Science.gov

Sample records for acidithiobacillus ferrooxidans lx5

  1. Impact of solvent extraction organics on bioleaching by Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Yu, Hualong; Liu, Xiaorong; Shen, Junhui; Chi, Daojie

    2017-03-01

    Solvent extraction organics (SX organics) entrained and dissoluted in the raffinate during copper SX operation, can impact bioleaching in case of raffinate recycling. The influence of SX organics on bioleaching process by Acidithiobacillus ferrooxidans (At. ferrooxidans) has been investigated. The results showed that, cells of At. ferrooxidans grew slower with contaminated low-grade chalcopyrite ores in shaken flasks bioleaching, the copper bioleaching efficiency reached 15%, lower than that of 24% for uncontaminated minerals. Obviously, the SX organics could adsorb on mineral surface and hinder its contact with bacterials, finanlly lead to the low bioleaching efficiency.

  2. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans.

    PubMed

    Kocaman, Ayse Tuba; Cemek, Mustafa; Edwards, Katrina Jane

    2016-08-01

    The main objective of this study was to investigate the dissolution kinetics of pyrite, pyrrhotite, and chalcopyrite. Crushed minerals were reacted with Acidithiobacillus ferrooxidans (25 °C). The kinetics of dissolution was investigated by monitoring pH and Fe(2+) and Fe(3+) ion concentrations in the leaching solutions. Pyrite, pyrrhotite, and chalcopyrite dissolution by A. ferrooxidans was found to be a chemically controlled process. With bacteria, the dissolution rates of the minerals increased in the order of pyrrhotite, pyrite, and chalcopyrite. The number of cells attached to mineral surfaces increased in the same order. Acidithiobacillus ferrooxidans was found to enhance the dissolution rates of the minerals. The acid-insoluble trait of pyrite and acid-soluble trait of the other 2 minerals affected the pH changes in the leaching solutions.

  3. Compensation phenomena found in Acidithiobacillus ferrooxidans after starvation stress.

    PubMed

    Tu, Bowen; Li, Juan; Guo, Yueshuai; Guo, Xuejiang; Lu, Xiancai; Han, Xiaodong

    2014-06-01

    Acidithiobacillus ferrooxidans showed the compensate growth and oxidation after re-feeding with sufficient ferrous materials after starvation. Compensatory phenomena were first detected in chemoautotrophic organisms. Starvation stress of Acidithiobacillus ferrooxidans was achieved via culturing in low concentrations of iron. During compensation, growth and ferrous oxidation took place faster than in controls. In addition, some genes related to ferrous oxidation (such as rus) and carbon assimilation (cbbR, csoS3) were expressed in different patterns in the low energy environments. Their expression patterns can account for this increased growth and oxidation. Other groups of genes (cspAB, feoAB, fur) were suppressed in response to starvation stress. The presence of pyrite and joint cold stress can render compensation nearly undetectable. This may be why the compensation phenomena observed under these conditions was not the same as that observed under single starvation stress conditions. Gene expression reflected a possible mechanism of tolerance to starvation in Acidithiobacillus ferrooxidans, which would allow the organism to adapt and survive in ferrous-limited environments.

  4. Reduction of vanadium(V) with Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.

    PubMed

    Bredberg, Katarina; Karlsson, Hans T; Holst, Olle

    2004-03-01

    Biotechnological leaching has been proposed as a suitable method for extraction of vanadium from spent catalysts and oil ash. In the biological leaching process, the vanadium(V) can be reduced to vanadium(IV), which is a less toxic and more soluble form of the vanadium. The present investigation showed that Acidithiobacillus ferrooxidans efficiently reduced vanadium(V) in the form of vanadium pentaoxide, to vanadyl(IV) ions, and tolerated high concentrations of vanadium(IV) and vanadium(V). A. ferrooxidans was compared with Acidithiobacillus thiooxidans, which has previously been utilized for vanadium leaching and reduction. Vanadium pentaoxide and sodium vanadate were used as model compounds. The results of this study indicate possibilities to develop an economical and technically feasible process for biotechnological vanadium recovery.

  5. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications

    PubMed Central

    Valdés, Jorge; Pedroso, Inti; Quatrini, Raquel; Dodson, Robert J; Tettelin, Herve; Blake, Robert; Eisen, Jonathan A; Holmes, David S

    2008-01-01

    Background Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms used for the industrial recovery of copper (bioleaching or biomining). It is a chemolithoautrophic, γ-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for growth. It thrives at extremely low pH (pH 1–2) and fixes both carbon and nitrogen from the atmosphere. It solubilizes copper and other metals from rocks and plays an important role in nutrient and metal biogeochemical cycling in acid environments. The lack of a well-developed system for genetic manipulation has prevented thorough exploration of its physiology. Also, confusion has been caused by prior metabolic models constructed based upon the examination of multiple, and sometimes distantly related, strains of the microorganism. Results The genome of the type strain A. ferrooxidans ATCC 23270 was sequenced and annotated to identify general features and provide a framework for in silico metabolic reconstruction. Earlier models of iron and sulfur oxidation, biofilm formation, quorum sensing, inorganic ion uptake, and amino acid metabolism are confirmed and extended. Initial models are presented for central carbon metabolism, anaerobic metabolism (including sulfur reduction, hydrogen metabolism and nitrogen fixation), stress responses, DNA repair, and metal and toxic compound fluxes. Conclusion Bioinformatics analysis provides a valuable platform for gene discovery and functional prediction that helps explain the activity of A. ferrooxidans in industrial bioleaching and its role as a primary producer in acidic environments. An analysis of the genome of the type strain provides a coherent view of its gene content and metabolic potential. PMID:19077236

  6. Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans.

    PubMed

    Zhu, Jianyu; Wang, Qianfen; Zhou, Shuang; Li, Qian; Gan, Min; Jiang, Hao; Qin, Wenqing; Liu, Xueduan; Hu, Yuehua; Qiu, Guanzhou

    2015-02-01

    This paper presents a study on the relation between bacterial adhesion force and bioleaching rate of chalcopyrite, which sheds light on the influence of interfacial interaction on bioleaching behavior. In our research, Acidithiobacillus ferrooxidans (A. ferrooxidans) were adapted to grow with FeSO4 · 7H2O, element sulfur or chalcopyrite. Then, surface properties of Acidithiobacillus ferrooxidans and chalcopyrite were analyzed by contact angle, zeta potential and Fourier transform infrared spectroscopy (FTIR). Adhesion force between bacteria and chalcopyrite was measured by atomic force microscopy (AFM). Attachment and bioleaching behaviors were also monitored. The results showed that A. ferrooxidans adapted with chalcopyrite exhibited the strongest adhesion force to chalcopyrite and the highest bioleaching rate. Culture adapted with sulfur bacteria took second place and FeSO4 · 7H2O-adapted bacteria were the lowest. Bioleaching rate and bacterial attachment capacity were positively related to bacterial adhesion force, which is affected by the nature of energy source. According to this work, the attachment of bacteria to chalcopyrite surface is one of the most important aspects that influence the bioleaching process of chalcopyrite.

  7. Type IV pili of Acidithiobacillus ferrooxidans can transfer electrons from extracellular electron donors.

    PubMed

    Li, Yongquan; Li, Hongyu

    2014-03-01

    Studies on Acidithiobacillus ferrooxidans accepting electrons from Fe(II) have previously focused on cytochrome c. However, we have discovered that, besides cytochrome c, type IV pili (Tfp) can transfer electrons. Here, we report conduction by Tfp of A. ferrooxidans analyzed with a conducting-probe atomic force microscope (AFM). The results indicate that the Tfp of A. ferrooxidans are highly conductive. The genome sequence of A. ferrooxidans ATCC 23270 contains two genes, pilV and pilW, which code for pilin domain proteins with the conserved amino acids characteristic of Tfp. Multiple alignment analysis of the PilV and PilW (pilin) proteins indicated that pilV is the adhesin gene while pilW codes for the major protein element of Tfp. The likely function of Tfp is to complete the circuit between the cell surface and Fe(II) oxides. These results indicate that Tfp of A. ferrooxidans might serve as biological nanowires transferring electrons from the surface of Fe(II) oxides to the cell surface.

  8. Inhibitory effect of high concentrations of ferric ions on the activity of Acidithiobacillus ferrooxidans.

    PubMed

    Kawabe, Yoshishige; Inoue, Chihiro; Suto, Koichi; Chida, Tadashi

    2003-01-01

    The influence of high concentrations of ferric ions on the biochemical activity of Acidithiobacillus ferrooxidans was studied using intact cells. The specific oxidation rate of ferrous ions decreased with increasing ferric ion concentration. Lineweaver-Burk plots revealed typical competitive inhibition kinetics, because the slopes varied with the ferric ion concentration. A linear relationship between the slope and the square of the ferric ion concentration revealed that the iron-oxidizing enzyme system of A. ferrooxidans was competitively inhibited by about two molecules of ferric ion. The kinetic equation based on this inhibition model agreed with the experimental observation at a high ferric ion concentration where the bacterium is usually exposed in bioleaching and biooxidation plants.

  9. Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production.

    PubMed

    Kernan, Timothy; Majumdar, Sudipta; Li, Xiaozheng; Guan, Jingyang; West, Alan C; Banta, Scott

    2016-01-01

    There is growing interest in developing non-photosynthetic routes for the conversion of CO2 to fuels and chemicals. One underexplored approach is the transfer of energy to the metabolism of genetically modified chemolithoautotrophic bacteria. Acidithiobacillus ferrooxidans is an obligate chemolithoautotroph that derives its metabolic energy from the oxidation of iron or sulfur at low pH. Two heterologous biosynthetic pathways have been expressed in A. ferrooxidans to produce either isobutyric acid or heptadecane from CO2 and the oxidation of Fe(2+). A sevenfold improvement in productivity of isobutyric acid was obtained through improved media formulations in batch cultures. Steady-state efficiencies were lower in continuous cultures, likely due to ferric inhibition. If coupled to solar panels, the photon-to-fuel efficiency of this proof-of-principle process approaches estimates for agriculture-derived biofuels. These efforts lay the foundation for the utilization of this organism in the exploitation of electrical energy for biochemical synthesis.

  10. Use of Walnut Shell Powder to Inhibit Expression of Fe2+-Oxidizing Genes of Acidithiobacillus Ferrooxidans

    PubMed Central

    Li, Yuhui; Liu, Yehao; Tan, Huifang; Zhang, Yifeng; Yue, Mei

    2016-01-01

    Acidithiobacillus ferrooxidans is a Gram-negative bacterium that obtains energy by oxidizing Fe2+ or reduced sulfur compounds. This bacterium contributes to the formation of acid mine drainage (AMD). This study determined whether walnut shell powder inhibits the growth of A. ferrooxidans. First, the effects of walnut shell powder on Fe2+ oxidization and H+ production were evaluated. Second, the chemical constituents of walnut shell were isolated to determine the active ingredient(s). Third, the expression of Fe2+-oxidizing genes and rus operon genes was investigated using real-time polymerase chain reaction. Finally, growth curves were plotted, and a bioleaching experiment was performed to confirm the active ingredient(s) in walnut shells. The results indicated that both walnut shell powder and the phenolic fraction exert high inhibitory effects on Fe2+ oxidation and H+ production by A. ferrooxidans cultured in standard 9K medium. The phenolic components exert their inhibitory effects by down-regulating the expression of Fe2+-oxidizing genes and rus operon genes, which significantly decreased the growth of A. ferrooxidans. This study revealed walnut shell powder to be a promising substance for controlling AMD. PMID:27144574

  11. Differential gene expression and bioinformatics analysis of copper resistance gene afe_1073 in Acidithiobacillus ferrooxidans.

    PubMed

    Hu, Qi; Wu, Xueling; Jiang, Ying; Liu, Yuandong; Liang, Yili; Liu, Xueduan; Yin, Huaqun; Baba, Ngom

    2013-04-01

    Copper resistance of acidophilic bacteria is very significant in bioleaching of copper ore since high concentration of copper are harmful to the growth of organisms. Copper resistance gene afe_1073 was putatively considered to be involved in copper homeostasis in Acidithiobacillus ferrooxidans ATCC23270. In the present study, differential expression of afe_1073 in A. ferrooxidans strain DY26 and DC was assessed with quantitative reverse transcription polymerase chain reaction. The results showed the expression of afe_1073 in two strains increased with the increment of copper concentrations. The expression of DY26 was lower than that of DC at the same copper concentration although A. ferrooxidans strain DY26 possessed higher copper resistance than strain DC. In addition, bioinformatics analysis showed AFE_1073 was a typical transmembrane protein P1b1-ATPase, which could reduce the harm of Cu(+) by pumping it out from the cell. There were two mutation sites in AFE_1073 between DY26 and DC and one may change the hydrophobicity of AFE_1073, which could enhance the ability of DY26 to pump out Cu(+). Therefore, DY26 needed less gene expression of afe_1073 for resisting copper toxicity than that of DC at the same copper stress. Our study will be beneficial to understanding the copper resistance mechanism of A. ferrooxidans.

  12. A dispensable peptide from Acidithiobacillus ferrooxidans tryptophanyl-tRNA synthetase affects tRNA binding.

    PubMed

    Zúñiga, Roberto; Salazar, Juan; Canales, Mauricio; Orellana, Omar

    2002-12-18

    The activation domain of class I aminoacyl-tRNA synthetases, which contains the Rossmann fold and the signature sequences HIGH and KMSKS, is generally split into two halves by the connective peptides (CP1, CP2) whose amino acid sequences are idiosyncratic. CP1 has been shown to participate in the binding of tRNA as well as the editing of the reaction intermediate aminoacyl-AMP or the aminoacyl-tRNA. No function has been assigned to CP2. The amino acid sequence of Acidithiobacillus ferrooxidans TrpRS was predicted from the genome sequence. Protein sequence alignments revealed that A. ferrooxidans TrpRS contains a 70 amino acids long CP2 that is not found in any other bacterial TrpRS. However, a CP2 in the same relative position was found in the predicted sequence of several archaeal TrpRSs. A. ferrooxidans TrpRS is functional in vivo in Escherichia coli. A deletion mutant of A. ferrooxidans trpS lacking the coding region of CP2 was constructed. The in vivo activity of the mutant TrpRS in E. coli, as well as the kinetic parameters of the in vitro activation of tryptophan by ATP, were not altered by the deletion. However, the K(m) value for tRNA was seven-fold higher upon deletion, reducing the efficiency of aminoacylation. Structural modeling suggests that CP2 binds to the inner corner of the L shape of tRNA.

  13. Comparison analysis of coal biodesulfurization and coal's pyrite bioleaching with Acidithiobacillus ferrooxidans.

    PubMed

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process.

  14. Microarray and bioinformatic analyses suggest models for carbon metabolism in the autotroph Acidithiobacillus ferrooxidans

    SciTech Connect

    C. Appia-ayme; R. Quatrini; Y. Denis; F. Denizot; S. Silver; F. Roberto; F. Veloso; J. Valdes; J. P. Cardenas; M. Esparza; O. Orellana; E. Jedlicki; V. Bonnefoy; D. Holmes

    2006-09-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic bacterium that uses iron or sulfur as an energy and electron source. Bioinformatic analysis was used to identify putative genes and potential metabolic pathways involved in CO2 fixation, 2P-glycolate detoxification, carboxysome formation and glycogen utilization in At. ferrooxidans. Microarray transcript profiling was carried out to compare the relative expression of the predicted genes of these pathways when the microorganism was grown in the presence of iron versus sulfur. Several gene expression patterns were confirmed by real-time PCR. Genes for each of the above predicted pathways were found to be organized into discrete clusters. Clusters exhibited differential gene expression depending on the presence of iron or sulfur in the medium. Concordance of gene expression within each cluster, suggested that they are operons Most notably, clusters of genes predicted to be involved in CO2 fixation, carboxysome formation, 2P-glycolate detoxification and glycogen biosynthesis were up-regulated in sulfur medium, whereas genes involved in glycogen utilization were preferentially expressed in iron medium. These results can be explained in terms of models of gene regulation that suggest how A. ferrooxidans can adjust its central carbon management to respond to changing environmental conditions.

  15. Differential gene expression in Acidithiobacillus ferrooxidans LR planktonic and attached cells in the presence of chalcopyrite.

    PubMed

    Ossa Henao, Diana Marcela; Vicentini, Renato; Rodrigues, Viviane Drumond; Bevilaqua, Denise; Ottoboni, Laura Maria Mariscal

    2014-07-01

    Acidithiobacillus ferrooxidans is commonly used in bioleaching operations to recover copper from sulfide ores. It is commonly accepted that A. ferrooxidans attaches to mineral surfaces by means of extracellular polymeric substances (EPS), however the role of type IV pili and tight adherence genes in this process is poorly understood. Genes related to the formation of type IV pili and tight adherence were identified in the genome of the bacterium, and in this work, we show that A. ferrooxidans actively expresses these genes, as demonstrated by quantitative real-time PCR analysis using cells incubated with chalcopyrite for 2 h. Significant differences in gene expression were observed between planktonic and adhered cells, with the level of expression being much greater in planktonic cells. These results might indicate that planktonic cells can actively adhere to the substrate. A bioinformatics analysis of interaction networks of the tight adherence and type IV pilus assembly genes revealed a strong relationship between conjugation systems (tra operon) and regulatory systems (PilR, PilS).

  16. Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    PubMed Central

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464

  17. Zinc bioleaching from an iron concentrate using Acidithiobacillus ferrooxidans strain from Hercules Mine of Coahuila, Mexico

    NASA Astrophysics Data System (ADS)

    Núñez-Ramírez, Diola Marina; Solís-Soto, Aquiles; López-Miranda, Javier; Pereyra-Alférez, Benito; Rutiaga-Quiñónes, Miriam; Medina-Torres, Luis; Medrano-Roldán, Hiram

    2011-10-01

    The iron concentrate from Hercules Mine of Coahuila, Mexico, which mainly contained pyrite and pyrrhotite, was treated by the bioleaching process using native strain Acidithiobacillus ferrooxidans ( A. ferrooxidans) to determine the ability of these bacteria on the leaching of zinc. The native bacteria were isolated from the iron concentrate of the mine. The bioleaching experiments were carried out in shake flasks to analyze the effects of pH values, pulp density, and the ferrous sulfate concentration on the bioleaching process. The results obtained by microbial kinetic analyses for the evaluation of some aspects of zinc leaching show that the native bacteria A. ferrooxidans, which is enriched with a 9K Silverman medium under the optimum conditions of pH 2.0, 20 g/L pulp density, and 40 g/L FeSO4, increases the zinc extraction considerably observed by monitoring during15 d, i.e., the zinc concentration has a decrease of about 95% in the iron concentrate.

  18. Inter- and intraspecific genomic variability of the 16S-23S intergenic spacer regions (ISR) in representatives of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans.

    PubMed

    Ni, Yong-Qing; Yang, Yuan; Bao, Jing-Ting; He, Kai-Yu; Li, Hong-Yu

    2007-05-01

    The complete sequences of 32 intergenic spacer regions (ISR) from Acidithiobacillus strains, including 29 field strains isolated from coal, copper, molybdenum mine wastes or sediment of different geoclimatic regions in China, reference strain ATCC19859 and the type strains of the two species were determined. These data, together with other sequences available in the GenBank database, were used to carry out the first detailed assessment of the inter- and intraspecific genomic variability of the ISR sequences and to infer phylogenetic relationships within the genus. The total length of the 16S-23S rRNA intergenic spacer regions of the Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans strains ranged from 451 to 490 bp, and from 434 to 456 bp, respectively. The degree of intrageneric ISR sequence similarity was higher than the degree of intergeneric similarity, and the overall similarity values of the ISRs varied from 60.49% to 84.71% between representatives of different species of the genus Acidithiobacillus. Sequences from the spacer of the A. thiooxidans and A. ferrooxidans strains ranged from 86.71% to 99.56% and 92.36% to 100% similarity, respectively. All Acidithiobacillus strains were separated into three phylogenetic major clusters and seven phylogenetic groups. ISR may be a potential target for the development of in situ hybridization probe aimed at accurately detecting acidithiobacilli in the various acidic environments.

  19. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources.

    PubMed

    Chen, Peng; Yan, Lei; Leng, Feifan; Nan, Wenbing; Yue, Xiaoxuan; Zheng, Yani; Feng, Na; Li, Hongyu

    2011-02-01

    The characteristics of the bioleaching of realgar by Acidithiobacillus ferrooxidans BY-3 (A. ferrooxidans) were investigated in this work. We examined the effects of using ferrous iron and elemental sulfur as the sole and mixed energy sources on the bioleaching of realgar. Under all experimental conditions, A. ferrooxidans BY-3 significantly enhanced the dissolution of realgar. Moreover, arsenic was more efficiently leached using A. ferrooxidans BY-3 in the presence of ferrous iron than in other culture conditions. A high concentration of arsenic was observed in the absence of alternative energy sources. This concentration was higher than that in cultures with sulfur only and lower than that in cultures with ferrous iron and sulfur. Linear or nonlinear models best fit the experimental data; the nonlinear model exhibited the dual effects of dissolution and removal on the bioleaching of realgar, whereas the linear model only applied to situations of slow bioleaching rather than removal.

  20. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans.

    PubMed

    Zhao, Hongbo; Wang, Jun; Hu, Minghao; Qin, Wenqing; Zhang, Yansheng; Qiu, Guanzhou

    2013-12-01

    Bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans was carried out to investigate the influences between each other during bioleaching. Bioleaching results indicated that bornite accelerated the dissolution of chalcopyrite, and chalcopyrite also accelerated the dissolution of bornite, it could be described as a synergistic effect during bioleaching, this synergistic effect might be attributed to the galvanic effect between chalcopyrite and bornite, and to the relatively low solution potential as the addition of bornite. Significantly amount of elemental sulfur and jarosite formed on the minerals surface might be the main passivation film inhibiting the further dissolution, and the amount of elemental sulfur significantly increased with the addition of bornite. Results of electrochemical measurements indicated that the oxidation and reduction mechanisms of chalcopyrite and bornite were similar, the addition of bornite or chalcopyrite did not change the oxidative and reductive mechanisms, but increased the oxidation rate.

  1. Bioleaching of heavy metal from woody biochar using Acidithiobacillus ferrooxidans and activation for adsorption.

    PubMed

    Wang, Buyun; Li, Cuiping; Liang, Hui

    2013-10-01

    A woody biochar which was the byproduct of gasification of sawdust was treated with bioleaching by Acidithiobacillus ferrooxidans. After bioleaching, most heavy metal was removed from biochar. Leaching efficiency of heavy metal was efficient in a wide pulp density range from 1% to 10% (w/v) and decreased only a little with the increase in pulp density. It made application of biochar free of heavy metal risk. Benefitting from the improvement in functional group composition and pore structure after bioleaching, adsorption capacity of biochar to methylene blue and heavy metal was enhanced greatly. Adsorption of methylene blue could be described by pseudo-second-order model and Langmuir equation and the enhancement was mainly caused by the modification of physical character of biochar. Adsorption of heavy metal could be described by Freundlich equation and was mainly determined by chemical character of biochar.

  2. Sludge conditioning using biogenic flocculant produced by Acidithiobacillus ferrooxidans for enhancement in dewaterability.

    PubMed

    Kurade, Mayur B; Murugesan, Kumarasamy; Selvam, Ammaiyappan; Yu, Shuk-Man; Wong, Jonathan W C

    2016-10-01

    Biogenic flocculant produced by Acidithiobacillus ferrooxidans was used for sludge conditioning to improve the dewaterability of anaerobically-digested sludge, and its efficiency was compared with commercial cationic polyacrylamide (PAM). Biogenic flocculant rapidly reduced the pH and increased the oxidation-reduction potential of sludge. Capillary suction time (CST) and specific resistant to filtration (SRF) of sludge was decreased by 74% and 89%, respectively, compared with control; and the reductions were 58% CST and 67% SRF higher when compared with commercial polymer. Biogenic treatment improved the sludge calorific value by 13%, and also reduced the unpleasant odor. The small-scale mechanical filter press study showed that the biogenic flocculant can reduce the moisture content of sludge to 70%, and improve the clarity of the filtrate in terms of removal of total suspended solids and total dissolved solids when compared with synthetic polymer treatment.

  3. Bioleaching of zinc and iron from steel plant waste using Acidithiobacillus ferrooxidans.

    PubMed

    Bayat, Oktay; Sever, Efsun; Bayat, Belgin; Arslan, Volkan; Poole, Colin

    2009-01-01

    The bacterial leaching of zinc and iron from solid wastes at the Isdemir iron and steel plant has been investigated using Acidithiobacillus ferrooxidans as the bacterial agent. The effects of a range of operational parameters, including particle size, solids concentration and pH, on the efficiency of the bioleaching process were investigated. In each test, several variables were determined to assess the efficiency of leaching, including slurry pH and redox potential, temperature, bacteria population and concentrations of zinc and iron in solution. Experimental results demonstrated that pulp solids concentration, slurry pH and solids particle size were all important parameters in the bacterial leaching process. Maximum extraction was achieved at pH values around 1.3 and a solids concentration of 1% w/v, with 35% of the Zn content and 37% of the Fe being dissolved.

  4. Study of Acidithiobacillus ferrooxidans and enzymatic bio-Fenton process-mediated corrosion of copper-nickel alloy.

    PubMed

    Jadhav, U; Hocheng, H

    2016-10-01

    This study presents the corrosion behavior of the copper-nickel (Cu-Ni) alloy in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans) and glucose oxidase (GOx) enzyme. In both the cases ferric ions played an important role in weight loss and thereby to carry out the corrosion of the Cu-Ni alloy. A corrosion rate of 0.6 (±0.008), 2.11 (±0.05), 3.69 (±0.26), 0.7 (±0.006) and 0.08 (±0.002) mm/year was obtained in 72 h using 9K medium with ferrous sulfate, A. ferrooxidans culture supernatant, A. ferrooxidans cells, GOx enzyme and hydrogen peroxide (H2O2) solution respectively. The scanning electron microscopy (SEM) micrographs showed that a variable extent of corrosion was caused by 9K medium with ferrous sulfate, GOx and A. ferrooxidans cells. An arithmetic average surface roughness (Ra) of 174.78 nm was observed for the control work-piece using optical profilometer. The change in Ra was observed with the treatment of the Cu-Ni alloy using various systems. The Ra for 9K medium with ferrous sulfate, GOx and A. ferrooxidans cells was 374.54, 607.32 and 799.48 nm, respectively, after 24 h. These results suggest that A. ferrooxidans cells were responsible for more corrosion of the Cu-Ni alloy than other systems used.

  5. Growth of the acidophilic iron-sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions

    NASA Astrophysics Data System (ADS)

    Bauermeister, Anja; Rettberg, Petra; Flemming, Hans-Curt

    2014-08-01

    The question of life on Mars has been in focus of astrobiological research for several decades, and recent missions in orbit or on the surface of the planet are constantly expanding our knowledge on Martian geochemistry. For example, massive stratified deposits have been identified on Mars containing sulfate minerals and iron oxides, which suggest the existence of acidic aqueous conditions in the past, similar to acidic iron- and sulfur-rich environments on Earth. Acidophilic organisms thriving in such habitats could have been an integral part of a possibly widely extinct Martian ecosystem, but remains might possibly even exist today in protected subsurface niches. The chemolithoautotrophic strain Acidithiobacillus ferrooxidans was selected as a model organism to study the metabolic capacities of acidophilic iron-sulfur bacteria, especially regarding their ability to grow with in situ resources that could be expected on Mars. The experiments were not designed to accurately simulate Martian physical conditions (except when certain single parameters such as oxygen partial pressure were considered), but rather the geochemical environment that can be found on Mars. A. ferrooxidans could grow solely on the minerals contained in synthetic Mars regolith mixtures with no added nutrients, using either O2 as an external electron acceptor for iron oxidation, or H2 as an external electron donor for iron reduction, and thus might play important roles in the redox cycling of iron on Mars. Though the oxygen partial pressure of the Martian atmosphere at the surface was not sufficient for detectable iron oxidation and growth of A. ferrooxidans during short-term incubation (7 days), alternative chemical O2-generating processes in the subsurface might yield microhabitats enriched in oxygen, which principally are possible under such conditions. The bacteria might also contribute to the reductive dissolution of Fe3+-containing minerals like goethite and hematite, which are

  6. Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans.

    PubMed

    Chen, Shu; Yang, Yuankun; Liu, Congqiang; Dong, Faqin; Liu, Bijun

    2015-12-01

    Application of bioleaching process for metal recovery from electronic waste has received an increasing attention in recent years. In this work, a column bioleaching of copper from waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans has been investigated. After column bioleaching for 28d, the copper recovery reached at 94.8% from the starting materials contained 24.8% copper. Additionally, the concentration of Fe(3+) concentration varied significantly during bioleaching, which inevitably will influence the Cu oxidation, thus bioleaching process. Thus the variation in Fe(3+) concentration should be taken into consideration in the conventional kinetic models of bioleaching process. Experimental results show that the rate of copper dissolution is controlled by external diffusion rather than internal one because of the iron hydrolysis and formation of jarosite precipitates at the surface of the material. The kinetics of column bioleaching WPCBs remains unchanged because the size and morphology of precipitates are unaffected by maintaining the pH of solution at 2.25 level. In bioleaching process, the formation of jarosite precipitate can be prevented by adding dilute sulfuric acid and maintaining an acidic condition of the leaching medium. In such way, the Fe(2)(+)-Fe(3+) cycle process can kept going and create a favorable condition for Cu bioleaching. Our experimental results show that column Cu bioleaching from WPCBs by A. ferrooxidans is promising.

  7. Immobilization of Acidithiobacillus ferrooxidans on Cotton Gauze for the Bioleaching of Waste Printed Circuit Boards.

    PubMed

    Nie, Hongyan; Zhu, Nengwu; Cao, Yanlan; Xu, Zhiguo; Wu, Pingxiao

    2015-10-01

    The bioleaching parameters of metal concentrates from waste printed circuit boards by Acidithiobacillus ferrooxidans immobilized on cotton gauze in a two-step reactor were investigated in this study. The results indicated that an average ferrous iron oxidation rate of 0.54 g/(L·h) and a ferrous iron oxidation ratio of 96.90 % were obtained after 12 h at aeration rate of 1 L/min in bio-oxidation reactor. After 96 h, the highest leaching efficiency of copper reached 91.68 % under the conditions of the content of the metal powder 12 g/L, the retention time 6 h, and the aeration rate 1 L/min. The bioleaching efficiency of copper could be above 91.12 % under repeated continuous batch operation. Meanwhile, 95.32 % of zinc, 90.32 % of magnesium, 86.31 % of aluminum, and 59.07 % of nickel were extracted after 96 h. All the findings suggested that the recovery of metal concentrates from waste printed circuit boards via immobilization of A. ferrooxidans on cotton gauze was feasible.

  8. Cr and Ni recovery during bioleaching of dewatered metal-plating sludge using Acidithiobacillus ferrooxidans.

    PubMed

    Rastegar, S O; Mousavi, S M; Shojaosadati, S A

    2014-09-01

    This study determined the optimal conditions required to attain maximum metal recovery in the bioleaching process of dewatered metal-plating sludge using Acidithiobacillus ferrooxidans (A. ferrooxidans). Adaptation of this strain was carried up to 1% (w/v) of the sample. Three factors including initial pH, initial Fe(3+) concentration and pulp density were selected as the effective factors and were optimized using a central composite design of response surface methodology. An initial pH of 1, pulp density of 9 g/l and initial Fe(3+) concentration of 1g/l were determined to be optimum values by the statistical models. The highest extractions for Cr and Ni under optimal conditions were 55.6% and 58.2%, respectively. Bioleaching kinetics was investigated using a modified shrinking core model to better understand the mechanism of the leaching reaction. The model predictions indicate that the diffusion step controlled the overall dissolution kinetics and is the rate controlling step.

  9. α-fur, an antisense RNA gene to fur in the extreme acidophile Acidithiobacillus ferrooxidans.

    PubMed

    Lefimil, C; Jedlicki, E; Holmes, D S

    2014-03-01

    A large non-coding RNA, termed α-Fur, of ~1000 nt has been detected in the extreme acidophile Acidithiobacillus ferrooxidans encoded on the antisense strand to the iron-responsive master regulator fur (ferric uptake regulator) gene. A promoter for α-fur was predicted bioinformatically and validated using gene fusion experiments. The promoter is situated within the coding region and in the same sense as proB, potentially encoding a glutamate 5-kinase. The 3' termination site of the α-fur transcript was determined by 3' rapid amplification of cDNA ends to lie 7 nt downstream of the start of transcription of fur. Thus, α-fur is antisense to the complete coding region of fur, including its predicted ribosome-binding site. The genetic context of α-fur is conserved in several members of the genus Acidithiobacillus but not in all acidophiles, indicating that it is monophyletic but not niche specific. It is hypothesized that α-Fur regulates the cellular level of Fur. This is the fourth example of an antisense RNA to fur, although it is the first in an extreme acidophile, and underscores the growing importance of cis-encoded non-coding RNAs as potential regulators involved in the microbial iron-responsive stimulon.

  10. Toxin-antitoxin systems in the mobile genome of Acidithiobacillus ferrooxidans.

    PubMed

    Bustamante, Paula; Tello, Mario; Orellana, Omar

    2014-01-01

    Toxin-antitoxin (TA) systems are genetic modules composed of a pair of genes encoding a stable toxin and an unstable antitoxin that inhibits toxin activity. They are widespread among plasmids and chromosomes of bacteria and archaea. TA systems are known to be involved in the stabilization of plasmids but there is no consensus about the function of chromosomal TA systems. To shed light on the role of chromosomally encoded TA systems we analyzed the distribution and functionality of type II TA systems in the chromosome of two strains from Acidithiobacillus ferrooxidans (ATCC 23270 and 53993), a Gram-negative, acidophilic, environmental bacterium that participates in the bioleaching of minerals. As in other environmental microorganisms, A. ferrooxidans has a high content of TA systems (28-29) and in twenty of them the toxin is a putative ribonuclease. According to the genetic context, some of these systems are encoded near or within mobile genetic elements. Although most TA systems are shared by both strains, four of them, which are encoded in the active mobile element ICEAfe1, are exclusive to the type strain ATCC 23270. We demonstrated that two TA systems from ICEAfe1 are functional in E. coli cells, since the toxins inhibit growth and the antitoxins counteract the effect of their cognate toxins. All the toxins from ICEAfe1, including a novel toxin, are RNases with different ion requirements. The data indicate that some of the chromosomally encoded TA systems are actually part of the A. ferrooxidans mobile genome and we propose that could be involved in the maintenance of these integrated mobile genetic elements.

  11. A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage.

    PubMed

    Orellana, Luis H; Jerez, Carlos A

    2011-11-01

    There is great interest in understanding how extremophilic biomining bacteria adapt to exceptionally high copper concentrations in their environment. Acidithiobacillus ferrooxidans ATCC 53993 genome possesses the same copper resistance determinants as strain ATCC 23270. However, the former strain contains in its genome a 160-kb genomic island (GI), which is absent in ATCC 23270. This GI contains, amongst other genes, several genes coding for an additional putative copper ATPase and a Cus system. A. ferrooxidans ATCC 53993 showed a much higher resistance to CuSO(4) (>100 mM) than that of strain ATCC 23270 (<25 mM). When a similar number of bacteria from each strain were mixed and allowed to grow in the absence of copper, their respective final numbers remained approximately equal. However, in the presence of copper, there was a clear overgrowth of strain ATCC 53993 compared to ATCC 23270. This behavior is most likely explained by the presence of the additional copper-resistance genes in the GI of strain ATCC 53993. As determined by qRT-PCR, it was demonstrated that these genes are upregulated when A. ferrooxidans ATCC 53993 is grown in the presence of copper and were shown to be functional when expressed in copper-sensitive Escherichia coli mutants. Thus, the reason for resistance to copper of two strains of the same acidophilic microorganism could be determined by slight differences in their genomes, which may not only lead to changes in their capacities to adapt to their environment, but may also help to select the more fit microorganisms for industrial biomining operations.

  12. Differential gene expression in response to copper in Acidithiobacillus ferrooxidans strains possessing dissimilar copper resistance.

    PubMed

    Wu, Xueling; Hu, Qi; Hou, Dongmei; Miao, Bo; Liu, Xueduan

    2010-01-01

    Locus afe_0454 from Acidithiobacillus ferrooxidans (At.ferrooxidans) is annotated as related to copper resistance in The Institute for Genomic Research database. In our study, two At.ferrooxidans strains, 26(#) and DC, with different levels of copper ion resistance were isolated from acid mine drainages at two major copper mines in China, and their copper-resistance capacity was determined. The 26(#) strain had a copper-tolerance level of 0.22 mol/L, whereas the DC strain had a lower copper-tolerance level of 0.04 mol/L. The mutant 26(#) was generated from strain 26(#), and its copper-tolerance level was 0.25 mol/L. Using real-time quantitative reverse transcription polymerase chain reaction, differential expression of the afe_0454 gene during copper ion stress of these three strains was investigated. The results showed that the expression of afe_0454 was increased under copper ion stress, indicating that the afe_0454 gene is sensitive to copper levels. Furthermore, the afe_0454 gene expression ratio varied in the different copper-resistant strains. Gene expression was highest in the highest copper-resistant strain. The deduced amino acid sequence of the afe_0454 gene was 56.87% non-polar, indicating the AFE_0454 protein was hydrophobic. Searching with the AFE_0454 protein in The Institute for Genomic Research database showed that the structure of the copper resistance protein D (CopD), which transports copper ions outside of the cell, had the highest sequence identity (46%). Bioinformatics analysis showed that the AFE_0454 protein has eight transmembrane helixes and was predicted to be localized to the plasma membrane. These results strongly suggested that the AFE_0454 protein is likely a transmembrane protein and might be directly involved in copper ion resistance.

  13. Identification and characterization of four strains of Acidithiobacillus ferrooxidans isolated from different sites in China.

    PubMed

    Chen, Hong; Yang, Bo; Chen, Xinhua

    2009-01-01

    Four strains of Acidithiobacillus ferrooxidans (A. ferrooxidans), AF1, AF2, AF3 and AFc, were isolated from samples with different geological sources using a 9K medium. These four isolates were identified as A. ferrooxidans by phenotypic and 16S rDNA sequence analyses. All four isolates were able to use ferrous ion (Fe(2+)), elemental sulfur (S0) or pyrite as a sole energy source, but they showed differences in pH optima and range of activity, optimum temperature of activity, resistance to chloride (KCl) and heavy metal ions, and oxidation rates of Fe(2+), S0 and pyrite. AF3 was the most active strain when using Fe(2+) as the energy source, while AFc grew best using pyrite as the energy source. AF2 appeared to differ from the other three strains in substrate utilization, as it oxidizes S0 and pyrite more effectively than Fe(2+). RAPD analysis of genomic DNA from these isolates showed that banding profiles of their genomic DNA exhibited some differences, and the genomic banding profile of AF2 was significantly different from that of others. To obtain an insight into the molecular biology of the process of the energy production of these strains, several genes involved in the iron respiratory chain were cloned and sequenced, including Fe(2+) oxidase (iro), rusticyanin (rus) and subunit III of aa3-type cytochrome oxidase (cox C) genes. The results revealed that the iro gene can be cloned from all of the four strains and the nucleotide sequences were shown to be completely identical in each. However, rus and coxC genes could be amplified only from AF1, AF3 and AFc, not from AF2. These results suggested that the phenotypic differences of the four strains of A. ferrooxidans from different sites correlated with their genetic polymorphism, which may result from the different environments in which they lived, and that the strain AF2 was phenotypically and genetically significantly different from the other three strains.

  14. Enhancing isobutyric acid production from engineered Acidithiobacillus ferrooxidans cells via media optimization.

    PubMed

    Li, Xiaozheng; West, Alan C; Banta, Scott

    2016-04-01

    The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans has previously been genetically modified to produce isobutyric acid (IBA) from carbon dioxide while obtaining energy from the oxidation of ferrous iron. Here, a combinatorial approach was used to explore the influence of medium composition in both batch and chemostat cultures in order to improve IBA yields (g IBA/mol Fe(2+)) and productivities (g IBA/L/d). Medium pH, ferrous concentration (Fe(2+)), and inclusion of iron chelators all had positive impact on the IBA yield. In batch experiments, gluconate was found to be a superior iron chelator because its use resulted in smaller excursions in pH. In batch cultures, IBA yields decreased linearly with increases in the final effective Fe(3+) concentrations. Chemostat cultures followed similar trends as observed in batch cultures. Specific cellular productivities were found to be a function of the steady state ORP (Oxidation-reduction potential) of the growth medium, which is primarily determined by the Fe(3+) to Fe(2+) ratio. By operating at low ORP, chemostat cultures were able to achieve volumetric productivities as high as 3.8 ± 0.2 mg IBA/L/d which is a 14-fold increase over the previously reported value.

  15. Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: Oxygen and sulfur isotope fractionation

    USGS Publications Warehouse

    Thurston, R.S.; Mandernack, K.W.; Shanks, Wayne C.

    2010-01-01

    Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (??18OH2O) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 ?? 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate-water oxygen isotope fractionation, ??18OSO4-H2O, of ~ 3.8??? for the anaerobic experiments. Aerobic oxidation produced apparent ??SO4-H2O values (6.4???) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O2 into sulfate. ??34SSO4 values are ~ 4??? lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in ??34SSO4 of ~- 1.5 ?? 0.2??? was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions. ?? 2009 Elsevier B.V.

  16. Selection and evaluation of reference genes for improved interrogation of microbial transcriptomes: case study with the extremophile Acidithiobacillus ferrooxidans

    PubMed Central

    Nieto, Pamela A; Covarrubias, Paulo C; Jedlicki, Eugenia; Holmes, David S; Quatrini, Raquel

    2009-01-01

    Background Normalization is a prerequisite for accurate real time PCR (qPCR) expression analysis and for the validation of microarray profiling data in microbial systems. The choice and use of reference genes that are stably expressed across samples, experimental conditions and designs is a key consideration for the accurate interpretation of gene expression data. Results Here, we evaluate a carefully selected set of reference genes derived from previous microarray-based transcriptional profiling experiments performed on Acidithiobacillus ferrooxidans and identify a set of genes with minimal variability under five different experimental conditions that are frequently used in Acidithiobacilli research. Suitability of these and other previously reported reference genes to monitor the expression of four selected target genes from A. ferrooxidans grown with different energy sources was investigated. Utilization of reference genes map, rpoC, alaS and era results in improved interpretation of gene expression profiles in A. ferrooxidans. Conclusion This investigation provides a validated set of reference genes for studying A. ferrooxidans gene expression under typical biological conditions and an initial point of departure for exploring new experimental setups in this microorganism and eventually in other closely related Acidithiobacilli. The information could also be of value for future transcriptomic experiments in other bacterial systems. PMID:19555508

  17. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans

    PubMed Central

    Makita, Mario; Esperón, Margarita; Pereyra, Benito; López, Alejandro; Orrantia, Erasmo

    2004-01-01

    Background Bioleaching is a process that has been used in the past in mineral pretreatment of refractory sulfides, mainly in the gold, copper and uranium benefit. This technology has been proved to be cheaper, more efficient and environmentally friendly than roasting and high pressure moisture heating processes. So far the most studied microorganism in bioleaching is Acidithiobacillus ferrooxidans. There are a few studies about the benefit of metals of low value through bioleaching. From all of these, there are almost no studies dealing with complex minerals containing arsenopyrite (FeAsS). Reduction and/or elimination of arsenic in these ores increase their value and allows the exploitation of a vast variety of minerals that today are being underexploited. Results Arsenopyrite was totally oxidized. The sum of arsenic remaining in solution and removed by sampling represents from 22 to 33% in weight (yield) of the original content in the mineral. The rest of the biooxidized arsenic form amorphous compounds that precipitate. Galena (PbS) was totally oxidized too, anglesite (PbSO4) formed is virtually insoluble and remains in the solids. The influence of seven factors in a batch process was studied. The maximum rate of arsenic dissolution in the concentrate was found using the following levels of factors: small surface area of particle exposure, low pulp density, injecting air and adding 9 K medium to the system. It was also found that ferric chloride and carbon dioxide decreased the arsenic dissolution rate. Bioleaching kinetic data of arsenic solubilization were used to estimate the dilution rate for a continuous culture. Calculated dilution rates were relatively small (0.088–0.103 day-1). Conclusion Proper conditions of solubilization of arsenic during bioleaching are key features to improve the percentage (22 to 33% in weight) of arsenic removal. Further studies are needed to determine other factors that influence specifically the solubilization of arsenic in

  18. Ferric iron uptake genes are differentially expressed in the presence of copper sulfides in Acidithiobacillus ferrooxidans strain LR.

    PubMed

    Ferraz, Lúcio F C; Verde, Leandro C L; Vicentini, Renato; Felício, Ana P; Ribeiro, Marcelo L; Alexandrino, Fabiana; Novo, Maria T M; Garcia, Oswaldo; Rigden, Daniel J; Ottoboni, Laura M M

    2011-03-01

    Acidithiobacillus ferrooxidans is one of the most widely used microorganisms in bioleaching operations to recover copper from low-grade copper sulfide ores. This work aimed to investigate the relative expression of genes related to the iron uptake system when A. ferrooxidans LR was maintained in contact with chalcopyrite or bornite as the sole energy source. Real-time quantitative PCR analysis revealed that the presence of bornite had no effect on the expression of seven genes related to the siderophore-mediated Fe(III) uptake system, while in the presence of chalcopyrite the expression of the genes was up-regulated. Bioinformatic analysis of the genomic region where these genes were found revealed the existence of three new putative DNA-binding sequences for the ferric iron uptake transcriptional regulator (Fur). Electrophoretic mobility shift assays demonstrated that a purified A. ferrooxidans His-tagged Fur protein was able to bind in vitro to each of these putative Fur boxes, suggesting that Fur regulated the expression of these genes. The expression of fur and two known Fur-regulated genes, mntH and dsrK, was also investigated in the presence of chalcopyrite. While the expression of fur and mntH was up-regulated, the expression of dsrK was down-regulated. The low amount of ferrous iron in the medium was probably responsible for the up-regulation of fur and the genes related to the siderophore-mediated Fe(III) uptake system when A. ferrooxidans LR was kept in the presence of chalcopyrite. A homology model of the A. ferrooxidans Fur was constructed and revealed that the putative DNA-binding surface presents conserved positively charged residues, supporting a previously suggested mode of interaction with DNA. The up-regulation of fur and the siderophore-mediated Fe(III) uptake genes, and the down-regulation of dsrK suggest that in the presence of chalcopyrite Fur acts as a transcription inducer and repressor.

  19. Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite, chalcopyrite, low-grade ore and quartz in a packed column reactor.

    PubMed

    Africa, Cindy-Jade; van Hille, Robert P; Harrison, Susan T L

    2013-02-01

    The attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum spp. grown on ferrous medium or adapted to a pyrite mineral concentrate to four mineral substrata, namely, chalcopyrite and pyrite concentrates, a low-grade chalcopyrite ore (0.5 wt%) and quartzite, was investigated. The quartzite represented a typical gangue mineral and served as a control. The attachment studies were carried out in a novel particle-coated column reactor. The saturated reactor containing glass beads, which were coated with fine mineral concentrates, provided a quantifiable surface area of mineral concentrate and maintained good fluid flow. A. ferrooxidans and Leptospirillum spp. had similar attachment characteristics. Enhanced attachment efficiency occurred with bacteria grown on sulphide minerals relative to those grown on ferrous sulphate in an ore-free environment. Selective attachment to sulphide minerals relative to gangue materials occurred, with mineral adapted cultures attaching to the minerals more efficiently than ferrous grown cultures. Mineral-adapted cultures showed highest levels of attachment to pyrite (74% and 79% attachment for A. ferrooxidans and L. ferriphilum, respectively). This was followed by attachment of mineral-adapted cultures to chalcopyrite (63% and 58% for A. ferrooxidans and L. ferriphilum, respectively). A. ferrooxidans and L. ferriphilum exhibited lower levels of attachment to low-grade ore and quartz relative to the sulphide minerals.

  20. A direct observation of bacterial coverage and biofilm formation by Acidithiobacillus ferrooxidans on chalcopyrite and pyrite surfaces.

    PubMed

    Yang, Y; Tan, S N; Glenn, A M; Harmer, S; Bhargava, S; Chen, M

    2015-01-01

    To obtain a fundamental understanding of the population behaviour of Acidithiobacillus ferrooxidans at chalcopyrite and pyrite surfaces, the early stage attachment behaviour and biofilm formation by this bacterium on chalcopyrite (CuFeS2) and pyrite (FeS2) were studied by optical microscopy, Raman spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS) and electron backscatter diffraction (EBSD). The results indicate there was no significant difference in selectivity of bacterial attachment between chalcopyrite and pyrite. However, the result of ToF-SIMS analysis suggests that the surface of the pyrite was covered more extensively by biofilm than that of the chalcopyrite, which may indicate more extracellular polymeric substances (EPS) formation by bacterial cells growing on pyrite. EBSD and optical image analysis indicated that selectivity of bacterial attachment to chalcopyrite was not significantly affected by crystal orientation. The results also suggest that the bacterial population in defective areas of chalcopyrite was significantly higher than on the polished surfaces.

  1. "Isolation, identification, characterization and polymetallic concentrate leaching studies of tryptic soy- and peptone-resistant thermotolerant Acidithiobacillus ferrooxidans SRDSM2".

    PubMed

    Patel, Mitesh J; Tipre, Devayani R; Dave, Shailesh R

    2011-01-01

    Acidithiobacillus ferrooxidans strain SRDSM2 was isolated from silica containing soil sample collected at a Rajpardi lignite mine. The strain responded to the addition of 0.5 g/L peptone and 1.0 g/L tryptone soya broth in the ferrous sulphate tryptone soya broth (ITSB) medium with 35.3% and 29.6% increase in iron oxidation rate (IOR), but decrease in the IOR at higher peptone or tryptone soya broth levels. The presence of 4 mM of zinc as zinc sulphate in the medium increased the IOR by 24.4%. Forty percent of the inoculated cells survived even after exposure at 80 °C for 120 min and showed 30% ferrous iron oxidation. The Vmax and Ks for iron oxidation by the isolate were 344.82 mg/L/h and 32.25 g/L respectively. The isolate was able to oxidized ferrous iron even in presence of 4.06 M ionic strength of medium and leached>85% copper and zinc from the polymetallic concentrate. Thus, this isolate can be used for bioextraction of metals from polymetallic concentrate.

  2. [Dependence of the genotypic characteristics of Acidithiobacillus ferrooxidans on the physical, chemical, and electrophysical properties of pyrites].

    PubMed

    Tupikina, O V; Kondrat'eva, T F; Karavaĭko, G I

    2005-01-01

    This study focused on the effect of physical, chemical, and electrophysical properties of two pyrites, pyrite 1, which had hole-type (p-type) conductivity, and pyrite 2, with electron-type (n-type) conductivity, on the genotypic characteristics of Acidithiobacillus ferrooxidans strains TFV-1 and TFBk, which were isolated from different substrates. After the adaptation of the strains to the pyrites at a pulp density of 1%, pulsed-field electrophoresis revealed changes in the chromosomal DNA of strain TFV-1 adapted to pyrite 1 and strain TFBk adapted to either of the pyrite types. In pyrite-adapted strain TFBk, the plasmid composition was the same as after growth on a medium containing ferrous iron, whereas, in strain TFV-1, changes in plasmid sizes or both in plasmid sizes and plasmid number occurred. After an increase in the density of the pyrite 2 pulp from 1 to 10%, the plasmid number increased from three to four, and, after an increase in the density of the pyrite 1 pulp from 1 to 7%, the plasmid number increased from two to six.

  3. Effects of pyrite bioleaching solution of Acidithiobacillus ferrooxidans on viability, differentiation and mineralization potentials of rat osteoblasts.

    PubMed

    Zhou, Jian; Chen, Ke-Ming; Zhi, De-Juan; Xie, Qin-Jian; Xian, Cory J; Li, Hong-Yu

    2015-12-01

    Iron pyrite, an important component of traditional Chinese medicine, has a poor solubility, bioavailability, and patient compliance due to a high dose required and associated side effects, all of which have limited its clinical applications and experimental studies on its action mechanisms in improving fracture healing. This study investigated Acidithiobacillus ferrooxidans (A.f)-bioleaching of two kinds of pyrites and examined bioactivities of the derived solutions in viability and osteogenic differentiation in rat calvarial osteoblasts. A.f bioleaching improved element contents (Fe, Mn, Zn, Cu, and Se) in the derived solutions and the solutions concentration-dependently affected osteoblast viability and differentiation. While the solutions had no effects at low concentrations and inhibited the osteoblast alkaline phosphatase (ALP) activity at high concentrations, they improved ALP activity at their optimal concentrations. The improved osteoblast differentiation and osteogenic function at optimal concentrations were also revealed by levels of ALP cytochemical staining, calcium deposition, numbers and areas of mineralized nodules formed, mRNA and protein expression levels of osteogenesis-related genes (osteocalcin, Bmp-2, Runx-2, and IGF-1), and Runx-2 nuclear translocation. Data from this study will be useful in offering new strategies for improving pyrite bioavailability and providing a mechanistic explanation for the beneficial effects of pyrite in improving bone healing.

  4. [Dependence of the genotypic characteristics of Acidithiobacillus ferrooxidans on the physical, chemical, and electrophysical properties of pyrites].

    PubMed

    Tupikina, O V; Kondrat'eva, T F; Samorukova, V D; Rassulov, V A; Karavaĭko, G I

    2005-01-01

    Comparison of Acidithiobacillus ferrooxidans strains TFV-1 and TFBk with respect to their capacity to oxidize pyrite 1, with hole-type (p-type) conductivity, or pyrite 2, with an electron-type (n-type) conductivity, showed that, at a pulp density of 1%, both before and after its adaptation to the pyrites, strain TFBk, isolated from a substrate with a more complex mineral composition, grew faster and oxidized the pyrites of both conductivity types more efficiently than strain TFV-1, which was isolated from a mineralogically simple ore. At a pulp density of 3-5%, the oxidation of pyrite 1 by strain TFV-1 and both of the pyrites by strain TFBk began only after an artificial increase in Eh to 600 mV. If the pulp density was increased gradually, strain TFBk could oxidize the pyrites at its higher values than strain TFV-1, with the rate of pyrite 2 oxidation being higher than that of pyrite 1. During chemical oxidation of both of the pyrites, an increase was observed in the absolute values of the coefficients of thermoelectromotive force (KTEMF); during bacterial-chemical oxidation, the KTEMF of pyrite 1 changed insignificantly, whereas the KTEMF of pyrite 2 decreased.

  5. Synchrotron radiation based STXM analysis and micro-XRF mapping of differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on Fe(2+) and S(0).

    PubMed

    Xia, Jin-Lan; Liu, Hong-Chang; Nie, Zhen-Yuan; Peng, An-An; Zhen, Xiang-Jun; Yang, Yun; Zhang, Xiu-Li

    2013-09-01

    The differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on substrates Fe(2+) and S(0) was investigated by using synchrotron radiation based scanning transmission X-ray microscopy (STXM) imaging and microbeam X-ray fluorescence (μ-XRF) mapping. The extracellular thiol groups (SH) were first alkylated by iodoacetic acid forming Protein-SCH2COOH and then the P-SCH2COOH was marked by calcium ions forming P-SCH2COOCa. The STXM imaging and μ-XRF mapping of SH were based on analysis of SCH2COO-bonded Ca(2+). The results indicated that the thiol group content of A. ferrooxidans grown on S(0) is 3.88 times to that on Fe(2+). Combined with selective labeling of SH by Ca(2+), the STXM imaging and μ-XRF mapping provided an in situ and rapid analysis of differential expression of extracellular thiol groups.

  6. Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Zhu, Tingting; Lu, Xiancai; Liu, Huan; Li, Juan; Zhu, Xiangyu; Lu, Jianjun; Wang, Rucheng

    2014-02-01

    In supergene environments, microbial activities significantly enhance sulfide oxidation and result in the release of heavy metals, causing serious contamination of soils and waters. As the most commonly encountered arsenic mineral in nature, arsenopyrite (FeAsS) accounts for arsenic contaminants in various environments. In order to investigate the geochemical behavior of arsenic during microbial oxidation of arsenopyrite, (2 3 0) surfaces of arsenopyrite slices were characterized after acidic (pH 2.00) and oxidative decomposition with or without an acidophilic microorganism Acidithiobacillus ferrooxidans. The morphology as well as chemical and elemental depth profiles of the oxidized arsenopyrite surface were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. With the mediation of bacteria, cell-shaped and acicular pits were observed on the reacted arsenopyrite surface, and the concentration of released arsenic species in solution was 50 times as high as that of the abiotic reaction after 10 days reaction. Fine-scale XPS depth profiles of the reacted arsenopyrite surfaces after both microbial and abiotic oxidation provided insights into the changes in chemical states of the elements in arsenopyrite surface layers. Within the 450 nm surface layer of abiotically oxidized arsenopyrite, Fe(III)-oxides appeared and gradually increased towards the surface, and detectable sulfite and monovalent arsenic appeared above 50 nm. In comparison, higher contents of ferric sulfate, sulfite, and arsenite were found in the surface layer of approximately 3 μm of the microbially oxidized arsenopyrite. Intermediates, such as Fe(III)-AsS and S0, were detectable in the presence of bacteria. Changes of oxidative species derived from XPS depth profiles show the oxidation sequence is Fe > As = S in abiotic oxidation, and Fe > S > As in microbial oxidation. Based on these results, a possible reaction path of microbial oxidation was proposed in a concept model.

  7. Analysis of the surface proteins of Acidithiobacillus ferrooxidans strain SP5/1 and the new, pyrite-oxidizing Acidithiobacillus isolate HV2/2, and their possible involvement in pyrite oxidation.

    PubMed

    Klingl, Andreas; Moissl-Eichinger, Christine; Wanner, Gerhard; Zweck, Josef; Huber, Harald; Thomm, Michael; Rachel, Reinhard

    2011-12-01

    Two strains of rod-shaped, pyrite-oxidizing acidithiobacilli, their cell envelope structure and their interaction with pyrite were investigated in this study. Cells of both strains, Acidithiobacillus ferrooxidans strain SP5/1 and the moderately thermophilic Acidithiobacillus sp. strain HV2/2, were similar in size, with slight variations in length and diameter. Two kinds of cell appendages were observed: flagella and pili. Besides a typical Gram-negative cell architecture with inner and outer membrane, enclosing a periplasm, both strains were covered by a hitherto undescribed, regularly arranged 2-D protein crystal with p2-symmetry. In A. ferrooxidans, this protein forms a stripe-like structure on the surface. A similar surface pattern with almost identical lattice vectors was also seen on the cells of strain HV2/2. For the surface layer of both bacteria, a direct contact to pyrite crystals was observed in ultrathin sections, indicating that the S-layer is involved in maintaining this contact site. Observations on an S-layer-deficient strain show, however, that cell adhesion does not strictly depend on the presence of the S-layer and that this surface protein has an influence on cell shape. Furthermore, the presented data suggest the ability of the S-layer protein to complex Fe3+ ions, suggesting a role in the physiology of the microorganisms.

  8. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog.

    PubMed

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270(T) and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidans (T), the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidans (T) cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270(T) genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis.

  9. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog

    PubMed Central

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270T and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidansT, the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidansT cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270T genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis. PMID:27683573

  10. Reduction of Hg2+ with reduced mammalian cytochrome c by cytochrome c oxidase purified from a mercury-resistant acidithiobacillus ferrooxidans strain, MON-1.

    PubMed

    Sugio, Tsuyoshi; Fujii, Mitsuko; Ninomiya, Yumika; Kanao, Tadayoshi; Negishi, Atsunori; Takeuchi, Fumiaki

    2008-07-01

    Acidithiobacillus ferrooxidans AP19-3, ATCC 23270, and MON-1 are mercury-sensitive, moderately mercury-resistant, and highly mercury-resistant strains respectively. It is known that 2,3,5,6-tetramethyl-p-phenylendiamine (TMPD) and reduced cytochrome c are used as electron donors specific for cytochrome c oxidase. Resting cells of strain MON-1 had TMPD oxidase activity and volatilized metal mercury with TMPD as an electron donor. Cytochrome c oxidase purified from strain MON-1 reduced mercuric ions to metalic mercury with reduced mammalian cytochrome c as well as TMPD. These mercury volatilization activities with reduced cytochrome c and TMPD were completely inhibited by 1 mM NaCN. These results indicate that cytochrome c oxidase is involved in mercury reduction in A. ferrooxidans cells. The cytochrome c oxidase activities of strains AP19-3 and ATCC 23270 were completely inhibited by 1 muM and 5 muM of mercuric chloride respectively. In contrast, the activity of strain MON-1 was inhibited 33% by 5 muM, and 70% by 10 muM of mercuric chloride, suggesting that the levels of mercury resistance in A. ferrooxidans strains correspond well with the levels of mercury resistance of cytochrome c oxidase.

  11. Cytoplasmic CopZ-Like Protein and Periplasmic Rusticyanin and AcoP Proteins as Possible Copper Resistance Determinants in Acidithiobacillus ferrooxidans ATCC 23270.

    PubMed

    Navarro, Claudio A; von Bernath, Diego; Martínez-Bussenius, Cristóbal; Castillo, Rodrigo A; Jerez, Carlos A

    2015-12-04

    Acidophilic organisms, such as Acidithiobacillus ferrooxidans, possess high-level resistance to copper and other metals. A. ferrooxidans contains canonical copper resistance determinants present in other bacteria, such as CopA ATPases and RND efflux pumps, but these components do not entirely explain its high metal tolerance. The aim of this study was to find other possible copper resistance determinants in this bacterium. Transcriptional expression of A. ferrooxidans genes coding for a cytoplasmic CopZ-like copper-binding chaperone and the periplasmic copper-binding proteins rusticyanin and AcoP, which form part of an iron-oxidizing supercomplex, was found to increase when the microorganism was grown in the presence of copper. All of these proteins conferred more resistance to copper when expressed heterologously in a copper-sensitive Escherichia coli strain. This effect was absent when site-directed-mutation mutants of these proteins with altered copper-binding sites were used in this metal sensitivity assay. These results strongly suggest that the three copper-binding proteins analyzed here are copper resistance determinants in this extremophile and contribute to the high-level metal resistance of this industrially important biomining bacterium.

  12. AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans.

    PubMed

    González, Alex; Bellenberg, Sören; Mamani, Sigde; Ruiz, Lina; Echeverría, Alex; Soulère, Laurent; Doutheau, Alain; Demergasso, Cecilia; Sand, Wolfgang; Queneau, Yves; Vera, Mario; Guiliani, Nicolas

    2013-04-01

    Biofilm formation plays a pivotal role in bioleaching activities of bacteria in both industrial and natural environments. Here, by visualizing attached bacterial cells on energetic substrates with different microscopy techniques, we obtained the first direct evidence that it is possible to positively modulate biofilm formation of the extremophilic bacterium Acidithiobacillus ferrooxidans on sulfur and pyrite surfaces by using Quorum Sensing molecules of the N-acylhomoserine lactone type (AHLs). Our results revealed that AHL-signaling molecules with a long acyl chain (12 or 14 carbons) increased the adhesion of A. ferrooxidans cells to these substrates. In addition, Card-Fish experiments demonstrated that C14-AHL improved the adhesion of indigenous A. ferrooxidans cells from a mixed bioleaching community to pyrite. Finally, we demonstrated that this improvement of cell adhesion is correlated with an increased production of extracellular polymeric substances. Our results open up a promising means to develop new strategies for the improvement of bioleaching efficiency and metal recovery, which could also be used to control environmental damage caused by acid mine/rock drainage.

  13. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.

    PubMed

    Li, Xiaozheng; Mercado, Roel; Kernan, Timothy; West, Alan C; Banta, Scott

    2014-10-01

    Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotroph that is important in biomining and other biotechnological operations. The cells are able to oxidize inorganic iron, but the insolubility and product inhibition by Fe(3+) complicates characterization of these cultures. Here we explore the growth kinetics of A. ferrooxidans in iron-based medium in a pH range from 1.6 to 2.2. It was found that as the pH was increased from 1.6 to 2.0, the maintenance coefficient decreased while both the growth kinetics and maximum cell yield increased in the precipitate-free, low Fe(2+) concentration medium. In higher iron media a similar trend was observed at low pH, but the formation of precipitates at higher pH (2.0) hampered cell growth and lowered the specific growth rate and maximum cell yield. In order to eliminate ferric precipitates, chelating agents were introduced into the medium. Citric acid was found to be relatively non-toxic and did not appear to interfere with iron oxidation at a maximum concentration of 70 mM. Inclusion of citric acid prevented precipitation and A. ferrooxidans growth parameters resumed their trends as a function of pH. The addition of citrate also decreased the apparent substrate saturation constant (KS ) indicating a reduction in the competitive inhibition of growth by ferric ions. These results indicate that continuous cultures of A. ferrooxidans in the presence of citrate at elevated pH will enable enhanced cell yields and productivities. This will be critical as these cells are used in the development of new biotechnological applications such as electrofuel production.

  14. Influence of chloride and sulfate on formation of akaganéite and schwertmannite through ferrous biooxidation by Acidithiobacillus ferrooxidans cells.

    PubMed

    Xiong, Huixin; Liao, Yuehua; Zhou, Lixiang

    2008-12-01

    Iron (oxyhydr)oxides play important roles in the fixation of toxic elements and also in the distribution of nutrients for plants in soils. Akaganéite and schwertmannite, as the iron oxyhydroxides having an analogous tunnel structure, have been widely recognized in Fe-rich environments. The objective of this study was to examine the formation of akaganéite/ schwertmannite via biooxidation of 0.1 M of ferrous solution containing only Cl-, SO4(2-) or both the anions with a Cl-/SO4(2-) mole ratio of 1, 3, 6, and 10 by chloride-acclimated Acidithiobacillus ferrooxidans cells. Results showed that ferrous iron in chloride/sulfate-containing solutions could be easily biooxidized to ferric iron, and subsequent Fe(III)-hydrolysis/precipitation could result in the formation of large quantity of akaganéite/schwertmannite precipitates. The resulting precipitates were identified to be the pure akaganéite (Fe8O8(OH)7.1(Cl)0.9, the pure schwertmannite (Fe8O8(OH)4.42(SO4)1.79, and the main schwertmannite phase (Fe8O8(OH)(8-2x)(SO4)x, with 1.09 < or = x < or = 1.73), respectively, under different Cl-/SO4(2-) mole ratio conditions. Obviously, sulfate inhibited drastically the bioformation of akaganéite but facilitated schwertmannite phase occurrence in the ferrous solution containing both sulfate and chloride. However, the presence of chloride ion in initial ferrous solution containing sulfate and Acidithiobacillus ferrooxidans cells would affect the morphology and other characteristics of schwertmannite generated.

  15. Expression and activity of the Calvin-Benson-Bassham cycle transcriptional regulator CbbR from Acidithiobacillus ferrooxidans in Ralstonia eutropha.

    PubMed

    Esparza, Mario; Jedlicki, Eugenia; Dopson, Mark; Holmes, David S

    2015-08-01

    Autotrophic fixation of carbon dioxide into cellular carbon occurs via several pathways but quantitatively, the Calvin-Benson-Bassham cycle is the most important. CbbR regulates the expression of the cbb genes involved in CO2 fixation via the Calvin-Benson-Bassham cycle in a number of autotrophic bacteria. A gene potentially encoding CbbR (cbbR(AF)) has been predicted in the genome of the chemolithoautotrophic, extreme acidophile Acidithiobacillus ferrooxidans. However, this microorganism is recalcitrant to genetic manipulation impeding the experimental validation of bioinformatic predictions. Two novel functional assays were devised to advance our understanding of cbbR(AF) function using the mutated facultative autotroph Ralstonia eutropha H14 ΔcbbR as a surrogate host to test gene function: (i) cbbR(AF) was expressed in R. eutropha and was able to complement ΔcbbR; and (ii) CbbR(AF) was able to regulate the in vivo activity of four A. ferrooxidans cbb operon promoters in R. eutropha. These results open up the use of R. eutropha as a surrogate host to explore cbbR(AF) activity.

  16. Catalytic effect of Ag⁺ on arsenic bioleaching from orpiment (As₂S₃) in batch tests with Acidithiobacillus ferrooxidans and Sulfobacillus sibiricus.

    PubMed

    Zhang, Guangji; Chao, Xingwu; Guo, Pei; Cao, Junya; Yang, Chao

    2015-01-01

    Orpiment is one of the major arsenic sulfide minerals which commonly occurs in the gold mine environment and the weathering of this mineral can lead to the contamination of arsenic. In this study, chemical leaching experiments using 10g/L Fe(3+) at 35°C and 50°C were carried out and the results show that orpiment can be leached by Fe(3+) and the leaching rate of orpiment was significantly enhanced in the presence of Ag(+). The bioleaching experiments with mesophilic bacteria Acidithiobacillus ferrooxidans and moderate thermophilic bacteria Sulfobacillus sibiricus were carried out, showing that these two strains can survive in the mineral pulp and oxidize Fe(2+) to regenerate Fe(3+). Based on above results, it is believed that the leaching action of the acidic mining drainage by some bacteria can lead to the release of arsenic from orpiment. Different performances of At. ferrooxidans and S. sibiricus in the tests suggest they follow two different mechanisms and this point of view is further confirmed based on analyses of the composition and morphology of the mineral residue by SEM and EDS.

  17. Comparative proteomic analysis of sulfur-oxidizing Acidithiobacillus ferrooxidans CCM 4253 cultures having lost the ability to couple anaerobic elemental sulfur oxidation with ferric iron reduction.

    PubMed

    Kucera, Jiri; Sedo, Ondrej; Potesil, David; Janiczek, Oldrich; Zdrahal, Zbynek; Mandl, Martin

    2016-09-01

    In extremely acidic environments, ferric iron can be a thermodynamically favorable electron acceptor during elemental sulfur oxidation by some Acidithiobacillus spp. under anoxic conditions. Quantitative 2D-PAGE proteomic analysis of a resting cell suspension of a sulfur-grown Acidithiobacillus ferrooxidans CCM 4253 subculture that had lost its iron-reducing activity revealed 147 protein spots that were downregulated relative to an iron-reducing resting cell suspension of the antecedent sulfur-oxidizing culture and 111 that were upregulated. Tandem mass spectrometric analysis of strongly downregulated spots identified several physiologically important proteins that apparently play roles in ferrous iron oxidation, including the outer membrane cytochrome Cyc2 and rusticyanin. Other strongly repressed proteins were associated with sulfur metabolism, including heterodisulfide reductase, thiosulfate:quinone oxidoreductase and sulfide:quinone reductase. Transcript-level analyses revealed additional downregulation of other respiratory genes. Components of the iron-oxidizing system thus apparently play central roles in anaerobic sulfur oxidation coupled with ferric iron reduction in the studied microbial strain.

  18. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans.

    PubMed

    Liu, Fenwu; Zhou, Jun; Jin, Tongjun; Zhang, Shasha; Liu, Lanlan

    2016-01-01

    Calcium oxide was added into ferrous ion oxidation system in the presence of Acidithiobacillus ferrooxidans at concentrations of 0-4.00 g/L. The pH, ferrous ion oxidation efficiency, total iron precipitation efficiency, and phase of the solid minerals harvested from different treatments were investigated during the ferrous ion oxidation process. In control check (CK) system, pH of the solution decreased from 2.81 to 2.25 when ferrous ions achieved complete oxidation after 72 h of Acidithiobacillus ferrooxidans incubation without the addition of calcium oxide, and total iron precipitation efficiency reached 20.2%. Efficiency of ferrous ion oxidation and total iron precipitation was significantly improved when the amount of calcium oxide added was ≤1.33 g/L, and the minerals harvested from systems were mainly a mixture of jarosite and schwertmannite. For example, the ferrous ion oxidation efficiency reached 100% at 60 h and total iron precipitation efficiency was increased to 32.1% at 72 h when 1.33 g/L of calcium oxide was added. However, ferrous ion oxidation and total iron precipitation for jarosite and schwertmannite formation were inhibited if the amount of calcium oxide added was above 2.67 g/L, and large amounts of calcium sulfate dihydrate were generated in systems.

  19. Community dynamics of attached and free cells and the effects of attached cells on chalcopyrite bioleaching by Acidithiobacillus sp.

    PubMed

    Yang, Hailin; Feng, Shoushuai; Xin, Yu; Wang, Wu

    2014-02-01

    The community dynamics of attached and free cells of Acidithiobacillus sp. were investigated and compared during chalcopyrite bioleaching process. In the mixed strains system, Acidithiobacillus ferrooxidans was the dominant species at the early stage while Acidithiobacillus thiooxidans owned competitive advantage from the middle stage to the end of bioprocess. Meanwhile, compared to A. ferrooxidans, more significant effects of attached cells on free biomass with A. thiooxidans were shown in either the pure or mixed strains systems. Moreover, the effects of attached cells on key chemical parameters were also studied in different adsorption-deficient systems. Consistently, the greatest reduction of key chemical ion was shown with A. thiooxidans and the loss of bioleaching efficiency was high to 50.5%. These results all demonstrated the bioleaching function of attached cells was more efficient than the free cells, especially with A. thiooxidans. These notable results would help us to further understand the chalcopyrite bioleaching.

  20. Recovery of Nickel and Cobalt from Laterite Tailings by Reductive Dissolution under Aerobic Conditions Using Acidithiobacillus Species.

    PubMed

    Marrero, J; Coto, O; Goldmann, S; Graupner, T; Schippers, A

    2015-06-02

    Biomining of sulfidic ores has been applied for almost five decades. However, the bioprocessing of oxide ores such as laterites lags commercially behind. Recently, the Ferredox process was proposed to treat limonitic laterite ores by means of anaerobic reductive dissolution (AnRD), which was found to be more effective than aerobic bioleaching by fungi and other bacteria. We show here that the ferric iron reduction mediated by Acidithiobacillus thiooxidans can be applied to an aerobic reductive dissolution (AeRD) of nickel laterite tailings. AeRD using a consortium of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans extracted similar amounts of nickel (53-57%) and cobalt (55-60%) in only 7 days as AnRD using Acidithiobacillus ferrooxidans. The economic and environmental advantages of AeRD for processing of laterite tailings comprise no requirement for an anoxic atmosphere, 1.8-fold less acid consumption than for AnRD, as well as nickel and cobalt recovered in a ferrous-based pregnant leach solution (PLS), facilitating the subsequent metal recovery. In addition, an aerobic acid regeneration stage is proposed. Therefore, AeRD process development can be considered as environmentally friendly for treating laterites with low operational costs and as an attractive alternative to AnRD.

