr; Posch, Maximilian

    2014-02-01

    Using dynamic, mass budget, and empirical models, we quantified sulphate-sulphur (SO4-S) leaching from soils in a large central European catchment (upper Vltava river, Czech Republic) over a 110-year period (1900-2010). SO4-S inputs to soils with synthetic fertilisers and atmospheric deposition increased in the 1950s-1980s, then rapidly decreased (~80%), and remained low since the middle 1990s. The proportion of drained agricultural land rapidly increased from 4 to 43% between the 1950s and 1990s; then the draining ability of the system slowly decreased due to its ageing. Sulphate concentrations in the Vltava exhibited similar trends as the external SO4-S inputs, suggesting that they could be explained by changes in atmospheric and fertiliser S inputs. The available data and modelling, however, showed that (i) internal SO4-S sources (mineralization of soil organic S in the drained agricultural land), (ii) a hysteresis in SO4-S leaching from forest soils (a net S retention at the high S inputs and then a net release at the lowered inputs), and (iii) hydrology must be taken into account. An empirical model was then employed, based on parameters representing hydrology (discharge), external SO4-S sources (inputs by synthetic fertilisers and atmospheric deposition), and internal SO4-S sources (mineralization related to soil drainage). The model explained 84% of the observed variability in annual SO4-S concentrations in the Vltava river during 1900-2010 and showed that forest soils were a net sink (105 kg ha(-1)) while agricultural land was a net source (55 kg ha(-1)) of SO4-S during 1960-2010. In the late 1980s, forest soils changed from a sink to a source of S, and the present release of SO4-S accumulated in forest soils thus delays recovery of surface waters from acidification, while S losses from agricultural soils increase the risk of future S deficiency in S-demanding crops. © 2013.

  4. Effects of pipeflow on hydrological process and its relation to landslide: a review of pipeflow studies in forested headwater catchments

    NASA Astrophysics Data System (ADS)

    Uchida, Taro; Kosugi, Ken'ichirou; Mizuyama, Takahisa

    2001-08-01

    Since the 1980s, several field studies of pipeflow hydrology have been conducted in forested, steep headwater catchments. However, adequate information is lacking with regard to questions as to how representative these previous studies are and how widespread the phenomena might be. Thus, the aim of this study is to review some studies of pipeflow hydrology on forested steep hillslopes. Several points were clarified. (1) The maximum discharge of pipeflow was mainly determined by the soil pipe diameter. When the condition of both the soil pipe diameter and the slope gradient in forest soil were similar to those in peaty podzol, the maximum discharge of pipeflow on forest slopes was slighter than that in peaty podzol. (2) Pipeflow was delivered from a variety of sources, and the contributing area of pipeflow extended as the soil layer became wetter. Therefore, the dominant contributor (new water and old water) was varied and the contribution of pipeflow to streamflow increased with the increase of rainfall magnitude. (3) The roles of pipeflow in the storm runoff generation processes demonstrated two roles: the concentration of water and the rapid drainage to downslopes. Thus, soil pipes can increase the peak discharge from the hillslope and decrease the peak lag time of the storm hydrograph, when compared to the unpiped hillslope. (4) The roles of pipeflow on hydrological process suggested that the soil pipes contribute to the slope stability by increasing the rate of soil drainage and limiting the development of perched groundwater conditions. However, if the rate of water concentration to the soil pipe network is in excess of the pipeflow transmission capacity, the cavity of the soil pipe could readily be filled with water during a rain event, increasing pore water pressure in the surrounding matrix. In this case, the soil pipe induced slope instability. (5) Moreover, pipe erosion has significant impact on the runoff characteristics of pipeflow, since pipe erosion

  5. Optical Characterization and Bioavailability of Dissolved Organic Matter of Leaf Leachates from Restored and Forested Delmarva Bay Catchments

    NASA Astrophysics Data System (ADS)

    Reed, E.; Armstrong, A.

    2016-12-01

    The optical properties and lability of fresh leaf and litter leachates obtained from Delmarva wetlands were analyzed to gain a further understanding of the carbon inputs and outputs of that wetland system. Carbon entering the wetland system may be digested by microbes and then given off as either carbon dioxide or methane, both of which enter the atmosphere as greenhouse gases. Delmarva Bays are often considered geographically isolated and only have surface water present in certain times of year. The vegetation around the wetlands are assumed to be a major input of the dissolved organic matter (DOM) in the wetland surface water. An understanding of the sources and lability of wetland water DOM can lead to further insight into the connections between vegetation, wetland management, and carbon cycling. Two paired wetland sites were sampled in this study, each included a forested catchment and a prior-converted agricultural wetland that had undergone hydrological ecosystem restoration. Leaf samples of Liquidambar styraciflua, Acer rubrum, Nyssa sylvatica, Polygonum, and Typha were taken directly from the living plant or from surrounding ground as litter. Spectral properties of the leachates were determined from fluorescence and absorbance, including PARAFAC components, fluorescence index (FI), humification index (HI), and the specific ultraviolet absorbance (SUVA). Leachates were also incubated with microbes taken from Tuckahoe Creek, a stream to which all sampled sites eventually drain, to determine the bioavailability of the carbon. There were measurable differences found between samples obtained from leaves and litter, as well as a difference between the herbaceous and tree samples. The results obtained from this study can help create more accurate models of how carbon cycles through these wetlands, both in forested and restored environments.

  6. Isotopic evidence for determining the sources of dissolved organic sulfur in a forested catchment.

    PubMed

    Kang, Phil-Goo; Mitchell, Myron J; Mayer, Bernhard; Campbell, John L

    2014-10-07

    Understanding sulfur (S) biogeochemistry, especially in those watersheds subject to elevated levels of atmospheric S inputs, is needed for determining the factors that contribute to acidification, nutrient losses and the mobilization of toxic solutes (e.g., monomeric aluminum and methylmercury). S is found in a variety of both organic and inorganic forms undergoing a range of biotic and abiotic transformations. In watersheds with decreasing atmospheric S inputs, internal cycling is becoming dominant in affecting whether there is net loss or retention of S. Little attention has been given to the role of dissolved organic S (DOS) in affecting S biogeochemistry. DOS originates from assimilatory and bacterial dissimilatory S reduction (BDSR), the latter of which produces (34)S-depleted S. Within groundwater of the Archer Creek Catchment in the Adirondack Mountains (New York) there was reoxidation of reduced S, which was an important source of SO4(2-). DOS in surface waters had a higher variation of δ(34)S-DOS values (-6.0 to +8.4‰) than inorganic S with δ(34)S-SO4(2-) values ranging from +1.0 to +5.8‰. Inverse correlations between δ(34)S values of SO4(2-) and DOS suggested that BDSR played an important role in producing DOS.

  7. Geochemical investigation of weathering processes in a forested headwater catchment: Mass-balance weathering fluxes

    USGS Publications Warehouse

    Jones, B.F.; Herman, J.S.

    2008-01-01

    Geochemical research on natural weathering has often been directed towards explanations of the chemical composition of surface water and ground water resulting from subsurface water-rock interactions. These interactions are often defined as the incongruent dissolution of primary silicates, such as feldspar, producing secondary weathering products, such as clay minerals and oxyhydroxides, and solute fluxes (Meunier and Velde, 1979). The chemical composition of the clay-mineral product is often ignored. However, in earlier investigations, the saprolitic weathering profile at the South Fork Brokenback Run (SFBR) watershed, Shenandoah National Park, Virginia, was characterized extensively in terms of its mineralogical and chemical composition (Piccoli, 1987; Pochatila et al., 2006; Jones et al., 2007) and its basic hydrology. O'Brien et al. (1997) attempted to determine the contribution of primary mineral weathering to observed stream chemistry at SFBR. Mass-balance model results, however, could provide only a rough estimate of the weathering reactions because idealized mineral compositions were utilized in the calculations. Making use of detailed information on the mineral occurrence in the regolith, the objective of the present study was to evaluate the effects of compositional variation on mineral-solute mass-balance modelling and to generate plausible quantitative weathering reactions that support both the chemical evolution of the surface water and ground water in the catchment, as well as the mineralogical evolution of the weathering profile. ?? 2008 The Mineralogical Society.

  8. Continuous Daily Simulation of Chloride Flux for a 12 km2 Forested Catchment in the Central Appalachians

    NASA Astrophysics Data System (ADS)

    Chanat, J. G.; Hornberger, G. M.

    2005-05-01

    Quantifying the processes by which water and conservative tracers are transformed from rainfall into streamflow is a key prerequisite to understanding biogeochemical cycling, pollutant movement, and aquatic ecosystem functioning in headwater catchments. An ideal process-based model would represent the key features of the observed watershed-scale response in the simplest terms possible, while remaining faithful to hydrologist's general understanding of runoff generation mechanisms. We present a conceptual model for daily water and chloride flux for Paine Run, a 12.4 km2 forested watershed in the Virginia Blue Ridge. The flow submodel is based on a decomposition of hydrologic response into "fast" and "slow" runoff components, and is parameterized independently of the solute data. Chloride flux is represented in terms of a cascading set of two travel-time distributions; one representing sporadic movement and evapoconcentration in the shallow subsurface, and the other representing continuous movement along deeper "baseflow" pathways. The model is calibrated against a seven-year series of weekly stream samples, as well as episodic data for selected events. We evaluate the model in terms of its simulation performance, its calibrated parameter values, and its credibility, addressing topics such as old water fraction in stormflow, overall residence time distribution, and frequency-domain response characteristics.

  9. The impact of vegetation on REE fractionation in stream waters of a small forested catchment (the Strengbach case)

    NASA Astrophysics Data System (ADS)

    Stille, P.; Steinmann, M.; Pierret, M.-C.; Gauthier-Lafaye, F.; Chabaux, F.; Viville, D.; Pourcelot, L.; Matera, V.; Aouad, G.; Aubert, D.

    2006-07-01

    Previous studies on waters of a streamlet in the Vosges Mountains (Eastern France) have shown that strontium and rare earth elements (REE) mainly originate from preferential dissolution of apatite during weathering. However, stream water REE patterns normalized to apatite are still depleted in the light REE (LREE, La-Sm) pointing to the presence of an additional LREE depleting process. Vegetation samples are strongly enriched in LREE compared to stream water and their Sr and Nd isotopic compositions are comparable with those of apatite and stream water. Thus, the preferential LREE uptake by vegetation might lead to an additional LREE depletion of surface runoff in the forested catchment. Mass balance calculations indicate, that the yearly LREE uptake by vegetation is comparable with the LREE export by the streamlet and, therefore, might be an important factor controlling LREE depletion in river water. This is underlined by the observation that rivers from arctic and boreal regions with sparse vegetation appear to be less depleted in LREE than rivers from tropical environments or boreal environments with a dense vegetation cover.

  10. Nitrogen, phosphorus, carbon, and suspended solids loads from forest clear-cutting and site preparation: long-term paired catchment studies from eastern Finland.

    PubMed

    Palviainen, Marjo; Finér, Leena; Laurén, Ari; Launiainen, Samuli; Piirainen, Sirpa; Mattsson, Tuija; Starr, Mike

    2014-03-01

    The long-term impacts of current forest management methods on surface water quality in Fennoscandia are largely unexplored. We studied the long-term effects of clear-cutting and site preparation on runoff and the export of total nitrogen (total N), total organic nitrogen (TON), ammonium (NH(4)-N), nitrate (NO(3)-N), total phosphorus (total P), phosphate (PO(4)-P), total organic carbon, and suspended solids (SS) in three paired-catchments in Eastern Finland. Clear-cutting and soil preparation were carried out on 34 % (C34), 11 % (C11), and 8 % (C8) of the area of the treated catchments and wide buffer zones were left along the streams. Clear-cutting and soil preparation increased annual runoff and total N, TON, NO(3)-N, PO(4)-P, and SS loads, except for SS, only in C34. Runoff increased by 16 % and the annual exports of total N, TON, NO(3)-N, and PO(4)-P by 18, 12, 270, and 12 %, respectively, during the 14-year period after clear-cutting. SS export increased by 291 % in C34, 134 % in C11, and 16 % in C8 during the 14, 6, and 11-year periods after clear-cutting. In the C11 catchment, NO(3)-N export decreased by 12 %. The results indicate that while current forest management practices can increase the export of N, P and SS from boreal catchments for many years (>10 years), the increases are only significant when the area of clear cutting exceeds 30 % of catchment area.

  11. Evaluating Hydrologic Responses to Climate Changes in an Inland Pacific Northwest Forested Headwater Catchment by Using Numerical Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Du, E.; Link, T. E.; Abatzoglou, J. T.

    2010-12-01

    The hydrology of the interior Pacific Northwest (PNW) is dominated by seasonal snowmelt from forested uplands. Hydrologic regimes in the area are vulnerable to climate change as many catchments contain large areas that are located within or above the transient snow zone. Hydrologic regime shifts may result from warmer temperatures that may increase the rain to snow ratio of winter precipitation. This is of concern because as snowpack declines, more runoff occurs earlier in the winter and therefore may increase the interval between the major seasonal runoff and the timing of water resource needs. Warmer temperatures may also increase evaporation and transpiration and extend the seasonal drought in the region. We assessed potential future hydrologic changes in the Mica Creek Experimental Watershed (MCEW), a mountainous headwater catchment in northern Idaho, using data from an ensemble of 12 downscaled general circulation models (GCM) based on the IPCC A1B greenhouse gas emission scenario. The data were used to drive the physically based, spatially explicit Distributed Hydrology Soil Vegetation Model (DHSVM) to estimate future flow regimes. The simulation results indicate that seasonal snowpack in this snow-dominated watershed almost completely disappears by 2046 with corresponding mean annual temperature increases of 2.7-4.7 C and annual precipitation stays almost the same. Compared to the 1981-2000 time period, evaporative fluxes are predicted to increase by 9-63% in 2046-2065, most of which occurs during the winter months. Annual water yield predictions in 2046-2065 range from 55% to 100% of the current value. The streamflow simulations suggest large seasonal flow changes; winter runoff (October-March) increases by 44 to 183%, whereas spring and summer runoff (April -September) declines by 23 to 70%. The simulations suggest that the annual hydrograph centroid is expected to advance by 17 to 73 days, and that seasonal peakflows should decrease and shift from May to

  12. Estimating Loads from a Small Forested Catchment; An Evaluation Based on High-frequency Water Quality Data

    NASA Astrophysics Data System (ADS)

    Tada, A.; Kuribayashi, Y.; Tanakamaru, H.

    2013-12-01

    Uncertainty in estimating loads from a catchment is always a bothersome problem in the evaluation of anthropogenic impacts on the water environment. Many researchers suggested improved formulas for load calculation and sampling strategies for unbiased load estimates. However, convincing, comprehensive and well-tested load estimation method doesn't exist yet due to the lack of water quality data with high-frequency because an approximate estimate of 'true' load is essential in evaluating its uncertainty. Selection At List Time (SALT) method is one of the comprehensive unbiased load estimation methods and it was introduced by Thomas in 1985. Indeed, it was the application of importance sampling (IS) method for load estimation. This method would be expected to bring an unbiased load estimate theoretically. For the establishment of unbiased loads estimation method, the uncertainty of load estimates with IS methods was evaluated based on suspended solids (SS) concentration data with 10 minute interval from 2011 to 2012 (about 12 months with 97% undetected concentration), three solutes data (sodium, potassium and chloride) with 15 minute interval from 2009 to 2011 (about 23 months with 20 to 30% of missing data) and 10 minutes resolution discharge data from a small forested catchment (12.82ha) in Nara, JAPAN. The ordinary rating curve (power law type) was adopted in the approximation of the loading population. An evaluation of unbiasedness of the load estimate was done using coverage rates of 95% confidence intervals using the bootstrap method. The results showed reasonable performance of 95% C.I.s when the sample size was larger than 50 and robustness of the IS method. For example, coverage rate of 95% C.I.s for solutes varies from 92 to 96 % when the 60 to 570 samples were used to estimate the loads. Biases in load estimates with a smaller number of samples (less than 50) were also recognized when the variance of residuals is large (e.g. >1.0) on a log scale

  13. Transplanted aquatic mosses for monitoring trace metal mobilization in acidified streams of the Vosges Mountains, France

    SciTech Connect

    Mersch, J.; Guerold, F.; Rousselle, P.; Pihan, J.C. )

    1993-08-01

    As a result of acid depositions, trace metals are mobilized from the soils to the aquatic environment. Especially in poorly mineralized waters, elevated metal concentrations may rapidly have adverse effects on aquatic organisms. In particular, it has been shown that aluminium, a key element in the acidification process, is a toxic cofactor for fish and other biota. An accurate assessment of this specific form of water pollution may not be possible when only based on analyses of single water samples. On the one hand, water metal concentrations are often close to the detection limit of usual analytical techniques, and on the other hand, levels in acidified streams undergo strong temporal variations caused by acid pulses following meteorological events such as heavy rainfall and snowmelt. Compared to water analyses, indirect monitoring methods provide undeniable advantages for assessing water contamination. Aquatic bryophytes, in particular, have been regarded as interesting indicator organisms for trace metal pollution. However, their use has mainly been restricted to the lower course of streams for evaluating the impact of industrial discharges. The purpose of this study was to test the suitability of transplanted aquatic mosses for monitoring aluminium and four other trace metals (copper, iron, lead and zinc) in the particular context of acidifed streams draining a forested headwater catchment. 15 refs., 2 figs., 2 tabs.

  14. Controls on denitrification in riparian soils in headwater catchments of a hardwood forest in the Catskill Mountains, U.S.A.

    USGS Publications Warehouse

    Ashby, J.A.; Bowden, W.B.; Murdoch, Peter S.

    1998-01-01

    Denitrification in riparian soils is thought to be an important factor that reduces hydrologic export of nitrate from forested and agricultural catchments. A 2-y study to identify the soil factors most closely associated with denitrification in riparian soils in headwater catchments within the Catskill Mountains of New York, included field surveys of surface and subsurface denitrification rates, and an amendment experiment to assess the relative effects of increases in available carbon and substrate NO-/3 on denitrification rates. Denitrification rates were measured by acetylene inhibition during incubation of intact soil cores from eight soil types representing a range of drainage classes. Soil cores were analyzed for organic matter, total P, extractable NO-/3-N and NH+/4-N, organic N, pH, moisture, porosity, and water-filled pore space, to determine which of these factors were most closely associated with denitrification. The distribution of denitrification rates found during the field surveys was highly skewed, with many low or zero values and few high values. Denitrification rates were positively associated with high soil organic matter, total P, and water-filled pore space, and were highest in seep (poorly-drained) soils, toeslope (seasonally-drained) soils, and stream-edge (poorly- to moderately well-drained) soils in which these three soil characteristics were typically high. Denitrification rates in these wet locations were also positively associated with soil NH+/4-N concentration and pH, but not with NO-/3-N concentration, suggesting that the rate of NO-/3 supply (via nitrification or hydrologic transport) was more important than the instantaneous concentration of NO-/3-N in the soils. The amendment experiment indicated that denitrification in soil types studied was most responsive to added glucose alone or with NO-/3. Thus, in these soils, a combination of slow rates of NO-/3 supply and low available carbon appears to limit denitrification. Annual

  15. Ecosystem monitoring of radiocesium redistribution dynamics in a forested catchment in Fukushima after the nuclear power station accident in March 2011

    NASA Astrophysics Data System (ADS)

    Ohte, N.; Endo, I.; Ohashi, M.; Murakami, M.; Oda, T.; Hotta, N.; Yamanishi, R.; Sugiyama, Y.; Tanoi, K.; Kobayashi, N. I.; Ishii, N.

    2016-12-01

    The accident at the Fukushima Daiichi Nuclear Power Station (F1NPS) in March 2011 emitted 1.2 × 1016 Bq of cesium-137 (137Cs) into the surrounding environment. Radioactive substances, including 137Cs, were deposited onto forested areas in the northeastern region of Japan. To clarify the mechanisms of dispersion and export of 137Cs, within and from a forest ecosystem, we have conducted intensive field observations on hydrological processes and the 137Cs movement and storage in a forested headwater catchment in an area 50 km from F1NNS. Two major pathways of 137Cs transport were focused: 1) through the hydrological processes with dissolved and particulate or colloidal forms, and 2) by dispersion through the food web in the forest-stream ecological continuum. The 137Cs concentrations of stream waters were monitored. Various aquatic and terrestrial organisms were periodically sampled to measure their 137Cs concentrations. The results indicate that the major form of exported 137Cs is via suspended solid in the streamflow. Thus, high flows generated by a storm event accelerated strongly the transportation of 137Cs from the forested catchments. Estimation of 137Cs export from the forested catchments requires precise evaluation of the high water flow during storm events. On the other hand, dissolved form, especially mineral ion form of 137Cs were dominant in througfall and stemflow. Because the biggest pool of 137Cs in the forested ecosystem was the accumulated litters and detritus on the forest floor, 137Cs dispersion through food web was quicker through the detritus food chain than through the grazing food chain. 137Cs concentration of leaves (1.1k Bq/kg), barks (4.4-22.5 kBq/kg) woods (0.1-0.6 kBq/kg) and litters (1.3 kBq/kg) of a dominant deciduous tree (Quercus serrata) suggested that internal cyccling of 137Cs have aready occurred between surface soils including litter layer and plants.

  16. Analysis and Model Based Assessment of Water Quality in European Mesoscale Forest Catchments with Different Management Strategies (a Climatic Gradient Approach)

    NASA Astrophysics Data System (ADS)

    Tavares, Filipa; Schwaerzel, Kai; Nunes, João. Pedro; Feger, Karl-Heinz

    2010-05-01

    Forestry activities affect the environmental conditions of river basins by modifying soil properties and vegetation cover, leading to changes in e.g. runoff generation and routing, water yield or the trophic status of water bodies. Climate change is directly linked to forestry, since site-adapted sustainable forest management can buffer negative climate change impacts in river basins, while practices leading to over-harvesting or increasing wildfires can exacerbate these impacts. While studies relating hydrological processes with forestry practices or climate change have already been conducted, the combined impacts of both are rarely discussed. The main objective of the proposed work is to study the interactions between forest management and climate change and the effects of these upon water fluxes and water quality at the catchment scale, over medium to long-term periods and following an East-West climate gradient. Additional objectives are to increase knowledge about the relations between forest, water quality and soil conservation/degradation; and to improve the modelling of hydrological and matter transport processes in managed forests. The present poster shows a conceptual approach to understand this combined interaction by analysing an East-West climatic gradient (Ukraine-Germany-Portugal), with contrasting forestry practices and climate vulnerabilities. The activities within this workplan, to take place during the period 2010 - 2014, will be developed in close collaboration with several ongoing research projects in the host institution at the Dresden University of Technology (TUD) and in the University of Aveiro (UA). The Institute of Soil Science and Site-Ecology (ISSE) at TUD has an internationally renowned research tradition in forest hydrological topics using methods and findings from various (sub)disciplines in a multidisplinary approach. The measurement and simulation of forest catchments has also been a point of research at the Centre for

  17. Dissolved organic sulfur in streams draining forested catchments in southern China.

    PubMed

    Wang, Zhanyi; Zhang, Xiaoshan; Wang, Zhangwei; Zhang, Yi; Li, Bingwen; Vogt, Rolf

    2012-01-01

    Dissolved organic sulfur (DOS) is an important fraction for sulfur mobilization in ecosystem. In this work stream waters were sampled in 25 forested sites in southern China to study the dissolved sulfur fractions. Dissolved sulfur was fractionated into dissolved organic sulfur (DOS) and inorganic sulfate (SO4(2-)) for 95 stream water samples. The results showed that the concentration of DOS ranged from 0 to 13.1 mg/L (average 1.3 mg/L) in all the streams. High concentrations of DOS in stream waters were found in the sites with high concentrations of sulfate. DOS constituted less than 60.1% of dissolved sulfur (average 17.9%). Statistical analysis showed that DOS concentration was correlated with SO4(2-) in streams waters and total sulfur in surface layer soils. The results also showed that DOS concentration in stream waters had a seasonal variation, but no trends were found with it. The implication was that the long term sulfur deposition had led the increase of the concentration and fraction of DOS in stream waters in acid rain prevailing regions

  18. Highly Resolved Long-term 3D Hydrological Simulation of a Forested Catchment with Litter Layer and Fractured Bedrock

    NASA Astrophysics Data System (ADS)

    Fang, Z.; Bogena, H. R.; Kollet, S. J.; Vereecken, H.

    2014-12-01

    Soil water content plays a key role in the water and energy balance in soil, vegetation and atmosphere systems. According to Wood et al. (2011) there is a grand need to increase global-scale hyper-resolution water-energy-biogeochemistry land surface modelling capabilities. However, such a model scheme should also recognize the epistemic uncertainties, as well as the nonlinearity and hysteresis in its dynamics. Unfortunately, it is not clear how to parameterize hydrological processes as a function of scale and how to test deterministic models with regard to epistemic uncertainties. In this study, high resolution long-term simulations were conducted in the highly instrumented TERENO hydrological observatory, the Wüstebach catchment. Soil hydraulic parameters were derived using inverse modeling with the Hydrus-1D model using the global optimization scheme SCE-UA and soil moisture data from a wireless soil moisture sensor network. The estimated parameters were then used for 3D simulations using the integrated parallel simulation platform ParFlow-CLM. The simulated soil water content, as well as evapotranspiration and runoff, were compared with long-term field observations to illustrate how well the model was able to reproduce the water budget dynamics. With variable model setup scenarios in boundary conditions and anisotropy of hydraulic conductivity, we investigated how lateral flow processes above the underlying fractured bedrock affects the simulation results. Furthermore, we explored the importance of the litter layer and the heterogeneity of the forest soil in the simulation of flow processes and model performance. For the analysis of spatial patterns of simulated and observed soil water content we applied the method of empirical orthogonal function (EOF). The results suggest that strong anisotropy in the hydraulic conductivity may be the reason for the fast lateral flow observed in Wüstebach. Introduction of heterogeneity in the hydraulic properties in the

  19. Increasing arsenic concentrations in runoff from 12 small forested catchments (Czech Republic, Central Europe): patterns and controls.

    PubMed

    Novak, Martin; Erbanova, Lucie; Fottova, Daniela; Voldrichova, Petra; Prechova, Eva; Blaha, Vladimir; Veselovsky, Frantisek; Krachler, Michael

    2010-08-01

    The 40-year long period of heavy industrialization in Central Europe (1950-1990) was accompanied by burning of arsenic-rich lignite in thermal power plants, and accumulation of anthropogenic arsenic in forest soils. There are fears that retreating acidification may lead to arsenic mobilization into drinking water, caused by competitive ligand exchange. We present monthly arsenic concentrations in surface runoff from 12 headwater catchments in the Czech Republic for a period of 13 years (1996-2008). The studied area was characterized by a north-south gradient of decreasing pollution. Acidification, caused mainly by SOx and NOx emissions from power plants, has been retreating since 1987. Between 1996 and 2003, maximum arsenic concentrations in runoff did not change, and were < 1 ppb in the rural south and < 2 ppb in the industrial north. During the subsequent two years, 2004-2005, maximum arsenic concentrations in runoff increased, reaching 60% of the drinking water limit (10 ppb). Starting in 2006, maximum arsenic concentrations returned to lower values at most sites. We discuss three possible causes of the recent arsenic concentration maximum in runoff. We rule out retreating acidification and a pulse of high industrial emission rates as possible controls. The pH of runoff has not changed since 1996, and is still too low (<6.5) at most sites for an As-OH(-) ligand exchange to become significant. Elevated arsenic concentrations in runoff in 2004-2005 may reflect climate change through changing hydrological conditions at some, but not all sites. Dry conditions may result in elevated production of DOC and sulfur oxidation in the soil. Subsequent wet conditions may be accompanied by acidification leading to faster dissolution of arsenic-bearing sulfides, dissolution of arsenic-bearing Fe-oxyhydroxides, and elevated transport of arsenic sorbed on organic matter. Anaerobic domains exist in normally well-aerated upland soils for hours-to-days following precipitation

  20. Comparison of hydrochemical tracers to estimate source contributions to peak flow in a small, forested, headwater catchment

    USGS Publications Warehouse

    Rice, Karen C.; Hornberger, George M.

    1998-01-01

    Three-component (throughfall, soil water, groundwater) hydrograph separations at peak flow were performed on 10 storms over a 2-year period in a small forested catchment in north-central Maryland using an iterative and an exact solution. Seven pairs of tracers (deuterium and oxygen 18, deuterium and chloride, deuterium and sodium, deuterium and silica, chloride and silica, chloride and sodium, and sodium and silica) were used for three-component hydrograph separation for each storm at peak flow to determine whether or not the assumptions of hydrograph separation routinely can be met, to assess the adequacy of some commonly used tracers, to identify patterns in hydrograph-separation results, and to develop conceptual models for the patterns observed. Results of the three-component separations were not always physically meaningful, suggesting that assumptions of hydrograph separation had been violated. Uncertainties in solutions to equations for hydrograph separations were large, partly as a result of violations of assumptions used in deriving the separation equations and partly as a result of improper identification of chemical compositions of end-members. Results of three-component separations using commonly used tracers were widely variable. Consistent patterns in the amount of subsurface water contributing to peak flow (45-100%) were observed, no matter which separation method or combination of tracers was used. A general conceptual model for the sequence of contributions from the three end-members could be developed for 9 of the 10 storms. Overall results indicated that hydrochemical and hydrometric measurements need to be coupled in order to perform meaningful hydrograph separations.

  1. Modelling the impact of riparian forest changes on daily sediment yield: A case study in a meso-scale catchment in SE Germany.

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Temme, Arnaud; Feger, Karl-Heinz; van Miltenburg, Saskia

    2010-05-01

    The newly developed sediment delivery model LAPSUS-D has been tested in the meso-scale catchment (60km2) of the Wilde Weisseritz in South-East Germany. LAPSUS-D is the first sediment delivery model that runs with a daily time step and only uses the following input parameters: a DEM, a land use map, a soil map and daily precipitation and discharge data. As the model is new and was calibrated only for a catchment in South-West Poland, the model is now run simultaneous with a widely used sediment delivery model WaTEM/SEDEM (developed in Leuven, Belgium) which simulates erosion and deposition processes on a yearly basis. After a first assessment of the model performance in the German catchment, two scenarios to reduce the sediment yield at the outlet were run. The scenarios were made based on actual river restoration projects elsewhere in similar river settings, to make the scenarios a realistic option for the future. These scenarios were used to run both models to test how the new LAPSUS-D model performs. The comparison reveals the contrast between a yearly and RUSLE based model and the water balance model LAPSUS-D using daily input. The water balance approach includes the effects of the water storage capacity. Locally decreasing water storage capacity causes increased run-off and erosion at lower positions in the landscape. This effect is not visible with the RUSLE approach. Furthermore, the position of the riparian forest scenarios results in differences in the sediment yield simulated by the LAPSUS-D model. While modeling the riparian forest scenarios at different locations in the catchment by the WaTEM/SEDEM causes no difference in sedimentation yield.

  2. Spatial and temporal variations in the effects of soil depth and topographic wetness index of bedrock topography on subsurface saturation generation in a steep natural forested headwater catchment

    NASA Astrophysics Data System (ADS)

    Liang, Wei-Li; Chan, Meng-Chun

    2017-03-01

    Subsurface saturation near the bedrock surface is an important source of runoff generation and deeper bedrock recharge. While many studies have reported the generation patterns of subsurface saturation on valley side slopes or unchanneled catchments, studies focusing on the relationship between bedrock topography and subsurface saturation dynamics in a headwater catchment are still rare. This study therefore analyzed the effects of bedrock topographic features on subsurface saturation generation based on a dataset of pore water pressure (ψ) observations at the soil-bedrock interface and the spatial distributions of soil depth and the topographic wetness index (TWI) of bedrock topography in a steep natural forested headwater catchment. Temporal variations in the mean and standard deviation of ψ were lower at the perennially saturated points but higher at the ephemerally saturated points. The expansion patterns of subsurface saturation during storm events could be classified into four stages: fragmentary and unconnected distributions, both downward and upward expansions, interconnection from upslope to downslope, and disappearance from the middle slope. When saturation was interconnected, 41% of accumulated rainfall contributed to increases of subsurface saturation with a highly linear relationship. Soil depth correlated negatively with the increase in ψ at all points and at ephemerally saturated points. These negative correlations occurred frequently after the generation of new saturation, and remained for a short period around the early peaks of rainfall when the mean of ψ increased sharply. TWI correlated positively with ψ and ψ ⩾ 0 among all points but not in the subsets of perennially or ephemerally saturated points. The positive correlations became more significant after generation of new saturation. Overall, this study demonstrates that the effects of soil depth and TWI on subsurface saturation vary with space and time in a steep natural forested

  3. The regional variation of denitrification phenotypes under anoxic incubation with soils from eight forested catchments in different climate zones of China.

    PubMed

    Cui, Juan; Zhu, Jing; Wang, Zhangwei; Mulder, Jan; Wang, Bing; Zhang, Xiaoshan

    2017-10-02

    Denitrification characteristics of forest soils from eight headwater catchments in China were investigated in this study, along a climatic gradient from the tropics in the South to the temperate zones. Within each catchment, different landscape positions along hydrological flow paths were also considered, including well-drained soils on hill slopes and poorly drained soils in groundwater discharge zones. The results showed that instantaneous denitrification rates were much greater in soils from the northern sites than those from the southern sites (with the average of 110.0 and 25.4nmolNg(-1)drysoilh.(-)(1), respectively). Large potentials for nitrous oxide (N2O) loss (evaluated as maximum N2O accumulation before it was reduced to dinitrogen (N2)) were observed in the six tropical and subtropical catchments, particularly in soils with high carbon (C) and nitrogen (N). Meanwhile high N2O/(N2O+N2) stoichiometries were displayed in soils from these southern sites. Within catchments, soils from the groundwater discharge zones showed greater potential denitrification rates but smaller N2O/(N2O+N2) ratios in comparison with those on the hill slopes, implying large N removal potentials of soils from the groundwater discharge zones. Furthermore, our findings suggest soil pH is the key controller for the potential denitrification rates and the N2O/(N2O+N2) stoichiometries. Soil pH, C and N availability affect the potential for N2O loss synergistically. Our findings not only pinpoint the denitrification phenotypes of soils along the climatic gradient, but also confirm the small-scale variations within catchments which reflect the in situ habitat of the denitrifiers. These indicate the importance of discrimination related to different landscape positions when modeling N2O emissions and N removals from regional N loading. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Modeling watershed-scale (137)Cs transport in a forested catchment affected by the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Wei, Lezhang; Kinouchi, Tsuyoshi; Yoshimura, Kazuya; Velleux, Mark L

    2017-05-01

    The Fukushima nuclear accident in 2011 resulted in (137)Cs contamination of large areas in northeast Japan. A watershed-scale (137)Cs transport model was developed and applied to a forested catchment in Fukushima area. This model considers (137)Cs wash-off from vegetation, movement through soils, and transport of dissolved and particulate (137)Cs adsorbed to clay, silt and sand. Comparisons between measurements and simulations demonstrated that the model well reproduced (137)Cs concentrations in the stream fed from the catchment. Simulations estimated that 0.57 TBq of (137)Cs was exported from the catchment between June, 2011 and December, 2014. Transport largely occurred with eroded sediment particles at a ratio of 17:70:13 of clay, silt, and sand. The overall (137)Cs reduction ratio by rainfall-runoff wash-off was about 1.6%. Appreciable (137)Cs remained in the catchment at the end of 2014. The largest rate of (137)Cs reduction by wash-off was simulated to occur in subwatersheds of the upper catchment. However, despite relatively low initial deposition, middle portions of the watershed exported proportionately more (137)Cs by rainfall-runoff processes. Simulations indicated that much of the transported (137)Cs originates from erosion over hillsides and river banks. These results suggested that areas where (137)Cs accumulates with redeposited sediments can be targeted for decontamination and also provided insight into (137)Cs transport at the watershed scale to assess risk management and decontamination planning efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Spatial distribution of soil structure in a suburban forest catchment and its effect on spatio-temporal soil moisture and runoff fluctuations

    NASA Astrophysics Data System (ADS)

    Maeda, Kenji; Tanaka, Takafumi; Park, Hotaek; Hattori, Shigeaki

    2006-04-01

    Intensive hydrological observations and model calculations reveal that heterogeneous distributions of soil thickness and soil physical characteristics greatly influence long-term spatio-temporal fluctuations of soil moisture and runoff in a suburban forest, which has rich (thickly wooded) forest but undeveloped forest soil. This paper presents a simple, physical-contour-based model that can describe topography and spatially heterogeneous distributions, and uses the model to clarify how spatial heterogeneous variability influences long-term rainfall runoff processes. The 1.5-ha study catchment features deciduous-evergreen secondary forest and is located near an urban area about 30 km southeast of Nagoya City, in central Japan. This model can simulate saturated/unsaturated throughflow, excess flow, and soil moisture, and has not been calibrated. No input parameters have been fitted and all input parameters are based on published and measured data. Rainfall runoff processes are affected by structural distributions of colluvial/residual soil and spatial heterogeneous distributions of soil thickness. The heterogeneous soil thickness distribution contributes, in particular, to headwater conservation, which moderates storm flow and inhibits drought water flow. The magnitude of headwater conservation and the alignment of individual hillslope elements help to control runoff. The mechanism is attributable to the greater degree of headwater conservation in a suburban forest compared with a homogeneous natural forest. The model also clarifies and predicts water circulation on a larger scale than has been possible to date.

