Science.gov

Sample records for acidithiobacillus ferrooxidans strains

  1. Metabolomic study of Chilean biomining bacteria Acidithiobacillus ferrooxidans strain Wenelen and Acidithiobacillus thiooxidans strain Licanantay.

    PubMed

    Martínez, Patricio; Gálvez, Sebastián; Ohtsuka, Norimasa; Budinich, Marko; Cortés, María Paz; Serpell, Cristián; Nakahigashi, Kenji; Hirayama, Akiyoshi; Tomita, Masaru; Soga, Tomoyoshi; Martínez, Servet; Maass, Alejandro; Parada, Pilar

    2013-02-01

    In this study, we present the first metabolic profiles for two bioleaching bacteria using capillary electrophoresis coupled with mass spectrometry. The bacteria, Acidithiobacillus ferrooxidans strain Wenelen (DSM 16786) and Acidithiobacillus thiooxidans strain Licanantay (DSM 17318), were sampled at different growth phases and on different substrates: the former was grown with iron and sulfur, and the latter with sulfur and chalcopyrite. Metabolic profiles were scored from planktonic and sessile states. Spermidine was detected in intra- and extracellular samples for both strains, suggesting it has an important role in biofilm formation in the presence of solid substrate. The canonical pathway for spermidine synthesis seems absent as its upstream precursor, putrescine, was not present in samples. Glutathione, a catalytic activator of elemental sulfur, was identified as one of the most abundant metabolites in the intracellular space in A. thiooxidans strain Licanantay, confirming its participation in the sulfur oxidation pathway. Amino acid profiles varied according to the growth conditions and bioleaching species. Glutamic and aspartic acid were highly abundant in intra- and extracellular extracts. Both are constituents of the extracellular matrix, and have a probable role in cell detoxification. This novel metabolomic information validates previous knowledge from in silico metabolic reconstructions based on genomic sequences, and reveals important biomining functions such as biofilm formation, energy management and stress responses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-012-0443-3) contains supplementary material, which is available to authorized users. PMID:23335869

  2. Nucleotide sequence of a small cryptic plasmid from Acidithiobacillus ferrooxidans strain A-6

    SciTech Connect

    F. Roberto

    2003-10-01

    A 2.1 kb cryptic plasmid from Acidithiobacillus ferrooxidans strain A-6 was isolated and cloned into the E. coli vector plasmid, pUC128. The cloned plasmid was mapped by restriction enzyme fragment analysis and subsequently sequenced. At this time over half the plasmid sequence has been determined and compared to sequences in the GenBank nucleotide and protein sequence databases. Much of the plasmid remains cryptic, but substantial nucleotide and protein sequence similarities have been observed to the putative replication protein, RepA, of the small cryptic plasmids pAYS and pAYL found in the ammonia-oxidizing Nitrosomonas sp. Strain ENI-11. These results suggest an entirely new class of plasmid is maintained in at least one strain of Acidithiobacillus ferrooxidans and other acidophilic bacteria, and raises interesting questions about the origin of this plasmid in acidic environments.

  3. Comparative genomic analysis of Acidithiobacillus ferrooxidans strains using the A. ferrooxidans ATCC 23270 whole-genome oligonucleotide microarray.

    PubMed

    Luo, Hailang; Shen, Li; Yin, Huaqun; Li, Qian; Chen, Qijiong; Luo, Yanjie; Liao, Liqin; Qiu, Guanzhou; Liu, Xueduan

    2009-05-01

    Acidithiobacillus ferrooxidans is an important microorganism used in biomining operations for metal recovery. Whole-genomic diversity analysis based on the oligonucleotide microarray was used to analyze the gene content of 12 strains of A. ferrooxidans purified from various mining areas in China. Among the 3100 open reading frames (ORFs) on the slides, 1235 ORFs were absent in at least 1 strain of bacteria and 1385 ORFs were conserved in all strains. The hybridization results showed that these strains were highly diverse from a genomic perspective. The hybridization results of 4 major functional gene categories, namely electron transport, carbon metabolism, extracellular polysaccharides, and detoxification, were analyzed. Based on the hybridization signals obtained, a phylogenetic tree was built to analyze the evolution of the 12 tested strains, which indicated that the geographic distribution was the main factor influencing the strain diversity of these strains. Based on the hybridization signals of genes associated with bioleaching, another phylogenetic tree showed an evolutionary relationship from which the co-relation between the clustering of specific genes and geochemistry could be observed. The results revealed that the main factor was geochemistry, among which the following 6 factors were the most important: pH, Mg, Cu, S, Fe, and Al. PMID:19483787

  4. Zinc bioleaching from an iron concentrate using Acidithiobacillus ferrooxidans strain from Hercules Mine of Coahuila, Mexico

    NASA Astrophysics Data System (ADS)

    Núñez-Ramírez, Diola Marina; Solís-Soto, Aquiles; López-Miranda, Javier; Pereyra-Alférez, Benito; Rutiaga-Quiñónes, Miriam; Medina-Torres, Luis; Medrano-Roldán, Hiram

    2011-10-01

    The iron concentrate from Hercules Mine of Coahuila, Mexico, which mainly contained pyrite and pyrrhotite, was treated by the bioleaching process using native strain Acidithiobacillus ferrooxidans ( A. ferrooxidans) to determine the ability of these bacteria on the leaching of zinc. The native bacteria were isolated from the iron concentrate of the mine. The bioleaching experiments were carried out in shake flasks to analyze the effects of pH values, pulp density, and the ferrous sulfate concentration on the bioleaching process. The results obtained by microbial kinetic analyses for the evaluation of some aspects of zinc leaching show that the native bacteria A. ferrooxidans, which is enriched with a 9K Silverman medium under the optimum conditions of pH 2.0, 20 g/L pulp density, and 40 g/L FeSO4, increases the zinc extraction considerably observed by monitoring during15 d, i.e., the zinc concentration has a decrease of about 95% in the iron concentrate.

  5. Metal resistance-related genes are differently expressed in response to copper and zinc ion in six Acidithiobacillus ferrooxidans strains.

    PubMed

    Wu, Xueling; Zhang, Zhenzhen; Liu, Lili; Deng, Fanfan; Liu, Xinxing; Qiu, Guanzhou

    2014-12-01

    Metal resistance of acidophilic bacteria is very significant during bioleaching of copper ores since high concentration of metal is harmful to the growth of microorganisms. The resistance levels of six Acidithiobacillus ferrooxidans strains to 0.15 M copper and 0.2 M zinc were investigated, and eight metal resistance-related genes (afe-0022, afe-0326, afe-0329, afe-1143, afe-0602, afe-0603, afe-0604, and afe-1788) were sequenced and analyzed. The transcriptional expression levels of eight possible metal tolerance genes in six A. ferrooxidans strains exposed to 0.15 M Cu(2+) and 0.2 M Zn(2+) were determined by real-time quantitative PCR (RT-qPCR), respectively. The copper resistance levels of six A. ferrooxidans strains declined followed by DY26, DX5, DY15, GD-B, GD-0, and YTW. The zinc tolerance levels of six A. ferrooxidans strains exposed to 0.2 M Zn(2+) from high to low were YTW > GD-B > DY26 > GD-0 > DX5 > DY15. Seven metal tolerance-related genes all presented in the genome of six strains, except afe-0604. The metal resistance-related genes showed different transcriptional expression patterns in six A. ferrooxidans strains. The expression of gene afe-0326 and afe-0022 in six A. ferrooxidans strains in response to 0.15 M Cu(2+) showed the same trend with the resistance levels. The expression levels of genes afe-0602, afe-0603, afe-0604, and afe-1788 in six strains response to 0.2 M Zn(2+) did not show a clear correlation between the zinc tolerance levels of six strains. According to the results of RT-qPCR and bioinformatics analysis, the proteins encoded by afe-0022, afe-0326, afe-0329, and afe-1143 were related to Cu(2+) transport of A. ferrooxidans strains. PMID:25023638

  6. [Physiological Properties of Acidithiobacillus ferrooxidans Strains Isolated from Sulfide Ore Deposits in Kazakhstan].

    PubMed

    Kanaeva, Z K; Bulaev, A G; Kanaev, A T; Kondrat'eva, T F

    2015-01-01

    Acidithiobacillus ferroxidans strains were isolated from acidophilic microbial communities of Kazakhstan sulfide ore deposits. Their biotechnologically important properties (optimal and maximal growth temperatures and resistance to NaCl) were determined. While temperature optima of the strains were the same (30-32 degrees C), temperature ranges were different. Thus, strain TFBK oxidized iron very poorly at 37 degrees C, while for strain TFV, the iron oxidation rate at this temperature was insignificantly lower than at lesser temperatures. NaCl inhibited the oxidative activity of both strains. Iron oxidation by strain TFV was inhibited at 5 g/L NaCl and was suppressed almost completely at 20 g/L. Iron oxidation by strain TFBK was inhibited by NaCl to a lesser degree, so that iron oxidation rate was relatively high at 10 g/L, while at 20 g/L NaCl the process was not suppressed completely, although the oxidation rate was low. Sulfur oxidation by these strains was less affected by NaCl than oxidation of ferrous iron. Sulfur oxidation by strain TFV was considerably inhibited only at 20 g/L NaCl, but was not suppressed completely. Sulfur oxidation by strain TFBK was more affected by NaCl. At 10 g/L NaCl the oxidation rate was much lower than at lower NaCl concentrations (sulfate concentrations after 6 days of oxidation at 5 and 10 g/L NaCl were -130 and -100 mM, respectively). While sulfur oxidation by strain TFBK was considerably inhibited at 10 and 20 g/L NaCl, similar to strain TFV it was not suppressed completely. Our results indicate the adaptation of the species A. ferrooxidans to a broad range of growth conditions. PMID:26263692

  7. Construction and Characterization of tetH Overexpression and Knockout Strains of Acidithiobacillus ferrooxidans

    PubMed Central

    Yu, Yangyang; Wang, Huiyan; Li, Xiuting; Lin, Jianqun

    2014-01-01

    Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms used for bioleaching. It can obtain energy from the oxidation of Fe2+, H2, S0, and various reduced inorganic sulfur compounds (RISCs). Tetrathionate is a key intermediate during RISC oxidation, hydrolyzed by tetrathionate hydrolase (TetH), and used as sole energy source. In this study, a tetH knockout (ΔtetH) mutant and a tetH overexpression strain were constructed and characterized. The tetH overexpression strain grew better on sulfur and tetrathionate and possessed a higher rate of tetrathionate utilization and TetH activity than the wild type. However, its cell yields on tetrathionate were much lower than those on sulfur. The ΔtetH mutant could not grow on tetrathionate but could proliferate on sulfur with a lower cell yield than the wild type's, which indicated that tetrathionate hydrolysis is mediated only by TetH, encoded by tetH. The ΔtetH mutant could survive in ferrous medium with an Fe2+ oxidation rate similar to that of the wild type. For the tetH overexpression strain, the rate was relatively higher than that of the wild type. The reverse transcription-quantitative PCR (qRT-PCR) results showed that tetH and doxD2 acted synergistically, and doxD2 was considered important in thiosulfate metabolism. Of the two sqr genes, AFE_0267 seemed to play as important a role in sulfide oxidation as AFE_1792. This study not only provides a substantial basis for studying the function of the tetH gene but also may serve as a model to clarify other candidate genes involved in sulfur oxidation in this organism. PMID:24727223

  8. Periplasmic Proteins of the Extremophile Acidithiobacillus ferrooxidans

    PubMed Central

    Chi, An; Valenzuela, Lissette; Beard, Simon; Mackey, Aaron J.; Shabanowitz, Jeffrey; Hunt, Donald F.; Jerez, Carlos A.

    2015-01-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction of A. ferrooxidans ATCC 23270 was performed by using high resolution linear ion trap-FT MS. We identified a total of 131 proteins in the periplasm of the microorganism grown in thiosulfate. When possible, functional categories were assigned to the proteins: 13.8% were transport and binding proteins, 14.6% were several kinds of cell envelope proteins, 10.8% were involved in energy metabolism, 10% were related to protein fate and folding, 10% were proteins with unknown functions, and 26.1% were proteins without homologues in databases. These last proteins are most likely characteristic of A. ferrooxidans and may have important roles yet to be assigned. The majority of the periplasmic proteins from A. ferrooxidans were very basic compared with those of neutrophilic microorganisms such as Escherichia coli, suggesting a special adaptation of the chemolithoautotrophic bacterium to its very acidic environment. The high throughput proteomics approach used here not only helps to understand the physiology of this extreme acidophile but also offers an important contribution to the functional annotation for the available genomes of biomining microorganisms such as A. ferrooxidans for which no efficient genetic systems are available to disrupt genes by procedures such as homologous recombination. PMID:17911085

  9. Draft genome sequence of Acidithiobacillus ferrooxidans YQH-1

    PubMed Central

    Yan, Lei; Zhang, Shuang; Wang, Weidong; Hu, Huixin; Wang, Yanjie; Yu, Gaobo; Chen, Peng

    2015-01-01

    Acidithiobacillus ferrooxidans YQH-1 is a moderate acidophilic bacterium isolated from a river in a volcano of Northeast China. Here, we describe the draft genome of strain YQH-1, which was assembled into 123 contigs containing 3,111,222 bp with a G + C content of 58.63%. A large number of genes related to carbon dioxide fixation, dinitrogen fixation, pH tolerance, heavy metal detoxification, and oxidative stress defense were detected. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LJBT00000000. PMID:26697394

  10. Draft genome sequence of Acidithiobacillus ferrooxidans YQH-1.

    PubMed

    Yan, Lei; Zhang, Shuang; Wang, Weidong; Hu, Huixin; Wang, Yanjie; Yu, Gaobo; Chen, Peng

    2015-12-01

    Acidithiobacillus ferrooxidans YQH-1 is a moderate acidophilic bacterium isolated from a river in a volcano of Northeast China. Here, we describe the draft genome of strain YQH-1, which was assembled into 123 contigs containing 3,111,222 bp with a G + C content of 58.63%. A large number of genes related to carbon dioxide fixation, dinitrogen fixation, pH tolerance, heavy metal detoxification, and oxidative stress defense were detected. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LJBT00000000. PMID:26697394

  11. Cytoplasmic membrane response to copper and nickel in Acidithiobacillus ferrooxidans.

    PubMed

    Mykytczuk, N C S; Trevors, J T; Ferroni, G D; Leduc, L G

    2011-03-20

    Metal tolerance has been found to vary among Acidithiobacillus ferrooxidans strains and this can impact the efficiency of biomining practices. To explain observed strain variability for differences in metal tolerance we examined the effects of Cu(2+) and Ni(2+) concentrations (1-200 mM) on cytoplasmic membrane properties of two A. ferrooxidans type strains (ATCC 23270 and 19859) and four strains isolated from AMD water around Sudbury, Ontario, Canada. Growth rate, membrane fluidity and phase, determined from the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), and fatty acid profiles indicated that three different modes of adaptation were present and could separate between strains showing moderate, or high metal tolerance from more sensitive strains. To compensate for the membrane ordering effects of the metals, significant remodelling of the membrane was used to either maintain homeoviscous adaptation in the moderately tolerant strains or to increase membrane fluidity in the sensitive strains. Shifts in the gel-to-liquid crystalline transition temperature in the moderately tolerant strains led to multiple phase transitions, increasing the potential for phase separation and compromised membrane integrity. The metal-tolerant strain however, was able to tolerate increases in membrane order without significant compensation via fatty acid composition. Our multivariate analyses show a common adaptive response which involves changes in the abundant 16:0 and 18:1 fatty acids. However, fatty acid composition and membrane properties showed no difference in response to either copper or nickel suggesting that adaptive response was non-specific and tolerance dependent. We demonstrate that strain variation can be evaluated using differences in membrane properties as intrinsic determinants of metal susceptibility. PMID:20630730

  12. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications

    PubMed Central

    Valdés, Jorge; Pedroso, Inti; Quatrini, Raquel; Dodson, Robert J; Tettelin, Herve; Blake, Robert; Eisen, Jonathan A; Holmes, David S

    2008-01-01

    Background Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms used for the industrial recovery of copper (bioleaching or biomining). It is a chemolithoautrophic, γ-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for growth. It thrives at extremely low pH (pH 1–2) and fixes both carbon and nitrogen from the atmosphere. It solubilizes copper and other metals from rocks and plays an important role in nutrient and metal biogeochemical cycling in acid environments. The lack of a well-developed system for genetic manipulation has prevented thorough exploration of its physiology. Also, confusion has been caused by prior metabolic models constructed based upon the examination of multiple, and sometimes distantly related, strains of the microorganism. Results The genome of the type strain A. ferrooxidans ATCC 23270 was sequenced and annotated to identify general features and provide a framework for in silico metabolic reconstruction. Earlier models of iron and sulfur oxidation, biofilm formation, quorum sensing, inorganic ion uptake, and amino acid metabolism are confirmed and extended. Initial models are presented for central carbon metabolism, anaerobic metabolism (including sulfur reduction, hydrogen metabolism and nitrogen fixation), stress responses, DNA repair, and metal and toxic compound fluxes. Conclusion Bioinformatics analysis provides a valuable platform for gene discovery and functional prediction that helps explain the activity of A. ferrooxidans in industrial bioleaching and its role as a primary producer in acidic environments. An analysis of the genome of the type strain provides a coherent view of its gene content and metabolic potential. PMID:19077236

  13. Weathering of phlogopite by Bacillus cereus and Acidithiobacillus ferrooxidans.

    PubMed

    Styriaková, Iveta; Bhatti, Tariq M; Bigham, Jerry M; Styriak, Igor; Vuorinen, Antti; Tuovinen, Olli H

    2004-03-01

    The purpose of this study was to assess the weathering of finely ground phlogopite, a trioctahedral mica, by placing it in contact with heterotrophic (Bacillus cereus) and acidophilic (Acidithiobacillus ferrooxidans) cultures. X-ray diffraction analyses of the phlogopite sample before and after 24 weeks of contact in B. cereus cultures revealed a decrease in the characteristic peak intensities of phlogopite, indicating destruction of individual structural planes of the mica. No new solid phase products or interlayer structures were detected in B. cereus cultures. Acidithiobacillus ferrooxidans cultures enhanced the chemical dissolution of the mineral and formed partially weathered interlayer structures, where interlayer K was expelled and coupled with the precipitation of K-jarosite [KFe3(SO4)2(OH)6]. PMID:15105888

  14. Global transcriptional responses of Acidithiobacillus ferrooxidans Wenelen under different sulfide minerals.

    PubMed

    Latorre, Mauricio; Ehrenfeld, Nicole; Cortés, María Paz; Travisany, Dante; Budinich, Marko; Aravena, Andrés; González, Mauricio; Bobadilla-Fazzini, Roberto A; Parada, Pilar; Maass, Alejandro

    2016-01-01

    In order to provide new information about the adaptation of Acidithiobacillus ferrooxidans during the bioleaching process, the current analysis presents the first report of the global transcriptional response of the native copper mine strain Wenelen (DSM 16786) oxidized under different sulfide minerals. Microarrays were used to measure the response of At. ferrooxidans Wenelen to shifts from iron supplemented liquid cultures (reference state) to the addition of solid substrates enriched in pyrite or chalcopyrite. Genes encoding for energy metabolism showed a similar transcriptional profile for the two sulfide minerals. Interestingly, four operons related to sulfur metabolism were over-expressed during growth on a reduced sulfur source. Genes associated with metal tolerance (RND and ATPases type P) were up-regulated in the presence of pyrite or chalcopyrite. These results suggest that At. ferrooxidans Wenelen presents an efficient transcriptional system developed to respond to environmental conditions, namely the ability to withstand high copper concentrations. PMID:26476161

  15. Draft genome sequence of extremely acidophilic bacterium Acidithiobacillus ferrooxidans DLC-5 isolated from acid mine drainage in Northeast China.

    PubMed

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Xu, Ruixiang; Li, Suyue; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2015-12-01

    Acidithiobacillus ferrooxidans type strain DLC-5, isolated from Wudalianchi in Heihe of Heilongjiang Province, China. Here, we present the draft genome of strain DLC-5 which contains 4,232,149 bp in 2745 contigs with 57.628% GC content and includes 32,719 protein-coding genes and 64 tRNA-encoding genes. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. JNNH00000000.1. PMID:26697393

  16. Draft genome sequence of extremely acidophilic bacterium Acidithiobacillus ferrooxidans DLC-5 isolated from acid mine drainage in Northeast China

    PubMed Central

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Xu, Ruixiang; Li, Suyue; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2015-01-01

    Acidithiobacillus ferrooxidans type strain DLC-5, isolated from Wudalianchi in Heihe of Heilongjiang Province, China. Here, we present the draft genome of strain DLC-5 which contains 4,232,149 bp in 2745 contigs with 57.628% GC content and includes 32,719 protein-coding genes and 64 tRNA-encoding genes. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. JNNH00000000.1. PMID:26697393

  17. Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage.

    PubMed

    Duquesne, K; Lebrun, S; Casiot, C; Bruneel, O; Personné, J-C; Leblanc, M; Elbaz-Poulichet, F; Morin, G; Bonnefoy, V

    2003-10-01

    Weathering of the As-rich pyrite-rich tailings of the abandoned mining site of Carnoulès (southeastern France) results in the formation of acid waters heavily loaded with arsenic. Dissolved arsenic present in the seepage waters precipitates within a few meters from the bottom of the tailing dam in the presence of microorganisms. An Acidithiobacillus ferrooxidans strain, referred to as CC1, was isolated from the effluents. This strain was able to remove arsenic from a defined synthetic medium only when grown on ferrous iron. This A. ferrooxidans strain did not oxidize arsenite to arsenate directly or indirectly. Strain CC1 precipitated arsenic unexpectedly as arsenite but not arsenate, with ferric iron produced by its energy metabolism. Furthermore, arsenite was almost not found adsorbed on jarosite but associated with a poorly ordered schwertmannite. Arsenate is known to efficiently precipitate with ferric iron and sulfate in the form of more or less ordered schwertmannite, depending on the sulfur-to-arsenic ratio. Our data demonstrate that the coprecipitation of arsenite with schwertmannite also appears as a potential mechanism of arsenite removal in heavily contaminated acid waters. The removal of arsenite by coprecipitation with ferric iron appears to be a common property of the A. ferrooxidans species, as such a feature was observed with one private and three collection strains, one of which was the type strain. PMID:14532077

  18. Immobilization of Arsenite and Ferric Iron by Acidithiobacillus ferrooxidans and Its Relevance to Acid Mine Drainage

    PubMed Central

    Duquesne, K.; Lebrun, S.; Casiot, C.; Bruneel, O.; Personné, J.-C.; Leblanc, M.; Elbaz-Poulichet, F.; Morin, G.; Bonnefoy, V.

    2003-01-01

    Weathering of the As-rich pyrite-rich tailings of the abandoned mining site of Carnoulès (southeastern France) results in the formation of acid waters heavily loaded with arsenic. Dissolved arsenic present in the seepage waters precipitates within a few meters from the bottom of the tailing dam in the presence of microorganisms. An Acidithiobacillus ferrooxidans strain, referred to as CC1, was isolated from the effluents. This strain was able to remove arsenic from a defined synthetic medium only when grown on ferrous iron. This A. ferrooxidans strain did not oxidize arsenite to arsenate directly or indirectly. Strain CC1 precipitated arsenic unexpectedly as arsenite but not arsenate, with ferric iron produced by its energy metabolism. Furthermore, arsenite was almost not found adsorbed on jarosite but associated with a poorly ordered schwertmannite. Arsenate is known to efficiently precipitate with ferric iron and sulfate in the form of more or less ordered schwertmannite, depending on the sulfur-to-arsenic ratio. Our data demonstrate that the coprecipitation of arsenite with schwertmannite also appears as a potential mechanism of arsenite removal in heavily contaminated acid waters. The removal of arsenite by coprecipitation with ferric iron appears to be a common property of the A. ferrooxidans species, as such a feature was observed with one private and three collection strains, one of which was the type strain. PMID:14532077

  19. Synergy between Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the Bioleaching Process of Copper.

    PubMed

    Zheng, Xuecheng; Li, Dongwei

    2016-01-01

    This study investigates the synergy of Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the bioleaching process of copper. The results showed that additional R. phaseoli could increase leaching rate and cell number of A. ferrooxidans. When the initial cell number ratio between A. ferrooxidans and R. phaseoli was 2 : 1, A. ferrooxidans attained the highest final cell number of approximately 2 × 10(8) cells/mL and the highest copper leaching rate of 29%, which is 7% higher than that in the group with A. ferrooxidans only. R. phaseoli may use metabolized polysaccharides from A. ferrooxidans, and organic acids could chelate or precipitate harmful heavy metals to reduce their damage on A. ferrooxidans and promote its growth. Organic acids could also damage the mineral lattice to increase the leaching effect. PMID:26942203

  20. Synergy between Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the Bioleaching Process of Copper

    PubMed Central

    Zheng, Xuecheng; Li, Dongwei

    2016-01-01

    This study investigates the synergy of Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the bioleaching process of copper. The results showed that additional R. phaseoli could increase leaching rate and cell number of A. ferrooxidans. When the initial cell number ratio between A. ferrooxidans and R. phaseoli was 2 : 1, A. ferrooxidans attained the highest final cell number of approximately 2 × 108 cells/mL and the highest copper leaching rate of 29%, which is 7% higher than that in the group with A. ferrooxidans only. R. phaseoli may use metabolized polysaccharides from A. ferrooxidans, and organic acids could chelate or precipitate harmful heavy metals to reduce their damage on A. ferrooxidans and promote its growth. Organic acids could also damage the mineral lattice to increase the leaching effect. PMID:26942203

  1. A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage.

    PubMed

    Orellana, Luis H; Jerez, Carlos A

    2011-11-01

    There is great interest in understanding how extremophilic biomining bacteria adapt to exceptionally high copper concentrations in their environment. Acidithiobacillus ferrooxidans ATCC 53993 genome possesses the same copper resistance determinants as strain ATCC 23270. However, the former strain contains in its genome a 160-kb genomic island (GI), which is absent in ATCC 23270. This GI contains, amongst other genes, several genes coding for an additional putative copper ATPase and a Cus system. A. ferrooxidans ATCC 53993 showed a much higher resistance to CuSO(4) (>100 mM) than that of strain ATCC 23270 (<25 mM). When a similar number of bacteria from each strain were mixed and allowed to grow in the absence of copper, their respective final numbers remained approximately equal. However, in the presence of copper, there was a clear overgrowth of strain ATCC 53993 compared to ATCC 23270. This behavior is most likely explained by the presence of the additional copper-resistance genes in the GI of strain ATCC 53993. As determined by qRT-PCR, it was demonstrated that these genes are upregulated when A. ferrooxidans ATCC 53993 is grown in the presence of copper and were shown to be functional when expressed in copper-sensitive Escherichia coli mutants. Thus, the reason for resistance to copper of two strains of the same acidophilic microorganism could be determined by slight differences in their genomes, which may not only lead to changes in their capacities to adapt to their environment, but may also help to select the more fit microorganisms for industrial biomining operations. PMID:21789491

  2. Bioleaching of two different types of chalcopyrite by Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Dong, Ying-bo; Lin, Hai; Fu, Kai-bin; Xu, Xiao-fang; Zhou, Shan-shan

    2013-02-01

    Two different types of chalcopyrite (pyritic chalcopyrite and porphyry chalcopyrite) were bioleached with Acidithiobacillus ferrooxidans ATF6. The bioleaching of the pyritic chalcopyrite and porphyry chalcopyrite is quite different. The copper extraction reaches 46.96% for the pyritic chalcopyrite after 48-d leaching, but it is only 14.50% for the porphyry chalcopyrite. Proper amounts of initial ferrous ions can improve the efficiency of copper extraction for the two different types of chalcopyrite. The optimum dosage of ferrous ions for the pyritic chalcopyrite and porphyry chalcopyrite is different. The adsorption of ATF6 on the pyritic chalcopyrite and porphyry chalcopyrite was also studied in this paper. It is found that ATF6 is selectively adsorbed by the two different types of chalcopyrite; the higher adsorption onto the pyritic chalcopyrite than the porphyry chalcopyrite leads to the higher copper dissolution rate of the pyritic chalcopyrite. In addition, the zeta-potential of chalcopyrite before and after bioleaching further confirms that ATF6 is more easily adsorbed onto the pyritic chalcopyrite.

  3. Development of a markerless gene replacement system for Acidithiobacillus ferrooxidans and construction of a pfkB mutant.

    PubMed

    Wang, Huiyan; Liu, Xiangmei; Liu, Shuangshuang; Yu, Yangyang; Lin, Jianqun; Lin, Jianqiang; Pang, Xin; Zhao, Jian

    2012-03-01

    The extremely acidophilic, chemolithoautotrophic Acidithiobacillus ferrooxidans is an important bioleaching bacterium of great value in the metallurgical industry and environmental protection. In this report, a mutagenesis system based on the homing endonuclease I-SceI was developed to produce targeted, unmarked gene deletions in the strain A. ferrooxidans ATCC 23270. A targeted phosphofructokinase (PFK) gene (pfkB) mutant of A. ferrooxidans ATCC 23270 was constructed by homologous recombination and identified by PCR with specific primers as well as Southern blot analysis. This potential pfkB gene (AFE_1807) was also characterized by expression in PFK-deficient Escherichia coli cells, and heteroexpression of the PFKB protein demonstrated that it had functional PFK activity, though it was significantly lower (about 800-fold) than that of phosphofructokinase-2 (PFK-B) expressed by the pfkB gene from E. coli K-12. The function of the potential PFKB protein in A. ferrooxidans was demonstrated by comparing the properties of the pfkB mutant with those of the wild type. The pfkB mutant strain displayed a relatively reduced growth capacity in S(0) medium (0.5% [wt/vol] elemental sulfur in 9K basal salts solution adjusted to pH 3.0 with H(2)SO(4)), but the mutation did not completely prevent A. ferrooxidans from assimilating exogenous glucose. The transcriptional analysis of some related genes in central carbohydrate metabolism in the wild-type and mutant strains with or without supplementation of glucose was carried out by quantitative reverse transcription-PCR. This report suggests that the markerless mutagenesis strategy could serve as a model for functional studies of other genes of interest from A. ferrooxidans and multiple mutations could be made in a single A. ferrooxidans strain. PMID:22210219

  4. Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans

    PubMed Central

    2009-01-01

    Background Acidithiobacillus ferrooxidans gains energy from the oxidation of ferrous iron and various reduced inorganic sulfur compounds at very acidic pH. Although an initial model for the electron pathways involved in iron oxidation has been developed, much less is known about the sulfur oxidation in this microorganism. In addition, what has been reported for both iron and sulfur oxidation has been derived from different A. ferrooxidans strains, some of which have not been phylogenetically characterized and some have been shown to be mixed cultures. It is necessary to provide models of iron and sulfur oxidation pathways within one strain of A. ferrooxidans in order to comprehend the full metabolic potential of the pangenome of the genus. Results Bioinformatic-based metabolic reconstruction supported by microarray transcript profiling and quantitative RT-PCR analysis predicts the involvement of a number of novel genes involved in iron and sulfur oxidation in A. ferrooxidans ATCC23270. These include for iron oxidation: cup (copper oxidase-like), ctaABT (heme biogenesis and insertion), nuoI and nuoK (NADH complex subunits), sdrA1 (a NADH complex accessory protein) and atpB and atpE (ATP synthetase F0 subunits). The following new genes are predicted to be involved in reduced inorganic sulfur compounds oxidation: a gene cluster (rhd, tusA, dsrE, hdrC, hdrB, hdrA, orf2, hdrC, hdrB) encoding three sulfurtransferases and a heterodisulfide reductase complex, sat potentially encoding an ATP sulfurylase and sdrA2 (an accessory NADH complex subunit). Two different regulatory components are predicted to be involved in the regulation of alternate electron transfer pathways: 1) a gene cluster (ctaRUS) that contains a predicted iron responsive regulator of the Rrf2 family that is hypothesized to regulate cytochrome aa3 oxidase biogenesis and 2) a two component sensor-regulator of the RegB-RegA family that may respond to the redox state of the quinone pool. Conclusion

  5. Toxin-Antitoxin Systems in the Mobile Genome of Acidithiobacillus ferrooxidans

    PubMed Central

    Bustamante, Paula; Tello, Mario; Orellana, Omar

    2014-01-01

    Toxin-antitoxin (TA) systems are genetic modules composed of a pair of genes encoding a stable toxin and an unstable antitoxin that inhibits toxin activity. They are widespread among plasmids and chromosomes of bacteria and archaea. TA systems are known to be involved in the stabilization of plasmids but there is no consensus about the function of chromosomal TA systems. To shed light on the role of chromosomally encoded TA systems we analyzed the distribution and functionality of type II TA systems in the chromosome of two strains from Acidithiobacillus ferrooxidans (ATCC 23270 and 53993), a Gram-negative, acidophilic, environmental bacterium that participates in the bioleaching of minerals. As in other environmental microorganisms, A. ferrooxidans has a high content of TA systems (28-29) and in twenty of them the toxin is a putative ribonuclease. According to the genetic context, some of these systems are encoded near or within mobile genetic elements. Although most TA systems are shared by both strains, four of them, which are encoded in the active mobile element ICEAfe1, are exclusive to the type strain ATCC 23270. We demostrated that two TA systems from ICEAfe1 are functional in E. coli cells, since the toxins inhibit growth and the antitoxins counteract the effect of their cognate toxins. All the toxins from ICEAfe1, including a novel toxin, are RNases with different ion requirements. The data indicate that some of the chromosomally encoded TA systems are actually part of the A. ferrooxidans mobile genome and we propose that could be involved in the maintenance of these integrated mobile genetic elements. PMID:25384039

  6. Cr and Ni recovery during bioleaching of dewatered metal-plating sludge using Acidithiobacillus ferrooxidans.

    PubMed

    Rastegar, S O; Mousavi, S M; Shojaosadati, S A

    2014-09-01

    This study determined the optimal conditions required to attain maximum metal recovery in the bioleaching process of dewatered metal-plating sludge using Acidithiobacillus ferrooxidans (A. ferrooxidans). Adaptation of this strain was carried up to 1% (w/v) of the sample. Three factors including initial pH, initial Fe(3+) concentration and pulp density were selected as the effective factors and were optimized using a central composite design of response surface methodology. An initial pH of 1, pulp density of 9 g/l and initial Fe(3+) concentration of 1g/l were determined to be optimum values by the statistical models. The highest extractions for Cr and Ni under optimal conditions were 55.6% and 58.2%, respectively. Bioleaching kinetics was investigated using a modified shrinking core model to better understand the mechanism of the leaching reaction. The model predictions indicate that the diffusion step controlled the overall dissolution kinetics and is the rate controlling step. PMID:24971945

  7. Growth of the acidophilic iron-sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions

    NASA Astrophysics Data System (ADS)

    Bauermeister, Anja; Rettberg, Petra; Flemming, Hans-Curt

    2014-08-01

    The question of life on Mars has been in focus of astrobiological research for several decades, and recent missions in orbit or on the surface of the planet are constantly expanding our knowledge on Martian geochemistry. For example, massive stratified deposits have been identified on Mars containing sulfate minerals and iron oxides, which suggest the existence of acidic aqueous conditions in the past, similar to acidic iron- and sulfur-rich environments on Earth. Acidophilic organisms thriving in such habitats could have been an integral part of a possibly widely extinct Martian ecosystem, but remains might possibly even exist today in protected subsurface niches. The chemolithoautotrophic strain Acidithiobacillus ferrooxidans was selected as a model organism to study the metabolic capacities of acidophilic iron-sulfur bacteria, especially regarding their ability to grow with in situ resources that could be expected on Mars. The experiments were not designed to accurately simulate Martian physical conditions (except when certain single parameters such as oxygen partial pressure were considered), but rather the geochemical environment that can be found on Mars. A. ferrooxidans could grow solely on the minerals contained in synthetic Mars regolith mixtures with no added nutrients, using either O2 as an external electron acceptor for iron oxidation, or H2 as an external electron donor for iron reduction, and thus might play important roles in the redox cycling of iron on Mars. Though the oxygen partial pressure of the Martian atmosphere at the surface was not sufficient for detectable iron oxidation and growth of A. ferrooxidans during short-term incubation (7 days), alternative chemical O2-generating processes in the subsurface might yield microhabitats enriched in oxygen, which principally are possible under such conditions. The bacteria might also contribute to the reductive dissolution of Fe3+-containing minerals like goethite and hematite, which are

  8. Are there multiple mechanisms of anaerobic sulfur oxidation with ferric iron in Acidithiobacillus ferrooxidans?

    PubMed

    Kucera, Jiri; Pakostova, Eva; Lochman, Jan; Janiczek, Oldrich; Mandl, Martin

    2016-06-01

    To clarify the pathway of anaerobic sulfur oxidation coupled with dissimilatory ferric iron reduction in Acidithiobacillus ferrooxidans strain CCM 4253 cells, we monitored their energy metabolism gene transcript profiles. Several genes encoding electron transporters involved in aerobic iron and sulfur respiration were induced during anaerobic growth of ferrous iron-grown cells. Most sulfur metabolism genes were either expressed at the basal level or their expression declined. However, transcript levels of genes assumed to be responsible for processing of elemental sulfur and other sulfur intermediates were elevated at the beginning of the growth period. In contrast, genes with predicted functions in formation of hydrogen sulfide and sulfate were significantly repressed. The main proposed mechanism involves: outer membrane protein Cyc2 (assumed to function as a terminal ferric iron reductase); periplasmic electron shuttle rusticyanin; c4-type cytochrome CycA1; the inner membrane cytochrome bc1 complex I; and the quinone pool providing connection to the sulfur metabolism machinery, consisting of heterodisulfide reductase, thiosulfate:quinone oxidoreductase and tetrathionate hydrolase. However, an alternative mechanism seems to involve a high potential iron-sulfur protein Hip, c4-type cytochrome CycA2 and inner membrane cytochrome bc1 complex II. Our results conflict with findings regarding the type strain, indicating strain- or phenotype-dependent pathway variation. PMID:26924114

  9. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling

    SciTech Connect

    R. Quatrini; C. Appia-Ayme; Y. Denis; J. Ratouchniak; F. Veloso; J. Valdes; C. Lefimil; S. Silver; F. Roberto; O. Orellana; F. Denizot; E. Jedlicki; D. Holmes; V. Bonnefoy

    2006-09-01

    Acidithiobacillus ferrooxidans is a well known acidophilic, chemolithoautotrophic, Gram negative, bacterium involved in bioleaching and acid mine drainage. In aerobic conditions, it gains energy mainly from the oxidation of ferrous iron and/or reduced sulfur compounds present in ores. After initial oxidation of the substrate, electrons from ferrous iron or sulfur enter respiratory chains and are transported through several redox proteins to oxygen. However, the oxidation of ferrous iron and reduced sulfur compounds has also to provide electrons for the reduction of NAD(P) that is subsequently required for many metabolic processes including CO2 fixation. To help to unravel the enzymatic pathways and the electron transfer chains involved in these processes, a genome-wide microarray transcript profiling analysis was carried out. Oligonucleotides corresponding to approximately 3000 genes of the A. ferrooxidans type strain ATCC23270 were spotted onto glass-slides and hybridized with cDNA retrotranscribed from RNA extracted from ferrous iron and sulfur grown cells. The genes which are preferentially transcribed in ferrous iron conditions and those preferentially transcribed in sulfur conditions were analyzed. The expression of a substantial number of these genes has been validated by real-time PCR, Northern blot hybridization and/or immunodetection analysis. Our results support and extend certain models of iron and sulfur oxidation and highlight previous observations regarding the possible presence of alternate electron pathways. Our findings also suggest ways in which iron and sulfur oxidation may be co-ordinately regulated. An accompanying paper (Appia-Ayme et al.) describes results pertaining to other metabolic functions.

  10. Cloning, expression and bioinformatics analysis of ATP sulfurylase from Acidithiobacillus ferrooxidans ATCC 23270 in Escherichia coli

    PubMed Central

    Jaramillo, Michael L; Abanto, Michel; Quispe, Ruth L; Calderón, Julio; del Valle, Luís J; Talledo, Miguel; Ramírez, Pablo

    2012-01-01

    Molecular studies of enzymes involved in sulfite oxidation in Acidithiobacillus ferrooxidans have not yet been developed, especially in the ATP sulfurylase (ATPS) of these acidophilus tiobacilli that have importance in biomining. This enzyme synthesizes ATP and sulfate from adenosine phosphosulfate (APS) and pyrophosphate (PPi), final stage of the sulfite oxidation by these organisms in order to obtain energy. The atpS gene (1674 bp) encoding the ATPS from Acidithiobacillus ferrooxidans ATCC 23270 was amplified using PCR, cloned in the pET101-TOPO plasmid, sequenced and expressed in Escherichia coli obtaining a 63.5 kDa ATPS recombinant protein according to SDS-PAGE analysis. The bioinformatics and phylogenetic analyses determined that the ATPS from A. ferrooxidans presents ATP sulfurylase (ATS) and APS kinase (ASK) domains similar to ATPS of Aquifex aeolicus, probably of a more ancestral origin. Enzyme activity towards ATP formation was determined by quantification of ATP formed from E. coli cell extracts, using a bioluminescence assay based on light emission by the luciferase enzyme. Our results demonstrate that the recombinant ATP sulfurylase from A. ferrooxidans presents an enzymatic activity for the formation of ATP and sulfate, and possibly is a bifunctional enzyme due to its high homology to the ASK domain from A. aeolicus and true kinases. PMID:23055613

  11. Cloning, expression and bioinformatics analysis of ATP sulfurylase from Acidithiobacillus ferrooxidans ATCC 23270 in Escherichia coli.

    PubMed

    Jaramillo, Michael L; Abanto, Michel; Quispe, Ruth L; Calderón, Julio; Del Valle, Luís J; Talledo, Miguel; Ramírez, Pablo

    2012-01-01

    Molecular studies of enzymes involved in sulfite oxidation in Acidithiobacillus ferrooxidans have not yet been developed, especially in the ATP sulfurylase (ATPS) of these acidophilus tiobacilli that have importance in biomining. This enzyme synthesizes ATP and sulfate from adenosine phosphosulfate (APS) and pyrophosphate (PPi), final stage of the sulfite oxidation by these organisms in order to obtain energy. The atpS gene (1674 bp) encoding the ATPS from Acidithiobacillus ferrooxidans ATCC 23270 was amplified using PCR, cloned in the pET101-TOPO plasmid, sequenced and expressed in Escherichia coli obtaining a 63.5 kDa ATPS recombinant protein according to SDS-PAGE analysis. The bioinformatics and phylogenetic analyses determined that the ATPS from A. ferrooxidans presents ATP sulfurylase (ATS) and APS kinase (ASK) domains similar to ATPS of Aquifex aeolicus, probably of a more ancestral origin. Enzyme activity towards ATP formation was determined by quantification of ATP formed from E. coli cell extracts, using a bioluminescence assay based on light emission by the luciferase enzyme. Our results demonstrate that the recombinant ATP sulfurylase from A. ferrooxidans presents an enzymatic activity for the formation of ATP and sulfate, and possibly is a bifunctional enzyme due to its high homology to the ASK domain from A. aeolicus and true kinases. PMID:23055613

  12. Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans.

    PubMed

    Zhu, Jianyu; Wang, Qianfen; Zhou, Shuang; Li, Qian; Gan, Min; Jiang, Hao; Qin, Wenqing; Liu, Xueduan; Hu, Yuehua; Qiu, Guanzhou

    2015-02-01

    This paper presents a study on the relation between bacterial adhesion force and bioleaching rate of chalcopyrite, which sheds light on the influence of interfacial interaction on bioleaching behavior. In our research, Acidithiobacillus ferrooxidans (A. ferrooxidans) were adapted to grow with FeSO4 · 7H2O, element sulfur or chalcopyrite. Then, surface properties of Acidithiobacillus ferrooxidans and chalcopyrite were analyzed by contact angle, zeta potential and Fourier transform infrared spectroscopy (FTIR). Adhesion force between bacteria and chalcopyrite was measured by atomic force microscopy (AFM). Attachment and bioleaching behaviors were also monitored. The results showed that A. ferrooxidans adapted with chalcopyrite exhibited the strongest adhesion force to chalcopyrite and the highest bioleaching rate. Culture adapted with sulfur bacteria took second place and FeSO4 · 7H2O-adapted bacteria were the lowest. Bioleaching rate and bacterial attachment capacity were positively related to bacterial adhesion force, which is affected by the nature of energy source. According to this work, the attachment of bacteria to chalcopyrite surface is one of the most important aspects that influence the bioleaching process of chalcopyrite. PMID:25511439

  13. Improved dewatering of CEPT sludge by biogenic flocculant from Acidithiobacillus ferrooxidans.

    PubMed

    Wong, Jonathan W C; Murugesan, Kumarasamy; Yu, Shuk Man; Kurade, Mayur B; Selvam, Ammaiyappan

    2016-01-01

    Bioleaching using an iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, and its biogenic flocculants was evaluated to improve the dewaterability of chemically enhanced primary treatment (CEPT) sewage sludge. CEPT sludge in flasks was inoculated with A. ferrooxidans culture, medium-free cells and the cell-free culture filtrate with and without the energy substance Fe(2+), and periodically the sludge samples were analysed for the dewaterability. This investigation proves that bioleaching effectively improved the sludge dewaterability as evidenced from drastic reduction in capillary suction time (≤20 seconds) and specific resistance to filtration (≥90%); however, it requires an adaptability period of 1-2 days. On the other hand, the biogenic flocculant produced by A. ferrooxidans greatly decreased the time-to-filtration and facilitated the dewaterability within 4 h. Results indicate that rapid dewatering of CEPT sludge by biogenic flocculants provides an opportunity to replace the synthetic organic polymer for dewatering. PMID:26901727

  14. Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect.

    PubMed

    Yang, Yuankun; Chen, Shu; Li, Shicheng; Chen, Mengjun; Chen, Haiyan; Liu, Bijun

    2014-03-10

    In this paper, H(+) consumption and metal recovery, during the process of bioleaching waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans (A. ferrooxidans), were discussed in detail. When the WPCBs concentration was 15g/L, Cu (96.8%), Zn (83.8%), and Al (75.4%) were recovered after 72h by A. ferrooxidans. Experimental results indicated that metal recovery rate was significantly influenced by acid. Based on experimental results, the kinetics of the H(+) consumption and metal recovery on bioleaching WPCBs were represented by reaction kinetic equations. The kinetic of H(+) consumption could be described by the second-order kinetic model. The metal recovery belongs to the second-order model with adding acid, which was changed to the shrinking core model with precipitate production. PMID:24445171

  15. Heat and phosphate starvation effects on the proteome, morphology and chemical composition of the biomining bacteria Acidithiobacillus ferrooxidans.

    PubMed

    Ribeiro, Daniela A; Maretto, Danilo A; Nogueira, Fábio C S; Silva, Márcio J; Campos, Francisco A P; Domont, Gilberto B; Poppi, Ronei J; Ottoboni, Laura M M

    2011-06-01

    Acidithiobacillus ferrooxidans is a Gram negative, acidophilic, chemolithoautotrophic bacterium that plays an important role in metal bioleaching. During bioleaching, the cells are subjected to changes in the growth temperature and nutrients starvation. The aim of this study was to gather information about the response of the A.ferrooxidans Brazilian strain LR to K2HPO4 starvation and heat stress through investigation of cellular morphology, chemical composition and differential proteome. The scanning electron microscopic results showed that under the tested stress conditions, A. ferrooxidans cells became elongated while the Fourier transform infrared spectroscopy (FT-IR) analysis showed alterations in the wavenumbers between 850 and 1,275 cm(-1), which are related to carbohydrates, phospholipids and phosphoproteins. These findings indicate that the bacterial cell surface is affected by the tested stress conditions. A proteomic analysis, using 2-DE and tandem mass spectrometry, enabled the identification of 44 differentially expressed protein spots, being 30 due to heat stress (40°C) and 14 due to K2HPO4 starvation. The identified proteins belonged to 11 different functional categories, including protein fate, energy metabolism and cellular processes. The upregulated proteins were mainly from protein fate and energy metabolism categories. The obtained results provide evidences that A. ferrooxidans LR responds to heat stress and K2HPO4 starvation by inducing alterations in cellular morphology and chemical composition of the cell surface. Also, the identification of several proteins involved in protein fate suggests that the bacteria cellular homesostasis was affected. In addition, the identification of proteins from different functional categories indicates that the A. ferrooxidans response to higher than optimal temperatures and phosphate starvation involves global changes in its physiology. PMID:25187146

  16. ICE Afe 1, an actively excising genetic element from the biomining bacterium Acidithiobacillus ferrooxidans.

    PubMed

    Bustamante, Paula; Covarrubias, Paulo C; Levicán, Gloria; Katz, Assaf; Tapia, Pablo; Holmes, David; Quatrini, Raquel; Orellana, Omar

    2012-01-01

    Integrative conjugative elements (ICEs) are self-transferred mobile genetic elements that contribute to horizontal gene transfer. An ICE (ICEAfe1) was identified in the genome of Acidithiobacillus ferrooxidans ATCC 23270. Excision of the element and expression of relevant genes under normal and DNA-damaging growth conditions was analyzed. Bioinformatic tools and DNA amplification methods were used to identify and to assess the excision and expression of genes related to the mobility of the element. Both basal and mitomycin C-inducible excision as well as expression and induction of the genes for integration/excision are demonstrated, suggesting that ICEAfe1 is an actively excising SOS-regulated mobile genetic element. The presence of a complete set of genes encoding self-transfer functions that are induced in response to DNA damage caused by mitomycin C additionally suggests that this element is capable of conjugative transfer to suitable recipient strains. Transfer of ICEAfe1 may provide selective advantages to other acidophiles in this ecological niche through dissemination of gene clusters expressing transfer RNAs, CRISPRs, and exopolysaccharide biosynthesis enzymes, probably by modification of translation efficiency, resistance to bacteriophage infection and biofilm formation, respectively. These data open novel avenues of research on conjugative transformation of biotechnologically relevant microorganisms recalcitrant to genetic manipulation. PMID:23486178

  17. Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper.

    PubMed

    Navarro, Claudio A; Orellana, Luis H; Mauriaca, Cecilia; Jerez, Carlos A

    2009-10-01

    The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high copper (Cu) concentrations. This property is important for its use in biomining processes, where Cu and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of at least 10 genes that are possibly related to Cu homeostasis. Among them are three genes coding for putative ATPases related to the transport of Cu (A. ferrooxidans copA1 [copA1(Af)], copA2(Af), and copB(Af)), three genes related to a system of the resistance nodulation cell division family involved in the extraction of Cu from the cell (cusA(Af), cusB(Af), and cusC(Af)), and two genes coding for periplasmic chaperones for this metal (cusF(Af) and copC(Af)). The expression of most of these open reading frames was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cu. The putative A. ferrooxidans Cu resistance determinants were found to be upregulated when this bacterium was exposed to Cu in the range of 5 to 25 mM. These A. ferrooxidans genes conferred to Escherichia coli a greater Cu resistance than wild-type cells, supporting their functionality. The results reported here and previously published data strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cu may be due to part or all of the following key elements: (i) a wide repertoire of Cu resistance determinants, (ii) the duplication of some of these Cu resistance determinants, (iii) the existence of novel Cu chaperones, and (iv) a polyP-based Cu resistance system. PMID:19666734

  18. Bioflotation of sulfide minerals with Acidithiobacillus ferrooxidans in relation to copper activation and surface oxidation.

    PubMed

    Pecina-Treviño, E T; Ramos-Escobedo, G T; Gallegos-Acevedo, P M; López-Saucedo, F J; Orrantia-Borunda, E

    2012-08-24

    Surface oxidation of sulfides and copper (Cu) activation are 2 of the main processes that determine the efficiency of flotation. The present study was developed with the intention to ascertain the role of the phenomena in the biomodification of sulfides by Acidithiobacillus ferrooxidans culture (cells and growth media) and their impact in bioflotation. Surface characteristics of chalcopyrite, sphalerite, and pyrrhotite, alone and in mixtures, after interaction with A. ferrooxidans were evaluated. Chalcopyrite floatability was increased substantially by biomodification, while bacteria depressed pyrrhotite floatability, favoring separation. The results showed that elemental sulfur concentration increased because of the oxidation generated by bacterial cells, the effect is intensified by the Fe(III) left in the culture and by galvanic contact. Acidithiobacillus ferrooxidans culture affects the Cu activation of sphalerite. The implications of elemental sulfur concentration and Cu activation of sphalerite are key factors that must be considered for the future development of sulfide bioflotation processes, since the depressive effect of cells could be counteracted by elemental sulfur generation. PMID:22920540

  19. Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production.

    PubMed

    Kernan, Timothy; Majumdar, Sudipta; Li, Xiaozheng; Guan, Jingyang; West, Alan C; Banta, Scott

    2016-01-01

    There is growing interest in developing non-photosynthetic routes for the conversion of CO2 to fuels and chemicals. One underexplored approach is the transfer of energy to the metabolism of genetically modified chemolithoautotrophic bacteria. Acidithiobacillus ferrooxidans is an obligate chemolithoautotroph that derives its metabolic energy from the oxidation of iron or sulfur at low pH. Two heterologous biosynthetic pathways have been expressed in A. ferrooxidans to produce either isobutyric acid or heptadecane from CO2 and the oxidation of Fe(2+). A sevenfold improvement in productivity of isobutyric acid was obtained through improved media formulations in batch cultures. Steady-state efficiencies were lower in continuous cultures, likely due to ferric inhibition. If coupled to solar panels, the photon-to-fuel efficiency of this proof-of-principle process approaches estimates for agriculture-derived biofuels. These efforts lay the foundation for the utilization of this organism in the exploitation of electrical energy for biochemical synthesis. PMID:26174759

  20. Comparative proteomics of Acidithiobacillus ferrooxidans grown in the presence and absence of uranium.

    PubMed

    Dekker, Linda; Arsène-Ploetze, Florence; Santini, Joanne M

    2016-04-01

    Acidithiobacillus ferrooxidans is an acidophile that thrives in metal-contaminated environments and tolerates high levels of uranium. To gain a better understanding of the processes involved in U(VI) resistance, comparative proteomics was used. The proteome of A. ferrooxidans was grown in the presence and absence of 0.5 mM U(VI); expression of 17 proteins was upregulated and one was downregulated. Most proteins with increased expression are part of the general stress response or are involved in reactive oxygen species detoxification. Four novel proteins showed increased expression in the presence of U(VI) and may contribute to U(VI) resistance via thiol homoeostasis and U(VI) binding. PMID:26829305

  1. Use of Walnut Shell Powder to Inhibit Expression of Fe(2+)-Oxidizing Genes of Acidithiobacillus Ferrooxidans.

    PubMed

    Li, Yuhui; Liu, Yehao; Tan, Huifang; Zhang, Yifeng; Yue, Mei

    2016-01-01

    Acidithiobacillus ferrooxidans is a Gram-negative bacterium that obtains energy by oxidizing Fe(2+) or reduced sulfur compounds. This bacterium contributes to the formation of acid mine drainage (AMD). This study determined whether walnut shell powder inhibits the growth of A. ferrooxidans. First, the effects of walnut shell powder on Fe(2+) oxidization and H⁺ production were evaluated. Second, the chemical constituents of walnut shell were isolated to determine the active ingredient(s). Third, the expression of Fe(2+)-oxidizing genes and rus operon genes was investigated using real-time polymerase chain reaction. Finally, growth curves were plotted, and a bioleaching experiment was performed to confirm the active ingredient(s) in walnut shells. The results indicated that both walnut shell powder and the phenolic fraction exert high inhibitory effects on Fe(2+) oxidation and H⁺ production by A. ferrooxidans cultured in standard 9K medium. The phenolic components exert their inhibitory effects by down-regulating the expression of Fe(2+)-oxidizing genes and rus operon genes, which significantly decreased the growth of A. ferrooxidans. This study revealed walnut shell powder to be a promising substance for controlling AMD. PMID:27144574

  2. Use of Walnut Shell Powder to Inhibit Expression of Fe2+-Oxidizing Genes of Acidithiobacillus Ferrooxidans

    PubMed Central

    Li, Yuhui; Liu, Yehao; Tan, Huifang; Zhang, Yifeng; Yue, Mei

    2016-01-01

    Acidithiobacillus ferrooxidans is a Gram-negative bacterium that obtains energy by oxidizing Fe2+ or reduced sulfur compounds. This bacterium contributes to the formation of acid mine drainage (AMD). This study determined whether walnut shell powder inhibits the growth of A. ferrooxidans. First, the effects of walnut shell powder on Fe2+ oxidization and H+ production were evaluated. Second, the chemical constituents of walnut shell were isolated to determine the active ingredient(s). Third, the expression of Fe2+-oxidizing genes and rus operon genes was investigated using real-time polymerase chain reaction. Finally, growth curves were plotted, and a bioleaching experiment was performed to confirm the active ingredient(s) in walnut shells. The results indicated that both walnut shell powder and the phenolic fraction exert high inhibitory effects on Fe2+ oxidation and H+ production by A. ferrooxidans cultured in standard 9K medium. The phenolic components exert their inhibitory effects by down-regulating the expression of Fe2+-oxidizing genes and rus operon genes, which significantly decreased the growth of A. ferrooxidans. This study revealed walnut shell powder to be a promising substance for controlling AMD. PMID:27144574

  3. Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans: a high throughput proteomics analysis.

    PubMed

    Chi, An; Valenzuela, Lissette; Beard, Simon; Mackey, Aaron J; Shabanowitz, Jeffrey; Hunt, Donald F; Jerez, Carlos A

    2007-12-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction of A. ferrooxidans ATCC 23270 was performed by using high resolution linear ion trap-FT MS. We identified a total of 131 proteins in the periplasm of the microorganism grown in thiosulfate. When possible, functional categories were assigned to the proteins: 13.8% were transport and binding proteins, 14.6% were several kinds of cell envelope proteins, 10.8% were involved in energy metabolism, 10% were related to protein fate and folding, 10% were proteins with unknown functions, and 26.1% were proteins without homologues in databases. These last proteins are most likely characteristic of A. ferrooxidans and may have important roles yet to be assigned. The majority of the periplasmic proteins from A. ferrooxidans were very basic compared with those of neutrophilic microorganisms such as Escherichia coli, suggesting a special adaptation of the chemolithoautotrophic bacterium to its very acidic environment. The high throughput proteomics approach used here not only helps to understand the physiology of this extreme acidophile but also offers an important contribution to the functional annotation for the available genomes of biomining microorganisms such as A. ferrooxidans for which no efficient genetic systems are available to disrupt genes by procedures such as homologous recombination. PMID:17911085

  4. [Dependence of the genotypic characteristics of Acidithiobacillus ferrooxidans on the physical, chemical, and electrophysical properties of pyrites].

    PubMed

    Tupikina, O V; Kondrat'eva, T F; Samorukova, V D; Rassulov, V A; Karavaĭko, G I

    2005-01-01

    Comparison of Acidithiobacillus ferrooxidans strains TFV-1 and TFBk with respect to their capacity to oxidize pyrite 1, with hole-type (p-type) conductivity, or pyrite 2, with an electron-type (n-type) conductivity, showed that, at a pulp density of 1%, both before and after its adaptation to the pyrites, strain TFBk, isolated from a substrate with a more complex mineral composition, grew faster and oxidized the pyrites of both conductivity types more efficiently than strain TFV-1, which was isolated from a mineralogically simple ore. At a pulp density of 3-5%, the oxidation of pyrite 1 by strain TFV-1 and both of the pyrites by strain TFBk began only after an artificial increase in Eh to 600 mV. If the pulp density was increased gradually, strain TFBk could oxidize the pyrites at its higher values than strain TFV-1, with the rate of pyrite 2 oxidation being higher than that of pyrite 1. During chemical oxidation of both of the pyrites, an increase was observed in the absolute values of the coefficients of thermoelectromotive force (KTEMF); during bacterial-chemical oxidation, the KTEMF of pyrite 1 changed insignificantly, whereas the KTEMF of pyrite 2 decreased. PMID:16315977

  5. Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    PubMed Central

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464

  6. Microarray and bioinformatic analyses suggest models for carbon metabolism in the autotroph Acidithiobacillus ferrooxidans

    SciTech Connect

    C. Appia-ayme; R. Quatrini; Y. Denis; F. Denizot; S. Silver; F. Roberto; F. Veloso; J. Valdes; J. P. Cardenas; M. Esparza; O. Orellana; E. Jedlicki; V. Bonnefoy; D. Holmes

    2006-09-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic bacterium that uses iron or sulfur as an energy and electron source. Bioinformatic analysis was used to identify putative genes and potential metabolic pathways involved in CO2 fixation, 2P-glycolate detoxification, carboxysome formation and glycogen utilization in At. ferrooxidans. Microarray transcript profiling was carried out to compare the relative expression of the predicted genes of these pathways when the microorganism was grown in the presence of iron versus sulfur. Several gene expression patterns were confirmed by real-time PCR. Genes for each of the above predicted pathways were found to be organized into discrete clusters. Clusters exhibited differential gene expression depending on the presence of iron or sulfur in the medium. Concordance of gene expression within each cluster, suggested that they are operons Most notably, clusters of genes predicted to be involved in CO2 fixation, carboxysome formation, 2P-glycolate detoxification and glycogen biosynthesis were up-regulated in sulfur medium, whereas genes involved in glycogen utilization were preferentially expressed in iron medium. These results can be explained in terms of models of gene regulation that suggest how A. ferrooxidans can adjust its central carbon management to respond to changing environmental conditions.