  1. Molecular genetics of Thiobacillus ferrooxidans.

    PubMed Central

    Rawlings, D E; Kusano, T

    1994-01-01

    Thiobacillus ferrooxidans is a gram-negative, highly acidophilic (pH 1.5 to 2.0), autotrophic bacterium that obtains its energy through the oxidation of ferrous iron or reduced inorganic sulfur compounds. It is usually dominant in the mixed bacterial populations that are used industrially for the extraction of metals such as copper and uranium from their ores. More recently, these bacterial consortia have been used for the biooxidation of refractory gold-bearing arsenopyrite ores prior to the recovery of gold by cyanidation. The commercial use of T. ferrooxidans has led to an increasing interest in the genetics and molecular biology of the bacterium. Initial investigations were aimed at determining whether the unique physiology and specialized habitat of T. ferrooxidans had been accompanied by a high degree of genetic drift from other gram-negative bacteria. Early genetic studies were comparative in nature and concerned the isolation of genes such as nifHDK, glnA, and recA, which are widespread among bacteria. From a molecular biology viewpoint, T. ferrooxidans appears to be a typical member of the proteobacteria. In most instances, cloned gene promoters and protein products have been functional in Escherichia coli. Although T. ferrooxidans has proved difficult to transform with DNA, research on indigenous plasmids and the isolation of the T. ferrooxidans merA gene have resulted in the development of a low-efficiency electroporation system for one strain of T. ferrooxidans. The most recent studies have focused on the molecular genetics of the pathways associated with nitrogen metabolism, carbon dioxide fixation, and components of the energy-producing mechanisms. PMID:8177170

  2. Evaluation of Leptospirillum ferrooxidans for Leaching

    PubMed Central

    Sand, Wolfgang; Rohde, Katrin; Sobotke, Birgit; Zenneck, Claus

    1992-01-01

    The importance of Leptospirillum ferrooxidans for leach processes has been evaluated by studying the lithotrophic flora of three mine biotopes and a heap leaching operation, by percolation experiments with inoculated, sterilized ore, and by morphological, physiological, and genetic investigations of pure and mixed cultures of L. ferrooxidans, Thiobacillus ferrooxidans, and Thiobacillus thiooxidans. In biotopes of 20°C or above, Leptospirillum-like bacteria are as abundant as T. ferrooxidans. Leptospirilli represent at least one-half of the ferrous-iron-oxidizing population. Percolation experiments confirmed this result. Leptospirilli were as numerous as T. ferrooxidans. At reduced temperatures, the generation times of leptospirilli increase more so than those of T. ferrooxidans. At 14°C, Leptospirillum grows slowly and T. ferrooxidans dominates the population. Physiological investigations indicate that L. ferrooxidans is a strict chemolithoautotroph, metabolizing only ferrous iron and pyrite. Even an addition of 0.05% (wt/vol) yeast extract inhibited its growth. The maximum ferrous-iron-oxidizing activity of L. ferrooxidans amounts to about 40% of the activity of T. ferrooxidans. After growth on sulfidic ore, both species exhibit reduced iron-oxidizing activities, L. ferrooxidans exhibiting one-third and T. ferrooxidans exhibiting one-seventh of their maximum activities. Surprisingly, the absolute values are similar. For indirect leaching, L. ferrooxidans is as important as T. ferrooxidans. This was confirmed by the results of percolation experiments. L. ferrooxidans together with T. thiooxidans mobilized metals at least as well as T. ferrooxidans did. The best results were obtained with a mixed culture of all three species. Images PMID:16348642

  3. Manipulation of pyrite colonization and leaching by iron-oxidizing Acidithiobacillus species.

    PubMed

    Bellenberg, Sören; Barthen, Robert; Boretska, Mariia; Zhang, Ruiyong; Sand, Wolfgang; Vera, Mario

    2015-02-01

    In this study, the process of pyrite colonization and leaching by three iron-oxidizing Acidithiobacillus species was investigated by fluorescence microscopy, bacterial attachment, and leaching assays. Within the first 4-5 days, only the biofilm subpopulation was responsible for pyrite dissolution. Pyrite-grown cells, in contrast to iron-grown cells, were able to oxidize iron(II) ions or pyrite after 24 h iron starvation and incubation with 1 mM H₂O₂, indicating that these cells were adapted to the presence of enhanced levels of reactive oxygen species (ROS), which are generated on metal sulfide surfaces. Acidithiobacillus ferrivorans SS3 and Acidithiobacillus ferrooxidans R1 showed enhanced pyrite colonization and biofilm formation compared to A. ferrooxidans (T). A broad range of factors influencing the biofilm formation on pyrite were also identified, some of them were strain-specific. Cultivation at non-optimum growth temperatures or increased ionic strength led to a decreased colonization of pyrite. The presence of iron(III) ions increased pyrite colonization, especially when pyrite-grown cells were used, while the addition of 20 mM copper(II) ions resulted in reduced biofilm formation on pyrite. This observation correlated with a different extracellular polymeric substance (EPS) composition of copper-exposed cells. Interestingly, the addition of 1 mM sodium glucuronate in combination with iron(III) ions led to a 5-fold and 7-fold increased cell attachment after 1 and 8 days of incubation, respectively, in A. ferrooxidans (T). In addition, sodium glucuronate addition enhanced pyrite dissolution by 25%.

  4. Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant.

    PubMed

    Hocheng, Hong; Su, Cheer; Jadhav, Umesh U

    2014-12-01

    The generation of 300–500 kg of slag per ton of the steel produced is a formidable amount of solid waste available for treatment. They usually contain considerable quantities of valuable metals. In this sense, they may become either important secondary resource if processed in eco-friendly manner for secured supply of contained metals or potential pollutants, if not treated properly. It is possible to recover metals from steel slag by applying bioleaching process. Electric arc furnace (EAF) slag sample was used for bioleaching of metals. In the present study, before bioleaching experiment water washing of an EAF slag was carried out. This reduced slag pH from 11.2 to 8.3. Culture supernatants of Acidithiobacillus thiooxidans (At. thiooxidans), Acidithiobacillus ferrooxidans (At. ferrooxidans), and Aspergillus niger (A. niger) were used for metal solubilization. At. thiooxidans culture supernatant containing 0.016 M sulfuric acid was found most effective for bioleaching of metals from an EAF slag. Maximum metal extraction was found for Mg (28%), while it was least for Mo (0.1%) in six days. Repeated bioleaching cycles increased metal recovery from 28% to 75%, from 14% to 60% and from 11% to 27%, for Mg, Zn and Cu respectively.

  5. The role of higher polythionates in the reduction of chromium(VI) by Acidithiobacillus and Thiobacillus cultures.

    PubMed

    Allegretti, P; Furlong, J; Donati, E

    2006-03-09

    In this paper, we report the chromium(VI) reduction by filtrates of Acidithiobacillus and Thiobacillus cultures. Chromium(VI) reduction by filtrates of A. ferrooxidans cultures under acidic conditions was higher than that observed for A. thiooxidans. However, at pH close to 7, chromium(VI) reduction by filtrates of T. thioparus cultures was as high as that by filtrates of A. thiooxidans cultures and much higher than that observed for A. ferrooxidans cultures at the same pH. The capability of these cultures to reduce chromium(VI) was associated specifically with the fraction of cultures (cells, sulphur and associated sulphur compounds) retained by filtration through a 0.45mum filter. In the fraction that comes from A. thiooxidans culture, polythionates (S(x)O(6)(2-)) with 3-7 sulphur atoms were detected and identified (by HPLC with MS as detector). The model of vesicles containing polythionates, sulphur and water agrees with our results.

  6. Improved chalcopyrite bioleaching by Acidithiobacillus sp. via direct step-wise regulation of microbial community structure.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    A direct step-wise regulation strategy of microbial community structure was developed for improving chalcopyrite bioleaching by Acidithiobacillus sp. Specially, the initial microbial proportion between Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was controlled at 3:1 with additional 2 g/L Fe(2+) for faster initiating iron metabolism. A. thiooxidans biomass was fed via a step-wise strategy (8-12th d) with the microbial proportion 1:1 for balancing community structure and promoting sulfur metabolism in the stationary phase. A. thiooxidans proportion was further improved via another step-wise feeding strategy (14-18th d) with the microbial proportion 1:2 for enhancing sulfur metabolism and weakening jarosite passivation in the later phase. With the community structure-shift control strategy, biochemical reaction was directly regulated for creating a better balance in different phases. Moreover, the final copper ion was increased from 57.1 to 93.2 mg/L, with the productivity 2.33 mg/(Ld). The novel strategy may be valuable in optimization of similar bioleaching process.

  7. Physiological and comparative genomic analysis of Acidithiobacillus ferrivorans PQ33 provides psychrotolerant fitness evidence for oxidation at low temperature.

    PubMed

    Ccorahua-Santo, Robert; Eca, Anika; Abanto, Michel; Guerra, Gregory; Ramírez, Pablo

    2017-02-21

    Friendly environmental hydrometallurgy at low temperatures is principally promoted by Acidithiobacillus ferrivorans. Until recently, the synergy between cold tolerance and the molecular mechanism of ferrous iron (Fe(2+)) oxidation was unknown. In the present paper, we conducted a physiological and comparative genomics analysis of the new strain A. ferrivorans PQ33 to elucidate the oxidation mechanism at low temperatures, with emphasis placed on trehalose and the Rus operon. PQ33 exhibited a doubling time of 66.6 h in Fe(2+) at pH 1.6 and 63.6 h in CuS at 5 °C. Genomic island (GI) identification and comparative genome analysis were performed with four available genomes of Acidithiobacillus sp. The genome comprised 3,298,172 bp and 56.55% GC content. In contrast to ATCC Acidithiobacillus ferrooxidans strains, the genome of A. ferrivorans PQ33 harbors one GI, which contains a RusB gene. Moreover, five genes of peptidyl-prolyl cis-trans isomerase (PPIases) were observed. Furthermore, comparative analysis of the trehalose operon suggested the presence of a horizontal transfer event. In addition, comparison of rusticyanin proteins revealed that RusB has better intrinsic flexibility than RusA. This comparison suggests psychrotolerant fitness and supports the genetic canalization of A. ferrivorans PQ33 for oxidation at low temperature.

  8. [Inhibition of Low Molecular Organic Acids on the Activity of Acidithiobacillus Species and Its Effect on the Removal of Heavy Metals from Contaminated Soil].

    PubMed

    Song, Yong-wei; Wang, He-rul; Cao, Yan-xiao; Li, Fei; Cui, Chun-hong; Zhou, Li

    2016-05-15

    Application of organic fertilizer can reduce the solubility and bioavailability of heavy metals in contaminated soil, but in the flooded anaerobic environment, organic fertilizer will be decomposed to produce a large number of low molecular organic acids, which can inhibit the biological activity of Acidithiobacillus species. Batch cultures studies showed that the monocarboxylic organic acids including formic acid, acetic acid, propionic acid, and butyric acid exhibited a marked toxicity to Acidithiobacillus species, as indicated by that 90% of inhibitory rate for Fe2 and So oxidation in 72 h were achieved at extremely low concentrations of 41.2 mg · L⁻¹, 78.3 mg · L⁻¹, 43.2 mg · L⁻¹, 123.4 mg · L⁻¹ and 81.9 mg 230. 4 mg · L⁻¹, 170.1 mg · L⁻¹, 123.4 mg · L⁻¹ respectively. Of these organic acids, formic acid was the most toxic one as indicated by that Fe2 and So oxidation was almost entirely inhibited at a low concentration. In addition, it was found that Acidithiobacillus ferrooxidans was more sensitive to low molecular organic acids than Acidithiobacillus thiooxidans. What's more, there was little effect on biological acidification process of heavy metal contaminated soil when organic acids were added at initial stage (Oh), but it was completely inhibited when these acids were added after 12 h of conventional biological acidification, thus decreasing the efficiency of heavy metals dissolution from soil.

  9. Electrochemistry of Thiobacillus ferrooxidans reactions with pyrite

    SciTech Connect

    Pesic, B.; Oliver, D.J.; Kim, Inbeum; De, G.C.

    1993-01-20

    A cyclic voltammetry technique was used to study the interactions of pyrite during bioleaching with the bacterium Thiobacillus ferrooxidans. Potential effects of heavy metals (silver and mercury) and varying the pH on the iron oxidizing ability of the bacterium are reported. Redox potential techniques were used to study effect of ferrous sulfate concentration and pH on bacterial growth.

  10. Molecular Systematics of the Genus Acidithiobacillus: Insights into the Phylogenetic Structure and Diversification of the Taxon.

    PubMed

    Nuñez, Harold; Moya-Beltrán, Ana; Covarrubias, Paulo C; Issotta, Francisco; Cárdenas, Juan Pablo; González, Mónica; Atavales, Joaquín; Acuña, Lillian G; Johnson, D Barrie; Quatrini, Raquel

    2017-01-01

    The acidithiobacilli are sulfur-oxidizing acidophilic bacteria that thrive in both natural and anthropogenic low pH environments. They contribute to processes that lead to the generation of acid rock drainage in several different geoclimatic contexts, and their properties have long been harnessed for the biotechnological processing of minerals. Presently, the genus is composed of seven validated species, described between 1922 and 2015: Acidithiobacillus thiooxidans, A. ferrooxidans, A. albertensis, A. caldus, A. ferrivorans, A. ferridurans, and A. ferriphilus. However, a large number of Acidithiobacillus strains and sequence clones have been obtained from a variety of ecological niches over the years, and many isolates are thought to vary in phenotypic properties and cognate genetic traits. Moreover, many isolates remain unclassified and several conflicting specific assignments muddle the picture from an evolutionary standpoint. Here we revise the phylogenetic relationships within this species complex and determine the phylogenetic species boundaries using three different typing approaches with varying degrees of resolution: 16S rRNA gene-based ribotyping, oligotyping, and multi-locus sequencing analysis (MLSA). To this end, the 580 16S rRNA gene sequences affiliated to the Acidithiobacillus spp. were collected from public and private databases and subjected to a comprehensive phylogenetic analysis. Oligotyping was used to profile high-entropy nucleotide positions and resolve meaningful differences between closely related strains at the 16S rRNA gene level. Due to its greater discriminatory power, MLSA was used as a proxy for genome-wide divergence in a smaller but representative set of strains. Results obtained indicate that there is still considerable unexplored diversity within this genus. At least six new lineages or phylotypes, supported by the different methods used herein, are evident within the Acidithiobacillus species complex. Although the diagnostic

  11. Molecular Systematics of the Genus Acidithiobacillus: Insights into the Phylogenetic Structure and Diversification of the Taxon

    PubMed Central

    Nuñez, Harold; Moya-Beltrán, Ana; Covarrubias, Paulo C.; Issotta, Francisco; Cárdenas, Juan Pablo; González, Mónica; Atavales, Joaquín; Acuña, Lillian G.; Johnson, D. Barrie; Quatrini, Raquel

    2017-01-01

    The acidithiobacilli are sulfur-oxidizing acidophilic bacteria that thrive in both natural and anthropogenic low pH environments. They contribute to processes that lead to the generation of acid rock drainage in several different geoclimatic contexts, and their properties have long been harnessed for the biotechnological processing of minerals. Presently, the genus is composed of seven validated species, described between 1922 and 2015: Acidithiobacillus thiooxidans, A. ferrooxidans, A. albertensis, A. caldus, A. ferrivorans, A. ferridurans, and A. ferriphilus. However, a large number of Acidithiobacillus strains and sequence clones have been obtained from a variety of ecological niches over the years, and many isolates are thought to vary in phenotypic properties and cognate genetic traits. Moreover, many isolates remain unclassified and several conflicting specific assignments muddle the picture from an evolutionary standpoint. Here we revise the phylogenetic relationships within this species complex and determine the phylogenetic species boundaries using three different typing approaches with varying degrees of resolution: 16S rRNA gene-based ribotyping, oligotyping, and multi-locus sequencing analysis (MLSA). To this end, the 580 16S rRNA gene sequences affiliated to the Acidithiobacillus spp. were collected from public and private databases and subjected to a comprehensive phylogenetic analysis. Oligotyping was used to profile high-entropy nucleotide positions and resolve meaningful differences between closely related strains at the 16S rRNA gene level. Due to its greater discriminatory power, MLSA was used as a proxy for genome-wide divergence in a smaller but representative set of strains. Results obtained indicate that there is still considerable unexplored diversity within this genus. At least six new lineages or phylotypes, supported by the different methods used herein, are evident within the Acidithiobacillus species complex. Although the diagnostic

  12. Electrochemistry of Thiobacillus ferrooxidans reactions with pyrite

    SciTech Connect

    Pesic, B.

    1991-01-01

    The interactions of mineral-pyrite with T. ferrooxidans were studied by using a cyclic voltametry technique. The interactions with bacteria were examined during the entire growth stage of bacterial (fermentation). The pyrite surface invariably drastically changed its properties at the second day of fermentation. Beyond two days of fermentation, the cyclic voltamograms were insensitive to convective diffusion produced by stirring. The product layer was examined by SEM, X-ray diffraction and chemical analysis. The SEM study revealed that bacteria populated the pyrite surface at an extremely high density levels. The high density of bacteria, and the solid reaction products formed on the pyrite surface created conditions for pore diffusion which explained why the CVs became insensitive to convective diffusion in solution (stirring). The X-ray diffraction study confirmed jarosite as a product layer. A mechanism of T. ferrooxidans cells serving as nucleation sites for jarosite formation is proposed. 16 refs., 8 figs., 2 tabs.

  13. [Biomachining of metal copper by Thiobacillus ferrooxidans].

    PubMed

    Li, Y; Zhang, D; Wu, Y

    2000-06-01

    Thiobacillus ferrooxidans was employed in the biomachining process of metal copper(Cu0). The bacteria growth and the changes of Fe3+ concentration during machining processes have been studied. Biomachining and chemical machining have been compared. The results showed that the concentrations of bacteria and Fe3+ determine the speed of machining copper. The biomachining is more fast that chemical maching because bacteria are able to regenerate Fe3+ oxidizing copper. It was also found that the Cu2+ produced from the machining processes inhibit the growth of bacteria. Cu2+ has to be removed.

  14. Biosynthesis of bifunctional iron oxyhydrosulfate by Acidithiobacillus ferroxidans and their application to coagulation and adsorption.

    PubMed

    Gan, Min; Song, Zibo; Jie, Shiqi; Zhu, Jianyu; Zhu, Yaowu; Liu, Xinxing

    2016-02-01

    Coagulation and adsorption are important environmental technologies, which were widely applied in water treatment. In this study, a type of villous iron oxyhydrosulfate with low crystallinity, high content iron, sulfate and hydroxyl was synthesized by Acidithiobacillus ferrooxidans, which possessed coagulation and heavy metal adsorption ability simultaneously. The results showed that the Cu(II) adsorption capacity increased within a small range over the pH range of 3.0-5.0 but increased evidently over the range of 6.0-8.0. The maximal Cu(II) adsorption capacity of sample Af and Gf reached 50.97 and 46.08mg/g respectively. The optimum pH for Cr(VI) adsorption was 6.0, and the maximal adsorption capacity reached 51.32 and 59.57mg/g. The Langmuir isotherm can better describe the adsorption behavior of Cr(VI). Coagulation performance of the iron oxyhydrosulfate (Sh) has been significantly enhanced by polysilicic acid (PSA), which was mainly determined by PSA/Sh ratio, pH and coagulant dosage. Coagulation efficiency maintained approximately at 98% when the PSA/Sh ratio ranged from 0.4/0.1 to 1.0/0.1. Polysilicic acid worked efficiently in wide pH range extending, from 2 to 3.5. Coagulation performance improved significantly with the increasing of the coagulant dosage at lower dosage range, while, at higher dosage range, the improvement was not evident even with more coagulant addition.

  15. Leaching of pyrites of various reactivities by Thiobacillus ferrooxidans

    SciTech Connect

    Baldi, F. ); Clark, T.; Pollack, S.S.; Olson, G.J. )

    1992-06-01

    Variations were found in the rate of chemical and microbiological leaching of iron from pyritic materials from various sources. Thiobacillus ferrooxidans accelerated leaching of iron from all of the pyritic materials tested in shake flask suspensions at loadings of 0.4% (wt/vol) pulp density. The most chemically reactive pyrites exhibited the fastest bioleaching rates. However, at 2.0% pulp density, a delay in onset of bioleaching occurred with two of the pyrites derived from coal sources. T. ferrooxidans was unable to oxidize the most chemically reactive pyrite at 2.0% pulp density. No inhibition of pyrite oxidation by T. ferrooxidans occurred with mineral pyrite at 2.0% pulp density. Experiments with the most chemically reactive pyrite indicated that the leachates from the material were not inhibitory to iron oxidation by T. ferrooxidans.

  16. Leaching of Pyrites of Various Reactivities by Thiobacillus ferrooxidans.

    PubMed

    Baldi, F; Clark, T; Pollack, S S; Olson, G J

    1992-06-01

    Wide variations were found in the rate of chemical and microbiological leaching of iron from pyritic materials from various sources. Thiobacillus ferrooxidans accelerated leaching of iron from all of the pyritic materials tested in shake flask suspensions at loadings of 0.4% (wt/vol) pulp density. The most chemically reactive pyrites exhibited the fastest bioleaching rates. However, at 2.0% pulp density, a delay in onset of bioleaching occurred with two of the pyrites derived from coal sources. T. ferrooxidans was unable to oxidize the most chemically reactive pyrite at 2.0% pulp density. No inhibition of pyrite oxidation by T. ferrooxidans occurred with mineral pyrite at 2.0% pulp density. Experiments with the most chemically reactive pyrite indicated that the leachates from the material were not inhibitory to iron oxidation by T. ferrooxidans.

  17. Leaching of Pyrites of Various Reactivities by Thiobacillus ferrooxidans

    PubMed Central

    Baldi, Franco; Clark, Thomas; Pollack, S. S.; Olson, Gregory J.

    1992-01-01

    Wide variations were found in the rate of chemical and microbiological leaching of iron from pyritic materials from various sources. Thiobacillus ferrooxidans accelerated leaching of iron from all of the pyritic materials tested in shake flask suspensions at loadings of 0.4% (wt/vol) pulp density. The most chemically reactive pyrites exhibited the fastest bioleaching rates. However, at 2.0% pulp density, a delay in onset of bioleaching occurred with two of the pyrites derived from coal sources. T. ferrooxidans was unable to oxidize the most chemically reactive pyrite at 2.0% pulp density. No inhibition of pyrite oxidation by T. ferrooxidans occurred with mineral pyrite at 2.0% pulp density. Experiments with the most chemically reactive pyrite indicated that the leachates from the material were not inhibitory to iron oxidation by T. ferrooxidans. PMID:16348718

  18. [Oxidation of sulfide minerals by Thiobacillus ferrooxidans].

    PubMed

    Malakhova, P T; Chebotarev, G M; Kovalenko, E V; Volkov, Iu A

    1981-01-01

    Samples of natural pyrites and sphalerites were subjected to the action of the mineral medium 9K with 1 g of Fe3+ per litre in the presence and in the absence of Thiobacillus ferrooxidans, and incubated at 28 degrees C under the stationary conditions for 30 days. The chemical composition of the solutions was studied after leaching as well as changes of the surfaces of monoliths. The deepest etching of surfaces with the formation of crusts and films of jarosite, limonite and goslarite occurs upon the combined action of bacteria and Fe3+ in regions of a fine-zonal structure enriched with an isomorphous arsenic admixture which are characterized by a defective weak structure. The pyrite and sphalerite from Charmitan with a higher arsenic and iron content were leached more than the pyrite and sphalerite from Kurgashincan. This was also corroborated by chemical analyses of leaching solutions and by monometric studies of crushed sulfide samples.

  19. "Use of acidophilic bacteria of the genus Acidithiobacillus to biosynthesize CdS fluorescent nanoparticles (quantum dots) with high tolerance to acidic pH".

    PubMed

    Ulloa, G; Collao, B; Araneda, M; Escobar, B; Álvarez, S; Bravo, D; Pérez-Donoso, J M

    2016-12-01

    The use of bacterial cells to produce fluorescent semiconductor nanoparticles (quantum dots, QDs) represents a green alternative with promising economic potential. In the present work, we report for the first time the biosynthesis of CdS QDs by acidophilic bacteria of the Acidithiobacillus genus. CdS QDs were obtained by exposing A. ferrooxidans, A. thiooxidans and A. caldus cells to sublethal Cd(2+) concentrations in the presence of cysteine and glutathione. The fluorescence of cadmium-exposed cells moves from green to red with incubation time, a characteristic property of QDs associated with nanocrystals growth. Biosynthesized nanoparticles (NPs) display an absorption peak at 360nm and a broad emission spectra between 450 and 650nm when excited at 370nm, both characteristic of CdS QDs. Average sizes of 6 and 10nm were determined for green and red NPs, respectively. The importance of cysteine and glutathione on QDs biosynthesis in Acidithiobacillus was related with the generation of H2S. Interestingly, QDs produced by acidophilic bacteria display high tolerance to acidic pH. Absorbance and fluorescence properties of QDs was not affected at pH 2.0, a condition that totally inhibits the fluorescence of QDs produced chemically or biosynthesized by mesophilic bacteria (stable until pH 4.5-5.0). Results presented here constitute the first report of the generation of QDs with improved properties by using extremophile microorganisms.

  20. A Novel Mineral Flotation Process Using Thiobacillus ferrooxidans

    PubMed Central

    Nagaoka, Toru; Ohmura, Naoya; Saiki, Hiroshi

    1999-01-01

    Oxidative leaching of metals by Thiobacillus ferrooxidans has proven useful in mineral processing. Here, we report on a new use for T. ferrooxidans, in which bacterial adhesion is used to remove pyrite from mixtures of sulfide minerals during flotation. Under control conditions, the floatabilities of five sulfide minerals tested (pyrite, chalcocite, molybdenite, millerite, and galena) ranged from 90 to 99%. Upon addition of T. ferrooxidans, the floatability of pyrite was significantly suppressed to less than 20%. In contrast, addition of the bacterium had little effect on the floatabilities of the other minerals, even when they were present in relatively large quantities: their floatabilities remained in the range of 81 to 98%. T. ferrooxidans thus appears to selectively suppress pyrite floatability. As a consequence, 77 to 95% of pyrite was removed from mineral mixtures while 72 to 100% of nonpyrite sulfide minerals was recovered. The suppression of pyrite floatability was caused by bacterial adhesion to pyrite surfaces. When normalized to the mineral surface area, the number of cells adhering to pyrite was significantly larger than the number adhering to other minerals. These results suggest that flotation with T. ferrooxidans may provide a novel approach to mineral processing in which the biological functions involved in cell adhesion play a key role in the separation of minerals. PMID:10427053

  1. Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)

    SciTech Connect

    Clum, Alicia; Nolan, Matt; Lang, Elke; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Goker, Markus; Spring, Stefan; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Lapidus, Alla

    2009-05-20

    Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the genus, which until recently was the only genus within the actinobacterial family Acidimicrobiaceae and in the order Acidomicrobiales. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO2 concentration is characteristic for A. ferrooxidans. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the order Acidomicrobiales, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  2. Electrochemistry of Thiobacillus ferrooxidans reactions with pyrite. Final report

    SciTech Connect

    Pesic, B.; Oliver, D.J.; Kim, Inbeum; De, G.C.

    1993-01-20

    A cyclic voltammetry technique was used to study the interactions of pyrite during bioleaching with the bacterium Thiobacillus ferrooxidans. Potential effects of heavy metals (silver and mercury) and varying the pH on the iron oxidizing ability of the bacterium are reported. Redox potential techniques were used to study effect of ferrous sulfate concentration and pH on bacterial growth.

  3. Chalcocite Oxidation and Coupled Carbon Dioxide Fixation by Thiobacillus ferrooxidans.

    PubMed

    Nielsen, A M; Beck, J V

    1972-03-10

    The reaction of cell suspensions of Thiobacillus ferrooxidans with pulverized chalcocite (Cu(2)S) in a Warburg manometric apparatus resulted in oxygen uptake accompanied by increased solubilization of copper and fixation of carbon dioxide. Since the only detectable oxidized products were cupric ions and the more oxidized form of the sulfide mineral, that is, digenite or covellite, the apparent source of energy for the carbon dioxide fixation was provided by the oxidation of the cuprous copper of the chalcocite.

  4. Biological effect of Acidithiobacillus thiooxidans on some potentially toxic elements during alteration of SON 68 nuclear glass

    NASA Astrophysics Data System (ADS)

    Bachelet, M.; Crovisier, J. L.; Stille, P.; Vuilleumier, S.; Geoffroy, V.

    2009-04-01

    Although underground nuclear waste repositories are not expected to be favourable places for microbial activity, one should not exclude localized action of extremophilic bacteria on some materials involved in the storage concept. Among endogenous or accidentally introduced acidophiles, some are susceptible to lead to a locally drastic decreased in pH, with potential consequences on materials corrosion. Experiments were performed with Acidithiobacillus thiooxidans on 100-125 m french reference nuclear glass SON68 grains in a mineral medium under static conditions during 60 days at 25degC. Growth medium was periodically renewed and analyzed by ICP-AES and ICP-MS spectrometry for both major, trace and ultra-trace elements. Biofilm formation was evidenced by confocal laser microscopy, staining DNA with ethidium bromide and exopolysaccharides with calcofluor white. Biofilm thickness around material grains exceeded 20 m under the chosen experimental conditions. It can be noticed that while numerous studies on biofilm formation upon interaction between Acidithiobacillus ferrooxidans and materials are found in the literature, evidence for biofilm formation is still scarce for the case of the acidophilic bacterium A. thiooxidans. Presence of biofilm is a key parameter for material alteration at the solid/solution interface in biotic systems. Indeed, various constitutive elements of materials trapped in the polyanionic polymer of biofilm may also influence the alteration process. In particular, biofilm may reduce the alteration rate of materials by forming a protective barrier at their surface (Aouad et al., 2008). In this study, glass alteration rates, determined using strontium as tracer, showed that the progressive formation of a biofilm on the surface of glass has a protective effect against its alteration. Uranium and rare earth elements (REE) are efficiently trapped in the biogenic compartment of the system (exopolysaccharides + bacterial cells). Besides, the ratio

  5. Acidithiobacillus caldus Sulfur Oxidation Model Based on Transcriptome Analysis between the Wild Type and Sulfur Oxygenase Reductase Defective Mutant

    PubMed Central

    Chen, Linxu; Ren, Yilin; Lin, Jianqun; Liu, Xiangmei; Pang, Xin; Lin, Jianqiang

    2012-01-01

    Background Acidithiobacillus caldus (A. caldus) is widely used in bio-leaching. It gains energy and electrons from oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs) for carbon dioxide fixation and growth. Genomic analyses suggest that its sulfur oxidation system involves a truncated sulfur oxidation (Sox) system (omitting SoxCD), non-Sox sulfur oxidation system similar to the sulfur oxidation in A. ferrooxidans, and sulfur oxygenase reductase (SOR). The complexity of the sulfur oxidation system of A. caldus generates a big obstacle on the research of its sulfur oxidation mechanism. However, the development of genetic manipulation method for A. caldus in recent years provides powerful tools for constructing genetic mutants to study the sulfur oxidation system. Results An A. caldus mutant lacking the sulfur oxygenase reductase gene (sor) was created and its growth abilities were measured in media using elemental sulfur (S0) and tetrathionate (K2S4O6) as the substrates, respectively. Then, comparative transcriptome analysis (microarrays and real-time quantitative PCR) of the wild type and the Δsor mutant in S0 and K2S4O6 media were employed to detect the differentially expressed genes involved in sulfur oxidation. SOR was concluded to oxidize the cytoplasmic elemental sulfur, but could not couple the sulfur oxidation with the electron transfer chain or substrate-level phosphorylation. Other elemental sulfur oxidation pathways including sulfur diooxygenase (SDO) and heterodisulfide reductase (HDR), the truncated Sox pathway, and the S4I pathway for hydrolysis of tetrathionate and oxidation of thiosulfate in A. caldus are proposed according to expression patterns of sulfur oxidation genes and growth abilities of the wild type and the mutant in different substrates media. Conclusion An integrated sulfur oxidation model with various sulfur oxidation pathways of A. caldus is proposed and the features of this model are summarized. PMID:22984393

  6. Estimation of kinetic rates in batch Thiobacillus ferrooxidans cultures.

    PubMed

    Biagiola, S; Solsona, J; Milocco, R

    2001-11-17

    In this work, the key problem of estimation in bioprocesses when no structural model is available is dealt with. A nonlinear observer-based algorithm is developed in order to estimate kinetic rates in batch bioreactors. The algorithm uses the measurements of biomass concentration and either substrate concentration or redox potential to perform the estimation of the respective specific kinetic rates. For this purpose, a general mathematical model description of the process is provided. The estimation algorithm design is based on a nonlinear reduced-order observer. The observer performance is validated with experimental results on a Thiobacillus ferrooxidans batch culture.

  7. Specific dot-immunobinding assay for detection and enumeration of Thiobacillus ferrooxidans

    SciTech Connect

    Arredondo, R.; Jerez, C.A. )

    1989-08-01

    A specific and very sensitive dot-immunobinding assay for the detection and enumeration of the bioleaching microorganism Thiobacillus ferrooxidans was developed. Nitrocellulose spotted with samples was incubated with polyclonal antisera against whole T. ferrooxidans cells and then in {sup 125}I-labeled protein A or {sup 125}I-labeled goat antirabbit immunoglobulin G; incubation was followed by autoradiography. Since a minimum of 10{sup 3} cells per dot could be detected, the method offers the possibility of simultaneous processing of numerous samples in a short time to monitor the levels of T. ferrooxidans in bioleaching operations.

  8. Mineral Products of Pyrrhotite Oxidation by Thiobacillus ferrooxidans.

    PubMed

    Bhatti, T M; Bigham, J M; Carlson, L; Tuovinen, O H

    1993-06-01

    The biological leaching of pyrrhotite (Fe(1-x)S) by Thiobacillus ferrooxidans was studied to characterize the oxidation process and to identify the mineral weathering products. The process was biphasic in that an initial phase of acid consumption and decrease in redox potential was followed by an acid-producing phase and an increase in redox potential. Elemental S was one of the first products of pyrrhotite degradation detected by X-ray diffraction. Pyrrhotite oxidation also yielded K-jarosite [KFe(3)(SO(4))(2)(OH)(6)], goethite (alpha-FeOOH), and schwertmannite [Fe(8)O(8)(OH)(6)SO(4)] as solid-phase products. Pyrrhotite was mostly depleted after 14 days, whereas impurities in the form of pyrite (cubic FeS(2)) and marcasite (orthorhombic FeS(2)) accumulated in the leach residue.

  9. Reduction of Mo6+ with elemental sulfur by Thiobacillus ferrooxidans.

    PubMed Central

    Sugio, T; Tsujita, Y; Katagiri, T; Inagaki, K; Tano, T

    1988-01-01

    In the presence of phosphate ions, molybdic ions (Mo6+) were reduced enzymatically with elemental sulfur by washed intact cells of Thiobacillus ferrooxidans to give molybdenum blue. The whole-cell activity that reduced Mo6+ was totally due to cellular sulfur:ferric ion oxidoreductase (SFORase) (T. Sugio, W. Mizunashi, K. Inagaki, and T. Tano, J. Bacteriol. 169:4916-4922, 1987). The activity of M06+ reduction with elemental sulfur was competitively inhibited by Fe3+, Cu2+, and Co2+. The Michaelis constant of SFORase for Mo6+ was 7.6 mM, and the inhibition constants for Fe3+, Cu2+, and Co2+ were 0.084, 0.015, and 0.17 mM, respectively, suggesting that SFORase can reduce not only Fe3+ and Mo6+ but also Cu2+ and Co2+ with elemental sulfur. PMID:3056928

  10. Corrosion and Electrochemical Oxidation of a Pyrite by Thiobacillus ferrooxidans

    PubMed Central

    Mustin, C.; Berthelin, J.; Marion, P.; de Donato, P.

    1992-01-01

    The oxidation of a pure pyrite by Thiobacillus ferrooxidans is not really a constant phenomenon; it must be considered to be more like a succession of different steps which need characterization. Electrochemical studies using a combination of a platinum electrode and a specific pyrite electrode (packed-ground-pyrite electrode) revealed four steps in the bioleaching process. Each step can be identified by the electrochemical behavior (redox potentials) of pyrite, which in turn can be related to chemical (leachate content), bacterial (growth), and physical (corrosion patterns) parameters of the leaching process. A comparison of the oxidation rates of iron and sulfur indicated the nonstoichiometric bacterial oxidation of a pure pyrite in which superficial phenomena, aqueous oxidation, and deep crystal dissolution are successively involved. Images PMID:16348688

  11. Mechanism of Pyrite Dissolution in the Presence of Thiobacillus ferrooxidans

    PubMed Central

    Fowler, T. A.; Holmes, P. R.; Crundwell, F. K.

    1999-01-01

    In spite of the environmental and commercial interests in the bacterial leaching of pyrite, two central questions have not been answered after more than 35 years of research: does Thiobacillus ferrooxidans enhance the rate of leaching above that achieved by ferric sulfate solutions under the same conditions, and if so, how do the bacteria affect such an enhancement? Experimental conditions of previous studies were such that the concentrations of ferric and ferrous ions changed substantially throughout the course of the experiments. This has made it difficult to interpret the data obtained from these previous works. The aim of this work was to answer these two questions by employing an experimental apparatus designed to maintain the concentrations in solution at a constant value. This was achieved by using the constant redox potential apparatus described previously (P. I. Harvey, and F. K. Crundwell, Appl. Environ. Microbiol. 63:2586–2592, 1997; T. A. Fowler, and F. K. Crundwell, Appl. Environ. Microbiol. 64:3570–3575, 1998). Experiments were conducted in both the presence and absence of T. ferrooxidans, maintaining the same conditions in solution. The rate of dissolution of pyrite with bacteria was higher than that without bacteria at the same concentrations of ferrous and ferric ions in solution. Analysis of the dependence of the rate of leaching on the concentration of ferric ions and on the pH, together with results obtained from electrochemical measurements, provided clear evidence that the higher rate of leaching with bacteria is due to the bacteria increasing the pH at the surface of the pyrite. PMID:10388693

  12. Degradation of inhibitory substances in sludge by Galactomyces sp. Z3 and the role of its extracellular polymeric substances in improving bioleaching.

    PubMed

    Zhou, Jun; Zheng, Guanyu; Wong, Jonathan W C; Zhou, Lixiang

    2013-03-01

    This study sought to elucidate the effect and mechanism of Galactomyces sp. Z3 in improving the bioleaching of heavy metals from sludge. Results showed that co-inoculation of Galactomyces sp. Z3 and two Acidithiobacillus strains (Acidithiobacillus ferrooxidans LX5 and Acidithiobacillus thiooxidans TS6) reduced the period required for sludge bioleaching by 4.5days compared to Acidithiobacillus alone. Further, removal efficiencies of Cu, Zn and oxidation rate of Fe(2+) and S(0) were higher in co-inoculation system than the Acidithiobacillus alone. Galactomyces sp. Z3 consumed the acetate, propionate, iso-butyrate, butyrate, and iso-valerate in sludge from the initial concentrations of 109.50, 28.80, 7.70, 34.30, and 18.40mg/L to 10.20, 0.61, 0.63, 19.40 and 1.30mg/L, respectively, after 12h in the co-inoculation system, significantly lower than the concentrations observed in the Acidithiobacillus alone. Meanwhile, the surfactant properties of the extracellular polymeric substances produced by the Galactomyces accelerated the rate of sulfur oxidization by A. thiooxidans.

  13. Biodegradation of the french reference nuclear glass SON 68 by Acidithiobacillus thiooxidans : protective effect of the biofilm,U and REE retention

    NASA Astrophysics Data System (ADS)

    Bachelet, M.; Crovisier, J.; Stille, P.; Boutin, R.; Vuilleumier, S.; Geoffroy, V.

    2008-12-01

    Although underground nuclear waste repositories are not expected to be favourable places for microbial activity, one should not exclude localized action of extremophilic bacteria on some materials involved in the storage concept. Among endogenous or accidentally introduced acidophiles, some are susceptible to lead to a locally drastic decreased in pH with potential consequences on materials corrosion. Experiments were performed with Acidithiobacillus thiooxidans on 100-125 μm french reference nuclear glass SON68 grains in a mineral medium under static conditions during 60 days at 25°C. Growth medium was periodically renewed and analyzed by ICP-AES and ICP-MS spectrometry for both major, traces and ultra-traces elements. Biofilm formation was evidenced by confocal laser microscopy, staining DNA with ethidium bromide and exopolysaccharides with calcofluor white. Biofilm thickness around material grains exceeded 20 μm under the chosen experimental conditions. It can be noticed that while numerous studies on biofilm formation upon interaction between Acidithiobacillus ferrooxidans and materials can be found in the literature, evidence for biofilm formation is still scarce for the case of the acidophilic bacterium A. thiooxidans. Presence of biofilm is a key parameter for material alteration at the solid/solution interface in biotic systems. Indeed, various constitutive elements of materials trapped in the polyanionic polymer of biofilm may also influence the alteration process. In particular, biofilm may reduce the alteration rate of materials by forming a protective barrier at their surface (Aouad et al., 2008). In this study, glass alteration rates, determined using strontium, molybdenum and caesium as tracers, showed that the biofilm has a protective effect against glass alteration. U and REE are efficiently trapped in the biogenic compartment of the system (exopolysaccharides (EPS) + bacterial cells). Biofilm analysis are in progress to determine whether these

  14. Reduction of Cupric Ions with Elemental Sulfur by Thiobacillus ferrooxidans.

    PubMed

    Sugio, T; Tsujita, Y; Inagaki, K; Tano, T

    1990-03-01

    In anaerobic or aerobic conditions in the presence of 5 mM sodium cyanide, an inhibitor of iron oxidase, cupric ion (Cu) was reduced enzymatically with elemental sulfur (S) by washed intact cells of Thiobacillus ferrooxidans AP19-3 to give cuprous ion (Cu). The rate of Cu reduction was proportional to the concentrations of S and Cu added to the reaction mixture. The pH optimum for the cupric ion-reducing system was 5.0, and the activity was completely destroyed by 10-min incubation of cells at 70 degrees C. The activity of Cu reduction with S by this strain was strongly inhibited by inhibitors of hydrogen sulfide: ferric ion oxidoreductase (SFORase), such as alpha,alpha'-dipyridyl, 4,5-dihydroxy-m-benzene disulfonic acid disodium salts, and diazine dicarboxylic acid bis-(N, N-dimethylamide). A SFORase purified from this strain, which catalyzes oxidation of both hydrogen sulfide and S with Fe or Mo as an electron acceptor in the presence of glutathione, catalyzed a reduction of Cu by S, and the Michaelis constant of SFORase for Cu was 7.2 mM, indicating that a SFORase catalyzes the reduction of not only Fe and Mo but also Cu.

  15. Reduction of Cupric Ions with Elemental Sulfur by Thiobacillus ferrooxidans

    PubMed Central

    Sugio, Tsuyoshi; Tsujita, Yoshihiko; Inagaki, Kenji; Tano, Tatsuo

    1990-01-01

    In anaerobic or aerobic conditions in the presence of 5 mM sodium cyanide, an inhibitor of iron oxidase, cupric ion (Cu2+) was reduced enzymatically with elemental sulfur (S0) by washed intact cells of Thiobacillus ferrooxidans AP19-3 to give cuprous ion (Cu+). The rate of Cu2+ reduction was proportional to the concentrations of S0 and Cu2+ added to the reaction mixture. The pH optimum for the cupric ion-reducing system was 5.0, and the activity was completely destroyed by 10-min incubation of cells at 70°C. The activity of Cu2+ reduction with S0 by this strain was strongly inhibited by inhibitors of hydrogen sulfide: ferric ion oxidoreductase (SFORase), such as α,α′-dipyridyl, 4,5-dihydroxy-m-benzene disulfonic acid disodium salts, and diazine dicarboxylic acid bis-(N, N-dimethylamide). A SFORase purified from this strain, which catalyzes oxidation of both hydrogen sulfide and S0 with Fe3+ or Mo6+ as an electron acceptor in the presence of glutathione, catalyzed a reduction of Cu2+ by S0, and the Michaelis constant of SFORase for Cu2+ was 7.2 mM, indicating that a SFORase catalyzes the reduction of not only Fe3+ and Mo6+ but also Cu2+. PMID:16348143

  16. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  17. Nucleotide sequence of the gene encoding the nitrogenase iron protein of Thiobacillus ferrooxidans

    SciTech Connect

    Pretorius, I.M.; Rawlings, D.E.; O'Neill, E.G.; Jones, W.A.; Kirby, R.; Woods, D.R.

    1987-01-01

    The DNA sequence was determined for the cloned Thiobacillus ferrooxidans nifH and part of the nifD genes. The DNA chains were radiolabeled with (..cap alpha..-/sup 32/P)dCTP (3000 Ci/mmol) or (..cap alpha..-/sup 35/S)dCTP (400 Ci/mmol). A putative T. ferrooxidans nifH promoter was identified whose sequences showed perfect consensus with those of the Klebsiella pneumoniae nif promoter. Two putative consensus upstream activator sequences were also identified. The amino acid sequence was deduced from the DNA sequence. In a comparison of nifH DNA sequences from T. ferrooxidans and eight other nitrogen-fixing microbes, a Rhizobium sp. isolated from Parasponia andersonii showed the greatest homology (74%) and Clostridium pasteurianum (nifH1) showed the least homology (54%). In the comparison of the amino acid sequences of the Fe proteins, the Rhizobium sp. and Rhizobium japonicum showed the greatest homology (both 86%) and C. pasteurianum (nifH1 gene product) demonstrated the least homology (56%) to the T. ferrooxidans Fe protein.

  18. Cloning and expression of the Thiobacillus ferrooxidans glutamine synthetase gene in Escherichia coli

    SciTech Connect

    Barros, M.E.C.; Rawlings, D.E.; Woods, D.R.

    1985-12-01

    The glutamine synthetase (GS) gene glnA of Thiobacillus ferrooxidans was cloned on recombinant plasmid pMEB100 which enabled Escherichia coli glnA deletion mutants to utilize (NH/sub 4/)/sub 2/SO/sub 4/ as the sole source of nitrogen. High levels of GS-specific activity were obtained in the E. coli glnA deletion mutants containing the T. ferrooxidans GS gene. The cloned T. ferrooxidans DNA fragment containing the glnA gene activated histidase activity in an E. coli glnA glnL glnG deletion mutant containing the Klebsiella aerogenes hut operon. Plasmid pMEB100 also enabled the E. coli glnA glnL glnG deletion mutant to utilize arginine or low levels of glutamine as the sole source of nitrogen. There was no detectable DNA homology between the T. ferrooxidans glnA gene and the E. coli glnA gene.

  19. Biogeography of sulfur-oxidizing Acidithiobacillus populations in extremely acidic cave biofilms

    PubMed Central

    Jones, Daniel S; Schaperdoth, Irene; Macalady, Jennifer L

    2016-01-01

    Extremely acidic (pH 0–1.5) Acidithiobacillus-dominated biofilms known as snottites are found in sulfide-rich caves around the world. Given the extreme geochemistry and subsurface location of the biofilms, we hypothesized that snottite Acidithiobacillus populations would be genetically isolated. We therefore investigated biogeographic relationships among snottite Acidithiobacillus spp. separated by geographic distances ranging from meters to 1000s of kilometers. We determined genetic relationships among the populations using techniques with three levels of resolution: (i) 16S rRNA gene sequencing, (ii) 16S–23S intergenic transcribed spacer (ITS) region sequencing and (iii) multi-locus sequencing typing (MLST). We also used metagenomics to compare functional gene characteristics of select populations. Based on 16S rRNA genes, snottites in Italy and Mexico are dominated by different sulfur-oxidizing Acidithiobacillus spp. Based on ITS sequences, Acidithiobacillus thiooxidans strains from different cave systems in Italy are genetically distinct. Based on MLST of isolates from Italy, genetic distance is positively correlated with geographic distance both among and within caves. However, metagenomics revealed that At. thiooxidans populations from different cave systems in Italy have different sulfur oxidation pathways and potentially other significant differences in metabolic capabilities. In light of those genomic differences, we argue that the observed correlation between genetic and geographic distance among snottite Acidithiobacillus populations is partially explained by an evolutionary model in which separate cave systems were stochastically colonized by different ancestral surface populations, which then continued to diverge and adapt in situ. PMID:27187796

  20. Detection, identification and typing of Acidithiobacillus species and strains: a review.

    PubMed

    Nuñez, Harold; Covarrubias, Paulo C; Moya-Beltrán, Ana; Issotta, Francisco; Atavales, Joaquín; Acuña, Lillian G; Johnson, D Barrie; Quatrini, Raquel

    2016-09-01

    The genus Acidithiobacillus comprises several species of Gram-negative acidophilic bacteria that thrive in natural and man-made low pH environments in a variety of geo-climatic contexts. Beyond their fundamental interest as model extreme acidophiles, these bacteria are involved in the processing of minerals and the desulfurization of coal and natural gas, and are also sources of environmental pollution due to their generation of acid mine drainage and corrosion of cement and concrete structures. Acidithiobacillus spp. are therefore considered a biotechnologically relevant group of bacteria, and their identification and screening in natural and industrial environments is of great concern. Several molecular typing methodologies have been instrumental in improving knowledge of the inherent diversity of acidithiobacilli by providing information on the genetic subtypes sampled in public and private culture collections; more recently, they have provided specific insight into the diversity of acidithiobacilli present in industrial and natural environments. The aim of this review is to provide an overview of techniques used in molecular detection, identification and typing of Acidithiobacillus spp. These methods will be discussed in the context of their contribution to the general and specific understanding of the role of the acidithiobacilli in microbial ecology and industrial biotechnology. Emerging opportunities for industrial and environmental surveillance of acidithiobacilli using next-generation molecular typing methodologies are also reviewed.

  1. Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans.

    PubMed Central

    Amaro, A M; Chamorro, D; Seeger, M; Arredondo, R; Peirano, I; Jerez, C A

    1991-01-01

    The response of the obligate acidophilic bacterium Thiobacillus ferrooxidans to external pH changes is reported. When T. ferrooxidans cells grown at pH 1.5 were shifted to pH 3.5, there were several changes in the general protein synthesis pattern, including a large stimulation of the synthesis of a 36-kDa protein (p36). The apparent low isoelectric point of p36, its location in the membrane fraction, and its cross-reaction with anti-OmpC from Salmonella typhi suggested that it may be a porin whose expression is regulated by extracellular pH. Images PMID:1987171

  2. Occurrences at mineral-bacteria interface during oxidation of arsenopyrite by Thiobacillus ferrooxidans

    SciTech Connect

    Fernandez, M.G.M.; Mustin, C.; Berthelin, J.; Donato, P. de; Barres, O.; Marion, P.

    1995-04-05

    The combination of an improved bacterial desorption method, scanning electron microscopy (SEM), diffuse reflectance and transmission infrared Fourier transform spectroscopy, and a desorption-leaching device like high-pressure liquid chromatography (HPLC) was used to analyze bacterial populations and surface-oxidized phases during the arsenopyrite biooxidation by Thiobacillus ferrooxidans. The bacterial distribution, the physicochemical composition of the leachate, the evolution of corrosion patterns, and the nature and amount of the surface-oxidized chemical species characterized different behavior for each step of arsenopyrite bioleaching.

  3. Identification and structural analysis of a ribosomal RNA gene promoter from Thiobacillus ferrooxidans.

    PubMed

    Takamiya, M; Salazar, O; Vargas, D; Jedlicki, E; Orellana, O

    1990-10-15

    The 5'-terminus of a rRNA operon (rrnT2) from Thiobacillus ferrooxidans was characterized. The rRNA promoters from this microorganism were identified by means of a functional assay in Escherichia coli. DNA sequencing of the promoter region, upstream the 16 S rRNA gene, showed the presence of a consensus sequence for bacterial ribosomal promoters. Other features such as a 'discriminator' sequence, antiterminator elements and an upstream hexanucleotide common to several rRNA operons were also found. Two other putative transcription promoters were also identified.

  4. Selective Inhibition of the Oxidation of Ferrous Iron or Sulfur in Thiobacillus ferrooxidans

    PubMed Central

    Harahuc, Lesia; Lizama, Hector M.; Suzuki, Isamu

    2000-01-01

    The oxidation of either ferrous iron or sulfur by Thiobacillus ferrooxidans was selectively inhibited or controlled by various anions, inhibitors, and osmotic pressure. Iron oxidation was more sensitive than sulfur oxidation to inhibition by chloride, phosphate, and nitrate at low concentrations (below 0.1 M) and also to inhibition by azide and cyanide. Sulfur oxidation was more sensitive than iron oxidation to the inhibitory effect of high osmotic pressure. These differences were evident not only between iron oxidation by iron-grown cells and sulfur oxidation by sulfur-grown cells but also between the iron and sulfur oxidation activities of the same iron-grown cells. Growth experiments with ferrous iron or sulfur as an oxidizable substrate confirmed the higher sensitivity of iron oxidation to inhibition by phosphate, chloride, azide, and cyanide. Sulfur oxidation was actually stimulated by 50 mM phosphate or chloride. Leaching of Fe and Zn from pyrite (FeS2) and sphalerite (ZnS) by T. ferrooxidans was differentially affected by phosphate and chloride, which inhibited the solubilization of Fe without significantly affecting the solubilization of Zn. PMID:10698768

  5. Characterization of uranium mine isolates and laboratory cultures of Thiobacillus ferrooxidans with emphasis on the oxidation and cellular accumulation of uranium and bioenergetic comparison with iron

    SciTech Connect

    Dispirito, A.A.

    1983-01-01

    Five strains of Thiobacillus ferrooxidans, which included three recent isolates from a uranium mine, possessed flagella. Both polar and peritrichous flagella were observed, indicating strain-dependent ultrastructural variation in acidophilic thiobacilli. The oxidation of uranous compounds by washed cell suspensions of T. ferrooxidans and T. acidophilus was monitored with a Clark oxygen electrode. The rates of oxygen uptake were dependent on: the cell concentration; the previous growth history of the organism; the amounts of U-IV and of inhibitors; pH and the presence of iron sulfates. The stoichiometric oxidation of uranous- to uranyl-uranium by T. ferrooxidans was demonstrated. Fixation of /sup 14/CO/sub 2/ and the effect of inhibitors demonstrate that energy is conserved during the oxidation and used for energy-dependent reverse electron flow and carbon dioxide fixation. Kinetic constants for the oxidation of uranous and ferrous ions by T. ferrooxidans were estimated. Isoprenoid quinones were extracted from T. ferrooxidans by three different methods. The uptake and cellular distribution of UO/sub 2//sup 2 +/ was investigated in washed cell suspension of T. ferrooxidans.

  6. The mechanism of bacterial action in the leaching of pyrite by Thiobacillus ferrooxidans. An electrochemical study

    SciTech Connect

    Holmes, P.R.; Fowler, T.A.; Crundwell, F.K.

    1999-08-01

    In many of the experiments reported in the literature on the leaching of pyrite by Thiobacillus ferrooxidans, the concentrations of ferric and ferrous ions in the presence of bacteria differ significantly from experiments conducted in their absence. In addition, these concentrations change throughout the course of the experiment. This makes it difficult to determine whether the presence of bacteria increases the rate of leaching above that for chemical leaching at the same solution conditions. The authors have designed an experimental apparatus to overcome this problem. This apparatus controls the redox potential in one compartment of an electrolytic cell by manipulating the current to the cell. In this manner, the concentrations of ferrous and ferric ions are maintained at their initial values for the duration of the experiment. Two types of experiments are reported in this paper. In the first, pyrite electrodes were exposed to solutions of the same bulk conditions in the presence and absence of bacteria, and their mixed potentials were determined. In the second, particulate pyrite was leached with and without bacteria to determine the effect that bacteria have on the rate of leaching. The mixed potential of bacterially dissolved pyrite decreases as microcolonies and biofilms form on the surface of pyrite electrode over a 14 day period. On the other hand, the mixed potential of chemically dissolved pyrite is constant over the same period. The results of the leaching experiments show that Thiobacillus ferrooxidans enhances the rate of leaching above that found in the absence of bacteria at the same conditions in solution. An electrochemical model of pyrite dissolution is derived that describes the mixed potential and the kinetics of pyrite leaching. This analysis indicates that the decrease in mixed potential and the increase in the leaching rate in the presence of bacteria are due to an increase in the pH at the surface.

  7. RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans.

    PubMed

    Christel, Stephan; Fridlund, Jimmy; Buetti-Dinh, Antoine; Buck, Moritz; Watkin, Elizabeth L; Dopson, Mark

    2016-04-01

    Acidithiobacillus ferrivorans is an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals. Acidithiobacillus ferrivorans obtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing of At. ferrivorans RNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by the tetH1 gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase (doxDAgenes). However, a lack of heme-binding sites in soxX suggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase (hdrgenes) rather than sulfur oxygenase reductase (sor). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving the sat gene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknown At. ferrivorans tetrathionate metabolic pathway that is important in biomining.

  8. Comparative Genomics of the Extreme Acidophile Acidithiobacillus thiooxidans Reveals Intraspecific Divergence and Niche Adaptation

    PubMed Central

    Zhang, Xian; Feng, Xue; Tao, Jiemeng; Ma, Liyuan; Xiao, Yunhua; Liang, Yili; Liu, Xueduan; Yin, Huaqun

    2016-01-01

    Acidithiobacillus thiooxidans known for its ubiquity in diverse acidic and sulfur-bearing environments worldwide was used as the research subject in this study. To explore the genomic fluidity and intraspecific diversity of Acidithiobacillus thiooxidans (A. thiooxidans) species, comparative genomics based on nine draft genomes was performed. Phylogenomic scrutiny provided first insights into the multiple groupings of these strains, suggesting that genetic diversity might be potentially correlated with their geographic distribution as well as geochemical conditions. While these strains shared a large number of common genes, they displayed differences in gene content. Functional assignment indicated that the core genome was essential for microbial basic activities such as energy acquisition and uptake of nutrients, whereas the accessory genome was thought to be involved in niche adaptation. Comprehensive analysis of their predicted central metabolism revealed that few differences were observed among these strains. Further analyses showed evidences of relevance between environmental conditions and genomic diversification. Furthermore, a diverse pool of mobile genetic elements including insertion sequences and genomic islands in all A. thiooxidans strains probably demonstrated the frequent genetic flow (such as lateral gene transfer) in the extremely acidic environments. From another perspective, these elements might endow A. thiooxidans species with capacities to withstand the chemical constraints of their natural habitats. Taken together, our findings bring some valuable data to better understand the genomic diversity and econiche adaptation within A. thiooxidans strains. PMID:27548157

  9. Short communication: Adverse effect of surface-active reagents on the bioleaching of pyrite and chalcopyrite by Thiobacillus ferrooxidans.

    PubMed

    Huerta, G; Escobar, B; Rubio, J; Badilla-Ohlbaum, R

    1995-09-01

    Oxidation of Fe(II) iron and bioleaching of pyrite and chalcopyrite by Thiobacillus ferrooxidans was adversely affected by isopropylxanthate, a flotation agent, and by LIX 984, a solvent-extraction agent, each at ≤ 1 g/l. The reagents/l were adsorbed on the bacterial surface, decreasing the bacteria's development and preventing biooxidation. Both reagents inhibited the bioleaching of pyrite and LIX 984 also inhibited the bioleaching of chalcopyrite.

  10. Gene function analysis in environmental isolates: The nif regulon of the strict iron oxidizing bacterium Leptospirillum ferrooxidans

    PubMed Central

    Parro, Víctor; Moreno-Paz, Mercedes

    2003-01-01

    A random genomic library from an environmental isolate of the Gram-negative bacterium Leptospirillum ferrooxidans has been printed on a microarray. Gene expression analysis was carried out with total RNA extracted from L. ferrooxidans cultures in the presence or absence of ammonium as nitrogen source under aerobic conditions. Although practically nothing is known about the genome sequence of this bacterium, this approach allowed us the selection and sequencing of only those clones bearing genes that showed an altered expression pattern. By sequence comparison, we have identified most of the genes of nitrogen fixation regulon in L. ferrooxidans, like the nifHDKENX operon, encoding the structural components of Mo-Fe nitrogenase; nifSU-hesB-hscBA-fdx operon, for Fe-S cluster assembly; the amtB gene (ammonium transporter); modA (molybdenum ABC type transporter); some regulatory genes like ntrC, nifA (the specific activator of nif genes); or two glnB-like genes (encoding the PII regulatory protein). Our results show that shotgun DNA microarrays are very powerful tools to accomplish gene expression studies with environmental bacteria whose genome sequence is still unknown, avoiding the time and effort necessary for whole genome sequencing projects. PMID:12808145

  11. Evidence of biogenic corrosion of titanium after exposure to a continuous culture of thiobacillus ferrooxidans grown in thiosulfate medium

    SciTech Connect

    Horn, J M; Martin, S I; Masterson, B

    2000-12-07

    Experiments were undertaken to evaluate extreme conditions under which candidate materials intended for use in a proposed nuclear waste repository might be susceptible to corrosion by endogenous microorganisms. Thiobucillus ferrooxidans, a sulfur-oxidizing bacterium, was grown in continuous culture using thiosulfate as an energy source; thiosulfate is oxidized to sulfate as a metabolic endproduct by this organism. Culture conditions were optimized to produce a high-density, metabolically active culture throughout a period of long term incubation in the presence of Alloy 22 (a high nickel-based alloy) and Titanium grade 7 (Tigr7) material coupons. After seven months incubation under these conditions, material coupons were withdrawn and analyzed by high resolution microscopy and energy dispersive x-ray analyses. Alloy 22 coupons showed no detectable signs of corrosion. Tigr7, however, demonstrated distinct roughening of the coupon surface, and [presumably solubilized and precipitated] titanium was detected on Alloy 22 coupons incubated in the same T. ferrooxiduns culture vessel. Control coupons of these materials incubated in sterile thiosulfate medium did not demonstrate any signs of corrosion, thus showing that observed corrosive effects were due to the T. ferrooxidans metabolic activities. T. ferrooxidans intermediates of thiosulfate oxidation or sulfate may have caused the corrosive effects observed on Tigr7.

  12. [Tn5037-a Tn21-like mercury transposon, detected in Thiobacillus ferrooxidans].

    PubMed

    Kaliaeva, E S; Kholodiĭ, G Ia; Bass, I A; Gorlenko, Zh M; Iur'eva, O V; Nikiforov, V G

    2001-08-01

    The 6645-bp mercury resistance transposon of the chemolithotrophic bacterium Thiobacillus ferrooxidans was cloned and sequenced. This transposon, named Tn5037, belongs to the Tn21 branch of the Tn21 subgroup, many members of which have been isolated from clinical sources. Having the minimum set of the genes (merRTPA), the mercury resistance operon of Tn5037 is organized similarly to most of the Gram-negative bacteria mer operons and is closest to that of Thiobacillus 3.2. The operator-promoter region of the mer operon of Tn5037 also has the common (Tn21/Tn501-like) structure. However, its inverted, presumably MerR protein binding repeats in the operator/promoter element are two base pairs shorter than in Tn21/Tn501. In the merA region, this transposon shares 77.4, 79.1, 83.2 and 87.8% identical bases with Tn21, Tn501, T. ferrooxidance E-15, and Thiobacillus 3.2, respectively. No inducibility of the Tn5037 mer operon was detected in the in vivo experiments. The transposition system (terminal repeats plus gene tnpA) of Tn5037 was inactive in Escherichia coli K12, in contrast to its resolution system (res site plus gene tnpR). However, transposition of Tn5037 in this host was provided by the tnpA gene of Tn5036, a member of the Tn21 subgroup. Sequence analysis of the Tn5037 res site suggested its recombinant nature.

  13. Modeling and analysis of biooxidation of gold bearing pyrite-arsenopyrite concentrates by Thiobacillus ferrooxidans.

    PubMed

    Chandraprabha, M N; Modak, Jayant M; Natarajan, K A; Raichur, Ashok M

    2003-01-01

    The results of modeling the biooxidation of a mixed sulfidic concentrate by Thiobacillus ferrooxidans is reported here. A kinetic model, which accounts for the dissolution of sulfide matrix due to both bacterial attachment onto the mineral surface and indirect leaching, has been proposed. A comprehensive system approach is employed for modeling the complex biooxidation process by (a) the decomposition of the complete system into several subsystems, (b) modeling individual systems, and (c) integrating the subsystems model in a final system model. The model for subsystems was developed by writing mass balance equations for the different species involved. The bacterial balance accounts for its growth, both on solid substrate and in solution, and for the attachment to and detachment from the surface. The kinetic parameters of the model were determined by designing the experiments in such a manner that only one subsystem was operational. This model was tested in both laboratory scale batch and continuous biooxidation processes. The model predictions agreed with the experimental data reasonably well. A further analysis of the model was carried out to predict the conditions for efficient biooxidation. Studies on the effect of residence time and pulp density on steady-state behavior showed that there is a critical residence time and pulp density below which washout conditions occur. Operation at pulp densities lower than 5% and residence times lower than 72 h was found unfavorable for efficient leaching.

  14. Functional Characterization of the FoxE Iron Oxidoreductase from the Photoferrotroph Rhodobacter ferrooxidans SW2*

    PubMed Central

    Saraiva, Ivo H.; Newman, Dianne K.; Louro, Ricardo O.

    2012-01-01

    Photoferrotrophy is presumed to be an ancient type of photosynthetic metabolism in which bacteria use the reducing power of ferrous iron to drive carbon fixation. In this work the putative iron oxidoreductase of the photoferrotroph Rhodobacter ferrooxidans SW2 was cloned, purified, and characterized for the first time. This protein, FoxE, was characterized using spectroscopic, thermodynamic, and kinetic techniques. It is a c-type cytochrome that forms a trimer or tetramer in solution; the two hemes of each monomer are hexacoordinated by histidine and methionine. The hemes have positive reduction potentials that allow downhill electron transfer from many geochemically relevant ferrous iron forms to the photosynthetic reaction center. The reduction potentials of the hemes are different and are cross-assigned to fast and slow kinetic phases of ferrous iron oxidation in vitro. Lower reactivity was observed at high pH and may contribute to prevent ferric iron precipitation inside or at the surface of the cell. These results help fill in the molecular details of a metabolic process that likely contributed to the deposition of precambrian banded iron formations, globally important sedimentary rocks that are found on every continent today. PMID:22661703

  15. Sulfur Oxygenase Reductase (Sor) in the Moderately Thermoacidophilic Leaching Bacteria: Studies in Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus

    PubMed Central

    Janosch, Claudia; Remonsellez, Francisco; Sand, Wolfgang; Vera, Mario

    2015-01-01

    The sulfur oxygenase reductase (Sor) catalyzes the oxygen dependent disproportionation of elemental sulfur, producing sulfite, thiosulfate and sulfide. Being considered an “archaeal like” enzyme, it is also encoded in the genomes of some acidophilic leaching bacteria such as Acidithiobacillus caldus, Acidithiobacillus thiooxidans, Acidithiobacillus ferrivorans and Sulfobacillus thermosulfidooxidans, among others. We measured Sor activity in crude extracts from Sb. thermosulfidooxidans DSM 9293T. The optimum temperature for its oxygenase activity was achieved at 75 °C, confirming the “thermophilic” nature of this enzyme. Additionally, a search for genes probably involved in sulfur metabolism in the genome sequence of Sb. thermosulfidooxidans DSM 9293T was done. Interestingly, no sox genes were found. Two sor genes, a complete heterodisulfidereductase (hdr) gene cluster, three tetrathionate hydrolase (tth) genes, three sulfide quinonereductase (sqr), as well as the doxD component of a thiosulfate quinonereductase (tqo) were found. Seven At. caldus strains were tested for Sor activity, which was not detected in any of them. We provide evidence that an earlier reported Sor activity from At. caldus S1 and S2 strains most likely was due to the presence of a Sulfobacillus contaminant. PMID:27682113

  16. Agronomic effectiveness of biofertilizers with phosphate rock, sulphur and Acidithiobacillus for yam bean grown on a Brazilian tableland acidic soil.

    PubMed

    Stamford, N P; Santos, P R; Santos, C E S; Freitas, A D S; Dias, S H L; Lira, M A

    2007-04-01

    Phosphate rocks have low available P and soluble P fertilizers have been preferably used in plant crop production, although economic and effective P sources are needed. Experiments were carried out on a Brazilian Typic Fragiudult soil with low available P to evaluate the agronomic effectiveness of phosphate rock (PR) compared with soluble phosphate fertilizer. Yam bean (Pachyrhizus erosus) inoculated with rhizobia (strains NFB 747 and NFB 748) or not inoculated was the test crop. Biofertilizers were produced in field furrows by mixing phosphate rock (PR) and sulphur inoculated with Acidithiobacillus (S+Ac) in different rates (50, 100, 150 and 200 g S kg(-1) PR), with 60 days of incubation. Treatments were carried out with PR; biofertilizers B(50), B(100), B(150), B(200); triple super phosphate (TSP); B(200) without Acidithiobacillus and a control treatment without P application (P(0)). TSP and biofertilizers plus S inoculated with Acidithiobacillus increased plant growth. Soil acidity and available P increased when biofertilizers B(150) and B(200) were applied. We conclude that biofertilizers may be used as P source; however, long term use will reduce soil pH and potentially reduce crop growth.

  17. Sulfur Oxygenase Reductase (Sor) in the Moderately Thermoacidophilic Leaching Bacteria: Studies in Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus.

    PubMed

    Janosch, Claudia; Remonsellez, Francisco; Sand, Wolfgang; Vera, Mario

    2015-10-21

    The sulfur oxygenase reductase (Sor) catalyzes the oxygen dependent disproportionation of elemental sulfur, producing sulfite, thiosulfate and sulfide. Being considered an "archaeal like" enzyme, it is also encoded in the genomes of some acidophilic leaching bacteria such as Acidithiobacillus caldus, Acidithiobacillus thiooxidans, Acidithiobacillus ferrivorans and Sulfobacillus thermosulfidooxidans, among others. We measured Sor activity in crude extracts from Sb. thermosulfidooxidans DSM 9293(T). The optimum temperature for its oxygenase activity was achieved at 75 °C, confirming the "thermophilic" nature of this enzyme. Additionally, a search for genes probably involved in sulfur metabolism in the genome sequence of Sb. thermosulfidooxidans DSM 9293(T) was done. Interestingly, no sox genes were found. Two sor genes, a complete heterodisulfidereductase (hdr) gene cluster, three tetrathionate hydrolase (tth) genes, three sulfide quinonereductase (sqr), as well as the doxD component of a thiosulfate quinonereductase (tqo) were found. Seven At. caldus strains were tested for Sor activity, which was not detected in any of them. We provide evidence that an earlier reported Sor activity from At. caldus S1 and S2 strains most likely was due to the presence of a Sulfobacillus contaminant.

  18. Occurrences at mineral-bacteria interface during oxidation of arsenopyrite by Thiobacillus ferrooxidans.

    PubMed

    Fernandez, M G; Mustin, C; de Donato, P; Barres, O; Marion, P; Berthelin, J

    1995-04-05

    The combination of an improved bacterial desorption method, scanning electron microscopy (SEM), diffuse reflectance and transmission infrared Fourier transform spectroscopy, and a desorption-leaching device like high-pressure liquid chromatography (HPLC) was used to analyze bacterial populations (adhering and free bacteria) and surface-oxidized phases (ferric arsenates and elemental sulfur) during the arsenopyrite biooxidation by Thiobacillus ferrooxidans. The bacterial distribution, the physicochemical composition of the leachate, the evolution of corrosion patterns, and the nature and amount of the surface-oxidized chemical species characterized different behavior for each step of arsenopyrite bioleaching. The first step is characterized by a slow but strong adhesion of bacteria to mineral surfaces, the appearance of a surface phase of elemental sulfur, the weak solubilization of Fe(II), As(III), and As(V), and the presence of the first corrosion patterns, which follow the fragility zones and the crystallographic orientation of mineral grains. After this short step, growth of the unattached bacteria begins, while ferrous ions in solution are oxidized by them. Ferric ions produced by the bacteria can oxidize the sulfide directly and are regenerated by Fe(II) bacterial oxidation. At this time, a bioleaching cycle takes place and a coarse surface phase of ferric arsenate (FeAsO(4) . xH(2)O where x approximately 2) and deep ovoid pores appear. At the end of the bioleaching cycle, the high concentration of Fe(III) and As(V) in solution promotes the precipitation of a second phase of amorphous ferric arsenate (FeAsO(4) . xH(2)O where x approximately 4) in the leachate. Then the biooxidation process ceases: The bacteria adhering to the mineral sufaces are coated by the ferric arsenates and the concentration of Fe(III) on the leachate is found to have decreased greatly. Both oxidation mechanisms (direct and indirect oxidation) have been stopped. (c) 1995 John Wiley

  19. Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans.

    PubMed

    Nguyen, Thai Anh; Fu, Chun-Chieh; Juang, Ruey-Shin

    2016-11-01

    The ability of the bacterial strain Acidithiobacillus thiooxidans to remove sulfur blue 15 (SB15) dye from water samples was examined. This bacterium could not only oxidize sulfur compounds to sulfuric acid but also promote the attachment of the cells to the surface of sulfidic particles, therefore serving as an efficient biosorbent. The biosorption isotherms were better described by the Langmuir equation than by the Freundlich or Dubinin-Radushkevich equation. Also, the biosorption process followed the pseudo-second-order kinetics. At pH 8.3 and SB15 concentrations up to 2000 mg L(-1) in the biomass/mineral salt solution, the dye removal and decolorization were 87.5% and 91.4%, respectively, following the biosorption process. Biodegradation was proposed as a subsequent process for the remaining dye (250-350 mg L(-1)). A central composite design was used to analyze independent variables in the response surface methodology study. Under the optimal conditions (i.e., initial dye concentration of 300 mg L(-1), initial biomass concentration of 1.0 g L(-1), initial pH of 11.7, and yeast extract dose of 60 mg L(-1)), up to 50% of SB15 was removed after 4 days of biodegradation.

  20. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans.

    PubMed

    Naresh Kumar, R; Nagendran, R

    2009-09-30

    The effects of bioleaching on the fractionation of soil heavy metals were investigated in this study. Bioleaching of heavy metals from contaminated soil was carried out in shake flask experiments. Acidophilic sulfur oxidizing bacteria Acidithiobacillus thiooxidans isolated from soil was used for bioleaching. Bioleaching resulted in removal of heavy metals at higher levels. Variations in the binding forms of heavy metals before, during and after bioleaching were evaluated. It was noticed that bioleaching affected the binding forms of all the heavy metals present in the soil. The major contaminant chromium bound mainly to the fractions of soil which are not very reactive (organic and residual fractions) also showed good removal efficiency. Bioleaching influenced the fractionation of metals in soil after treatment and most of the remnant heavy metals were bound either to residual fraction or to other not easily mobile fractions of soil. The results of this study indicated that the bioleaching process can be useful for efficient removal of heavy metals from soil. Further, the soil with remnant metals can be disposed off safely.

  1. Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478.