  6. Hydro-meteorological functioning of the Eastern Andean Tropical Montane Cloud Forests: Insight from a paired catchment study in the Orinoco river basin highlands

    NASA Astrophysics Data System (ADS)

    Ramirez, Beatriz; Teuling, Adriaan J.; Ganzeveld, Laurens; Leemans, Rik

    2016-04-01

    Tropical forests regulate large scale precipitation patterns and catchment-scale streamflow, while tropical mountains influence runoff by orographic effects and snowmelt. Along tropical elevation gradients, these climate/ecosystem/hydrological interactions are specific and heterogeneous. These interactions are poorly understood and represented in hydro-meteorological monitoring networks and regional or global earth system models. A typical case are the South American Tropical Montane Cloud Forests (TMCF), whose water balance is strongly driven by fog persistence. This also depends on local and up wind temperature and moisture, and changes in this balance alter the impacts of changes in land use and climate on hydrology. These TMCFs were until 2010 only investigated up to 350km from the coast. Continental TMCFs are largely ignored. This gap is covered by our study area, which is part of the Orinoco river basin highlands and located on the northern Eastern Andes at an altitudinal range of 1550 to 2300m a.s.l. The upwind part of our study area is dominated by lowland savannahs that are flooded seasonally. Because meteorological stations are absent in our study area, we first describe the spatial and seasonal meteorological variability and analyse the corresponding catchment hydrology. Our hydro-meteorological data set is collected at three gauged neighbouring catchments with contrasting TMCF/grassland cover from June 2013 to May 2014 and includes hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and runoff measurements. We compare our results with recent TCMF studies in the eastern Andean highlands in the Amazon basin. The studied elevational range always shows wetter conditions at higher elevations. This indicates a positive relation between elevation and fog or rainfall persistence. Lower elevations are more seasonally variable. Soil moisture data indicate that TMCFs do not use persistently more water than grasslands

  7. Quantitative importance of denitrification and N2O emission in an N-saturated subtropical forest catchment, southwest China

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Dörsch, P.; Mulder, J.

    2009-04-01

    Anthropogenic emission of nitrogen in the environment has increased rapidly, due to fast economic growth. This has resulted in increased deposition rates of reactive nitrogen, primarily as NOx (from fossil fuel combustion) and NH3 (from fertilizer production and animal husbandry). In response, temperate and boreal forests may develop nitrogen saturation, characterized by increased leaching of nitrate. In addition, elevated emission of N2 and N2O, due to nitrification and denitrification, may occur. To date, few studies exist quantifying the nitrogen balance, including N2 and N2O production, in nitrogen-saturated, monsoonal, sub-tropical forest ecosystems in south-west China. Since nitrate contributes to the eutrophication of stream water, and N2O is a potent greenhouse gas, it is important to quantitatively understand the role of nitrification and denitrification in the nitrogen cycle. Several subtropical forests in southwest China, receiving elevated nitrogen deposition (30-73 kg N ha-1 a-1; Zhang. et al., 2008), are characterized by high temperature and soil moisture content in much of the growing season. This may cause a much stronger intensity of denitrification compared with that in temperate and boreal forests. In turn this may lead to decreased nitrate leaching and a higher potential of N2O emission. In my PhD project, I will investigate the nitrogen cycle in a forest catchment (TieShanPing; TSP), which is near one of the biggest cities, Chongqing, in southwest China. Previous research suggests high nitrogen deposition (3.52 gN m-2 a-1), but low nitrogen flux (0.57 gN m-2 a-1) in runoff (Chen & Mulder, 2007). Tree growth, and thus plant N uptake, is limited and nitrate fluxes below the root zone are relatively large, suggesting ‘N-saturation'. Based on this, we hypothesize that significant amounts of nitrogen are emitted as gases, with denitrification playing an important role, and N2 and N2O (especially N2) being major components of the emitted gases

  8. Prior exposure influences the behavioural avoidance by an intertidal gastropod, Bembicium auratum, of acidified waters

    NASA Astrophysics Data System (ADS)

    Amaral, Valter; Cabral, Henrique N.; Bishop, Melanie J.

    2014-01-01

    Phenotypic plasticity may be critical to the maintenance of viable populations under future environmental change. Here we examined the role of behavioural avoidance of sub-optimal conditions in enabling the intertidal gastropod, Bembicium auratum, to persist in mangrove forests affected by the low pH runoff from acid sulphate soils (ASS). Behaviourally, the gastropod may be able to avoid periods of particularly high acidity by using pneumatophores and/or mangrove trunks to vertically migrate above the water line or by retreating into its shell. We hypothesised that (1) B. auratum would display greater and more rapid vertical migration out of acidified than reference estuarine waters, and (2) responses would be more pronounced in gastropods collected from acidified than reference sites. Gastropods from acidified sites showed significantly higher activity in and more rapid migration out of acidified waters of pH 6.2-7.0, than reference waters or waters of pH < 5.0. Gastropods from reference locations showed a significantly weaker response to acidified water than those from acidified waters, and which did not significantly differ from their response to reference water. At extremely low pHs, <5.0, a higher proportion of both acidified and reference gastropods retreated into their shell than at higher pHs. Both the migration of gastropods out of acidified waters and retraction into their shells serves to reduce exposure time to acidified waters and may reduce the impact of this stressor on their populations. The stronger response to acidification of gastropods from populations previously exposed to this stressor suggests that the response may be learned, inherited or induced over multiple exposures. Our study adds to growing evidence that estuarine organisms may exhibit considerable physiological and behaviour adaptive capacity to acidification. The potential for such adaptive capacity should be incorporated into studies seeking to forecast impacts to marine organisms

  9. 21 CFR 108.25 - Acidified foods.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Acidified foods. 108.25 Section 108.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... With an Emergency Permit § 108.25 Acidified foods. (a) Inadequate or improper manufacture, processing...

  10. 21 CFR 108.25 - Acidified foods.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Acidified foods. 108.25 Section 108.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... With an Emergency Permit § 108.25 Acidified foods. (a) Inadequate or improper manufacture, processing...

  11. 21 CFR 108.25 - Acidified foods.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Acidified foods. 108.25 Section 108.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... With an Emergency Permit § 108.25 Acidified foods. (a) Inadequate or improper manufacture,...

  12. 21 CFR 108.25 - Acidified foods.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Acidified foods. 108.25 Section 108.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... With an Emergency Permit § 108.25 Acidified foods. (a) Inadequate or improper manufacture,...

  13. [Study the restoration technology of concentrated application-natural diffusion about amendments of acidified soil of hilly woodland].

    PubMed

    Fang, Xiong; Liu, Ju-Xiu; Yin, Guang-Cai; Zhao, Liang; Liu, Shi-Zhong; Chu, Guo-Wei; Li, Yi-Yong

    2013-01-01

    Through concentrated application of lime, sewage sludge and lime + sewage sludge on the sloping top of the hilly woodlands, the restoration effects of the three soil amendments on the acidified soil of hilly woodland were studied. The results showed that: (1) Joint application of sewage sludge + lime can significantly (P < 0.05) decrease soil acidity, promote the rapid increase in soil organic matter and nitrogen content, increase soil cation exchange capacity, and effectively improve acidified soil. (2) Through natural diffusion mechanisms of surface and subsurface runoff, a large area of acidified soil of hilly woodlands can be restored by concentrated application of soil amendments on the sloping top of the hilly woodlands. (3) It is conducive to solve the pollution problems of the urban sewage sludge by using municipal sewage sludge to restore acidified soil, but only for the restoration of acidified soil of timber forest.

  14. Coupled soil respiration and transpiration dynamics from tree-scale to catchment scale in dry Rocky Mountain pine forests and the role of snowpack

    NASA Astrophysics Data System (ADS)

    Berryman, E.; Barnard, H. R.; Brooks, P. D.; Adams, H.; Burns, M. A.; Wilson, W.; Stielstra, C. M.

    2013-12-01

    A current ecohydrological challenge is quantifying the exact nature of carbon (C) and water couplings across landscapes. An emerging framework of understanding places plant physiological processes as a central control over soil respiration, the largest source of CO2 to the atmosphere. In dry montane forests, spatial and temporal variability in forest physiological processes are governed by hydrological patterns. Critical feedbacks involving respiration, moisture supply and tree physiology are poorly understood and must be quantified at the landscape level to better predict carbon cycle implications of regional drought under future climate change. We present data from an experiment designed to capture landscape variability in key coupled hydrological and C processes in forests of Colorado's Front Range. Sites encompass three catchments within the Boulder Creek watershed, range from 1480 m to 3021 m above sea level and are co-located with the DOE Niwot Ridge Ameriflux site and the Boulder Creek Critical Zone Observatory. Key hydrological measurements (soil moisture, transpiration) are coupled with soil respiration measurements within each catchment at different landscape positions. This three-dimensional study design also allows for the examination of the role of water subsidies from uplands to lowlands in controlling respiration. Initial findings from 2012 reveal a moisture threshold response of the sensitivity of soil respiration to temperature. This threshold may derive from tree physiological responses to variation in moisture availability, which in turn is controlled by the persistence of snowpack. Using data collected in 2013, first, we determine whether respiration moisture thresholds represent triggers for transpiration at the individual tree level. Next, using stable isotope ratios of soil respiration and xylem and soil water, we compare the depths of respiration to depths of water uptake to assign tree vs. understory sources of respiration. This will help

  15. The impact of water-rock interaction and vegetation on calcium isotope fractionation in soil- and stream waters of a small, forested catchment (the Strengbach case)

    NASA Astrophysics Data System (ADS)

    Cenki-Tok, B.; Chabaux, F.; Lemarchand, D.; Schmitt, A.-D.; Pierret, M.-C.; Viville, D.; Bagard, M.-L.; Stille, P.

    2009-04-01

    This study aims to constrain the factors controlling the calcium isotopic compositions in surface waters, especially the respective role of vegetation and water-rock interactions on Ca isotope fractionation in a continental forested ecosystem. The approach is to follow changes in space and time of the isotopic composition and concentration of Ca along its pathway through the hydro-geochemical reservoirs from atmospheric deposits to the outlet of the watershed via throughfalls, percolating soil solutions and springs. The study is focused on the Strengbach catchment, a small forested watershed located in the northeast of France in the Vosges mountains. The δ 44/40Ca values of springs, brooks and stream waters from the catchment are comparable to those of continental rivers and fluctuate between 0.17 and 0.87‰. Soil solutions, however, are significantly depleted in lighter isotopes (δ 44/40Ca: 1.00-1.47‰), whereas vegetation is strongly enriched (δ 44/40Ca: -0.48‰ to +0.19‰). These results highlight that vegetation is a major factor controlling the calcium isotopic composition of soil solutions, with depletion in "light" calcium in the soil solutions from deeper parts of the soil compartments due to preferential 40Ca uptake by the plants rootsystem. However, mass balance calculations require the contribution of an additional Ca flux into the soil solutions most probably associated with water-rock interactions. The stream waters are marked by a seasonal variation of their δ 44/40Ca, with low δ 44/40Ca in winter and high δ 44/40Ca in spring, summer and autumn. For some springs, nourishing the streamlet, a decrease of the δ 44/40Ca value is observed when the discharge of the spring increases, with, in addition, a clear covariation between the δ 44/40Ca and corresponding H 4SiO 4 concentrations: high δ 44/40Ca values and low H 4SiO 4 concentrations at high discharge; low δ 44/40Ca values and high H 4SiO 4 concentrations at low discharge. These data imply

  16. Contrasting transit times of water from peatlands and eucalypt forests in the Australian Alps determined by tritium: implications for vulnerability and the source of water in upland catchments

    NASA Astrophysics Data System (ADS)

    Cartwright, Ian; Morgenstern, Uwe

    2016-12-01

    Peatlands are a distinctive and important component of many upland regions that commonly contain distinctive flora and fauna which are different from those of adjacent forests and grasslands. Peatlands also represent a significant long-term store of organic carbon. While their environmental importance has long since been recognised, water transit times within peatlands are not well understood. This study uses tritium (3H) to estimate the mean transit times of water from peatlands and from adjacent gullies that contain eucalypt forests in the Victorian Alps (Australia). The 3H activities of the peatland water range from 2.7 to 3.3 tritium units (TUs), which overlap the measured (2.9 to 3.0 TU) and expected (2.8 to 3.2 TU) average 3H activities of rainfall in this region. Even accounting for seasonal recharge by rainfall with higher 3H activities, the mean transit times of the peatland waters are < 6.5 years and may be less than 2 years. Water from adjacent eucalypt forest streams has 3H activities of 1.6 to 2.1 TU, implying much longer mean transit times of 5 to 29 years. Cation / Cl and Si / Cl ratios are higher in the eucalypt forest streams than the peatland waters and both of these water stores have higher cation / Cl and Si / Cl ratios than rainfall. The major ion geochemistry reflects the degree of silicate weathering in these catchments that is controlled by both transit times and aquifer lithology. The short transit times imply that, unlike the eucalypt forests, the peatlands do not represent a long-lived store of water for the local river systems. Additionally, the peatlands are susceptible to drying out during drought, which renders them vulnerable to damage by the periodic bushfires that occur in this region.

  17. Effects of slope aspect and site elevation on seasonal soil carbon dynamics in a forest catchment in the Austrian Limestone Alps

    NASA Astrophysics Data System (ADS)

    Kobler, Johannes; Zehetgruber, Bernhard; Jandl, Robert; Dirnböck, Thomas; Schindlbacher, Andreas

    2017-04-01

    Own to the complexity of landscape morphology, mountainous landscapes are characterized by substantial changes of site parameters (i.e. elevation, slope, aspect) within short distances. As these site parameters affect the spatial-temporal dynamics of landscape climate and therefore the spatial patterns of forest carbon (C) distribution, they pose a substantial impact on landscape-related soil C dynamics. Aspect and elevation form natural temperature gradients and thereby can be used as a surrogate to infer to potential climate change effects on forest C. We aimed at studying how slope aspect affected soil respiration, soil C stocks, tree increment and litter production along two elevation gradients in the Zöbelboden catchment, northern limestone Alps, Austria during 2015 and 2016. A preliminary assessment showed that soil respiration was significantly higher at the west facing slope across all elevations. Soil temperature was only slightly higher at the west facing slope, and warmer soil only partly explained the large difference in soil respiration between east and west facing slopes. Aspect had no clear effect on soil moisture, which seemed to be strongly affected by stocking density at the different forest sites. The dense grassy ground vegetation at some of the sites further seems to play a key role in determining soil respiration rates and litter input. A detailed analysis and C-budgets along the elevation gradients will be presented at the conference.

  18. Seasonal and event variations in δ34S values of stream sulfate in a Vermont forested catchment: Implications for sulfur sources and cycling

    USGS Publications Warehouse

    Shanley, James B.; Mayer, Bernhard; Mitchell, Myron J.; Bailey, Scott W.

    2008-01-01

    Stable sulfur (S) isotope ratios can be used to identify the sources of sulfate contributing to streamwater. We collected weekly and high-flow stream samples for S isotopic analysis of sulfate through the entire water year 2003 plus the snowmelt period of 2004. The study area was the 41-ha forested W-9 catchment at Sleepers River Research Watershed, Vermont, a site known to produce sulfate from weathering of sulfide minerals in the bedrock. The δ34S values of streamwater sulfate followed an annual sinusoidal pattern ranging from about 6.5‰ in early spring to about 10‰ in early fall. During high-flow events, δ34S values typically decreased by 1 to 3‰ from the prevailing seasonal value. The isotopic evidence suggests that stream sulfate concentrations are controlled by: (1) an overall dominance of bedrock-derived sulfate (δ34S ~ 6–14‰); (2) contributions of pedogenic sulfate (δ34S ~ 5–6‰) during snowmelt and storms with progressively diminishing contributions during base flow recession; and (3) minor effects of dissimilatory bacterial sulfate reduction and subsequent reoxidation of sulfides. Bedrock should not be overlooked as a source of S in catchment sulfate budgets.

  19. Seasonal and event variations in delta34S values of stream sulfate in a Vermont forested catchment: implications for sulfur sources and cycling.

    PubMed

    Shanley, James B; Mayer, Bernhard; Mitchell, Myron J; Bailey, Scott W

    2008-10-15

    Stable sulfur (S) isotope ratios can be used to identify the sources of sulfate contributing to streamwater. We collected weekly and high-flow stream samples for S isotopic analysis of sulfate through the entire water year 2003 plus the snowmelt period of 2004. The study area was the 41-ha forested W-9 catchment at Sleepers River Research Watershed, Vermont, a site known to produce sulfate from weathering of sulfide minerals in the bedrock. The delta(34)S values of streamwater sulfate followed an annual sinusoidal pattern ranging from about 6.5 per thousand in early spring to about 10 per thousand in early fall. During high-flow events, delta(34)S values typically decreased by 1 to 3 per thousand from the prevailing seasonal value. The isotopic evidence suggests that stream sulfate concentrations are controlled by: (1) an overall dominance of bedrock-derived sulfate (delta(34)S approximately 6-14 per thousand); (2) contributions of pedogenic sulfate (delta(34)S approximately 5-6 per thousand) during snowmelt and storms with progressively diminishing contributions during base flow recession; and (3) minor effects of dissimilatory bacterial sulfate reduction and subsequent reoxidation of sulfides. Bedrock should not be overlooked as a source of S in catchment sulfate budgets.

  20. Effects of the "Conversion of Cropland to Forest and Grassland Program" on the water budget of the Jinghe River catchment in China.

    PubMed

    Qiu, Guo Yu; Yin, Jing; Tian, Fei; Geng, Shu

    2011-01-01

    In 1999 China adopted the "Conversion of Cropland to Forest and Grassland Program" (CCFGP), a nationwide ecological recovery program, to minimize wide-scale soil erosion and vegetation degradation in China, as well as to improve water budgeting results. In the 10 yr since implementation, the CCFGP has resulted in the recovery and reforestation of >100,000 km of cropland and bare land, though the quantitative effect of this program on catchment water budget is not entirely clear. Therefore, we used the Soil and Water Assessment Tool to evaluate and quantify the effects of the CCFGP on the water budget of the Jinghe River catchment, a tributary of the Yellow River covering the central region of the Loess Plateau. Our results indicated that precipitation had dropped by 12.0% from the 1970s (611.6 mm) to the 2000s (538 mm) and that there was a corresponding 25.2% decrease in humidity index from 0.48 to 0.36. Before the CCFGP's implementation, forest and grassland had been decreasing, while bare land, cropland, and shrub land had been increasing. After the implementation of the CCFGP, the opposite trend was observed. Moreover, streamflow increased by about 15 and 20% for the upstream and middle stream subbasins, respectively, while soil water content also showed an obvious increase. Over the same period, evapotranspiration decreased by 5.2 and 13.5 mm and runoff decreased by 37.5 and 38.6% in the two subbasins. The same trends were obtained in the downstream subbasin, where changes were even greater. As a result of the reduced runoff and evapotranspiration, utilization of water resources was more efficient and ecological environment was improved under the CCFGP policy. Our results indicate the CCFGP resulted in a favorable ecological impact and should therefore be maintained.

  1. Use of a (137)Cs re-sampling technique to investigate temporal changes in soil erosion and sediment mobilisation for a small forested catchment in southern Italy.

    PubMed

    Porto, Paolo; Walling, Des E; Alewell, Christine; Callegari, Giovanni; Mabit, Lionel; Mallimo, Nicola; Meusburger, Katrin; Zehringer, Markus

    2014-12-01

    Soil erosion and both its on-site and off-site impacts are increasingly seen as a serious environmental problem across the world. The need for an improved evidence base on soil loss and soil redistribution rates has directed attention to the use of fallout radionuclides, and particularly (137)Cs, for documenting soil redistribution rates. This approach possesses important advantages over more traditional means of documenting soil erosion and soil redistribution. However, one key limitation of the approach is the time-averaged or lumped nature of the estimated erosion rates. In nearly all cases, these will relate to the period extending from the main period of bomb fallout to the time of sampling. Increasing concern for the impact of global change, particularly that related to changing land use and climate change, has frequently directed attention to the need to document changes in soil redistribution rates within this period. Re-sampling techniques, which should be distinguished from repeat-sampling techniques, have the potential to meet this requirement. As an example, the use of a re-sampling technique to derive estimates of the mean annual net soil loss from a small (1.38 ha) forested catchment in southern Italy is reported. The catchment was originally sampled in 1998 and samples were collected from points very close to the original sampling points again in 2013. This made it possible to compare the estimate of mean annual erosion for the period 1954-1998 with that for the period 1999-2013. The availability of measurements of sediment yield from the catchment for parts of the overall period made it possible to compare the results provided by the (137)Cs re-sampling study with the estimates of sediment yield for the same periods. In order to compare the estimates of soil loss and sediment yield for the two different periods, it was necessary to establish the uncertainty associated with the individual estimates. In the absence of a generally accepted procedure

  2. Long term pattern in runoff DOC fluxes in two boreal upland forested catchments: does the increasing NEE affect DOC fluxes?

    NASA Astrophysics Data System (ADS)

    Pumpanen, Jukka; Lindén, Aki; Miettinen, Heli; Kolari, Pasi; Ilvesniemi, Hannu; Mammarella, Ivan; Hari, Pertti; Nikinmaa, Eero; Heinonsalo, Jussi; Bäck, Jaana; Ojala, Anne; Vesala, Timo

    2014-05-01

    Part of the carbon fixed in terrestrial ecosystems is transferred through streams and rivers to lakes and the carbon is finally released as CO2 to the atmosphere through respiration or buried into lake sediments. Recently it has been shown that lake and stream water dissolved/total organic carbon (DOC/TOC) concentrations throughout the boreal zone are increasing. There are several theories which could explain this trend; land use changes, decrease in atmospheric acid deposition, changes in seasonal patterns in temperature and precipitation and increase in below ground C allocation due to increase in atmospheric CO2 concentration or soil warming. Here, we tested a hypothesis that increase in photosynthesis is reflected in soil water DOC concentrations and finally in DOC fluxes from the catchment. We used a 15-year-long continuous monitoring data on catchment runoff, DOC concentration in the runoff, GPP, TER and NEE of the ecosystem of two small upland boreal catchment areas in Southern Finland to explain the long term trends in runoff DOC fluxes. We also studied the long term trends in the amount, DOC concentration and pH of throughfall over the study period ranging from 1998 to 2012. Our results indicate that the DOC concentration and the DOC fluxes have increased over the last 15 years. The DOC flux was mainly determined by the amount of runoff flow but in years when the runoff flow was above the long term average the NEE was a more important explanatory factor for annual DOC fluxes than the annual temperature sum.

  3. Forest Harvesting of a Rocky Mountain Headwater Catchment: Assessing the Impacts on Runoff and Sediment Transport Into and Through Riparian Buffers

    NASA Astrophysics Data System (ADS)

    Puntenney, K.; Bladon, K. D.; Silins, U.

    2015-12-01

    Mitigating forest harvesting impacts by retaining a vegetated riparian buffer along headwater streams is a widely implemented best management practice. However, there is still debate over current retention practices and their effectiveness at regulating runoff, erosion, and sediment transport from harvested areas to streams. Forested, headwater catchments on the eastern slopes of the Rocky Mountains (49°37' N, 114°40' W) were harvested in winter 2015. Fixed-width (30 m) riparian buffers were retained based on the regional operating ground rules for all of the identified and mapped hydrologic features. Modified Gerlach troughs (total n=40) were installed along the cutblock-buffer interface, 10 m into the vegetated buffer, and in unharvested control sites to collect runoff and sediment. Site characteristics, including surface soil moisture, slope, vegetation cover, soil type, litter depth, and upslope accumulated area will be used to describe differences in runoff volumes and sediment concentrations between sites. Rainfall simulations are also being used to quantify and compare the initiation of runoff, runoff volumes, and sediment concentrations under high intensity precipitation events in cutblocks, at the cutblock-buffer interface, and within vegetated buffers. Broad objectives of this ongoing study are to identify spatio-temporal hotspots of runoff and sediment transport from cutblocks into and through riparian buffers.

  4. Effects of lateral nitrate flux and instream processes on dissolved inorganic nitrogen export in a forested catchment: A model sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Lin, Laurence; Webster, Jackson R.; Hwang, Taehee; Band, Lawrence E.

    2015-04-01

    The importance of terrestrial and aquatic ecosystems in controlling nitrogen dynamics in streams is a key interest of ecologists studying dissolved inorganic nitrogen (DIN) export from watersheds. In this study, we coupled a stream model with a terrestrial ecohydrological model and conducted a global sensitivity analysis to evaluate the relative importance of both ecosystems to nitrogen export. We constructed two scenarios ("normal" and high nitrate loads) to explore conditions under which terrestrial (lateral nitrate flux) or aquatic ecosystems (instream nutrient processes) may be more important in controlling DIN export. In a forest catchment, although the forest ecosystem controls the nitrogen load to streams, sensitivity results suggested that most nitrogen output from the terrestrial ecosystem was taken up by instream microbial immobilization associated with benthic detritus and retained in detritus. Later the immobilized nitrogen was remineralized as DIN. Therefore, the intra-annual pattern of DIN concentration in the stream was low in fall and became high in spring. Not only was instream microbial immobilization saturated with the high nitrogen load scenario, but also the net effect of immobilization and mineralization on DIN export was minimized because nitrogen cycling between organic and inorganic forms was accelerated. Overall, our linked terrestrial-aquatic model simulations demonstrated that stream process could significantly affect the amount and timing of watershed nitrogen export when nitrogen export from the terrestrial system is low. However, when nitrogen export from the terrestrial system is high, the effect of stream processes is minimal.

  5. Microbiological Spoilage of Acidified Specialty Products

    NASA Astrophysics Data System (ADS)

    Sperber, William H.

    Acidified specialty products or condiments are among the most microbiologically stable and safe food products. Often formulated, packaged, and distributed without heat treatments, they are microbiologically stable indefinitely at ambient temperatures in unopened containers. The packaged, acidified products are often intended for multiple uses, exposing them at the points of consumption to numerous opportunities for contamination with microorganisms. Nonetheless, they remain resistant to microbiological spoilage for many months, often under refrigerated conditions that are used to retard chemical reactions, flavor changes, and yeast growth.

  6. Examining the linkages between forest water use, hydrology, and climate using dual-isotope approaches: insights and challenges in headwater catchments (Invited)

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Brooks, J. R.; Pypker, T. G.; McDonnell, J. J.; Bond, B. J.; Williams, D. G.

    2010-12-01

    The amount of biologically available water is arguably the central driver in plant processes. While many studies have examined the hydrological components of biologically available water, the role that vegetation water use plays within the forested ecosystem water balance is poorly understood. Fundamental questions of forests' effect on the hydrologic cycle remain unanswered. Stable isotope observations play an important role in studies that explore the interface between plant physiological function and watershed flowpaths, flow sources, and residence times. We use multiple approaches, including stable isotopes to mechanistically assess the inter-relationships between vegetation water use, hydrology, and climate. We measured deuterium and 18O of xylem water and soil water to track changes in the depth of transpiration source water throughout the summers in a headwater catchment in western Oregon. Additionally, we measured transpiration, soil moisture, and foliar pre-dawn water potential. Forest transpiration and soil evaporation are often not separately measured, and yet respond to environmental drivers in fundamentally different ways. A promising approach for partitioning the evapotranspiration into its component fluxes involves measurement of the stable isotope composition (2H and 18O) of water vapor exchanged between vegetation and atmosphere. We present some preliminary data examining changes in ET partitioning in response to bark beetles outbreaks in the Rocky Mountains. Last, to examine the linkages between vegetation function and micro-climate, we applied a dual isotope (13C and 18O) approach to infer physiological response of trees to changing environmental conditions. We found that stable isotopes of oxygen were directly related to stomatal conductance and inversely related to relative humidity; however, the relationship with relative humidity was more apparent. The correlation of stable isotopes in tree rings with environmental variables can be

  7. Spatiotemporal relationship of DOC and NO3- in ground- and surface water of a forested headwater catchment - investigated through correlation, transit times and wavelet analyses -

    NASA Astrophysics Data System (ADS)

    Weigand, Susanne; Bol, Roland; Reichert, Barbara; Graf, Alexander; Wiekenkamp, Inge; Stockinger, Michael; Lücke, Andreas; Tappe, Wolfgang; Bogena, Heye; Pütz, Thomas; Amelung, Wulf; Vereecken, Harry

    2017-04-01

    Understanding natural controls on nitrogen (N) and carbon (C) biogeochemical cycles in time and space is important to estimate human impacts on these cycles. We examined the spatiotemporal relationships between time series of weekly monitored stream- and groundwater N and C (assessed by nitrate; NO3- and dissolved organic carbon; DOC) in the forested Wüstebach catchment (Germany) over a 4-year period (2009- 2013). Median travel transit times (MedTTs) were used to connect hydrological and water chemistry data. In addition to traditional correlation analysis, we applied Wavelet Transform Coherence (WTC) to study variations in the correlation and lag-time between the N and C time series for different time scales. Based on our results, we distinguished three streamwater groups with the following characteristics: (i) subsurface runoff dominated locations with negative C/N correlations, short time lags, strong seasonal fluctuations in concentrations, and short transit times, (ii) groundwater dominated locations, with weaker C/N correlations and lags of several months, small fluctuations in concentrations and longer transit times and (iii) intermediate locations, with moderate seasonal fluctuations, strong C/N correlations, short time lags and moderate transit times. We identified water transit times as key drivers for the relationships in each group and conclude that C and N transport in stream water can be explained by the mixing of groundwater and subsurface runoff. In conclusion, our study revealed that DOC, NO3- concentrations and their ratio in Wüstebach stream waters can be explained by hydrological mixing processes. Complemented with transit times, and hydrochemical time series, the WTC analysis allowed us to discriminate between different water sources (groundwater/subsurface runoff). Overall, we find that in hydrochemical time series studies, e.g. of DOC and NO3-, as in our study, WTC analysis can be a viable tool to identify spatiotemporally dependent

  8. 21 CFR 173.325 - Acidified sodium chlorite solutions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION Specific Usage Additives § 173.325 Acidified sodium chlorite solutions. Acidified...., College Park, MD 20740, or may be examined at the Center for Food Safety and Applied Nutrition's...

  9. Chemical behavior of acidified chromium (3) solutions

    SciTech Connect

    Terman, D.K.

    1981-05-01

    A unique energy-storage system has been developed at NASA's Lewis Research Center called REDOX. This NASA-REDOX system is an electrochemical storage device that utilized the oxidation and reduction of two fully soluble redox couples for charging and discharging. The redox couples now being investigated are acidified chloride solutions of chromium (Cr(+2)/Cr(+3)) and iron (Fe(+2)/Fe(+3)).

  10. 21 CFR 108.25 - Acidified foods.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN..., or packing of acidified foods may result in the distribution in interstate commerce of processed... after these foods have entered into interstate commerce. The Commissioner of Food and Drugs...

  11. 21 CFR 173.325 - Acidified sodium chlorite solutions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acidified sodium chlorite solutions. 173.325... HUMAN CONSUMPTION Specific Usage Additives § 173.325 Acidified sodium chlorite solutions. Acidified sodium chlorite solutions may be safely used in accordance with the following prescribed conditions: (a...

  12. Climate and Landuse Change Impacts on hydrological processes and soil erosion in a dry Mediterranean agro-forested catchment, southern Portugal

    NASA Astrophysics Data System (ADS)

    Santos, Juliana; Nunes, João Pedro; Sampaio, Elsa; Moreira, Madalena; Lima, Júlio; Jacinto, Rita; Corte-Real, João

    2014-05-01

    Climate change is expected to increase aridity in the Mediterranean rim of Europe, due to decreasing rainfall and increasing temperatures. This could lead to impacts on soil erosion, since the lower rainfall could nevertheless become concentrated in higher intensity events during the wet season, while the more arid conditions could reduce vegetation cover, also due to climate-induced land-use changes. In consequence, there is an interest in understanding how climate change will affect the interaction between the timing of extreme rainfall events, hydrological processes, vegetation growth, soil cover and soil erosion. To study this issue, the SWAT eco-hydrological model was applied to Guadalupe, an agro-forested catchment (446 ha) located close to the city of Évora, with a Mediterranean inland climate. The landcover is a mix of dispersed cork oak forests ("montado"), annual crops, and agroforesty regions where the cork oaks are associated with crops or pasture; this land cover is representative of the dry regions of southern Portugal and Spain. The catchment has been instrumented since 2011 with a hydrometric station (water discharge and suspended sediment concentration data) and a soil moisture measurement station. There is also observed data of actual evapotranspiration, LAI and biomass production (in pasture; from 1999 and 2008) and runoff data and sediment yield measured in six 16m2 plots. Water balance, vegetation growth, soil erosion and sediment yield in SWAT was calibrated with this dataset. This work will present the dataset, modeling process, results for impacts of climate and land-use change scenarios for vegetation growth, soil erosion and sediment export, considering the climate and socio-economic scenarios A1b and B1 (based on SRES storylines). Climate scenarios were created by statistical downscaling from Global Circulation Models (GCMs) for the period 2071-2100 (30 years). The reference period was 1971-2000 (30 years). The SWAT model was used to

  13. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) Riparian Buffer for the Conterminous United States: Forest Loss By Year 2001 to 2013

    EPA Pesticide Factsheets

    This dataset represents the characterization of global forest extent and change by year from 2001 through 2013 within individual local NHDPlusV2 catchments and upstream, contributing watersheds riparian buffers based on the Global Forest Change 2000??2013 (See Supplementary Info for Glossary of Terms). These data are based on global tree cover loss for the period from 2001 to 2013 at a spatial resolution of 30m. The analysis used to create the landscape layer is based on Landsat data. Forest loss was defined as a stand-replacement disturbance or the complete removal of tree cover canopy at the Landsat pixel scale. This landscape layer is a disaggregation of total forest loss to annual time scales. Encoded as either 0 (no loss) or else a value in the range 1??13, representing loss detected primarily in the year 2001??2013, respectively. The forest loss by year characteristics (%) were summarized to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).

  14. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Forest Loss By Year 2001 to 2013

    EPA Pesticide Factsheets

    This dataset represents the characterization of global forest extent and change by year from 2001 through 2013 within individual local NHDPlusV2 catchments and upstream, contributing watersheds based on the Global Forest Change 2000??2013 (See Supplementary Info for Glossary of Terms). These data are based on global tree cover loss for the period from 2001 to 2013 at a spatial resolution of 30m. The analysis used to create the landscape layer is based on Landsat data. Forest loss was defined as a stand-replacement disturbance or the complete removal of tree cover canopy at the Landsat pixel scale. This landscape layer is a disaggregation of total forest loss to annual time scales. Encoded as either 0 (no loss) or else a value in the range 1??13, representing loss detected primarily in the year 2001??2013, respectively. The forest loss by year characteristics (%) were summarized to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).

  15. Soil Microbial Nitrogen Cycling Responses to Wildfire in a High Elevation Forested Catchment in Jemez Mountains, NM

    NASA Astrophysics Data System (ADS)

    Murphy, M. A.; Fairbanks, D.; Chorover, J.; Rich, V. I.; Gallery, R. E.; Boyer, J. C.

    2015-12-01

    Microbial communities mediate major ecosystem processes such as nutrient cycling, and their recovery after disturbances plays a substantial role in overall ecosystem recovery and resilience. Disturbances directly shift microbial communities and their related processes, and the severity of impact typically varies significantly with landscape position, depth, and hydrological conditions such that different conditions indicate that a specific process will be dominant. Wildfires in the southwest US are a major source of landscape-scale disturbance, and are predicted to continue increasing in size and intensity under climate change. This study investigates changing nitrogen cycling across a post-wildfire catchment within the Jemez River Basin Critical Zone Observatory. This site experienced a mixed (intermediate to high) burn severity wildfire in June 2013. Nitrogen cycling was investigated by profiling via qPCR the abundance of five key genes involved in microbial nitrogen cycling (nifH, amoA, nirS, nirK, nosZ), at points along and within the catchment. These results are being analyzed in the context of broader microbial community data (enzyme assays, microbial cell counts and biomass, and 16S rRNA gene amplicons surveys) and biogeochemical data (total organic carbon, total nitrogen, pH, graviametric water content, etc). W 22 sites along the sides of the basin (planar zones) and within the hollow (convergent zone) were sampled at 13 days, one, and two years post-fire, at six discrete depth increments from 0 to 40 cm from the surface. We attribute significance of variation in gene abundance in planar versus convergent zones, and among depths, to the strong correlation of nitrogen cycling processes (i.e., nitrification and denitrification) with specific C:N ratios, total organic carbon content, and other biogeochemical and soil edaphic parameters that vary with landscape position and wildfire. Data were also interrogated for evidence of multi-year patterns in nutrient

  16. Measurement of dissolved Cs-137 in stream water, soil water and groundwater at Headwater Forested Catchment in Fukushima after Fukushima Dai-ichi Nuclear Power Plant Accident

    NASA Astrophysics Data System (ADS)

    Iwagami, Sho; Tsujimura, Maki; Onda, Yuichi; Sakakibara, Koichi; Konuma, Ryohei; Sato, Yutaro

    2016-04-01

    Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, dissolved Cs-137 concentration of stream water, soil water and groundwater were measured. Observations were conducted at headwater catchment in Yamakiya district, located 35 km northwest of FDNPP from April 2014 to November 2015. Stream water discharge was monitored and stream water samples were taken at main channel and sub channel. Stream water discharge was monitored by combination of parshallflume and v-notch weir. Stream water was sampled manually at steady state condition in 3-4 month interval and also intense few hours interval sampling were conducted during rainfall events using automated water sampler. Around the sub channel, it is found that there is a regularly saturated area at the bottom of the slope, temporary saturated area which saturate during the rainy season in summer and regularly dry area. 6 interval cameras were installed to monitor the changing situation of saturated area. Suction lysimeters were installed at three areas (regularly saturated area, temporary saturated area and dry area) for sampling soil water in depth of 0.1 m and 0.3 m. Boreholes were installed at three points along the sub channel. Three boreholes with depth of 3 m, 5 m and 10 m were installed at temporary saturated area, 20 m upstream of sub channel weir. Another three boreholes with depth of 3 m, 5 m and 10 m were installed at dry area, 40 m upstream of sub channel weir. And a borehole with depth of 20 m was installed at ridge of sub catchment, 52 m upstream of sub channel weir. Groundwater was sampled by electrically powered pump and groundwater level was monitored. Also suction-free lysimeter was installed at temporary saturated area for sampling the near surface subsurface water. Soil water samples were collected

  17. Ecosystem Services Derived from Headwater Catchments

    EPA Science Inventory

    We used data from the USEPA’s wadeable streams assessment (WSA), US Forest Service’s forest inventory and analysis (FIA), and select USFS experimental forests (EF) to investigate potential ecosystems services derived from headwater catchments. C, N, and P inputs to these catchmen...

  18. Ecosystem Services Derived from Headwater Catchments

    EPA Science Inventory

    We used data from the USEPA’s wadeable streams assessment (WSA), US Forest Service’s forest inventory and analysis (FIA), and select USFS experimental forests (EF) to investigate potential ecosystems services derived from headwater catchments. C, N, and P inputs to these catchmen...