  7. Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans

    PubMed Central

    Banderas, Alvaro; Guiliani, Nicolas

    2013-01-01

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process. PMID:23959118

  8. Response to copper of Acidithiobacillus ferrooxidans ATCC 23270 grown in elemental sulfur.

    PubMed

    Almárcegui, Rodrigo J; Navarro, Claudio A; Paradela, Alberto; Albar, Juan Pablo; von Bernath, Diego; Jerez, Carlos A

    2014-11-01

    The response of Acidithiobacillus ferrooxidans ATCC 23270 to copper was analyzed in sulfur-grown cells by using quantitative proteomics. Forty-seven proteins showed altered levels in cells grown in the presence of 50 mM copper sulfate. Of these proteins, 24 were up-regulated and 23 down-regulated. As seen before in ferrous iron-grown cells, there was a notorious up-regulation of RND-type Cus systems and different RND-type efflux pumps, indicating that these proteins are very important in copper resistance. Copper also triggered the down-regulation of the major outer membrane porin of A. ferrooxidans in sulfur-grown bacteria, suggesting they respond to the metal by decreasing the influx of cations into the cell. On the contrary, copper in sulfur-grown cells caused an overexpression of putative TadA and TadB proteins known to be essential for biofilm formation in bacteria. Surprisingly, sulfur-grown microorganisms showed increased levels of proteins related with energy generation (rus and petII operons) in the presence of copper. Although rus operon is overexpressed mainly in cells grown in ferrous iron, the up-regulation of rusticyanin in sulfur indicates a possible role for this protein in copper resistance as well. Finally, copper response in A. ferrooxidans appears to be influenced by the substrate being oxidized by the microorganism. PMID:25041950

  9. Bioinformatic prediction of gene functions regulated by quorum sensing in the bioleaching bacterium Acidithiobacillus ferrooxidans.

    PubMed

    Banderas, Alvaro; Guiliani, Nicolas

    2013-01-01

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process. PMID:23959118

  10. Differential gene expression in Acidithiobacillus ferrooxidans LR planktonic and attached cells in the presence of chalcopyrite.

    PubMed

    Ossa Henao, Diana Marcela; Vicentini, Renato; Rodrigues, Viviane Drumond; Bevilaqua, Denise; Ottoboni, Laura Maria Mariscal

    2014-07-01

    Acidithiobacillus ferrooxidans is commonly used in bioleaching operations to recover copper from sulfide ores. It is commonly accepted that A. ferrooxidans attaches to mineral surfaces by means of extracellular polymeric substances (EPS), however the role of type IV pili and tight adherence genes in this process is poorly understood. Genes related to the formation of type IV pili and tight adherence were identified in the genome of the bacterium, and in this work, we show that A. ferrooxidans actively expresses these genes, as demonstrated by quantitative real-time PCR analysis using cells incubated with chalcopyrite for 2 h. Significant differences in gene expression were observed between planktonic and adhered cells, with the level of expression being much greater in planktonic cells. These results might indicate that planktonic cells can actively adhere to the substrate. A bioinformatics analysis of interaction networks of the tight adherence and type IV pilus assembly genes revealed a strong relationship between conjugation systems (tra operon) and regulatory systems (PilR, PilS). PMID:24523248

  11. [Dependence of the genotypic characteristics of Acidithiobacillus ferrooxidans on the physical, chemical, and electrophysical properties of pyrites].

    PubMed

    Tupikina, O V; Kondrat'eva, T F; Karavaĭko, G I

    2005-01-01

    This study focused on the effect of physical, chemical, and electrophysical properties of two pyrites, pyrite 1, which had hole-type (p-type) conductivity, and pyrite 2, with electron-type (n-type) conductivity, on the genotypic characteristics of Acidithiobacillus ferrooxidans strains TFV-1 and TFBk, which were isolated from different substrates. After the adaptation of the strains to the pyrites at a pulp density of 1%, pulsed-field electrophoresis revealed changes in the chromosomal DNA of strain TFV-1 adapted to pyrite 1 and strain TFBk adapted to either of the pyrite types. In pyrite-adapted strain TFBk, the plasmid composition was the same as after growth on a medium containing ferrous iron, whereas, in strain TFV-1, changes in plasmid sizes or both in plasmid sizes and plasmid number occurred. After an increase in the density of the pyrite 2 pulp from 1 to 10%, the plasmid number increased from three to four, and, after an increase in the density of the pyrite 1 pulp from 1 to 7%, the plasmid number increased from two to six. PMID:16315978

  12. New copper resistance determinants in the extremophile acidithiobacillus ferrooxidans: a quantitative proteomic analysis.

    PubMed

    Almárcegui, Rodrigo J; Navarro, Claudio A; Paradela, Alberto; Albar, Juan Pablo; von Bernath, Diego; Jerez, Carlos A

    2014-02-01

    Acidithiobacillus ferrooxidans is an extremophilic bacterium used in biomining processes to recover metals. The presence in A. ferrooxidans ATCC 23270 of canonical copper resistance determinants does not entirely explain the extremely high copper concentrations this microorganism is able to stand, suggesting the existence of other efficient copper resistance mechanisms. New possible copper resistance determinants were searched by using 2D-PAGE, real time PCR (qRT-PCR) and quantitative proteomics with isotope-coded protein labeling (ICPL). A total of 594 proteins were identified of which 120 had altered levels in cells grown in the presence of copper. Of this group of proteins, 76 were up-regulated and 44 down-regulated. The up-regulation of RND-type Cus systems and different RND-type efflux pumps was observed in response to copper, suggesting that these proteins may be involved in copper resistance. An overexpression of most of the genes involved in histidine synthesis and several of those annotated as encoding for cysteine production was observed in the presence of copper, suggesting a possible direct role for these metal-binding amino acids in detoxification. Furthermore, the up-regulation of putative periplasmic disulfide isomerases was also seen in the presence of copper, suggesting that they restore copper-damaged disulfide bonds to allow cell survival. Finally, the down-regulation of the major outer membrane porin and some ionic transporters was seen in A. ferrooxidans grown in the presence of copper, indicating a general decrease in the influx of the metal and other cations into the cell. Thus, A. ferrooxidans most likely uses additional copper resistance strategies in which cell envelope proteins are key components. This knowledge will not only help to understand the mechanism of copper resistance in this extreme acidophile but may help also to select the best fit members of the biomining community to attain more efficient industrial metal leaching

  13. Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans.

    PubMed

    Quatrini, Raquel; Jedlicki, Eugenia; Holmes, David S

    2005-12-01

    Commercial bioleaching of copper and the biooxidation of gold is a cost-effective and environmentally friendly process for metal recovery. A partial genome sequence of the acidophilic, bioleaching bacterium Acidithiobacillus ferrooxidans is available from two public sources. This information has been used to build preliminary models that describe how this microorganism confronts unusually high iron loads in the extremely acidic conditions (pH 2) found in natural environments and in bioleaching operations. A. ferrooxidans contains candidate genes for iron uptake, sensing, storage, and regulation of iron homeostasis. Predicted proteins exhibit significant amino acid similarity with known proteins from neutrophilic organisms, including conservation of functional motifs, permitting their identification by bioinformatics tools and allowing the recognition of common themes in iron transport across distantly related species. However, significant differences in amino acid sequence were detected in pertinent domains that suggest ways in which the periplasmic and outer membrane proteins of A. ferrooxidans maintain structural integrity and relevant protein-protein contacts at low pH. Unexpectedly, the microorganism also contains candidate genes, organized in operon-like structures that potentially encode at least 11 siderophore systems for the uptake of Fe(III), although it does not exhibit genes that could encode the biosynthesis of the siderophores themselves. The presence of multiple Fe(III) uptake systems suggests that A. ferrooxidans can inhabit aerobic environments where iron is scarce and where siderophore producers are present. It may also help to explain why it cannot tolerate high Fe(III) concentrations in bioleaching operations where it is out-competed by Leptospirillum species. PMID:15895264

  14. Purification and characterization of sulfide:quinone oxidoreductase from an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans.

    PubMed

    Wakai, Satoshi; Tsujita, Mizuho; Kikumoto, Mei; Manchur, Mohammed A; Kanao, Tadayoshi; Kamimura, Kazuo

    2007-11-01

    Sulfide:quinone oxidoreductase (SQR) was purified from membrane of acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans NASF-1 cells grown on sulfur medium. It was composed of a single polypeptide with an apparent molecular mass of 47 kDa. The apparent K(m) values for sulfide and ubiquinone were 42 and 14 muM respectively. The apparent optimum pH for the SQR activity was about 7.0. A gene encoding a putative SQR of A. ferrooxidans NASF-1 was cloned and sequenced. The gene was expressed in Escherichia coli as a thioredoxin-fusion protein in inclusion bodies in an inactive form. A polyclonal antibody prepared against the recombinant protein reacted immunologically with the purified SQR. Western blotting analysis using the antibody revealed an increased level of SQR synthesis in sulfur-grown A. ferrooxidans NASF-1 cells, implying the involvement of SQR in elemental sulfur oxidation in sulfur-grown A. ferrooxidans NASF-1 cells. PMID:17986789

  15. Sludge conditioning using biogenic flocculant produced by Acidithiobacillus ferrooxidans for enhancement in dewaterability.

    PubMed

    Kurade, Mayur B; Murugesan, Kumarasamy; Selvam, Ammaiyappan; Yu, Shuk-Man; Wong, Jonathan W C

    2016-10-01

    Biogenic flocculant produced by Acidithiobacillus ferrooxidans was used for sludge conditioning to improve the dewaterability of anaerobically-digested sludge, and its efficiency was compared with commercial cationic polyacrylamide (PAM). Biogenic flocculant rapidly reduced the pH and increased the oxidation-reduction potential of sludge. Capillary suction time (CST) and specific resistant to filtration (SRF) of sludge was decreased by 74% and 89%, respectively, compared with control; and the reductions were 58% CST and 67% SRF higher when compared with commercial polymer. Biogenic treatment improved the sludge calorific value by 13%, and also reduced the unpleasant odor. The small-scale mechanical filter press study showed that the biogenic flocculant can reduce the moisture content of sludge to 70%, and improve the clarity of the filtrate in terms of removal of total suspended solids and total dissolved solids when compared with synthetic polymer treatment. PMID:27020124

  16. Study of Acidithiobacillus ferrooxidans and enzymatic bio-Fenton process-mediated corrosion of copper-nickel alloy.

    PubMed

    Jadhav, U; Hocheng, H

    2016-10-01

    This study presents the corrosion behavior of the copper-nickel (Cu-Ni) alloy in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans) and glucose oxidase (GOx) enzyme. In both the cases ferric ions played an important role in weight loss and thereby to carry out the corrosion of the Cu-Ni alloy. A corrosion rate of 0.6 (±0.008), 2.11 (±0.05), 3.69 (±0.26), 0.7 (±0.006) and 0.08 (±0.002) mm/year was obtained in 72 h using 9K medium with ferrous sulfate, A. ferrooxidans culture supernatant, A. ferrooxidans cells, GOx enzyme and hydrogen peroxide (H2O2) solution respectively. The scanning electron microscopy (SEM) micrographs showed that a variable extent of corrosion was caused by 9K medium with ferrous sulfate, GOx and A. ferrooxidans cells. An arithmetic average surface roughness (Ra) of 174.78 nm was observed for the control work-piece using optical profilometer. The change in Ra was observed with the treatment of the Cu-Ni alloy using various systems. The Ra for 9K medium with ferrous sulfate, GOx and A. ferrooxidans cells was 374.54, 607.32 and 799.48 nm, respectively, after 24 h. These results suggest that A. ferrooxidans cells were responsible for more corrosion of the Cu-Ni alloy than other systems used. PMID:26930447

  17. Impact of bioavailable Pb2+ on Fe2+ oxidation in the presence of a mixed culture of Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Wang, H.; Yang, X.; Gong, L.; Jiang, Z.

    2009-12-01

    Numerous investigations were conducted on the effects of a variety of metals, including As, Cu, Zn, Cr on the growth of Acidithiobacillus ferrooxidans (an iron oxidizer and indigenous to acidic environment) and Fe2+ oxidation. However, less work was reported concerning the Pb2+ effect due to its quick precipitation as anglesite in SO42--rich solutions. The reported inhibiting concentrations of Pb2+ varied greatly on the oxidizing rate of ferrous in the presence of A. ferrooxidans, and the reasons remain unclear. Comparative studies were conducted between chemical and microbial oxidation of ferrous by a mixed culture of A. ferrooxidans in the presence of different concentration of Pb2+. Eh, pH and Fe2+ concentration were monitored periodically and the final precipitates were analyzed by X-ray diffraction (XRD), scanning electronic microscopy (SEM), and SEM-EDAX (Energy-dispersive X-ray spectroscopy). To check the impact of bioavailable Pb2+ on Fe2+ oxidation, initial precipitation was removed before the microbial inoculation. Our data showed that Pb2+ will exert a remarkable inhibition on microbial oxidation of ferrous when initial Pb2+ concentration reached as high as 5 g/L. However, the bioavailable Pb2+ in this case should be much lower than 5 g/L in the solution due to the precipitation of anglesite (The absolute concentration was under analysis). The threshold of Pb2+ concentrations to inhibit the microbial oxidation varies among the previous studies. This might result from the different microbial strains used or the mistaking of initial concentration as the substantial concentration of bioavailable Pb2+ after precipitation as anglesite. In contrast, Pb2+ does not show any obvious influence on chemical oxidation of ferrous. XRD spectrum of the final precipitates showed that anglesite was the only solid phase detected in chemical systems, while pure jarosite was found in the microbial systems. No lead was detected in jarosite by SEM-EDAX, inferring that Pb was

  18. Optimization of magnetosome production by Acidithiobacillus ferrooxidans using desirability function approach.

    PubMed

    Yan, Lei; Zhang, Shuang; Liu, Hetao; Wang, Weidong; Chen, Peng; Li, Hongyu

    2016-02-01

    Present study aimed to resolve the conflict between cell growth and magnetosome formation of Acidithiobacillus ferrooxidans (A. ferrooxidans) in batch experiments by applying response surface methodology (RSM) integrated a desirability function approach. The effects of several operating parameters on cell growth (OD600) and magnetosome production (Cmag) were evaluated. The maximum overall desirability (D) of 0.923 was achieved at iron concentration of 125.07mM, shake speed of 122.37rpm and nitrogen concentration of 2.40g/L. Correspondingly, the OD600 and Cmag were 0.522 and 1.196, respectively. The confirmation experiment confirmed that the optimum OD600 and Cmag obtained were in good agreement with the predicted values. The inductively coupled plasma atomic emission spectrometer (ICP-AES) and transmission electron microscopy (TEM) analyses revealed that the production of magnetosomes could be improved via optimization. X-ray diffraction (XRD) showed the magnetosomes are magnetite. Results indicated that RSM with a desirability function was a useful technique to get the maximum OD600 and Cmag simultaneously. PMID:26652427

  19. Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans.

    PubMed

    Chen, Shu; Yang, Yuankun; Liu, Congqiang; Dong, Faqin; Liu, Bijun

    2015-12-01

    Application of bioleaching process for metal recovery from electronic waste has received an increasing attention in recent years. In this work, a column bioleaching of copper from waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans has been investigated. After column bioleaching for 28d, the copper recovery reached at 94.8% from the starting materials contained 24.8% copper. Additionally, the concentration of Fe(3+) concentration varied significantly during bioleaching, which inevitably will influence the Cu oxidation, thus bioleaching process. Thus the variation in Fe(3+) concentration should be taken into consideration in the conventional kinetic models of bioleaching process. Experimental results show that the rate of copper dissolution is controlled by external diffusion rather than internal one because of the iron hydrolysis and formation of jarosite precipitates at the surface of the material. The kinetics of column bioleaching WPCBs remains unchanged because the size and morphology of precipitates are unaffected by maintaining the pH of solution at 2.25 level. In bioleaching process, the formation of jarosite precipitate can be prevented by adding dilute sulfuric acid and maintaining an acidic condition of the leaching medium. In such way, the Fe(2)(+)-Fe(3+) cycle process can kept going and create a favorable condition for Cu bioleaching. Our experimental results show that column Cu bioleaching from WPCBs by A. ferrooxidans is promising. PMID:26196406

  20. Characterization of iron-sulfur cluster assembly protein IscA from Acidithiobacillus ferrooxidans.

    PubMed

    Qian, Lin; Zheng, Chunli; Liu, Jianshe

    2013-03-01

    IscA is a key member of the iron-sulfur cluster assembly machinery found in bacteria and eukaryotes, but the mechanism of its function in the biogenesis of iron-sulfur cluster remains elusive. In this paper, we demonstrate that Acidithiobacillus ferrooxidans IscA is a [4Fe-4S] cluster binding protein, and it can bind iron in the presence of DTT with an apparent iron association constant of 4·10(20) M(-1). The iron binding in IscA can be promoted by oxygen through oxidizing ferrous iron to ferric iron. Furthermore, we show that the iron bound form of IscA can be converted to iron-sulfur cluster bound form in the presence of IscS and L-cysteine in vitro. Substitution of the invariant cysteine residues Cys35, Cys99, or Cys101 in IscA abolishes the iron binding activity of the protein; the IscA mutants that fail to bind iron are unable to assemble the iron-sulfur clusters. Further studies indicate that the iron-loaded IscA could act as an iron donor for the assembly of iron-sulfur clusters in the scaffold protein IscU in vitro. Taken together, these findings suggest that A. ferrooxidans IscA is not only an iron-sulfur protein, but also an iron binding protein that can act as an iron donor for biogenesis of iron-sulfur clusters. PMID:23586717

  1. Anaerobic Sulfur Metabolism Coupled to Dissimilatory Iron Reduction in the Extremophile Acidithiobacillus ferrooxidans

    PubMed Central

    Osorio, Héctor; Mangold, Stefanie; Denis, Yann; Ñancucheo, Ivan; Esparza, Mario; Johnson, D. Barrie; Bonnefoy, Violaine; Dopson, Mark

    2013-01-01

    Gene transcription (microarrays) and protein levels (proteomics) were compared in cultures of the acidophilic chemolithotroph Acidithiobacillus ferrooxidans grown on elemental sulfur as the electron donor under aerobic and anaerobic conditions, using either molecular oxygen or ferric iron as the electron acceptor, respectively. No evidence supporting the role of either tetrathionate hydrolase or arsenic reductase in mediating the transfer of electrons to ferric iron (as suggested by previous studies) was obtained. In addition, no novel ferric iron reductase was identified. However, data suggested that sulfur was disproportionated under anaerobic conditions, forming hydrogen sulfide via sulfur reductase and sulfate via heterodisulfide reductase and ATP sulfurylase. Supporting physiological evidence for H2S production came from the observation that soluble Cu2+ included in anaerobically incubated cultures was precipitated (seemingly as CuS). Since H2S reduces ferric iron to ferrous in acidic medium, its production under anaerobic conditions indicates that anaerobic iron reduction is mediated, at least in part, by an indirect mechanism. Evidence was obtained for an alternative model implicating the transfer of electrons from S0 to Fe3+ via a respiratory chain that includes a bc1 complex and a cytochrome c. Central carbon pathways were upregulated under aerobic conditions, correlating with higher growth rates, while many Calvin-Benson-Bassham cycle components were upregulated during anaerobic growth, probably as a result of more limited access to carbon dioxide. These results are important for understanding the role of A. ferrooxidans in environmental biogeochemical metal cycling and in industrial bioleaching operations. PMID:23354702

  2. Tetrathionate-Forming Thiosulfate Dehydrogenase from the Acidophilic, Chemolithoautotrophic Bacterium Acidithiobacillus ferrooxidans

    PubMed Central

    Kikumoto, Mei; Nogami, Shohei; Kanao, Tadayoshi; Takada, Jun

    2013-01-01

    Thiosulfate dehydrogenase is known to play a significant role in thiosulfate oxidation in the acidophilic, obligately chemolithoautotroph, Acidithiobacillus ferrooxidans. Enzyme activity measured using ferricyanide as the electron acceptor was detected in cell extracts of A. ferrooxidans ATCC 23270 grown on tetrathionate or sulfur, but no activity was detected in ferrous iron-grown cells. The enzyme was enriched 63-fold from cell extracts of tetrathionate-grown cells. Maximum enzyme activity (13.8 U mg−1) was observed at pH 2.5 and 70°C. The end product of the enzyme reaction was tetrathionate. The enzyme reduced neither ubiquinone nor horse heart cytochrome c, which serves as an electron acceptor. A major protein with a molecular mass of ∼25 kDa was detected in the partially purified preparation. Heme was not detected in the preparation, according to the results of spectroscopic analysis and heme staining. The open reading frame of AFE_0042 was identified by BLAST by using the N-terminal amino acid sequence of the protein. The gene was found within a region that was previously noted for sulfur metabolism-related gene clustering. The recombinant protein produced in Escherichia coli had a molecular mass of ∼25 kDa and showed thiosulfate dehydrogenase activity, with maximum enzyme activity (6.5 U mg−1) observed at pH 2.5 and 50°C. PMID:23064330

  3. Immobilization of Acidithiobacillus ferrooxidans on Cotton Gauze for the Bioleaching of Waste Printed Circuit Boards.

    PubMed

    Nie, Hongyan; Zhu, Nengwu; Cao, Yanlan; Xu, Zhiguo; Wu, Pingxiao

    2015-10-01

    The bioleaching parameters of metal concentrates from waste printed circuit boards by Acidithiobacillus ferrooxidans immobilized on cotton gauze in a two-step reactor were investigated in this study. The results indicated that an average ferrous iron oxidation rate of 0.54 g/(L·h) and a ferrous iron oxidation ratio of 96.90 % were obtained after 12 h at aeration rate of 1 L/min in bio-oxidation reactor. After 96 h, the highest leaching efficiency of copper reached 91.68 % under the conditions of the content of the metal powder 12 g/L, the retention time 6 h, and the aeration rate 1 L/min. The bioleaching efficiency of copper could be above 91.12 % under repeated continuous batch operation. Meanwhile, 95.32 % of zinc, 90.32 % of magnesium, 86.31 % of aluminum, and 59.07 % of nickel were extracted after 96 h. All the findings suggested that the recovery of metal concentrates from waste printed circuit boards via immobilization of A. ferrooxidans on cotton gauze was feasible. PMID:26239442

  4. Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis

    PubMed Central

    Valdés, Jorge; Veloso, Felipe; Jedlicki, Eugenia; Holmes, David

    2003-01-01

    Background Acidithiobacillus ferrooxidans is a gamma-proteobacterium that lives at pH2 and obtains energy by the oxidation of sulfur and iron. It is used in the biomining industry for the recovery of metals and is one of the causative agents of acid mine drainage. Effective tools for the study of its genetics and physiology are not in widespread use and, despite considerable effort, an understanding of its unusual physiology remains at a rudimentary level. Nearly complete genome sequences of A. ferrooxidans are available from two public sources and we have exploited this information to reconstruct aspects of its sulfur metabolism. Results Two candidate mechanisms for sulfate uptake from the environment were detected but both belong to large paralogous families of membrane transporters and their identification remains tentative. Prospective genes, pathways and regulatory mechanisms were identified that are likely to be involved in the assimilation of sulfate into cysteine and in the formation of Fe-S centers. Genes and regulatory networks were also uncovered that may link sulfur assimilation with nitrogen fixation, hydrogen utilization and sulfur reduction. Potential pathways were identified for sulfation of extracellular metabolites that may possibly be involved in cellular attachment to pyrite, sulfur and other solid substrates. Conclusions A bioinformatic analysis of the genome sequence of A. ferrooxidans has revealed candidate genes, metabolic process and control mechanisms potentially involved in aspects of sulfur metabolism. Metabolic modeling provides an important preliminary step in understanding the unusual physiology of this extremophile especially given the severe difficulties involved in its genetic manipulation and biochemical analysis. PMID:14675496

  5. Significance of Oxygen Supply in Jarosite Biosynthesis Promoted by Acidithiobacillus ferrooxidans

    PubMed Central

    Liang, Jianru; Zhou, Lixiang

    2015-01-01

    Jarosite [(Na+, K+, NH4+, H3O+)Fe3(SO4)2(OH)6] is an efficient scavenger for trace metals in Fe- and SO42--rich acidic water. During the biosynthesis of jarosite promoted by Acidithiobacillus ferrooxidans, the continuous supply of high oxygen levels is a common practice that results in high costs. To evaluate the function of oxygen in jarosite production by A. ferrooxidans, three groups of batch experiments with different oxygen supply levels (i.e., loading volume percentages of FeSO4 solution of 20%, 40%, and 70% v/v in the flasks), as well as three groups of sealed flask experiments with different limiting oxygen supply conditions (i.e., the solutions were not sealed at the initial stage of the ferrous oxidation reaction by paraffin but were rather sealed at the end of the ferrous oxidation reaction at 48 h), were tested. The formed Fe-precipitates were characterized via X-ray powder diffraction and scanning electron microscope-energy dispersive spectral analysis. The results showed that the biosynthesis of jarosite by A. ferrooxidans LX5 could be achieved at a wide range of solution loading volume percentages. The rate and efficiency of the jarosite biosynthesis were poorly correlated with the concentration of dissolved oxygen in the reaction solution. Similar jarosite precipitates, expressed as KFe3 (SO4) 2(OH)6 with Fe/S molar ratios between 1.61 and 1.68, were uniformly formed in unsealed and 48 h sealed flasks. These experimental results suggested that the supply of O2 was only essential in the period of the oxidation of ferrous iron to ferric but was not required in the period of ferric precipitation. PMID:25807372

  6. Cytoplasmic CopZ-Like Protein and Periplasmic Rusticyanin and AcoP Proteins as Possible Copper Resistance Determinants in Acidithiobacillus ferrooxidans ATCC 23270

    PubMed Central

    Navarro, Claudio A.; von Bernath, Diego; Martínez-Bussenius, Cristóbal; Castillo, Rodrigo A.

    2015-01-01

    Acidophilic organisms, such as Acidithiobacillus ferrooxidans, possess high-level resistance to copper and other metals. A. ferrooxidans contains canonical copper resistance determinants present in other bacteria, such as CopA ATPases and RND efflux pumps, but these components do not entirely explain its high metal tolerance. The aim of this study was to find other possible copper resistance determinants in this bacterium. Transcriptional expression of A. ferrooxidans genes coding for a cytoplasmic CopZ-like copper-binding chaperone and the periplasmic copper-binding proteins rusticyanin and AcoP, which form part of an iron-oxidizing supercomplex, was found to increase when the microorganism was grown in the presence of copper. All of these proteins conferred more resistance to copper when expressed heterologously in a copper-sensitive Escherichia coli strain. This effect was absent when site-directed-mutation mutants of these proteins with altered copper-binding sites were used in this metal sensitivity assay. These results strongly suggest that the three copper-binding proteins analyzed here are copper resistance determinants in this extremophile and contribute to the high-level metal resistance of this industrially important biomining bacterium. PMID:26637599

  7. Cytoplasmic CopZ-Like Protein and Periplasmic Rusticyanin and AcoP Proteins as Possible Copper Resistance Determinants in Acidithiobacillus ferrooxidans ATCC 23270.

    PubMed

    Navarro, Claudio A; von Bernath, Diego; Martínez-Bussenius, Cristóbal; Castillo, Rodrigo A; Jerez, Carlos A

    2016-02-01

    Acidophilic organisms, such as Acidithiobacillus ferrooxidans, possess high-level resistance to copper and other metals. A. ferrooxidans contains canonical copper resistance determinants present in other bacteria, such as CopA ATPases and RND efflux pumps, but these components do not entirely explain its high metal tolerance. The aim of this study was to find other possible copper resistance determinants in this bacterium. Transcriptional expression of A. ferrooxidans genes coding for a cytoplasmic CopZ-like copper-binding chaperone and the periplasmic copper-binding proteins rusticyanin and AcoP, which form part of an iron-oxidizing supercomplex, was found to increase when the microorganism was grown in the presence of copper. All of these proteins conferred more resistance to copper when expressed heterologously in a copper-sensitive Escherichia coli strain. This effect was absent when site-directed-mutation mutants of these proteins with altered copper-binding sites were used in this metal sensitivity assay. These results strongly suggest that the three copper-binding proteins analyzed here are copper resistance determinants in this extremophile and contribute to the high-level metal resistance of this industrially important biomining bacterium. PMID:26637599

  8. Synthesis of argentojarosite with simulated bioleaching solutions produced by Acidithiobacillus ferrooxidans.

    PubMed

    Mukherjee, Chiranjit; Jones, F Sandy; Bigham, Jerry M; Tuovinen, Olli H

    2016-09-01

    Argentojarosite (AgFe3(SO4)2(OH)6) is formed as a secondary phase in Ag-catalyzed bioleaching of chalcopyrite (CuFeS2), but to date very little is known about the paragenesis or characteristics of this silver-containing compound. The purpose of this study was to synthesize argentojarosite via biological oxidation of 120mM ferrous sulfate by Acidithiobacillus ferrooxidans. Because of its toxicity to A. ferrooxidans, Ag(+) (as AgNO3) was added to spent culture media (pH2) after complete oxidation of ferrous sulfate. Schwertmannite (ideally Fe8O8(OH)6(SO4)) was precipitated during the iron oxidation phase, and subsequent Ag(+) addition resulted in the formation of argentojarosite. Contact time (8h, 5d, and 14d) and Ag(+) concentration (0, 5, 20, and 40mM) were used as variables in these experiments. Synthesis of argentojarosite, schwertmannite and other mineral phases was confirmed through X-ray diffraction analysis. Additional analyses of solid-phase oxidation products included elemental composition, color and specific surface area. The sample synthesized in the presence of 40mM Ag(+) and with 14d contact time yielded an X-ray diffraction pattern of well crystallized argentojarosite, and its elemental composition closely matched the calculated Ag, Fe, and S contents of ideal argentojarosite. The color and surface area of the remaining samples were influenced by the presence of residual schwertmannite. This phase remained stable over the time course of 14d when no Ag(+) was present in the system. When equilibrations were extended to 42d, partial conversion of reference schwertmannite to goethite was noted in the absence of Ag. In the presence of 20mM or 40mM Ag over the same time course, some formation of argentojarosite was also noted. In this case, schwertmannite was the only source of Fe and SO4 for argentojarosite formation. PMID:27207050

  9. Enhancing isobutyric acid production from engineered Acidithiobacillus ferrooxidans cells via media optimization.

    PubMed

    Li, Xiaozheng; West, Alan C; Banta, Scott

    2016-04-01

    The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans has previously been genetically modified to produce isobutyric acid (IBA) from carbon dioxide while obtaining energy from the oxidation of ferrous iron. Here, a combinatorial approach was used to explore the influence of medium composition in both batch and chemostat cultures in order to improve IBA yields (g IBA/mol Fe(2+)) and productivities (g IBA/L/d). Medium pH, ferrous concentration (Fe(2+)), and inclusion of iron chelators all had positive impact on the IBA yield. In batch experiments, gluconate was found to be a superior iron chelator because its use resulted in smaller excursions in pH. In batch cultures, IBA yields decreased linearly with increases in the final effective Fe(3+) concentrations. Chemostat cultures followed similar trends as observed in batch cultures. Specific cellular productivities were found to be a function of the steady state ORP (Oxidation-reduction potential) of the growth medium, which is primarily determined by the Fe(3+) to Fe(2+) ratio. By operating at low ORP, chemostat cultures were able to achieve volumetric productivities as high as 3.8 ± 0.2 mg IBA/L/d which is a 14-fold increase over the previously reported value. PMID:26370386

  10. Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: Oxygen and sulfur isotope fractionation

    USGS Publications Warehouse

    Thurston, R.S.; Mandernack, K.W.; Shanks, Wayne C., III

    2010-01-01

    Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (??18OH2O) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 ?? 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate-water oxygen isotope fractionation, ??18OSO4-H2O, of ~ 3.8??? for the anaerobic experiments. Aerobic oxidation produced apparent ??SO4-H2O values (6.4???) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O2 into sulfate. ??34SSO4 values are ~ 4??? lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in ??34SSO4 of ~- 1.5 ?? 0.2??? was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions. ?? 2009 Elsevier B.V.

  11. Crystallization and preliminary X-ray diffraction analysis of tetrathionate hydrolase from Acidithiobacillus ferrooxidans

    PubMed Central

    Kanao, Tadayoshi; Kosaka, Megumi; Yoshida, Kyoya; Nakayama, Hisayuki; Tamada, Taro; Kuroki, Ryota; Yamada, Hidenori; Takada, Jun; Kamimura, Kazuo

    2013-01-01

    Tetrathionate hydrolase (4THase) from the iron- and sulfur-oxidizing bacterium Acidithiobacillus ferrooxidans catalyses the disproportionate hydrolysis of tetrathionate to elemental sulfur, thiosulfate and sulfate. The gene encoding 4THase (Af-tth) was expressed as inclusion bodies in recombinant Escherichia coli. Recombinant Af-Tth was activated by refolding under acidic conditions and was then purified to homogeneity. The recombinant protein was crystallized in 20 mM glycine buffer pH 10 containing 50 mM sodium chloride and 33%(v/v) PEG 1000 using the hanging-drop vapour-diffusion method. The crystal was a hexagonal cylinder with dimensions of 0.2 × 0.05 × 0.05 mm. X-ray crystallographic analysis showed that the crystal diffracted to 2.15 Å resolution and belongs to space group P31 or P32, with unit-cell parameters a = b = 92.1, c = 232.6 Å. PMID:23722856

  12. Identification and characterization of Acidithiobacillus ferrooxidans YY2 and its application in the biodesulfurization of coal.

    PubMed

    Yang, Xinping; Wang, Shimei; Liu, Yujiao; Zhang, Yuanyuan

    2015-01-01

    The acidophilic Fe-oxidizing and S-oxidizing bacterium YY2 was isolated from the acid drainage of a coalmine. Based on morphological and physiological characteristics and phylogenetic analysis, it was identified as Acidithiobacillus ferrooxidans. Significant differences were observed in the oxidation efficiency and cell morphology when YY2 was cultured in 9K medium with ferrous ion (Fe(2+)), elemental sulfur (S(0)), and pyrite as the sole energy source. YY2 exhibited marked Fe(2+) oxidation activity; 44.2 g · L(-1) FeSO4 · 7H2O was completely oxidized in 30 h, but the rates of S(0) and pyrite oxidization were slower. After 20 days, the efficiencies of oxidizing 10 g · L(-1) S(0) and 10 g · L(-1) pyrite were approximately 9.6% and 20%, respectively. Cells cultured in pyrite as substrate secreted more extracellular polymeric substances than they did when cultured in Fe(2+) or S(0). Additionally, 75% total sulfur removal and 86% pyritic sulfur removal was achieved in a sequencing batch reactor of biodesulfurization of coal. PMID:25496139

  13. Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3.

    PubMed

    Yan, Lei; Yin, Huanhuan; Zhang, Shuang; Leng, Feifan; Nan, Wenbin; Li, Hongyu

    2010-06-15

    The traditional techniques for removing low concentration arsenic are unsuitable. The biosorption characteristics of arsenite (iAs(III)) and monomethyl arsonate (MMA(V)) from aqueous solution by Acidithiobacillus ferrooxidans BY-3 (At. f BY-3) were investigated as a function of pH, contact time, initial arsenic concentration, biomass dosage and temperature in this study. Results indicated that Langmuir isotherm model fitted better than Freundlich model to the equilibrium data. Analysis of kinetic data showed that the biosorption processes of both iAs(III) and MMA(V) involved pseudo-second-order kinetics. The thermodynamic parameters such as DeltaG(o), DeltaH(o) and DeltaS(o) of the biosorption process showed that the adsorption of iAs(III) and MMA(V) onto At. f BY-3 was feasible, spontaneous and endothermic under the examined conditions. The competitive biosorption of iAs(III) and MMA(V) in binary mixture system was evaluated, and the results indicated that At. f BY-3 favored MMA(V) biosorption. Fourier-transform infrared spectroscopy (FT-IR) showed -OH and -NH groups were involved in the biosorption process. PMID:20122794

  14. The chemolithoautotroph Acidithiobacillus ferrooxidans can survive under phosphate-limiting conditions by expressing a C-P lyase operon that allows it to grow on phosphonates.

    PubMed

    Vera, Mario; Pagliai, Fernando; Guiliani, Nicolas; Jerez, Carlos A

    2008-03-01

    The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans is of great importance in biomining operations. During the bioleaching of ores, microorganisms are subjected to a variety of environmental stresses and to the limitations of some nutrients, such as inorganic phosphate (P(i)), which is an essential component for all living cells. Although the primary source of phosphorus for microorganisms is P(i), some bacteria are also able to metabolize P(i) esters (with a C-O-P bond) and phosphonates (with a very inert C-P bond). By using bioinformatic analysis of genomic sequences of the type strain of A. ferrooxidans (ATCC 23270), we found that as part of a Pho regulon, this bacterium has a complete gene cluster encoding C-P lyase, which is the main bacterial enzyme involved in phosphonate (Pn) degradation in other microorganisms. A. ferrooxidans was able to grow in the presence of methyl-Pn or ethyl-Pn as an alternative phosphorus source. Under these growth conditions, a great reduction in inorganic polyphosphate (polyP) levels was seen compared with the level for cells grown in the presence of P(i). By means of reverse transcription-PCR (RT-PCR), DNA macroarrays, and real-time RT-PCR experiments, it was found that A. ferrooxidans phn genes were cotranscribed and their expression was induced when the microorganism was grown in methyl-Pn as the only phosphorus source. This is the first report of phosphonate utilization in a chemolithoautotrophic microorganism. The existence of a functional C-P lyase system is a clear advantage for the survival under P(i) limitation, a condition that may greatly affect the bioleaching of ores. PMID:18203861

  15. Fate of extracellular polymeric substances of anaerobically digested sewage sludge during pre-dewatering conditioning with Acidithiobacillus ferrooxidans culture.

    PubMed

    Murugesan, Kumarasamy; Ravindran, Balasubramani; Selvam, Ammaiyappan; Kurade, Mayur B; Yu, Shuk-Man; Wong, Jonathan W C

    2016-10-01

    This study investigated the fate of extracellular polymeric substances (EPS) of anaerobically digested saline sewage sludge during its preconditioning. Sludge was conditioned with Acidithiobacillus ferrooxidans (AF) culture for 24h in the presence and absence of Fe(2+) as an energy substrate. pH decreased from 7.24 to 3.12 during sludge conditioning process. The capillary suction time (CST) of conditioned sludge significantly decreased to <10s, and specific resistance to filtration (SRF) was reduced by >94% as compared with control within 4h of conditioning with or without Fe(2+), indicating a significant (P<0.001) improvement in sludge dewaterability. A noticeable decrease in extractable EPS was observed in conditioned sludge. The EPS contents showed a significant negative correlation with dewaterability of sludge (P<0.05). The results suggest that bioacidification treatment using A. ferrooxidans effectively improved sludge dewaterability through modification of sludge EPS. PMID:27040507

  16. Analysis of gene expression provides insights into the mechanism of cadmium tolerance in Acidithiobacillus ferrooxidans.

    PubMed

    Chen, Minjie; Li, Yanjun; Zhang, Li; Wang, Jianying; Zheng, Chunli; Zhang, Xuefeng

    2015-02-01

    Acidithiobacillus ferrooxidans plays a critical role in metal solubilization in the biomining industry, and occupies an ecological niche characterized by high acidity and high concentrations of toxic heavy metal ions. In order to investigate the possible metal resistance mechanism, the cellular distribution of cadmium was tested. The result indicated that Cd(2+) entered the cells upon initial exposure resulting in increased intracellular concentrations, followed by its excretion from the cells during subsequent growth and adaptation. Sequence homology analyses were used to identify 10 genes predicted to participate in heavy metal homeostasis, and the expression of these genes was investigated in cells cultured in the presence of increasing concentrations of toxic divalent cadmium (Cd(2+)). The results suggested that one gene (cmtR A.f ) encoded a putative Cd(2+)/Pb(2+)-responsive transcriptional regulator; four genes (czcA1 A.f , czcA2 A.f , czcB1 A.f ; and czcC1 A.f ) encoded heavy metal efflux proteins for Cd(2+); two genes (cadA1 A.f and cadB1 A.f ) encoded putative cation channel proteins related to the transport of Cd(2+). No significant enhancement of gene expression was observed at low concentrations of Cd(2+) (5 mM) and most of the putative metal resistance genes were up-regulated except cmtR A.f , cadB3 A.f ; and czcB1 A.f at higher concentrations (15 and 30 mM) according to real-time polymerase chain reaction. A model was developed for the mechanism of resistance to cadmium ions based on homology analyses of the predicted genes, the transcription of putative Cd(2+) resistance genes, and previous work. PMID:25344309

  17. Comparative proteomic analysis of sulfur-oxidizing Acidithiobacillus ferrooxidans CCM 4253 cultures having lost the ability to couple anaerobic elemental sulfur oxidation with ferric iron reduction.

    PubMed

    Kucera, Jiri; Sedo, Ondrej; Potesil, David; Janiczek, Oldrich; Zdrahal, Zbynek; Mandl, Martin

    2016-09-01

    In extremely acidic environments, ferric iron can be a thermodynamically favorable electron acceptor during elemental sulfur oxidation by some Acidithiobacillus spp. under anoxic conditions. Quantitative 2D-PAGE proteomic analysis of a resting cell suspension of a sulfur-grown Acidithiobacillus ferrooxidans CCM 4253 subculture that had lost its iron-reducing activity revealed 147 protein spots that were downregulated relative to an iron-reducing resting cell suspension of the antecedent sulfur-oxidizing culture and 111 that were upregulated. Tandem mass spectrometric analysis of strongly downregulated spots identified several physiologically important proteins that apparently play roles in ferrous iron oxidation, including the outer membrane cytochrome Cyc2 and rusticyanin. Other strongly repressed proteins were associated with sulfur metabolism, including heterodisulfide reductase, thiosulfate:quinone oxidoreductase and sulfide:quinone reductase. Transcript-level analyses revealed additional downregulation of other respiratory genes. Components of the iron-oxidizing system thus apparently play central roles in anaerobic sulfur oxidation coupled with ferric iron reduction in the studied microbial strain. PMID:27394989

  18. Catalytic effect of Ag⁺ on arsenic bioleaching from orpiment (As₂S₃) in batch tests with Acidithiobacillus ferrooxidans and Sulfobacillus sibiricus.

    PubMed

    Zhang, Guangji; Chao, Xingwu; Guo, Pei; Cao, Junya; Yang, Chao

    2015-01-01

    Orpiment is one of the major arsenic sulfide minerals which commonly occurs in the gold mine environment and the weathering of this mineral can lead to the contamination of arsenic. In this study, chemical leaching experiments using 10g/L Fe(3+) at 35°C and 50°C were carried out and the results show that orpiment can be leached by Fe(3+) and the leaching rate of orpiment was significantly enhanced in the presence of Ag(+). The bioleaching experiments with mesophilic bacteria Acidithiobacillus ferrooxidans and moderate thermophilic bacteria Sulfobacillus sibiricus were carried out, showing that these two strains can survive in the mineral pulp and oxidize Fe(2+) to regenerate Fe(3+). Based on above results, it is believed that the leaching action of the acidic mining drainage by some bacteria can lead to the release of arsenic from orpiment. Different performances of At. ferrooxidans and S. sibiricus in the tests suggest they follow two different mechanisms and this point of view is further confirmed based on analyses of the composition and morphology of the mineral residue by SEM and EDS. PMID:25265593

  19. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans

    PubMed Central

    Makita, Mario; Esperón, Margarita; Pereyra, Benito; López, Alejandro; Orrantia, Erasmo

    2004-01-01

    Background Bioleaching is a process that has been used in the past in mineral pretreatment of refractory sulfides, mainly in the gold, copper and uranium benefit. This technology has been proved to be cheaper, more efficient and environmentally friendly than roasting and high pressure moisture heating processes. So far the most studied microorganism in bioleaching is Acidithiobacillus ferrooxidans. There are a few studies about the benefit of metals of low value through bioleaching. From all of these, there are almost no studies dealing with complex minerals containing arsenopyrite (FeAsS). Reduction and/or elimination of arsenic in these ores increase their value and allows the exploitation of a vast variety of minerals that today are being underexploited. Results Arsenopyrite was totally oxidized. The sum of arsenic remaining in solution and removed by sampling represents from 22 to 33% in weight (yield) of the original content in the mineral. The rest of the biooxidized arsenic form amorphous compounds that precipitate. Galena (PbS) was totally oxidized too, anglesite (PbSO4) formed is virtually insoluble and remains in the solids. The influence of seven factors in a batch process was studied. The maximum rate of arsenic dissolution in the concentrate was found using the following levels of factors: small surface area of particle exposure, low pulp density, injecting air and adding 9 K medium to the system. It was also found that ferric chloride and carbon dioxide decreased the arsenic dissolution rate. Bioleaching kinetic data of arsenic solubilization were used to estimate the dilution rate for a continuous culture. Calculated dilution rates were relatively small (0.088–0.103 day-1). Conclusion Proper conditions of solubilization of arsenic during bioleaching are key features to improve the percentage (22 to 33% in weight) of arsenic removal. Further studies are needed to determine other factors that influence specifically the solubilization of arsenic in

  20. Effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans during chalcopyrite bioleaching

    NASA Astrophysics Data System (ADS)

    Yu, Run-lan; Liu, Jing; Tan, Jian-xi; Zeng, Wei-min; Shi, Li-juan; Gu, Guo-hua; Qin, Wen-qing; Qiu, Guan-zhou

    2014-04-01

    The pH value plays an important role in the bioleaching of sulphide minerals. The effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans was investigated in different phases of bacterial growth during chalcopyrite bioleaching. It is found that extracellular polysaccharide secretion from the cells attached to chalcopyrite is more efficiently than that of the free cells in the bioleaching solution. Three factors, pH values, the concentration of soluble metal ions, and the bacterial growth and metabolism, affect extracellular polysaccharide secretion in the free cells, and are related to the bacterial growth phase. Extracellular polysaccharide secretion from the attached cells is mainly dependent on the pH value of the bacterial culture.

  1. Effect of energy source, salt concentration and loading force on colloidal interactions between Acidithiobacillus ferrooxidans cells and mineral surfaces.

    PubMed

    Diao, Mengxue; Nguyen, Tuan A H; Taran, Elena; Mahler, Stephen M; Nguyen, Anh V

    2015-08-01

    The surface appendages and extracellular polymeric substances of cells play an important role in the bacterial adhesion process. In this work, colloidal forces and nanomechanical properties of Acidithiobacillus ferrooxidans (A. f) interacted with silicon wafer and pyrite (FeS2) surfaces in solutions of varying salt concentrations were quantitatively examined using the bacterial probe technique with atomic force microscopy. A. f cells were cultured with either ferrous sulfate or elemental sulfur as key energy sources. Our results show that A. f cells grown with ferrous ion and elemental sulfur exhibit distinctive retraction force vs separation distance curves with stair-step and saw tooth shapes, respectively. During the approach of bacterial probes to the substrate surfaces, surface appendages and biopolymers of cells are sequentially compressed. The conformations of surface appendages and biopolymers are significantly influenced by the salt concentrations. PMID:26057245

  2. Erratum to “Proteomic analysis of differential protein expression in Acidithiobacillus ferrooxidans cultivated in high potassium concentration” [Microbiol. Res. 168 (7) (2013) 455–460].

    PubMed

    Ouyang, Jianping; Guo, Wenbin; Li, Bo; Gu, Li; Zhang, Huijun; Xinhua Chen, Huijun

    2016-01-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile that oxidizes ferrous iron or sulfur compounds to obtain energy in the presence of various ions. To investigate the potassium ion response of A. ferrooxidans, we conducted a proteomics analysis. We identified eight proteins that were differentially expressed in the presence of high potassium concentration, including four up-regulated and four down-regulated proteins. Transcription levels of the genes encoding differential expressed proteins were subsequently analyzed by Northern blot in the presence of high potassium concentration. Among the up-regulated proteins, GDP-mannose 4,6-dehydratase, ribose 5-phosphate isomerase A and ribose-phosphate pyrophosphokinase were known to be implicated in the synthesis of glycocalyx, suggesting that the formation of glycocalyx might be involved in the A. ferrooxidans response to high potassium concentration. Thickening of the glycocalyx layer was also observed in cells cultivated under high potassium concentration via transmission electronic microscopy (TEM) analysis. Among the down-regulated proteins, ATP synthase F1 delta subunit and ATP synthase F1 beta subunit were two important components of ATP synthase. ATP synthase (P-ATPase) is directly linked to the transport of potassium into the cell, thus Acidithiobacillus ferrooxidans might just reduce the quantity of ATP synthase to offset the high potassium level in the culture medium. Therefore, the results obtained here provide some new clues to improve our understanding of the response of A. ferrooxidans to high potassium concentration. PMID:27062771

  3. Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators.

    PubMed

    Hödar, Christian; Moreno, Pablo; di Genova, Alex; Latorre, Mauricio; Reyes-Jara, Angélica; Maass, Alejandro; González, Mauricio; Cambiazo, Verónica

    2012-02-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophilic bacterium that obtains its energy from the oxidation of ferrous iron, elemental sulfur, or reduced sulfur minerals. This capability makes it of great industrial importance due to its applications in biomining. During the industrial processes, A. ferrooxidans survives to stressing circumstances in its environment, such as an extremely acidic pH and high concentration of transition metals. In order to gain insight into the organization of A. ferrooxidans regulatory networks and to provide a framework for further studies in bacterial growth under extreme conditions, we applied a genome-wide annotation procedure to identify 87 A. ferrooxidans transcription factors. We classified them into 19 families that were conserved among diverse prokaryotic phyla. Our annotation procedure revealed that A. ferrooxidans genome contains several members of the ArsR and MerR families, which are involved in metal resistance and detoxification. Analysis of their sequences revealed known and potentially new mechanism to coordinate gene-expression in response to metal availability. A. ferrooxidans inhabit some of the most metal-rich environments known, thus transcription factors identified here seem to be good candidates for functional studies in order to determine their physiological roles and to place them into A. ferrooxidans transcriptional regulatory networks. PMID:21830017

  4. Involvement of sulfide:quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1.

    PubMed

    Wakai, Satoshi; Kikumoto, Mei; Kanao, Tadayoshi; Kamimura, Kazuo

    2004-12-01

    The effects of cyanide, azide, and 2-n-Heptyl-4-hydroxy-quinoline-N-oxide (HQNO) on the oxidation of ferrous ion or elemental sulfur with Acidithiobacillus ferrooxidans NASF-1 cells grown in iron- or sulfur-medium were examined. The iron oxidation of both iron- and sulfur-grown cells was strongly inhibited by cyanide and azide, but not by HQNO. Sulfur oxidation was relatively resistant to cyanide and azide, and inhibited by HQNO. Higher sulfide oxidation, ubiquinol dehydrogenase activity, and sulfide:quinone oxidoreductase (SQR) activity were observed in sulfur-grown cells more than in iron-grown cells. Sulfide oxidation in the presence of ubiquinone with the membrane fraction was inhibited by HQNO, but not by cyanide, azide, antimycin A, and myxothiazol. The transcription of three genes, encoding an aa(3)-type cytochrome c oxidase (coxB), a bd-type ubiquinol oxidase (cydA), and an sqr, were measured by real-time reverse transcription polymerase chain reaction. The transcriptional levels of coxB and cydA genes were similar in sulfur- and iron-grown cells, but that of sqr was 3-fold higher in sulfur-grown cells than in iron-grown cells. A model is proposed for the oxidation of reduced inorganic sulfur compounds in A. ferrooxidans NASF-1 cells. PMID:15618623

  5. Purification and biochemical characterization of the F1-ATPase from Acidithiobacillus ferrooxidans NASF-1 and analysis of the atp operon.

    PubMed

    Wakai, Satoshi; Ohmori, Asami; Kanao, Tadayoshi; Sugio, Tsuyoshi; Kamimura, Kazuo

    2005-10-01

    ATPase was purified 51-fold from a chemoautotrophic, obligately acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. The purified ATPase showed the typical subunit pattern of the F1-ATPase on a polyacrylamide gel containing sodium dodecyl sulfate, with 5 subunits of apparent molecular masses of 55, 50, 33, 20, and 18 kDa. The enzyme hydrolyzed ATP, GTP, and ITP, but neither UTP nor ADP. The K(m) value for ATP was 1.8 mM. ATPase activity was optimum at pH 8.5 at 45 degrees C, and was activated by sulfite. Azide strongly inhibited the enzyme activity, whereas the enzyme was relatively resistant to vanadate, nitrate, and N,N'-dicyclohexylcarbodiimide. The genes encoding the subunits for the F1F(O)-ATPase from A. ferrooxidans NASF-1 were cloned as three overlapping fragments by PCR cloning and sequenced. The molecular masses of the alpha, beta, gamma, delta, and epsilon subunits of the F1 portion were deduced from the amino acid sequences to be 55.5, 50.5, 33.1, 19.2, and 15.1 kDa, respectively. PMID:16244438

  6. Transcriptional and functional studies of a Cd(II)/Pb(II)-responsive transcriptional regulator(CmtR) from Acidithiobacillus ferrooxidans ATCC 23270.

    PubMed

    Zheng, Chunli; Li, Yanjun; Nie, Li; Qian, Lin; Cai, Lu; Liu, Jianshe

    2012-08-01

    The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high cadmium (Cd) concentrations. This property is important for its use in biomining processes, where Cd and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of that a Cd(II)/Pb(II)-responsive transcriptional regulator (CmtR) was possibly related to Cd homeostasis. The expression of the CmtR was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cd. The putative A. ferrooxidans Cd resistance determinant was found to be upregulated when this bacterium was exposed to Cd in the range of 15-30 mM. The CmtR from A. ferrooxidans was cloned and expressed in Escherichia coli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. UV-Vis spectroscopic measurements showed that the reconstruction CmtR was able to bind Cd(II) forming Cd(II)-CmtR complex in vitro. The sequence alignment and molecular modeling showed that the crucial residues for CmtR binding were likely to be Cys77, Cys112, and Cys121. The results reported here strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cd including the Cd(II)/Pb(II)-responsive transcriptional regulator. PMID:22555344

  7. Interplay Between Expression of Sulfur Assimilation Pathway Genes and Zn(2+) and Pb(2+) Stress in Acidithiobacillus ferrooxidans.

    PubMed

    Zheng, Chunli; Chen, Minjie; Wang, Dan; Zhang, Li; Wang, JianYing; Zhang, Xuefeng

    2016-10-01

    We have previously demonstrated that in Acidithiobacillus ferrooxidans, resistance to the highly toxic divalent cation Cd(2+) is mediated in part by the sulfur assimilation pathway (SAP) and enhanced intracellular concentrations of cysteine and glutathione(GSH) (Zheng et al., Extremophiles 19:429-436, 2015). In this paper, we investigate the interplay between Zn(2+) and Pb(2+) resistances, SAP gene expression, and thiol-containing metabolite levels. Cells grown in the presence of 300 mM Zn(2+) had enhanced activities of the following enzymes: adenosylphosphosulphate reductase (APR, 40-fold), serine acetyltransferase (SAT, 180-fold), and O-acetylserine (thiol) lyase (OAS-TL, 230-fold). We investigated the concentrations of mRNA transcripts of the genes encoding these enzymes in cells grown in the presence of 600 mM Zn(2+): transcripts for 4 SAP genes-ATPS(ATP sulphurylase), APR, SiR(sulfite reductase), SAT, and OAS-TL-each showed a more than three-fold increase in concentration. At the metabolite level, concentrations of intracellular cysteine and glutathione (GSH) were nearly doubled. When cells were grown in the presence of 10 mM Pb(2+), SAP gene transcript concentrations, cysteine, and GSH concentrations were all decreased, as were SAP enzyme activities. These results suggested that Zn(2+) induced SAP pathway gene transcription, while Pb(2+) inhibited SAP gene expression and enzyme activities compared to the pathway in most organisms. Because of the detoxification function of thiol pool, the results also suggested that the high resistance of A. ferrooxidans to Zn(2+) may also be due to regulation of GSH and the cysteine synthesis pathway. PMID:27376536

  8. Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite, chalcopyrite, low-grade ore and quartz in a packed column reactor.

    PubMed

    Africa, Cindy-Jade; van Hille, Robert P; Harrison, Susan T L

    2013-02-01

    The attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum spp. grown on ferrous medium or adapted to a pyrite mineral concentrate to four mineral substrata, namely, chalcopyrite and pyrite concentrates, a low-grade chalcopyrite ore (0.5 wt%) and quartzite, was investigated. The quartzite represented a typical gangue mineral and served as a control. The attachment studies were carried out in a novel particle-coated column reactor. The saturated reactor containing glass beads, which were coated with fine mineral concentrates, provided a quantifiable surface area of mineral concentrate and maintained good fluid flow. A. ferrooxidans and Leptospirillum spp. had similar attachment characteristics. Enhanced attachment efficiency occurred with bacteria grown on sulphide minerals relative to those grown on ferrous sulphate in an ore-free environment. Selective attachment to sulphide minerals relative to gangue materials occurred, with mineral adapted cultures attaching to the minerals more efficiently than ferrous grown cultures. Mineral-adapted cultures showed highest levels of attachment to pyrite (74% and 79% attachment for A. ferrooxidans and L. ferriphilum, respectively). This was followed by attachment of mineral-adapted cultures to chalcopyrite (63% and 58% for A. ferrooxidans and L. ferriphilum, respectively). A. ferrooxidans and L. ferriphilum exhibited lower levels of attachment to low-grade ore and quartz relative to the sulphide minerals. PMID:22410741

  9. Effects of pyrite bioleaching solution of Acidithiobacillus ferrooxidans on viability, differentiation and mineralization potentials of rat osteoblasts.

    PubMed

    Zhou, Jian; Chen, Ke-Ming; Zhi, De-Juan; Xie, Qin-Jian; Xian, Cory J; Li, Hong-Yu

    2015-12-01

    Iron pyrite, an important component of traditional Chinese medicine, has a poor solubility, bioavailability, and patient compliance due to a high dose required and associated side effects, all of which have limited its clinical applications and experimental studies on its action mechanisms in improving fracture healing. This study investigated Acidithiobacillus ferrooxidans (A.f)-bioleaching of two kinds of pyrites and examined bioactivities of the derived solutions in viability and osteogenic differentiation in rat calvarial osteoblasts. A.f bioleaching improved element contents (Fe, Mn, Zn, Cu, and Se) in the derived solutions and the solutions concentration-dependently affected osteoblast viability and differentiation. While the solutions had no effects at low concentrations and inhibited the osteoblast alkaline phosphatase (ALP) activity at high concentrations, they improved ALP activity at their optimal concentrations. The improved osteoblast differentiation and osteogenic function at optimal concentrations were also revealed by levels of ALP cytochemical staining, calcium deposition, numbers and areas of mineralized nodules formed, mRNA and protein expression levels of osteogenesis-related genes (osteocalcin, Bmp-2, Runx-2, and IGF-1), and Runx-2 nuclear translocation. Data from this study will be useful in offering new strategies for improving pyrite bioavailability and providing a mechanistic explanation for the beneficial effects of pyrite in improving bone healing. PMID:26283321

  10. The quinone-binding site of Acidithiobacillus ferrooxidans sulfide: quinone oxidoreductase controls both sulfide oxidation and quinone reduction.

    PubMed

    Zhang, Yanfei; Qadri, Ali; Weiner, Joel H

    2016-04-01

    Sulfide:quinone oxidoreductase (SQR) is a peripheral membrane enzyme that catalyzes the oxidation of sulfide and the reduction of ubiquinone. Ubiquinone binds to a conserved hydrophobic domain and shuttles electrons from a noncovalent flavin adenine dinucleotide cofactor to the membrane-bound quinone pool. Utilizing the structure of decylubiquinone bound to Acidithiobacillus ferrooxidans SQR, we combined site-directed mutagenesis and kinetic approaches to analyze quinone binding. SQR can reduce both benzoquinones and naphthoquinones. The alkyl side-chain of ubiquinone derivatives enhances binding to SQR but limits the enzyme turnover. Pentachlorophenol and 2-n-heptyl-4-hydroxyquinoline-N-oxide are potent inhibitors of SQR with apparent inhibition constants (Ki) of 0.46 μmol·L(-1) and 0.58 μmol·L(-1), respectively. The highly conserved amino acids surrounding the quinone binding site play an important role in quinone reduction. The phenyl side-chains of Phe357 and Phe391 sandwich the benzoquinone head group and are critical for quinone binding. Importantly, conserved amino acids that define the ubiquinone-binding site also play an important role in sulfide oxidation/flavin reduction. PMID:26914540

  11. Pyrite Oxidation under initially neutral pH conditions and in the presence of Acidithiobacillus ferrooxidans and micromolar hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Lin, C.