    PubMed

    Sharma, Mohita; Bisht, Varsha; Singh, Bina; Jain, Pratiksha; Mandal, Ajoy K; Lal, Banwari; Sarma, Priyangshu M

    2015-06-01

    The present work deals with optimization of culture conditions and process parameters for bioleaching of spent petroleum catalyst collected from a petroleum refinery. The efficacy of Ni bioleaching from spent petroleum catalyst was determined using pure culture of Acidithiobacillus thiooxidans DSM- 11478. The culture conditions of pH, temperature and headspace volume to media volume ratio were optimized. EDX analysis was done to confirm the presence of Ni in the spent catalyst after roasting it to decoke its surface. The optimum temperature for A. thiooxidans DSM-11478 growth was found to be 32 degrees C. The enhanced recovery of nickel at very low pH was attributed to the higher acidic strength of sulfuric acid produced in the culture medium by the bacterium. During the bioleaching process, 89% of the Ni present in the catalyst waste could be successfully recovered in optimized conditions. This environment friendly bioleaching process proved efficient than the chemical method. Taking leads from the lab scale results, bioleaching in larger volumes (1, 5 and 10 L) was also performed to provide guidelines for taking up this technology for in situ industrial waste management.

  2. A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment.

    PubMed

    Travisany, Dante; Cortés, María Paz; Latorre, Mauricio; Di Genova, Alex; Budinich, Marko; Bobadilla-Fazzini, Roberto A; Parada, Pilar; González, Mauricio; Maass, Alejandro

    2014-11-01

    Acidithiobacillus thiooxidans is a sulfur oxidizing acidophilic bacterium found in many sulfur-rich environments. It is particularly interesting due to its role in bioleaching of sulphide minerals. In this work, we report the genome sequence of At. thiooxidans Licanantay, the first strain from a copper mine to be sequenced and currently used in bioleaching industrial processes. Through comparative genomic analysis with two other At. thiooxidans non-metal mining strains (ATCC 19377 and A01) we determined that these strains share a large core genome of 2109 coding sequences and a high average nucleotide identity over 98%. Nevertheless, the presence of 841 strain-specific genes (absent in other At. thiooxidans strains) suggests a particular adaptation of Licanantay to its specific biomining environment. Among this group, we highlight genes encoding for proteins involved in heavy metal tolerance, mineral cell attachment and cysteine biosynthesis. Several of these genes were located near genetic motility genes (e.g. transposases and integrases) in genomic regions of over 10 kbp absent in the other strains, suggesting the presence of genomic islands in the Licanantay genome probably produced by horizontal gene transfer in mining environments.

  3. Novel integration strategy for enhancing chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Zhan, Xiao; Wang, Wu

    2014-06-01

    An integrated strategy (additional energy substrate-three stage pH control-fed batch) was firstly proposed for efficiently improving chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter. The strain adaptive-growing phase was greatly shortened from 8days into 4days with the supplement of additional 2g/L Fe(2+)+2g/L S(0). Jarosite passivation was effectively weakened basing on higher biomass via the three-stage pH-stat control (pH 1.3-1.0-0.7). The mineral substrate inhibition was attenuated by fed-batch fermentation. With the integrated strategy, the biochemical reaction was promoted and achieved a better balance. Meanwhile, the domination course of A. thiooxidans in the microbial community was shortened from 14days to 8days. As the results of integrated strategy, the final copper ion and productivity reached 89.1mg/L and 2.23mg/(Ld), respectively, which was improved by 52.8% compared to the uncontrolled batch bioleaching. The integrated strategy could be further exploited for industrial chalcopyrite bioleaching.

  4. Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans.

    PubMed

    Lara, René H; García-Meza, J Viridiana; Cruz, Roel; Valdez-Pérez, Donato; González, Ignacio

    2012-08-01

    Massive pyrite (FeS₂) electrodes were potentiostatically modified by means of variable oxidation pulse to induce formation of diverse surface sulfur species (S(n)²⁻, S⁰). The evolution of reactivity of the resulting surfaces considers transition from passive (e.g., Fe(1-x )S₂) to active sulfur species (e.g., Fe(1-x )S(2-y ), S⁰). Selected modified pyrite surfaces were incubated with cells of sulfur-oxidizing Acidithiobacillus thiooxidans for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the attached cells density and their exopolysaccharides were analyzed by confocal laser scanning microscopy (CLMS) and atomic force microscopy (AFM) on bio-oxidized surfaces; additionally, S(n)²⁻/S⁰ speciation was carried out on bio-oxidized and abiotic pyrite surfaces using Raman spectroscopy. Our results indicate an important correlation between the evolution of S(n)²⁻/S⁰ surface species ratio and biofilm formation. Hence, pyrite surfaces with mainly passive-sulfur species were less colonized by A. thiooxidans as compared to surfaces with active sulfur species. These results provide knowledge that may contribute to establishing interfacial conditions that enhance or delay metal sulfide (MS) dissolution, as a function of the biofilm formed by sulfur-oxidizing bacteria.

  5. Inhibition of microbial concrete corrosion by Acidithiobacillus thiooxidans with functionalised zeolite-A coating.

    PubMed

    Haile, Tesfaalem; Nakhla, George

    2009-01-01

    The inhibition of the corrosive action of Acidithiobacillus thiooxidans on concrete specimens coated by functionalised zeolite-A containing 14% zinc and 5% silver by weight was studied. Uncoated concrete specimens, epoxy-coated concrete specimens (EP), and functionalised zeolite-A coated concrete specimens with epoxy to zeolite weight ratios of 3:1 (Z1), 2:2 (Z2) and 1:3 (Z3) were studied. Specimens were characterised by x-ray powder diffraction and field emission scanning electron microscopy for the identification of corrosion products and morphological changes. Biomass growth at the conclusion of the 32-day experiments was 4, 179 and 193 mg volatile suspended solids g(-1) sulphur for the uncoated, EP and Z1 specimens, whereas that of Z2 and Z3 were negligible. In the uncoated, EP and Z1 specimens, sulphate production rates were 0.83, 9.1 and 8.8 mM SO(4)(2-) day(-1) and the specific growth rates, mu, were 0.14, 0.57 and 0.47 day(-1), respectively. The corresponding values for Z2 and Z3 were negligible due to their bacterial inhibition characteristics.

  6. Bioleaching of ultramafic tailings by acidithiobacillus spp. for CO2 sequestration.

    PubMed

    Power, Ian M; Dipple, Gregory M; Southam, Gordon

    2010-01-01

    Bioleaching experiments using various acid-generating substances, i.e., metal sulfides and elemental sulfur, were conducted to demonstrate the accelerated dissolution of chrysotile tailings collected from an asbestos mine near Clinton Creek, Yukon, Canada. Columns, possessing an acid-generating substance colonized with Acidithiobacillus sp., produced leachates with magnesium concentrations that were an order of magnitude greater than mine site waters or control column leachates. In addition, chrysotile tailings were efficient at neutralizing acidity, which resulted in the immobilization of metals (Fe, Cu, Zn) associated with the metal sulfide mine tailings that were used to generate acid. This suggests that tailings from acid mine drainage environments may be utilized to enhance chrysotile dissolution without polluting "downstream" ecosystems. These results demonstrate that the addition of an acid-generating substance in conjunction with a microbial catalyst can significantly enhance the release of magnesium ions, which are then available for the precipitation of carbonate minerals. This process, as part of a carbon dioxide sequestration program, has implications for reducing net greenhouse gas emissions in the mining industry.

  7. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Experiments with a Controlled Redox Potential Indicate No Direct Bacterial Mechanism

    PubMed Central

    Fowler, T. A.; Crundwell, F. K.

    1998-01-01

    The role of Thiobacillus ferrooxidans in bacterial leaching of mineral sulfides is controversial. Much of the controversy is due to the fact that the solution conditions, especially the concentrations of ferric and ferrous ions, change during experiments. The role of the bacteria would be more easily discernible if the concentrations of ferric and ferrous ions were maintained at set values throughout the experimental period. In this paper we report results obtained by using the constant redox potential apparatus described previously (P. I. Harvey and F. K. Crundwell, Appl. Environ. Microbiol. 63:2586–2592, 1997). This apparatus is designed to control the redox potential in the leaching compartment of an electrolytic cell by reduction or oxidation of dissolved iron. By controlling the redox potential the apparatus maintains the concentrations of ferrous and ferric ions at their initial values. Experiments were conducted in the presence of T. ferrooxidans and under sterile conditions. Analysis of the conversion of zinc sulfide in the absence of the bacteria and analysis of the conversion of zinc sulfate in the presence of the bacteria produced the same results. This indicates that the only role of the bacteria under the conditions used is regeneration of ferric ions in solution. In this work we found no evidence that there is a direct mechanism for bacterial leaching. PMID:9758769

  8. Specific binding of Thiobacillus ferrooxidans RbcR to the intergenic sequence between the rbc operon and the rbcR gene.

    PubMed Central

    Kusano, T; Sugawara, K

    1993-01-01

    The presence of two sets (rbcL1-rbcS1 and rbcL2-rbcS2) of rbc operons has been demonstrated in Thiobacillus ferrooxidans Fe1 (T. Kusano, T. Takeshima, C. Inoue, and K. Sugawara, J. Bacteriol. 173:7313-7323, 1991). A possible regulatory gene, rbcR, 930 bp long and possibly translated into a 309-amino-acid protein, was found upstream from the rbcL1 gene as a single copy. The gene is located divergently to rbcL1 with a 144-bp intergenic sequence. As in the cases of the Chromatium vinosum RbcR and Alcaligenes eutrophus CfxR, T. ferrooxidans RbcR is thought to be a new member of the LysR family, and these proteins share 46.5 and 42.8% identity, respectively. Gel mobility shift assays showed that T. ferrooxidans RbcR, produced in Escherichia coli, binds specifically to the intergenic sequence between rbcL1 and rbcR. Footprinting and site-directed mutagenesis experiments further demonstrated that RbcR binds to overlapping promoter elements of the rbcR and rbcL1 genes. The above data strongly support the participation of RbcR in regulation of the rbcL1-rbcS1 operon and the rbcR gene in T. ferrooxidans. Images PMID:8432695

  9. The role of heterotrophic microorganism Galactomyces sp. Z3 in improving pig slurry bioleaching.

    PubMed

    Zhou, Jun; Zheng, Guanyu; Zhou, Lixiang; Liu, Fenwu; Zheng, Chaocheng; Cui, Chunhong

    2013-01-01

    The feasibility of removing heavy metals and eliminating pathogens from pig slurry through bioleaching involving the fungus Galactomyces sp. Z3 and two acidophilic thiobacillus (A. ferrooxidans LX5 and A. thiooxidans TS6) was investigated. It was found that the isolated pig slurry dissolved organic matter (DOM) degrader Z3 was identified as Galactomyces sp. Z3, which could grow well at pH 2.5-7 and degrade pig slurry DOM from 1973 to 942 mg/l within 48 h. During the successive multi-batch bioleaching systems, the co-inoculation of pig slurry degrader Galactomyces sp. Z3 and the two Acidithiobacillus species could improve pig slurry bioleaching efficiency compared to the single system without Galactomyces sp. Z3. The removal efficiency of Zn and Cu exceeded 94% and 85%, respectively. In addition, the elimination efficiencies of pathogens, including both total coliform and faecal coliform counts, exceeded 99% after bioleaching treatment. However, the counts of Galactomyces sp. Z3 decreased with the fall of pH and did not restore to the initial level during successive multi-batch bioleaching systems, and it is necessary to re-inoculate Galactomyces sp. Z3 cells into the bioleaching system to maintain its role in degrading pig slurry DOM. Therefore, a bioleaching technique involving both Galactomyces sp. Z3 and Acidithiobacillus species is an efficient method for removing heavy metals and eliminating pathogens from pig slurry.

  10. Gene Turnover Contributes to the Evolutionary Adaptation of Acidithiobacillus caldus: Insights from Comparative Genomics

    PubMed Central

    Zhang, Xian; Liu, Xueduan; He, Qiang; Dong, Weiling; Zhang, Xiaoxia; Fan, Fenliang; Peng, Deliang; Huang, Wenkun; Yin, Huaqun

    2016-01-01

    Acidithiobacillus caldus is an extremely acidophilic sulfur-oxidizer with specialized characteristics, such as tolerance to low pH and heavy metal resistance. To gain novel insights into its genetic complexity, we chosen six A. caldus strains for comparative survey. All strains analyzed in this study differ in geographic origins as well as in ecological preferences. Based on phylogenomic analysis, we clustered the six A. caldus strains isolated from various ecological niches into two groups: group 1 strains with smaller genomes and group 2 strains with larger genomes. We found no obvious intraspecific divergence with respect to predicted genes that are related to central metabolism and stress management strategies between these two groups. Although numerous highly homogeneous genes were observed, high genetic diversity was also detected. Preliminary inspection provided a first glimpse of the potential correlation between intraspecific diversity at the genome level and environmental variation, especially geochemical conditions. Evolutionary genetic analyses further showed evidence that the difference in environmental conditions might be a crucial factor to drive the divergent evolution of A. caldus species. We identified a diverse pool of mobile genetic elements including insertion sequences and genomic islands, which suggests a high frequency of genetic exchange in these harsh habitats. Comprehensive analysis revealed that gene gains and losses were both dominant evolutionary forces that directed the genomic diversification of A. caldus species. For instance, horizontal gene transfer and gene duplication events in group 2 strains might contribute to an increase in microbial DNA content and novel functions. Moreover, genomes undergo extensive changes in group 1 strains such as removal of potential non-functional DNA, which results in the formation of compact and streamlined genomes. Taken together, the findings presented herein show highly frequent gene turnover of

  11. Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans.

    PubMed

    Lee, Eunseong; Han, Yosep; Park, Jeonghyun; Hong, Jeongsik; Silva, Rene A; Kim, Seungkon; Kim, Hyunjung

    2015-01-01

    The behavior of arsenic (As) bioleaching from mine tailings containing high amount of As (ca. 34,000 mg/kg) was investigated using Acidithiobacillus thiooxidans to get an insight on the optimal conditions that would be applied to practical heap and/or tank bioleaching tests. Initial pH (1.8-2.2), temperature (25-40 °C), and solid concentration (0.5-4.0%) were employed as experimental parameters. Complementary characterization experiments (e.g., XRD, SEM-EDS, electrophoretic mobility, cell density, and sulfate production) were also carried out to better understand the mechanism of As bioleaching. The results showed that final As leaching efficiency was similar regardless of initial pH. However, greater initial As leaching rate was observed at initial pH 1.8 than other conditions, which could be attributed to greater initial cell attachment to mine tailings. Unlike the trend observed when varying the initial pH, the final As leaching efficiency varied with the changes in temperature and solid concentration. Specifically, As leaching efficiency tended to decrease with increasing temperature due to the decrease in the bacterial growth rate at higher temperature. Meanwhile, As leaching efficiency tended to increase with decreasing solid concentration. The results for jarosite contents in mine tailings residue after bioleaching revealed that much greater amount of the jarosite was formed during the bioleaching reaction at higher solid concentration, suggesting that the coverage of the surface of the mine tailings by jarosite and/or the co-precipitation of the leached As with jarosite could be a dominant factor reducing As leaching efficiency.

  12. Architecture and Gene Repertoire of the Flexible Genome of the Extreme Acidophile Acidithiobacillus caldus

    PubMed Central

    Acuña, Lillian G.; Cárdenas, Juan Pablo; Covarrubias, Paulo C.; Haristoy, Juan José; Flores, Rodrigo; Nuñez, Harold; Riadi, Gonzalo; Shmaryahu, Amir; Valdés, Jorge; Dopson, Mark; Rawlings, Douglas E.; Banfield, Jillian F.; Holmes, David S.; Quatrini, Raquel

    2013-01-01

    Background Acidithiobacillus caldus is a sulfur oxidizing extreme acidophile and the only known mesothermophile within the Acidithiobacillales. As such, it is one of the preferred microbes for mineral bioprocessing at moderately high temperatures. In this study, we explore the genomic diversity of A. caldus strains using a combination of bioinformatic and experimental techniques, thus contributing first insights into the elucidation of the species pangenome. Principal Findings Comparative sequence analysis of A. caldus ATCC 51756 and SM-1 indicate that, despite sharing a conserved and highly syntenic genomic core, both strains have unique gene complements encompassing nearly 20% of their respective genomes. The differential gene complement of each strain is distributed between the chromosomal compartment, one megaplasmid and a variable number of smaller plasmids, and is directly associated to a diverse pool of mobile genetic elements (MGE). These include integrative conjugative and mobilizable elements, genomic islands and insertion sequences. Some of the accessory functions associated to these MGEs have been linked previously to the flexible gene pool in microorganisms inhabiting completely different econiches. Yet, others had not been unambiguously mapped to the flexible gene pool prior to this report and clearly reflect strain-specific adaption to local environmental conditions. Significance For many years, and because of DNA instability at low pH and recurrent failure to genetically transform acidophilic bacteria, gene transfer in acidic environments was considered negligible. Findings presented herein imply that a more or less conserved pool of actively excising MGEs occurs in the A. caldus population and point to a greater frequency of gene exchange in this econiche than previously recognized. Also, the data suggest that these elements endow the species with capacities to withstand the diverse abiotic and biotic stresses of natural environments, in particular

  13. Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans.

    PubMed

    Lara, René H; García-Meza, J Viridiana; González, Ignacio; Cruz, Roel

    2013-03-01

    Surfaces of massive chalcopyrite (CuFeS2) electrodes were modified by applying variable oxidation potential pulses under growth media in order to induce the formation of different secondary phases (e.g., copper-rich polysulfides, S n(2-); elemental sulfur, S(0); and covellite, CuS). The evolution of reactivity (oxidation capacity) of the resulting chalcopyrite surfaces considers a transition from passive or inactive (containing CuS and S n(2-)) to active (containing increasing amounts of S(0)) phases. Modified surfaces were incubated with cells of sulfur-oxidizing bacteria (Acidithiobacillus thiooxidans) for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the density of cells attached to chalcopyrite surfaces, the structure of the formed biofilm, and their exopolysaccharides and nucleic acids were analyzed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy coupled to dispersive X-ray analysis (SEM-EDS). Additionally, CuS and S n(2-)/S(0) speciation, as well as secondary phase evolution, was carried out on biooxidized and abiotic chalcopyrite surfaces using Raman spectroscopy and SEM-EDS. Our results indicate that oxidized chalcopyrite surfaces initially containing inactive S n(2-) and S n(2-)/CuS phases were less colonized by A. thiooxidans as compared with surfaces containing active phases (mainly S(0)). Furthermore, it was observed that cells were partially covered by CuS and S(0) phases during biooxidation, especially at highly oxidized chalcopyrite surfaces, suggesting the innocuous effect of CuS phases during A. thiooxidans performance. These results may contribute to understanding the effect of the concomitant formation of refractory secondary phases (as CuS and inactive S n(2-)) during the biooxidation of chalcopyrite by sulfur-oxidizing microorganisms in bioleaching systems.

  14. Evolution of biofilms during the colonization process of pyrite by Acidithiobacillus thiooxidans.

    PubMed

    González, Dulce M; Lara, René H; Alvarado, Keila N; Valdez-Pérez, Donato; Navarro-Contreras, Hugo R; Cruz, Roel; García-Meza, Jessica Viridiana

    2012-01-01

    We have applied epifluorescence principles, atomic force microscopy, and Raman studies to the analysis of the colonization process of pyrite (FeS(2)) by sulfuroxidizing bacteria Acidithiobacillus thiooxidans after 1, 15, 24, and 72 h. For the stages examined, we present results comprising the evolution of biofilms, speciation of S (n) (2-) /S(0) species, adhesion forces of attached cells, production and secretion of extracellular polymeric substances (EPS), and its biochemical composition. After 1 h, highly dispersed attached cells in the surface of the mineral were observed. The results suggest initial non-covalent, weak interactions (e.g., van der Waal's, hydrophobic interactions), mediating an irreversible binding mechanism to electrooxidized massive pyrite electrode (eMPE), wherein the initial production of EPS by individual cells is determinant. The mineral surface reached its maximum cell cover between 15 to 24 h. Longer biooxidation times resulted in the progressive biofilm reduction on the mineral surface. Quantification of attached cell adhesion forces indicated a strong initial mechanism (8.4 nN), whereas subsequent stages of mineral colonization indicated stability of biofilms and of the adhesion force to an average of 4.2 nN. A variable EPS (polysaccharides, lipids, and proteins) secretion at all stages was found; thus, different architectural conformation of the biofilms was observed during 120 h. The main EPS produced were lipopolysaccharides which may increase the hydrophobicity of A. thiooxidans biofilms. The highest amount of lipopolysaccharides occurred between 15-72 h. In contrast with abiotic surfaces, the progressive depletion of S (n) (2-) /S(0) was observed on biotic eMPE surfaces, indicating consumption of surface sulfur species. All observations indicated a dynamic biooxidation mechanism of pyrite by A. thiooxidans, where the biofilms stability and composition seems to occur independently from surface sulfur species depletion.

  15. Construction of small plasmid vectors for use in genetic improvement of the extremely acidophilic Acidithiobacillus caldus.

    PubMed

    Meng, Jianzhou; Wang, Huiyan; Liu, Xiangmei; Lin, Jianqun; Pang, Xin; Lin, Jianqiang

    2013-10-01

    The genetic improvement of biomining bacteria including Acidithiobacillus caldus could facilitate the bioleaching process of sulfur-containing minerals. However, the available vectors for use in A. caldus are very scanty and limited to relatively large broad-host-range IncQ plasmids. In this study, a set of small, mobilizable plasmid vectors (pBBR1MCS-6, pMSD1 and pMSD2) were constructed based on plasmid pBBR1MCS-2, which does not belong to the IncQ, IncW, or IncP groups. The function of the tac promoter on 5.8-kb pMSD2 was determined by inserting a kanamycin-resistant reporter gene. The resulting recombinant pMSD2-Km was successfully transferred by conjugation into A. caldus MTH-04 with transfer frequency of 1.38±0.64×10(-5). The stability and plasmid copy number of pMSD2-Km in A. caldus MTH-04 were 75±2.7% and 5-6 copies per cell, respectively. By inserting an arsABC operon into pMSD2, an arsenic-resistant recombinant pMSD2-As was constructed and transferred into A. caldus MTH-04 by conjugation. The arsenic tolerance of A. caldus MTH-04 containing pMSD2-As was obviously increased up to 45mM of NaAsO2. These vectors could be applied in genetic improvement of A. caldus as well as other bioleaching bacteria.

  16. Changes in biofilm structure during the colonization of chalcopyrite by Acidithiobacillus thiooxidans.

    PubMed

    García-Meza, J V; Fernández, J J; Lara, R H; González, I

    2013-07-01

    Biofilms of Acidithiobacillus thiooxidans were grown on the surface of massive chalcopyrite electrodes (MCE) where different secondary sulfur phases were previously formed by potentiostatic oxidation of MCE at 0.780≤Ean≤0.965 V (electrooxidized MCE, eMCE). The formation of mainly S⁰ and minor amounts of CuS and Sn²⁻ were detected on eMCEs. The eMCEs were incubated with A. thiooxidans cells for 1, 12, 24, 48, and 120 h in order to temporally monitor changes in eMCE's secondary phases, biofilm structure, and extracellular polymeric substance (EPS) composition (lipids, proteins, and polysaccharides) using microscopic, spectroscopic, electrochemical, and biochemical techniques. The results show significant cell attachments with stratified biofilm structure since the first hour of incubation and EPS composition changes, the most important being production after 48-120 h when the highest amount of lipids and proteins were registered. During 120 h, periodic oxidation/formation of S⁰/Sn²⁻ was recorded on biooxidized eMCEs, until a stable CuS composition was formed. In contrast, no evidence of CuS formation was observed on the eMCEs of the abiotic control, confirming that CuS formation results from microbial activity. The surface transformation of eMCE induces a structural transformation of the biofilm, evolving directly to a multilayered biofilm with more hydrophobic EPS and proteins after 120 h. Our results suggest that A. thiooxidans responded to the spatial and temporal distribution and chemical reactivity of the Sn²⁻/S⁰/CuS phases throughout 120 h. These results suggested a strong correlation between surface speciation, hydrophobic domains in EPS, and biofilm organization during chalcopyrite biooxidation by A. thiooxidans.

  17. Bioinformatic Analyses of Unique (Orphan) Core Genes of the Genus Acidithiobacillus: Functional Inferences and Use As Molecular Probes for Genomic and Metagenomic/Transcriptomic Interrogation

    PubMed Central

    González, Carolina; Lazcano, Marcelo; Valdés, Jorge; Holmes, David S.

    2016-01-01

    Using phylogenomic and gene compositional analyses, five highly conserved gene families have been detected in the core genome of the phylogenetically coherent genus Acidithiobacillus of the class Acidithiobacillia. These core gene families are absent in the closest extant genus Thermithiobacillus tepidarius that subtends the Acidithiobacillus genus and roots the deepest in this class. The predicted proteins encoded by these core gene families are not detected by a BLAST search in the NCBI non-redundant database of more than 90 million proteins using a relaxed cut-off of 1.0e−5. None of the five families has a clear functional prediction. However, bioinformatic scrutiny, using pI prediction, motif/domain searches, cellular location predictions, genomic context analyses, and chromosome topology studies together with previously published transcriptomic and proteomic data, suggests that some may have functions associated with membrane remodeling during cell division perhaps in response to pH stress. Despite the high level of amino acid sequence conservation within each family, there is sufficient nucleotide variation of the respective genes to permit the use of the DNA sequences to distinguish different species of Acidithiobacillus, making them useful additions to the armamentarium of tools for phylogenetic analysis. Since the protein families are unique to the Acidithiobacillus genus, they can also be leveraged as probes to detect the genus in environmental metagenomes and metatranscriptomes, including industrial biomining operations, and acid mine drainage (AMD). PMID:28082953

  18. EFFECT OF PHOSPHATE ION AND 2,4-DINITROPHENOL ON THE ACTIVITY OF INTACT CELLS OF THIOBACILLUS FERROOXIDANS

    PubMed Central

    Beck, Jay V.; Shafia, Fred M.

    1964-01-01

    Beck, Jay V. (Brigham Young University, Provo, Utah), and Fred M. Shafia. Effect of phosphate ion and 2,4-dinitrophenol on the activity of cell suspensions of Thiobacillus ferrooxidans. J. Bacteriol. 88:850–857. 1964.—The rate of oxidation of ferrous salts or elemental sulfur by aged cell suspensions, phosphate-depleted cells, or 2,4-dinitrophenol (DNP)-treated cells of Thiobacillus ferrooxidans was increased by addition of orthophosphate salts. The effect was found to be transitory, with the rate gradually approaching that observed prior to phosphate ion addition. The total increased oxygen uptake was observed to be roughly proportional to the amount of phosphate salt added. The efficiency of CO2 fixation accompanying oxidation of ferrous salts was found to be about 1.7 μmoles of CO2 fixed per 100 μmoles of O2 absorbed, in contrast to a value of about 8.0 μmoles of CO2 fixed per 100 μmoles of O2 uptake during sulfur oxidation. The rate of oxidation did not affect the CO2 fixation efficiency. Whereas addition of phosphate salts to aged or phosphate-depleted cells increased slightly the already high efficiency of CO2 fixation, it did not affect the complete inhibition of CO2 fixation observed in the presence of 10-5m DNP. The results indicate that the phosphate ion is essential for oxidation of the ferrous ion, and that dinitrophenol and other so-called upcoupling agents interfere with phosphate metabolism. The latter may be a result of action at the site of assimilation of the ferrous ion or it may be an effect on the electron-transport system. In any event, it seems obvious that the phosphate ion is converted into a nonactive form in the presence of dinitrophenol-treated cells, because additional quantities of orthophosphate salts cause an immediate, marked restoration of oxidative activity. PMID:14219046

  19. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Bacterial Oxidation of the Sulfur Product Layer Increases the Rate of Zinc Sulfide Dissolution at High Concentrations of Ferrous Ions

    PubMed Central

    Fowler, T. A.; Crundwell, F. K.

    1999-01-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions. PMID:10583978

  20. Development of an automated water toxicity biosensor using Thiobacillus ferrooxidans for monitoring cyanides in natural water for a water filtering plant.

    PubMed

    Okochi, Mina; Mima, Koji; Miyata, Maki; Shinozaki, Youhei; Haraguchi, Satoshi; Fujisawa, Minoru; Kaneko, Masao; Masukata, Tadashi; Matsunaga, Tadashi

    2004-09-30

    An on-line biosensor consisting of immobilized Thiobacillus ferrooxidans and an oxygen electrode was developed for automated monitoring of acute toxicity in water samples. T. ferrooxidans is an obligatory acidophilic, autotrophic bacterium and derives its energy by the oxidation of ferrous ion, elemental sulfur, and reduced sulfur compounds including metal sulfides. The assay is based on the monitoring of a current increase by addition of toxicoids, which is caused by the inhibition of bacterial respiration and decrease in oxygen consumption. Optimum cell number on the membrane was 5.0 x 10(8) cells. The steady-state current was obtained when concentration of FeSO4 was above 3.6 mM at pH 3. The sensor response of T. ferrooxidans immobilized membrane for 5.0 microM KCN was within an error of 10% for 30 membranes. A linear relationship was obtained at KCN concentration in the range of 0.5-3.0 microM in a flow-type monitoring system. Minimum detectable concentrations of KCN, Na2S, and NaN3 were 0.5, 1.2, and 0.07 microM, respectively. The monitoring system contained two biosensors and these sensors were cleaned with sulfuric acid (pH 1.5) twice a day. This treatment could remove fouling on microbial immobilized membrane by natural water and ferrous precipitation in the flow cell. This flow-type monitoring sensor was operated continuously for 5 months. Also, T. ferrooxidans immobilized membrane can be stored for one month at 4 degrees C when preserved with wet absorbent cotton under argon gas.

  1. Influences of extracellular polymeric substances on the dewaterability of sewage sludge during bioleaching.

    PubMed

    Zhou, Jun; Zheng, Guanyu; Zhang, Xueying; Zhou, Lixiang

    2014-01-01

    Extracellular polymeric substances (EPS) play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system), the capillary suction time (CST) of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better than the controls. The correlation analysis between sludge CST and sludge EPS revealed that the sludge EPS significantly impacted the dewaterability of sludge. Sludge CST had correlation with protein content in slime and both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers, and the decrease of protein content in slime and decreases of both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers improved sludge dewaterability during sludge bioleaching process. Moreover, the low sludge pH (2.92) and the increasing distribution of Fe in the solid phase were another two factors responsible for the improvement of sludge dewaterability during bioleaching. This study suggested that during sludge bioleaching the growth of Acidithiobacillus species resulted in the decrease of sludge pH, the increasing distribution of Fe in the solid phase, and the decrease of EPS content (mainly including protein and/or polysaccharide) in the slime, TB-EPS, and Slime+LB+TB layers, all of which are helpful for sludge dewaterability enhancement.

  2. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a "Geospirillum" sp. strain.

    PubMed

    Heising, S; Richter, L; Ludwig, W; Schink, B

    1999-08-01

    A green phototrophic bacterium was enriched with ferrous iron as sole electron donor and was isolated in defined coculture with a spirilloid chemoheterotrophic bacterium. The coculture oxidized ferrous iron to ferric iron with stoichiometric formation of cell mass from carbon dioxide. Sulfide, thiosulfate, or elemental sulfur was not used as electron donor in the light. Hydrogen or acetate in the presence of ferrous iron increased the cell yield of the phototrophic partner, and hydrogen could also be used as sole electron source. Complexed ferric iron was slowly reduced to ferrous iron in the dark, with hydrogen as electron source. Similar to Chlorobium limicola, the phototrophic bacterium contained bacteriochlorophyll c and chlorobactene as photosynthetic pigments, and also resembled representatives of this species morphologically. On the basis of 16S rRNA sequence comparisons, this organism clusters with Chlorobium, Prosthecochloris, and Pelodictyon species within the green sulfur bacteria phylum. Since the phototrophic partner in the coculture KoFox is only moderately related to the other members of the cluster, it is proposed as a new species, Chlorobium ferrooxidans. The chemoheterotrophic partner bacterium, strain KoFum, was isolated in pure culture with fumarate as sole substrate. The strain was identified as a member of the epsilon-subclass of the Proteobacteria closely related to "Geospirillum arsenophilum" on the basis of physiological properties and 16S rRNA sequence comparison. The "Geospirillum" strain was present in the coculture only in low numbers. It fermented fumarate, aspartate, malate, or pyruvate to acetate, succinate, and carbon dioxide, and could reduce nitrate to dinitrogen gas. It was not involved in ferrous iron oxidation but possibly provided a thus far unidentified growth factor to the phototrophic partner.

  3. Effect of Heavy metals on the iron oxidizing ability of Thiobacillus ferrooxidans: Part 1, Effect of silver

    SciTech Connect

    De, G.C.; Pesic, B.

    1992-01-01

    The effect of silver ions on the iron oxidizing ability of Thiobacillus ferrooxidans was studied using electrochemical and other physics-chemical techniques. Electrochemical investigation was conducted using a method based on redox potential change. Experiments were performed by adding an aliquot of separately prepared concentrate of the bacteria into the solution of ferrous ion and monitoring the redox potential for at least one hour. Pyrite was used as the indicator electrode. Parameters examined were pH, microbial cell density, ferrous, ferric and silver ion concentration, temperature and preconditioning period of the bacteria with silver ions, etc. Results obtained demonstrate that the rate of ferrous ion oxidation is dependent on pH (optimum pH range is 1.5--2.0) and the substrate (i.e. Fe(II)) to microbial cell concentration ratio. The mechanism of the bacteria mediated oxidation of ferrous iron is remarkably sensitive to temperature changes. At the vicinity of the optimum temperature (i.e. 25[degree]C), the reaction is likely to be controlled by the diffusion of Fe (II) ions through the cell wall of the bacteria, whereas below the range 18--25[degree]C, reaction kinetics may be the rate controlling factor. In the presence of 10 mg/L silver, the reaction may be kinetically controlled over the temperature range 5.5--25[degree]C. Inhibition of microbial FE(II) oxidation in the presence of silver may take place via a mixed mechanism in which silver may bind with both the enzyme and the enzyme-substrate complex.

  4. Hydrogen sulfide oxidation in novel Horizontal-Flow Biofilm Reactors dominated by an Acidithiobacillus and a Thiobacillus species.

    PubMed

    Gerrity, S; Kennelly, C; Clifford, E; Collins, G

    2016-09-01

    Hydrogen Sulfide (H2S) is an odourous, highly toxic gas commonly encountered in various commercial and municipal sectors. Three novel, laboratory-scale, Horizontal-Flow Biofilm Reactors (HFBRs) were tested for the removal of H2S gas from air streams over a 178-day trial at 10°C. Removal rates of up to 15.1 g [H2S] m(-3) h(-1) were achieved, demonstrating the HFBRs as a feasible technology for the treatment of H2S-contaminated airstreams at low temperatures. Bio-oxidation of H2S in the reactors led to the production of H(+) and sulfate (SO(2-)4) ions, resulting in the acidification of the liquid phase. Reduced removal efficiency was observed at loading rates of 15.1 g [H2S] m(-3) h(-1). NaHCO3 addition to the liquid nutrient feed (synthetic wastewater (SWW)) resulted in improved H2S removal. Bacterial diversity, which was investigated by sequencing and fingerprinting 16S rRNA genes, was low, likely due to the harsh conditions prevailing in the systems. The HFBRs were dominated by two species from the genus Acidithiobacillus and Thiobacillus. Nonetheless, there were significant differences in microbial community structure between distinct HFBR zones due to the influence of alkalinity, pH and SO4 concentrations. Despite the low temperature, this study indicates HFBRs have an excellent potential to biologically treat H2S-contaminated airstreams.

  5. Existence of aa3-type ubiquinol oxidase as a terminal oxidase in sulfite oxidation of Acidithiobacillus thiooxidans.

    PubMed

    Sugio, Tsuyoshi; Hisazumi, Tomohiro; Kanao, Tadayoshi; Kamimura, Kazuo; Takeuchi, Fumiaki; Negishi, Atsunori

    2006-07-01

    It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an alpha-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa(3)-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 degrees C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A(1) and myxothiazol, which are inhibitors of mitochondrial bc(1) complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.

  6. Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH.

    PubMed

    Liu, Fenwu; Zhou, Lixiang; Zhou, Jun; Song, Xingwei; Wang, Dianzhan

    2012-06-30

    Bio-acidification caused by bio-oxidation of energy substances during bioleaching is widely known to play an important role in improving sludge-borne metals removal. Here we report that bioleaching also drastically enhances sludge dewaterability in a suitable pH level. To obtain the optimum initial concentrations of energy substances and pH values for sludge dewaterability during bioleaching, bio-oxidation of Fe(2+) and S(0) under co-inoculation with Acidithiobacillus thiooxidans TS6 and Acidothiobacillus ferrooxidans LX5 and their effects on sludge dewaterability and metals removal during sludge bioleaching were investigated. Results indicated that the dosage of energy substances with 2g/L S(0) and 2g/L Fe(2+) could obtain bio-oxidation efficiencies of up to 100% for Fe(2+) and 50% for S(0) and were the optimal dosages for sludge bioleaching. The removal efficiencies of sludge-borne Cu and Cr could reach above 85% and 40%, respectively, and capillary suction time (CST) of bioleached sludge decreased to as low as ∼10s from initial 48.9s for fresh sludge when sludge pH declined to ∼2.4 through bioleaching. These results confirm the potential of bioleaching as a novel method for improving sludge dewaterability as well as removal of metals.

  7. Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic.

    PubMed

    Ramírez-Aldaba, Hugo; Valles, O Paola; Vazquez-Arenas, Jorge; Rojas-Contreras, J Antonio; Valdez-Pérez, Donato; Ruiz-Baca, Estela; Meraz-Rodríguez, Mónica; Sosa-Rodríguez, Fabiola S; Rodríguez, Ángel G; Lara, René H

    2016-10-01

    Bioleaching of arsenopyrite presents a great interest due to recovery of valuable metals and environmental issues. The current study aims to evaluate the arsenopyrite oxidation by Acidithiobacillus thiooxidans during 240h at different time intervals, in the presence and absence of supplementary arsenic. Chemical and electrochemical characterizations are carried out using Raman, AFM, SEM-EDS, Cyclic Voltammetry, EIS, electrophoretic and adhesion forces to comprehensively assess the surface behavior and biooxidation mechanism of this mineral. These analyses evidence the formation of pyrite-like secondary phase on abiotic control surfaces, which contrast with the formation of pyrite (FeS2)-like, orpiment (As2S3)-like and elementary sulfur and polysulfide (Sn(2-)/S(0)) phases found on biooxidized surfaces. Voltammetric results indicate a significant alteration of arsenopyrite due to (bio)oxidation. Resistive processes determined with EIS are associated with chemical and electrochemical reactions mediated by (bio)oxidation, resulting in the transformation of arsenopyrite surface and biofilm direct attachment. Charge transfer resistance is increased when (bio)oxidation is performed in the presence of supplementary arsenic, in comparison with lowered abiotic control resistances obtained in its absence; reinforcing the idea that more stable surface products are generated when As(V) is in the system. Biofilm structure is mainly comprised of micro-colonies, progressively enclosed in secondary compounds. A more compact biofilm structure with enhanced formation of secondary compounds is identified in the presence of supplementary arsenic, whereby variable arsenopyrite reactivity is linked and attributed to these secondary compounds, including Sn(2-)/S(0), pyrite-like and orpiment-like phases.

  8. The Effect of Oxygen Supply on the Dual Growth Kinetics of Acidithiobacillus thiooxidans under Acidic Conditions for Biogas Desulfurization

    PubMed Central

    Namgung, Hyeong-Kyu; Song, JiHyeon

    2015-01-01

    In this study, to simulate a biogas desulfurization process, a modified Monod-Gompertz kinetic model incorporating a dissolved oxygen (DO) effect was proposed for a sulfur-oxidizing bacterial (SOB) strain, Acidithiobacillus thiooxidans, under extremely acidic conditions of pH 2. The kinetic model was calibrated and validated using experimental data obtained from a bubble-column bioreactor. The SOB strain was effective for H2S degradation, but the H2S removal efficiency dropped rapidly at DO concentrations less than 2.0 mg/L. A low H2S loading was effectively treated with oxygen supplied in a range of 2%–6%, but a H2S guideline of 10 ppm could not be met, even with an oxygen supply greater than 6%, when the H2S loading was high at a short gas retention time of 1 min and a H2S inlet concentration of 5000 ppm. The oxygen supply should be increased in the aerobic desulfurization to meet the H2S guideline; however, the excess oxygen above the optimum was not effective because of the decline in oxygen efficiency. The model estimation indicated that the maximum H2S removal rate was approximately 400 ppm/%-O2 at the influent oxygen concentration of 4.9% under the given condition. The kinetic model with a low DO threshold for the interacting substrates was a useful tool to simulate the effect of the oxygen supply on the H2S removal and to determine the optimal oxygen concentration. PMID:25633028

  9. Insights on the structure and stability of Licanantase: a trimeric acid-stable coiled-coil lipoprotein from Acidithiobacillus thiooxidans.

    PubMed

    Abarca, Fernando; Gutierrez-Maldonado, Sebastian E; Parada, Pilar; Martinez, Patricio; Maass, Alejandro; Perez-Acle, Tomas

    2014-01-01

    Licanantase (Lic) is the major component of the secretome of Acidithiobacillus thiooxidans when grown in elemental sulphur. When used as an additive, Lic improves copper recovery from bioleaching processes. However, this recovery enhancement is not fully understood. In this context, our aim is to predict the 3D structure of Lic, to shed light on its structure-function relationships. Bioinformatics analyses on the amino acid sequence of Lic showed a great similarity with Lpp, an Escherichia coli Lipoprotein that can form stable trimers in solution. Lic and Lpp share the secretion motif, intracellular processing and alpha helix structure, as well as the distribution of hydrophobic residues in heptads forming a hydrophobic core, typical of coiled-coil structures. Cross-linking experiments showed the presence of Lic trimers, supporting our predictions. Taking the in vitro and in silico evidence as a whole, we propose that the most probable structure for Lic is a trimeric coiled-coil. According to this prediction, a suitable model for Lic was produced using the de novo algorithm "Rosetta Fold-and-Dock". To assess the structural stability of our model, Molecular Dynamics (MD) and Replica Exchange MD simulations were performed using the structure of Lpp and a 14-alanine Lpp mutant as controls, at both acidic and neutral pH. Our results suggest that Lic was the most stable structure among the studied proteins in both pH conditions. This increased stability can be explained by a higher number of both intermonomer hydrophobic contacts and hydrogen bonds, key elements for the stability of Lic's secondary and tertiary structure.

  10. Diguanylate cyclase null mutant reveals that C-Di-GMP pathway regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus.

    PubMed

    Castro, Matías; Deane, Shelly M; Ruiz, Lina; Rawlings, Douglas E; Guiliani, Nicolas

    2015-01-01

    An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process.

  11. Diguanylate Cyclase Null Mutant Reveals That C-Di-GMP Pathway Regulates the Motility and Adherence of the Extremophile Bacterium Acidithiobacillus caldus

    PubMed Central

    Castro, Matías; Deane, Shelly M.; Ruiz, Lina; Rawlings, Douglas E.; Guiliani, Nicolas

    2015-01-01

    An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process. PMID:25689133

  12. Isolation and characterization of a novel Acidithiobacillus ferrivorans strain from the Chilean Altiplano: attachment and biofilm formation on pyrite at low temperature.

    PubMed

    Barahona, Sergio; Dorador, Cristina; Zhang, Ruiyong; Aguilar, Pablo; Sand, Wolfgang; Vera, Mario; Remonsellez, Francisco

    2014-11-01

    Microorganisms are used to aid the extraction of valuable metals from low-grade sulfide ores in mines worldwide, but relatively little is known about this process in cold environments. This study comprises a preliminary analysis of the bacterial diversity of the polyextremophilic acid River Aroma located in the Chilean Altiplano, and revealed that Betaproteobacteria was the most dominant bacterial group (Gallionella-like and Thiobacillus-like). Taxa characteristic of leaching environments, such Acidithiobacillus and Leptospirillum, were detected at low abundances. Also, bacteria not associated with extremely acidic, metal-rich environments were found. After enrichment in iron- and sulfur-oxidizing media, we isolated and identified a novel psychrotolerant Acidithiobacillus ferrivorans strain ACH. This strain can grow using ferrous iron, sulfur, thiosulfate, tetrathionate and pyrite, as energy sources. Optimal growth was observed in the presence of pyrite, where cultures reached a cell number of 6.5 · 10(7) cells mL(-1). Planktonic cells grown with pyrite showed the presence of extracellular polymeric substances (10 °C and 28 °C), and a high density of cells attached to pyrite grains were observed at 10 °C by electron microscopy. The attachment of cells to pyrite coupons and the presence of capsular polysaccharides were visualized by using epifluorescence microscopy, through nucleic acid and lectin staining with Syto(®)9 and TRITC-Con A, respectively. Interestingly, we observed high cell adhesion including the formation of microcolonies within 21 days of incubation at 4 °C, which was correlated with a clear induction of capsular polysaccharides production. Our data suggests that attachment to pyrite is not temperature-dependent in At. ferrivorans ACH. The results of this study highlight the potential of this novel psychrotolerant strain in oxidation and attachment to minerals under low-temperature conditions.

  13. Effect of Heavy metals on the iron oxidizing ability of Thiobacillus ferrooxidans: Part 1, Effect of silver. Technical progress report, July 1992--September 1992

    SciTech Connect

    De, G.C.; Pesic, B.

    1992-12-01

    The effect of silver ions on the iron oxidizing ability of Thiobacillus ferrooxidans was studied using electrochemical and other physics-chemical techniques. Electrochemical investigation was conducted using a method based on redox potential change. Experiments were performed by adding an aliquot of separately prepared concentrate of the bacteria into the solution of ferrous ion and monitoring the redox potential for at least one hour. Pyrite was used as the indicator electrode. Parameters examined were pH, microbial cell density, ferrous, ferric and silver ion concentration, temperature and preconditioning period of the bacteria with silver ions, etc. Results obtained demonstrate that the rate of ferrous ion oxidation is dependent on pH (optimum pH range is 1.5--2.0) and the substrate (i.e. Fe(II)) to microbial cell concentration ratio. The mechanism of the bacteria mediated oxidation of ferrous iron is remarkably sensitive to temperature changes. At the vicinity of the optimum temperature (i.e. 25{degree}C), the reaction is likely to be controlled by the diffusion of Fe (II) ions through the cell wall of the bacteria, whereas below the range 18--25{degree}C, reaction kinetics may be the rate controlling factor. In the presence of 10 mg/L silver, the reaction may be kinetically controlled over the temperature range 5.5--25{degree}C. Inhibition of microbial FE(II) oxidation in the presence of silver may take place via a mixed mechanism in which silver may bind with both the enzyme and the enzyme-substrate complex.

  14. Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture.

    PubMed

    Jiang, Huidan; Liang, Yili; Yin, Huaqun; Xiao, Yunhua; Guo, Xue; Xu, Ying; Hu, Qi; Liu, Hongwei; Liu, Xueduan

    2015-01-01

    The response of iron-oxidizing Leptospirillum ferriphilum YSK and sulfur-oxidizing Acidithiobacillus thiooxidans A01 to arsenite under pure culture and coculture was investigated based on biochemical characterization (concentration of iron ion and pH value) and related gene expression. L. ferriphilum YSK and At. thiooxidans A01 in pure culture could adapt up to 400 mM and 800 mM As(III) after domestication, respectively, although arsenite showed a negative effect on both strains. The coculture showed a stronger sulfur and ferrous ion oxidation activity when exposed to arsenite. In coculture, the pH value showed no significant difference when under 500 mM arsenite stress, and the cell number of At. thiooxidans was higher than that in pure culture benefiting from the interaction with L. ferriphilum. The expression profile showed that the arsenic efflux system in the coculture was more active than that in pure culture, indicating that there is a synergetic interaction between At. thiooxidans A01 and L. ferriphilum YSK. In addition, a model was proposed to illustrate the interaction between arsenite and the ars operon in L. ferriphilum YSK and At. thiooxidans A01. This study will facilitate the effective application of coculture in the bioleaching process by taking advantage of strain-strain communication and coordination.

  15. Effects of ferrous sulfate, inoculum history, and anionic form on lead, zinc, and copper toxicity to Acidithiobacillus caldus strain BC13.

    PubMed

    Aston, John E; Peyton, Brent M; Lee, Brady D; Apel, William A

    2010-12-01

    The current study reports the single and combined toxicities of Pb, Zn, and Cu to Acidithiobacillus caldus strain BC13. The observed half-maximal inhibitory concentrations (IC50), ± 95% confidence intervals, for Pb, Zn, and Cu were 0.9 ± 0.1 mM, 39 ± 0.5 mM, and 120 ± 8 mM, respectively. The observed minimum inhibitory concentrations (MIC) for Pb, Zn, and Cu were 7.5 mM, 75 mM, and 250 mM, respectively. When metals were presented in binary mixtures, the toxicities were less than additive. For example, when 50% of the Pb MIC and 50% of the Cu MIC were presented together, the specific growth rate was inhibited by only 59 ± 3%, rather than 100%. In addition, the presence of ferrous iron in the growth media decreased Pb and Zn toxicity to A. caldus strain BC13. The importance of inoculum history was evaluated by pre-adapting cultures through subsequent transfers in the presence of Pb, Zn, and Cu at their respective IC50s. After pre-adaptation, cultures had specific growth rates 39 ± 11, 32 ± 7, and 28 ± 12% higher in the presence of Pb, Zn, and Cu IC50s, respectively, compared with cultures that had not been pre-adapted. In addition, when cells exposed to the MICs of Pb, Zn, and Cu were harvested, washed, and re-inoculated into fresh, metal-free medium, they grew, showing that the cells remained viable with little residual toxicity. Finally, metal chlorides showed more toxicity than metal sulfates, and studies using sodium chloride or a mixture of metal sulfates and sodium chloride suggested that this was attributable to an additive combination of the metal and chloride toxicities.

  16. Effects of ferrous sulfate, inoculum history, and anionic form on lead, zinc, and copper toxicity to Acidithiobacillus caldus strain BC13

    SciTech Connect

    John E. Aston; William A. Apel; Brady D. Lee; Brent M. Peyton

    2010-12-01

    The current study reports the single and combined toxicities of Pb, Zn, and Cu to Acidithiobacillus caldus strain BC13. The observed half-maximal inhibitory concentrations (IC50),?±?95% confidence intervals, for Pb, Zn, and Cu were 0.9?±?0.1?mM, 39?±?0.5?mM, and 120?±?8?mM, respectively. The observed minimum inhibitory concentrations (MIC) for Pb, Zn, and Cu were 7.5?mM, 75?mM, and 250?mM, respectively. When metals were presented in binary mixtures, the toxicities were less than additive. For example, when 50% of the Pb MIC and 50% of the Cu MIC were presented together, the specific growth rate was inhibited by only 59?±?3%, rather than 100%. In addition, the presence of ferrous iron in the growth media decreased Pb and Zn toxicity to A. caldus strain BC13. The importance of inoculum history was evaluated by pre-adapting cultures through subsequent transfers in the presence of Pb, Zn, and Cu at their respective IC50s. After pre-adaptation, cultures had specific growth rates 39?±?11, 32?±?7, and 28?±?12% higher in the presence of Pb, Zn, and Cu IC50s, respectively, compared with cultures that had not been pre-adapted. In addition, when cells exposed to the MICs of Pb, Zn, and Cu were harvested, washed, and re-inoculated into fresh, metal-free medium, they grew, showing that the cells remained viable with little residual toxicity. Finally, metal chlorides showed more toxicity than metal sulfates, and studies using sodium chloride or a mixture of metal sulfates and sodium chloride suggested that this was attributable to an additive combination of the metal and chloride toxicities. Environ. Toxicol. Chem. 2010;29:2669–2675. © 2010 SETAC

  17. The Two-Component System RsrS-RsrR Regulates the Tetrathionate Intermediate Pathway for Thiosulfate Oxidation in Acidithiobacillus caldus

    PubMed Central

    Wang, Zhao-Bao; Li, Ya-Qing; Lin, Jian-Qun; Pang, Xin; Liu, Xiang-Mei; Liu, Bing-Qiang; Wang, Rui; Zhang, Cheng-Jia; Wu, Yan; Lin, Jian-Qiang; Chen, Lin-Xu

    2016-01-01

    Acidithiobacillus caldus (A. caldus) is a common bioleaching bacterium that possesses a sophisticated and highly efficient inorganic sulfur compound metabolism network. Thiosulfate, a central intermediate in the sulfur metabolism network of A. caldus and other sulfur-oxidizing microorganisms, can be metabolized via the tetrathionate intermediate (S4I) pathway catalyzed by thiosulfate:quinol oxidoreductase (Tqo or DoxDA) and tetrathionate hydrolase (TetH). In A. caldus, there is an additional two-component system called RsrS-RsrR. Since rsrS and rsrR are arranged as an operon with doxDA and tetH in the genome, we suggest that the regulation of the S4I pathway may occur via the RsrS-RsrR system. To examine the regulatory role of the two-component system RsrS-RsrR on the S4I pathway, ΔrsrR and ΔrsrS strains were constructed in A. caldus using a newly developed markerless gene knockout method. Transcriptional analysis of the tetH cluster in the wild type and mutant strains revealed positive regulation of the S4I pathway by the RsrS-RsrR system. A 19 bp inverted repeat sequence (IRS, AACACCTGTTACACCTGTT) located upstream of the tetH promoter was identified as the binding site for RsrR by using electrophoretic mobility shift assays (EMSAs) in vitro and promoter-probe vectors in vivo. In addition, ΔrsrR, and ΔrsrS strains cultivated in K2S4O6-medium exhibited significant growth differences when compared with the wild type. Transcriptional analysis indicated that the absence of rsrS or rsrR had different effects on the expression of genes involved in sulfur metabolism and signaling systems. Finally, a model of tetrathionate sensing by RsrS, signal transduction via RsrR, and transcriptional activation of tetH-doxDA was proposed to provide insights toward the understanding of sulfur metabolism in A. caldus. This study also provided a powerful genetic tool for studies in A. caldus. PMID:27857710

  18. Model-based evaluation of ferrous iron oxidation by acidophilic bacteria in chemostat and biofilm airlift reactors.

    PubMed

    Ebrahimi, Sirous; Faraghi, Neda; Hosseini, Maryam

    2015-10-01

    This article presents a model-based evaluation of ferrous iron oxidation in chemostat and biofilm airlift reactors inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria. The competition between the two types of bacteria in the chemostat and in the biofilm airlift reactors together with the distribution of both bacteria along the biofilm thickness at different time sections has been studied. The bacterial distribution profiles along the biofilm in the airlift reactor at different time scales show that in the beginning A. ferrooxidans bacteria are dominant, but when the reactor operates for a long time the desirable L. ferrooxidans species outcompete A. ferrooxidans as a result of the low Fe(2+) and high Fe(3+) concentrations. The results obtained from the simulation were compared with the experimental data of continuously operated internal loop airlift biofilm reactor. The model results are in good agreement with the experimental results.

  19. Generation of acid mine drainage around the Karaerik copper mine (Espiye, Giresun, NE Turkey): implications from the bacterial population in the Acısu effluent.

    PubMed

    Sağlam, Emine Selva; Akçay, Miğraç; Çolak, Dilşat Nigar; İnan Bektaş, Kadriye; Beldüz, Ali Osman

    2016-09-01

    The Karaerik Cu mine is a worked-out deposit with large volumes of tailings and slags which were left around the mine site without any protection. Natural feeding of these material and run-off water from the mineralised zones into the Acısu effluent causes a serious environmental degradation and creation of acid mine drainage (AMD) along its entire length. This research aims at modelling the formation of AMD with a specific attempt on the characterisation of the bacterial population in association with AMD and their role on its occurrence. Based on 16SrRNA analyses of the clones obtained from a composite water sample, the bacterial community was determined to consist of Acidithiobacillus ferrivorans, Ferrovum myxofaciens, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans as iron-oxidising bacteria, Acidocella facilis, Acidocella aluminiidurans, Acidiphilium cryptum and Acidiphilium multivorum as iron-reducing bacteria, and Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidiphilium cryptum as sulphur-oxidising bacteria. This association of bacteria with varying roles was interpreted as evidence of a concomitant occurrence of sulphur and iron cycles during the generation of AMD along the Acısu effluent draining the Karaerik mine.

  20. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    PubMed Central

    Romo, E.; Weinacker, D.F.; Zepeda, A.B.; Figueroa, C.A.; Chavez-Crooker, P.; Farias, J.G.

    2013-01-01

    The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control. PMID:24294251

  1. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite.

    PubMed

    Romo, E; Weinacker, D F; Zepeda, A B; Figueroa, C A; Chavez-Crooker, P; Farias, J G

    2013-01-01

    The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control.

  2. Insights to the effects of free cells on community structure of attached cells and chalcopyrite bioleaching during different stages.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2016-01-01

    The effects of free cells on community structure of attached cells and chalcopyrite bioleaching by Acidithiobacillus sp. during different stages were investigated. The attached cells of Acidithiobacillus thiooxidans owned the community advantage from 14thd to the end of bioprocess in the normal system. The community structure of attached cells was greatly influenced in the free cells-deficient systems. Compared to A. thiooxidans, the attached cells community of Acidithiobacillus ferrooxidans had a higher dependence on its free cells. Meanwhile, the analysis of key biochemical parameters revealed that the effects of free cells on chalcopyrite bioleaching in different stages were diverse, ranging from 32.8% to 64.3%. The bioleaching contribution of free cells of A. ferrooxidans in the stationary stage (8-14thd) was higher than those of A. thiooxidans, while the situation was gradually reversed in the jarosite passivation inhibited stage (26-40thd). These results may be useful in guiding chalcopyrite bioleaching.

  3. Investigation of energy gene expressions and community structures of free and attached acidophilic bacteria in chalcopyrite bioleaching.

    PubMed

    Zhu, Jianyu; Jiao, Weifeng; Li, Qian; Liu, Xueduan; Qin, Wenqing; Qiu, Guanzhou; Hu, Yuehua; Chai, Liyuan

    2012-12-01

    In order to better understand the bioleaching mechanism, expression of genes involved in energy conservation and community structure of free and attached acidophilic bacteria in chalcopyrite bioleaching were investigated. Using quantitative real-time PCR, we studied the expression of genes involved in energy conservation in free and attached Acidithiobacillus ferrooxidans during bioleaching of chalcopyrite. Sulfur oxidation genes of attached A. ferrooxidans were up-regulated while ferrous iron oxidation genes were down-regulated compared with free A. ferrooxidans in the solution. The up-regulation may be induced by elemental sulfur on the mineral surface. This conclusion was supported by the results of HPLC analysis. Sulfur-oxidizing Acidithiobacillus thiooxidans and ferrous-oxidizing Leptospirillum ferrooxidans were the members of the mixed culture in chalcopyrite bioleaching. Study of the community structure of free and attached bacteria showed that A. thiooxidans dominated the attached bacteria while L. ferrooxidans dominated the free bacteria. With respect to available energy sources during bioleaching of chalcopyrite, sulfur-oxidizers tend to be on the mineral surfaces whereas ferrous iron-oxidizers tend to be suspended in the aqueous phase. Taken together, these results indicate that the main role of attached acidophilic bacteria was to oxidize elemental sulfur and dissolution of chalcopyrite involved chiefly an indirect bioleaching mechanism.

  4. Leaching of Copper Ore by Thiobacillus Ferrooxidans.

    ERIC Educational Resources Information Center

    Lennox, John; Biaha, Thomas

    1991-01-01

    A quantitative laboratory exercise based upon the procedures copper manufacturers employ to increase copper production is described. The role of chemoautotrophic microorganisms in biogeologic process is emphasized. Safety considerations when working with bacteria are included. (KR)

  5. Electrochemistry of Thiobacillus ferrooxidans reactions with pyrite

    SciTech Connect

    Pesic, B.; Oliver, D.J.

    1990-01-01

    The objective of this project is to provide the fundamental information on the mechanisms of bacterial leaching of pyrite. The knowledge of how bacterial leaching of pyrite functions is essential for design and development of a technology for coal cleaning with bacteria. The features of major electrochemical techniques will be examined to find out if any of them can provide a diagnostic information on the mechanisms of related reactions. The research was focused on how to improve the chemical activity of bacteria. Two major approaches were undertaken. One was to provide more nutrient salts. It was anticipated that by providing higher amounts of nutrients the concentration and the activity of bacteria would increase. The other approach was to provide fresh environment to bacteria for the growth. Before the experiments it was decided to first examine their activity with time. However, there was no literature information available on this subject. The effect of the solution pH, was also studied. 4 refs., 8 figs.

  6. Electrochemistry of Thiobacillus ferrooxidans reactions with pyrite

    SciTech Connect

    Pesic, B.

    1992-01-01

    The objective of this project is to provide the fundamental information on the mechanisms of bacterial leaching of pyrite. The knowledge of how bacterial leaching of pyrite functions is essential for design and development of a technology for coal cleaning with bacteria. The features of major electrochemical techniques will be examined to find out if any of them can provide a diagnostic information on the mechanisms of related reactions.

  7. Cross-comparison of leaching strains isolated from two different regions: Chambishi and Dexing copper mines.

    PubMed

    Ngom, Baba; Liang, Yili; Liu, Xueduan

    2014-01-01

    A cross-comparison of six strains isolated from two different regions, Chambishi copper mine (Zambia, Africa) and Dexing copper mine (China, Asia), was conducted to study the leaching efficiency of low grade copper ores. The strains belong to the three major species often encountered in bioleaching of copper sulfide ores under mesophilic conditions: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferriphilum. Prior to their study in bioleaching, the different strains were characterized and compared at physiological level. The results revealed that, except for copper tolerance, strains within species presented almost similar physiological traits with slight advantages of Chambishi strains. However, in terms of leaching efficiency, native strains always achieved higher cell density and greater iron and copper extraction rates than the foreign microorganisms. In addition, microbial community analysis revealed that the different mixed cultures shared almost the same profile, and At. ferrooxidans strains always outcompeted the other strains.

  8. Cross-Comparison of Leaching Strains Isolated from Two Different Regions: Chambishi and Dexing Copper Mines

    PubMed Central

    Ngom, Baba; Liang, Yili; Liu, Xueduan

    2014-01-01

    A cross-comparison of six strains isolated from two different regions, Chambishi copper mine (Zambia, Africa) and Dexing copper mine (China, Asia), was conducted to study the leaching efficiency of low grade copper ores. The strains belong to the three major species often encountered in bioleaching of copper sulfide ores under mesophilic conditions: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferriphilum. Prior to their study in bioleaching, the different strains were characterized and compared at physiological level. The results revealed that, except for copper tolerance, strains within species presented almost similar physiological traits with slight advantages of Chambishi strains. However, in terms of leaching efficiency, native strains always achieved higher cell density and greater iron and copper extraction rates than the foreign microorganisms. In addition, microbial community analysis revealed that the different mixed cultures shared almost the same profile, and At. ferrooxidans strains always outcompeted the other strains. PMID:25478575

  9. Spatial and Temporal Analysis of the Microbial Community in the Tailings of a Pb-Zn Mine Generating Acidic Drainage ▿ †

    PubMed Central

    Huang, Li-Nan; Zhou, Wen-Hua; Hallberg, Kevin B.; Wan, Cai-Yun; Li, Jie; Shu, Wen-Sheng

    2011-01-01

    Analysis of spatial and temporal variations in the microbial community in the abandoned tailings impoundment of a Pb-Zn mine revealed distinct microbial populations associated with the different oxidation stages of the tailings. Although Acidithiobacillus ferrooxidans and Leptospirillum spp. were consistently present in the acidic tailings, acidophilic archaea, mostly Ferroplasma acidiphilum, were predominant in the oxidized zones and the oxidation front, indicating their importance to generation of acid mine drainage. PMID:21705549

  10. Microbial treatment of sulfur-contaminated industrial wastes.

    PubMed

    Gómez-Ramírez, Marlenne; Zarco-Tovar, Karina; Aburto, Jorge; de León, Roberto García; Rojas-Avelizapa, Norma G

    2014-01-01

    The present study evaluated the microbial removal of sulfur from a solid industrial waste in liquid culture under laboratory conditions. The study involved the use of two bacteria Acidithiobacillus ferrooxidans ATCC 53987 and Acidithiobacillus thiooxidans AZCT-M125-5 isolated from a Mexican soil. Experimentation for industrial waste biotreatment was done in liquid culture using 125-mL Erlenmeyer flasks containing 30 mL Starkey modified culture medium and incubated at 30°C during 7 days. The industrial waste was added at different pulp densities (8.25-100% w/v) corresponding to different sulfur contents from 0.7 to 8.63% (w/w). Sulfur-oxidizing activity of the strain AZCT-M125-5 produced 281 and 262 mg/g of sulfate and a sulfur removal of 60% and 45.7% when the pulp density was set at 8.25 and 16.5% (w/v), respectively. In comparison, the strain A. ferrooxidans ATCC 53987 showed a lower sulfur-oxidizing activity with a sulfate production of 25.6 and 12.7 mg/g and a sulfur removal of 6% and 2.5% at the same pulp densities, respectively. Microbial growth was limited by pulp densities higher than 25% (w/v) of industrial waste with minimal sulfur-oxidizing activity and sulfur removal. The rate of sulfur removal for Acidithiobacillus thioxidans AZCT-M125-5 and Acidithiobacillus ferrooxidans ATCC 53987 was 0.185 and 0.0159 mg S g(-1) h(-1) with a pulp density of 16.5% (w/v), respectively. This study demonstrated that Acidithiobacillus thiooxidans AZCT-M125-5 possesses a high sulfur-oxidizing activity, even at high sulfur concentration, which allows the treatment of hazardous materials.

  11. Analysis of iron- and sulfur-oxidizing bacteria in a treatment plant of acid rock drainage from a Japanese pyrite mine by use of ribulose-1, 5-bisphosphate carboxylase/oxygenase large-subunit gene.

    PubMed

    Kamimura, Kazuo; Okabayashi, Ai; Kikumoto, Mei; Manchur, Mohammed Abul; Wakai, Satoshi; Kanao, Tadayoshi

    2010-03-01

    Iron- and sulfur-oxidizing bacteria in a treatment plant of acid rock drainage (ARD) from a pyrite mine in Yanahara, Okayama prefecture, Japan, were analyzed using the gene (cbbL) encoding the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO). Analyses of partial sequences of cbbL genes from Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidithiobacillus caldus strains revealed the diversity in their cbbL gene sequences. In contrast to the presence of two copies of form I cbbL genes (cbbL1 and cbbL2) in A. ferrooxidans genome, A. thiooxidans and A. caldus had a single copy of form I cbbL gene in their genomes. A phylogenetic analysis based on deduced amino acid sequences from cbbL genes detected in the ARD treatment plant and their close relatives revealed that 89% of the total clones were affiliated with A. ferrooxidans. Clones loosely affiliated with the cbbL from A. thiooxidans NB1-3 or Thiobacillus denitrificans was also detected in the treatment plant. cbbL gene sequences of iron- or sulfur-oxidizing bacteria isolated from the ARD and the ARD treatment plant were not detected in the cbbL libraries from the treatment plant, suggesting the low frequencies of isolates in the samples.

  12. Influence of organics and silica on Fe(II) oxidation rates and cell-mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox - Implications for Fe(II) oxidation in ancient oceans

    NASA Astrophysics Data System (ADS)

    Gauger, Tina; Byrne, James M.; Konhauser, Kurt O.; Obst, Martin; Crowe, Sean; Kappler, Andreas

    2016-06-01

    Most studies on microbial phototrophic Fe(II) oxidation (photoferrotrophy) have focused on purple bacteria, but recent evidence points to the importance of green-sulfur bacteria (GSB). Their recovery from modern ferruginous environments suggests that these photoferrotrophs can offer insights into how their ancient counterparts grew in Archean oceans at the time of banded iron formation (BIF) deposition. It is unknown, however, how Fe(II) oxidation rates, cell-mineral aggregate formation, and Fe-mineralogy vary under environmental conditions reminiscent of the geological past. To address this, we studied the Fe(II)-oxidizer Chlorobium ferrooxidans KoFox, a GSB living in co-culture with the heterotrophic Geospirillum strain KoFum. We investigated the mineralogy of Fe(III) metabolic products at low/high light intensity, and in the presence of dissolved silica and/or fumarate. Silica and fumarate influenced the crystallinity and particle size of the produced Fe(III) minerals. The presence of silica also enhanced Fe(II) oxidation rates, especially at high light intensities, potentially by lowering Fe(II)-toxicity to the cells. Electron microscopic imaging showed no encrustation of either KoFox or KoFum cells with Fe(III)-minerals, though weak associations were observed suggesting co-sedimentation of Fe(III) with at least some biomass via these aggregates, which could support diagenetic Fe(III)-reduction. Given that GSB are presumably one of the most ancient photosynthetic organisms, and pre-date cyanobacteria, our findings, on the one hand, strengthen arguments for photoferrotrophic activity as a likely mechanism for BIF deposition on a predominantly anoxic early Earth, but, on the other hand, also suggest that preservation of remnants of Fe(II)-oxidizing GSB as microfossils in the rock record is unlikely.

  13. Adaptation of a mixed culture of acidophiles for a tank biooxidation of refractory gold concentrates containing a high concentration of arsenic.

    PubMed

    Hong, Jeongsik; Silva, Rene A; Park, Jeonghyun; Lee, Eunseong; Park, Jayhyun; Kim, Hyunjung

    2016-05-01

    We adapted a mixed culture of acidophiles to high arsenic concentrations to confirm the possibility of achieving more than 70% biooxidation of refractory gold concentrates containing high arsenic (As) concentration. The biooxidation process was applied to refractory gold concentrates containing approximately 139.67 g/kg of total As in a stirred tank reactor using an adapted mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The percentage of the biooxidation process was analyzed based on the total As removal efficiency. The As removal was monitored by inductively coupled plasma (ICP) analysis, conducted every 24 h. The results obtained with the adapted culture were compared with the percentage of biooxidation obtained with a non-adapted mixed culture of A. ferrooxidans and A. thiooxidans, and with their respective pure cultures. The percentages of biooxidation obtained during 358 h of reaction were 72.20%, 38.20%, 27.70%, and 11.45% for adapted culture, non-adapted culture, and pure cultures of A. thiooxidans and A. ferrooxidans, respectively. The adapted culture showed a peak maximum percentage of biooxidation of 77% at 120 h of reaction, confirming that it is possible to obtain biooxidation percentages over 70% in gold concentrates containing high As concentrations.

  14. Analysis of Early Bacterial Communities on Volcanic Deposits on the Island of Miyake (Miyake-jima), Japan: a 6-year Study at a Fixed Site

    PubMed Central

    Fujimura, Reiko; Sato, Yoshinori; Nishizawa, Tomoyasu; Nanba, Kenji; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2012-01-01

    Microbial colonization on new terrestrial substrates represents the initiation of new soil ecosystem formation. In this study, we analyzed early bacterial communities growing on volcanic ash deposits derived from the 2000 Mount Oyama eruption on the island of Miyake (Miyake-jima), Japan. A site was established in an unvegetated area near the summit and investigated over a 6-year period from 2003 to 2009. Collected samples were acidic (pH 3.0–3.6), did not utilize any organic substrates in ECO microplate assays (Biolog), and harbored around 106 cells (g dry weight)−1 of autotrophic Fe(II) oxidizers by most-probable-number (MPN) counts. Acidithiobacillus ferrooxidans, Acidithiobacillus ferrivorans, and the Leptospirillum groups I, II and III were found to be abundant in the deposits by clone library analysis of bacterial 16S rRNA genes. The numerical dominance of Acidithiobacillus ferrooxidans was also supported by analysis of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Comparing the 16S rRNA gene clone libraries from samples differing in age, shifts in Fe(II)-oxidizing populations seemed to occur with deposit aging. The detection of known 16S rRNA gene sequences from Fe(III)-reducing acidophiles promoted us to propose the acidity-driven iron cycle for the early microbial ecosystem on the deposit. PMID:22075623

  15. Iron Meteorites Can Support the Growth of Acidophilic Chemolithoautotrophic Microorganisms

    NASA Astrophysics Data System (ADS)

    González-Toril, Elena; Martínez-Frías, Jesús; Gómez, José María; Rull, Fernando; Amils, Ricardo

    2005-06-01

    Chemolithoautotrophy based on reduced inorganic minerals is considered a primitive energy transduction system. Evidence that a high number of meteorites crashed into the planet during the early period of Earth history led us to test the ability of iron-oxidizing bacteria to grow using iron meteorites as their source of energy. Here we report the growth of two acidophilic iron-oxidizing bacteria, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans, on a piece of the Toluca meteorite as the only source of energy. The alteration of the surface of the exposed piece of meteorite, the solubilization of its oxidized metal constituents, mainly ferric iron, and the formation of goethite precipitates all clearly indicate that iron-meteoritebased chemolithotrophic metabolism is viable.

  16. Iron meteorites can support the growth of acidophilic chemolithoautotrophic microorganisms.

    PubMed

    González-Toril, Elena; Martínez-Frías, Jesús; Gómez Gómez, José María; Rull, Fernando; Amils, Ricardo

    2005-06-01

    Chemolithoautotrophy based on reduced inorganic minerals is considered a primitive energy transduction system. Evidence that a high number of meteorites crashed into the planet during the early period of Earth history led us to test the ability of iron-oxidizing bacteria to grow using iron meteorites as their source of energy. Here we report the growth of two acidophilic iron-oxidizing bacteria, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans, on a piece of the Toluca meteorite as the only source of energy. The alteration of the surface of the exposed piece of meteorite, the solubilization of its oxidized metal constituents, mainly ferric iron, and the formation of goethite precipitates all clearly indicate that iron-meteorite-based chemolithotrophic metabolism is viable.

  17. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    SciTech Connect

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  18. [Leaching of copper ore of the Udokanskoe deposit at low temperatures by an association of acidophilic chemolithotrophic microorganisms].

    PubMed

    Kondrat'eva, T F; Pivovarova, T A; Krylova, L N; Melamud, V S; Adamov, E V; Karavaĭko, G I

    2011-01-01

    Pure cultures of indigenous microorganisms Acidithiobacillus ferrooxidans strain TFUd, Leptospirillum ferrooxidans strain LUd, and Sulfobacillus thermotolerans strain SUd have been isolated from the oxidation zone of sulfide copper ore of the Udokanskoe deposit. Regimes of bacterial-chemical leaching of ore have been studied over a temperature range from -10 to +20 degrees C. Effects of pH, temperature, and the presence of microorganisms on the extraction of copper have been shown. Bacterial leaching has been detected only at positive values of temperature, and has been much more active at +20 than at +4 degrees C. The process of leaching was more active when the ore contained more hydrophilic and oxidized minerals. The possibility of copper ore leaching of the Udokanskoe deposit using sulfuric acid with pH 0.4 at negative values of temperature and applying acidophilic chemolithotrophic microorganisms at positive values of temperature and low pH values was shown.