  19. Transformations of DOM in forested catchments: the pathways of DOM from litter and soil to river export

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Yano, Y.; Crow, S.; Kaushal, S.

    2006-12-01

    Although the quality and quantity of DOM ultimately derives from plant detritus and soils in watersheds, three is substantial alteration of DOM as it passes from litter through the terrestrial landscape. As DOM is generated from plant and microbial detritus and processing, different fractions may be lost via respiration, form quasi-stable soil organic matter, or be temporarily sorbed to soil minerals. We followed the fate of DOC and DON from forested plots with experimentally altered detritus loads to determine the relative roles of original plant litter chemistry and soil transformations. Our study site was the DIRT (Detrital Input and Removal Treatment) plots at the H.J. Andrews Experimental Forest in Oregon, where treatments include detrital additions (wood vs. needle litter), litter exclusion, and root exclusions. Fractionation of detritus leachate solutions demonstrated significant differences in DOC chemistry from different detrital sources. Root leachates produced high quantities of hydrophilic neutral DOC, a fraction rich in labile sugars and polysaccharides; young wood extracts produced higher quantities of weak hydrophobic acids and hydrophobic neutrals (longer chain hydrocarbons); older wood had lower quantities of most labile constituents but was rich in strong hydrophobic acids. Although laboratory extracts of different litter types showed differences in DOM chemistry, soil solutions collected just below the forest floor from the differing detrital treatments were remarkably uniform and poor in labile constituents, suggesting microbial equalization of DOM leachate in the field. DOM quality and concentrations changed significantly with passage through soil profiles. DOC concentrations decreased through the soil profile in all plots to a greater degree than did dissolved organic nitrogen (DON), most likely due to preferential sorption of high C:N hydrophobic dissolved organic matter (DOM) in upper horizons. Percent hydrophobic DOM decreased significantly

  20. Impact of ionic aluminium on extracellular phosphatases in acidified lakes.

    PubMed

    Bittl, T; Vrba, J; Nedoma, J; Kopácek, J

    2001-09-01

    We studied direct inhibiting effects of aluminium (Al) on extracellular phosphatases produced by the plankton of acidified lakes in the Bohemian Forest. In laboratory experiments we tested the effect of different Al concentrations (0-1000 microg l(-1)) on kinetic parameters of acid phosphatases (pH optimum approximately 5.0) at pH between 4.5 and 5.2. We observed a significant reduction of an apparent substrate affinity at Al concentrations between 300 and 1000 microg l(-1) at pH 4.5 and 4.8 (but not at 5.2). In contrast, maximum acid phosphatase activity (AcPA) remained unchanged. Such behaviour of saturation kinetics is compatible with the assumption that ionic Al acts as a competitive inhibitor of acid phosphatases. To decide whether the observed Al effects could be explained alternatively by complexation of Al with substrate, we tested statistically the best fits of data with both possible models (competitive versus complexation). Experimental results supported the competitive hypothesis rather than the complexation model suggested originally by some authors. Furthermore, we tested the Al effect within a wide range of pH from 4.0 to 6.0. For pH values < 5.2, the results of an Al-pH matrix experiment gave a more detailed picture: the higher the Al concentration, the wider the pH range in which Al could negatively affect AcPA. The ecological ramifications of this effect were evaluated in the context of field AcPA data on three strongly acidified lakes.

  1. Forests

    Treesearch

    Louis R. Iverson; Mark W. Schwartz

    1994-01-01

    Originally diminished by development, forests are coming back: forest biomass is accumulating. Forests are repositories for many threatened species. Even with increased standing timber, however, biodiversity is threatened by increased forest fragmentation and by exotic species.

  2. Ecohydrology of Lodgepole Pine Forests: Connecting Transpiration to Subsurface Flow Paths and Storage within a Subalpine Catchment

    NASA Astrophysics Data System (ADS)

    Byers, A.; Harpold, A. A.; Barnard, H. R.

    2011-12-01

    The hydrologic cycle plays a central role in regulating ecosystem structure and function. Linked studies of both subsurface and aboveground processes are needed to improve understanding of ecosystem changes that could result from climate change and disturbance in Colorado's subalpine forests. Here, we present data from plots dominated by lodgepole pine (Pinus contorta) at the Niwot Ridge LTER site on the Colorado Front Range that improves the process-level understanding of the source and fate of water between subsurface storage and plant uptake. This study utilized event-based sampling during the 2011 growing season to investigate a paradox between water sources and rooting depth in lodgepole pine. Findings from Niwot Ridge have shown that lodgepole, typically believed to be a shallow-rooted species, appear to be strongly dependent on water from snowmelt for the entire growing season. These results suggested that conifer species were accessing water from deeper in the soil than summer monsoon rain typically penetrated. In our study, the relationship between precipitation event size and depth of infiltration on a seasonal and event basis, the effective rooting depth of lodgepole pine, and hysteretic responses of transpiration to soil moisture over a growing season were examined using measurements of tree physiological processes (sap flux and water stress) and hydrological parameters (precipitation, soil moisture) as well as stable water isotope composition of xylem water, mobile and immobile soil water, snow, precipitation, and stream water. Analysis of data shows that soil moisture in deep layers (60 and 70 cm) responds to large summer rain events of 0.7 mm and greater, and that lodgepole sap flux increases by 15-30% within 24 hours of monsoon events and decreases over 72 hours or until subsequent rain. Water isotope analysis will further elucidate the source and event response of these trees. This research helps us understand whether processes known to occur in

  3. Analysis of methane production pathways in a riparian wetland of a temperate forest catchment, using δ13C of pore water CH4 and CO2

    NASA Astrophysics Data System (ADS)

    Itoh, Masayuki; Ohte, Nobuhito; Koba, Keisuke; Sugimoto, Atsuko; Tani, Makoto

    2008-09-01

    To clarify how hydrological processes affect biogenic methane (CH4) production and emission from soil surfaces, we analyzed the δ13C of CH4 and CO2 and chemical constituents dissolved in groundwater at a wetland in the headwater catchment of a temperate forest in Japan. We estimated the contribution of acetate fermentation using the δ13C isotope mass balance of dissolved CH4 and CO2. CH4 production pathways (e.g., acetate fermentation and carbonate reduction) changed temporally and spatially with hydrologically controlled redox conditions. The proportion of methanogenesis attributable to acetate fermentation usually decreased with temperature, suggesting that carbonate reduction dominated under conditions of high CO2 concentration. In particular, the groundwater table and summer temperatures were key controlling factors in the interannual and intra-annual changes in CH4 production pathways, controlling oxygen supply and consumption and, therefore, redox conditions in the soil. Under high temperature and high water table conditions during summer, the soil was strongly reduced and the proportion of carbonate reduction increased. Acetate fermentation also increased episodically, resulting in sporadic increases in δ13C-CH4. The calculated acetate contribution obviously decreased in periods of low water table and high temperature when the soil surface was relatively oxic, implying deactivation of acetoclastic methanogenesis under oxic conditions. Thus, hydrological processes control the supply of these electron donors and acceptors and therefore play an important role in determining the relative proportions of CH4-producing pathways. Our results also indicate that an increase in acetate contribution under highly reducing conditions stimulates CH4 production and emission from the soil surface.

  4. 75 FR 59268 - Draft Guidance for Industry: Acidified Foods; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry: Acidified Foods; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the availability of a draft guidance entitled ``Guidance for Industry: Acidified Foods...

  5. 21 CFR 131.162 - Acidified sour cream.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Acidified sour cream. 131.162 Section 131.162 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR.... Acidified sour cream contains not less than 18 percent milkfat; except that when the food is characterized...

  6. 21 CFR 131.162 - Acidified sour cream.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Acidified sour cream. 131.162 Section 131.162 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR.... Acidified sour cream contains not less than 18 percent milkfat; except that when the food is characterized...

  7. 21 CFR 131.162 - Acidified sour cream.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Acidified sour cream. 131.162 Section 131.162 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR.... Acidified sour cream contains not less than 18 percent milkfat; except that when the food is characterized...

  8. 21 CFR 131.162 - Acidified sour cream.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Acidified sour cream. 131.162 Section 131.162 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR.... Acidified sour cream contains not less than 18 percent milkfat; except that when the food is characterized...

  9. Evaluation of High-Temporal-Resolution Bedload Sensors for Tracking Channel Bed Movement and Transport Thresholds in Forested Mountain Headwater Catchments.

    NASA Astrophysics Data System (ADS)

    Martin, S.; Conklin, M. H.; Bales, R. C.

    2014-12-01

    High temporal resolution data is required to take channel bed movement data beyond time integrated changes between measurements where many of the subtleties of bedload movement patterns are often missed. This study used continuous bedload scour sensors (flexible, fluid-filled pans connected to a pressure transducer) to collect high temporal resolution, long term bedload movement data for 4 high elevation (1500-1800 m) Sierra Nevada headwater streams draining 1 km2 catchments and to investigate the physical channel characteristics under which they perform best. Data collected by the scour sensors were used to investigate the disturbance and recovery patterns of these streams, to relate the observed patterns to channel bed stability, and to evaluate whether the channel bed is acting as a sediment source, sink, or storage across various temporal scales. Finally, attempts are made to identify discharge thresholds for bed movement from scour sensor and discharge data and to compare these threshold values to observed changes in the channel bed. Bedload scour data, turbidity data, and stream discharge data were collected at 15 minute intervals for (WY 2011 to WY 2014), including both above average (2011) and below average (2012, 2013, 2014) water years. Bedload scour sensors were found to have a relatively high (60%) failure rate in these systems. In addition, they required in situ calibrations as the factory and laboratory calibrations did not translate well to the field deployments. Data from the working sensors, showed patterns of abrupt channel bed disturbance (scour and/or fill) on an hour to day temporal scale followed by gradual recovery on a day to month scale back to a stable equilibrium bed surface elevation. These observed patterns suggest the bed acts as a short term source or sink for sediment, but is roughly sediment neutral over longer time periods implying the changes in bed elevation are reflective of fluctuations in storage rather than a true source or

  10. B-complex vitamins in cultured and acidified yogurt.

    PubMed

    Reddy, K P; Shahani, K M; Kulkarni, S M

    1976-02-01

    Studies were to determine the effect of various factors upon B-vitamin content of cultured yogurt and to compare the B-vitamin contents of cultured and direct acidified yogurt. Incubation of yogurt culture at 42 C for 3 h yielded maximum vitamin synthesis concurrent with optimal flavor and texture qualities. A method was standardized for the manufacture of direct acidified yogurt involving the use of Stabilac acidulant and nonfat dry milk, Carboxymethyl cellulose, gelatin, and Starite. Acidified yogurt showed a slightly higher content of certain B-vitamins than the cultured yogurt due to the contribution made by various food additives. Both cultured and acidified yogurt showed good keeping quality and freedom from microbial contaminants during storage at 5 C for 16 days. However, folic acid and vitamin B12 contents decreased 29 and 60% in cultured yogurt and 48 and 54% in acidified yogurt.

  11. Late Pleistocene to early Holocene aeolian and flash-flood sedimentation and soil formation in a small hilly catchment in SW-Germany (Palatinate forest)

    NASA Astrophysics Data System (ADS)

    Dotterweich, M.; Kühn, P.; Tolksdorf, J. F.; Müller, S.; Nelle, O.

    2012-04-01

    This paper focuses on the dynamics of sedimentation processes and soil development in a steep slope 0-order catchment in the sandy Lower Bunter of the south-western mid-range mountains in Germany during the transition period from the late Glacial to the early Holocene. Italso discusses how late Palaeolithic gatherers and hunters may have influenced these processes by sedentary land occupation. The investigated dry valley covers an area of around 16.6 ha and is characterized by short and steep slopes of 30° to 60°. A significant amount of the sediments from the adjacent slopes had been captured along the wide and rather flat valley bottom and at the small outlet. Several exposures, pits, and percussion liner drillings revealed a weak to highly weathered reddish sandy material at the base and eight subsequent layers of incoherent sandy and charcoal (from pines) enriched sediments with different colours ranging from olive-brown to dull reddish brown. By stratigraphical means, the lowermost sediment can be ascribed to the early Lateglacial when the deposition of aeolian sands under cold conditions with scarce vegetation cover was a widespread phenomenon. The subsequent layer contains a higher amount of silt and dates into the Allerød as suggested by radiocarbon dating. This is corroborated by the occurrence of LST that indicate that these sediments have been near to the surface around 12,900 yr BP. It shows characteristics of a palaeosol with Bwb and BwAhb horizons (Brunic Arenosols dystric) and with greyish Ahb and Eb horizons (Albic Arenosols dystric) similar to the Usselo/Finow soils in north-eastern Germany. In the material above, many remnants of roots and organic particles and rounded bone fragments were revealed by micromorphological analyses. Then, an alternation of reddish brown coarse to fine sands and small, partly rounded stones with some small intercalate aggregations of humic material rich in charcoal which dates to around 10,000 yr BP were deposited

  12. In Lieu of the Paired-Catchment Approach - Hydrologic Model Change Detection at the Catchment Scale

    NASA Astrophysics Data System (ADS)

    Zegre, N. P.

    2009-05-01

    Knowledge of the effects of forest management on hydrology primarily comes from paired-catchment studies conducted world-wide. While this approach has been useful for discerning changes in small experimental catchments and has contributed fundamental knowledge of the effects of forest and natural resources management on hydrology, results from experimental catchment studies exhibit temporal variability, have limited spatial inference, and lack insight into internal catchment processes. To address these limitations, traditional field experiments can be supplemented with numerical models to isolate the effects of disturbance on catchment behavior. Outlined in this study is an alternative method of change detection for daily time-series streamflow that integrates hydrologic modeling and statistical change detection methods used to discern the effects of contemporary forest management on the hydrology of western Oregon Cascades headwater catchments. In this study, a simple rainfall-runoff model was used to generate virtual reference catchments using attributes that reflect streamflow conditions absent of forest disturbance. Streamflow was simulated under three levels of model uncertainty using GLUE and were used to construct generalized least squares regression models to discern changes in hydrologic behavior. By considering processes within a single experimental catchment rather than the two spatially explicit catchments used in traditional paired experiments, it was possible to reduce unexplained variation and increase the likelihood of correctly detecting hydrologic effects following forest harvesting. In order to evaluate the stability of the hydrologic and statistical models and catchment behavior over time, the change detection method was applied to a contemporary reference catchment. By applying the change detection model to reference catchments, it was possible to eliminate unexpected variation as a cause for detected changes in observed hydrology. Further, it

  13. Elevated aluminium concentration in acidified headwater streams lowers aquatic hyphomycete diversity and impairs leaf-litter breakdown.

    PubMed

    Baudoin, J M; Guérold, F; Felten, V; Chauvet, E; Wagner, P; Rousselle, P

    2008-08-01

    Aquatic hyphomycetes play an essential role in the decomposition of allochthonous organic matter which is a fundamental process driving the functioning of forested headwater streams. We studied the effect of anthropogenic acidification on aquatic hyphomycetes associated with decaying leaves of Fagus sylvatica in six forested headwater streams (pH range, 4.3-7.1). Non-metric multidimensional scaling revealed marked differences in aquatic hyphomycete assemblages between acidified and reference streams. We found strong relationships between aquatic hyphomycete richness and mean Al concentration (r = -0.998, p < 0.0001) and mean pH (r = 0.962, p < 0.002), meaning that fungal diversity was severely depleted in acidified streams. By contrast, mean fungal biomass was not related to acidity. Leaf breakdown rate was drastically reduced under acidic conditions raising the issue of whether the functioning of headwater ecosystems could be impaired by a loss of aquatic hyphomycete species.

  14. Time-variant Catchment Transit Time Distribution and StorAge Selection Functions in Neighbouring Catchments

    NASA Astrophysics Data System (ADS)

    Klaus, J.; Rodriguez, N. B.; McGuire, K. J.

    2016-12-01

    The understanding of the catchment functions of storage, mixing, and release is a major research challenge as their behavior is fundamental for understanding water quality and flow quantity and timing. Generally, the complexity of the flow paths and associated mixing processes is still a major hindrance to a thorough understanding of catchment functions. Catchment transit time distributions can be used as an integrative descriptor of catchment functions. Here we aim to understand these fundamental catchment functions in four neighboring catchments of the HJA Experimental Forest in Oregon, USA. The areas of the four catchments (WS2, WS3, WS9, WS10) range from 0.085 to 1.011 km2. The catchments are fully forested with Douglas fir, western hemlock, and western redcedar dominating the lower elevations, and noble fir, Pacific silver fir, Douglas fir dominating higher elevations. Geology is dominated by volcaniclastics, covering 68% to 99% of the catchments. We employed a two storage conceptual model in each catchment for stream flow and transport modeling. We used solutions of the Master Equation to determine transit time distributions. We assumed randomly sampled/fully mixed conditions in each storage to model 18Oxygen in stream flow over a two year period. For example, modeling results for WS10 yielded a Nash-Sutcliffe efficiency (NSE) of 0.84 for stream flow of and a NSE of 0.7 for the (volume weighted) 18O in stream flow. Furthermore, we derived the master transit time distribution (mttd) for the catchments. Eventually we investigated the landscape controls (topography, geology, morphology) on mttd and the dynamics of storage selection functions of each catchment.

  15. Temporal variation of transit time of rainfall-runoff water and groundwater flow dynamics inferred by noble gasses concentration (SF6, CFCs) in a forested small catchment (Fukushima, Japan)

    NASA Astrophysics Data System (ADS)

    Sakakibara, Koichi; Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Konuma, Ryohei; Sato, Yutaro

    2016-04-01

    Time variant transit time of water in catchments can fundamentally describe catchment function, controlling rainfall-runoff generation, groundwater flow pathway and water storage. Though rainstorm event has been recognized as active phase on catchment hydrology, accurate and precise time variance of water transit time and related water dynamics during rainstorm have not been well clarified yet. Here, in order to reveal temporal variation of mean transit time of groundwater and related hydrological processes in a forested small catchment during rainstorm event, periodic and intensive field observations (15 - 17th July 2015, rainfall of 100.8 mm in total) were conducted in Yamakiya district (Fukushima, Japan) from September 2014 to December 2015. Discharge volume, groundwater table and precipitation amount were measured in 10 minutes interval. Water samples were taken from groundwater, discharge water, soil water and precipitation for determination of stable isotopic compositions (δ18O, δ2H), inorganic solutes concentration and dissolved noble gasses concentration (CFC11, CFC12, CFC113, SF6) in water. Storm hydrograph and groundwater table clearly responded to rainfall event especially with more than 30 mm per day throughout monitoring period. According to SF6 concentration in water, the mean transit time of discharge water (perennial spring) showed 3 - 6.5 years in the no-rainfall period (steady state), but fluctuated from zero to 12.5 years in the rainstorm event with totally 100.8 mm (unsteady state). The mean transit time of discharge water dramatically altered from zero to 12.5 years from before to after the tentative hydrograph peak in the rising limb, indicating new water components were dominant before tentative hydrograph peak, whereas deep groundwater component with longer residence time contributed much to discharge after the tentative hydrograph peak. On the other hand, mean residence time of groundwater (water in 5 m well) ranged from 0.5 to 11.5 years

  16. Schwertmannite stability in acidified coastal environments

    NASA Astrophysics Data System (ADS)

    Collins, Richard N.; Jones, Adele M.; Waite, T. David

    2010-01-01

    A combination of analytical and field measurements has been used to probe the speciation and cycling of iron in coastal lowland acid sulfate soils. Iron K-edge EXAFS spectroscopy demonstrated that schwertmannite dominated (43-77%) secondary iron mineralization throughout the oxidized and acidified soil profile, while pyrite and illite were the major iron-bearing minerals in the reduced potential acid sulfate soil layers. Analyses of contemporary precipitates from shallow acid sulfate soil groundwaters indicated that 2-line ferrihydrite, in addition to schwertmannite, is presently controlling secondary Fe(III) mineralization. Although aqueous pH values and concentrations of Fe(II) were seasonally high, no evidence was obtained for the Fe(II)-catalyzed crystallization of either mineral to goethite. The results of this study indicate that: (a) schwertmannite is likely to persist in coastal lowland acid sulfate soils on a much longer time-scale than predicted by laboratory experiments; (b) this mineral is less reactive in these types of soils due to surface-site coverage by components such as silicate and possibly, to a lesser extent, natural organic matter and phosphate and; (c) active water table management to promote oxic/anoxic cycles around the Fe(II)-Fe(III) redox couple, or reflooding of these soils, will be ineffective in promoting the Fe(II)-catalyzed transformation of either schwertmannite or 2-line ferrihydrite to crystalline iron oxyhydroxides.

  17. Hydrological influences on spatiotemporal variations of δ15N and δ18O of nitrate in a forested headwater catchment in central Japan: Denitrification plays a critical role in groundwater

    NASA Astrophysics Data System (ADS)

    Osaka, Ken'ichi; Ohte, Nobuhito; Koba, Keisuke; Yoshimizu, Chikage; Katsuyama, Masanori; Tani, Makoto; Tayasu, Ichiro; Nagata, Toshi

    2010-06-01

    To elucidate the internal nitrogen cycle and nitrogen input and output, we measured δ15N-NO3-, δ18O-NO3-, and NO3- concentrations in rainfall, soil water from an unsaturated soil horizon, groundwater, and stream water at a small forested headwater catchment. In soil water, the mean NO3- concentration did not decrease concomitantly with soil depth, despite a drastic decrease of δ18O-NO3- with soil depth, indicating immediate consumption of atmospheric NO3- and production of nitrified NO3-. The spatiotemporal distribution of δ15N-NO3- and δ18O-NO3- in soil water indicated that plant uptake contributed mainly to NO3- consumption and that denitrification was negligible. In contrast, denitrification played a critical role in groundwater in decreasing the NO3- concentration. Fluctuations of δ15N-NO3-, δ18O-NO3-, and NO3- concentration in groundwater, however, differed from expectations for occurrence resulting from denitrification only. A plausible explanation for the lack of a concurrent increase in δ15N and δ18O of NO3- is that nitrification and denitrification occur concurrently in groundwater and that denitrification is more important than nitrification. The amount of denitrification in the groundwater body was controlled primarily by groundwater residence time. The combination of hydrological flow path from groundwater to stream water and denitrification in the groundwater critically control the amount of leaching of NO3- and temporal distribution of NO3- concentration in stream water. The possibility exists that denitrification in groundwater strongly influences nitrogen leaching in forests because denitrification occurred even in this catchment, which consists of weathered granitic bedrock and predominantly typic udipsamment, with low organic matter content in the soil.

  18. Hydrological influences on spatiotemporal variations of δ15N, δ18O of nitrate in a forested headwater catchment in central Japan: Denitrification plays a critical role in groundwater bodies

    NASA Astrophysics Data System (ADS)

    Osaka, K.; Ohte, N.; Koba, K.; Yoshimizu, C.; Katsuyama, M.; Tani, M.; Tayasu, I.; Nagata, T.

    2009-12-01

    To elucidate the internal nitrogen cycle and nitrogen input and output, we measured δ15N-NO3-, δ18O-NO3-, and NO3- concentrations in rainfall, soilwater from an unsaturated soil horizon, groundwater, and streamwater at a small forested headwater catchment. In soilwater, the NO3- concentration did not decrease concomitantly with soil depth despite the drastic decrease of δ18O-NO3- with soil depth, indicating the immediate consumption of atmospheric NO3- and production of nitrified NO3-. The spatiotemporal distribution of δ15N-NO3- and δ18O-NO3- in soilwater indicated that plant uptake contributed mainly to NO3- consumption and that denitrification was negligible. In contrast, denitrification played a critical role in the groundwater body in decreasing the NO3- concentration. Fluctuations of δ15N-NO3-, δ18O-NO3-, and NO3- concentration in the groundwater, however, differed from expectations for occurrence resulting from denitrification only. A plausible explanation for the lack of concurrent increase in δ15N and δ18O of NO3- is that nitrification and denitrification occur concurrently in groundwater, and that denitrification is more important than nitrification. The amount of denitrification in the groundwater body was considered to be controlled primarily by the groundwater residence time. The combination of hydrological flow path from groundwater to streamwater and denitrification in the groundwater critically control the amount of leaching NO3- and temporal distribution of NO3- concentration in streamwater. The possibility exists that denitrification in the groundwater strongly influences nitrogen leaching in forests because denitrification occurred even in this catchment, which consists of weathered granitic bedrock and predominantly typic udipsamment, with low contents of organic matter in the soil.

  19. Application of the MAGIC model to the Glacier Lakes catchments

    Treesearch

    John O. Reuss

    1994-01-01

    The MAGIC model (Cosby et al. 1985, 1986) was calibrated for East and West Glacier Lakes, two adjacent high-altitude (3200 m- 3700 m) catchments in the Medicine Bow National Forest of southern Wyoming. This model uses catchment characteristics including weathering rates, soil chemical characteristics, hydrological parameters, and precipitation amounts and composition...

  20. A mechanistic assessment of nutrient flushing at the catchment scale

    Treesearch

    Willem J. van Verseveld; Jeffrey J. McDonnell; Kate Lajtha

    2008-01-01

    This paper mechanistically assesses the flushing mechanism of DOC, DON, and DIN at the hillslope and catchment scales during two storm events, in a small catchment (WS10), H.J. Andrews Experimental Forest in the western Cascade Mountains of Oregon. Using a combination of natural tracer and hydrometric data, and end-member mixing analysis, we were able to describe the...

  1. Time-Scales of Storm Flow Response in the Stream and Hyporheic Zone of a Small, Steep Forested Catchment - Contrasting the Potential Contributions from the Hillslope, Riparian-Hyporheic Zones, and the Stream Channel

    NASA Astrophysics Data System (ADS)

    Wondzell, S. M.; Corson-rikert, H.; Haggerty, R.

    2016-12-01

    Storm-flow responses of small catchments are widely studied to identify water sources and mechanisms routing water through catchments. These studies typically observe rapid responses to rainfall with peak concentrations of many chemical constituents occurring on rising leg of the hydrograph. To explain this, some conceptual models suggest that stream water early in storm periods is dominated by riparian water sources with hillslope water sources dominating later in the storm. We examined changes in both stream and hyporheic water chemistry during a small, autumn storm in a forested mountain catchment to test this conceptual model. Our study site was located in WS01 at the H.J. Andrews Experimental Forest, in Oregon, USA. The watershed has a narrow valley floor, always less than 15 m wide and occasionally interrupted by narrow, constrained bedrock sections. The valley floor has a longitudinal gradient of approximately 14%. Hyporheic water tends to flow parallel the valley axis and flow paths change little with changes in stream discharge, even during storm events. A well network is located in a 30-m reach near the bottom of the watershed. We sampled the stream, 9 hyporheic wells, and a hillslope well for DOC, DIC, Cl-, and NO3- during the storm. As expected, concentrations of DOC and NO3- increased rapidly on the rising leg of the hydrograph in both the stream and the hyporheic wells. However, the stream always had higher concentrations of DOC, and lower concentrations of NO3-, than did either the hillslope well or the hyporheic wells. These data suggest that the riparian/hyporheic zone is not a likely source of water influencing stream water chemistry on the rising leg of the hydrograph. These data agree with median travel time estimates of water flowing along hyporheic flow paths - it takes many 10s of hours for water to move from the riparian/hyporheic zone to the stream - a time scale that is far too slow to explain the rapid changes observed on the rising leg

  2. Simulating Catchment Scale Afforestation for Mitigating Flooding

    NASA Astrophysics Data System (ADS)

    Barnes, M. S.; Bathurst, J. C.; Quinn, P. F.; Birkinshaw, S.

    2016-12-01

    After the 2013-14, and the more recent 2015-16, winter floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. However, the role of forests as a natural flood management practice remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. This project aims to improve the understanding of the impacts of upland afforestation on flood risk at the sub-catchment and full catchment scales. This will be achieved through an integrated fieldwork and modelling approach, with the use of a series of process based hydrological models to scale up and examine the effects forestry can have on flooding. Furthermore, there is a need to analyse the extent to which land management practices, catchment system engineering and the installation of runoff attenuation features (RAFs), such as engineered log jams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. Additionally, the proportion of a catchment or riparian reach that would need to be forested in order to achieve a significant impact on reducing downstream flooding will be defined. The consequential impacts of a corresponding reduction in agriculturally productive farmland and the potential decline of water resource availability will also be considered in order to safeguard the UK's food security and satisfy the global demand on water resources.

  3. Transfer of 137Cs and 134Cs from litter into soil's of Japanese cypress forest after Fukushima nuclear accident in Karasawayama catchment, Tochigi prefecture

    NASA Astrophysics Data System (ADS)

    Mengistu, T. T.; Onda, Y.; Kato, H.; Gomi, T.

    2011-12-01

    The mega earthquake that rampaged north-east Japan on March 11, 2011 and the triggered subsequent tsunami hit the Fukushima Daiichi Nuclear power plant and resulted the discharge of about 770,000 terabecquerel radionuclide materials to the atmosphere. The distribution and deposition of the radionucides are then governed by the wind and rain following the release. When the cloud of radionuclide material by-pass the forest ecosystem (as radiodust-sinker), radionuclides are trapped and deposited to the forest floor through dry, litter, wet depositions. Litter-fall, as a key process of nutrient cycling in forest ecosystem, plays a great role in transferring canopy-trapped radionuclides to the forest soil. And so, we are monitoring the of Fukushima derived 137Cs deposition rate through litter to forest soil's of Japanese cypress(Chamaecyparis obutsa Sieb.et Zucc.) forests located approximately 160 km from the crippled nuclear power plant. For this purpose, five litter traps (1m2 areas each) were set up at one meter above the ground in the forest stand at the end of March 2011. Fukushima-derived 137Cs is then estimated from 134Cs:137Cs ratio as all 134Cs is originated from Fukushima. Within the two months of the accident, mean 134Cs:137Cs ratio was 0.8 in cypress litter. The inventories of both 137Cs and 134Cs in the upper 2cm forest soil were found 5089 Bq m-2 and 3571 Bq m-2, respectively. As a result, the amount of Fukushima-derived 137Cs deposition in upper 2cm soil layer by cypress litter is 4464 Bq m-2. This value account 88% of the total inventories of 137Cs in the upper 2cm soils and the other depositional paths (dry and wet fall) including old 137Cs cover only 12%. The transfer rate of 137Cs and 134Cs from canopy-litter to soil could be depend on litter's radionuclide adsorption strength (canopy and leaves architecture), the rate, amount of litter fall and its residence time in the canopy and forest floor. However, the results strongly confirmed that litter is

  4. The impact of integrating WorldView-2 sensor and environmental variables in estimating plantation forest species aboveground biomass and carbon stocks in uMgeni Catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Mutanga, Onisimo

    2016-09-01

    Reliable and accurate mapping and extraction of key forest indicators of ecosystem development and health, such as aboveground biomass (AGB) and aboveground carbon stocks (AGCS) is critical in understanding forests contribution to the local, regional and global carbon cycle. This information is critical in assessing forest contribution towards ecosystem functioning and services, as well as their conservation status. This work aimed at assessing the applicability of the high resolution 8-band WorldView-2 multispectral dataset together with environmental variables in quantifying AGB and aboveground carbon stocks for three forest plantation species i.e. Eucalyptus dunii (ED), Eucalyptus grandis (EG) and Pinus taeda (PT) in uMgeni Catchment, South Africa. Specifically, the strength of the Worldview-2 sensor in terms of its improved imaging agilities is examined as an independent dataset and in conjunction with selected environmental variables. The results have demonstrated that the integration of high resolution 8-band Worldview-2 multispectral data with environmental variables provide improved AGB and AGCS estimates, when compared to the use of spectral data as an independent dataset. The use of integrated datasets yielded a high R2 value of 0.88 and RMSEs of 10.05 t ha-1 and 5.03 t C ha-1 for E. dunii AGB and carbon stocks; whereas the use of spectral data as an independent dataset yielded slightly weaker results, producing an R2 value of 0.73 and an RMSE of 18.57 t ha-1 and 09.29 t C ha-1. Similarly, high accurate results (R2 value of 0.73 and RMSE values of 27.30 t ha-1 and 13.65 t C ha-1) were observed from the estimation of inter-species AGB and carbon stocks. Overall, the findings of this work have shown that the integration of new generation multispectral datasets with environmental variables provide a robust toolset required for the accurate and reliable retrieval of forest aboveground biomass and carbon stocks in densely forested terrestrial ecosystems.

  5. Growth and blood chemistry of ducklings reared on acidified wetlands

    USGS Publications Warehouse

    Rattner, B.A.; Haramis, G.; Linder, G.; Chu, D.

    1985-01-01

    Acid deposition is one factor that may be responsible for the decline of some waterfowl populations. Growth and physiological condition were monitored in captive-reared black ducks (Anas rubripes) exposed for 10-day trials (day 11-20 of life) on control (pH 6.8) and acidified (pH 5.0) man-made emergent wetlands. Impaired growth (body weight, culmen and tarsus length) and increased mortality (50%) were apparent in broods (hen + 4 ducklings) reared on acidified wetIands. Ducklings exbibiting poor growth had reduced hematocrit, plasma protein and cholesterol levels. This subset of birds had elevated plasma uric acid concentration and creatine kinase activity (perhaps due to enhanced protein and nucleotide catabolism). and elevated pIasma K+ levels. Based upon overt appearance, growth and blood chemistry, ducklings exposed to acidified wetlands were concluded to be in poorer condittion than those exposed on circumneutral pH wetlands.

  6. Catchment acidification-from the top down.

    PubMed

    Matschullat, J; Andreae, H; Lessmann, D; Malessa, V; Siewers, U

    1992-01-01

    Three main factors define the speed of catchment acidification: the total input of pollutants; the thickness and character of soils, including the nature of the bedrock; and the size of subcatchments. The aerial input of pollutants in the Harz is among the highest in Central Europe (e.g. SO4-S: 22-70 kg (ha year)(-1); NO3-N: 9-10 kg (ha year)(-1); NH4-N: 10-15 kg (ha year)(-1) and Cd: 2.6-8.7 g (ha year)(-1); Cu: 34-125 g (ha year)(-1); Pb: 150-380 g (ha year)(-1); Zn: 105-560 g (ha year)(-1)). Thick soil profiles (2-4 m) acidify from the top down. Whether the soils will neutralize incoming acids depends on their buffering capacity. The small headwater subcatchments acidify first and subsequently release acidic water with pH values down to < or = 40. Four brook zones can be divided by the composition of their biocoenoses. The latter depend on the degree of acidification. These zones are also characterized by different hydrochemical conditions.

  7. Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites.

    PubMed

    Nath, Bibhash; Birch, Gavin; Chaudhuri, Punarbasu

    2013-10-01

    The generation of acidity and subsequent mobilization of toxic metals induced by acid sulfate soils (ASSs) are known to cause severe environmental damage to many coastal wetlands and estuaries of Australia and worldwide. Mangrove ecosystems serve to protect coastal environments, but are increasingly threatened from such ASS-induced acidification due to variable hydrological conditions (i.e., inundation-desiccation cycles). However, the impact of such behaviors on trace metal distribution, bio-availability and accumulation in mangrove tissues, i.e., leaves and pneumatophores, are largely unknown. In this study, we examined how ASS-induced acidifications controlled trace metal distribution and bio-availability in gray mangrove (Avicennia marina) soils and in tissues in the Kooragang wetland, New South Wales, Australia. We collected mangrove soils, leaves and pneumatophores from a part of the wetland acidified from ASS (i.e., an affected site) for detailed biogeochemical studies. The results were compared with samples collected from a natural intertidal mangrove forest (i.e., a control site) located within the same wetland. Soil pH (mean: 5.90) indicated acidic conditions in the affected site, whereas pH was near-neutral (mean: 7.17) in the control site. The results did not show statistically significant differences in near-total and bio-available metal concentrations, except for Fe and Mn, between affected and control sites. Iron concentrations were significantly (p values≤0.001) greater in the affected site, whereas Mn concentrations were significantly (p values≤0.001) greater in the control site. However, large proportions of near-total metals were potentially bio-available in control sites. Concentrations of Fe and Ni were significantly (p values≤0.001) greater in leaves and pneumatophores of the affected sites, whereas Mn, Cu, Pb and Zn were greater in control sites. The degree of metal bio-accumulation in leaves and pneumatophores suggest contrasting

  8. Modelling future soil chemistry at a highly polluted forest site at Istebna in Southern Poland using the "SAFE" model.

    PubMed

    Małek, Stanisław; Martinson, Liisa; Sverdrup, Harald

    2005-10-01

    The multi-layer dynamic model SAFE was applied to the forested catchment Istebna (Southern Poland), to study recovery from acidification. Environmental pollution in the area has been historically high. The model uses data from an intensive monitoring plot established in 1999 in a spruce stand, which was planted in 1880. Observations showed that the soil was depleted of base cations. The measured base saturation in 1999 was between 5 and 8% in the different soil layers. Model predictions assuming full implementation of the UNECE 1999 Gothenburg Protocol and present day base cation deposition show that the base saturation will slowly increase to 20% by 2100. Despite large emission reductions, Istebna still suffers from the very high loads of acidifying input during the past decades. Soil recovery depends on future emissions especially on base cation deposition. The recovery will be even slower if the base cation deposition decreases further.