    2012-01-01

    Hydrogen peroxide (H2O2) at a micromolar level played a role in the microbial surface oxidation of pyrite crystals under initially neutral pH. When the mineral-bacteria system was cyclically exposed to 50 μM H2O2, the colonization of Acidithiobacillus ferrooxidans onto the mineral surface was markedly enhanced, as compared to the control (no added H2O2). This can be attributed to the effects of H2O2 on increasing the roughness of the mineral surfaces, as well as the acidity and Fe2+ concentration at the mineral-solution interfaces. All of these effects tended to create more favourable nano- to micro-scale environments in the mineral surfaces for the cell adsorption. However, higher H2O2 levels inhibited the attachment of cells onto the mineral surfaces, possibly due to the oxidative stress in the bacteria when they approached the mineral surfaces where high levels of free radicals are present as a result of Fenton-like reactions. The more aggressive nature of H2O2 as an oxidant caused marked surface flaking of the mineral surface. The XPS results suggest that H2O2 accelerated the oxidation of pyrite-S and consequently facilitated the overall corrosion cycle of pyrite surfaces. This was accompanied by pH drop in the solution in contact with the pyrite cubes.

  12. Mineral respiration under extreme acidic conditions: from a supramolecular organization to a molecular adaptation in Acidithiobacillus ferrooxidans.

    PubMed

    Roger, Magali; Castelle, Cindy; Guiral, Marianne; Infossi, Pascale; Lojou, Elisabeth; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2012-12-01

    Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotrophic Gram-negative bacterium that can derive energy from the oxidation of ferrous iron at pH 2 using oxygen as electron acceptor. The study of this bacterium has economic and fundamental biological interest because of its use in the industrial extraction of copper and uranium from ores. For this reason, its respiratory chain has been analysed in detail in recent years. Studies have shown the presence of a functional supercomplex that spans the outer and the inner membranes and allows a direct electron transfer from the extracellular Fe2+ ions to the inner membrane cytochrome c oxidase. Iron induces the expression of two operons encoding proteins implicated in this complex as well as in the regeneration of the reducing power. Most of these are metalloproteins that have been characterized biochemically, structurally and biophysically. For some of them, the molecular basis of their adaptation to the periplasmic acidic environment has been described. Modifications in the metal surroundings have been highlighted for cytochrome c and rusticyanin, whereas, for the cytochrome c oxidase, an additional partner that maintains its stability and activity has been demonstrated recently. PMID:23176476

  13. Synchrotron radiation based STXM analysis and micro-XRF mapping of differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on Fe(2+) and S(0).

    PubMed

    Xia, Jin-Lan; Liu, Hong-Chang; Nie, Zhen-Yuan; Peng, An-An; Zhen, Xiang-Jun; Yang, Yun; Zhang, Xiu-Li

    2013-09-01

    The differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on substrates Fe(2+) and S(0) was investigated by using synchrotron radiation based scanning transmission X-ray microscopy (STXM) imaging and microbeam X-ray fluorescence (μ-XRF) mapping. The extracellular thiol groups (SH) were first alkylated by iodoacetic acid forming Protein-SCH2COOH and then the P-SCH2COOH was marked by calcium ions forming P-SCH2COOCa. The STXM imaging and μ-XRF mapping of SH were based on analysis of SCH2COO-bonded Ca(2+). The results indicated that the thiol group content of A. ferrooxidans grown on S(0) is 3.88 times to that on Fe(2+). Combined with selective labeling of SH by Ca(2+), the STXM imaging and μ-XRF mapping provided an in situ and rapid analysis of differential expression of extracellular thiol groups. PMID:23850802

  14. Synthesis and properties of ternary (K, NH₄, H₃O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions.

    PubMed

    Jones, F Sandy; Bigham, Jerry M; Gramp, Jonathan P; Tuovinen, Olli H

    2014-11-01

    The purpose of this study was to synthesize a series of solid solution jarosites by biological oxidation of ferrous iron at pH2.2-4.4 and ambient temperature in media containing mixtures of K(+) (0, 1, 4, 6, 12, 31 mM) and NH4(+) (6.1, 80, 160, 320 mM). The starting material was a liquid medium for Acidithiobacillus ferrooxidans comprised of 120 mM FeSO4 solution and mineral salts at pH2.2. Following inoculation with A. ferrooxidans, the cultures were incubated in shake flasks at 22°C. As bacteria oxidized ferrous iron, ferric iron hydrolyzed and precipitated as jarosite-group minerals (AFe3(SO4)2(OH)6) and/or schwertmannite (idealized formula Fe8O8(OH)6(SO4)·nH2O). The precipitates were characterized by X-ray diffraction (XRD), elemental analysis, and Munsell color. Schwertmannite was the dominant mineral product at low combinations of K(+) (≤ 4 mM) and NH4(+) (≤ 80 mM) in the media. At higher single or combined concentrations, yellowish jarosite phases were produced, and Munsell hue provided a sensitive means of detecting minor schwertmannite in the oxidation products. Although the hydrated ionic radii of K(+) and NH4(+) are similar, K(+) greatly facilitated the formation of a jarosite phase compared to NH4(+). Unit cell and cell volume calculations from refinements of the powder XRD patterns indicated that the jarosite phases produced were mostly ternary (K, NH4, H3O)-solid solutions that were also deficient in structural Fe, especially at low NH4 contents. Thus, ferric iron precipitation from the simulated bioleaching systems yielded solid solutions of jarosite with chemical compositions that were dependent on the relative concentrations of K(+) and NH4(+) in the synthesis media. No phase separations involving discrete, end-member K-jarosite or NH4-jarosite were detected in the un-aged precipitates. PMID:25280720

  15. The Multicenter Aerobic Iron Respiratory Chain of Acidithiobacillus ferrooxidans Functions as an Ensemble with a Single Macroscopic Rate Constant.

    PubMed

    Li, Ting-Feng; Painter, Richard G; Ban, Bhupal; Blake, Robert C

    2015-07-24

    Electron transfer reactions among three prominent colored proteins in intact cells of Acidithiobacillus ferrooxidans were monitored using an integrating cavity absorption meter that permitted the acquisition of accurate absorbance data in suspensions of cells that scattered light. The concentrations of proteins in the periplasmic space were estimated to be 350 and 25 mg/ml for rusticyanin and cytochrome c, respectively; cytochrome a was present as one molecule for every 91 nm(2) in the cytoplasmic membrane. All three proteins were rapidly reduced to the same relative extent when suspensions of live bacteria were mixed with different concentrations of ferrous ions at pH 1.5. The subsequent molecular oxygen-dependent oxidation of the multicenter respiratory chain occurred with a single macroscopic rate constant, regardless of the proteins' in vitro redox potentials or their putative positions in the aerobic iron respiratory chain. The crowded electron transport proteins in the periplasm of the organism constituted an electron conductive medium where the network of protein interactions functioned in a concerted fashion as a single ensemble with a standard reduction potential of 650 mV. The appearance of product ferric ions was correlated with the reduction levels of the periplasmic electron transfer proteins; the limiting first-order catalytic rate constant for aerobic respiration on iron was 7,400 s(-1). The ability to conduct direct spectrophotometric studies under noninvasive physiological conditions represents a new and powerful approach to examine the extent and rates of biological events in situ without disrupting the complexity of the live cellular environment. PMID:26041781

  16. Effect of uncouplers on endogenous respiration and ferrous iron oxidation in a chemolithoautotrophic bacterium Acidithiobacillus (Thiobacillus) ferrooxidans.

    PubMed

    Chen, Yongqiang; Suzuki, Isamu

    2004-08-01

    Oxidation of ferrous iron (Fe2+) to ferric iron (Fe3+) with oxygen (O2) by Acidithiobacillus (Thiobacillus) ferrooxidans is considered to be inhibited by uncouplers. Oxidation of the endogenous substrates (presumably NADH) with O2 or Fe3+, on the other hand, was stimulated by uncouplers, 2,4-dinitrophenol (DNP) and carbonylcyanide-m-chlorophenyl-hydrazone (CCCP), as expected in respiratorily controlled mitochondria or heterotrophic bacteria. Amytal and rotenone were inhibitory. Fe3+ reduction by endogenous substrates was studied extensively and was found to be stimulated by a permeable anion, SCN- and weak acids, as well as the above uncouplers. Proton translocating properties of some of these stimulators were shown by following a pH change in the cell suspension. It was concluded that any compounds that destroy proton electrochemical gradient, Deltap, stimulated endogenous respiration. Stimulation of Fe2+ or ascorbate oxidation by lower concentrations of uncouplers was successfully demonstrated by shortening the reaction time, but only to a small extent. Uncouplers at concentrations stimulatory to endogenous respiration inhibited Fe2+ oxidation if present before Fe2+ addition. The inhibition by 10 microM CCCP was reversed by washing the cells in a buffer. Complex I inhibitors, atabrine, rotenone and amytal inhibited Fe2+ oxidation, more strongly in the presence of 0.1 mM DNP. It is proposed that Fe2+ oxidation required Deltap perhaps to climb an energetically uphill reaction or to reduce NAD+ to NADH by reversed electron flow for CO2 fixation. The latter interpretation implies some obligatory coupling between Fe2+ oxidation and NAD+ reduction. PMID:15268949

  17. The Multicenter Aerobic Iron Respiratory Chain of Acidithiobacillus ferrooxidans Functions as an Ensemble with a Single Macroscopic Rate Constant*

    PubMed Central

    Li, Ting-Feng; Painter, Richard G.; Ban, Bhupal; Blake, Robert C.

    2015-01-01

    Electron transfer reactions among three prominent colored proteins in intact cells of Acidithiobacillus ferrooxidans were monitored using an integrating cavity absorption meter that permitted the acquisition of accurate absorbance data in suspensions of cells that scattered light. The concentrations of proteins in the periplasmic space were estimated to be 350 and 25 mg/ml for rusticyanin and cytochrome c, respectively; cytochrome a was present as one molecule for every 91 nm2 in the cytoplasmic membrane. All three proteins were rapidly reduced to the same relative extent when suspensions of live bacteria were mixed with different concentrations of ferrous ions at pH 1.5. The subsequent molecular oxygen-dependent oxidation of the multicenter respiratory chain occurred with a single macroscopic rate constant, regardless of the proteins' in vitro redox potentials or their putative positions in the aerobic iron respiratory chain. The crowded electron transport proteins in the periplasm of the organism constituted an electron conductive medium where the network of protein interactions functioned in a concerted fashion as a single ensemble with a standard reduction potential of 650 mV. The appearance of product ferric ions was correlated with the reduction levels of the periplasmic electron transfer proteins; the limiting first-order catalytic rate constant for aerobic respiration on iron was 7,400 s−1. The ability to conduct direct spectrophotometric studies under noninvasive physiological conditions represents a new and powerful approach to examine the extent and rates of biological events in situ without disrupting the complexity of the live cellular environment. PMID:26041781

  18. Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Zhu, Tingting; Lu, Xiancai; Liu, Huan; Li, Juan; Zhu, Xiangyu; Lu, Jianjun; Wang, Rucheng

    2014-02-01

    In supergene environments, microbial activities significantly enhance sulfide oxidation and result in the release of heavy metals, causing serious contamination of soils and waters. As the most commonly encountered arsenic mineral in nature, arsenopyrite (FeAsS) accounts for arsenic contaminants in various environments. In order to investigate the geochemical behavior of arsenic during microbial oxidation of arsenopyrite, (2 3 0) surfaces of arsenopyrite slices were characterized after acidic (pH 2.00) and oxidative decomposition with or without an acidophilic microorganism Acidithiobacillus ferrooxidans. The morphology as well as chemical and elemental depth profiles of the oxidized arsenopyrite surface were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. With the mediation of bacteria, cell-shaped and acicular pits were observed on the reacted arsenopyrite surface, and the concentration of released arsenic species in solution was 50 times as high as that of the abiotic reaction after 10 days reaction. Fine-scale XPS depth profiles of the reacted arsenopyrite surfaces after both microbial and abiotic oxidation provided insights into the changes in chemical states of the elements in arsenopyrite surface layers. Within the 450 nm surface layer of abiotically oxidized arsenopyrite, Fe(III)-oxides appeared and gradually increased towards the surface, and detectable sulfite and monovalent arsenic appeared above 50 nm. In comparison, higher contents of ferric sulfate, sulfite, and arsenite were found in the surface layer of approximately 3 μm of the microbially oxidized arsenopyrite. Intermediates, such as Fe(III)-AsS and S0, were detectable in the presence of bacteria. Changes of oxidative species derived from XPS depth profiles show the oxidation sequence is Fe > As = S in abiotic oxidation, and Fe > S > As in microbial oxidation. Based on these results, a possible reaction path of microbial oxidation was proposed in a concept model.

  19. A New Iron-oxidizing/O2-reducing Supercomplex Spanning Both Inner and Outer Membranes, Isolated from the Extreme Acidophile Acidithiobacillus ferrooxidans*

    PubMed Central

    Castelle, Cindy; Guiral, Marianne; Malarte, Guillaume; Ledgham, Fouzia; Leroy, Gisèle; Brugna, Myriam; Giudici-Orticoni, Marie-Thérèse

    2008-01-01

    The iron respiratory chain of the acidophilic bacterium Acidithiobacillus ferrooxidans involves various metalloenzymes. Here we demonstrate that the oxygen reduction pathway from ferrous iron (named downhill pathway) is organized as a supercomplex constituted of proteins located in the outer and inner membranes as well as in the periplasm. For the first time, the outer membrane-bound cytochrome c Cyc2 was purified, and we showed that it is responsible for iron oxidation and determined that its redox potential is the highest measured to date for a cytochrome c. The organization of metalloproteins inside the supramolecular structure was specified by protein-protein interaction experiments. The isolated complex spanning the two membranes had iron oxidase as well as oxygen reductase activities, indicating functional electron transfer between the first iron electron acceptor, Cyc2, and the CuA center of cytochrome c oxidase aa3. This is the first characterization of a respirasome from an acidophilic bacterium. In Acidithiobacillus ferrooxidans,O2 reduction from ferrous iron must be coupled to the energy-consuming reduction of NAD+(P) from ferrous iron (uphill pathway) required for CO2 fixation and other anabolic processes. Besides the proteins involved in the O2 reduction, there were additional proteins in the supercomplex, involved in uphill pathway (bc complex and cytochrome Cyc42), suggesting a possible physical link between these two pathways. PMID:18632666

  20. The use of (5Z)-4-bromo-5-(bromomethylene)-2(5H)-furanone for controlling acid mine drainage through the inhibition of Acidithiobacillus ferrooxidans biofilm formation.

    PubMed

    Zhao, Yang; Chen, Peng; Nan, Wenbin; Zhi, Dejuan; Liu, Ronghui; Li, Hongyu

    2015-06-01

    The aim of this study was to determine whether acid mine drainage (AMD) production can be decreased by (5Z)-4-bromo-5-(bromomethylene)-2(5H)-furanone (furanone C-30) in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans). The effects of furanone C-30 on A. ferrooxidans biofilm production were determined by crystal violet staining and confocal laser scanning microscopy (CLSM). Biofilm-related gene expression was investigated using real-time RT-PCR. Finally, the effects of furanone C-30 on AMD production were evaluated. The results show that furanone C-30 inhibits the production of extracellular polymeric substances (EPS) and biofilm formation and significantly down-regulates the expression of biofilm-related genes. The decreased EPS production led to reduced pentlandite attachment and biofilm formation on pentlandite. Furthermore, the dissolution of both nickel and copper were inhibited by furanone C-30 without new acid formation. This study provides a promising biochemical method to control AMD. PMID:25802048

  1. Ferrous iron oxidation by sulfur-oxidizing Acidithiobacillus ferrooxidans and analysis of the process at the levels of transcription and protein synthesis.

    PubMed

    Kucera, Jiri; Bouchal, Pavel; Lochman, Jan; Potesil, David; Janiczek, Oldrich; Zdrahal, Zbynek; Mandl, Martin

    2013-04-01

    In contrast to iron-oxidizing Acidithiobacillus ferrooxidans, A. ferrooxidans from a stationary phase elemental sulfur-oxidizing culture exhibited a lag phase in pyrite oxidation, which is similar to its behaviour during ferrous iron oxidation. The ability of elemental sulfur-oxidizing A. ferrooxidans to immediately oxidize ferrous iron or pyrite without a lag phase was only observed in bacteria obtained from growing cultures with elemental sulfur. However, these cultures that shifted to ferrous iron oxidation showed a low rate of ferrous iron oxidation while no growth was observed. Two-dimensional gel electrophoresis was used for a quantitative proteomic analysis of the adaptation process when bacteria were switched from elemental sulfur to ferrous iron. A comparison of total cell lysates revealed 39 proteins whose increase or decrease in abundance was related to this phenotypic switching. However, only a few proteins were closely related to iron and sulfur metabolism. Reverse-transcription quantitative PCR was used to further characterize the bacterial adaptation process. The expression profiles of selected genes primarily involved in the ferrous iron oxidation indicated that phenotypic switching is a complex process that includes the activation of genes encoding a membrane protein, maturation proteins, electron transport proteins and their regulators. PMID:23291738

  2. On and S isotopic composition of dissolved and attached oxidation products of pyrite by Acidithiobacillus ferrooxidans: Comparison with abiotic oxidations

    NASA Astrophysics Data System (ADS)

    Pisapia, Céline; Chaussidon, M.; Mustin, C.; Humbert, B.

    2007-05-01

    The acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, plays a part in the pyrite oxidation process and has been widely studied in order to determine the kinetics of the reactions and the isotopic composition of dissolved product sulphates, but the details of the oxidation processes at the surface of pyrite are still poorly known. In this study, oxygen and sulphur isotopic compositions (δ 18O and δ 34S) were analyzed for dissolved sulphates and water from experimental aerobic acidic (pH < 2) pyrite oxidation by A. ferrooxidans. The oxidation products attached to the pyrite surfaces were studied for their morphology (SEM), their chemistry (Raman spectroscopy) and for their δ 18O (ion microprobe). They were compared to abiotically (Fe 3+, H 2O 2, O 2) oxidized pyrite surface compounds in order to constrain the oxidation pathways and to look for the existence of potential biosignatures for this system. The pyrite dissolution evolved from non-stoichiometric (during the first days) to stoichiometric (with increasing time) resulting in dissolved sulphates having distinct δ 18O (e.g. +11.0‰ and -2.0‰, respectively) and δ 34S (+4.5‰ and +2.8‰, respectively) values. The "oxidation layer" at the surface of pyrite is complex and made of iron oxides, sulphate, polysulphide, elemental sulphur and polythionates. Bio- and Fe 3+-oxidation favour the development of monophased micrometric bumps made of hematite or sulphate while other abiotic oxidation processes result in more variable oxidation products. The δ 18O of these oxidation products at the surface of oxidized pyrites are strongly variable (from ≈-40‰ to ≈+30‰) for all experiments. Isotopic fractionation between sulphates and pyrite, Δ34S-pyrite, is equal to -1.3‰ and +0.4‰ for sulphates formed by stoichiometric and non-stoichiometric processes, respectively. These two values likely reflect either a S-S or a Fe-S bond breaking process. The Δ18O-HO and Δ18O-O are estimated to

  3. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.

    PubMed

    Li, Xiaozheng; Mercado, Roel; Kernan, Timothy; West, Alan C; Banta, Scott

    2014-10-01

    Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotroph that is important in biomining and other biotechnological operations. The cells are able to oxidize inorganic iron, but the insolubility and product inhibition by Fe(3+) complicates characterization of these cultures. Here we explore the growth kinetics of A. ferrooxidans in iron-based medium in a pH range from 1.6 to 2.2. It was found that as the pH was increased from 1.6 to 2.0, the maintenance coefficient decreased while both the growth kinetics and maximum cell yield increased in the precipitate-free, low Fe(2+) concentration medium. In higher iron media a similar trend was observed at low pH, but the formation of precipitates at higher pH (2.0) hampered cell growth and lowered the specific growth rate and maximum cell yield. In order to eliminate ferric precipitates, chelating agents were introduced into the medium. Citric acid was found to be relatively non-toxic and did not appear to interfere with iron oxidation at a maximum concentration of 70 mM. Inclusion of citric acid prevented precipitation and A. ferrooxidans growth parameters resumed their trends as a function of pH. The addition of citrate also decreased the apparent substrate saturation constant (KS ) indicating a reduction in the competitive inhibition of growth by ferric ions. These results indicate that continuous cultures of A. ferrooxidans in the presence of citrate at elevated pH will enable enhanced cell yields and productivities. This will be critical as these cells are used in the development of new biotechnological applications such as electrofuel production. PMID:24771134

  4. K30, H150, and H168 are essential residues for coordinating pyridoxal 5'-phosphate of O-acetylserine sulfhydrylase from Acidithiobacillus ferrooxidans.

    PubMed

    Zheng, Chunli; Nie, Li; Qian, Lin; Wang, Zhilou; Liu, Guizhen; Liu, Jianshe

    2010-06-01

    O-acetylserine sulfhydrylase (OASS) is a key enzyme involved in the pathway of the cysteine biosynthesis. The gene of OASS from Acidithiobacillus ferrooxidans ATCC 23270 was cloned and expressed in E. coli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. Colors and UV-vis scanning results of the recombinant protein confirmed that it was a pyridoxal 5'-phosphate (PLP)-containing protein. Sequence alignment and site-directed mutation of the enzyme revealed that the cofactor PLP is covalently bound in Schiff base linkage with K30, as well as the two residues H150 and H168 were the crucial residues for PLP binding and stabilization. PMID:20033172

  5. Expression and activity of the Calvin-Benson-Bassham cycle transcriptional regulator CbbR from Acidithiobacillus ferrooxidans in Ralstonia eutropha.

    PubMed

    Esparza, Mario; Jedlicki, Eugenia; Dopson, Mark; Holmes, David S

    2015-08-01

    Autotrophic fixation of carbon dioxide into cellular carbon occurs via several pathways but quantitatively, the Calvin-Benson-Bassham cycle is the most important. CbbR regulates the expression of the cbb genes involved in CO2 fixation via the Calvin-Benson-Bassham cycle in a number of autotrophic bacteria. A gene potentially encoding CbbR (cbbR(AF)) has been predicted in the genome of the chemolithoautotrophic, extreme acidophile Acidithiobacillus ferrooxidans. However, this microorganism is recalcitrant to genetic manipulation impeding the experimental validation of bioinformatic predictions. Two novel functional assays were devised to advance our understanding of cbbR(AF) function using the mutated facultative autotroph Ralstonia eutropha H14 ΔcbbR as a surrogate host to test gene function: (i) cbbR(AF) was expressed in R. eutropha and was able to complement ΔcbbR; and (ii) CbbR(AF) was able to regulate the in vivo activity of four A. ferrooxidans cbb operon promoters in R. eutropha. These results open up the use of R. eutropha as a surrogate host to explore cbbR(AF) activity. PMID:26152700

  6. Effects of electron transport inhibitors and uncouplers on the oxidation of ferrous iron and compounds interacting with ferric iron in Acidithiobacillus ferrooxidans.

    PubMed

    Chen, Yongqiang; Suzuki, Isamu

    2005-08-01

    Oxidation of Fe2+, ascorbic acid, propyl gallate, tiron, L-cysteine, and glutathione by Acidithiobacillus ferrooxidans was studied with respect to the effect of electron transport inhibitors and uncouplers on the rate of oxidation. All the oxidations were sensitive to inhibitors of cytochrome c oxidase, KCN, and NaN3. They were also partially inhibited by inhibitors of complex I and complex III of the electron transport system. Uncouplers at low concentrations stimulated the oxidation and inhibited it at higher concentrations. The oxidation rates of Fe2+ and L-cysteine inhibited by complex I and complex III inhibitors (amytal, rotenone, antimycin A, myxothiazol, and HQNO) were stimulated more extensively by uncouplers than the control rates. Atabrine, a flavin antagonist, was an exception, and atabrine-inhibited oxidation activities of all these compounds were further inhibited by uncouplers. A model for the electron transport pathways of A. ferrooxidans is proposed to account for these results. In the model these organic substrates reduce ferric iron on the surface of cells to ferrous iron, which is oxidized back to ferric iron through the Fe2+ oxidation pathway, leading to cytochrome oxidase to O2. Some of electrons enter the uphill (energy-requiring) electron transport pathway to reduce NAD+. Uncouplers at low concentrations stimulate Fe2+ oxidation by stimulating cytochrome oxidase by uncoupling. Higher concentrations lower deltap to the level insufficient to overcome the potentially uphill reaction at rusticyanin-cytochrome c4. Inhibition of uphill reactions at complex I and complex III leads to deltap accumulation and inhibition of cytochrome oxidase. Uncouplers remove the inhibition of deltap and stimulate the oxidation. Atabrine inhibition is not released by uncouplers, which implies a possibility of atabrine inhibition at a site other than complex I, but a site somehow involved in the Fe2+ oxidation pathway. PMID:16234867

  7. Differential expression of sulfur assimilation pathway genes in Acidithiobacillus ferrooxidans under Cd²⁺ stress: evidence from transcriptional, enzymatic, and metabolic profiles.

    PubMed

    Zheng, Chunli; Chen, Minjie; Tao, Zhanlong; Zhang, Li; Zhang, Xue Feng; Wang, Jian-Ying; Liu, Jianshe

    2015-03-01

    Acidithiobacillus ferrooxidans is a heavy metal-tolerant acidophilic chemolithotroph found in acidic mine effluent and is used commercially in the bioleaching of sulfide ores. In this work, we investigated the interplay between divalent cadmium (Cd(2+)) resistance and expression of genes involved in the sulfur assimilation pathway (SAP). We also investigated the response of the thiol-containing metal-chelating metabolites, cysteine and glutathione(GSH), to increasing Cd(2+) concentrations. During growth in the presence of 30 mM Cd(2+), the concentrations of mRNA for 5 genes in the SAP pathway increased more than fourfold: these encode ATP sulfurylase (ATPS), adenosine 5'-phosphosulfate (APS) reductase, sulfite reductase (SiR), serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL). Increased transcription was also reflected in increased enzyme activities: those of SAT and adenosylphosphosulfate reductase (APR) reached a peak of 26- and 15.8-fold, respectively, compared to the control culture in the presence of 15 mM Cd(2+). In contrast, the activity of OAS-TL, which is responsible for the biosynthesis of cysteine, was diminished. At the metabolite level, the intracellular cysteine and GSH contents nearly doubled. These results suggested that Cd(2+) induced transcription of SAP genes, while directly inhibiting the activities of some enzymes (e.g., OAS-TL). Overall, these results are consistent with a detoxification/resistance mechanism involving enhanced sulfur uptake and sequestration of Cd(2+) by cysteine and glutathione. PMID:25575615

  8. Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)

    SciTech Connect

    Clum, Alicia; Nolan, Matt; Lang, Elke; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Goker, Markus; Spring, Stefan; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Lapidus, Alla

    2009-05-20

    Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the genus, which until recently was the only genus within the actinobacterial family Acidimicrobiaceae and in the order Acidomicrobiales. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO2 concentration is characteristic for A. ferrooxidans. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the order Acidomicrobiales, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  9. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans.

    PubMed

    Liu, Fenwu; Zhou, Jun; Jin, Tongjun; Zhang, Shasha; Liu, Lanlan

    2016-01-01

    Calcium oxide was added into ferrous ion oxidation system in the presence of Acidithiobacillus ferrooxidans at concentrations of 0-4.00 g/L. The pH, ferrous ion oxidation efficiency, total iron precipitation efficiency, and phase of the solid minerals harvested from different treatments were investigated during the ferrous ion oxidation process. In control check (CK) system, pH of the solution decreased from 2.81 to 2.25 when ferrous ions achieved complete oxidation after 72 h of Acidithiobacillus ferrooxidans incubation without the addition of calcium oxide, and total iron precipitation efficiency reached 20.2%. Efficiency of ferrous ion oxidation and total iron precipitation was significantly improved when the amount of calcium oxide added was ≤1.33 g/L, and the minerals harvested from systems were mainly a mixture of jarosite and schwertmannite. For example, the ferrous ion oxidation efficiency reached 100% at 60 h and total iron precipitation efficiency was increased to 32.1% at 72 h when 1.33 g/L of calcium oxide was added. However, ferrous ion oxidation and total iron precipitation for jarosite and schwertmannite formation were inhibited if the amount of calcium oxide added was above 2.67 g/L, and large amounts of calcium sulfate dihydrate were generated in systems. PMID:27003087

  10. Identification of Thiobacillus ferrooxidans strains based on restriction fragment length polymorphism analysis of 16S rDNA.

    PubMed

    Kamimura, K; Wakai, S; Sugio, T

    2001-01-01

    The 16S rDNA sequences from ten strains of Thiobacillus ferrooxidans were amplified by PCR. The products were compared by performing restriction fragment length polymorphism (RFLP) analysis with restriction endonucleases Alu I, Hap II, Hha I, and Hae III. The RFLP patterns revealed that T. ferrooxidans could be distinguished from other iron- or sulphur-oxidizing bacteria such as T. thiooxidans NB1-3, T. caldus GO-1, Leptospirillum ferrooxidans and the marine iron-oxidizing bacterium strain KU2-11. The RFLP patterns obtained with Alu I, Hap II, and Hae III were the same for nine strains of T. ferrooxidans except for strain ATCC 13661. The RFLP patterns for strains NASF-1 and ATCC 13661 with Hha I were distinct from those for other T. ferrooxidans strains. The 16S rDNA sequence of T. ferrooxidans NASF-1 possessed an additional restriction site for Hha I. These results show that iron-oxidizing bacteria isolated from natural environments were rapidly identified as T. ferrooxidans by the method combining RFLP analysis with physiological analysis. PMID:11414499

  11. Different isotope and chemical patterns of pyrite oxidation related to lag and exponential growth phases of Acidithiobacillus ferrooxidans reveal a microbial growth strategy

    NASA Astrophysics Data System (ADS)

    Brunner, Benjamin; Yu, Jae-Young; Mielke, Randall E.; MacAskill, John A.; Madzunkov, Stojan; McGenity, Terry J.; Coleman, Max

    2008-06-01

    The solution chemistry during the initial (slow increase of dissolved iron and sulfate) and main stage (rapid increase of dissolved iron and sulfate) of pyrite leaching by Acidithiobacillus ferrooxidans (Af) at a starting pH of 2.05 shows significant differences. During the initial stage, ferrous iron (Fe2+) is the dominant iron species in solution and the molar ratio of produced sulfate (SO42-) and total iron (Fetot) is 1.1, thus does not reflect the stoichiometry of pyrite (FeS2). During the main stage, ferric iron (Fe3+) is the dominant iron species in solution and the SO42-:Fetot ratio is with 1.9, close to the stoichiometry of FeS2. Another difference between initial and main stage is an initial trend to slightly higher pH values followed by a drop during the main stage to pH 1.84. These observations raise the question if there are different modes of bioleaching of pyrite, and if there are, what those modes imply in terms of leaching mechanisms. Different oxygen and sulfur isotope trends of sulfate during the initial and main stages of pyrite oxidation confirm that there are two pyrite bioleaching modes. The biochemical reactions during initial stage are best explained by the net reaction FeS2 + 3O2 ⇒ Fe2+ + SO42- + SO2(g). The degassing of sulfur dioxide (SO2) acts as sink for sulfur depleted in 34S compared to pyrite, and is the cause of the SO42-:Fetot ratio of 1.1 and the near constant pH. During the exponential phase, pyrite sulfur is almost quantitatively converted to sulfate, according to the net reaction FeS2 + 15/4O2 + 1/2H2O ⇒ Fe3+ + 2SO42- + H+. We hypothesize that the transition between the modes of bioleaching of pyrite is due to the impact of the accumulation of ferrous iron, which induces changes in the metabolic activity of Af and may act as an inhibitor for the oxidation of sulfur species. This transition defines a fundamental change in the growth strategy of Af. A mode, where bacteria gain energy by oxidation of elemental sulfur to

  12. Diversity and ecophysiology of new isolates of extremely acidophilic CS2-converting Acidithiobacillus strains.

    PubMed

    Smeulders, Marjan J; Pol, Arjan; Zandvoort, Marcel H; Jetten, Mike S M; Op den Camp, Huub J M

    2013-11-01

    Biofiltration of industrial carbon disulfide (CS2)-contaminated waste air streams results in the acidification of biofilters and therefore reduced performance, high water use, and increased costs. To address these issues, we isolated 16 extremely acidophilic CS2-converting Acidithiobacillus thiooxidans strains that tolerated up to 6% (vol/vol) sulfuric acid. The ecophysiological properties of five selected strains (2Bp, Sts 4-3, S1p, G8, and BBW1) were compared. These five strains had pH optima between 1 (2Bp) and 2 (S1p). Their affinities for CS2 ranged between 80 (G8) and 130 (2Bp) μM. Strains S1p, G8, and BBW1 had more hydrophobic cell surfaces and produced less extracellular polymeric substance than did strains 2Bp and Sts 4-3. All five strains converted about 80% of the S added as CS2 to S(0) when CS2 was supplied in excess. The rate of S(0) consumption varied between 7 (Sts 4-3) and 63 (S1p) nmol O2 min(-1) ml culture(-1). Low S(0) consumption rates correlated partly with low levels of cell attachment to externally produced S(0) globules. During chemostat growth, the relative amount of CS2 hydrolase in the cell increased with decreasing growth rates. This resulted in more S(0) accumulation during CS2 overloads at low growth rates. Intermittent interruptions of the CS2 supply affected all five strains. Strains S1p, G8, and BBW1 recovered from 24 h of starvation within 4 h, and strains 2Bp and Sts 4-3 recovered within 24 h after CS2 was resupplied. We recommend the use of mixtures of Acidithiobacillus strains in industrial biofilters. PMID:23995926

  13. Diversity and Ecophysiology of New Isolates of Extremely Acidophilic CS2-Converting Acidithiobacillus Strains

    PubMed Central

    Smeulders, Marjan J.; Pol, Arjan; Zandvoort, Marcel H.; Jetten, Mike S. M.

    2013-01-01

    Biofiltration of industrial carbon disulfide (CS2)-contaminated waste air streams results in the acidification of biofilters and therefore reduced performance, high water use, and increased costs. To address these issues, we isolated 16 extremely acidophilic CS2-converting Acidithiobacillus thiooxidans strains that tolerated up to 6% (vol/vol) sulfuric acid. The ecophysiological properties of five selected strains (2Bp, Sts 4-3, S1p, G8, and BBW1) were compared. These five strains had pH optima between 1 (2Bp) and 2 (S1p). Their affinities for CS2 ranged between 80 (G8) and 130 (2Bp) μM. Strains S1p, G8, and BBW1 had more hydrophobic cell surfaces and produced less extracellular polymeric substance than did strains 2Bp and Sts 4-3. All five strains converted about 80% of the S added as CS2 to S0 when CS2 was supplied in excess. The rate of S0 consumption varied between 7 (Sts 4-3) and 63 (S1p) nmol O2 min−1 ml culture−1. Low S0 consumption rates correlated partly with low levels of cell attachment to externally produced S0 globules. During chemostat growth, the relative amount of CS2 hydrolase in the cell increased with decreasing growth rates. This resulted in more S0 accumulation during CS2 overloads at low growth rates. Intermittent interruptions of the CS2 supply affected all five strains. Strains S1p, G8, and BBW1 recovered from 24 h of starvation within 4 h, and strains 2Bp and Sts 4-3 recovered within 24 h after CS2 was resupplied. We recommend the use of mixtures of Acidithiobacillus strains in industrial biofilters. PMID:23995926

  14. Oxidation of elemental sulfur, tetrathionate and ferrous iron by the psychrotolerant Acidithiobacillus strain SS3.

    PubMed

    Kupka, Daniel; Liljeqvist, Maria; Nurmi, Pauliina; Puhakka, Jaakko A; Tuovinen, Olli H; Dopson, Mark

    2009-12-01

    Mesophilic iron and sulfur-oxidizing acidophiles are readily found in acid mine drainage sites and bioleaching operations, but relatively little is known about their activities at suboptimal temperatures and in cold environments. The purpose of this work was to characterize the oxidation of elemental sulfur (S(0)), tetrathionate (S4O6(2-)) and ferrous iron (Fe2+) by the psychrotolerant Acidithiobacillus strain SS3. The rates of elemental sulfur and tetrathionate oxidation had temperature optima of 20 degrees and 25 degrees C, respectively, determined using a temperature gradient incubator that involved narrow (1.1 degrees C) incremental increases from 5 degrees to 30 degrees C. Activation energies calculated from the Arrhenius plots were 61 and 89 kJ mol(-1) for tetrathionate and 110 kJ mol(-1) for S(0) oxidation. The oxidation of elemental sulfur produced sulfuric acid at 5 degrees C and decreased the pH to approximately 1. The low pH inhibited further oxidation of the substrate. In media with both S(0) and Fe2+, oxidation of elemental sulfur did not commence until all available ferrous iron was oxidized. These data on sequential oxidation of the two substrates are in keeping with upregulation and downregulation of several proteins previously noted in the literature. Ferric iron was reduced to Fe2+ in parallel with elemental sulfur oxidation, indicating the presence of a sulfur:ferric iron reductase system in this bacterium. PMID:19782750

  15. Effects of Cinnabar on Pyrite Oxidation by Thiobacillus ferrooxidans and Cinnabar Mobilization by a Mercury-Resistant Strain

    PubMed Central

    Baldi, Franco; Olson, Gregory J.

    1987-01-01

    The effect of cinnabar on pyrite oxidation by mercury-sensitive and mercury-resistant strains of Thiobacillus ferrooxidans was investigated by using percolation columns. Mercury-resistant strains oxidized pyrite in pyrite-cinnabar mixtures (1 and 10%, wt/wt), whereas a mercury-sensitive strain did not. Elemental mercury was produced by the mercury-resistant strains growing in the pyrite-cinnabar mixtures in percolation columns and in flasks containing cinnabar only. Manometric experiments showed that cinnabar had little effect on oxygen uptake of mercury-sensitive or mercury-resistant cells growing on ferrous sulfate, pyrite, or pyrite-ferrous sulfate mixtures. In addition, shake flask leaching experiments showed that cinnabar had little effect on pyrite oxidation at 1% (wt/wt) but inhibited growth of mercury-sensitive and mercury-resistant strains at 10%. Mercury-resistant strains were unable to grow on cinnabar as an energy source. PMID:16347321

  16. Cross-Comparison of Leaching Strains Isolated from Two Different Regions: Chambishi and Dexing Copper Mines

    PubMed Central

    Ngom, Baba; Liang, Yili; Liu, Xueduan

    2014-01-01

    A cross-comparison of six strains isolated from two different regions, Chambishi copper mine (Zambia, Africa) and Dexing copper mine (China, Asia), was conducted to study the leaching efficiency of low grade copper ores. The strains belong to the three major species often encountered in bioleaching of copper sulfide ores under mesophilic conditions: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferriphilum. Prior to their study in bioleaching, the different strains were characterized and compared at physiological level. The results revealed that, except for copper tolerance, strains within species presented almost similar physiological traits with slight advantages of Chambishi strains. However, in terms of leaching efficiency, native strains always achieved higher cell density and greater iron and copper extraction rates than the foreign microorganisms. In addition, microbial community analysis revealed that the different mixed cultures shared almost the same profile, and At. ferrooxidans strains always outcompeted the other strains. PMID:25478575

  17. Detection, identification and typing of Acidithiobacillus species and strains: a review.

    PubMed

    Nuñez, Harold; Covarrubias, Paulo C; Moya-Beltrán, Ana; Issotta, Francisco; Atavales, Joaquín; Acuña, Lillian G; Johnson, D Barrie; Quatrini, Raquel

    2016-09-01

    The genus Acidithiobacillus comprises several species of Gram-negative acidophilic bacteria that thrive in natural and man-made low pH environments in a variety of geo-climatic contexts. Beyond their fundamental interest as model extreme acidophiles, these bacteria are involved in the processing of minerals and the desulfurization of coal and natural gas, and are also sources of environmental pollution due to their generation of acid mine drainage and corrosion of cement and concrete structures. Acidithiobacillus spp. are therefore considered a biotechnologically relevant group of bacteria, and their identification and screening in natural and industrial environments is of great concern. Several molecular typing methodologies have been instrumental in improving knowledge of the inherent diversity of acidithiobacilli by providing information on the genetic subtypes sampled in public and private culture collections; more recently, they have provided specific insight into the diversity of acidithiobacilli present in industrial and natural environments. The aim of this review is to provide an overview of techniques used in molecular detection, identification and typing of Acidithiobacillus spp. These methods will be discussed in the context of their contribution to the general and specific understanding of the role of the acidithiobacilli in microbial ecology and industrial biotechnology. Emerging opportunities for industrial and environmental surveillance of acidithiobacilli using next-generation molecular typing methodologies are also reviewed. PMID:27288569

  18. Characterization of a novel thiosulfate dehydrogenase from a marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH.

    PubMed

    Sharmin, Sultana; Yoshino, Eriko; Kanao, Tadayoshi; Kamimura, Kazuo

    2016-01-01

    A marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH, was isolated to develop a bioleaching process for NaCl-containing sulfide minerals. Because the sulfur moiety of sulfide minerals is metabolized to sulfate via thiosulfate as an intermediate, we purified and characterized the thiosulfate dehydrogenase (TSD) from strain SH. The enzyme had an apparent molecular mass of 44 kDa and was purified 71-fold from the solubilized membrane fraction. Tetrathionate was the product of the TSD-oxidized thiosulfate and ferricyanide or ubiquinone was the electron acceptor. Maximum enzyme activity was observed at pH 4.0, 40 °C, and 200 mM NaCl. To our knowledge, this is the first report of NaCl-stimulated TSD activity. TSD was structurally different from the previously reported thiosulfate-oxidizing enzymes. In addition, TSD activity was strongly inhibited by 2-heptyl-4-hydroxy-quinoline N-oxide, suggesting that the TSD is a novel thiosulfate:quinone reductase. PMID:26393925

  19. Molecular genetics of Thiobacillus ferrooxidans.

    PubMed Central

    Rawlings, D E; Kusano, T

    1994-01-01

    Thiobacillus ferrooxidans is a gram-negative, highly acidophilic (pH 1.5 to 2.0), autotrophic bacterium that obtains its energy through the oxidation of ferrous iron or reduced inorganic sulfur compounds. It is usually dominant in the mixed bacterial populations that are used industrially for the extraction of metals such as copper and uranium from their ores. More recently, these bacterial consortia have been used for the biooxidation of refractory gold-bearing arsenopyrite ores prior to the recovery of gold by cyanidation. The commercial use of T. ferrooxidans has led to an increasing interest in the genetics and molecular biology of the bacterium. Initial investigations were aimed at determining whether the unique physiology and specialized habitat of T. ferrooxidans had been accompanied by a high degree of genetic drift from other gram-negative bacteria. Early genetic studies were comparative in nature and concerned the isolation of genes such as nifHDK, glnA, and recA, which are widespread among bacteria. From a molecular biology viewpoint, T. ferrooxidans appears to be a typical member of the proteobacteria. In most instances, cloned gene promoters and protein products have been functional in Escherichia coli. Although T. ferrooxidans has proved difficult to transform with DNA, research on indigenous plasmids and the isolation of the T. ferrooxidans merA gene have resulted in the development of a low-efficiency electroporation system for one strain of T. ferrooxidans. The most recent studies have focused on the molecular genetics of the pathways associated with nitrogen metabolism, carbon dioxide fixation, and components of the energy-producing mechanisms. PMID:8177170

  20. Geochemical diversity in S processes mediated by culture-adapted and environmental-enrichments of Acidithiobacillus spp.

    NASA Astrophysics Data System (ADS)

    Bernier, Luc; Warren, Lesley A.

    2007-12-01

    Coupled S speciation and acid generation resulting from S processing associated with five different microbial treatments, all primarily Acidithiobacillus spp. (i.e. autotrophic S-oxidizers) were evaluated in batch laboratory experiments. Microbial treatments included two culture-adapted strains, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, their consortia and two environmental enrichments from a mine tailings lake that were determined to be >95% Acidithiobacillus spp., by whole-cell fluorescent hybridization. Using batch experiments simulating acidic mine waters with no carbon amendments, acid generation, and S speciation associated with the oxidation of three S substrates (thiosulfate, tetrathionate, and elemental S) were evaluated. Aseptic controls showed no observable pH decrease over the experimental time course (1 month) for all three S compounds examined. In contrast, pH decreased in all microbial treatments from starting pH values of 4 to 2 or less for all three S substrates. Results show a non-linear relationship between the pH dynamics of the batch cultures and their corresponding sulfate concentrations, and indicate how known microbial S processing pathways have opposite impacts, ultimately on pH dynamics. Associated geochemical modeling indicated negligible abiogenic processes contributing to the observed results, indicating strong microbial control of acid generation extending over pH ranges from 4 to less than 2. However, the observed acid generation rates and associated S speciation were both microbial treatment and substrate-specific. Results reveal a number of novel insights regarding microbial catalysis of S oxidation: (1) metabolic diversity in S processing, as evidenced by the observed geochemical signatures in S chemical speciation and rates of acid generation amongst phylogenetically similar organisms (to the genus level); (2) consortial impacts differ from those of individual strain members; (3) environmental enrichments

  1. Reconstitution of Iron Oxidase from Sulfur-Grown Acidithiobacillus ferrooxidans▿ †

    PubMed Central

    Taha, Taher M.; Kanao, Tadayoshi; Takeuchi, Fumiaki; Sugio, Tsuyoshi

    2008-01-01

    The iron oxidation system from sulfur-grown Acidithiobacillus ferrooxidans ATCC 23270 cells was reconstituted in vitro. Purified rusticyanin, cytochrome c, and aa3-type cytochrome oxidase were essential for reconstitution. The iron-oxidizing activity of the reconstituted system was 3.3-fold higher than that of the cell extract from which these components were purified. PMID:18791023

  2. Genome Sequence of the Acidophilic Ferrous Iron-Oxidizing Isolate Acidithrix ferrooxidans Strain Py-F3, the Proposed Type Strain of the Novel Actinobacterial Genus Acidithrix.

    PubMed

    Eisen, Sebastian; Poehlein, Anja; Johnson, D Barrie; Daniel, Rolf; Schlömann, Michael; Mühling, Martin

    2015-01-01

    Extremely acidophilic iron-oxidizing Gram-positive bacteria comprise species within the phyla Firmicutes and Actinobacteria. Here, we report the 4.02-Mb draft genome of Acidithrix ferrooxidans Py-F3, which was isolated from a stream draining an abandoned copper mine and proposed as the type species of a new genus of Actinobacteria. PMID:25931603

  3. Presence of a Family of Plasmids (29 to 65 Kilobases) with a 26-Kilobase Common Region in Different Strains of the Sulfur-Oxidizing Bacterium Acidithiobacillus caldus▿ †

    PubMed Central

    van Zyl, Leonard J.; Deane, Shelly M.; Louw, Lilly-Ann; Rawlings, Douglas E.

    2008-01-01

    Three large cryptic plasmids from different isolates of Acidithiobacillus caldus were rescued by using an in vitro transposition system that delivers a kanamycin-selectable marker and an Escherichia coli plasmid origin of replication. The largest of the plasmids, the 65-kb plasmid pTcM1, was isolated from a South African A. caldus strain, MNG. This plasmid was sequenced and compared to that of pTcF1 (39 kb, from strain “f,” South Africa) and pC-SH12 (29 kb, from strain C-SH12, Australia). With the exception of a 2.7-kb insertion sequence, pC-SH12 appears to represent the DNA common to all three plasmids and includes a number of accessory genes plus the plasmid “backbone” containing the replication region. The two larger plasmids carry, in addition, a number of insertion sequences of the ISL3 family and a composite transposon related to the Tn21 subfamily containing a highly mosaic region within the borders of the inverted repeats. Genes coding for arsenic resistance, plasmid mobilization, plasmid stability, and a putative restriction-modification system occur within these mosaic regions. PMID:18515486

  4. Use of an acidophilic yeast strain to enable the growth of leaching bacteria on solid media.

    PubMed

    Ngom, Baba; Liang, Yili; Liu, Yi; Yin, Huaqun; Liu, Xueduan

    2015-03-01

    In this study, a Candida digboiensis strain was isolated from a heap leaching plant in Zambia and used in double-layer agar plate to efficiently isolate and purify leaching bacteria. Unlike Acidiphilium sp., the yeast strain was tetrathionate tolerant and could metabolize a great range of organic compounds including organic acids. These properties allowed the yeast strain to enable and fasten the growth of iron and sulfur oxidizers on double-layer agar plate. The isolates were identified as Acidithiobacillus ferrooxidans FOX1, Leptospirillun ferriphilum BN, and Acidithiobacillus thiooxidans ZMB. These three leaching bacteria were inhibited by organic acids such as acetic and propionic acids; however, their activities were enhanced by Candida digboiensis NB under dissolved organic matter stress. PMID:25347960

  5. Effects of inhibitors and NaCl on the oxidation of reduced inorganic sulfur compounds by a marine acidophilic, sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH.

    PubMed

    Kamimura, Kazuo; Higashino, Emi; Kanao, Tadayoshi; Sugio, Tsuyoshi

    2005-02-01

    The effect of NaCl and the pathways of the oxidation of reduced inorganic sulfur compounds were studied using resting cells and cell-free extracts of Acidithiobacillus thiooxidans strain SH. This isolate specifically requires NaCl for growth. The oxidation of sulfur and sulfite by resting cells was strongly inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide. Carbonylcyanide m-chlorophenyl-hydrazone and monensin were also relatively strong inhibitors. Thiosulfate-oxidizing activity was not inhibited by these uncouplers. Valinomycin did not inhibit the oxidation of sulfur compounds. NaCl stimulated the sulfur- and sulfite-oxidizing activities in resting cells but not in cell-free extracts. The tetrathionate-oxidizing activity in resting cells was slightly stimulated by NaCl, whereas it did not influence the thiosulfate-oxidizing activity. Sulfide oxidation was biphasic, suggesting the formation of intermediate sulfur. The initial phase of sulfide oxidation was not affected by NaCl, whereas the subsequent oxidation of sulfur in the second phase was Na+-dependent. A model is proposed for the role of NaCl in the metabolism of reduced sulfur compounds in A. thiooxidans strain SH. PMID:15375674

  6. An unusual Tn21-like transposon containing an ars operon is present in highly arsenic-resistant strains of the biomining bacterium Acidithiobacillus caldus.

    PubMed

    Tuffin, I Marla; de Groot, Peter; Deane, Shelly M; Rawlings, Douglas E

    2005-09-01

    A transposon, TnAtcArs, that carries a set of arsenic-resistance genes was isolated from a strain of the moderately thermophilic, sulfur-oxidizing, biomining bacterium Acidithiobacillus caldus. This strain originated from a commercial plant used for the bio-oxidation of gold-bearing arsenopyrite concentrates. Continuous selection for arsenic resistance over many years had made the bacterium resistant to high concentrations of arsenic. Sequence analysis indicated that TnAtcArs is 12 444 bp in length and has 40 bp terminal inverted repeat sequences and divergently transcribed resolvase and transposase genes that are related to the Tn21-transposon subfamily. A series of genes consisting of arsR, two tandem copies of arsA and arsD, two ORFs (7 and 8) and arsB is situated between the resolvase and transposase genes. Although some commercial strains of At. caldus contained the arsDA duplication, when transformed into Escherichia coli, the arsDA duplication was unstable and was frequently lost during cultivation or if a plasmid containing TnAtcArs was conjugated into a recipient strain. TnAtcArs conferred resistance to arsenite and arsenate upon E. coli cells. Deletion of one copy of arsDA had no noticeable effect on resistance to arsenite or arsenate in E. coli. ORFs 7 and 8 had clear sequence similarity to an NADH oxidase and a CBS-domain-containing protein, respectively, but their deletion did not affect resistance to arsenite or arsenate in E. coli. TnAtcArs was actively transposed in E. coli, but no increase in transposition frequency in the presence of arsenic was detected. Northern hybridization and reporter gene studies indicated that although ArsR regulated the 10 kb operon containing the arsenic-resistance genes in response to arsenic, ArsR had no effect on the regulation of genes associated with transposition activity. PMID:16151213

  7. Effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13

    SciTech Connect

    John E. Aston; William A. Apel; Brady D. Lee; Brent M. Peyton

    2010-12-01

    This study describes the effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13 with a Langmuir model. Copper exhibited the highest loading capacity, 4.76 ± 0.28 mmol g-1, to viable cells at pH 5.5. The highest kL (binding-site affinity) observed was 61.2 ± 3.0 L mmol-1 to dehydrated cells at pH 4.0. The pHs that maximized loading capacities and binding-site affinities were generally between 4.0 and 5.5, where the sum of free-proton and complexed-metal concentrations was near a minimum. Of additional importance, lead, zinc, and copper sorbed to viable cells at pH values as low as 1.5. Previous studies with other acidithiobacilli did not measure viable-cell sorption below pH 4.0. In separate experiments, desorption studies showed that far less copper was recovered from viable cells than any other metal or cell condition, suggesting that uptake may play an important role in copper sorption by At. caldus strain BC13. To reflect an applied system, the sorption of metal mixtures was also studied. In these experiments, lead, zinc, and copper sorption from a tertiary mixture were 40.2 ± 4.3%, 28.7 ± 3.8%, and 91.3 ± 3.0%, respectively, of that sorbed in single-metal systems.

  8. Effects of ferrous sulfate, inoculum history, and anionic form on lead, zinc, and copper toxicity to Acidithiobacillus caldus strain BC13

    SciTech Connect

    John E. Aston; William A. Apel; Brady D. Lee; Brent M. Peyton

    2010-12-01

    The current study reports the single and combined toxicities of Pb, Zn, and Cu to Acidithiobacillus caldus strain BC13. The observed half-maximal inhibitory concentrations (IC50),?±?95% confidence intervals, for Pb, Zn, and Cu were 0.9?±?0.1?mM, 39?±?0.5?mM, and 120?±?8?mM, respectively. The observed minimum inhibitory concentrations (MIC) for Pb, Zn, and Cu were 7.5?mM, 75?mM, and 250?mM, respectively. When metals were presented in binary mixtures, the toxicities were less than additive. For example, when 50% of the Pb MIC and 50% of the Cu MIC were presented together, the specific growth rate was inhibited by only 59?±?3%, rather than 100%. In addition, the presence of ferrous iron in the growth media decreased Pb and Zn toxicity to A. caldus strain BC13. The importance of inoculum history was evaluated by pre-adapting cultures through subsequent transfers in the presence of Pb, Zn, and Cu at their respective IC50s. After pre-adaptation, cultures had specific growth rates 39?±?11, 32?±?7, and 28?±?12% higher in the presence of Pb, Zn, and Cu IC50s, respectively, compared with cultures that had not been pre-adapted. In addition, when cells exposed to the MICs of Pb, Zn, and Cu were harvested, washed, and re-inoculated into fresh, metal-free medium, they grew, showing that the cells remained viable with little residual toxicity. Finally, metal chlorides showed more toxicity than metal sulfates, and studies using sodium chloride or a mixture of metal sulfates and sodium chloride suggested that this was attributable to an additive combination of the metal and chloride toxicities. Environ. Toxicol. Chem. 2010;29:2669–2675. © 2010 SETAC

  9. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans.

    PubMed

    Peng, J B; Yan, W M; Bao, X Z

    1994-07-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host. PMID:16349341

  10. Gene identification and substrate regulation provide insights into sulfur accumulation during bioleaching with the psychrotolerant acidophile Acidithiobacillus ferrivorans.

    PubMed

    Liljeqvist, Maria; Rzhepishevska, Olena I; Dopson, Mark

    2013-02-01

    The psychrotolerant acidophile Acidithiobacillus ferrivorans has been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested that Acidithiobacillus ferrivorans utilized a ferrous iron oxidation pathway similar to that of the related species Acidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since the Acidithiobacillus ferrivorans genome contained genes from both Acidithiobacillus ferrooxidans and Acidithiobacillus caldus encoding enzymes whose assigned functions are redundant. Transcriptional analysis revealed that the petA1 and petB1 genes (implicated in ferrous iron oxidation) were downregulated upon growth on the inorganic sulfur compound tetrathionate but were on average 10.5-fold upregulated in the presence of ferrous iron. In contrast, expression of cyoB1 (involved in inorganic sulfur compound oxidation) was decreased 6.6-fold upon growth on ferrous iron alone. Competition assays between ferrous iron and tetrathionate with Acidithiobacillus ferrivorans SS3 precultured on chalcopyrite mineral showed a preference for ferrous iron oxidation over tetrathionate oxidation. Also, pure and mixed cultures of psychrotolerant acidophiles were utilized for the bioleaching of metal sulfide minerals in stirred tank reactors at 5 and 25°C in order to investigate the fate of ferrous iron and inorganic sulfur compounds. Solid sulfur accumulated in bioleaching cultures growing on a chalcopyrite concentrate. Sulfur accumulation halted mineral solubilization, but sulfur was oxidized after metal release had ceased. The data indicated that ferrous iron was preferentially oxidized during growth on chalcopyrite, a finding with important implications for biomining in cold environments. PMID:23183980

  11. Recovery of Nickel and Cobalt from Laterite Tailings by Reductive Dissolution under Aerobic Conditions Using Acidithiobacillus Species.

    PubMed

    Marrero, J; Coto, O; Goldmann, S; Graupner, T; Schippers, A

    2015-06-01

    Biomining of sulfidic ores has been applied for almost five decades. However, the bioprocessing of oxide ores such as laterites lags commercially behind. Recently, the Ferredox process was proposed to treat limonitic laterite ores by means of anaerobic reductive dissolution (AnRD), which was found to be more effective than aerobic bioleaching by fungi and other bacteria. We show here that the ferric iron reduction mediated by Acidithiobacillus thiooxidans can be applied to an aerobic reductive dissolution (AeRD) of nickel laterite tailings. AeRD using a consortium of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans extracted similar amounts of nickel (53-57%) and cobalt (55-60%) in only 7 days as AnRD using Acidithiobacillus ferrooxidans. The economic and environmental advantages of AeRD for processing of laterite tailings comprise no requirement for an anoxic atmosphere, 1.8-fold less acid consumption than for AnRD, as well as nickel and cobalt recovered in a ferrous-based pregnant leach solution (PLS), facilitating the subsequent metal recovery. In addition, an aerobic acid regeneration stage is proposed. Therefore, AeRD process development can be considered as environmentally friendly for treating laterites with low operational costs and as an attractive alternative to AnRD. PMID:25923144

  12. Evaluation of Leptospirillum ferrooxidans for Leaching

    PubMed Central

    Sand, Wolfgang; Rohde, Katrin; Sobotke, Birgit; Zenneck, Claus

    1992-01-01

    The importance of Leptospirillum ferrooxidans for leach processes has been evaluated by studying the lithotrophic flora of three mine biotopes and a heap leaching operation, by percolation experiments with inoculated, sterilized ore, and by morphological, physiological, and genetic investigations of pure and mixed cultures of L. ferrooxidans, Thiobacillus ferrooxidans, and Thiobacillus thiooxidans. In biotopes of 20°C or above, Leptospirillum-like bacteria are as abundant as T. ferrooxidans. Leptospirilli represent at least one-half of the ferrous-iron-oxidizing population. Percolation experiments confirmed this result. Leptospirilli were as numerous as T. ferrooxidans. At reduced temperatures, the generation times of leptospirilli increase more so than those of T. ferrooxidans. At 14°C, Leptospirillum grows slowly and T. ferrooxidans dominates the population. Physiological investigations indicate that L. ferrooxidans is a strict chemolithoautotroph, metabolizing only ferrous iron and pyrite. Even an addition of 0.05% (wt/vol) yeast extract inhibited its growth. The maximum ferrous-iron-oxidizing activity of L. ferrooxidans amounts to about 40% of the activity of T. ferrooxidans. After growth on sulfidic ore, both species exhibit reduced iron-oxidizing activities, L. ferrooxidans exhibiting one-third and T. ferrooxidans exhibiting one-seventh of their maximum activities. Surprisingly, the absolute values are similar. For indirect leaching, L. ferrooxidans is as important as T. ferrooxidans. This was confirmed by the results of percolation experiments. L. ferrooxidans together with T. thiooxidans mobilized metals at least as well as T. ferrooxidans did. The best results were obtained with a mixed culture of all three species. Images PMID:16348642

  13. Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant.