  19. The bioleaching potential of a bacterial consortium.

    PubMed

    Latorre, Mauricio; Cortés, María Paz; Travisany, Dante; Di Genova, Alex; Budinich, Marko; Reyes-Jara, Angélica; Hödar, Christian; González, Mauricio; Parada, Pilar; Bobadilla-Fazzini, Roberto A; Cambiazo, Verónica; Maass, Alejandro

    2016-10-01

    This work presents the molecular foundation of a consortium of five efficient bacteria strains isolated from copper mines currently used in state of the art industrial-scale biotechnology. The strains Acidithiobacillus thiooxidans Licanantay, Acidiphilium multivorum Yenapatur, Leptospirillum ferriphilum Pañiwe, Acidithiobacillus ferrooxidans Wenelen and Sulfobacillus thermosulfidooxidans Cutipay were selected for genome sequencing based on metal tolerance, oxidation activity and bioleaching of copper efficiency. An integrated model of metabolic pathways representing the bioleaching capability of this consortium was generated. Results revealed that greater efficiency in copper recovery may be explained by the higher functional potential of L. ferriphilum Pañiwe and At. thiooxidans Licanantay to oxidize iron and reduced inorganic sulfur compounds. The consortium had a greater capacity to resist copper, arsenic and chloride ion compared to previously described biomining strains. Specialization and particular components in these bacteria provided the consortium a greater ability to bioleach copper sulfide ores.

  20. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles.

    PubMed

    Pradhan, Debabrata; Mishra, Debaraj; Kim, Dong J; Ahn, Jong G; Chaudhury, G Roy; Lee, Seoung W

    2010-03-15

    Bioleaching studies were conducted to evaluate the recovery of metal values from waste petroleum catalyst using two different acidophilic microorganisms, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Various leaching parameters such as contact time, pH, oxidant concentration, pulp densities, particle size, and temperature were studied in detail. Activation energy was evaluated from Arrhenius equation and values for Ni, V and Mo were calculated in case of both the acidophiles. In both cases, the dissolution kinetics of Mo was lower than those of V and Ni. The lower dissolution kinetics may have been due to the formation of a sulfur product layer, refractoriness of MoS(2) or both. Multivariate statistical data were presented to interpret the leaching data in the present case. The significance of the leaching parameters was derived through principle component analysis and multi linear regression analyses for both iron and sulfur oxidizing bacteria.

  1. Bioproduction of ferric sulfate used during heavy metals removal from sewage sludge.

    PubMed

    Drogui, Patrick; Mercier, Guy; Blais, Jean-François

    2005-01-01

    Toxic metals removal from wastewater sewage sludge can be achieved through microbial processes involving Acidithiobacillus ferrooxidans. The oxidation of ferrous ions by A. ferrooxidans, cultured in sewage sludge filtrate, was studied in both batch and continuous flow stirred tank reactors. Sewage sludge filtrate containing natural nutrients (phosphorus and nitrogen) was recovered as effluent following the dehydration of a primary and secondary sludge mixture. Batch and continuous flow stirred tank reactor tests demonstrated that A. ferrooxidans were able to grow and completely oxidize ferrous iron in a culture medium containing more than 80% (v v(-1)) sewage sludge filtrate with 10 g Fe(II) L(-1) added. Toxic levels were reached when total organic carbon in the sewage sludge filtrate exceeded 250 mg L(-1). The ferric iron solution produced in the sludge filtrate by A. ferrooxidans was used to solubilize heavy metals in primary and secondary sludge. The solubilization of Cu, Cr, and Zn yielded 71, 49, and 80%, respectively. This is comparable with the yield percentages obtained using a FeCl(3) solution. The cost of treating wastewater sewage sludge by bioproducing a ferric ion solution from sewage sludge is three times less expensive than the conventional method requiring a commercial ferric chloride solution.

  2. Electrochemistry of a semiconductor chalcopyrite concentrate leaching by Thiobacillus ferrooxidans

    SciTech Connect

    Torma, A.E.

    1991-01-01

    Using carbon-paste-CuFeS{sub 2} electrodes and a cyclic voltammetric technique, it was found that a large number of intermediate electrochemical oxidation reactions were associated with the dissolution of chalcopyrite in presence and absence of bacteria. The effects of concentrations of copper, ferrous and ferric ions, as well as of agitation on the peaks of cyclic voltammograms were measured. It was established that chalcopyrite oxidation was solid-state controlled as suggested by the data of chronopotentiometric and chronoamperometric measurements. The activation energy of solid state diffusion of chalcopyrite leaching was determined by the Sand's method to be {triangle}E{sub a} = 20.5 kJ. The leaching mechanism is discussed in terms of solid-state properties (energy bonding) of the n-type semiconductor chalcopyrite and energy density states of redox systems of acidic bacterial leach media. A generalized model for the mechanism of chalcopyrite leaching in presence and absence of bacteria is presented. 23 refs., 10 figs.

  3. Kinetic Constant Variability in Bacterial Oxidation of Elemental Sulfur▿

    PubMed Central

    Pokorna, Blanka; Mandl, Martin; Borilova, Sarka; Ceskova, Pavla; Markova, Romana; Janiczek, Oldrich

    2007-01-01

    Wide ranges of growth yields on sulfur (from 2.4 × 1010 to 8.1 × 1011 cells g−1) and maximum sulfur oxidation rates (from 0.068 to 1.30 mmol liter−1 h−1) of an Acidithiobacillus ferrooxidans strain (CCM 4253) were observed in 73 batch cultures. No significant correlation between the constants was observed. Changes of the Michaelis constant for sulfur (from 0.46 to 15.5 mM) in resting cells were also noted. PMID:17449698

  4. Bioleaching of multiple heavy metals from contaminated sediment by mesophile consortium.

    PubMed

    Gan, Min; Zhou, Shuang; Li, Mingming; Zhu, Jianyu; Liu, Xinxing; Chai, Liyuan

    2015-04-01

    A defined mesophile consortium including Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirilum ferriphilum was applied in bioleaching sediments contaminated with multiple heavy metals. Flask experiments showed that sulfur favored the acidification in the early stage while pyrite led to a great acidification potential in the later stage. An equal sulfur/pyrite ratio got the best acidification effect. Substrate utilization started with sulfur in the early stage, and then the pH decline and the community shift give rise to the utilization of pyrite. Solubilization efficiency of Zn, Cu, Mn, and Cd reached 96.1, 93.3, 92.13, and 87.65%, respectively. Bioleaching efficiency of other elements (As, Hg, Pb) was not more than 30%. Heavy metal solubilization was highly negatively correlated with pH variation. Logistic models were well fitted with the solubilization efficiency, which can be used to predict the bioleaching process. The dominant species in the early stage of bioleaching were A. ferrooxidans and A. thiooxidans, and the abundance of L. ferriphilum increased together with pyrite utilization and pH decline.

  5. Sequential biological process for molybdenum extraction from hydrodesulphurization spent catalyst.

    PubMed

    Vyas, Shruti; Ting, Yen-Peng

    2016-10-01

    Spent catalyst bioleaching with Acidithiobacillus ferrooxidans has been widely studied and low Mo leaching has often been reported. This work describes an enhanced extraction of Mo via a two stage sequential process for the bioleaching of hydrodesulphurization spent catalyst containing Molybdenum, Nickel and, Aluminium. In the first stage, two-step bioleaching was performed using Acidithiobacillus ferrooxidans, and achieved 89.4% Ni, 20.9% Mo and 12.7% Al extraction in 15 days. To increase Mo extraction, the bioleached catalyst was subjected to a second stage bioleaching using Escherichia coli, during which 99% of the remaining Mo was extracted in 25 days. This sequential bioleaching strategy selectively extracted Ni in the first stage and Mo in the second stage, and is a more environmentally friendly alternative to sequential chemical leaching with alkaline reagents for improved Mo extraction. Kinetic modelling to establish the rate determining step in both stages of bioleaching showed that in the first stage, Mo extraction was chemical reaction controlled whereas in the subsequent stage, product layer diffusion model provided the best fit.

  6. Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low‐grade copper sulfide ore monitored by real‐time PCR and oligonucleotide prokaryotic acidophile microarray

    PubMed Central

    Remonsellez, Francisco; Galleguillos, Felipe; Moreno‐Paz, Mercedes; Parro, Víctor; Acosta, Mauricio; Demergasso, Cecilia

    2009-01-01

    Summary The bioleaching of metal sulfide has developed into a very important industrial process and understanding the microbial dynamic is key to advancing commercial bioleaching operations. Here we report the first quantitative description of the dynamic of active communities in an industrial bioleaching heap. Acidithiobacillus ferrooxidans was the most abundant during the first part of the leaching cycle, while the abundance of Leptospirillum ferriphilum and Ferroplasma acidiphilum increased with age of the heap. Acidithiobacillus thiooxidans kept constant throughout the leaching cycle, and Firmicutes group showed a low and a patchy distribution in the heap. The Acidiphilium‐like bacteria reached their highest abundance corresponding to the amount of autotrophs. The active microorganisms in the leaching system were determined using two RNA‐based sensitive techniques. In most cases, the 16S rRNA copy numbers of At. ferrooxidans, L. ferriphilum, At. thiooxidans and F. acidiphilum, was concomitant with the DNA copy numbers, whereas Acidiphilium‐like bacteria and some Firmicutes members did not show a clear correlation between 16S rRNA accumulation and DNA copy numbers. However, the prokaryotic acidophile microarray (PAM) analysis showed active members of Alphaproteobacteria in all samples and of Sulfobacillus genus in older ones. Also, new active groups such as Actinobacteria and Acidobacterium genus were detected by PAM. The results suggest that changes during the leaching cycle in chemical and physical conditions, such as pH and Fe3+/Fe2+ ion rate, are primary factors shaping the microbial dynamic in the heap. PMID:21255296

  7. Influence of ferrous ions on extracellular polymeric substances content and sludge dewaterability during bioleaching.

    PubMed

    Wong, Jonathan W C; Zhou, Jun; Kurade, Mayur B; Murugesan, Kumarasamy

    2015-03-01

    Pretreatment of activated sludge with sulfuric acid and bioleaching using Acidithiobacillus ferrooxidans along with addition of Fe(2+) on sludge dewaterability was investigated. The sludge dewatering efficiency in terms of capillary suction time (CST) and specific resistant to filtration (SRF) was increased with a decrease in sludge pH. A pH of 2.67 was found to be optimum for dewatering, at which 81% and 63% reduction of CST and SRF were achieved, respectively. The dewaterability of sludge was enhanced after the addition of Fe(2+) and A. ferrooxidans. Ideal concentration of Fe(2+) was 2 g/L for sludge dewaterability, which showed 96% and 88% reduction in CST and SRF, respectively. In the control sludge, maximum part of the biopolymeric macromolecules was contributing by the tightly bound extracellular polymeric substances (TB-EPS). At optimum Fe(2+) concentration, total EPS was reduced by 73%, enhancing sludge dewaterability. Bioleaching conducted by A. ferrooxidans could solubilized 88% Cu and 99% Zn within 120 h.

  8. Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions.

    PubMed

    Dopson, Mark; Holmes, David S; Lazcano, Marcelo; McCredden, Timothy J; Bryan, Christopher G; Mulroney, Kieran T; Steuart, Robert; Jackaman, Connie; Watkin, Elizabeth L J

    2016-01-01

    Extremely acidophilic microorganisms (pH optima for growth of ≤3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of "biomining." A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans. Ac. prosperus had optimum iron oxidation at 20 g L(-1) NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L(-1) NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F0F1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl(-) with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a model

  9. Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions

    PubMed Central

    Dopson, Mark; Holmes, David S.; Lazcano, Marcelo; McCredden, Timothy J.; Bryan, Christopher G.; Mulroney, Kieran T.; Steuart, Robert; Jackaman, Connie; Watkin, Elizabeth L. J.

    2017-01-01

    Extremely acidophilic microorganisms (pH optima for growth of ≤3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of “biomining.” A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans. Ac. prosperus had optimum iron oxidation at 20 g L−1 NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L−1 NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F0F1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl− with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a

  10. Identification and characterization of multiple rubisco activases in chemoautotrophic bacteria.

    PubMed

    Tsai, Yi-Chin Candace; Lapina, Maria Claribel; Bhushan, Shashi; Mueller-Cajar, Oliver

    2015-11-16

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) is responsible for almost all biological CO2 assimilation, but forms inhibited complexes with its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. The distantly related AAA+ proteins rubisco activase and CbbX remodel inhibited rubisco complexes to effect inhibitor release in plants and α-proteobacteria, respectively. Here we characterize a third class of rubisco activase in the chemolithoautotroph Acidithiobacillus ferrooxidans. Two sets of isoforms of CbbQ and CbbO form hetero-oligomers that function as specific activases for two structurally diverse rubisco forms. Mutational analysis supports a model wherein the AAA+ protein CbbQ functions as motor and CbbO is a substrate adaptor that binds rubisco via a von Willebrand factor A domain. Understanding the mechanisms employed by nature to overcome rubisco's shortcomings will increase our toolbox for engineering photosynthetic carbon dioxide fixation.

  11. Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium.

    PubMed

    Qiu, Guanzhou; Li, Qian; Yu, Runlan; Sun, Zhanxue; Liu, Yajie; Chen, Miao; Yin, Huaqun; Zhang, Yage; Liang, Yili; Xu, Lingling; Sun, Limin; Liu, Xueduan

    2011-04-01

    A mesophilic acidophilic consortium was enriched from acid mine drainage samples collected from several uranium mines in China. The performance of the consortium in column bioleaching of low-grade uranium embedded in granite porphyry was investigated. The influences of several chemical parameters on uranium extraction in column reactor were also investigated. A uranium recovery of 96.82% was achieved in 97 days column leaching process including 33 days acid pre-leaching stage and 64 days bioleaching stage. It was reflected that indirect leaching mechanism took precedence over direct. Furthermore, the bacterial community structure was analyzed by using Amplified Ribosomal DNA Restriction Analysis. The results showed that microorganisms on the residual surface were more diverse than that in the solution. Acidithiobacillus ferrooxidans was the dominant species in the solution and Leptospirillum ferriphilum on the residual surface.

  12. Changes in the composition of an acid mine drainage microbial community upon successive transfers in medium containing low-grade copper sulfide.

    PubMed

    Liu, Yi; Yin, Huaqun; Liang, Yili; Shen, Li; Liu, Yao; Fu, Xian; Baba, Ngom; Zeng, Weimin; Qiu, Guanzhou; Liu, Xueduan

    2011-10-01

    A consortium of microorganisms from acid mine drainage samples was cultured in modified 9 K medium containing low-grade copper sulfide. The culture was maintained for sixty days and then transferred to fresh medium. This process was repeated three more times and a final consortium exhibiting a copper extraction rate of 89.3% was obtained. RFLP and microarrays analysis of 16S rRNA sequences retrieved from the consortia showed that Acidithiobacilluscaldus, Leptospirillumferriphilum, Sulfobacillus sp., Acidiphilium sp., and Sulfolobus spp. were represented in higher numbers in the consortia obtained in the copper-containing medium than in the original consortium. In contrast, a decrease in Acidithiobacillus ferrooxidans, Alicyclobacillus sp., Pseudomonas sp., and Sulfobacillus thermosulfidooxidans was observed. The abundance of genes related to sulfur metabolism from At. caldus and Sulfolobus spp., iron oxidation from Leptospirillum sp. and metal resistance from most of the detected microorganisms increased as the consortium was successively transferred into fresh medium.

  13. Identification and characterization of multiple rubisco activases in chemoautotrophic bacteria

    PubMed Central

    Tsai, Yi-Chin Candace; Lapina, Maria Claribel; Bhushan, Shashi; Mueller-Cajar, Oliver

    2015-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) is responsible for almost all biological CO2 assimilation, but forms inhibited complexes with its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. The distantly related AAA+ proteins rubisco activase and CbbX remodel inhibited rubisco complexes to effect inhibitor release in plants and α-proteobacteria, respectively. Here we characterize a third class of rubisco activase in the chemolithoautotroph Acidithiobacillus ferrooxidans. Two sets of isoforms of CbbQ and CbbO form hetero-oligomers that function as specific activases for two structurally diverse rubisco forms. Mutational analysis supports a model wherein the AAA+ protein CbbQ functions as motor and CbbO is a substrate adaptor that binds rubisco via a von Willebrand factor A domain. Understanding the mechanisms employed by nature to overcome rubisco's shortcomings will increase our toolbox for engineering photosynthetic carbon dioxide fixation. PMID:26567524

  14. Microbial pathways for the mobilization of mercury as Hg(O) in anoxic subsurface environments

    SciTech Connect

    Barkay, Tamar

    2005-06-01

    The goal of our project which was initiated in June 2005 is focused on the presence of merA in microbial communities of anoxic environments and the effect of anaerobic respiratory pathways on MR expression and activities. The following progress has been made to date: PCR primers were designed to span the known phylogenetic range of merA genes of Gram-negative bacteria. In control experiments, these primers successfully amplified a 288 bp region at the 3? end of previously characterized merA genes from Shewanella putrefaciens pMERPH, Acidithiobacillus ferrooxidans, Pseudomonas stutzeri pPB, Tn5041, Pseudomonas sp. K-62, and Serratia marcescens pDU1358.

  15. Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage.

    PubMed

    Nicomrat, Duongruitai; Dick, Warren A; Tuovinen, Olli H

    2006-01-01

    Constructed wetlands are used to treat acid drainage from surface or underground coal mines. However, little is known about the microbial communities in the receiving wetland cells. The purpose of this work was to characterize the microbial population present in a wetland that was receiving acid coal mine drainage (AMD). Samples were collected from the oxic sediment zone of a constructed wetland cell in southeastern Ohio that was treating acid drainage from an underground coal mine seep. Samples comprised Fe(III) precipitates and were pretreated with ammonium oxalate to remove interfering iron, and the DNA was extracted and purified by agarose gel electrophoresis prior to amplification of portions of the 16S rRNA gene. Amplified products were separated by denaturing gradient gel electrophoresis and DNA from seven distinct bands was excised from the gel and sequenced. The sequences were matched to sequences in the GenBank bacterial 16S rDNA database. The DNA in two of the bands yielded matches with Acidithiobacillus ferrooxidans and the DNA in each of the remaining five bands was consistent with one of the following microorganisms: Acidithiobacillus thiooxidans, strain TRA3-20 (a eubacterium), strain BEN-4 (an arsenite-oxidizing bacterium), an Alcaligenes sp., and a Bordetella sp. Low bacterial diversity in these samples reflects the highly inorganic nature of the oxic sediment layer where high abundance of iron- and sulfur-oxidizing bacteria would be expected. The results we obtained by molecular methods supported our findings, obtained using culture methods, that the dominant microbial species in an acid receiving, oxic wetland are A. thiooxidans and A. ferrooxidans.

  16. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage.

    PubMed

    Nicomrat, Duongruitai; Dick, Warren A; Tuovinen, Olli H

    2006-01-01

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant. Heterotrophs in the Acidiphilium genus totaled 20% of the bacterial population. Leptospirillum ferrooxidans was below the level of detection in the bacterial community. The results from the FISH technique from this field study are consistent with results from other experiments involving enumeration by most probable number, dot-blot hybridization, and denaturing gradient gel electrophoresis analyses and with the geochemistry of the site.

  17. Microbial Diversity and Its Relationship to Physicochemical Characteristics of the Water in Two Extreme Acidic Pit Lakes from the Iberian Pyrite Belt (SW Spain)

    PubMed Central

    López-Pamo, Enrique; Gomariz, María; Amils, Ricardo; Aguilera, Ángeles

    2013-01-01

    The Iberian Pyrite Belt (IPB) hosts one of the world’s largest accumulations of acidic mine wastes and pit lakes. The mineralogical and textural characteristics of the IPB ores have favored the oxidation and dissolution of metallic sulfides, mainly pyrite, and the subsequent formation of acidic mining drainages. This work reports the physical properties, hydrogeochemical characteristics, and microbial diversity of two pit lakes located in the IPB. Both pit lakes are acidic and showed high concentrations of sulfate and dissolved metals. Concentrations of sulfate and heavy metals were higher in the Nuestra Señora del Carmen lake (NSC) by one order of magnitude than in the Concepción (CN) lake. The hydrochemical characteristics of NSC were typical of acid mine waters and can be compared with other acidic environments. When compared to other IPB acidic pit lakes, the superficial water of CN is more diluted than that of any of the others due, probably, to the strong influence of runoff water. Both pit lakes showed chemical and thermal stratification with well defined chemoclines. One particular characteristic of NSC is that it has developed a chemocline very close to the surface (2 m depth). Microbial community composition of the water column was analyzed by 16S and 18S rRNA gene cloning and sequencing. The microorganisms detected in NSC were characteristic of acid mine drainage (AMD), including iron oxidizing bacteria (Leptospirillum, Acidithiobacillus ferrooxidans) and facultative iron reducing bacteria and archaea (Acidithiobacillus ferrooxidans, Acidiphilium, Actinobacteria, Acidimicrobiales, Ferroplasma) detected in the bottom layer. Diversity in CN was higher than in NSC. Microorganisms known from AMD systems (Acidiphilium, Acidobacteria and Ferrovum) and microorganisms never reported from AMD systems were identified. Taking into consideration the hydrochemical characteristics of these pit lakes and the spatial distribution of the identified microorganisms, a

  18. Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage

    SciTech Connect

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H.

    2006-01-15

    Constructed wetlands are used to treat acid drainage from surface or underground coal mines. However, little is known about the microbial communities in the receiving wetland cells. The purpose of this work was to characterize the microbial population present in a wetland that was receiving acid coal mine drainage (AMD). Samples were collected from the oxic sediment zone of a constructed wetland cell in southeastern Ohio that was treating acid drainage from an underground coal mine seep. Samples comprised Fe(Ill) precipitates and were pretreated with ammonium oxalate to remove interfering iron, and the DNA was extracted and purified by agarose gel electrophoresis prior to amplification of portions of the 16S rRNA gene. Amplified products were separated by denaturing gradient gel electrophoresis and DNA from seven distinct bands was excised from the gel and sequenced. The sequences were matched to sequences in the GenBank bacterial 16S rDNA database. The DNA in two of the bands yielded matches with Acidithiobacillus ferrooxidans and the DNA in each of the remaining five bands was consistent with one of the following microorganisms: Acidithiobacillus thiooxidans, strain TRA3-20 (a eubacterium), strain BEN-4 (an arsenite-oxidizing bacterium), an Alcaligenes sp., and a Bordetella sp. Low bacterial diversity in these samples reflects the highly inorganic nature of the oxic sediment layer where high abundance of iron- and sulfur-oxidizing bacteria would be expected. The results we obtained by molecular methods supported our findings, obtained using culture methods, that the dominant microbial species in an acid receiving, oxic wetland are A. thiooxidans and A. ferrooxidans.

  19. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching.

    PubMed

    Mitsunobu, Satoshi; Zhu, Ming; Takeichi, Yasuo; Ohigashi, Takuji; Suga, Hiroki; Jinno, Muneaki; Makita, Hiroko; Sakata, Masahiro; Ono, Kanta; Mase, Kazuhiko; Takahashi, Yoshio

    2016-01-01

    We herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface. Furthermore, by combining the C and Fe NEXAFS results, we detected significant amounts of Fe(II), in addition to Fe(III), in the interfacial EPS at the cell-pyrite interface. A probable explanation for the Fe(II) in detected EPS is the leaching of Fe(II) from the pyrite. The detection of Fe(II) also indicates that Fe(III) resulting from pyrite oxidation may effectively function as an oxidizing agent for pyrite at the cell-pyrite interface. Thus, our results imply that a key role of Fe(III) in EPS, in addition to its previously described role in the electrostatic attachment of the cell to pyrite, is enhancing pyrite dissolution.

  20. Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces.

    PubMed

    Bellenberg, Sören; Díaz, Mauricio; Noël, Nanni; Sand, Wolfgang; Poetsch, Ansgar; Guiliani, Nicolas; Vera, Mario

    2014-11-01

    Bioleaching of metal sulfides is an interfacial process where biofilm formation is considered to be important in the initial steps of this process. Among the factors regulating biofilm formation, molecular cell-to-cell communication such as quorum sensing is involved. A functional LuxIR-type I quorum sensing system is present in Acidithiobacillus ferrooxidans. However, cell-to-cell communication among different species of acidophilic mineral-oxidizing bacteria has not been studied in detail. These aspects were the scope of this study with emphasis on the effects exerted by the external addition of mixtures of synthetic N-acyl-homoserine-lactones on pure and binary cultures. Results revealed that some mixtures had inhibitory effects on pyrite leaching. Some of them correlated with changes in biofilm formation patterns on pyrite coupons. We also provide evidence that A. thiooxidans and Acidiferrobacter spp. produce N-acyl-homoserine-lactones. In addition, the observation that A. thiooxidans cells attached more readily to pyrite pre-colonized by living iron-oxidizing acidophiles than to heat-inactivated or biofilm-free pyrite grains suggests that other interactions also occur. Our experiments show that pre-cultivation conditions influence A. ferrooxidans attachment to pre-colonized pyrite surfaces. The understanding of cell-to-cell communication may consequently be used to develop attempts to influence biomining/bioremediation processes.

  1. Catalytic effect of light illumination on bioleaching of chalcopyrite.

    PubMed

    Zhou, Shuang; Gan, Min; Zhu, Jianyu; Li, Qian; Jie, Shiqi; Yang, Baojun; Liu, Xueduan

    2015-04-01

    The influence of visible light exposure on chalcopyrite bioleaching was investigated using Acidithiobacillus ferrooxidans. The results indicated, in both shake-flasks and aerated reactors with 8500-lux light, the dissolved Cu was 91.80% and 23.71% higher, respectively, than that in the controls without light. The catalytic effect was found to increase bioleaching to a certain limit, then plateaued as the initial chalcopyrite concentration increased from 2% to 4.5%. Thus a balanced mineral concentration is highly amenable to bioleaching via offering increased available active sites for light adsorption while eschewing mineral aggregation and screening effects. Using semiconducting chalcopyrite, the light facilitated the reduction of Fe(3+) to Fe(2+) as metabolic substrates for A.ferrooxidans, leading to better biomass, lower pH and redox potential, which are conducive to chalcopyrite leaching. The light exposure on iron redox cycling was further confirmed by chemical leaching tests using Fe(3+), which exhibited higher Fe(2+) levels in the light-induced system.

  2. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching

    PubMed Central

    Mitsunobu, Satoshi; Zhu, Ming; Takeichi, Yasuo; Ohigashi, Takuji; Suga, Hiroki; Jinno, Muneaki; Makita, Hiroko; Sakata, Masahiro; Ono, Kanta; Mase, Kazuhiko; Takahashi, Yoshio

    2016-01-01

    We herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface. Furthermore, by combining the C and Fe NEXAFS results, we detected significant amounts of Fe(II), in addition to Fe(III), in the interfacial EPS at the cell-pyrite interface. A probable explanation for the Fe(II) in detected EPS is the leaching of Fe(II) from the pyrite. The detection of Fe(II) also indicates that Fe(III) resulting from pyrite oxidation may effectively function as an oxidizing agent for pyrite at the cell-pyrite interface. Thus, our results imply that a key role of Fe(III) in EPS, in addition to its previously described role in the electrostatic attachment of the cell to pyrite, is enhancing pyrite dissolution. PMID:26947441

  3. Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Inner Bay.

    PubMed

    Guven, Duyusen E; Akinci, Gorkem

    2013-09-01

    The effect of sediment size on metals bioleaching from bay sediments was investigated by using fine (< 45 microm), medium (45-300 microm), and coarse (300-2000 microm) size fractions of a sediment sample contaminated with Cr, Cu, Pb, and Zn. Chemical speciation of the metals in bulk and size fractions of sediment were studied before and after bioleaching. Microbial activity was provided with mixed cultures of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. The bioleaching process was carried out in flask experiments for 48 days, by using 5% (W/V) of solid concentration in suspension. Bioleaching was found to be efficient for the removal of selected heavy metals from every size fraction of sediments, where the experiments with the smaller particles resulted in the highest solubilization ratios. At the end of the experimental period, Cr, Cu, Pb and Zn were solubilized to the ratios of 68%, 88%, 72%, and 91% from the fine sediment, respectively. Higher removal efficiencies can be explained by the larger surface area provided by the smaller particles. The changes in the chemical forms of metals were determined and most of the metal releases were observed from the reducible and organic fractions independent from grain size. Higher concentrations were monitored in the residual fraction after bioleaching period, suggesting they are trapped in this fraction, and cannot be solubilized under natural conditions.

  4. The community dynamics of major bioleaching microorganisms during chalcopyrite leaching under the effect of organics.

    PubMed

    Li, Qihou; Tian, Ye; Fu, Xian; Yin, Huaqun; Zhou, Zhijun; Liang, Yiting; Qiu, Guanzhou; Liu, Jie; Liu, Hongwei; Liang, Yili; Shen, Li; Cong, Jing; Liu, Xueduan

    2011-08-01

    To determine the effect of organics (yeast extract) on microbial community during chalcopyrite bioleaching at different temperature, real-time polymerase chain reaction (PCR) was employed to analyze community dynamics of major bacteria applied in bioleaching. The results showed that yeast extract exerted great impact on microbial community, and therefore influencing bioleaching rate. To be specific, yeast extract was adverse to this bioleaching process at 30°C due to decreased proportion of important chemolithotrophs such as Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. However, yeast extract could promote bioleaching rate at 40°C on account of the increased number and enhanced work of Ferroplasma thermophilum, a kind of facultative bacteria. Similarly, bioleaching rate was enhanced under the effect of yeast extract at 50°C owing to the work of Acidianus brierleyi. At 60°C, bioleaching rate was close to 100% and temperature was the dominant factor determining bioleaching rate. Interestingly, the existence of yeast extract greatly enhanced the relative competitiveness of Ferroplasma thermophilum in this complex bioleaching microbial community.

  5. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage

    SciTech Connect

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H.

    2006-07-15

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant.

  6. Respiratory enzymes of Thiobacillus ferrooxidans: Progress report, March 1985-December 1986

    SciTech Connect

    Blake, R. II

    1986-12-01

    The kinetic rate law constant for the one electron reduction of rusticyanin by ferrous ion was determined. Three stable forms of ferrous ion predominate at the pH growth range of the bacterium in the presence of the sulfate/bisulfate conjugate pair: aqueous hexoaquo ferrous ion, a soluble neutral ferrous-sulfate complex, and a positively charged ferrous-bisulfate complex. All three forms of ferrous ion reduce the rusticyanin with kinetic behavior consistent with a reversible second-order reaction, with no evidence for precursor complex formation. The apparent second-order rate constants for reduction of the rusticyanin are in the order (FeSO/sub 4/) > (FeHSO/sub 4/)/sup 1 +/ much greater than Fe/sup 2 +/. Since the predominant form of ferrous ion at the optimal pH (2.0) for growth of the organism is the ferrous-sulfate complex, one may conclude that this complex is the principal reductant of rusticyanin.

  7. Electrochemistry of Thiobacillus ferrooxidans reactions with pyrite. Technical progress report, September 1991--January 1992

    SciTech Connect

    Pesic, B.

    1992-04-01

    The objective of this project is to provide the fundamental information on the mechanisms of bacterial leaching of pyrite. The knowledge of how bacterial leaching of pyrite functions is essential for design and development of a technology for coal cleaning with bacteria. The features of major electrochemical techniques will be examined to find out if any of them can provide a diagnostic information on the mechanisms of related reactions.

  8. Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans.

    PubMed

    Solisio, C; Lodi, A; Veglio, F

    2002-01-01

    Biological solubilisation of heavy metals contained in two different kinds of industrial wastes was performed in batches employing a strain of Thiobacillus ferroxidans. The wastes tested were: a dust coming from the iron-manganese alloy production in an electric furnace (sludge 1) and a sludge coming from a process treatment plant of aluminium anodic oxidation (sludge 2). The experimental results pointed out the ability of the used strain to maintain the environment, that initially has a pH about 8, at strongly acid conditions (pH 2.5-3.5), producing sulphuric acid that is the chemical agent responsible for the metals solubilisation. At wastes initial concentration of 1%, the percentage of solubilised metals was 76 and 78% for the wastes 1 and 2, respectively, but the lag phase was considerably longer for sludge 2 than for sludge 1, indicating a different affinity of microorganisms for the solid phase. Increasing the initial slurry concentration, the percentage of removed metal reached 72-73% for the sludge 1, while in case of sludge 2, the total amount of solubilized metal progressively decreased. Two kinetic models are proposed to describe the trends of metals solubilization curves.

  9. Electrochemistry of Thiobacillus ferrooxidans reactions with pyrite. Technical progress report, January 1992--April, 1992

    SciTech Connect

    Pesic, B.

    1992-07-01

    The objective of this project is to provide the fundamental information on the mechanisms of bacterial leaching of pyrite. The knowledge of how bacterial leaching of pyrite functions is essential for design and development of a technology for coal cleaning with bacteria. The features of major electrochemical techniques will be examined to find out if any of them can provide a diagnostic information on the mechanisms of related reactions.

  10. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    PubMed

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  11. Effect of hydrogen peroxide on the biosynthesis of heme and proteins: potential implications for the partitioning of Glu-tRNA(Glu) between these pathways.

    PubMed

    Farah, Carolina; Levicán, Gloria; Ibba, Michael; Orellana, Omar

    2014-12-11

    Glutamyl-tRNA (Glu-tRNA(Glu)) is the common substrate for both protein translation and heme biosynthesis via the C5 pathway. Under normal conditions, an adequate supply of this aminoacyl-tRNA is available to both pathways. However, under certain circumstances, Glu-tRNA(Glu) can become scarce, resulting in competition between the two pathways for this aminoacyl-tRNA. In Acidithiobacillus ferrooxidans, glutamyl-tRNA synthetase 1 (GluRS1) is the main enzyme that synthesizes Glu-tRNA(Glu). Previous studies have shown that GluRS1 is inactivated in vitro by hydrogen peroxide (H2O2). This raises the question as to whether H2O2 negatively affects in vivo GluRS1 activity in A. ferrooxidans and whether Glu-tRNA(Glu) distribution between the heme and protein biosynthesis processes may be affected by these conditions. To address this issue, we measured GluRS1 activity. We determined that GluRS1 is inactivated when cells are exposed to H2O2, with a concomitant reduction in intracellular heme level. The effects of H2O2 on the activity of purified glutamyl-tRNA reductase (GluTR), the key enzyme for heme biosynthesis, and on the elongation factor Tu (EF-Tu) were also measured. While exposing purified GluTR, the first enzyme of heme biosynthesis, to H2O2 resulted in its inactivation, the binding of glutamyl-tRNA to EF-Tu was not affected. Taken together, these data suggest that in A. ferrooxidans, the flow of glutamyl-tRNA is diverted from heme biosynthesis towards protein synthesis under oxidative stress conditions.

  12. Effect of Hydrogen Peroxide on the Biosynthesis of Heme and Proteins: Potential Implications for the Partitioning of Glu-tRNAGlu between These Pathways

    PubMed Central

    Farah, Carolina; Levicán, Gloria; Ibba, Michael; Orellana, Omar

    2014-01-01

    Glutamyl-tRNA (Glu-tRNAGlu) is the common substrate for both protein translation and heme biosynthesis via the C5 pathway. Under normal conditions, an adequate supply of this aminoacyl-tRNA is available to both pathways. However, under certain circumstances, Glu-tRNAGlu can become scarce, resulting in competition between the two pathways for this aminoacyl-tRNA. In Acidithiobacillus ferrooxidans, glutamyl-tRNA synthetase 1 (GluRS1) is the main enzyme that synthesizes Glu-tRNAGlu. Previous studies have shown that GluRS1 is inactivated in vitro by hydrogen peroxide (H2O2). This raises the question as to whether H2O2 negatively affects in vivo GluRS1 activity in A. ferrooxidans and whether Glu-tRNAGlu distribution between the heme and protein biosynthesis processes may be affected by these conditions. To address this issue, we measured GluRS1 activity. We determined that GluRS1 is inactivated when cells are exposed to H2O2, with a concomitant reduction in intracellular heme level. The effects of H2O2 on the activity of purified glutamyl-tRNA reductase (GluTR), the key enzyme for heme biosynthesis, and on the elongation factor Tu (EF-Tu) were also measured. While exposing purified GluTR, the first enzyme of heme biosynthesis, to H2O2 resulted in its inactivation, the binding of glutamyl-tRNA to EF-Tu was not affected. Taken together, these data suggest that in A. ferrooxidans, the flow of glutamyl-tRNA is diverted from heme biosynthesis towards protein synthesis under oxidative stress conditions. PMID:25514408

  13. Bioleaching of ilmenite and basalt in the presence of iron-oxidizing and iron-scavenging bacteria

    NASA Astrophysics Data System (ADS)

    Navarrete, Jesica U.; Cappelle, Ian J.; Schnittker, Kimberlin; Borrok, David M.

    2013-04-01

    Bioleaching has been suggested as an alternative to traditional mining techniques in extraterrestrial environments because it does not require extensive infrastructure and bulky hardware. In situ bioleaching of silicate minerals, such as those found on the moon or Mars, has been proposed as a feasible alternative to traditional extraction techniques that require either extreme heat and/or substantial chemical treatment. In this study, we investigated the biotic and abiotic leaching of basaltic rocks (analogues to those found on the moon and Mars) and the mineral ilmenite (FeTiO3) in aqueous environments under acidic (pH ˜ 2.5) and circumneutral pH conditions. The biological leaching experiments were conducted using Acidithiobacillus ferrooxidans, an iron (Fe)-oxidizing bacteria, and Pseudomonas mendocina, an Fe-scavenging bacteria. We found that both strains were able to grow using the Fe(II) derived from the tested basaltic rocks and ilmenite. Although silica leaching rates were the same or slightly less in the bacterial systems with A. ferrooxidans than in the abiotic control systems, the extent of Fe, Al and Ti released (and re-precipitated in new solid phases) was actually greater in the biotic systems. This is likely because the Fe(II) leached from the basalt was immediately oxidized by A. ferrooxidans, and precipitated into Fe(III) phases which causes a change in the equilibrium of the system, i.e. Le Chatelier's principle. Iron(II) in the abiotic experiment was allowed to build up in solution which led to a decrease in its overall release rate. For example, the percentage of Fe, Al and Ti leached (dissolved + reactive mineral precipitates) from the Mars simulant in the A. ferrooxidans experimental system was 34, 41 and 13% of the total Fe, Al and Ti in the basalt, respectively, while the abiotic experimental system released totals of only 11, 25 and 2%. There was, however, no measurable difference in the amounts of Fe and Ti released from ilmenite in the

  14. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore.

    PubMed

    Wakeman, Kathryn; Auvinen, Hannele; Johnson, D Barrie

    2008-11-01

    The evolution of microbial populations involved in simulated-heap leaching of a polymetallic black schist sulfide ore (from the recently-commissioned Talvivaara mine, Finland) was monitored in aerated packed bed column reactors over a period of 40 weeks. The influence of ore particle size (2-6.5 mm and 6.5-12 mm) on changes in composition of the bioleaching microflora and mineral leaching dynamics in columns was investigated and compared to fine-grain (<2 microm) ore that was bioprocessed in shake flask cultures. Both column reactors and shake flasks were inoculated with 24 different species and strains of mineral-oxidizing and other acidophilic micro-organisms, and maintained at 37 degrees C. Mineral oxidation was most rapid in shake flask cultures, with about 80% of both manganese and nickel and 68% of zinc being leached within 6 weeks, though relatively little of the copper present in the ore was solubilised. The microbial consortium that emerged from the original inoculum was relatively simple in shake flasks, and was dominated by the iron-oxidizing autotroph Leptospirillum ferriphilum, with smaller numbers of Acidimicrobium ferrooxidans, Acidithiobacillus caldus and Leptospirillum ferrooxidans. Both metal recovery and (for the most part) total numbers of prokaryotes were greater in the column reactor containing the medium-grain than that containing the coarse-grain ore. The bioleaching communities in the columns displayed temporal changes in composition and differed radically from those in shake flask cultures. While iron-oxidizing chemoautotrophic bacteria were always the most numerically dominant bacteria in the medium-grain column bioreactor, there were major shifts in the most abundant species present, with the type strain of Acidithiobacillus ferrooxidans dominating in the early phase of the experiment and other bacteria (At. ferrooxidans NO37 and L. ferriphilum) dominating from week 4 to week 40. With the coarse-grain column bioreactor, similar

  15. Photoreduction fuels biogeochemical cycling of iron in Spain's acid rivers

    USGS Publications Warehouse

    Gammons, C.H.; Nimick, D.A.; Parker, S.R.; Snyder, D.M.; McCleskey, R.B.; Amils, R.; Poulson, S.R.

    2008-01-01

    A number of investigations have shown that photoreduction of Fe(III) causes midday accumulations of dissolved Fe(II) in rivers and lakes, leading to large diel (24-h) fluctuations in the concentration and speciation of total dissolved iron. Less well appreciated is the importance of photoreduction in providing chemical energy for bacteria to thrive in low pH waters. Diel variations in water chemistry from the highly acidic (pH 2.3 to 3.1) Ri??o Tinto, Ri??o Odiel, and Ri??o Agrio of southwestern Spain (Iberian Pyrite Belt) resulted in daytime increases in Fe(II) concentration of 15 to 66????M at four diel sampling locations. Dissolved Fe(II) concentrations increased with solar radiation, and one of the stream sites showed an antithetic relationship between dissolved Fe(II) and Fe(III) concentrations; both results are consistent with photoreduction. The diel data were used to estimate rates of microbially catalyzed Fe(II) oxidation (1 to 3??nmol L- 1 s- 1) and maximum rates of Fe(III) photoreduction (1.7 to 4.3??nmol L- 1 s- 1). Bioenergetic calculations indicate that the latter rates are sufficient to build up a population of Fe-oxidizing bacteria to the levels observed in the Ri??o Tinto in about 30??days. We conclude that photoreduction plays an important role in the bioenergetics of the bacterial communities of these acidic rivers, which have previously been shown to be dominated by autotrophic Fe(II)-oxidizers such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. Given the possibility of the previous existence of acidic, Fe(III)-rich water on Mars, photoreduction may be an important process on other planets, a fact that could have implications to astrobiological research. ?? 2008 Elsevier B.V. All rights reserved.

  16. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems

    USGS Publications Warehouse

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A.; Yang, Xiaofen; Tuovinen, Olli H.; Dong, Hailiang; Fu, Xiang

    2013-01-01

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO3)2 was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0–24.2 mM Pb(II) added as Pb(NO3)2. Anglesite (PbSO4) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe3(SO4)2(OH)6) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9–17.6 μM regardless of the concentrations of Pb(NO3)2 added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO3)2 addition even when anglesite was removed before inoculation. Experiments with 0–48 mM KNO3 demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO3)2 addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.

  17. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems.

    PubMed

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A; Yang, Xiaofen; Tuovinen, Olli H; Dong, Hailiang; Fu, Xiang

    2013-01-15

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO(3))(2) was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0-24.2 mM Pb(II) added as Pb(NO(3))(2). Anglesite (PbSO(4)) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe(3)(SO(4))(2)(OH)(6)) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9-17.6 μM regardless of the concentrations of Pb(NO(3))(2) added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO(3))(2) addition even when anglesite was removed before inoculation. Experiments with 0-48 mM KNO(3) demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO(3))(2) addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.

  18. Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis.

    PubMed

    Alfreider, Albin; Vogt, Carsten; Babel, Wolfgang

    2002-08-01

    A molecular approach based on the construction of 16S ribosomal DNA clone libraries was used to investigate the microbial diversity of an underground in situ reactor system filled with the original aquifer sediments. After chemical steady state was reached in the monochlorobenzene concentration between the original inflowing groundwater and the reactor outflow, samples from different reactor locations and from inflowing and outflowing groundwater were taken for DNA extraction. Small-subunit rRNA genes were PCR-amplified with primers specific for Bacteria, subsequently cloned and screened for variation by restriction fragment length polymorphism (RFLP). A total of 87 bacterial 16S rDNA genes were sequenced and subjected to phylogenetic analysis. The original groundwater was found to be dominated by a bacterial consortium affiliated with various members of the class of Proteobacteria, by phylotypes not affiliated with currently recognized bacterial phyla, and also by sporulating and non-sporulating sulfate-reducing bacteria. The most occurring clone types obtained from the sediment samples of the reactor were related to the beta-Proteobacteria, dominated by sequences almost identical to the widespread bacterium Alcaligenes faecalis, to low G+C gram-positive bacteria and to Acidithiobacillus ferrooxidans (formerly Thiobacillus ferrooxidans) within the gamma subclass of Proteobacteria in the upper reactor sector. Although bacterial phylotypes originating from the groundwater outflow of the reactors also grouped within different subdivisions of Proteobacteria and low G+C gram-positive bacteria, most of the 16S rDNA sequences were not associated with the sequence types observed in the reactor samples. Our results suggest that the different environments were inhabited by distinct microbial communities in respect to their taxonomic diversity, particular pronounced between sediment attached microbial communities from the reactor samples and free-living bacteria from the

  19. Application of fuel cell for pyrite and heavy metal containing mining waste

    NASA Astrophysics Data System (ADS)

    Keum, H.; Ju, W. J.; Jho, E. H.; Nam, K.

    2015-12-01

    Once pyrite and heavy metal containing mining waste reacts with water and air it produces acid mine drainage (AMD) and leads to the other environmental problems such as contamination of surrounding soils. Pyrite is the major source of AMD and it can be controlled using a biological-electrochemical dissolution method. By enhancing the dissolution of pyrite using fuel cell technology, not only mining waste be beneficially utilized but also be treated at the same time by. As pyrite-containing mining waste is oxidized in the anode of the fuel cell, electrons and protons are generated, and electrons moves through an external load to cathode reducing oxygen to water while protons migrate to cathode through a proton exchange membrane. Iron-oxidizing bacteria such as Acidithiobacillus ferrooxidans, which can utilize Fe as an electron donor promotes pyrite dissolution and hence enhances electrochemical dissolution of pyrite from mining waste. In this study mining waste from a zinc mine in Korea containing 17 wt% pyrite and 9% As was utilized as a fuel for the fuel cell inoculated with A. ferrooxidans. Electrochemically dissolved As content and chemically dissolved As content was compared. With the initial pH of 3.5 at 23℃, the dissolved As concentration increased (from 4.0 to 13 mg/L after 20 d) in the fuel cell, while it kept decreased in the chemical reactor (from 12 to 0.43 mg/L after 20 d). The fuel cell produced 0.09 V of open circuit voltage with the maximum power density of 0.84 mW/m2. Dissolution of As from mining waste was enhanced through electrochemical reaction. Application of fuel cell technology is a novel treatment method for pyrite and heavy metals containing mining waste, and this method is beneficial for mining environment as well as local community of mining areas.

  20. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia.

    PubMed

    Nancucheo, Ivan; Johnson, D Barrie

    2010-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacillus spp. Rapid acidification (to pH 1.0) of the culture medium of At. caldus resulted in a large increase in the level of DOC, although the concentration of glycolic acid did not change in proportion. The archaeon Ferroplasma acidiphilum grew in the cell-free spent medium of At. caldus; glycolic acid was not metabolized, although other unidentified compounds in the DOC pool were metabolized. Glycolic acid exhibited levels of toxicity with 21 strains of acidophiles screened similar to those of acetic acid. The most sensitive species were chemolithotrophs (L. ferriphilum and At. ferrivorans), while the most tolerant species were chemoorganotrophs (Acidocella, Acidobacterium, and Ferroplasma species), and the ability to metabolize glycolic acid appeared to be restricted (among acidophiles) to Firmicutes (chiefly Sulfobacillus spp.). Results of this study help explain why Sulfobacillus spp. rather than other acidophiles are the main organic carbon-degrading bacteria in continuously fed stirred tanks used to bioprocess sulfide mineral concentrates and also why temporary cessation of pH control in these systems, resulting in rapid acidification, often results in a plume of the archaeon Ferroplasma.

  1. Is Mars a habitable environment for extremophilic microorganisms from Earth?

    NASA Astrophysics Data System (ADS)

    Rettberg, Petra; Reitz, Guenther; Flemming, Hans-Curt; Bauermeister, Anja

    In the last decades several sucessful space missions to our neighboring planet Mars have deepened our knowledge about its environmental conditions substantially. Orbiters with intruments for remote sensing and landers with sophisticated intruments for in situ investigations resulted in a better understanding of Mars’ radiation climate, atmospheric composition, geology, and mineralogy. Extensive regions of the surface of Mars are covered with sulfate- and ferric oxide-rich layered deposits. These sediments indicate the possible existence of aqueous, acidic environments on early Mars. Similar environments on Earth harbour a specialised community of microorganisms which are adapted to the local stress factors, e.g. low pH, high concentrations of heavy metal ions, oligotrophic conditions. Acidophilic iron-sulfur bacteria isolated from such habitats on Earth could be considered as model organisms for an important part of a potential extinct Martian ecosystem or an ecosystem which might even exist today in protected subsurface niches. Acidithiobacillus ferrooxidans was chosen as a model organism to study the ability of these bacteria to survive or grow under conditions resembling those on Mars. Stress conditions tested included desiccation, radiation, low temperatures, and high salinity. It was found that resistance to desiccation strongly depends on the mode of drying. Biofilms grown on membrane filters can tolerate longer periods of desiccation than planktonic cells dried without any added protectants, and drying under anaerobic conditions is more favourable to survival than drying in the presence of oxygen. Organic compounds such as trehalose and glycine betaine had a positive influence on survival after drying and freezing. A. ferrooxidans was shown to be sensitive to high salt concentrations, ionizing radiation, and UV radiation. However, the bacteria were able to utilize the iron minerals in Mars regolith mixtures as sole energy source. The survival and growth of

  2. Molecular Characterization of Bacterial Respiration on Minerals

    SciTech Connect

    Blake, Robert C.

    2013-04-26

    The overall aim of this project was to contribute to our fundamental understanding of proteins and biological processes under extreme environmental conditions. We sought to define the biochemical and physiological mechanisms that underlie biodegradative and other cellular processes in normal, extreme, and engineered environments. Toward that end, we sought to understand the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during respiration by bacteria on soluble iron and insoluble sulfide minerals. In accordance with these general aims, the specific aims were two-fold: To identify, separate, and characterize the extracellular biomolecules necessary for aerobic respiration on iron under strongly acidic conditions; and to elucidate the molecular principles whereby these bacteria recognize and adhere to their insoluble mineral substrates under harsh environmental conditions. The results of these studies were described in a total of nineteen manuscripts. Highlights include the following: 1. The complete genome of Acidithiobacillus ferrooxidans ATCC 23270 (type strain) was sequenced in collaboration with the DOE Joint Genome Institute; 2. Genomic and mass spectrometry-based proteomic methods were used to evaluate gene expression and in situ microbial activity in a low-complexity natural acid mine drainage microbial biofilm community. This was the first effort to successfully analyze a natural community using these techniques; 3. Detailed functional and structural studies were conducted on rusticyanin, an acid-stable electron transfer protein purified from cell-free extracts of At. ferrooxidans. The three-dimensional structure of reduced rusticyanin was determined from a combination of homonuclear proton and heteronuclear 15N- and 13C-edited NMR spectra. Concomitantly, the three-dimensional structure of oxidized rusticyanin was determined by X-ray crystallography to a resolution of 1.9 A by multiwavelength

  3. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.

    PubMed

    Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie

    2014-01-01

    An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.

  4. Silane-based coatings on the pyrite for remediation of acid mine drainage.

    PubMed

    Diao, Zenghui; Shi, Taihong; Wang, Shizhong; Huang, Xiongfei; Zhang, Tao; Tang, Yetao; Zhang, Xiaying; Qiu, Rongliang

    2013-09-01

    Acid mine drainage (AMD) resulting from the oxidation of pyrite and other metal sulfides has caused significant environmental problems, including acidification of rivers and streams as well as leaching of toxic metals. With the goal of controlling AMD at the source, we evaluated the potential of tetraethylorthosilicate (TEOS) and n-propyltrimethoxysilane (NPS) coatings to suppress pyrite oxidation. The release of total Fe and SO4(-2) from uncoated and coated pyrite in the presence of a chemical oxidizing agent (H2O2) or iron-oxidizing bacteria (Acidithiobacillus ferrooxidans) was measured. Results showed that TEOS- and NPS-based coatings reduced chemical oxidation of pyrite by as much as 59 and 96% (based on Fe release), respectively, while biological oxidation of pyrite was reduced by 69 and 95%, respectively. These results were attributed to the formation of a dense network of Fe-O-Si and Si-O-Si bonds on the pyrite surface that limited permeation of oxygen, water, and bacteria. Compared with results for TEOS-coated pyrite, higher pH and lower concentrations of total Fe and SO4(-2) were observed for oxidation of NPS-coated pyrite, which was attributed to its crack-free morphology and the presence of hydrophobic groups on the NPS-based coating surface. The silane-based NPS coating was shown to be highly effective in suppressing pyrite oxidation, making it a promising alternative for remediation of AMD at its source.

  5. Heavy metal bioleaching and sludge stabilization in a single-stage reactor using indigenous acidophilic heterotrophs.

    PubMed

    Mehrotra, Akanksha; Sreekrishnan, T R

    2017-01-10

    Simultaneous sludge digestion and metal leaching (SSDML) have been reported at mesophilic temperature. It is generally perceived that while sludge stabilization is effected by heterotrophs at neutral pH, metal bioleaching is done by acidophilic autotrophs. However, little information is available on the microbial communities involved in the process. This study carried out SSDML in a single-stage reactor using sludge indigenous microorganisms and looked at the bacterial communities responsible for the process. Volatile suspended solids were reduced by more than 40%. The concentration of zinc, copper, chromium, cadmium and nickel decreased by more than 45% in the dry sludge. Acidophilic species of Alicyclobacillus genus were the dominant heterotrophs. A few heterotrophic bacteria were detected which can oxidize iron (Alicyclobacillus ferrooxydans, Alicyclobacillus ferripilum and Ferrimicrobium acidiphilum). Acidithiobacillus ferrooxidans (autotroph) was responsible for the oxidation of both iron and sulfur which lead to a change in the pH from neutral to acidic. The presence of acidophilic heterotrophs, which can oxidize either iron or sulfur, enhanced the efficiency of SSDML process with respect to sludge stabilization and metal leaching. This study shows that it is possible to carry out the SSDML in a single-stage reactor with indigenous microorganisms.

  6. Bacteria-assisted preparation of nano α-Fe2O3 red pigment powders from waste ferrous sulfate.

    PubMed

    Li, Xiang; Wang, Chuankai; Zeng, Yu; Li, Panyu; Xie, Tonghui; Zhang, Yongkui

    2016-11-05

    Massive ferrous sulfate with excess sulfuric acid is produced in titanium dioxide industry each year, ending up stockpiled or in landfills as solid waste, which is hazardous to environment and in urgent demand to be recycled. In this study, waste ferrous sulfate was used as a second raw material to synthesize nano α-Fe2O3 red pigment powders with a bacteria-assisted oxidation process by Acidithiobacillus ferrooxidans. The synthesis route, mainly consisting of bio-oxidation, precipitation and calcination, was investigated by means of titration, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence (XRF) to obtain optimum conditions. Under the optimum conditions, nano α-Fe2O3 red pigment powders contained 98.24wt.% of Fe2O3 were successfully prepared, with a morphology of spheroidal and particle size ranged from 22nm to 86nm and averaged at 45nm. Moreover, the resulting product fulfilled ISO 1248-2006, the standards of iron oxide pigments.

  7. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources

    PubMed Central

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe2+ ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD+ through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats. PMID:26500609

  8. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries.

    PubMed

    Zeng, Guisheng; Deng, Xiaorong; Luo, Shenglian; Luo, Xubiao; Zou, Jianping

    2012-01-15

    A copper-catalyzed bioleaching process was developed to recycle cobalt from spent lithium-ion batteries (mainly LiCoO(2)) in this paper. The influence of copper ions on bioleaching of LiCoO(2) by Acidithiobacillus ferrooxidans (A.f) was investigated. It was shown that almost all cobalt (99.9%) went into solution after being bioleached for 6 days in the presence of 0.75 g/L copper ions, while only 43.1% of cobalt dissolution was obtained after 10 days without copper ions. EDX, XRD and SEM analyses additionally confirmed that the cobalt dissolution from spent lithium-ion batteries could be improved in the presence of copper ions. The catalytic mechanism was investigated to explain the enhancement of cobalt dissolution by copper ions, in which LiCoO(2) underwent a cationic interchange reaction with copper ions to form CuCo(2)O(4) on the surface of the sample, which could be easily dissolved by Fe(3+).

  9. Bacterial diversity characterization in petroleum samples from Brazilian reservoirs

    PubMed Central

    de Oliveira, Valéria Maia; Sette, Lara Durães; Simioni, Karen Christina Marques; dos Santos Neto, Eugênio Vaz

    2008-01-01

    This study aimed at evaluating potential differences among the bacterial communities from formation water and oil samples originated from biodegraded and non-biodegraded Brazilian petroleum reservoirs by using a PCR-DGGE based approach. Environmental DNA was isolated and used in PCR reactions with bacterial primers, followed by separation of 16S rDNA fragments in the DGGE. PCR products were also cloned and sequenced, aiming at the taxonomic affiliation of the community members. The fingerprints obtained allowed the direct comparison among the bacterial communities from oil samples presenting distinct degrees of biodegradation, as well as between the communities of formation water and oil sample from the non-biodegraded reservoir. Very similar DGGE band profiles were observed for all samples, and the diversity of the predominant bacterial phylotypes was shown to be low. Cloning and sequencing results revealed major differences between formation water and oil samples from the non-biodegraded reservoir. Bacillus sp. and Halanaerobium sp. were shown to be the predominant components of the bacterial community from the formation water sample, whereas the oil sample also included Alicyclobacillus acidoterrestris, Rhodococcus sp., Streptomyces sp. and Acidithiobacillus ferrooxidans. The PCR-DGGE technique, combined with cloning and sequencing of PCR products, revealed the presence of taxonomic groups not found previously in these samples when using cultivation-based methods and 16S rRNA gene library assembly, confirming the need of a polyphasic study in order to improve the knowledge of the extent of microbial diversity in such extreme environments. PMID:24031244

  10. Effect of neutralized solid waste generated in lime neutralization on the ferrous ion bio-oxidation process during acid mine drainage treatment.

    PubMed

    Liu, Fenwu; Zhou, Jun; Zhou, Lixiang; Zhang, Shasha; Liu, Lanlan; Wang, Ming

    2015-12-15

    Bio-oxidation of ferrous ions prior to lime neutralization exhibits great potential for acid mine drainage (AMD) treatment, while slow ferrous ion bio-oxidation or total iron precipitation is a bottleneck in this process. In this study, neutralized solid waste (NSW) harvested in an AMD lime neutralization procedure was added as a crystal seed in AMD for iron oxyhydroxysulfate bio-synthesis. The effect of this waste on ferrous ion oxidation efficiency, total iron precipitation efficiency, and iron oxyhydroxysulfate minerals yield during ferrous ion bio-oxidation by Acidithiobacillus ferrooxidans was investigated. Ferrous ion oxidation efficiency was greatly improved by adding NSW. After 72 h incubation, total iron precipitation efficiency in treatment with 24 g/L of NSW was 1.74-1.03 times higher than in treatment with 0-12 g/L of NSW. Compared with the conventional treatment system without added NSW, the iron oxyhydroxysulfate minerals yield was increased by approximately 21.2-80.9% when 3-24 g/L of NSW were added. Aside from NSW, jarosite and schwertmannite were the main precipitates during ferrous ion bio-oxidation with NSW addition. NSW can thus serve as the crystal seed for iron oxyhydroxysulfate mineral bio-synthesis in AMD, and improve ferrous ion oxidation and total iron precipitation efficiency significantly.

  11. Culturable and molecular phylogenetic diversity of microorganisms in an open-dumped, extremely acidic Pb/Zn mine tailings.

    PubMed

    Tan, Gui-Liang; Shu, Wen-Sheng; Hallberg, Kevin B; Li, Fang; Lan, Chong-Yu; Zhou, Wen-Hua; Huang, Li-Nan

    2008-09-01

    A combination of cultivation-based and molecular-based approaches was used to reveal the culturable and molecular diversity of the microbes inhabiting an open-dumped Pb/Zn mine tailings that was undergoing intensive acid generation (pH 1.9). Culturable bacteria found in the extremely acidic mine tailings were Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum, Sulfobacillus thermotolerans and Acidiphilium cryptum, where the number of acidophilic heterotrophs was ten times higher than that of the iron- and sulfur-oxidizing bacteria. Cloning and phylogenetic analysis revealed that, in contrast to the adjacent AMD, the mine tailings possessed a low microbial diversity with archaeal sequence types dominating the 16S rRNA gene library. Of the 141 clones examined, 132 were represented by two sequence types phylogenetically affiliated with the iron-oxidizing archaea Ferroplasma acidiphilum and three belonged to two tentative groups within the Thermoplasma lineage so far represented by only a few environmental sequences. Six clones in the library were represented by the only bacterial sequence type and were closely related to the well-described iron-oxidizer L. ferriphilum. The significant differences in the prokaryotic community structures of the extremely acidic mine tailings and the AMD associated with it highlights the importance of studying the microbial communities that are more directly involved in the iron and sulfur cycles of mine tailings.

  12. Development of reactor configurations for an electrofuels platform utilizing genetically modified iron oxidizing bacteria for the reduction of CO2 to biochemicals.

    PubMed

    Guan, Jingyang; Berlinger, Sarah A; Li, Xiaozheng; Chao, Zhongmou; Sousa E Silva, Victor; Banta, Scott; West, Alan C

    2017-03-10

    Electrofuels processes are potentially promising platforms for biochemical production from CO2 using renewable energy. When coupled to solar panels, this approach could avoid the inefficiencies of photosynthesis and there is no competition with food agriculture. In addition, these systems could potentially be used to store intermittent or stranded electricity generated from other renewable sources. Here we develop reactor configurations for continuous electrofuels processes to convert electricity and CO2 to isobutyric acid (IBA) using genetically modified (GM) chemolithoautotrophic Acidithiobacillus ferrooxidans. These cells oxidize ferrous iron which can be electrochemically reduced. During two weeks of cultivation on ferrous iron, stable cell growth and continuous IBA production from CO2 were achieved in a process where media was circulated between electrochemical and biochemical rectors. An alternative process with an additional electrochemical cell for accelerated ferrous production was developed, and this system achieved an almost three-fold increase in steady state cell densities, and an almost 4-fold increase in the ferrous iron oxidation rate. Combined, this led to an almost 8-fold increase in the steady state volumetric productivity of IBA up to 0.063±0.012mg/L/h, without a decline in energy efficiency from previous work. Continued development of reactor configurations which can increase the delivery of energy to the genetically modified cells will be required to increase product titers and volumetric productivities.

  13. Enhancement of simultaneous gold and copper extraction from computer printed circuit boards using Bacillus megaterium.

    PubMed

    Arshadi, M; Mousavi, S M

    2015-01-01

    In this research simultaneous gold and copper recovery from computer printed circuit boards (CPCBs) was evaluated using central composite design of response surface methodology (CCD-RSM). To maximize simultaneous metals' extraction from CPCB waste four factors which affected bioleaching were selected to be optimized. A pure culture of Bacillus megaterium, a cyanogenic bacterium, was used to produce cyanide as a leaching agent. Initial pH 10, pulp density 2g/l, particle mesh#100 and glycine concentration 0.5g/l were obtained as optimal conditions. Gold and copper were extracted simultaneously at about 36.81 and 13.26% under optimum conditions, respectively. To decrease the copper effect as an interference agent in the leaching solution, a pretreatment strategy was examined. For this purpose firstly using Acidithiobacillus ferrooxidans copper in the CPCB powder was totally extracted, then the residual sediment was subjected to further experiments for gold recovery by B. megaterium. Using pretreated sample under optimal conditions 63.8% gold was extracted.

  14. An XPS analytical approach for elucidating the microbially mediated enargite oxidative dissolution.

    PubMed

    Fantauzzi, M; Rossi, G; Elsener, B; Loi, G; Atzei, D; Rossi, A

    2009-04-01

    In this work, the microbe-mediated oxidative dissolution of enargite surfaces (Cu(3)AsS(4)) was studied on powdered samples exposed to 9K nutrient solution (pH 2.3) inoculated by Acidithiobacillus ferrooxidans initially adapted to arsenopyrite. These conditions simulate the acid mine environment. The redox potential of the inoculated solutions increased up to +0.72 V vs normal hydrogen electrode (NHE), indicating the increase of the Fe(3+) to Fe(2+) ratio, and correspondingly the pH decreased to values as low as 1.9. In the sterile 9K control, the redox potential and pH remained constant at +0.52 V NHE and 2.34, respectively. Solution analyses showed that in inoculated medium Cu and As dissolved stoichiometrically with a dissolution rate of about three to five times higher compared to the sterile control. For the first time, X-ray photoelectron spectroscopy (XPS) was carried out on the bioleached enargite powder with the aim of clarifying the role of the microorganisms in the dissolution process. XPS results provide evidence of the formation of a thin oxidized layer on the mineral surface. Nitrogen was also detected on the bioleached surfaces and was attributed to the presence of an extracellular polymer substance layer supporting a mechanism of bacteria attachment via the formation of a biofilm a few nanometers thick, commonly known as nanobiofilm.

  15. Microbial Oxidation of Fe2+ and Pyrite Exposed to Flux of Micromolar H2O2 in Acidic Media

    PubMed Central

    Ma, Yingqun; Lin, Chuxia

    2013-01-01

    At an initial pH of 2, while abiotic oxidation of aqueous Fe2+ was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe2+ could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe2+ to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe2+-Fe3+ conversion rate in the solution (due to reduced microbial activity) weakened the Fe3+-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria. PMID:23760258

  16. The enhancing of Au-Ag-Te content in tellurium-bearing ore mineral by bio-oxidation-leaching

    NASA Astrophysics Data System (ADS)

    Kim, PyeongMan; Kim, HyunSoo; Myung, EunJi; Kim, YoonJung; Lee, YongBum; Park*, CheonYoung

    2015-04-01

    The purpose of this study is to enhance the content of valuable metals such as Au-Ag-Te in tellurium-bearing minerals by bio-oxidation-leaching. It was confirmed that pyrite, chalcopyrite, sphalerite and galena were produced together with tellurium-bearing minerals including hessite, sylvanite and tellurobismuthite from ore minerals and concentrates through microscopic observation and SEM/EDS analysis. In a bio-oxidation-leaching experiment, with regard to Au, Ag, Te, Cu and Fe, the changes in the amount of leaching and the content of leaching residues were compared and analyzed with each other depending on the adaptation of an indigenous microbe identified as Acidithiobacillus ferrooxidans. As a result of the experiment, the Au-Ag-Te content in tellurium-bearing ore mineral was enhanced in the order of physical oxidation leaching, physical/non-adaptive bio-oxidation-leaching and physical/adaptive biological leaching. It suggests that the bio-oxidation-leaching using microbes adapted in tellurium-bearing ore mineral can be used as a pre-treatment and a main process in a recovery process of valuable metals. "This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2013R1A1A2004898)"

  17. SOLID2: an antibody array-based life-detector instrument in a Mars Drilling Simulation Experiment (MARTE).

    PubMed

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A; Moreno-Paz, Mercedes; Rivas, Luis A; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  18. Gene expression of the arsenic resistance operon in Chromobacterium violaceum ATCC 12472.

    PubMed

    Azevedo, Juliana Simão Nina de; Silva-Rocha, Rafael; Silva, Artur; Peixe Carepo, Marta Sofia; Cruz Schneider, Maria Paula

    2008-02-01

    Chromobacterium violaceum ATCC 12472 presents an arsRCB-type operon, which is involved in arsenic resistance. The regulating protein of this resistance system (ArsR) does not have the small conserved site (ELCVDCL) to link to the metalloid, as observed in Escherichia coli, and is thus considered to be an atypical ArsR protein, like that observed in Acidithiobacillus ferrooxidans. In the present study, the gene expression profile of the ars operon under induction at different concentrations of arsenite - As(III) - was obtained via real-time PCR (TaqMan), by correlating the threshold cycle (Ct) values of induced and uninduced (control) samples. Through linear regression analysis (R2 = 0.9926), the gene expression profile of the ars operon showed clearly that the 0.125 micromol/L concentration of As(III) was sufficient to provoke a 4-fold increase in the resistance system, and a further increase in concentration resulted in an increase of up to 53-fold in transcription rates. The relation between resistance and induction of the ars operon indicates that the increased resistance to As(III) is associated with the increase in the number of transcripts.

  19. Bifunctional sucrose phosphate synthase/phosphatase is involved in the sucrose biosynthesis by Methylobacillus flagellatus KT.

    PubMed

    But, Sergey Y; Khmelenina, Valentina N; Reshetnikov, Alexander S; Trotsenko, Yuri A

    2013-10-01

    The aerobic obligate methylotroph Methylobacillus flagellatus KT was shown to synthesize sucrose in the presence of 0.5-2% NaCl in the growth medium. In the genome of this bacterium, an open reading frame (ORF) encoding a predicted 84-kD polypeptide homologous to the plant and cyanobacterial sucrose phosphate synthases (SPSs) was found. Using heterologous expression of the putative sps gene in Escherichia coli, followed by affinity chromatography, pure recombinant protein SPS-His6 was obtained. The enzyme catalyzed two reactions: conversion of fructose 6-phosphate and UDP-glucose into sucrose 6-phosphate and hydrolysis of sucrose 6-phosphate to sucrose. The bifunctional sucrose phosphate synthase/phosphatase (SPS/SPP) was a 340 kDa homotetrameric Mg(2+) -dependent enzyme activated by fructose 1,6-phosphate2 and ATP but inhibited by glucose 6-phosphate, fructose 1-phosphate, AMP and inorganic phosphate. The amino acid sequence of the protein had a C-terminal domain homologous to SPPs. This correlated with the absence of the spp gene in the M. flagellatus chromosome. The ORFs homologous to the M. flagellatus SPS were found in the genomes of another obligate methylotroph Methylovorus glucosetrophus as well as the lithoautotrophic bacteria Acidithiobacillus ferrooxidans, Nitrosomonas europaea and Nitrosospira multiformis whose genomes lacked the spp genes. Thus, data extending the knowledge of biochemical properties of bacterial SPSs have been obtained.

  20. Final Progress Report for Grant Number DE-SC0007229

    SciTech Connect

    Blake, Robert

    2016-08-18

    We exploited a novel spectrophotometer where the cuvette is a reflecting cavity completely filled with an absorbing suspension of live, intact bacteria to monitor the in situ absorbance changes in bacteria as they respired aerobically on soluble ferrous ions. Our prior observations suggested the following hypothesis: acidophilic bacteria that belong to different phyla express different types of electron transfer proteins to respire on extracellular iron. We tested this hypothesis using six different organisms that represented each of the six phyla of microorganisms that respire aerobically on iron. Each of these six organisms expressed spectrally different biomolecules that were redox-active during aerobic respiration on iron. In all six cases, compelling kinetic evidence was collected to indicate that the biomolecules in question were obligatory intermediates in their respective respiratory chains. Additional experiments with intact Acidithiobacillus ferrooxidans revealed that the crowded electron transport proteins in this organism’s periplasm constituted a semi-conducting medium where the network of protein interactions functioned in a concerted fashion as a single ensemble. Thus the molecular oxygen-dependent oxidation of the multi-center respiratory chain occurred with a single macroscopic rate constant, regardless of the proteins’ individual redox potentials or their putative positions in the aerobic iron respiratory chain.

  1. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources.

    PubMed

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe(2+) ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD(+) through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats.

  2. Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations.

    PubMed

    Kumar, Naresh; Millot, Romain; Battaglia-Brunet, Fabienne; Omoregie, Enoma; Chaurand, Perrine; Borschneck, Daniel; Bastiaens, Leen; Rose, Jérôme

    2016-03-01

    Impacts of subsurface biogeochemical processes over time have always been a concern for the long-term performance of zero valent iron (Fe(0))-based permeable reactive barriers (PRBs). To evaluate the biogeochemical impacts, laboratory experiments were performed using flow-through glass columns for 210 days at controlled temperature (20 °C). Two different particle sizes of Fe(0) were used in the columns, and to simulate indigenous microbial activity, extra carbon source was provided in the two columns (biotic columns) and the remaining two columns were kept abiotic using gamma radiations. Heavy metals (Zn, As) were removed efficiently in all the columns, and no exhaustion of treatment capability or clogging was observed during our experimental duration. Newly formed Fe mineral phases and precipitates were characterized using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), and micro-XRF techniques in solid phase at the end of the experiment. In addition, 16S rRNA gene extraction was used for microbial community identification in biotic columns. During the incubation, microbial population shifted in favor of Desulfosporosinus species (sulfate-reducing bacteria) from initial dominance of Acidithiobacillus ferrooxidans in sediments. Dominant mineral phases detected in biotic columns were mackinawite (FeS) and sulfate green rust, while in abiotic columns, magnetite/maghemite phases were more prevalent.

  3. Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals.

    PubMed

    Orell, Alvaro; Navarro, Claudio A; Arancibia, Rafaela; Mobarec, Juan C; Jerez, Carlos A

    2010-01-01

    Industrial biomining processes to extract copper, gold and other metals involve the use of extremophiles such as the acidophilic Acidithiobacillus ferrooxidans (Bacteria), and the thermoacidophilic Sulfolobus metallicus (Archaea). Together with other extremophiles these microorganisms subsist in habitats where they are exposed to copper concentrations higher than 100mM. Herein we review the current knowledge on the Cu-resistance mechanisms found in these microorganisms. Recent information suggests that biomining extremophiles respond to extremely high Cu concentrations by using simultaneously all or most of the following key elements: 1) a wide repertoire of Cu-resistance determinants; 2) duplication of some of these Cu-resistance determinants; 3) existence of novel Cu chaperones; 4) a polyP-based Cu-resistance system, and 5) an oxidative stress defense system. Further insight of the biomining community members and their individual response to copper is highly relevant, since this could provide key information to the mining industry. In turn, this information could be used to select the more fit members of the bioleaching community to attain more efficient industrial biomining processes.

  4. Microbiology of diverse acidic and non-acidic microhabitats within a sulfidic ore mine.

    PubMed

    Falteisek, Lukáš; Cepička, Ivan

    2012-11-01

    A wide variety of microhabitats within the extremely acidic abandoned underground copper mine Zlaté Hory (Czech Republic) was investigated. SSU rDNA libraries were analyzed from 15 samples representing gossan, sulfide-leaching environments in the oxidation zone, and acidic water springs in the mine galleries. Microbial analyses were extended by analyses of chemical composition of water and solid phases and identification of arising secondary minerals. The microbial communities of the three main classes of microenvironments differed in almost every aspect. Among others, ecological partitioning of Acidithiobacillus ferrooxidans and the recently described A. ferrivorans was observed. Distinct types of communities inhabiting the water springs were detected. The more extreme springs (pH <3, conductivity >2 mS/cm) were inhabited by "Ferrovum" spp. and A. ferrivorans, whereas Gallionella sp. dominated the less extreme ones. A new role for gossan in the extremely acidic ecosystem is proposed. This zone was inhabited by a large diversity of neutrophilic heterotrophs that appeared to be continuously washed out to the acidic environments localized downstream. Five species originating in gossan were found in several acidic habitats. Here they can survive and probably serve as scavengers of dead biomass, particularly from chemoautotrophic growths. No such process has been described from acidic mine environments so far.