  9. Catchment scale afforestation for mitigating flooding

    NASA Astrophysics Data System (ADS)

    Barnes, Mhari; Quinn, Paul; Bathurst, James; Birkinshaw, Stephen

    2016-04-01

    After the 2013-14 floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. At present, 1 in 6 homes in Britain are at risk of flooding and current EU legislation demands a sustainable, 'nature-based solution'. However, the role of forests as a natural flood management technique remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. SHETRAN, physically-based spatially-distributed hydrological models of the Irthing catchment and Wark forest sub-catchments (northern England) have been developed in order to test the hypothesis of the effect trees have on flood magnitude. The advanced physically-based models have been designed to model scale-related responses from 1, through 10, to 100km2, a first study of the extent to which afforestation and woody debris runoff attenuation features (RAFs) may help to mitigate floods at the full catchment scale (100-1000 km2) and on a national basis. Furthermore, there is a need to analyse the extent to which land management practices, and the installation of nature-based RAFs, such as woody debris dams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. The impacts of riparian planting and the benefits of adding large woody debris of several designs and on differing sizes of channels has also been simulated using advanced hydrodynamic (HiPIMS) and hydrological modelling (SHETRAN). With the aim of determining the effect forestry may have on flood frequency, 1000 years of generated rainfall data representative of current conditions has been used to determine the difference between current land-cover, different distributions of forest cover and the defining scenarios - complete forest removal and complete afforestation of the catchment. The simulations show the percentage of forestry required to have a significant impact on mitigating

  10. Use of Linear Models for Thermal Processing Acidified Foods

    USDA-ARS?s Scientific Manuscript database

    Acidified vegetable products with a pH above 3.3 must be pasteurized to assure the destruction of acid resistant pathogenic bacteria. The times and temperatures needed to assure a five log reduction by pasteurization have previously been determined using a non-linear (Weibull) model. Recently, the F...

  11. Thermophilic treatment of acidified and partially acidified wastewater using an anaerobic submerged MBR: Factors affecting long-term operational flux.

    PubMed

    Jeison, D; van Lier, J B

    2007-09-01

    The long-term operation of two thermophilic anaerobic submerged membrane bioreactors (AnSMBRs) was studied using acidified and partially acidified synthetic wastewaters. In both reactors, cake formation was identified as the key factor governing critical flux. Even though cake formation was observed to be mostly reversible, particle deposition proceeds fast once the critical flux is exceeded. Very little irreversible fouling was observed during long-term operation, irrespective of the substrate. Critical flux values at the end of the reactors operation were 7 and 3L/m(2)h for the AnSMBRs fed with acidified and partially acidified wastewaters, respectively, at a gas superficial velocity of 70m/h. Small particle size was identified as the responsible parameter for the low observed critical flux values. The degree of wastewater acidification significantly affected the physical properties of the sludge, determining the attainable flux. Based on the fluxes observed in this research, the membrane costs would be in the range of 0.5euro/m(3) of treated wastewater. Gas sparging was ineffective in increasing the critical flux values. However, preliminary tests showed that cross-flow operation may be a feasible alternative to reduce particle deposition.

  12. Effect of the Resolution and Accuracy of DTM produced with Aerial Photogrammetry and Terrestrial Laser Scanning on Slope- and Catchment-scale Erosion Assessment in a Recently Burnt Forest Area: a Case Study

    NASA Astrophysics Data System (ADS)

    Cambra, Sílvia; Pereira, Luísa; Keizer, Jan Jacob

    2010-05-01

    Wildfires are a common phenomenon in Portugal, affecting on average 100.000 ha of rural areas per year and up to 400.000 ha in dramatic years like 2003 and 2005. Wildfires can strongly enhance the hydrological response and associated sediment losses in recently burnt forest catchments and, thereby, negatively affect land-use sustainability of the affected terrains as well as ecosystem functioning of downstream aquatic habitats. Therefore, the EROSFIRE-I and -II projects aim at developing a GIS-tool for predicting soil erosion hazard following wildfire and, ultimately, for assessing the implications of alternative post-fire land management practices. Assessment of runoff and soil erosion rates critically depends on accurate estimates of the corresponding runoff areas. In the case of catchments as well as unbounded erosion plots (arguably, the only practical solution for slope-scale measurements), delineation of runoff area requires a Digital Terrain Model (DTM) with an adequate resolution and accuracy. The DTM that was available for the Colmeal study area, localized in the mountain range of Lousã, in the central part of Portugal, of EROSFIRE-II project is that of the 1:25.000 topographic map produced by the Military Geographic Institute. Since the Colmeal area involves a rather small experimental catchment of roughly 10 ha and relatively short study slopes of less than 100 m long, two different data acquisition techniques were used to produce high-resolution and high-accuracy DTM. One of the data acquisition techniques is aerial photogrammetry whilst the other is terrestrial laser scanning. In order to produce a DTM by photogrammetric means, a dedicated digital aerial photography mission was carried out. The images have a pixel size of 10 cm. Manual measurements permitted to measure breaklines and were complemented by automatic measurements. In this way, a DTM in a TIN format was produced. This was further converted to grid format using the ArcGIS software system

  13. Use of acidifiers and herb-acidifier combinations with encapsulated and non-encapsulated intestinal microflora, intestinal histological and serum characteristics in broiler

    NASA Astrophysics Data System (ADS)

    Natsir, Muhammad Halim; Hartutik, Sjofjan, Osfar; Widodo, Eko; Widyastuti, Eny Sri

    2017-05-01

    The objective of this experiment was to evaluate the use of acidifier and herb-acidifier combinations on intestinal microflora, intestinal histology and serum characteristics of broilers at 35 days of age when fed a diet supplemented with natural acidifier (lactic acid and citric acid), and herb-acidifier combinations (natural acidifier and herbs (garlic and Phyllanthus niruri L.) encapsulated and non-encapsulated. Here, 192 (Lohmann) broiler chicks were fed a negative control diet, positive control diet (tetracycline), 1.2% acidifier non-encapsulated (ANE), 1.2% acidifier encapsulated (AE), 1.2% herb-acidifier combination non-encapsulated (CNE), or 1.2% herb-acidifier combination encapsulated (CE). The variables measured were the total colony of lactic acid bacteria, Escherichia coli and Salmonella sp., intestinal histological characteristics (crypt depth, villi number, villi length, and viscosity) and serum (total protein, serum albumin, and serum globulin). Results showed that during the 35-d growth period, there were significant differences (P<0.01) in increases of the total number of colonies of lactic acid bacteria and a decrease in the total colony of Escherichia coli and Salmonella sp., along with increasing intestinal histological characteristics (crypt depth, villi number, villi length, and viscosity) and total proteins in the serum, as well as significant effects (P<0.05) on intestinal pH and serum albumin. It is concluded that the use acidifiers or herb-acidifier combinations in encapsulation performed better than without encapsulation. Therefore using 1.2% of encapsulated combinations of herb-acidifiers in broiler diet is recommended.

  14. Seasonal cycles of dissolved constituents in streamwater in two forested catchments in the mid-Atlantic region of the eastern U.S.A.

    USGS Publications Warehouse

    Rice, Karen C.; Bricker, Owen P.

    1995-01-01

    Streamwater discharge and chemistry of two small catchments on Catoctin Mountain in north-central Maryland have been monitored since 1982. Repetitive seasonal cycles in stream-water chemistry have been observed each year, along with seasonal cycles in the volume of stream discharge and in groundwater levels. The hypothesis that the observed streamwater chemical cycles are related to seasonal changes in the hydrological flow paths that contribute to streamflow is examined using a combination of data on groundwater levels, shallow and deep groundwater chemistry, streamwater discharge, streamwater chemistry, soil-water chemistry, and estimates of water residence times. The concentrations of constituents derived from rock weathering, particularly bicarbonate and silica, increase in streamwater during the summer when the water table is below the regolith-bedrock interface and stream discharge consists primarily of deep groundwater from the fractured-bedrock aquifer. Conversely, the concentrations in streamwater of atmospherically derived components, particularly sulfate, increase in winter when the water table is above the regolith-bedrock interface and stream discharge consists primarily of shallow groundwater from the regolith. Tritium and chlorofluorocarbon (CFC) measurements suggest that the groundwater in these systems is young, with a residence time of less than several years. The results of this study have implications for the design of large-scale water-quality monitoring programs.

  15. Water quality in riparian boreal forest: a multi-method approach to scale biogeochemical drivers from groundwater hotspots to catchment outlets.

    NASA Astrophysics Data System (ADS)

    Ploum, Stefan; Kuglerová, Lenka; Leach, Jason; Laudon, Hjalmar

    2017-04-01

    Stream chemistry in boreal regions is for a large degree defined by the riparian zone. Within the riparian zone, groundwater hotspots represent a very small area, but likely play a major role in controlling stream water quality. Hotspots have shown to be unique in their plant species richness, soil texture and biogeochemistry. Also in terms of stream metabolism, hotspots show different responses, either due to local biotic or abiotic conditions. Readily available hydrological mapping tools, combined with biogeochemical data (stream temperature and stable water isotopes) show that there is great potential in predicting groundwater hotspots using terrain-based approaches. However, the role of individual hotspots varies in time. Presumably their hydrological regime is highly dependent on landscape properties of the upstream area. To improve the predictability of hotspots in space and time, a mechanistic understanding is needed. We achieve this by a combined approach including a damming experiment, high resolution optic fiber stream temperature measurements (DTS), a dense groundwater well network, stream and groundwater trace element analysis, frost monitoring and infrared (IR) imagery. This field-based strategy sheds light on the underlying drivers of groundwater hotspots and links them to landscape characteristics. This allows to move away from highly monitored reaches, and evaluate the relation between upland landscape features and the temporal variability of groundwater exfiltration rates on a catchment scale.

  16. Modeling the fate of aluminum in a watershed system under acidified conditions

    SciTech Connect

    McAvoy, D.C.

    1987-01-01

    Acid deposition has impacted surface water quality to various degrees in many parts of the world. This study focuses on identifying the major mechanisms contributing to the increase of stream water acidity in an acid-sensitive watershed. Two mathematical models, a chemical equilibrium model and a transport simulation model, have been developed and utilized to gain a better understanding of the fate and transport of aluminum in an acidified watershed system. The chemical equilibrium model determines inorganic monomeric aluminum species by performing thermodynamic equilibrium calculations whereas the simulation model describes aluminum transport within a watershed system by incorporating soil chemistry, stream water chemistry, and hydrologic properties. Precipitation, soil, and stream water data were collected from the acid-sensitive West Wachusett Brook catchment. Organic ligands seem to regulate aluminum levels in the wetland stream whereas aluminum trihydroxide solubility appears to control the mountain stream levels. Furthermore, organic acids in the wetland drastically changes stream water quality by buffering pH changes and chelating aluminum. Soil and stream water data suggest that during intensive storm events the rainwater mostly travels through the upper soil horizons before entering the stream environment. Moreover, these data imply that rainfall volume may be more important than rainfall pH in affecting stream water acidity for this particular watershed. Equilibrium modeling showed the mountain stream to be potentially toxic to fish during moderate-to-intense rainfall events. The wetland stream, on the other hand, being dominated by organo-aluminum complexes revealed minimal toxicological effects.

  17. The natural rehabilitation of an anthropogenically acidified tropical Lake: two decades of monitoring.

    PubMed

    Araújo, Cristiano V M; Cohin-de-Pinho, Salomão J; Chastinet, Carla B A; Machado, Sandro L; da Silva, Eduardo M

    2013-01-01

    The rehabilitation of a pond after approximately 20 years of strong acidified conditions due to industrial and domestic waste deposition in its catchment basin is reviewed. We describe in this study the acidification process that occurred in a tropical pond in Northeast Brazil (Dunas Lake), the rehabilitation plan for the pond and the subsequent monitoring conducted over two decades. After the contamination assessment by the late 80s, a rehabilitation plan was carried out in the early 90s, in which the contaminated soil and water have been removed and reduced, respectively. No further attempt to neutralize the water or any remediation has been carried out. A toxicity monitoring plan based on toxicity assays with the fish Poecilia reticulata was employed to verify the natural rehabilitation of the pond. The data on toxicity, pH, conductivity, sulphate and dissolved iron recorded from 1994 to 2010 were also compiled and discussed. The collected data in 2003 and 2004 indicated changes in water quality and from them complementary management actions, namely improvement in the containment plant, were conducted in 2005. Results for toxicity assays and pH results indicated interannual changes in the water quality similar to rainy-dry periods. Moving average approach using pH data clearly showed the recovery process of Dunas Lake as well as the importance of the containment plan to reduce the contamination. Finally, a summary of the recent situation after two decades of rehabilitation is provided. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Spatio-temporal validation of long-term 3D hydrological simulations of a forested catchment using empirical orthogonal functions and wavelet coherence analysis

    NASA Astrophysics Data System (ADS)

    Fang, Zhufeng; Bogena, Heye; Kollet, Stefan; Koch, Julian; Vereecken, Harry

    2015-10-01

    Soil moisture plays a key role in the water and energy balance in soil, vegetation and atmosphere systems. According to Wood et al. (2011) there is a grand need to increase global-scale hyper-resolution water-energy-biogeochemistry land surface modelling capabilities. These modelling capabilities should also recognize epistemic uncertainties, as well as the nonlinearity and hysteresis in its dynamics. Unfortunately, it is not clear how to parameterize hydrological processes as a function of scale, and how to test deterministic models with regard to epistemic uncertainties. In this study, high resolution long-term simulations were conducted in the highly instrumented TERENO hydrological observatory of the Wüstebach catchment. Soil hydraulic parameters were derived using inverse modelling with the Hydrus-1D model using the global optimization scheme SCE-UA and soil moisture data from a wireless soil moisture sensor network. The estimated parameters were then used for 3D simulations of water transport using the integrated parallel simulation platform ParFlow-CLM. The simulated soil moisture dynamics, as well as evapotranspiration (ET) and runoff, were compared with long-term field observations to illustrate how well the model was able to reproduce the water budget dynamics. We investigated different anisotropies of hydraulic conductivity to analyze how fast lateral flow processes above the underlying bedrock affect the simulation results. For a detail investigation of the model results we applied the empirical orthogonal function (EOF) and wavelet coherence methods. The EOF analysis of temporal-spatial patterns of simulated and observed soil moisture revealed that introduction of heterogeneity in the soil porosity effectively improves estimates of soil moisture patterns. Our wavelet coherence analysis indicates that wet and dry seasons have significant effect on temporal correlation between observed and simulated soil moisture and ET. Our study demonstrates the

  19. Does road salting confound the recovery of the microcrustacean community in an acidified lake?

    PubMed

    Jensen, Thomas Correll; Meland, Sondre; Schartau, Ann Kristin; Walseng, Bjørn

    2014-04-15

    Numerous boreal lakes across the Northern Hemisphere recovering from acidification are experiencing a simultaneous increase in chloride (Cl) concentrations from road salting. Increasing Cl may have profound effects on the lake ecosystem. We examine if an increase in Cl from road salting has modified the recovery of the microcrustacean community in an acidified boreal lake undergoing chemical recovery (study lake). Results from the study lake were compared with an acidified "reference lake". The community changed during the study period in the study lake mainly driven by the reduction in acidification pressure. Despite the community changes and an increase in species richness, the absence of several acid sensitive species, previously occurring in the lake, indicates a delayed biological recovery relative to the chemical recovery. Moreover, changes in occurrence of acid sensitive and acid tolerant species indicated that the biological recovery was slower in the study lake compared to the "reference". Although recurrent episodes of high aluminum and low pH and decreasing Ca are likely important factors for the delay, these do not explain, for instance, the shift from Cyclops scutifer to Bosmina longispina in the study lake. Although the contribution of Cl was not significant, the correlation between Cl and the variation in microcrustacean community was twice as high in the study lake compared to the "reference". We argue that small, sheltered forest lakes may be especially sensitive to increased Cl levels, through changes in pattern of stratification, thus providing a mechanism for the shift from C. scutifer to B. longispina. The reduction of the acidification pressure seems to override the Cl effects on microcrustaceans at low Cl levels in salt-affected lakes recovering from acidification. However, prognoses for growing traffic and increasing road salting raise concern for many recovering lakes located in proximity to roads and urbanized areas. Copyright © 2014

  20. Integrating soil water measurements from plot to catchment scale in a snow-dominated, mixed-conifer forest of the southern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Meadows, M. W.; Hartsough, P. C.; Bales, R. C.; Hopmans, J. W.; Malazian, A. I.

    2012-12-01

    vegetation. Three possible causes for the lack of moisture change are: 1) too few trees were removed; 2) canopy vegetation left on the forest floor had approximately equal water content as tree-stem wood removed; 3) tree-root water storage remained relatively unchanged. This research is part of the NSF-supported Southern Sierra Critical Zone Observatory, which is co-located within the U.S. Forest Service, Kings River Experimental Watershed.

  1. Geochemical and isotopic evolution of soil solutions over the last 25 years in a forested granitic catchment (the experimental Strengbach watershed case, France).

    NASA Astrophysics Data System (ADS)

    Pierret, M.-C.; Prunier, J.; Stille, P.; Chabaux, F.

    2009-04-01

    that the annual dry and wet atmospheric inputs in Ca, Na, K, Mg, Si remain constant since 1986. Then the decrease of the Ca concentration with time, in the two profiles, cannot be related to diminution of dissolution processes nor to declining of atmospheric inputs. At the same time, the evolution of the Sr isotopic ratios in soil solutions in depth below 30 cm, which become more radiogenic, shows that the source of elements also changed. Apatite, which is the main source of Ca in this system almost has disappeared from the upper most levels of soils. The contribution to the flux of Ca from secondary minerals such as clays or of exchangeable fraction increases. At the present time, these phases represent a new main source of Ca, more radiogenic in Sr. All our results lead us to propose that the source of Ca in soils decreased for the past 20 years which raises the problems of the present-day nutrient availability in forested soils, such as those developed in acid granitic bedrock.

  2. Effects of acidifying reagents on microwave treatment of dairy manure.

    PubMed

    Srinivasan, Asha; Nkansah-Boadu, Frank; Liao, Ping H; Lo, Kwang V

    2014-01-01

    Dairy manure, acidified using organic acids (acetic, oxalic, and citric acid) were treated with microwave enhanced advanced oxidation process (MW/H2O2-AOP). The effect of a mixture of oxalic acid and commonly used mineral acids (sulfuric and hydrochloric acid) on MW/H2O2-AOP was also examined. Substantial amounts of phosphorus were released under MW/H2O2-AOP, regardless of organic acid or mineral acid used. All three organic acids were good acidifying reagents; however, only oxalic acid could remove free calcium ion in the solution, and improve settleability of dairy manure. The MW/H2O2-AOP and calcium removal process could be combined into a single-stage process, which could release phosphate, solubilize solids and remove calcium from dairy manure at the same time. A mixture of oxalic acid and mineral acid produced the maximum volume of clear supernatant and had an ideal molar ratio of calcium to magnesium for effective struvite (magnesium ammonium phosphate) crystallization process. A single-stage MW/H2O2-AOP would simplify the process and reduce mineral acid consumption compared to a two-stage operation. The results of a pilot scale study demonstrate that MW/H2O2-AOP is effective in treating manure and recovering resource from dairy farms.

  3. Modelling hydrological management for the restoration of acidified floating fens

    NASA Astrophysics Data System (ADS)

    Dekker, Stefan C.; Barendregt, Aat; Bootsma, Margien C.; Schot, Paul P.

    2005-12-01

    Wetlands show a large decline in biodiversity. To protect and restore this biodiversity, many restoration projects are carried out. Hydrology in wetlands controls the chemical and biological processes and may be the most important factor regulating wetland function and development. Hydrological models may be used to simulate these processes and to evaluate management scenarios for restoration. HYDRUS2D, a combined saturated-unsaturated groundwater flow and transport model, is presented. This simulates near-surface hydrological processes in an acidified floating fen, with the aim to evaluate the effect of hydrological restoration in terms of conditions for biodiversity. In the acidified floating fen in the nature reserve Ilperveld (The Netherlands), a trench system was dug for the purpose of creating a runoff channel for acid rainwater in wet periods and to enable circum-neutral surface water to enter the fen in dry periods. The model is calibrated against measured conductivity values for a 5 year period. From the model simulations, it was found that lateral flow in the floating raft is limited. Furthermore, the model shows that the best management option is a combination of trenches and inundation, which gave the best soil water quality in the root zone. It is concluded that hydrological models can be used for the calculation of management scenarios in restoration projects. The combined saturated-unsaturated model concept used in this paper is able to incorporate the governing hydrological processes in the wetland root zones. Copyright

  4. Can the eastern red-backed salamander (Plethodon cinereus) persist in an acidified landscape?

    USGS Publications Warehouse

    Bondi, Cheryl A; Beier, Colin M.; Ducey, Peter K; Lawrence, Gregory B.; Bailey, Scott W.

    2016-01-01

    Hardwood forests of eastern North America have experienced decades of acidic deposition, leading to soil acidification where base cation supply was insufficient to neutralize acid inputs. Negative impacts of soil acidity on amphibians include disrupted embryonic development, lower growth rates, and habitat loss. However, some amphibians exhibit intraspecific variation in acid tolerance, suggesting the potential for local adaptation in areas where soils are naturally acidic. The eastern red-backed salamander (Plethodon cinereus) is a highly abundant top predator of the northern hardwood forest floor. Early research found that P. cinereus was sensitive to acidic soils, avoiding substrates with pH < 3.8 and experiencing decreased growth rates in acidic habitats. However, recent studies have documented P. cinereus populations in lower pH conditions than previously observed, suggesting some populations may persist in acidic conditions. Here, we evaluated relationships between organic horizon soil pH and P. cinereus abundance, adult health (body size and condition), and microhabitat selection, based on surveys of 34 hardwood forests in northeastern United States that encompass a regional soil pH gradient. We found no associations between soil pH and P. cinereus abundance or health, and observed that this salamander used substrates with pH similar to that available, suggesting that pH does not mediate their fine-scale distributions. The strongest negative predictor of P. cinereus abundance was the presence of dusky salamanders (Desmognathus spp.), which were most abundant in the western Adirondacks. Our results indicate that P. cinereus occupies a wider range of soil pH than has been previously thought, which has implications for their functional role in forest food webs and nutrient cycles in acid-impaired ecosystems. Tolerance of P. cinereus for more acidic habitats, including anthropogenically acidified forests, may be due to local adaptation in

  5. Factors controlling inter-catchment variation of mean transit time with consideration of temporal variability

    NASA Astrophysics Data System (ADS)

    Ma, Wenchao; Yamanaka, Tsutomu

    2016-03-01

    The catchment transit time, a lumped descriptor reflecting both time scale and spatial structure of catchment hydrology can provide useful insights into chemical/nuclear pollution risks within a catchment. Despite its importance, factors controlling spatial variation of mean transit time (MTT) are not yet well understood. In this study, we estimated time-variant MTTs for about ten years (2003-2012) in five mesoscale sub-catchments of the Fuji River catchment, central Japan, to establish the factors controlling their inter-catchment variation with consideration of temporal variability. For this purpose, we employed a lumped hydrological model that was calibrated and validated by hydrometric and isotopic tracer observations. Temporal variation patterns of estimated MTT were similar in all sub-catchments, but with differing amplitudes. Inter-catchment variation of MTT was greater in dry periods than wet periods, suggesting spatial variation of MTT is controlled by water 'stock' rather than by 'flow'. Although the long-term average MTT (LAMTT) in each catchment was correlated with mean slope, coverage of forest (or conversely, other land use types), coverage of sand-shale conglomerate, and groundwater storage, the multiple linear regression revealed that inter-catchment variation of LAMTT is principally controlled by the amount of groundwater storage. This is smaller in mountainous areas covered mostly by forests and greater in plain areas with less forest coverage and smaller slope. This study highlights the topographic control of MTT via groundwater storage, which might be a more important factor in mesoscale catchments, including both mountains and plains, rather than in smaller catchments dominated by mountainous topography.

  6. Physiological ecology of Mougeotia (Zygnemataceae) from an experimentally acidified lake

    SciTech Connect

    Arancibia-Avila, P.E.

    1994-01-01

    Filamentous green algae were collected in July, 1989, from metaphytic blooms that occurred in the acidified (pH 5.2) basin, but not an unacidified reference basin (pH 6.1) of Little Rock Lake, Vilas Co., WI. Isolates of a Mougeotia species and Spirogyra reflexa were cultured at pH 5.5, with aeration. Measurements Of O[sub 2] production in a factorial experiment revealed optimal irradiance and temperature for photosynthesis in Mougeotia were 2500 [mu]E[center dot]m[sup [minus]2][center dot]s[sup [minus]l] and 25[degrees]C. Additional O[sub 2] evolution measurements showed that the optimal pH for Mougeotia photosynthesis was 8, but that net photosynthesis was positive from pH 8 to 3. Further studies indicated that Mougeotia was tolerant to concentrations of zinc and aluminum that were greater than levels observed in the acidified basin of the lake. Since inorganic carbon (C[sub i]) is known to limit Mougeotia photosynthesis and growth in acidified lakes, the occurrence of carbonic anhydrase (CA) as a mechanism for uptake and concentration of C[sub i] was investigated. No CA activity was detected in S. reflexa. In contrast, both external and internal CA were measured in Mougeotia at pH 3.7 and at pH 8. By comparison to pH 8, at pH 3.7 external CA activity increased by a factor of about 2. An antibody to Chlamydomonas external CA was used to localize CA in the plasma membrane and cell wall of both Chlamydomonas and Mougeotia. When unaerated (DIC-limited) Mougeotia was grown in SD11 medium supplemented with 1% glucose, chlorophyll a levels were significantly higher than for cultures grown without sugar. Chloroplast morphology was also judged superior for sugar-supplemented cultures. The data suggest that Mougeotia possesses a DIC-concentrating system, and may also be able to import DOC (glucose).

  7. Growth potential of Clostridium perfringens from spores in acidified beef, pork and poultry products during chilling

    USDA-ARS?s Scientific Manuscript database

    The ability of C. perfringens to germinate and grow in acidified ground beef as well as in ten commercially prepared acidified beef, pork and poultry products was assessed. The pH of ground beef was adjusted using organic vinegar to achieve various pH values between 5.0 and 5.6; the pH of the commer...

  8. Improvement of heating uniformity in packaged acidified vegetables pasteurized with a 915 MHz continuous microwave system

    USDA-ARS?s Scientific Manuscript database

    Continuous microwave processing to produce shelf-stable acidified vegetables with moderate to high salt contents poses challenges in pasteurization due to reduced microwave penetration depths and non-uniform heating. Cups of sweetpotato, red bell pepper, and broccoli acidified to pH 3.8 with citric...

  9. Hydro-Biogeochemical Approaches to Understanding of Water Cycling in the Gwangneung Coniferous Catchment, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, S.; Choi, H.; Lim, J.

    2012-12-01

    The spatial and temporal sources of headwater catchment runoff are important factors in our understanding of the dominant controls on catchment runoff. The information on flowpath, storage, residence time, and interactions of water and materials transport in a catchment is the prerequisite to the understanding and predicting of water cycling in the mountainous landscapes. In this presentation, along with some up-to-date results of hydro-biogeochemical researches, we present the principal methods that are currently used in Forest Water Resources Laboratory, Korea Forest Research Institute to obtain such information. Various catchment hydrological processes have been examined on the basis of the water table fluctuations, the end-member mixing model, the cross correlation analysis, and stable isotope. The stream discharge from the surface and shallow soil layer momentarily dominated at peak flow, and then its relative contribution decreased as precipitation intensity declined. Such a pattern (though with a greater magnitude) is consistent with those reported in many mixing-model studies of forested catchments. Overall surface discharge, on the other hand, steadily increased with subsequent storm events throughout the season. The previous study suggested that maintained precipitation expands saturation zone and increases macropore flow in the forested catchment. Such a macropore flow delivers new water in which dissolved ion concentrations are low because of short contact time with soil and bedrock. In the Gwangneung coniferous forest catchment, the contribution of surface discharge was relatively large, and the changes in the amount, intensity and patterns of precipitation affected both the flowpath and the mean residence time of water. Particularly during the summer monsoon, changes in precipitation patterns and hydrological processes in the catchment influenced the carbon cycle such that the persistent precipitation increased the discharge of dissolved organic

  10. Effects of acidified seawater on coral calcification and symbiotic algae on the massive coral Porites australiensis.

    PubMed

    Iguchi, Akira; Ozaki, Saori; Nakamura, Takashi; Inoue, Mayuri; Tanaka, Yasuaki; Suzuki, Atsushi; Kawahata, Hodaka; Sakai, Kazuhiko

    2012-02-01

    We investigated the effect of acidified seawater on calcification and symbiotic algae (zooxanthellae density, chlorophyll content per single algal cell, fluorescence yield (Fv/Fm)) on a massive coral, Porites australiensis, a common species in the Ryukyu Archipelago of Japan. We found that acidified seawater significantly decreased the calcification and fluorescence yield, but did not affect zooxanthellae density and chlorophyll content per single algal cell. This indicates low levels of photoacclimation to acidified seawater in this species, and this is contrary to the findings of previous studies of Acropora species. A significant correlation between calcification and fluorescence yield was observed, indicating the presence of a strong relationship between calcification and algal photosynthesis. Our results indicate that endosymbiont photosynthetic dysfunction may enhance the decrease of coral calcification in future acidified ocean conditions. Calcification and fluorescence yield among colonies clearly differed, showing that the response to acidified seawater is highly variable among colonies in natural coral populations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis

    PubMed Central

    Barott, Katie L.; Venn, Alexander A.; Perez, Sidney O.; Tambutté, Sylvie; Tresguerres, Martin

    2015-01-01

    Symbiotic dinoflagellate algae residing inside coral tissues supply the host with the majority of their energy requirements through the translocation of photosynthetically fixed carbon. The algae, in turn, rely on the host for the supply of inorganic carbon. Carbon must be concentrated as CO2 in order for photosynthesis to proceed, and here we show that the coral host plays an active role in this process. The host-derived symbiosome membrane surrounding the algae abundantly expresses vacuolar H+-ATPase (VHA), which acidifies the symbiosome space down to pH ∼4. Inhibition of VHA results in a significant decrease in average H+ activity in the symbiosome of up to 75% and a significant reduction in O2 production rate, a measure of photosynthetic activity. These results suggest that host VHA is part of a previously unidentified carbon concentrating mechanism for algal photosynthesis and provide mechanistic evidence that coral host cells can actively modulate the physiology of their symbionts. PMID:25548188

  12. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis.

    PubMed

    Barott, Katie L; Venn, Alexander A; Perez, Sidney O; Tambutté, Sylvie; Tresguerres, Martin

    2015-01-13

    Symbiotic dinoflagellate algae residing inside coral tissues supply the host with the majority of their energy requirements through the translocation of photosynthetically fixed carbon. The algae, in turn, rely on the host for the supply of inorganic carbon. Carbon must be concentrated as CO2 in order for photosynthesis to proceed, and here we show that the coral host plays an active role in this process. The host-derived symbiosome membrane surrounding the algae abundantly expresses vacuolar H(+)-ATPase (VHA), which acidifies the symbiosome space down to pH ∼ 4. Inhibition of VHA results in a significant decrease in average H(+) activity in the symbiosome of up to 75% and a significant reduction in O2 production rate, a measure of photosynthetic activity. These results suggest that host VHA is part of a previously unidentified carbon concentrating mechanism for algal photosynthesis and provide mechanistic evidence that coral host cells can actively modulate the physiology of their symbionts.

  13. Mapping of hydropedologic spatial patterns in a steep headwater catchment

    Treesearch

    Cody P. Gillin; Scott W. Bailey; Kevin J. McGuire; John P. Gannon

    2015-01-01

    A hydropedologic approach can be used to describe soil units affected by distinct hydrologic regimes. We used field observations of soil morphology and geospatial information technology to map the distribution of five hydropedologic soil units across a 42-ha forested headwater catchment. Soils were described and characterized at 172 locations within Watershed 3, the...

  14. The artificial catchment

    NASA Astrophysics Data System (ADS)

    Schaaf, W.; Gerwin, W.; Kögel-Knabner, I.; Zeyer, J.; Hüttl, R. F.

    2009-04-01

    The artificial catchment ´Chicken Creeḱ is the main research site of the Transregional Collaborative Research Center SFB/TRR 38. Funded by the Deutsche Forschungsgemeinschaft, the SFB/TRR 38 has gathered more than 50 scientists from BTU Cottbus, TU Munich and ETH Zurich to study the patterns and processes - and their interaction - of the initial phase of ecosystem development in an artificial catchment. The catchment was constructed in 2003 to 2005 in the Lusatian lignite-mining area close to Cottbus, Germany. It has an area of 6 ha including a small lake and is mainly composed of a 2-4 m layer of sandy to loamy Quaternary overburden sediments above a 1-2 m clay layer that seals the total catchment area at the bottom. No restoration, planting or other reclamation measures were carried out. Main research objectives are: Which abiotic and biotic patterns and processes are regulating the initial phase of ecosystem development? How do processes interact with abiotic and biotic patterns? Which patterns and processes can be used to define development stages? Which parameters are suitable for generalization and application to other initial ecosystems? The presentation will present the research concept of the SFB/TRR 38, the construction process of the catchment and first results.

  15. Comparison of a Powdered, Acidified Liquid, and Non-Acidified Liquid Human Milk Fortifier on Clinical Outcomes in Premature Infants

    PubMed Central

    Thoene, Melissa; Lyden, Elizabeth; Weishaar, Kara; Elliott, Elizabeth; Wu, Ruomei; White, Katelyn; Timm, Hayley; Anderson-Berry, Ann

    2016-01-01

    We previously compared infant outcomes between a powdered human milk fortifier (P-HMF) vs. acidified liquid HMF (AL-HMF). A non-acidified liquid HMF (NAL-HMF) is now commercially available. The purpose of this study is to compare growth and outcomes of premature infants receiving P-HMF, AL-HMF or NAL-HMF. An Institutional Review Board (IRB) approved retrospective chart review compared infant outcomes (born < 2000 g) who received one of three HMF. Growth, enteral nutrition, laboratory and demographic data were compared. 120 infants were included (P-HMF = 46, AL-HMF = 23, NAL-HMF = 51). AL-HMF infants grew slower in g/day (median 23.66 vs. P-HMF 31.27, NAL-HMF 31.74 (p < 0.05)) and in g/kg/day, median 10.59 vs. 15.37, 14.03 (p < 0.0001). AL-HMF vs. NAL-HMF infants were smaller at 36 weeks gestational age (median 2046 vs. 2404 g, p < 0.05). However AL-HMF infants received more daily calories (p = 0.21) and protein (p < 0.0001), mean 129 cal/kg, 4.2 g protein/kg vs. P-HMF 117 cal/kg, 3.7 g protein/kg , NAL-HMF 120 cal/kg, 4.0 g protein/kg. AL-HMF infants exhibited lower carbon dioxide levels after day of life 14 and 30 (p < 0.0001, p = 0.0038). Three AL-HMF infants (13%) developed necrotizing enterocolitis (NEC) vs. no infants in the remaining groups (p = 0.0056). A NAL-HMF is the most optimal choice for premature human milk-fed infants in a high acuity neonatal intensive care unit (NICU). PMID:27472359

  16. Comparison of a Powdered, Acidified Liquid, and Non-Acidified Liquid Human Milk Fortifier on Clinical Outcomes in Premature Infants.

    PubMed

    Thoene, Melissa; Lyden, Elizabeth; Weishaar, Kara; Elliott, Elizabeth; Wu, Ruomei; White, Katelyn; Timm, Hayley; Anderson-Berry, Ann

    2016-07-26

    We previously compared infant outcomes between a powdered human milk fortifier (P-HMF) vs. acidified liquid HMF (AL-HMF). A non-acidified liquid HMF (NAL-HMF) is now commercially available. The purpose of this study is to compare growth and outcomes of premature infants receiving P-HMF, AL-HMF or NAL-HMF. An Institutional Review Board (IRB) approved retrospective chart review compared infant outcomes (born < 2000 g) who received one of three HMF. Growth, enteral nutrition, laboratory and demographic data were compared. 120 infants were included (P-HMF = 46, AL-HMF = 23, NAL-HMF = 51). AL-HMF infants grew slower in g/day (median 23.66 vs. P-HMF 31.27, NAL-HMF 31.74 (p < 0.05)) and in g/kg/day, median 10.59 vs. 15.37, 14.03 (p < 0.0001). AL-HMF vs. NAL-HMF infants were smaller at 36 weeks gestational age (median 2046 vs. 2404 g, p < 0.05). However AL-HMF infants received more daily calories (p = 0.21) and protein (p < 0.0001), mean 129 cal/kg, 4.2 g protein/kg vs. P-HMF 117 cal/kg, 3.7 g protein/kg , NAL-HMF 120 cal/kg, 4.0 g protein/kg. AL-HMF infants exhibited lower carbon dioxide levels after day of life 14 and 30 (p < 0.0001, p = 0.0038). Three AL-HMF infants (13%) developed necrotizing enterocolitis (NEC) vs. no infants in the remaining groups (p = 0.0056). A NAL-HMF is the most optimal choice for premature human milk-fed infants in a high acuity neonatal intensive care unit (NICU).

  17. Changes in stream nitrate concentrations due to land management practices, ecological succession, and climate: Developing a system approach to integrated catchment response

    Treesearch

    F. Worrall; Wayne T. Swank; T. P. Burt

    2003-01-01

    This study uses time series analysis to examine long-term stream water nitrate concentration records from a pair of forested catchments at the Coweeta Hydrologic Laboratory, North Carolina, USA. Monthly average concentrations were available from 1970 through 1997 for two forested catchments, one of which was clear-felled in 1977 and the other maintained as a control....

  18. Process performance of anaerobic co-digestion of raw and acidified pig slurry.

    PubMed

    Moset, V; Cerisuelo, A; Sutaryo, S; Møller, H B

    2012-10-15

    The effect of incorporating different ratios of acidified pig slurry on methane yield was evaluated in two scales of anaerobic digesters: Thermophilic (50 °C) pilot scale digester (120 l), operating with an average hydraulic retention time of 20 days and thermophilic (52 °C) full-scale digesters (10 and 30 m(3)), operating with an average hydraulic retention time of 30 days. In the lab-scale digester, different inclusion levels of acidified slurry (0-60%) were tested each 15 days, to determine the maximum ratio of acidified to non-acidified slurry causing inhibition and to find process state indicators helping to prevent process failure. In the full-scale digesters, the level of inclusion of the acidified slurry was chosen from the ratio causing methane inhibition in the pilot scale experiment and was carried on in a long-term process of 100 days. The optimal inclusion level of acidified pig slurry in anaerobic co-digestion with conventional slurry was 10%, which promoted anaerobic methane yield by nearly 20%. Higher inclusion levels caused methane inhibition and volatile fatty acids accumulations in both experiments. In order to prevent process failure, the most important traits to monitor in the anaerobic digestion of acidified pig slurry were found to be: sulfate content of the slurry, alkalinity parameters (especially partial alkalinity and the ratio of alkalinity) and total volatile fatty acids (especially acetic and butyric acids). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Sub-tropical freshwater storage catchments: major greenhouse gas sinks?