    PubMed

    Hocheng, Hong; Su, Cheer; Jadhav, Umesh U

    2014-12-01

    The generation of 300–500 kg of slag per ton of the steel produced is a formidable amount of solid waste available for treatment. They usually contain considerable quantities of valuable metals. In this sense, they may become either important secondary resource if processed in eco-friendly manner for secured supply of contained metals or potential pollutants, if not treated properly. It is possible to recover metals from steel slag by applying bioleaching process. Electric arc furnace (EAF) slag sample was used for bioleaching of metals. In the present study, before bioleaching experiment water washing of an EAF slag was carried out. This reduced slag pH from 11.2 to 8.3. Culture supernatants of Acidithiobacillus thiooxidans (At. thiooxidans), Acidithiobacillus ferrooxidans (At. ferrooxidans), and Aspergillus niger (A. niger) were used for metal solubilization. At. thiooxidans culture supernatant containing 0.016 M sulfuric acid was found most effective for bioleaching of metals from an EAF slag. Maximum metal extraction was found for Mg (28%), while it was least for Mo (0.1%) in six days. Repeated bioleaching cycles increased metal recovery from 28% to 75%, from 14% to 60% and from 11% to 27%, for Mg, Zn and Cu respectively. PMID:25461931

  14. Improved chalcopyrite bioleaching by Acidithiobacillus sp. via direct step-wise regulation of microbial community structure.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    A direct step-wise regulation strategy of microbial community structure was developed for improving chalcopyrite bioleaching by Acidithiobacillus sp. Specially, the initial microbial proportion between Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was controlled at 3:1 with additional 2 g/L Fe(2+) for faster initiating iron metabolism. A. thiooxidans biomass was fed via a step-wise strategy (8-12th d) with the microbial proportion 1:1 for balancing community structure and promoting sulfur metabolism in the stationary phase. A. thiooxidans proportion was further improved via another step-wise feeding strategy (14-18th d) with the microbial proportion 1:2 for enhancing sulfur metabolism and weakening jarosite passivation in the later phase. With the community structure-shift control strategy, biochemical reaction was directly regulated for creating a better balance in different phases. Moreover, the final copper ion was increased from 57.1 to 93.2 mg/L, with the productivity 2.33 mg/(Ld). The novel strategy may be valuable in optimization of similar bioleaching process. PMID:26011694

  15. Construction and Characterization of a recA Mutant of Thiobacillus ferrooxidans by Marker Exchange Mutagenesis

    PubMed Central

    Liu, Zhenying; Guiliani, Nicolas; Appia-Ayme, Corinne; Borne, Françoise; Ratouchniak, Jeanine; Bonnefoy, Violaine

    2000-01-01

    To construct Thiobacillus ferrooxidans mutants by marker exchange mutagenesis, a genetic transfer system is required. The transfer of broad-host-range plasmids belonging to the incompatibility groups IncQ (pKT240 and pJRD215), IncP (pJB3Km1), and IncW (pUFR034) from Escherichia coli to two private T. ferrooxidans strains (BRGM1 and Tf-49) and to two collection strains (ATCC 33020 and ATCC 19859) by conjugation was analyzed. To knock out the T. ferrooxidans recA gene, a mobilizable suicide plasmid carrying the ATCC 33020 recA gene disrupted by a kanamycin resistance gene was transferred from E. coli to T. ferrooxidans ATCC 33020 by conjugation under the best conditions determined. The two kanamycin-resistant clones, which have retained the kanamycin-resistant phenotype after growth for several generations in nonselective medium, were shown to have the kanamycin resistance gene inserted within the recA gene, indicating that the recA::Ω-Km mutated allele was transferred from the suicide plasmid to the chromosome by homologous recombination. These mutants exhibited a slightly reduced growth rate and an increased sensitivity to UV and γ irradiation compared to the wild-type strain. However, the T. ferrooxidans recA mutants are less sensitive to these physical DNA-damaging agents than the recA mutants described in other bacterial species, suggesting that RecA plays a minor role in DNA repair in T. ferrooxidans. PMID:10735871

  16. [Isolation and characterization of Acidiphilium strain teng-A and its metabolism of fe (III) during pure- and mixed cultivation].

    PubMed

    Liu, Yan-yang; Chen, Zhi-wei; Jiang, Cheng-ying; Liu, Shuang-jiang

    2007-04-01

    An acidophilic, aerobic and chemoheterotrophic bacterial strain Teng-A was isolated from acidic environmental samples collected at sulfidic hot springs of Tengchong County, Yunnan Province, China. Cells of strain Teng-A was rod-shaped (0.6-0.8 microm x 1.0 - 1.5 microm), Gram-negative, motile with flagella. Strain Teng-A grew well at temperature of 29-33 degrees C and at pH of 3.0-4.0. It used a wide variety of organic compounds for growth, but did not use ferrous iron, elemental sulfur, thiosulfate and tetrathionate as the sole energy source. Its G + C content was determined to be 69.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence demonstrated that it was closely related to species of Acidiphilium. Under anoxic conditions, the strain Teng-A reduced Fe(III) to Fe(II) with glucose or hy drogen as electron donor (reduction rate is 11.56 mg/L day and 15.34 mg/L x day, respectively). Metabolisms/Oxidation of ferrous iron by Acidithiobacillus ferrooxidans LJ-1 and Leptospirilum ferriphilum LJ-2, in the presence and absence of strain Teng-A were studied. When incubated with strain Teng-A, the oxidation rates of Fe(II) was slightly decreased at the first 3 days (0.44 g/L x day and 0.4 g/L x day respectively) compared to pure culture of At ferrooxidans and L. ferriphilum, but all Fe(II) was completely oxidized after 5 days. It was found that the morphologies of precipitates of Fe (III) produced during pure and mixed cultivation were different. The potential application of Acidiphilium in bioleaching and its potential role during formation of precipitated ores were discussed. PMID:17552248

  17. Phospholipid Metabolism in Ferrobacillus ferrooxidans

    PubMed Central

    Short, Steven A.; White, David C.; Aleem, M. I. H.

    1969-01-01

    The lipid composition of the chemoautotroph Ferrobacillus ferrooxidans has been examined. Fatty acids represent 2% of the dry weight of the cells and 86% of the total are extractable with organic solvents. About 25% of the total fatty acids are associated with diacyl phospholipids. Polar carotenoids, the benzoquinone coenzyme Q-8, and most of the fatty acids are present in the neutral lipids. The phospholipids have been identified as phosphatidyl monomethylethanolamine (42%), phosphatidyl glycerol (23%), phosphatidyl ethanolamine (20%), cardiolipin (13%), phosphatidyl choline (1.5%), and phosphatidyl dimethylethanolamine (1%) by chromatography of the diacyl lipids, by chromatography in four systems of the glycerol phosphate esters derived from the lipids by mild alkaline methanolysis, and by chromatographic identification of the products of acid hydrolysis of the esters. No trace of phosphatidylserine (PS), glycerolphosphorylserine, or serine could be detected in the lipid extract or in derivatives of that extract. This casts some doubt on the postulated involvement of PS in iron metabolism. After growth in the presence of 14C and 32P, there was essentially no difference in the turnover of either isotope in the glycerolphosphate ester derived from each lipid in cells grown at pH 1.5 or 3.5. Images PMID:5802599

  18. Draft Genome Sequence of a Novel Acidophilic Iron-Oxidizing Firmicutes Species, "Acidibacillus ferrooxidans" (SLC66T).

    PubMed

    Ñancucheo, Ivan; Oliveira, Renato; Dall'Agnol, Hivana; Johnson, D Barrie; Grail, Barry; Holanda, Roseanne; Nunes, Gisele Lopes; Cuadros-Orellana, Sara; Oliveira, Guilherme

    2016-01-01

    Here, we present the draft genome sequence of the type strain of "Acidibacillus ferrooxidans," a mesophilic, heterotrophic, and acidophilic bacterium that was isolated from mine spoilage subjected to accelerated weathering in humidity cell tests carried out by the former U.S. Bureau of Mines in Salt Lake City, UT. PMID:27198020

  19. Growth of Thiobacillus ferrooxidans on formic acid

    SciTech Connect

    Pronk, J.T.; Meijer, W.M.; Hazeu, W.; vanDijken, J.P.; Bos, P.; Kuenen, J.G. )

    1991-07-01

    A variety of acidophilic microorganisms were shown to be capable of oxidizing formate. These included Thiobacillus ferrooxidans ATCC 21834, which, however, could not grow on formate in normal batch cultures. However, the organism could be grown on formate when the substrate supply was growth limiting, e.g., in formate-limited chemostat cultures. The cell densities achieved by the use of the latter cultivation method were higher than cell densities reported for growth of T. ferrooxidans on ferrous iron or reduced sulfur compounds. Inhibition of formate oxidation by cell suspensions, but not cell extracts, of formate-grown T. ferrooxidans occurred at formate concentrations above 100 {mu}M. This observation explains the inability of the organism to grow on formate in batch cultures. Cells grown in formate-limited chemostat cultures retained the ability to oxidize ferrous iron at high rates. Ribulose 1,5-bisphosphate carboxylase activities in cell extracts indicated that T. ferrooxidans employs the Calvin cycle for carbon assimilation during growth on formate. Oxidation of formate by cell extracts was NAD(P) independent.

  20. Electrochemistry of Thiobacillus ferrooxidans reactions with pyrite

    SciTech Connect

    Pesic, B.; Oliver, D.J.; Kim, Inbeum; De, G.C.

    1993-01-20

    A cyclic voltammetry technique was used to study the interactions of pyrite during bioleaching with the bacterium Thiobacillus ferrooxidans. Potential effects of heavy metals (silver and mercury) and varying the pH on the iron oxidizing ability of the bacterium are reported. Redox potential techniques were used to study effect of ferrous sulfate concentration and pH on bacterial growth.

  1. [Inhibition of Low Molecular Organic Acids on the Activity of Acidithiobacillus Species and Its Effect on the Removal of Heavy Metals from Contaminated Soil].

    PubMed

    Song, Yong-wei; Wang, He-rul; Cao, Yan-xiao; Li, Fei; Cui, Chun-hong; Zhou, Li

    2016-05-15

    Application of organic fertilizer can reduce the solubility and bioavailability of heavy metals in contaminated soil, but in the flooded anaerobic environment, organic fertilizer will be decomposed to produce a large number of low molecular organic acids, which can inhibit the biological activity of Acidithiobacillus species. Batch cultures studies showed that the monocarboxylic organic acids including formic acid, acetic acid, propionic acid, and butyric acid exhibited a marked toxicity to Acidithiobacillus species, as indicated by that 90% of inhibitory rate for Fe2 and So oxidation in 72 h were achieved at extremely low concentrations of 41.2 mg · L⁻¹, 78.3 mg · L⁻¹, 43.2 mg · L⁻¹, 123.4 mg · L⁻¹ and 81.9 mg 230. 4 mg · L⁻¹, 170.1 mg · L⁻¹, 123.4 mg · L⁻¹ respectively. Of these organic acids, formic acid was the most toxic one as indicated by that Fe2 and So oxidation was almost entirely inhibited at a low concentration. In addition, it was found that Acidithiobacillus ferrooxidans was more sensitive to low molecular organic acids than Acidithiobacillus thiooxidans. What's more, there was little effect on biological acidification process of heavy metal contaminated soil when organic acids were added at initial stage (Oh), but it was completely inhibited when these acids were added after 12 h of conventional biological acidification, thus decreasing the efficiency of heavy metals dissolution from soil. PMID:27506054

  2. Acidithiobacillus ferriphilus sp. nov., a facultatively anaerobic iron- and sulfur-metabolizing extreme acidophile.

    PubMed

    Falagán, Carmen; Johnson, D Barrie

    2016-01-01

    The genus Acidithiobacillus includes three species that conserve energy from the oxidation of ferrous iron, as well as reduced sulfur, to support their growth. Previous work, based on multi-locus sequence analysis, identified a fourth group of iron- and sulfur-oxidizing acidithiobacilli as a potential distinct species. Eleven strains of 'Group IV' acidithiobacilli, isolated from different global locations, have been studied. These were all shown to be obligate chemolithotrophs, growing aerobically by coupling the oxidation of ferrous iron or reduced sulfur (but not hydrogen) to molecular oxygen, or anaerobically by the oxidation of reduced sulfur coupled to ferric iron reduction. All strains were mesophilic, although some were also psychrotolerant. Strain variation was also noted in terms of tolerance to extremely low pH and to elevated concentrations of transition metals. One strain was noted to display far greater tolerance to chloride than reported for other iron-oxidizing acidithiobacilli. All of the strains were able to catalyse the oxidative dissolution of pyrite and, on the basis of some of the combined traits of some of the strains examined, it is proposed that these may have niche roles in commercial mineral bioprocessing operations, such as for low temperature bioleaching of polysulfide ores in brackish waters. The name Acidithiobacillus ferriphilus sp. nov. is proposed to accommodate the strains described, with the type strain being M20T ( = DSM 100412T = JCM 30830T). PMID:26498321

  3. Draft Genome Sequence of "Acidibacillus ferrooxidans" ITV01, a Novel Acidophilic Firmicute Isolated from a Chalcopyrite Mine Drainage Site in Brazil.

    PubMed

    Dall'Agnol, Hivana; Ñancucheo, Ivan; Johnson, D Barrie; Oliveira, Renato; Leite, Laura; Pylro, Victor S; Holanda, Roseanne; Grail, Barry; Carvalho, Nelson; Nunes, Gisele Lopes; Tzotzos, George; Fernandes, Gabriel Rocha; Dutra, Julliane; Orellana, Sara Cuadros; Oliveira, Guilherme

    2016-01-01

    Here, we report the draft genome sequence of "Acidibacillus ferrooxidans" strain ITV01, a ferrous iron- and sulfide-mineral-oxidizing, obligate heterotrophic, and acidophilic bacterium affiliated with the phylum Firmicutes. Strain ITV01 was isolated from neutral drainage from a low-grade chalcopyrite from a mine in northern Brazil. PMID:26988062

  4. Biosynthesis of bifunctional iron oxyhydrosulfate by Acidithiobacillus ferroxidans and their application to coagulation and adsorption.

    PubMed

    Gan, Min; Song, Zibo; Jie, Shiqi; Zhu, Jianyu; Zhu, Yaowu; Liu, Xinxing

    2016-02-01

    Coagulation and adsorption are important environmental technologies, which were widely applied in water treatment. In this study, a type of villous iron oxyhydrosulfate with low crystallinity, high content iron, sulfate and hydroxyl was synthesized by Acidithiobacillus ferrooxidans, which possessed coagulation and heavy metal adsorption ability simultaneously. The results showed that the Cu(II) adsorption capacity increased within a small range over the pH range of 3.0-5.0 but increased evidently over the range of 6.0-8.0. The maximal Cu(II) adsorption capacity of sample Af and Gf reached 50.97 and 46.08mg/g respectively. The optimum pH for Cr(VI) adsorption was 6.0, and the maximal adsorption capacity reached 51.32 and 59.57mg/g. The Langmuir isotherm can better describe the adsorption behavior of Cr(VI). Coagulation performance of the iron oxyhydrosulfate (Sh) has been significantly enhanced by polysilicic acid (PSA), which was mainly determined by PSA/Sh ratio, pH and coagulant dosage. Coagulation efficiency maintained approximately at 98% when the PSA/Sh ratio ranged from 0.4/0.1 to 1.0/0.1. Polysilicic acid worked efficiently in wide pH range extending, from 2 to 3.5. Coagulation performance improved significantly with the increasing of the coagulant dosage at lower dosage range, while, at higher dosage range, the improvement was not evident even with more coagulant addition. PMID:26652457

  5. Improved Experimental and Computational Methodology for Determining the Kinetic Equation and the Extant Kinetic Constants of Fe(II) Oxidation by Acidithiobacillus ferrooxidans▿

    PubMed Central

    Molchanov, Sharon; Gendel, Yuri; Ioslvich, Ilya; Lahav, Ori

    2007-01-01

    The variety of kinetics expressions encountered in the literature and the unreasonably broad range of values reported for the kinetics constants of Acidithiobacillus ferrooxidans underscore the need for a unifying experimental procedure and for the development of a reliable kinetics equation. Following an extensive and critical review of reported experimental techniques, a method based on batch pH-controlled kinetics experiments lasting less than one doubling time was developed for the determination of extant kinetics constants. The Fe(II) concentration in the experiments was measured by a method insensitive to Fe(III) interference. Kinetics parameters were determined by nonlinear fitting of the integrated form of the Monod equation to yield a KS of 31 ± 4 mg Fe2+ liter−1 (mean ± standard deviation), a KP of 139 ± 20 mg Fe3+ liter−1, and a μmax of 0.082 ± 0.002 h−1. The corresponding kinetics equation was as follows: \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}\\frac{dS}{dt}= \\left \\left(-\\frac{0.082}{2.3{\\cdot}10^{7}}\\right) \\right \\frac{S{\\cdot}X}{31(1+\\displaystyle\\frac{P_{0}+S_{0}-S}{139})+S}\\end{equation*}\\end{document} where S represents the Fe(II) concentration in mg liter−1, P0 represents the initial Fe(III) concentration in mg liter−1, X represents the suspended bacterial cell concentration in cells ml−1, and t represents time in hours. The measured data fit this equation exceptionally well, with an R2 of >0.99. Fe(III) inhibition was found to be of a competitive nature. Contrary to previous reports, the results show that the concentration of Acidithiobacillus ferrooxidans cells has no affect on the kinetics constants. The kinetics equation can be considered applicable only to A. ferrooxidans cells grown under

  6. Electrochemistry of thiobacillus ferrooxidans interactions with pyrite

    NASA Astrophysics Data System (ADS)

    Pesic, Batric; Kim, Inbeum

    1993-10-01

    A cyclic voltammetry technique was used to study the interactions of mineral-pyrite during bioleaching with the bacterium Thiobacillus (T.) ferrooxidans over its entire growth cycle. Invariably, the pyrite surface drastically changed its properties on the second day of bacterial rowth (bioleaching). After 2 days, the cyclic voltammograms (CVs) were insensitive to convective diffusion produced by stirring. The product layer was examined by scanning electron microscopy (SEM), X-ray diffraction, and chemical analysis. The SEM study revealed an extremely high density of bacteria on the pyrite surface. The high density of bacteria, along with the solid reaction products formed on the pyrite surface, created conditions for crack/pore diffusion, explaining why the CVs became insensitive to convective diffusion (stirring) in solution. X-ray diffraction study confirmed jarosite as a product layer. A mechanism is proposed by which T. ferrooxidans cells serve as nucleation sites for jarosite formation.

  7. Electrochemistry of Thiobacillus ferrooxidans interactions with pyrite

    SciTech Connect

    Pesic, B. . Coll. of Mines and Earth Resources); Kim, I. )

    1993-10-01

    A cyclic voltammetry technique was used to study the interactions of mineral-pyrite during bioleaching with the bacterium Thiobacillus (T.) ferrooxidans over its entire growth cycle. Invariably, the pyrite surface drastically changed its properties on the second day of bacterial growth (bioleaching). After 2 days, the cyclic voltammograms (CVs) were insensitive to convective diffusion produced by stirring. The product layer was examined by scanning electron microscopy (SEM), X-ray diffraction, and chemical analysis. The SEM study revealed an extremely high density of bacteria on the pyrite surface. The high density of bacteria, along with the solid reaction products formed on the pyrite surface, created conditions for crack/pore diffusion, explaining why the CVs became insensitive to convective diffusion (stirring) in solution. X-ray diffraction study confirmed jarosite as a product layer. A mechanism is proposed by which T. ferrooxidans cells serve as nucleation sites for jarosite formation.

  8. Electrochemistry of Thiobacillus ferrooxidans reactions with pyrite

    SciTech Connect

    Pesic, B.

    1991-01-01

    The interactions of mineral-pyrite with T. ferrooxidans were studied by using a cyclic voltametry technique. The interactions with bacteria were examined during the entire growth stage of bacterial (fermentation). The pyrite surface invariably drastically changed its properties at the second day of fermentation. Beyond two days of fermentation, the cyclic voltamograms were insensitive to convective diffusion produced by stirring. The product layer was examined by SEM, X-ray diffraction and chemical analysis. The SEM study revealed that bacteria populated the pyrite surface at an extremely high density levels. The high density of bacteria, and the solid reaction products formed on the pyrite surface created conditions for pore diffusion which explained why the CVs became insensitive to convective diffusion in solution (stirring). The X-ray diffraction study confirmed jarosite as a product layer. A mechanism of T. ferrooxidans cells serving as nucleation sites for jarosite formation is proposed. 16 refs., 8 figs., 2 tabs.

  9. Comparative Genomics of the Extreme Acidophile Acidithiobacillus thiooxidans Reveals Intraspecific Divergence and Niche Adaptation

    PubMed Central

    Zhang, Xian; Feng, Xue; Tao, Jiemeng; Ma, Liyuan; Xiao, Yunhua; Liang, Yili; Liu, Xueduan; Yin, Huaqun

    2016-01-01

    Acidithiobacillus thiooxidans known for its ubiquity in diverse acidic and sulfur-bearing environments worldwide was used as the research subject in this study. To explore the genomic fluidity and intraspecific diversity of Acidithiobacillus thiooxidans (A. thiooxidans) species, comparative genomics based on nine draft genomes was performed. Phylogenomic scrutiny provided first insights into the multiple groupings of these strains, suggesting that genetic diversity might be potentially correlated with their geographic distribution as well as geochemical conditions. While these strains shared a large number of common genes, they displayed differences in gene content. Functional assignment indicated that the core genome was essential for microbial basic activities such as energy acquisition and uptake of nutrients, whereas the accessory genome was thought to be involved in niche adaptation. Comprehensive analysis of their predicted central metabolism revealed that few differences were observed among these strains. Further analyses showed evidences of relevance between environmental conditions and genomic diversification. Furthermore, a diverse pool of mobile genetic elements including insertion sequences and genomic islands in all A. thiooxidans strains probably demonstrated the frequent genetic flow (such as lateral gene transfer) in the extremely acidic environments. From another perspective, these elements might endow A. thiooxidans species with capacities to withstand the chemical constraints of their natural habitats. Taken together, our findings bring some valuable data to better understand the genomic diversity and econiche adaptation within A. thiooxidans strains. PMID:27548157

  10. Comparative Genomics of the Extreme Acidophile Acidithiobacillus thiooxidans Reveals Intraspecific Divergence and Niche Adaptation.

    PubMed

    Zhang, Xian; Feng, Xue; Tao, Jiemeng; Ma, Liyuan; Xiao, Yunhua; Liang, Yili; Liu, Xueduan; Yin, Huaqun

    2016-01-01

    Acidithiobacillus thiooxidans known for its ubiquity in diverse acidic and sulfur-bearing environments worldwide was used as the research subject in this study. To explore the genomic fluidity and intraspecific diversity of Acidithiobacillus thiooxidans (A. thiooxidans) species, comparative genomics based on nine draft genomes was performed. Phylogenomic scrutiny provided first insights into the multiple groupings of these strains, suggesting that genetic diversity might be potentially correlated with their geographic distribution as well as geochemical conditions. While these strains shared a large number of common genes, they displayed differences in gene content. Functional assignment indicated that the core genome was essential for microbial basic activities such as energy acquisition and uptake of nutrients, whereas the accessory genome was thought to be involved in niche adaptation. Comprehensive analysis of their predicted central metabolism revealed that few differences were observed among these strains. Further analyses showed evidences of relevance between environmental conditions and genomic diversification. Furthermore, a diverse pool of mobile genetic elements including insertion sequences and genomic islands in all A. thiooxidans strains probably demonstrated the frequent genetic flow (such as lateral gene transfer) in the extremely acidic environments. From another perspective, these elements might endow A. thiooxidans species with capacities to withstand the chemical constraints of their natural habitats. Taken together, our findings bring some valuable data to better understand the genomic diversity and econiche adaptation within A. thiooxidans strains. PMID:27548157

  11. Detection and validation of a small broad-host-range plasmid pBBR1MCS-2 for use in genetic manipulation of the extremely acidophilic Acidithiobacillus sp.

    PubMed

    Hao, Likai; Liu, Xiangmei; Wang, Huiyan; Lin, Jianqun; Pang, Xin; Lin, Jianqiang

    2012-09-01

    An efficient genetic system for introducing genes into biomining microorganisms is essential not only to experimentally determine the functions of genes predicted based on bioinformatic analysis, but also for their genetic breeding. In this study, a small broad-host-range vector named pBBR1MCS-2, which does not belong to the IncQ, IncW, or IncP groups, was studied for the feasibility of its use in conjugative gene transfer into extremely acidophilic strains of Acidithiobacillus. To do this, a recombinant plasmid pBBR-tac-Sm, a derivative of pBBR1MCS-2, was constructed and the streptomycin resistant gene (Sm(r)) was used as the reporter gene. Using conjugation, pBBR-tac-Sm was successfully transferred into three tested strains of Acidithiobacillus. Then we measured its transfer frequency, its stability in Acidithiobacillus cells, and the level of resistance to streptomycin of the transconjugants and compared this with the IncQ plasmid pJRD215 control. Our results indicate that pBBR1MCS-2 provides a new and useful tool in the genetic manipulation of Acidithiobacillus strains. PMID:22705922

  12. Microbial desulfurization of coal. [Leptospirillum ferrooxidans

    SciTech Connect

    Andrews, G.F.; Dugan, P.R.; McIlwain, M.E.; Stevens, C.J.

    1992-03-01

    A bacterial coal depyritization process was operated at a large laboratory scale for four months treating almost 500 kg of an Illinois {number sign}6 coal supplied by the Monterey Coal Company and ground to 80% minus 100 mesh. The main features of the process were a 200-{ell} aerated trough bioreactor consisting of a channel 2.44 m long with a porous aeration tube running along its V-shaped bottom, an inclined 40 {mu}m screen for dewatering the coal slurry, and a liquid recycle stream to inoculate the incoming coal with the bacteria and ferric ion required for pyrite removal. The process was started up with large numbers of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria grown on iron media in a specially built electrolysis cell. Natural selection pressures then created a mixed culture well adapted to the coal from these bacteria, smaller numbers of T. thiooxidans added later, and the bacteria carried into the system with the coal. The process was run at 2.0 < pH < 2.7 and 18{degrees}C < temperature < 22{degrees}C.

  13. Electrochemistry of Thiobacillus ferrooxidans reactions with pyrite

    SciTech Connect

    Pesic, B.

    1990-01-01

    The present investigation is a part of our studies on the electrochemical aspects of pyrite bioleaching involving Thiobacillus ferrooxidans. Previously we have examined the effect of T. ferrooxidans and their metabolic products on the redox reactions of Fe{sup 2+}/Fe{sup 3+} couple at the pyrite surface. Results obtained suggest that beyond 1.5 days during their growth in a batch fermenter, the bacteria and their metabolic products completely cover the pyrite surface and shut down all electron transfer across the electrode-solution interface. In addition, it has been observed that the bacteria serve as the nucleation site for jarosite formation, which is found detrimental to bioleaching. In the present work we have focused on the effect of the presence of vitamins on the redox chemistry of iron. To date, we have examined the effect of the presence of thiamine pyrophosphate in the redox behavior of Fe{sup 2+}/Fe{sup 3+} at the pyrite surface. The results are described herein.

  14. Electrochemistry of Thiobacillus ferrooxidans reactions with pyrite

    SciTech Connect

    Pesic, B.

    1990-01-01

    The present investigation is a part of our studies on the electrochemical aspects of pyrite bioleaching involving Thiobacillus ferrooxidans. Previously we have examined the effect of T. ferrooxidans and their metabolic products on the redox reactions of Fe{sup 2+}/Fe{sup 3+} couple at the pyrite surface. Results obtained suggest that beyond 1.5 days during their growth in a batch fermenter, the bacteria and their metabolic products completely cover the pyrite surface and shut down all electron transfer across the electrode-solution interface. In addition, it has been observed that the bacteria serve as the nucleation site for jarosite formation, which is found detrimental to bioleaching. In the present work we have focused on the effect of the presence of vitamins on the redox chemistry of iron. To date, we have examined the effect of the presence of thiamine hydrochloride in the redox behavior of Fe{sup 2+}/Fe{sup 3+} at the pyrite surface. The results are described herein.

  15. Genome Analysis of the Biotechnologically Relevant Acidophilic Iron Oxidising Strain JA12 Indicates Phylogenetic and Metabolic Diversity within the Novel Genus “Ferrovum”

    PubMed Central

    Ullrich, Sophie R.; Poehlein, Anja; Tischler, Judith S.; González, Carolina; Ossandon, Francisco J.; Daniel, Rolf; Holmes, David S.; Schlömann, Michael; Mühling, Martin

    2016-01-01

    Background Members of the genus “Ferrovum” are ubiquitously distributed in acid mine drainage (AMD) waters which are characterised by their high metal and sulfate loads. So far isolation and microbiological characterisation have only been successful for the designated type strain “Ferrovum myxofaciens” P3G. Thus, knowledge about physiological characteristics and the phylogeny of the genus “Ferrovum” is extremely scarce. Objective In order to access the wider genetic pool of the genus “Ferrovum” we sequenced the genome of a “Ferrovum”-containing mixed culture and successfully assembled the almost complete genome sequence of the novel “Ferrovum” strain JA12. Phylogeny and Lifestyle The genome-based phylogenetic analysis indicates that strain JA12 and the type strain represent two distinct “Ferrovum” species. “Ferrovum” strain JA12 is characterised by an unusually small genome in comparison to the type strain and other iron oxidising bacteria. The prediction of nutrient assimilation pathways suggests that “Ferrovum” strain JA12 maintains a chemolithoautotrophic lifestyle utilising carbon dioxide and bicarbonate, ammonium and urea, sulfate, phosphate and ferrous iron as carbon, nitrogen, sulfur, phosphorous and energy sources, respectively. Unique Metabolic Features The potential utilisation of urea by “Ferrovum” strain JA12 is moreover remarkable since it may furthermore represent a strategy among extreme acidophiles to cope with the acidic environment. Unlike other acidophilic chemolithoautotrophs “Ferrovum” strain JA12 exhibits a complete tricarboxylic acid cycle, a metabolic feature shared with the closer related neutrophilic iron oxidisers among the Betaproteobacteria including Sideroxydans lithotrophicus and Thiobacillus denitrificans. Furthermore, the absence of characteristic redox proteins involved in iron oxidation in the well-studied acidophiles Acidithiobacillus ferrooxidans (rusticyanin) and Acidithiobacillus

  16. Leaching of Pyrites of Various Reactivities by Thiobacillus ferrooxidans.

    PubMed

    Baldi, F; Clark, T; Pollack, S S; Olson, G J

    1992-06-01

    Wide variations were found in the rate of chemical and microbiological leaching of iron from pyritic materials from various sources. Thiobacillus ferrooxidans accelerated leaching of iron from all of the pyritic materials tested in shake flask suspensions at loadings of 0.4% (wt/vol) pulp density. The most chemically reactive pyrites exhibited the fastest bioleaching rates. However, at 2.0% pulp density, a delay in onset of bioleaching occurred with two of the pyrites derived from coal sources. T. ferrooxidans was unable to oxidize the most chemically reactive pyrite at 2.0% pulp density. No inhibition of pyrite oxidation by T. ferrooxidans occurred with mineral pyrite at 2.0% pulp density. Experiments with the most chemically reactive pyrite indicated that the leachates from the material were not inhibitory to iron oxidation by T. ferrooxidans. PMID:16348718

  17. Leaching of Pyrites of Various Reactivities by Thiobacillus ferrooxidans

    PubMed Central

    Baldi, Franco; Clark, Thomas; Pollack, S. S.; Olson, Gregory J.

    1992-01-01

    Wide variations were found in the rate of chemical and microbiological leaching of iron from pyritic materials from various sources. Thiobacillus ferrooxidans accelerated leaching of iron from all of the pyritic materials tested in shake flask suspensions at loadings of 0.4% (wt/vol) pulp density. The most chemically reactive pyrites exhibited the fastest bioleaching rates. However, at 2.0% pulp density, a delay in onset of bioleaching occurred with two of the pyrites derived from coal sources. T. ferrooxidans was unable to oxidize the most chemically reactive pyrite at 2.0% pulp density. No inhibition of pyrite oxidation by T. ferrooxidans occurred with mineral pyrite at 2.0% pulp density. Experiments with the most chemically reactive pyrite indicated that the leachates from the material were not inhibitory to iron oxidation by T. ferrooxidans. PMID:16348718

  18. Leaching of pyrites of various reactivities by Thiobacillus ferrooxidans

    SciTech Connect

    Baldi, F. ); Clark, T.; Pollack, S.S.; Olson, G.J. )

    1992-06-01

    Variations were found in the rate of chemical and microbiological leaching of iron from pyritic materials from various sources. Thiobacillus ferrooxidans accelerated leaching of iron from all of the pyritic materials tested in shake flask suspensions at loadings of 0.4% (wt/vol) pulp density. The most chemically reactive pyrites exhibited the fastest bioleaching rates. However, at 2.0% pulp density, a delay in onset of bioleaching occurred with two of the pyrites derived from coal sources. T. ferrooxidans was unable to oxidize the most chemically reactive pyrite at 2.0% pulp density. No inhibition of pyrite oxidation by T. ferrooxidans occurred with mineral pyrite at 2.0% pulp density. Experiments with the most chemically reactive pyrite indicated that the leachates from the material were not inhibitory to iron oxidation by T. ferrooxidans.

  19. [Construction of an engineered Acidithiobacillus caldus with high-efficiency arsenic resistance].

    PubMed

    Zhao, Qing; Liu, Xiang-mei; Zhan, Yang; Lin, Jian-qun; Yan, Wang-ming; Bian, Jiang; Liu, Ying

    2005-10-01

    Using the recombinant technique in vitro, a new arsenic resistance plasmid pSDRA4 was constructed by subcloning the arsenic resistance genes from plasmid pUM3 into the wide-host-range IncQ plasmid pMMB24 with the hybrid trp-lac ( tac ) promoter, and followed by deleting the regulative gene of the promoter, the lacIQ gene. Then plasmid pSDRA4 was introduced from E. coli into extremely acidophilic obligately chemolithotrophic Acidithiobacillus caldus by conjugative transfer with a frequency of( 1.444 +/- 0.797) x 10(-4), and the engineered strain of Acidithiobacillus caldus (pSDRA4) for biomining was constructed. The successful transfer demonstrates the development of a conjugational system between strains of E. coli and A. caldus. The recombinant plasmid pSDRA4 is stable in A. caldus. Compared with wild type A. caldus, the level of the arsenic resistance of A. caldus (pSDRA4) is greatly raised from 10mmol/L to 45mmol/L. PMID:16342754

  20. [Oxidation of sulfide minerals by Thiobacillus ferrooxidans].

    PubMed

    Malakhova, P T; Chebotarev, G M; Kovalenko, E V; Volkov, Iu A

    1981-01-01

    Samples of natural pyrites and sphalerites were subjected to the action of the mineral medium 9K with 1 g of Fe3+ per litre in the presence and in the absence of Thiobacillus ferrooxidans, and incubated at 28 degrees C under the stationary conditions for 30 days. The chemical composition of the solutions was studied after leaching as well as changes of the surfaces of monoliths. The deepest etching of surfaces with the formation of crusts and films of jarosite, limonite and goslarite occurs upon the combined action of bacteria and Fe3+ in regions of a fine-zonal structure enriched with an isomorphous arsenic admixture which are characterized by a defective weak structure. The pyrite and sphalerite from Charmitan with a higher arsenic and iron content were leached more than the pyrite and sphalerite from Kurgashincan. This was also corroborated by chemical analyses of leaching solutions and by monometric studies of crushed sulfide samples. PMID:7219212

  1. Agronomic effectiveness of biofertilizers with phosphate rock, sulphur and Acidithiobacillus for yam bean grown on a Brazilian tableland acidic soil.

    PubMed

    Stamford, N P; Santos, P R; Santos, C E S; Freitas, A D S; Dias, S H L; Lira, M A

    2007-04-01

    Phosphate rocks have low available P and soluble P fertilizers have been preferably used in plant crop production, although economic and effective P sources are needed. Experiments were carried out on a Brazilian Typic Fragiudult soil with low available P to evaluate the agronomic effectiveness of phosphate rock (PR) compared with soluble phosphate fertilizer. Yam bean (Pachyrhizus erosus) inoculated with rhizobia (strains NFB 747 and NFB 748) or not inoculated was the test crop. Biofertilizers were produced in field furrows by mixing phosphate rock (PR) and sulphur inoculated with Acidithiobacillus (S+Ac) in different rates (50, 100, 150 and 200 g S kg(-1) PR), with 60 days of incubation. Treatments were carried out with PR; biofertilizers B(50), B(100), B(150), B(200); triple super phosphate (TSP); B(200) without Acidithiobacillus and a control treatment without P application (P(0)). TSP and biofertilizers plus S inoculated with Acidithiobacillus increased plant growth. Soil acidity and available P increased when biofertilizers B(150) and B(200) were applied. We conclude that biofertilizers may be used as P source; however, long term use will reduce soil pH and potentially reduce crop growth. PMID:16815009

  2. Sulfur Metabolism in the Extreme Acidophile Acidithiobacillus Caldus

    PubMed Central

    Mangold, Stefanie; Valdés, Jorge; Holmes, David S.; Dopson, Mark

    2011-01-01

    Given the challenges to life at low pH, an analysis of inorganic sulfur compound (ISC) oxidation was initiated in the chemolithoautotrophic extremophile Acidithiobacillus caldus. A. caldus is able to metabolize elemental sulfur and a broad range of ISCs. It has been implicated in the production of environmentally damaging acidic solutions as well as participating in industrial bioleaching operations where it forms part of microbial consortia used for the recovery of metal ions. Based upon the recently published A. caldus type strain genome sequence, a bioinformatic reconstruction of elemental sulfur and ISC metabolism predicted genes included: sulfide–quinone reductase (sqr), tetrathionate hydrolase (tth), two sox gene clusters potentially involved in thiosulfate oxidation (soxABXYZ), sulfur oxygenase reductase (sor), and various electron transport components. RNA transcript profiles by semi quantitative reverse transcription PCR suggested up-regulation of sox genes in the presence of tetrathionate. Extensive gel based proteomic comparisons of total soluble and membrane enriched protein fractions during growth on elemental sulfur and tetrathionate identified differential protein levels from the two Sox clusters as well as several chaperone and stress proteins up-regulated in the presence of elemental sulfur. Proteomics results also suggested the involvement of heterodisulfide reductase (HdrABC) in A. caldus ISC metabolism. A putative new function of Hdr in acidophiles is discussed. Additional proteomic analysis evaluated protein expression differences between cells grown attached to solid, elemental sulfur versus planktonic cells. This study has provided insights into sulfur metabolism of this acidophilic chemolithotroph and gene expression during attachment to solid elemental sulfur. PMID:21687411

  3. Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans

    SciTech Connect

    Pronk, J.T.; Liem, K.; Bos, P.; Kuenen, J.G. )

    1991-07-01

    Formate-grown cells of the obligately chemolithoautotrophic acidophile Thiobacillus ferrooxidans were capable of formate- and elemental sulfur-dependent reduction of ferric iron under anaerovic conditions. Under aerobic conditions, both oxygen and ferric iron could be simultaneously used as electron acceptors. To investigate whether anaerobic ferric iron respiration by T. ferrooxidans is an energy-transducing process, uptake of amino acids was studied. Glycine uptake by starved cells did not occur in the absence of an electron donor, neither under aerobic conditions nor under anaerobic conditions. Uptake of glycine could be driven by formate- and ferrous iron-dependent oxygen uptake. Under anaerobic conditions, ferric iron respiration with the electron donors formate and elemental sulfur could energize glycine uptake. Glycine uptake was inhibited by the uncoupler 2,4-dinitrophenol. The results indicate that anaerobic ferric iron respiration can contribute to the energy budget of T. ferrooxidans.

  4. Production of hydrogen sulfide from tetrathionate by the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1.

    PubMed

    Ng, K Y; Kamimura, K; Sugio, T

    2000-01-01

    When incubated under anaerobic conditions, five strains of Thiobacillus ferrooxidans tested produced hydrogen sulfide (H2S) from elemental sulfur at pH 1.5. However, among the strains, T. ferrooxidans NASF-1 and AP19-3 were able to use both elemental sulfur and tetrathionate as electron acceptors for H2S production at pH 1.5. The mechanism of H2S production from tetrathionate was studied with intact cells of strain NASF-1. Strain NASF-1 was unable to use dithionate, trithionate, or pentathionate as an electron acceptor. After 12 h of incubation under anaerobic conditions at 30 degrees C, 1.3 micromol of tetrathionate in the reaction mixture was decomposed, and 0.78 micromol of H2S and 0.6 micromol of trithionate were produced. Thiosulfate and sulfite were not detected in the reaction mixture. From these results, we propose that H2S is produced at pH 1.5 from tetrathionate by T. ferrooxidans NASF-1, via the following two-step reaction, in which AH2 represents an unknown electron donor in NASF-1 cells. Namely, tetrathionate is decomposed by tetrathionate-decomposing enzyme to give trithionate and elemental sulfur (S4O6(2-)-->S3O6(2-) + S(o), Eq. 1), and the elemental sulfur thus produced is reduced by sulfur reductase using electrons from AH2 to give H2S (S(o) + AH2-->H2S + A, Eq. 2). The optimum pH and temperature for H2S production from tetrathionate under argon gas were 1.5 and 30 degrees C, respectively. Under argon gas, the H2S production from tetrathionate stopped after 1 d of incubation, producing a total of 2.5 micromol of H2S/5 mg protein. In contrast, under H2 conditions, H2S production continued for 6 d, producing a total of 10.0 micromol of H2S/5 mg protein. These results suggest that electrons from H2 were used to reduce elemental sulfur produced as an intermediate to give H2S. Potassium cyanide at 0.5 mM slightly inhibited H2S production from tetrathionate, but increased that from elemental sulfur 3-fold. 2,4-Dinitrophenol at 0.05 mM, carbonylcyanide

  5. A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment.

    PubMed

    Travisany, Dante; Cortés, María Paz; Latorre, Mauricio; Di Genova, Alex; Budinich, Marko; Bobadilla-Fazzini, Roberto A; Parada, Pilar; González, Mauricio; Maass, Alejandro

    2014-11-01

    Acidithiobacillus thiooxidans is a sulfur oxidizing acidophilic bacterium found in many sulfur-rich environments. It is particularly interesting due to its role in bioleaching of sulphide minerals. In this work, we report the genome sequence of At. thiooxidans Licanantay, the first strain from a copper mine to be sequenced and currently used in bioleaching industrial processes. Through comparative genomic analysis with two other At. thiooxidans non-metal mining strains (ATCC 19377 and A01) we determined that these strains share a large core genome of 2109 coding sequences and a high average nucleotide identity over 98%. Nevertheless, the presence of 841 strain-specific genes (absent in other At. thiooxidans strains) suggests a particular adaptation of Licanantay to its specific biomining environment. Among this group, we highlight genes encoding for proteins involved in heavy metal tolerance, mineral cell attachment and cysteine biosynthesis. Several of these genes were located near genetic motility genes (e.g. transposases and integrases) in genomic regions of over 10 kbp absent in the other strains, suggesting the presence of genomic islands in the Licanantay genome probably produced by horizontal gene transfer in mining environments. PMID:25148779

  6. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli.

    PubMed

    Butcher, B G; Deane, S M; Rawlings, D E

    2000-05-01

    The chromosomal arsenic resistance genes of the acidophilic, chemolithoautotrophic, biomining bacterium Thiobacillus ferrooxidans were cloned and sequenced. Homologues of four arsenic resistance genes, arsB, arsC, arsH, and a putative arsR gene, were identified. The T. ferrooxidans arsB (arsenite export) and arsC (arsenate reductase) gene products were functional when they were cloned in an Escherichia coli ars deletion mutant and conferred increased resistance to arsenite, arsenate, and antimony. Therefore, despite the fact that the ars genes originated from an obligately acidophilic bacterium, they were functional in E. coli. Although T. ferrooxidans is gram negative, its ArsC was more closely related to the ArsC molecules of gram-positive bacteria. Furthermore, a functional trxA (thioredoxin) gene was required for ArsC-mediated arsenate resistance in E. coli; this finding confirmed the gram-positive ArsC-like status of this resistance and indicated that the division of ArsC molecules based on Gram staining results is artificial. Although arsH was expressed in an E. coli-derived in vitro transcription-translation system, ArsH was not required for and did not enhance arsenic resistance in E. coli. The T. ferrooxidans ars genes were arranged in an unusual manner, and the putative arsR and arsC genes and the arsBH genes were translated in opposite directions. This divergent orientation was conserved in the four T. ferrooxidans strains investigated. PMID:10788346

  7. Electrochemistry of Thiobacillus ferrooxidans reactions with pyrite. Final report

    SciTech Connect

    Pesic, B.; Oliver, D.J.; Kim, Inbeum; De, G.C.

    1993-01-20

    A cyclic voltammetry technique was used to study the interactions of pyrite during bioleaching with the bacterium Thiobacillus ferrooxidans. Potential effects of heavy metals (silver and mercury) and varying the pH on the iron oxidizing ability of the bacterium are reported. Redox potential techniques were used to study effect of ferrous sulfate concentration and pH on bacterial growth.

  8. Biological effect of Acidithiobacillus thiooxidans on some potentially toxic elements during alteration of SON 68 nuclear glass

    NASA Astrophysics Data System (ADS)

    Bachelet, M.; Crovisier, J. L.; Stille, P.; Vuilleumier, S.; Geoffroy, V.

    2009-04-01

    Although underground nuclear waste repositories are not expected to be favourable places for microbial activity, one should not exclude localized action of extremophilic bacteria on some materials involved in the storage concept. Among endogenous or accidentally introduced acidophiles, some are susceptible to lead to a locally drastic decreased in pH, with potential consequences on materials corrosion. Experiments were performed with Acidithiobacillus thiooxidans on 100-125 m french reference nuclear glass SON68 grains in a mineral medium under static conditions during 60 days at 25degC. Growth medium was periodically renewed and analyzed by ICP-AES and ICP-MS spectrometry for both major, trace and ultra-trace elements. Biofilm formation was evidenced by confocal laser microscopy, staining DNA with ethidium bromide and exopolysaccharides with calcofluor white. Biofilm thickness around material grains exceeded 20 m under the chosen experimental conditions. It can be noticed that while numerous studies on biofilm formation upon interaction between Acidithiobacillus ferrooxidans and materials are found in the literature, evidence for biofilm formation is still scarce for the case of the acidophilic bacterium A. thiooxidans. Presence of biofilm is a key parameter for material alteration at the solid/solution interface in biotic systems. Indeed, various constitutive elements of materials trapped in the polyanionic polymer of biofilm may also influence the alteration process. In particular, biofilm may reduce the alteration rate of materials by forming a protective barrier at their surface (Aouad et al., 2008). In this study, glass alteration rates, determined using strontium as tracer, showed that the progressive formation of a biofilm on the surface of glass has a protective effect against its alteration. Uranium and rare earth elements (REE) are efficiently trapped in the biogenic compartment of the system (exopolysaccharides + bacterial cells). Besides, the ratio

  9. Existence of Two Kinds of Sulfur-reducing Systems in Iron-oxidizing Bacterium Thiobacillus ferrooxidans.

    PubMed

    Ng, K Y; Inoue, S; Fujioka, A; Kamimura, K; Sugio, T

    1999-01-01

    Intact cells of Thiobacillus ferrooxidans NASF-1 incubated under anaerobic conditions in a reaction mixture containing 0.5% colloidal sulfur produced hydrogen sulfide (H2S) extracellularly. The amount of H2S produced by cells increased corresponding to the cell amounts and colloidal sulfur. Two activity peaks of H2S production were observed at pH 1.5 and 7.5. We tentatively called the enzyme activities pH 1.5- and pH 7.5-sulfur reducing systems, respectively. Seven strains of T. ferrooxidans tested had both the activities of pH 1.5- and pH 7.5-sulfur reducing systems, but at different levels. T. ferrooxidans NASF-1 showed the highest activity of the pH 1.5-sulfur reducing system and strain 13598 from ATCC showed the highest activity of the pH 7.5-sulfur reducing system. Further characteristics of H2S production were studied with intact cells of NASF-1. The optimum temperatures for pH 1.5- and pH 7.5-sulfur reducing systems of NASF-1 were 40°C. Hydrogen sulfide production continued for 8 days and total amounts of H2S produced at pH 7.5 and 1.5 were 832 and 620 nmol/mg protein, respectively. The pH 7.5-sulfur reducing system used only colloidal sulfur as the electron acceptor. However, the pH 1.5-sulfur reducing system used both colloidal sulfur and tetrathionate. Thiosulfate, dithionate, and sulfite could not be used as the electron acceptor for both of the sulfur reducing systems. Potassium cyanide activated by 3- fold the pH 1.5-sulfur reducing system activity at 0.5 mM but did not affect the activity of the pH 7.5-sulfur reducing system. An inhibitor of sulfite reductase, p-chloromercuribenzene sulfonic acid, did not affect either enzyme activity. Sodium molybdate and monoiodoacetic acid strongly inhibited the activity of the pH 1.5-sulfur reducing system at 1.0 mM, but not the activity of pH 7.5-sulfur reducing system. PMID:27385566

  10. Acidithiobacillus caldus Sulfur Oxidation Model Based on Transcriptome Analysis between the Wild Type and Sulfur Oxygenase Reductase Defective Mutant

    PubMed Central

    Chen, Linxu; Ren, Yilin; Lin, Jianqun; Liu, Xiangmei; Pang, Xin; Lin, Jianqiang

    2012-01-01

    Background Acidithiobacillus caldus (A. caldus) is widely used in bio-leaching. It gains energy and electrons from oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs) for carbon dioxide fixation and growth. Genomic analyses suggest that its sulfur oxidation system involves a truncated sulfur oxidation (Sox) system (omitting SoxCD), non-Sox sulfur oxidation system similar to the sulfur oxidation in A. ferrooxidans, and sulfur oxygenase reductase (SOR). The complexity of the sulfur oxidation system of A. caldus generates a big obstacle on the research of its sulfur oxidation mechanism. However, the development of genetic manipulation method for A. caldus in recent years provides powerful tools for constructing genetic mutants to study the sulfur oxidation system. Results An A. caldus mutant lacking the sulfur oxygenase reductase gene (sor) was created and its growth abilities were measured in media using elemental sulfur (S0) and tetrathionate (K2S4O6) as the substrates, respectively. Then, comparative transcriptome analysis (microarrays and real-time quantitative PCR) of the wild type and the Δsor mutant in S0 and K2S4O6 media were employed to detect the differentially expressed genes involved in sulfur oxidation. SOR was concluded to oxidize the cytoplasmic elemental sulfur, but could not couple the sulfur oxidation with the electron transfer chain or substrate-level phosphorylation. Other elemental sulfur oxidation pathways including sulfur diooxygenase (SDO) and heterodisulfide reductase (HDR), the truncated Sox pathway, and the S4I pathway for hydrolysis of tetrathionate and oxidation of thiosulfate in A. caldus are proposed according to expression patterns of sulfur oxidation genes and growth abilities of the wild type and the mutant in different substrates media. Conclusion An integrated sulfur oxidation model with various sulfur oxidation pathways of A. caldus is proposed and the features of this model are summarized. PMID:22984393

  11. Detection of Thiobacillus ferrooxidans in acid mine environments by indirect fluorescent antibody staining.

    PubMed

    Apel, W A; Dugan, P R; Filppi, J A; Rheins, M S

    1976-07-01

    An indirect fluorescent antibody (FA) staining technique was developed for the rapid detection of Thiobacillus ferrooxidans. The specificity of the FA stain for T. ferrooxidans was demonstrated with both laboratory and environmental samples. Coal refuse examined by scanning electron microscopy exhibited a rough, porous surface, which was characteristically covered by water-soluble crystals. Significant numbers of T. ferrooxidans were detected in the refuse pores. A positive correlation between numbers of T. ferrooxidans and acid production in coal refuse in the laboratory was demonstrated with the FA technique. PMID:61736

  12. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans

    PubMed Central

    2014-01-01

    Background Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing technology, the whole genome sequence analysis of A. thiooxidans has allowed preliminary models to be built for genes/enzymes involved in key energy pathways like sulfur oxidation. Results The genome of A. thiooxidans A01 was sequenced and annotated. It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components. Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences. In addition, another putative pathway was found in the cytoplasm of A. thiooxidans, which catalyzes sulfite to sulfate as the final product by phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate (APS) kinase. This differs from its closest relative Acidithiobacillus caldus, which is performed by sulfate adenylyltransferase (SAT). Furthermore, real-time quantitative PCR analysis showed that most of sulfur oxidation genes were more strongly expressed in the S0 medium than that in the Na2S2O3 medium at the mid-log phase. Conclusion Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence

  13. Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching

    PubMed Central

    Gehrke, Tilman; Telegdi, Judit; Thierry, Dominique; Sand, Wolfgang

    1998-01-01

    Leaching bacteria such as Thiobacillus ferrooxidans attach to pyrite or sulfur by means of extracellular polymeric substances (EPS) (lipopolysaccharides). The primary attachment to pyrite at pH 2 is mediated by exopolymer-complexed iron(III) ions in an electrochemical interaction with the negatively charged pyrite surface. EPS from sulfur cells possess increased hydrophobic properties and do not attach to pyrite, indicating adaptability to the substrate or substratum. PMID:9647862

  14. Architecture and Gene Repertoire of the Flexible Genome of the Extreme Acidophile Acidithiobacillus caldus

    PubMed Central

    Acuña, Lillian G.; Cárdenas, Juan Pablo; Covarrubias, Paulo C.; Haristoy, Juan José; Flores, Rodrigo; Nuñez, Harold; Riadi, Gonzalo; Shmaryahu, Amir; Valdés, Jorge; Dopson, Mark; Rawlings, Douglas E.; Banfield, Jillian F.; Holmes, David S.; Quatrini, Raquel

    2013-01-01

    Background Acidithiobacillus caldus is a sulfur oxidizing extreme acidophile and the only known mesothermophile within the Acidithiobacillales. As such, it is one of the preferred microbes for mineral bioprocessing at moderately high temperatures. In this study, we explore the genomic diversity of A. caldus strains using a combination of bioinformatic and experimental techniques, thus contributing first insights into the elucidation of the species pangenome. Principal Findings Comparative sequence analysis of A. caldus ATCC 51756 and SM-1 indicate that, despite sharing a conserved and highly syntenic genomic core, both strains have unique gene complements encompassing nearly 20% of their respective genomes. The differential gene complement of each strain is distributed between the chromosomal compartment, one megaplasmid and a variable number of smaller plasmids, and is directly associated to a diverse pool of mobile genetic elements (MGE). These include integrative conjugative and mobilizable elements, genomic islands and insertion sequences. Some of the accessory functions associated to these MGEs have been linked previously to the flexible gene pool in microorganisms inhabiting completely different econiches. Yet, others had not been unambiguously mapped to the flexible gene pool prior to this report and clearly reflect strain-specific adaption to local environmental conditions. Significance For many years, and because of DNA instability at low pH and recurrent failure to genetically transform acidophilic bacteria, gene transfer in acidic environments was considered negligible. Findings presented herein imply that a more or less conserved pool of actively excising MGEs occurs in the A. caldus population and point to a greater frequency of gene exchange in this econiche than previously recognized. Also, the data suggest that these elements endow the species with capacities to withstand the diverse abiotic and biotic stresses of natural environments, in particular

  15. Specific dot-immunobinding assay for detection and enumeration of Thiobacillus ferrooxidans

    SciTech Connect

    Arredondo, R.; Jerez, C.A. )

    1989-08-01

    A specific and very sensitive dot-immunobinding assay for the detection and enumeration of the bioleaching microorganism Thiobacillus ferrooxidans was developed. Nitrocellulose spotted with samples was incubated with polyclonal antisera against whole T. ferrooxidans cells and then in {sup 125}I-labeled protein A or {sup 125}I-labeled goat antirabbit immunoglobulin G; incubation was followed by autoradiography. Since a minimum of 10{sup 3} cells per dot could be detected, the method offers the possibility of simultaneous processing of numerous samples in a short time to monitor the levels of T. ferrooxidans in bioleaching operations.

  16. Biodegradation of the french reference nuclear glass SON 68 by Acidithiobacillus thiooxidans : protective effect of the biofilm,U and REE retention

    NASA Astrophysics Data System (ADS)

    Bachelet, M.; Crovisier, J.; Stille, P.; Boutin, R.; Vuilleumier, S.; Geoffroy, V.

    2008-12-01

    Although underground nuclear waste repositories are not expected to be favourable places for microbial activity, one should not exclude localized action of extremophilic bacteria on some materials involved in the storage concept. Among endogenous or accidentally introduced acidophiles, some are susceptible to lead to a locally drastic decreased in pH with potential consequences on materials corrosion. Experiments were performed with Acidithiobacillus thiooxidans on 100-125 μm french reference nuclear glass SON68 grains in a mineral medium under static conditions during 60 days at 25°C. Growth medium was periodically renewed and analyzed by ICP-AES and ICP-MS spectrometry for both major, traces and ultra-traces elements. Biofilm formation was evidenced by confocal laser microscopy, staining DNA with ethidium bromide and exopolysaccharides with calcofluor white. Biofilm thickness around material grains exceeded 20 μm under the chosen experimental conditions. It can be noticed that while numerous studies on biofilm formation upon interaction between Acidithiobacillus ferrooxidans and materials can be found in the literature, evidence for biofilm formation is still scarce for the case of the acidophilic bacterium A. thiooxidans. Presence of biofilm is a key parameter for material alteration at the solid/solution interface in biotic systems. Indeed, various constitutive elements of materials trapped in the polyanionic polymer of biofilm may also influence the alteration process. In particular, biofilm may reduce the alteration rate of materials by forming a protective barrier at their surface (Aouad et al., 2008). In this study, glass alteration rates, determined using strontium, molybdenum and caesium as tracers, showed that the biofilm has a protective effect against glass alteration. U and REE are efficiently trapped in the biogenic compartment of the system (exopolysaccharides (EPS) + bacterial cells). Biofilm analysis are in progress to determine whether these

  17. Sulfur-binding protein of flagella of Thiobacillus ferrooxidans.

    PubMed

    Ohmura, N; Tsugita, K; Koizumi, J I; Saika, H

    1996-10-01

    The sulfur-binding protein of Thiobacillus ferrooxidans ATCC 23270 was investigated. The protein composition of the bacterium's cell surface changed according to the culture substrate. Sulfur-grown cells showed greater adhesion to sulfur than iron-grown cells. The sulfur-grown cells synthesized a 40-kDa surface protein which was not synthesized by iron-grown cells. The 40-kDa protein had thiol groups and strongly adhered to elemental sulfur powder. This adhesion was not disturbed by Triton X-100, which can quench hydrophobic interactions. However, adhesion was disturbed by 2-mercaptoethanol, which broke the disulfide bond. The thiol groups of the 40-kDa protein formed a disulfide bond with elemental sulfur and mediated the strong adhesion between T. ferrooxidans cells and elemental sulfur. The 40-kDa protein was located on the flagella. The location of the protein would make it possible for cells to be in closer contact with the surface of elemental sulfur powder. PMID:8824625

  18. Sulfur-binding protein of flagella of Thiobacillus ferrooxidans.

    PubMed Central

    Ohmura, N; Tsugita, K; Koizumi, J I; Saika, H

    1996-01-01

    The sulfur-binding protein of Thiobacillus ferrooxidans ATCC 23270 was investigated. The protein composition of the bacterium's cell surface changed according to the culture substrate. Sulfur-grown cells showed greater adhesion to sulfur than iron-grown cells. The sulfur-grown cells synthesized a 40-kDa surface protein which was not synthesized by iron-grown cells. The 40-kDa protein had thiol groups and strongly adhered to elemental sulfur powder. This adhesion was not disturbed by Triton X-100, which can quench hydrophobic interactions. However, adhesion was disturbed by 2-mercaptoethanol, which broke the disulfide bond. The thiol groups of the 40-kDa protein formed a disulfide bond with elemental sulfur and mediated the strong adhesion between T. ferrooxidans cells and elemental sulfur. The 40-kDa protein was located on the flagella. The location of the protein would make it possible for cells to be in closer contact with the surface of elemental sulfur powder. PMID:8824625

  19. Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans.