  5. Application of Universal Stress Proteins in Probing the Dynamics of Potent Degraders in Complex Terephthalate Metagenome

    PubMed Central

    Mbah, Andreas N.; Isokpehi, Raphael D.

    2013-01-01

    The culture-independent strategies to study microbial diversity and function have led to a revolution in environmental genomics, enabling fundamental questions about the distribution of microbes and their influence on bioremediation to be addressed. In this research we used the expression of universal stress proteins as a probe to determine the changes in degrading microbial population from a highly toxic terephthalate wastewater to a less toxic activated sludge bioreactor. The impact of relative toxicities was significantly elaborated at the levels of genus and species. The results indicated that 23 similar prokaryotic phyla were represented in both metagenomes irrespective of their relative abundance. Furthermore, the following bacteria taxa Micromonosporaceae, Streptomyces, Cyanothece sp. PCC 7822, Alicyclobacillus acidocaldarius, Bacillus halodurans, Leuconostoc mesenteroides, Lactococcus garvieae, Brucellaceae, Ralstonia solanacearum, Verminephrobacter eiseniae, Azoarcus, Acidithiobacillus ferrooxidans, Francisella tularensis, Methanothermus fervidus, and Methanocorpusculum labreanum were represented only in the activated sludge bioreactor. These highly dynamic microbes could serve as taxonomic biomarkers for toxic thresholds related to terephthalate and its derivatives. This paper, highlights the application of universal stress proteins in metagenomics analysis. Dynamics of microbial consortium of this nature can have future in biotechnological applications in bioremediation of toxic chemicals and radionuclides. PMID:24151583

  6. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    NASA Astrophysics Data System (ADS)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    Acid mine drainage, AMD, results from the oxidation of metal sulfide minerals (e.g. pyrite), producing ferrous iron and sulfuric acid. Acidophilic autotrophic bacteria such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans obtain energy by oxidizing ferrous iron back to ferric iron, using oxygen as the electron acceptor. Most existing models of AMD do not account for microbial kinetics or iron geochemistry rigorously. Instead they assume that oxygen limitation controls pyrite oxidation and thus focus on oxygen transport. These models have been successfully used for simulating conditions where oxygen availability is a limiting factor (e.g. source prevention by capping), but have not been shown to effectively model acid generation and effluent chemistry under a wider range of conditions. The key reactions, oxidation of pyrite and oxidation of ferrous iron, are both slow kinetic processes. Despite being extensively studied for the last thirty years, there is still not a consensus in the literature about the basic mechanisms, limiting factors or rate expressions for microbially enhanced oxidation of metal sulfides. An indirect leaching mechanism (chemical oxidation of pyrite by ferric iron to produce ferrous iron, with regeneration of ferric iron by microbial oxidation of ferrous iron) is used as the foundation of a conceptual model for microbially enhanced oxidation of pyrite. Using literature data, a rate expression for microbial consumption of ferrous iron is developed that accounts for oxygen, ferrous iron and pH limitation. Reaction rate expressions for oxidation of pyrite and chemical oxidation of ferrous iron are selected from the literature. A completely mixed stirred tank reactor (CSTR) model is implemented coupling the kinetic rate expressions, speciation calculations and flow. The model simulates generation of AMD and effluent chemistry that qualitatively agrees with column reactor and single rock experiments. A one dimensional reaction

  7. Copper isotope fractionation in acid mine drainage

    USGS Publications Warehouse

    Kimball, B.E.; Mathur, R.; Dohnalkova, A.C.; Wall, A.J.; Runkel, R.L.; Brantley, S.L.

    2009-01-01

    We measured the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed (Colorado, USA). The ??65Cu values (based on 65Cu/63Cu) of enargite (??65Cu = -0.01 ?? 0.10???; 2??) and chalcopyrite (??65Cu = 0.16 ?? 0.10???) are within the range of reported values for terrestrial primary Cu sulfides (-1??? < ??65Cu < 1???). These mineral samples show lower ??65Cu values than stream waters (1.38??? ??? ??65Cu ??? 1.69???). The average isotopic fractionation (??aq-min = ??65Cuaq - ??65Cumin, where the latter is measured on mineral samples from the field system), equals 1.43 ?? 0.14??? and 1.60 ?? 0.14??? for chalcopyrite and enargite, respectively. To interpret this field survey, we leached chalcopyrite and enargite in batch experiments and found that, as in the field, the leachate is enriched in 65Cu relative to chalcopyrite (1.37 ?? 0.14???) and enargite (0.98 ?? 0.14???) when microorganisms are absent. Leaching of minerals in the presence of Acidithiobacillus ferrooxidans results in smaller average fractionation in the opposite direction for chalcopyrite (??aq-mino = - 0.57 ?? 0.14 ???, where mino refers to the starting mineral) and no apparent fractionation for enargite (??aq-mino = 0.14 ?? 0.14 ???). Abiotic fractionation is attributed to preferential oxidation of 65Cu+ at the interface of the isotopically homogeneous mineral and the surface oxidized layer, followed by solubilization. When microorganisms are present, the abiotic fractionation is most likely not seen due to preferential association of 65Cuaq with A. ferrooxidans cells and related precipitates. In the biotic experiments, Cu was observed under TEM to occur in precipitates around bacteria and in intracellular polyphosphate granules. Thus, the values of ??65Cu in the field and laboratory systems are presumably determined by the balance of Cu released abiotically and Cu that interacts with cells and related precipitates. Such isotopic signatures

  8. Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods.

    PubMed

    Liu, Fenwu; Zhou, Jun; Wang, Dianzhan; Zhou, Lixiang

    2012-01-01

    The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering. Traditionally, sludge is conditioned by physical or chemical approaches, mostly with the addition of inorganic or organic chemicals. Here we report that bioleaching, an efficient and economical microbial method for the removal of sludge-borne heavy metals, also plays a significant role in enhancing sludge dewaterability. The effects of bioleaching and physical or chemical approaches on sludge dewaterability were compared. The conditioning result of bioleaching by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans on sludge dewatering was investigated and compared with the effects of hydrothermal (121 degrees C for 2 hr), microwave (1050 W for 50 sec), ultrasonic (250 W for 2 min), and chemical conditioning (24% ferric chloride and 68% calcium oxide; dry basis). The results show that the specific resistance to filtration (SRF) or capillary suction time (CST) of sludge is decreased by 93.1% or 74.1%, respectively, after fresh sludge is conditioned by bioleaching, which is similar to chemical conditioning treatment with ferric chloride and calcium oxide but much more effective than other conditioning approaches including hydrothermal, microwave, and ultrasonic conditioning. Furthermore, after sludge dewatering, bioleached sludge filtrate contains the lowest concentrations of chroma (18 times), COD (542 mg/L), total N (TN, 300 mg/L), NH4(+)-N (208 mg/L), and total P (TP, 2 mg/L) while the hydrothermal process resulted in the highest concentration of chroma (660 times), COD (18,155 mg/L), TN (472 mg/L), NH4(+)-N (381 mg/L), and TP (191 mg/L) among these selected conditioning methods. Moreover, unlike chemical conditioning, sludge bioleaching does not result in a significant reduction of organic matter, TN, and TP in the resulting dewatered sludge cake. Therefore, considering sludge dewaterability and the chemical properties of sludge

  9. Genome Analysis of the Biotechnologically Relevant Acidophilic Iron Oxidising Strain JA12 Indicates Phylogenetic and Metabolic Diversity within the Novel Genus “Ferrovum”

    PubMed Central

    Ullrich, Sophie R.; Poehlein, Anja; Tischler, Judith S.; González, Carolina; Ossandon, Francisco J.; Daniel, Rolf; Holmes, David S.; Schlömann, Michael; Mühling, Martin

    2016-01-01

    Background Members of the genus “Ferrovum” are ubiquitously distributed in acid mine drainage (AMD) waters which are characterised by their high metal and sulfate loads. So far isolation and microbiological characterisation have only been successful for the designated type strain “Ferrovum myxofaciens” P3G. Thus, knowledge about physiological characteristics and the phylogeny of the genus “Ferrovum” is extremely scarce. Objective In order to access the wider genetic pool of the genus “Ferrovum” we sequenced the genome of a “Ferrovum”-containing mixed culture and successfully assembled the almost complete genome sequence of the novel “Ferrovum” strain JA12. Phylogeny and Lifestyle The genome-based phylogenetic analysis indicates that strain JA12 and the type strain represent two distinct “Ferrovum” species. “Ferrovum” strain JA12 is characterised by an unusually small genome in comparison to the type strain and other iron oxidising bacteria. The prediction of nutrient assimilation pathways suggests that “Ferrovum” strain JA12 maintains a chemolithoautotrophic lifestyle utilising carbon dioxide and bicarbonate, ammonium and urea, sulfate, phosphate and ferrous iron as carbon, nitrogen, sulfur, phosphorous and energy sources, respectively. Unique Metabolic Features The potential utilisation of urea by “Ferrovum” strain JA12 is moreover remarkable since it may furthermore represent a strategy among extreme acidophiles to cope with the acidic environment. Unlike other acidophilic chemolithoautotrophs “Ferrovum” strain JA12 exhibits a complete tricarboxylic acid cycle, a metabolic feature shared with the closer related neutrophilic iron oxidisers among the Betaproteobacteria including Sideroxydans lithotrophicus and Thiobacillus denitrificans. Furthermore, the absence of characteristic redox proteins involved in iron oxidation in the well-studied acidophiles Acidithiobacillus ferrooxidans (rusticyanin) and Acidithiobacillus

  10. Leaching of zinc sulfide by Thiobacillus ferrooxidans: Bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions

    SciTech Connect

    Fowler, T.A.; Crundwell, F.K.

    1999-12-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferroxidans at the same conditions in solution. The extent of leaching of ZnS with Bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, which no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T.ferroxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions.

  11. Spectroscopic Characterization of a Green Copper Site in a Single-Domain Cupredoxin

    PubMed Central

    Roger, Magali; Biaso, Frédéric; Castelle, Cindy J.; Bauzan, Marielle; Chaspoul, Florence; Lojou, Elisabeth; Sciara, Giuliano; Caffarri, Stefano; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2014-01-01

    Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought. PMID:24932914

  12. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems.

    PubMed

    Rowe, Owen F; Sánchez-España, Javier; Hallberg, Kevin B; Johnson, D Barrie

    2007-07-01

    An extremely acidic (pH 2.5-2.75) metal-rich stream draining an abandoned mine in the Iberian Pyrite Belt, Spain, was ramified with stratified macroscopic gelatinous microbial growths ('acid streamers' or 'mats'). Microbial communities of streamer/mat growths sampled at different depths, as well as those present in the stream water itself, were analysed using a combined biomolecular and cultivation-based approach. The oxygen-depleted mine water was dominated by the chemolithotrophic facultative anaerobe Acidithiobacillus ferrooxidans, while the streamer communities were found to be highly heterogeneous and very different to superficially similar growths reported in other extremely acidic environments. Microalgae accounted for a significant proportion of surface streamer biomass, while subsurface layers were dominated by heterotrophic acidophilic bacteria (Acidobacteriacae and Acidiphilium spp.). Sulfidogenic bacteria were isolated from the lowest depth streamer growths, where there was also evidence for selective biomineralization of copper sulfide. Archaeal clones (exclusively Euryarchaeota) were recovered from streamer samples, as well as the mine stream water. Both sunlight and reduced inorganic chemicals (predominantly ferrous iron) served as energy sources for primary producers in this ecosystem, promoting complex microbial interactions involving transfer of electron donors and acceptors and of organic carbon, between microorganisms in the stream water and the gelatinous streamer growths. Microbial transformations were shown to impact the biogeochemical cycling of iron and sulfur in the acidic stream, severely restricting the net oxidation of ferrous iron even when the initially anoxic waters were oxygenated by indigenous acidophilic algae. A model accounting for the biogeochemistry of iron and sulfur in the mine waters is described, and the significance of the acidophilic communities in regulating the geochemistry of acidic, metal-rich waters is described.

  13. Microbial leaching of waste solder for recovery of metal.

    PubMed

    Hocheng, H; Hong, T; Jadhav, U

    2014-05-01

    This study proposes an environment-friendly bioleaching process for recovery of metals from solders. Tin-copper (Sn-Cu), tin-copper-silver (Sn-Cu-Ag), and tin-lead (Sn-Pb) solders were used in the current study. The culture supernatant of Aspergillus niger removed metals faster than the culture supernatant of Acidithiobacillus ferrooxidans. Also, the metal removal by A. niger culture supernatant is faster for Sn-Cu-Ag solder as compared to other solder types. The effect of various process parameters such as shaking speed, temperature, volume of culture supernatant, and increased solder weight on bioleaching of metals was studied. About 99 (±1.75) % metal dissolution was achieved in 60 h, at 200-rpm shaking speed, 30 °C temperature, and by using 100-ml A. niger culture supernatant. An optimum solder weight for bioleaching was found to be 5 g/l. Addition of sodium hydroxide (NaOH) and sodium chloride (NaCl) in the bioleached solution from Sn-Cu-Ag precipitated tin (85 ± 0.35 %) and silver (80 ± 0.08 %), respectively. Passing of hydrogen sulfide (H2S) gas at pH 8.1 selectively precipitated lead (57.18 ± 0.13 %) from the Sn-Pb bioleached solution. The proposed innovative bioleaching process provides an alternative technology for recycling waste solders to conserve resources and protect environment.

  14. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques.

    PubMed

    Fantauzzi, Marzia; Licheri, Cristina; Atzei, Davide; Loi, Giovanni; Elsener, Bernhard; Rossi, Giovanni; Rossi, Antonella

    2011-10-01

    In this work, a multi-technical bulk and surface analytical approach was used to investigate the bioleaching of a pyrite and arsenopyrite flotation concentrate with a mixed microflora mainly consisting of Acidithiobacillus ferrooxidans. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy mineral surfaces investigations, along with inductively coupled plasma-atomic emission spectroscopy and carbon, hydrogen, nitrogen and sulphur determination (CHNS) analyses, were carried out prior and after bioleaching. The flotation concentrate was a mixture of pyrite (FeS(2)) and arsenopyrite (FeAsS); after bioleaching, 95% of the initial content of pyrite and 85% of arsenopyrite were dissolved. The chemical state of the main elements (Fe, As and S) at the surface of the bioreactor feed particles and of the residue after bioleaching was investigated by X-ray photoelectron and X-ray excited Auger electron spectroscopy. After bioleaching, no signals of iron, arsenic and sulphur originating from pyrite and arsenopyrite were detected, confirming a strong oxidation and the dissolution of the particles. On the surfaces of the mineral residue particles, elemental sulphur as reaction intermediate of the leaching process and precipitated secondary phases (Fe-OOH and jarosite), together with adsorbed arsenates, was detected. Evidence of microbial cells adhesion at mineral surfaces was also produced: carbon and nitrogen were revealed by CHNS, and nitrogen was also detected on the bioleached surfaces by XPS. This was attributed to the deposition, on the mineral surfaces, of the remnants of a bio-film consisting of an extra-cellular polymer layer that had favoured the bacterial action.

  15. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation--part A.

    PubMed

    Vera, Mario; Schippers, Axel; Sand, Wolfgang

    2013-09-01

    Bioleaching of metal sulfides is performed by a diverse group of microorganisms. The dissolution chemistry of metal sulfides follows two pathways, which are determined by the mineralogy and the acid solubility of the metal sulfides: the thiosulfate and the polysulfide pathways. Bacterial cells can effect this metal sulfide dissolution via iron(II) ion and sulfur compound oxidation. Thereby, iron(III) ions and protons, the metal sulfide-attacking agents, are available. Cells can be active either in planktonic state or in forming biofilms on the mineral surface; however, the latter is much more efficient in terms of bioleaching kinetics. In the case of Acidithiobacillus ferrooxidans, bacterial exopolymers contain iron(III) ions, each complexed by two uronic acid residues. The resulting positive charge allows an electrostatic attachment to the negatively charged pyrite. Thus, the first function of complexed iron(III) ions is the mediation of cell attachment, while their second function is oxidative dissolution of the metal sulfide, similar to the role of free iron(III) ions in non-contact leaching. In both cases, the electrons extracted from the metal sulfide reduce molecular oxygen via a redox chain forming a supercomplex spanning the periplasmic space and connecting both outer and inner membranes. In this review, we summarize some recent discoveries relevant to leaching bacteria which contribute to a better understanding of these fascinating microorganisms. These include surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, and biofilm formation. The study of microbial interactions among multispecies leaching consortia, including cell-to-cell communication mechanisms, must be considered in order to reveal more insights into the biology of bioleaching microorganisms and their potential biotechnological use.

  16. Geomicrobiology of La Zarza-Perrunal Acid Mine Effluent (Iberian Pyritic Belt, Spain) ▿ †

    PubMed Central

    González-Toril, Elena; Aguilera, Ángeles; Souza-Egipsy, Virginia; López Pamo, Enrique; Sánchez España, Javier; Amils, Ricardo

    2011-01-01

    Effluent from La Zarza-Perrunal, a mine on the Iberian Pyrite Belt, was chosen to be geomicrobiologically characterized along a 1,200-m stream length. The pH at the origin was 3.1, which decreased to 1.9 at the final downstream sampling site. The total iron concentration showed variations along the effluent, resulting from (i) significant hydrolysis and precipitation of Fe(III) (especially along the first reach of the stream) and (ii) concentration induced by evaporation (mostly in the last reach). A dramatic increase in iron oxidation was observed along the course of the effluent [from Fe(III)/Fetotal = 0.11 in the origin to Fe(III)/Fetotal = 0.99 at the last sampling station]. A change in the O2 content along the effluent, from nearly anoxic at the origin to saturation with oxygen at the last sampling site, was also observed. Prokaryotic and eukaryotic diversity throughout the effluent was determined by microscopy and 16S rRNA gene cloning and sequencing. Sulfate-reducing bacteria (Desulfosporosinus and Syntrophobacter) were detected only near the origin. Some iron-reducing bacteria (Acidiphilium, Acidobacterium, and Acidosphaera) were found throughout the river. Iron-oxidizing microorganisms (Leptospirillum spp., Acidithiobacillus ferrooxidans, and Thermoplasmata) were increasingly detected downstream. Changes in eukaryotic diversity were also remarkable. Algae, especially Chlorella, were present at the origin, forming continuous, green, macroscopic biofilms, subsequently replaced further downstream by sporadic Zygnematales filaments. Taking into consideration the characteristics of this acidic extreme environment and the physiological properties and spatial distribution of the identified microorganisms, a geomicrobiological model of this ecosystem is advanced. PMID:21357431

  17. Reconstitution of supramolecular organization involved in energy metabolism at electrochemical interfaces for biosensing and bioenergy production.

    PubMed

    Roger, M; de Poulpiquet, A; Ciaccafava, A; Ilbert, M; Guiral, M; Giudici-Orticoni, M T; Lojou, E

    2014-02-01

    How the redox proteins and enzymes involved in bioenergetic pathways are organized is a relevant fundamental question, but our understanding of this is still incomplete. This review provides a critical examination of the electrochemical tools developed in recent years to obtain knowledge of the intramolecular and intermolecular electron transfer processes involved in metabolic pathways. Furthermore, better understanding of the electron transfer processes associated with energy metabolism will provide the basis for the rational design of biotechnological devices such as electrochemical biosensors, enzymatic and microbial fuel cells, and hydrogen production factories. Starting from the redox complexes involved in two relevant bacterial chains, i.e., from the hyperthermophile Aquifex aeolicus and the acidophile Acidithiobacillus ferrooxidans, examination of protein-protein interactions using electrochemistry is first reviewed, with a focus on the orientation of a protein on an electrochemical interface mimic of a physiological interaction between two partners. Special attention is paid to current research in the electrochemistry of essential membrane proteins, which is one mandatory step toward the understanding of energy metabolic pathways. The complex and challenging architectures built to reconstitute a membrane-like environment at an electrode are especially considered. The role played by electrochemistry in the attempt to consider full bacterial metabolism is finally emphasized through the study of whole cells immobilized at electrodes as suspensions or biofilms. Before the performances of biotechnological devices can be further improved to make them really attractive, questions remain to be addressed in this particular field of research. We discuss the bottlenecks that need to be overcome in the future.

  18. Evolution of Sucrose Synthesis[w

    PubMed Central

    Lunn, John Edward

    2002-01-01

    Cyanobacteria and proteobacteria (purple bacteria) are the only prokaryotes known to synthesize sucrose (Suc). Suc-P synthase, Suc-phosphatase (SPP), and Suc synthase activities have previously been detected in several cyanobacteria, and genes coding for Suc-P synthase (sps) and Suc synthase (sus) have been cloned from Synechocystis sp. PCC 6803 and Anabaena (Nostoc) spp., respectively. An open reading frame in the Synechocystis genome encodes a predicted 27-kD polypeptide that shows homology to the maize (Zea mays) SPP. Heterologous expression of this putative spp gene in Escherichia coli, reported here, confirmed that this open reading frame encodes a functional SPP enzyme. The Synechocystis SPP is highly specific for Suc-6F-P (Km = 7.5 μm) and is Mg2+ dependent (Ka = 70 μm), with a specific activity of 46 μmol min−1 mg−1 protein. Like the maize SPP, the Synechocystis SPP belongs to the haloacid dehalogenase superfamily of phosphatases/hydrolases. Searches of sequenced microbial genomes revealed homologs of the Synechocystis sps gene in several other cyanobacteria (Nostoc punctiforme, Prochlorococcus marinus strains MED4 and MIT9313, and Synechococcus sp. WH8012), and in three proteobacteria (Acidithiobacillus ferrooxidans, Magnetococcus sp. MC1, and Nitrosomonas europaea). Homologs of the Synechocystis spp gene were found in Magnetococcus sp. MC1 and N. punctiforme, and of the Anabaena sus gene in N. punctiforme and N. europaea. From analysis of these sequences, it is suggested that Suc synthesis originated in the proteobacteria or a common ancestor of the proteobacteria and cyanobacteria. PMID:11950997

  19. Metabolic characteristics of dominant microbes and key rare species from an acidic hot spring in Taiwan revealed by metagenomics

    SciTech Connect

    Lin, Kuei -Han; Liao, Ben -Yang; Chang, Hao -Wei; Huang, Shiao -Wei; Chang, Ting -Yan; Yang, Cheng -Yu; Wang, Yu -Bin; Lin, Yu-Teh Kirk; Wu, Yu -Wei; Tang, Sen -Lin; Yu, Hon -Tsen

    2015-12-03

    Microbial diversity and community structures in acidic hot springs have been characterized by 16S rRNA gene-based diversity surveys. However, our understanding regarding the interactions among microbes, or between microbes and environmental factors, remains limited. In the present study, a metagenomic approach, followed by bioinformatics analyses, were used to predict interactions within the microbial ecosystem in Shi-Huang-Ping (SHP), an acidic hot spring in northern Taiwan. Characterizing environmental parameters and potential metabolic pathways highlighted the importance of carbon assimilatory pathways. Four distinct carbon assimilatory pathways were identified in five dominant genera of bacteria. Of those dominant carbon fixers, Hydrogenobaculum bacteria outcompeted other carbon assimilators and dominated the SHP, presumably due to their ability to metabolize hydrogen and to withstand an anaerobic environment with fluctuating temperatures. Furthermore, most dominant microbes were capable of metabolizing inorganic sulfur-related compounds (abundant in SHP). However, Acidithiobacillus ferrooxidans was the only species among key rare microbes with the capability to fix nitrogen, suggesting a key role in nitrogen cycling. In addition to potential metabolic interactions, based on the 16S rRNAs gene sequence of Nanoarchaeum-related and its potential host Ignicoccus-related archaea, as well as sequences of viruses and CRISPR arrays, we inferred that there were complex microbe-microbe interactions. In conclusion, our study provided evidence that there were numerous microbe-microbe and microbe-environment interactions within the microbial community in an acidic hot spring. We proposed that Hydrogenobaculum bacteria were the dominant microbial genus, as they were able to metabolize hydrogen, assimilate carbon and live in an anaerobic environment with fluctuating temperatures.

  20. Metabolic characteristics of dominant microbes and key rare species from an acidic hot spring in Taiwan revealed by metagenomics

    DOE PAGES

    Lin, Kuei -Han; Liao, Ben -Yang; Chang, Hao -Wei; ...

    2015-12-03

    Microbial diversity and community structures in acidic hot springs have been characterized by 16S rRNA gene-based diversity surveys. However, our understanding regarding the interactions among microbes, or between microbes and environmental factors, remains limited. In the present study, a metagenomic approach, followed by bioinformatics analyses, were used to predict interactions within the microbial ecosystem in Shi-Huang-Ping (SHP), an acidic hot spring in northern Taiwan. Characterizing environmental parameters and potential metabolic pathways highlighted the importance of carbon assimilatory pathways. Four distinct carbon assimilatory pathways were identified in five dominant genera of bacteria. Of those dominant carbon fixers, Hydrogenobaculum bacteria outcompeted othermore » carbon assimilators and dominated the SHP, presumably due to their ability to metabolize hydrogen and to withstand an anaerobic environment with fluctuating temperatures. Furthermore, most dominant microbes were capable of metabolizing inorganic sulfur-related compounds (abundant in SHP). However, Acidithiobacillus ferrooxidans was the only species among key rare microbes with the capability to fix nitrogen, suggesting a key role in nitrogen cycling. In addition to potential metabolic interactions, based on the 16S rRNAs gene sequence of Nanoarchaeum-related and its potential host Ignicoccus-related archaea, as well as sequences of viruses and CRISPR arrays, we inferred that there were complex microbe-microbe interactions. In conclusion, our study provided evidence that there were numerous microbe-microbe and microbe-environment interactions within the microbial community in an acidic hot spring. We proposed that Hydrogenobaculum bacteria were the dominant microbial genus, as they were able to metabolize hydrogen, assimilate carbon and live in an anaerobic environment with fluctuating temperatures.« less

  1. Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content.

    PubMed

    Sánchez-Andrea, Irene; Rodríguez, Nuria; Amils, Ricardo; Sanz, José Luis

    2011-09-01

    The Tinto River is an extreme environment located at the core of the Iberian Pyritic Belt (IPB). It is an unusual ecosystem due to its size (100 km long), constant acidic pH (mean pH, 2.3), and high concentration of heavy metals, iron, and sulfate in its waters, characteristics that make the Tinto River Basin comparable to acidic mine drainage (AMD) systems. In this paper we present an extensive survey of the Tinto River sediment microbiota using two culture-independent approaches: denaturing gradient gel electrophoresis and cloning of 16S rRNA genes. The taxonomic affiliation of the Bacteria showed a high degree of biodiversity, falling into 5 different phyla: Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria, and Actinobacteria; meanwhile, all the Archaea were affiliated with the order Thermoplasmatales. Microorganisms involved in the iron (Acidithiobacillus ferrooxidans, Sulfobacillus spp., Ferroplasma spp., etc.), sulfur (Desulfurella spp., Desulfosporosinus spp., Thermodesulfobium spp., etc.), and carbon (Acidiphilium spp., Bacillus spp., Clostridium spp., Acidobacterium spp., etc.) cycles were identified, and their distribution was correlated with physicochemical parameters of the sediments. Ferric iron was the main electron acceptor for the oxidation of organic matter in the most acid and oxidizing layers, so acidophilic facultative Fe(III)-reducing bacteria appeared widely in the clone libraries. With increasing pH, the solubility of iron decreases and sulfate-reducing bacteria become dominant, with the ecological role of methanogens being insignificant. Considering the identified microorganisms-which, according to the rarefaction curves and Good's coverage values, cover almost all of the diversity-and their corresponding metabolism, we suggest a model of the iron, sulfur, and organic matter cycles in AMD-related sediments.

  2. The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism.

    PubMed

    Auernik, Kathryne S; Maezato, Yukari; Blum, Paul H; Kelly, Robert M

    2008-02-01

    Despite their taxonomic description, not all members of the order Sulfolobales are capable of oxidizing reduced sulfur species, which, in addition to iron oxidation, is a desirable trait of biomining microorganisms. However, the complete genome sequence of the extremely thermoacidophilic archaeon Metallosphaera sedula DSM 5348 (2.2 Mb, approximately 2,300 open reading frames [ORFs]) provides insights into biologically catalyzed metal sulfide oxidation. Comparative genomics was used to identify pathways and proteins involved (directly or indirectly) with bioleaching. As expected, the M. sedula genome contains genes related to autotrophic carbon fixation, metal tolerance, and adhesion. Also, terminal oxidase cluster organization indicates the presence of hybrid quinol-cytochrome oxidase complexes. Comparisons with the mesophilic biomining bacterium Acidithiobacillus ferrooxidans ATCC 23270 indicate that the M. sedula genome encodes at least one putative rusticyanin, involved in iron oxidation, and a putative tetrathionate hydrolase, implicated in sulfur oxidation. The fox gene cluster, involved in iron oxidation in the thermoacidophilic archaeon Sulfolobus metallicus, was also identified. These iron- and sulfur-oxidizing components are missing from genomes of nonleaching members of the Sulfolobales, such as Sulfolobus solfataricus P2 and Sulfolobus acidocaldarius DSM 639. Whole-genome transcriptional response analysis showed that 88 ORFs were up-regulated twofold or more in M. sedula upon addition of ferrous sulfate to yeast extract-based medium; these included genes for components of terminal oxidase clusters predicted to be involved with iron oxidation, as well as genes predicted to be involved with sulfur metabolism. Many hypothetical proteins were also differentially transcribed, indicating that aspects of the iron and sulfur metabolism of M. sedula remain to be identified and characterized.

  3. Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur

    USGS Publications Warehouse

    Balci, N.; Mayer, B.; Shanks, Wayne C.; Mandernack, K.W.

    2012-01-01

    Studies of metal sulfide oxidation in acid mine drainage (AMD) systems have primarily focused on pyrite oxidation, although acid soluble sulfides (e.g., ZnS) are predominantly responsible for the release of toxic metals. We conducted a series of biological and abiotic laboratory oxidation experiments with pure and Fe-bearing sphalerite (ZnS & Zn 0.88Fe 0.12S), respectively, in order to better understand the effects of sulfide mineralogy and associated biogeochemical controls of oxidation on the resultant ?? 34S and ?? 18O values of the sulfate produced. The minerals were incubated in the presence and absence of Acidithiobacillus ferrooxidans at an initial solution pH of 3 and with water of varying ?? 18O values to determine the relative contributions of H 2O-derived and O 2-derived oxygen in the newly formed sulfate. Experiments were conducted under aerobic and anaerobic conditions using O 2 and Fe(III) aq as the oxidants, respectively. Aerobic incubations with A. ferrooxidans, and S o as the sole energy source were also conducted. The ??34SSO4 values from both the biological and abiotic oxidation of ZnS and ZnS Fe by Fe(III) aq produced sulfur isotope fractionations (??34SSO4-ZnS) of up to -2.6???, suggesting the accumulation of sulfur intermediates during incomplete oxidation of the sulfide. No significant sulfur isotope fractionation was observed from any of the aerobic experiments. Negative sulfur isotope enrichment factors (??34SSO4-ZnS) in AMD systems could reflect anaerobic, rather than aerobic pathways of oxidation. During the biological and abiotic oxidation of ZnS and ZnS Fe by Fe(III) aq all of the sulfate oxygen was derived from water, with measured ?? 18OSO 4-H 2O values of 8.2??0.2??? and 7.5??0.1???, respectively. Also, during the aerobic oxidation of ZnS Fe and S o by A. ferrooxidans, all of the sulfate oxygen was derived from water with similar measured ?? 18OSO 4-H 2O values of 8.1??0.1??? and 8.3??0.3???, respectively. During biological oxidation

  4. pH Gradient-Induced Heterogeneity of Fe(III)-Reducing Microorganisms in Coal Mining-Associated Lake Sediments▿ †

    PubMed Central

    Blöthe, Marco; Akob, Denise M.; Kostka, Joel E.; Göschel, Kathrin; Drake, Harold L.; Küsel, Kirsten

    2008-01-01

    Lakes formed because of coal mining are characterized by low pH and high concentrations of Fe(II) and sulfate. The anoxic sediment is often separated into an upper acidic zone (pH 3; zone I) with large amounts of reactive iron and a deeper slightly acidic zone (pH 5.5; zone III) with smaller amounts of iron. In this study, the impact of pH on the Fe(III)-reducing activities in both of these sediment zones was investigated, and molecular analyses that elucidated the sediment microbial diversity were performed. Fe(II) was formed in zone I and III sediment microcosms at rates that were approximately 710 and 895 nmol cm−3 day−1, respectively. A shift to pH 5.3 conditions increased Fe(II) formation in zone I by a factor of 2. A shift to pH 3 conditions inhibited Fe(II) formation in zone III. Clone libraries revealed that the majority of the clones from both zones (approximately 44%) belonged to the Acidobacteria phylum. Since moderately acidophilic Acidobacteria species have the ability to oxidize Fe(II) and since Acidobacterium capsulatum reduced Fe oxides at pHs ranging from 2 to 5, this group appeared to be involved in the cycling of iron. PCR products specific for species related to Acidiphilium revealed that there were higher numbers of phylotypes related to cultured Acidiphilium or Acidisphaera species in zone III than in zone I. From the PCR products obtained for bioleaching-associated bacteria, only one phylotype with a level of similarity to Acidithiobacillus ferrooxidans of 99% was obtained. Using primer sets specific for Geobacteraceae, PCR products were obtained in higher DNA dilutions from zone III than from zone I. Phylogenetic analysis of clone libraries obtained from Fe(III)-reducing enrichment cultures grown at pH 5.5 revealed that the majority of clones were closely related to members of the Betaproteobacteria, primarily species of Thiomonas. Our results demonstrated that the upper acidic sediment was inhabited by acidophiles or moderate

  5. pH gradient-induced heterogeneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments.

    PubMed

    Blöthe, Marco; Akob, Denise M; Kostka, Joel E; Göschel, Kathrin; Drake, Harold L; Küsel, Kirsten

    2008-02-01

    Lakes formed because of coal mining are characterized by low pH and high concentrations of Fe(II) and sulfate. The anoxic sediment is often separated into an upper acidic zone (pH 3; zone I) with large amounts of reactive iron and a deeper slightly acidic zone (pH 5.5; zone III) with smaller amounts of iron. In this study, the impact of pH on the Fe(III)-reducing activities in both of these sediment zones was investigated, and molecular analyses that elucidated the sediment microbial diversity were performed. Fe(II) was formed in zone I and III sediment microcosms at rates that were approximately 710 and 895 nmol cm(-3) day(-1), respectively. A shift to pH 5.3 conditions increased Fe(II) formation in zone I by a factor of 2. A shift to pH 3 conditions inhibited Fe(II) formation in zone III. Clone libraries revealed that the majority of the clones from both zones (approximately 44%) belonged to the Acidobacteria phylum. Since Acidobacterium capsulatum reduced Fe oxides at pHs ranging from 2 to 5, Acidobacteria might be involved in the cycling of iron [corrected]. PCR products specific for species related to Acidiphilium revealed that there were higher numbers of phylotypes related to cultured Acidiphilium or Acidisphaera species in zone III than in zone I. From the PCR products obtained for bioleaching-associated bacteria, only one phylotype with a level of similarity to Acidithiobacillus ferrooxidans of 99% was obtained. Using primer sets specific for Geobacteraceae, PCR products were obtained in higher DNA dilutions from zone III than from zone I. Phylogenetic analysis of clone libraries obtained from Fe(III)-reducing enrichment cultures grown at pH 5.5 revealed that the majority of clones were closely related to members of the Betaproteobacteria, primarily species of Thiomonas. Our results demonstrated that the upper acidic sediment was inhabited by acidophiles or moderate acidophiles which can also reduce Fe(III) under slightly acidic conditions. The majority of

  6. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.

    PubMed

    Bayat, Belgin; Sari, Bulent

    2010-02-15

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25+/-2 degrees C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25+/-2 degrees C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching>ferric chloride leaching>sulfuric acid

  7. Comparative genomic insights into ecophysiology of neutrophilic, microaerophilic iron oxidizing bacteria

    SciTech Connect

    Kato, Shingo; Ohkuma, Moriya; Powell, Deborah H.; Krepski, Sean T.; Oshima, Kenshiro; Hattori, Masahira; Shapiro, Nicole; Woyke, Tanja; Chan, Clara S.

    2015-11-13

    Neutrophilic microaerophilic iron-oxidizing bacteria (FeOB) are thought to play a significant role in cycling of carbon, iron and associated elements in both freshwater and marine iron-rich environments. However, the roles of the neutrophilic microaerophilic FeOB are still poorly understood due largely to the difficulty of cultivation and lack of functional gene markers. Here, we analyze the genomes of two freshwater neutrophilic microaerophilic stalk-forming FeOB, Ferriphaselus amnicola OYT1 and Ferriphaselus strain R-1. Phylogenetic analyses confirm that these are distinct species within Betaproteobacteria; we describe strain R-1 and propose the name F. globulitus. We compare the genomes to those of two freshwater Betaproteobacterial and three marine Zetaproteobacterial FeOB isolates in order to look for mechanisms common to all FeOB, or just stalk-forming FeOB. The OYT1 and R-1 genomes both contain homologs to cyc2, which encodes a protein that has been shown to oxidize Fe in the acidophilic FeOB, Acidithiobacillus ferrooxidans. This c-type cytochrome common to all seven microaerophilic FeOB isolates, strengthening the case for its common utility in the Fe oxidation pathway. In contrast, the OYT1 and R-1 genomes lack mto genes found in other freshwater FeOB. OYT1 and R-1 both have genes that suggest they can oxidize sulfur species. Both have the genes necessary to fix carbon by the Calvin–Benson– Basshom pathway, while only OYT1 has the genes necessary to fix nitrogen. The stalk-forming FeOB share xag genes that may help form the polysaccharide structure of stalks. Both OYT1 and R-1 make a novel biomineralization structure, short rod-shaped Fe oxyhydroxides much smaller than their stalks; these oxides are constantly shed, and may be a vector for C, P, and metal transport to downstream environments. Lastly, our results show that while different FeOB are adapted to particular niches, freshwater and marine FeOB likely share

  8. Comparative genomic insights into ecophysiology of neutrophilic, microaerophilic iron oxidizing bacteria

    DOE PAGES

    Kato, Shingo; Ohkuma, Moriya; Powell, Deborah H.; ...

    2015-11-13

    Neutrophilic microaerophilic iron-oxidizing bacteria (FeOB) are thought to play a significant role in cycling of carbon, iron and associated elements in both freshwater and marine iron-rich environments. However, the roles of the neutrophilic microaerophilic FeOB are still poorly understood due largely to the difficulty of cultivation and lack of functional gene markers. Here, we analyze the genomes of two freshwater neutrophilic microaerophilic stalk-forming FeOB, Ferriphaselus amnicola OYT1 and Ferriphaselus strain R-1. Phylogenetic analyses confirm that these are distinct species within Betaproteobacteria; we describe strain R-1 and propose the name F. globulitus. We compare the genomes to those of two freshwatermore » Betaproteobacterial and three marine Zetaproteobacterial FeOB isolates in order to look for mechanisms common to all FeOB, or just stalk-forming FeOB. The OYT1 and R-1 genomes both contain homologs to cyc2, which encodes a protein that has been shown to oxidize Fe in the acidophilic FeOB, Acidithiobacillus ferrooxidans. This c-type cytochrome common to all seven microaerophilic FeOB isolates, strengthening the case for its common utility in the Fe oxidation pathway. In contrast, the OYT1 and R-1 genomes lack mto genes found in other freshwater FeOB. OYT1 and R-1 both have genes that suggest they can oxidize sulfur species. Both have the genes necessary to fix carbon by the Calvin–Benson– Basshom pathway, while only OYT1 has the genes necessary to fix nitrogen. The stalk-forming FeOB share xag genes that may help form the polysaccharide structure of stalks. Both OYT1 and R-1 make a novel biomineralization structure, short rod-shaped Fe oxyhydroxides much smaller than their stalks; these oxides are constantly shed, and may be a vector for C, P, and metal transport to downstream environments. Lastly, our results show that while different FeOB are adapted to particular niches, freshwater and marine FeOB likely share common mechanisms for Fe

  9. Investigating the Copper Isotope Composition of Red Mountain Creek: a Stream Affected by Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Kimball, B. E.; Mathur, R.; Brantley, S. L.; Vervoort, J. D.

    2005-12-01

    Understanding the sources of metals and the processes that affect their transport in watersheds affected by acid mine drainage (AMD) is central to improving stream water quality. Using a new technique to address an old problem, we measured the 65Cu/63Cu ratios in filtered (pore size = 0.45μm or 0.22μm) and unfiltered samples of AMD-impacted streamwater collected during low-flow conditions from Red Mountain Creek near Silverton, Colorado. Red Mountain Creek is a small mountain stream receiving metal-rich, acidic drainage from acid-sulfate and quartz-sericite-pyrite alteration zones within dacitic-andesitic lavas and volcaniclastic sediments. We measured δ65Cu values [where δ65Cu = ((65Cu/63Cusample/65Cu/63Custandard) - 1) × 103] on a multi-collector inductively coupled plasma mass spectrometer; instrumental mass bias was corrected by doping with the Johnson-Mattey Zn solution and bracketing with the NIST976 standard. All samples are enriched in 65Cu, with δ65Cu values ranging from 1.03 ± 0.10‰ to 3.76 ± 0.10‰ (2σ). Higher values correspond to an inflow emanating from a mineshaft that shows the highest Cu concentration (10.4 mg/L). As Cu becomes less concentrated downstream, the δ65Cu values generally decrease. At two of the three sample locations, the filtered samples are more enriched in 65Cu than the unfiltered samples, which contain suspended precipitates. These results are consistent with previous batch-leach experiments showing that during dissolution of chalcopyrite (CuFeS2) and chalcocite (Cu2S) (with and without Acidithiobacillus ferrooxidans), Cu released into solution by leaching was enriched in 65Cu and Cu precipitates were depleted relative to the starting sulfide minerals. This fractionation may indicate that biotic (e.g., microbial metabolism) and/or abiotic processes (e.g., metal sorption and mineral precipitation) induce isotope effects during Cu partitioning. Future measurements of 65Cu/63Cu ratios in primary Cu-sulfide minerals and

  10. Comparative Genomic Insights into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria

    PubMed Central

    Kato, Shingo; Ohkuma, Moriya; Powell, Deborah H.; Krepski, Sean T.; Oshima, Kenshiro; Hattori, Masahira; Shapiro, Nicole; Woyke, Tanja; Chan, Clara S.

    2015-01-01

    Neutrophilic microaerophilic iron-oxidizing bacteria (FeOB) are thought to play a significant role in cycling of carbon, iron and associated elements in both freshwater and marine iron-rich environments. However, the roles of the neutrophilic microaerophilic FeOB are still poorly understood due largely to the difficulty of cultivation and lack of functional gene markers. Here, we analyze the genomes of two freshwater neutrophilic microaerophilic stalk-forming FeOB, Ferriphaselus amnicola OYT1 and Ferriphaselus strain R-1. Phylogenetic analyses confirm that these are distinct species within Betaproteobacteria; we describe strain R-1 and propose the name F. globulitus. We compare the genomes to those of two freshwater Betaproteobacterial and three marine Zetaproteobacterial FeOB isolates in order to look for mechanisms common to all FeOB, or just stalk-forming FeOB. The OYT1 and R-1 genomes both contain homologs to cyc2, which encodes a protein that has been shown to oxidize Fe in the acidophilic FeOB, Acidithiobacillus ferrooxidans. This c-type cytochrome common to all seven microaerophilic FeOB isolates, strengthening the case for its common utility in the Fe oxidation pathway. In contrast, the OYT1 and R-1 genomes lack mto genes found in other freshwater FeOB. OYT1 and R-1 both have genes that suggest they can oxidize sulfur species. Both have the genes necessary to fix carbon by the Calvin–Benson–Basshom pathway, while only OYT1 has the genes necessary to fix nitrogen. The stalk-forming FeOB share xag genes that may help form the polysaccharide structure of stalks. Both OYT1 and R-1 make a novel biomineralization structure, short rod-shaped Fe oxyhydroxides much smaller than their stalks; these oxides are constantly shed, and may be a vector for C, P, and metal transport to downstream environments. Our results show that while different FeOB are adapted to particular niches, freshwater and marine FeOB likely share common mechanisms for Fe oxidation electron

  11. Deterioration to extinction of wastewater bacteria by non-thermal atmospheric pressure air plasma as assessed by 16S rDNA-DGGE fingerprinting

    PubMed Central

    El-Sayed, Wael S.; Ouf, Salama A.; Mohamed, Abdel-Aleam H.

    2015-01-01

    The use of cold plasma jets for inactivation of a variety of microorganisms has recently been evaluated via culture-based methods. Accordingly, elucidation of the role of cold plasma in decontamination would be inaccurate because most microbial populations within a system remain unexplored owing to the high amount of yet uncultured bacteria. The impact of cold atmospheric plasma on the bacterial community structure of wastewater from two different industries was investigated by metagenomic-based polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) utilizing 16S rRNA genes. Three doses of atmospheric pressure dielectric barrier discharge plasma were applied to wastewater samples on different time scales. DGGE revealed that the bacterial community gradually changed and overall abundance decreased to extinction upon plasma treatment. The bacterial community in food processing wastewater contained 11 key operational taxonomic units that remained almost completely unchanged when exposed to plasma irradiation at 75.5 mA for 30 or 60 s. However, when exposure time was extended to 90 s, only Escherichia coli, Coliforms, Aeromonas sp., Vibrio sp., and Pseudomonas putida survived. Only E. coli, Aeromonas sp., Vibrio sp., and P. putida survived treatment at 81.94 mA for 90 s. Conversely, all bacterial groups were completely eliminated by treatment at 85.34 mA for either 60 or 90 s. Dominant bacterial groups in leather processing wastewater also changed greatly upon exposure to plasma at 75.5 mA for 30 or 60 s, with Enterobacter aerogenes, Klebsiella sp., Pseudomonas stutzeri, and Acidithiobacillus ferrooxidans being sensitive to and eliminated from the community. At 90 s of exposure, all groups were affected except for Pseudomonas sp. and Citrobacter freundii. The same trend was observed for treatment at 81.94 mA. The variability in bacterial community response to different plasma treatment protocols revealed that plasma had a selective impact on bacterial

  12. Microbial life in volcanic/geothermal areas: how soil geochemistry shapes microbial communities

    NASA Astrophysics Data System (ADS)

    Gagliano, Antonina Lisa; D'Alessandro, Walter; Franzetti, Andrea; Parello, Francesco; Tagliavia, Marcello; Quatrini, Paola

    2015-04-01

    Extreme environments, such as volcanic/geothermal areas, are sites of complex interactions between geosphere and biosphere. Although biotic and abiotic components are strictly related, they were separately studied for long time. Nowadays, innovative and interdisciplinary approaches are available to explore microbial life thriving in these environments. Pantelleria island (Italy) hosts a high enthalpy geothermal system characterized by high CH4 and low H2S fluxes. Two selected sites, FAV1 and FAV2, located at Favara Grande, the main exhalative area of the island, show similar physical conditions with a surface temperature close to 60° C and a soil gas composition enriched in CH4, H2 and CO2. FAV1 soil is characterized by harsher conditions (pH 3.4 and 12% of H2O content); conversely, milder conditions were recorded at site FAV2 (pH 5.8 and 4% of H2O content). High methanotrophic activity (59.2 nmol g-1 h-1) and wide diversity of methanotrophic bacteria were preliminary detected at FAV2, while no activity was detected at FAV1(1). Our aim was to investigate how the soil microbial communities of these two close geothermal sites at Pantelleria island respond to different geochemical conditions. Bacterial and Archaeal communities of the sites were investigated by MiSeq Illumina sequencing of hypervariable regions of the 16S rRNA gene. More than 33,000 reads were obtained for Bacteria and Archaea from soil samples of the two sites. At FAV1 99% of the bacterial sequences were assigned to four main phyla (Proteobacteria, Firmicutes, Actinobacteria and Chloroflexi). FAV2 sequences were distributed in the same phyla with the exception of Chloroflexi that was represented below 1%. Results indicate a high abundance of thermo-acidophilic chemolithotrophs in site FAV1 dominated by Acidithiobacillus ferrooxidans (25%), Nitrosococcus halophilus (10%), Alicyclobacillus spp. (7%) and the rare species Ktedonobacter racemifer (11%). The bacterial community at FAV2 soil is dominated by

  13. Astrobiological Significance of Microbial Extremophiles

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2007-01-01

    The microflora of the cryosphere of planet Earth provides the best analogs for life forms that might be found in the permafrost or polar ice caps of Mars, near the surface of the cometary nuclei, or in the liquid water beneath and the ice crusts of icy moons of Jupiter and Saturn. The importance of study alkaliphilic microorganisms for astrobiology was enhanced by the findings of abundant carbonates and carbonate globules rimmed with possibly biogenic magnetites in association with the putative microfossils in the ALH84001 meteorite. Although the ALH84001 "nanofossils" were to small and simple to be unambiguously recognized as biogenic, they stimulated Astrobiology research and studies of microbial extremophiles and biomarkers in ancient rocks and meteorites. Recent studies of CI and CM carbonaceous meteorites have resulted in the detection of the well-preserved mineralized remains of coccoidal and filamentous microorganisms in cyanobacterial mats. Energy Dispersive X-ray Analysis has shown anomalous biogenic element ratios clearly indicating they are not recent biological contaminants. This paper reviews microbial extremophiles in context of their significance to Astrobiology. The study of halophilic microorganisms was started from work with saline soils and lakes, and one of the record of good growth for Haloferax mediterranei was shown at 30 percent NaC1. Although alkali-tolerant nitrifying bacteria had previously been reported, the first described alkaliphilic microorganism was the bacterium Streptococcus faecalis. Halophilic and alkaliphilic forms are relevant to conditions that might be found in closed impact basins and craters on Mars filled with evaporite deposits. The first obligately acidophilic bacterium described was Acidithiobacillus ferrooxydans (formally Thiobacillus ferrooxidans). Later thermophilic lithotrophic acidophiles were found, and the hyperacidophilic moderately thermophilic species of the genus Picrophilus were found to grow at negative p

  14. Sources and Contributions of Oxygen During Microbial Pyrite Oxidation: the Triple Oxygen Isotopes of Sulfate

    NASA Astrophysics Data System (ADS)

    Ziegler, K.; Coleman, M. L.; Mielke, R. E.; Young, E. D.

    2008-12-01

    The triple isotopes of oxygen (Δ17O' = δ17O'-0.528 × δ18O' using logarithmic deltas) can trace the oxygen sources of sulfate produced during sulfide oxidation, an important biogeochemical process on Earth's surface and possibly also on Mars [1]. δ18OSO4 compositions are determined by the isotopic selectivity of the mechanism(s) responsible for their changes, and the δ18O value of the reactants (O2 vs. H2O). The relative proportional importance and contribution of each of those sources and mechanisms, as well as their associated isotopic fractionations, are not well understood. We are investigating the use of Δ 17O as a quantitative and qualitative tracer for the different processes and oxygen sources involved in sulfate production. Δ17O signatures are distinct fingerprints of these reservoirs, independent of fractionation factors that can be ambiguous. We conducted controlled abiotic and biotic (Acidithiobacillus ferrooxidans, A.f.) laboratory experiments in which water was spiked with 18O, allowing us to quantify the sources of sulfate oxygen and therefore the processes attending sulfate formation. Results of this Δ17O tracer study show that A.f. microbes initiate pyrite S-oxidation within hours of exposure, and that sulfate is produced from ~90% atmospheric oxygen. This initial lag-phase (< 3 days) is characterized by subtle and multiple changes in oxygen source and contribution that is likely due to the adjustment of the microbial metabolism from S to Fe2+-oxidation. A more detailed understanding of the microbial mechanisms and behavior in the initial lag-phase will aid in the understanding of the ecological conditions required for microbial populations to establish and survive. An exponential phase of growth, facilitated by microbial Fe2+-oxidation, follows. The source of sulfate rapidly switches to abiotic sulfide oxidation during exponential growth and the source of oxygen switches from atmospheric O2 to nearly ~100% water. Pending acquisition of

  15. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite

    USGS Publications Warehouse

    Balci, N.; Shanks, Wayne C.; Mayer, B.; Mandernack, K.W.

    2007-01-01

    To better understand reaction pathways of pyrite oxidation and biogeochemical controls on ??18O and ??34S values of the generated sulfate in acid mine drainage (AMD) and other natural environments, we conducted a series of pyrite oxidation experiments in the laboratory. Our biological and abiotic experiments were conducted under aerobic conditions by using O2 as an oxidizing agent and under anaerobic conditions by using dissolved Fe(III)aq as an oxidant with varying ??18OH2O values in the presence and absence of Acidithiobacillus ferrooxidans. In addition, aerobic biological experiments were designed as short- and long-term experiments where the final pH was controlled at ???2.7 and 2.2, respectively. Due to the slower kinetics of abiotic sulfide oxidation, the aerobic abiotic experiments were only conducted as long term with a final pH of ???2.7. The ??34SSO4 values from both the biological and abiotic anaerobic experiments indicated a small but significant sulfur isotope fractionation (???-0.7???) in contrast to no significant fractionation observed from any of the aerobic experiments. Relative percentages of the incorporation of water-derived oxygen and dissolved oxygen (O2) to sulfate were estimated, in addition to the oxygen isotope fractionation between sulfate and water, and dissolved oxygen. As expected, during the biological and abiotic anaerobic experiments all of the sulfate oxygen was derived from water. The percentage incorporation of water-derived oxygen into sulfate during the oxidation experiments by O2 varied with longer incubation and lower pH, but not due to the presence or absence of bacteria. These percentages were estimated as 85%, 92% and 87% from the short-term biological, long-term biological and abiotic control experiments, respectively. An oxygen isotope fractionation effect between sulfate and water (??18 OSO4 s(-) H2 O) of ???3.5??? was determined for the anaerobic (biological and abiotic) experiments. This measured ??18 OSO42 - s(-) H2

  16. Flagella and pili of iron-oxidizing thiobacilli isolated from a uranium mine in northern Ontario, Canada

    SciTech Connect

    DiSpirito, A.A.; Silver, M.; Voss, L.; Tuovinen, O.H.

    1982-05-01

    Five strains of Thiobacillus ferrooxidans, which included three recent isolates from a uranium mine, possessed flagella. Three of the strains had several pili per cell. The dimensions, fine structure, and orientation of the flagella were different. Both polar and peritrichous flagella were observed, indicating strain-dependent ultrastructural variation in acidophilic thiobacilli. Neither flagella nor pili were detected in eight other strains of T. ferrooxidans and two strains of Thiobacillus acidophilus by electron microscopy, although all of the cultures contained motile cells.

  17. Enzyme-Linked Immunofiltration Assay To Estimate Attachment of Thiobacilli to Pyrite

    PubMed Central

    Dziurla, Marie-Antoinette; Achouak, Wafa; Lam, Bach-Tuyet; Heulin, Thierry; Berthelin, Jacques

    1998-01-01

    An enzyme-linked immunofiltration assay (ELIFA) has been developed in order to estimate directly and specifically Thiobacillus ferrooxidans attachment on sulfide minerals. This method derives from the enzyme-linked immunosorbent assay but is performed on filtration membranes which allow the retention of mineral particles for a subsequent immunoenzymatic reaction in microtiter plates. The polyclonal antiserum used in this study was raised against T. ferrooxidans DSM 583 and recognized cell surface antigens present on bacteria belonging to the genus Thiobacillus. This antiserum and the ELIFA allowed the direct quantification of attached bacteria with high sensitivity (104 bacteria were detected per well of the microtiter plate). The mean value of bacterial attachment has been estimated to be about 105 bacteria mg−1 of pyrite at a particle size of 56 to 65 μm. The geometric coverage ratio of pyrite by T. ferrooxidans ranged from 0.25 to 2.25%. This suggests an attachment of T. ferrooxidans on the pyrite surface to well-defined limited sites with specific electrochemical or surface properties. ELIFA was shown to be compatible with the measurement of variable levels of adhesion. Therefore, this method may be used to establish adhesion isotherms of T. ferrooxidans on various sulfide minerals exhibiting different physicochemical properties in order to understand the mechanisms of bacterial interaction with mineral surfaces. PMID:9687454

  18. Development of an enzyme-linked immunosorbent assay to determine the numbers of chemolithotrophic bacteria at acid-mine-drainage sites. Technical report (Final)

    SciTech Connect

    Blake, R.C.; Revis, N.W.; Holdsworth, G.

    1990-09-01

    Thiobacillus ferrooxidans is a prominent member of a group of chemo-lithotrophic bacteria that bear principal responsibility for the formation of acid mine drainage. A prototype enzyme-linked immunosorbent assay (ELISA) for enumerating and qualifying T. ferrooxidans was assembled and characterized. The immunoassay protocol consisted of sequential incubations of the sample with (i) the primary antibody, (ii) the enzyme-labeled secondary antibody, and (iii) a chromogenic substrate specific for the enzyme lable. The necessary reagents comprised primary polyclonal rabbit antibodies directed against T. ferrooxidans ATCC 23270, alkaline phosphatase-copled goat anti-rabbit polyclonal antibodies, and phenolphrhalein monophosphate. The ELISA developed herein correctly identified whether iron-oxidizing bacteria were present in each of 4 samples supplied and analyzed by an independent laboratory. Sufficient preliminary data was obtained to warrant further research and development activities.

  19. Influence of Thiobacillus Ferroxidans Biofilm on the Corrosion Behavior of Steel A3

    NASA Astrophysics Data System (ADS)

    Li, Songmei; Zhang, Yuanyuan; Liu, Jianhua; Yu, Mei

    Electrochemical measurement and surface analysis methods were employed to investigate the Microbiologically Influenced Corrosion (MIC) influenced by Thiobacillus ferrooxidans biofilm. Electrochemical impedance spectroscopy (EIS) results indicated that the impedance value of steel A3 after 21 days of immersion in sterile solution was much higher than that of T.f solution. Atomic Force Microscopy (AFM) results showed the adsorption state of the microorganism on the metal surface for 7 days of exposure in T.f solution. The morphologies of the surface film were analyzed with the Scanning Electron Microscope (SEM), which showed the changes with exposure time of the film on the metal surface. The special morphology and the heterogeneity of Thiobacillus ferrooxidans biofilm induced the localized corrosion of steel A3. After 21 days of exposure, general corrosion occurred in the sterile solution, while localized corrosion was detected under the effect of Thiobacillus ferrooxidans.

  20. Draft Genome Sequence of a Novel Acidophilic Iron-Oxidizing Firmicutes Species, “Acidibacillus ferrooxidans” (SLC66T)

    PubMed Central

    Ñancucheo, Ivan; Oliveira, Renato; Dall’Agnol, Hivana; Johnson, D. Barrie; Grail, Barry; Holanda, Roseanne; Nunes, Gisele Lopes; Cuadros-Orellana, Sara

    2016-01-01

    Here, we present the draft genome sequence of the type strain of “Acidibacillus ferrooxidans,” a mesophilic, heterotrophic, and acidophilic bacterium that was isolated from mine spoilage subjected to accelerated weathering in humidity cell tests carried out by the former U.S. Bureau of Mines in Salt Lake City, UT. PMID:27198020

  1. Treatment of leather industry wastewater by aerobic biological and Fenton oxidation process.

    PubMed

    Mandal, Tamal; Dasgupta, Dalia; Mandal, Subhasis; Datta, Siddhartha

    2010-08-15

    Degradation of leather industry wastewater by sole aerobic treatment incorporating Thiobacillus ferrooxidans, Fenton's reagents, and combined treatment was investigated in this study. The sole treatment by Fenton's oxidation involving the introduction of 6g FeSO(4) and 266 g H(2)O(2) in a liter of wastewater at pH of 3.5 and 30 degrees C for 30 min at batch conditions reduced COD, BOD(5), sulfide, total chromium and color up to 69%, 72%, 88%, 5%, 100% and T. ferrooxidans alone showed maximum reduction to an extent of 77, 80, 85, 52, 89, respectively, in 21 d treatment at pH 2.5, FeSO(4) 16 g/L and temperature of 30 degrees C. The combined treatment at batch conditions involving 30 min chemical treatment by Fenton's oxidation followed by 72 h biochemical treatment by T. ferrooxidans at batch conditions gave rise up to 93%, 98%, 72%, 62% and 100% removal efficiencies of COD, BOD, sulfide, chromium and color at pH of 2.5 and 30 degrees C. Decrease in photo absorption of the Fenton's reagent treated samples, as compared to the banks, at 280, 350 and 470 nm wave lengths was observed. This may be the key factor for stimulating the biodegradation by T. ferrooxidans.

  2. Visualizing tributyltin (TBT) in bacterial aggregates by specific rhodamine-based fluorescent probes.

    PubMed

    Jin, Xilang; Hao, Likai; She, Mengyao; Obst, Martin; Kappler, Andreas; Yin, Bing; Liu, Ping; Li, Jianli; Wang, Lanying; Shi, Zhen

    2015-01-01

    Here we present the first examples of fluorescent and colorimetric probes for microscopic TBT imaging. The fluorescent probes are highly selective and sensitive to TBT and have successfully been applied for imaging of TBT in bacterial Rhodobacter ferrooxidans sp. strain SW2 cell-EPS-mineral aggregates and in cell suspensions of the marine cyanobacterium Synechococcus PCC 7002 by using confocal laser scanning microscopy.

  3. High-throughput amplicon sequencing reveals distinct communities within a corroding concrete sewer system.

    PubMed

    Cayford, Barry I; Dennis, Paul G; Keller, Jurg; Tyson, Gene W; Bond, Philip L

    2012-10-01

    Microbially induced concrete corrosion (MICC) is an important problem in sewers. Here, small-subunit (SSU) rRNA gene amplicon pyrosequencing was used to characterize MICC communities. Microbial community composition differed between wall- and ceiling-associated MICC layers. Acidithiobacillus spp. were present at low abundances, and the communities were dominated by other sulfur-oxidizing-associated lineages.

  4. High-Throughput Amplicon Sequencing Reveals Distinct Communities within a Corroding Concrete Sewer System

    PubMed Central

    Dennis, Paul G.; Keller, Jurg; Tyson, Gene W.

    2012-01-01

    Microbially induced concrete corrosion (MICC) is an important problem in sewers. Here, small-subunit (SSU) rRNA gene amplicon pyrosequencing was used to characterize MICC communities. Microbial community composition differed between wall- and ceiling-associated MICC layers. Acidithiobacillus spp. were present at low abundances, and the communities were dominated by other sulfur-oxidizing-associated lineages. PMID:22843532

  5. Indirect Redox Transformations of Iron, Copper, and Chromium Catalyzed by Extremely Acidophilic Bacteria

    PubMed Central

    Johnson, D. Barrie; Hedrich, Sabrina; Pakostova, Eva

    2017-01-01

    Experiments were carried out to examine redox transformations of copper and chromium by acidophilic bacteria (Acidithiobacillus, Leptospirillum, and Acidiphilium), and also of iron (III) reduction by Acidithiobacillus spp. under aerobic conditions. Reduction of iron (III) was found with all five species of Acidithiobacillus tested, grown aerobically on elemental sulfur. Cultures maintained at pH 1.0 for protracted periods displayed increasing propensity for aerobic iron (III) reduction, which was observed with cell-free culture liquors as well as those containing bacteria. At. caldus grown on hydrogen also reduced iron (III) under aerobic conditions, confirming that the unknown metabolite(s) responsible for iron (III) reduction were not (exclusively) sulfur intermediates. Reduction of copper (II) by aerobic cultures of sulfur-grown Acidithiobacillus spp. showed similar trends to iron (III) reduction in being more pronounced as culture pH declined, and occurring in both the presence and absence of cells. Cultures of Acidithiobacillus grown anaerobically on hydrogen only reduced copper (II) when iron (III) (which was also reduced) was also included; identical results were found with Acidiphilium cryptum grown micro-aerobically on glucose. Harvested biomass of hydrogen-grown At. ferridurans oxidized iron (II) but not copper (I), and copper (I) was only oxidized by growing cultures of Acidithiobacillus spp. when iron (II) was also included. The data confirmed that oxidation and reduction of copper were both mediated by acidophilic bacteria indirectly, via iron (II) and iron (III). No oxidation of chromium (III) by acidophilic bacteria was observed even when, in the case of Leptospirillum spp., the redox potential of oxidized cultures exceeded +900 mV. Cultures of At. ferridurans and A. cryptum reduced chromium (VI), though only when iron (III) was also present, confirming an indirect mechanism and contradicting an earlier report of direct chromium reduction by A

  6. Sulfur Chemistry in Bacterial Leaching of Pyrite

    PubMed Central

    Schippers, A.; Jozsa, P.; Sand, W.

    1996-01-01

    In the case of pyrite bioleaching by Leptospirillum ferrooxidans, an organism without sulfur-oxidizing capacity, besides the production of tetra- and pentathionate, a considerable accumulation of elemental sulfur occurred. A similar result was obtained for chemical oxidation assays with acidic, sterile iron(III) ion-containing solutions. In the case of Thiobacillus ferrooxidans, only slight amounts of elemental sulfur were detectable because of the organism's capacity to oxidize sulfur compounds. In the course of oxidative, chemical pyrite degradation under alkaline conditions, the accumulation of tetrathionate, trithionate, and thiosulfate occurred. The data indicate that thiosulfate, trithionate, tetrathionate, and disulfane-monosulfonic acid are key intermediate sulfur compounds in oxidative pyrite degradation. A novel (cyclic) leaching mechanism is proposed which basically is indirect. PMID:16535406

  7. Isolation of sulfur reducing and oxidizing bacteria found in contaminated drywall.

    PubMed

    Hooper, Dennis G; Shane, John; Straus, David C; Kilburn, Kaye H; Bolton, Vincent; Sutton, John S; Guilford, Frederick T

    2010-02-05

    Drywall from China has been reported to release sulfur producing products which are corrosive to metals, result in noxious odors, and represent a significant health risk. It has been reported that these emissions produce medical symptoms such as respiratory or asthma type problems, sinusitis, gastrointestinal disorders, and vision problems in home owners and their household pets. We report here a method of identifying a causative agent for these emissions by sampling affected gypsum wallboard and subjecting those samples to Real Time Polymerase Chain Reaction [RT-PCR] studies. Specific DNA probes and primers have been designed and patented that detect a specific iron and sulfur reducing bacterium (i.e., Thiobacillus ferrooxidans). One hundred percent of affected drywall samples obtained from homes located in the southeastern United States tested positive for the presence of T. ferrooxidans. All negative controls consisting of unaffected wallboard and internal controls, Geotrichum sp., tested negative within our limits of detection.

  8. Molecular biological enhancement of coal biodesulfurization. Final technical report

    SciTech Connect

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D. Jr.; Baker, B.; Palmer, D.T.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N.; Chakravarty, L.; Tuovinen, O.H.

    1992-10-08

    Progress is reported in understanding Thiobacillus molecular biology, specifically in the area of vector development. At the initiation of this program, the basic elements needed for performing genetic engineering in T. ferrooxidans were either not yet developed. Improved techniques are described which will make it easier to construct and analyze the genetic structure and metabolism of recombinant T. ferrooxidans. The metabolism of the model organic sulfur compound dibenzothiophene (DBT) by certain heterotrophic bacteria was confirmed and characterized. Techniques were developed to analyze the metabolites of DBT, so that individual 4S pathway metabolites could be distinguished. These techniques are expected to be valuable when engineering organic sulfur metabolism in Thiobacillus. Strain isolation techniques were used to develop pure cultures of T. ferrooxidans seven of which were assessed as potential recombinant hosts. The mixotrophic strain T. coprinus was also characterized for potential use as an electroporation host. A family of related Thiobacillus plasmids was discovered in the seven strains of P. ferrooxidans mentioned above. One of these plasmids, pTFI91, was cloned into a pUC-based plasmid vector, allowing it to propagate in E. coli. A key portion of the cloned plasmid was sequenced. This segment, which is conserved in all of the related plasmids characterized, contains the vegetative origin of DNA replication, and fortuitously, a novel insertion sequence, designated IS3091. The sequence of the DNA origin revealed that these Thiobacillus plasmids represent a unique class of replicons not previously described. The potentially useful insertion sequence IS3091 was identified as a new member of a previously undefined family of insertion sequences which include the E. coli element IS30.

  9. Molecular biological enhancement of coal biodesulfurization

    SciTech Connect

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D. Jr.; Baker, B.; Palmer, D.T.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N. ); Chakravarty, L.; Tuovinen, O.H. )

    1992-10-08

    Progress is reported in understanding Thiobacillus molecular biology, specifically in the area of vector development. At the initiation of this program, the basic elements needed for performing genetic engineering in T. ferrooxidans were either not yet developed. Improved techniques are described which will make it easier to construct and analyze the genetic structure and metabolism of recombinant T. ferrooxidans. The metabolism of the model organic sulfur compound dibenzothiophene (DBT) by certain heterotrophic bacteria was confirmed and characterized. Techniques were developed to analyze the metabolites of DBT, so that individual 4S pathway metabolites could be distinguished. These techniques are expected to be valuable when engineering organic sulfur metabolism in Thiobacillus. Strain isolation techniques were used to develop pure cultures of T. ferrooxidans seven of which were assessed as potential recombinant hosts. The mixotrophic strain T. coprinus was also characterized for potential use as an electroporation host. A family of related Thiobacillus plasmids was discovered in the seven strains of P. ferrooxidans mentioned above. One of these plasmids, pTFI91, was cloned into a pUC-based plasmid vector, allowing it to propagate in E. coli. A key portion of the cloned plasmid was sequenced. This segment, which is conserved in all of the related plasmids characterized, contains the vegetative origin of DNA replication, and fortuitously, a novel insertion sequence, designated IS3091. The sequence of the DNA origin revealed that these Thiobacillus plasmids represent a unique class of replicons not previously described. The potentially useful insertion sequence IS3091 was identified as a new member of a previously undefined family of insertion sequences which include the E. coli element IS30.

  10. AGGIESAT 1

    DTIC Science & Technology

    2007-03-31

    electricity from glucose & oxygen via bacteria . Radiodurans, a radiation resistant bacteria , which can survive under continuous high dose radiation...oxidize glucose and transfer electrons to a platinum electrode. Another type of bacteria , ferrooxidan, obtains electrons from Fe2+ and a cathode platinum...K- 12 students. * AZeroG: 4 teams of undergrads have flown microgravity experiments on the KC-135. " ASU CanSat: Students build soda-can-sized

  11. Microbial recovery of metals from spent catalysts

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1990-01-01

    The second quarter of 1990 was one of peripheral progress on the project of reclaiming molybdenum and nickel from spent coal liquefaction catalysts. We defined some important parameters for future research and we were able to clear up ambiguities in some of the past approaches and the problems uniquely associated with the ability of T. ferrooxidans to leach both Ni{sup ++} and molybdate from spent, alumina supported catalyst from the Wilsonville pilot project. We were also able to show the T. ferrooxidans was very sensitive to molybdate and extremely sensitive to tungstate, but showed relatively little sensitivity for the related elements chromate, vanadate and for the catalyst associated metal, Ni{sup ++}. There appears to be no negative synergistic effects between Ni{sup ++} and molybdate for growth, which bodies well for processes to reclaim both these metals from spent coal liquefaction catalysts. We have shown that T. ferrooxidans is indeed capable of leaching molybdate and Ni{sup ++} from spent catalysts if the catalyst is washed extensively with both an organic solvent such as tetrahydrofuran to remove the oily contaminants and an aqueous acidic medium to remove readily solubilized N{sup ++} and molybdate. It is possible to extract into an acidic medium enough molybdate from THF washed spent catalyst within 24 hr to completely inhibit the growth of all tested T. ferrooxidans strains. The stage is now set for the development of a molybdate tolerant strain to be used for actual leaching of the spent catalyst. We are currently seeking simpler ways of pretreating the raw spent catalyst in order to make it more amenable to microbial leaching and possibly produce an economic and feasible technology.

  12. Microbial recovery of metals from spent catalysts. Quarterly report, April--June, 1990

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1990-12-31

    The second quarter of 1990 was one of peripheral progress on the project of reclaiming molybdenum and nickel from spent coal liquefaction catalysts. We defined some important parameters for future research and we were able to clear up ambiguities in some of the past approaches and the problems uniquely associated with the ability of T. ferrooxidans to leach both Ni{sup ++} and molybdate from spent, alumina supported catalyst from the Wilsonville pilot project. We were also able to show the T. ferrooxidans was very sensitive to molybdate and extremely sensitive to tungstate, but showed relatively little sensitivity for the related elements chromate, vanadate and for the catalyst associated metal, Ni{sup ++}. There appears to be no negative synergistic effects between Ni{sup ++} and molybdate for growth, which bodies well for processes to reclaim both these metals from spent coal liquefaction catalysts. We have shown that T. ferrooxidans is indeed capable of leaching molybdate and Ni{sup ++} from spent catalysts if the catalyst is washed extensively with both an organic solvent such as tetrahydrofuran to remove the oily contaminants and an aqueous acidic medium to remove readily solubilized N{sup ++} and molybdate. It is possible to extract into an acidic medium enough molybdate from THF washed spent catalyst within 24 hr to completely inhibit the growth of all tested T. ferrooxidans strains. The stage is now set for the development of a molybdate tolerant strain to be used for actual leaching of the spent catalyst. We are currently seeking simpler ways of pretreating the raw spent catalyst in order to make it more amenable to microbial leaching and possibly produce an economic and feasible technology.

  13. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed. The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts. For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates. 54 figs.

  14. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  15. Molecular characterization of bacterial respiration on minerals. Final technical report, August 4, 1994--August 3, 1996

    SciTech Connect

    Blake, R. II

    1996-12-31

    The scope of work outlined in the original proposal contained two specific aims. Highlights of the results obtained and published on each specific aim during the grant period in question are summarized. The first aim continued the identification, separation, and characterization of the cellular components necessary for aerobic respiration on iron. An electrochemical apparatus for the large scale cultivation of chemolithotrophic bacteria that respire aerobically on ferrous ions was perfected. The kinetic properties of an acid-stable iron:rusticyanin oxidoreductase from T. ferrooxidans were determined. The overall tertiary structure of rusticyanin in solution was elucidated from a combination of homonuclear proton and heteronuclear {sup 15}N-edited NMR spectra. An artificial gene for rusticyanin was designed, synthesized, and successfully expressed in E. coli. The X-ray crystallographic structure of rusticyanin was solved to a resolution of 1.9 {angstrom} by multiwavelength anomalous dispersion (MAD) phasing. The second aim initiated an investigation of the molecular principles whereby these bacteria recognize and adhere to their insoluble inorganic substrates. The electrophoretic mobility of T. ferrooxidans with and without its insoluble substrates was determined by laser Doppler velocimetry under physiological conditions. The adherence of T. ferrooxidans to the surface of pyrite was observed directly in a video-enhanced light microscope.