    NASA Astrophysics Data System (ADS)

    Grinham, Alistair; Dunbabin, Matthew

    2013-04-01

    The relatively unstudied catchments and freshwater storages of the sub-tropics represent a potentially important gap in understanding global greenhouse gas cycling. The low number of studies may bias attempts to include this region's contribution to global greenhouse gas cycling, as very few studies have examined the major drivers behind terrestrial and aquatic greenhouse cycling in such sub-tropical areas. In addition, the uncertainty associated in quantifying greenhouse gas emission rates is relatively unknown. This information is crucial to determine whether freshwater storages and their associated catchments are net sources or sinks of greenhouse gas. Here, we present a greenhouse gas audit of the catchment and freshwater storage of Little Nerang Dam to determine the greenhouse gas status of the system as a whole. Little Nerang Dam is a sub-tropical freshwater storage located in Southeast Queensland, Australia. The catchment is in a relatively pristine condition with over 85% native forest remaining dominated by carbon dense Eucalypt species trees. Aquatic surface area is approximately 0.5 km2 in contrast to the terrestrial surface area of 35 km2. This system is an ideal model to investigate drivers behind greenhouse cycling in a relatively undisturbed catchment. A comprehensive field survey was conducted to estimate the major pools of carbon including terrestrial above and belowground fractions as well as the aquatic sediment and water column fractions. Greenhouse rates of emissions and sequestration were monitored over an annual cycle; parameters included tree growth rates, soil respiration, forest litter fall rates and aquatic methane and nitrous oxide fluxes. Results demonstrated the terrestrial carbon pool exceeded the aquatic pool by at least 2 orders of magnitude. When emission and sequestration rates were expressed as CO2 equivalents per unit area catchment sequestration was approximately double that of catchment and storage emissions. When rates were

  20. Distributed topographic indicators for predicting nitrogen export from headwater catchments

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Beall, F. D.

    2009-10-01

    The possibility of using topographic indicators to predict spatial variation in dissolved nitrogen (N) export from headwater catchments was explored within a sugar maple forest in the Algoma Highlands of central Ontario, Canada, where the average annual export of total dissolved N export ranged from 3.58 to 6.96 kg N ha-1 a-1. Topographic indicators representing both "nondistributed" and "distributed" properties of the catchments were derived. Distributed topographic indicators that were designed to represent hydrologic flushing mechanism for N export were superior in predicting nitrate-N export, explaining up to 85% in average annual nitrate-N export and 90% in the slope of discharge versus peak nitrate-N export which occurred during spring melt. However, the distributed topographic indicators were comparable to nondistributed ones for dissolved organic nitrogen export, explaining up to 68% of the variance compared to 65%. This study shows that spatial variation in N export from catchments within a relatively small region can be substantial, but that distributed topographic indicators can be used to predict a majority of this N export and thereby provide a basis for extrapolating N export from a few intensively monitored catchments to many other catchments within the sugar maple forest of the Algoma Highlands.

  1. Reduction of hexavalent chromium in water samples acidified for preservation

    USGS Publications Warehouse

    Stollenwerk, K.G.; Grove, D.B.

    1985-01-01

    Reduction of hexavalent chromium, Cr(VI), in water samples, preserved by standard techniques, was investigated. The standard preservation technique for water samples that are to be analyzed for Cr(VI) consists of filtration through a 0.45-??m membrane, acidification to a pH < 2, and storage in plastic bottles. Batch experiments were conducted to evaluate the effect of H+ concentration, NO2, temperature, and dissolved organic carbon (DOC) on the reduction of Cr(VI) to Cr(III). The rate of reduction of Cr(VI) to Cr(III) increased with increasing NO2, DOC, H+, and temperature. Reduction of Cr(VI) by organic matter occurred in some samples even though the samples were unacidified. Reduction of Cr(VI) is inhibited to an extent by storing the sample at 4??C. Stability of Cr(VI) in water is variable and depends on the other constituents present in the sample. Water samples collected for the determination of Cr(VI) should be filtered (0.45-??m membrane), refrigerated, and analyzed as quickly as possible. Water samples should not be acidified. Measurement of total Cr in addition to Cr(VI) can serve as a check for Cr(VI) reduction. If total Cr is greater than Cr(VI), the possibility that Cr(VI) reduction has occurred needs to be considered.The rate of reduction of Cr(VI) to Cr(III) increased with increasing NO//2, DOC, H** plus , and temperature. Reduction of Cr(VI) by organic matter occurred in some samples even though the samples were unacidified. Reduction of Cr(VI) is inhibited to an extent by storing the sample at 4 degree C. Stability of Cr(VI) in water is variable and depends on the other constituents present in the sample. Water samples collected for the determination of Cr(VI) should be filtered (0. 45- mu m membrane), refrigerated, and analyzed as quickly as possible. Water samples should not be acidified. Measurement of total Cr in addition to Cr(VI) can serve as a check for Cr(VI) reduction. If total Cr is greater than Cr(VI), the possibility that Cr

  2. Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea.

    PubMed

    Hasani Sangani, Mohammad; Jabbarian Amiri, Bahman; Alizadeh Shabani, Afshin; Sakieh, Yousef; Ashrafi, Sohrab

    2015-04-01

    Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use.

  3. Assessing catchment connectivity using hysteretic loops

    NASA Astrophysics Data System (ADS)

    Davis, Jason; Masselink, Rens; Goni, Mikel; Gimenez, Rafael; Casali, Javier; Seeger, Manuel; Keesstra, Saskia

    2017-04-01

    texture topsoil), climate (humid sub Mediterranean) and land use (80-90% cultivated with winter grain crops). Ozkotz principal (ca.1,700 ha) is covered with forest and pasture (cattle-breeding); while Oskotz woodland (ca. 500 ha), a sub-watershed of the Oskotz principal, is almost completely covered with forest. The predominant climate in the Oskotz catchments sub-Atlantic. Furthermore, antecedent conditions and event characteristics were analysed. The loops were compared quantitatively and qualitatively between catchments for similar events and within the catchments for events with different characteristics. In this study, several measures to objectively classify hysteresis loops in an automated way were developed. These were consecutively used to classify several hundreds of loops from several agricultural catchments in Northern Spain. These loop characteristics were compared to event specific characteristics such as antecedent precipitation, time of year, and precipitation intensity, duration and total. The combination of hysteresis loops and variables influencing connectivity can then tell something about the sources of sediments for different events and catchments. References Baartman, J.E.M., Masselink, R.H., Keesstra, S.D., Temme, A.J.A.M., 2013. Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms 38: 1457-1471. Masselink RJH, Heckmann T, Temme AJAM, Anders NS, Gooren HPA, Keesstra SD. 2016. A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes. DOI: 10.1002/hyp.10993 Masselink, R.J.H., Keesstra, S.D., Temme, A.J.A.M., Seeger, M., Giménez, R., Casalí, J., 2016. Modelling Discharge and Sediment Yield at Catchment Scale Using Connectivity Components. Land Degradation and Development 27: 933-945, DOI: 10.1002/ldr.2512 Mekonnen, M., Keesstra, S.D., Baartman, J.E.M., Stroosnijder, L., Maroulis, J., Reducing sediment connectivity through man-made and natural

  4. Predicting long-term recovery of a strongly acidified stream using MAGIC and climate models (Litavka, Czech Republic)

    NASA Astrophysics Data System (ADS)

    Hardekopf, D. W.; Horecký, J.; Kopáček, J.; Stuchlík, E.

    2007-09-01

    Two branches forming the headwaters of a stream in the Czech Republic were studied. Both streams have similar catchment characteristics and historical deposition; however one is rain-fed and strongly affected by acid atmospheric deposition, the other spring-fed and only moderately acidified. The MAGIC model was used to reconstruct past stream water and soil chemistry of the rain-fed branch, and predict future recovery up to 2050 under current proposed emissions levels. A future increase in air temperature calculated by a regional climate model was then used to derive climate-related scenarios to test possible factors affecting chemical recovery up to 2100. Macroinvertebrates were sampled from both branches, and differences in stream chemistry were reflected in the community structures. According to modelled forecasts, recovery of the rain-fed branch will be gradual and limited, and continued high levels of sulphate release from the soils will continue to dominate stream water chemistry, while scenarios related to a predicted increase temperature will have little impact. The likelihood of colonization of species from the spring-fed branch was evaluated considering the predicted extent of chemical recovery. The results suggest that the possibility of colonization of species from the spring-fed branch to the rain-fed will be limited to only the acid-tolerant stonefly, caddisfly and dipteran taxa in the modelled period.

  5. Predicting long-term recovery of a strongly acidified stream using MAGIC and climate models (Litavka, Czech Republic)

    NASA Astrophysics Data System (ADS)

    Hardekopf, D. W.; Horecký, J.; Kopáček, J.; Stuchlík, E.

    2008-03-01

    Two branches forming the headwaters of a stream in the Czech Republic were studied. Both streams have similar catchment characteristics and historical deposition; however one is rain-fed and strongly affected by acid atmospheric deposition, the other spring-fed and only moderately acidified. The MAGIC model was used to reconstruct past stream water and soil chemistry of the rain-fed branch, and predict future recovery up to 2050 under current proposed emissions levels. A future increase in air temperature calculated by a regional climate model was then used to derive climate-related scenarios to test possible factors affecting chemical recovery up to 2100. Macroinvertebrates were sampled from both branches, and differences in stream chemistry were reflected in the community structures. According to modelled forecasts, recovery of the rain-fed branch will be gradual and limited, and continued high levels of sulphate release from the soils will continue to dominate stream water chemistry, while scenarios related to a predicted increase in temperature will have little impact. The likelihood of colonization of species from the spring-fed branch was evaluated considering the predicted extent of chemical recovery. The results suggest that the possibility of colonization of species from the spring-fed branch to the rain-fed will be limited to only the acid-tolerant stonefly, caddisfly and dipteran taxa in the modelled period.

  6. Forests or floods?

    Treesearch

    Tim Burt; Wayne Swank

    2002-01-01

    This article shows how experiments at the Coweeta Hydorlogic Laboratory is North Carolina have deepened our understanding at the ways in which forested catchments respond to land use change. Drainage-basin hydrology is a popular topic, often at AS. Human impact on stream discharge as a result of changes in vegetation cover is an important theme.

  7. Acidifying and yeast extract in diets for adults cats.

    PubMed

    Ogoshi, Rosana C S; Zangeronimo, Márcio G; Dos Reis, Jéssica S; França, Janine; Santos, João P F; Pires, Carolina P; Chizzotti, Ana F; Costa, Adriano C; Ferreira, Lívia G; Saad, Flávia M O B

    2014-05-01

    This study evaluated the effects of adding an acidifying agent based on phosphoric acid (A), a yeast extract from a specific strain (Saccharomyces cerevisiae) (Y) and the combination of these two additives in food for adult cats. A test was conducted with 24 animals (mean 3.5 years old), mixed breed, weighing 3.72 ± 0.74 kg, kept in individual metabolic cages and distributed in a completely randomized design with a 2 × 2 factorial design (with or without A 0.6% of dry matter, with or without Y 1.5% of dry matter) totalling four treatments and six replicates of each condition. The experimental period was 15 days. The A or the Y reduced (P< 0.01) the dry matter intake, but the effect was not observed when they were associated. The association improved (P<0.05) the digestibility of dry matter and ashes. The A reduced urine pH (P=0.05) regardless of the presence of the Y. There was no effect (P>0.09) on other parameters evaluated. Results of this study show that the isolated use of 0.6% A or 1.5% Y in diets for cats is not recommended. However, the association of these two additives was beneficial in increasing nutrient digestibility. © 2014 Japanese Society of Animal Science.

  8. Ion movement in acidified, low base saturated sand soils.

    Treesearch

    A. Ray Harris; Douglas M. Stone

    1992-01-01

    Describes factors causing cation export in leachate in low base saturated forested sand soils. Reports the effects of varying acid precipitation and litter-humus treatments on ion movement and interaction.

  9. Leaf breakdown in streams differing in catchment land use

    USGS Publications Warehouse

    Paul, M.J.; Meyer, J.L.; Couch, C.A.

    2006-01-01

    1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south-eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar-sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day-1) and urban (0.0474 day-1) streams than in suburban (0.0173 day-1) and forested (0.0100 day-1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land-use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff. ?? 2006 The Authors.

  10. Calcium isotope systematics in small upland catchments affected by spruce dieback in the period of extreme acid rain (1970-1990)

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Farkas, Juraj; Holmden, Chris; Hruska, Jakub; Curik, Jan; Stepanova, Marketa; Prechova, Eva; Veselovsky, Frantisek; Komarek, Arnost

    2017-04-01

    Recently, new isotope tools have become available to study the behavior of nutrients in stressed ecosystems. In this study, we focus on changes in the abundance ratio of calcium (Ca) isotopes accompanying biogeochemical processes in small forested catchments. We monitored del44Ca values in ecosystem pools and fluxes in four upland sites situated in the Czech Republic, Central Europe. A heavily acidified site in the Eagle Mts. (northern Czech Republic) experienced 13 times higher atmospheric Ca inputs, compared to the other three sites, which were less affected by forest decline. Industrial dust was responsible for the elevated Ca input. Del44Ca values of individual poos/fluxes were used to identify Ca sources for the bioavailable Ca soil reservoir and for runoff. The bedrock of the study sites differed (leucogranite, orthogneiss vs. serpentinite and amphibolite). Across the sites, mean del44Ca values increased in the order: spruce bark < fine roots < needles < soil < bedrock < canopy throughfall < open-area precipitation < runoff < soil water. Plant preferentially took up isotopically light Ca, while residual isotopically heavy Ca was sorbed to soil particles or exported via runoff. Even at sites with a low del44Ca values of bedrock, runoff had a high del44Ca value. At the base-poor site, most runoff came from atmospheric deposition and residual Ca following plant uptake. It appeared that bedrock weathering did not supply enough Ca to replenish the bioavailable Ca pool in the soil. Currently, we are analyzing Ca isotope composition of individual rock-forming minerals to better assess the effect of different weathering rates of minerals with low/high radiogenic 40Ca contents on runoff del44Ca.

  11. Modelling impacts of temperature, and acidifying and eutrophying deposition on DOC trends

    NASA Astrophysics Data System (ADS)

    Sawicka, Kasia; Rowe, Ed; Evans, Chris; Monteith, Don; Vanguelova, Elena; Wade, Andrew; Clark, Joanna

    2017-04-01

    Surface water dissolved organic carbon (DOC) concentrations in large parts of the northern hemisphere have risen over the past three decades, raising concern about enhanced contributions of carbon to the atmosphere and seas and oceans. The effect of declining acid deposition has been identified as a key control on DOC trends in soil and surface waters, since pH and ionic strength affect sorption and desorption of DOC. However, since DOC is derived mainly from recently-fixed carbon, and organic matter decomposition rates are considered sensitive to temperature, uncertainty persists regarding the extent to the relative importance of different drivers that affect these upward trends. We ran the dynamic model MADOC (Model of Acidity and Soil Organic Carbon) for a range of UK soils (podzols, gleysols and peatland), for which the time-series were available, to consider the likely relative importance of decreased deposition of sulphate and chloride, accumulation of reactive N, and higher temperatures, on DOC production in different soils. Modelled patterns of DOC change generally agreed favourably with measurements collated over 10-20 years, but differed markedly between sites. While the acidifying effect of sulphur deposition appeared to be the predominant control on the observed soil water DOC trends in all the soils considered other than a blanket peat, the model suggested that over the long term, the effects of nitrogen deposition on N-limited soils may have been sufficient to elevate the DOC recovery trajectory significantly. The second most influential cause of rising DOC in the model simulations was N deposition in ecosystems that are N-limited and respond with stimulated plant growth. Although non-marine chloride deposition made some contribution to acidification and recovery, it was not amongst the main drivers of DOC change. Warming had almost no effect on modelled historic DOC trends, but may prove to be a significant driver of DOC in future via its influence

  12. Redistribution of soil metals and organic carbon via lateral flowpaths at the catchment scale in a glaciated upland setting

    Treesearch

    Rebecca R. Bourgault; Donald S. Ross; Scott W. Bailey; Thomas D. Bullen; Kevin J. McGuire; John P. Gannon

    2017-01-01

    Emerging evidence shows that interactions between soils and subsurface flow paths contribute to spatial variations in stream water chemistry in headwater catchments. However, few have yet attempted to quantify chemical variations in soils at catchment and hillslope scales. Watershed 3 (WS3) at Hubbard Brook Experimental Forest, New Hampshire, USA, was studied in order...

  13. Release of Nitrogen and Phosphorus from Poultry Litter Amended with Acidified Biochar

    PubMed Central

    Doydora, Sarah A.; Cabrera, Miguel L.; Das, Keshav C.; Gaskin, Julia W.; Sonon, Leticia S.; Miller, William P.

    2011-01-01

    Application of poultry litter (PL) to soil may lead to nitrogen (N) losses through ammonia (NH3) volatilization and to potential contamination of surface runoff with PL-derived phosphorus (P). Amending litter with acidified biochar may minimize these problems by decreasing litter pH and by retaining litter-derived P, respectively. This study evaluated the effect of acidified biochars from pine chips (PC) and peanut hulls (PH) on NH3 losses and inorganic N and P released from surface-applied or incorporated PL. Poultry litter with or without acidified biochars was surface-applied or incorporated into the soil and incubated for 21 d. Volatilized NH3 was determined by trapping it in acid. Inorganic N and P were determined by leaching the soil with 0.01 M of CaCl2 during the study and by extracting it with 1 M KCl after incubation. Acidified biochars reduced NH3 losses by 58 to 63% with surface-applied PL, and by 56 to 60% with incorporated PL. Except for PH biochar, which caused a small increase in leached NH4 +-N with incorporated PL, acidified biochars had no effect on leached or KCl-extractable inorganic N and P from surface-applied or incorporated PL. These results suggest that acidified biochars may decrease NH3 losses from PL but may not reduce the potential for P loss in surface runoff from soils receiving PL. PMID:21655132

  14. Release of nitrogen and phosphorus from poultry litter amended with acidified biochar.

    PubMed

    Doydora, Sarah A; Cabrera, Miguel L; Das, Keshav C; Gaskin, Julia W; Sonon, Leticia S; Miller, William P

    2011-05-01

    Application of poultry litter (PL) to soil may lead to nitrogen (N) losses through ammonia (NH(3)) volatilization and to potential contamination of surface runoff with PL-derived phosphorus (P). Amending litter with acidified biochar may minimize these problems by decreasing litter pH and by retaining litter-derived P, respectively. This study evaluated the effect of acidified biochars from pine chips (PC) and peanut hulls (PH) on NH(3) losses and inorganic N and P released from surface-applied or incorporated PL. Poultry litter with or without acidified biochars was surface-applied or incorporated into the soil and incubated for 21 d. Volatilized NH(3) was determined by trapping it in acid. Inorganic N and P were determined by leaching the soil with 0.01 M of CaCl(2) during the study and by extracting it with 1 M KCl after incubation. Acidified biochars reduced NH(3) losses by 58 to 63% with surface-applied PL, and by 56 to 60% with incorporated PL. Except for PH biochar, which caused a small increase in leached NH(4) (+)-N with incorporated PL, acidified biochars had no effect on leached or KCl-extractable inorganic N and P from surface-applied or incorporated PL. These results suggest that acidified biochars may decrease NH(3) losses from PL but may not reduce the potential for P loss in surface runoff from soils receiving PL.

  15. The fate of sulfate in acidified pig slurry during storage and following application to cropped soil.

    PubMed

    Eriksen, Jørgen; Sørensen, Peter; Elsgaard, Lars

    2008-01-01

    Acidification of slurry with sulfuric acid is a recent agricultural practice that may serve a double purpose: reducing ammonia emission and ensuring crop sulfur sufficiency. We investigated S transformations in untreated and acidified pig slurry stored for up to 11 mo at 2, 10, or 20 degrees C. Furthermore, the fertilizer efficiency of sulfuric acid in acidified slurry was investigated in a pot experiment with spring barley. The sulfate content from acidification with sulfuric acid was relatively stable and even after 11 mo of storage the majority was in the plant-available sulfate form. Microbial sulfate reduction during storage of acidified pig slurry was limited, presumably due to initial pH effects and a limitation in the availability of easily degradable organic matter. Sulfide accumulation was observed during storage but the sulfide levels in acidified slurry did not exceed those of the untreated slurry for several months after addition. The S fertilizer value of the acidified slurry was considerable as a result of the stable sulfate pool during storage. The high content of inorganic S in the acidified slurry may potentially lead to development of odorous volatile sulfur-containing compounds and investigations are needed into the relationship between odor development and the C and S composition of the slurry.

  16. In vivo investigation of acidified pepsin exposure to porcine vocal fold epithelia.

    PubMed

    Durkes, Abigail; Sivasankar, M Preeti

    2016-01-01

    The study objective was to investigate epithelial changes in response to direct, repeated, acidified pepsin exposures in an in vivo porcine model. We hypothesized that 12 acidified pepsin applications to simulate reflux would elicit a vocal fold response characterized by inflammation, epithelial proliferation, and increased intercellular space, as well as changes in the gene expression of epithelial junctional proteins, ion transporter proteins, and proinflammatory cytokines. Prospective, in vivo study. Pigs received acidified pepsin (pH = 4) or saline (sham) applied directly to vocal folds. Larynges were collected following three exposures per week for 4 weeks. Vocal fold tissue morphology, collagen, and elastin were evaluated histologically. Gene expression of E-cadherin, zona occludens-1, cystic fibrosis transmembrane conductance regulator, epithelial sodium channel, interleukin-1β, tumor necrosis factor-α, and interferon-γ were measured. Ultrastructural alterations, epithelial intercellular space diameter, and microridge height were measured using transmission electron microscopy. There were no significant differences in histology, gene transcripts, epithelial ultrastructure, intercellular space, and microridge height after acidified pepsin exposure. Twelve simulated reflux challenges were insufficient to elicit epithelial changes, demonstrating the resistance of healthy vocal folds to direct, repeated acidified pepsin exposures. These data increase our understanding of healthy vocal fold defenses and lay the groundwork for a prospective, uninjured, nonsurgical, laryngopharyngeal reflux model where pigs can be exposed directly to acidified pepsin. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Elevated Colonization of Microborers at a Volcanically Acidified Coral Reef

    PubMed Central

    Enochs, Ian C.; Manzello, Derek P.; Tribollet, Aline; Valentino, Lauren; Kolodziej, Graham; Donham, Emily M.; Fitchett, Mark D.; Carlton, Renee; Price, Nichole N.

    2016-01-01

    Experiments have demonstrated that ocean acidification (OA) conditions projected to occur by the end of the century will slow the calcification of numerous coral species and accelerate the biological erosion of reef habitats (bioerosion). Microborers, which bore holes less than 100 μm diameter, are one of the most pervasive agents of bioerosion and are present throughout all calcium carbonate substrates within the reef environment. The response of diverse reef functional groups to OA is known from real-world ecosystems, but to date our understanding of the relationship between ocean pH and carbonate dissolution by microborers is limited to controlled laboratory experiments. Here we examine the settlement of microborers to pure mineral calcium carbonate substrates (calcite) along a natural pH gradient at a volcanically acidified reef at Maug, Commonwealth of the Northern Mariana Islands (CNMI). Colonization of pioneer microborers was higher in the lower pH waters near the vent field. Depth of microborer penetration was highly variable both among and within sites (4.2–195.5 μm) over the short duration of the study (3 mo.) and no clear relationship to increasing CO2 was observed. Calculated rates of biogenic dissolution, however, were highest at the two sites closer to the vent and were not significantly different from each other. These data represent the first evidence of OA-enhancement of microboring flora colonization in newly available substrates and provide further evidence that microborers, especially bioeroding chlorophytes, respond positively to low pH. The accelerated breakdown and dissolution of reef framework structures with OA will likely lead to declines in structural complexity and integrity, as well as possible loss of essential habitat. PMID:27467570

  18. Acidified sodium chlorite antimicrobial treatment of broiler carcasses.

    PubMed

    Kemp, G K; Aldrich, M L; Waldroup, A L

    2000-08-01

    An acidified sodium chlorite (ASC) solution was investigated for its antimicrobial effects on broiler carcasses processed under conditions similar to those used in U.S. commercial poultry facilities. Of particular interest was the ability of the ASC solution to reduce natural bioburden in a prechill procedure. A number of parameters such as pretreatment washing of carcasses with water (no wash versus water wash), ASC concentration (500, 850, and 1,200 ppm), method of application (spray versus dip), and method of acid activation (phosphoric acid versus citric acid) were explored to evaluate disinfection conditions. ASC dip solutions (18.9 liters) were freshly prepared for groups of five prechill eviscerated carcasses per treatment (n = 10 carcasses). ASC treatment was shown to be an effective method for significantly reducing naturally occurring microbial contamination on carcasses. Reductions following immersion dipping were demonstrated at all disinfectant concentrations for total aerobes (82.9 to 90.7%), Escherichia coli (99.4 to 99.6%), and total coliforms (86.1 to 98.5%). Additionally, testing showed that ASC solutions maintained stable pH and minimal chlorite ion concentration deviations throughout each treatment. The results of the parameter evaluations indicated that maximal antimicrobial activity was achieved in carcasses that were prewashed and then exposed to a 5-s dip in a solution containing phosphoric acid- or citric acid-activated ASC. At 1,200 ppm ASC, a mild but transitory whitening of the skin was noted on dipped carcasses. The results support the methods currently approved by the U.S. Department of Agriculture for the use of ASC solutions as a prechill antimicrobial intervention in U.S. poultry processing plants.

  19. Detecting non-stationary hydrologic model parameters in a paired catchment system using data assimilation

    NASA Astrophysics Data System (ADS)

    Pathiraja, S.; Marshall, L.; Sharma, A.; Moradkhani, H.

    2016-08-01

    Non-stationarity represents one of the major challenges facing hydrologists. There exists a need to develop modelling systems that are capable of accounting for potential catchment changes, in order to provide useful predictions for the future. Such changes may be due to climatic temporal variations or human induced changes to land cover. Extensive research has been undertaken on the impacts of land-use change on hydrologic behaviour, however, few studies have examined this issue in a predictive modelling context. In this paper, we investigate whether a time varying model parameter estimation framework that uses the principles of Data Assimilation can improve prediction for two pairs of experimental catchments in Western Australia. All catchments were initially forested, but after three years one catchment was fully cleared whilst another had only 50% of its area cleared. Their adjacent catchments remained unchanged as a control. Temporal variations in parameters were detected for both treated catchments, with no comparable variations for the control catchments. Improved streamflow prediction and representation of soil moisture dynamics were also seen for the time varying parameter case, compared to when a time invariant parameter set from the calibration period was used. While we use the above mentioned catchments to illustrate the usefulness of the approach, the methods are generic and equally applicable in other settings. This study serves as an important validation step to demonstrate the potential for time varying model structures to improve both predictions and modelling of changing catchments.

  20. Temporal and Spatial Patterns of Preferential Flow Occurrence in the Shale Hills Catchment: From the Hillslope to the Catchment Scales

    NASA Astrophysics Data System (ADS)

    Liu, H.; Lin, H.

    2013-12-01

    Understanding temporal and spatial patterns of preferential flow (PF) occurrence is important in revealing hillslope and catchment hydrologic and biogeochemical processes. Quantitative assessment of the frequency and control of PF occurrence in the field, however, has been limited, especially at the landscape scale of hillslope and catchment. By using 5.5-years' (2007-2012) real-time soil moisture at 10 sites response to 323 precipitation events, we tested the temporal consistency of PF occurrence at the hillslope scale in the forested Shale Hills Catchment; and by using 25 additional sites with at least 1-year data (2011-2012), we evaluated the spatial patterns of PF occurrence across the catchment. To explore the potential effects of PF occurrence on catchment hydrology, wavelet analysis was performed on the recorded time series of hydrological signals (i.e., precipitation, soil moisture, catchment discharge). Considerable temporal consistence was observed in both the frequency and the main controls of PF occurrence at the hillslope scale, which was attributed largely to the statistical stability of precipitation pattern over the monitoring period and the relatively stable subsurface preferential pathways. Preferential flow tended to occur more often in response to intense rainfall events, and favored the conditions at dry hilltop or wet valley floor sites. When upscaling to the entire catchment, topographic control on the PF occurrence was amplified remarkably, leading to the identification of a subsurface PF network in the catchment. Higher frequency of PF occurrence was observed at the valley floor (average 48%), hilltop (average 46%), and swales/hillslopes near the stream (average 40%), while the hillslopes in the eastern part of the catchment were least likely to experience PF (0-20%). No clear relationship, however, was observed between terrain attributes and PF occurrence, because the initiation and persistency of PF in this catchment was controlled

  1. Moments of catchment storm area

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.; Wang, Q.

    1985-01-01

    The portion of a catchment covered by a stationary rainstorm is modeled by the common area of two overlapping circles. Given that rain occurs within the catchment and conditioned by fixed storm and catchment sizes, the first two moments of the distribution of the common area are derived from purely geometrical considerations. The variance of the wetted fraction is shown to peak when the catchment size is equal to the size of the predominant storm. The conditioning on storm size is removed by assuming a probability distribution based upon the observed fractal behavior of cloud and rainstorm areas.

  2. Moments of catchment storm area

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.; Wang, Q.

    1985-01-01

    The portion of a catchment covered by a stationary rainstorm is modeled by the common area of two overlapping circles. Given that rain occurs within the catchment and conditioned by fixed storm and catchment sizes, the first two moments of the distribution of the common area are derived from purely geometrical considerations. The variance of the wetted fraction is shown to peak when the catchment size is equal to the size of the predominant storm. The conditioning on storm size is removed by assuming a probability distribution based upon the observed fractal behavior of cloud and rainstorm areas.

  3. Carbon redistribution by erosion processes in an intensively disturbed catchment

    NASA Astrophysics Data System (ADS)

    Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and

  4. Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments

    NASA Astrophysics Data System (ADS)

    Reader, H. E.; Stedmon, C. A.; Kritzberg, E. S.

    2014-06-01

    To examine the potential influence of terrestrially derived DOM on the Baltic Sea, a year-long study of dissolved organic matter (DOM) was performed in three river catchments in Sweden. One catchment drains into the Bothnian Sea, while two southern catchments drain into the Baltic proper. Dissolved organic carbon (DOC) concentrations were positively correlated with discharge from forested catchments over the year. While the overall concentrations of DOC were several times higher in the southern two catchments, higher discharge in the northern catchment resulted in the annual loadings of DOC being on the same order of magnitude for all three catchments. Biological oxygen demand (BOD) was used as a proxy for the lability of carbon in the system. The range of BOD values was similar for all three catchments, however, the ratio of BOD to DOC (an indication of the labile fraction) in Ume river was four times higher than in the southern two catchments. Total annual BOD loading to the Baltic Sea was twice as high in the northern catchment than in the two southern catchments. Lower winter temperatures and preservation of organic matter in the northern catchment combined with an intense spring flood help to explain the higher concentrations of labile carbon in the northern catchment. Lower lability of DOM as well as higher colour in the southern catchments suggest that wetlands (i.e. peat bogs) may be the dominant source of DOM in these catchments, particularly in periods of low flow. With climate change expected to increase precipitation events and temperatures across the region, the supply and quality of DOM delivered to the Baltic Sea can also be expected to change. Our results indicate that DOM supply to the Baltic Sea from boreal rivers will be more stable throughout the year, and potentially have a lower bioavailability.

  5. Multiple-method approaches for quantifying fine sediment dynamics in river catchments over contemporary timescales

    NASA Astrophysics Data System (ADS)

    Smith, Hugh

    2015-04-01

    Understanding the patterns and processes of contemporary fine sediment dynamics in river catchments constitutes a key research challenge for catchment scientists. Such knowledge has considerable value for the targeting of management resources to reduce excess fine sediment supply and its impacts on water resources and aquatic ecosystems. Many past studies tended to focus on a single compartment of the fine sediment cascade and utilised a limited range of research methods. For more holistic understanding, the use of multiple-method approaches is required to provide data on the sources, transfer, storage, and transit times of fine sediment in river catchments. Such approaches would allow scientists to better conceptualise catchment processes controlling the movement of fine sediment across a range of spatial scales. It may also enhance the scientific quality of catchment-scale studies through the acquisition of multiple lines of evidence concerning a particular research problem. The specific combination of fine sediment tracing and fingerprinting procedures with catchment sediment flux measurements and sediment budget modelling has considerable potential to enhance our knowledge of contemporary sediment dynamics. This combination of techniques offers complementary information and the opportunity to compare datasets, such as estimates of catchment sediment source contributions obtained using sediment tracers with direct measurements of sediment fluxes or catchment model outputs. This contribution explores the potential for such combinations of methods to yield distinctive insights not otherwise available from the use of only one of these techniques. It draws on published examples of multiple-method studies by the author from small agricultural and wildfire-affected forest catchments (1-2 km2) in south-east Australia and from larger agricultural river catchments (38-920 km2) in south-west England. It will also identify possible directions for catchment research based

  6. The "Teflon basin" myth: Snow-soil interactions in mountain catchments in the western US

    NASA Astrophysics Data System (ADS)

    Williams, M. W.; Cowie, R. M.

    2015-12-01

    In much of western North America, snow and snowmelt provide the primary means for storage of winter precipitation, effectively transferring water from the relatively wet winter season to the typically dry summers. A common assumption is that high-elevation catchments in the western United States behave like "Teflon basins" and that water released from seasonal storage in snow packs flows directly into streams with little or no interaction with underlying soils. Here I present information from a variety of catchments in the Colorado Front Range on snowmelt/soil interactions using isotopic, geochemical, nutrient and hydrometric data in 2- and 3- component hydrograph separations, along with end-member mixing analysis (EMMA). For most catchments we measured these parameters in weekly precipitation, the seasonal snowpack, snowmelt before contact with the ground, discharge, springs, soil solution, and groundwater. We ran EMMA at the catchment scale for catchments that represent the rain-snow transition zone in the montane forest, the seasonally snow covered sub-alpine to alpine transition zone, and a high-elevation alpine zone near the continental divide. In all catchments three end-members were the source waters for about 95% of discharge. Two end-members were the same in all catchments, snow and groundwater. For the alpine catchment talus springs was the third water source, while rain was the third water source in the two lower-elevation catchments. For all three catchments, soil solution plotted with stream waters along or near a line connecting the snow and groundwater end-members. Thus, for seasonally snow-covered catchments from montane to alpine ecosystems, snowmelt infiltrates underlying soils before snowmelt recharges groundwater reservoirs and contributes to surface flows. Seasonally snow-covered catchments are not Teflon basins. Rather, snowmelt infiltrates soils where solute concentrations are changed by biological and geochemical processes.

  7. Is the subarctic landscape still a carbon sink? Evidence from a detailed catchment balance

    NASA Astrophysics Data System (ADS)

    Lundin, Erik J.; Klaminder, Jonatan; Giesler, Reiner; Persson, Andreas; Olefeldt, David; Heliasz, Michal; Christensen, Torben R.; Karlsson, Jan

    2016-03-01

    Climate warming raises the question whether high-latitude landscape still function as net carbon (C) sinks. By compiling an integrated C balance for an intensely studied subarctic catchment, we show that this catchment's C balance is not likely to be a strong current sink of C, a commonly held assumption. In fact, it is more plausible (71% probability) that the studied catchment functions as a C source (-11 ± 20 g C m-2 yr-1). Analyses of individual fluxes indicate that soil and aquatic C losses offset C sequestering in other landscape components (e.g., peatlands and aboveground forest biomass). Our results stress the importance of fully integrated catchment C balance estimates and highlight the importance of upland soils and their interaction with the aquatic network for the catchment C balance.

  8. Drought propagation and its relation with catchment biophysical characteristics

    NASA Astrophysics Data System (ADS)

    Alvarez-Garreton, C. D.; Lara, A.; Garreaud, R. D.