    PubMed

    Nguyen, Thai Anh; Fu, Chun-Chieh; Juang, Ruey-Shin

    2016-11-01

    The ability of the bacterial strain Acidithiobacillus thiooxidans to remove sulfur blue 15 (SB15) dye from water samples was examined. This bacterium could not only oxidize sulfur compounds to sulfuric acid but also promote the attachment of the cells to the surface of sulfidic particles, therefore serving as an efficient biosorbent. The biosorption isotherms were better described by the Langmuir equation than by the Freundlich or Dubinin-Radushkevich equation. Also, the biosorption process followed the pseudo-second-order kinetics. At pH 8.3 and SB15 concentrations up to 2000 mg L(-1) in the biomass/mineral salt solution, the dye removal and decolorization were 87.5% and 91.4%, respectively, following the biosorption process. Biodegradation was proposed as a subsequent process for the remaining dye (250-350 mg L(-1)). A central composite design was used to analyze independent variables in the response surface methodology study. Under the optimal conditions (i.e., initial dye concentration of 300 mg L(-1), initial biomass concentration of 1.0 g L(-1), initial pH of 11.7, and yeast extract dose of 60 mg L(-1)), up to 50% of SB15 was removed after 4 days of biodegradation. PMID:27486930

  20. Toxicity of select organic acids to the slightly thermophilic acidophile Acidithiobacillus caldus.

    PubMed

    Aston, John E; Apel, William A; Lee, Brady D; Peyton, Brent M

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 microM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 microM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids. PMID:18803441

  1. Bioleaching of heavy metals from sewage sludge using Acidithiobacillus thiooxidans

    NASA Astrophysics Data System (ADS)

    Wen, Ye-Ming; Lin, Hong-Yan; Wang, Qing-Ping; Chen, Zu-Liang

    2010-11-01

    Acidithiobacillus thiooxidans was isolated from sewage sludge using the incubation in the Waksman liquor medium and the inoculation in Waksman solid plate. It was found that the optimum conditions of the bioleaching included solid concentration 2%, sulfur concentration 5 gṡL-1 and cell concentration 10%. The removal efficiency of Cr, Cu, Pb and Zh in sewage sludge, which was obtained from waste treatment plant, Jinshan, Fuzhou, was 43.65%, 96.24%, 41.61% and 96.50% in the period of 4˜10 days under the optimum conditions, respectively. After processing using the proposed techniques, the heavy metals in sewage sludge did meet the requirement the standards of nation.

  2. Functional analysis of gapped microbial genomes: amino acid metabolism of Thiobacillus ferrooxidans.

    PubMed

    Selkov, E; Overbeek, R; Kogan, Y; Chu, L; Vonstein, V; Holmes, D; Silver, S; Haselkorn, R; Fonstein, M

    2000-03-28

    A gapped genome sequence of the biomining bacterium Thiobacillus ferrooxidans strain ATCC23270 was assembled from sheared DNA fragments (3.2-times coverage) into 1,912 contigs. A total of 2,712 potential genes (ORFs) were identified in 2.6 Mbp (megabase pairs) of Thiobacillus genomic sequence. Of these genes, 2,159 could be assigned functions by using the WIT-Pro/EMP genome analysis system, most with a high degree of certainty. Nine hundred of the genes have been assigned roles in metabolic pathways, producing an overview of cellular biosynthesis, bioenergetics, and catabolism. Sequence similarities, relative gene positions on the chromosome, and metabolic reconstruction (placement of gene products in metabolic pathways) were all used to aid gene assignments and for development of a functional overview. Amino acid biosynthesis was chosen to demonstrate the analytical capabilities of this approach. Only 10 expected enzymatic activities, of the nearly 150 involved in the biosynthesis of all 20 amino acids, are currently unassigned in the Thiobacillus genome. This result compares favorably with 10 missing genes for amino acid biosynthesis in the complete Escherichia coli genome. Gapped genome analysis can therefore give a decent picture of the central metabolism of a microorganism, equivalent to that of a complete sequence, at significantly lower cost. PMID:10737802

  3. Corrosion and Electrochemical Oxidation of a Pyrite by Thiobacillus ferrooxidans

    PubMed Central

    Mustin, C.; Berthelin, J.; Marion, P.; de Donato, P.

    1992-01-01

    The oxidation of a pure pyrite by Thiobacillus ferrooxidans is not really a constant phenomenon; it must be considered to be more like a succession of different steps which need characterization. Electrochemical studies using a combination of a platinum electrode and a specific pyrite electrode (packed-ground-pyrite electrode) revealed four steps in the bioleaching process. Each step can be identified by the electrochemical behavior (redox potentials) of pyrite, which in turn can be related to chemical (leachate content), bacterial (growth), and physical (corrosion patterns) parameters of the leaching process. A comparison of the oxidation rates of iron and sulfur indicated the nonstoichiometric bacterial oxidation of a pure pyrite in which superficial phenomena, aqueous oxidation, and deep crystal dissolution are successively involved. Images PMID:16348688

  4. Corrosion and electrochemical oxidation of a pyrite by Thiobacillus ferrooxidans

    SciTech Connect

    Mustin, C.; Berthelin, J. ); Marion, P.; Donato, P. de )

    1992-04-01

    The oxidation of a pure pyrite by Thiobacillus Ferrooxidans is not really a constant phenomenon; it must be considered to be more like a succession of different steps which need characterization. Electrochemical studies using a combination of a platinum electrode and a specific pyrite electrode (packed-ground-pyrite electrode) revealed four steps in the bioleaching process. Each step can be identified by the electrochemical behavior (redox potentials) of pyrite, which in turn can be related to chemical (leachate content), bacterial (growth), and physical (corrosion patterns) parameters of the leaching process. A comparison of the oxidation rates of iron and sulfur indicated the nonstoichiometric bacterial oxidation of a pure pyrite in which superficial phenomena, aqueous oxidation, and deep crystal dissolution are successively involved.

  5. Mineral Products of Pyrrhotite Oxidation by Thiobacillus ferrooxidans.

    PubMed

    Bhatti, T M; Bigham, J M; Carlson, L; Tuovinen, O H

    1993-06-01

    The biological leaching of pyrrhotite (Fe(1-x)S) by Thiobacillus ferrooxidans was studied to characterize the oxidation process and to identify the mineral weathering products. The process was biphasic in that an initial phase of acid consumption and decrease in redox potential was followed by an acid-producing phase and an increase in redox potential. Elemental S was one of the first products of pyrrhotite degradation detected by X-ray diffraction. Pyrrhotite oxidation also yielded K-jarosite [KFe(3)(SO(4))(2)(OH)(6)], goethite (alpha-FeOOH), and schwertmannite [Fe(8)O(8)(OH)(6)SO(4)] as solid-phase products. Pyrrhotite was mostly depleted after 14 days, whereas impurities in the form of pyrite (cubic FeS(2)) and marcasite (orthorhombic FeS(2)) accumulated in the leach residue. PMID:16348977

  6. Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus.

    PubMed

    Valdes, Jorge; Ossandon, Francisco; Quatrini, Raquel; Dopson, Mark; Holmes, David S

    2011-12-01

    Acidithiobacillus thiooxidans is a mesophilic, extremely acidophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and inorganic sulfur compounds. Here we present the draft genome sequence of A. thiooxidans ATCC 19377, which has allowed the identification of genes for survival and colonization of extremely acidic environments. PMID:22123759

  7. Rate Equations and Kinetic Parameters of the Reactions Involved in Pyrite Oxidation by Thiobacillus ferrooxidans.

    PubMed

    Lizama, H M; Suzuki, I

    1989-11-01

    Rate equations and kinetic parameters were obtained for various reactions involved in the bacterial oxidation of pyrite. The rate constants were 3.5 muM Fe per min per FeS(2) percent pulp density for the spontaneous pyrite dissolution, 10 muM Fe per min per mM Fe for the indirect leaching with Fe, 90 muM O(2) per min per mg of wet cells per ml for the Thiobacillus ferrooxidans oxidation of washed pyrite, and 250 muM O(2) per min per mg of wet cells per ml for the T. ferrooxidans oxidation of unwashed pyrite. The K(m) values for pyrite concentration were similar and were 1.9, 2.5, and 2.75% pulp density for indirect leaching, washed pyrite oxidation by T. ferrooxidans, and unwashed pyrite oxidation by T. ferrooxidans, respectively. The last reaction was competitively inhibited by increasing concentrations of cells, with a K(i) value of 0.13 mg of wet cells per ml. T. ferrooxidans cells also increased the rate of Fe production from Fe plus pyrite. PMID:16348054

  8. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.; Kleinmann, R.L.P.; Erickson, P.M.

    1984-07-01

    Thiobacillus ferrooxidans promote indirect oxidation of pyrite through the catalysis of the oxidation of ferrous iron to ferric iron, which is an effective oxidant of pyrite. These bacteria also may catalyze direct oxidation of pyrite by oxygen. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous iron to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage microorganisms. In this study, benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.

  9. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  10. Interfacial activity and leaching patterns of Leptospirillum ferrooxidans on pyrite.

    PubMed

    Rojas-Chapana, José A; Tributsch, Helmut

    2004-01-01

    The leaching ability of Leptospirillum ferrooxidans goes beyond the mere oxidation of Fe(2+) to Fe(3+). Addition of these bacteria to pyrite triggers interfacial phenomena that lead to bacterial attachment and local forms of corrosion (surface pitting). As the leaching process proceeds, bacterial cells undergo changes, characterized by the release of extracellular polymeric substances (EPS) and the uptake and storage of electro-dense nanoparticles. The latter are embedded in an exopolymeric capsule, which coats the bacterial surface leading to distinctive biomineralized assemblages. High-resolution scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses, quantitative energy-dispersive X-ray measurements and electron diffraction established that the embedded electron-dense nanoparticles comprise pyrite with a well-defined stoichiometry. Addition of Fe(3+) alone did not induce any form of local corrosion on pyrite, which indicates that the reactions taking place between the attached bacteria and the underlying pyrite surface are responsible for the leaching patterns observed in this study. The observed corrosion process resembles that of 'electrochemical machining', because it uses a corrosion promoter, namely the locally concentrated Fe(3+) in the biofilm environment, formed by the attached cells. PMID:19712343

  11. Heterotrophic bacteria from cultures of autotrophic Thiobacillus ferrooxidans: relationships as studied by means of deoxyribonucleic acid homology.

    PubMed

    Harrison, A P; Jarvis, B W; Johnson, J L

    1980-07-01

    From several presumably pure cultures of Thiobacillus ferrooxidans, we isolated a pair of stable phenotypes. One was a strict autotroph utilizing sulfur or ferrous iron as the energy source and unable to utilize glucose; the other phenotype was an acidophilic obligate heterotroph capable of utilizing glucose but not sulfur or ferrous iron. The acidophilic obligate heterotroph not only was encountered in cultures of T. ferrooxidans, but also was isolated with glucose-mineral salts medium, pH 2.0, directly from coal refuse. By means of deoxyribonucleic acid homology, we have demonstrated that the acidophilic heterotrophs are of a different genotype from T. ferrooxidans, not closely related to this species; we have shown also that the acidophilic obligate heterotrophs, regardless of their source of isolation, are related to each other. Therefore, cultures of T. ferrooxidans reported capable of utilizing organic compounds should be carefully examined for contamination. The acidophilic heterotrophs isolated by us are different from T. acidophilis, which is also associated with T. ferrooxidans but is facultative, utilizing both glucose and elemental sulfur as energy sources. Since they are so common and tenacious in T. ferrooxidans cultures, the heterotrophs must be associated with T. ferrooxidans in the natural habitat. PMID:7400100

  12. Nucleotide sequence of the gene encoding the nitrogenase iron protein of Thiobacillus ferrooxidans

    SciTech Connect

    Pretorius, I.M.; Rawlings, D.E.; O'Neill, E.G.; Jones, W.A.; Kirby, R.; Woods, D.R.

    1987-01-01

    The DNA sequence was determined for the cloned Thiobacillus ferrooxidans nifH and part of the nifD genes. The DNA chains were radiolabeled with (..cap alpha..-/sup 32/P)dCTP (3000 Ci/mmol) or (..cap alpha..-/sup 35/S)dCTP (400 Ci/mmol). A putative T. ferrooxidans nifH promoter was identified whose sequences showed perfect consensus with those of the Klebsiella pneumoniae nif promoter. Two putative consensus upstream activator sequences were also identified. The amino acid sequence was deduced from the DNA sequence. In a comparison of nifH DNA sequences from T. ferrooxidans and eight other nitrogen-fixing microbes, a Rhizobium sp. isolated from Parasponia andersonii showed the greatest homology (74%) and Clostridium pasteurianum (nifH1) showed the least homology (54%). In the comparison of the amino acid sequences of the Fe proteins, the Rhizobium sp. and Rhizobium japonicum showed the greatest homology (both 86%) and C. pasteurianum (nifH1 gene product) demonstrated the least homology (56%) to the T. ferrooxidans Fe protein.

  13. System-level understanding of the potential acid-tolerance components of Acidithiobacillus thiooxidans ZJJN-3 under extreme acid stress.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    In previous study, two extremely acidophilic strains Acidithiobacillus thiooxidans ZJJN-3 (collection site: bioleaching leachate) and ZJJN-5 (collection site: bioleaching wastewater) were isolated from a typical industrial bio-heap in China. Here, we unraveled the potential acid-tolerance components of ZJJN-3 by comparing the physiological differences with ZJJN-5 under different acid stresses. The parameters used for comparison included intracellular pH (pHin), capsule morphology, fatty acid composition of cell membrane, transcription of key molecular chaperones, H(+)-ATPase activities and NAD(+)/NADH ratio. It was indicated that the acid-tolerance of A. thiooxidans ZJJN-3 was systematically regulated. Capsule first thickened and then shed off along with increased acid stress. Cell membrane maintained the intracellular stability by up-regulating the proportion of unsaturated fatty acid and cyclopropane fatty acids. Meanwhile, the transcription of key repair molecular chaperones (GrpE-DnaK-DnaJ) was up-regulated by 2.2-3.5 folds for ensuring the proper folding of peptide. Moreover, low pHin promoted ZJJN-3 to biosynthesize more H(+)-ATPase for pumping H(+) out of cells. Furthermore, the NAD(+)/NADH ratio increased due to the decreased H(+) concentration. Based on the above physiological analysis, the potential acid-tolerance components of A. thiooxidans ZJJN-3 were first proposed and it would be useful for better understanding how these extremophiles responded to the high acid stress. PMID:26264736

  14. Construction of conjugative gene transfer system between E. coli and moderately thermophilic, extremely acidophilic Acidithiobacillus caldus MTH-04.

    PubMed

    Liu, Xiangmei; Lin, Jianqun; Zhang, Zheng; Bian, Jiang; Zhao, Qing; Liu, Ying; Lin, Jianqiang; Yan, Wangming

    2007-01-01

    A genetic transfer system for introducing foreign genes to biomining microorganisms is urgently needed. Thus, a conjugative gene transfer system was investigated for a moderately thermophilic, extremely acidophilic biomining bacterium, Acidithiobacillus caldus MTH-04. The broad-host-range IncP plasmids RP4 and R68.45 were transferred directly into A. caldus MTH-04 from Escherichia coli by conjugation at relatively high frequencies. Additionally the broad-host-range IncQ plasmids pJRD215, pVLT33, and pVLT35 were also transferred into A. caldus MTH-04 with the help of plasmid RP4 or strains with plasmid RP4 integrated into their chromosome, such as E. coli SM10. The Km(r) and Sm(r) selectable markers from these plasmids were successfully expressed in A. caldus MTH-04. Futhermore, the IncP and IncQ plasmids were transferred back into E. coli cells from A. caldus MTH-04, thereby confirming the initial transfer of these plasmids from E. coli to A. caldus MTH-04. All the IncP and IncQ plasmids studied were stable in A. caldus MTH-04. Consequently, this development of a conjugational system for A. caldus MTH-04 will greatly facilitate its genetic study. PMID:18051368

  15. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    The community succession mechanism of Acidithiobacillus sp. coupling with adaptive evolution of adsorption performance were systematically investigated. Specifically, the μmax of attached and free cells was increased and peak time was moved ahead, indicating both cell growth of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was promoted. In the mixed strains system, the domination courses of A. thiooxidans was dramatically shortened from 22th day to 15th day, although community structure finally approached to the normal system. Compared to A. ferrooxidans, more positive effects of adaptive evolution on cell growth of A. thiooxidans were shown in either single or mixed strains system. Moreover, higher concentrations of sulfate and ferric ions indicated that both sulfur and iron metabolism was enhanced, especially of A. thiooxidans. Consistently, copper ion production was improved from 65.5 to 88.5 mg/L. This new adaptive evolution and community succession mechanism may be useful for guiding similar bioleaching processes. PMID:25978855

  16. Construction and application of an expression vector from the new plasmid pLAtc1 of Acidithiobacillus caldus.

    PubMed

    Zhang, Ming-Jiang; Jiang, Cheng-Ying; You, Xiao-Yan; Liu, Shuang-Jiang

    2014-05-01

    In this study, a recently sequenced 9.8-kb plasmid, pLAtc1, from Acidithiobacillus caldus strain SM-1 was characterized and developed into an expression vector. The pLAtc1 backbone carried an oriV, three rep genes, five mob genes, a Nic site, and an addiction system. Multilocus sequence analysis indicated that pLAtc1 was phylogenetically more related to the IncQ-like broad host range plasmids than to other IncQ plasmids. pLAtc1 was able to replicate and reside in Gram-negative Escherichia coli, Comamonas testosteroni, but not in Gram-positive Corynebacterium glutamicum. pLAtc1 was mobilized via conjugation into E. coli BL21 and A. caldus SM-1 from E. coli S17-1. Quantitative PCR revealed seven and four copies of plasmid in A. caldus and E. coli cells, respectively. The expression vector pLAtcE was constructed from pLAtc1 by introducing a regulatable promoter (P tetH ), a transcriptional terminator, a multiple cloning site, a kanamycin resistance gene, and a streptomycin resistance gene. The functionality of pLAtcE was demonstrated by expressing a gene encoding enhanced green fluorescence protein in E. coli and in A. caldus. pLAtcE was used to express α-ketoglutarate dehydrogenase (sucAB) and succinate dehydrogenase (sdhA) genes in A. caldus. The newly engineered strain that harbored sucAB and sdhA on a plasmid pLAtcE-sucA-sucB-sdhA grew better than the parent strain SM-1/pLAtcE in tetrathionate and glucose-supplemented medium and produced more acidity and resulted in a more oxidative environment. This study created a useful molecular tool for genetic manipulation of the thermoacidophilic and autotrophic A. caldus. PMID:24445921

  17. Purification and some properties of sulfur reductase from the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1.

    PubMed

    Ng, K Y; Sawada, R; Inoue, S; Kamimura, K; Sugio, T

    2000-01-01

    Thiobacillus ferrooxidans strain NASF-1 grown aerobically in an Fe2+ (3%)-medium produces hydrogen sulfide (H2S) from elemental sulfur under anaerobic conditions with argon gas at pH 7.5. Sulfur reductase, which catalyzes the reduction of elemental sulfur (S0) with NAD(P)H as an electron donor to produce hydrogen sulfide (H2S) under anaerobic conditions, was purified 69-fold after 35-65% ammonium sulfate precipitation and Q-Sepharose FF, Phenyl-Toyopearl 650 ML, and Blue Sepharose FF column chromatography, with a specific activity of 57.6 U (mg protein)(-1). The purified enzyme was quite labile under aerobic conditions, but comparatively stable in the presence of sodium hydrosulfite and under anaerobic conditions, especially under hydrogen gas conditions. The purified enzyme showed both sulfur reductase and hydrogenase activities. Both activities had an optimum pH of 9.0. Sulfur reductase has an apparent molecular weight of 120,000 Da, and is composed of three different subunits (M(r) 54,000 Da (alpha), 36,000 Da (beta), and 35,000 Da (gamma)), as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This is the first report on the purification of sulfur reductase from a mesophilic and obligate chemolithotrophic iron-oxidizing bacterium. PMID:16232842

  18. [Recent research progress on the biomining bacteria of Acidithiobacillus caldus--a review].

    PubMed

    Pang, Xin; Chen, Dandan; Lin, Jianqun; Liu, Xiangmei; Lin, Jianqiang; Yan, Wangming

    2009-11-01

    Acidithiobacillus caldus (A. caldus) is one of the predominant biomining bacteria, which shows application prospect in biological metallurgy. It can enhance the biomining efficiency together with iron oxidation bacteria in mixed biomining system. Based on the published papers and our study on this bacterium, we described the research progress on it from four aspects, including the biomining mechanism, arsenic-resistant mechanism, genome study and genetic reconstruction. Furthermore, we discussed the prospects of research on A. caldus. PMID:20112666

  19. The Effect of Oxygen Supply on the Dual Growth Kinetics of Acidithiobacillus thiooxidans under Acidic Conditions for Biogas Desulfurization

    PubMed Central

    Namgung, Hyeong-Kyu; Song, JiHyeon

    2015-01-01

    In this study, to simulate a biogas desulfurization process, a modified Monod-Gompertz kinetic model incorporating a dissolved oxygen (DO) effect was proposed for a sulfur-oxidizing bacterial (SOB) strain, Acidithiobacillus thiooxidans, under extremely acidic conditions of pH 2. The kinetic model was calibrated and validated using experimental data obtained from a bubble-column bioreactor. The SOB strain was effective for H2S degradation, but the H2S removal efficiency dropped rapidly at DO concentrations less than 2.0 mg/L. A low H2S loading was effectively treated with oxygen supplied in a range of 2%–6%, but a H2S guideline of 10 ppm could not be met, even with an oxygen supply greater than 6%, when the H2S loading was high at a short gas retention time of 1 min and a H2S inlet concentration of 5000 ppm. The oxygen supply should be increased in the aerobic desulfurization to meet the H2S guideline; however, the excess oxygen above the optimum was not effective because of the decline in oxygen efficiency. The model estimation indicated that the maximum H2S removal rate was approximately 400 ppm/%-O2 at the influent oxygen concentration of 4.9% under the given condition. The kinetic model with a low DO threshold for the interacting substrates was a useful tool to simulate the effect of the oxygen supply on the H2S removal and to determine the optimal oxygen concentration. PMID:25633028

  20. The effect of oxygen supply on the dual growth kinetics of Acidithiobacillus thiooxidans under acidic conditions for biogas desulfurization.

    PubMed

    Namgung, Hyeong-Kyu; Song, JiHyeon

    2015-02-01

    In this study, to simulate a biogas desulfurization process, a modified Monod-Gompertz kinetic model incorporating a dissolved oxygen (DO) effect was proposed for a sulfur-oxidizing bacterial (SOB) strain, Acidithiobacillus thiooxidans, under extremely acidic conditions of pH 2. The kinetic model was calibrated and validated using experimental data obtained from a bubble-column bioreactor. The SOB strain was effective for H2S degradation, but the H2S removal efficiency dropped rapidly at DO concentrations less than 2.0 mg/L. A low H2S loading was effectively treated with oxygen supplied in a range of 2%-6%, but a H2S guideline of 10 ppm could not be met, even with an oxygen supply greater than 6%, when the H2S loading was high at a short gas retention time of 1 min and a H2S inlet concentration of 5000 ppm. The oxygen supply should be increased in the aerobic desulfurization to meet the H2S guideline; however, the excess oxygen above the optimum was not effective because of the decline in oxygen efficiency. The model estimation indicated that the maximum H2S removal rate was approximately 400 ppm/%-O2 at the influent oxygen concentration of 4.9% under the given condition. The kinetic model with a low DO threshold for the interacting substrates was a useful tool to simulate the effect of the oxygen supply on the H2S removal and to determine the optimal oxygen concentration. PMID:25633028

  1. Diguanylate Cyclase Null Mutant Reveals That C-Di-GMP Pathway Regulates the Motility and Adherence of the Extremophile Bacterium Acidithiobacillus caldus

    PubMed Central

    Castro, Matías; Deane, Shelly M.; Ruiz, Lina; Rawlings, Douglas E.; Guiliani, Nicolas

    2015-01-01

    An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process. PMID:25689133

  2. Diguanylate cyclase null mutant reveals that C-Di-GMP pathway regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus.

    PubMed

    Castro, Matías; Deane, Shelly M; Ruiz, Lina; Rawlings, Douglas E; Guiliani, Nicolas

    2015-01-01

    An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process. PMID:25689133

  3. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    PubMed Central

    Romo, E.; Weinacker, D.F.; Zepeda, A.B.; Figueroa, C.A.; Chavez-Crooker, P.; Farias, J.G.

    2013-01-01

    The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control. PMID:24294251

  4. Gene function analysis in extremophiles: the "nif" regulon of the strict iron oxidizing bacterium "Leptospirillum ferrooxidans"

    NASA Astrophysics Data System (ADS)

    Parro, Victor; Moreno-Paz, Mercedes

    2004-03-01

    In Centro de Astrobiologia it has been considered the Tinto river as a model ecosystem to study life based on iron. The final goal is to study the biological and metabolic diversity in microorganisms living there, following a genomic approach, to get insights to the mechanisms of adaptation to this environment. The Gram-negative bacterium Leptospirillum ferrooxidans is one of the most abundant microorganisms in the river, and it is one of the main responsible in maintenance of pH balance and, as a consequence, the physico-chemical properties of the exosystem. We have constructed a Shotgun DNA microarrays from this bacterium and we have used it to studied its genetic capacity for nitrogen fixation. With this approach we have identified most of the genes necessary for dinitrogen (N2) reduction, confirming the capacity of L. ferrooxidans as a free diazotrophic (nitrogen fixer) microorganism.

  5. Bioleaching of pyrite by Thiobacillus ferrooxidans: fixed grains electrode to study superficial oxidized compounds

    NASA Astrophysics Data System (ADS)

    Toniazzo, Valérie; Lazaro, Isabelle; Humbert, Bernard; Mustin, Christian

    1999-04-01

    An electrode with fixed pyrite grains on a graphite and silicon paste has been used to study the electrochemical processes at the surface of powdered pyrite during bioleaching by Thiobacillus ferrooxidans. The study of an air-oxidized pyrite shows that the fixed grains electrode (FGE) is more sensitive than the classical Carbon Paste Electrode (CPE) already used by different authors to characterize various oxides and sulfurs. On the other hand, the concommitant Raman and electrochemical analysis of autoclaved pyrite shows that the cleaned mineral FeS 2 has no electrochemical reactivity, and points out that the electrochemical response of the oxidized mineral is exclusively due to the chemical compounds present at its surface. Therefore, the electrode acts as an efficient sensor for pyrite superficial oxidized phases, which are fundamental for the biooxidation process and is consequently very well adapted for the control of the oxidation state of pyrite powder during bioleaching by Thiobacillus ferrooxidans.

  6. An immunological strategy To monitor In situ the phosphate starvation state in thiobacillus ferrooxidans

    PubMed

    Varela; Levican; Rivera; Jerez

    1998-12-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. During the process of ore bioleaching, the microorganisms are subjected to several stressing conditions, including the lack of some essential nutrients, which can affect the rates and yields of bioleaching. When T. ferrooxidans is starved for phosphate, the cells respond by inducing the synthesis of several proteins, some of which are outer membrane proteins of high molecular weight (70,000 to 80,000). These proteins were considered to be potential markers of the phosphate starvation state of these microorganisms. We developed a single-cell immunofluorescence assay that allowed monitoring of the phosphate starvation condition of this biomining microorganism by measuring the increased expression of the surface proteins. In the presence of low levels of arsenate (2 mM), the growth of phosphate-starved T. ferrooxidans cells was greatly inhibited compared to that of control nonstarved cells. Therefore, the determination of the phosphorus nutritional state is particularly relevant when arsenic compounds are solubilized during the bioleaching of different ores. PMID:9835593

  7. Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture

    PubMed Central

    Jiang, Huidan; Liang, Yili; Yin, Huaqun; Xiao, Yunhua; Guo, Xue; Xu, Ying; Hu, Qi; Liu, Hongwei; Liu, Xueduan

    2015-01-01

    The response of iron-oxidizing Leptospirillum ferriphilum YSK and sulfur-oxidizing Acidithiobacillus thiooxidans A01 to arsenite under pure culture and coculture was investigated based on biochemical characterization (concentration of iron ion and pH value) and related gene expression. L. ferriphilum YSK and At. thiooxidans A01 in pure culture could adapt up to 400 mM and 800 mM As(III) after domestication, respectively, although arsenite showed a negative effect on both strains. The coculture showed a stronger sulfur and ferrous ion oxidation activity when exposed to arsenite. In coculture, the pH value showed no significant difference when under 500 mM arsenite stress, and the cell number of At. thiooxidans was higher than that in pure culture benefiting from the interaction with L. ferriphilum. The expression profile showed that the arsenic efflux system in the coculture was more active than that in pure culture, indicating that there is a synergetic interaction between At. thiooxidans A01 and L. ferriphilum YSK. In addition, a model was proposed to illustrate the interaction between arsenite and the ars operon in L. ferriphilum YSK and At. thiooxidans A01. This study will facilitate the effective application of coculture in the bioleaching process by taking advantage of strain-strain communication and coordination. PMID:26064886

  8. Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture.

    PubMed

    Jiang, Huidan; Liang, Yili; Yin, Huaqun; Xiao, Yunhua; Guo, Xue; Xu, Ying; Hu, Qi; Liu, Hongwei; Liu, Xueduan

    2015-01-01

    The response of iron-oxidizing Leptospirillum ferriphilum YSK and sulfur-oxidizing Acidithiobacillus thiooxidans A01 to arsenite under pure culture and coculture was investigated based on biochemical characterization (concentration of iron ion and pH value) and related gene expression. L. ferriphilum YSK and At. thiooxidans A01 in pure culture could adapt up to 400 mM and 800 mM As(III) after domestication, respectively, although arsenite showed a negative effect on both strains. The coculture showed a stronger sulfur and ferrous ion oxidation activity when exposed to arsenite. In coculture, the pH value showed no significant difference when under 500 mM arsenite stress, and the cell number of At. thiooxidans was higher than that in pure culture benefiting from the interaction with L. ferriphilum. The expression profile showed that the arsenic efflux system in the coculture was more active than that in pure culture, indicating that there is a synergetic interaction between At. thiooxidans A01 and L. ferriphilum YSK. In addition, a model was proposed to illustrate the interaction between arsenite and the ars operon in L. ferriphilum YSK and At. thiooxidans A01. This study will facilitate the effective application of coculture in the bioleaching process by taking advantage of strain-strain communication and coordination. PMID:26064886

  9. Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans.

    PubMed Central

    Amaro, A M; Chamorro, D; Seeger, M; Arredondo, R; Peirano, I; Jerez, C A

    1991-01-01

    The response of the obligate acidophilic bacterium Thiobacillus ferrooxidans to external pH changes is reported. When T. ferrooxidans cells grown at pH 1.5 were shifted to pH 3.5, there were several changes in the general protein synthesis pattern, including a large stimulation of the synthesis of a 36-kDa protein (p36). The apparent low isoelectric point of p36, its location in the membrane fraction, and its cross-reaction with anti-OmpC from Salmonella typhi suggested that it may be a porin whose expression is regulated by extracellular pH. Images PMID:1987171

  10. Draft Genome Sequence of the Extremophile Acidithiobacillus thiooxidans A01, Isolated from the Wastewater of a Coal Dump

    PubMed Central

    Yin, Huaqun; Zhang, Xian; Liang, Yili; Xiao, Yunhua; Niu, Jiaojiao

    2014-01-01

    The draft genome of Acidithiobacillus thiooxidans A01 contains 3,820,158 bp, with a G+C content of 53.08% and 3,660 predicted coding sequences (CDSs). The bacterium contains a series of specific genes involved in the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). PMID:24699951

  11. Examination of Lipopolysaccharide (O-Antigen) Populations of Thiobacillus ferrooxidans from Two Mine Tailings

    PubMed Central

    Southam, G.; Beveridge, T. J.

    1993-01-01

    Net acid-generating capacities of 39.74 kg of H2SO4 per ton (ca. 0.05 kg/kg) (pH 2.68) for the Lemoine copper mine tailings (closed ca. 8 years ago; located 40 km west of Chibougamau, Quebec, Canada) and 16.07 kg of H2SO4 per ton (ca. 0.02 kg/kg) (pH 3.01) for the Copper Rand tailings (in current use and 50 km distant [east] from those of Lemoine) demonstrate that these sulfide tailings can support populations of acidophilic thiobacilli. Oxidized regions in both tailings environments were readily visible, were extremely acidic (Lemoine, pH 2.36; Copper Rand, pH 3.07), and provided natural isolates for our study. A 10% (wt/vol) oxalic acid treatment, which solubilizes both ferric sulfate and ferric hydroxide precipitates (B. Ramsay, J. Ramsay, M. deTremblay, and C. Chavarie, Geomicrobiol. J. 6:171-177, 1988), enabled the recovery of intact bacterial cells from the tailings material and from liquid synthetic medium for lipopolysaccharide analysis. No viable cells could be cultured after this oxalic acid treatment. Sodium dodecyl sulfate-polyacrylamide gel electro-phoretic profiles of lipopolysaccharides extracted from the Lemoine tailings were complex, indicating a heterogeneous population of Thiobacillus ferrooxidans. Six T. ferrooxidans subspecies as identified by lipopolysaccharide analysis (i.e., lipopolysaccharide chemotypes) were eventually isolated from a total of 112 cultures from the Lemoine tailings. Using the same isolate and lipopolysaccharide typing techniques, we identified only a single lipopolysaccharide chemotype from 20 cultures of T. ferrooxidans isolated from the Copper Rand tailings. This homogeneity of lipopolysaccharide chemotype was much different from what was found for the older Lemoine tailings and may reflect a progressive lipopolysaccharide heterogeneity of Thiobacillus isolates as tailings leach and age. Images PMID:16348925

  12. Thermodynamic and kinetic characterization using process dynamics: acidophilic ferrous iron oxidation by Leptospirillum ferrooxidans.

    PubMed

    Kleerebezem, Robbert; van Loosdrecht, Mark C M

    2008-05-01

    Kinetic and stoichiometric properties of acidophilic aerobic ferrous iron oxidation by growing and non-growing Leptospirillum ferrooxidans cultures were investigated. The use of a continuous stirred tank reactor operated at a variable dilution rate and equipped with on-line measurement of the electron donor, acceptor and anabolic substrate uptake rate enabled detailed kinetic characterization from a single experiment. It was demonstrated that substrate conversion and microbial growth are tightly coupled processes in L. ferrooxidans, and uncoupling occurs only due to the minor impact of substrate conversion for growth-independent maintenance purposes. The tight stoichiometric coupling implies bioenergetic uncoupling of the catabolism and anabolism because the Gibbs energy change for ferrous iron oxidation as a function of the actual growth rate of the culture ranges from -45 to -25 kJ mol-FeII(-1). Bioenergetic description of the process could only be achieved by introduction of a growth rate dependent Gibbs energy dissipation term. Removal of carbon dioxide from the influent gas stopped biomass growth, but the biomass specific respiration rate was unaffected or slightly stimulated. The uncoupling of the catabolism and anabolism is suggested to induce instantaneously an energy dissipation pathway. Also dosage of a low concentration propionic acid resulted in complete inhibition of the anabolism. Propionic acid served as an uncoupler of the membrane potential and all catabolic energy is required for the increased maintenance requirements. Recovery of the anabolism after reestablishment of the normal cultivation conditions was obtained only after 1-2 days. The results obtained provide additional constraints on cultivation of L. ferrooxidans for biotechnological application. PMID:18080344

  13. RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans.

    PubMed

    Christel, Stephan; Fridlund, Jimmy; Buetti-Dinh, Antoine; Buck, Moritz; Watkin, Elizabeth L; Dopson, Mark

    2016-04-01

    Acidithiobacillus ferrivorans is an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals. Acidithiobacillus ferrivorans obtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing of At. ferrivorans RNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by the tetH1 gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase (doxDAgenes). However, a lack of heme-binding sites in soxX suggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase (hdrgenes) rather than sulfur oxygenase reductase (sor). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving the sat gene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknown At. ferrivorans tetrathionate metabolic pathway that is important in biomining. PMID:26956550

  14. Occurrences at mineral-bacteria interface during oxidation of arsenopyrite by Thiobacillus ferrooxidans

    SciTech Connect

    Fernandez, M.G.M.; Mustin, C.; Berthelin, J.; Donato, P. de; Barres, O.; Marion, P.

    1995-04-05

    The combination of an improved bacterial desorption method, scanning electron microscopy (SEM), diffuse reflectance and transmission infrared Fourier transform spectroscopy, and a desorption-leaching device like high-pressure liquid chromatography (HPLC) was used to analyze bacterial populations and surface-oxidized phases during the arsenopyrite biooxidation by Thiobacillus ferrooxidans. The bacterial distribution, the physicochemical composition of the leachate, the evolution of corrosion patterns, and the nature and amount of the surface-oxidized chemical species characterized different behavior for each step of arsenopyrite bioleaching.

  15. Missing Iron-Oxidizing Acidophiles Highly Sensitive to Organic Compounds

    PubMed Central

    Ueoka, Nagayoshi; Kouzuma, Atsushi; Watanabe, Kazuya

    2016-01-01

    The genus Acidithiobacillus includes iron-oxidizing lithoautotrophs that thrive in acidic mine environments. Acidithiobacillus ferrooxidans is a representative species and has been extensively studied for its application to the bioleaching of precious metals. In our attempts to cultivate the type strain of A. ferrooxidans (ATCC 23270T), repeated transfers to fresh inorganic media resulted in the emergence of cultures with improved growth traits. Strains were isolated from the resultant culture by forming colonies on inorganic silica-gel plates. A representative isolate (strain NU-1) was unable to form colonies on agarose plates and was more sensitive to organics, such as glucose, than the type strain of A. ferrooxidans. Strain NU-1 exhibited superior growth traits in inorganic iron media to those of other iron-oxidizing acidithiobacilli, suggesting its potential for industrial applications. A draft genome of NU-1 uncovered unique features in catabolic enzymes, indicating that this strain is not a mutant of the A. ferrooxidans type strain. Our results indicate that the use of inorganic silica-gel plates facilitates the isolation of as-yet-unexamined iron-oxidizing acidithiobacilli from environmental samples and enrichment cultures. PMID:27356527

  16. The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu 3AsS 4) by Leptospirillum ferrooxidans

    NASA Astrophysics Data System (ADS)

    Corkhill, C. L.; Wincott, P. L.; Lloyd, J. R.; Vaughan, D. J.

    2008-12-01

    Arsenopyrite (FeAsS) and enargite (Cu 3AsS 4) fractured in a nitrogen atmosphere were characterised after acidic (pH 1.8), oxidative dissolution in both the presence and absence of the acidophilic microorganism Leptospirillum ferrooxidans. Dissolution was monitored through analysis of the coexisting aqueous solution using inductively coupled plasma atomic emission spectroscopy and coupled ion chromatography-inductively coupled plasma mass spectrometry, and chemical changes at the mineral surface observed using X-ray photoelectron spectroscopy and environmental scanning electron microscopy (ESEM). Biologically mediated oxidation of arsenopyrite and enargite (2.5 g in 25 ml) was seen to proceed to a greater extent than abiotic oxidation, although arsenopyrite oxidation was significantly greater than enargite oxidation. These dissolution reactions were associated with the release of ˜917 and ˜180 ppm of arsenic into solution. The formation of Fe(III)-oxyhydroxides, ferric sulphate and arsenate was observed for arsenopyrite, thiosulphate and an unknown arsenic oxide for enargite. ESEM revealed an extensive coating of an extracellular polymeric substance associated with the L. ferrooxidans cells on the arsenopyrite surface and bacterial leach pits suggest a direct biological oxidation mechanism, although a combination of indirect and direct bioleaching cannot be ruled out. Although the relative oxidation rates of enargite were greater in the presence of L. ferrooxidans, cells were not in contact with the surface suggesting an indirect biological oxidation mechanism. Cells of L. ferrooxidans appear able to withstand several hundreds of ppm of As(III) and As(V).

  17. Electrochemistry of Thiobacillus ferrooxidans reactions with pyrite. Technical progress report, Second quarter 1990

    SciTech Connect

    Pesic, B.

    1990-12-31

    The present investigation is a part of our studies on the electrochemical aspects of pyrite bioleaching involving Thiobacillus ferrooxidans. Previously we have examined the effect of T. ferrooxidans and their metabolic products on the redox reactions of Fe{sup 2+}/Fe{sup 3+} couple at the pyrite surface. Results obtained suggest that beyond 1.5 days during their growth in a batch fermenter, the bacteria and their metabolic products completely cover the pyrite surface and shut down all electron transfer across the electrode-solution interface. In addition, it has been observed that the bacteria serve as the nucleation site for jarosite formation, which is found detrimental to bioleaching. In the present work we have focused on the effect of the presence of vitamins on the redox chemistry of iron. To date, we have examined the effect of the presence of thiamine pyrophosphate in the redox behavior of Fe{sup 2+}/Fe{sup 3+} at the pyrite surface. The results are described herein.

  18. Electrochemistry of Thiobacillus ferrooxidans reactions with pyrite. Technical progress report, Third quarter 1990

    SciTech Connect

    Pesic, B.

    1990-12-31

    The present investigation is a part of our studies on the electrochemical aspects of pyrite bioleaching involving Thiobacillus ferrooxidans. Previously we have examined the effect of T. ferrooxidans and their metabolic products on the redox reactions of Fe{sup 2+}/Fe{sup 3+} couple at the pyrite surface. Results obtained suggest that beyond 1.5 days during their growth in a batch fermenter, the bacteria and their metabolic products completely cover the pyrite surface and shut down all electron transfer across the electrode-solution interface. In addition, it has been observed that the bacteria serve as the nucleation site for jarosite formation, which is found detrimental to bioleaching. In the present work we have focused on the effect of the presence of vitamins on the redox chemistry of iron. To date, we have examined the effect of the presence of thiamine hydrochloride in the redox behavior of Fe{sup 2+}/Fe{sup 3+} at the pyrite surface. The results are described herein.

  19. Enhanced Cr bioleaching efficiency from tannery sludge with coinoculation of Acidithiobacillus thiooxidans TS6 and Brettanomyces B65 in an air-lift reactor.

    PubMed

    Fang, Di; Zhou, Li-Xiang

    2007-09-01

    Bioleaching process has been demonstrated to be an effective technology in removing Cr from tannery sludge, but a large quantity of dissolved organic matter (DOM) present in tannery sludge often exhibits a marked toxicity to chemolithoautotrophic bioleaching bacteria such as Acidithiobacillus thiooxidans. The purpose of the present study was therefore to enhance Cr bioleaching efficiencies through introducing sludge DOM-degrading heterotrophic microorganism into the sulfur-based sludge bioleaching system. An acid-tolerant DOM-degrading yeast strain Brettanomyces B65 was successfully isolated from a local Haining tannery sludge and it could metabolize sludge DOM as a source of energy and carbon for growth. A combined bioleaching experiment (coupling Brettanomyces B65 and A. thiooxidans TS6) performed in an air-lift reactor indicated that the rates of sludge pH reduction and ORP increase were greatly improved, resulting in enhanced Cr solubilization. Compared with the 5 days required for maximum solubilization of Cr for the control (single bioleaching process without inoculation of Brettanomyces B65), the bioleaching period was significantly shorten to 3 days for the combined bioleaching system. Moreover, little nitrogen and phosphorous were lost and the content of Cr was below the permitted levels for land application after 3 days of bioleaching treatment. PMID:17537479

  20. Acidithrix ferrooxidans gen. nov., sp. nov.; a filamentous and obligately heterotrophic, acidophilic member of the Actinobacteria that catalyzes dissimilatory oxido-reduction of iron.

    PubMed

    Jones, Rose M; Johnson, D Barrie

    2015-01-01

    A novel acidophilic member of the phylum Actinobacteria was isolated from an acidic stream draining an abandoned copper mine in north Wales. The isolate (PY-F3) was demonstrated to be a heterotroph that catalyzed the oxidation of ferrous iron (but not of sulfur or hydrogen) under aerobic conditions, and the reduction of ferric iron under micro-aerobic and anaerobic conditions. PY-F3 formed long entangled filaments of cells (>50 μm long) during active growth phases, though these degenerated into smaller fragments and single cells in late stationary phase. Although isolate PY-F3 was not observed to grow below pH 2.0 and 10 °C, harvested biomass was found to oxidize ferrous iron at relatively fast rates at pH 1.5 and 5 °C. Phylogenetic analysis, based on comparisons of 16S rRNA gene sequences, showed that isolate PY-F3 has 91-93% gene similarity to those of the four classified genera and species of acidophilic Actinobacteria, and therefore is a representative of a novel genus. The binomial Acidithrix ferrooxidans is proposed for this new species, with PY-F3 as the designated type strain (=DSM 28176(T), =JCM 19728(T)). PMID:25638020

  1. The mechanism of bacterial action in the leaching of pyrite by Thiobacillus ferrooxidans. An electrochemical study

    SciTech Connect

    Holmes, P.R.; Fowler, T.A.; Crundwell, F.K.

    1999-08-01

    In many of the experiments reported in the literature on the leaching of pyrite by Thiobacillus ferrooxidans, the concentrations of ferric and ferrous ions in the presence of bacteria differ significantly from experiments conducted in their absence. In addition, these concentrations change throughout the course of the experiment. This makes it difficult to determine whether the presence of bacteria increases the rate of leaching above that for chemical leaching at the same solution conditions. The authors have designed an experimental apparatus to overcome this problem. This apparatus controls the redox potential in one compartment of an electrolytic cell by manipulating the current to the cell. In this manner, the concentrations of ferrous and ferric ions are maintained at their initial values for the duration of the experiment. Two types of experiments are reported in this paper. In the first, pyrite electrodes were exposed to solutions of the same bulk conditions in the presence and absence of bacteria, and their mixed potentials were determined. In the second, particulate pyrite was leached with and without bacteria to determine the effect that bacteria have on the rate of leaching. The mixed potential of bacterially dissolved pyrite decreases as microcolonies and biofilms form on the surface of pyrite electrode over a 14 day period. On the other hand, the mixed potential of chemically dissolved pyrite is constant over the same period. The results of the leaching experiments show that Thiobacillus ferrooxidans enhances the rate of leaching above that found in the absence of bacteria at the same conditions in solution. An electrochemical model of pyrite dissolution is derived that describes the mixed potential and the kinetics of pyrite leaching. This analysis indicates that the decrease in mixed potential and the increase in the leaching rate in the presence of bacteria are due to an increase in the pH at the surface.

  2. Existence of a new type of sulfite oxidase which utilizes ferric ions as an electron acceptor in Thiobacillus ferrooxidans

    SciTech Connect

    Sugio, T.; Katagiri, T.; Moriyama, M.; Zhen, Y.L.; Inagaki, K.; Tano, T.

    1988-01-01

    A new type of sulfite oxidase which utilizes ferric ion (Fe/sup 3 +/) as an electron acceptor was found in iron-grown Thiobacillus ferrooxidans. It was localized in the plasma membrane of the bacterium and had a pH optimum at 6.0. Under aerobic conditions, 1 mol of sulfite was oxidized by the enzyme to produce 1 mol of sulfate. Under anaerobic conditions in the presence of Fe/sup 3 +/, sulfite was oxidized by the enzyme as rapidly as it was under aerobic conditions. In the presence of o-phenanthroline or a chelator for Fe/sup 2 +/, the production of Fe/sup 2 +/ was observed during sulfite oxidation by this enzyme under not only anaerobic conditions but also aerobic conditions. No Fe/sup 2 +/ production was observed in the absence of o-phenanthroline, suggesting that the Fe/sup 2 +/ produced was rapidly reoxidized by molecular oxygen. Neither cytochrome c nor ferricyanide, both of which are electron acceptors for other sulfite oxidases, served as an electron acceptor for the sulfite oxidase of T. ferrooxidans. The enzyme was strongly inhibited by chelating agents for Fe/sup 3 +/. The physiological role of sulfite oxidase in sulfur oxidation of T. ferrooxidans is discussed.

  3. Evidence of biogenic corrosion of titanium after exposure to a continuous culture of thiobacillus ferrooxidans grown in thiosulfate medium

    SciTech Connect

    Horn, J M; Martin, S I; Masterson, B

    2000-12-07

    Experiments were undertaken to evaluate extreme conditions under which candidate materials intended for use in a proposed nuclear waste repository might be susceptible to corrosion by endogenous microorganisms. Thiobucillus ferrooxidans, a sulfur-oxidizing bacterium, was grown in continuous culture using thiosulfate as an energy source; thiosulfate is oxidized to sulfate as a metabolic endproduct by this organism. Culture conditions were optimized to produce a high-density, metabolically active culture throughout a period of long term incubation in the presence of Alloy 22 (a high nickel-based alloy) and Titanium grade 7 (Tigr7) material coupons. After seven months incubation under these conditions, material coupons were withdrawn and analyzed by high resolution microscopy and energy dispersive x-ray analyses. Alloy 22 coupons showed no detectable signs of corrosion. Tigr7, however, demonstrated distinct roughening of the coupon surface, and [presumably solubilized and precipitated] titanium was detected on Alloy 22 coupons incubated in the same T. ferrooxiduns culture vessel. Control coupons of these materials incubated in sterile thiosulfate medium did not demonstrate any signs of corrosion, thus showing that observed corrosive effects were due to the T. ferrooxidans metabolic activities. T. ferrooxidans intermediates of thiosulfate oxidation or sulfate may have caused the corrosive effects observed on Tigr7.

  4. Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478.

    PubMed

    Sharma, Mohita; Bisht, Varsha; Singh, Bina; Jain, Pratiksha; Mandal, Ajoy K; Lal, Banwari; Sarma, Priyangshu M

    2015-06-01

    The present work deals with optimization of culture conditions and process parameters for bioleaching of spent petroleum catalyst collected from a petroleum refinery. The efficacy of Ni bioleaching from spent petroleum catalyst was determined using pure culture of Acidithiobacillus thiooxidans DSM- 11478. The culture conditions of pH, temperature and headspace volume to media volume ratio were optimized. EDX analysis was done to confirm the presence of Ni in the spent catalyst after roasting it to decoke its surface. The optimum temperature for A. thiooxidans DSM-11478 growth was found to be 32 degrees C. The enhanced recovery of nickel at very low pH was attributed to the higher acidic strength of sulfuric acid produced in the culture medium by the bacterium. During the bioleaching process, 89% of the Ni present in the catalyst waste could be successfully recovered in optimized conditions. This environment friendly bioleaching process proved efficient than the chemical method. Taking leads from the lab scale results, bioleaching in larger volumes (1, 5 and 10 L) was also performed to provide guidelines for taking up this technology for in situ industrial waste management. PMID:26155679

  5. Inhibition of microbial concrete corrosion by Acidithiobacillus thiooxidans with functionalised zeolite-A coating.

    PubMed

    Haile, Tesfaalem; Nakhla, George

    2009-01-01

    The inhibition of the corrosive action of Acidithiobacillus thiooxidans on concrete specimens coated by functionalised zeolite-A containing 14% zinc and 5% silver by weight was studied. Uncoated concrete specimens, epoxy-coated concrete specimens (EP), and functionalised zeolite-A coated concrete specimens with epoxy to zeolite weight ratios of 3:1 (Z1), 2:2 (Z2) and 1:3 (Z3) were studied. Specimens were characterised by x-ray powder diffraction and field emission scanning electron microscopy for the identification of corrosion products and morphological changes. Biomass growth at the conclusion of the 32-day experiments was 4, 179 and 193 mg volatile suspended solids g(-1) sulphur for the uncoated, EP and Z1 specimens, whereas that of Z2 and Z3 were negligible. In the uncoated, EP and Z1 specimens, sulphate production rates were 0.83, 9.1 and 8.8 mM SO(4)(2-) day(-1) and the specific growth rates, mu, were 0.14, 0.57 and 0.47 day(-1), respectively. The corresponding values for Z2 and Z3 were negligible due to their bacterial inhibition characteristics. PMID:18846450

  6. Regulation of a novel Acidithiobacillus caldus gene cluster involved in metabolism of reduced inorganic sulfur compounds.

    PubMed

    Rzhepishevska, Olena I; Valdés, Jorge; Marcinkeviciene, Liucija; Gallardo, Camelia Algora; Meskys, Rolandas; Bonnefoy, Violaine; Holmes, David S; Dopson, Mark

    2007-11-01

    Acidithiobacillus caldus has been proposed to play a role in the oxidation of reduced inorganic sulfur compounds (RISCs) produced in industrial biomining of sulfidic minerals. Here, we describe the regulation of a new cluster containing the gene encoding tetrathionate hydrolase (tetH), a key enzyme in the RISC metabolism of this bacterium. The cluster contains five cotranscribed genes, ISac1, rsrR, rsrS, tetH, and doxD, coding for a transposase, a two-component response regulator (RsrR and RsrS), tetrathionate hydrolase, and DoxD, respectively. As shown by quantitative PCR, rsrR, tetH, and doxD are upregulated to different degrees in the presence of tetrathionate. Western blot analysis also indicates upregulation of TetH in the presence of tetrathionate, thiosulfate, and pyrite. The tetH cluster is predicted to have two promoters, both of which are functional in Escherichia coli and one of which was mapped by primer extension. A pyrrolo-quinoline quinone binding domain in TetH was predicted by bioinformatic analysis, and the presence of an o-quinone moiety was experimentally verified, suggesting a mechanism for tetrathionate oxidation. PMID:17873067

  7. Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans.

    PubMed

    Lara, René H; García-Meza, J Viridiana; Cruz, Roel; Valdez-Pérez, Donato; González, Ignacio

    2012-08-01

    Massive pyrite (FeS₂) electrodes were potentiostatically modified by means of variable oxidation pulse to induce formation of diverse surface sulfur species (S(n)²⁻, S⁰). The evolution of reactivity of the resulting surfaces considers transition from passive (e.g., Fe(1-x )S₂) to active sulfur species (e.g., Fe(1-x )S(2-y ), S⁰). Selected modified pyrite surfaces were incubated with cells of sulfur-oxidizing Acidithiobacillus thiooxidans for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the attached cells density and their exopolysaccharides were analyzed by confocal laser scanning microscopy (CLMS) and atomic force microscopy (AFM) on bio-oxidized surfaces; additionally, S(n)²⁻/S⁰ speciation was carried out on bio-oxidized and abiotic pyrite surfaces using Raman spectroscopy. Our results indicate an important correlation between the evolution of S(n)²⁻/S⁰ surface species ratio and biofilm formation. Hence, pyrite surfaces with mainly passive-sulfur species were less colonized by A. thiooxidans as compared to surfaces with active sulfur species. These results provide knowledge that may contribute to establishing interfacial conditions that enhance or delay metal sulfide (MS) dissolution, as a function of the biofilm formed by sulfur-oxidizing bacteria. PMID:22113561

  8. Regulation of a Novel Acidithiobacillus caldus Gene Cluster Involved in Metabolism of Reduced Inorganic Sulfur Compounds▿

    PubMed Central

    Rzhepishevska, Olena I.; Valdés, Jorge; Marcinkeviciene, Liucija; Gallardo, Camelia Algora; Meskys, Rolandas; Bonnefoy, Violaine; Holmes, David S.; Dopson, Mark

    2007-01-01

    Acidithiobacillus caldus has been proposed to play a role in the oxidation of reduced inorganic sulfur compounds (RISCs) produced in industrial biomining of sulfidic minerals. Here, we describe the regulation of a new cluster containing the gene encoding tetrathionate hydrolase (tetH), a key enzyme in the RISC metabolism of this bacterium. The cluster contains five cotranscribed genes, ISac1, rsrR, rsrS, tetH, and doxD, coding for a transposase, a two-component response regulator (RsrR and RsrS), tetrathionate hydrolase, and DoxD, respectively. As shown by quantitative PCR, rsrR, tetH, and doxD are upregulated to different degrees in the presence of tetrathionate. Western blot analysis also indicates upregulation of TetH in the presence of tetrathionate, thiosulfate, and pyrite. The tetH cluster is predicted to have two promoters, both of which are functional in Escherichia coli and one of which was mapped by primer extension. A pyrrolo-quinoline quinone binding domain in TetH was predicted by bioinformatic analysis, and the presence of an o-quinone moiety was experimentally verified, suggesting a mechanism for tetrathionate oxidation. PMID:17873067

  9. Microbial treatment of sulfur-contaminated industrial wastes.

    PubMed

    Gómez-Ramírez, Marlenne; Zarco-Tovar, Karina; Aburto, Jorge; de León, Roberto García; Rojas-Avelizapa, Norma G

    2014-01-01

    The present study evaluated the microbial removal of sulfur from a solid industrial waste in liquid culture under laboratory conditions. The study involved the use of two bacteria Acidithiobacillus ferrooxidans ATCC 53987 and Acidithiobacillus thiooxidans AZCT-M125-5 isolated from a Mexican soil. Experimentation for industrial waste biotreatment was done in liquid culture using 125-mL Erlenmeyer flasks containing 30 mL Starkey modified culture medium and incubated at 30°C during 7 days. The industrial waste was added at different pulp densities (8.25-100% w/v) corresponding to different sulfur contents from 0.7 to 8.63% (w/w). Sulfur-oxidizing activity of the strain AZCT-M125-5 produced 281 and 262 mg/g of sulfate and a sulfur removal of 60% and 45.7% when the pulp density was set at 8.25 and 16.5% (w/v), respectively. In comparison, the strain A. ferrooxidans ATCC 53987 showed a lower sulfur-oxidizing activity with a sulfate production of 25.6 and 12.7 mg/g and a sulfur removal of 6% and 2.5% at the same pulp densities, respectively. Microbial growth was limited by pulp densities higher than 25% (w/v) of industrial waste with minimal sulfur-oxidizing activity and sulfur removal. The rate of sulfur removal for Acidithiobacillus thioxidans AZCT-M125-5 and Acidithiobacillus ferrooxidans ATCC 53987 was 0.185 and 0.0159 mg S g(-1) h(-1) with a pulp density of 16.5% (w/v), respectively. This study demonstrated that Acidithiobacillus thiooxidans AZCT-M125-5 possesses a high sulfur-oxidizing activity, even at high sulfur concentration, which allows the treatment of hazardous materials. PMID:24171423

  10. Functional Characterization of the FoxE Iron Oxidoreductase from the Photoferrotroph Rhodobacter ferrooxidans SW2*

    PubMed Central

    Saraiva, Ivo H.; Newman, Dianne K.; Louro, Ricardo O.

    2012-01-01

    Photoferrotrophy is presumed to be an ancient type of photosynthetic metabolism in which bacteria use the reducing power of ferrous iron to drive carbon fixation. In this work the putative iron oxidoreductase of the photoferrotroph Rhodobacter ferrooxidans SW2 was cloned, purified, and characterized for the first time. This protein, FoxE, was characterized using spectroscopic, thermodynamic, and kinetic techniques. It is a c-type cytochrome that forms a trimer or tetramer in solution; the two hemes of each monomer are hexacoordinated by histidine and methionine. The hemes have positive reduction potentials that allow downhill electron transfer from many geochemically relevant ferrous iron forms to the photosynthetic reaction center. The reduction potentials of the hemes are different and are cross-assigned to fast and slow kinetic phases of ferrous iron oxidation in vitro. Lower reactivity was observed at high pH and may contribute to prevent ferric iron precipitation inside or at the surface of the cell. These results help fill in the molecular details of a metabolic process that likely contributed to the deposition of precambrian banded iron formations, globally important sedimentary rocks that are found on every continent today. PMID:22661703

  11. Functional characterization of the FoxE iron oxidoreductase from the photoferrotroph Rhodobacter ferrooxidans SW2.

    PubMed

    Saraiva, Ivo H; Newman, Dianne K; Louro, Ricardo O

    2012-07-20

    Photoferrotrophy is presumed to be an ancient type of photosynthetic metabolism in which bacteria use the reducing power of ferrous iron to drive carbon fixation. In this work the putative iron oxidoreductase of the photoferrotroph Rhodobacter ferrooxidans SW2 was cloned, purified, and characterized for the first time. This protein, FoxE, was characterized using spectroscopic, thermodynamic, and kinetic techniques. It is a c-type cytochrome that forms a trimer or tetramer in solution; the two hemes of each monomer are hexacoordinated by histidine and methionine. The hemes have positive reduction potentials that allow downhill electron transfer from many geochemically relevant ferrous iron forms to the photosynthetic reaction center. The reduction potentials of the hemes are different and are cross-assigned to fast and slow kinetic phases of ferrous iron oxidation in vitro. Lower reactivity was observed at high pH and may contribute to prevent ferric iron precipitation inside or at the surface of the cell. These results help fill in the molecular details of a metabolic process that likely contributed to the deposition of precambrian banded iron formations, globally important sedimentary rocks that are found on every continent today. PMID:22661703

  12. Iron Oxidation and Precipitation of Ferric Hydroxysulfates by Resting Thiobacillus ferrooxidans Cells

    PubMed Central

    Lazaroff, Norman; Sigal, Warren; Wasserman, Andrew

    1982-01-01

    The oxidation of ferrous ions, in acid solution, by resting suspensions of Thiobacillus ferrooxidans produced sediments consisting of crystalline jarosites, amorphous ferric hydroxysulfates, or both. These products differed conspicuously in chemical composition and infrared spectra from precipitates formed by abiotic oxidation under similar conditions. The amorphous sediments, produced by bacterial oxidation, exhibited a distinctive fibroporous microstructure when examined by scanning electron microscopy. Infrared spectra indicated outer-sphere coordination of Fe(III) by sulfate ions, as well as inner-sphere coordination by water molecules and bridging hydroxo groups. In the presence of excess sulfate and appropriate monovalent cations, jarosites, instead of amorphous ferric hydroxysulfates, precipitated from bacterially oxidized iron solutions. It is proposed that the jarositic precipitates result from the conversion of outer-sphere (Td) sulfate, present in a soluble polymeric Fe(III) complex, to inner-sphere (C3v) bridging sulfate. The amorphous precipitates result from the further polymerization of hydroxo-linked iron octahedra and charge stabilized aggregation of the resulting iron complexes in solution. This view was supported by observations that bacterially oxidized iron solutions gave rise to either amorphous or jarositic sediments in response to ionic environments imposed after oxidation had been completed and the bacteria had been removed by filtration. Images PMID:16345996

  13. Analysis of iron- and sulfur-oxidizing bacteria in a treatment plant of acid rock drainage from a Japanese pyrite mine by use of ribulose-1, 5-bisphosphate carboxylase/oxygenase large-subunit gene.