  16. Isolation and characterisation of mineral-oxidising "Acidibacillus" spp. from mine sites and geothermal environments in different global locations.

    PubMed

    Holanda, Roseanne; Hedrich, Sabrina; Ňancucheo, Ivan; Oliveira, Guilherme; Grail, Barry M; Johnson, D Barrie

    2016-09-01

    Eight strains of acidophilic bacteria, isolated from mine-impacted and geothermal sites from different parts of the world, were shown to form a distinct clade (proposed genus "Acidibacillus") within the phylum Firmicutes, well separated from the acidophilic genera Sulfobacillus and Alicyclobacillus. Two of the strains (both isolated from sites in Yellowstone National Park, USA) were moderate thermophiles that oxidised both ferrous iron and elemental sulphur, while the other six were mesophiles that also oxidised ferrous iron, but not sulphur. All eight isolates reduced ferric iron to varying degrees. The two groups shared <95% similarity of their 16S rRNA genes and were therefore considered to be distinct species: "Acidibacillus sulfuroxidans" (moderately thermophilic isolates) and "Acidibacillus ferrooxidans" (mesophilic isolates). Both species were obligate heterotrophs; none of the eight strains grew in the absence of organic carbon. "Acidibacillus" spp. were generally highly tolerant of elevated concentrations of cationic transition metals, though "A. sulfuroxidans" strains were more sensitive to some (e.g. nickel and zinc) than those of "A. ferrooxidans". Initial annotation of the genomes of two strains of "A. ferrooxidans" revealed the presence of genes (cbbL) involved in the RuBisCO pathway for CO2 assimilation and iron oxidation (rus), though with relatively low sequence identities.

  17. Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite

    USGS Publications Warehouse

    Taylor, B.E.; Wheeler, M.C.; Nordstrom, D.K.

    1984-01-01

    Sulfate and water from experiments in which pyrite was oxidized at a pH of 2.0 were analyzed for sulfur and oxygen stable isotopes. Experiments were conducted under both aerobic and anaerobic sterile conditions, as well as under aerobic conditions in the presence of Thiobacillus ferrooxidans, to elucidate the pathways of oxidation. Oxygen isotope fractionation between SO2-4 and H2O varied from +4.0 %. (anaerobic, sterile) to + 18.0 %. (aerobic, with T. ferrooxidans.). The oxygen isotope composition of dissolved oxygen utilized in both chemical and microbially-mediated oxidation was also determined (+11.4 %., by T. ferrooxidans; +18.4 %., chemical). Contributions of water-derived oxygen and dissolved oxygen to the sulfate produced in the oxidation of pyrite could thus be estimated. Water-derived oxygen constituted from 23 to ~ 100 percent of the oxygen in the sulfate produced in the experiments, and this closely approximates the range of contribution in natural acid mine drainage. Oxidation of sulfides in anaerobic, water-saturated environments occurs primarily by chemical oxidation pathways, whereas oxidation of sulfides in well-aerated, unsaturated zone environments occurs dominantly by microbially mediated pathways. ?? 1984.

  18. Kinetics of the Removal of Iron Pyrite from Coal by Microbial Catalysis

    PubMed Central

    Hoffmann, Michael R.; Faust, Bruce C.; Panda, Fern A.; Koo, Hong H.; Tsuchiya, Henry M.

    1981-01-01

    Different strains of Thiobacillus ferrooxidans and Thiobacillus thiooxidans were used to catalyze the oxidative dissolution of iron pyrite, FeS2, in nine different coal samples. Kinetic variables and parametric factors that were determined to have a pronounced effect on the rate and extent of oxidative dissolution at a fixed Po2 were: the bacterial strain, the nitrogen/phosphorus molar ratio, the partial pressure of CO2, the coal source, and the total reactive surface area of FeS2. The overall rate of leaching, which exhibited a first-order dependence on the total surface area of FeS2, was analyzed mathematically in terms of the sum of a biochemical rate, ν1, and a chemical rate, ν2. Results of this study show that bacterial desulfurization (90 to 98%) of coal samples which are relatively high in pyritic sulfur can be achieved within a time-frame of 8 to 12 days when pulp densities are ≤20% and particle sizes are ≤74 μm. The most effective strains of T. ferrooxidans were those that were isolated from natural systems, and T. ferrooxidans ATCC 19859 was the most effective pure strain. The most effective nutrient media contained relatively low phosphate concentrations, with an optimal N/P molar ratio of 90:1. These results suggest that minimal nutrient additions may be required for a commercial desulfurization process. PMID:16345826

  19. Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments.

    PubMed

    Hegler, Florian; Posth, Nicole R; Jiang, Jie; Kappler, Andreas

    2008-11-01

    Phototrophic iron(II) [Fe(II)]-oxidizing bacteria are present in modern environments and evidence suggests that this metabolism was present already on early earth. We determined Fe(II) oxidation rates depending on pH, temperature, light intensity, and Fe(II) concentration for three phylogenetically different phototrophic Fe(II)-oxidizing strains (purple nonsulfur bacterium Rhodobacter ferrooxidans sp. strain SW2, purple sulfur bacterium Thiodictyon sp. strain F4, and green sulfur bacterium Chlorobium ferrooxidans strain KoFox). While we found the overall highest Fe(II) oxidation rates with strain F4 (4.5 mmol L(-1) day(-1), 800 lux, 20 degrees C), the lowest light saturation values [at which maximum Fe(II) oxidation occurred] were determined for strain KoFox with light saturation already below 50 lux. The oxidation rate per cell was determined for R. ferrooxidans strain SW2 to be 32 pmol Fe(II) h(-1) per cell. No significant toxic effect of Fe(II) was observed at Fe(II) concentrations of up to 30 mM. All three strains are mesophiles with upper temperature limits of c. 30 degrees C. The main pigments were identified to be spheroidene, spheroidenone, OH-spheroidenone (SW2), rhodopinal (F4), and chlorobactene (KoFox). This study will improve our ecophysiological understanding of iron cycling in modern environments and will help to evaluate whether phototrophic iron oxidizers may have contributed to the formation of Fe(III) on early earth.

  20. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments.

    PubMed

    Jeremic, Sanja; Beškoski, Vladimir P; Djokic, Lidija; Vasiljevic, Branka; Vrvić, Miroslav M; Avdalović, Jelena; Gojgić Cvijović, Gordana; Beškoski, Latinka Slavković; Nikodinovic-Runic, Jasmina

    2016-05-01

    Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu(2+), Cd(2+) and Cr(6+) and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria- Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions.

  1. Supplementation of inorganic phosphate enhancing the removal efficiency of tannery sludge-borne Cr through bioleaching.

    PubMed

    Zheng, Guanyu; Zhou, Lixiang

    2011-10-15

    Four inorganic mineral nutrients including NH4+, K+, Mg2+ and soluble inorganic phosphate (Pi) were investigated to reveal the potential limiting nutrients for tannery sludge bioleaching process driven by Acidithiobacillus species, and the feasibility of supplementing the limiting nutrients to accelerate tannery sludge bioleaching was studied in the present study. It was found that the concentration of Pi was lower than 3.5 mg/L throughout the whole bioleaching process, which is the most probable restricting nutrient for tannery sludge bioleaching. Further experiments revealed that the deficiency of Pi could seriously influence the growth of Acidithiobacillus thiooxidans and lower its oxidization capacity for S0, and the limiting concentration of Pi for the growth of A. thiooxidans was 6 mg/L. The low concentration of soluble Pi in sludge matrix was resulted from the extremely strong sorbing/binding capacity of tannery sludge for phosphate. The supplementation of more than 1.6 g/L KH2PO4 into tannery sludge bioleaching system could effectively stimulate the growth of Acidithiobacillus species, enhance Cr removal rate and further shorten tannery sludge bioleaching period from 10 days to 7 days. Therefore, inorganic phosphate supplementation is an effective and feasible method to accelerate tannery sludge bioleaching process, and the optimum dosage of KH2PO4 was 1.6 g/L for tannery sludge with 5.1% of total solids.

  2. Insights into the dynamics of bacterial communities during chalcopyrite bioleaching.

    PubMed

    He, Zhiguo; Gao, Fengling; Zhao, Jiancun; Hu, Yuehua; Qiu, Guanzhou

    2010-10-01

    The microbial ecology of the bioleaching of chalcopyrite ores is poorly understood and little effort has been made to handle the microbiological components of these processes. In this study, the composition and structure of microbial communities in acid mineral bioleaching systems have been studied using a PCR-based cloning approach. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA gene fragments from bacteria was used to evaluate the changes in the bacterial community in the process of chalcopyrite bioleaching in a shaken flask system. The results revealed that the bacterial community was disturbed after the addition of chalcopyrite. Phylogenetic analyses of 16S rRNA gene fragments revealed that the retrieved sequences clustered together with the genera Acidithiobacillus, Leptospirillum, and Acidovorax. Multidimensional scaling analysis of DGGE banding patterns revealed that the process of chalcopyrite bioleaching in 46 days was divided into four stages. In the first stage, Leptospirillum were dominant. In the second stage, Leptospirillum and Acidithiobacillus groups were mainly detected. In the third and fourth stages, the bacterial community was relatively stable and was dominated by Leptospirillum and Acidithiobacillus. These results extend our knowledge on the microbial dynamics in chalcopyrite bioleaching, a key issue required to improve commercial applications.

  3. Control of acid mine drainage using surfactants

    SciTech Connect

    Not Available

    1983-02-01

    This news sheet describes US Bureau of Mines work on the reduction or prevention of acid mine drainage from coal refuse piles and surface mines by inhibiting the growth of Thiobacillus ferrooxidans. It has been found that the direct application of a dilute surfactant or detergent solution to coal refuse piles or overburden can be an effective preventive measure or can reduce water treatment costs by controlling acid drainage at its source. Of the anionic surfactants tested to date, sodium lauryl sulphate appears to be the most effective. Alpha olefin sulphonate and alkyl benzene sulphonate are acceptable alternatives. The results of field trials are presented.

  4. Electrochemistry of Thiobacillus ferroxidans reactions with pyrite

    SciTech Connect

    Pesic, B.; Oliver, D.J.

    1990-01-01

    The objective of this project is to provide the fundamental information on the mechanisms of bacterial leaching of pyrite. The knowledge of how bacterial leaching of pyrite functions is essential for design and development of a technology for coal cleaning with bacteria. The features of major electrochemical techniques will be examined to find out if any of them can provide a diagnostic information on the mechanisms of related reactions. This quarter the activity of T. ferrooxidans with duration of fermentation was examined. It was found that there were three distinct stages of fermentation. 1 fig.

  5. Bacterial Oxidation of Pyritic Materials in Coal.

    PubMed

    Silverman, M P; Rogoff, M H; Wender, I

    1961-11-01

    Applicability of the manometric method for studying the oxidation of pyritic material in the presence of bacteria has been demonstrated. Resting cells of Ferrobacillus ferrooxidans accelerated the oxidation of coal pyrites and coarsely crystalline marcasite, but were inactive on coarsely crystalline pyrite. Resting cells of Thiobacillus thiooxidans were inactive on all pyrites tested. Oxidation rates in the presence of Ferrobacillus were increased by reducing the particle size of pyritic samples, and, in one case, by removing the CaCO(3) from a calcite-containing sample.

  6. Microbial recovery of metals from spent catalysts

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1990-01-01

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types are the subject of the contract. The first is a Ni-Mo catalyst supported on alumina (Shell 324) as is used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. The object of the contract is to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans, but also other Thiobacillus sp., to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which can be readily recovered by conventional techniques.

  7. Microbial recovery of metals from spent catalysts. Quarterly report, September--December 1990

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1990-12-31

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types are the subject of the contract. The first is a Ni-Mo catalyst supported on alumina (Shell 324) as is used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. The object of the contract is to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans, but also other Thiobacillus sp., to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which can be readily recovered by conventional techniques.

  8. Investigation of the Precipitates on the Concrete Surface due to Sulphate Exposure

    NASA Astrophysics Data System (ADS)

    Kovalčíková, Martina; Eštoková, Adriana; Oravec, Jozef; Luptáková, Alena

    2016-12-01

    The aim of this study is to investigate the durability of cement-based materials subjected to the effects of sulphuric acid in terms of surface deterioration. Damaged concrete surfaces and the samples' mass changes were studied during 270-day simulation of both chemical and biological attacks. Chemical corrosion was simulated by sulphuric acid with pH of 3.0 and 4.0, respectively, while biological corrosion was simulated by activity of bacteria Acidithiobacillus thiooxidans. XRD and SEM analyses confirmed a massive sulphate precipitate formation on the concrete surface due to chemical and biological sulphate corrosion.

  9. [Domestication study about desulfuration microorganism from oxidation ditch by low concentration SO2].

    PubMed

    Huang, Bing; Shi, Zhe; Wang, Yan-Yan; Zhang, Shi-Ling

    2010-06-01

    An excellent desulfuration microorganism with a quick growth and propagation, high activation, high efficiency of removing SO2 is obtained from oxidation ditch of a city sewage treatment plant by inductive acclimatization over 6 d with low concentration SO2 gas (100-2 000 mg/m3). The desulfurition microorganism get their energy sources for growth from transforming SO2 (SO3(2-)) to SO4(2-). The predominant bacterium of the desulfuration microorganism has the same characteristic with Thiobacillus ferrooxidans (T. ferrooxidans), which showed that it was Gram negative, short rod bacteria with a single polar flagellum under a microscopic examination, and obtained its nourishment through the oxidation of inorganic compounds. The technology process condition of domestication and desulfuration of microorganism are particular studied, and the results showed that aerating time, SO2 flux and time to provide nutriment contained N, P, K to microorganism were very important. They have an ability with degradation rate of 160g/ (m3 x h) and degradation efficiency over 50% to transform sulfite to sulfate in liquid phase. The bacteria have a 98% of removing efficiency and over 80% of biodegradation efficiency for the 5 500 mg/m3 SO2 gas and the outlet concentration of SO2 is lower than 100 mg/m3, and also have a 95% of removing efficiency for 15 000 mg/m3 SO2 gas in the packed tower reactor with Raschig ring at 3s contact time.

  10. Methods for environmental monitoring of DOE waste disposal and storage sites. Semiannual progress report, November 1, 1985--March 31, 1986

    SciTech Connect

    Blake, R.; Revis, N.

    1986-12-31

    This progress report contains an account of recent research efforts carried out at the Oak Ridge Research Institute, to raise antibodies in New Zealand White Rabbits which are specific for various strains of Thiobacillus ferrooxidans bacteria. It is then intended to use the antibodies, in a subsequent phase of the project, to develop one or more ELISAs, which would be used to analyze, both in the laboratory and in the field, the numbers and extent of dispersion of these microorganisms at acid mine drainage sites. This is important because it is the metabolic consequences of unrestricted dissemination of these bacteria which are responsible in large measure for the environmentally damaging acid run-off. Efforts to control the proliferation of these microorganisms have been relatively unfocused up to the present, because of the lack of suitably discriminating methods of assaying the effects of treatment. In this report, the authors describe the work carried out in the first section of the project, which has been concerned with the raising of the antibodies to the Thiobacillus ferrooxidans cultures. They given an account of how the various cultures were grown, how they were treated before being injected into rabbits, the injection protocol, how the animals were bled, and how the formation of IgG and its degree of specificity was assessed. Finally, they describe how large quantities of the various IgG fractions were prepared, and how and where they were stored.

  11. [Bacterial diversity analysis of moderately thermophilic microflora enriched by different energy sources].

    PubMed

    Liu, Fei-fei; Zhou, Hong-bo; Fu, Bo; Qiu, Guan-zhou

    2007-06-01

    Bacterial biodiversities of three moderately thermophilic bioleaching microfloras grown at 50 degrees C on media with pyrite, chalcopyrite, and pure ferrous iron supplemented with sulfur as energy sources were investigated respectively. The 16S rRNA genes of the microorganisms in the cultures flasks were PCR amplified and cloned to identify the bacterial species by comparative sequence analysis, the structural differences of microfloras enriched by different energy sources were compared. A total of 303 clones were recovered and evaluated by restriction fragment length polymorphism (RFLP) analysis. Cluster analysis identified 29 unique RFLP patterns, and the inserted 16S rRNA genes sequences were determined and for phylogenetic analysis. Most of sequences obtained were similar (89.1%-99.7%) to the 16S rRNA gene sequences of the reported bioleaching microorganisms. The species identified from the flasks during bioleaching of pyrite, pure ferrous iron supplemented with sulfur, and chalcopyrite were closely related to Acidithiobacillus caldus, Sulfobacillus thermotolerans, Sulfobacillus thermosulfidooxidans, Leptospirillum ferriphilum, two uncultured forest soil bacterium clones and one uncultured proteobacterium clone. Among these bacteria, Acidithiobacillus caldus, Sulfobacillus thermotolerans and Leptospirillum ferriphilum were the dominant bacterial species. L. ferriphilum was the most dominant species in microfloras enriched in media with pyrite and ferrous iron supplemented with sulfur as energy sources, the abundance were 53.8% and 45.9% respectively. In the culture with chalcopyrite as energy sources, S. thermotolerans had the highest abundance of 70.1%.

  12. Monitoring bacterial community shifts in bioleaching of Ni-Cu sulfide.

    PubMed

    He, Zhiguo; Zhao, Jiancun; Gao, Fengling; Hu, Yuehua; Qiu, Guanzhou

    2010-11-01

    The microbial ecology of the bioleaching of Ni-Cu sulfide is poorly understood and little effort has been made to handle the microbiological components of these processes. In this study, denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes fragments from bacteria was used to evaluate the changes of the bacterial community in the process of Ni-Cu sulfide bioleaching in a shaken flask system. The results revealed that the bacterial community was disturbed after the addition of Ni-Cu sulfide. Phylogenetic analyses of 16S rRNA fragments revealed that the retrieved sequences clustered together with the genera Acidithiobacillus and Leptospirillum. Multidimensional scaling (MDS) and cluster analysis of DGGE-banding patterns revealed that the process of Ni-Cu sulfide bioleaching in 46days was divided into three stages. During the bioleaching process of Ni-Cu sulfide, Leptospirillum was always dominant. The genera Acidithiobacillus was only detected at early and later stages of the bioleaching process. These results extend our knowledge on microbial dynamics in Ni-Cu sulfide bioleaching, a key issue required to improve commercial applications.

  13. Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB).

    PubMed

    Işıldar, Arda; van de Vossenberg, Jack; Rene, Eldon R; van Hullebusch, Eric D; Lens, Piet N L

    2016-11-01

    An effective strategy for environmentally sound biological recovery of copper and gold from discarded printed circuit boards (PCB) in a two-step bioleaching process was experimented. In the first step, chemolithotrophic acidophilic Acidithiobacillus ferrivorans and Acidithiobacillus thiooxidans were used. In the second step, cyanide-producing heterotrophic Pseudomonas fluorescens and Pseudomonas putida were used. Results showed that at a 1% pulp density (10g/L PCB concentration), 98.4% of the copper was bioleached by a mixture of A. ferrivorans and A. thiooxidans at pH 1.0-1.6 and ambient temperature (23±2°C) in 7days. A pure culture of P. putida (strain WCS361) produced 21.5 (±1.5)mg/L cyanide with 10g/L glycine as the substrate. This gold complexing agent was used in the subsequent bioleaching step using the Cu-leached (by A. ferrivorans and A. thiooxidans) PCB material, 44.0% of the gold was mobilized in alkaline conditions at pH 7.3-8.6, and 30°C in 2days. This study provided a proof-of-concept of a two-step approach in metal bioleaching from PCB, by bacterially produced lixiviants.

  14. First prokaryotic biodiversity assessment using molecular techniques of an acidic river in Neuquén, Argentina.

    PubMed

    Urbieta, M Sofía; González Toril, E; Aguilera, A; Giaveno, M Alejandra; Donati, E

    2012-07-01

    Two acidic hot springs close to the crater of Copahue Volcano (Neuquén, Argentina) are the source of the Río Agrio. The river runs several kilometres before flowing into Caviahue Lake. Along the river, temperature, iron, other metal and proton concentrations decrease gradually with distance downstream. From the source to the lake and depending on the season, pH can rise from 1.0 (or even less) to about 4.0, while temperature values decrease from 70°C to 15°C. Water samples were taken from different stations on the river selected according to their physicochemical parameters. In order to assess prokaryotic biodiversity throughout the water column, different and complementary molecular biology techniques were used, mainly in situ hybridisation and 16S rRNA gene cloning and sequencing. All microorganisms found are typical of acidic environments. Sulphur-oxidizing bacteria like Acidithiobacillus thiooxidans and Acidithiobacillus albertensis were detected in every station. Moderately thermophile iron- and sulphur-oxidizing bacteria like members of Alicyclobacillus and Sulfobacillus genera were also ubiquitous. Strict iron-oxidizing bacteria like Leptospirillum and Ferrimicrobium were present at the source of the river, but disappeared downstream where iron concentrations were much lower. Iron-oxidizing, mesophilic Ferroplasma spp. were the main archaea found. The data presented in this work represent the first molecular assessment of this rare natural acidic environment.

  15. Microbial diversity in Los Azufres geothermal field (Michoacán, Mexico) and isolation of representative sulfate and sulfur reducers.

    PubMed

    Brito, Elcia M S; Villegas-Negrete, Norberto; Sotelo-González, Irene A; Caretta, César A; Goñi-Urriza, Marisol; Gassie, Claire; Hakil, Florence; Colin, Yannick; Duran, Robert; Gutiérrez-Corona, Felix; Piñón-Castillo, Hilda A; Cuevas-Rodríguez, Germán; Malm, Olaf; Torres, João P M; Fahy, Anne; Reyna-López, Georgina E; Guyoneaud, Rémy

    2014-03-01

    Los Azufres spa consists of a hydrothermal spring system in the Mexican Volcanic Axis. Five samples (two microbial mats, two mud pools and one cenote water), characterized by high acidity (pH between 1 and 3) and temperatures varying from 27 to 87 °C, were investigated for their microbial diversity by Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and 16S rRNA gene library analyses. These data are the first to describe microbial diversity from Los Azufres geothermal belt. The data obtained from both approaches suggested a low bacterial diversity in all five samples. Despite their proximity, the sampling points differed by their physico-chemical conditions (mainly temperature and matrix type) and thus exhibited different dominant bacterial populations: anoxygenic phototrophs related to the genus Rhodobacter in the biomats, colorless sulfur oxidizers Acidithiobacillus sp. in the warm mud and water samples, and Lyzobacter sp.-related populations in the hot mud sample (87 °C). Molecular data also allowed the detection of sulfate and sulfur reducers related to Thermodesulfobium and Desulfurella genera. Several strains affiliated to both genera were enriched or isolated from the mesophilic mud sample. A feature common to all samples was the dominance of bacteria involved in sulfur and iron biogeochemical cycles (Rhodobacter, Acidithiobacillus, Thiomonas, Desulfurella and Thermodesulfobium genera).

  16. Comparative Metagenomics of Eight Geographically Remote Terrestrial Hot Springs.

    PubMed

    Menzel, Peter; Gudbergsdóttir, Sóley Ruth; Rike, Anne Gunn; Lin, Lianbing; Zhang, Qi; Contursi, Patrizia; Moracci, Marco; Kristjansson, Jakob K; Bolduc, Benjamin; Gavrilov, Sergey; Ravin, Nikolai; Mardanov, Andrey; Bonch-Osmolovskaya, Elizaveta; Young, Mark; Krogh, Anders; Peng, Xu

    2015-08-01

    Hot springs are natural habitats for thermophilic Archaea and Bacteria. In this paper, we present the metagenomic analysis of eight globally distributed terrestrial hot springs from China, Iceland, Italy, Russia, and the USA with a temperature range between 61 and 92 (∘)C and pH between 1.8 and 7. A comparison of the biodiversity and community composition generally showed a decrease in biodiversity with increasing temperature and decreasing pH. Another important factor shaping microbial diversity of the studied sites was the abundance of organic substrates. Several species of the Crenarchaeal order Thermoprotei were detected, whereas no single bacterial species was found in all samples, suggesting a better adaptation of certain archaeal species to different thermophilic environments. Two hot springs show high abundance of Acidithiobacillus, supporting the idea of a true thermophilic Acidithiobacillus species that can thrive in hyperthermophilic environments. Depending on the sample, up to 58 % of sequencing reads could not be assigned to a known phylum, reinforcing the fact that a large number of microorganisms in nature, including those thriving in hot environments remain to be isolated and characterized.

  17. Biomining Microorganisms: Molecular Aspects and Applications in Biotechnology and Bioremediation

    NASA Astrophysics Data System (ADS)

    Jerez, Carlos A.

    The microbial solubilization of metals using chemolithoautotrophic microorganisms has successfully been used in industrial processes called biomining to extract metals such as copper, gold, uranium and others. The most studied leaching bacteria are from the genus Acidithiobacillus belonging to the Gram-negative γ-proteobacteria. Acidithiobacillus spp. obtain their energy from the oxidation of ferrous iron, elemental sulfur, or partially oxidized sulfur compounds. Other thermophilic archaeons capable of oxidizing sulfur and iron (II) have also been known for many years, and they are mainly from the genera Sulfolobus, Acidianus, Metallosphaera and Sulfurisphaera. Recently, some mesophilic iron (II)-oxidizing archaeons such as Ferroplasma acidiphilium and F. acidarmanus belonging to the Thermoplasmales have also been isolated and characterized. Recent studies of microorganisms consider them in their consortia, integrating fundamental biological knowledge with metagenomics, metaproteomics, and other data to obtain a global picture of how a microbial community functions. The understanding of microbial growth and activities in oxidizing metal ions will be useful for improving applied microbial biotechnologies such as biomining, bioshrouding, biomonitoring and bioremediation of metals in acidic environments.

  18. Comparative metagenomics reveals microbial community differentiation in a biological heap leaching system.

    PubMed

    Hu, Qi; Guo, Xue; Liang, Yili; Hao, Xiaodong; Ma, Liyuan; Yin, Huaqun; Liu, Xueduan

    2015-01-01

    The microbial community in a biological heap leaching (BHL) system is crucial for the decomposition of ores. However, the microbial community structure and functional differentiation in different parts of a biological heap leaching system are still unknown. In this study, metagenomic sequencing was used to fully illuminate the microbial community differentiation in the pregnant leach solution (PLS) and leaching heap (LH) of a BHL system. Long-read sequences (1.3 million) were obtained for the two samples, and the MG_RAST server was used to perform further analysis. The taxa analysis results indicated that the dominant genera of PLS is autotrophic bacterium Acidithiobacillus, but heterotrophic bacterium Acidiphilium is predominant in LH. Furthermore, functional annotation and hierarchical comparison with different reference samples showed that the abundant presence of genes was involved in transposition, DNA repair and heavy metal transport. The sequences related to transposase, which is important for the survival of the organism in the hostile environment, were both mainly classified into Acidiphilium for PLS and LH. These results indicated that not only autotrophic bacteria such as Acidithiobacillus, but also heterotrophic bacteria such as Acidiphilium, were essential participants in the bioleaching process. This new meta-view research will further facilitate the effective application of bioleaching.

  19. Microbial Diversity and Population Structure of Extremely Acidic Sulfur-Oxidizing Biofilms From Sulfidic Caves

    NASA Astrophysics Data System (ADS)

    Jones, D.; Stoffer, T.; Lyon, E. H.; Macalady, J. L.

    2005-12-01

    Extremely acidic (pH 0-1) microbial biofilms called snottites form on the walls of sulfidic caves where gypsum replacement crusts isolate sulfur-oxidizing microorganisms from the buffering action of limestone host rock. We investigated the phylogeny and population structure of snottites from sulfidic caves in central Italy using full cycle rRNA methods. A small subunit rRNA bacterial clone library from a Frasassi cave complex snottite sample contained a single sequence group (>60 clones) similar to Acidithiobacillus thiooxidans. Bacterial and universal rRNA clone libraries from other Frasassi snottites were only slightly more diverse, containing a maximum of 4 bacterial species and probably 2 archaeal species. Fluorescence in situ hybridization (FISH) of snottites from Frasassi and from the much warmer Rio Garrafo cave complex revealed that all of the communities are simple (low-diversity) and dominated by Acidithiobacillus and/or Ferroplasma species, with smaller populations of an Acidimicrobium species, filamentous fungi, and protists. Our results suggest that sulfidic cave snottites will be excellent model microbial ecosystems suited for ecological and metagenomic studies aimed at elucidating geochemical and ecological controls on microbial diversity, and at mapping the spatial history of microbial evolutionary events such as adaptations, recombinations and gene transfers.

  20. Accuracy Assessment of a Uav-Based Landslide Monitoring System

    NASA Astrophysics Data System (ADS)

    Peppa, M. V.; Mills, J. P.; Moore, P.; Miller, P. E.; Chambers, J. E.

    2016-06-01

    Landslides are hazardous events with often disastrous consequences. Monitoring landslides with observations of high spatio-temporal resolution can help mitigate such hazards. Mini unmanned aerial vehicles (UAVs) complemented by structure-from-motion (SfM) photogrammetry and modern per-pixel image matching algorithms can deliver a time-series of landslide elevation models in an automated and inexpensive way. This research investigates the potential of a mini UAV, equipped with a Panasonic Lumix DMC-LX5 compact camera, to provide surface deformations at acceptable levels of accuracy for landslide assessment. The study adopts a self-calibrating bundle adjustment-SfM pipeline using ground control points (GCPs). It evaluates misalignment biases and unresolved systematic errors that are transferred through the SfM process into the derived elevation models. To cross-validate the research outputs, results are compared to benchmark observations obtained by standard surveying techniques. The data is collected with 6 cm ground sample distance (GSD) and is shown to achieve planimetric and vertical accuracy of a few centimetres at independent check points (ICPs). The co-registration error of the generated elevation models is also examined in areas of stable terrain. Through this error assessment, the study estimates that the vertical sensitivity to real terrain change of the tested landslide is equal to 9 cm.

  1. The Peculiar Galactic Center Neutron Star X-Ray Binary XMM J174457-2850.3

    NASA Technical Reports Server (NTRS)

    Degenaar, N.; Wijnands, R.; Reynolds, M. T.; Miller, J. M.; Altamirano, D.; Kennea, J.; Gehrels, N.; Haggard, D.; Ponti, G.

    2014-01-01

    The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of 2 hr and a radiated energy output of 5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx5E32 ergs and exhibits occasional accretion outbursts during which it brightens to Lx1E35-1E36 ergs for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at Lx1E33-1E34 ergs. This unusual X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.

  2. On the black hole masses in ultra-luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Zhou, Xin-Lin

    2015-05-01

    Ultra-luminous X-ray sources (ULXs) are off-nuclear X-ray sources in nearby galaxies with X-ray luminosities ⩾ 1039 erg s-1. The measurement of the black hole (BH) masses of ULXs is a long-standing problem. Here we estimate BH masses in a sample of ULXs with XMM-Newton observations using two different mass indicators, the X-ray photon index and X-ray variability amplitude based on the correlations established for active galactic nuclei (AGNs). The BH masses estimated from the two methods are compared and discussed. We find that some extreme high-luminosity (LX > 5 ×1040 erg s-1) ULXs contain the BH of 104-105 M⊙ . The results from X-ray variability amplitude are in conflict with those from X-ray photon indices for ULXs with lower luminosities. This suggests that these ULXs generally accrete at rates different from those of X-ray luminous AGNs, or they have different power spectral densities of X-ray variability. We conclude that most of ULXs accrete at super-Eddington rate, thus harbor stellar-mass BH.

  3. Mass distribution and Dynamical State of Galaxy Clusters in the LZLS Sample

    NASA Astrophysics Data System (ADS)

    Campusano, L. E.; Cypriano, E. S.; Sodré, L., Jr.; Kneib, J.-P.

    We use the weak gravitational lensing effect to study the mass distribution of a sample of 50 southern Abell clusters (0.05LX > 5 × 1044 erg s-1 observed with ESO-VLT under uniform sky conditions and subarsecond (0.6'') image quality. Their dynamical equibrium is assesed through comparison of the clusters mass estimates made by weak-lensing, velocity-dispersions and X-ray techniques. So far, for 24 clusters (Cypriano et al. 2004), we find: a) the center of their mass and light distributions are coincident for 77% of the sample; b) the elongations of the fitted mass profiles and of the light of the cD galaxies generally match with each other; c) although most of the clusters are found to be in dynamical equilibrium, those with TX ≥ 8 keV (or σv ≥ 1120 km s-1) are the discordant ones. The preliminary bright arc statistics for our whole sample (LZLS) suggests the presence of a cut-off at z˜0.07 which is qualitatively consistent with predictions done in a ΛCDM cosmology (Meneghetti et al. 2003).

  4. Metagenomic Assembly of the Dominant Zetaproteobacteria in an Iron-oxidizing Hydrothermal Microbial Mat

    NASA Astrophysics Data System (ADS)

    Moyer, C. L.; Fullerton, H.

    2013-12-01

    Iron is the fourth most abundant element in the Earth's crust and is potentially one of the most abundant energy sources on the earth as an electron donor for chemolithoautotrophic growth coupled to Fe(II) oxidation. Despite the rapid abiotic oxidation rate of iron, many microbes have adapted to feeding off this fleeting energy source. One such bacterial class is the Zetaproteobacteria. Iron-dominated microbial mat material was collected with a small-scale syringe sampler from Loihi Seamount, Hawaii. From this sample, gDNA was extracted and prepared for paired-end Illumina sequencing. Reconstruction of SSU rDNA genes using EMERGE allowed for comparison to previous SSU rDNA surveys. Clone libraries and qPCR show these microbial mats to be dominated by Zetaproteobacteria. Results from our in silico reconstruction confirm these initial findings. RDP classification of the EMERGE reconstructed sequences resulted in 44% of the community being identified as Zetaproteobacteria. The most abundant SSU rDNA has 99% similarity to Zeta OTU-2, and only a 94% similarity to M. ferrooxidans PV-1. Zeta OTU-2 has been shown to be the most cosmopolitan population in iron-dominated hydrothermal systems from across Pacific Ocean. Metagenomic assembly has resulted in many contigs with high identity to M. ferrooxidans as identified, by BLAST. However, with large differences in SSU rRNA similarity, M. ferrooxidans PV-1 is not an adequate reference. Current work is focusing on reconstruction of the dominant microbial mat member, without the use of a reference genome through an iterative assembly approach. The resulting 'pan-genome' will be compared to other Zetaproteobacteria (at the class level) and the functional ecology of this cosmopolitan microbial mat community member will be extrapolated. Thus far, we have detected multiple housekeeping genes involved in DNA replication, transcription and translation. The most abundant metabolic gene we have found is Aconitase, a key enzyme in the

  5. Isolation of iron-oxidizing bacteria from corroded concretes of sewage treatment plants.

    PubMed

    Maeda, T; Negishi, A; Komoto, H; Oshima, Y; Kamimura, K; Sugio, T

    1999-01-01

    Thirty-six strains of iron-oxidizing bacteria were isolated from corroded concrete samples obtained at eight sewage treatment plants in Japan. All of the strains isolated grew autotrophically in ferrous sulfate (3.0%), elemental sulfur (1.0%) and FeS (1.0%) media (pH 1.5). Washed intact cells of the 36 isolates had activities to oxidize both ferrous iron and elemental sulfur. Strain SNA-5, a representative of the isolated strains, was a gram-negative, rod-shaped bacterium (0.5-0.6x0.9-1.5 microm). The mean G+C content of its DNA was 55.9 mol%. The pH and temperature optima for growth were 1.5 and 30 degrees C, and the bacterium had activity to assimilate 14CO2 into the cells when ferrous iron or elemental sulfur was used as a sole source of energy. These results suggest that SNA-5 is Thiobacillus ferrooxidans strain. The pHs and numbers of iron-oxidizing bacteria in corroded concrete samples obtained by boring to depths of 0-1, 1-3, and 3-5 cm below the concrete surface were respectively 1.4, 1.7, and 2.0, and 1.2 x 10(8), 5 x 10(7), and 5 x 10(6) cells/g concrete. The degree of corrosion in the sample obtained nearest to the surface was more severe than in the deeper samples. The findings indicated that the levels of acidification and corrosion of the concrete structure corresponded with the number of iron-oxidizing bacteria in a concrete sample. Sulfuric acid produced by the chemolithoautotrophic sulfur-oxidizing bacterium Thiobacillus thiooxidansis known to induce concrete corrosion. Since not only T. thiooxidans but also T. ferrooxidans can oxidize reduced sulfur compounds and produce sulfuric acid, the results strongly suggest that T. ferrooxidans as well as T. thiooxidans is involved in concrete corrosion.

  6. Inhibitory effect of iron-oxidizing bacteria on ferrous-promoted chalcopyrite leaching

    SciTech Connect

    Hiroyoshi, Naoki; Hirota, Masahiko; Hirajima, Tsuyoshi; Tsunekawa, Masami

    1999-08-20

    A substantial amount of copper is obtained by dump leaching of low-grade ore that would otherwise become waste. It is generally accepted that iron-oxidizing bacteria. Thiobacillus ferrooxidans, enhance chalcopyrite leaching. However, this article details a case of the bacteria suppressing chalcopyrite leaching. Bacterial leaching experiments were performed with sulfuric acid solutions containing 0 or 0.04 mol/dm{sup 3} ferrous sulfate. Without ferrous sulfate, the bacteria enhance copper extraction and oxidation of ferrous ions released from chalcopyrite. However, the bacteria suppressed chalcopyrite leaching when ferrous sulfate was added. This is mainly due to the bacterial consumption of ferrous ions which act as a promoter for chalcopyrite oxidation with dissolved oxygen. Coprecipitation of copper ions with jarosite formed by the bacterial ferrous oxidation also causes the bacterial suppression of copper extraction.

  7. A typical flat-panel membrane bioreactor with a composite membrane for sulfur removal

    NASA Astrophysics Data System (ADS)

    Guan, Jian; Xiao, Yuan; Song, Jimin; Miao, Junhe

    2014-03-01

    The aim of this work was to provide a concrete study to understand the effects of operation on biofilm morphology and microstructure and degradation efficiency for the disposal of sulfur dioxide produced by coal-fired power plants. For this purpose, a flat-panel reactor-membrane bioreactor (MBR) with a composite membrane consisting of a dense layer and a support layer was designed; the membrane bioreactors inoculated with Thiobacillus ferrooxidans were further conducted for the removal of sulfur dioxide. Dry weight, active biomass, pressure drop, removal efficiency, morphology and structure of the formed biofilms were investigated and analyzed over period of biofilm formation. The results found that the dry weight, biomass, pressure drops and removal efficiency increased rapidly during biofilm formation, remained relatively stable in the stabilization period of biofilm growth, and finally reached 0.085 g, 7.00 μg, 180 Pa, and 78%, respectively. Our results suggested the MBR is available for flue-gas desulfurization.

  8. Biogeochemical interactions during the biobeneficiation of minerals

    NASA Astrophysics Data System (ADS)

    Shrivastava, J.; Mudliar, P. S.; Mudliar, S. N.; Pandey, R. A.

    2009-04-01

    Mineral biotechnology is one of the wings of biotechnology involving integrated application of the knowledge and techniques of biochemistry, microbiology, genetics and chemical engineering to draw benefit at the technological level from the properties and capacities of microorganisms. It offers the possibility of recovering, refining and concentrating wide varieties of minerals for services essential to life and well being of mankind. It also helps in minimising the environmental damages with recourse to conserving the natural resources for future generation. The paper outlines possible microorganism-microorganism interaction, microorganism-mineral interactions and microorganism interactions with produced products of biobeneficiation especially with respect to copper waste tailings and coal containing pyretic sulphur. Keywords: Copper; Tailings; Coal; Pyrite; Thiobascillus ferrooxidans; Thiobascillus thiooxidans

  9. Planetary ecology; Proceedings of the Sixth International Symposium on Environmental Biogeochemistry, Santa Fe, NM, October 10-14, 1983

    NASA Technical Reports Server (NTRS)

    Caldwell, D. E. (Editor); Brierley, J. A. (Editor); Brierley, C. L. (Editor)

    1985-01-01

    Topics presented include biological evolution and planetary chemistry; C-1 compounds; transport, deposition, and weathering; sulfur transformations; ground water; transformation processes for nitrogen oxides; and soils. Papers are presented on immunological studies on the organic matrix of recent and fossil invertebrate shells; biogenic gases in sediments deposited since Miocene times on the Walvis Ridge, South Atlantic Ocean; aspects of the biogeochemistry of Big Soda Lake, NV; mesophilic manganese-oxidizing bacteria from hydrothermal discharge areas at 21 deg North on the East Pacific Rise; and autotrophic growth and iron oxidation and inhibition kinetics of Leptospirillum ferrooxidans. Consideration is also given to thermophilic archaebacteria occurring in submarine hydrothermal areas; fate of sulfate in a soft-water, acidic lake; geochemical conditions in the ground water environment; microbial transformations as sources and sinks for nitrogen oxides; and the biogeochemistry of soil phosphorus.

  10. Column leaching test to evaluate the use of alkaline industrial wastes to neutralize acid mine tailings

    SciTech Connect

    Doye, I.; Duchesne, J.

    2005-08-01

    Acid mine drainage is a serious environmental problem caused by the oxidation of sulfide minerals that releases highly acidic, sulfate, and metals-rich drainage. In this study, alkaline industrial wastes were mixed with acid mine tailings in order to obtain neutral conditions. A series of column leaching tests were performed to evaluate the behavior of reactive mine tailings amended with alkaline-additions under dynamic conditions. Column tests were conducted of oxidized mine tailings combined with cement kiln dust, red mud bauxite, and mixtures of cement kiln dust with red mud bauxite. The pH results show the addition of 10% of alkaline materials permits the maintenance of near neutral conditions. In the presence of 10% alkaline material, the concentration of toxic metals such as Al, Cu, Fe, Zn are significantly reduced as well as the number of viable cells (Thiobacillus ferrooxidans) compared to control samples.

  11. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions

    NASA Astrophysics Data System (ADS)

    Huang, S.; Jaffé, P. R.

    2015-02-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron was measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454 pyrosequencing, and real-time quantitative PCR analysis. We be Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  12. Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation

    USGS Publications Warehouse

    Taylor, B.E.; Wheeler, M.C.; Nordstrom, D.K.

    1984-01-01

    The formation of acid waters by oxidation of pyrite-bearing ore deposits, mine tailing piles, and coal measures is a complex biogeochemical process and is a serious environmental problem. We have studied the oxygen and sulphur isotope geochemistry of sulphides, sulphur, sulphate and water in the field and in experiments to identify sources of oxygen and reaction mechanisms of sulphate formation. Here we report that the oxygen isotope composition of sulphate in acid mine drainage shows a large variation due to differing proportions of atmospheric- and water-derived oxygen from both chemical and bacterially-mediated oxidation. 18O-enrichment of sulphate results from pyrite oxidation facilitated by Thiobacillus ferrooxidans in aerated environments. Oxygen isotope analysis may therefore be useful in monitoring the effectiveness of abatement programmes designed to inhibit bacterial oxidation. Sulphur isotopes show no significant fractionation between pyrite and sulphate, indicating the quantitative insignificance of intermediate oxidation states of sulphur under acid conditions. ?? 1984 Nature Publishing Group.

  13. Biofuels from Bacteria, Electricity, and CO2: Biofuels from CO2 Using Ammonia or Iron-Oxidizing Bacteria in Reverse Microbial Fuel Cells

    SciTech Connect

    2010-07-01

    Electrofuels Project: Electrofuels Project: Columbia University is using carbon dioxide (CO2) from ambient air, ammonia—an abundant and affordable chemical, and a bacteria called N. europaea to produce liquid fuel. The Columbia University team is feeding the ammonia and CO2 into an engineered tank where the bacteria live. The bacteria capture the energy from ammonia and then use that energy to convert CO2 into a liquid fuel. When the bacteria use up all the ammonia, renewable electricity can regenerate it and pump it back into the system—creating a continuous fuel-creation cycle. In addition, Columbia University is also working with the bacteria A. ferrooxidans to capture and use energy from ferrous iron to produce liquid fuels from CO2.

  14. Bioextraction of cobalt from complex metal sulfides

    SciTech Connect

    Thompson, D.L.; Noah, K.S.; Wichlacz, P.L.; Torma, A.E.

    1993-05-01

    The present study has investigated the bioleachability of naturally occurring cobaltite and synthetic cobalt sulfides using 29 pedigree and ``wild type`` strains of Thiobacillus ferrooxidans. On the basis of a screening test, five strains of bacteria were selected for assessing the effects of leach parameters (pH, ferrous and ferric sulfates, ammonium sulfate, bipotassium hydrogen phosphate, and substrate concentrations) on cobalt extraction from Blackbird Mine ore and concentrate. The mechanisms of cobalt extraction were explained in terms of direct and indirect modes of bacterial activity, and the chemistry involved in these processes was identified. Using various size fractions of a high-grade cobaltite, the kinetic parameters of cobalt extraction were derived for the effect of specific surface area to be V{sub m} = 376 mg dm{sup {minus}3} h{sup {minus}1} and K 1.27 m{sup 2} g{sup {minus}1}.

  15. Bioextraction of cobalt from complex metal sulfides

    SciTech Connect

    Thompson, D.L.; Noah, K.S.; Wichlacz, P.L.; Torma, A.E.

    1993-01-01

    The present study has investigated the bioleachability of naturally occurring cobaltite and synthetic cobalt sulfides using 29 pedigree and wild type'' strains of Thiobacillus ferrooxidans. On the basis of a screening test, five strains of bacteria were selected for assessing the effects of leach parameters (pH, ferrous and ferric sulfates, ammonium sulfate, bipotassium hydrogen phosphate, and substrate concentrations) on cobalt extraction from Blackbird Mine ore and concentrate. The mechanisms of cobalt extraction were explained in terms of direct and indirect modes of bacterial activity, and the chemistry involved in these processes was identified. Using various size fractions of a high-grade cobaltite, the kinetic parameters of cobalt extraction were derived for the effect of specific surface area to be V[sub m] = 376 mg dm[sup [minus]3] h[sup [minus]1] and K 1.27 m[sup 2] g[sup [minus]1].

  16. Biodesulfurization of rubber materials

    SciTech Connect

    Torma, A.E. ); Raghavan, D. . Dept. of Materials Science and Engineering)

    1990-01-01

    One of the most challenging problems in municipal waste treatment is the recycling of polymeric waste materials. The present study has demonstrated the applicability of biotechnological principles in the desulfurization of rubber using shake flask and Warburg respirometric techniques. In terms of oxygen uptake and specific rate of oxygen uptake, it was found that the mixed culture of Thiobacillus ferrooxidans and Thiobacillus thiooxidans was more efficient in this process than the individual pure cultures of these bacteria. Furthermore, the mixed cultures resulted in ten times higher sulfur removals from rubber relative to those of sterile controls. Additional studies are needed to elucidate the mechanisms of biodesulfurization of rubber. It is expected that the development of this process may provide a solution to recycling of car tire materials. 32 refs., 4 figs., 3 tabs.

  17. Microbial recovery of metals from spent coal liquefaction catalysts

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1991-01-01

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types are the subject of the contract. The first is a Ni-Mo catalyst supported on alumina (Shell 324) as is used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. A large sample of spent catalyst has been obtained. The second material is an unsupported ammonium molybdate catalyst used in a pilot process by the Department of energy at the Pittsburgh energy Technology Center. The object of the contract is to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans, but also other Thiobacillus sp. and possibly Sulfolobus, to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which can be readily recovered by conventional techniques.

  18. Microbial recovery of metals from spent coal liquefaction catalysts. Quarterly report, April--June 1991

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1991-12-31

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types are the subject of the contract. The first is a Ni-Mo catalyst supported on alumina (Shell 324) as is used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. A large sample of spent catalyst has been obtained. The second material is an unsupported ammonium molybdate catalyst used in a pilot process by the Department of energy at the Pittsburgh energy Technology Center. The object of the contract is to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans, but also other Thiobacillus sp. and possibly Sulfolobus, to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which can be readily recovered by conventional techniques.

  19. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community.

    PubMed

    Zeng, Jing; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Sun, Zhao-Yong; Kida, Kenji

    2016-10-01

    In this study, a sulfur-oxidizing community was enriched from activated sludge generated in tannery wastewater treatment plants. Bioleaching of tannery sludge containing 0.9-1.2% chromium was investigated to evaluate the effectiveness of the enriched community, the effect of chromium binding forms on bioleaching efficiency, and the dominant microbes contributing to chromium bioleaching. Sludge samples inoculated with the enriched community presented 79.9-96.8% of chromium leaching efficiencies, much higher than those without the enriched community. High bioleaching efficiencies of over 95% were achieved for chromium in reducible fraction, while 60.9-97.9% were observed for chromium in oxidizable and residual fractions. Acidithiobacillus thiooxidans, the predominant bacteria in the enriched community, played an important role in bioleaching, whereas some indigenous heterotrophic species in sludge might have had a supporting role. The results indicated that A. thiooxidans-dominant enriched microbial community had high chromium bioleaching efficiency, and chromium binding forms affected the bioleaching performance.

  20. Vanadium removal from LD converter slag using bacteria and fungi.

    PubMed

    Mirazimi, S M J; Abbasalipour, Z; Rashchi, F

    2015-04-15

    Removal of vanadium from Linz-Donawits (LD) converter slag was investigated by means of three different species of microbial systems: Acidithiobacillus thiooxidans (autotrophic bacteria), Pseudomonas putida (heterotrophic bacteria) and Aspergillus niger (fungi). The bioleaching process was carried out in both one-step and two-step process and the leaching efficiencies in both cases were compared. Formation of inorganic and organic acids during the leaching process caused mobilization of vanadium. In order to reduce toxic effects of the metal species on the above mentioned microorganisms, a prolonged adaptation process was performed. Both bacteria, A. thiooxidans and P. putida were able to remove more than 90% of vanadium at slag concentrations of 1-5 g L(-1) after 15 days. Also, the maximum achievable vanadium removal in the fungal system was approximately 92% at a slag concentration of 1 g L(-1) after 22 days.

  1. Technological assessment of a mining-waste dump at the Dexing copper mine, China, for possible conversion to an in situ bioleaching operation.

    PubMed

    Wu, Aixiang; Yin, Shenghua; Wang, Hongjiang; Qin, Wenqin; Qiu, Guanzhou

    2009-03-01

    In order to extract copper metal from the waste dump of Dexing copper mine and resolve the environmental problems caused by acidic water and heavy metals, a dump bioleaching plant was designed based on a series of experimental investigations. The investigation shown that the low-grade of the dump, refractoriness of chalcopyrite, leakage of pad, small Acidithiobacillus population and low dump permeability are the main factors that contribute to the challenges faced by the plant. Stability of the high and steep slope of the dump is the other hidden danger to which much attention is not paid. To evaluate the potential unstability of the dump, the leaching process, ore surface erosion, particle size, chemical elements and mechanical properties of the waste rock in DCM were investigated through experiment in this paper.

  2. Bioleaching of chalcopyrite and bornite by moderately thermophilic bacteria: an emphasis on their interactions

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-bo; Wang, Jun; Gan, Xiao-wen; Qin, Wen-qing; Hu, Ming-hao; Qiu, Guan-zhou

    2015-08-01

    Interactions between chalcopyrite and bornite during bioleaching by moderately thermophilic bacteria were investigated mainly by X-ray diffraction, scanning electron microscopy, and electrochemical measurements performed in conjunction with bioleaching experiments. The results showed that a synergistic effect existed between chalcopyrite and bornite during bioleaching by both Acidithiobacillus caldus and Leptospirillum ferriphilum and that extremely high copper extraction could be achieved when chalcopyrite and bornite coexisted in a bioleaching system. Bornite dissolved preferentially because of its lower corrosion potential, and its dissolution was accelerated by the galvanic current during the initial stage of bioleaching. The galvanic current and optimum redox potential of 390-480 mV vs. Ag/AgCl promoted the reduction of chalcopyrite to chalcocite (Cu2S), thus accelerating its dissolution.

  3. Enumeration of Thiobacilli within pH-Neutral and Acidic Mine Tailings and Their Role in the Development of Secondary Mineral Soil

    PubMed Central

    Southam, G.; Beveridge, T. J.

    1992-01-01

    The Lemoine tailings of Chibougamau, Quebec, Canada, were deposited as a pH-neutral mineral conglomerate consisting of aluminum-silicates, iron-aluminum-silicates, pyrite, chalcopyrite, and sphalerite. These tailings are colonized by an active population of Thiobacillus ferrooxidans which is localized to an acid zone occupying 40% of the tailings' surface. This population peaked at 7 × 108 most probable number per gram of tailings during July and August 1990 and extended to a depth of 40 cm from the surface. Examination of samples over this depth profile by transmission electron microscopy and electron dispersive spectroscopy revealed a microbially mediated mineral transition from sulfides (below 40 cm) to chlorides and phosphates (at the surface). Silicate minerals were unaltered by microbial action. Transmission electron microscopy showed a tight association between Thiobacillus species and the sulfide minerals, which helps account for their prominence in tailings environments. Accurate enumeration of T. ferrooxidans from tailings required the disruption of their bonding to the mineral interface. Vortexing of a 10% aqueous suspension of the tailings material prior to most-probable-number analysis best facilitated this release. Even though heavy metals were highly mobile under acidic conditions at the Lemoine tailings, it was evident by transmission electron microscopy and electron dispersive spectroscopy that they were being immobilized as bona fide fine-grain minerals containing iron, copper, chlorine, phosphorus, and oxygen on bacterial surfaces and exopolymers. This biomineralization increased with increasing bacterial numbers and was most evident in the upper 3 cm of the acidic zone. Images PMID:16348721

  4. Coal desulfurization by bacterial treatment and column flotation. Final report

    SciTech Connect

    Kawatra, S.K.

    1994-06-01

    A review of the literature showed that bacterial leaching, using the microorganism Thiobacillus ferrooxidans, was a very effective technique for removing pyrite from coal, as it could dissolve even the finest pyrite particles without the need for expensive reagents or extreme processing conditions. Unfortunately, bacterial leaching is also rather slow, and so the initial goal of this research was to decrease the leaching time as much as possible. However, this still left the bacteria needing approximately a week to remove half of the pyritic sulfur, and so a faster technique was sought. Since it had been reported in the literature that T. ferrooxidans could be used to depress the flotation of pyrite during froth flotation of coal, this was investigated further. By studying the recovery mechanisms of coal-pyrite in froth flotation, it was found that pyrite was being recovered by entrainment and by locking to coal particles, not by true flotation of hydrophobic pyrite. Therefore, no pyrite depressant could be of any significant benefit for keeping pyrite out of the coal froth product, and it was much more important to prevent entrainment from occurring. Countercurrent flotation columns were invented to essentially eliminate entrainment effects, by washing the froth and reducing mixing of the froth and tailings products. Existing flotation columns tend to be quite simple, and in order to give reasonable product quality they must be very tall (typically 30--45 feet). As a result, they have difficulty in handling the high froth volumes which occur in coal flotation, and are awkward to install in existing plants. The bulk of this project therefore concentrated on developing an improved coal flotation column, and testing it under actual plant conditions.

  5. Geochemical niches of iron-oxidizing acidophiles in acidic coal mine drainage.

    PubMed

    Jones, Daniel S; Kohl, Courtney; Grettenberger, Christen; Larson, Lance N; Burgos, William D; Macaladya, Jennifer L

    2015-02-01

    A legacy of coal mining in the Appalachians has provided a unique opportunity to study the ecological niches of iron-oxidizing microorganisms. Mine-impacted, anoxic groundwater with high dissolved-metal concentrations emerges at springs and seeps associated with iron oxide mounds and deposits. These deposits are colonized by iron-oxidizing microorganisms that in some cases efficiently remove most of the dissolved iron at low pH, making subsequent treatment of the polluted stream water less expensive. We used full-cycle rRNA methods to describe the composition of sediment communities at two geochemically similar acidic discharges, Upper and Lower Red Eyes in Somerset County, PA, USA. The dominant microorganisms at both discharges were acidophilic Gallionella-like organisms, “Ferrovum” spp., and Acidithiobacillus spp. Archaea and Leptospirillum spp. accounted for less than 2% of cells. The distribution of microorganisms at the two sites could be best explained by a combination of iron(II) concentration and pH. Populations of the Gallionella-like organisms were restricted to locations with pH>3 and iron(II) concentration of >4 mM, while Acidithiobacillus spp. were restricted to pH<3 and iron(II) concentration of <4 mM. Ferrovum spp. were present at low levels in most samples but dominated sediment communities at pH<3 and iron(II) concentration of >4 mM. Our findings offer a predictive framework that could prove useful for describing the distribution of microorganisms in acid mine drainage, based on readily accessible geochemical parameters.

  6. Geochemical Niches of Iron-Oxidizing Acidophiles in Acidic Coal Mine Drainage

    PubMed Central

    Kohl, Courtney; Grettenberger, Christen; Larson, Lance N.; Burgos, William D.

    2014-01-01

    A legacy of coal mining in the Appalachians has provided a unique opportunity to study the ecological niches of iron-oxidizing microorganisms. Mine-impacted, anoxic groundwater with high dissolved-metal concentrations emerges at springs and seeps associated with iron oxide mounds and deposits. These deposits are colonized by iron-oxidizing microorganisms that in some cases efficiently remove most of the dissolved iron at low pH, making subsequent treatment of the polluted stream water less expensive. We used full-cycle rRNA methods to describe the composition of sediment communities at two geochemically similar acidic discharges, Upper and Lower Red Eyes in Somerset County, PA, USA. The dominant microorganisms at both discharges were acidophilic Gallionella-like organisms, “Ferrovum” spp., and Acidithiobacillus spp. Archaea and Leptospirillum spp. accounted for less than 2% of cells. The distribution of microorganisms at the two sites could be best explained by a combination of iron(II) concentration and pH. Populations of the Gallionella-like organisms were restricted to locations with pH >3 and iron(II) concentration of >4 mM, while Acidithiobacillus spp. were restricted to pH <3 and iron(II) concentration of <4 mM. Ferrovum spp. were present at low levels in most samples but dominated sediment communities at pH <3 and iron(II) concentration of >4 mM. Our findings offer a predictive framework that could prove useful for describing the distribution of microorganisms in acid mine drainage, based on readily accessible geochemical parameters. PMID:25501473

  7. NuSTAR Discovery of a Possible Black Hole HMXB and Cygnus X-1 Progenitor

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan E.; Hailey, Charles James; Zhang, Shuo; Mori, Kaya; Gomez, Sebastian; Hong, Jaesub; Tomsick, John

    2017-01-01

    We report on NuSTAR observations of HD96670, a single line spectroscopic binary in the Carina OB association. We selected this source as a possible BH-HMXB candidate based on its 5.53d orbital period and 0.10 Msun mass function, both similar to Cyg X-1. HD96670 is a O8.5V main sequence star, and if its secondary were a BH, and its O star evolves to a O9Ib star like that in Cyg X-1, it would be high luminosity BH-HXMB. HD96670 is detected as a soft source in RASS and in the XMM slew survey. With a 150 ksec exposure with NuSTAR, we found a best-fit power law spectrum with photon index 2.4 - 2.6 and factor of ~2 variability. The mean Lx ~ 5 x 10^32 (5 - 30 keV) is consistent with that expected for accretion from the weak wind that late-type main sequence O stars usually show for plausible assumptions for the secondary if it is a ~5Msun BH. In the poster by Gomez and Grindlay, we show the detailed photometry and spectroscopy and PHOEBE modelling which point to the secondary indeed being a 5 Msun object, either an accreting BH or possibly a B8V star for which the X-ray spectrum would be expected to not show the hard PL component. Additional X-ray observations at or near the optically determined phase of inferiour vs. superior conjunction will resolve the nature of the secondary. If it is indeed a BH, this points the way to a much larger population of low-luminosity (Weak Wind) BH-LMXBs, with longer lifetimes, than the presently explored systems which all (but one) have super-giant donors.

  8. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    NASA Technical Reports Server (NTRS)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-01-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST) infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX 5 * 10(exp 39) erg s(exp -1)) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 * 10(exp 38) erg s(exp -1). This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  9. Non-Invasive Detection of Anaemia Using Digital Photographs of the Conjunctiva

    PubMed Central

    Collings, Shaun; Thompson, Oliver; Hirst, Evan; Goossens, Louise; George, Anup; Weinkove, Robert

    2016-01-01

    Background and Aims Anaemia is a major health burden worldwide. Although the finding of conjunctival pallor on clinical examination is associated with anaemia, inter-observer variability is high, and definitive diagnosis of anaemia requires a blood sample. We aimed to detect anaemia by quantifying conjunctival pallor using digital photographs taken with a consumer camera and a popular smartphone. Our goal was to develop a non-invasive screening test for anaemia. Patients and Methods The conjunctivae of haemato-oncology in- and outpatients were photographed in ambient lighting using a digital camera (Panasonic DMC-LX5), and the internal rear-facing camera of a smartphone (Apple iPhone 5S) alongside an in-frame calibration card. Following image calibration, conjunctival erythema index (EI) was calculated and correlated with laboratory-measured haemoglobin concentration. Three clinicians independently evaluated each image for conjunctival pallor. Results Conjunctival EI was reproducible between images (average coefficient of variation 2.96%). EI of the palpebral conjunctiva correlated more strongly with haemoglobin concentration than that of the forniceal conjunctiva. Using the compact camera, palpebral conjunctival EI had a sensitivity of 93% and 57% and specificity of 78% and 83% for detection of anaemia (haemoglobin < 110 g/L) in training and internal validation sets, respectively. Similar results were found using the iPhone camera, though the EI cut-off value differed. Conjunctival EI analysis compared favourably with clinician assessment, with a higher positive likelihood ratio for prediction of anaemia. Conclusions Erythema index of the palpebral conjunctiva calculated from images taken with a compact camera or mobile phone correlates with haemoglobin and compares favourably to clinician assessment for prediction of anaemia. If confirmed in further series, this technique may be useful for the non-invasive screening for anaemia. PMID:27070544

  10. Microbially-Enhanced Redox Solution Reoxidation for Sour Natural Gas Sweetening

    SciTech Connect

    Kenneth Brezinsky

    2008-01-15

    The specific objective of this project are to advance the technology and improve the economics of the commercial iron-based chelate processes such as LO-CAT II and SulFerox process utilizing biologically enhanced reoxidation of the redox solutions used in these processes. The project is based on the use of chelated ferric iron as the catalyst for the production of elemental sulfur, and then oxidizing bacteria, such as Thiobacillus Ferrooxidans (ATCC 23270) as an oxidizer. The regeneration of Fe{sup 3+} - chelate is accomplished by the use of these same microbes under mild conditions at 25-30 C and at atmospheric pressure to minimize the chelate degradation process. The pH of the redox solution was observed to be a key process parameter. Other parameters such as temperature, total iron concentration, gas to liquid ratio and bacterial cell densities also influence the overall process. The second part of this project includes experimental data and a kinetic model of microbial H{sub 2}S removal from sour natural gas using thiobacillus species. In the experimental part, a series of experiments were conducted with a commercial chelated iron catalyst at pH ranges from 8.7 to 9.2 using a total iron concentration range from 925 ppm to 1050 ppm in the solution. Regeneration of the solution was carried out by passing air through the solution. Iron oxidizing bacteria were used at cell densities of 2.3 x 10{sup 7}cells/ml for optimum effective performance. In the modeling part, oxidation of Fe{sup 2+} ions by the iron oxidizing bacteria - Thiobacillus Ferrooxidans was studied for application to a continuous stirred tank reactor (CSTR). The factors that can directly affect the oxidation rate such as dilution rate, temperature, and pH were analyzed. The growth of the microorganism was assumed to follow Monod type of growth kinetics. Dilution rate had influence on the rate of oxidation of ferrous iron. Higher dilution rates caused washout of the biomass. The oxidation rate was

  11. Acid mine drainage biogeochemistry at Iron Mountain, California

    PubMed Central

    Druschel, Gregory K; Baker, Brett J; Gihring, Thomas M; Banfield, Jillian F

    2004-01-01

    The Richmond Mine at Iron Mountain, Shasta County, California, USA provides an excellent opportunity to study the chemical and biological controls on acid mine drainage (AMD) generation in situ, and to identify key factors controlling solution chemistry. Here we integrate four years of field-based geochemical data with 16S rRNA gene clone libraries and rRNA probe-based studies of microbial population structure, cultivation-based metabolic experiments, arsenopyrite surface colonization experiments, and results of intermediate sulfur species kinetics experiments to describe the Richmond Mine AMD system. Extremely acidic effluent (pH between 0.5 and 0.9) resulting from oxidation of approximately 1 × 105 to 2 × 105 moles pyrite/day contains up to 24 g/1 Fe, several g/1 Zn and hundreds of mg/l Cu. Geochemical conditions change markedly over time, and are reflected in changes in microbial populations. Molecular analyses of 232 small subunit ribosomal RNA (16S rRNA) gene sequences from six sites during a sampling time when lower temperature (<32°C), higher pH (>0.8) conditions predominated show the dominance of Fe-oxidizing prokaryotes such as Ferroplasma and Leptospirillum in the primary drainage communities. Leptospirillum group III accounts for the majority of Leptospirillum sequences, which we attribute to anomalous physical and geochemical regimes at that time. A couple of sites peripheral to the main drainage, "Red Pool" and a pyrite "Slump," were even higher in pH (>1) and the community compositions reflected this change in geochemical conditions. Several novel lineages were identified within the archaeal Thermoplasmatales order associated with the pyrite slump, and the Red Pool (pH 1.4) contained the only population of Acidithiobacillus. Relatively small populations of Sulfobacillus spp. and Acidithiobacillus caldus may metabolize elemental sulfur as an intermediate species in the oxidation of pyritic sulfide to sulfate. Experiments show that elemental sulfur

  12. Enhanced Yields of Iron-Oxidizing Bacteria by In Situ Electrochemical Reduction of Soluble Iron in the Growth Medium

    PubMed Central

    Blake, Robert C.; Howard, Gary T.; McGinness, Stephen

    1994-01-01

    An electrochemical apparatus for culturing chemolithotrophic bacteria that respire aerobically on ferrous ions is described. Enhanced yields of the bacteria were achieved by the in situ electrochemical reduction of soluble iron in the growth medium. When subjected to a direct current of 30 A for 60 days, a 45-liter culture of Thiobacillus ferrooxidans grew from 6 × 107 to 9.5 × 109 cells per ml. Growth of the bacterium within the electrolytic bioreactor was linear with time. A final cell density corresponding to 4.7 g of wet cell paste per liter was achieved, and a total of 320 g of wet cell paste was harvested from one culture. The apparatus was designed to deliver protons concomitantly with electrons; therefore, the pH of the culture remained stable at 1.6 ± 0.1 for the duration of growth. This laboratory-scale apparatus may be readily adapted to pilot or production scale. It is thus anticipated that abundant numbers of iron-oxidizing bacteria may be obtained for both fundamental and applied studies. PMID:16349344

  13. Desulfurization of coal by microbial column flotation

    SciTech Connect

    Ohmura, Naoya; Saiki, Hiroshi . Dept. of Biotechnology)

    1994-06-05

    Twenty-three strains capable of oxidizing iron were isolated from coal and ore storage sites as well as coal and ore mines, volcanic areas, and hot spring. Four strains were found to have high iron-oxidizing activity. One strain (T-4) was selected for this experiment since the strain showed the fastest leaching rate of iron and sulfate from pyrite among the four strains. The T-4 strain was assigned for Thiobacillus ferrooxidans from its cultural and morphological characteristics. Bacterial treatment was applied to column flotation. An increase of cell density in the microbial column flotation resulted in the increase of pyrite removal from a coal-pyrite mixture with corresponding decrease of coal recovery. The addition of kerosene into the microbial column flotation increased the recovery of the imitated coal from 55% (without kerosene) to 81% (with 50 [mu]L/L kerosene) with the reduction of pyrite sulfur content from11% (feed coal) to 3.9% (product coal). An excellent separation was obtained by the microbial flotation using a long column which had a length-diameter (L/D) ratio of 12.7.

  14. Microbiological recovery of metals from spent coal liquefaction catalysts. Quarterly status report, January--March 1993

    SciTech Connect

    Joffe, P.; Sperl, G.T.

    1993-12-31

    The main objectives of this project are: (1) to test non-growing cells for their ability to remove metals from spent coal liquefaction catalysts; (2) to optimize time and volumes necessary for efficient metal removal from spent catalysts; (3) to perform an economic evaluation based on the best case scenario from the other tasks; and (4) to seek thermophilic bacteria which can leach metals from spent catalysts. Such organisms would undoubtedly increase rates of release. In an earlier contract the authors studied the ability of T. ferrooxidans to release metals from spent coal liquefaction catalysts (Shell 324 from the Wilsonville pilot plant). This organism was good at releasing Ni from the Ni-Mo catalyst, but the toxicity of Mo for these organisms meant large volumes of liquid were required and long periods of time. They discovered at that time that heterotrophic denitrifying bacteria were capable of releasing both Ni and Mo at high rates and efficiently at small volumes. These organisms are the target of study in this project along with other potentially interesting microorganisms.

  15. A new group in the Leptospirillum clade: cultivation-independent community genomics, proteomics and transcriptomics of the new species Leptospirillum group IV UBA BS.

    SciTech Connect

    Goltsman, Daniela; Dasari, Mauna; Thomas, BC; Shah, Manesh B; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2013-01-01

    Leptospirillum spp. are widespread members of acidophilic microbial communities that catalyze ferrous iron oxidation, thereby increasing sulfide mineral dissolution rates. These bacteria play important roles in environmental acidification and are harnessed for bioleaching-based metal recovery. Known members of the Leptospirillum clade of the Nitrospira phylum are Leptospirillum ferrooxidans (group I), Leptospirillum ferriphilum and Leptospirillum rubarum (group II), and Leptospirillum ferrodiazotrophum (group III). In the Richmond Mine acid mine drainage (AMD) system, biofilm formation is initiated by L. rubarum; L. ferrodiazotrophum appears in later developmental stages. Here we used community metagenomic data from unusual, thick floating biofilms to identify distinguishing metabolic traits in a rare and uncultivated community member, the new species Leptospirillum group IV UBA BS. These biofilms typically also contain a variety of Archaea, Actinobacteria, and a few other Leptospirillum spp. The Leptospirillum group IV UBA BS species shares 98% 16S rRNA sequence identity and 70% average amino acid identity between orthologs with its closest relative, L. ferrodiazotrophum. The presence of nitrogen fixation and reverse tricarboxylic acid (TCA) cycle proteins suggest an autotrophic metabolism similar to that of L. ferrodiazotrophum, while hydrogenase proteins suggest anaerobic metabolism. Community transcriptomic and proteomic analyses demonstrate expression of a multicopper oxidase unique to this species, as well as hydrogenases and core metabolic genes. Results suggest that the Leptospirillum group IV UBA BS species might play important roles in carbon fixation, nitrogen fixation, hydrogen metabolism, and iron oxidation in some acidic environments.

  16. Microbial recovery of metals from spent catalysts. Quarterly report, January--March 1991

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1991-12-31

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types are the subject of the contract. The first is a Ni-Mo catalyst supported on alumina (Shell 324) as is used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. This plant is run and operated by Southern Clean Fuels. A large sample of spent catalyst from this facility has been obtained. The second material is an unsupported ammonium molybdate catalyst used in a pilot process by the Department of Energy at the Pittsburgh Energy Technology Center. This material was obtained in late February 1990 but has not been pursued since the No content of this particular sample is too low for the current studies and no new catalyst has since been obtained. The object of the contract is to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans, but also other Thiobacillus sp. and possibly Sulfolobus, to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which can be readily recovered by conventional techniques.

  17. Microbial recovery of metals from spent catalysts. [Thiobacillus sulfolobus

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1991-01-01

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types are the subject of the contract. The first is a Ni-Mo catalyst supported on alumina (Shell 324) as is used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. This plant is run and operated by Southern Clean Fuels. A large sample of spent catalyst from this facility has been obtained. The second material is an unsupported ammonium molybdate catalyst used in a pilot process by the Department of Energy at the Pittsburgh Energy Technology Center. This material was obtained in late February 1990 but has not been pursued since the No content of this particular sample is too low for the current studies and no new catalyst has since been obtained. The object of the contract is to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans, but also other Thiobacillus sp. and possibly Sulfolobus, to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which can be readily recovered by conventional techniques.

  18. Mechanism of bacterial pyrite oxidation.

    PubMed

    Silverman, M P

    1967-10-01

    The oxidation by Ferrobacillus ferrooxidans of untreated pyrite (FeS(2)) as well as HCl-pretreated pyrite (from which most of the acid-soluble iron species were removed) was studied manometrically. Oxygen uptake was linear during bacterial oxidation of untreated pyrite, whereas with HCl-pretreated pyrite both a decrease in oxygen uptake at 2 hr and nonlinear oxygen consumption were observed. Ferric sulfate added to HCl-pretreated pyrite restored approximately two-thirds of the decrease in total bacterial oxygen uptake and caused oxygen uptake to revert to nearly linear kinetics. Ferric sulfate also oxidized pyrite in the absence of bacteria and O(2); recovery of ferric and ferrous ions was in excellent agreement with the reaction Fe(2)(SO(4))(3) + FeS(2) = 3FeSO(4) + 2S, but the elemental sulfur produced was negligible. Neither H(2)S nor S(2)O(3) (2-) was a product of the reaction. It is probable that two mechanisms of bacterial pyrite oxidation operate concurrently: the direct contact mechanism which requires physical contact between bacteria and pyrite particles for biological pyrite oxidation, and the indirect contact mechanism according to which the bacteria oxidize ferrous ions to the ferric state, thereby regenerating the ferric ions required for chemical oxidation of pyrite.

  19. A fusion promoter created by a new insertion sequence, IS1490, activates transcription of 2,4,5-trichlorophenoxyacetic acid catabolic genes in Burkholderia cepacia AC1100.