    2016-12-01

    Droughts propagate in the hydrological cycle from meteorological to soil moisture to hydrological droughts. To understand the drivers of this process is of paramount importance since the economic and societal impacts in water resources are directly related with hydrological droughts (and not with meteorological droughts, which have been most studied). This research analyses drought characteristics over a large region and identify its main exogenous (climate forcing) and endogenous (biophysical characteristics such as land cover type and topography) explanatory factors. The study region is Chile, which covers seven major climatic subtypes according to Köppen system, it has unique geographic characteristics, very sharp topography and a wide range of landscapes and vegetation conditions. Meteorological and hydrological droughts (deficit in precipitation and streamflow, respectively) are characterized by their durations and standardized deficit volumes using a variable threshold method, over 300 representative catchments (located between 27°S and 50°S). To quantify the propagation from meteorological to hydrological drought, we propose a novel drought attenuation index (DAI), calculated as the ratio between the meteorological drought severity slope and the hydrological drought severity slope. DAI varies from zero (catchment that attenuates completely a meteorological drought) to one (the meteorological drought is fully propagated through the hydrological cycle). This novel index provides key (and comparable) information about drought propagation over a wide range of different catchments, which has been highlighted as a major research gap. Similar drought indicators across the wide range of catchments are then linked with catchment biophysical characteristics. A thorough compilation of land cover information (including the percentage of native forests, grass land, urban and industrial areas, glaciers, water bodies and no vegetated areas), catchment physical

  9. Hydrological Catchment Similarity Assessment in Geum River Catchments, Korea

    NASA Astrophysics Data System (ADS)

    Ko, Ara; Park, Kisoon; Lee, Hyosang

    2013-04-01

    Similarity measure of catchments is essential for regionalization studies, which provide in depth analysis in hydrological response and flood estimations at ungauged catchments. However, this similarity measure is often biased to the selected catchments and is notclearly explained in hydrological sense. This study applied a type of hydrological similarity distance measure-Flood Estimation Handbook to 25 Geum river catchments, Korea. Three Catchment Characteristics, Area (A)-Annual precipitation (SAAR)-SCS Curve Number (CN), are used in Euclidian distance measures. Furthermore, six index of Flow Duration Curve (ILow:Q275/Q185, IDrought:Q355/Q185, IFlood:Qmax/Q185, IAbundant:Q95/Q185, IFloodDuration:Q10/Q355 and IRiverRegime:Qmax/Qmin) are applied to clustering analysis of SPSS. The catchments' grouping of hydrological similarity measures suggests three groups: H1 (Cheongseong, Gidae, Bukil, Oksan, Seockhwa, Habgang and Sangyeogyo), H2 (Cheongju, Guryong, Ugon, Boksu, Useong and Seokdong) and H3 (Muju, Yangganggyo and YongdamDam). The four catchments (Cheoncheon, Donghyang, DaecheongDam and Indong) are not grouped in this study. The clustering analysis of FDC provides four Groups; CFDC1 (Muju, YongdamDam, Yangganggyo, DaecheongDam, Cheongseong, Gidae, Seokhwa, Bukil, Habgang, Cheongju, Oksan, Yuseong and Guryong), CFDC2 (Cheoncheon, Donghyang, Boksu, Indong, Nonsan, Seokdong, Ugon, Simcheon, Useong and Sangyeogyo), CFDC3 (Songcheon) and CFDC4 (Tanbu). The six catchments (out of seven) of H1 are grouped in CFDC1, while Sangyeogyo is grouped in CFDC2. The four catchments (out of six) of H2 are also grouped in CFDC2, while Cheongju and Guryong are grouped in CFDC1. The catchments of H3 are categorized in CFDC1. The authors examine the results (H1, H2 and H3) of similarity measure based on catchment physical descriptors with results (CFDC1 and CFDC2) of clustering based on catchment hydrological response. The results of hydrological similarity measures are supported by

  10. Accumulation of different sulfur fractions in Chinese forest soil under acid deposition.

    PubMed

    Wang, Zhanyi; Zhang, Xiaoshan; Zhang, Yi; Wang, Zhangwei; Mulder, Jan

    2011-09-01

    Atmogenic sulfur (S) deposition loading by acid rain is one of the biggest environmental problems in China. It is important to know the accumulated S stored in soil, because eventually the size (and also the "desorption" rate) determines how rapidly the soil water pH responds to decrease in S deposition. The S fractions and the ratio of total carbon/total sulfur (C/S) of forest soil in 9 catchments were investigated by comparing soils at the rural and urban sites in China. The S fractions included water-soluble sulfate-S (SO(4)-S), adsorbed SO(4)-S, insoluble SO(4)-S and organic S. The ratio of C/S in soil at the rural site was significantly (p < 0.05) greater than that at the urban site. C/S of soil in the A horizon was significantly (p < 0.05) and negatively correlated with the wet S-deposition rate. The ratio of C/S presents a better indicator for atmogenic S loading. Organic S was the dominant form in soils at rural sites; contributing more than 69% of the total S in the uppermost 30 cm soil. Organic S and adsorbed SO(4)-S were the main forms of S in soil at urban sites. High contents of water-soluble SO(4)-S and adsorbed SO(4)-S were found in uppermost 30 cm soils at urban sites but not at rural sites. Decades of acid rain have caused accumulation of inorganic SO(4)-S in Chinese forest soil especially at the urban sites. The soil at urban sites had been firstly acidified, and the impacts on the forest ecosystem in these areas should be noticed.

  11. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export.

    PubMed

    Olefeldt, David; Roulet, Nigel T

    2014-10-01

    Permafrost thaw in peatlands has the potential to alter catchment export of dissolved organic carbon (DOC) and thus influence downstream aquatic C cycling. Subarctic peatlands are often mosaics of different peatland types, where permafrost conditions regulate the hydrological setting of each type. We show that hydrological setting is key to observed differences in magnitude, timing, and chemical composition of DOC export between permafrost and nonpermafrost peatland types, and that these differences influence the export of DOC of larger catchments even when peatlands are minor catchment components. In many aspects, DOC export from a studied peatland permafrost plateau was similar to that of a forested upland catchment. Similarities included low annual export (2-3 g C m(-2) ) dominated by the snow melt period (~70%), and how substantial DOC export following storms required wet antecedent conditions. Conversely, nonpermafrost fens had higher DOC export (7 g C m(-2) ), resulting from sustained hydrological connectivity during summer. Chemical composition of catchment DOC export arose from the mixing of highly aromatic DOC from organic soils from permafrost plateau soil water and upland forest surface horizons with nonaromatic DOC from mineral soil groundwater, but was further modulated by fens. Increasing aromaticity from fen inflow to outlet was substantial and depended on both water residence time and water temperature. The role of fens as catchment biogeochemical hotspots was further emphasized by their capacity for sulfate retention. As a result of fen characteristics, a 4% fen cover in a mixed catchment was responsible for 34% higher DOC export, 50% higher DOC concentrations and ~10% higher DOC aromaticity at the catchment outlet during summer compared to a nonpeatland upland catchment. Expansion of fens due to thaw thus has potential to influence landscape C cycling by increasing fen capacity to act as biogeochemical hotspots, amplifying aquatic C cycling, and

  12. Lessons learned for applying a paired-catchment approach in drought analysis

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne; Rangecroft, Sally; Coxon, Gemma; Agustín Breña Naranjo, José; Van Ogtrop, Floris; Croghan, Danny; Van Lanen, Henny

    2017-04-01

    Ongoing research is looking to quantify the human impact on hydrological drought using observed data. One potentially suitable method is the paired-catchment approach. Paired catchments have been successfully used for quantifying the impact of human actions (e.g. forest treatment and wildfires) on various components of a catchment's water balance. However, it is unclear whether this method could successfully be applied to drought. In this study, we used a paired-catchment approach to quantify the effects of reservoirs, groundwater abstraction and urbanisation on hydrological drought in the UK, Mexico, and Australia. Following recommendations in literature, we undertook a thorough catchment selection and identified catchments of similar size, climate, geology, and topography. One catchment of the pair was affected by either reservoirs, groundwater abstraction or urbanisation. For the selected catchment pairs, we standardised streamflow time series to catchment area, calculated a drought threshold from the natural catchment and applied it to the human-influenced catchment. The underlying assumption being that the differences in drought severity between catchments can then be attributed to the anthropogenic activity. In some catchments we had local knowledge about human influences, and therefore we could compare our paired-catchment results with hydrological model scenarios. However, we experienced that detailed data on human influences usually are not well recorded. The results showed us that it is important to account for variation in average annual precipitation between the paired catchments to be able to transfer the drought threshold of the natural catchment to the human-influenced catchment. This can be achieved by scaling the discharge by the difference in annual average precipitation. We also found that the temporal distribution of precipitation is important, because if meteorological droughts differ between the paired catchments, this may mask changes caused

  13. Nonparametric method for estimating the effects of climatic and catchment characteristics on mean annual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Shao, Quanxi; Traylen, Anthony; Zhang, Lu

    2012-03-01

    It is now well known that forested catchments have higher evapotranspiration than grassed catchments. Models for mean annual evapotranspiration have been developed to quantify catchment scale differences in mean annual evapotranspiration. Zhang et al. (2001) developed a simple, one parameter, model for the relationships between evapotranspiration and vegetation cover by evaluating the differences of model parameter values for different vegetation covers. However, other factors such as climate and catchment topography may also affect evapotranspiration and therefore the model parameter. Simple models acknowledging only categorical vegetation cover (forested, mixed, and grassed) may introduce some uncertainty, and more seriously, lead to inconsistent conclusions regarding relationships between vegetation cover and evapotranspiration. Zhang et al. (2004) investigated possible inclusion of climatic factors and catchment characteristics to improve the estimation of mean annual evapotranspiration by modeling the residuals of the model parameter via a stepwise linear regression. In this paper we propose the use of a multivariate adaptive regression spline (MARS) model for estimating the model parameter. In contrast to a simple stepwise regression, the MARS model provides not only insight into the interactions between explanatory factors but also a potential for prediction for ungauged basins as long as the values of explanatory factors are within the domain of calibration catchments. The MARS model is able to determine statistically significant factors and therefore is a powerful tool to identify important factors and their interactions. Using 241 Australian catchments where climate factors and catchment characteristics are available, we found the following significant terms affecting the mean annual evapotranspiration. (1) The functional relationship with the number of months that peak precipitation follows peak potential evapotranspiration (PfE) states that closer phase

  14. Identifying hydrological responses of micro-catchments under contrasting land use in the Brazilian Cerrado

    NASA Astrophysics Data System (ADS)

    Nobrega, R. L. B.; Guzha, A. C.; Torres, G. N.; Kovacs, K.; Lamparter, G.; Amorim, R. S. S.; Couto, E.; Gerold, G.

    2015-09-01

    In recent decades, the Brazilian Cerrado biome has been affected by intense land-use change, particularly the conversion of natural forest to agricultural land. Understanding the environmental impacts of this land-use change on landscape hydrological dynamics is one of the main challenges in the Amazon agricultural frontier, where part of the Brazilian Cerrado biome is located and where most of the deforestation has occurred. This study uses empirical data from field measurements to characterize controls on hydrological processes from three first-order micro-catchments < 1 km2 in the Cerrado biome. These micro-catchments were selected on the basis of predominant land use including native cerrado vegetation, pasture grass with cattle ranching, and cash crop land. We continuously monitored precipitation, streamflow, soil moisture, and meteorological variables from October 2012 to September 2014. Additionally, we determined the physical and hydraulic properties of the soils, and conducted topographic surveys. We used these data to quantify the water balance components of the study catchments and to relate these water fluxes to land use, catchment physiographic parameters, and soil hydrophysical properties. The results of this study show that runoff coefficients were 0.27, 0.40, and 0.16 for the cerrado, pasture, and cropland catchments, respectively. Baseflow is shown to play a significant role in streamflow generation in the three study catchments, with baseflow index values of more than 0.95. The results also show that evapotranspiration was highest in the cerrado (986 mm yr-1) compared to the cropland (828 mm yr-1) and the pasture (532 mm yr-1). However, discharges in the cropland catchment were unexpectedly lower than that of the cerrado catchment. The normalized discharge was 55 % higher and 57 % lower in the pasture and cropland catchments, respectively, compared with the cerrado catchment. We attribute this finding to the differences in soil type and

  15. Effects of silicate weathering on water chemistry in forested, upland, felsic terrane of the USA

    SciTech Connect

    Stauffer, R.E.; Wittchen, B.D. )

    1991-11-01

    The authors use data from the US EPA National Surface Water Survey (NSWS), the USGS Bench-Mark Station monitoring program, and the National Acid Deposition Program (NADP) to evaluate the role of weathering in supplying base cations to surface waters in forested, upland, felsic terrane of the northeastern, northcentral, and northwestern (Idaho batholith) US. Multivariate regression reveals differential effects of discharge on individual base cations and silica, but no secular trend in the Ca/Na denudation rate over 24 yr (1965-1988) for the Wild River catchment in the White Mountains. Because the turn-over time for Na in the soil-exchange complex is only ca. 1.5 yr, the long-term behavior of the ratios Ca/Na and Si/Na in waters leaving this catchment indicates that weathering is compensating for base cation export. In every subregion, Ca and Mg concentrations in lakes are statistically linked to nonmarine Na, but the median Ca/Na ratio is greater than the ratio in local plagioclase. The authors attribute this inequality to nonstoichiometric weathering of calcium in juvenile (formerly glaciated) terrane, not to leaching of exchangeable cations by So{sub 4} because intraregional and cross-regional statistical analysis reveals no effect of atmospherically derived sulfate ion. The median base cation denudation rates (meq m{sup {minus}2}yr{sup {minus}1}) for these American lake regions are: Maine granites (108); western Adirondack felsic gneiss (85); Vermilion batholith (42); Idaho batholith (52). The regional rates are high enough to compensate for present wet deposition of acidifying anions except in some vulnerable lake watersheds in the western Adirondacks.

  16. Effects of silicate weathering on water chemistry in forested, upland, felsic terrane of the USA

    NASA Astrophysics Data System (ADS)

    Stauffer, Robert E.; Wittchen, Bruce D.

    1991-11-01

    We use data from the US EPA National Surface Water Survey (NSWS), the USGS Bench-Mark Station monitoring program, and the National Acid Deposition Program (NADP) to evaluate the role of weathering in supplying base cations to surface waters in forested, upland, felsic terrane of the northeastern, northcentral, and northwestern (Idaho batholith) United States. Multivariate regression reveals differential effects of discharge on individual base cations and silica, but no secular trend in the Ca/Na denudation rate over 24 yr (1965-1988) for the Wild River catchment in the White Mountains. Because the turn-over time for Na in the soil-exchange complex is only ca. 1.5 yr, the long-term behavior of the ratios Ca/Na and Si/Na in waters leaving this catchment indicates that weathering is compensating for base cation export. In every subregion, Ca and Mg concentrations in lakes are statistically linked to nonmarine Na, but the median Ca/Na ratio is greater than the ratio in local plagioclase. We attribute this inequality to nonstoichiometric weathering of calcium in juvenile (formerly glaciated) terrane, not to leaching of exchangeable cations by SO 4, because intraregional and cross-regional statistical analysis reveals no effect of atmospherically derived sulfate ion. The median base cation denudation rates (meq m -2 yr -1) for these American lake regions are: Maine granites (108); western Adirondack felsic gneiss (85); Vermilion batholith (42); Idaho batholith (52). The regional rates are high enough to compensate for present wet deposition of acidifying anions except in some vulnerable lake watersheds in the western Adirondacks.

  17. Characterizing Runoff and Water Yield from Headwater Catchments in the Southern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Safeeq, M.; Hunsaker, C. T.

    2015-12-01

    In a mediterranean climate where much of the annual precipitation falls during winter, the snow-capped Sierra Nevada serves as the primary source of dry season runoff that supports agriculture, industries, urban, and other ecosystems. Increased warming has led to significant reductions in mountain snowpack accumulation and earlier snowmelt throughout the western United States where most of the snow accumulates at temperatures near the freezing point. As a result, declines in dry season runoff magnitude, earlier runoff timing, and altered flood risk have been reported across the region. An important question in this context is, how to best manage forested catchments for water and other ecosystem services? We depict the differences in hydrologic response of ten catchments in the Kings River Experimental Watersheds (KREW) research project using continuous precipitation, snow, and runoff data during 2004-2014. The size of these catchments ranges from 50 to 475 ha, and they span a 600-m elevation range in the rain snow transitional zone. In terms of soil, Shaver and Gerle-Cagwin dominate the lower elevation Providence catchments, and Cagwin soils dominate the higher elevation Bull catchments. The majority of these catchments have southwest aspect, moderate average slope (i.e. <25%), and a well-developed drainage network with drainage density ranging from 4.6 to 10.1 km/km2. Bull catchments, on average, have higher runoff than the Providence catchments across all hydrologic signatures extracted from daily hydrographs. Mean annual runoff ranges between 281 to 408 mm in Providence and 436 to 656 mm in Bull catchments despite no significant difference in precipitation among KREW's four meteorological stations. However, high elevation Bull catchments receive significantly more precipitation as snow than the low elevation Providence catchments. The average runoff ratio ranges from 18% to as high as 43% among different catchments, indicating that the catchment

  18. Environmental care in agricultural catchments: Toward the communicative catchment

    NASA Astrophysics Data System (ADS)

    Martin, Peter

    1991-11-01

    Substantial land degradation of agricultural catchments in Australia has resulted from the importation of European farming methods and the large-scale clearing of land. Rural communities are now being encouraged by government to take responsibility for environmental care. The importance of community involvement is supported by the view that environmental problems are a function of interactions between people and their environment. It is suggested that the commonly held view that community groups cannot care for their resources is due to inappropriate social institutions rather that any inherent disability in people. The communicative catchment is developed as a vision for environmental care into the future. This concept emerges from a critique of resource management through the catchment metaphors of the reduced, mechanical, and the complex, evolving catchment, which reflect the development of systemic and people-centered approaches to environmental care. The communicative catchment is one where both community and resource managers participate collaboratively in environmental care. A methodology based on action research and systemic thinking (systemic action research) is proposed as a way of moving towards the communicative catchment of the future. Action research is a way of taking action in organizations and communities that is participative and informed by theory, while systemic thinking takes into account the interconnections and relationships between social and natural worlds. The proposed vision, methodology, and practical operating principles stem from involvement in an action research project looking at extension strategies for the implementation of total catchment management in the Hunter Valley, New South Wales.

  19. The effects of four acidifying sprays, vinegar, and water on canine cutaneous pH levels.

    PubMed

    Matousek, Jennifer L; Campbell, Karen L; Kakoma, Ibulaimu; Schaeffer, David J

    2003-01-01

    This study determined the extent and duration of cutaneous acidification caused by a single application of four acidifying sprays, vinegar, and water. Multivariate repeated measures analysis of variance revealed a significant difference between the six sprays (F = 15.3; P < or = 0.001). Linear contrast tests showed that the effects of the acidifying sprays were significantly different from vinegar and water (F = 6.0; P < or = 0.001), and vinegar was significantly different from water (F = 13.8; P < or = 0.001). The acidifying sprays decreased cutaneous pH to < 6.0 for a mean range of 50 to 65 hours, while vinegar did so for a mean of 12 hours.

  20. Nutrient cycling and the growth of benthic algae in experimentally acidified Little Rock Lake, WI

    SciTech Connect

    Detenbeck, N.E.

    1987-01-01

    Changes in nutrient-cycling and the growth of benthic algae resulting from decreased pH in low alkalinity lake systems were analyzed by laboratory, mesocosm, and whole-lake studies on Little Rock Lake, Wisconsin. Nutrients, transparency, an algal growth in the experimentally acidified basin were compared with conditions in an untreated reference basin. During the first summer following acidification (1985), accumulation rates of attached algae were significantly higher in the acidified basin than in the reference basin during June-August, but not in September. Color and winter silica values were significantly lower in the acidified basin relative to the reference basin following treatment. In addition, the lack of a fall decline in SiO/sub 2/ in the north basin in 1986 may signal pH-related changes in siliceous algal communities.

  1. Assessment of LULC and climate change on the hydrology of Ashti Catchment, India using VIC model

    NASA Astrophysics Data System (ADS)

    Hengade, Narendra; Eldho, T. I.

    2016-12-01

    The assessment of land use land cover (LULC) and climate change over the hydrology of a catchment has become inevitable and is an essential aspect to understand the water resources-related problems within the catchment. For large catchments, mesoscale models such as variable infiltration capacity (VIC) model are required for appropriate hydrological assessment. In this study, Ashti Catchment (sub-catchment of Godavari Basin in India) is considered as a case study to evaluate the impacts of LULC changes and rainfall trends on the hydrological variables using VIC model. The land cover data and rainfall trends for 40 years (1971-2010) were used as driving input parameters to simulate the hydrological changes over the Ashti Catchment and the results are compared with observed runoff. The good agreement between observed and simulated streamflows emphasises that the VIC model is able to evaluate the hydrological changes within the major catchment, satisfactorily. Further, the study shows that evapotranspiration is predominantly governed by the vegetation classes. Evapotranspiration is higher for the forest cover as compared to the evapotranspiration for shrubland/grassland, as the trees with deeper roots draws the soil moisture from the deeper soil layers. The results show that the spatial extent of change in rainfall trends is small as compared to the total catchment. The hydrological response of the catchment shows that small changes in monsoon rainfall predominantly contribute to runoff, which results in higher changes in runoff as the potential evapotranspiration within the catchments is achieved. The study also emphasises that the hydrological implications of climate change are not very significant on the Ashti Catchment, during the last 40 years (1971-2010).

  2. Effects of commercial timber harvesting on streamflow regimes in the Plynlimon catchments, mid-Wales

    NASA Astrophysics Data System (ADS)

    Robinson, M.; Dupeyrat, A.

    2005-04-01

    This paper presents the first large-scale British study of the impacts of commercial forest cutting on stream-flow regimes. The 70% forested headwaters of the River Severn are part of the intensively instrumented long-term Plynlimon catchment study into the impact of land use on stream flow. The forest area, comprising predominantly Sitka spruce (Picea sitchensis), was planted mainly in the 1930s and 1940s. Harvesting commenced in the mid-1980s and over the study period about half the forest has been felled. Changes in annual water yield and extreme flows were studied in four nested catchments ranging in area from about 1 to 10 km2 and compared with an adjacent benchmark grassland catchment. As expected from earlier process studies the cutting of the forest increased total annual flows. Less expected was the clear evidence that the felling augmented low flows. This informs a long-standing debate whether upland forestry increases or reduces baseflows. A particularly notable result was the lack of impact of the harvesting on storm peak flows. This may result from the application of forest management guidelines designed to reduce soil damage and erosion during the harvesting, and indicates that the forest itself has a limited impact on flooding. These findings are timely because British forest expansion peaked in the 30 years following the Second World War, and large areas of these woodlands are now approaching economic maturity and will be harvested in the next two decades.

  3. Short-term effects of clear-cutting on the water chemistry of two boreal streams in northern Sweden: a paired catchment study.

    PubMed

    Löfgren, Stefan; Ring, Eva; von Brömssen, Claudia; Sørensen, Rasmus; Högbom, Lars

    2009-11-01

    The effects of clear-cutting on stream-water chemistry in northern Sweden remain largely unexplored. Here we report data collected during a reference period and the first two years after logging in two typical partially harvested northern catchments; the objective was to compare water chemistry along the stream with and without a forest buffer. Two typical uncut reference catchments are included for comparison. Runoff was measured at the outlet of each catchment, and water samples were generally taken every second week and analyzed for 20 constituents. Logging resulted in increased runoff and increased concentrations of sodium, potassium, chloride, total nitrogen, total phosphorus, and suspended material from both catchments. Nitrate (NO3-) leaching increased only from the catchment without a forest buffer. It has not yet been possible to evaluate fully the effects of the forest buffer on the NO3- leaching because the uphill clear-cut area leached minimal amounts of NO3-.

  4. Detecting the effects of forest harvesting on streamflow using hydrologic model change detection

    Treesearch

    Nicolas P. Zegre; Nicholas A. Som

    2011-01-01

    Knowledge of the effects of forest management on hydrology primarily comes from paired-catchment study experiments. This approach has contributed fundamental knowledge of the effects of forest management on hydrology, but results from these studies lack insight into catchment processes. Outlined in this study is an alternative method of change detection that uses a...

  5. Lateral weathering gradients in glaciated catchments

    NASA Astrophysics Data System (ADS)

    McGuire, K. J.; Bailey, S. W.; Ross, D. S.; Strahm, B. D.; Schreiber, M. E.

    2016-12-01

    Mineral dissolution and the distribution of weathering products are fundamental processes that drive development and habitability of the Earth's critical zone; yet, the spatial configuration of these processes in some systems is not well understood. Feedbacks between hydrologic flows and weathering fluxes are necessary to understanding how the critical zone develops. In upland glaciated catchments of the northeastern USA, primary mineral dissolution and the distribution of weathering products are spatially distinct and predictable over short distances. Hillslopes, where shallow soils force lateral hydrologic fluxes through accumulated organic matter, produce downslope gradients in mineral depletion, weathering product accumulation, soil development, and solute chemistry. We propose that linked gradients in hydrologic flow paths, soil depth, and vegetation lead to predictable differences in the location and extent of mineral dissolution in regolith (soil, subsoil, and rock fragments) and bedrock, and that headwater catchments within the upland glaciated northeast show a common architecture across hillslopes as a result. Examples of these patterns and processes will be illustrated using observations from the Hubbard Brook Experimental Forest in New Hampshire where laterally distinct soils with strong morphological and biogeochemical gradients have been documented. Patterns in mineral depletion and product accumulation are essential in predicting how ecosystems will respond to stresses, disturbance, and management.

  6. Deriving N-year discharges in small catchments

    NASA Astrophysics Data System (ADS)

    Ledvinka, Ondrej; Bohac, Milon

    2016-04-01

    Maximum discharges with the return period of 100 years (Q100) belong to basic hydrological data that are derived and provided for any profile of the river network by the Czech Hydrometeorological Institute (CHMI). However, as regards small catchments, the determination of these characteristics is largely subjective and thus it is rather performed by comparing the results of several methods. The first approach is to extrapolate the three parameters of maximum peak discharges (average Qmax, coefficient of variation Cvmax, Q100) from water-gauging stations to selected unobserved profiles (using regression relationships and regularities at the confluence points). For this purpose, the so-called program Budsez is utilized. During this process, the physical-geographical (PG) features, rainfall data and other information about catchments are considered, based on which the parameters of theoretical distributions of N-year discharges are optimized. For smaller catchments the relationships between the 100-year specific runoff q100 and the catchment area and other PG characteristics are used that are determined in a GIS environment with the extension AGPosudek. In this innovative method, besides many other PG characteristics, especially the average value of CN and N-year maximum daily precipitation are taken into account when computing Q100. In the older methodologies, Q100 is based on the average slope of the stream and the average slope of the catchment. The values of Q100 are then corrected according to the percentage of forested areas and the catchment shape. Hydrologists compare the values of Q100 coming from different approaches in a logarithmic graph (q100 against area) for the particular catchment or its analogon. The final value is determined with respect to experience and previously issued values. The remaining N-year discharges are usually assessed through the ratio QN/Q100 from the nearest water-gauging station or the closest profile where these ratios were

  7. The impact of catchment conifer plantation forestry on the hydrochemistry of peatland lakes.

    PubMed

    Drinan, T J; Graham, C T; O'Halloran, J; Harrison, S S C

    2013-01-15

    The hydrochemistry of 26 small blanket bog lakes was examined to assess the impact of conifer plantation forestry on lake water chemistry. Lakes were selected from three distinct catchment land use categories: i) unplanted blanket bog only present in the catchment, ii) mature (closed-canopy) conifer plantation forests only present in the catchment and iii) catchments containing mature conifer plantation forests with recently clearfelled areas. All three catchment land uses were replicated across two geologies: sedimentary (sandstone) and igneous (granite). Lakes with afforested catchments across both geologies had elevated concentrations of phosphorus (P), nitrogen (N), total dissolved organic carbon (TDOC), aluminium (Al) and iron (Fe), with the highest concentrations of each parameter recorded from lakes with catchment clearfelling. Dissolved oxygen was also significantly reduced in the afforested lakes, particularly the clearfell lakes. Analysis of runoff from a nearby recently clearfelled site revealed high biological and chemical oxygen demands, consistent with at least part of the elevated concentrations of TDOC emanating from clearfelled sites having higher biochemical lability. Inorganic fertilisers applied at the start of the forest cycle, the decay of the underlying peat soil and accumulated surface tree litter, and leachate from felled trees are the likely sources of the elevated concentrations of plant nutrients, TDOC, heavy metals and major ions, with excessive peat soil disturbance during clearfelling likely exacerbating the runoff into lakes. Our study has demonstrated a clear, deleterious impact of conifer plantations on the water quality draining from blanket bog catchments, with major implications for the management of afforested peatlands. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Lakes-paleolakes cascade system and its role in shaping the runoff and chemical properties of water in the young-glacial catchment - example from the Tuchola Pinewood Forest (Northern Poland)

    NASA Astrophysics Data System (ADS)

    Gierszewski, Piotr; Brykała, Dariusz; Kaszubski, Michał; Plessen, Birgit

    2016-04-01

    The impact of paleolake basins, filled up with organic mineral deposits, in the transformation of the chemical properties of the outflow is generally ignored. Defining their role and importance in the water and matter cycles is one of the objectives of the hydrological and hydrochemical monitoring, which has been run in the catchment of Lake Czechowskie since mid-2012. The axis of the Lake Czechowskie catchment is a hydrographical system made of river and lake sections. Lake sections are not only present-day lakes (Głęboczek and Czechowskie), but also basins of the lakes functioned in the past, which are now biogenic plains. Lake sections of the system are connected by short valley sections, mostly of a gap character. The size and variability of surface water runoff from the basin is mainly affected by groundwater and the size of evaporation. Stable groundwater table provides stability of the river discharge, even during the periods of significant precipitation deficit. Groundwater fluctuation ranges registered during the period from May 2012 to September 2015 were between 0.17 and 1.25 m. The smallest were in the deepest piezometers located in watershed areas, and the largest in the shallow groundwater of lake terraces. The small dynamics of the groundwater states is reflected by slight fluctuations of water levels in Lake Czechowskie, which in the analyzed period amounted 0.40 cm. The surface of paleolake Trzechowskie, cut by a system of drainage ditches, is the area where an essential part of the surface runoff from the monitored catchment is formed. Large water resources in this part of the catchment are evidenced by the specific runoff value, which amounts to 25 dm3s-1km2. It is much larger than the whole basin specific runoff which reaches 11 dm3s-1km2. The measurements showed that the average surface runoff from Lake Czechowskie in the analyzed period was 0,065 m3s-1 and was similar to the size of the water influx via watercourses supplying the lake. On

  9. Fish mortality during sea salt episodes--catchment liming as a countermeasure.

    PubMed

    Teien, Hans-Christian; Salbu, Brit; Heier, Lene S; Kroglund, Frode; Rosseland, Bjørn Olav

    2005-10-01

    Aluminium (Al) toxicity is usually associated with acid rain and acidified freshwater systems. The present work demonstrates that acute fish mortality (50%) also occurs in moderate acidified salmon rivers during sea salt episodes. Furthermore, catchment liming was proved to be an efficient measure to counteract the fish toxicity. The impact of sea salt episodes on river water qualities and on Atlantic Salmon (Salmo salar L.) was studied in two rivers situated at the west coast of Norway. During February-May 2002, fish were kept in tanks and continually exposed to the changing water qualities. Changes in Al-species were followed using in situ fractionation techniques. During storm events and high sea salt deposition, the sea salt concentration increased (190 to 580 microM Cl), pH decreased (pH 5.3 to 4.6) and the concentration of low molecular mass (LMM) cationic Al-species (Al(i)) increased (0.7 to 3.0 microM) in the river. Subsequently, Al accumulated in fish gills (6 to 19 micromol g(-1) dw) causing ionoregulatory and respiratory failures as well as mortality. In water the concentration of LMM Al(i) stayed enhanced during four weeks, while the physiological stress responses in surviving fish remained high for a longer time (>eight weeks). To counteract Al toxicity, one of the tributary catchments had been limed four years earlier. Due to catchment liming (1000 kg ha(-1)) the water concentration of LMM Al(i)(<0.7 microM) and the Al accumulation in gills remained relatively low (<7 micromol g(-1) dw) during the storm and no fish mortality occurred.

  10. The catchment based approach using catchment system engineering

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark

    2015-04-01

    The catchment based approach (CaBa) has been championed as a potential mechanism for delivery of environmental directives such as the Water Framework Directive in the UK. However, since its launch in 2013, there has been only limited progress towards achieving sustainable, holistic management, with only a few of examples of good practice ( e.g. from the Tyne Rivers trust). Common issues with developing catchment plans over a national scale include limited data and resources to identify issues and source of those issues, how to systematically identify suitable locations for measures or suites of measures that will have the biggest downstream impact and how to overcome barriers for implementing solutions. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. A significant component of the runoff generation can be managed by targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source, many runoff attenuation features or measures can be co-located to achieve benefits for water quality and biodiversity. A catchment, community-led mitigation measures plan using the CSE approach will be presented from a catchment in Northumberland, Northern England that demonstrate a generic framework for identification of multi-purpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-ditch measures. Progress on the implementation of measures will be reported alongside potential impacts on the runoff regime at both local and catchment scale and costs.

  11. On the information content of hydrological signatures and their relationship to catchment attributes

    NASA Astrophysics Data System (ADS)

    Addor, N.; Clark, M. P.; Prieto, C.; Newman, A. J.; Mizukami, N.; Nearing, G. S.; Le Vine, N.

    2016-12-01

    Hydrological signatures, which are indices characterizing hydrologic behavior, are increasingly used for the evaluation, calibration and selection of hydrological models. Their key advantage is to provide more direct insights into specific hydrological processes than aggregated metrics (e.g., the Nash-Sutcliffe efficiency). A plethora of signatures now exists, which enable characterizing a variety of hydrograph features, but also makes the selection of signatures for new studies challenging. Here we claim that the selection of signatures should be based on their information content, which we estimated using several approaches, all leading to similar conclusions. To explore the relationship between hydrological signatures and catchment attributes, we used a previously published data set of 671 catchments in the contiguous United States, that we expanded by characterizing the climatic conditions, topography, soil and vegetation of each catchment. We then used a data-learning algorithm (random forests) to explore whether hydrological signatures could be inferred from catchment attributes alone. We find that some signatures can be predicted remarkably well by random forests and, interestingly, the same signatures are well captured when simulating discharge using a conceptual hydrological model. We discuss what this result reveals about our understanding of hydrological processes shaping hydrological signatures. We also identify which catchment attributes exert the strongest control on catchment behavior, in particular during extreme hydrological events. Overall, climatic attributes have the most significant influence, and strongly condition how well hydrological signatures can be predicted by random forests and simulated by the hydrological model. In contrast, soil characteristics at the catchment scale are not found to be significant predictors by random forests, which raises questions on how to best use soil data for hydrological modeling, for instance for parameter

  12. Linking catchment structure to hydrologic function: Implications of catchment topography for patterns of landscape hydrologic connectivity and stream flow dynamics

    NASA Astrophysics Data System (ADS)

    Jencso, K. G.; McGlynn, B. L.; Marshall, L. A.

    2010-12-01

    The relationship between catchment structure (topography and topology), stream network hydrologic connectivity, and runoff response remains poorly understood. Hillslope-riparian-stream (HRS) water table connectivity serves as the hydrologic linkage between a catchment’s uplands and the channel network and facilitates the transmission of water and solutes to streams. While there has been tremendous interest in the concept of hydrological connectivity to characterize catchments, there are relatively few studies that have quantified hydrologic connectivity at the stream network and catchment scales. Here, we examine how catchment topography influenced patterns of stream network HRS connectivity and resultant runoff dynamics across 11 nested headwater catchments in the Tenderfoot Creek Experimental Forest (TCEF), MT. This study extends the empirical findings of Jencso et al. (2009) who found a strong linear relationship (r2 = 0.92) between the upslope accumulated area (UAA) and annual duration of shallow ground water table connectivity observed across 24 HRS transects (146 groundwater recording wells) within the TCEF. We applied this relationship to the entire stream network to quantify the frequency distribution of stream network connectivity through time (as a function of UAA) and ascertain its relationship to catchment-scale runoff dynamics. Each catchment’s estimated connectivity duration curve (CDC) was highly related to its flow duration curve (FDC); albeit the rate of change of runoff with respect to stream network connectedness varied significantly across catchments. To ascertain potential reasons for these differences we compared the slope of each catchment’s CDC-FDC relationship (annual, peak, transition and baseflow periods) in multiple linear models against median values of common terrain indices and land cover-vegetation characteristics. Significant predictors (p<0.05) included the flow path distance to the creek (DFC), the flow path gradient to the

  13. An Evaluation of the Role of Ozone, Acid Deposition, and other Airborne Pollutants in the Forests of Eastern North America

    Treesearch

    J.H.B. Garner; Terry Pagano; Ellis B. Cowling

    1989-01-01

    Existing knowledge on air pollutants that occur in the forests of eastern North America is summarized and interpreted.Resolution is sought to the conflict between the prevailing scientific judgment that ozone and other oxidants are most likely to be damaging eastern forests and the prevailing public perception that acidic and acidifying substances are the most likely...

  14. Suspended sediment apportionment in a South-Korean mountain catchment

    NASA Astrophysics Data System (ADS)

    Birkholz, Axel; Meusburger, Katrin; Park, Ji-Hyung; Alewell, Christine

    2016-04-01

    Due to the rapid agricultural expansion and intensification during the last decades in South-Korea, large areas of hill slope forests were transformed to paddies and vegetable fields. The intensive agriculture and the easily erodible soils in our catchment are a major reason for the increased erosion causing suspended sediments to infiltrate into the close drinking water reservoir. The drinking water reservoir Lake Soyang provides water supply for over ten million people in Seoul. Landscape managers need to know the exact origin of these sediments before they can create landscape amelioration schemes. We applied a compound-specific stable isotope (CSSI) approach (Alewell et al., 2015) to apportion the sources of the suspended sediments between forest and agricultural soil contribution to the suspended sediments in a different catchment and applied the same approach to identify and quantify the different sources of the suspended sediments in the river(s) contributing to Lake Soyang. We sampled eight soil sites within the catchment considering the different landuse types forest, rice paddies, maize and vegetables. Suspended sediments were sampled at three outlets of the different sub-catchments. Soils and suspended sediments are analysed for bulk carbon and nitrogen isotopes, compound-specific carbon isotopes of plant-wax derived long-chain fatty acids and long-chain n-alkanes. Fatty acid and alkane isotopes are then used in mixing calculations and the mixing model software IsoSource to find out the contribution of the different source soils to the suspended sediments. We present first data of the source soils and the suspended sediments. C. Alewell, A. Birkholz, K. Meusburger, Y. Schindler-Wildhaber, L. Mabit, 2015. Sediment source attribution from multiple land use systems with CSIA. Biogeosciences Discuss. 12: 14245-14269.