    PubMed

    Kamimura, Kazuo; Okabayashi, Ai; Kikumoto, Mei; Manchur, Mohammed Abul; Wakai, Satoshi; Kanao, Tadayoshi

    2010-03-01

    Iron- and sulfur-oxidizing bacteria in a treatment plant of acid rock drainage (ARD) from a pyrite mine in Yanahara, Okayama prefecture, Japan, were analyzed using the gene (cbbL) encoding the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO). Analyses of partial sequences of cbbL genes from Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidithiobacillus caldus strains revealed the diversity in their cbbL gene sequences. In contrast to the presence of two copies of form I cbbL genes (cbbL1 and cbbL2) in A. ferrooxidans genome, A. thiooxidans and A. caldus had a single copy of form I cbbL gene in their genomes. A phylogenetic analysis based on deduced amino acid sequences from cbbL genes detected in the ARD treatment plant and their close relatives revealed that 89% of the total clones were affiliated with A. ferrooxidans. Clones loosely affiliated with the cbbL from A. thiooxidans NB1-3 or Thiobacillus denitrificans was also detected in the treatment plant. cbbL gene sequences of iron- or sulfur-oxidizing bacteria isolated from the ARD and the ARD treatment plant were not detected in the cbbL libraries from the treatment plant, suggesting the low frequencies of isolates in the samples. PMID:20159572

  14. Growth effects and assimilation of organic acids in Chemostat and Batch Cultures of Acidithiobacillus caldus

    SciTech Connect

    John E. Aston; William A. Apel; Brady D. Lee; Brent M. Peyton

    2011-01-01

    The ability of Acidithiobacillus caldus to grow aerobically using pyruvate, acetate, citrate, 2-ketoglutarate, succinate, and malate as either an electron donor and carbon source (heterotrophic growth), or as a carbon source when potassium tetrathionate was added as an electron donor (mixotrophic growth), was tested in chemostat cultures. Under both heterotrophic and mixotrophic conditions, organic acids were added to a sub-lethal concentration (50 M). Under mixotrophic conditions, potassium tetrathionate was added to an excess concentration (10 mM). No cell growth was observed under heterotrophic conditions; however effluent cell concentrations increased over three-fold when pyruvate was coupled with potassium tetrathionate. Under these conditions, the effluent pyruvate concentration was reduced to below the detection limit (2 M), and oxygen consumption increased by approximately 100%. Although pyruvate provided a carbon source in these experiments, ambient carbon dioxide was also available to the cells. To test whether At. caldus could grow mixotrophically using pyruvate as a sole carbon source and potassium tetrathionate as an electron donor, cells were batch cultured in a medium free of dissolved inorganic carbon, and with no carbon dioxide in the headspace. These experiments showed that At. caldus was able to convert pyruvate between 65 ± 8 and 82 ± 15% of the pyruvate carbon to cellular biomass, depending on the initial pyruvate concentrations. This work is the first to identify a defined organic-carbon source, other than glucose, that At. caldus can assimilate. This has important implications, as mixotrophic and heterotrophic activity has been shown to increase mineral leaching in acidic systems.

  15. Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans.

    PubMed

    Lee, Eunseong; Han, Yosep; Park, Jeonghyun; Hong, Jeongsik; Silva, Rene A; Kim, Seungkon; Kim, Hyunjung

    2015-01-01

    The behavior of arsenic (As) bioleaching from mine tailings containing high amount of As (ca. 34,000 mg/kg) was investigated using Acidithiobacillus thiooxidans to get an insight on the optimal conditions that would be applied to practical heap and/or tank bioleaching tests. Initial pH (1.8-2.2), temperature (25-40 °C), and solid concentration (0.5-4.0%) were employed as experimental parameters. Complementary characterization experiments (e.g., XRD, SEM-EDS, electrophoretic mobility, cell density, and sulfate production) were also carried out to better understand the mechanism of As bioleaching. The results showed that final As leaching efficiency was similar regardless of initial pH. However, greater initial As leaching rate was observed at initial pH 1.8 than other conditions, which could be attributed to greater initial cell attachment to mine tailings. Unlike the trend observed when varying the initial pH, the final As leaching efficiency varied with the changes in temperature and solid concentration. Specifically, As leaching efficiency tended to decrease with increasing temperature due to the decrease in the bacterial growth rate at higher temperature. Meanwhile, As leaching efficiency tended to increase with decreasing solid concentration. The results for jarosite contents in mine tailings residue after bioleaching revealed that much greater amount of the jarosite was formed during the bioleaching reaction at higher solid concentration, suggesting that the coverage of the surface of the mine tailings by jarosite and/or the co-precipitation of the leached As with jarosite could be a dominant factor reducing As leaching efficiency. PMID:25262394

  16. Construction of small plasmid vectors for use in genetic improvement of the extremely acidophilic Acidithiobacillus caldus.

    PubMed

    Meng, Jianzhou; Wang, Huiyan; Liu, Xiangmei; Lin, Jianqun; Pang, Xin; Lin, Jianqiang

    2013-10-01

    The genetic improvement of biomining bacteria including Acidithiobacillus caldus could facilitate the bioleaching process of sulfur-containing minerals. However, the available vectors for use in A. caldus are very scanty and limited to relatively large broad-host-range IncQ plasmids. In this study, a set of small, mobilizable plasmid vectors (pBBR1MCS-6, pMSD1 and pMSD2) were constructed based on plasmid pBBR1MCS-2, which does not belong to the IncQ, IncW, or IncP groups. The function of the tac promoter on 5.8-kb pMSD2 was determined by inserting a kanamycin-resistant reporter gene. The resulting recombinant pMSD2-Km was successfully transferred by conjugation into A. caldus MTH-04 with transfer frequency of 1.38±0.64×10(-5). The stability and plasmid copy number of pMSD2-Km in A. caldus MTH-04 were 75±2.7% and 5-6 copies per cell, respectively. By inserting an arsABC operon into pMSD2, an arsenic-resistant recombinant pMSD2-As was constructed and transferred into A. caldus MTH-04 by conjugation. The arsenic tolerance of A. caldus MTH-04 containing pMSD2-As was obviously increased up to 45mM of NaAsO2. These vectors could be applied in genetic improvement of A. caldus as well as other bioleaching bacteria. PMID:23639949

  17. Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans.

    PubMed

    Lara, René H; García-Meza, J Viridiana; González, Ignacio; Cruz, Roel

    2013-03-01

    Surfaces of massive chalcopyrite (CuFeS2) electrodes were modified by applying variable oxidation potential pulses under growth media in order to induce the formation of different secondary phases (e.g., copper-rich polysulfides, S n(2-); elemental sulfur, S(0); and covellite, CuS). The evolution of reactivity (oxidation capacity) of the resulting chalcopyrite surfaces considers a transition from passive or inactive (containing CuS and S n(2-)) to active (containing increasing amounts of S(0)) phases. Modified surfaces were incubated with cells of sulfur-oxidizing bacteria (Acidithiobacillus thiooxidans) for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the density of cells attached to chalcopyrite surfaces, the structure of the formed biofilm, and their exopolysaccharides and nucleic acids were analyzed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy coupled to dispersive X-ray analysis (SEM-EDS). Additionally, CuS and S n(2-)/S(0) speciation, as well as secondary phase evolution, was carried out on biooxidized and abiotic chalcopyrite surfaces using Raman spectroscopy and SEM-EDS. Our results indicate that oxidized chalcopyrite surfaces initially containing inactive S n(2-) and S n(2-)/CuS phases were less colonized by A. thiooxidans as compared with surfaces containing active phases (mainly S(0)). Furthermore, it was observed that cells were partially covered by CuS and S(0) phases during biooxidation, especially at highly oxidized chalcopyrite surfaces, suggesting the innocuous effect of CuS phases during A. thiooxidans performance. These results may contribute to understanding the effect of the concomitant formation of refractory secondary phases (as CuS and inactive S n(2-)) during the biooxidation of chalcopyrite by sulfur-oxidizing microorganisms in bioleaching systems. PMID:22584430

  18. Preliminary study of treatment of sulphuric pickling water waste from steelmaking by bio-oxidation with Thiobacillus ferrooxidans.

    PubMed

    Garcia, F J; Rubio, A; Sainz, E; Gonzalez, P; Lopez, F A

    1994-08-01

    This report looks at the laboratory-scale recovery of iron oxides (alpha Fe2O3 type) through bio-oxidation with Thiobacillus ferrooxidans of the ferrous sulphate contained in steel industry sulphuric pickling liquors. This is done by calcining iron sulphates and iron and ammonium sulphates obtained from the crystallization of the oxidized solution. The products of the bacterial reaction and the iron oxides are then studied according to calcination temperature. The process carried out produced 50 kg of alpha Fe2O3 per m3 of waste pickling liquor at 700 degrees C with 99.8% weight iron recovery. PMID:7917427

  19. Isolation, sequence analysis, and comparison of two plasmids (28 and 29 kilobases) from the biomining bacterium Leptospirillum ferrooxidans ATCC 49879.

    PubMed

    Coram, Nicolette J; van Zyl, Leonardo J; Rawlings, Douglas E

    2005-11-01

    Two plasmids, of 28,878 bp and 28,012 bp, were isolated from Leptospirillum ferrooxidans ATCC 49879. Altogether, a total of 67 open reading frames (ORFs) were identified on both plasmids, of which 32 had predicted products with high homology to proteins of known function, while 11 ORFs had predicted products with homology to previously identified proteins of unknown function. Twenty-four ORFs had products with no homologues in the GenBank/NCBI database. An analysis of the ORFs and other features of the two plasmids, the first to be isolated from a bacterium of the genus Leptospirillum, is presented. PMID:16269793

  20. Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate.

    PubMed

    Eccleston, M; Kelly, D P

    1978-06-01

    Growth of Thiobacillus ferrooxidans in batch culture on 10 mM potassium tetrathionate was optimal at pH 2.5 (specific growth rate, 0.092 h-1). Oxygen electrode studies on resting cell suspensions showed that the apparent Km for tetrathionate oxidation (0.13 to 8.33 mM) was pH dependent, suggesting higher substrate affinity at higher pH. Conversely, oxidation rates were greatest at low pH. High substrate concentrations (7.7 to 77 mM) did not affect maximum oxidation rates at pH 3.0, but produced substrate inhibition at other pH values. Tetrathionate-grown cell suspensions also oxidized thiosulfate at pH 2.0 to 4.0. Apparent Km values (1.2 to 25 mM) were of the same order as for tetrathionate, but kinetics were complex. Continuous culture on growth-limiting tetrathionate at pH 2.5, followed by continuous culture on growth-limiting thiosulfate at pH 2.5, indicated true growth yield values (grams [dry weight] per gram-molecule of substrate) of 12.2 and 7.5, and maintenance coefficient values (millimoles of substrate per gram [dry weight) of organisms per hour) of 1.01 and 0.97 for tetrathionate and thiosulfate, respectively. Yield was increased on both media at low dilution rates by increase in CO2 supply. The apparent maintenance coefficient was lowered without affecting YG, suggesting better energy coupling in CO2-rich environments. Prolonged continuous cultivation on tetrathionate or thiosulfate did not affect the ability of the organism to grow subsequently in ferrous iron medium. PMID:26665

  1. Specific binding of Thiobacillus ferrooxidans RbcR to the intergenic sequence between the rbc operon and the rbcR gene.

    PubMed Central

    Kusano, T; Sugawara, K

    1993-01-01

    The presence of two sets (rbcL1-rbcS1 and rbcL2-rbcS2) of rbc operons has been demonstrated in Thiobacillus ferrooxidans Fe1 (T. Kusano, T. Takeshima, C. Inoue, and K. Sugawara, J. Bacteriol. 173:7313-7323, 1991). A possible regulatory gene, rbcR, 930 bp long and possibly translated into a 309-amino-acid protein, was found upstream from the rbcL1 gene as a single copy. The gene is located divergently to rbcL1 with a 144-bp intergenic sequence. As in the cases of the Chromatium vinosum RbcR and Alcaligenes eutrophus CfxR, T. ferrooxidans RbcR is thought to be a new member of the LysR family, and these proteins share 46.5 and 42.8% identity, respectively. Gel mobility shift assays showed that T. ferrooxidans RbcR, produced in Escherichia coli, binds specifically to the intergenic sequence between rbcL1 and rbcR. Footprinting and site-directed mutagenesis experiments further demonstrated that RbcR binds to overlapping promoter elements of the rbcR and rbcL1 genes. The above data strongly support the participation of RbcR in regulation of the rbcL1-rbcS1 operon and the rbcR gene in T. ferrooxidans. Images PMID:8432695

  2. Purification and some properties of ubiquinol oxidase from obligately chemolithotrophic iron-oxidizing bacterium, Thiobacillus ferrooxidans NASF-1.

    PubMed

    Kamimura, K; Fujii, S; Sugio, T

    2001-01-01

    Ubiquinol-oxidizing activity was detected in an acidophilic chemolithotrophic iron-oxidizing bacterium, T. ferrooxidans. The ubiquinol oxidase was purified 79-fold from plasma membranes of T. ferrooxidans NASF-1 cells. The purified oxidase is composed of two polypeptides with apparent molecular masses of 32,600 and 50,100 Da, as measured by gel electrophoresis in the presence of sodium dodecyl sulfate. The absorption spectrum of the reduced enzyme at room temperature showed big peaks at 530 and 563, and a small broad peak at 635 nm, indicating the involvement of cytochromes b and d. Characteristic peaks of cytochromes a and c were not observed in the spectrum at around 600 and 550 nm, respectively. This enzyme combined with CO, and its CO-reduced minus reduced difference spectrum showed peaks at 409 nm and 563 nm and a trough at 431 nm. These results indicated that the oxidase contained cytochrome b, but the involvement of cytochrome d was not clear. The enzyme catalyzed the oxidations of ubiquinol-2 and reduced N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride. The ubiquinol oxidase activity was activated by the addition of albumin and lecithin to the reaction mixture and inhibited by the respiratory inhibitors KCN, HQNO, NaN3, and antimycin A1, although the enzyme was relatively resistant to KCN, and the divalent cation, Zn2+, compared with ubiquinol oxidases of E. coli. PMID:11272847

  3. The bioleaching potential of a bacterial consortium.

    PubMed

    Latorre, Mauricio; Cortés, María Paz; Travisany, Dante; Di Genova, Alex; Budinich, Marko; Reyes-Jara, Angélica; Hödar, Christian; González, Mauricio; Parada, Pilar; Bobadilla-Fazzini, Roberto A; Cambiazo, Verónica; Maass, Alejandro

    2016-10-01

    This work presents the molecular foundation of a consortium of five efficient bacteria strains isolated from copper mines currently used in state of the art industrial-scale biotechnology. The strains Acidithiobacillus thiooxidans Licanantay, Acidiphilium multivorum Yenapatur, Leptospirillum ferriphilum Pañiwe, Acidithiobacillus ferrooxidans Wenelen and Sulfobacillus thermosulfidooxidans Cutipay were selected for genome sequencing based on metal tolerance, oxidation activity and bioleaching of copper efficiency. An integrated model of metabolic pathways representing the bioleaching capability of this consortium was generated. Results revealed that greater efficiency in copper recovery may be explained by the higher functional potential of L. ferriphilum Pañiwe and At. thiooxidans Licanantay to oxidize iron and reduced inorganic sulfur compounds. The consortium had a greater capacity to resist copper, arsenic and chloride ion compared to previously described biomining strains. Specialization and particular components in these bacteria provided the consortium a greater ability to bioleach copper sulfide ores. PMID:27416516

  4. Enhancement of growth and ferrous iron oxidation rates of T. ferrooxidans by electrochemical reduction of ferric iron

    SciTech Connect

    Yunker, S.B.; Radovich, J.M.

    1986-01-01

    Thiobacillus ferrooxidans, the bacterium most widely used in bioleaching or microbial desulfurization of coal, was grown in an electrolytic bioreactor containing a synthetic, ferrous sulfate medium. Passage of current through the medium reduced the bacterially generated ferric iron to the ferrous iron substrate. When used in conjunction with an inoculum that had been adapted to the electrolytic growth conditions, this technique increased the protein (cell) concentration by 3.7 times, increased the protein (cell) production rate by 6.5 times, increased the yield coefficient (cellular efficiency) by 8.0 times, and increased the ferrous iron oxidation rate by 1.5 times at 29/sup 0/C, compared with conventional cultivation techniques. A Monod-type equation with accepted values for the maximum specific growth rate could not account for the increased growth rate under electrolytic conditions.

  5. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions.

    PubMed

    Fowler, T A; Crundwell, F K

    1999-12-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions. PMID:10583978

  6. Molecular cloning, sequencing, and expression of omp-40, the gene coding for the major outer membrane protein from the acidophilic bacterium Thiobacillus ferrooxidans.

    PubMed

    Guiliani, N; Jerez, C A

    2000-06-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. Some of the surface components of this microorganism are probably involved in adaptation to their acidic environment and in bacterium-mineral interactions. We have isolated and characterized omp40, the gene coding for the major outer membrane protein from T. ferrooxidans. The deduced amino acid sequence of the Omp40 protein has 382 amino acids and a calculated molecular weight of 40,095.7. Omp40 forms an oligomeric structure of about 120 kDa that dissociates into the monomer (40 kDa) by heating in the presence of sodium dodecyl sulfate. The degree of identity of Omp40 amino acid sequence to porins from enterobacteria was only 22%. Nevertheless, multiple alignments of this sequence with those from several OmpC porins showed several important features conserved in the T. ferrooxidans surface protein, such as the approximate locations of 16 transmembrane beta strands, eight loops, including a large external L3 loop, and eight turns which allowed us to propose a putative 16-stranded beta-barrel porin structure for the protein. These results together with the previously known capacity of Omp40 to form ion channels in planar lipid bilayers strongly support its role as a porin in this chemolithoautotrophic acidophilic microorganism. Some characteristics of the Omp40 protein, such as the presence of a putative L3 loop with an estimated isoelectric point of 7.21 allow us to speculate that this can be the result of an adaptation of the acidophilic T. ferrooxidans to prevent free movement of protons across its outer membrane. PMID:10831405

  7. Characterization of an Operon Encoding Two c-Type Cytochromes, an aa3-Type Cytochrome Oxidase, and Rusticyanin in Thiobacillus ferrooxidans ATCC 33020

    PubMed Central

    Appia-Ayme, Corinne; Guiliani, Nicolas; Ratouchniak, Jeanine; Bonnefoy, Violaine

    1999-01-01

    Despite the importance of Thiobacillus ferrooxidans in bioremediation and bioleaching, little is known about the genes encoding electron transfer proteins implicated in its energetic metabolism. This paper reports the sequences of the four cox genes encoding the subunits of an aa3-type cytochrome c oxidase. These genes are in a locus containing four other genes: cyc2, which encodes a high-molecular-weight cytochrome c; cyc1, which encodes a c4-type cytochrome (c552); open reading frame 1, which encodes a putative periplasmic protein of unknown function; and rus, which encodes rusticyanin. The results of Northern and reverse transcription-PCR analyses indicated that these eight genes are cotranscribed. Two transcriptional start sites were identified for this operon. Upstream from each of the start sites was a ς70-type promoter recognized in Escherichia coli. While transcription in sulfur-grown T. ferrooxidans cells was detected from the two promoters, transcription in ferrous-iron-grown T. ferrooxidans cells was detected only from the downstream promoter. The cotranscription of seven genes encoding redox proteins suggests that all these proteins are involved in the same electron transfer chain; a model taking into account the biochemistry and the genetic data is discussed. PMID:10543786

  8. Optimization of two-step bioleaching of spent petroleum refinery catalyst by Acidithiobacillus thiooxidans using response surface methodology.

    PubMed

    Srichandan, Haragobinda; Pathak, Ashish; Kim, Dong Jin; Lee, Seoung-Won

    2014-01-01

    A central composite design (CCD) combined with response surface methodology (RSM) was employed for maximizing bioleaching yields of metals (Al, Mo, Ni, and V) from as-received spent refinery catalyst using Acidithiobacillus thiooxidans. Three independent variables, namely initial pH, sulfur concentration, and pulp density were investigated. The pH was found to be the most influential parameter with leaching yields of metals varying inversely with pH. Analysis of variance (ANOVA) of the quadratic model indicated that the predicted values were in good agreement with experimental data. Under optimized conditions of 1.0% pulp density, 1.5% sulfur and pH 1.5, about 93% Ni, 44% Al, 34% Mo, and 94% V was leached from the spent refinery catalyst. Among all the metals, V had the highest maximum rate of leaching (Vmax) according to the Michaelis-Menten equation. The results of the study suggested that two-step bioleaching is efficient in leaching of metals from spent refinery catalyst. Moreover, the process can be conducted with as received spent refinery catalyst, thus making the process cost effective for large-scale applications. PMID:25320861

  9. Hydrogen sulfide oxidation in novel Horizontal-Flow Biofilm Reactors dominated by an Acidithiobacillus and a Thiobacillus species.

    PubMed

    Gerrity, S; Kennelly, C; Clifford, E; Collins, G

    2016-09-01

    Hydrogen Sulfide (H2S) is an odourous, highly toxic gas commonly encountered in various commercial and municipal sectors. Three novel, laboratory-scale, Horizontal-Flow Biofilm Reactors (HFBRs) were tested for the removal of H2S gas from air streams over a 178-day trial at 10°C. Removal rates of up to 15.1 g [H2S] m(-3) h(-1) were achieved, demonstrating the HFBRs as a feasible technology for the treatment of H2S-contaminated airstreams at low temperatures. Bio-oxidation of H2S in the reactors led to the production of H(+) and sulfate (SO(2-)4) ions, resulting in the acidification of the liquid phase. Reduced removal efficiency was observed at loading rates of 15.1 g [H2S] m(-3) h(-1). NaHCO3 addition to the liquid nutrient feed (synthetic wastewater (SWW)) resulted in improved H2S removal. Bacterial diversity, which was investigated by sequencing and fingerprinting 16S rRNA genes, was low, likely due to the harsh conditions prevailing in the systems. The HFBRs were dominated by two species from the genus Acidithiobacillus and Thiobacillus. Nonetheless, there were significant differences in microbial community structure between distinct HFBR zones due to the influence of alkalinity, pH and SO4 concentrations. Despite the low temperature, this study indicates HFBRs have an excellent potential to biologically treat H2S-contaminated airstreams. PMID:26829048

  10. Solubilization of Minerals by Bacteria: Electrophoretic Mobility of Thiobacillus ferrooxidans in the Presence of Iron, Pyrite, and Sulfur

    PubMed Central

    Blake, Robert C.; Shute, Elizabeth A.; Howard, Gary T.

    1994-01-01

    Thiobacillus ferroxidans is an obligate acidophile that respires aerobically on pyrite, elemental sulfur, or soluble ferrous ions. The electrophoretic mobility of the bacterium was determined by laser Doppler velocimetry under physiological conditions. When grown on pyrite or ferrous ions, washed cells were negatively charged at pH 2.0. The density of the negative charge depended on whether the conjugate base was sulfate, perchlorate, chloride, or nitrate. The addition of ferric ions shifted the net charge on the surface asymptotically to a positive value. When grown on elemental sulfur, washed cells were close to their isoelectric point at pH 2.0. Both pyrite and colloidal sulfur were negatively charged under the same conditions. The electrical double layer around the bacterial cells under physiological conditions exerted minimal electrostatic repulsion in possible interactions between the cell and either of its charged insoluble substrates. When Thiobacillus ferrooxidans was mixed with either pyrite or colloidal sulfur at pH 2.0, the mobility spectra of the free components disappeared with time to be replaced with a new colloidal particle whose electrophoretic properties were intermediate between those of the starting components. This new particle had the charge and size properties anticipated for a complex between the bacterium and its insoluble substrates. The utility of such measurements for the study of the interactions of chemolithotrophic bacteria with their insoluble substrates is discussed. Images PMID:16349387

  11. Constitutive synthesis of a transport function encoded by the Thiobacillus ferrooxidans merC gene cloned in Escherichia coli

    SciTech Connect

    Kusano, Tomonobu Akita Prefectural College of Agriculture ); Ji, Guangyong; Silver, S. ); Inoue, Chihiro )

    1990-05-01

    Mercuric reductase activity determined by the Thiobacillus ferrooxidans merA gene (cloned and expressed constitutively in Escherichia coli) was measured by volatilization of {sup 203}Hg{sup 2+}. (The absence of a merR regulatory gene in the cloned Thiobacillus mer determinant provides a basis for the constitutive synthesis of this system.) In the absence of the Thiobacillus merC transport gene, the mercury volatilization activity was cryptic and was not seen with whole cells but only with sonication-disrupted cells. The Thiobacillus merC transport function was compared with transport via the merT-merP system of plasmid pDU1358. Both systems, cloned and expressed in E. coli, governed enhanced uptake of {sup 203}Hg{sup 2+} in a temperature- and concentration-dependent fashion. Uptake via MerT-MerP was greater and conferred greater hypersensitivity to Hg{sup 2+} than did uptake with MerC. Mercury uptake was inhibited by N-ethylmaleimide but not by EDTA. Ag{sup +} salts inhibited mercury uptake by the MerT-MerP system but did not inhibit uptake via MerC. Radioactive mercury accumulated by the MerT-MerP and by the MerC systems was exchangeable with nonradioactive Hg{sup 2+}.

  12. Quantifying adhesion of acidophilic bioleaching bacteria to silica and pyrite by atomic force microscopy with a bacterial probe.

    PubMed

    Diao, Mengxue; Taran, Elena; Mahler, Stephen; Nguyen, Tuan A H; Nguyen, Anh V

    2014-03-01

    The adhesion of acidophilic bacteria to mineral surfaces is an important phenomenon in bioleaching processes. In this study, functionalized colloidal probes covered by bioleaching bacterial cells (Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans) were developed and used to sense specific adhesion forces to a silica surface and a pyrite surface in various solutions. Experimentally, recorded retraction curves of A. thiooxidans revealed sawtooth features that were in good agreement with the wormlike chain model, while that of L. ferrooxidans exhibited stair-step separation. The magnitudes of adhesion forces and snap-off distances were strongly influenced by the ionic strength and pH. Macroscopic surface properties including hydrophobicity and surface potential for bacterial cells and substrata were measured by a sessile drop method and microelectrophoresis. The ATR-FTIR spectra indicated the presence of different types of biopolymers on two strains of bacteria. PMID:24355385

  13. Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic.

    PubMed

    Ramírez-Aldaba, Hugo; Valles, O Paola; Vazquez-Arenas, Jorge; Rojas-Contreras, J Antonio; Valdez-Pérez, Donato; Ruiz-Baca, Estela; Meraz-Rodríguez, Mónica; Sosa-Rodríguez, Fabiola S; Rodríguez, Ángel G; Lara, René H

    2016-10-01

    Bioleaching of arsenopyrite presents a great interest due to recovery of valuable metals and environmental issues. The current study aims to evaluate the arsenopyrite oxidation by Acidithiobacillus thiooxidans during 240h at different time intervals, in the presence and absence of supplementary arsenic. Chemical and electrochemical characterizations are carried out using Raman, AFM, SEM-EDS, Cyclic Voltammetry, EIS, electrophoretic and adhesion forces to comprehensively assess the surface behavior and biooxidation mechanism of this mineral. These analyses evidence the formation of pyrite-like secondary phase on abiotic control surfaces, which contrast with the formation of pyrite (FeS2)-like, orpiment (As2S3)-like and elementary sulfur and polysulfide (Sn(2-)/S(0)) phases found on biooxidized surfaces. Voltammetric results indicate a significant alteration of arsenopyrite due to (bio)oxidation. Resistive processes determined with EIS are associated with chemical and electrochemical reactions mediated by (bio)oxidation, resulting in the transformation of arsenopyrite surface and biofilm direct attachment. Charge transfer resistance is increased when (bio)oxidation is performed in the presence of supplementary arsenic, in comparison with lowered abiotic control resistances obtained in its absence; reinforcing the idea that more stable surface products are generated when As(V) is in the system. Biofilm structure is mainly comprised of micro-colonies, progressively enclosed in secondary compounds. A more compact biofilm structure with enhanced formation of secondary compounds is identified in the presence of supplementary arsenic, whereby variable arsenopyrite reactivity is linked and attributed to these secondary compounds, including Sn(2-)/S(0), pyrite-like and orpiment-like phases. PMID:27312277

  14. Insights on the structure and stability of Licanantase: a trimeric acid-stable coiled-coil lipoprotein from Acidithiobacillus thiooxidans

    PubMed Central

    Abarca, Fernando; Gutierrez-Maldonado, Sebastian E.; Parada, Pilar; Martinez, Patricio; Maass, Alejandro

    2014-01-01

    Licanantase (Lic) is the major component of the secretome of Acidithiobacillus thiooxidans when grown in elemental sulphur. When used as an additive, Lic improves copper recovery from bioleaching processes. However, this recovery enhancement is not fully understood. In this context, our aim is to predict the 3D structure of Lic, to shed light on its structure-function relationships. Bioinformatics analyses on the amino acid sequence of Lic showed a great similarity with Lpp, an Escherichia coli Lipoprotein that can form stable trimers in solution. Lic and Lpp share the secretion motif, intracellular processing and alpha helix structure, as well as the distribution of hydrophobic residues in heptads forming a hydrophobic core, typical of coiled-coil structures. Cross-linking experiments showed the presence of Lic trimers, supporting our predictions. Taking the in vitro and in silico evidence as a whole, we propose that the most probable structure for Lic is a trimeric coiled-coil. According to this prediction, a suitable model for Lic was produced using the de novo algorithm “Rosetta Fold-and-Dock”. To assess the structural stability of our model, Molecular Dynamics (MD) and Replica Exchange MD simulations were performed using the structure of Lpp and a 14-alanine Lpp mutant as controls, at both acidic and neutral pH. Our results suggest that Lic was the most stable structure among the studied proteins in both pH conditions. This increased stability can be explained by a higher number of both intermonomer hydrophobic contacts and hydrogen bonds, key elements for the stability of Lic’s secondary and tertiary structure. PMID:25165619

  15. Rate of pyrite bioleaching by Thiobacillus ferrooxidans: Results of an interlaboratory comparison

    SciTech Connect

    Olson, G.J. )

    1991-03-01

    Ten laboratories participated in an interlaboratory comparison of determination of bioleaching rates of a pyrite reference material. A standardized procedure and a single strain of Thiobacillus ferroxidans were used in this study. The mean rate of bioleaching of the pyrite reference material was 12.4 mg of Fe per liter per h, with a coefficient of variation (percent relative standard deviation) of 32% as determined by eight laboratories. These results show the precision among laboratories of the determination of rates of pyrite bioleaching when a standard test procedure and reference material are used.

  16. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1997-01-01

    Logarithmic strain is the preferred measure of strain used by materials scientists, who typically refer to it as the "true strain." It was Nadai who gave it the name "natural strain," which seems more appropriate. This strain measure was proposed by Ludwik for the one-dimensional extension of a rod with length l. It was defined via the integral of dl/l to which Ludwik gave the name "effective specific strain." Today, it is after Hencky, who extended Ludwik's measure to three-dimensional analysis by defining logarithmic strains for the three principal directions.

  17. Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans.

    PubMed

    Solisio, C; Lodi, A; Veglio, F

    2002-01-01

    Biological solubilisation of heavy metals contained in two different kinds of industrial wastes was performed in batches employing a strain of Thiobacillus ferroxidans. The wastes tested were: a dust coming from the iron-manganese alloy production in an electric furnace (sludge 1) and a sludge coming from a process treatment plant of aluminium anodic oxidation (sludge 2). The experimental results pointed out the ability of the used strain to maintain the environment, that initially has a pH about 8, at strongly acid conditions (pH 2.5-3.5), producing sulphuric acid that is the chemical agent responsible for the metals solubilisation. At wastes initial concentration of 1%, the percentage of solubilised metals was 76 and 78% for the wastes 1 and 2, respectively, but the lag phase was considerably longer for sludge 2 than for sludge 1, indicating a different affinity of microorganisms for the solid phase. Increasing the initial slurry concentration, the percentage of removed metal reached 72-73% for the sludge 1, while in case of sludge 2, the total amount of solubilized metal progressively decreased. Two kinetic models are proposed to describe the trends of metals solubilization curves. PMID:12214978

  18. Effect of Heavy metals on the iron oxidizing ability of Thiobacillus ferrooxidans: Part 1, Effect of silver

    SciTech Connect

    De, G.C.; Pesic, B.

    1992-01-01

    The effect of silver ions on the iron oxidizing ability of Thiobacillus ferrooxidans was studied using electrochemical and other physics-chemical techniques. Electrochemical investigation was conducted using a method based on redox potential change. Experiments were performed by adding an aliquot of separately prepared concentrate of the bacteria into the solution of ferrous ion and monitoring the redox potential for at least one hour. Pyrite was used as the indicator electrode. Parameters examined were pH, microbial cell density, ferrous, ferric and silver ion concentration, temperature and preconditioning period of the bacteria with silver ions, etc. Results obtained demonstrate that the rate of ferrous ion oxidation is dependent on pH (optimum pH range is 1.5--2.0) and the substrate (i.e. Fe(II)) to microbial cell concentration ratio. The mechanism of the bacteria mediated oxidation of ferrous iron is remarkably sensitive to temperature changes. At the vicinity of the optimum temperature (i.e. 25[degree]C), the reaction is likely to be controlled by the diffusion of Fe (II) ions through the cell wall of the bacteria, whereas below the range 18--25[degree]C, reaction kinetics may be the rate controlling factor. In the presence of 10 mg/L silver, the reaction may be kinetically controlled over the temperature range 5.5--25[degree]C. Inhibition of microbial FE(II) oxidation in the presence of silver may take place via a mixed mechanism in which silver may bind with both the enzyme and the enzyme-substrate complex.

  19. Instrument development to search for biomarkers on mars: Terrestrial acidophile, iron-powered chemolithoautotrophic communities as model systems

    NASA Astrophysics Data System (ADS)

    Parro, V.; Rodríguez-Manfredi, J. A.; Briones, C.; Compostizo, C.; Herrero, P. L.; Vez, E.; Sebastián, E.; Moreno-Paz, M.; García-Villadangos, M.; Fernández-Calvo, P.; González-Toril, E.; Pérez-Mercader, J.; Fernández-Remolar, D.; Gómez-Elvira, J.

    2005-06-01

    Recent findings by the MER rover opportunity confirming the presence of iron minerals that can only be formed in the presence of water emphasize the study of analogous environments to Mars on Earth. The study of chemolithoautotrophic communities living in acidic iron-rich habitats is highly relevant in order to identify Mars analog environment-specific biomarkers. Iron oxidizing bacteria like Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans have ways of life for which it is feasible to identify a past or present hypothetical niche on Mars. We have developed a strategy for biomarker identification based on: (i) search for biosignatures on acid and metal-rich environments; (ii) development of an immunosensor microarray; and (iii) integration into an instrument for autonomous and remote operation. The instrument that we have built, called Signs Of LIfe Detector (SOLID), is capable of processing a variety of samples for the detection of specific biomarkers. Antibodies against several bacterial strains have been developed and tested in a microarray biosensor on SOLID. Tests with field samples have been successfully performed, allowing the detection of L. ferrooxidans, A. ferrooxidans present in sediment samples.

  20. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1995-01-01

    The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

  1. Use of sulfur-oxidizing bacteria as recognition elements in hydrogen sulfide biosensing system.

    PubMed

    Janfada, Behdokht; Yazdian, Fatemeh; Amoabediny, Ghassem; Rahaie, Mahdi

    2015-01-01

    Four sulfur-oxidizing bacteria (Thiobacillus thioparus, Acidithiobacillus thiooxidans PTCC1717, Acidithiobacillus ferrooxidans PTCC1646, and Acidithiobacillus ferrooxidans PTCC1647) were used as biorecognition elements in a hydrogen sulfide biosensing system. All the experiments were performed in 0.1 M phosphate buffer solution containing 1-20 ppm H2S with optimum pH and temperature for each species. Although H2 S was applied to the biosensing system, the dissolved O2 content decreased. Dissolved O2 consumed by cells in both free and immobilized forms was measured using a dissolved oxygen sensor. Free bacterial cells exhibit fast response (<200 Sec). Immobilization of the cells on polyvinyl alcohol was optimized using an analytical software. Immobilized A. ferrooxidans and A. thiooxidans retained more than 50% of activity after 30 days of immobilization. According to the data, A. thiooxidans and A. ferrooxidans are appropriate species for hydrogen sulfide biosensor. PMID:25158614

  2. Characterization of the Calcination Products of the Precipitates Obtained from the Bio-Oxidation with Thiobacillus Ferrooxidans of Sulphuric Water Pickling Liquors

    NASA Astrophysics Data System (ADS)

    Marco, J. F.; Gancedo, J. R.; López, F. A.

    1998-12-01

    The characterization of the calcination products of the precipitates obtained from the bio-oxidation with Thiobacillus ferrooxidans of sulphuric water pickling liquors has been carried out by means of Mössbauer spectroscopy, x-ray powder diffraction, infrared spectroscopy and transmission electron microscopy. The results show that a full transformation of the precipitates into α-Fe2O3 is achieved at temperatures higher than 850°C. Calcination at 700°C during two hours results in the formation of α-Fe2O3, ζ-Fe2O3 and Fe12O3(SO4)15. The Mössbauer parameters of ζ-Fe2O3 and Fe12O3(SO4)15 at 298 and 17K are reported.

  3. Microbial ecology of a novel sulphur cycling consortia from AMD: implications for acid generation

    NASA Astrophysics Data System (ADS)

    Loiselle, L. M.; Norlund, K. L.; Hitchcock, A. P.; Warren, L. A.

    2009-05-01

    Recent work1 identified a novel microbial consortia consisting of two bacterial strains common to acid mine drainage (AMD) environments (autotrophic sulphur oxidizer Acidithiobacillus ferrooxidans and heterotrophic Acidiphilium spp.) in an environmental enrichment from a mine tailings lake. The two strains showed a specific spatial arrangement within an EPS macrostructure or "pod" allowing linked metabolic redox cycling of sulphur. Sulphur species characterisation of the pods using scanning transmission X-ray microscopy (STXM) indicated that autotrophic tetrathionate disproportionation by A. ferrooxidans producing colloidal elemental sulphur (S0) is coupled to heterotrophic S0 reduction by Acidiphilium spp. Geochemical modelling of the microbial sulphur reactions indicated that if they are widespread in AMD environments, then global AMD-driven CO2 liberation from mineral weathering have been overestimated by 40-90%1. Given the common co-occurrence of these two bacteria in AMD settings, the purpose of this study was to evaluate if these pods could be induced in the laboratory by pure strains and if so, whether their combined sulphur geochemistry mimicked the previous findings. Laboratory batch experiments assessed the development of pods with pure strain type cultures (A. ferrooxidans ATCC 19859 with mixotroph Acidiphilium acidophilum ATCC 738 or strict heterotroph Acp. cryptum ATCC 2158) using fluorescent in situ hybridization (FISH) imaging. The microbial sulphur geochemistry was characterized under autotrophic conditions identical to those used with the environmental AMD enrichment in which the pods were discovered. Results showed that the combined pure strain A. ferrooxidans and Acp. acidophilum form pods identical in structure to the AMD enrichment. To test the hypothesis that these pods form for mutual metabolic benefit, experiments were performed amending pure strain and AMD enrichment bacterial treatments with organic carbon and/or additional sulphur to

  4. Simulation of acid mine drainage generation around Küre VMS Deposits, Northern Turkey

    NASA Astrophysics Data System (ADS)

    Demirel, Cansu; Kurt, Mehmet Ali; Çelik Balci, Nurgül

    2015-04-01

    This study investigated comparative leaching characteristics of acidophilic bacterial strains under shifting environmental conditions at proposed two stages as formation stage or post acidic mine drainage (AMD) generation. At the first stage, initial reactions associated with AMD generation was simulated in shaking flasks containing massive pyritic chalcopyrite ore by using a pure strain Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus sp. mostly dominated by A. ferrooxidans and A. thiooxidans at 26oC. At the second stage, long term bioleaching experiments were carried out with the same strains at 26oC and 40oC to investigate the leaching characteristics of pyritic chalcopyrite ore under elevated heavy metal and temperature conditions. During the experiments, physicochemical characteristics (e.i. Eh, pH, EC) metal (Fe, Co, Cu, Zn) and sulfate concentration of the experimental solution were monitored during 180 days. Significant acid generation and sulfate release were determined during bioleaching of the ore by mixed acidophilic cultures containing both iron and sulfur oxidizers. In the early stage of the experiments, heavy metal release from the ore was caused by generation of acid due to accelerated bacterial oxidation of the ore. Generally high concentrations of Co and Cu were released into the solution from the experiments conducted by pure cultures of Acidithiobacillus ferrooxidans whereas high Zn and Fe was released into the solution from the mixed culture experiments. In the later stage of AMD generation and post AMD, chemical oxidation is accelerated causing excessive amounts of contamination, even exceeding the amounts resulted from bacterial oxidation by mixed cultures. Acidithibacillus ferrooxidans was found to be more effective in leaching Cu, Fe and Co at higher temperatures in contrary to mixed acidophiles that are more prone to operate at optimal moderate conditions. Moreover, decreasing Fe values are noted in bioleaching

  5. Strain Gage

    NASA Technical Reports Server (NTRS)

    1995-01-01

    HITEC Corporation developed a strain gage application for DanteII, a mobile robot developed for NASA. The gage measured bending forces on the robot's legs and warned human controllers when acceptable forces were exceeded. HITEC further developed the technology for strain gage services in creating transducers out of "Indy" racing car suspension pushrods, NASCAR suspension components and components used in motion control.

  6. Influence of organics and silica on Fe(II) oxidation rates and cell-mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox - Implications for Fe(II) oxidation in ancient oceans

    NASA Astrophysics Data System (ADS)

    Gauger, Tina; Byrne, James M.; Konhauser, Kurt O.; Obst, Martin; Crowe, Sean; Kappler, Andreas

    2016-06-01

    Most studies on microbial phototrophic Fe(II) oxidation (photoferrotrophy) have focused on purple bacteria, but recent evidence points to the importance of green-sulfur bacteria (GSB). Their recovery from modern ferruginous environments suggests that these photoferrotrophs can offer insights into how their ancient counterparts grew in Archean oceans at the time of banded iron formation (BIF) deposition. It is unknown, however, how Fe(II) oxidation rates, cell-mineral aggregate formation, and Fe-mineralogy vary under environmental conditions reminiscent of the geological past. To address this, we studied the Fe(II)-oxidizer Chlorobium ferrooxidans KoFox, a GSB living in co-culture with the heterotrophic Geospirillum strain KoFum. We investigated the mineralogy of Fe(III) metabolic products at low/high light intensity, and in the presence of dissolved silica and/or fumarate. Silica and fumarate influenced the crystallinity and particle size of the produced Fe(III) minerals. The presence of silica also enhanced Fe(II) oxidation rates, especially at high light intensities, potentially by lowering Fe(II)-toxicity to the cells. Electron microscopic imaging showed no encrustation of either KoFox or KoFum cells with Fe(III)-minerals, though weak associations were observed suggesting co-sedimentation of Fe(III) with at least some biomass via these aggregates, which could support diagenetic Fe(III)-reduction. Given that GSB are presumably one of the most ancient photosynthetic organisms, and pre-date cyanobacteria, our findings, on the one hand, strengthen arguments for photoferrotrophic activity as a likely mechanism for BIF deposition on a predominantly anoxic early Earth, but, on the other hand, also suggest that preservation of remnants of Fe(II)-oxidizing GSB as microfossils in the rock record is unlikely.

  7. Hip flexor strain - aftercare

    MedlinePlus

    Pulled hip flexor - aftercare; Hip flexor injury - aftercare; Hip flexor tear - aftercare; Iliopsoas strain - aftercare; Strained iliopsoas muscle - aftercare; Torn iliopsoas muscle - aftercare; Psoas strain - aftercare

  8. Implications for global climate change from microbially-produced acid mine drainage

    NASA Astrophysics Data System (ADS)

    Norlund, K. L.; Hitchcock, A. P.; Warren, L. A.

    2009-05-01

    Microbial catalysis of sulphur cycling in acid mine drainage (AMD) environments is well known but the reaction pathways are poorly characterised. These reaction pathways involve both acid-consuming and acid- generating steps, with important consequences for overall AMD production as well as sulphur and carbon global biogeochemical cycles. Mining-associated sulphuric acid has been implicated in climate change through the weathering of carbonate minerals resulting in the release of 29 Tg C/year as carbon dioxide. Understanding of microbial AMD generation is based predominantly on studies of Acidithiobacillus ferrooxidans despite the knowledge that other environmentally common strains of bacteria are also active sulphur oxidizers and that microbial consortia are likely very important in environmental processes. Using an integrated experimental approach including geochemical experimentation, scanning transmission X-ray microscopy (STXM) and fluorescent in situ hybridization (FISH), we document a novel syntrophic sulphur metabolism involving two common mine bacteria: autotrophic sulphur oxidizing Acidithiobacillus ferrooxidans and heterotrophic Acidiphilium spp. The proposed sulphur geochemistry associated with this bacterial consortium produces 40-90% less acid than expected based on abiotic AMD models, with significant implications for both AMD mitigation and AMD carbon flux modelling. The two bacterial strains are specifically spatially segregated within a macrostructure of extracellular polymeric substance (EPS) that provides the necessary microgeochemical conditions for coupled sulphur oxidation and reduction reactions. STXM results identify multiple sulphur oxidation states associated with the pods, indicating that they are the sites of active sulphur disproportionation and recycling. Recent laboratory experimentation using type culture strains of the bacteria involved in pod-formation suggesting that this phenomenon is likely to be widespread in environments

  9. Effect of Heavy metals on the iron oxidizing ability of Thiobacillus ferrooxidans: Part 1, Effect of silver. Technical progress report, July 1992--September 1992

    SciTech Connect

    De, G.C.; Pesic, B.

    1992-12-01

    The effect of silver ions on the iron oxidizing ability of Thiobacillus ferrooxidans was studied using electrochemical and other physics-chemical techniques. Electrochemical investigation was conducted using a method based on redox potential change. Experiments were performed by adding an aliquot of separately prepared concentrate of the bacteria into the solution of ferrous ion and monitoring the redox potential for at least one hour. Pyrite was used as the indicator electrode. Parameters examined were pH, microbial cell density, ferrous, ferric and silver ion concentration, temperature and preconditioning period of the bacteria with silver ions, etc. Results obtained demonstrate that the rate of ferrous ion oxidation is dependent on pH (optimum pH range is 1.5--2.0) and the substrate (i.e. Fe(II)) to microbial cell concentration ratio. The mechanism of the bacteria mediated oxidation of ferrous iron is remarkably sensitive to temperature changes. At the vicinity of the optimum temperature (i.e. 25{degree}C), the reaction is likely to be controlled by the diffusion of Fe (II) ions through the cell wall of the bacteria, whereas below the range 18--25{degree}C, reaction kinetics may be the rate controlling factor. In the presence of 10 mg/L silver, the reaction may be kinetically controlled over the temperature range 5.5--25{degree}C. Inhibition of microbial FE(II) oxidation in the presence of silver may take place via a mixed mechanism in which silver may bind with both the enzyme and the enzyme-substrate complex.

  10. High temperature strain gage apparent strain compensation

    NASA Technical Reports Server (NTRS)

    Holmes, Harlan K.; Moore, T. C., Sr.

    1992-01-01

    Once an installed strain gage is connected to a strain indicating device and the instrument is balanced, a subsequent change in temperature of the gage installation will generally produce a resistance change in the gage. This purely temperature-induced resistance will be registered by the indicating device as a strain and is referred to as 'apparent strain' to distinguish it from strain due to applied stress. One desirable technique for apparent strain compensation is to employ two identical gages with identical mounting procedures which are connected with a 'half bridge' configuration where gages see the same thermal environment but only one experiences a mechanical strain input. Their connection in adjacent arms of the bridge will then balance the thermally induced apparent strains and, in principle, only the mechanical strain remains. Two approaches that implement this technique are discussed.

  11. Putative bacterial interactions from metagenomic knowledge with an integrative systems ecology approach.

    PubMed

    Bordron, Philippe; Latorre, Mauricio; Cortés, Maria-Paz; González, Mauricio; Thiele, Sven; Siegel, Anne; Maass, Alejandro; Eveillard, Damien

    2016-02-01

    Following the trend of studies that investigate microbial ecosystems using different metagenomic techniques, we propose a new integrative systems ecology approach that aims to decipher functional roles within a consortium through the integration of genomic and metabolic knowledge at genome scale. For the sake of application, using public genomes of five bacterial strains involved in copper bioleaching: Acidiphilium cryptum, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans, we first reconstructed a global metabolic network. Next, using a parsimony assumption, we deciphered sets of genes, called Sets from Genome Segments (SGS), that (1) are close on their respective genomes, (2) take an active part in metabolic pathways and (3) whose associated metabolic reactions are also closely connected within metabolic networks. Overall, this SGS paradigm depicts genomic functional units that emphasize respective roles of bacterial strains to catalyze metabolic pathways and environmental processes. Our analysis suggested that only few functional metabolic genes are horizontally transferred within the consortium and that no single bacterial strain can accomplish by itself the whole copper bioleaching. The use of SGS pinpoints a functional compartmentalization among the investigated species and exhibits putative bacterial interactions necessary for promoting these pathways. PMID:26677108

  12. Geobacteraceae strains and methods

    DOEpatents

    Lovley, Derek R.; Nevin, Kelly P.; Yi, Hana

    2015-07-07

    Embodiments of the present invention provide a method of producing genetically modified strains of electricigenic microbes that are specifically adapted for the production of electrical current in microbial fuel cells, as well as strains produced by such methods and fuel cells using such strains. In preferred embodiments, the present invention provides genetically modified strains of Geobacter sulfurreducens and methods of using such strains.

  13. Strains and Sprains

    MedlinePlus

    ... Children's Sports Injuries Computer-Related Repetitive Stress Injuries Knee Injuries Broken Bones, Sprains, and Strains Strains and Sprains ... Pain Going to a Physical Therapist Hamstring Strain Knee Injuries Sports and Exercise Safety Dealing With Sports Injuries ...

  14. Muscle strain (image)

    MedlinePlus

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  15. Muscle strain treatment

    MedlinePlus

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...

  16. Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage

    SciTech Connect

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H.

    2006-01-15

    Constructed wetlands are used to treat acid drainage from surface or underground coal mines. However, little is known about the microbial communities in the receiving wetland cells. The purpose of this work was to characterize the microbial population present in a wetland that was receiving acid coal mine drainage (AMD). Samples were collected from the oxic sediment zone of a constructed wetland cell in southeastern Ohio that was treating acid drainage from an underground coal mine seep. Samples comprised Fe(Ill) precipitates and were pretreated with ammonium oxalate to remove interfering iron, and the DNA was extracted and purified by agarose gel electrophoresis prior to amplification of portions of the 16S rRNA gene. Amplified products were separated by denaturing gradient gel electrophoresis and DNA from seven distinct bands was excised from the gel and sequenced. The sequences were matched to sequences in the GenBank bacterial 16S rDNA database. The DNA in two of the bands yielded matches with Acidithiobacillus ferrooxidans and the DNA in each of the remaining five bands was consistent with one of the following microorganisms: Acidithiobacillus thiooxidans, strain TRA3-20 (a eubacterium), strain BEN-4 (an arsenite-oxidizing bacterium), an Alcaligenes sp., and a Bordetella sp. Low bacterial diversity in these samples reflects the highly inorganic nature of the oxic sediment layer where high abundance of iron- and sulfur-oxidizing bacteria would be expected. The results we obtained by molecular methods supported our findings, obtained using culture methods, that the dominant microbial species in an acid receiving, oxic wetland are A. thiooxidans and A. ferrooxidans.

  17. Program Calibrates Strain Gauges

    NASA Technical Reports Server (NTRS)

    Okazaki, Gary D.

    1991-01-01

    Program dramatically reduces personnel and time requirements for acceptance tests of hardware. Data-acquisition system reads output from Wheatstone full-bridge strain-gauge circuit and calculates strain by use of shunt calibration technique. Program nearly instantaneously tabulates and plots strain data against load-cell outputs. Modified to acquire strain data for other specimens wherever full-bridge strain-gauge circuits used. Written in HP BASIC.

  18. Superlattice strain gage

    DOEpatents

    Noel, Bruce W.; Smith, Darryl L.; Sinha, Dipen N.

    1990-01-01

    A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element.

  19. Superlattice strain gage

    DOEpatents

    Noel, B.W.; Smith, D.L.; Sinha, D.N.

    1988-06-28

    A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element. 8 figs.

  20. Model-based evaluation of ferrous iron oxidation by acidophilic bacteria in chemostat and biofilm airlift reactors.

    PubMed

    Ebrahimi, Sirous; Faraghi, Neda; Hosseini, Maryam

    2015-10-01

    This article presents a model-based evaluation of ferrous iron oxidation in chemostat and biofilm airlift reactors inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria. The competition between the two types of bacteria in the chemostat and in the biofilm airlift reactors together with the distribution of both bacteria along the biofilm thickness at different time sections has been studied. The bacterial distribution profiles along the biofilm in the airlift reactor at different time scales show that in the beginning A. ferrooxidans bacteria are dominant, but when the reactor operates for a long time the desirable L. ferrooxidans species outcompete A. ferrooxidans as a result of the low Fe(2+) and high Fe(3+) concentrations. The results obtained from the simulation were compared with the experimental data of continuously operated internal loop airlift biofilm reactor. The model results are in good agreement with the experimental results. PMID:26264929

  1. Miniature biaxial strain transducer

    NASA Technical Reports Server (NTRS)

    Hoffman, I. S. (Inventor)

    1976-01-01

    A reusable miniature strain transducer for use in the measurement of static or quasi-static, high level, biaxial strain on the surface of test specimens or structures was studied. Two cantilever arms, constructed by machining the material to appropriate flexibility, are self-aligning and constitute the transducing elements of the device. Used in conjunction with strain gages, the device enables testing beyond normal gage limits for high strains and number of load cycles. The device does not require conversion computations since the electrical output of the strain gages is directly proportional to the strain measured.

  2. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    PubMed

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed

  3. Microbial community profiling of the Chinoike Jigoku ("Blood Pond Hell") hot spring in Beppu, Japan: isolation and characterization of Fe(III)-reducing Sulfolobus sp. strain GA1.

    PubMed

    Masaki, Yusei; Tsutsumi, Katsutoshi; Hirano, Shin-Ichi; Okibe, Naoko

    2016-09-01

    Chinoike Jigoku ("Blood Pond Hell") is located in the hot spring town of Beppu on the southern island of Kyushu in Japan, and is the site of a red-colored acidic geothermal pond. This study aimed to investigate the microbial population composition in this extremely acidic environment and to isolate/characterize acidophilic microorganism with metal-reducing ability. Initially, PCR (using bacteria- and archaea-specific primers) of environmental DNA samples detected the presence of bacteria, but not archaea. This was followed by random sequencing analysis, confirming the presence of wide bacterial diversity at the site (123 clones derived from 18 bacterial and 1 archaeal genera), including those closely related to known autotrophic and heterotrophic acidophiles (Acidithiobacillus sp., Sulfobacillus sp., Alicyclobacillus sp.). Nevertheless, successive culture enrichment with Fe(III) under micro-aerobic conditions led to isolation of an unknown archaeal organism, Sulfolobus sp. GA1 (with 99.7% 16S rRNA gene sequence identity with Sulfolobus shibatae). Unlike many other known Sulfolobus spp., strain GA1 was shown to lack sulfur oxidation ability. Strain GA1 possessed only minor Fe(II) oxidation ability, but readily reduced Fe(III) during heterotrophic growth under micro-aerobic conditions. Strain GA1 was capable of reducing highly toxic Cr(VI) to less toxic/soluble Cr(III), demonstrating its potential utility in bioremediation of toxic metal species. PMID:27208660

  4. Generation of acid mine drainage around the Karaerik copper mine (Espiye, Giresun, NE Turkey): implications from the bacterial population in the Acısu effluent.

    PubMed

    Sağlam, Emine Selva; Akçay, Miğraç; Çolak, Dilşat Nigar; İnan Bektaş, Kadriye; Beldüz, Ali Osman

    2016-09-01

    The Karaerik Cu mine is a worked-out deposit with large volumes of tailings and slags which were left around the mine site without any protection. Natural feeding of these material and run-off water from the mineralised zones into the Acısu effluent causes a serious environmental degradation and creation of acid mine drainage (AMD) along its entire length. This research aims at modelling the formation of AMD with a specific attempt on the characterisation of the bacterial population in association with AMD and their role on its occurrence. Based on 16SrRNA analyses of the clones obtained from a composite water sample, the bacterial community was determined to consist of Acidithiobacillus ferrivorans, Ferrovum myxofaciens, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans as iron-oxidising bacteria, Acidocella facilis, Acidocella aluminiidurans, Acidiphilium cryptum and Acidiphilium multivorum as iron-reducing bacteria, and Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidiphilium cryptum as sulphur-oxidising bacteria. This association of bacteria with varying roles was interpreted as evidence of a concomitant occurrence of sulphur and iron cycles during the generation of AMD along the Acısu effluent draining the Karaerik mine. PMID:27338270

  5. Strains and Sprains

    MedlinePlus

    ... move the injured part, and you might even think you have broken a bone. How Does a Strain or Sprain Happen? Strains often happen when you put a lot of pressure on a muscle or you push it too far, such as when lifting a heavy object. Strains may be more likely to happen if ...

  6. Sprains and Strains

    MedlinePlus

    ... happens. A strain is a stretched or torn muscle or tendon. Tendons are tissues that connect muscle to bone. Twisting or pulling these tissues can ... suddenly or develop over time. Back and hamstring muscle strains are common. Many people get strains playing ...

  7. Insights to the effects of free cells on community structure of attached cells and chalcopyrite bioleaching during different stages.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2016-01-01

    The effects of free cells on community structure of attached cells and chalcopyrite bioleaching by Acidithiobacillus sp. during different stages were investigated. The attached cells of Acidithiobacillus thiooxidans owned the community advantage from 14thd to the end of bioprocess in the normal system. The community structure of attached cells was greatly influenced in the free cells-deficient systems. Compared to A. thiooxidans, the attached cells community of Acidithiobacillus ferrooxidans had a higher dependence on its free cells. Meanwhile, the analysis of key biochemical parameters revealed that the effects of free cells on chalcopyrite bioleaching in different stages were diverse, ranging from 32.8% to 64.3%. The bioleaching contribution of free cells of A. ferrooxidans in the stationary stage (8-14thd) was higher than those of A. thiooxidans, while the situation was gradually reversed in the jarosite passivation inhibited stage (26-40thd). These results may be useful in guiding chalcopyrite bioleaching. PMID:26492170

  8. Comparative Genome Analysis Reveals Metabolic Versatility and Environmental Adaptations of Sulfobacillus thermosulfidooxidans Strain ST

    PubMed Central

    Guo, Xue; Yin, Huaqun; Liang, Yili; Hu, Qi; Zhou, Xishu; Xiao, Yunhua; Ma, Liyuan; Zhang, Xian; Qiu, Guanzhou; Liu, Xueduan

    2014-01-01

    The genus Sulfobacillus is a cohort of mildly thermophilic or thermotolerant acidophiles within the phylum Firmicutes and requires extremely acidic environments and hypersalinity for optimal growth. However, our understanding of them is still preliminary partly because few genome sequences are available. Here, the draft genome of Sulfobacillus thermosulfidooxidans strain ST was deciphered to obtain a comprehensive insight into the genetic content and to understand the cellular mechanisms necessary for its survival. Furthermore, the expressions of key genes related with iron and sulfur oxidation were verified by semi-quantitative RT-PCR analysis. The draft genome sequence of Sulfobacillus thermosulfidooxidans strain ST, which encodes 3225 predicted coding genes on a total length of 3,333,554 bp and a 48.35% G+C, revealed the high degree of heterogeneity with other Sulfobacillus species. The presence of numerous transposases, genomic islands and complete CRISPR/Cas defence systems testifies to its dynamic evolution consistent with the genome heterogeneity. As expected, S. thermosulfidooxidans encodes a suit of conserved enzymes required for the oxidation of inorganic sulfur compounds (ISCs). The model of sulfur oxidation in S. thermosulfidooxidans was proposed, which showed some different characteristics from the sulfur oxidation of Gram-negative A. ferrooxidans. Sulfur oxygenase reductase and heterodisulfide reductase were suggested to play important roles in the sulfur oxidation. Although the iron oxidation ability was observed, some key proteins cannot be identified in S. thermosulfidooxidans. Unexpectedly, a predicted sulfocyanin is proposed to transfer electrons in the iron oxidation. Furthermore, its carbon metabolism is rather flexible, can perform the transformation of pentose through the oxidative and non-oxidative pentose phosphate pathways and has the ability to take up small organic compounds. It encodes a multitude of heavy metal resistance systems to

  9. Elevated temperature strain gages

    NASA Technical Reports Server (NTRS)

    Brittain, J. O.; Geslin, D.; Lei, J. F.