    PubMed Central

    Hübner, A; Hendrickson, W

    1997-01-01

    Transposition and transcriptional activation by insertion sequences in Burkholderia cepacia AC1100 were investigated. Two closely related new elements, IS1413 and IS1490, were identified and characterized. These elements are not highly related to other insertion sequences identified in AC1100 or other B. cepacia isolates. Based on their structures and the sequences of the inverted terminal repeats and the putative transposase protein, the insertion elements (IS elements) are similar to IST2 of Thiobacillus ferrooxidans and several related elements. All the IS elements that have been identified in this strain are found in multiple copies (10 to 40), and they have high-level promoter activity capable of stimulating transcription from a distance up to 500 bp from a target gene. Strain AC1100 was originally isolated after prolonged selection for the ability to utilize the herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as a sole carbon source. Three IS elements are located near the first gene of the 2,4,5-T catabolic pathway, tftA. IS1490 inserted 110 bp upstream of tftA and created a fusion promoter responsible for constitutive transcription of the gene. Our results confirm the hypothesis that IS elements play a central role in transcription of 2,4,5-T genes and likely have stimulated rapid evolution of the metabolic pathway. PMID:9098071

  20. Thiobacillus cuprinus sp. nov. , a novel facultatively organotrophic metal-mobilizing bacterium

    SciTech Connect

    Huber, H.; Stetter, K.O. )

    1990-02-01

    Five strains of mesophilic, facultatively organotrophic, ore-leaching eubacteria were isolated from solfatara fields in Iceland and a uranium mine in the Federal Republic of Germany. The new organisms are aerobic gram-negative rods. They can use sulfidic ores or elemental sulfur as sole energy source, indicating that they belong to the genus Thiobacillus. Alternatively, they grow on organic substrates such as yeast extract, peptone, and pyruvate. In contrast to the other leaching bacteria known so far, the new isolates are unable to oxidize ferrous iron. They consist of extreme and moderate acidophiles growing optimally at pH 3 and 4, respectively. The extreme acidophiles showed leaching characteristics similar to those shown by Thiobacillus ferrooxidans, while the moderate acidophiles exhibited a pronounced preference for copper leaching on some chalcopyrite ores. The G+C content of the DNA is between 66 and 69 mol%, depending on the isolate. In DNA-DNA hybridization experiments, the new strains showed homologies among each other of >70%, indicating that they belong to the same species. No significant DNA homology to Thiobacillus reference strains was detectable. Therefore, the new isolates represent a new species of Thiobacillus, which the authors named Thiobacillus cuprinus. Isolate Hoe5 is designated as the type strain (DSM 5495).

  1. Microbial oxidation of pyrrhotites in coal chars

    USGS Publications Warehouse

    Miller, K.W.; Risatti, J.B.

    1988-01-01

    The ability of Thiobacillus ferrooxidans to oxidize pyrrhotite minerals occurring in coal chars was investigated, to evaluate the feasibility of microbial char desulphurization. Bio-oxidation of pyrrhotites in chars produced by two different processes was demonstrated conclusively. Microbial removal of sulphur from a char and its parent coal proceeded at the rate of 3.5% and 12% day-1, respectively with a total of 48% and 81% removal after 27 days. The pH of shake flask cultures containing the coal dropped naturally to a final value of 2.2, while the pH of cultures containing the corresponding char rose and had to be lowered artificially with additional acid. Amending char cultures with elemental sulphur to increase acidity upon bio-oxidation and prevent precipitation of ferric iron was successful; however, the extent of pyrrhotite removal, as demonstated by X-ray diffraction analysis, was not improved. As yet, there is no explanation for the failure of microbial removal of pyrrhotitic sulphur to go to completion. ?? 1988.

  2. Microbial recovery of metals from spent catalysts. Quarterly report, July--September 1990

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1990-12-31

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types are the subject of the contract. The first is a Ni-Mo catalyst supported on alumina (Shell 324) as is used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. This plant is run and operated by Southern Clean Fuels. A large sample of spent catalyst from this facility has been obtained. The second material is an unsupported ammonium molybdate catalyst used in a pilot process by the Department of Energy at the Pittsburgh Energy Technology Center. This material was obtained in late February 1990 but has not been pursued since the No content of this particular sample is too low for the current studies. The object of the contract is to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans, but also other Thiobacillus sp. and possibly Sulfolobus, to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which can be readily recovered by conventional techniques.

  3. Microbial recovery of metals from spent catalysts

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1990-01-01

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types are the subject of the contract. The first is a Ni-Mo catalyst supported on alumina (Shell 324) as is used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. This plant is run and operated by Southern Clean Fuels. A large sample of spent catalyst from this facility has been obtained. The second material is an unsupported ammonium molybdate catalyst used in a pilot process by the Department of Energy at the Pittsburgh Energy Technology Center. This material was obtained in late February 1990 but has not been pursued since the No content of this particular sample is too low for the current studies. The object of the contract is to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans, but also other Thiobacillus sp. and possibly Sulfolobus, to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which can be readily recovered by conventional techniques.

  4. Microbial recovery of metals from spent coal liquefaction catalysts. Final report

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1995-07-01

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types were the subject of the contract. The first was a Ni-No catalyst support on alumina (Shell 324), the catalyst used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. The second material was an unsupported ammonium molybdate catalyst used in a pilot process by the Department of Energy at the Pittsburgh Energy Technology Center. This material was obtained in late February 1990 but has not been pursued since the Mo content of this particular sample was too low for the current studies and the studies at the Pittsburgh Energy Technology Center have been discontinued. The object of the contract was to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans , but also other Thiobacillus spp. and possibly Sulfolobus and other potential microorganisms, to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which could be readily recovered by conventional techniques.

  5. Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae.

    PubMed

    Hallberg, Kevin B; Hedrich, Sabrina; Johnson, D Barrie

    2011-03-01

    A comprehensive physiological and phylogenetic characterisation was carried out of "Thiobacillus ferrooxidans" m-1, an acidophilic iron-oxidizing bacterium first described over 25 years ago. Phylogenetically, strain m-1 is a gammaproteobacterium, most closely related to alkaliphilic Ectothiorhodospira spp. and only distantly to iron-oxidizing acidithiobacilli. Physiological examination confirmed that strain m-1 can grow autotrophically not only by ferrous iron oxidation but also, in contrast to previous reports, by oxidation of elemental sulfur, sulfide and tetrathionate, using either oxygen or ferric iron as terminal electron acceptor. The bacterium was also found to be thermo-tolerant, growing optimally at 38°C and up to a maximum of 47°C. Growth in liquid media required an external osmotic potential of >2 bar, and was optimal at ~5 bar, though no growth occurred where the medium osmotic potential was close to that of sea water (~26 bar). From this, it was concluded that strain m-1 is a moderate osmophile. Strain m-1 was also shown to be diazotrophic and tolerant of elevated concentrations of many metals typically found in mine-impacted environments. On the basis of these data, m-1 is proposed as the type strain of a new genus and species of bacteria, Acidiferrobacter thiooxydans (DSM 2392, JCM 17358).

  6. Thiobacillus cuprinus sp. nov., a Novel Facultatively Organotrophic Metal-Mobilizing Bacterium

    PubMed Central

    Huber, Harald; Stetter, Karl O.

    1990-01-01

    Five strains of mesophilic, facultatively organotrophic, ore-leaching eubacteria were isolated from solfatara fields in Iceland and a uranium mine in the Federal Republic of Germany. The new organisms are aerobic gram-negative rods. They can use sulfidic ores or elemental sulfur as sole energy source, indicating that they belong to the genus Thiobacillus. Alternatively, they grow on organic substrates such as yeast extract, peptone, and pyruvate. In contrast to the other leaching bacteria known so far, the new isolates are unable to oxidize ferrous iron. They consist of extreme and moderate acidophiles growing optimally at pH 3 and 4, respectively. The extreme acidophiles showed leaching characteristics similar to those shown by Thiobacillus ferrooxidans, while the moderate acidophiles exhibited a pronounced preference for copper leaching on some chalcopyrite ores. The G+C content of the DNA is between 66 and 69 mol%, depending on the isolate. In DNA-DNA hybridization experiments, the new strains showed homologies among each other of >70%, indicating that they belong to the same species. No significant DNA homology to Thiobacillus reference strains was detectable. Therefore, the new isolates represent a new species of Thiobacillus, which we name Thiobacillus cuprinus. Isolate Hö5 is designated as the type strain (DSM 5495). Images PMID:16348110

  7. Biofouling of contaminated ground-water recovery wells: Characterization of microorganisms

    SciTech Connect

    Taylor, S.W.; Lange, C.R.; Lesold, E.A.

    1997-11-01

    The taxonomy and physiology of microorganisms isolated from contaminated ground-water recovery wells prone to biofouling are characterized for an industrial site in Rochester, New York. Principal aquifer contaminants include acetone, cyclohexane, dichloroethane, dichloromethane, 1,4-dioxane, isopropanol, methanol, and toluene. These contaminants represent a significant fraction (up to 95%) of the total organic carbon in the ground water. Ground-water samples from 12 recovery wells were used to isolate, quantify, and identify aerobic and anaerobic bacterial populations. Samples from selected wells were also characterized geochemically to assess redox conditions and availability of essential and trace nutrients. Dominant bacteria, listed in order of descending numbers, including sulfate-reducers (Desulfovibrio desulfuricans), anaerobic heterotrophs (Actinomyces, Bacteriodes, Bacillus, Agrobacterium), aerobic heterotrophs (Pseudomonas, Flavobacterium, Nocardia, Citrobacter), iron-oxidizers (Gallionella ferruginea, Crenothrix polyspora), iron-reducers (Shewanella), and sulfur-oxidizers (Thiobacillus ferrooxidans). Fungi were also recovered in low numbers. Both aerobic and anaerobic heterotrophs were able to utilize all principal contaminants as sole carbon and energy sources except 1,4-dioxane. The prevalence of heterotrophic bacteria and their ability to use the available anthropogenic carbon suggests that aerobic and anaerobic heterotrophs contribute to the biofouling of wells at this site, in addition to the often cited fouling due to iron-oxidizing bacteria and sulfate-reducing bacteria.

  8. Development and Application of Small-Subunit rRNA Probes for Assessment of Selected Thiobacillus Species and Members of the Genus Acidiphilium

    PubMed Central

    Peccia, Jordan; Marchand, Eric A.; Silverstein, Joann; Hernandez, Mark

    2000-01-01

    Culture-dependent studies have implicated sulfur-oxidizing bacteria as the causative agents of acid mine drainage and concrete corrosion in sewers. Thiobacillus species are considered the major representatives of the acid-producing bacteria in these environments. Small-subunit rRNA genes from all of the Thiobacillus and Acidiphilium species catalogued by the Ribosomal Database Project were identified and used to design oligonucleotide DNA probes. Two oligonucleotide probes were synthesized to complement variable regions of 16S rRNA in the following acidophilic bacteria: Thiobacillus ferrooxidans and T. thiooxidans (probe Thio820) and members of the genus Acidiphilium (probe Acdp821). Using 32P radiolabels, probe specificity was characterized by hybridization dissociation temperature (Td) with membrane-immobilized RNA extracted from a suite of 21 strains representing three groups of bacteria. Fluorochrome-conjugated probes were evaluated for use with fluorescent in situ hybridization (FISH) at the experimentally determined Tds. FISH was used to identify and enumerate bacteria in laboratory reactors and environmental samples. Probing of laboratory reactors inoculated with a mixed culture of acidophilic bacteria validated the ability of the oligonucleotide probes to track specific cell numbers with time. Additionally, probing of sediments from an active acid mine drainage site in Colorado demonstrated the ability to identify numbers of active bacteria in natural environments that contain high concentrations of metals, associated precipitates, and other mineral debris. PMID:10877807

  9. Development and application of small-subunit rRNA probes for assessment of selected Thiobacillus species and members of the genus Acidiphilium.

    PubMed

    Peccia, J; Marchand, E A; Silverstein, J; Hernandez, M

    2000-07-01

    Culture-dependent studies have implicated sulfur-oxidizing bacteria as the causative agents of acid mine drainage and concrete corrosion in sewers. Thiobacillus species are considered the major representatives of the acid-producing bacteria in these environments. Small-subunit rRNA genes from all of the Thiobacillus and Acidiphilium species catalogued by the Ribosomal Database Project were identified and used to design oligonucleotide DNA probes. Two oligonucleotide probes were synthesized to complement variable regions of 16S rRNA in the following acidophilic bacteria: Thiobacillus ferrooxidans and T. thiooxidans (probe Thio820) and members of the genus Acidiphilium (probe Acdp821). Using (32)P radiolabels, probe specificity was characterized by hybridization dissociation temperature (T(d)) with membrane-immobilized RNA extracted from a suite of 21 strains representing three groups of bacteria. Fluorochrome-conjugated probes were evaluated for use with fluorescent in situ hybridization (FISH) at the experimentally determined T(d)s. FISH was used to identify and enumerate bacteria in laboratory reactors and environmental samples. Probing of laboratory reactors inoculated with a mixed culture of acidophilic bacteria validated the ability of the oligonucleotide probes to track specific cell numbers with time. Additionally, probing of sediments from an active acid mine drainage site in Colorado demonstrated the ability to identify numbers of active bacteria in natural environments that contain high concentrations of metals, associated precipitates, and other mineral debris.

  10. Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics.

    PubMed

    Johnson, D Barrie; Okibe, Naoko; Roberto, Francisco F

    2003-07-01

    Moderately thermophilic acidophilic bacteria were isolated from geothermal (30-83 degrees C) acidic (pH 2.7-3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 degrees C, and pH 1.0-1.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria ( Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstone strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the alpha -Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also alpha-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes ( SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.

  11. Bacteria diversity, distribution and insight into their role in S and Fe biogeochemical cycling during black shale weathering.

    PubMed

    Li, Jiwei; Sun, Weimin; Wang, Shiming; Sun, Zhilei; Lin, Sixiang; Peng, Xiaotong

    2014-11-01

    A group of black shale samples, which were collected sequentially along a continuous depositional unit from bottom fresh zone toward the surface regolith of the weathering profile at Chengkou County, Southwest China, were examined using mineralogical, geochemical and pyrosequencing techniques. The mineralogical and geochemical analyses indicated that the black shale profile provided a series of extremely acidic and chemical species that changed microbial habitats following the process of weathering. This finding is in contrast with a previous hypothesis that a low-diversity bacterial community existed in these harsh environments; the pyrosequencing analyses showed extremely diverse microbial communities with 33 different phyla/groups in these samples. Among these phyla/groups, proteobacteria, actinobacteria and firmcutes were more dominant than other phyla, and the phylogenetic structures of the bacterial communities vary with the progressive process of weathering. Moreover, the canonical-correlation analysis suggested that pH and sulfur in sulfate, followed by total Fe and sulfur in pyrite, are the significant factors that shape the microbial community structure. In addition, a large proportion of S- and Fe-related bacteria, such as Acidithiobacillus, Sulfobacillus, Thiobacillus, Ferrimicrobium and Ferrithrix, may be responsible for pyrite bio-oxidation, as well as for S and Fe biogeochemical cycling, in the black shale weathering environments.

  12. [Thermoacidophilic micirobial community oxidizing the gold-bearing flotation concentrate of a pyrite-arsenopyrite ore].

    PubMed

    Paniushkina, A E; Tsaplina, I A; Grigor'eva, N V; Kondrat'eva, T F

    2014-01-01

    An aboriginal community of thermophilic acidophilic chemolithotrophic microorganisms (ACM) was isolated from a sample of pyrite gold-bearing flotation concentrateat 45-47 degrees C and pH 1.8-2.0. Compared to an experimental thermoacidophilic microbial consortium formed in the course of cultivation in parallel bioreactors, it had lower rates of iron leaching and oxidation, while its rate of sulfur oxidation was higher. A new thermophilic acidophilic microbial community was obtained by mutual enrichment with the micioorganisms from thie experimental and aboriginal communities during oxidation of sulfide ore flotation concentrate at 47 degrees C. The dominant bacteria of this new ACM community were Acidithiobacillus caldus strains (the most active sulfur oxidizers) and Sulfobacillus thermotolerans strains (active oxidizers of both iron and sulfur), while iron-oxidizing archaea of the family Ferroplasmaceae and heterotrophic bacteria Alicyclobacillus tolerans were the minor components. The new ACM community showed promise for leaching/oxidation of sulfides from flotation concentrates at high pulp density (S:L = 1:4).

  13. [Optimization of bioleaching and oxidation of gold-bearing pyrite-arsnopyrite ore concentrate in batch mode].

    PubMed

    Grigor'eva, N V; Tsaplina, I A; Paniushkina, A E; Kondrat'eva, T F

    2014-01-01

    Biooxidation of refractory gold-bearing pyrite-arsenopyrite flotation concentrate was optimized and aburidance of predominant groups in the community ofthermophilic acidophilic chemolithotrophic microorganisms at various stages ofbioleaching was determined. The optimal parameters for growth and leaching/oxidation of the mineral components of the concentrate were pSH 1.4, 1.6-1.8; 47.5 degrees C; and the following salt concentrations in the liquid phase (g/L): K2HPO4.3H2O, 0.53; (NH4)2SO4, 1.6 and MgSO4.7H2O, 2.5 (or (NH4)2SO4, 1.23; ammophos, 0.41; KOH, 0.1) with 0.03% yeast extract. The optimal conditions resulted in high growth rate, high levels of iron andarsenic leaching, of Fe2+ and S(2-)/S0 oxidation, and predominance of Acidithiobacillus caldus, Sulfobacillus spp., and Ferroplasma spp. in the community.

  14. A study on the toxic effects of chloride on the biooxidation efficiency of pyrite.

    PubMed

    Gahan, Chandra Sekhar; Sundkvist, Jan-Eric; Sandström, Ake

    2009-12-30

    Bioleaching operations in areas with limited chloride-free water and use of ashes and dust as neutralizing agents have motivated to study the chloride toxicity and tolerance level of the microorganisms. Biooxidation of pyrite using chloride containing waste ash compared with Ca(OH)(2)+NaCl as neutralizing agent was investigated to evaluate the causes of low pyrite oxidation. Both precipitation of jarosite as well as the toxic effect of chloride on the microorganisms were responsible for lower pyrite recoveries. Another study with sudden exposure of chloride during pyrite biooxidation, addition of 4 g/L was lethal for the microorganisms. Addition of 2g/L chloride resulted in precipitation of jarosite with slightly lower pyrite recovery whereas the addition of 3g/L chloride temporarily chocked the microorganisms but activity was regained after a short period of adaptation. Population dynamics study conducted on the experiment with 3g/L chloride surprisingly showed that Leptospirillum ferriphilum, which was dominating in the inoculum, completely disappeared from the culture already before chloride was added. Sulphobacillus sp. was responsible for iron oxidation in the experiment. Both Acidithiobacillus caldus and Sulphobacillus sp. were adaptive and robust in nature and their numbers were slightly affected after chloride addition. Therefore, it was concluded that the microbial species involved in the biooxidation of pyrite vary in population during the different stages of biooxidation.

  15. Expression of Critical Sulfur- and Iron-Oxidation Genes and the Community Dynamics During Bioleaching of Chalcopyrite Concentrate by Moderate Thermophiles.

    PubMed

    Zhou, Dan; Peng, Tangjian; Zhou, Hongbo; Liu, Xueduan; Gu, Guohua; Chen, Miao; Qiu, Guanzhou; Zeng, Weimin

    2015-07-01

    Sulfate adenylyltransferase gene and 4Fe-4S ferredoxin gene are the key genes related to sulfur and iron oxidations during bioleaching system, respectively. In order to better understand the bioleaching and microorganism synergistic mechanism in chalcopyrite bioleaching by mixed culture of moderate thermophiles, expressions of the two energy metabolism genes and community dynamics of free and attached microorganisms were investigated. Specific primers were designed for real-time quantitative PCR to study the expression of these genes. Real-time PCR results showed that sulfate adenylyltransferase gene was more highly expressed in Sulfobacillus thermosulfidooxidans than that in Acidithiobacillus caldus, and expression of 4Fe-4S ferredoxin gene was higher in Ferroplasma thermophilum than that in S. thermosulfidooxidans and Leptospirillum ferriphilum. The results indicated that in the bioleaching system of chalcopyrite concentrate, sulfur and iron oxidations were mainly performed by S. thermosulfidooxidans and F. thermophilum, respectively. The community dynamics results revealed that S. thermosulfidooxidans took up the largest proportion during the whole period, followed by F. thermophilum, A. caldus, and L. ferriphilum. The CCA analysis showed that 4Fe-4S ferredoxin gene expression was mainly affected (positively correlated) by high pH and elevated concentration of ferrous ion, while no factor was observed to prominently influence the expression of sulfate adenylyltransferase gene.

  16. Relationship between microbial community dynamics and process performance during thermophilic sludge bioleaching.

    PubMed

    Chen, Shen-Yi; Chou, Li-Chieh

    2016-08-01

    Heavy metals can be removed from the sludge using bioleaching technologies at thermophilic condition, thereby providing an option for biotreatment of wasted sludge generated from wastewater treatment. The purposes of this study were to establish a molecular biology technique, real-time PCR, for the detection and enumeration of the sulfur-oxidizing bacteria during the thermophilic sludge bioleaching. The 16S rRNA gene for real-time PCR quantification targeted the bioleaching bacteria: Sulfobacillus thermosulfidooxidans, Sulfobacillus acidophilus, and Acidithiobacillus caldus. The specificity and stringency for thermophilic sulfur-oxidizing bacteria were tested before the experiments of monitoring the bacterial community, bacterial number during the thermophilic sludge bioleaching and the future application on testing various environmental samples. The results showed that S. acidophilus was identified as the dominant sulfur-oxidizing bacteria, while A. caldus and S. thermosulfidooxidans occurred in relatively low numbers. The total number of the sulfur-oxidizing bacteria increased during the thermophilic bioleaching process. Meanwhile, the decrease of pH, production of sulfate, degradation of SS/VSS, and solubilization of heavy metal were found to correlate well with the population of thermophilic sulfur-oxidizing bacteria during the bioleaching process. The real-time PCR used in this study is a suitable method to monitor numbers of thermophilic sulfur-oxidizing bacteria during the bioleaching process.

  17. Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process.

    PubMed

    Xiao, Yunhua; Liu, Xueduan; Dong, Weiling; Liang, Yili; Niu, Jiaojiao; Gu, Yabing; Ma, Liyuan; Hao, Xiaodong; Zhang, Xian; Xu, Zhen; Yin, Huaqun

    2017-03-04

    This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including Acidithiobacillus caldus S1, Sulfobacillus thermosulfidooxidans ST and Leptospirillum ferriphilum YSK, and one archaea, Ferroplasma thermophilum L1) to explore the variation of microbial community structure, composition, dynamics and function (e.g., copper extraction efficiency) in chalcopyrite bioleaching (C) systems with additions of pyrite (CP) or sphalerite (CS). The community compositions and dynamics in the solution and on the ore surface were investigated by real-time quantitative PCR (qPCR). The results showed that the addition of pyrite or sphalerite changed the microbial community composition and dynamics dramatically during the chalcopyrite bioleaching process. For example, A. caldus (above 60%) was the dominant species at the initial stage in three groups, and at the middle stage, still dominated C group (above 70%), but it was replaced by L. ferriphilum (above 60%) in CP and CS groups; at the final stage, L. ferriphilum dominated C group, while F. thermophilum dominated CP group on the ore surface. Furthermore, the additions of pyrite or sphalerite both made the increase of redox potential (ORP) and the concentrations of Fe(3+) and H(+), which would affect the microbial community compositions and copper extraction efficiency. Additionally, pyrite could enhance copper extraction efficiency (e.g., improving around 13.2% on day 6) during chalcopyrite bioleaching; on the contrary, sphalerite restrained it.

  18. Relationship between bioleaching performance, bacterial community structure and mineralogy in the bioleaching of a copper concentrate in stirred-tank reactors.

    PubMed

    Spolaore, Pauline; Joulian, Catherine; Gouin, Jérôme; Morin, Dominique; d'Hugues, Patrick

    2011-01-01

    During the Bioshale European project, a techno-economic study of the bioleaching of a copper concentrate originating from a black shale ore was carried out. This concentrate is a multi-mineral resource in which the copper sulphides are mainly chalcocite, covellite, bornite and chalcopyrite. The experiments undertaken to produce the techno-economic data were also an opportunity to carry out more fundamental research. The objective of this work was to combine the results of the bioleaching experiments, in terms of copper recovery, with the results of bacterial community monitoring and mineralogy residue analysis. Batch and continuous bioleaching tests were carried out with 10% solids, at 42 °C and with a pH between 1.2 and 1.6. Final copper recovery was higher in batch cultures than in continuous mode (>95% vs. 91%). Mineralogical analysis showed that the limiting factor for copper recovery was incomplete chalcopyrite dissolution in both cases. However, chalcopyrite was even less dissolved in continuous conditions. This was also related to a variation in bacterial community structure. The population in all tests was composed of Acidithiobacillus caldus, Leptospirillum ferriphilum and one or two species of Sulfobacillus (Sulfobacillus thermosulfidooxidans and sometimes Sulfobacillus benefaciens), but Sulfobacillus and more generally sulphur oxidizers were more represented in batch mode. It was proposed that due to their capacity to reduce inorganic compounds, sulphur oxidizers may be efficient in limiting chalcopyrite surface hindering. It may help to better dissolve this mineral and reach a better copper recovery.

  19. Structural and Functional Insights from the Metagenome of an Acidic Hot Spring Microbial Planktonic Community in the Colombian Andes

    PubMed Central

    Jiménez, Diego Javier; Andreote, Fernando Dini; Chaves, Diego; Montaña, José Salvador; Osorio-Forero, Cesar; Junca, Howard; Zambrano, María Mercedes; Baena, Sandra

    2012-01-01

    A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level) acidic hot spring El Coquito (EC). A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation), and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ), associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA) indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment. PMID:23251687

  20. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells.

    PubMed

    Gao, Chongyang; Wang, Aijie; Wu, Wei-Min; Yin, Yalin; Zhao, Yang-Guo

    2014-09-01

    Aerobic sludge after anaerobic pretreatment and anaerobic sludge were separately used as inoculum to start up air-cathode single-chamber MFCs. Aerobic sludge-inoculated MFCs arrived at 0.27 V with a maximum power density of 5.79 W m(-3), while anaerobic sludge-inoculated MFCs reached 0.21 V with 3.66 W m(-3). Microbial analysis with DGGE profiling and high-throughput sequencing indicated that aerobic sludge contained more diverse bacterial populations than anaerobic sludge. Nitrospira species dominated in aerobic sludge, while anaerobic sludge was dominated by Desulfurella and Acidithiobacillus species. Microbial community structure and composition in anodic biofilms enriched, respectively from aerobic and anaerobic sludges tended gradually to be similar. Potentially exoelectrogenic Geobacter and Anaeromusa species, biofilm-forming Zoogloea and Acinetobacter species were abundant in both anodic biofilms. This study indicated that aerobic sludge performed better for MFCs startup, and the enrichment of anodic microbial consortium with different inocula but same substrate resulted in uniformity of functional microbial communities.

  1. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    PubMed

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  2. Bench-scale study of the effect of phosphate on an aerobic iron oxidation plant for mine water treatment.

    PubMed

    Tischler, Judith S; Wiacek, Claudia; Janneck, Eberhard; Schlömann, Michael

    2014-01-01

    At the opencast pit Nochten acidic iron- and sulfate-rich mine waters are treated biotechnologically in a mine-water treatment plant by microbial iron oxidation. Due to the low phosphate concentration in such waters the treatment plant was simulated in bench-scale to investigate the influence of addition of potassium dihydrogen phosphate on chemical and biological parameters of the mine-water treatment. As a result of the phosphate addition the number of cells increased, which resulted in an increase of the iron oxidation rate in the reactor with phosphate addition by a factor of 1.7 compared to a reference approach without phosphate addition. Terminal restriction fragment length polymorphism (T-RFLP) analysis during the cultivation revealed a shift of the microbial community depending on the phosphate addition. While almost exclusively iron-oxidizing bacteria related to "Ferrovum" sp. were detected with phosphate addition, the microbial community was more diverse without phosphate addition. In the latter case, iron-oxidizing bacteria ("Ferrovum" sp., Acidithiobacillus spp.) as well as non-iron-oxidizing bacteria (Acidiphilium sp.) were identified.

  3. Comparison of Removal Behavior of Two Biotrickling Filters under Transient Condition and Effect of pH on the Bacterial Communities

    PubMed Central

    Tu, Xiang; Li, Jianjun; Feng, Rongfang; Sun, Guoping; Guo, Jun

    2016-01-01

    Although biotrickling filters (BTFs) applied under acidic condition to remove H2S from waste gases have been reported, the removal behavior of the acidic BTF under transient condition which was normal in most industry processes, and corresponding bacterial community have not been thoroughly studied. In the present study, two BTFs were run under neutral (BTFn) and acidic (BTFa) conditions, respectively. The results revealed that the removal performance of BTFa under transient condition was superior to that of BTFn; the maximum H2S eliminating capacities (ECs) achieved by BTFa and BTFn were 489.9 g/m3 h and 443.6 g/m3 h, respectively. High-throughput sequencing suggested that pH was the critical factor and several other factors including nutrient and the inlet loadings also had roles in shaping bacterial community structure. Acidithiobacillus was the most abundant bacterial group. The results indicated that BTF acclimation under acidic condition may facilitate generating microbial community with high H2S-degrading capability. PMID:27196300

  4. Uncultured archaea dominate in the thermal groundwater of Uzon Caldera, Kamchatka.

    PubMed

    Mardanov, Andrey V; Gumerov, Vadim M; Beletsky, Alexey V; Perevalova, Anna A; Karpov, Gennady A; Bonch-Osmolovskaya, Elizaveta A; Ravin, Nikolai V

    2011-05-01

    The thermoacidophilic microbial community inhabiting the groundwater with pH 4.0 and temperature 50°C at the East Thermal Field of Uzon Caldera, Kamchatka, was examined using pyrosequencing of the V3 region of the 16S rRNA gene. Bacteria comprise about 30% of microorganisms and are represented primarily by aerobic lithoautotrophs using the energy sources of volcanic origin--thermoacidophilic methanotrophs of the phylum Verrucomicrobia and Acidithiobacillus spp. oxidising metals and reduced sulfur compounds. More than 70% of microbial population in this habitat were represented by archaea, in majority affiliated with "uncultured" lineages. The most numerous group (39% of all archaea) represented a novel division in the phylum Euryarchaeota related to the order Thermoplasmatales. Another abundant group (33% of all archaea) was related to MCG1 lineage of the phylum Crenarchaeota, originally detected in the Yellowstone hot spring as the environmental clone pJP89. The organisms belonging to these two groups are widely spread in hydrothermal environments worldwide. These data indicate an important environmental role of these two archaeal groups and should stimulate the investigation of their metabolism by cultivation or metagenomic approaches.

  5. Sulfate reduction and sulfide oxidation in extremely steep salinity gradients formed by freshwater springs emerging into the Dead Sea.

    PubMed

    Häusler, Stefan; Weber, Miriam; Siebert, Christian; Holtappels, Moritz; Noriega-Ortega, Beatriz E; De Beer, Dirk; Ionescu, Danny

    2014-12-01

    Abundant microbial mats, recently discovered in underwater freshwater springs in the hypersaline Dead Sea, are mostly dominated by sulfur-oxidizing bacteria. We investigated the source of sulfide and the activity of these communities. Isotopic analysis of sulfide and sulfate in the spring water showed a fractionation of 39-50‰ indicative of active sulfate reduction. Sulfate reduction rates (SRR) in the spring sediment (< 2.8 nmol cm(-3) day(-1)) are too low to account for the measured sulfide flux. Thus, sulfide from the springs, locally reduced salinity and O2 from the Dead Sea water are responsible for the abundant microbial biomass around the springs. The springs flow is highly variable and accordingly the local salinities. We speculate that the development of microbial mats dominated by either Sulfurimonas/Sulfurovum-like or Thiobacillus/Acidithiobacillus-like sulfide-oxidizing bacteria, results from different mean salinities in the microenvironment of the mats. SRR of up to 10 nmol cm(-3) day(-1) detected in the Dead Sea sediment are surprisingly higher than in the less saline springs. While this shows the presence of an extremely halophilic sulfate-reducing bacteria community in the Dead Sea sediments, it also suggests that extensive salinity fluctuations limit these communities in the springs due to increased energetic demands for osmoregulation.

  6. Integrated process design for biocatalytic synthesis by a Leloir Glycosyltransferase: UDP-glucose production with sucrose synthase.

    PubMed

    Schmölzer, Katharina; Lemmerer, Martin; Gutmann, Alexander; Nidetzky, Bernd

    2017-04-01

    Nucleotide sugar-dependent ("Leloir") glycosyltransferases (GTs), represent a new paradigm for the application of biocatalytic glycosylations to the production of fine chemicals. However, it remains to be shown that GT processes meet the high efficiency targets of industrial biotransformations. We demonstrate in this study of uridine-5'-diphosphate glucose (UDP-glc) production by sucrose synthase (from Acidithiobacillus caldus) that a holistic process design, involving coordinated development of biocatalyst production, biotransformation, and downstream processing (DSP) was vital for target achievement at ∼100 g scale synthesis. Constitutive expression in Escherichia coli shifted the recombinant protein production mainly to the stationary phase and enhanced the specific enzyme activity to a level (∼480 U/gcell dry weight ) suitable for whole-cell biotransformation. The UDP-glc production had excellent performance metrics of ∼100 gproduct /L, 86% yield (based on UDP), and a total turnover number of 103 gUDP-glc /gcell dry weight at a space-time yield of 10 g/L/h. Using efficient chromatography-free DSP, the UDP-glc was isolated in a single batch with ≥90% purity and in 73% isolated yield. Overall, the process would allow production of ∼0.7 kg of isolated product/L E. coli bioreactor culture, thus demonstrating how integrated process design promotes the practical use of a GT conversion. Biotechnol. Bioeng. 2017;114: 924-928. © 2016 Wiley Periodicals, Inc.

  7. Development of bacterial community during spontaneous succession on spoil heaps after brown coal mining.

    PubMed

    Urbanová, Michaela; Kopecký, Jan; Valášková, Vendula; Ságová-Marečková, Markéta; Elhottová, Dana; Kyselková, Martina; Moënne-Loccoz, Yvan; Baldrian, Petr

    2011-10-01

    Changes in the abundance of bacteria and fungi and in the composition of bacterial communities during primary succession were investigated in a brown coal mine deposit area near Sokolov, the Czech Republic, using phospholipid fatty acids analysis, microarray and 16S rRNA gene sequencing. The study considered a chronosequence of sites undergoing spontaneous succession: 6-, 12-, 21- and 45-year-old and a 21-year-old site revegetated with Alnus glutinosa. During succession, organic carbon and the total nitrogen content increased while the pH and the C/N ratio decreased. Microbial biomass and bacterial diversity increased until 21 years and decreased later; bacteria dominated over fungi in the initial and late phases of succession. Bacterial community composition of the 6-year-old site with no vegetation cover largely differed from the older sites, especially by a higher content of Gammaproteobacteria, Cyanobacteria and some Alphaproteobacteria. Bacteria belonging to the genera Acidithiobacillus, Thiobacillus and related taxa, the CO(2) and N(2) fixers, dominated the community at this site. In the later phases, bacterial community development seemed to reflect more the changes in soil nutrient content and pH than vegetation with a decrease of Actinobacteria and an increase of Acidobacteria. The site revegetated with A. glutinosa resembled the 45-year-old primary succession site and exhibited an even lower pH and C/N ratio, indicating that recultivation is able to accelerate soil development.

  8. A moderately thermophilic mixed microbial culture for bioleaching of chalcopyrite concentrate at high pulp density.

    PubMed

    Wang, Yuguang; Zeng, Weimin; Qiu, Guanzhou; Chen, Xinhua; Zhou, Hongbo

    2014-01-01

    Three kinds of samples (acid mine drainage, coal mine wastewater, and thermal spring) derived from different sites were collected in China. Thereafter, these samples were combined and then inoculated into a basal salts solution in which different substrates (ferrous sulfate, elemental sulfur, and chalcopyrite) served as energy sources. After that, the mixed cultures growing on different substrates were pooled equally, resulting in a final mixed culture. After being adapted to gradually increasing pulp densities of chalcopyrite concentrate by serial subculturing for more than 2 years, the final culture was able to efficiently leach the chalcopyrite at a pulp density of 20% (wt/vol). At that pulp density, the culture extracted 60.4% of copper from the chalcopyrite in 25 days. The bacterial and archaeal diversities during adaptation were analyzed by denaturing gradient gel electrophoresis and constructing clone libraries of the 16S rRNA gene. The results show that the culture consisted mainly of four species, including Leptospirillum ferriphilum, Acidithiobacillus caldus, Sulfobacillus acidophilus, and Ferroplasma thermophilum, before adapting to a pulp density of 4%. However, L. ferriphilum could not be detected when the pulp density was greater than 4%. Real-time quantitative PCR was employed to monitor the microbial dynamics during bioleaching at a pulp density of 20%. The results show that A. caldus was the predominant species in the initial stage, while S. acidophilus rather than A. caldus became the predominant species in the middle stage. F. thermophilum accounted for the greatest proportion in the final stage.

  9. Pyrosequencing-Based Assessment of the Microbial Community Structure of Pastoruri Glacier Area (Huascarán National Park, Perú), a Natural Extreme Acidic Environment.

    PubMed

    González-Toril, Elena; Santofimia, Esther; Blanco, Yolanda; López-Pamo, Enrique; Gómez, Manuel J; Bobadilla, Miguel; Cruz, Rolando; Palomino, Edwin Julio; Aguilera, Ángeles

    2015-11-01

    The exposure of fresh sulfide-rich lithologies by the retracement of the Nevado Pastoruri glacier (Central Andes, Perú) is increasing the presence of heavy metals in the water as well as decreasing the pH, producing an acid rock drainage (ARD) process in the area. We describe the microbial communities of an extreme ARD site in Huascarán National Park as well as their correlation with the water physicochemistry. Microbial biodiversity was analyzed by FLX 454 sequencing of the 16S rRNA gene. The suggested geomicrobiological model of the area distinguishes three different zones. The proglacial zone is located in the upper part of the valley, where the ARD process is not evident yet. Most of the OTUs detected in this area were related to sequences associated with cold environments (i.e., psychrotolerant species of Cyanobacteria or Bacteroidetes). After the proglacial area, an ARD-influenced zone appeared, characterized by the presence of phylotypes related to acidophiles (Acidiphilium) as well as other species related to acidic and cold environments (i.e., acidophilic species of Chloroflexi, Clostridium and Verrumicrobia). Sulfur- and iron-oxidizing acidophilic bacteria (Acidithiobacillus) were also identified. The post-ARD area was characterized by the presence of OTUs related to microorganisms detected in soils, permafrost, high mountain environments, and deglaciation areas (Sphingomonadales, Caulobacter or Comamonadaceae).

  10. Sulfide-oxidizing bacteria establishment in an innovative microaerobic reactor with an internal silicone membrane for sulfur recovery from wastewater.

    PubMed

    Valdés, F; Camiloti, P R; Rodriguez, R P; Delforno, T P; Carrillo-Reyes, J; Zaiat, M; Jeison, D

    2016-06-01

    A novel bioreactor, employing a silicone membrane for microaeration, was studied for partial sulfide oxidation to elemental sulfur. The objective of this study was to assess the feasibility of using an internal silicone membrane reactor (ISMR) to treat dissolved sulfide and to characterize its microbial community. The ISMR is an effective system to eliminate sulfide produced in anaerobic reactors. Sulfide removal efficiencies reached 96 % in a combined anaerobic/microaerobic reactor and significant sulfate production did not occur. The oxygen transfer was strongly influenced by air pressure and flow. Pyrosequencing analysis indicated various sulfide-oxidizing bacteria (SOB) affiliated to the species Acidithiobacillus thiooxidans, Sulfuricurvum kujiense and Pseudomonas stutzeri attached to the membrane and also indicated similarity between the biomass deposited on the membrane wall and the biomass drawn from the material support, supported the establishment of SOB in an anaerobic sludge under microaerobic conditions. Furthermore, these results showed that the reactor configuration can develop SOB under microaerobic conditions and can improve and reestablish the sulfide conversion to elemental sulfur.

  11. Revealing biogenic sulfuric acid corrosion in sludge digesters: detection of sulfur-oxidizing bacteria within full-scale digesters.

    PubMed

    Huber, B; Drewes, J E; Lin, K C; König, R; Müller, E

    2014-01-01

    Biogenic sulfuric acid corrosion (BSA) is a costly problem affecting both sewerage infrastructure and sludge handling facilities such as digesters. The aim of this study was to verify BSA in full-scale digesters by identifying the microorganisms involved in the concrete corrosion process, that is, sulfate-reducing (SRB) and sulfur-oxidizing bacteria (SOB). To investigate the SRB and SOB communities, digester sludge and biofilm samples were collected. SRB diversity within digester sludge was studied by applying polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) targeting the dsrB-gene (dissimilatory sulfite reductase beta subunit). To reveal SOB diversity, cultivation dependent and independent techniques were applied. The SRB diversity studies revealed different uncultured SRB, confirming SRB activity and H2S production. Comparable DGGE profiles were obtained from the different sludges, demonstrating the presence of similar SRB species. By cultivation, three pure SOB strains from the digester headspace were obtained including Acidithiobacillus thiooxidans, Thiomonas intermedia and Thiomonas perometabolis. These organisms were also detected with PCR-DGGE in addition to two new SOB: Thiobacillus thioparus and Paracoccus solventivorans. The SRB and SOB responsible for BSA were identified within five different digesters, demonstrating that BSA is a problem occurring not only in sewer systems but also in sludge digesters. In addition, the presence of different SOB species was successfully associated with the progression of microbial corrosion.

  12. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    PubMed Central

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  13. High-Resolution Microbial Community Succession of Microbially Induced Concrete Corrosion in Working Sanitary Manholes

    PubMed Central

    Ling, Alison L.; Robertson, Charles E.; Harris, J. Kirk; Frank, Daniel N.; Kotter, Cassandra V.; Stevens, Mark J.; Pace, Norman R.; Hernandez, Mark T.

    2015-01-01

    Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers. PMID:25748024

  14. So close, so different: geothermal flux shapes divergent soil microbial communities at neighbouring sites.

    PubMed

    Gagliano, A L; Tagliavia, M; D'Alessandro, W; Franzetti, A; Parello, F; Quatrini, P

    2016-03-01

    This study is focused on the (micro)biogeochemical features of two close geothermal sites (FAV1 and FAV2), both selected at the main exhalative area of Pantelleria Island, Italy. A previous biogeochemical survey revealed high CH4 consumption and the presence of a diverse community of methanotrophs at FAV2 site, whereas the close site FAV1 was apparently devoid of methanotrophs and recorded no CH4 consumption. Next-Generation Sequencing (NGS) techniques were applied to describe the bacterial and archaeal communities which have been linked to the physicochemical conditions and the geothermal sources of energy available at the two sites. Both sites are dominated by Bacteria and host a negligible component of ammonia-oxidizing Archaea (phylum Thaumarchaeota). The FAV2 bacterial community is characterized by an extraordinary diversity of methanotrophs, with 40% of the sequences assigned to Methylocaldum, Methylobacter (Gammaproteobacteria) and Bejerickia (Alphaproteobacteria); conversely, a community of thermo-acidophilic chemolithotrophs (Acidithiobacillus, Nitrosococcus) or putative chemolithotrophs (Ktedonobacter) dominates the FAV1 community, in the absence of methanotrophs. Since physical andchemical factors of FAV1, such as temperature and pH, cannot be considered limiting for methanotrophy, it is hypothesized that the main limiting factor for methanotrophs could be high NH4(+) concentration. At the same time, abundant availability of NH4(+) and other high energy electron donors and acceptors determined by the hydrothermal flux in this site create more energetically favourable conditions for chemolithotrophs that outcompete methanotrophs in non-nitrogen-limited soils.

  15. Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions

    NASA Astrophysics Data System (ADS)

    Gómez, Felipe; Mateo-Martí, Eva; Prieto-Ballesteros, Olga; Martín-Gago, Jose; Amils, Ricardo

    2010-10-01

    Current surface conditions (strong oxidative atmosphere, UV radiation, low temperatures and xeric conditions) on Mars are considered extremely challenging for life. The question is whether there are any features on Mars that could exert a protective effect against the sterilizing conditions detected on its surface. Potential habitability in the subsurface would increase if the overlaying material played a protective role. With the aim of evaluating this possibility we studied the viability of two microorganisms under different conditions in a Mars simulation chamber. An acidophilic chemolithotroph isolated from Río Tinto belonging to the Acidithiobacillus genus and Deinococcus radiodurans, a radiation resistant microorganism, were exposed to simulated Mars conditions under the protection of a layer of ferric oxides and hydroxides, a Mars regolith analogue. Samples of these microorganisms were exposed to UV radiation in Mars atmospheric conditions at different time intervals under the protection of 2 and 5 mm layers of oxidized iron minerals. Viability was evaluated by inoculation on fresh media and characterization of their growth cultures. Here we report the survival capability of both bacteria to simulated Mars environmental conditions.

  16. Biodeterioration of the Cement Composites

    NASA Astrophysics Data System (ADS)

    Luptáková, Alena; Eštoková, Adriana; Mačingová, Eva; Kovalčíková, Martina; Jenčárová, Jana

    2016-10-01

    The destruction of natural and synthetic materials is the spontaneous and irreversible process of the elements cycling in nature. It can by accelerated or decelerated by physical, chemical and biological influences. Biological influences are represented by the influence of the vegetation and microorganisms (MO). The destruction of cement composites by different MO through the diverse mechanisms is entitled as the concrete biodeterioration. Several sulphur compounds and species of MO are involved in this complex process. Heterotrophic and chemolithotrophic bacteria together with fungi have all been found in samples of corroding cement composites. The MO involved in the process metabolise the presented sulphur compounds (hydrogen sulphide, elemental sulphur etc.) to sulphuric acid reacting with concrete. When sulphuric acid reacts with a concrete matrix, the first step involves a reaction between the acid and the calcium hydroxide forming calcium sulphate. This is subsequently hydrated to form gypsum, the appearance of which on the surface of concrete pipes takes the form of a white, mushy substance which has no cohesive properties. In the continuing attack, the gypsum would react with the calcium aluminate hydrate to form ettringite, an expansive product. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to biodeterioration. The aim of this work was the study of the cement composites biodeterioration by the bacteria Acidithiobacillus thiooxidans. Experimental works were focused on the comparison of special cement composites and its resistance affected by the activities of used sulphur-oxidising

  17. A Moderately Thermophilic Mixed Microbial Culture for Bioleaching of Chalcopyrite Concentrate at High Pulp Density

    PubMed Central

    Wang, Yuguang; Zeng, Weimin; Qiu, Guanzhou; Chen, Xinhua

    2014-01-01

    Three kinds of samples (acid mine drainage, coal mine wastewater, and thermal spring) derived from different sites were collected in China. Thereafter, these samples were combined and then inoculated into a basal salts solution in which different substrates (ferrous sulfate, elemental sulfur, and chalcopyrite) served as energy sources. After that, the mixed cultures growing on different substrates were pooled equally, resulting in a final mixed culture. After being adapted to gradually increasing pulp densities of chalcopyrite concentrate by serial subculturing for more than 2 years, the final culture was able to efficiently leach the chalcopyrite at a pulp density of 20% (wt/vol). At that pulp density, the culture extracted 60.4% of copper from the chalcopyrite in 25 days. The bacterial and archaeal diversities during adaptation were analyzed by denaturing gradient gel electrophoresis and constructing clone libraries of the 16S rRNA gene. The results show that the culture consisted mainly of four species, including Leptospirillum ferriphilum, Acidithiobacillus caldus, Sulfobacillus acidophilus, and Ferroplasma thermophilum, before adapting to a pulp density of 4%. However, L. ferriphilum could not be detected when the pulp density was greater than 4%. Real-time quantitative PCR was employed to monitor the microbial dynamics during bioleaching at a pulp density of 20%. The results show that A. caldus was the predominant species in the initial stage, while S. acidophilus rather than A. caldus became the predominant species in the middle stage. F. thermophilum accounted for the greatest proportion in the final stage. PMID:24242252

  18. Electricity generation from an inorganic sulfur compound containing mining wastewater by acidophilic microorganisms.

    PubMed

    Ni, Gaofeng; Christel, Stephan; Roman, Pawel; Wong, Zhen Lim; Bijmans, Martijn F M; Dopson, Mark

    2016-09-01

    Sulfide mineral processing often produces large quantities of wastewaters containing acid-generating inorganic sulfur compounds. If released untreated, these wastewaters can cause catastrophic environmental damage. In this study, microbial fuel cells were inoculated with acidophilic microorganisms to investigate whether inorganic sulfur compound oxidation can generate an electrical current. Cyclic voltammetry suggested that acidophilic microorganisms mediated electron transfer to the anode, and that electricity generation was catalyzed by microorganisms. A cation exchange membrane microbial fuel cell, fed with artificial wastewater containing tetrathionate as electron donor, reached a maximum whole cell voltage of 72 ± 9 mV. Stepwise replacement of the artificial anolyte with real mining process wastewater had no adverse effect on bioelectrochemical performance and generated a maximum voltage of 105 ± 42 mV. 16S rRNA gene sequencing of the microbial consortia resulted in sequences that aligned within the genera Thermoplasma, Ferroplasma, Leptospirillum, Sulfobacillus and Acidithiobacillus. This study opens up possibilities to bioremediate mining wastewater using microbial fuel cell technology.

  19. Electricity generation from tetrathionate in microbial fuel cells by acidophiles.

    PubMed

    Sulonen, Mira L K; Kokko, Marika E; Lakaniemi, Aino-Maija; Puhakka, Jaakko A

    2015-03-02

    Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m(-2) and 13.9 mW m(-2) and 433 mA m(-2) and 17.6 mW m(-2), respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2-2.5.

  20. High-resolution microbial community succession of microbially induced concrete corrosion in working sanitary manholes.

    PubMed

    Ling, Alison L; Robertson, Charles E; Harris, J Kirk; Frank, Daniel N; Kotter, Cassandra V; Stevens, Mark J; Pace, Norman R; Hernandez, Mark T

    2015-01-01

    Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers.

  1. Carbon dioxide and hydrogen sulfide associations with regional bacterial diversity patterns in microbially induced concrete corrosion.

    PubMed

    Ling, Alison L; Robertson, Charles E; Harris, J Kirk; Frank, Daniel N; Kotter, Cassandra V; Stevens, Mark J; Pace, Norman R; Hernandez, Mark T

    2014-07-01

    The microbial communities associated with deteriorating concrete corrosion fronts were characterized in 35 samples taken from wastewater collection and treatment systems in ten utilities. Bacterial communities were described using Illumina MiSeq sequencing of the V1V2 region of the small subunit ribosomal ribonucleic acid (SSU-rRNA) gene recovered from fresh corrosion products. Headspace gas concentrations (hydrogen sulfide, carbon dioxide, and methane), pore water pH, moisture content, and select mineralogy were tested for correlation to community outcomes and corrosion extent using pairwise linear regressions and canonical correspondence analysis. Corroding concrete was most commonly characterized by moisture contents greater than 10%, pore water pH below one, and limited richness (<10 taxa). Bacterial community composition was not correlated to geographic location when considered independently from other environmental factors. Corrosion was most severe in sites with high levels of hydrogen sulfide (>100 ppm) and carbon dioxide (>1%) gases, conditions which also were associated with low diversity biofilms dominated by members of the acidophilic sulfur-oxidizer genus Acidithiobacillus.

  2. Analysis of the microbial communities on corroded concrete sewer pipes--a case study.

    PubMed

    Vincke, E; Boon, N; Verstraete, W

    2001-12-01

    Conventional as well as molecular techniques have been used to determine the microbial communities present on the concrete walls of sewer pipes. The genetic fingerprint of the microbiota on corroded concrete sewer pipes was obtained by means of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. The DGGE profiles of the bacterial communities present on the concrete surface changed as observed by shifts occurring at the level of the dominance of bands from non-corroded places to the most severely corroded places. By means of statistical tools, it was possible to distinguish two different groups, corresponding to the microbial communities on corroded and non-corroded surfaces, respectively. Characterization of the microbial communities indicated that the sequences of typical bands showed the highest level of identity to sequences from the bacterial strains Thiobacillus thiooxidans, Acidithiobacillus sp., Mycobacterium sp. and different heterotrophs belonging to the alpha-, beta- and gamma-Proteobacteria, Acidobacteria and Actinobacteria. In addition, the presence of N-acyl-homoserine lactone signal molecules was shown by two bio-assays of the biofilm on the concrete under the water level and at the most severely corroded places on the concrete surface of the sewer pipe.

  3. Application of Granulated Blast Furnace Slag in Cement Composites Exposed to Biogenic Acid Attack

    NASA Astrophysics Data System (ADS)

    Kovalcikova, M.; Estokova, A.; Luptakova, A.

    2015-11-01

    The deterioration of cement-based materials used for the civil infrastructure has led to the realization that cement-based materials, such as concrete, must be improved in terms of their properties and durability. Leaching of calcium ions increases the porosity of cement- based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing corrosion of concrete. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to deterioration by aggressive chemicals. The paper is focused on the investigation of the influence of biogenic acid attack on the cement composites affected by bacteria Acidithiobacillus thiooxidans. The concrete specimens with 65 wt. % addition of antimicrobial activated granulated blast furnace slag as durability increasing factor as well as without any addition were studied. The experiments proceeded during 150 days under model laboratory conditions. The pH values and chemical composition of leachates were measured after each 30- day cycle. The calcium and silicon contents in leachates were evaluated using X - ray fluorescence method (XRF). Summarizing the results, the 65% wt. addition of antimicrobial activated granulated blast furnace slag was not confirmed to be more resistant.

  4. Shifts of microbial community structure in soils of a photovoltaic plant observed using tag-encoded pyrosequencing of 16S rRNA.

    PubMed

    Wu, Shijin; Li, Yuan; Wang, Penghua; Zhong, Li; Qiu, Lequan; Chen, Jianmeng

    2016-04-01

    The environmental risk of fluoride and chloride pollution is pronounced in soils adjacent to solar photovoltaic sites. The elevated levels of fluoride and chloride in these soils have had significant impacts on the population size and overall biological activity of the soil microbial communities. The microbial community also plays an essential role in remediation of these soils. Questions remain as to how the fluoride and chloride contamination and subsequent remediation at these sites have impacted the population structure of the soil microbial communities. We analyzed the microbial communities in soils collected from close to a solar photovoltaic enterprise by pyrosequencing of the 16S rRNA tag. In addition, we used multivariate statistics to identity the relationships shared between sequence diversity and heterogeneity in the soil environment. The overall microbial communities were surprisingly diverse, harboring a wide variety of taxa and sharing significant correlations with different degrees of fluoride and chloride contamination. The contaminated soils harbored abundant bacteria that were probably resistant to the high acidity, high fluoride and chloride concentration, and high osmotic pressure environment. The dominant genera were Sphingomonas, Subgroup_6_norank, Clostridium sensu stricto, Nitrospira, Rhizomicrobium, and Acidithiobacillus. The results of this study provide new information regarding a previously uncharacterized ecosystem and show the value of high-throughput sequencing in the study of complex ecosystems.

  5. Recovery of manganese oxides from spent alkaline and zinc-carbon batteries. An application as catalysts for VOCs elimination.

    PubMed

    Gallegos, María V; Falco, Lorena R; Peluso, Miguel A; Sambeth, Jorge E; Thomas, Horacio J

    2013-06-01

    Manganese, in the form of oxide, was recovered from spent alkaline and zinc-carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO4 solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnOx synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn2O3 in the EMO and the CMO samples, together with some Mn(4+) cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn3O4. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200°C, while heptane requires more than 400°C. The CMO has the highest oxide selectivity to CO2. The results show that manganese oxides obtained using spent alkaline and zinc-carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  6. Linking autotrophic activity in environmental samples with specific bacterial taxa by detection of 13C-labelled fatty acids.

    PubMed

    Knief, Claudia; Altendorf, Karlheinz; Lipski, André

    2003-11-01

    A method for the detection of physiologically active autotrophic bacteria in complex microbial communities was developed based on labelling with the stable isotope 13C. Labelling of autotrophic nitrifying, sulphur-oxidizing and iron-oxidizing populations was performed in situ by incubation with NaH[13C]O3. Incorporated label into fatty acid methyl esters (FAMEs) was detected and quantified using gas chromatography-mass spectrometry in single ion monitoring mode. Before the analyses of different environmental samples, the protocol was evaluated in pure culture experiments. In different environmental samples a selective labelling of fatty acids demonstrated which microbial taxa were responsible for the respective chemolithoautotrophic activity. The most strongly labelled fatty acids of a sample from a sulphide treating biofilter from an animal rendering plant were cis-7-hexadecenoic acid (16:1 cis7) and 11-methyl hexadecanoic acid (16:0 11methyl), which are as-yet not known for any sulphide-oxidizing autotroph. The fatty acid labelling pattern of an experimental biotrickling filter sample supplied with dimethyl disulphide clearly indicated the presence and activity of sulphide-oxidizing bacteria of the genus Thiobacillus. For a third environmental sample from an acid mining lake sediment, the assignment of autotrophic activity to bacteria of the genus Leptospirillum but not to Acidithiobacillus could be made by this method, as the fatty acid patterns of these bacteria show clear differences.

  7. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile.

    PubMed

    Korehi, H; Blöthe, M; Sitnikova, M A; Dold, B; Schippers, A

    2013-03-05

    The marine shore sulfidic mine tailings dump at the Chañaral Bay in the Atacama Desert, northern Chile, is characterized by extreme acidity, high salinity, and high heavy metals concentrations. Due to pyrite oxidation, metals (especially copper) are mobilized under acidic conditions and transported toward the tailings surface and precipitate as secondary minerals (Dold, Environ. Sci. Technol. 2006, 40, 752-758.). Depth profiles of total cell counts in this almost organic-carbon free multiple extreme environment showed variable numbers with up to 10(8) cells g(-1) dry weight for 50 samples at four sites. Real-time PCR quantification and bacterial 16S rRNA gene diversity analysis via clone libraries revealed a dominance of Bacteria over Archaea and the frequent occurrence of the acidophilic iron(II)- and sulfur-oxidizing and iron(III)-reducing genera Acidithiobacillus, Alicyclobacillus, and Sulfobacillus. Acidophilic chemolithoautotrophic iron(II)-oxidizing bacteria were also frequently found via most-probable-number (MPN) cultivation. Halotolerant iron(II)-oxidizers in enrichment cultures were active at NaCl concentrations up to 1 M. Maximal microcalorimetrically determined pyrite oxidation rates coincided with maxima of the pyrite content, total cell counts, and MPN of iron(II)-oxidizers. These findings indicate that microbial pyrite oxidation and metal mobilization preferentially occur in distinct tailings layers at high salinity. Microorganisms for biomining with seawater salt concentrations obviously exist in nature.

  8. A feasibility study on bioelectrokinetics for the removal of heavy metals from tailing soil.

    PubMed

    Lee, Keun-Young; Kim, Hyun-A; Lee, Byung-Tae; Kim, Soon-Oh; Kwon, Young-Ho; Kim, Kyoung-Woong

    2011-01-01

    The combination of bioremediation and electrokinetics, termed bioelectrokinetics, has been studied constantly to enhance the removal of organic and inorganic contaminants from soil. The use of the bioleaching process originating from Fe- and/or S-oxidizing bacteria may be a feasible technology for the remediation of heavy metal-contaminated soils. In this study, the bioleaching process driven by injection of S-oxidizing bacteria, Acidithiobacillus thiooxidans, was evaluated as a pre-treatment step. The bioleaching process was sequentially integrated with the electrokinetic soil process, and the final removal efficiency of the combined process was compared with those of individual processes. Tailing soil, heavily contaminated with Cd, Cu, Pb, Zn, Co, and As, was collected from an abandoned mine area in Korea. The results of geochemical studies supported that this tailing soil contains the reduced forms of sulfur that can be an energy source for A. thiooxidans. From the result of the combined process, we could conclude that the bioleaching process might be a good pre-treatment step to mobilize heavy metals in tailing soil. Additionally, the electrokinetic process can be an effective technology for the removal of heavy metals from tailing soil. For the sake of generalizing the proposed bioelectrokinetic process, however, the site-specific differences in soil should be taken into account in future studies.

  9. Limestone Corrosion and Sulfur Cycling by Biofilms in the Frasassi Caves, Italy

    NASA Astrophysics Data System (ADS)

    Jones, D. S.; Macalady, J. L.; Druschel, G. K.; Eastman, D. D.; Albertson, L. K.

    2006-12-01

    In the Frasassi cave system, central Italy, a microbial-based ecosystem thrives on chemolithoautotrophic energy derived from hydrogen sulfide oxidation. Microbial life is prolific near the watertable, and biofilms cover nearly all subaerial and subaqueous surfaces. Subaerial biofilms are dominated by acidophilic members of the archaeal lineage Thermoplasmales and bacterial genus Acidithiobacillus. Subaqueous biofilms are diverse and are dominated by sulfide oxidizing, sulfate reducing, and sulfur disproportionating Proteobacteria. The morphology, abundance, and distribution of biofilms is controlled by physical and chemical factors such as seasonal changes in the cave hydrologic regime. In situ microelectrode voltammetry has revealed that stream biofilms speciate sulfur in diverse ways, with implications for acid production and limestone dissolution rates. Hydrogen sulfide loss from the streams cannot be accounted for solely by volatilization. Based on degassing measurements and abiotic sulfide oxidation rate calculations, stream biofilms are responsible for the majority of sulfide disappearance in streams. Rates of limestone corrosion are comparable in subaerial and subaqueous cave regions, indicating that subaerial microbial communities also have an important role in speleogenesis. Metagenomic studies targeting subaerial biofilms have confirmed that they have extremely low diversity, and offer glimpses into the physiology and biogeochemistry of extreme acidophiles in sulfidic cave communities.

  10. Microbiology of acidic, geothermal springs of Montserrat: environmental rDNA analysis.

    PubMed

    Burton, N P; Norris, P R

    2000-10-01

    DNA was extracted from water and sediment samples taken from acidic, geothermal pools on the Caribbean island of Montserrat. 16S rRNA genes were amplified by PCR, cloned, sequenced, and examined to indicate some of the organisms that might be significant components of the in situ microbiota. A clone bank representing the lowest temperature pool that was sampled (33 degrees C) was dominated by genes corresponding to two types of acidophiles: Acidiphilium-like mesophilic heterotrophs and thermotolerant Acidithiobacillus caldus. Three clone types with origins in low- and moderate- (48 degrees C) temperature pools corresponded to bacteria that could be involved in metabolism of sulfur compounds: the aerobic A. caldus and putative anaerobic, moderately thermophilic, sulfur-reducing bacteria (from an undescribed genus and from the Desulfurella group). A higher-temperature sample indicated the presence of a Ferroplasma-like organism, distinct from the other strains of these recently recognized acidophilic, iron-oxidizing members of the Euryarchaeota. Acidophilic Archaea from undescribed genera related to Sulfolobus and Acidianus were predicted to dominate the indigenous acidophilic archaeal population at the highest temperatures.

  11. Investigating the Physics of Hard X-ray Outbursts from the Galactic Center Supermassive Black Hole Sagittarius A* with NuSTAR

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; NuSTAR Galactic Plane Survey Working Group

    2016-01-01

    The Galactic center supermassive black hole (SMBH) Sagittarius A* (Sgr A*) is remarkably underluminous with a bolometric luminosity about 10-9 times its Eddington luminosity. It is the closest SMBH and thus an ideal target for investigation of galactic nuclei and their activity cycles. This goal can be fulfilled by studying its current, past and possible future outbursts. Its current X-ray quiescent state, with a luminosity of LX ~ 1033 erg s-1, is punctuated by X-ray flares up to a few times 1035 erg s-1, whose origin is poorly understood. With 638.6 ks NuSTAR observation of Sgr A*, I collected nine X-ray flares which are detected up to 79 keV, and studied their timing behavior using the Bayesian block analysis. The broadband (3-79 keV) spectroscopic studies show that the X-ray flares can have a range of photon indexes, which can be explained by the magnetic reconnection scenario. During the flares, Sgr A* is still orders of magnitudes lower than its Eddington luminosity. Whether it has ever experienced more substantial increases in activity as observed in low-luminosity Active Galactic Nuclei is still under discussion. Indication of such past activity of Sgr A* has come from the Galactic center molecular clouds (GCMCs). I use the hard X-ray emission from Sgr B2, the densest GCMC, to constrain the past Sgr A* X-ray outburst, resulting in LX~5×1038 erg s-1 with a photon index of Γ=2.2±0.4. I also discovered different timing variability from different cloud substructures, which can further constrain the past Sgr A* outburst and the cloud structure. Future giant outburst from Sgr A* could be triggered by dust/gas infall. Although the G2 infall event has not caused any increased X-ray activity from Sgr A*, there has been evidence that it caused flare behavior changes. Ongoing hard X-ray monitoring of Sgr A* will address this remaining puzzle.

  12. A comparison of multi-view 3D reconstruction of a rock wall using several cameras and a laser scanner

    NASA Astrophysics Data System (ADS)

    Thoeni, K.; Giacomini, A.; Murtagh, R.; Kniest, E.

    2014-06-01

    This work presents a comparative study between multi-view 3D reconstruction using various digital cameras and a terrestrial laser scanner (TLS). Five different digital cameras were used in order to estimate the limits related to the camera type and to establish the minimum camera requirements to obtain comparable results to the ones of the TLS. The cameras used for this study range from commercial grade to professional grade and included a GoPro Hero 1080 (5 Mp), iPhone 4S (8 Mp), Panasonic Lumix LX5 (9.5 Mp), Panasonic Lumix ZS20 (14.1 Mp) and Canon EOS 7D (18 Mp). The TLS used for this work was a FARO Focus 3D laser scanner with a range accuracy of ±2 mm. The study area is a small rock wall of about 6 m height and 20 m length. The wall is partly smooth with some evident geological features, such as non-persistent joints and sharp edges. Eight control points were placed on the wall and their coordinates were measured by using a total station. These coordinates were then used to georeference all models. A similar number of images was acquired from a distance of between approximately 5 to 10 m, depending on field of view of each camera. The commercial software package PhotoScan was used to process the images, georeference and scale the models, and to generate the dense point clouds. Finally, the open-source package CloudCompare was used to assess the accuracy of the multi-view results. Each point cloud obtained from a specific camera was compared to the point cloud obtained with the TLS. The latter is taken as ground truth. The result is a coloured point cloud for each camera showing the deviation in relation to the TLS data. The main goal of this study is to quantify the quality of the multi-view 3D reconstruction results obtained with various cameras as objectively as possible and to evaluate its applicability to geotechnical problems.

  13. Fe stable isotope fractionation in modern and ancient hydrothermal Fe-Si deposits

    NASA Astrophysics Data System (ADS)

    Moeller, K.; Schoenberg, R.; Thorseth, I. H.; Øvreås, L.; Pedersen, R.

    2010-12-01

    Modern iron-silica deposits of small yellow to rust coloured mounds and chimney-like structures were found in a low-temperature venting area distal to a white smoker type hydrothermal vent site at the south-western part of the Mohns Ridge, North Atlantic. Individual stratified mm to cm thick laminated layers within these structures are largely composed of branching, twisted filaments resembling encrusted stalks of Fe-oxidising bacteria. DNA analyses have confirmed the presence of both Fe-oxidising (Mariprofundus ferrooxidans and other ζ-Proteobacteria) and Fe-reducing bacteria (Shewanellaceae). Similar morphologic features, such as several mm thick red hematite-rich laminae and micron-scale filamentous structures concentrated in discrete laminae, have also been found in Early Ordovician volcanogenic massive sulphide (VMS) hosted jasper deposits in the Løkken-Høydal area, Norway [1]. These filamentous structures are believed to be formed by Fe-oxidising bacteria similar to Mariprofundus ferrooxidans [2]. Here, we compare the Fe isotope composition of these two different types of Fe-Si deposits with the aim to gain further information about deposition mechanisms and the role of microorganisms in Fe redox cycling of deep-sea hydrothermal systems. Fe isotope compositions of the modern biogenic Fe-Si deposit vary between -2.09 and -0.66 ‰ in δ56Fe values, a range that is comparable to late Archaean to early Proterozoic banded iron formations. The ~490 Ma old Løkken jaspers show a similar variation, but with significantly higher δ56Fe values ranging from -0.39 to +0.89 ‰. The Fe isotopic composition of the Løkken jaspers clearly correlates with morphological features with the lowest δ56Fe values in layered and the highest ones in brecciform jaspers. Our data demonstrate that variations in Fe isotope compositions of the modern Fe-Si deposit cannot be explained by a single process, but rather reflect the full complexity of Fe redox cycling within deep

  14. Isotope geochemistry of waters affected by acid mine drainage in old labour sites (SE, Spain).

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Martinez-Sanchez, Maria Jose; Garcia-Lorenzo, Maria Luz; Agudo, Ines; Hernandez-Cordoba, Manuel; Recio, Clemente

    2015-04-01

    The ore deposits of this zone have iron, lead and zinc as the main metal components. Iron is present in oxides, hydroxides, sulfides, sulfates, carbonates, and silicates; lead and zinc occur in sulfides (galena and sphalerite, respectively), carbonates, sulfates, and lead or zinc-bearing (manganese, iron) oxides. Mining started with the Romans and activity peaked in the second half of the 19th century and throughout the 20th century until the 1980's. From 1940 to 1957, mineral concentration was made by froth flotation and, prior to this, by gravimetric techniques. The mining wastes, or tailings, with a very fine particle size were deposited inland (tailings dams) and, since 1957, huge releases were made in directly the sea coast. The objective of this work was to evaluate processes affecting waters from abandoned mine sites by way of stable isotopic analysis, particularly H and O stable isotopes from water and S and O from dissolved sulfates. Several common chemical and physical processes, such as evaporation, water-rock interaction and mixing could alter water isotopic composition. Evaporation, which causes an enrichment in δD and δ18O in the residual water, is an important process in semiarid areas. The results obtained indicate that, for sites near the coast, waters are meteoric, and marine infiltration only takes place in the deepest layers near the shore or if water remains stagnated in sediments with low permeability. The main source of sulfate was the oxidation of sulfides, resulting in the liberation of acid, sulfate and metals. In order to assess the mechanism responsible for sulfide oxidation, the stoichiometric isotope balance model and the general isotope balance model were tested, suggesting that the oxidation via Fe3+ was predominant in the surface, and controlled by A. ferrooxidans, while at depth, sulfate reduction occurred.

  15. Does a rhizospheric microorganism enhance K⁺ availability in agricultural soils?

    PubMed

    Meena, Vijay Singh; Maurya, B R; Verma, Jay Prakash

    2014-01-01

    The potassium solubilizing microorganisms (KSMs) are a rhizospheric microorganism which solubilizes the insoluble potassium (K) to soluble forms of K for plant growth and yield. K-solubilization is carried out by a large number of saprophytic bacteria (Bacillus mucilaginosus, Bacillus edaphicus, Bacillus circulans, Acidothiobacillus ferrooxidans, Paenibacillus spp.) and fungal strains (Aspergillus spp. and Aspergillus terreus). Major amounts of K containing minerals (muscovite, orthoclase, biotite, feldspar, illite, mica) are present in the soil as a fixed form which is not directly taken up by the plant. Nowadays most of the farmers use injudicious application of chemical fertilizers for achieving maximum productivity. However, the KSMs are most important microorganisms for solubilizing of fixed form of K in soil system. The KSMs are an indigenous rhizospheric microorganism which shows effective interaction between soil and plant systems. The main mechanism of KSMs is acidolysis, chelation, exchange reactions, complexolysis and production of organic acid. According to literature, currently negligible use of potassium fertilizer as a chemical form has been recorded in agriculture for enhancing crop yield. Most of the farmers use only nitrogen and phosphorus and not use the K fertilizer due to unawareness so that the problem of K deficiency occurs in rhizospheric soils. The K fertilizer is also costly as compared to other chemical fertilizers. Therefore, the efficient KSMs should be applied for solubilization of a fixed form of K to an available form of K in the soils. This available K can be easily taken up by the plant for growth and development. Our aim of this review is to elaborate on the studies of indigenous K-solubilizing microbes to develop efficient microbial consortia for solubilization of K in soil which enhances the plant growth and yield of crops. This review highlights the future need for research on potassium (K) in agriculture.

  16. Desulfurization of coal by microbial column flotation.

    PubMed

    Ohmura, N; Saiki, H

    1994-06-05

    Twenty-three strains capable of oxidizing iron were isolated from coal and ore storage sites as well as coal and ore mines, volcanic areas, and hot spring. Four strains were found to have high iron-oxidizing activity. One strain (T-4) was selected for this experiment since the strain showed the fastest leaching rate of iron and sulfate from pyrite among the four strains. The T-4 strain was assigned for Thiobacillus ferrooxidans from its cultural and morphological characteristics.Bacterial treatment was applied to column flotation. An increase of cell density in the microbial column flotation resulted in the increase of pyrite removal from a coal-pyrite mixture (high sulfur imitated coal) with corresponding decrease of coal recovery. The addition of kerosene into the microbial column flotation increased the recovery of the imitated coal from 55% (without kerosene) to 81% (with 50 microL/L kerosene) with the reduction of pyrite sulfur content from 11% (feed coal) to 3.9% (product coal). The kerosene addition could reduce the pyritic sulfur content by collecting the coal in the recovery. However, the addition could not enhance separation of pyrite from the coal-pyrite mixture, since pyrite rejection was not affected by the increase of the kerosene addition. An excellent separation was obtained by the microbial flotation using a long column which had a length-diameter (L/D) ratio of 12.7. The long column flotation reduced the pyritic sulfur content from 11% (feed coal) to 1.8% (product coal) when 80% of the feed coal was recovered without the kerosene addition. The long column flotation not only attained an excellent separation but also reduced the amount of cells for desulfurization to as little as one-tenth of the reported amount.