  15. Carbon stock estimation in the catchment of Kotli Bhel 1A hydroelectric reservoir, Uttarakhand, India.

    PubMed

    Kumar, Amit; Sharma, M P

    2016-12-01

    Constructions of dams/reservoirs all over the world are reported to emit significant amount of greenhouse gases (GHGs) and are considered as environmental polluters. Organic carbon is contributed by the forest in the catchment, part of soil organic carbon is transported through the runoffs to the reservoir and undergoes aerobic and anaerobic degradation with time to release GHGs to the atmosphere. Literature reveals that no work is available on the estimation of 'C' stock of trees of forest catchment for assessing/predicting the GHGs emissions from the reservoirs to atmosphere. To assess the GHGs emission potential of the reservoir, an attempt is made in the study to estimate the 'C' stock in the forest catchment of Kotli Bhel 1A hydroelectric reservoir located in Tehri Garhwal district of Uttarakhand, India. For this purpose, the selected area was categorized into the site-I, II and III along the Bhagirathi River based on type of forest available in the catchment. The total carbon density (TCD) of tree species of different forest types was calculated using diameter at breast height (dbh) and trees height. The results found that the TCD of forest catchment was found 76.96MgCha(-1) as the highest at the site-II and 29.93MgCha(-1) as lowest at site-I with mean of 51.50MgCha(-1). The estimated forest 'C' stock shall be used to know the amount of carbon present before and after construction of the dam and to predict net GHGs emissions. The results may be helpful to study the potential of a given reservoir to release GHG and its subsequent impacts on global warming/climate challenges. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. SWAT-CS: Revision and testing of SWAT for Canadian Shield catchments

    NASA Astrophysics Data System (ADS)

    Fu, Congsheng; James, April L.; Yao, Huaxia

    2014-04-01

    Canadian Shield catchments are under increasing pressure from various types of development (e.g., mining and increased cottagers) and changing climate. Within the southern part of the Canadian Shield, catchments are generally characterized by shallow forested soils with high infiltration rates and low bedrock infiltration, generating little overland flow, and macropore and subsurface flow are important streamflow generation processes. Large numbers of wetlands and lakes are also key physiographic features, and snow-processes are critical to catchment modeling in this climate. We have revised the existing, publicly available SWAT (version 2009.10.1 Beta 3) to create SWAT-CS, a version representing hydrological processes dominating Canadian Shield catchments, where forest extends over Precambrian Shield bedrock. Prior to this study, very few studies applying SWAT to Canadian Shield catchments exist (we have found three). We tested SWAT-CS using the Harp Lake catchment dataset, an Ontario Ministry of Environment research station located in south-central Ontario. Simulations were evaluated against 30 years of observational data, including streamflow from six headwater sub-catchments (0.1-1.9 km2), outflow from Harp Lake (5.4 km2) and five years of weekly snow water equivalent (SWE). The best Nash-Sutcliffe efficiency (NSE) results for daily streamflow calibration, daily streamflow validation, and SWE were 0.60, 0.65, and 0.87, respectively, for sub-catchment HP4 (with detailed land use and soil data). For this range of catchment scales, land cover and soil properties were found to be transferable across sub-catchments with similar physiographic features, namely streamflow from the remaining five sub-catchments could be modeled well using sub-catchment HP4 parameterization. The Harp Lake outflow was well modeled using the existing reservoir-based target release method, generating NSEs of 0.72 and 0.67 for calibration and verification periods respectively. With

  17. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazi

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.

    2014-12-01

    This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.

  18. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazi

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.

    2015-12-01

    This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.

  19. Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments

    NASA Astrophysics Data System (ADS)

    Reader, H. E.; Stedmon, C. A.; Kritzberg, E. S.

    2014-01-01

    To examine the potential influence of terrestrially derived DOM on the Baltic Sea, a year-long study of dissolved organic matter (DOM) was performed in three river catchments in Sweden. One catchment drains into the Bothnian Sea, while two southern catchments drain into the Baltic Proper. Dissolved organic carbon (DOC) concentrations were positively correlated with discharge from forested catchments over the year and while the overall concentrations of DOC were several times higher in the southern two catchments, annual loading of DOC was on the same order for all three catchments, due to differences in discharge. Biological oxygen demand (BOD) was used as a proxy for the lability of carbon in the system. The range of BOD values was similar for all three catchments, however, the ratio of BOD to DOC (an indication of the labile fraction) in Ume älv was four times higher than in the southern two catchments. Total annual BOD loading to the Baltic Sea was twice as high in the northern catchment. Lower winter temperatures and preservation of organic matter in the northern catchment combined with an intense spring flood help to explain the higher concentrations of labile carbon in the northern catchment. Lower lability of DOM as well as higher colour in the southern catchments suggest that wetlands (i.e. peat bogs) may be the dominant source of DOM in these catchments, particularly in periods of low flow. With climate change expected to increase precipitation events and temperatures across the region, the supply and quality of DOM delivered to the Baltic Sea can also be expected to change. Our results indicate that DOM supply will be more stable throughout the year, and potentially have a lower bioavailability.

  20. Evaluating stream water quality through land use analysis in two grassland catchments: impact of wetlands on stream nitrogen concentration.

    PubMed

    Hayakawa, A; Shimizu, M; Woli, K P; Kuramochi, K; Hatano, R

    2006-01-01

    We evaluated the impacts of natural wetlands and various land uses on stream nitrogen concentration in two grassland-dominated catchments in eastern Hokkaido, Japan. Analyzing land use types in drainage basins, measuring denitrification potential of its soil, and water sampling in all seasons of 2003 were performed. Results showed a highly significant positive correlation between the concentration of stream NO3-N and the proportion of upland area in drainage basins in both catchments. The regression slope, which we assumed to reflect the impact on water quality, was 24% lower for the Akkeshi catchment (0.012 +/- 0.001) than for the Shibetsu catchment (0.016 +/- 0.001). In the Akkeshi catchment, there was a significant negative correlation between the proportion of wetlands in the drainage basins and stream NO3-N concentration. Stream dissolved organic nitrogen (DON) and carbon (DOC) concentrations were significantly higher in the Akkeshi catchment. Upland and urban land uses were strongly linked to increases in in-stream N concentrations in both catchments, whereas wetlands and forests tended to mitigate water quality degradation. The denitrification potential of the soils was highest in wetlands, medium in riparian forests, and lowest in grasslands; and was significant in wetlands and riparian forests in the Akkeshi catchment. The solubility of soil organic carbon (SOC) and soil moisture tended to determine the denitrification potential. These results indicate that the water environment within the catchments, which influences denitrification potential and soil organic matter content, could have caused the difference in stream water quality between the two catchments.

  1. The chemical behavior of acidified chromium (3) solutions. B.S. Thesis

    NASA Technical Reports Server (NTRS)

    Terman, D. K.

    1981-01-01

    A unique energy-storage system has been developed at NASA's Lewis Research Center called REDOX. This NASA-REDOX system is an electrochemical storage device that utilized the oxidation and reduction of two fully soluble redox couples for charging and discharging. The redox couples now being investigated are acidified chloride solutions of chromium (Cr(+2)/Cr(+3)) and iron (Fe(+2)/Fe(+3)).

  2. Quality evaluation of packaged acidified vegetables subjected to continuous microwave pasteurization

    USDA-ARS?s Scientific Manuscript database

    The study evaluated the use of 915 MHz continuous microwave processing with a rotation apparatus for pasteurization of acidified vegetable packages. Broccoli florets, and 1.2 cm cubes of broccoli stems, red bell pepper, and sweetpotato were pre-equilibrated to 1 g/100 g NaCl and 0.38 g/100 mL citric...

  3. Effects of acid, salt and soaking time on the dielectric properties of acidified vegetables

    USDA-ARS?s Scientific Manuscript database

    In order to design a continuous microwave process for pasteurization of acidified vegetables, equilibration phenomena in acid and salt solutions must be examined with regards to changes in dielectric properties. The objective of this study was to examine the effects of acid and salt concentration o...

  4. The Reaction between Iron(II) Iodide and Potassium Dichromate(VI) in Acidified Aqueous Solution

    ERIC Educational Resources Information Center

    Talbot, Christopher

    2013-01-01

    This "Science note" teaching lesson explores the possible reaction between the ions in a reaction mixture consisting of iron(II) iodide and potassium dichromate(VI) in acidified aqueous solution. The electrode potentials will be used to deduce any spontaneous reactions under standard thermodynamic conditions (298 K, 1 bar (approximately…

  5. Acidified sodium chlorite as an alternative to chlorine for elimination of Salmonella on alfalfa seeds

    USDA-ARS?s Scientific Manuscript database

    The disadvantage associated with the use of chlorine for food processing and water treatment had been documented previously. This study was conducted to determine if acidified sodium chlorite (ASC) could be used to replace calcium hypochlorite [Ca(OCl)2] for disinfection of alfalfa seeds. Seeds co...

  6. The Reaction between Iron(II) Iodide and Potassium Dichromate(VI) in Acidified Aqueous Solution

    ERIC Educational Resources Information Center

    Talbot, Christopher

    2013-01-01

    This "Science note" teaching lesson explores the possible reaction between the ions in a reaction mixture consisting of iron(II) iodide and potassium dichromate(VI) in acidified aqueous solution. The electrode potentials will be used to deduce any spontaneous reactions under standard thermodynamic conditions (298 K, 1 bar (approximately…

  7. Effect of acidified enteral feedings on gastric colonization in the critically ill patient.

    PubMed

    Heyland, D; Bradley, C; Mandell, L A

    1992-10-01

    To evaluate the effect of acidified enteral nutritional formulas (feedings) on gastric colonization and pH in critically ill patients. Randomized, double-blind trial of three groups: a) regular feedings into the stomach; b) regular feedings into the duodenum; and c) acidified feedings into the stomach. Nasogastric aspirates for gastric pH and microbiological determinations were obtained daily for a mean of 5 days after feeding began. ICU at a tertiary care hospital. Thirty-one patients indicated to receive enteral feedings before day 4 in the ICU were randomized. Seven patients had their feedings discontinued because of intolerance, accidental extubation, or tolerance of oral supplementation. One patient received the wrong feedings and was dropped from the study. A total of 23 patients finished the study. They were mostly trauma (n = 15) or neurosurgical (n = 6) patients. The average age was 40 yrs (range 15 to 71). An enteral formula with a pH of 6.5 was used as the control feeding. Hydrochloric acid was added to the control feeding to titrate the pH to 3.5 and this acidified enteral formula was given to the experimental group. All patients received continuous enteral feedings via an 8-Fr feeding tube. Seven of eight patients receiving the acidified feedings were sterile (no microbial growth) on receiving feedings compared with five of 15 of those patients receiving regular feedings (p = .027). For those patients initially colonized, four of four patients receiving acidified feedings immediately became sterile and remained so. Only two of ten patients receiving regular feedings remained sterile (p = .021). The mean gastric pH of the acidified group was 3.2 compared with the group receiving regular feedings into the stomach (pH = 4.7) and the group receiving regular feedings into the duodenum (pH = 3.8) (p < .01). There was no evidence of gastrointestinal bleeding in any patient. Acidified enteral feedings are effective in eliminating and preventing gastric

  8. Soil organic carbon distribution in an agricultural catchment in Southern Brazil: from hillslope to catchment scale.

    NASA Astrophysics Data System (ADS)

    Trigalet, Sylvain; Chartin, Caroline; Van Oost, Kristof; van Wesemael, Bas

    2017-04-01

    Understanding the soil organic carbon (SOC) distribution a few decades after conversion to cropland and plantations in a hilly catchment in southern Brazil is challenging due to scale-dependent controlling factors. Firstly, SOC, bulk density (BD) and texture were measured by depth intervals along 18 soil profiles located in three topographical positions (sloping plateau, central back slope and concave foot slope) in cropland and forest with contrasting slopes. SOC stocks in concave footslope position were not significantly different between fields on steep (11.1 kg C m-2) and gentle slopes (12.8 kg C m-2). However, in eroding profiles, SOC stocks are twice as high in fields on gentle slopes (17.6/12.6 kg C m-2) compared to steep slopes (8.3/7.1 kg C m-2). SOC stocks on steep slope on cropland (8.8 kg C m-2) are three times lower than SOC stocks on steep slope under undisturbed forest (23.7 kg C m-2). On gentle slopes, the effect of deforestation on SOC stocks was not so drastic (14.3 and 14.4 kg C m-2). Therefore, contrasting topography generates different patterns of SOC redistribution in the catchment. The effect of conversion to cropland is probably due to soil redistribution by water and tillage erosion aggravated by the steep terrain. Secondly, in order to assess the heterogeneity of SOC distribution at catchment scale, samples were collected at 10-20; 40-50 and 75-85 cm in 167 soil profiles sampled with an auger. SOC concentrations (gC kg-1 ) in numerous bulk soil samples (n = 378) were predicted by VIS-NIR spectroscopy and partial least-square regression models. SOC stocks were assessed by a mass preserving spline tool by interpolating SOC mass at the three non-contiguous depth intervals. Samples of calibration-validation dataset (n = 95) were used for physical SOC fractionation allowing the measurement of carbon associated with < 20 μm fraction. Multivariate linear regression models and Pearson correlation coefficients were used to assess the influence of

  9. Dust in an acidified ocean: iron bioavailability, phytoplankton growth and DMS

    NASA Astrophysics Data System (ADS)

    Mélançon, J.; Levasseur, M.; Lizotte, M.; Scarratt, M. G.; Tremblay, J. E.; Tortell, P. D.; Yang, G.; Shi, G. Y.; Gao, H.; Semeniuk, D.; Robert, M.; Arychuk, M.; Johnson, K.; Sutherland, N.; Davelaar, M.; Nemcek, N.; Pena, A.; Richardson, W.

    2015-12-01

    Ocean acidification (OA) is likely to have an effect on the fertilizing potential of desert dust in high-nutrient, low-chlorophyll oceanic regions, either by modifying Fe speciation and bioavailability, or by altering phytoplankton Fe requirements and acquisition. To address this issue, short incubations (4 days) of northeast subarctic Pacific waters enriched with either FeSO4 or dust, and maintained at pH 8.0 (in situ) and 7.8 were conducted in August 2010. We assessed the impact of a decrease in pH on dissolved Fe concentration, phytoplankton biomass, taxonomy and productivity, and the production of dimethylsulfide (DMS) and its algal precursor dimethylsulfoniopropionate (DMSP). Chlorophyll a (chl a) remained unchanged in the controls and doubled in both the FeSO4-enriched and dust-enriched incubations, confirming the Fe-limited status of the plankton assemblage during the experiment. In the acidified treatments, a significant reduction (by 16-38%) of the final concentration of chl a was measured compared to their non-acidified counterparts, and a 15% reduction in particulate organic carbon (POC) concentration was measured in the dust-enriched acidified treatment compared to the dust-enriched non-acidified treatment. FeSO4 and dust additions had a fertilizing effect mainly on diatoms and cyanobacteria. Lowering the pH affected mostly the haptophytes, but pelagophyte concentrations were also reduced in some acidified treatments. Acidification did not significantly alter DMSP and DMS concentrations. These results show that dust deposition events in a low-pH iron-limited Northeast subarctic Pacific are likely to stimulate phytoplankton growth to a lesser extent than in today's ocean during the few days following fertilization and point to a low initial sensitivity of the DMSP and DMS dynamics to OA.

  10. Empirical relations between large wood transport and catchment characteristics

    NASA Astrophysics Data System (ADS)

    Steeb, Nicolas; Rickenmann, Dieter; Rickli, Christian; Badoux, Alexandre

    2017-04-01

    The transport of vast amounts of large wood (LW) in water courses can considerably aggravate hazardous situations during flood events, and often strongly affects resulting flood damage. Large wood recruitment and transport are controlled by various factors which are difficult to assess and the prediction of transported LW volumes is difficult. Such information are, however, important for engineers and river managers to adequately dimension retention structures or to identify critical stream cross-sections. In this context, empirical formulas have been developed to estimate the volume of transported LW during a flood event (Rickenmann, 1997; Steeb et al., 2017). The data base of existing empirical wood load equations is, however, limited. The objective of the present study is to test and refine existing empirical equations, and to derive new relationships to reveal trends in wood loading. Data have been collected for flood events with LW occurrence in Swiss catchments of various sizes. This extended data set allows us to derive statistically more significant results. LW volumes were found to be related to catchment and transport characteristics, such as catchment size, forested area, forested stream length, water discharge, sediment load, or Melton ratio. Both the potential wood load and the fraction that is effectively mobilized during a flood event (effective wood load) are estimated. The difference of potential and effective wood load allows us to derive typical reduction coefficients that can be used to refine spatially explicit GIS models for potential LW recruitment.

  11. Towards Estimating the Nutrient Balance of the Hydrologic Open Air Laboratory (HOAL) Catchment, Lower Austria

    NASA Astrophysics Data System (ADS)

    Exner-Kittridge, Michael; Zessner, Matthias; Broer, Martine; Eder, Alexander; Strauss, Peter; Blöschl, Günter

    2010-05-01

    The fate of nutrients introduced by human activities have significant impacts on both nature and our civilization. Excessive nutrients can contaminate our drinking water as well as promote algae blooms that deplete the surrounding waters of oxygen for aquatic life. It is estimated that agriculture in Austria contributes approximately 60% to the total discharge of nitrogen and 40% to the total discharge of phosphorus. Understanding the specific pathways and sources of nitrogen and phosphorus from agriculture land could greatly improve our ability to mitigate for excessive discharges if the problems can be targeted more precisely. The objective of our research is to determine the complete nitrogen and phosphorous balance within a 66.7 hectare catchment in Lower Austria. The Hydrologic Open Air Laboratory (HOAL) catchment is located in Lower Austria approximately 100 km west of Vienna. The HOAL catchment was established in 2009 through funding by the Austrian Science Foundation to be used for multidisciplinary hydrologic research for understanding water flow and transport processes in catchments. The catchment land cover is characterized as 90% agriculture, 5% impermeable surface, and 3% forest. The predominant soil type is a clayey silt loam and a section of the catchment contain a subsurface tile drainage network that extend approximately 5.5 km. Nitrogen and phosphorus are the two primary nutrients assessed in this study. To accomplish the nutrient balance, the research is divided into three different scales: Field Scale, Subcatchment Scale, and Catchment Scale. The Catchment scale encompasses the entirety of the catchment, the subcatchment scale encompasses a 6.4 hectare area within the catchment that is completely underlain by the tile drainage network, and the field scale studies are performed on several square meter plots within the subcatchment. Each scale attempts to determine different parts of the total nutrient budget. The initial phase of the research

  12. Hydrogeomorphological and water quality impacts of oil palm conversion and logging in Sabah, Malaysian Borneo: a multi-catchment approach

    NASA Astrophysics Data System (ADS)

    Walsh, Rory; Nainar, Anand; Bidin, Kawi; Higton, Sam; Annammala, Kogilavani; Blake, William; Luke, Sarah; Murphy, Laura; Perryman, Emily; Wall, Katy; Hanapi, Jamil

    2016-04-01

    The last three decades have seen a combination of logging and land-use change across most of the rainforest tropics. This has involved conversion to oil palm across large parts of SE Asia. Although much is now known about the hydrological and sediment transport impacts of logging, relatively little is known about how impacts of oil palm conversion compare with those of logging. Furthermore little is known about the impacts of both on river morphology and water quality. This paper reports some findings of the first phase of a ten-year large-scale manipulative multi-catchment experiment (part of the SAFE - Stability of Altered Forest Ecosystems - Project), based in the upper part of the Brantian Catchment in Sabah, Malaysian Borneo; the project is designed to assess the degree to which adverse impacts of oil palm conversion (on erosion, downstream channel change, water quality and river ecology) might be reduced by retaining buffer zones of riparian forest of varying width from zero to 120 metres. Ten 2 km2 catchments of contrasting land use history have been instrumented since 2011 to record discharge, turbidity, conductivity and water temperature at 5-minute intervals. These comprise 6 repeat-logged catchments being subjected in 2015-16 to conversion to oil palm with varying riparian forest widths; a repeat-logged 'control' catchment; an old regrowth catchment; an oil palm catchment; and a primary forest catchment. In addition, (1) monthly water samples from the catchments have been analysed for nitrates and phosphates, (2) channel cross-sectional change along each stream has been monitored at six-monthly intervals and (3) supplementary surveys have been made of downstream bankfull channel cross-sectional size and water chemistry at a wider range of catchment sites, and (4) sediment cores have been taken and contemporary deposition monitored at a hierarchical network of sites in the large Brantian catchment for geochemical analysis and dating to establish the

  13. Catchment and atmospheric effects on acidity of lakes in the northeastern United States

    SciTech Connect

    Davis, R.B.; Anderson, D.S.; Rhodes, T.E.

    1995-06-01

    Sedimentary evidence from 12 lakes in northeastern United States reveals that both catchment and atmospheric processes have caused changes in lake acidity. Diatom remains indicate pH 5.2 to 5.8 (one lake 6.8) for one to two centuries before impacts on the catchment by Euro-americans. These low-alkalinity lakes were very sensitive to altered fluxes of base cations and acids. Several lakes increased in pH by 0.2 to 0.6 unit in the 1800s and early 1900s when their catchments were logged. Re-acidification of some of the lakes was initially due to forest succession. Older sediment from one of the lakes also shows alkalization by natural disturbance, and acidification paralleling forest succession. However, much of the recent acidification, to uniquely low levels by the 1970s is due to high sulfur deposition.

  14. A biogeochemical comparison of two well-buffered catchments with contrasting histories of acid deposition

    USGS Publications Warehouse

    Shanley, J.B.; Kram, P.; Hruska, J.; Bullen, T.D.

    2004-01-01

    Much of the biogeochemical cycling research in catchments in the past 25 years has been driven by acid deposition research funding. This research has focused on vulnerable base-poor systems; catchments on alkaline lithologies have received little attention. In regions of high acid loadings, however, even well-buffered catchments are susceptible to forest decline and episodes of low alkalinity in streamwater. As part of a collaboration between the Czech and U.S. Geological Surveys, we compared biogeochemical patterns in two well-studied, well-buffered catchments: Pluhuv Bor in the western Czech Republic, which has received high loading of atmospheric acidity, and Sleepers River Research Watershed in Vermont, U.S.A., where acid loading has been considerably less. Despite differences in lithology, wetness, forest type, and glacial history, the catchments displayed similar patterns of solute concentrations and flow. At both catchments, base cation and alkalinity diluted with increasing flow, whereas nitrate and dissolved organic carbon increased with increasing flow. Sulfate diluted with increasing flow at Sleepers River, while at Pluhuv Bor the sulfate-flow relation shifted from positive to negative as atmospheric sulfur (S) loadings decreased and soil S pools were depleted during the 1990s. At high flow, alkalinity decreased to near 100 ??eq L-1 at Pluhuv Bor compared to 400 ??eq L-1 at Sleepers River. Despite the large amounts of S flushed from Pluhuv Bor soils, these alkalinity declines were caused solely by dilution, which was greater at Pluhuv Bor relative to Sleepers River due to greater contributions from shallow flow paths at high flow. Although the historical high S loading at Pluhuv Bor has caused soil acidification and possible forest damage, it has had little effect on the acid/base status of streamwater in this well-buffered catchment. ?? 2004 Kluwer Academic Publishers.

  15. Effect of Sweet Orange Fruit Waste Diets and Acidifier on Haematology and Serum Chemistry of Weanling Rabbits

    PubMed Central

    Daudu, Oluremi Martha; Sani, Rahamatu Usman; Adedibu, Iyetunde Ifeyori; Ademu, Lawrence Anebi; Bawa, Gideon Shaibu; Olugbemi, Taiye Sunday

    2014-01-01

    A total of thirty-five mixed breed (35) rabbits of average weight of 700 g aged 5-6 weeks were allocated to seven treatments in a completely randomised design to investigate the effect of sweet orange fruit waste (SOFW) and acidomix acidifier on haematology and serum chemistry. The diets were 0% SOFW, 10% SOFW with 0.5% acidomix, 10% SOFW with 0.7 acidomix, 15% SOFW with 0.5% acidifier, 15% SOFW with 0.7% acidifier, 20% SOFW with 0.5% acidifier, and 20% SOFW with 0.7% acidifier. Blood samples were analyzed for haemoglobin (hb) concentration, white blood cells (WBC), red blood cells (RBC), differential WBC count (lymphocyte, basophil, eosinophil, monocyte, and neutrophil), alanine amino transferase (ALT), alkaline phosphatase (ALP), aspartate amino transferase (AST), total protein, albumin, and globulin. There was no interaction between SOFW and acidifier for the haematological and most of the serum chemistry parameters but significant difference was observed in ALT; however the values were within the normal range. SOFW had no significant effect on all haematological and serum chemistry parameters. Acidomix had significant effect (P < 0.05) on haemoglobin concentration; rabbits fed 0.5% acidomix diets had higher values which were within the normal range. It is therefore concluded that SOFW with acidifier up to 20% had no detrimental effect on serum chemistry and haematology. PMID:26464931

  16. Novel MixSIAR fingerprint model implementation in a Mediterranean mountain catchment

    NASA Astrophysics Data System (ADS)

    Lizaga, Ivan; Gaspar, Leticia; Blake, William; Palazón, Leticia; Quijano, Laura; Navas, Ana

    2017-04-01

    Increased sediment erosion levels can lead to degraded water and food quality, reduced aquatic biodiversity, decrease reservoir capacity and restrict recreational usage but determining soil redistribution and sediment budgets in watersheds is often challenging. One of the methods for making such determinations applies sediment fingerprinting methods by using sediment properties. The fingerprinting procedure tests a range of source material tracer properties to select a subset that can discriminate between the different potential sediment sources. The present study aims to test the feasibility of geochemical and radioisotopic fingerprint properties to apportion sediment sources within the Barués catchment. For this purpose, the new MixSIAR unmixing model was implemented as statistical tool. A total of 98 soil samples from different land cover sources (Mediterranean forest, pine forest scrubland, agricultural and subsoil) were collected in the Barués catchment (23 km2). This new approach divides the catchment into six different sub-catchments to evaluate how the sediment provenance varies along the river and the percentage of its sources and not only the contribution at the end. For this purpose, target sediments were collected at the end of each sub-catchment to introduce the variation along the entire catchment. Geochemistry and radioisotopic activity were analyzed for each sample and introduced as input parameters in the model. Percentage values from the five sources were different along the different subcatchments and the variations of all of them are summarized at the final target sample located at the end of the catchment. This work represents a good approximation to the fine sediment provenance in Mediterranean agricultural catchments and has the potential to be used for water resource control and future soil management. Identifying sediment contribution from different land uses offers considerable potential to prevent environmental degradation and the

  17. Characterizing runoff and water yield for headwater catchments in the southern Sierra Nevada

    Treesearch

    Mohammad Safeeq; Carolyn T. Hunsaker

    2016-01-01

    In a Mediterranean climate where much of the precipitation falls during winter, snowpacks serve as the primary source of dry season runoff. Increased warming has led to significant changes in hydrology of the western United States. An important question in this context is how to best manage forested catchments for water and other ecosystem services? Answering this...

  18. Iron oxidation kinetics and autotrophic bacteria in acidified environments

    SciTech Connect

    Barry, R.C.

    1993-01-01

    Iron oxidation in the presence of lake sediment collected from an acidic alpine lake was three orders of magnitude faster than in filtered lakewater without sediment. When kinetic rates in the presence of sediment were normalized on a surface area basis, they fell within a narrow range, and the assumption of a first order dependence of rate on surface area was supported. The relative influence on heterogeneous rate of ferrous iron oxidation of the five metal oxides studied can be ranked SiO[sub 2] [approx] Al[sub 2]O[sub 3] [much lt] Fe[sub 2] O[sub 3] [approx] MnO[sub 2] [approx] TiO[sub 2], with a difference of three orders of magnitude separating the aluminum and iron oxides. The rate constants on a surface area basis were, respectively, 1.8 [times] 10[sup 10], 4.6 [times] 10[sup 10], 1.4 [times] 10[sup 13], 2.3 [times] 10[sup 13] and 5.3 [times] 10[sup 13]M[sup [minus]2] atm[sup [minus]1] sec[sup [minus]1]m[sup [minus]2]. Studies at low oxygen concentrations suggested that at low pO[sub 2] oxygenation may not be first order with respect to oxygen concentration. Biological processes were found to enhance oxidation kinetics by two orders of magnitude on a surface area basis in comparison with a gamma irradiated control. Oxidation rate in the presence of irradiated sediment was in turn approximately 130 times greater than for oxidation in deionized water. The importance of biological activity in environments exhibiting photoreduction of iron was further studied by development of a polyclonal antibody test for the detection of the iron oxidizing autotroph Thiobacillus ferrooxidans. T. ferrooxidans was found in the Snake River and its tributaries in the Colorado Rocky mountains. Tests for T. ferrooxidans in samples collected at Lake Cristallina, Canton Ticino, Switzerland and McDonalds Branch, Lebanon State Forest, New Jersey were negative.

  19. Sources of streamflow along a headwater catchment elevational gradient

    NASA Astrophysics Data System (ADS)

    Cowie, Rory M.; Knowles, John F.; Dailey, Kelsey R.; Williams, Mark W.; Mills, Taylor J.; Molotch, Noah P.

    2017-06-01

    We used End-Member Mixing Analysis (EMMA) to investigate the spatiotemporal variability of source water contributions to streamflow generation from three headwater catchments that span a precipitation and ecosystem type gradient across ∼1500 m elevation in the Colorado Front Range, USA. We additionally characterized the magnitude and type (rain versus snow) of precipitation and the resulting hydrologic response of surface and subsurface waters to this precipitation variability. The three catchments were representative of the montane rain-snow transition zone (snow was 39% of total precipitation; σ (standard deviation) = 10%), the subalpine zone (69% snow; σ = 5%), and the alpine zone (84% snow; σ = 10%). All three catchments were identified as three end-member systems with their respective source waters being groundwater, snow precipitation or melt, rain (montane and subalpine only), and subsurface water from talus slopes (alpine only). Mean annual groundwater contributions were greater in forested catchments (28%; σ = 6% in the montane, 31%; σ = 8% in the subalpine) than in the alpine (19%; σ = 5%) catchment. Snow-derived water contributions to streamflow were inversely related to groundwater and increased with elevation from 46% (σ = 15%) in the montane zone to 58% (σ = 12%) in the subalpine and 61% (σ = 7%) in the alpine. Rain was 27% (σ = 8%) of discharge in the montane and 11% (σ = 4%) in the subalpine, while talus waters made up the final 21% (σ = 12%) of streamflow in the alpine. Our results suggest that subsurface source waters (i.e. groundwater and talus water) that are influenced by the timing, magnitude, and type of recharge and by the storage capabilities of the subsurface may be the most sensitive to climate variability at higher elevations. In contrast, the proportion of rain versus snow was the primary control on source water variability at lower elevations.

  20. Dynamically Evolving Models for Dynamic Catchments: Application of the Locally Linear Dual EnKF to a Catchment with Land Use Change

    NASA Astrophysics Data System (ADS)

    Pathiraja, S. D.; Marshall, L. A.; Sharma, A.; Moradkhani, H.

    2015-12-01

    Catchments are dynamic, constantly undergoing change be it naturally or due to anthropogenic influences. Changes in land surface conditions such as disturbance due to bushfire or erosion, urbanisation, deforestation or afforestation will affect a catchment's hydrologic regime. Models calibrated to pre-change conditions will lead to biased streamflow predictions, unless the change is explicitly accounted for in the model. A modelling methodology that is capable of adjusting its form (for instance, through time varying parameters) as catchments undergo change is therefore needed. We developed a framework for automatically and objectively detecting time variations in model parameters using Data Assimilation. The so called Locally Linear Dual EnKF was previously tested against a range of synthetic case studies and shown to reproduce known temporal variations from assimilating streamflow observations only. In this study, we apply the Locally Linear Dual EnKF to the Wights and Salmon paired catchments in Western Australia. Both were initially forested and monitored for a 3 year period, after which Wights was fully cleared whilst Salmon remained unchanged. The lumped conceptual hydrologic model (PDM) was calibrated over the stationary period and the optimal parameterisation used to initialise the Locally Linear Dual EnKF. Resultant parameter trajectories for the Salmon catchment were relatively stationary, whilst parameters for the Wights catchment were automatically adjusted to produce greater flood peaks, sooner after rainfall, consistent with observations. A significant improvement in both streamflow prediction and catchment soil moisture was obtained with the Locally Linear Dual EnKF, compared to the time invariant parameter case. This application has demonstrated the usefulness of this framework for improving predictions in rapidly changing catchments.

  1. Modeling of matters removal from swampy catchment

    NASA Astrophysics Data System (ADS)

    Inishev, N. G.; Inisheva, L. I.

    2010-05-01

    the estimations were made taking into account layering unevenness of snow cover in deferent landscapes. Stored water distribution in the limits of every landscape was approximated by the curve of gamma distribution with parameters which are the results of snow survey. Everyday basin water yield was determined as difference between excesses of water coming above usage for filling of its water retaining tank. The size of the water retaining tank before start of snow melting depends on the basin wetting in the previous autumn. Autumn river flow is taken as a degree of water retaining tank filling before the snow melt. It is supposed that there is a process of water accumulation at slopes. Between theses water supplies and overland runoffs there is a nonlinear link. Temporary melt water detention, which comes from mire in swamp forest, is considered. Estimations are made individually for field, forest and swamp parts of the basin of the river Kljuch. Estimation of HA removal from the surface of catchment of the river Kljuch is taken as an example of model application. The results reveal possibilities of the given approach to modeling of dissolved matters removal from the swampy area. Acknowledgements: This research was supported by RFFR (No.No. 09-05-00235, 09-05-99007), Minister of education and science (No. 02.740.11.0325).

  2. Runoff Response to Rainfall in Small Catchments Burned by the 2015 Valley Fire

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, J. W.; Coe, D. B. R.; Lindsay, D.

    2016-12-01

    Burned areas often produce runoff volumes and peak flows much larger than unburned forests. However, very few studies demonstrate the effect of burn severity on runoff responses, and post-fire data are especially sparse in California. We measured the effects of different degrees of burn severity on rainfall-runoff responses in six small catchments (0.15-0.65 ha) in the Northern Coast Ranges. Weirs and tipping bucket rain gages were installed after the 2015 Valley Fire and prior to any substantial rainfall. In the first wet season (Nov 2015-May 2016), one runoff event was recorded in the catchment with the lowest burn severity (42% bare soil), while 13 runoff events occurred in the catchment with the highest burn severity (68% bare soil). Preliminary results indicate the thirty minute maximum rainfall intensity that generated runoff ranged from 27 mm hr-1 in the lowest severity catchment to only 8.6 mm hr-1 in the highest severity catchment. Peak flow rates for the most intense event (27 mm hr-1), a two-year, 30-min storm, were 1.1 m3 s-1 km-2 in the lowest severity catchment and 17 m3 s-1 km-2 in the highest severity catchment. Longer duration, moderate intensity rain events produced runoff in the highest severity catchments but not the lowest severity catchments. These results are on the high end of the range of post-fire peak flow rates reported in the western US and provide an idea of potential post-fire flood potential to land and emergency management agencies.

  3. Catchment sensitivity to changing climate conditions: the importance of landscape characteristic

    NASA Astrophysics Data System (ADS)

    Teutschbein, C.; Karlsen, R.; Grabs, T.; Laudon, H.; Bishop, K. H.

    2014-12-01

    The scientific literature is full of studies analyzing future climate change impacts on hydrology with focus on individual catchments. However, we recently found that hydrologic behavior and specific discharge vary considerably even in neighboring and rather similar catchments under current climate conditions and that these variations are related to landscape characteristics. Therefore we hypothesize that these landscape characteristics also play a fundamental role for the sensitivity of a catchment to changing climate conditions. We analyzed the hydrological response of 14 neighboring catchments in Northern Sweden with slightly different topography, land cover, size and geology. Current (1981-2010) and future (2061-2090) streamflow was simulated with the HBV light model. Climate projections were based on 14 regional climate models (ENSEMBLES EU project) and bias-corrected with a distribution-mapping approach. Our simulations revealed that future spring flood peaks will occur much earlier and decrease by 13 to 32 %, whereas winter base flows will increase slightly. These changes are somewhat expected and mainly triggered by a projected increase in winter temperature, which leads to less snow accumulation on the ground. However, these values also highlight that there is a large variability amongst the catchments in their hydrological response to the same future climate conditions. For example, spring flood peaks in catchments without wetlands decrease by only 13 to 15 %, whereas catchments with wetlands show a spring flood peak reduction of 20 to 32 %. In addition to wetlands, we also identified lakes, peat soils and higher elevations as factors that seem to cause a stronger hydrological response to the climate change signal, whereas catchments dominated by forests, steeper slopes and till soils seem to be less strongly affected by a changing climate. Therefore, our results suggest that the sensitivity of catchments to future climate conditions is strongly linked to

  4. Linking sediment fingerprinting and modeling outputs for a Spanish Pyrenean river catchment.

    NASA Astrophysics Data System (ADS)

    Palazón, Leticia; Latorre, Borja; Gaspar, Leticia; Blake, Williams H.; Smith, Hugh G.; Navas, Ana

    2015-04-01

    Indirect techniques to study fine sediment redistribution in river catchments could provide unique and diverse information, which, when combined become a powerful tool to address catchment management problems. Such combinations could solve limitations of individual techniques and provide different lines of information to address a particular problem. The Barasona reservoir has suffered from siltation since its construction, with the loss of over one third of its storage volume in around 30 study years (period 1972-1996). Information on sediment production from tributary catchments for the reservoir is required to develop management plans for maintaining reservoir sustainability. Large spatial variability in sediment delivery was found in previous studies in the Barasona catchment and the major sediment sources identified included badlands developed in the middle part of the catchment and the agricultural fields in its lower part. From the diverse range of indirect techniques, fingerprinting sediment sources and computer models could be linked to obtain a more holistic view of the processes related to sediment redistribution in the Barasona river catchment (1509 km2, Central Spanish Pyrenees), which comprises agricultural and forest land uses. In the present study, the results from a fingerprinting procedure and the SWAT model were compared and combined to improve the knowledge of land use sediment source contributions to the reservoir. Samples from the study catchment were used to define soil parameters for the model and for fingerprinting the land use sources. The fingerprinting approach provided information about relative contributions from land use sources to the superficial sediment samples taken from the reservoir infill. The calibration and validation of the model provided valuable information, for example on the timescale of sediment production from the different land uses within the catchment. Linking results from both techniques enabled us to achieve a

  5. Hydrologic connectivity between landscapes and streams: Transferring reach- and plot-scale understanding to the catchment scale

    USGS Publications Warehouse

    Jencso, K.G.; McGlynn, B.L.; Gooseff, M.N.; Wondzell, S.M.; Bencala, K.E.; Marshall, L.A.

    2009-01-01

    The relationship between catchment structure and runoff characteristics is poorly understood. In steep headwater catchments with shallow soils the accumulation of hillslope area (upslope accumulated area (UAA)) is a hypothesized first-order control on the distribution of soil water and groundwater. Hillslope-riparian water table connectivity represents the linkage between the dominant catchment landscape elements (hillslopes and riparian zones) and the channel network. Hydrologic connectivity between hillslope-riparian-stream (HRS) landscape elements is heterogeneous in space and often temporally transient. We sought to test the relationship between UAA and the existence and longevity of HRS shallow groundwater connectivity. We quantified water table connectivity based on 84 recording wells distributed across 24 HRS transects within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana. Correlations were observed between the longevity of HRS water table connectivity and the size of each transect's UAA (r2 = 0.91). We applied this relationship to the entire stream network to quantify landscape-scale connectivity through time and ascertain its relationship to catchment-scale runoff dynamics. We found that the shape of the estimated annual landscape connectivity duration curve was highly related to the catchment flow duration curve (r2 = 0.95). This research suggests internal catchment landscape structure (topography and topology) as a first-order control on runoff source area and whole catchment response characteristics. Copyright 2009 by the American Geophysical Union.