    1986-01-01

    One of the goals of the HOST Program is the development of electrical resistance strain gages for static strain measurements at temperatures equal to or greater than 1273 K. Strain gage materials must have a reproducible or predictable response to temperature, time and strain. It is the objective of this research to investigate criteria for the selection of materials for such applications through electrical properties studies. The results of the investigation of two groups of materials, refractory compounds and binary alloy solid solutions are presented.

  10. Thin film strain transducer

    NASA Technical Reports Server (NTRS)

    Rand, J. L. (Inventor)

    1984-01-01

    A strain transducer system and process for making the same is disclosed. A beryllium copper ring having four strain gages is electrically connected in Wheatstone bridge fashion to the output instrumentation. Tabs are bonded to a balloon or like surface with strain on the surface causing bending of a ring which provides an electrical signal through the gages proportional to the surface strain. A photographic pattern of a one half ring segment as placed on a sheet of beryllium copper for chem-mill etch formation is illustrated.

  11. Can strain magnetize light?

    NASA Astrophysics Data System (ADS)

    2013-02-01

    Strain in photonic structures can induce pseudomagnetic fields and Landau levels. Nature Photonics spoke to Mordechai Segev, Mikael Rechtsman, Alexander Szameit and Julia Zeuner about their unique approach.

  12. Geodetic Strain Analysis Tool

    NASA Technical Reports Server (NTRS)

    Kedar, Sharon; Baxter, Sean C.; Parker, Jay W.; Webb, Frank H.; Owen, Susan E.; Sibthorpe, Anthony J.; Dong, Danan

    2011-01-01

    A geodetic software analysis tool enables the user to analyze 2D crustal strain from geodetic ground motion, and create models of crustal deformation using a graphical interface. Users can use any geodetic measurements of ground motion and derive the 2D crustal strain interactively. This software also provides a forward-modeling tool that calculates a geodetic velocity and strain field for a given fault model, and lets the user compare the modeled strain field with the strain field obtained from the user s data. Users may change parameters on-the-fly and obtain a real-time recalculation of the resulting strain field. Four data products are computed: maximum shear, dilatation, shear angle, and principal components. The current view and data dependencies are processed first. The remaining data products and views are then computed in a round-robin fashion to anticipate view changes. When an analysis or display parameter is changed, the affected data products and views are invalidated and progressively re-displayed as available. This software is designed to facilitate the derivation of the strain fields from the GPS and strain meter data that sample it to facilitate the understanding of the strengths and weaknesses of the strain field derivation from continuous GPS (CGPS) and other geodetic data from a variety of tectonic settings, to converge on the "best practices" strain derivation strategy for the Solid Earth Science ESDR System (SESES) project given the CGPS station distribution in the western U.S., and to provide SESES users with a scientific and educational tool to explore the strain field on their own with user-defined parameters.

  13. Mechanical strain isolator mount

    NASA Technical Reports Server (NTRS)

    James, Gordon E. (Inventor)

    1991-01-01

    Certain devices such as optical instruments must preserve their alignmental integrity while being subjected to mechanical strain. A mechanical strain isolator mount is provided to preserve the alignmental integrity of an alignment sensitive instrument. An alignment sensitive instrument is mounted on a rectangular base. Flexural legs are connected at their proximal ends to the rectangular base. Flexural legs are also spaced parallel to the sides. Mounting pads are connected to the legs at the distal end and the mechanical strain isolator mount is attached to the substrate by means of threaded bolts. When a mounting pad and its respective leg is subjected to lateral strain in either the X or Y direction via the substrate, the respective leg relieves the strain by bending in the direction of the strain. An axial strain on a mounting pad in the Z direction is relieved by a rotational motion of the legs in the direction of the strain. When the substrate is stress free, the flexural legs return to their original condition and thus preserve the original alignment integrity of the alignment sensitive instrument.

  14. Light intensity strain analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. G. (Inventor)

    1973-01-01

    A process is described for the analysis of the strain field of structures subjected to large deformations involving a low modulus substrate having a high modulus, relatively thin coating. The optical properties of transmittance and reflectance are measured for the coated substrate while stressed and unstressed to indicate the strain field for the coated substrate.

  15. Strain gauge installation tool

    DOEpatents

    Conard, Lisa Marie

    1998-01-01

    A tool and a method for attaching a strain gauge to a test specimen by maaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool.

  16. Mechanochromic polyurethane strain sensor

    NASA Astrophysics Data System (ADS)

    Cellini, F.; Khapli, S.; Peterson, S. D.; Porfiri, M.

    2014-08-01

    In this Letter, we study the mechanical and optical response of a thermoplastic polyurethane blended with 0.5 wt. % of bis(benzoxazolyl)stilbene dye. The mechanochromic behavior of the material is characterized in a uniaxial stress-relaxation test by simultaneously acquiring the applied force, mechanical deformation, and fluorescence emission. To offer insight into the stress-strain response of the polymer-dye blend, we adapt a classical nonlinear constitutive behavior for elastomeric materials that accounts for stress-induced softening. We correlate the fluorescent response with the mechanical strain to demonstrate the possibility of accurate strain sensing for a broad range of deformations during both loading and unloading.

  17. Strain gauge installation tool

    SciTech Connect

    Conard, Lisa Marie

    1997-12-01

    A tool and a method for attaching a strain gauge to a test specimen by maintaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool.

  18. What Are Sprains and Strains?

    MedlinePlus

    ... sprain, one or more ligaments is stretched or torn. What Causes a Sprain? Where Do Sprains Usually ... strain, a muscle or tendon is stretched or torn. What Causes Strains? A strain is caused by ...

  19. Sprains and Strains

    MedlinePlus

    ... people at risk for strains. Gymnastics, tennis, rowing, golf, and other sports that require extensive gripping can ... Trials and You was designed to help people learn more about clinical trials, why they matter, and ...

  20. Nanowires enabling strained photovoltaics

    SciTech Connect

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ∼5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  1. MEMS Graphene Strain Sensor

    NASA Astrophysics Data System (ADS)

    Young, Clinton Wen-Chieh

    Graphene is a two dimensional honeycomb structure of sp2 hybridized carbon atoms that has possibilities in many applications due to its excellent mechanical and electrical properties. One application for Graphene is in the field of sensors. Graphene's electronic properties do not degrade when it undergoes mechanical strain which is advantageous for strain sensors. In this thesis, certain properties, such as the piezo-resistivity and flexibility, of graphene will be explored to show how they can be utilized to make a strain sensing device. Our original fabrication process of patterning graphene and the transfer process of graphene onto a flexible substrate will be discussed. The development of a stretchable and flexible graphene based rosette strain sensor will also be detailed. Developing a novel, reliable patterning process for the graphene is the first step to manufacture a stretchable graphene based sensor. The graphene was patterned using a photolithography and etching process that was developed by our research team, then it was transferred to a flexible polymer substrate with the use of a combination of soft lithography and wet etching of the Ni foil with ferric chloride solution. Graphene patterning is an essential step in fabricating reliable and sensitive sensors. With this process, graphene can be consistently patterned into different shapes and sizes. To utilize the graphene as the sensing material it also needs to be transferred onto a flexible substrate. The innovative transfer process developed by our research team consistently adheres graphene to a flexible PDMS substrate while removing the original nickel substrate. In the end, the graphene was transferred from the metal substrate to the desired flexible substrate. This process was repeated multiple times to create a stack and multilayer device. While many graphene-based strain sensors have been developed, they are uni-directional and can only measure the strain applied on the sensor in a principle

  2. The atomic strain tensor

    SciTech Connect

    Mott, P.H.; Argon, A.S. ); Suter, U.W. Massachusetts Institute of Technology, Cambridge, MA )

    1992-07-01

    A definition of the local atomic strain increments in three dimensions and an algorithm for computing them is presented. An arbitrary arrangement of atoms is tessellated in to Delaunay tetrahedra, identifying interstices, and Voronoi polyhedra, identifying atomic domains. The deformation gradient increment tensor for interstitial space is obtained from the displacement increments of the corner atoms of Delaunay tetrahedra. The atomic site strain increment tensor is then obtained by finding the intersection of the Delaunay tetrahedra with the Voronoi polyhedra, accumulating the individual deformation gradient contributions of the intersected Delaunay tetrahedra into the Voronoi polyhedra. An example application is discussed, showing how the atomic strain clarifies the relative local atomic movement for a polymeric glass treated at the atomic level. 6 refs. 10 figs.

  3. Strain gauge installation tool

    DOEpatents

    Conard, L.M.

    1998-06-16

    A tool and a method are disclosed for attaching a strain gauge to a test specimen by maintaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool. 6 figs.

  4. Diffusion on strained surfaces

    NASA Astrophysics Data System (ADS)

    Schroeder, M.; Wolf, D. E.

    1997-03-01

    The change of diffusion kinetics when elastic fields are present is discussed for diffusion on (001) surfaces of simple cubic, fcc and bcc lattices. All particles interact pairwise with a Lennard-Jones potential. The simple cubic lattice was stabilized by an anisotropic prefactor. It is found that generically compressive strain enhances diffusion whereas tensile strain increases the activation barrier. An approximately linear dependence of the barrier in a wide range of misfits is found. In heteroepitaxy, diffusion on top of large clusters is inhomogeneous and anisotropic. The kinetics close to edges and centers of islands are remarkably different. In many cases changes of binding energies are small compared to those of saddle point energies. Thermodynamic arguments (minimization of free energy) are not appropriate to describe diffusion on strained surfaces in these cases.

  5. Annihilation of strained vortices

    NASA Astrophysics Data System (ADS)

    Kimura, Yoshifumi

    2014-11-01

    As an initial stage of vortex reconnection, approach of nearly anti-parallel vortices has often been observed experimentally and studied numerically. Inspired by the recent experiment by Kleckner and Irvine on the dynamics of knotted vortices, we have studied the motion of two anti-parellel Burgers vortices driven by an axisymmetric linear straining field. We first extend the Burgers vortex solution which is a steady exact solution of the Navier-Stokes equation to a time-dependent exact solution. Then by superposing two such solutions, we investigate the annihilation process analytically. We can demonstrate that during the annihilation process the total vorticity decays exponentially on a time-scale proportional to the inverse of the rate of strain, even as the kinematic viscosity tends to 0. The analytic results are compared with the numerical simulations of two strained vortices with the vortex-vortex nonlinear interaction by Buntine and Pullin.

  6. Strain isolated ceramic coatings

    NASA Technical Reports Server (NTRS)

    Tolokan, R. P.; Brady, J. B.; Jarrabet, G. P.

    1985-01-01

    Plasma sprayed ceramic coatings are used in gas turbine engines to improve component temperature capability and cooling air efficiency. A compliant metal fiber strain isolator between a plasma sprayed ceramic coating and a metal substrate improves ceramic durability while allowing thicker coatings for better insulation. Development of strain isolated coatings has concentrated on design and fabrication of coatings and coating evaluation via thermal shock testing. In thermal shock testing, five types of failure are possible: buckling failure im compression on heat up, bimetal type failure, isothermal expansion mismatch failure, mudflat cracking during cool down, and long term fatigue. A primary failure mode for thermally cycled coatings is designated bimetal type failure. Bimetal failure is tensile failure in the ceramic near the ceramic-metal interface. One of the significant benefits of the strain isolator is an insulating layer protecting the metal substrate from heat deformation and thereby preventing bimetal type failure.

  7. Formate supplementation can increase nickel recovery by Halothiobacillus halophilus.

    PubMed

    Vainshtein, Mikhail; Abashina, Tatiana; Bykov, Alexander; Repina, Alyona; Kaparullina, Elena

    2015-03-01

    Acidophilic thiobacilli are traditional biotechnological agents for metal recovery from sulfide ores. Major industrial strains belong to autotrophic bacteria which are used without any organic supplements to stimulate the process. The autotrophic strain Acidithiobacillus ferrooxidans ATCC 21834 is known to use formate as a source of energy under special laboratory conditions. We showed the presence of formate dehydrogenase in the type strain of another autotrophic species Halothiobacillus halophilus representing another genus of thiobacilli. This finding prompted studies of bioleaching stimulation by formate. Canadian sulfide nickel ore was chosen for model investigation as leached substrate and the moderate acidophilic strain H. halophilus DSM 6132 was used as the leaching agent. In bench-scale bioleaching experiments, inoculation of the ore with H. halophilus supplemented with 0.3 % formate increased the recovery of nickel 70-fold as compared with formate-free inoculation (1008.0 vs. 13.8 mg Ni/L per 34 days). Bacteria H. halophilus belong to moderate acidophilic microorganisms; thus, the results were obtained with initial pH 7.4 and final pH 5.4. The mechanism of formate stimulation is under discussion. PMID:25613548

  8. Local Strain Evaluation of Strained-SOI Structures

    NASA Astrophysics Data System (ADS)

    Usuda, Koji; Mizuno, Tomohisa; Numata, Toshinori; Tezuka, Tsutomu; Sugiyama, Naoharu; Moriyama, Yoshihiko; Nakaharai, Shu; Takagi, Shin-Ichi

    The strain relaxation within a strained-Si on SiGe on insulator (SGOI) structure might be one of the key issues in development of strained-Si MOSFET devices for high-performance ULSIs. In order to investigate the strain relaxation within the thin strained-Si layers, a new characterization technique to directly evaluate a local strain variation in the layers is required. Hence, we have developed the nano-beam electron diffraction (NBD) method which has a lateral resolution of 10 nm and a strain resolution of 0.1%. In this paper, we discuss a detailed investigation of whether the NBD method could be utilized to clarify a strain in a strained-Si layer on the SGOI structures.

  9. ConStrains identifies microbial strains in metagenomic datasets

    PubMed Central

    Luo, Chengwei; Knight, Rob; Siljander, Heli; Knip, Mikael; Xavier, Ramnik J; Gevers, Dirk

    2015-01-01

    An important fraction of microbial diversity is harbored in strain individuality, so identification of conspecific bacterial strains is imperative for improved understanding of microbial community functions. Limitations in bioinformatics and sequencing technologies have to date precluded strain identification owing to difficulties in phasing short reads to faithfully recover the original strain-level genotypes, which have highly similar sequences. We present ConStrains, an open-source algorithm that identifies conspecific strains from metagenomic sequence data and reconstructs the phylogeny of these strains in microbial communities. The algorithm uses single-nucleotide polymorphism (SNP) patterns in a set of universal genes to infer within-species structures that represent strains. Applying ConStrains to simulated and host-derived data sets provides insights into microbial community dynamics. PMID:26344404

  10. ConStrains identifies microbial strains in metagenomic datasets.

    PubMed

    Luo, Chengwei; Knight, Rob; Siljander, Heli; Knip, Mikael; Xavier, Ramnik J; Gevers, Dirk

    2015-10-01

    An important fraction of microbial diversity is harbored in strain individuality, so identification of conspecific bacterial strains is imperative for improved understanding of microbial community functions. Limitations in bioinformatics and sequencing technologies have to date precluded strain identification owing to difficulties in phasing short reads to faithfully recover the original strain-level genotypes, which have highly similar sequences. We present ConStrains, an open-source algorithm that identifies conspecific strains from metagenomic sequence data and reconstructs the phylogeny of these strains in microbial communities. The algorithm uses single-nucleotide polymorphism (SNP) patterns in a set of universal genes to infer within-species structures that represent strains. Applying ConStrains to simulated and host-derived datasets provides insights into microbial community dynamics. PMID:26344404

  11. Autotrophic, sulfur-oxidizing actinobacteria in acidic environments.

    PubMed

    Norris, Paul R; Davis-Belmar, Carol S; Brown, Carly F; Calvo-Bado, Leonides A

    2011-03-01

    Some novel actinobacteria from geothermal environments were shown to grow autotrophically with sulfur as an energy source. These bacteria have not been formally named and are referred to here as "Acidithiomicrobium" species, as the first of the acidophilic actinobacteria observed to grow on sulfur. They are related to Acidimicrobium ferrooxidans with which they share a capacity for ferrous iron oxidation. Ribulose bisphosphate carboxylase/oxygenase (RuBisCO) is active in CO(2) fixation by Acidimicrobium ferrooxidans, which appears to have acquired its RuBisCO-encoding genes from the proteobacterium Acidithiobacillus ferrooxidans or its ancestor. This lateral transfer of RuBisCO genes between a proteobacterium and an actinobacterium would add to those noted previously among proteobacteria, between proteobacteria and cyanobacteria and between proteobacteria and plastids. "Acidithiomicrobium" has RuBisCO-encoding genes which are most closely related to those of Acidimicrobium ferrooxidans and Acidithiobacillus ferrooxidans, and has additional RuBisCO genes of a different lineage. 16S rRNA gene sequences from "Acidithiomicrobium" species dominated clone banks of the genes extracted from mixed cultures of moderate thermophiles growing on copper sulfide and polymetallic sulfide ores in ore leaching columns. PMID:21308384

  12. The strained state cosmology

    NASA Astrophysics Data System (ADS)

    Tartaglia, Angelo

    2016-01-01

    Starting from some relevant facts concerning the behavior of the universe over large scale and time span, the analogy between the geometric approach of General Relativity and the classical description of an elastic strained material continuum is discussed. Extending the elastic deformation approach to four dimensions it is shown that the accelerated expansion of the universe is recovered. The strain field of space-time reproduces properties similar to the ones ascribed to the dark energy currently called in to explain the accelerated expansion. The strain field in the primordial universe behaves as radiation, but asymptotically it reproduces the cosmological constant. Subjecting the theory to a number of cosmological tests confirms the soundness of the approach and gives an optimal value for the one parameter of the model, i.e. the bulk modulus of the space-time continuum. Finally various aspects of the Strained State Cosmology (SSC) are discussed and contrasted with some non-linear massive gravity theories. The possible role of structure topological defects is also mentioned. The conclusion is that SSC is at least as good as the ΛCDM standard cosmology, giving a more intuitive interpretation of the physical nature of the phenomena.

  13. Strain gage barometric transmitter

    NASA Technical Reports Server (NTRS)

    Viton, P.

    1977-01-01

    A strain gage barometric transmitter for measuring the atmospheric pressure in severe environmental conditions is described. This equipment specifications are presented and its performance assessed. It is shown that this barometric sensor can measure the atmospheric pressure with a precision of 0.5 mb during a 6 month period.

  14. Accurate strain measurements in highly strained Ge microbridges

    NASA Astrophysics Data System (ADS)

    Gassenq, A.; Tardif, S.; Guilloy, K.; Osvaldo Dias, G.; Pauc, N.; Duchemin, I.; Rouchon, D.; Hartmann, J.-M.; Widiez, J.; Escalante, J.; Niquet, Y.-M.; Geiger, R.; Zabel, T.; Sigg, H.; Faist, J.; Chelnokov, A.; Rieutord, F.; Reboud, V.; Calvo, V.

    2016-06-01

    Ge under high strain is predicted to become a direct bandgap semiconductor. Very large deformations can be introduced using microbridge devices. However, at the microscale, strain values are commonly deduced from Raman spectroscopy using empirical linear models only established up to ɛ100 = 1.2% for uniaxial stress. In this work, we calibrate the Raman-strain relation at higher strain using synchrotron based microdiffraction. The Ge microbridges show unprecedented high tensile strain up to 4.9% corresponding to an unexpected Δω = 9.9 cm-1 Raman shift. We demonstrate experimentally and theoretically that the Raman strain relation is not linear and we provide a more accurate expression.

  15. The meaning of role strain.

    PubMed

    Ward, C R

    1986-01-01

    Explicating the meaning of the concept of role strain is important in role theory formulation, an area requiring further development to provide explanations and predictions for both patient and provider roles. In this analysis, the use of the term role strain is traced from the structural-functionalist and symbolic-interactionist perspectives. Descriptive, stipulative, and connotative definitions of role strain are derived, and necessary and relevant properties are proposed. Antecedent and intervening conditions for role strain are outlined from the literature. Role strain manifestations and empirical referents are presented, and an initial step is taken toward a theoretical formulation by defining role strain within the context of role stress. PMID:3079985

  16. Highly stretchable miniature strain sensor for large dynamic strain measurement

    DOE PAGESBeta

    Song, Bo; Yao, Shurong; Nie, Xu; Yu, Xun; Blecke, Jill

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages,more » as its gauge factor is 500 times of that of the conventional foil strain gages.« less

  17. Highly stretchable miniature strain sensor for large dynamic strain measurement

    SciTech Connect

    Song, Bo; Yao, Shurong; Nie, Xu; Yu, Xun; Blecke, Jill

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages, as its gauge factor is 500 times of that of the conventional foil strain gages.

  18. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  19. Novel strained superjunction VDMOS

    NASA Astrophysics Data System (ADS)

    Naugarhiya, Alok; Dubey, Shashank; Kondekar, Pravin N.

    2015-09-01

    In this paper, we have proposed novel strained superjunction (s-SJ) vertical double diffused MOS (VDMOS). Through channel engineering, we have introduced strain effects in s-SJ device using thin separate p-type silicon-germanium (p-SiGe) layer over silicon p-pillar. Further, we have designed process flow for the possible fabrication of s-SJ VDMOS. The proposed s-SJ devices fitted with less input capacitance (Cin) and 1.2∼3 times higher output current density than conventional SJ VDMOS. Therefore, 40% less gate charge (Qg) is required to turn-on the s-SJ VDMOS and Ron A is optimized in between 12% and 46%.

  20. Strain Release Amination

    PubMed Central

    Gianatassio, Ryan; Lopchuk, Justin M.; Wang, Jie; Pan, Chung-Mao; Malins, Lara R.; Prieto, Liher; Brandt, Thomas A.; Collins, Michael R.; Gallego, Gary M.; Sach, Neal W.; Spangler, Jillian E.; Zhu, Huichin; Zhu, Jinjiang; Baran, Phil S.

    2015-01-01

    To optimize drug candidates, modern medicinal chemists are increasingly turning to an unconventional structural motif: small, strained ring systems. However, the difficulty of introducing substituents such as bicyclo[1.1.1]pentanes, azetidines, or cyclobutanes often outweighs the challenge of synthesizing the parent scaffold itself. Thus, there is an urgent need for general methods to rapidly and directly append such groups onto core scaffolds. Here we report a general strategy to harness the embedded potential energy of effectively spring-loaded C–C and C–N bonds with the most oft-encountered nucleophiles in pharmaceutical chemistry, amines. Strain release amination can diversify a range of substrates with a multitude of desirable bioisosteres at both the early and late-stages of a synthesis. The technique has also been applied to peptide labeling and bioconjugation. PMID:26816372

  1. Interfacial residual thermal strain

    NASA Astrophysics Data System (ADS)

    Kasen, M.; Santoyo, R.

    A method has been developed for assessing the influence of polymer chemical composition and of processing parameters on the magnitude of residual stress developed in glass-fibre-reinforced composites subjected to various cure cycles and subsequently cooled to cryogenic temperatures. The test method was applied to nine resin types, including epoxy, vinyl ester, polyester, cyanate ester and phenolic formulations. Results suggest that polyester resin develops substantially less overall residual strain than do the other resin systems.

  2. Genealogies of mouse inbred strains.

    PubMed

    Beck, J A; Lloyd, S; Hafezparast, M; Lennon-Pierce, M; Eppig, J T; Festing, M F; Fisher, E M

    2000-01-01

    The mouse is a prime organism of choice for modelling human disease. Over 450 inbred strains of mice have been described, providing a wealth of different genotypes and phenotypes for genetic and other studies. As new strains are generated and others become extinct, it is useful to review periodically what strains are available and how they are related to each other, particularly in the light of available DNA polymorphism data from microsatellite and other markers. We describe the origins and relationships of inbred mouse strains, 90 years after the generation of the first inbred strain. Given the large collection of inbred strains available, and that published information on these strains is incomplete, we propose that all genealogical and genetic data on inbred strains be submitted to a common electronic database to ensure this valuable information resource is preserved and used efficiently. PMID:10615122

  3. Sports Hernia: Misdiagnosed Muscle Strain

    MedlinePlus

    ... Manipulative Treatment Becoming a DO Video Library Misdiagnosed Muscle Strain Can Be A Pain Page Content If ... speeds, sports hernias are frequently confused with common muscle strain ,” says Michael Sampson, DO, who practices in ...

  4. Construction of the Inbred Strain.

    PubMed

    Shinya, Minori

    2016-01-01

    Genetically homogeneous populations such as inbred strains are valuable experimental tools in various fields of biomedical analyses. In many animals, inbred strains are established by consecutive sib-pair mating for a minimum of 20 generations. As the generation proceeds, fitness of the population reduces usually. Therefore, in order to establish inbred strains, the important point is the selection of pairs in good condition at each generation. Here, I describe the procedure and tips for generating inbred strains in zebrafish. PMID:27464804

  5. Strain calibration of optical FBG-based strain sensors

    NASA Astrophysics Data System (ADS)

    Roths, Johannes; Wilfert, Andre; Kratzer, Peter; Jülich, Florian; Kuttler, Rolf

    2010-09-01

    A facility for strain sensitivity calibration of optical FBG-based strain sensors according to the German VDI/VDE 2660 guideline was established and characterized. Statistical analysis of several calibration measurement series performed with one single type of FBG strain sensor and application technique showed a reproducibility of 0.15%. Strain sensitivities for FBGs inscribed in two different types of optical fibres (GF1B and PR2008) showed significantly different strain sensitivities of k = 0.7885+/-0.0026 and k = 0.7758+/-0.0024, respectively.

  6. Strain actuated aeroelastic control

    NASA Technical Reports Server (NTRS)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  7. Strain balanced quantum posts

    SciTech Connect

    Alonso-Alvarez, D.; Alen, B.; Ripalda, J. M.; Llorens, J. M.; Taboada, A. G.; Briones, F.; Roldan, M. A.; Hernandez-Saz, J.; Hernandez-Maldonado, D.; Herrera, M.; Molina, S. I.

    2011-04-25

    Quantum posts are assembled by epitaxial growth of closely spaced quantum dot layers, modulating the composition of a semiconductor alloy, typically InGaAs. In contrast with most self-assembled nanostructures, the height of quantum posts can be controlled with nanometer precision, up to a maximum value limited by the accumulated stress due to the lattice mismatch. Here, we present a strain compensation technique based on the controlled incorporation of phosphorous, which substantially increases the maximum attainable quantum post height. The luminescence from the resulting nanostructures presents giant linear polarization anisotropy.

  8. [Echinococcus and strain concepts].

    PubMed

    Utük, Armağan Erdem; Simsek, Sami

    2008-01-01

    Hydatid disease (echinococcosis) is one of the most important parasitic zoonoses and remains a public health and economic problem all over the world. Echinococcus granulosus includes a number of genetic variants and, up to date, analyses of mitochondrial DNA sequences have identified ten distinct genetic types (genotypes G1-10). This categorization follows closely the pattern of strain variation emerging based on biological characteristics. The extensive variation in E. granulosus may influence life-cycle patterns, host specificity, development rate, antigenicity, transmission dynamics, sensitivity to chemotherapeutic agents, and pathology. In this review, the recent genetic characterizations of Echinococcus genus have been summarized. PMID:18351549

  9. Compensated High Temperature Strain Gage

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A device for measuring strain in substrates at high temperatures in which the thermally induced apparent strain is nulled is described. Two gages are used, one active gage and one compensating gage. Both gages are placed on the substrate to be gaged; the active gage is attached such that it responds to mechanical and thermally induced apparent strain while the compensating gage is attached such that it does not respond to mechanical strain and and measures only thermally induced apparent strain. A thermal blanket is placed over the two gages to maintain the gages at the same temperature. The two gages are wired as adjacent arms of a wheatstone bridge which nulls the thermally induced apparent strain giving a true reading of the mechanical strain in the substrate.

  10. Spatial and Temporal Analysis of the Microbial Community in the Tailings of a Pb-Zn Mine Generating Acidic Drainage ▿ †

    PubMed Central

    Huang, Li-Nan; Zhou, Wen-Hua; Hallberg, Kevin B.; Wan, Cai-Yun; Li, Jie; Shu, Wen-Sheng

    2011-01-01

    Analysis of spatial and temporal variations in the microbial community in the abandoned tailings impoundment of a Pb-Zn mine revealed distinct microbial populations associated with the different oxidation stages of the tailings. Although Acidithiobacillus ferrooxidans and Leptospirillum spp. were consistently present in the acidic tailings, acidophilic archaea, mostly Ferroplasma acidiphilum, were predominant in the oxidized zones and the oxidation front, indicating their importance to generation of acid mine drainage. PMID:21705549

  11. Geodetic strain measurements in Washington.

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.; Prescott, W.H.

    1981-01-01

    Two new geodetic measurements of strain accumulation in the state of Washington for the interval 1972-1979 are reported. Near Seattle the average principal strain rates are 0.07 + or - 0.03 mu strain/yr N19oW and -0.13 + or - 0.02 mu strain/yr N71oE, and near Richland (south central Washington) the average principal strain rates are -0.02 + or - 0.01 mu strain/yr N36oW and -0.04 + or - 0.01 mu strain/yr N54oE. Extension is taken as positive, and the uncertainties quoted are standard deviations. A measurement of shear strain accumulation (dilation not determined) in the epoch 1914- 1966 along the north coast of Vancouver Island by the Geodetic Survey of Canada indicates a marginally significant accumulation of right-lateral shear (0.06 + or - 0.03 mu rad/yr) across the plate boundary (N40oW strike). Although there are significant differences in detail, these strain measurements are roughly consistent with a crude dislocation model that represents subduction of the Juan de Fuca plate. The observed accumulation of strain implies that large, shallow, thrust earthquakes should be expected off the coast of Washington and British Columbia. However, this conclusion is not easily reconciled with either observations of elevation change along the Washington coast or the focal mechanism solutions for shallow earthquakes in Washington. -Authors

  12. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore.

    PubMed

    Wakeman, Kathryn; Auvinen, Hannele; Johnson, D Barrie

    2008-11-01

    The evolution of microbial populations involved in simulated-heap leaching of a polymetallic black schist sulfide ore (from the recently-commissioned Talvivaara mine, Finland) was monitored in aerated packed bed column reactors over a period of 40 weeks. The influence of ore particle size (2-6.5 mm and 6.5-12 mm) on changes in composition of the bioleaching microflora and mineral leaching dynamics in columns was investigated and compared to fine-grain (<2 microm) ore that was bioprocessed in shake flask cultures. Both column reactors and shake flasks were inoculated with 24 different species and strains of mineral-oxidizing and other acidophilic micro-organisms, and maintained at 37 degrees C. Mineral oxidation was most rapid in shake flask cultures, with about 80% of both manganese and nickel and 68% of zinc being leached within 6 weeks, though relatively little of the copper present in the ore was solubilised. The microbial consortium that emerged from the original inoculum was relatively simple in shake flasks, and was dominated by the iron-oxidizing autotroph Leptospirillum ferriphilum, with smaller numbers of Acidimicrobium ferrooxidans, Acidithiobacillus caldus and Leptospirillum ferrooxidans. Both metal recovery and (for the most part) total numbers of prokaryotes were greater in the column reactor containing the medium-grain than that containing the coarse-grain ore. The bioleaching communities in the columns displayed temporal changes in composition and differed radically from those in shake flask cultures. While iron-oxidizing chemoautotrophic bacteria were always the most numerically dominant bacteria in the medium-grain column bioreactor, there were major shifts in the most abundant species present, with the type strain of Acidithiobacillus ferrooxidans dominating in the early phase of the experiment and other bacteria (At. ferrooxidans NO37 and L. ferriphilum) dominating from week 4 to week 40. With the coarse-grain column bioreactor, similar

  13. Strain Engineering in Graphene

    NASA Astrophysics Data System (ADS)

    Castro Neto, Antonio

    2011-03-01

    Graphene is a unique example of a one atom thick metallic membrane. Hence, graphene brings together properties of soft and hard condensed matter systems. The elementary electronic excitations in graphene, the Dirac quasiparticles, couple in a singular way to structural distortions in the form of scalar and vector potentials. Therefore, graphene has an effective electrodynamics where structural deformations couple to the Dirac particles at equal footing to electric and magnetic fields. This so-called strain engineering of the electronic properties of graphene opens doors for a new paradigm in terms of electronic devices, where electronic properties can be manipulated at will using its membrane-like properties. I thank partial support from from DOE Grant DE-FG02-08ER46512 and ONR Grant MURI N00014-09-1-1063.

  14. Inhomogeneous strains in small particles

    NASA Astrophysics Data System (ADS)

    Marks, L. D.

    1985-02-01

    This paper considers the evidence for strains in small particles. Firstly, the dynamical electron diffraction theory for dark field imaging of small particles is briefly reviewed, considering primarily the effects of strain on wedge crystals and identifying the fingerprint of strain contrast effects under strong beam conditions. Evidence included herein and from published papers by other authors clearly shows inhomogeneous strain effects in both multiply twinned particles and single crystals. Considering these results and earlier reports of lattice parameter changes, there are problems with the uniqueness of these analyses, and the strains in the small single crystals are thought more likely to be due to interfacial stresses or contaminants than any intrinsic particle effect; there are so many different origins of this type of strain that we cannot with confidence isolate a unique source. It is emphasised that the uniqueness of any interpretation of experimental results from small particles must be very carefully considered.

  15. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia.

    PubMed

    Nancucheo, Ivan; Johnson, D Barrie

    2010-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacillus spp. Rapid acidification (to pH 1.0) of the culture medium of At. caldus resulted in a large increase in the level of DOC, although the concentration of glycolic acid did not change in proportion. The archaeon Ferroplasma acidiphilum grew in the cell-free spent medium of At. caldus; glycolic acid was not metabolized, although other unidentified compounds in the DOC pool were metabolized. Glycolic acid exhibited levels of toxicity with 21 strains of acidophiles screened similar to those of acetic acid. The most sensitive species were chemolithotrophs (L. ferriphilum and At. ferrivorans), while the most tolerant species were chemoorganotrophs (Acidocella, Acidobacterium, and Ferroplasma species), and the ability to metabolize glycolic acid appeared to be restricted (among acidophiles) to Firmicutes (chiefly Sulfobacillus spp.). Results of this study help explain why Sulfobacillus spp. rather than other acidophiles are the main organic carbon-degrading bacteria in continuously fed stirred tanks used to bioprocess sulfide mineral concentrates and also why temporary cessation of pH control in these systems, resulting in rapid acidification, often results in a plume of the archaeon Ferroplasma. PMID:19933342

  16. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.

    PubMed

    Navarro, Claudio A; von Bernath, Diego; Jerez, Carlos A

    2013-01-01

    Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI), which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each of these

  17. Thermal strain imaging: a review

    PubMed Central

    Seo, Chi Hyung; Shi, Yan; Huang, Sheng-Wen; Kim, Kang; O'Donnell, Matthew

    2011-01-01

    Thermal strain imaging (TSI) or temporal strain imaging is an ultrasound application that exploits the temperature dependence of sound speed to create thermal (temporal) strain images. This article provides an overview of the field of TSI for biomedical applications that have appeared in the literature over the past several years. Basic theory in thermal strain is introduced. Two major energy sources appropriate for clinical applications are discussed. Promising biomedical applications are presented throughout the paper, including non-invasive thermometry and tissue characterization. We present some of the limitations and complications of the method. The paper concludes with a discussion of competing technologies. PMID:22866235

  18. Hydrogen production from microbial strains

    DOEpatents

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  19. Strain in silicon nanowire beams

    NASA Astrophysics Data System (ADS)

    Ureña, Ferran; Olsen, Sarah H.; Šiller, Lidija; Bhaskar, Umesh; Pardoen, Thomas; Raskin, Jean-Pierre

    2012-12-01

    In this work, strain in silicon free standing beams loaded in uniaxial tension is experimentally and theoretically investigated for strain values ranging from 0 to 3.6%. The fabrication method allows multiple geometries (and thus strain values) to be processed simultaneously on the same wafer while being studied independently. An excellent agreement of strain determined by two non-destructive characterization techniques, Raman spectroscopy and mechanical displacement using scanning electron microscopy (SEM) markers, is found for all the sample lengths and widths. The measured data also show good agreement with theoretical predictions of strain based upon continuum mechanical considerations, giving validity to both measurement techniques for the entire range of strain values. The dependence of Young's modulus and fracture strain on size has also been analyzed. The Young's modulus is determined using SEM and compared with that obtained by resonance-based methods. Both methods produced a Young's modulus value close to that of bulk silicon with values obtained by resonance-based methods being slightly lower. Fracture strain is analyzed in 40 sets of samples with different beam geometries, yielding values up to 3.6%. The increase in fracture strain with decreasing beam width is compared with previous reports. Finally, the role of the surface on the mechanical properties is analyzed using UV and visible lasers having different penetration depths in silicon. The observed dependence of Raman shift on laser wavelength is used to assess the thermal conductivity of deformed silicon.

  20. Strain variation in corrugated graphene

    NASA Astrophysics Data System (ADS)

    Wang, Xuanye; Tantiwanichapan, Khwanchai; Christopher, Jason; Paiella, Roberto; Swan, Anna

    2015-03-01

    Raman spectroscopy is a powerful non-destructive technique for analyzing strain in graphene. Recently there has been interest in making corrugated graphene devices with varying spatial wavelengths Λ for plasmonic and THz applications. Transferring graphene onto corrugated substrates introduces strain, which if there was perfect clamping (high fraction) would cause a periodic strain variation. However, the strain variation for pattern size smaller than the diffraction limit λ makes it hard to precisely model the strain distribution. Here we present a detailed study on how strain varies in corrugated graphene with sub-diffraction limit periodicity Λ < λ. Mechanically exfoliated graphene was deposited onto sinusoidal shape silicon dioxide gratings with Λ=400 nm period using the pick and place transfer technique. We observed that the graphene is not rigidly clamped, but partially slides to relieve the strain. We model the linewidth variation to extract the local strain variation as well as the sliding in the presence of charge puddling in graphene. The method gives us a better understanding on graphene slippage and strain distribution in graphene on a corrugated substrate with sub-diffraction limit spatial period.

  1. Bioleaching of ilmenite and basalt in the presence of iron-oxidizing and iron-scavenging bacteria

    NASA Astrophysics Data System (ADS)

    Navarrete, Jesica U.; Cappelle, Ian J.; Schnittker, Kimberlin; Borrok, David M.

    2013-04-01

    Bioleaching has been suggested as an alternative to traditional mining techniques in extraterrestrial environments because it does not require extensive infrastructure and bulky hardware. In situ bioleaching of silicate minerals, such as those found on the moon or Mars, has been proposed as a feasible alternative to traditional extraction techniques that require either extreme heat and/or substantial chemical treatment. In this study, we investigated the biotic and abiotic leaching of basaltic rocks (analogues to those found on the moon and Mars) and the mineral ilmenite (FeTiO3) in aqueous environments under acidic (pH ˜ 2.5) and circumneutral pH conditions. The biological leaching experiments were conducted using Acidithiobacillus ferrooxidans, an iron (Fe)-oxidizing bacteria, and Pseudomonas mendocina, an Fe-scavenging bacteria. We found that both strains were able to grow using the Fe(II) derived from the tested basaltic rocks and ilmenite. Although silica leaching rates were the same or slightly less in the bacterial systems with A. ferrooxidans than in the abiotic control systems, the extent of Fe, Al and Ti released (and re-precipitated in new solid phases) was actually greater in the biotic systems. This is likely because the Fe(II) leached from the basalt was immediately oxidized by A. ferrooxidans, and precipitated into Fe(III) phases which causes a change in the equilibrium of the system, i.e. Le Chatelier's principle. Iron(II) in the abiotic experiment was allowed to build up in solution which led to a decrease in its overall release rate. For example, the percentage of Fe, Al and Ti leached (dissolved + reactive mineral precipitates) from the Mars simulant in the A. ferrooxidans experimental system was 34, 41 and 13% of the total Fe, Al and Ti in the basalt, respectively, while the abiotic experimental system released totals of only 11, 25 and 2%. There was, however, no measurable difference in the amounts of Fe and Ti released from ilmenite in the

  2. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations

    PubMed Central

    Levicán, Gloria; Ugalde, Juan A; Ehrenfeld, Nicole; Maass, Alejandro; Parada, Pilar

    2008-01-01

    Background Carbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacteria isolated from mine sites in Chile was performed. This study demonstrated that there are important differences in the carbon dioxide and nitrogen fixation mechanisms among bioleaching bacteria that coexist in mining environments. Results In this study, we probed that both Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans incorporate CO2 via the Calvin-Benson-Bassham cycle; however, the former bacterium has two copies of the Rubisco type I gene whereas the latter has only one copy. In contrast, we demonstrated that Leptospirillum ferriphilum utilizes the reductive tricarboxylic acid cycle for carbon fixation. Although all the species analyzed in our study can incorporate ammonia by an ammonia transporter, we demonstrated that Acidithiobacillus thiooxidans could also assimilate nitrate and nitrite but only Acidithiobacillus ferrooxidans could fix nitrogen directly from the air. Conclusion The current study utilized genomic and molecular evidence to verify carbon and nitrogen fixation mechanisms for three bioleaching bacteria and provided an analysis of the potential regulatory pathways and functional networks that control carbon and nitrogen fixation in these microorganisms. PMID:19055775

  3. Hypothetical strain-free oligoradicals

    PubMed Central

    Hoffmann, Roald; Eisenstein, Odile; Balaban, Alexandru T.

    1980-01-01

    Several new classes of oligoradicals free of angle strain are suggested and examined by means of molecular orbital calculations. The collapse products of these hypothetical radicals are highly strained molecules. Various electronic strategies for the stabilization of these oligoradicals have been explored. PMID:16592882

  4. Emerging Enteropathogenic Escherichia coli Strains?

    PubMed Central

    Irino, Kinue; Girão, Dennys M.; Girão, Valéria B.C.; Guth, Beatriz E.C.; Vaz, Tânia M.I.; Moreira, Fabiana C.; Chinarelli, Silvia H.; Vieira, Mônica A.M.

    2004-01-01

    Escherichia coli strains of nonenteropathogenic serogroups carrying eae but lacking the enteropathogenic E. coli adherence factor plasmid and Shiga toxin DNA probe sequences were isolated from patients (children, adults, and AIDS patients) with and without diarrhea in Brazil. Although diverse in phenotype and genotype, some strains are potentially diarrheagenic. PMID:15504277

  5. Difference Between Strain and Sprain.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Provided in this description of the differences between a strain (damage to the muscle or tendon) and a sprain (damage to the ligament) are definitions of mild, moderate, and severe (first, second, and third degree) strains and sprains. A final caution is given that these are two separate and distinct problems and should be treated as such. (DC)

  6. [Repetition Strain Injury

    PubMed

    Ribeiro

    1997-01-01

    Muscular-skeletal disorders of the upper limbs resulting from work involving repetition strain (RSI) are now the most frequent work-related diseases in early or late industrialized countries. The author maintains that in addition to being work-related diseases, RSIs are symbolic illnesses revealing the contradictions and social pathogenesis of the new cycle of development and crisis in capitalist production. Discussing the social and historical dimensions of this process, the author insists that the low efficacy of technical interventions by labor engineering, ergonomics, and clinical medicine in the prevention, early and adequate diagnosis, and treatment of such post-modern illnesses and the difficulty in rehabilitating and reincorporating such workers reflect precisely a broader determination of health and illness, since the appropriation, incorporation, and use of technological innovations and the new forms of work management are defined according to the exclusive interests of capital. Thus, a growing contingent of young workers (mainly females) from different labor categories are losing or under threat of losing their health and work capacity, two essential and closely linked public values. The solution to the SRI issue must be political and collective. PMID:10886940

  7. Electrochemistry of Thiobacillus ferrooxidans reactions with pyrite

    SciTech Connect

    Pesic, B.; Oliver, D.J.

    1990-01-01

    The objective of this project is to provide the fundamental information on the mechanisms of bacterial leaching of pyrite. The knowledge of how bacterial leaching of pyrite functions is essential for design and development of a technology for coal cleaning with bacteria. The features of major electrochemical techniques will be examined to find out if any of them can provide a diagnostic information on the mechanisms of related reactions. The research was focused on how to improve the chemical activity of bacteria. Two major approaches were undertaken. One was to provide more nutrient salts. It was anticipated that by providing higher amounts of nutrients the concentration and the activity of bacteria would increase. The other approach was to provide fresh environment to bacteria for the growth. Before the experiments it was decided to first examine their activity with time. However, there was no literature information available on this subject. The effect of the solution pH, was also studied. 4 refs., 8 figs.

  8. Leaching of Copper Ore by Thiobacillus Ferrooxidans.

    ERIC Educational Resources Information Center

    Lennox, John; Biaha, Thomas

    1991-01-01

    A quantitative laboratory exercise based upon the procedures copper manufacturers employ to increase copper production is described. The role of chemoautotrophic microorganisms in biogeologic process is emphasized. Safety considerations when working with bacteria are included. (KR)

  9. Electrochemistry of Thiobacillus ferrooxidans reactions with pyrite

    SciTech Connect

    Pesic, B.

    1992-01-01

    The objective of this project is to provide the fundamental information on the mechanisms of bacterial leaching of pyrite. The knowledge of how bacterial leaching of pyrite functions is essential for design and development of a technology for coal cleaning with bacteria. The features of major electrochemical techniques will be examined to find out if any of them can provide a diagnostic information on the mechanisms of related reactions.

  10. Dewatering of saline sewage sludge using iron-oxidizing bacteria: Effect of substrate concentration.

    PubMed

    Wong, Jonathan W C; Murugesan, Kumarasamy; Selvam, Ammaiyappan; Ravindran, Balasubramanian; Kurade, Mayur B; Yu, Shuk-Man

    2016-08-01

    This study investigated the improvement in dewaterability of activated sludge (ACS) and anaerobically digested sludge (ADS) through bioacidification approach using iron-oxidizing bacterium, Acidithiobacillus ferrooxidans. ACS and ADS were treated with A. ferrooxidans culture with addition of different concentrations of energy substrate, in terms of Fe(2+):sludge solids ratio (0:1, 0.01:1, 0.05:1 and 0.1:1), and the dewaterability was assessed by determining the capillary suction time (CST), time to filter (TTF) and specific resistance to filtration (SRF) of the sludge. The results revealed that the levels of Fe(2+) significantly influenced the sludge acidification (pH⩽3). The CST, TTF and SRF values rapidly decreased in treated sludge, indicating that dewaterability of the sludge was significantly (p<0.05) improved than untreated sludge. This investigation clearly demonstrates that A. ferrooxidans culture, as biogenic flocculant, can be potentially used for improving the sludge flocculation, stabilization and dewaterability. PMID:27095409

  11. High temperature strain measurement with a resistance strain gage

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos

    1993-01-01

    A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.

  12. Recent advances in echocardiography: strain and strain rate imaging

    PubMed Central

    Mirea, Oana; Duchenne, Jurgen; Voigt, Jens-Uwe

    2016-01-01

    Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications. PMID:27158476

  13. Ferroelastic dynamics and strain compatibility

    NASA Astrophysics Data System (ADS)

    Lookman, T.; Shenoy, S. R.; Rasmussen, K. Ø.; Saxena, A.; Bishop, A. R.

    2003-01-01

    We derive underdamped evolution equations for the order-parameter (OP) strains of a proper ferroelastic material undergoing a structural transition, using Lagrangian variations with Rayleigh dissipation, and a free energy as a polynomial expansion in the N=n+Nop symmetry-adapted strains. The Nop strain equations are structurally similar in form to the Lagrange-Rayleigh one-dimensional strain dynamics of Bales and Gooding (BG), with “strain accelerations” proportional to a Laplacian acting on a sum of the free-energy strain derivative and frictional strain force assuming geometric linearity. The tensorial St. Venant’s elastic compatibility constraints that forbid defects, are used to determine the n non-order-parameter strains in terms of the OP strains, generating anisotropic and long-range OP contributions to the free energy, friction, and noise. The same OP equations are obtained by either varying the displacement vector components, or by varying the N strains subject to the Nc compatibility constraints. A Fokker-Planck equation, based on the BG dynamics in more than one dimension with noise terms, is set up. The BG dynamics corresponds to a set of nonidentical nonlinear (strain) oscillators labeled by wave vector k→, with competing short- and long-range couplings. The oscillators have different “strain-mass” densities ρ(k)˜1/k2 and dampings ˜1/ρ(k)˜k2, so the lighter large-k oscillators equilibrate first, corresponding to earlier formation of smaller-scale oriented textures. This produces a sequential-scale scenario for post-quench nucleation, elastic patterning, and hierarchical growth. Neglecting inertial effects yields a late-time dynamics for identifying extremal free-energy states, that is, of the time-dependent Ginzburg-Landau form, with nonlocal, anisotropic Onsager coefficients that become constants for special parameter values. We consider in detail the two-dimensional (2D) unit-cell transitions from a triangular to a centered

  14. Low TCR nanocomposite strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); Chen, Ximing (Inventor)

    2012-01-01

    A high temperature thin film strain gage sensor capable of functioning at temperatures above 1400.degree. C. The sensor contains a substrate, a nanocomposite film comprised of an indium tin oxide alloy, zinc oxide doped with alumina or other oxide semiconductor and a refractory metal selected from the group consisting of Pt, Pd, Rh, Ni, W, Ir, NiCrAlY and NiCoCrAlY deposited onto the substrate to form an active strain element. The strain element being responsive to an applied force.

  15. High-temperature capacitive strain measurement system

    NASA Technical Reports Server (NTRS)

    Wilson, E. J.; Egger, R. L.

    1975-01-01

    Capacitive strain gage and signal conditioning system measures stress-induced strain and cancels thermal expansion strain at temperatures to 1,500 F (815 C). Gage does not significantly restrain or reinforce specimen.

  16. Anelastic Strain Recovery Analysis Code

    1995-04-05

    ASR4 is a nonlinear least-squares regression of Anelastic Strain Recovery (ASR) data for the purpose of determining in situ stress orientations and magnitudes. ASR4 fits the viscoelastic model of Warpinski and Teufel to measure ASR data, calculates the stress orientations directly, and stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and it calculates stress magnitudes using Blanton''s approach, assuming sufficient input data are available.

  17. Bacterial Strain Diversity Within Wounds

    PubMed Central

    Kirkup, Benjamin C.

    2015-01-01

    Significance: Rare bacterial taxa (taxa of low relative frequency) are numerous and ubiquitous in virtually any sample—including wound samples. In addition, even the high-frequency genera and species contain multiple strains. These strains, individually, are each only a small fraction of the total bacterial population. Against the view that wounds contain relatively few kinds of bacteria, this newly recognized diversity implies a relatively high rate of migration into the wound and the potential for diversification during infection. Understanding the biological and medical importance of these numerous taxa is an important new element of wound microbiology. Recent Advances: Only recently have these numerous strains been discovered; the technology to detect, identify, and characterize them is still in its infancy. Multiple strains of both gram-negative and gram-positive bacteria have been found in a single wound. In the few cases studied, the distribution of the bacteria suggests microhabitats and biological interactions. Critical Issues: The distribution of the strains, their phenotypic diversity, and their interactions are still largely uncharacterized. The technologies to investigate this level of genomic detail are still developing and have not been largely deployed to investigate wounds. Future Directions: As advanced metagenomics, single-cell genomics, and advanced microscopy develop, the study of wound microbiology will better address the complex interplay of numerous individually rare strains with both the host and each other. PMID:25566411

  18. PDMS-based porous particles as support beds for cell immobilization: bacterial biofilm formation as a function of porosity and polymer composition.

    PubMed

    Fernández, M R; Casabona, M G; Anupama, V N; Krishnakumar, B; Curutchet, G A; Bernik, D L

    2010-11-01

    The objective of this work is to test the performance of new synthetic polydimethylsiloxane (PDMS)-based bed particles acting as carriers for bacteria biofilms. The particles obtained have a highly interconnected porous structure which offers a large surface adsorption area to the bacteria. In addition, PDMS materials can be cross-linked by copolymerization with other polymers. In the present work we have chosen two hydrophilic polymers: xanthan gum polysaccharide and tetraethoxysilane (TEOS). This versatile composition helps to modulate the interfacial hydrophobic/hydrophilic balance at the particle surface level and the roughness topology and pore size distribution, as revealed by scanning electron microscopy. Biofilm formation of a consortium isolated from a tannery effluent enriched in Sulphate Reducing Bacteria (SRB), and pure Acidithiobacillus ferrooxidans (AF) strains were assayed in three different bed particles synthesized with pure PDMS, PDMS-xanthan gum and PDMS-TEOS hybrids. Bacterial viability assays using confocal laser scanning fluorescence microscopy indicate that inclusion of hydrophilic groups on particle's surface significantly improves both cell adhesion and viability. PMID:20702072

  19. Optical Strain Measurement System Development

    NASA Technical Reports Server (NTRS)

    Lant, C. T.

    1985-01-01

    Investigations of physical phenomena affecting the durability of SSME components require measurement systems operational in hostile environments. The need for such instrumentation caused the definition and operation of an optical strain measurement system. This optical strain measurement system based on the speckle shift method is being developed. This is a noncontact, automatic method of measuring surface strain in one dimension that corrects for error due to rigid body motion. It provides a gauge length of 1 to 2 mm and allows the region of interest on the test specimen to be mapped point by point. The output is a graphics map of the points inspected on the specimen; data points is stored in quasi-real time. This is the first phase of a multiphase effort in optical strain measurement. The speckle pattern created by the test specimen is interpreted as high order interference fringes resulting from a random diffraction grating, being the natural surface roughness of the specimen. Strain induced on the specimen causes a change in spacing of the surface roughness, which in turn shifts the position of the interference pattern (speckles).

  20. Genome Sequence of Pseudomonas chlororaphis Strain 189

    PubMed Central

    Town, Jennifer; Audy, Patrice; Boyetchko, Susan M.

    2016-01-01

    Pseudomonas chlororaphis strain 189 is a potent inhibitor of the growth of the potato pathogen Phytophthora infestans. We determined the complete, finished sequence of the 6.8-Mbp genome of this strain, consisting of a single contiguous molecule. Strain 189 is closely related to previously sequenced strains of P. chlororaphis. PMID:27340063

  1. Measuring mine roof bolt strains

    DOEpatents

    Steblay, Bernard J.

    1986-01-01

    A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.

  2. Spin transport in graphene superlattice under strain

    NASA Astrophysics Data System (ADS)

    Sattari, Farhad

    2016-09-01

    In this paper, the spin-dependent transport and the spin polarization properties for graphene superlattice with Rashba spin-orbit interaction (RSOI) in the presence of zigzag and armchair direction strain are studied. It is found that for the zigzag direction strain the angular range of the spin-inversion can be efficiently controlled by the strain strength. In addition, the efficiency of spin-inversion and spin-dependent conductivity decreases by increasing the strain strength. When the armchair direction strain is applied to a monolayer graphene superlattice the spin polarization can be observed and increases by increasing the strain strength, whereas for the zigzag direction strain it is zero.

  3. Taxonomy of oxalotrophic Methylobacterium strains

    NASA Astrophysics Data System (ADS)

    Sahin, Nurettin; Kato, Yuko; Yilmaz, Ferah

    2008-10-01

    Most of the oxalotrophic bacteria are facultative methylotrophs and play important ecological roles in soil fertility and cycling of elements. This study gives a detailed picture of the taxonomy and diversity of these bacteria and provides new information about the taxonomical variability within the genus Methylobacterium. Twelve mesophilic, pink-pigmented, and facultatively methylotrophic oxalate-oxidizing strains were included in this work that had been previously isolated from the soil and some plant tissues by the potassium oxalate enrichment method. The isolates were characterized using biochemical tests, cellular lipid profiles, spectral characteristics of carotenoid pigments, G+C content of the DNA, and 16S rDNA sequencing. The taxonomic similarities among the strains were analyzed using the simple matching ( S SM) and Jaccard ( S J) coefficients, and the UPGMA clustering algorithm. The phylogenetic position of the strains was inferred by the neighbor-joining method on the basis of the 16S rDNA sequences. All isolates were Gram-negative, facultatively methylotrophic, oxidase and catalase positive, and required no growth factors. Based on the results of numerical taxonomy, the strains formed four closely related clusters sharing ≥85% similarity. Analysis of the 16S rDNA sequences demonstrated that oxalotrophic, pink-pigmented, and facultatively methylotrophic strains could be identified as members of the genus Methylobacterium. Except for M. variabile and M. aquaticum, all of the Methylobacterium type strains tested had the ability of oxalate utilization. Our results indicate that the capability of oxalate utilization seems to be an uncommon trait and could be used as a valuable taxonomic criterion for differentiation of Methylobacterium species.

  4. Photoacoustic spectroscopy of Entamoeba histolytica strains

    NASA Astrophysics Data System (ADS)

    Acosta-Avalos, D.; Alvarado-Gil, J. J.; Silva, E. F.; Orozco, E.; de Menezes, L. F.; Vargas, H.

    2005-06-01

    Pathogenic and non-pathogenic strains of E. histolytica are studied using photoacoustic spectroscopy. It is shown that the pathogenic strain presents a spectrum similar to that of iron sulfur proteins. The non-pathogenic strain does not show any relevant absorption at the studied wavelength range. The differences observed between the optical absorption spectra of both strains opens the possibility of using photoacoustic spectroscopy as a reliable and simple technique to identify different types of E. histolytica strains.

  5. Trials with a Strain Gauge.

    ERIC Educational Resources Information Center

    Auty, Geoff

    1996-01-01

    Describes an attempt to match the goals of the practical demonstration of the use of a strain gauge and the technical applications of science and responding to student questions in early trials, while keeping within the level of electronics in advanced physics. (Author/JRH)

  6. Molecular Characterization of Bacterial Respiration on Minerals

    SciTech Connect

    Blake, Robert C.

    2013-04-26

    The overall aim of this project was to contribute to our fundamental understanding of proteins and biological processes under extreme environmental conditions. We sought to define the biochemical and physiological mechanisms that underlie biodegradative and other cellular processes in normal, extreme, and engineered environments. Toward that end, we sought to understand the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during respiration by bacteria on soluble iron and insoluble sulfide minerals. In accordance with these general aims, the specific aims were two-fold: To identify, separate, and characterize the extracellular biomolecules necessary for aerobic respiration on iron under strongly acidic conditions; and to elucidate the molecular principles whereby these bacteria recognize and adhere to their insoluble mineral substrates under harsh environmental conditions. The results of these studies were described in a total of nineteen manuscripts. Highlights include the following: 1. The complete genome of Acidithiobacillus ferrooxidans ATCC 23270 (type strain) was sequenced in collaboration with the DOE Joint Genome Institute; 2. Genomic and mass spectrometry-based proteomic methods were used to evaluate gene expression and in situ microbial activity in a low-complexity natural acid mine drainage microbial biofilm community. This was the first effort to successfully analyze a natural community using these techniques; 3. Detailed functional and structural studies were conducted on rusticyanin, an acid-stable electron transfer protein purified from cell-free extracts of At. ferrooxidans. The three-dimensional structure of reduced rusticyanin was determined from a combination of homonuclear proton and heteronuclear 15N- and 13C-edited NMR spectra. Concomitantly, the three-dimensional structure of oxidized rusticyanin was determined by X-ray crystallography to a resolution of 1.9 A by multiwavelength

  7. Virulence of 32 Salmonella Strains in Mice

    PubMed Central

    Swearingen, Matthew C.; Porwollik, Steffen; Desai, Prerak T.; McClelland, Michael; Ahmer, Brian M. M.