  17. Comparative Genome Analysis Reveals Metabolic Versatility and Environmental Adaptations of Sulfobacillus thermosulfidooxidans Strain ST

    PubMed Central

    Guo, Xue; Yin, Huaqun; Liang, Yili; Hu, Qi; Zhou, Xishu; Xiao, Yunhua; Ma, Liyuan; Zhang, Xian; Qiu, Guanzhou; Liu, Xueduan

    2014-01-01

    The genus Sulfobacillus is a cohort of mildly thermophilic or thermotolerant acidophiles within the phylum Firmicutes and requires extremely acidic environments and hypersalinity for optimal growth. However, our understanding of them is still preliminary partly because few genome sequences are available. Here, the draft genome of Sulfobacillus thermosulfidooxidans strain ST was deciphered to obtain a comprehensive insight into the genetic content and to understand the cellular mechanisms necessary for its survival. Furthermore, the expressions of key genes related with iron and sulfur oxidation were verified by semi-quantitative RT-PCR analysis. The draft genome sequence of Sulfobacillus thermosulfidooxidans strain ST, which encodes 3225 predicted coding genes on a total length of 3,333,554 bp and a 48.35% G+C, revealed the high degree of heterogeneity with other Sulfobacillus species. The presence of numerous transposases, genomic islands and complete CRISPR/Cas defence systems testifies to its dynamic evolution consistent with the genome heterogeneity. As expected, S. thermosulfidooxidans encodes a suit of conserved enzymes required for the oxidation of inorganic sulfur compounds (ISCs). The model of sulfur oxidation in S. thermosulfidooxidans was proposed, which showed some different characteristics from the sulfur oxidation of Gram-negative A. ferrooxidans. Sulfur oxygenase reductase and heterodisulfide reductase were suggested to play important roles in the sulfur oxidation. Although the iron oxidation ability was observed, some key proteins cannot be identified in S. thermosulfidooxidans. Unexpectedly, a predicted sulfocyanin is proposed to transfer electrons in the iron oxidation. Furthermore, its carbon metabolism is rather flexible, can perform the transformation of pentose through the oxidative and non-oxidative pentose phosphate pathways and has the ability to take up small organic compounds. It encodes a multitude of heavy metal resistance systems to

  18. Ferrous iron oxidation by anoxygenic phototrophic bacteria

    NASA Astrophysics Data System (ADS)

    Widdel, Friedrich; Schnell, Sylvia; Heising, Silke; Ehrenreich, Armin; Assmus, Bernhard; Schink, Bernhard

    1993-04-01

    NATURAL oxidation of ferrous to ferric iron by bacteria such as Thiobacillus ferrooxidans or Gallionella ferruginea1, or by chemical oxidation2,3 has previously been thought always to involve molecular oxygen as the electron acceptor. Anoxic photochemical reactions4-6 or a photobiological process involving two photosystems7-9 have also been discussed as mechanisms of ferrous iron oxidation. The knowledge of such processes has implications that bear on our understanding of the origin of Precambrian banded iron formations10-14. The reducing power of ferrous iron increases dramatically at pH values higher than 2-3 owing to the formation of ferric hydroxy and oxyhydroxy compounds1,2,15 (Fig. 1). The standard redox potential of Fe3+/Fe2+ (E0 = +0.77 V) is relevant only under acidic conditions. At pH 7.0, the couples Fe(OH)3/Fe2+ (E'0 = -0.236V) or Fe(OH)3 + HCO-3FeCO3 (E'0 = +0.200 V) prevail, matching redox potentials measured in natural sediments9,16,17. It should thus be possible for Fe(n) around pH 7.0 to function as an electron donor for anoxygenic photosynthesis. The midpoint potential of the reaction centre in purple bacteria is around +0.45 V (ref. 18). Here we describe purple, non-sulphur bacteria that can indeed oxidize colourless Fe(u) to brown Fe(in) and reduce CO2 to cell material, implying that oxygen-independent biological iron oxidation was possible before the evolution of oxygenic photosynthesis.

  19. [The endotoxins of gram-negative bacteria: their structure and biological role].

    PubMed

    Varbanets, L D

    1994-01-01

    Main attention in the paper is paid to the study of lipid A, a component possessing endotoxic activity. Lipids A containing glucosamine disaccharide (representatives of Enterobacteriaceae family), and variants of lipid A differing from the toxic one either in the structure of carbohydrate core or in the spectrum of fatty acids are considered. They are either phototrophic, nodulating (Bradyrhyzobium species) or soil species (Nitrobacter and Thiobacillus) bacteria. Lipid A from lipopolysaccharides of over 25 species of bacteria (Rhodopseudomonas viridans, R. palustris, Pseudomonas diminuta, Phenylobacterium immobile, Brucella melitensis, B. abortus, Thiobacillus ferrooxidans, etc.) contains 2.3-diamino-2.3-dideoxyglucose (lipid ADAG); glucosaminouronic acid was found in Rhizobium trifolii and galacturonic acid in R. leguminosarum bvs. phaseoli, trifolii and viceae. Mixed lipids (lipid A and lipid ADAG) were found in Campylobacter jejuni. Considerable variations were registered in the nature of fatty acids. Thus, 27-oxy-octacosanoic acid (27-OH-28 : 0) was found in lipid A of the studied species of Rhizobiaceae except for Azorhizobium caulinodans. No correlations between the composition of the carbohydrate core and presence of this acid were established. Implementation of the synthesis of a complete as well as of partial lipid A structures has confirmed authenticity of the described structures. Five different epitopes identified by antibodies are present in the hydrophilic part of lipid A. The structure and biological role of the outer and inner cores are considered separately, main attention being paid to identification of the role of the KDO-containing zone. Since O-specific polysaccharide is the most known lipopolysaccharide component from the viewpoint of the structure and biological activity, this material is given in a general form.

  20. Microbial diversity of mine water at Zhong Tiaoshan copper mine, China.

    PubMed

    He, Zhiguo; Xie, Xuehui; Xiao, Shengmu; Liu, Jianshe; Qiu, Guanzhou

    2007-12-01

    Microbial diversity of mine water at Zhong Tiaoshan copper mine, Shanxi province, China, was analyzed using a culture-independent 16S rRNA gene (rDNA) based on cloning approach. A total of 59 Operational Taxonomic Units (OTUs) were obtained from 226 clones from all three samples (8 OTUs from sample SX1, 25 from SX2 and 26 from SX3). 46 of them were representative OTUs and were sequenced. 93.5% of the total clones had sequences that were less than 5% difference from those in the nucleic acids database. The percentage of overlapping OTUs among samples was from 12.1% to 35.3%. Phylogenetic analysis indicated that 60.62% of the clones were affiliated with members of the Proteobacteria (alpha -3.10%, beta -24.78%, gamma -31.41%, delta -1.33%), whereas 29.20% of the clones were closely related to the Nitrospira (Leptospirillum ferrooxidans 20.80%, Leptospirillum ferriphilum 0.88% and Leptospirillum group III 7.52%, respectively). The rest clones were affiliated with the Firmicutes (2.65%) and the Bacteroidetes (7.52%). The results of Principal Component Analysis (PCA) based on the percentages of OTUs and biogeochemical data revealed that biogeochemical properties affected the diversity of microbial communities in mine water. Especially, the pH value, temperature and different concentrations of elements such as lead, zinc, sulfur, iron and copper seemed to be key factors affecting the composition and structure of microbial communities in this study.

  1. Coatings for protection of equipment for biochemical processing of geothermal residues: Progress report FY`97

    SciTech Connect

    Allan, M.L.

    1997-11-01

    Thermal sprayed ethylene methacrylic acid (EMAA) and ethylene tetrafluoroethylene (ETFE), spray-and-bake ETFE and polyvinylidene fluoride (PVDF) and brushable ceramic-epoxy coatings were evaluated for corrosion protection in a biochemical process to treat geothermal residues. Coupon, Atlas cell, peel strength, cathodic disbondment and abrasion tests were performed in aggressive environments including geothermal sludge, hypersaline brine and sulfur-oxidizing bacteria (Thiobacillus ferrooxidans) to determine suitability for protecting storage tanks and reaction vessels. It was found that all of the coatings were resistant to chemical attack and biodegradation at the test temperature of 55 C. The EMAA coatings protected 316L stainless steel from corrosion in coupon tests. However, corrosion of mild steel substrates thermal sprayed with EMAA and ETFE occurred in Atlas cell tests that simulated a lined reactor operating environment and this resulted in decreased adhesive strength. Peel tests to measure residual adhesion revealed that failure mode was dependent on exposure conditions. Abrasion tests showed that the ceramic-epoxy had good resistance to the abrasive effects of sludge. Thermal sprayed EMAA coatings also displayed abrasion resistance. Cathodic disbondment tests in brine at room temperature indicated that EMAA coatings are resistant to disbondment at applied potentials of {minus}780 to {minus}1,070 mV SCE for the test conditions and duration. Slight disbondment of one specimen occurred at a potential of {minus}1,500 mV SCE. The EMAA may be suited to use in conjunction with cathodic protection although further long-term, higher temperature testing would be needed.

  2. COATINGS FOR PROTECTION OF EQUIPMENT FOR BIOCHEMICAL PROCESSING OF GEOTHERMAL RESIDUES: PROGRESS REPORT FY 97

    SciTech Connect

    ALLAN,M.L.

    1997-11-01

    Thermal sprayed ethylene methacrylic acid (EMAA) and ethylene tetrafluoroethylene (ETFE), spray-and-bake ETFE and polyvinylidene fluoride (PVDF) and brushable ceramic-epoxy coatings were evaluated for corrosion protection in a biochemical process to treat geothermal residues. The findings are also relevant to other moderate temperature brine environments where corrosion is a problem. Coupon, Atlas cell, peel strength, cathodic disbondment and abrasion tests were performed in aggressive environments including geothermal sludge, hypersaline brine and sulfur-oxidizing bacteria (Thiobadus ferrooxidans) to determine suitability for protecting storage tanks and reaction vessels. It was found that all of the coatings were resistant to chemical attack and biodegradation at the test temperature of 55 C. The EMAA coatings protected 316L stainless steel from corrosion in coupon tests. However, corrosion of mild steel substrates thermal sprayed with EMAA and ETFE occurred in Atlas cell tests that simulated a lined reactor operating environment and this resulted in decreased adhesive strength. Peel tests to measure residual adhesion revealed that failure mode was dependent on exposure conditions. Long-term tests on the durability of ceramic-epoxy coatings in brine and bacteria are ongoing. Initial indications are that this coating has suitable characteristics. Abrasion tests showed that the ceramic-epoxy had good resistance to the abrasive effects of sludge. Thermal sprayed EMAA coatings also displayed abrasion resistance. Cathodic disbondment tests in brine at room temperature indicated that EMAA coatings are resistant to disbondment at applied potentials of {minus}780 to {minus}1,070 mV SCE for the test conditions and duration. Slight disbondment of one specimen occurred at a potential of {minus}1,500 mV SCE. The EMAA may be suited to use in conjunction with cathodic protection although further long-term, higher temperature testing would be needed.

  3. Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake

    PubMed Central

    Walter, Xavier A.; Picazo, Antonio; Miracle, Maria R.; Vicente, Eduardo; Camacho, Antonio; Aragno, Michel; Zopfi, Jakob

    2014-01-01

    Precambrian Banded Iron Formation (BIF) deposition was conventionally attributed to the precipitation of iron-oxides resulting from the abiotic reaction of ferrous iron (Fe(II)) with photosynthetically produced oxygen. Earliest traces of oxygen date from 2.7 Ga, thus raising questions as to what may have caused BIF precipitation before oxygenic photosynthesis evolved. The discovery of anoxygenic phototrophic bacteria thriving through the oxidation of Fe(II) has provided support for a biological origin for some BIFs, but despite reports suggesting that anoxygenic phototrophs may oxidize Fe(II) in the environment, a model ecosystem of an ancient ocean where they are demonstrably active was lacking. Here we show that anoxygenic phototrophic bacteria contribute to Fe(II) oxidation in the water column of the ferruginous sulfate-poor, meromictic lake La Cruz (Spain). We observed in-situ photoferrotrophic activity through stimulation of phototrophic carbon uptake in the presence of Fe(II), and determined light-dependent Fe(II)-oxidation by the natural chemocline microbiota. Moreover, a photoferrotrophic bacterium most closely related to Chlorobium ferrooxidans was enriched from the ferruginous water column. Our study for the first time demonstrates a direct link between anoxygenic photoferrotrophy and the anoxic precipitation of Fe(III)-oxides in a ferruginous water column, providing a plausible mechanism for the bacterial origin of BIFs before the advent of free oxygen. However, photoferrotrophs represent only a minor fraction of the anoxygenic phototrophic community with the majority apparently thriving by sulfur cycling, despite the very low sulfur content in the ferruginous chemocline of Lake La Cruz. PMID:25538702

  4. Characterization of bacterial community structure in a drinking water distribution system during an occurrence of red water.

    PubMed

    Li, Dong; Li, Zheng; Yu, Jianwei; Cao, Nan; Liu, Ruyin; Yang, Min

    2010-11-01

    The role of bacteria in the occasional emergence of red water, which has been documented worldwide, has yet to be determined. To better understand the mechanisms that drive occurrences of red water, the bacterial community composition and the relative abundance of several functional bacterial groups in a water distribution system of Beijing during a large-scale red water event were determined using several molecular methods. Individual clone libraries of the 16S rRNA gene were constructed for three red water samples and one sample of normal water. Beta-, Alpha-, and Gammaproteobacteria comprised the major bacterial communities in both red water and normal water samples, in agreement with previous reports. A high percentage of red water clones (25.2 to 57.1%) were affiliated with or closely related to a diverse array of iron-oxidizing bacteria, including the neutrophilic microaerobic genera Gallionella and Sideroxydans, the acidophilic species Acidothiobacillus ferrooxidans, and the anaerobic denitrifying Thermomonas bacteria. The genus Gallionella comprised 18.7 to 28.6% of all clones in the three red water libraries. Quantitative real-time PCR analysis showed that the 16S rRNA gene copy concentration of Gallionella spp. was between (4.1 ± 0.9) × 10⁷ (mean ± standard deviation) and (1.6 ± 0.3) × 10⁸ per liter in red water, accounting for 13.1% ± 2.9% to 17.2% ± 3.6% of the total Bacteria spp. in these samples. By comparison, the percentages of Gallionella spp. in the normal water samples were 0.1% or lower (below the limit of detection), suggesting an important role of Gallionella spp. in the formation of red water.

  5. Novel Thermo-Acidophilic Bacteria Isolated from Geothermal Sites in Yellowstone National Park: Physiological and Phylogenetic Characteristics

    SciTech Connect

    D. B. Johnson; N. Okibe; F. F. Roberto

    2003-07-01

    Moderately thermophilic acidophilic bacteria were isolated from geothermal (30–83 °C) acidic (pH 2.7– 3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 °C, and pH 1.0–1.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria (Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstone strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the a-Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also a-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes (SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.

  6. Characterization of Bacterial Community Structure in a Drinking Water Distribution System during an Occurrence of Red Water▿

    PubMed Central

    Li, Dong; Li, Zheng; Yu, Jianwei; Cao, Nan; Liu, Ruyin; Yang, Min

    2010-01-01

    The role of bacteria in the occasional emergence of red water, which has been documented worldwide, has yet to be determined. To better understand the mechanisms that drive occurrences of red water, the bacterial community composition and the relative abundance of several functional bacterial groups in a water distribution system of Beijing during a large-scale red water event were determined using several molecular methods. Individual clone libraries of the 16S rRNA gene were constructed for three red water samples and one sample of normal water. Beta-, Alpha-, and Gammaproteobacteria comprised the major bacterial communities in both red water and normal water samples, in agreement with previous reports. A high percentage of red water clones (25.2 to 57.1%) were affiliated with or closely related to a diverse array of iron-oxidizing bacteria, including the neutrophilic microaerobic genera Gallionella and Sideroxydans, the acidophilic species Acidothiobacillus ferrooxidans, and the anaerobic denitrifying Thermomonas bacteria. The genus Gallionella comprised 18.7 to 28.6% of all clones in the three red water libraries. Quantitative real-time PCR analysis showed that the 16S rRNA gene copy concentration of Gallionella spp. was between (4.1 ± 0.9) × 107 (mean ± standard deviation) and (1.6 ± 0.3) × 108 per liter in red water, accounting for 13.1% ± 2.9% to 17.2% ± 3.6% of the total Bacteria spp. in these samples. By comparison, the percentages of Gallionella spp. in the normal water samples were 0.1% or lower (below the limit of detection), suggesting an important role of Gallionella spp. in the formation of red water. PMID:20851995

  7. Comparative genome analysis reveals metabolic versatility and environmental adaptations of Sulfobacillus thermosulfidooxidans strain ST.

    PubMed

    Guo, Xue; Yin, Huaqun; Liang, Yili; Hu, Qi; Zhou, Xishu; Xiao, Yunhua; Ma, Liyuan; Zhang, Xian; Qiu, Guanzhou; Liu, Xueduan

    2014-01-01

    The genus Sulfobacillus is a cohort of mildly thermophilic or thermotolerant acidophiles within the phylum Firmicutes and requires extremely acidic environments and hypersalinity for optimal growth. However, our understanding of them is still preliminary partly because few genome sequences are available. Here, the draft genome of Sulfobacillus thermosulfidooxidans strain ST was deciphered to obtain a comprehensive insight into the genetic content and to understand the cellular mechanisms necessary for its survival. Furthermore, the expressions of key genes related with iron and sulfur oxidation were verified by semi-quantitative RT-PCR analysis. The draft genome sequence of Sulfobacillus thermosulfidooxidans strain ST, which encodes 3225 predicted coding genes on a total length of 3,333,554 bp and a 48.35% G+C, revealed the high degree of heterogeneity with other Sulfobacillus species. The presence of numerous transposases, genomic islands and complete CRISPR/Cas defence systems testifies to its dynamic evolution consistent with the genome heterogeneity. As expected, S. thermosulfidooxidans encodes a suit of conserved enzymes required for the oxidation of inorganic sulfur compounds (ISCs). The model of sulfur oxidation in S. thermosulfidooxidans was proposed, which showed some different characteristics from the sulfur oxidation of Gram-negative A. ferrooxidans. Sulfur oxygenase reductase and heterodisulfide reductase were suggested to play important roles in the sulfur oxidation. Although the iron oxidation ability was observed, some key proteins cannot be identified in S. thermosulfidooxidans. Unexpectedly, a predicted sulfocyanin is proposed to transfer electrons in the iron oxidation. Furthermore, its carbon metabolism is rather flexible, can perform the transformation of pentose through the oxidative and non-oxidative pentose phosphate pathways and has the ability to take up small organic compounds. It encodes a multitude of heavy metal resistance systems to

  8. Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria.

    PubMed

    Ziegler, Sibylle; Dolch, Kerstin; Geiger, Katharina; Krause, Susanne; Asskamp, Maximilian; Eusterhues, Karin; Kriews, Michael; Wilhelms-Dick, Dorothee; Goettlicher, Joerg; Majzlan, Juraj; Gescher, Johannes

    2013-09-01

    Biofilms can provide a number of different ecological niches for microorganisms. Here, a multispecies biofilm was studied in which pyrite-oxidizing microbes are the primary producers. Its stability allowed not only detailed fluorescence in situ hybridization (FISH)-based characterization of the microbial population in different areas of the biofilm but also to integrate these results with oxygen and pH microsensor measurements conducted before. The O2 concentration declined rapidly from the outside to the inside of the biofilm. Hence, part of the population lives under microoxic or anoxic conditions. Leptospirillum ferrooxidans strains dominate the microbial population but are only located in the oxic periphery of the snottite structure. Interestingly, archaea were identified only in the anoxic parts of the biofilm. The archaeal community consists mainly of so far uncultured Thermoplasmatales as well as novel ARMAN (Archaeal Richmond Mine Acidophilic Nanoorganism) species. Inductively coupled plasma analysis and X-ray absorption near edge structure spectra provide further insight in the biofilm characteristics but revealed no other major factors than oxygen affecting the distribution of bacteria and archaea. In addition to catalyzed reporter deposition FISH and oxygen microsensor measurements, microautoradiographic FISH was used to identify areas in which active CO2 fixation takes place. Leptospirilla as well as acidithiobacilli were identified as primary producers. Fixation of gaseous CO2 seems to proceed only in the outer rim of the snottite. Archaea inhabiting the snottite core do not seem to contribute to the primary production. This work gives insight in the ecological niches of acidophilic microorganisms and their role in a consortium. The data provided the basis for the enrichment of uncultured archaea.

  9. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    SciTech Connect

    Elmore, B.B.

    1993-08-01

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  10. Classification of modern and old Río Tinto sedimentary deposits through the biomolecular record using a life marker biochip: implications for detecting life on Mars.

    PubMed

    Parro, Victor; Fernández-Remolar, David; Rodríguez-Manfredi, José A; Cruz-Gil, Patricia; Rivas, Luis A; Ruiz-Bermejo, Marta; Moreno-Paz, Mercedes; García-Villadangos, Miriam; Gómez-Ortiz, David; Blanco-López, Yolanda; Menor-Salván, César; Prieto-Ballesteros, Olga; Gómez-Elvira, Javier

    2011-01-01

    The particular mineralogy formed in the acidic conditions of the Río Tinto has proven to be a first-order analogue for the acid-sulfate aqueous environments of Mars. Therefore, studies about the formation and preservation of biosignatures in the Río Tinto will provide insights into equivalent processes on Mars. We characterized the biomolecular patterns recorded in samples of modern and old fluvial sediments along a segment of the river by means of an antibody microarray containing more than 200 antibodies (LDCHIP200, for Life Detector Chip) against whole microorganisms, universal biomolecules, or environmental extracts. Samples containing 0.3-0.5 g of solid material were automatically analyzed in situ by the Signs Of LIfe Detector instrument (SOLID2), and the results were corroborated by extensive analysis in the laboratory. Positive antigen-antibody reactions indicated the presence of microbial strains or high-molecular-weight biopolymers that originated from them. The LDCHIP200 results were quantified and subjected to a multivariate analysis for immunoprofiling. We associated similar immunopatterns, and biomolecular markers, to samples with similar sedimentary age. Phyllosilicate-rich samples from modern fluvial sediments gave strong positive reactions with antibodies against bacteria of the genus Acidithiobacillus and against biochemical extracts from Río Tinto sediments and biofilms. These samples contained high amounts of sugars (mostly polysaccharides) with monosaccharides like glucose, rhamnose, fucose, and so on. By contrast, the older deposits, which are a mix of clastic sands and evaporites, showed only a few positives with LDCHIP200, consistent with lower protein and sugar content. We conclude that LDCHIP200 results can establish a correlation between microenvironments, diagenetic stages, and age with the biomarker profile associated with a sample. Our results would help in the search for putative martian biomarkers in acidic deposits with similar

  11. Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques.

    PubMed

    Auld, Ryan R; Myre, Maxine; Mykytczuk, Nadia C S; Leduc, Leo G; Merritt, Thomas J S

    2013-05-01

    We characterized the bacterial community from an AMD tailings pond using both classical culturing and modern direct sequencing techniques and compared the two methods. Acid mine drainage (AMD) is produced by the environmental and microbial oxidation of minerals dissolved from mining waste. Surprisingly, we know little about the microbial communities associated with AMD, despite the fundamental ecological roles of these organisms and large-scale economic impact of these waste sites. AMD microbial communities have classically been characterized by laboratory culturing-based techniques and more recently by direct sequencing of marker gene sequences, primarily the 16S rRNA gene. In our comparison of the techniques, we find that their results are complementary, overall indicating very similar community structure with similar dominant species, but with each method identifying some species that were missed by the other. We were able to culture the majority of species that our direct sequencing results indicated were present, primarily species within the Acidithiobacillus and Acidiphilium genera, although estimates of relative species abundance were only obtained from direct sequencing. Interestingly, our culture-based methods recovered four species that had been overlooked from our sequencing results because of the rarity of the marker gene sequences, likely members of the rare biosphere. Further, direct sequencing indicated that a single genus, completely missed in our culture-based study, Legionella, was a dominant member of the microbial community. Our results suggest that while either method does a reasonable job of identifying the dominant members of the AMD microbial community, together the methods combine to give a more complete picture of the true diversity of this environment.

  12. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates (“Iron Snow”)

    PubMed Central

    Lu, Shipeng; Chourey, Karuna; Reiche, Marco; Nietzsche, Sandor; Shah, Manesh B.; Neu, Thomas R.; Hettich, Robert L.

    2013-01-01

    Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates (“iron snow”) at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 108 copies g (dry weight)−1 in the acidic central lake basin (pH 3.3) to 4.0 × 1010 copies g (dry weight)−1 in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies. PMID:23645202

  13. Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate.

    PubMed

    Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine

    2016-01-01

    Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans, and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations.

  14. Treatment of H2S using a horizontal biotrickling filter based on biological activated carbon: reactor setup and performance evaluation.

    PubMed

    Duan, Huiqi; Koe, Lawrence Choon Chiaw; Yan, Rong

    2005-04-01

    Biological treatment is an emerging and prevalent technology for treating off-gases from wastewater treatment plants. The most commonly reported odorous compound in off-gases is hydrogen sulfide (H(2)S), which has a very low odor threshold. A self-designed, bench-scale, cross-flow horizontal biotrickling filter (HBF) operated with bacteria immobilized activated carbon (termed biological activated carbon-BAC), was applied for the treatment of H(2)S. A mixed culture of sulfide-oxidizing bacteria dominated by Acidithiobacillus thiooxidans acclimated from activated sludge was used as bacterial seed and the biofilm was developed by culturing the bacteria in the presence of carbon pellets in mineral medium. HBF performance was evaluated systematically over approximately 120 days, depending on a series of changing factors including inlet H(2)S concentration, gas retention time (GRT), pH of recirculation solution, upset and recovery, sulfate accumulation, pressure drop, gas-liquid ratio, and shock loading. The biotrickling filter system can operate at high efficiency from the first day of operation. At a volumetric loading of 900 m(3) m(-3) h(-1) (at 92 ppmv H(2)S inlet concentration), the BAC exhibited maximum elimination capacity (113 g H(2)S/m(-3) h(-1)) and a removal efficiency of 96% was observed. If the inlet concentration was kept at around 20 ppmv, high H(2)S removal (over 98%) was achieved at a GRT of 4 s, a value comparable with those currently reported for biotrickling filters. The bacterial population in the acidic biofilter demonstrated capacity for removal of H(2)S over a broad pH range (pH 1-7). A preliminary investigation into the different effects of bacterial biodegradation and carbon adsorption on system performance was also conducted. This study shows the HBF to be a feasible and economic alternative to physical and chemical treatments for the removal of H(2)S.

  15. Microbial Sulfur Geochemistry in Mine Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Warren, L. A.; Norlund, K. L.; Hitchcock, A.

    2010-12-01

    Acid mine drainage (AMD), metal laden, acidic water, is the most pressing mining environmental issue on a global scale. While it is well recognized that the activity of autotrophic Fe and S bacteria amplify the oxidation of the sulfidic wastes, thereby generating acidity and leaching metals; the underlying microbial geochemistry is not well described. This talk will highlight results revealing the importance of microbial cooperation associated with a novel sulfur-metabolizing consortium enriched from mine waters. Results generated by an integrated approach, combining field characterization, geochemical experimentation, scanning transmission X-ray microscopy (STXM), and fluorescence in situ hybridization (FISH) [1]describing the underlying ecological drivers, the functionally relevant biogeochemical architecture of the consortial macrostructure as well as the identities of this environmental sulphur redox cycling consortium will be presented. The two common mine bacterial strains involved in this consortium, Acidithiobacillus ferroxidans and Acidiphilium sp., are specifically spatially segregated within a macrostructure (pod) of extracellular polymeric substance (EPS) that enables coupled sulphur oxidation and reduction reactions despite bulk, oxygenated conditions. Identical pod formation by type culture strains was induced and linked to ecological conditions. The proposed sulphur geochemistry associated with this bacterial consortium produces 40-90% less acid than expected based on abiotic AMD models, with implications for both AMD mitigation and AMD carbon flux modeling. We are currently investigating the implications of these sulphur-processing pods for metal dynamics in mine systems. These results demonstrate how microbes can orchestrate their geochemical environment to facilitate metabolism, and underscore the need to consider microbial interactions and ecology in constraining their geochemical impacts. [1] Norlund, Southam, Tyliszcczak, Hu, Karunakaran, Obst

  16. Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N), Revealed by Culture-Independent Approaches.

    PubMed

    García-Moyano, Antonio; Austnes, Andreas Erling; Lanzén, Anders; González-Toril, Elena; Aguilera, Ángeles; Øvreås, Lise

    2015-10-13

    Svalbard, situated in the high Arctic, is an important past and present coal mining area. Dozens of abandoned waste rock piles can be found in the proximity of Longyearbyen. This environment offers a unique opportunity for studying the biological control over the weathering of sulphide rocks at low temperatures. Although the extension and impact of acid mine drainage (AMD) in this area is known, the native microbial communities involved in this process are still scarcely studied and uncharacterized. Several abandoned mining areas were explored in the search for active AMD and a culture-independent approach was applied with samples from two different runoffs for the identification and quantification of the native microbial communities. The results obtained revealed two distinct microbial communities. One of the runoffs was more extreme with regards to pH and higher concentration of soluble iron and heavy metals. These conditions favored the development of algal-dominated microbial mats. Typical AMD microorganisms related to known iron-oxidizing bacteria (Acidithiobacillus ferrivorans, Acidobacteria and Actinobacteria) dominated the bacterial community although some unexpected populations related to Chloroflexi were also significant. No microbial mats were found in the second area. The geochemistry here showed less extreme drainage, most likely in direct contact with the ore under the waste pile. Large deposits of secondary minerals were found and the presence of iron stalks was revealed by microscopy analysis. Although typical AMD microorganisms were also detected here, the microbial community was dominated by other populations, some of them new to this type of system (Saccharibacteria, Gallionellaceae). These were absent or lowered in numbers the farther from the spring source and they could represent native populations involved in the oxidation of sulphide rocks within the waste rock pile. This environment appears thus as a highly interesting field of potential

  17. Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N), Revealed by Culture-Independent Approaches

    PubMed Central

    García-Moyano, Antonio; Austnes, Andreas Erling; Lanzén, Anders; González-Toril, Elena; Aguilera, Ángeles; Øvreås, Lise

    2015-01-01

    Svalbard, situated in the high Arctic, is an important past and present coal mining area. Dozens of abandoned waste rock piles can be found in the proximity of Longyearbyen. This environment offers a unique opportunity for studying the biological control over the weathering of sulphide rocks at low temperatures. Although the extension and impact of acid mine drainage (AMD) in this area is known, the native microbial communities involved in this process are still scarcely studied and uncharacterized. Several abandoned mining areas were explored in the search for active AMD and a culture-independent approach was applied with samples from two different runoffs for the identification and quantification of the native microbial communities. The results obtained revealed two distinct microbial communities. One of the runoffs was more extreme with regards to pH and higher concentration of soluble iron and heavy metals. These conditions favored the development of algal-dominated microbial mats. Typical AMD microorganisms related to known iron-oxidizing bacteria (Acidithiobacillus ferrivorans, Acidobacteria and Actinobacteria) dominated the bacterial community although some unexpected populations related to Chloroflexi were also significant. No microbial mats were found in the second area. The geochemistry here showed less extreme drainage, most likely in direct contact with the ore under the waste pile. Large deposits of secondary minerals were found and the presence of iron stalks was revealed by microscopy analysis. Although typical AMD microorganisms were also detected here, the microbial community was dominated by other populations, some of them new to this type of system (Saccharibacteria, Gallionellaceae). These were absent or lowered in numbers the farther from the spring source and they could represent native populations involved in the oxidation of sulphide rocks within the waste rock pile. This environment appears thus as a highly interesting field of potential

  18. Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park.

    PubMed

    Hamamura, Natsuko; Olson, Sarah H; Ward, David M; Inskeep, William P

    2005-10-01

    In this paper we describe the bacterial communities associated with natural hydrocarbon seeps in nonthermal soils at Rainbow Springs, Yellowstone National Park. Soil chemical analysis revealed high sulfate concentrations and low pH values (pH 2.8 to 3.8), which are characteristic of acid-sulfate geothermal activity. The hydrocarbon composition of the seep soils consisted almost entirely of saturated, acyclic alkanes (e.g., n-alkanes with chain lengths of C15 to C30, as well as branched alkanes, predominately pristane and phytane). Bacterial populations present in the seep soils were phylogenetically characterized by 16S rRNA gene clone library analysis. The majority of the sequences recovered (>75%) were related to sequences of heterotrophic acidophilic bacteria, including Acidisphaera spp. and Acidiphilium spp. of the alpha-Proteobacteria. Clones related to the iron- and sulfur-oxidizing chemolithotroph Acidithiobacillus spp. were also recovered from one of the seep soils. Hydrocarbon-amended soil-sand mixtures were established to examine [14C]hexadecane mineralization and corresponding changes in the bacterial populations using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Approximately 50% of the [14C]hexadecane added was recovered as 14CO2 during an 80-day incubation, and this was accompanied by detection of heterotrophic acidophile-related sequences as dominant DGGE bands. An alkane-degrading isolate was cultivated, whose 16S rRNA gene sequence was identical to the sequence of a dominant DGGE band in the soil-sand mixture, as well as the clone sequence recovered most frequently from the original soil. This and the presence of an alkB gene homolog in this isolate confirmed the alkane degradation capability of one population indigenous to acidic hydrocarbon seep soils.

  19. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.

    PubMed

    Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-07-15

    The oxidization of metal sulfide in tailings causes acid mine drainage. However, it remains unclear whether vegetation prevents the oxidization of metal sulfides. The oxidization characteristics and microbial indices of the tailings in the presence of various plant species were investigated to explore the effects of vegetation on the oxidization of sulfide minerals in tailings. The pH, reducing sulfur, free iron oxides (Fed), chemical oxygen consumption (COC) and biological oxygen consumption (BOC) were measured. Key iron- and sulfur-oxidizing bacteria (Acidithiobacillus spp., Leptospirillum spp. and Thiobacillus spp.) were quantified using real-time PCR. The results indicate that vegetation growing on tailings can effectively prevent the oxidization of sulfide minerals in tailings. A higher pH and reducing-sulfur content and lower Fed were observed in the 0-30 cm depth interval in the presence of vegetation compared to bare tailings (BT). The COC gradually decreased with depth in all of the soil profiles; specifically, the COC rapidly decreased in the 10-20 cm interval in the presence of vegetation but gradually decreased in the BT profiles. Imperata cylindrica (IC) and Chrysopogon zizanoides (CZ) profiles contained the highest BOC in the 10-20 cm interval. The abundance of key iron- and sulfur-oxidizing bacteria in the vegetated tailings were significantly lower than in the BT; in particular, IC was associated with the lowest iron- and sulfur-oxidizing bacterial abundance. In conclusion, vegetation successfully prevented the oxidization of sulfide minerals in the tailings, and Imperata cylindrica is the most effective in reducing the number of iron- and sulfur-oxidizing bacteria and helped to prevent the oxidization of sulfide minerals in the long term.

  20. Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate

    PubMed Central

    Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine

    2016-01-01

    Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans, and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations. PMID:28066365

  1. In situ Spectroscopy Reveals that Microorganisms in Different Phyla Use Different Electron Transfer Biomolecules to Respire Aerobically on Soluble Iron

    PubMed Central

    Blake II, Robert C.; Anthony, Micah D.; Bates, Jordan D.; Hudson, Theresa; Hunter, Kamilya M.; King, Brionna J.; Landry, Bria L.; Lewis, Megan L.; Painter, Richard G.

    2016-01-01

    Absorbance spectra were collected on 12 different live microorganisms, representing six phyla, as they respired aerobically on soluble iron at pH 1.5. A novel integrating cavity absorption meter was employed that permitted accurate absorbance measurements in turbid suspensions that scattered light. Illumination of each microorganism yielded a characteristic spectrum of electrochemically reduced colored prosthetic groups. A total of six different patterns of reduced-minus-oxidized difference spectra were observed. Three different spectra were obtained with members of the Gram-negative eubacteria. Acidithiobacillus, representing Proteobacteria, yielded a spectrum in which cytochromes a and c and a blue copper protein were all prominent. Acidihalobacter, also representing the Proteobacteria, yielded a spectrum in which both cytochrome b and a long-wavelength cytochrome a were clearly visible. Two species of Leptospirillum, representing the Nitrospirae, both yielded spectra that were dominated by a cytochrome with a reduced peak at 579 nm. Sulfobacillus and Alicyclobacillus, representing the Gram-positive Firmicutes, both yielded spectra dominated by a-type cytochromes. Acidimicrobium and Ferrimicrobium, representing the Gram-positive Actinobacteria, also yielded spectra dominated by a-type cytochromes. Acidiplasma and Ferroplasma, representing the Euryarchaeota, both yielded spectra dominated by a ba3-type of cytochrome. Metallosphaera and Sulfolobus, representing the Crenarchaeota, both yielded spectra dominated by the same novel cytochrome as that observed in the Nitrospirae and a new, heretofore unrecognized redox-active prosthetic group with a reduced peak at around 485 nm. These observations are consistent with the hypothesis that individual acidophilic microorganisms that respire aerobically on iron utilize one of at least six different types of electron transfer pathways that are characterized by different redox-active prosthetic groups. In situ absorbance

  2. Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination

    SciTech Connect

    Gallegos, María V.; Falco, Lorena R.; Peluso, Miguel A.; Sambeth, Jorge E.; Thomas, Horacio J.

    2013-06-15

    Highlights: • Manganese oxides were synthesized using spent batteries as raw materials. • Spent alkaline and zinc–carbon size AA batteries were used. • A biohydrometallurgical process was employed to bio-lixiviate batteries. • Manganese oxides were active in the oxidation of VOCs (ethanol and heptane). - Abstract: Manganese, in the form of oxide, was recovered from spent alkaline and zinc–carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO{sub 4} solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnO{sub x} synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn{sub 2}O{sub 3} in the EMO and the CMO samples, together with some Mn{sup 4+} cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn{sub 3}O{sub 4}. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200 °C, while heptane requires more than 400 °C. The CMO has the highest oxide selectivity to CO{sub 2}. The results show that manganese oxides obtained using spent alkaline and zinc–carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  3. Calcium isotopic fractionation in microbially mediated gypsum precipitates

    NASA Astrophysics Data System (ADS)

    Harouaka, Khadouja; Mansor, Muammar; Macalady, Jennifer L.; Fantle, Matthew S.

    2016-07-01

    Gypsum (CaSO4·2H2O) precipitation experiments were carried out at low pH in the presence of the sulfur oxidizing bacterium Acidithiobacillus thiooxidans. The observed Ca isotopic fractionation (expressed as Δ44/40Cas-f = δ44/40Casolid-δ44/40Cafluid) at the end of each experimental time period (∼50 to 60 days) was -1.41‰ to -1.09‰ in the biotic experiments, -1.09‰ in the killed control, and -1.01‰ to -0.88‰ in the abiotic controls. As there were no strong differences in the solution chemistry and the rate at which gypsum precipitated in the biotic and abiotic controls, we deduce a biological Ca isotope effect on the order of -0.3‰. The isotope effect correlates with a difference in crystal aspect ratios between the biotic experiments (8.05 ± 3.99) and abiotic controls (31.9 ± 8.40). We hypothesize that soluble and/or insoluble organic compounds selectively inhibit crystal growth at specific crystal faces, and that the growth inhibition affects the fractionation factor associated with gypsum precipitation. The experimental results help explain Ca isotopic variability in gypsum sampled from a sulfidic cave system, in which gypsum crystals exhibiting a diversity of morphologies (microcrystalline to cm-scale needles) have a broad range of δ44/40Ca values (∼1.2-0.4‰) relative to the limestone wall (δ44/40Ca = 1.3‰). In light of the laboratory experiments, the variation in Ca isotope values in the caves can be interpreted as a consequence of gypsum precipitation in the presence of microbial organic matter and subsequent isotopic re-equilibration with the Ca source.

  4. Insights into the structure and metabolic function of microbes that shape pelagic iron-rich aggregates ("iron snow").

    PubMed

    Lu, Shipeng; Chourey, Karuna; Reiche, Marco; Nietzsche, Sandor; Shah, Manesh B; Neu, Thomas R; Hettich, Robert L; Küsel, Kirsten

    2013-07-01

    Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates ("iron snow") at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 10(8) copies g (dry weight)(-1) in the acidic central lake basin (pH 3.3) to 4.0 × 10(10) copies g (dry weight)(-1) in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies.

  5. Quantification of Tinto River Sediment Microbial Communities: Importance of Sulfate-Reducing Bacteria and Their Role in Attenuating Acid Mine Drainage

    PubMed Central

    Sánchez-Andrea, Irene; Knittel, Katrin; Amann, Rudolf; Amils, Ricardo

    2012-01-01

    Tinto River (Huelva, Spain) is a natural acidic rock drainage (ARD) environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. This study quantified the abundance of diverse microbial populations inhabiting ARD-related sediments from two physicochemically contrasting sampling sites (SN and JL dams). Depth profiles of total cell numbers differed greatly between the two sites yet were consistent in decreasing sharply at greater depths. Although catalyzed reporter deposition fluorescence in situ hybridization with domain-specific probes showed that Bacteria (>98%) dominated over Archaea (<2%) at both sites, important differences were detected at the class and genus levels, reflecting differences in pH, redox potential, and heavy metal concentrations. At SN, where the pH and redox potential are similar to that of the water column (pH 2.5 and +400 mV), the most abundant organisms were identified as iron-reducing bacteria: Acidithiobacillus spp. and Acidiphilium spp., probably related to the higher iron solubility at low pH. At the JL dam, characterized by a banded sediment with higher pH (4.2 to 6.2), more reducing redox potential (−210 mV to 50 mV), and a lower solubility of iron, members of sulfate-reducing genera Syntrophobacter, Desulfosporosinus, and Desulfurella were dominant. The latter was quantified with a newly designed CARD-FISH probe. In layers where sulfate-reducing bacteria were abundant, pH was higher and redox potential and levels of dissolved metals and iron were lower. These results suggest that the attenuation of ARD characteristics is biologically driven by sulfate reducers and the consequent precipitation of metals and iron as sulfides. PMID:22544246

  6. Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage.

    PubMed

    Kock, Dagmar; Schippers, Axel

    2008-08-01

    The microbial communities of three different sulfidic and acidic mine waste tailing dumps located in Botswana, Germany, and Sweden were quantitatively analyzed using quantitative real-time PCR (Q-PCR), fluorescence in situ hybridization (FISH), catalyzed reporter deposition-FISH (CARD-FISH), Sybr green II direct counting, and the most probable number (MPN) cultivation technique. Depth profiles of cell numbers showed that the compositions of the microbial communities are greatly different at the three sites and also strongly varied between zones of oxidized and unoxidized tailings. Maximum cell numbers of up to 10(9) cells g(-1) dry weight were determined in the pyrite or pyrrhotite oxidation zones, whereas cell numbers in unoxidized tailings were significantly lower. Bacteria dominated over Archaea and Eukarya at all tailing sites. The acidophilic Fe(II)- and/or sulfur-oxidizing Acidithiobacillus spp. dominated over the acidophilic Fe(II)-oxidizing Leptospirillum spp. among the Bacteria at two sites. The two genera were equally abundant at the third site. The acidophilic Fe(II)- and sulfur-oxidizing Sulfobacillus spp. were generally less abundant. The acidophilic Fe(III)-reducing Acidiphilium spp. could be found at only one site. The neutrophilic Fe(III)-reducing Geobacteraceae as well as the dsrA gene of sulfate reducers were quantifiable at all three sites. FISH analysis provided reliable data only for tailing zones with high microbial activity, whereas CARD-FISH, Q-PCR, Sybr green II staining, and MPN were suitable methods for a quantitative microbial community analysis of tailings in general.

  7. Classification of Modern and Old Río Tinto Sedimentary Deposits Through the Biomolecular Record Using a Life Marker Biochip: Implications for Detecting Life on Mars

    NASA Astrophysics Data System (ADS)

    Parro, Victor; Fernández-Remolar, David; Rodríguez-Manfredi, José A.; Cruz-Gil, Patricia; Rivas, Luis A.; Ruiz-Bermejo, Marta; Moreno-Paz, Mercedes; García-Villadangos, Miriam; Gómez-Ortiz, David; Blanco-López, Yolanda; Menor-Salván, César; Prieto-Ballesteros, Olga; Gómez-Elvira, Javier

    2011-01-01

    The particular mineralogy formed in the acidic conditions of the Río Tinto has proven to be a first-order analogue for the acid-sulfate aqueous environments of Mars. Therefore, studies about the formation and preservation of biosignatures in the Río Tinto will provide insights into equivalent processes on Mars. We characterized the biomolecular patterns recorded in samples of modern and old fluvial sediments along a segment of the river by means of an antibody microarray containing more than 200 antibodies (LDCHIP200, for Life Detector Chip) against whole microorganisms, universal biomolecules, or environmental extracts. Samples containing 0.3-0.5g of solid material were automatically analyzed in situ by the Signs Of LIfe Detector instrument (SOLID2), and the results were corroborated by extensive analysis in the laboratory. Positive antigen-antibody reactions indicated the presence of microbial strains or high-molecular-weight biopolymers that originated from them. The LDCHIP200 results were quantified and subjected to a multivariate analysis for immunoprofiling. We associated similar immunopatterns, and biomolecular markers, to samples with similar sedimentary age. Phyllosilicate-rich samples from modern fluvial sediments gave strong positive reactions with antibodies against bacteria of the genus Acidithiobacillus and against biochemical extracts from Río Tinto sediments and biofilms. These samples contained high amounts of sugars (mostly polysaccharides) with monosaccharides like glucose, rhamnose, fucose, and so on. By contrast, the older deposits, which are a mix of clastic sands and evaporites, showed only a few positives with LDCHIP200, consistent with lower protein and sugar content. We conclude that LDCHIP200 results can establish a correlation between microenvironments, diagenetic stages, and age with the biomarker profile associated with a sample. Our results would help in the search for putative martian biomarkers in acidic deposits with similar

  8. Temporal evolution of bacterial communities associated with the in situ wetland-based remediation of a marine shore porphyry copper tailings deposit.

    PubMed

    Diaby, N; Dold, B; Rohrbach, E; Holliger, C; Rossi, P

    2015-11-15

    Mine tailings are a serious threat to the environment and public health. Remediation of these residues can be carried out effectively by the activation of specific microbial processes. This article presents detailed information about temporal changes in bacterial community composition during the remediation of a section of porphyry copper tailings deposited on the Bahía de Ite shoreline (Peru). An experimental remediation cell was flooded and transformed into a wetland in order to prevent oxidation processes, immobilizing metals. Initially, the top oxidation zone of the tailings deposit displayed a low pH (3.1) and high concentrations of metals, sulfate, and chloride, in a sandy grain size geological matrix. This habitat was dominated by sulfur- and iron-oxidizing bacteria, such as Leptospirillum spp., Acidithiobacillus spp., and Sulfobacillus spp., in a microbial community which structure resembled acid mine drainage environments. After wetland implementation, the cell was water-saturated, the acidity was consumed and metals dropped to a fraction of their initial respective concentrations. Bacterial communities analyzed by massive sequencing showed time-dependent changes both in composition and cell numbers. The final remediation stage was characterized by the highest bacterial diversity and evenness. Aside from classical sulfate reducers from the phyla δ-Proteobacteria and Firmicutes, community structure comprised taxa derived from very diverse habitats. The community was also characterized by an elevated proportion of rare phyla and unaffiliated sequences. Numerical ecology analysis confirmed that the temporal population evolution was driven by pH, redox, and K. Results of this study demonstrated the usefulness of a detailed follow-up of the remediation process, not only for the elucidation of the communities gradually switching from autotrophic, oxidizing to heterotrophic and reducing living conditions, but also for the long term management of the remediation

  9. Bioleached sludge composting drastically reducing ammonia volatilization as well as decreasing bulking agent dosage and improving compost quality: A case study.

    PubMed

    Hu, Weitong; Zheng, Guanyu; Fang, Di; Cui, Chunhong; Liang, Jianru; Zhou, Lixiang

    2015-10-01

    Sludge bioleaching technology with Acidithiobacillus species has been commercially adopted for improving advanced dewatering of sludge in China since 2010. However, up to now, little information on bioleached dewatered sludge (BS) composting is available. Here, we report the changes of physicochemical and biological properties in BS composting and evaluate compost product quality compared to conventional dewatered sludge (CS) composting in an engineering scale composting facility. The results showed that the amount of bulking agents required in BS composting was only about 10% of CS composting to obtain optimum moisture content, reducing about 700 kg bulking agents per ton fresh sludge. pH of BS composting mixture was slightly lower consistently by about 0.2-0.3 pH units than that in CS mixture in the first 30 days. Organic matter biodegradation in BS system mainly occurred in the first 9 days of composting. In spite of higher content of NH4(+)-N was found in BS mixture in related to CS mixture; unexpectedly the cumulative ammonia volatilization in the former was only 51% of the latter, indicating that BS composting drastically reduced nitrogen loss. Compared to CS composting system, the relative lower pH, the higher intensity of microbial assimilation, and the presence of water soluble Fe in BS system might jointly reduce ammonia volatilization. Consequently, BS compost product exhibited higher fertilizer values (N+P2O5+K2O=8.38%) as well as lower heavy metal levels due to the solubilization of sludge-borne heavy metals during bioleaching process. Therefore, composting of BS possesses more advantages over the CS composting process.

  10. Sulfur and Zinc Availability from Co-granulated Zn-Enriched Elemental Sulfur Fertilizers.

    PubMed

    Mattiello, Edson M; da Silva, Rodrigo C; Degryse, Fien; Baird, Roslyn; Gupta, Vadakattu V S R; McLaughlin, Michael J

    2017-02-15

    Acidification by oxidation of elemental sulfur (ES) can solubilize ZnO, providing slow release of both sulfur (S) and zinc (Zn) in soil. For this study, a new granular fertilizer with ES and ZnO was produced and evaluated. The effect of incorporating microorganisms or a carbon source in the granule was also evaluated. Four granulated ES-Zn fertilizers with and without S-oxidizing microorganisms, a commercial ES pastille, ZnSO4, and ZnO were applied to the center of Petri dishes containing two contrasting pH soils. Soil pH, CaCl2-extractable S and Zn, and remaining ES were evaluated at 30 and 60 days in two soil sections (0-5 and 5-9 mm from the fertilizer application site). A visualization test was performed to evaluate Zn diffusion over time. A significant pH decrease was observed in the acidic soil for all ES-Zn fertilizer treatments and in the alkaline soil for the Acidithiobacillus thiooxidans-inoculated treatment only. In agreement with Zn visualization tests, extractable-Zn concentrations were higher from the point of application in the acidic (62.9 mg dm(-3)) compared to the alkaline soil (5.5 mg dm(-3)). Elemental S oxidation was greater in the acidic soil (20.9%) than slightly alkaline soil (12%). The ES-Zn granular fertilizers increased S and Zn concentrations in soil and can provide a strategically slow release of nutrients to the soil.

  11. Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores

    NASA Astrophysics Data System (ADS)

    Hao, Likai; Guo, Yuan; Byrne, James M.; Zeitvogel, Fabian; Schmid, Gregor; Ingino, Pablo; Li, Jianli; Neu, Thomas R.; Swanner, Elizabeth D.; Kappler, Andreas; Obst, Martin

    2016-05-01

    Aggregates consisting of bacterial cells, extracellular polymeric substances (EPS) and Fe(III) minerals formed by Fe(II)-oxidizing bacteria are common at bulk or microscale chemical interfaces where Fe cycling occurs. The high sorption capacity and binding capacity of cells, EPS, and minerals controls the mobility and fate of heavy metals. However, it remains unclear to which of these component(s) the metals will bind in complex aggregates. To clarify this question, the present study focuses on 3D mapping of heavy metals sorbed to cells, glycoconjugates that comprise the majority of EPS constituents, and Fe(III) mineral aggregates formed by the phototrophic Fe(II)-oxidizing bacteria Rhodobacter ferrooxidans SW2 using confocal laser scanning microscopy (CLSM) in combination with metal- and glycoconjugates-specific fluorophores. The present study evaluated the influence of glycoconjugates, microbial cell surfaces, and (biogenic) Fe(III) minerals, and the availability of ferrous and ferric iron on heavy metal sorption. Analyses in this study provide detailed knowledge on the spatial distribution of metal ions in the aggregates at the sub-μm scale, which is essential to understand the underlying mechanisms of microbe-mineral-metal interactions. The heavy metals (Au3+, Cd2+, Cr3+, CrO42-, Cu2+, Hg2+, Ni2+, Pd2+, tributyltin (TBT) and Zn2+) were found mainly sorbed to cell surfaces, present within the glycoconjugates matrix, and bound to the mineral surfaces, but not incorporated into the biogenic Fe(III) minerals. Statistical analysis revealed that all ten heavy metals tested showed relatively similar sorption behavior that was affected by the presence of sorbed ferrous and ferric iron. Results in this study showed that in addition to the mineral surfaces, both bacterial cell surfaces and the glycoconjugates provided most of sorption sites for heavy metals. Simultaneously, ferrous and ferric iron ions competed with the heavy metals for sorption sites on the organic

  12. Diversity of Microorganisms Associated With low Temperature Iron Deposits at the 71°N Hydrothermal Vent Field Along the Arctic Mid-Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Ovreas, L.; Johannessen, T.; Jorgensen, S.; Thorseth, I. H.; Pedersen, R. B.

    2007-12-01

    Rust coloured mounds and chimney-like deposits of the newly discovered71°N hydrothermal vent fields at the south-western part of the Mohns Ridge have been investigated. Iron is the fourth most abundant element in the Earth's crust and thus represents one of the most abundant redox active metals widely available for microbial energy generation. Microbial Fe-oxidation is a widespread process in the deep-sea environments, but only recently have studies begun to elucidate these processes and describe the phylogenetic and physiological diversity of the microbial communities that mediate them. Therefore studying the process by which iron is oxidised and how this influence these cold deep-sea communities is of significant importance. We have studied the microbial communities present in these low-temperature rust coloured deposits in order to elucidate the phylogenetic and physiological diversity of the microbial populations inhabiting these deep-sea environments. Polyphasic characterisations by using geochemical and biological analyses have been performed. The deposited material has a highly porous microtexture of branching, twisted filaments resembling stalks of the iron- oxidising Gallionella sp, but numerous other unidentified filamentous structures were also found to be present. Phylogenetic analysis of clone libraries has so far demonstrated that the bacterial community is dominated by members of the Proteobacteria, Planctomycetes and Chloroflexi. The archaeal community consists of both Crenarchaeota and Euryarchaeota. The Crenarchaeota sequences affiliates with other reported uncultivated Deep-Sea archaeal sequences. To further investigate the ecological impact of these iron mounds and their interaction with microorganisms cultivation experiments have been applied. We are specifically focusing on enrichment of iron oxidizing bacteria. Preliminary results indicates that iron oxidizers related to the newly described Mariprofundus ferrooxidans as well as iron reducers

  13. Characterization and Localization of Iron-Oxidizing Proteins in Acid Mine Drainage Biofilms

    NASA Astrophysics Data System (ADS)

    Chan, C. S.; Thelen, M. P.; Hwang, M.; Banfield, J. F.

    2005-12-01

    As molecular geomicrobiologists, we are interested in the microbially-produced molecules that effect geochemical transformations, particularly proteins involved in lithotrophic energy generation. We have identified two such proteins produced by Leptospirillum group II microbes, which dominate biofilms floating on acidic waters in the Richmond Mine at Iron Mountain, CA. Leptospirillum generates energy by iron oxidation, producing the ferric iron catalyst responsible for pyrite oxidation, subsequent acid generation and toxic metal release. We have shown that a small (~16 kDa) soluble protein, cytochrome-579, extracted from environmental biofilm samples is capable of iron oxidation in vitro, consistent with prior studies on similar cytochromes from L. ferriphilum and ferrooxidans (Blake et al., 1993; Hart et al., 1991). The abundance of cyt579 and its ability to oxidize iron makes it a key link between microbial metabolism and acid mine drainage. Given the importance of cyt579 in biofilm sustenance as well as acid generation, we want to understand more about its distribution and also the architecture of the biofilm environment in which it functions. Using transmission electron microscopy (TEM) on ultrathin sections, we observe biofilms as thin as 15 microns with densely-packed cells in a matrix of polymers. To localize cyt579 in the biofilm, we purified the protein and developed antibodies for immunolabeling. The antibodies were shown to be highly specific for cyt579 using Western blots of whole biofilm lysate. Fluorescence- and gold-labeled secondary antibodies were used to visualize immunolabeled biofilms by confocal laser scanning microscopy and TEM, respectively. Preliminary results suggest that the cytochrome is on the bacterial cell surface or in the periplasm but not throughout the biofilm, as we had postulated due to the abundance of cytochrome in extracellular fractions of biofilm samples. These localization studies will be helpful in determining the

  14. Iron sulfide oxidation as influenced by calcium carbonate application.

    PubMed

    Hossner, L R; Doolittle, J J

    2003-01-01

    Two overburden materials, with different FeS2 contents (1.9 and 4.1%) and low acid neutralization potential, were limed with CaCO3 at rates of 0, 25, 50, 75, 100, and 125% based on the amount of CaCO3 needed to provide an acid-base account deficit (A/Ba) of zero (A/Ba = neutralization potential--potential acidity--exchangeable acidity). The limed overburden materials were inoculated with Thiobacillus ferrooxidans and leached weekly with deionized water. Residual FeS2 and CaCO3 were determined in samples over a 378-d period. Oxidation followed zero-order kinetics with respect to FeS2 concentration at pH values greater than 4 and first-order kinetics at pH values less than 4. Zero-order oxidation rates ranged from 0.01 to 0.46 micromol g(-1) d(-1) in the overburden with 1.9% FeS2 and from 0.01 to 0.22 micromol g(-1) d(-1) in the overburden with 4.1% FeS2. Oxidation following the first-order rate law had a first-order rate constant of 0.03 d(-1) in the 1.9% FeS2 overburden and 0.01 d(-1) in the 4.1% FeS2 overburden. The calculated half-life was 23 d for the 1.9% FeS2 overburden and 69 d for the 4.1% FeS2 overburden. Additions of CaCO3 affected FeS2 oxidation by controlling the pH of the system. Liming to greater than 50% of the acid-base account deficit did not significantly affect the zero-order oxidation rate. Dissolution of the applied CaCO3 was found to be faster than the oxidation of FeS2 at pH values greater than 4. It was projected that at lime rates up to 125%, the CaCO3 would dissolve and leach out of the system before all the FeS2 oxidized, leaving the potential for acid minesoil formation.

  15. Mercury Methylation and Detoxification by Novel Microorganisms in Mercury Enriched Mesothermal Springs

    NASA Astrophysics Data System (ADS)

    Gionfriddo, C. M.; Krabbenhoft, D. P.; Stott, M.; Wick, R. R.; Schultz, M. B.; Holt, K. E.; Moreau, J. W.

    2015-12-01

    Hot springs and fumaroles release significant quantities of aqueous and gaseous mercury into the environment. Yet few studies have looked at the microbial underpinnings of mercury transformations in geothermal settings. Recent advancements in culture-independent molecular techniques, such as ultra-high-throughput sequencing, allow us to delve deeply into the functional and phylogenetic make-up of these extreme environments. Here we present results from deep metagenomic sequencing of geothermal microbial communities cycling mercury, focussing on the connections between putative metabolisms and mercury methylation, and the evolution of the mer-operon. Presented are data from two adjacent, acidic (pH<3), mesothermal (33-68 °C) hot springs of the Ngawha geothermal field (New Zealand), extremely enriched in total mercury (>1000 ng L-1), and varying methylmercury concentrations (1-10 ng L-1). Microbial communities of both springs are dominated by mercury resistant acidophilic, sulfur- and iron-cycling microbes: Acidithiobacillus, Thiomonas, and Thermoplasma. Mercury methylation genes (hgcAB) were only detected in the cooler spring (∆T~10 °C), with an order of magnitude greater methylmercury (10 ng L-1). The hgcAB genes have no known closest relatives (<90%), but lowest common ancestor analysis matched members of the Firmicutes and Deltaproteobacteria as well as uncultured environmental bacteria. Our findings show that geothermal microbial communities are capable of a net production of methylmercury, alongside active demethylation-reduction by mer-capable microbes, despite selective pressures from low pH and high mercury levels. However, temperature may be the major limiting factor on mercury biomethylation in geothermal settings, as no hgcAB genes were detected in the spring that was nearly identical in all physio-chemical parameters to its neighbour except for temperature (T >40°C), and methylmercury concentration. We conclude that the relative amount of mercury

  16. Insights into functional genes and taxonomical/phylogenetic diversity of microbial communities in biological heap leaching system and their correlation with functions.

    PubMed

    Xiao, Yunhua; Liu, Xueduan; Liang, Yili; Niu, Jiaojiao; Zhang, Xian; Ma, Liyuan; Hao, Xiaodong; Gu, Yabin; Yin, Huaqun

    2016-11-01

    Although the taxonomical/phylogenetic diversity of microbial communities in biological heap leaching systems has been investigated, the diversity of functional genes was still unclear, and, especially, the differentiation and the relationships of diversity and functions of microbial communities in leaching heap (LH) and leaching solution (LS) were also still unclear. In our study, a functional gene array (GeoChip 5.0) was employed to investigate the functional gene diversity, and 16S rRNA gene sequencing was used to explore the taxonomical/phylogenetic diversity of microbial communities in LH and LS subsystems of Dexing copper mine (Jiangxi, China). Detrended correspondence analysis (DCA) showed that both functional gene structure and taxonomical/phylogenetic structure of microbial communities were significantly different between LH and LS. Signal intensities of genes, including genes for sulfur oxidation (e.g., soxB), metal homeostasis (e.g., arsm), carbon fixation (e.g., rubisco), polyphosphate degradation (e.g., ppk), and organic remediation (e.g., hydrocarbons) were significantly higher in LH, while signal intensities of genes for carbon degradation (e.g., amyA), polyphosphate synthesis (e.g., ppx), and sulfur reduction (e.g., dsrA) were significantly higher in LS. Further inspection revealed that microbial communities in LS and LH were dominated by Acidithiobacillus and Leptospirillum. However, rare species were relatively higher abundant in LH. Additionally, diversity index of functional genes was significantly different in LS (9.915 ± 0.074) and LH (9.781 ± 0.165), and the taxonomical/phylogenetic diversity index was also significantly different in LH (4.398 ± 0.508) and LS (3.014 ± 0.707). Functional tests, including sulfur-oxidizing ability, iron-oxidizing ability, and pyrite bioleaching ability, showed that all abilities of microbial communities were significantly stronger in LH than those in LS. Further studies found that most key genes (e

  17. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems.

    PubMed

    Okabe, Satoshi; Odagiri, Mitsunori; Ito, Tsukasa; Satoh, Hisashi

    2007-02-01

    Microbially induced concrete corrosion (MICC) in sewer systems has been a serious problem for a long time. A better understanding of the succession of microbial community members responsible for the production of sulfuric acid is essential for the efficient control of MICC. In this study, the succession of sulfur-oxidizing bacteria (SOB) in the bacterial community on corroding concrete in a sewer system in situ was investigated over 1 year by culture-independent 16S rRNA gene-based molecular techniques. Results revealed that at least six phylotypes of SOB species were involved in the MICC process, and the predominant SOB species shifted in the following order: Thiothrix sp., Thiobacillus plumbophilus, Thiomonas intermedia, Halothiobacillus neapolitanus, Acidiphilium acidophilum, and Acidithiobacillus thiooxidans. A. thiooxidans, a hyperacidophilic SOB, was the most dominant (accounting for 70% of EUB338-mixed probe-hybridized cells) in the heavily corroded concrete after 1 year. This succession of SOB species could be dependent on the pH of the concrete surface as well as on trophic properties (e.g., autotrophic or mixotrophic) and on the ability of the SOB to utilize different sulfur compounds (e.g., H2S, S0, and S2O3(2-)). In addition, diverse heterotrophic bacterial species (e.g., halo-tolerant, neutrophilic, and acidophilic bacteria) were associated with these SOB. The microbial succession of these microorganisms was involved in the colonization of the concrete and the production of sulfuric acid. Furthermore, the vertical distribution of microbial community members revealed that A. thiooxidans was the most dominant throughout the heavily corroded concrete (gypsum) layer and that A. thiooxidans was most abundant at the highest surface (1.5-mm) layer and decreased logarithmically with depth because of oxygen and H2S transport limitations. This suggested that the production of sulfuric acid by A. thiooxidans occurred mainly on the concrete surface and the

  18. Geochemical and Temporal Influences on the Enrichment of Acidophilic Iron-Oxidizing Bacterial Communities

    PubMed Central

    Sheng, Yizhi; Bibby, Kyle; Grettenberger, Christen; Kaley, Bradley; Macalady, Jennifer L.; Wang, Guangcai

    2016-01-01

    ABSTRACT Two acid mine drainage (AMD) sites in the Appalachian bituminous coal basin were selected to enrich for Fe(II)-oxidizing microbes and measure rates of low-pH Fe(II) oxidation in chemostatic bioreactors. Microbial communities were enriched for 74 to 128 days in fed-batch mode, then switched to flowthrough mode (additional 52 to 138 d) to measure rates of Fe(II) oxidation as a function of pH (2.1 to 4.2) and influent Fe(II) concentration (80 to 2,400 mg/liter). Biofilm samples were collected throughout these operations, and the microbial community structure was analyzed to evaluate impacts of geochemistry and incubation time. Alpha diversity decreased as the pH decreased and as the Fe(II) concentration increased, coincident with conditions that attained the highest rates of Fe(II) oxidation. The distribution of the seven most abundant bacterial genera could be explained by a combination of pH and Fe(II) concentration. Acidithiobacillus, Ferrovum, Gallionella, Leptospirillum, Ferrimicrobium, Acidiphilium, and Acidocella were all found to be restricted within specific bounds of pH and Fe(II) concentration. Temporal distance, defined as the cumulative number of pore volumes from the start of flowthrough mode, appeared to be as important as geochemical conditions in controlling microbial community structure. Both alpha and beta diversities of microbial communities were significantly correlated to temporal distance in the flowthrough experiments. Even after long-term operation under nearly identical geochemical conditions, microbial communities enriched from the different sites remained distinct. While these microbial communities were enriched from sites that displayed markedly different field rates of Fe(II) oxidation, rates of Fe(II) oxidation measured in laboratory bioreactors were essentially the same. These results suggest that the performance of suspended-growth bioreactors for AMD treatment may not be strongly dependent on the inoculum used for reactor

  19. Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying.

    PubMed

    Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-02-01

    Bitumen extraction from oil sands ores after surface mining produces different tailings waste streams: 'froth treatment tailings' are enriched in pyrite relative to other streams. Tailings treatment can include addition of organic polymers to produce thickened tailings (TT). TT may be further de-watered by deposition into geotechnical cells for evaporative drying to increase shear strength prior to reclamation. To examine the acid rock drainage (ARD) potential of TT, we performed predictive analyses and laboratory experiments on material from field trials of two types of thickened froth treatment tailings (TT1 and TT2). Acid-base accounting (ABA) of initial samples showed that both TT1 and TT2 initially had net acid-producing potential, with ABA values of -141 and -230 t CaCO₃ equiv. 1000 t(-1) of TT, respectively. In long-term kinetic experiments, duplicate ~2-kg samples of TT were incubated in shallow trays and intermittently irrigated under air flow for 459 days to simulate evaporative field drying. Leachates collected from both TT samples initially had pH~6.8 that began decreasing after ~50 days (TT2) or ~250 days (TT1), stabilizing at pH~2. Correspondingly, the redox potential of leachates increased from 100-200 mV to 500-580 mV and electrical conductivity increased from 2-5 dS m(-1) to 26 dS m(-1), indicating dissolution of minerals during ARD. The rapid onset and prolonged ARD observed with TT2 is attributed to its greater pyrite (13.4%) and lower carbonate (1.4%) contents versus the slower onset of ARD in TT1 (initially 6.0% pyrite and 2.5% carbonates). 16S rRNA gene pyrosequencing analysis revealed rapid shift in microbial community when conditions became strongly acidic (pH~2) favoring the enrichment of Acidithiobacillus and Sulfobacillus bacteria in TT. This is the first report showing ARD potential of TT and the results have significant implications for effective management of pyrite-enriched oil sands tailings streams/deposits.

  20. Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems† ▿

    PubMed Central

    Okabe, Satoshi; Odagiri, Mitsunori; Ito, Tsukasa; Satoh, Hisashi

    2007-01-01

    Microbially induced concrete corrosion (MICC) in sewer systems has been a serious problem for a long time. A better understanding of the succession of microbial community members responsible for the production of sulfuric acid is essential for the efficient control of MICC. In this study, the succession of sulfur-oxidizing bacteria (SOB) in the bacterial community on corroding concrete in a sewer system in situ was investigated over 1 year by culture-independent 16S rRNA gene-based molecular techniques. Results revealed that at least six phylotypes of SOB species were involved in the MICC process, and the predominant SOB species shifted in the following order: Thiothrix sp., Thiobacillus plumbophilus, Thiomonas intermedia, Halothiobacillus neapolitanus, Acidiphilium acidophilum, and Acidithiobacillus thiooxidans. A. thiooxidans, a hyperacidophilic SOB, was the most dominant (accounting for 70% of EUB338-mixed probe-hybridized cells) in the heavily corroded concrete after 1 year. This succession of SOB species could be dependent on the pH of the concrete surface as well as on trophic properties (e.g., autotrophic or mixotrophic) and on the ability of the SOB to utilize different sulfur compounds (e.g., H2S, S0, and S2O32−). In addition, diverse heterotrophic bacterial species (e.g., halo-tolerant, neutrophilic, and acidophilic bacteria) were associated with these SOB. The microbial succession of these microorganisms was involved in the colonization of the concrete and the production of sulfuric acid. Furthermore, the vertical distribution of microbial community members revealed that A. thiooxidans was the most dominant throughout the heavily corroded concrete (gypsum) layer and that A. thiooxidans was most abundant at the highest surface (1.5-mm) layer and decreased logarithmically with depth because of oxygen and H2S transport limitations. This suggested that the production of sulfuric acid by A. thiooxidans occurred mainly on the concrete surface and the

  1. The chemical composition and bacteria communities in acid and metalliferous drainage from the wet-dry tropics are dependent on season.

    PubMed

    Streten-Joyce, Claire; Manning, Judy; Gibb, Karen S; Neilan, Brett A; Parry, David L

    2013-01-15

    Acid and metalliferous drainage (AMD) occurs when sulphidic minerals, such as arsenopyrite, chalcopyrite and pyrite, are exposed to oxygen and water. Climate, geology and mine site practices can have a significant impact on AMD composition. The elemental composition of the AMD can also affect the bacterial community. Our hypothesis was that in the dry season the AMD at two mine sites, Rum Jungle and Mt Todd, in the Northern Territory, Australia, has a higher concentration of dissolved metals because standing water evaporates during the extended dry period. Our second hypothesis was that the wet and dry season bacteria community in AMD at Rum Jungle and Mt Todd are different, and this difference is correlated to seasonally specific changes in physicochemistry. The first hypothesis was tested by measuring elemental concentrations in AMD during the wet and dry seasons at Mt Todd and Rum Jungle mine sites. The physicochemical properties such as temperature, pH and dissolved oxygen were also measured. To test the second hypothesis, we extracted DNA from AMD samples collected at Rum Jungle and Mt Todd during the wet and dry seasons. The hypervariable V6 region of the bacterial 16S rRNA gene was sequenced by 454 pyrosequencing. The bacterial community composition was examined and related to physiochemical variables. The elemental concentrations in Rum Jungle AMD were higher in the dry season compared to the wet season, but at Mt Todd the elemental composition of AMD changed with year, rather than season. The bacteria community in AMD at Rum Jungle changed between the wet and dry season while in Mt Todd AMD the bacteria community from year 1 was significantly different from year 2. The data showed that the elemental composition and bacteria communities of AMD at Rum Jungle and Mt Todd are influenced by season, mine site practices and geological characteristics of the ore body. In addition, the iron oxidising bacteria Leptospirillum and Acidithiobacillus typically

  2. Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation

    USGS Publications Warehouse

    Balci, N.; Bullen, T.D.; Witte-Lien, K.; Shanks, Wayne C.; Motelica, M.; Mandernack, K.W.

    2006-01-01

    Interpretation of the origins of iron-bearing minerals preserved in modern and ancient rocks based on measured iron isotope ratios depends on our ability to distinguish between biological and non-biological iron isotope fractionation processes. In this study, we compared 56Fe/54Fe ratios of coexisting aqueous iron (Fe(II)aq, Fe(III)aq) and iron oxyhydroxide precipitates (Fe(III)ppt) resulting from the oxidation of ferrous iron under experimental conditions at low pH (<3). Experiments were carried out using both pure cultures of Acidothiobacillus ferrooxidans and sterile controls to assess possible biological overprinting of non-biological fractionation, and both SO42- and Cl- salts as Fe(II) sources to determine possible ionic/speciation effects that may be associated with oxidation/precipitation reactions. In addition, a series of ferric iron precipitation experiments were performed at pH ranging from 1.9 to 3.5 to determine if different precipitation rates cause differences in the isotopic composition of the iron oxyhydroxides. During microbially stimulated Fe(II) oxidation in both the sulfate and chloride systems, 56Fe/54Fe ratios of residual Fe(II)aq sampled in a time series evolved along an apparent Rayleigh trend characterized by a fractionation factor ??Fe(III)aq-Fe(II)aq???1.0022. This fractionation factor was significantly less than that measured in our sterile control experiments (???1.0034) and that predicted for isotopic equilibrium between Fe(II)aq and Fe(III)aq (???1.0029), and thus might be interpreted to reflect a biological isotope effect. However, in our biological experiments the measured difference in 56Fe/54Fe ratios between Fe(III)aq, isolated as a solid by the addition of NaOH to the final solution at each time point under N2-atmosphere, and Fe(II)aq was in most cases and on average close to 2.9??? (??Fe(III)aq-Fe(II)aq ???1.0029), consistent with isotopic equilibrium between Fe(II)aq and Fe(III)aq. The ferric iron precipitation experiments

  3. Microbial biofilms control economic metal mobility in an acid-sulfate hydrothermal system

    NASA Astrophysics Data System (ADS)

    Phillips-Lander, C. M.; Roberts, J. A.; Hernandez, W.; Mora, M.; Fowle, D. A.

    2012-12-01

    Trace metal cycling in hydrothermal systems has been the subject of a variety of geochemical and economical geology studies. Typically in these settings these elements are sequestered in sulfide and oxide mineral fractions, however in near-surface low-temperature environments organic matter and microorganisms (typically in mats) have been implicated in their mobility through sorption. Here we specifically examine the role of microbial biofilms on metal partitioning in an acid-sulfate hydrothermal system. We studied the influence of microorganisms and microbial biofilms on trace metal adsorption in Pailas de Aguas I, an acid-sulfate hot spring on the southwest flank of Rincon de la Vieja, a composite stratovolcano in the Guanacaste Province, Costa Rica. Spring waters contain high suspended loads, and are characterized by high T (79.6-89.3oC), low pH (2.6-4), and high ionic strengths (I= 0.5-0.8). Waters contain high concentrations of the biogeochemically active elements Fe (4-6 mmol/l) and SO42- (38 mmol/l), but PO43- are below detection limits (bdl). Silver, Ni, and Mo concentrations are bdl; however other trace metals are present in solution in concentrations of 0.1-0.2 mg/l Cd, 0.2-0.4 mg/l Cr and V, 0.04-1 mg/l Cu,. Preliminary 16S rRNA analyses of microorganisms in sediments reveal several species of algae, including Galderia sp., Cyanidium sp, γ-proteobacteria, Acidithiobacillus caldus, Euryarcheota, and methanogens. To evaluate microbial biofilms' impact on trace metal mobility we analyzed a combination of suspended, bulk and biofilm associated sediment samples via X-ray diffraction (XRD) and trace element sequential extractions (SE). XRD analysis indicated all samples were primarily composed of Fe/Al clay minerals (nontronite, kaolinite), 2- and 6-line ferrihydrite, goethite, and hematite, quartz, and opal-α. SE showed the highest concentrations of Cu, Mo, and V were found in the suspended load. Molybdenum was found primarily in the residual and organic