  6. Remediation of Cr(VI)-Contaminated Soil Using the Acidified Hydrazine Hydrate.

    PubMed

    Ma, Yameng; Li, Fangfang; Jiang, Yuling; Yang, Weihua; Lv, Lv; Xue, Haotian; Wang, Yangyang

    2016-09-01

    Acidified hydrazine hydrate was used to remediate Cr(VI)-contaminated soil. The content of water-soluble Cr(VI) in contaminated soil was 4977.53 mg/kg. The optimal initial pH of hydrazine hydrate solution, soil to solution ratio and molar ratio of Cr(VI) to hydrazine hydrate for remediation of Cr(VI)-contaminated soil were 5.0, 3:1 and 1:3, respectively. Over 99.50 % of water-soluble Cr(VI) in the contaminated soil was reduced at the optimal condition within 30 min. The remediated soil can keep stable within 4 months. Meanwhile the total phosphorus increased from 0.47 to 4.29 g/kg, indicating that using of acidified hydrazine hydrate is an effective method to remediate Cr(VI)-contaminated soil.

  7. Diverse coral communities in naturally acidified waters of a Western Pacific reef

    NASA Astrophysics Data System (ADS)

    Shamberger, Kathryn E. F.; Cohen, Anne L.; Golbuu, Yimnang; McCorkle, Daniel C.; Lentz, Steven J.; Barkley, Hannah C.

    2014-01-01

    Anthropogenic carbon dioxide emissions are acidifying the oceans, reducing the concentration of carbonate ions ([CO32-]) that calcifying organisms need to build and cement coral reefs. To date, studies of a handful of naturally acidified reef systems reveal depauperate communities, sometimes with reduced coral cover and calcification rates, consistent with results of laboratory-based studies. Here we report the existence of highly diverse, coral-dominated reef communities under chronically low pH and aragonite saturation state (Ωar). Biological and hydrographic processes change the chemistry of the seawater moving across the barrier reefs and into Palau's Rock Island bays, where levels of acidification approach those projected for the western tropical Pacific open ocean by 2100. Nevertheless, coral diversity, cover, and calcification rates are maintained across this natural acidification gradient. Identifying the combination of biological and environmental factors that enable these communities to persist could provide important insights into the future of coral reefs under anthropogenic acidification.

  8. Effects of Acidifying Pig Diets on Emissions of Ammonia, Methane, and Sulfur from Slurry during Storage.

    PubMed

    Eriksen, Jørgen; Nørgaard, Jan V; Poulsen, Hanne D; Poulsen, Henrik V; Jensen, Bent B; Petersen, Søren O

    2014-11-01

    Ammonia (NH) volatilization from intensive livestock production is a threat to natural ecosystems. This study investigated pig diet manipulation by 1% (w/w) benzoic acid (BA) amendment and lowering of dietary electrolyte balance through substituting 1.4% (w/w) CaCO with 2.0% (w/w) CaCl. Urine and feces were collected separately from 24 pigs fed one of four diets (Control, +BA, +CaCl, +BA+CaCl) in metabolic cages and mixed as slurry. During 103 d of storage, all acidifying diets consistently reduced pH in the slurry by 0.4 to 0.6 units. There was a strong relationship between slurry pH and NH emissions, which were considerably reduced by the three acidifying diets. The +BA diet decreased NH emission by 28%, the +CaCl diet by 37%, and the combined +BA and +CaCl diet by 40%. Acidifying diets had no effect on S cycling or emission of volatile S compounds under the prevailing conditions of restricted S feeding. Methane (CH) emissions were increased by 73% in diets with CaCl. An initial delay in CH emissions was investigated in a separate experiment with manipulation of pH (5.4, 6.7, or 8.8) and inoculation with adapted pig slurry (0, 4, 11, or 19%), which showed that methanogenic potential, rather than inhibitory effects of the chemical environment, caused the delay. In conclusion, NH emissions from slurry could be reduced by addition of BA to pig diets or by controlling the dietary electrolyte balance, but there was no additive effect of combining the two strategies. However, CH emissions from slurry may increase with acidifying diets. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Effects of simulated rain acidified with sulfuric acid on host-parasite interactions

    Treesearch

    D. S. Shriner

    1976-01-01

    Wind-blown rain, rain splash, and films of free moisture play important roles in the epidemiology of many plant diseases. The effects of simulated rain acidified with sulfuric acid were studied on several host-parasite systems. Plants were exposed, in greenhouse or field, to simulated rain of pH 3.2 ? 0.1 or pH 6.0 ? 0.2. Simulated "rain" of pH 3.2 resulted...

  10. Optimizing acidified bleach solutions to improve sporicidal efficacy on building materials.

    PubMed

    Wood, J P; Calfee, M W; Clayton, M; Griffin-Gatchalian, N; Touati, A

    2011-12-01

    We evaluated whether lowering pH (with acetic acid) and raising free available chlorine (FAC) levels in bleach solutions would improve efficacy in inactivating Bacillus spores on different materials. We also determined how varying pH and FAC levels affected bleach stability. Acidified bleach solutions with pH levels of 4.5, 6 and 7.5 and FAC levels between 5000 and 10,000 ppm were evaluated for decontamination efficacy against Bacillus subtilis spores inoculated onto test coupons made from wood, ceramic and galvanized steel. Lowering the pH or increasing the FAC level improved efficacy in some of the tests, but depended on the material, which significantly affected decontamination efficacy. The acidified bleach at pH of 7.5 was significantly less effective than bleach at a pH of 4.5 or 6. The FAC levels in the bleach were the most stable at pH 4.5, and stability at pH 4.5 was not significantly affected by the initial FAC level. It may be advisable to use bleach solutions with lower pH (rather than high FAC levels) in light of both the decontamination efficacy and bleach stability results. For wood materials, use of sporicides other than acidified bleach may be warranted. These results may be useful in preparing acidified bleach solutions for decontamination of materials contaminated with spores such as Bacillus anthracis. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  11. Efficacy of acidified sodium chlorite treatments in reducing Escherichia coli O157:H7 on Chinese cabbage.

    PubMed

    Inatsu, Yasuhiro; Bari, Md Latiful; Kawasaki, Susumu; Isshiki, Kenji; Kawamoto, Shinichi

    2005-02-01

    Efficacy of acidified sodium chlorite for reducing the population of Escherichia coli O157:H7 pathogens on Chinese cabbage leaves was evaluated. Washing leaves with distilled water could reduce the population of E. coli O157:H7 by approximately 1.0 log CFU/g, whereas treating with acidified chlorite solution could reduce the population by 3.0 log CFU/g without changing the leaf color. A similar level of reduction was achieved by washing with sodium chlorite solution containing various organic acids. However, acidified sodium chlorite in combination with a mild heat treatment reduced the population by approximately 4.0 log CFU/g without affecting the color, but it softened the leaves. Moreover, the efficacy of the washing treatment was similar at low (4 degrees C) and room (25 degrees C) temperatures, indicating that acidified sodium chloride solution could be useful as a sanitizer for surface washing of fresh produce.

  12. Determination of 5-log pathogen reduction times for heat-processed, acidified vegetable brines.

    PubMed

    Breidt, F; Hayes, J S; Osborne, J A; McFeeters, R F

    2005-02-01

    Recent outbreaks of acid-resistant food pathogens in acid foods, including apple cider and orange juice, have raised concerns about the safety of acidified vegetable products. We determined pasteurization times and temperatures needed to assure a 5-log reduction in the numbers of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella strains in acidified cucumber pickle brines. Cocktails of five strains of each pathogen were (separately) used for heat-inactivation studies between 50 and 60 degrees C in brines that had an equilibrated pH value of 4.1. Salmonella strains were found to be less heat resistant than E. coli O157:H7 or L. monocytogenes strains. The nonlinear killing curves generated during these studies were modeled using a Weibull function. We found no significant difference in the heat-killing data for E. coli O157:H7 and L. monocytogenes (P = 0.9709). The predicted 5-log reduction times for E. coli O157:H7 and L. monocytogenes were found to fit an exponential decay function. These data were used to estimate minimum pasteurization times and temperatures needed to ensure safe processing of acidified pickle products and show that current industry pasteurization practices offer a significant margin of safety.

  13. Relative acidifying activity of anionic salts commonly used to prevent milk fever.

    PubMed

    Goff, J P; Ruiz, R; Horst, R L

    2004-05-01

    High cation diets can cause milk fever in dairy cows as they induce a metabolic alkalosis reducing the ability of the cow to maintain calcium homeostasis at the onset of lactation. Adding anions to the diet can offset the effect of the high cation forages by inducing a mild metabolic acidosis, restoring the ability to maintain calcium homeostasis. The difference in mEq of dietary cations and anions (DCAD) is most often expressed as (Na(+) + K+) - (Cl- + S(--)). This equation implies that a mEq of chloride and a mEq of sulfate are equipotent in their ability to alter acid-base balance of the cow. Using blood and urine pH to monitor effects on acid-base balance, experiments were conducted to test the relative acidifying activity of various sulfate and chloride anion sources in nonpregnant, nonlactating Jersey cows. Across all experiments, chloride proved to have about 1.6 times the acidifying activity of sulfate. Calcium and magnesium, ignored by the common DCAD equation, had a small but significant alkalinizing effect when accompanying chloride or sulfate. The ranking of the anion sources tested at a dose of 2 Eq/d, from most to least potent urine acidifier, was hydrochloric acid, ammonium chloride, calcium chloride, calcium sulfate, magnesium sulfate, and sulfur. These data should allow more accurate prediction of the response of late gestation cows to dietary cation-anion manipulation.

  14. A water and sediment budget for a Mediterranean mountainous catchment (Southern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Tuset, Jordi; Vericat, Damià; Batalla, Ramon J.

    2016-04-01

    Sediment transport in Mediterranean mountainous catchments is highly variable influenced principally by sediment availability, which in turn is controlled by the temporal and spatial variability of rainfall, runoff and land uses. In this paper we present the water and sediment budget of the Ribera Salada, a Mediterranean forest catchment located in the Catalan Pre-Pyrenees (NE Iberian Peninsula). The river drains an area of 224 km2. The data acquisition design is composed by five nested experimental sub-catchments. Each monitoring station registers discharge and suspended sediment transport continuously. Here we present the data obtained between 2012 and 2013, two contrasted hydrological years. These data allows to analyse the contribution of each sub-catchment to the total water and suspended sediment yield of the catchment at multiple temporal scales. Annual water yield in the catchment outlet varied between 15 and 31 hm3 y-1. Maximum peak flow in the outlet of the basin was 60.9 m3 s-1; equivalent to a specific discharge of 0.28 m3 s-1 km2. Results indicate that, hydrologically, the catchment can divided in two areas with contrasted regimes. The upper part of catchment is the wettest zone, where the water yield of each sub-catchment is in directly and positive correlated to its area. In contrast, the bottom of the valley has an ephemeral hydrological regime that only supplies water during important rainfall events. Annual suspended sediment load at the catchment outlet oscillated between 615 and 3415 t y-1, with an average value of 2015 t y-1 (i.e. 9.3 t km-2 y-1). In contrast to the water yield, most of the suspended sediment load (i.e. 80%) is supplied from the driest part of the catchment where sediment availability is greater and there is a greater connectivity between sediment sources and the channel network. The humid part of the catchment only yielded the 20% of the sediment load, where, as in the case of the water yield, sediment yield is directly and

  15. Sediment budget for Rediu reservoir catchment, North-Eastern Romania

    NASA Astrophysics Data System (ADS)

    Todosi, Cristian; Niculita, Mihai

    2016-04-01

    Sediment budgets are a useful tool for geomorphologic analysis, catchment management and environmental assessment, despite the uncertainties related to their assessment. We present the sediment budget construction and validation for a small catchment of 9.5319 kmp (953.19 ha) situated in the North-Eastern part of Romania. The Rediu reservoir was built between 1986 and 1988, on Rediu valley, a left tributary of Bahlui river, north-west from Iasi city. The catchment of the reservoir has 6.5 km in length and 2.5 km in maximum width, the altitudes decreasing from 170 m in the northern part, to 52 m in the southern part. The valley is symmetric, the altitude of the hillslopes going between 200 m to 75 m in one km length, in the transversal section with the maximum width. The floodplain is narrow having between 20 m to 210 m (in the area of confluence with Breazu tributary). The mean slope of the catchment is 6.4 degree, the maximum slope being 24.6 degrees. The length of channels which show banks of up to 2 m is 19.98 km. The land is used predominantly as crops (58.1 %), 16.7 % being covered by pastures (from which over half are eroded), 11.5 % percent of the catchment being covered by planted forests, 9.2 % by rural constructions and roads, 2.9 % by hayfields, 1.5 % by lakes and 0.1 % by orchards. Beside the Rediu reservoir, there are three ponds (15 771, 1761 and 751 sqm) in the catchment. We considered the trap efficiency for the reservoir and the ponds to be 95%. Aerial images from 1963, 1978 , 1984, 2005, 2008, 2010, 2012 and 2014 were used to assess the state of geomorphological processes before and after the reservoir construction. After 1970 a gully system situated in Breazu tributary sub-catchment and several active landslides along the main valley left side were forested. Beside these processes, soil erosion and human impact by constructions are the main processes generating sediment in the study area. The sediment yields were quantified by estimating the

  16. Quantifying the hydrological impact of simulated changes in land use on peak discharge in a small catchment.

    PubMed

    Kalantari, Zahra; Lyon, Steve W; Folkeson, Lennart; French, Helen K; Stolte, Jannes; Jansson, Per-Erik; Sassner, Mona

    2014-01-01

    A physically-based, distributed hydrological model (MIKE SHE) was used to quantify overland runoff in response to four extreme rain events and four types of simulated land use measure in a catchment in Norway. The current land use in the catchment comprises arable lands, forest, urban areas and a stream that passes under a motorway at the catchment outlet. This model simulation study demonstrates how the composition and configuration of land use measures affect discharge at the catchment outlet differently in response to storms of different sizes. For example, clear-cutting on 30% of the catchment area produced a 60% increase in peak discharge and a 10% increase in total runoff resulting from a 50-year storm event in summer, but the effects on peak discharge were less pronounced during smaller storms. Reforestation of 60% of the catchment area was the most effective measure in reducing peak flows for smaller (2-, 5- and 10-year) storms. Introducing grassed waterways reduced water velocity in the stream and resulted in a 28% reduction in peak flow at the catchment outlet for the 50-year storm event. Overall, the results indicate that the specific effect of land use measures on catchment discharge depends on their spatial distribution and on the size and timing of storm events. © 2013.

  17. Integration for sustainable catchment management.

    PubMed

    Macleod, Christopher J A; Scholefield, David; Haygarth, Philip M

    2007-02-15

    Sustainable catchment management requires increased levels of integration between groups of natural and social scientists, land and water users, land and water managers, planners and policy makers across spatial scales. Multiple policy drivers, covering urban and rural communities and their relationships with land and water use, have resulted in the need for an integrated decision making framework that operates from the strategic national scale to the local catchment scale. Large gaps in integration between policies are resulting in uncertain outcomes of conflicting and competing policy measures. The need for further integration is illustrated by little or no reductions in nitrate and phosphate levels in surface and ground waters in England and Wales. There is a requirement for natural scientists to consider the socio-economic setting and implications of their research. Moreover, catchment system level science requires natural and social scientists to work more closely, to provide robust analysis of the state of the environment that fully considers the bio-physical, social, political and economic settings. The combined use of spatial technologies, scenarios, indicators and multicriteria analysis are increasingly being used to enable improved integration for sustainable catchment management.

  18. Fifty years of watershed research on the Fernow Experimental Forest, WV: effects of forest management and air pollution on hardwood forests

    Treesearch

    M.B. Adams; P.J. Edwards; J.N. Kochenderfer; F. Wood

    2004-01-01

    In 1951, stream gaging was begun on five small headwater catchments on the Fernow Experimental Forest in West Virginia, to study the effects of forest management activities, particularly timber harvesting, on water yield and quality. Results from these watersheds, and others gaged more recently, have shown that annual water yields increase in proportion to the basal...

  19. What causes similarity in catchments?

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert

    2014-05-01

    One of the biggest issues in hydrology is how to handle the heterogeneity of catchment properties at different scales. But is this really such a big issue? Is this problem not merely the consequence of how we conceptualise and how we model catchments? Is there not far more similarity than we observe. Maybe we are not looking at the right things or at the right scale to see the similarity. The identity of catchments is largely determined by: the landscape, the ecosystem living on the landscape, and the geology, in that order. Soils, which are often seen as a crucial aspect of hydrological behaviour, are far less important, as will be demonstrated. The main determinants of hydrological behaviour are: the landscape composition, the rooting depth and the phenology. These determinants are a consequence of landscape and ecosystem evolution, which, in turn, are the manifestations of entropy production. There are striking similarities between catchments. The different runoff processes from hillslopes are linked and similar in different environments (McDonnell, 2013). Wetlands behave similarly all over the world. The key is to classify landscapes and to link the ecosystems living on them to climate. The ecosystem then is the main controller of hydrological behaviour. Besides phenology, the rooting depth is key in determining runoff behaviour. Both are strongly linked to climate and much less to soil properties. An example is given of how rooting depth is determined by climate, and how rooting depth can be predicted without calibration, providing a strong constraints on the prediction of rainfall partitioning and catchment runoff.

  20. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research

    PubMed Central

    Agnoletti, M.; Alaoui, A.; Bathurst, J. C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, J. N.; Robinson, M.; Salinas, J. L.; Santoro, A.; Szolgay, J.; Tron, S.; van den Akker, J. J. H.; Viglione, A.; Blöschl, G.

    2017-01-01

    Abstract Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long‐term experiments on physical‐chemical‐biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology. PMID:28919651

  1. Characterization of hydrologic inputs and streamflow pathways in headwater catchments of Boulder Creek Watershed, Colorado

    NASA Astrophysics Data System (ADS)

    Cowie, R. M.; Williams, M. W.; Mills, T. J.

    2012-12-01

    Streamflow pathways were investigated using isotopic and geochemical tracers in two gauged headwater catchments located at different elevations within the forested area of Boulder Creek Watershed, Colorado. Using diagnostic tools of mixing models indicates that both catchments fit reasonable well to a 1-D (two endmember) model for streamflow generation. End member mixing analysis (EMMA) suggests that streamflow at the lower elevation Gordon Gulch catchment (mean elevation 2627 m) was a combination of shallow subsurface flow and groundwater with limited influence from direct runoff. Steamflow at the higher elevation Como Creek catchment (mean elevation 3230 m) was a combination of runoff from snowmelt and groundwater. During the study period the total annual precipitation and the amount of precipitation falling as snow increased with elevation from 456 mm (41% snow) at Gordon Gulch to 804 mm (71% snow) at Como Creek. The resulting increase in winter snow accumulation at Como Creek demonstrates differences in timing and magnitude of hydrologic inputs between the two catchments and provides a potential driver for the differences in streamflow pathways. These results highlight the importance of understanding variations in streamflow pathways in relation to climatic variations across headwater mountain catchments. The broader impacts of streamflow pathway variations on steam nutrients will also be addressed.

  2. Landscape controls on spatiotemporal discharge variability in a boreal catchment

    NASA Astrophysics Data System (ADS)

    Karlsen, R. H.; Grabs, T.; Bishop, K.; Buffam, I.; Laudon, H.; Seibert, J.

    2016-08-01

    Improving the understanding of how stream flow dynamics are influenced by landscape characteristics, such as soils, vegetation and terrain, is a central endeavor of catchment hydrology. Here we investigate how spatial variability in stream flow is related to landscape characteristics using specific discharge time series from 14 partly nested subcatchments in the Krycklan basin (0.12 - 68 km2). Multivariate principal component analyses combined with univariate analyses showed that while variability in landscape characteristics and specific discharge were strongly related, the spatial patterns varied with season and wetness conditions. During spring snowmelt and at the annual scale, specific discharge was positively related to the sum of wetland and lake area. During summer, when flows are lowest, specific discharge was negatively related to catchment tree volume, but positively related to deeper sediment deposits and catchment area. The results indicate how more densely forested areas on till soils become relatively drier during summer months, while wet areas and deeper sediment soils maintain a higher summer base flow. Annual and seasonal differences in specific discharge can therefore be explained to a large extent by expected variability in evapotranspiration fluxes and snow accumulation. These analyses provide an organizing principle for how specific discharge varies spatially across the boreal landscape, and how this variation is manifested for different wetness conditions, seasons and time scales.

  3. On the role of headwater catchments in terrestrial carbon cycling

    NASA Astrophysics Data System (ADS)

    Evans, Martin

    2017-04-01

    Headwater systems have been described as 'aqua incognita' in reference to the poorly understood nature of these systems yet they typically represent up to 80% of the stream length in a catchment. In terms of carbon cycling, biological theory characterises headwater streams as systems dominated by coarse organic matter which is exported downstream. This material is largely derived from catchment biomass and soils and is delivered to the stream system during high magnitude sediment transport events such as landsliding or storm events. Geomorphological understanding of lateral carbon fluxes in headwater systems has advanced rapidly in the last decade but the integration of this geomorphological understanding with knowledge of the biological processes determining the fate of organic matter in headwater river systems is poorly developed. This paper considers evidence from forested, peatland and glaciated headwater systems to develop a conceptual 'carbon land-system model' of headwater systems. This model suggests that a more nuanced view of the role of headwaters in carbon cycling is required. Headwater catchments are sources of OM for downstream systems but can also in some circumstances be sites of carbon storage or of dynamic carbon turnover.

  4. Coevolution of volcanic catchments in Japan

    NASA Astrophysics Data System (ADS)

    Yoshida, Takeo; Troch, Peter A.

    2016-03-01

    Present-day landscapes have evolved over time through interactions between the prevailing climates and geological settings. Understanding the linkage between spatial patterns of landforms, soils, and vegetation in landscapes and their hydrological response is critical to make quantitative predictions in ungaged basins. Catchment coevolution is a theoretical framework that seeks to formulate hypotheses about the mechanisms and conditions that determine the historical development of catchments and how such evolution affects their hydrological response. In this study, we selected 14 volcanic catchments of different ages (from 0.225 to 82.2 Ma) in Japan. We derived indices of landscape properties (drainage density and slope-area relationship) as well as hydrological response (annual water balance, baseflow index, and flow-duration curves) and examined their relation with catchment age and climate (through the aridity index). We found a significant correlation between drainage density and baseflow index with age, but not with climate. The intra-annual flow variability was also significantly related to catchments age. Younger catchments tended to have lower peak flows and higher low flows, while older catchments exhibited more flashy runoff. The decrease in baseflow with catchment age is consistent with the existing hypothesis that in volcanic landscapes the major flow pathways change over time from deep groundwater flow to shallow subsurface flow. The drainage density of our catchments decreased with age, contrary to previous findings in a set of similar, but younger volcanic catchments in the Oregon Cascades, in which drainage density increased with age. In that case, older catchments were thought to show more landscape incision due to increasing near-surface lateral flow paths. Our results suggests two competing hypotheses on the evolution of drainage density in mature catchments. One is that as catchments continue to age, the hydrologically active channels retreat

  5. Contribution of atmospheric nitrogen deposition to diffuse pollution in a typical hilly red soil catchment in southern China.

    PubMed

    Shen, Jianlin; Liu, Jieyun; Li, Yong; Li, Yuyuan; Wang, Yi; Liu, Xuejun; Wu, Jinshui

    2014-09-01

    Atmospheric nitrogen (N) deposition is currently high and meanwhile diffuse N pollution is also serious in China. The correlation between N deposition and riverine N export and the contribution of N deposition to riverine N export were investigated in a typical hilly red soil catchment in southern China over a two-year period. N deposition was as high as 26.1 to 55.8kgN/(ha·yr) across different land uses in the studied catchment, while the riverine N exports ranged from 7.2 to 9.6kgN/(ha·yr) in the forest sub-catchment and 27.4 to 30.3kgN/(ha·yr) in the agricultural sub-catchment. The correlations between both wet N deposition and riverine N export and precipitation were highly positive, and so were the correlations between NH4(+)-N or NO3(-)-N wet deposition and riverine NH4(+)-N or NO3(-)-N exports except for NH4(+)-N in the agricultural sub-catchment, indicating that N deposition contributed to riverine N export. The monthly export coefficients of atmospheric deposited N from land to river in the forest sub-catchment (with a mean of 14%) presented a significant positive correlation with precipitation, while the monthly contributions of atmospheric deposition to riverine N export (with a mean of 18.7% in the agricultural sub-catchment and a mean of 21.0% in the whole catchment) were significantly and negatively correlated with precipitation. The relatively high contribution of N deposition to diffuse N pollution in the catchment suggests that efforts should be done to control anthropogenic reactive N emissions to the atmosphere in hilly red soil regions in southern China.

  6. Catchment land use-dependent effects of barrage fishponds on the functioning of headwater streams.

    PubMed

    Four, Brian; Arce, Evelyne; Danger, Michaël; Gaillard, Juliette; Thomas, Marielle; Banas, Damien

    2017-02-01

    Extensive fish production systems in continental areas are often created by damming headwater streams. However, these lentic systems favour autochthonous organic matter production. As headwater stream functioning is essentially based on allochthonous organic matter (OM) supply, the presence of barrage fishponds on headwater streams might change the main food source for benthic communities. The goal of this study was thus to identify the effects of barrage fishponds on the functioning of headwater streams. To this end, we compared leaf litter breakdown (a key ecosystem function in headwater streams), their associated invertebrate communities and fungal biomass at sites upstream and downstream of five barrage fishponds in two dominant land use systems (three in forested catchments and two in agricultural catchments). We observed significant structural and functional differences between headwater stream ecosystems in agricultural catchments and those in forested catchments. Leaf litter decay was more rapid in forest streams, with a moderate, but not significant, increase in breakdown rate downstream from the barrage fishponds. In agricultural catchments, the trend was opposite with a 2-fold lower leaf litter breakdown rate at downstream sites compared to upstream sites. Breakdown rates observed at all sites were closely correlated with fungal biomass and shredder biomass. No effect of barrage fishponds were observed in this study concerning invertebrate community structure or functional feeding groups especially in agricultural landscapes. In forest streams, we observed a decrease in organic pollution (OP)-intolerant taxa at downstream sites that was correlated with an increase in OP-tolerant taxa. These results highlighted that the influence of barrage fishponds on headwater stream functioning is complex and land use dependent. It is therefore necessary to clearly understand the various mechanisms (competition for food resources, complementarities between

  7. Nitrogen loadings and environmental impacts in rice agriculture catchments in subtropical central China

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    The severe deterioration of water quality in rice agriculture catchments challenges ecologists and hydrologists in exploring how rice agriculture affects nutrient loadings and water quality. This research observed the nitrogen (N) concentrations in stream water and groundwater in one forest and five rice agriculture catchments in subtropical central China to quantify the relationships between rice agriculture intensification, water quality of water bodies, and catchment N loadings. Our results indicate that intensive rice agriculture deteriorated stream water quality. A non-linear fitting analysis using a Boltzmann sigmoid function suggests that the concentrations and mass fluxes of ammonium-N (NH4+-N), nitrate-N (NO3--N), and total N (TN) in stream water increase with the areal proportion of rice agriculture in the catchments; however, these increases can only be detected when the areal proportions of rice agriculture in the catchments are greater than 13-30%, highlighting the importance of reasonable land use planning for managing stream water quality as well as N loadings from catchments. The factorial correspondence analysis (FCA) also suggests that rice agriculture has a potential to impose groundwater NH4+-N pollution, particularly in the soil exhausting season of July - October. And, the great N fertilizer application rates for rice cropping can increase the groundwater NO3-N and TN concentrations due to large quantities of N leaching into groundwater system beneath the paddy fields. The high N concentrations in groundwater result in strong N loadings via the base flow process. The NO3--N loadings via the base flow reaches 0.12-0.27 kg N ha-1 month-1 in the rice agriculture catchments, contributing 27.3%-36.5% of the total NO3--N loadings by the stream discharge. Therefore, the best management practices for N reduction and the smart land use planning should be applied in the rice agriculture catchments to improve water quality and mitigate N loadings.

  8. Modeling nonlinear responses of DOC transport in boreal catchments in Sweden

    NASA Astrophysics Data System (ADS)

    Kasurinen, Ville; Alfredsen, Knut; Ojala, Anne; Pumpanen, Jukka; Weyhenmeyer, Gesa A.; Futter, Martyn N.; Laudon, Hjalmar; Berninger, Frank

    2016-07-01

    Stream water dissolved organic carbon (DOC) concentrations display high spatial and temporal variation in boreal catchments. Understanding and predicting these patterns is a challenge with great implications for water quality projections and carbon balance estimates. Although several biogeochemical models have been used to estimate stream water DOC dynamics, model biases common during both rain and snow melt-driven events. The parsimonious DOC-model, K-DOC, with 10 calibrated parameters, uses a nonlinear discharge and catchment water storage relationship including soil temperature dependencies of DOC release and consumption. K-DOC was used to estimate the stream water DOC concentrations over 5 years for eighteen nested boreal catchments having total area of 68 km2 (varying from 0.04 to 67.9 km2). The model successfully simulated DOC concentrations during base flow conditions, as well as, hydrological events in catchments dominated by organic and mineral soils reaching NSEs from 0.46 to 0.76. Our semimechanistic model was parsimonious enough to have all parameters estimated using statistical methods. We did not find any clear differences between forest and mire-dominated catchments that could be explained by soil type or tree species composition. However, parameters controlling slow release and consumption of DOC from soil water behaved differently for small headwater catchments (less than 2 km2) than for those that integrate larger areas of different ecosystem types (10-68 km2). Our results emphasize that it is important to account for nonlinear dependencies of both, soil temperature, and catchment water storage, when simulating DOC dynamics of boreal catchments.

  9. Unraveling soil moisture responses to storms and relationships to runoff in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Singh, N.

    2015-12-01

    Soil moisture exhibits complex spatiotemporal patterns, both laterally across landscapes and vertically within soil profiles. These patterns of soil moisture can have strong influences on runoff generation, especially in catchments having large capacities for soil water storage and transmission. The body of literature on runoff generation is expansive, yet we still have a great deal to learn about how the spatial and temporal heterogeneity of soil moisture influences catchment-scale hydrologic responses to storm events. With this in mind, we investigated soil moisture responses to storm events across several landscape positions in a steep, forested headwater catchment. We measured volumetric water content (VWC) continuously for two years at 45 points representing different combinations of landscape position and soil depth within a 13 ha catchment at Coweeta Hydrologic Laboratory in the Southern Appalachian Mountains. We also monitored shallow groundwater levels at six locations within the catchment along with runoff at the catchment outlet. To investigate soil moisture response during events, we assessed absolute change in magnitude of VWC (Δs) and lag time (Δt) between peak VWC and peak precipitation for 39 events during the two-year study period. Our results showed that storm depth and antecedent moisture explained some of the spatiotemporal patterns of Δs; however, the explanatory power varied with the hillslope and season. Furthermore, we did not detect topographic control of Δs or Δt at most of the locations monitored. By evaluating the sequence of Δt, groundwater response, and runoff response for each storm, we characterized the hydrologic behavior of the study hillslopes for the 39 storm events.The characterization of hydrologic behavior reveals interrelationships between soil moisture and shallow groundwater, and their combined influence on runoff at the catchment outlet. This work provides new insights on links between the spatiotemporal variability

  10. The impact of pasture conversion on nutrient cycles of tropical streams on the Osa Peninsula, Costa Rica: a paired catchment approach

    NASA Astrophysics Data System (ADS)

    Bringhurst, K.; Jordan, P.

    2011-12-01

    Changes in nutrient and hydrologic cycles caused by land disturbance typically lead to detrimental changes to ecosystems. This study utilized a paired, small-catchment approach to examine the effect of deforestation on nutrient transfer and hydrological discharge and the resulting impact on soils and streams of the Osa Peninsula, Costa Rica. Two first order streams were chosen, the first catchment had been cleared for pasture and the second consisted of undisturbed tropical wet forest. Soil concentrations of organic matter, total and soil available P were higher in the forested catchment with decreases of >33% of each in the deforested catchment. The effect of deforestation on stream discharge was a 59% increase in flow during the wet season and an increase in the Q5:Q95 ratio showing that the deforested stream was flashier. The deforested catchment loss of dissolved inorganic nitrogen (DIN) increased 95% over the forested catchment. Soluble reactive phosphorus (SRP) showed an increase in load of 43% in the deforested catchment compared to the forested catchment. The molar N:P ratios were lower than the Redfield ratio and both streams were well below the level at which N-limitation of lotic algal growth has been reported, therefore it is hypothesized that N is the limiting nutrient in streams in the study area. Soil nutrient depletion in the deforested catchment, accelerated by a changed hydrologic regime, is the likely trajectory of soil-water interactions in this tropical ecosystem. This will likely be among the secondary impacts should deforestation become widespread along this stretch of the Pacific coastline, with associated eutrophication of receiving transitional and coastal waters.

  11. Fresh and preserved green fodder modify effects of urinary acidifiers on urine pH of horses.

    PubMed

    Goren, G; Fritz, J; Dillitzer, N; Hipp, B; Kienzle, E

    2014-04-01

    Hay stabilises urine pH in horses. It is unknown whether this is an effect of structure or of chemical composition. In this study, four ponies (230-384 kg body weight [BW]) were fed six different diets with either a structure or a composition similar to hay with and without acidifiers in a cross-over experimental design in amounts to maintain body weight with the following main compounds: Fresh grass (GRASS), alfalfa hay (ALF), grass cobs (COBS), grass silage (SIL), straw (STR) or extruded straw (STRe) for 2 to 10 days. Urine pH was measured in all trials, blood pH, blood base excess and bicarbonate as well as mineral balance were determined in GRASS, ALF, STR and STRe. In the trials with straw and extruded straw, urine pH decreased significantly (STR control: 7.8 ± 0.23, acidifier: 5.2 ± 0.38) when acidifiers were added, whereas in all other diets that were based on fresh or preserved green fodder, pH did not decrease below 7. Blood pH was similarly affected by diet and acidifiers. Acidifiers had little effect on the pre-prandial blood pH, only in diet STR there was a significant reduction in relation to control. Post-prandial blood pH was significantly reduced by acidifiers in all diets. Blood bicarbonate and base excess showed corresponding effects. Faecal and renal mineral excretion and apparent mineral digestibility were not systematically affected by diet or acidifiers except for chloride. Chloride added as inorganic chloride salt had an even better apparent digestibility than chloride originating from feed. Because only green plant material stabilised acid base balance, chlorophyll and its metabolites are discussed as potential mediators of the effect of green fodder on acid base balance.

  12. Overland flow generation in two lithologically distinct rainforest catchments

    USGS Publications Warehouse

    Godsey, S.; Elsenbeer, H.; Stallard, R.

    2004-01-01

    Streams on uniformly rainforest-covered, but lithologically very diverse Barro Colorado Island in central Panama?? show remarkable differences in their runoff response to rainfall. This lithological diversity is reflected in equally diverse soilscapes, and our objective was to test the hypothesis that contrasting runoff responses derive from soilscape features that control the generation of overland flow. We determined the soil saturated hydraulic conductivity (Ks) of two neighboring, but hydrologically contrasting catchments (Lutz Creek with a flashy and Conrad Trail with a delayed response to rainfall), and quantified the spatial and temporal frequency of overland flow occurrence. The median Ks values at a depth of 12.5 cm are large enough to rule out Hortonian overland flow, but a marked decrease in K s in Lutz Creek catchment at 30 cm suggests the formation of a perched water table and the generation saturation overland flow; the decrease in Ks in the Conrad Trail catchment is more gradual, and a perched water table is expected to form only at depths below 50 cm. In Lutz Creek, overland flow was generated frequently in time and space and regardless of topographic position, including near the interfluve, with very low thresholds of storm magnitude, duration, intensity and antecedent wetness, whereas in Conrad Trail, overland flow was generated much less frequently and then only locally. We conclude that soilscape features and microtopography are important controls of overland flow generation in these catchments. Our results contribute to the growing evidence that overland flow and forests are not a priori a contradiction in terms. ?? 2004 Elsevier B.V. All rights reserved.

  13. Overland flow generation in two lithologically distinct rainforest catchments

    NASA Astrophysics Data System (ADS)

    Godsey, S.; Elsenbeer, H.; Stallard, R.

    2004-08-01

    Streams on uniformly rainforest-covered, but lithologically very diverse Barro Colorado Island in central Panamá show remarkable differences in their runoff response to rainfall. This lithological diversity is reflected in equally diverse soilscapes, and our objective was to test the hypothesis that contrasting runoff responses derive from soilscape features that control the generation of overland flow. We determined the soil saturated hydraulic conductivity ( Ks) of two neighboring, but hydrologically contrasting catchments (Lutz Creek with a flashy and Conrad Trail with a delayed response to rainfall), and quantified the spatial and temporal frequency of overland flow occurrence. The median Ks values at a depth of 12.5 cm are large enough to rule out Hortonian overland flow, but a marked decrease in Ks in Lutz Creek catchment at 30 cm suggests the formation of a perched water table and the generation saturation overland flow; the decrease in Ks in the Conrad Trail catchment is more gradual, and a perched water table is expected to form only at depths below 50 cm. In Lutz Creek, overland flow was generated frequently in time and space and regardless of topographic position, including near the interfluve, with very low thresholds of storm magnitude, duration, intensity and antecedent wetness, whereas in Conrad Trail, overland flow was generated much less frequently and then only locally. We conclude that soilscape features and microtopography are important controls of overland flow generation in these catchments. Our results contribute to the growing evidence that overland flow and forests are not a priori a contradiction in terms.

  14. Partitioning and bioavailability of mercury in an experimentally acidified Wisconsin lake

    USGS Publications Warehouse

    Wiener, James G.; Fitzgerald, Wi