    2012-01-01

    Virulence and persistence in the BALB/c mouse gut was tested for 32 strains of Salmonella enterica for which genome sequencing is complete or underway, including 17 serovars within subspecies I (enterica), and two representatives of each of the other five subspecies. Only serovar Paratyphi C strain BAA1715 and serovar Typhimurium strain 14028 were fully virulent in mice. Three divergent atypical Enteritidis strains were not virulent in BALB/c, but two efficiently persisted. Most of the other strains in all six subspecies persisted in the mouse intestinal tract for several weeks in multiple repeat experiments although the frequency and level of persistence varied considerably. Strains with heavily degraded genomes persisted very poorly, if at all. None of the strains tested provided immunity to Typhimurium infection. These data greatly expand on the known significant strain-to-strain variation in mouse virulence and highlight the need for comparative genomic and phenotypic studies. PMID:22558320

  8. Mapping microscale strain heterogeneity during creep deformation

    NASA Astrophysics Data System (ADS)

    Quintanilla Terminel, A.; Evans, J.

    2013-12-01

    We use a new technique combining microfabrication technology and compression tests to map the strain field at a micrometric scale in polycrystalline materials. This technique allows us to map local strain while measuring macroscopic strain and rheological properties, and provides insight into the relative contribution of various plasticity mechanisms under varying creep conditions. The micro-strain mapping technique was applied to Carrara Marble under different deformation regimes, at 300 MPa and temperatures ranging from 200 to 700 °C. At 600 °C, strain of 10%, and strain rate of 3e-5s-1, the local strain at twin and grain boundaries is up to 5 times greater than the average sample strain. At these conditions, strains averaged across a particular grain may vary by as much as 100%, but the strain field becomes more homogeneous with increasing strain. For example, for the analyzed experiments, the average wavelength of the strain heterogeneity is 70 micrometers at 10% strain, but increases to 110 micrometers at 20%. For a strain of 10%, heterogeneity is increased at slower strain rate (at 1e-5s-1). This increase seems to be associated with a more important role of twin boundary and grain boundary migration. As expected, twin densities are markedly greater at the lower temperature, though it is still unclear whether the relative twin volume is greater. However, twin strains are still important at 600 °C and accommodate an average of 14 % of the total strain at 10% deformation and a strain rate of 3e-5s-1.

  9. Material mechanical characterization method for multiple strains and strain rates

    DOEpatents

    Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli

    2016-01-19

    A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.

  10. Modelling to very high strains

    NASA Astrophysics Data System (ADS)

    Bons, P. D.; Jessell, M. W.; Griera, A.; Evans, L. A.; Wilson, C. J. L.

    2009-04-01

    Ductile strains in shear zones often reach extreme values, resulting in typical structures, such as winged porphyroclasts and several types of shear bands. The numerical simulation of the development of such structures has so far been inhibited by the low maximum strains that numerical models can normally achieve. Typical numerical models collapse at shear strains in the order of one to three. We have implemented a number of new functionalities in the numerical platform "Elle" (Jessell et al. 2001), which significantly increases the amount of strain that can be achieved and simultaneously reduces boundary effects that become increasingly disturbing at higher strain. Constant remeshing, while maintaining the polygonal phase regions, is the first step to avoid collapse of the finite-element grid required by finite-element solvers, such as Basil (Houseman et al. 2008). The second step is to apply a grain-growth routine to the boundaries of polygons that represent phase regions. This way, the development of sharp angles is avoided. A second advantage is that phase regions may merge or become separated (boudinage). Such topological changes are normally not possible in finite element deformation codes. The third step is the use of wrapping vertical model boundaries, with which optimal and unchanging model boundaries are maintained for the application of stress or velocity boundary conditions. The fourth step is to shift the model by a random amount in the vertical direction every time step. This way, the fixed horizontal boundary conditions are applied to different material points within the model every time step. Disturbing boundary effects are thus averaged out over the whole model and not localised to e.g. top and bottom of the model. Reduction of boundary effects has the additional advantage that model can be smaller and, therefore, numerically more efficient. Owing to the combination of these existing and new functionalities it is now possible to simulate the

  11. Strains

    MedlinePlus

    Pulled muscle ... can include: Pain and difficulty moving the injured muscle Discolored and bruised skin Swelling ... if you still have pain. Rest the pulled muscle for at least a day. If possible, keep ...

  12. Strain tolerant microfilamentary superconducting wire

    DOEpatents

    Finnemore, D.K.; Miller, T.A.; Ostenson, J.E.; Schwartzkopf, L.A.; Sanders, S.C.

    1993-02-23

    A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

  13. Computational strain gradient crystal plasticity

    NASA Astrophysics Data System (ADS)

    Niordson, Christian F.; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale.

  14. High Temperature Capacitive Strain Gage

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  15. Design of a strain-gage probe

    NASA Technical Reports Server (NTRS)

    Kolba, V. M.; Vetter, D. L.

    1969-01-01

    Strain-gage spacer probe uses the deflection of a leaf spring to measure strain in a long, slender beam nondestructively. The selected gage is of the smallest practical size, as thin as possible and yet of a standard type.

  16. Strain stiffening in collagen I networks.

    PubMed

    Motte, Stéphanie; Kaufman, Laura J

    2013-01-01

    Biopolymer gels exhibit strain stiffening that is generally not seen in synthetic gels. Here, we investigate the strain-stiffening behavior in collagen I gels that demonstrate elasticity derived from a variety of sources including crosslinking through telopeptides, bundling through low-temperature gelation, and exogenous crosslinking with genipin. In all cases, it is found that these gels exhibit strain stiffening; in general, onset of strain stiffening occurs earlier, yield strain is lower, and degree of strain stiffening is smaller in higher concentration gels and in those displaying thick fibril bundles. Recovery after exposure to high strains is substantial and similar in all gels, suggesting that much of the stiffening comes from reversible network deformations. A key finding of this study is that collagen I gels of identical storage and loss moduli may display different nonlinear responses and different capacities to recover from high strain. PMID:23097228

  17. Turbulent Plane Wakes Subjected to Successive Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.

    2003-01-01

    Six direct numerical simulations of turbulent time-evolving strained plane wakes have been examined to investigate the response of a wake to successive irrotational plane strains of opposite sign. The orientation of the applied strain field has been selected so that the flow is the time-developing analogue of a spatially developing wake evolving in the presence of either a favourable or an adverse streamwise pressure gradient. The magnitude of the applied strain rate a is constant in time t until the total strain e(sup at) reaches about four. At this point, a new simulation is begun with the sign of the applied strain being reversed (the original simulation is continued as well). When the total strain is reduced back to its original value of one, yet another simulation is begun with the sign of the strain being reversed again back to its original sign. This process is done for both initially "favourable" and initially "adverse" strains, providing simulations for each of these strain types from three different initial conditions. The evolution of the wake mean velocity deficit and width is found to be very similar for all the adversely strained cases, with both measures rapidly achieving exponential growth at the rate associated with the cross-stream expansive strain e(sup at). In the "favourably" strained cases, the wake widths approach a constant and the velocity deficits ultimately decay rapidly as e(sup -2at). Although all three of these cases do exhibit the same asymptotic exponential behaviour, the time required to achieve this is longer for the cases that have been previously adversely strained (by at approx. equals 1). These simulations confirm the generality of the conclusions drawn in Rogers (2002) regarding the response of plane wakes to strain. The evolution of strained wakes is not consistent with the predictions of classical self-similar analysis; a more general equilibrium similarity solution is required to describe the results. At least for the cases

  18. Installing strain gauges on composite material

    NASA Astrophysics Data System (ADS)

    Shull, Larry

    The evolution of the strain gage is traced and problems associated with their use on composite materials are discussed. It is believed that the use of the computer in strain gage data systems has caused some of the attitude problems in measuring strains in composite materials. The performance of strain gages on filament-wound Kevlar pressure vessels is discussed as well as graphite composites during 1984-1986, surface preparation, gage location alignment.

  19. Temperature-Compensating Inactive Strain Gauge

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1993-01-01

    Thermal contribution to output of active gauge canceled. High-temperature strain gauges include both active gauge wires sensing strains and inactive gauge wires providing compensation for thermal contributions to gauge readings. Inactive-gauge approach to temperature compensation applicable to commercially available resistance-type strain gauges operating at temperatures up to 700 degrees F and to developmental strain gauges operating at temperatures up to 2,000 degrees F.

  20. Piezoelectric field in strained GaAs.

    SciTech Connect

    Chow, Weng Wah; Wieczorek, Sebastian Maciej

    2005-11-01

    This report describes an investigation of the piezoelectric field in strained bulk GaAs. The bound charge distribution is calculated and suitable electrode configurations are proposed for (1) uniaxial and (2) biaxial strain. The screening of the piezoelectric field is studied for different impurity concentrations and sample lengths. Electric current due to the piezoelectric field is calculated for the cases of (1) fixed strain and (2) strain varying in time at a constant rate.

  1. Strain Monitoring of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Litteken, Douglas A.

    2017-01-01

    , such as tensile testing, fatigue testing, and shear testing, but common measurement techniques cannot be used on fabric. Measuring strain in a material and during a test is a critical parameter for an engineer to monitor the structure during the test and correlate to an analytical model. The ability to measure strain in fabric structures is a challenge for NASA. Foil strain gauges, for example, are commonplace on metallic structures testing, but are extremely difficult to interface with a fabric substrate. New strain measuring techniques need to be developed for use with fabric structures. This paper investigates options for measuring strain in fabric structures for both ground testing and in-space structural health monitoring. It evaluates current commercially available options and outlines development work underway to build custom measurement solutions for NASA's fabric structures.

  2. Haemophilus ducreyi Cutaneous Ulcer Strains Are Nearly Identical to Class I Genital Ulcer Strains

    PubMed Central

    Gangaiah, Dharanesh; Webb, Kristen M.; Humphreys, Tricia L.; Fortney, Kate R.; Toh, Evelyn; Tai, Albert; Katz, Samantha S.; Pillay, Allan; Chen, Cheng-Yen; Roberts, Sally A.; Munson, Robert S.; Spinola, Stanley M.

    2015-01-01

    Background Although cutaneous ulcers (CU) in the tropics is frequently attributed to Treponema pallidum subspecies pertenue, the causative agent of yaws, Haemophilus ducreyi has emerged as a major cause of CU in yaws-endemic regions of the South Pacific islands and Africa. H. ducreyi is generally susceptible to macrolides, but CU strains persist after mass drug administration of azithromycin for yaws or trachoma. H. ducreyi also causes genital ulcers (GU) and was thought to be exclusively transmitted by microabrasions that occur during sex. In human volunteers, the GU strain 35000HP does not infect intact skin; wounds are required to initiate infection. These data led to several questions: Are CU strains a new variant of H. ducreyi or did they evolve from GU strains? Do CU strains contain additional genes that could allow them to infect intact skin? Are CU strains susceptible to azithromycin? Methodology/Principal Findings To address these questions, we performed whole-genome sequencing and antibiotic susceptibility testing of 5 CU strains obtained from Samoa and Vanuatu and 9 archived class I and class II GU strains. Except for single nucleotide polymorphisms, the CU strains were genetically almost identical to the class I strain 35000HP and had no additional genetic content. Phylogenetic analysis showed that class I and class II strains formed two separate clusters and CU strains evolved from class I strains. Class I strains diverged from class II strains ~1.95 million years ago (mya) and CU strains diverged from the class I strain 35000HP ~0.18 mya. CU and GU strains evolved under similar selection pressures. Like 35000HP, the CU strains were highly susceptible to antibiotics, including azithromycin. Conclusions/Significance These data suggest that CU strains are derivatives of class I strains that were not recognized until recently. These findings require confirmation by analysis of CU strains from other regions. PMID:26147869

  3. Modal strain energies in COSMIC NASTRAN

    NASA Technical Reports Server (NTRS)

    Snyder, B. D.; Venkayya, V. B.

    1989-01-01

    A computer program was developed to take a NASTRAN output file from a normal modes analysis and calculate the modal strain energies of selected elements. The FORTRAN program can determine the modal strain energies for CROD, CBAR, CELAS, CTRMEM, CQDMEM2, and CSHEAR elements. Modal strain energies are useful in estimating damping in structures.

  4. Strains and Sprains Are a Pain

    MedlinePlus

    ... move the injured part, and you may even think you have broken a bone . How Does a Strain or Sprain Happen? Strains often happen when you put a lot of pressure on a muscle or you push it too far, such as when lifting a heavy object. Strains can be more likely to happen if ...

  5. Strainrange partitioning: A total strain range version

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.

    1983-01-01

    Procedures are presented for expressing the Strainrange Partitioning (SRP) method for creep fatigue life prediction in terms of total strain range. Inelastic and elastic strain-range - life relations are summed to give total strain-range - life relations. The life components due to inelastic strains are dealt with using conventional SRP procedures while the life components due to elastic strains are expressed as families of time-dependent terms for each type of SRP cycle. Cyclic constitutive material behavior plays an important role in establishing the elastic strain-range - life relations as well as the partitioning of the inelastic strains. To apply the approach, however, it is not necessary to have to determine the magnitude of the inelastic strain range. The total strain SRP approach is evaluated and verified using two nickel base superalloys, AF2-1DA and Rene 95. Excellent agreement is demonstrated between observed and predicted cyclic lifetimes with 70 to 80 percent of the predicted lives falling within factors of two of the observed lives. The total strain-range SRP approach should be of considerable practical value to designers who are faced with creep-fatigue problems for which the inelastic strains cannot be calculated with sufficient accuracy to make reliable life predictions by the conventional inelastic strain range SRP approach.

  6. Analysis of early bacterial communities on volcanic deposits on the island of Miyake (Miyake-jima), Japan: a 6-year study at a fixed site.

    PubMed

    Fujimura, Reiko; Sato, Yoshinori; Nishizawa, Tomoyasu; Nanba, Kenji; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2012-01-01

    Microbial colonization on new terrestrial substrates represents the initiation of new soil ecosystem formation. In this study, we analyzed early bacterial communities growing on volcanic ash deposits derived from the 2000 Mount Oyama eruption on the island of Miyake (Miyake-jima), Japan. A site was established in an unvegetated area near the summit and investigated over a 6-year period from 2003 to 2009. Collected samples were acidic (pH 3.0-3.6), did not utilize any organic substrates in ECO microplate assays (Biolog), and harbored around 106 cells (g dry weight)(-1) of autotrophic Fe(II) oxidizers by most-probable-number (MPN) counts. Acidithiobacillus ferrooxidans, Acidithiobacillus ferrivorans, and the Leptospirillum groups I, II and III were found to be abundant in the deposits by clone library analysis of bacterial 16S rRNA genes. The numerical dominance of Acidithiobacillus ferrooxidans was also supported by analysis of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Comparing the 16S rRNA gene clone libraries from samples differing in age, shifts in Fe(II)-oxidizing populations seemed to occur with deposit aging. The detection of known 16S rRNA gene sequences from Fe(III)-reducing acidophiles promoted us to propose the acidity-driven iron cycle for the early microbial ecosystem on the deposit. PMID:22075623

  7. Adaptation of a mixed culture of acidophiles for a tank biooxidation of refractory gold concentrates containing a high concentration of arsenic.

    PubMed

    Hong, Jeongsik; Silva, Rene A; Park, Jeonghyun; Lee, Eunseong; Park, Jayhyun; Kim, Hyunjung

    2016-05-01

    We adapted a mixed culture of acidophiles to high arsenic concentrations to confirm the possibility of achieving more than 70% biooxidation of refractory gold concentrates containing high arsenic (As) concentration. The biooxidation process was applied to refractory gold concentrates containing approximately 139.67 g/kg of total As in a stirred tank reactor using an adapted mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The percentage of the biooxidation process was analyzed based on the total As removal efficiency. The As removal was monitored by inductively coupled plasma (ICP) analysis, conducted every 24 h. The results obtained with the adapted culture were compared with the percentage of biooxidation obtained with a non-adapted mixed culture of A. ferrooxidans and A. thiooxidans, and with their respective pure cultures. The percentages of biooxidation obtained during 358 h of reaction were 72.20%, 38.20%, 27.70%, and 11.45% for adapted culture, non-adapted culture, and pure cultures of A. thiooxidans and A. ferrooxidans, respectively. The adapted culture showed a peak maximum percentage of biooxidation of 77% at 120 h of reaction, confirming that it is possible to obtain biooxidation percentages over 70% in gold concentrates containing high As concentrations. PMID:26481159

  8. Siderotyping of Antarctic fluorescent Pseudomonas strains.

    PubMed

    Geoffroy, V A; Meyer, J M

    2004-07-01

    Five fluorescent Pseudomonas strains isolated from Antarctica have been previously recognized as producing three structurally different pyoverdines. In the present work, siderotyping procedures have been used to classify these strains, together with 1282 isolates of different origins, into siderovars. The strain biodiversity encountered within each siderovar, as well as the potential taxonomic value of the siderovars, are described and discussed. It is concluded that a majority of antarctic strains are commonly distributed worldwide. One strain, however, presenting a particular pyoverdine structure found in a unique other isolate, was apparently much more specific to cold environment. PMID:15559975

  9. Progress in optical strain measurement system development

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.; Qaqish, Walid

    1987-01-01

    A laser speckle strain measurement system has been built and tested for the NASA Lewis Research Center. The system is based on a speckle shift technique, which automatically corrects for error due to rigid body motion, and provides a near real time measure of strain. The first stage of a multiphase effort to develop an optical strain gauge capable of mapping in two dimensions the strain on the surface of a hot specimen is discussed. The objectives of this first phase have been to provide a noncontact, one-dimensional, differential strain gauge for experimental purposes, and to determine the maximum open air temperature limit of the system.

  10. Strain Engineering of Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Dadgar, Ali; Pasupathy, Abhay; Herman, Irving; Wang, Dennis; Kang, Kyungnam; Yang, Eui-Hyeok

    The application of strain to materials can cause changes to bandwidth, effective masses, degeneracies and even structural phases. In the case of the transition metal dichalcogenide (TMD) semiconductors, small strain (around 1 percent) is expected to change band gaps and mobilities, while larger strains are expected to cause phase changes from the triangular 2H phase to orthorhombic 1T' phases. We will describe experimental techniques to apply small and large (around 10 percent) strains to one or few layer samples of the TMD semiconductors, and describe the effect of the strain using optical (Raman, photoluminescence) and cryogenic transport techniques.

  11. Demonstration test of burner liner strain measurements using resistance strain gages

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Anderson, W. L.

    1984-01-01

    A demonstration test of burner liner strain measurements using resistance strain gages as well as a feasibility test of an optical speckle technique for strain measurement are presented. The strain gage results are reported. Ten Kanthal A-1 wire strain gages were used for low cycle fatigue strain measurements to 950 K and .002 apparent strain on a JT12D burner can in a high pressure (10 atmospheres) burner test. The procedure for use of the strain gages involved extensive precalibration and postcalibration to correct for cooling rate dependence, drift, and temperature effects. Results were repeatable within + or - .0002 to .0006 strain, with best results during fast decels from 950 K. The results agreed with analytical prediction based on an axisymmetric burner model, and results indicated a non-uniform circumferential distribution of axial strain, suggesting temperature streaking.

  12. Strain flexibility identification of bridges from long-gauge strain measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Xia, Qi; Cheng, YuYao; Wu, ZhiShen

    2015-10-01

    Strain flexibility, defined as the strain response of a structure's element to a unit input force, is import for structural safety evaluation, but its identification is seldom investigated. A novel long-gauge fiber optic sensor has been developed to measure the averaged strain within a long gauge length. Its advantage of measuring both local and global information of the structure offers an excellent opportunity of developing the strain flexibility identification theory. In this article, the method to identify structural strain flexibility from long-gauge dynamic strain measurements is proposed. It includes the following main steps: (a) macro strain frequency response function (FRF) estimation from macro strain measurements and its feature characterization; (b) general strain modal parameter identification; (c) scaling factor calculation, and (d) strain flexibility identification. Numerical and experimental examples successfully verify the effectiveness of the proposed method.

  13. Job Strain in Physical Therapists

    PubMed Central

    Campo, Marc A.; Weiser, Sherri; Koenig, Karen L.

    2009-01-01

    Background: Job stress has been associated with poor outcomes. In focus groups and small-sample surveys, physical therapists have reported high levels of job stress. Studies of job stress in physical therapy with larger samples are needed. Objective: The purposes of this study were: (1) to determine the levels of psychological job demands and job control reported by physical therapists in a national sample, (2) to compare those levels with national norms, and (3) to determine whether high demands, low control, or a combination of both (job strain) increases the risk for turnover or work-related pain. Design: This was a prospective cohort study with a 1-year follow-up period. Methods: Participants were randomly selected members of the American Physical Therapy Association (n=882). Exposure assessments included the Job Content Questionnaire (JCQ), a commonly used instrument for evaluation of the psychosocial work environment. Outcomes included job turnover and work-related musculoskeletal disorders. Results: Compared with national averages, the physical therapists reported moderate job demands and high levels of job control. About 16% of the therapists reported changing jobs during follow-up. Risk factors for turnover included high job demands, low job control, job strain, female sex, and younger age. More than one half of the therapists reported work-related pain. Risk factors for work-related pain included low job control and job strain. Limitations: The JCQ measures only limited dimensions of the psychosocial work environment. All data were self-reported and subject to associated bias. Conclusions: Physical therapists’ views of their work environments were positive, including moderate levels of demands and high levels of control. Those therapists with high levels of demands and low levels of control, however, were at increased risk for both turnover and work-related pain. Physical therapists should consider the psychosocial work environment, along with other

  14. Biosignatures in Fe- and As-rich acidic water

    NASA Astrophysics Data System (ADS)

    Casiot, C.; Bruneel, O.; Donard, O.; Morin, G.; Leblanc, M.; Personné, C.; Elbaz-Poulichet, F.

    2003-04-01

    The acid waters (pH 2.5-3.5) originating from the Carnoulès mine tailings contain elevated dissolved concentrations of arsenite (As(III)) (50-350 mg.l-1) and ferrous iron (Fe(II)) (˜2000 mg.l-1). In such extreme conditions, a number of microorganisms mainly bacteria can grow and influence water chemistry. In the acidic creek of Carnoulès, twenty to sixty percent of the arsenite initially present in water is removed from the aqueous phase within the first 30 m of the creek, as a result of its precipitation with iron. The precipitates contain 20% As around bacteria-made structures. Isotopic measurements revealed an important isotopic fractionation of iron in the stromatolites, which are enriched in 54Fe compared to the primary ore material. This enrichment may be related to the biologically-mediated oxidation of Fe(II) and subsequent immobilisation of Fe(III) by the bacteria of the Carnoulès creek. XANES analysis of sediments and stromatolite samples showed the formation of As(III)-rich compounds, tooeleite, a rare ferric arsenite sulfate oxy-hydroxide mineral and amorphous mixed As(III)/As(V)-Fe(III) oxyhydroxide compounds. These As(III)-rich compounds are dominant during the wet season; ex-situ experiments showed that the formation of these compounds may be related to the activity of bacterial strains of Acidithiobacillus ferrooxidans that oxidize Fe(II) but not As(III). In contrast, amorphous As(V)-Fe(III) oxy-hydroxides dominate in the sediments during the dry season; they originate from both biotic and abiotic oxidation of As(III). Different strains of As-oxidizing bacteria were isolated from the Carnoulès creek water and identified as strains of the genus Thiomonas.

  15. Straining graphene using thin film shrinkage methods.

    PubMed

    Shioya, Hiroki; Craciun, Monica F; Russo, Saverio; Yamamoto, Michihisa; Tarucha, Seigo

    2014-03-12

    Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629

  16. Straining Graphene Using Thin Film Shrinkage Methods

    PubMed Central

    2014-01-01

    Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629

  17. Numerical demonstration of MEMS strain sensor

    NASA Astrophysics Data System (ADS)

    Saboonchi, Hossain; Ozevin, Didem

    2012-04-01

    Silicon has piezoresistive property that allows designing strain sensor with higher gauge factor compared to conventional metal foil gauges. The sensing element can be micro-scale using MEMS, which minimizes the effect of strain gradient on measurement at stress concentration regions such as crack tips. The challenge of MEMS based strain sensor design is to decouple the sensing element from substrate for true strain measurement and to compensate the temperature effect on the piezoresistive coefficients of silicon. In this paper, a family of MEMS strain sensors with different geometric designs is introduced. Each strain sensor is made of single crystal silicon and manufactured using deposition/ etching/oxidation steps on a n- doped silicon wafer in (100) plane. The geometries include sensing element connected to the free heads of U shape substrate, a set of two or more sensing elements in an array in order to capture strain gradients and two directional sensors. The response function and the gauge factor of the strain sensors are identified using multi-physics models that combine structural and electrical behaviors of sensors mounted on a strained structure. The relationship between surface strain and strain at microstructure is identified numerically in order to include the relationship in the response function calculation.

  18. Thick film wireless and powerless strain sensor

    NASA Astrophysics Data System (ADS)

    Jia, Yi; Sun, Ke

    2006-03-01

    The development of an innovative wireless strain sensing technology has a great potential to extend its applications in manufacturing, civil engineering and aerospace industry. This paper presents a novel wireless and powerless strain sensor with a multi-layer thick film structure. The sensor employs a planar inductor (L) and capacitive transducer (C) resonant tank sensing circuit, and a strain sensitive material of a polarized polyvinylidene fluoride (PVDF) piezoelectric thick film to realize the wireless strain sensing by strain to frequency conversion and to receive radio frequency electromagnetic energy for powering the sensor. The prototype sensor was designed and fabricated. The results of calibration on a strain constant cantilever beam show a great linearity and sensitivity about 0.0013 in a strain range of 0-0.018.

  19. Strain engineering of graphene: a review

    NASA Astrophysics Data System (ADS)

    Si, Chen; Sun, Zhimei; Liu, Feng

    2016-02-01

    Graphene has intrigued the science community by many unique properties not found in conventional materials. In particular, it is the strongest two-dimensional material ever measured, being able to sustain reversible tensile elastic strain larger than 20%, which yields an interesting possibility to tune the properties of graphene by strain and thus opens a new field called ``straintronics''. In this article, the current progress in the strain engineering of graphene is reviewed. We first summarize the strain effects on the electronic structure and Raman spectra of graphene. We then highlight the electron-phonon coupling greatly enhanced by the biaxial strain and the strong pseudomagnetic field induced by the non-uniform strain with specific distribution. Finally, the potential application of strain-engineering in the self-assembly of foreign atoms on the graphene surface is also discussed. Given the short history of graphene straintronics research, the current progress has been notable, and many further advances in this field are expected.

  20. Development of a Laboratory-Scale Leaching Plant for Metal Extraction from Fly Ash by Thiobacillus Strains

    PubMed Central

    Brombacher, Christoph; Bachofen, Reinhard; Brandl, Helmut

    1998-01-01

    Semicontinuous biohydrometallurgical processing of fly ash from municipal waste incineration was performed in a laboratory-scale leaching plant (LSLP) by using a mixed culture of Thiobacillus thiooxidans and Thiobacillus ferrooxidans. The LSLP consisted of three serially connected reaction vessels, reservoirs for a fly ash suspension and a bacterial stock culture, and a vacuum filter unit. The LSLP was operated with an ash concentration of 50 g liter−1, and the mean residence time was 6 days (2 days in each reaction vessel). The leaching efficiencies (expressed as percentages of the amounts applied) obtained for the economically most interesting metal, Zn, were up to 81%, and the leaching efficiencies for Al were up to 52%. Highly toxic Cd was completely solubilized (100%), and the leaching efficiencies for Cu, Ni, and Cr were 89, 64, and 12%, respectively. The role of T. ferrooxidans in metal mobilization was examined in a series of shake flask experiments. The release of copper present in the fly ash as chalcocite (Cu2S) or cuprite (Cu2O) was dependent on the metabolic activity of T. ferrooxidans, whereas other metals, such as Al, Cd, Cr, Ni, and Zn, were solubilized by biotically formed sulfuric acid. Chemical leaching with 5 N H2SO4 resulted in significantly increased solubilization only for Zn. The LSLP developed in this study is a promising first step toward a pilot plant with a high capacity to detoxify fly ash for reuse for construction purposes and economical recovery of valuable metals. PMID:16349536

  1. Differential receptor usage by measles virus strains.

    PubMed

    Bartz, R; Firsching, R; Rima, B; ter Meulen, V; Schneider-Schaulies, J

    1998-05-01

    Recently, we demonstrated that infection of cells with all measles virus (MV) strains tested was inhibited by antibodies against CD46, although not all strains caused downregulation of the MV receptor CD46 from the surface of human cells. We now show that infection of cells with MV strain WTFb, a variant of wild-type isolate WTF which has been isolated and propagated on human BJAB cells, is not inhibited by antibodies against CD46. In contrast, infection of cells with the closely related strain WTFv, a Vero cell-adapted variant of WTF, is inhibited by antibodies against CD46. This observation led us to investigate the interaction of these viruses and the vaccine strain Edmonston (Edm) with CD46 and target cells. Cellular receptors with high affinity binding for WTFb are present on BJAB cells, but not on transfected CD46-expressing CHO cells. In contrast to the Edm strain, virus particles and solubilized envelope glycoproteins of WTFb have a very limited binding capacity to CD46. Furthermore, we show that recombinant soluble CD46 either does not bind, or binds very weakly, to WTFb glycoproteins expressed on the cell surface. Our findings indicate that wild-type MV strain WTFb and vaccine strain Edm use different binding sites on human cells. In addition, the results suggest that MV strains may alternatively use CD46 and an unknown molecule as receptors, and that the degree of usage of both receptors may be MV strain-specific. PMID:9603316

  2. Comparison of Strain Rosettes and Digital Image Correlation for Measuring Vertebral Body Strain.

    PubMed

    Gustafson, Hannah; Siegmund, Gunter; Cripton, Peter

    2016-05-01

    Strain gages are commonly used to measure bone strain, but only provide strain at a single location. Digital image correlation (DIC) is an optical technique that provides the displacement, and therefore strain, over an entire region of interest on the bone surface. This study compares vertebral body strains measured using strain gages and DIC. The anterior surfaces of 15 cadaveric porcine vertebrae were prepared with a strain rosette and a speckled paint pattern for DIC. The vertebrae were loaded in compression with a materials testing machine, and two high-resolution cameras were used to image the anterior surface of the bones. The mean noise levels for the strain rosette and DIC were 1 με and 24 με, respectively. Bland-Altman analysis was used to compare strain from the DIC and rosette (excluding 44% of trials with some evidence of strain rosette failure or debonding); the mean difference ± 2 standard deviations (SDs) was -108 με ± 702 με for the minimum (compressive) principal strain and -53 με ± 332 με for the maximum (tensile) principal strain. Although the DIC has higher noise, it avoids the relatively high risk we observed of strain gage debonding. These results can be used to develop guidelines for selecting a method to measure strain on bone. PMID:26902321

  3. Determining Micromechanical Strain in Nitinol

    SciTech Connect

    Strasberg, Matthew; /SLAC

    2006-09-27

    Nitinol is a superelastic alloy made of equal parts nickel and titanium. Due to its unique shape memory properties, nitinol is used to make medical stents, lifesaving devices used to allow blood flow in occluded arteries. Micromechanical models and even nitinol-specific finite element analysis (FEA) software are insufficient for unerringly predicting fatigue and resultant failure. Due to the sensitive nature of its application, a better understanding of nitinol on a granular scale is being pursued through X-ray diffraction techniques at the Stanford Synchrotron Radiation Laboratory (SSRL) at the Stanford Linear Accelerator Center (SLAC). Through analysis of powder diffraction patterns of nitinol under increasing tensile loads, localized strain can be calculated. We compare these results with micromechanical predictions in order to advance nitinol-relevant FEA tools. From this we hope to gain a greater understanding of how nitinol fatigues under multi-axial loads.

  4. Modeling competition between yeast strains

    NASA Astrophysics Data System (ADS)

    de Gee, Maarten; van Mourik, Hilda; de Visser, Arjan; Molenaar, Jaap

    2016-04-01

    We investigate toxin interference competition between S. cerevisiae colonies grown on a solid medium. In vivo experiments show that the outcome of this competition depends strongly on nutrient availability and cell densities. Here we present a new model for S. cerevisiae colonies, calculating the local height and composition of the colonies. The model simulates yeast colonies that show a good fit to experimental data. Simulations of colonies that start out with a homogeneous mixture of toxin producing and toxin sensitive cells can display remarkable pattern formation, depending on the initial ratio of the strains. Simulations in which the toxin producing and toxin sensitive species start at nearby positions clearly show that toxin production is advantageous.

  5. Fiber-optic polarimetric strain gauge

    NASA Astrophysics Data System (ADS)

    Bock, Wojtek J.; Wolinski, Tomasz R.

    A prototype fiber-optic polarimetric strain gauge based on the polarization mode coupling that occurs in highly birefringent optical fibers under the influence of axial strain is presented. Measurement set-up for a bonded strain gauge and its metrological characteristics are discussed together with the interpretation of observed physical effects in terms of changes in beat-length parameter under axial strain. The device is far more sensitive than conventional strain gauges, and can also be readily adjusted to a specified range of strain through an appropriate choice of fiber length and optical signal wavelength. The temperature drift of the device can be compensated in a straightforward procedure. The device is immune to electromagnetic interference, and is intrinsically safe in electrically dangerous, hazardous or explosive environments. Another attraction of this technology is its direct compatibility with fiber-optic telemetry, optical data transmission systems and multiplexing / demultiplexing technology.

  6. Sensor for Measuring Strain in Textile

    PubMed Central

    Mattmann, Corinne; Clemens, Frank; Tröster, Gerhard

    2008-01-01

    In this paper a stain sensor to measure large strain (80%) in textiles is presented. It consists of a mixture of 50wt-% thermoplastic elastomer (TPE) and 50wt-% carbon black particles and is fiber-shaped with a diameter of 0.315mm. The attachment of the sensor to the textile is realized using a silicone film. This sensor configuration was characterized using a strain tester and measuring the resistance (extension-retraction cycles): It showed a linear resistance response to strain, a small hysteresis, no ageing effects and a small dependance on the strain velocity. The total mean error caused by all these effects was ±5.5% in strain. Washing several times in a conventional washing machine did not influence the sensor properties. The paper finishes by showing an example application where 21 strain sensors were integrated into a catsuit. With this garment, 27 upper body postures could be recognized with an accuracy of 97%.

  7. An experimental evaluation of apparent strain from foil strain gauges attached to carbon composite substrates

    NASA Technical Reports Server (NTRS)

    Scott, B. R.; Lanius, S. J.; Auer, C. W.

    1987-01-01

    An experimental evaluation of apparent thermal strains is conducted using various combinations of substrate/gauge/attachment structure and redundant high temperature extensometry. It is found that the extensometry could either confirm independent measurements of the substrate's thermal expansion, or quantify nonzero mechanical strains resulting from uncertain material behavior and boundary conditions. Apparent strain and thermal expansion behavior data can then be used to modify the raw strain measurements in order to determine either stress producing or total strains. Limitation of the correction procedure for the three selected strain gauges is noted which is due to relatively large gauge/attachment variability.

  8. Mechanical strain and degradation of laser heterostructures

    NASA Astrophysics Data System (ADS)

    Ptashchenko, Alexander A.; Ptashchenko, Fedor A.; Maslejeva, Natalia V.; Sadova, Galina V.

    2001-02-01

    The effect of mechanical strain on degradation processes in GaAs-AlGaAs laser heterostructures (LHS) with stripe geometry and in light emitting diodes (LED) was experimentally studied. The strain was produced either by axial pressure or by indentation with a Wickers pyramid. We show that degradation affects the degree of polarization and the far-field distribution of laser emission. The effect of strain on the degradation intensity is estimated.

  9. Polyphasic characterization of xanthomonas strains from onion.

    PubMed

    Gent, David H; Schwartz, Howard F; Ishimaru, Carol A; Louws, Frank J; Cramer, Robert A; Lawrence, Christopher B

    2004-02-01

    ABSTRACT Xanthomonas leaf blight has become an increasingly important disease of onion, but the diversity among Xanthomonas strains isolated from onion is unknown, as is their relationship to other species and pathovars of Xanthomonas. Forty-nine Xanthomonas strains isolated from onion over 27 years from 10 diverse geographic regions were characterized by pathogenicity to onion and dry bean, fatty acid profiles, substrate utilization patterns (Biolog), bactericide resistance, repetitive sequence-based polymerase chain reaction fingerprinting, rDNA internally transcribed spacer (ITS) region, and hrp b6 gene sequencing. Multiplication of onion Xanthomonas strain R-O177 was not different from X. axonopodis pv. phaseoli in dry bean, but typical common bacterial blight disease symptoms were absent in dry bean. Populations from each geographical region were uniformly sensitive to 100 mug of CuSO(4), 100 mug of ZnSO(4), and 100 mug of streptomycin sulfate per ml. Biolog substrate utilization and fatty acid profiles revealed close phenoltypic relatedness between onion strains of Xanthomonas and X. axonopodis pv. dieffenbachiae (57% of strains) and X. arboricola pv. poinsettiicola (37% of strains), respectively. A logistic regression model based on fatty acid composition and substrate utilization classified 69% of strains into their geographical region of origin. Sequencing of a portion of the hrp B6 gene from 24 strains and ITS region from 25 strains revealed greater than 97% sequence similarity among strains. DNA fingerprinting revealed five genotype groups within onion strains of Xanthomonas and a high degree of genetic diversity among geographical regions of origin. Based on pathogenicity to onion, carbon substrate utilization, fatty acid profiles, rDNA genetic diversity, and genomic fingerprints, we conclude that the strains examined in this study are pathovar X. axonopodis pv. allii. Implications of genetic and phenotypic diversity within X. axonopodis pv. allii are

  10. AN ORGANOTYPIC UNIAXIAL STRAIN MODEL USING MICROFLUIDICS

    PubMed Central

    Dollé, Jean-Pierre; Morrison, Barclay; Schloss, Rene R.; Yarmush, Martin L.

    2012-01-01

    Traumatic brain injuries are the leading cause of disability each year in the US. The most common and devastating consequence is the stretching of axons caused by shear deformation that occurs during rotational acceleration of the brain during injury. The injury effects on axonal molecular and functional events are not fully characterized. We have developed a strain injury model that maintains the three dimensional cell architecture and neuronal networks found in vivo with the ability to visualize individual axons and their response to a mechanical injury. The advantage of this model is that it can apply uniaxial strains to axons that make functional connections between two organotypic slices and injury responses can be observed in real-time and over long term. This uniaxial strain model was designed to be capable of applying an array of mechanical strains at various rates of strain, thus replicating a range of modes of axonal injury. Long term culture, preservation of slice and cell orientation, and slice-slice connection on the device was demonstrated. The device has the ability to strain either individual axons or bundles of axons through the control of microchannel dimensions. The fidelity of the model was verified by observing characteristic responses to various strain injuries which included axonal beading, delayed elastic effects and breakdown in microtubules. Microtubule breakdown was shown to be dependent on the degree of the applied strain field, where maximal breakdown was observed at peak strain and minimal breakdown is observed at low strain. This strain injury model could be a powerful tool in assessing strain injury effects on functional axonal connections. PMID:23233120

  11. High strain rate damage of Carrara marble

    NASA Astrophysics Data System (ADS)

    Doan, Mai-Linh; Billi, Andrea

    2011-10-01

    Several cases of rock pulverization have been observed along major active faults in granite and other crystalline rocks. They have been interpreted as due to coseismic pervasive microfracturing. In contrast, little is known about pulverization in carbonates. With the aim of understanding carbonate pulverization, we investigate the high strain rate (c. 100 s-1) behavior of unconfined Carrara marble through a set of experiments with a Split Hopkinson Pressure Bar. Three final states were observed: (1) at low strain, the sample is kept intact, without apparent macrofractures; (2) failure is localized along a few fractures once stress is larger than 100 MPa, corresponding to a strain of 0.65%; (3) above 1.3% strain, the sample is pulverized. Contrary to granite, the transition to pulverization is controlled by strain rather than strain rate. Yet, at low strain rate, a sample from the same marble displayed only a few fractures. This suggests that the experiments were done above the strain rate transition to pulverization. Marble seems easier to pulverize than granite. This creates a paradox: finely pulverized rocks should be prevalent along any high strain zone near faults through carbonates, but this is not what is observed. A few alternatives are proposed to solve this paradox.

  12. Optical fiber sensor technique for strain measurement

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1989-01-01

    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study.

  13. Diversity among Streptomyces Strains Causing Potato Scab

    PubMed Central

    Doering-Saad, Christiane; Kämpfer, Peter; Manulis, Shulamit; Kritzman, Giora; Schneider, Jörg; Zakrzewska-Czerwinska, Jolanta; Schrempf, Hildgund; Barash, Isaac

    1992-01-01

    Eighty Streptomyces isolates, including 35 potato scab-inducing strains and 12 reference strains of Streptomyces scabies, were physiologically characterized by a total of 329 miniaturized tests. Overall similarities of all strains were determined by numerical taxonomy, with the unweighted average linkage (UPGMA) algorithm and simple matching (Ssm) and Jaccard (Sj) coefficients used as measures for similarity. Three cluster groups (A to C) were defined at a similarity level of 80.1% (Ssm); these groups contained 14 clusters and 24 unclustered strains defined at a similarity level of 86.5% (Ssm). Cluster group A contained strains phenotypically related to S. griseus or S. exfoliatus, whereas cluster group B contained strains which were phenotypically related to S. violaceus or S. rochei. The majority of the pathogenic isolates and reference strains were assigned to S. violaceus (57%) and S. griseus (22%). A DNA probe derived from the rRNA operon of S. coelicolor IMET 40271 was used to detect restriction fragment length polymorphisms (RELPs) among 40 pathogenic and nonpathogenic Streptomyces isolates. Southern blots revealed a high degree of diversity among the pathogenic strains tested. No significant correlation between numerical classification and RFLP grouping of Streptomyces strains could be revealed. The results obtained suggest that RFLP data are of minor importance in classification of Streptomyces species and that genes for pathogenicity determinants are spread among different Streptomyces species by mobilizable elements. Images PMID:16348823

  14. Distributed strain monitoring for bridges: temperature effects

    NASA Astrophysics Data System (ADS)

    Regier, Ryan; Hoult, Neil A.

    2014-03-01

    To better manage infrastructure assets as they reach the end of their service lives, quantitative data is required to better assess structural behavior and allow for more informed decision making. Distributed fiber optic strain sensors are one sensing technology that could provide comprehensive data for use in structural assessments as these systems potentially allow for strain to be measured with the same accuracy and gage lengths as conventional strain sensors. However, as with many sensor technologies, temperature can play an important role in terms of both the structure's and sensor's performance. To investigate this issue a fiber optic distributed strain sensor system was installed on a section of a two span reinforced concrete bridge on the TransCanada Highway. Strain data was acquired several times a day as well as over the course of several months to explore the effects of changing temperature on the data. The results show that the strain measurements are affected by the bridge behavior as a whole. The strain measurements due to temperature are compared to strain measurements that were taken during a load test on the bridge. The results show that even a small change in temperature can produce crack width and strain changes similar to those due to a fully loaded transport truck. Future directions for research in this area are outlined.

  15. Strain induced fragility transition in metallic glass

    PubMed Central

    Yu, Hai-Bin; Richert, Ranko; Maaß, Robert; Samwer, Konrad

    2015-01-01

    Relaxation dynamics are the central topic in glassy physics. Recently, there is an emerging view that mechanical strain plays a similar role as temperature in altering the relaxation dynamics. Here, we report that mechanical strain in a model metallic glass modulates the relaxation dynamics in unexpected ways. We find that a large strain amplitude makes a fragile liquid become stronger, reduces dynamical heterogeneity at the glass transition and broadens the loss spectra asymmetrically, in addition to speeding up the relaxation dynamics. These findings demonstrate the distinctive roles of strain compared with temperature on the relaxation dynamics and indicate that dynamical heterogeneity inherently relates to the fragility of glass-forming materials. PMID:25981888

  16. Measurement of Sorption-Induced Strain

    SciTech Connect

    Eric P. Robertson; Richard L. Christiansen

    2005-05-01

    Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A. and high-volatile bituminous coal from east-central Utah, U.S.A. using an apparatus developed jointly at the Idaho National Laboratory (Idaho Falls, Idaho, U.S.A.) and Colorado School of Mines (Golden, Colorado, U.S.A.). The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain instead of the more common usage of strain gauges, which require larger samples and longer equilibration times. With this apparatus, we showed that the swelling and shrinkage processes were reversible and that accurate strain data could be obtained in a shortened amount of time. A suite of strain curves was generated for these coals using gases that included carbon dioxide, nitrogen, methane, helium, and various mixtures of these gases. A Langmuir-type equation was applied to satisfactorily model the strain data obtained for pure gases. The sorption-induced strain measured in the subbituminous coal was larger than the high-volatile bituminous coal for all gases tested over the range of pressures used in the experimentation, with the CO2-induced strain for the subbituminous coal over twice as great at the bituminous coal.

  17. Lattice Strain Due to an Atomic Vacancy

    PubMed Central

    Li, Shidong; Sellers, Michael S.; Basaran, Cemal; Schultz, Andrew J.; Kofke, David A.

    2009-01-01

    Volumetric strain can be divided into two parts: strain due to bond distance change and strain due to vacancy sources and sinks. In this paper, efforts are focused on studying the atomic lattice strain due to a vacancy in an FCC metal lattice with molecular dynamics simulation (MDS). The result has been compared with that from a continuum mechanics method. It is shown that using a continuum mechanics approach yields constitutive results similar to the ones obtained based purely on molecular dynamics considerations. PMID:19582230

  18. Inflatable device for installing strain gage bridges

    NASA Technical Reports Server (NTRS)

    Cook, C. E.; Smith, G. E.; Monaghan, R. C. (Inventor)

    1983-01-01

    Methods and devices for installing in a tubular shaft multiple strain gages are disclosed with focus on a method and a device for pneumatically forcing strain gages into seated engagement with the internal surfaces of a tubular shaft in an installation of multiple strain gages in a tubular shaft. The strain gages or other electron devices are seated in a template-like component which is wrapped about a pneumatically expansible body. The component is inserted into a shaft and the body is pneumatically expanded after a suitable adhesive was applied to the surfaces.

  19. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2016-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an Autoregressive Moving Average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. shape sensing, fiber optic strain sensor, system equivalent reduction and expansion process.

  20. Predictions Of Fatigue Damage From Strain Histories

    NASA Technical Reports Server (NTRS)

    Sire, Robert A.; Besuner, Philip M.; Toomey, Tim

    1989-01-01

    Semiempirical mathematical model of fatigue damage in stressed objects uses experimental histories of strains in those objects to predict fatigue lives. Accounts for initiation and propagation of fatigue cracks on cycle-by-cycle basis. Measured strain history first digitized, then converted to history of turning-point strains for purposes of analysis. Data between turning points not used. When model calibrated against proper test data for each type of object characterized, its predictions of fatigue lives superior to statistical models as one based on root-mean-square strain.

  1. Strain accommodation in inelastic deformation of glasses

    NASA Astrophysics Data System (ADS)

    Murali, P.; Ramamurty, U.; Shenoy, Vijay B.

    2007-01-01

    Motivated by recent experiments on metallic glasses, we examine the micromechanisms of strain accommodation including crystallization and void formation during inelastic deformation of glasses by employing molecular statics simulations. Our atomistic simulations with Lennard-Jones-like potentials suggests that a softer short range interaction between atoms favors crystallization. Compressive hydrostatic strain in the presence of a shear strain promotes crystallization whereas a tensile hydrostatic strain is found to induce voids. The deformation subsequent to the onset of crystallization includes partial reamorphization and recrystallization, suggesting important atomistic mechanisms of plastic dissipation in glasses.

  2. Investigation of a noncontact strain measurement technique

    SciTech Connect

    Damiano, B.; Talarico, L.J.

    1996-05-01

    The goal of this project was to investigate the feasibility of a new noncontact technique for directly and continuously monitoring peak strain in rotating components. The technique utilizes the unique strain-sensitive magnetic material properties of transformation Induced Plasticity (TRIP) steel alloys to measure strain. These alloys are weakly magnetic when unstrained but become strongly ferromagnetic after mechanical deformation. A computer study was performed to determine whether the strain-induced change in the magnetic material properties of a TRIP steel gage bonded to a rotating component would cause significant perturbations in the magnetic flux of a stationary electromagnet. The effects of strain level, distance between the rotating component and the stationary electromagnet, and motion-induced eddy currents on flux perturbation magnitude were investigated. The calculated results indicate that a TRIP steel strain sensing element can cause a significant perturbation in the magnetic flux of a stationary electromagnet. The magnetic flux perturbation magnitude was found to be inversely proportional to the distance between the magnet face and the TRIP steel element and directly proportional to the TRIP steel strain level. The effect of motion-induced eddy currents on the magnetic flux was found to be negligible. It appears that the technique can be successfully applied to measure peak strain in rotating components; however, the sensitivity of the magnetic flux perturbation magnitude to the distance between the strain sensing element and the electromagnet may require making an independent proximity measurement.

  3. True stress-strain curves of cold worked stainless steel over a large range of strains

    NASA Astrophysics Data System (ADS)

    Kamaya, Masayuki; Kawakubo, Masahiro

    2014-08-01

    True stress-strain curves for cold worked stainless steel were obtained over a range of strains that included a large strain exceeding the strain for the tensile strength (post-necking strain). A specified testing method was used to obtain the stress-strain curves in air at room temperature. The testing method employed the digital image correlation (DIC) technique and iterative finite element analyses (FEA) and was referred to as IFD (Iteration FEA procedure based on DIC measurement) method. Although hourglass type specimens have been previously used for the IFD method, in this study, plate specimens with a parallel gage section were used to obtain accurate yield and tensile strengths together with the stress-strain curves. The stress-strain curves including the post-necking strain were successfully obtained by the IFD method, and it was shown that the stress-strain curves for different degrees of cold work collapsed onto a single curve when the offset strain was considered. It was also shown that the Swift type constitutive equation gave good regression for the true stress-strain curves including the post-necking strain regardless of the degree of cold work, although the Ramberg-Osgood type constitutive equation showed poor fit. In the regression for the Swift type constitutive equation, the constant for power law could be assumed to be nS = 0.5.

  4. Strain Rate Dependency of Coarse Crystal Marble Under Uniaxial Compression: Strength, Deformation and Strain Energy

    NASA Astrophysics Data System (ADS)

    Li, Yanrong; Huang, Da; Li, Xi'an

    2014-07-01

    Strain rate during testing, uniaxial or triaxial, has important influence on the measured mechanical properties of rocks. Uniaxial compression tests were performed at nine pre-specified static-to-quasistatic strain rates (ranging from 1 × 10-5 to 1 × 10-1 s-1) on coarse crystal marble. The aim is to gain deep insight into the influence of strain rate on characteristic stresses, deformation properties and conversion of strain energy of such rock. It is found that the strain rate of 5 × 10-3 s-1 is the threshold to delineate the failure modes the tested coarse marble behaves in. At a strain rate less than this threshold, single-plane shear and conjugate X-shaped shear are the main failure modes, while beyond this threshold, extensile and splitting failures are dominant. The stress for crack initiation, the critical stress for dilation, the peak stress, and Young's modulus are all found to increase with strain rate, with an exception that the above stresses and modulus appear relatively low compared to the strain rate in the range of between 1 × 10-4 and 5 × 10-3 s-1. The pre-peak absorbed strain energy, damage strain energy and elastic strain energy are found to increase with strain rate. In addition, the elastic strain energy stored before peak point favors brittle failure of the specimen, as the more stored elastic energy in the specimen, the stronger the fragmenting.

  5. Conduction band structure and electron mobility in uniaxially strained Si via externally applied strain in nanomembranes

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Euaruksakul, Chanan; Liu, Zheng; Himpsel, F. J.; Liu, Feng; Lagally, Max G.

    2011-08-01

    Strain changes the band structure of semiconductors. We use x-ray absorption spectroscopy to study the change in the density of conduction band (CB) states when silicon is uniaxially strained along the [1 0 0] and [1 1 0] directions. High stress can be applied to silicon nanomembranes, because their thinness allows high levels of strain without fracture. Strain-induced changes in both the sixfold degenerate Δ valleys and the eightfold degenerate L valleys are determined quantitatively. The uniaxial deformation potentials of both Δ and L valleys are directly extracted using a strain tensor appropriate to the boundary conditions, i.e., confinement in the plane in the direction orthogonal to the straining direction, which correspond to those of strained CMOS in commercial applications. The experimentally determined deformation potentials match the theoretical predictions well. We predict electron mobility enhancement created by strain-induced CB modifications.

  6. A comparison of eastern North American seismic strain-rates to glacial rebound strain-rates

    NASA Technical Reports Server (NTRS)

    James, Thomas S.; Bent, Allison L.

    1994-01-01

    Glacial rebound strain-rates computed using a simple Laurentide glacial loading model are of the order of 10(exp -9) per year within the region of glaciation and extending several hundred kilometers beyond. The horizontal strain-rates receive approximately equal contributions from horizontal and vertical velocities, a consequence of the spherical geometry adopted for the Earth model. In the eastern United States and southeastern Canada the computed strain-rates are 1-3 orders of magnitude greater than an estimate of the average seismic strain-rate (Anderson, 1986) and approximately 1 order of magnitude greater than predicted erosional strain-rates. The predicted glacial rebound strain-rates are not, in general, oriented in such a way as to augment the observed state of deviatoric stress, possibly explaining why the seismic strain-rates are much smaller than the glacial rebound strain-rates. An exception to this may be seismically active regions in the St. Lawrence valley.

  7. The Stress-Strain Condition Estimation of Detail in Crack Tip by Integral Strain Gauges

    NASA Astrophysics Data System (ADS)

    Syzrantsev, V.; Syzrantseva, K.

    2016-04-01

    The paper considers the task of stress-strain condition calculation of experimental sample in fatigue crack tip on weld boundary at its cyclic deforming. For this task decision authors use the information obtained by original means of cyclic strains measurement: Integral Strain Gauges. The results of carried experimental researches are compared with data of stress-strain condition estimation of detail in crack tip calculated by Finish Element Method.

  8. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles.

    PubMed

    Pradhan, Debabrata; Mishra, Debaraj; Kim, Dong J; Ahn, Jong G; Chaudhury, G Roy; Lee, Seoung W

    2010-03-15

    Bioleaching studies were conducted to evaluate the recovery of metal values from waste petroleum catalyst using two different acidophilic microorganisms, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Various leaching parameters such as contact time, pH, oxidant concentration, pulp densities, particle size, and temperature were studied in detail. Activation energy was evaluated from Arrhenius equation and values for Ni, V and Mo were calculated in case of both the acidophiles. In both cases, the dissolution kinetics of Mo was lower than those of V and Ni. The lower dissolution kinetics may have been due to the formation of a sulfur product layer, refractoriness of MoS(2) or both. Multivariate statistical data were presented to interpret the leaching data in the present case. The significance of the leaching parameters was derived through principle component analysis and multi linear regression analyses for both iron and sulfur oxidizing bacteria. PMID:19879686

  9. A Novel Acidimicrobium Species in Continuous Cultures of Moderately Thermophilic, Mineral-Sulfide-Oxidizing Acidophiles▿

    PubMed Central

    Cleaver, Adam A.; Burton, Nicolas P.; Norris, Paul R.

    2007-01-01

    A novel species of Acidimicrobium appeared to be the predominant ferrous iron oxidizer in a mixed culture that effected the continuous, efficient extraction of nickel from a mineral concentrate at 49°C, but it was not isolated in pure culture. It outcompeted Acidimicrobium ferrooxidans, which was expected to have a major role in iron oxidation in reactors gassed with air, and was outnumbered at 49°C only by the sulfur-oxidizing Acidithiobacillus caldus. Sulfobacillus species were expected to compete with Acidimicrobium species when culture aeration was enriched with carbon dioxide, but they were a minor component of the populations with and without this enrichment. Sulfobacillus thermosulfidooxidans replaced the Acidimicrobium species and Acidithiobacillus caldus when the temperature was increased to 55°C. PMID:17468267

  10. General Strain Theory and Delinquency: Focusing on the Influences of Key Strain Characteristics on Delinquency

    ERIC Educational Resources Information Center

    Moon, Byongook; Blurton, David; McCluskey, John D.

    2008-01-01

    The study examines the effects of recent, older, and chronic strains and of perceived injustice of strain on delinquency, sampling 777 Korean youth. Seven key strains most likely leading to delinquency, some of which were often overlooked in previous research, were included, and these are family conflict, parental punishment, teachers' punishment,…

  11. Silicon stress/strain activities at JPL

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1986-01-01

    In-house Jet Propulsion Laboratory (JPL) work is described for silicon stress/strain, including the study of fracture mechanics, and on the high-temperature test program in which the low-strain response of silicon sheet materials above 1000 C is being measured and high temperature material property data are being determined.

  12. Nanocomposite Strain Gauges Having Small TCRs

    NASA Technical Reports Server (NTRS)

    Gregory, Otto; Chen, Ximing

    2009-01-01

    Ceramic strain gauges in which the strain-sensitive electrically conductive strips made from nanocomposites of noble metal and indium tin oxide (ITO) are being developed for use in gas turbine engines and other power-generation systems in which gas temperatures can exceed 1,500 F (about 816 C). In general, strain gauges exhibit spurious thermally induced components of response denoted apparent strain. When temperature varies, a strain-gauge material that has a nonzero temperature coefficient of resistance (TCR) exhibits an undesired change in electrical resistance that can be mistaken for the change in resistance caused by a change in strain. It would be desirable to formulate straingauge materials having TCRs as small as possible so as to minimize apparent strain. Most metals exhibit positive TCRs, while most semiconductors, including ITO, exhibit negative TCRs. The present development is based on the idea of using the negative TCR of ITO to counter the positive TCRs of noble metals and of obtaining the benefit of the ability of both ITO and noble metals to endure high temperatures. The noble metal used in this development thus far has been platinum. Combinatorial libraries of many ceramic strain gauges containing nanocomposites of various proportions of ITO and platinum were fabricated by reactive co-sputtering from ITO and platinum targets onto alumina- and zirconia-based substrates mounted at various positions between the targets.

  13. Fiscal Strain in an Era of Retrenchment.

    ERIC Educational Resources Information Center

    Hentschke, Guilbert; Yagielski, John

    Preliminary results of a three-year study of fifteen school districts indicate that fiscal strain results from both "intended" and "unintended" factors. The authors construct a model of fiscal strain that combines budget constraints with school district decision-makers' preference functions and indifference curves. Using this model and 1976 and…

  14. High-Temperature Resistance Strain Gauges

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1994-01-01

    Resistance strain gauges developed for use at high temperatures in demanding applications like testing aircraft engines and structures. Measures static strains at temperatures up to 800 degrees C. Small and highly reproducible. Readings corrected for temperature within small tolerances, provided temperatures measured simultaneously by thermocouples or other suitable devices. Connected in wheatstone bridge.

  15. Marital Role Strain and Sexual Satisfaction.

    ERIC Educational Resources Information Center

    Frank, Ellen; And Others

    1979-01-01

    Responses to a questionnaire pertaining to discrepancies between an individual's ideal and actual marital role behaviors and level of sexual satisfaction indicated lower levels of role strain in nonpatient couples. A higher level of role strain correlated with increased sexual dissatisfaction. (Author)

  16. Genome Annotation of Five Mycoplasma canis Strains

    PubMed Central

    May, M.; Michaels, D. L.; Barbet, A. F.

    2012-01-01

    To understand its potential to cause invasive disease, the genome of Mycoplasma canis strain PG14T from a dog's throat was compared to those of isolates from the genital tract or brain of dogs. The average nucleotide identity between strain pairs is 98%, and their genome annotations are similar. PMID:22815452

  17. Surfactin production by strains of Bacillus mojavensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus mojavensis, RRC101 is an endophytic bacterium patented for control of fungal diseases in maize and other plants. DNA fingerprint analysis of the rep-PCR fragments of 35 B. mojavensis and 4 B. subtilis strains using the Diversilab genotyping system revealed genotypic distinctive strains alon...

  18. Medically Complex Home Care and Caregiver Strain

    ERIC Educational Resources Information Center

    Moorman, Sara M.; Macdonald, Cameron

    2013-01-01

    Purpose of the study: To examine (a) whether the content of caregiving tasks (i.e., nursing vs. personal care) contributes to variation in caregivers' strain and (b) whether the level of complexity of nursing tasks contributes to variation in strain among caregivers providing help with such tasks. Design and methods: The data came from the Cash…

  19. High strain rate behavior of polyurea compositions

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant S.; Milby, Christopher

    2012-03-01

    High-strain-rate response of three polyurea compositions with varying molecular weights has been investigated using a Split Hopkinson Pressure Bar arrangement equipped with aluminum bars. Three polyurea compositions were synthesized from polyamines (Versalink, Air Products) with a multi-functional isocyanate (Isonate 143L, Dow Chemical). Amines with molecular weights of 1000, 650, and a blend of 250/1000 have been used in the current investigation. These materials have been tested to strain rates of over 6000/s. High strain rate results from these tests have shown varying trends as a function of increasing strain. While higher molecular weight composition show lower yield, they do not show dominant hardening behavior at lower strain. On the other hand, the blend of 250/1000 show higher load bearing capability but lower strain hardening effects than the 600 and 1000 molecular weight amine based materials. Results indicate that the initial increase in the modulus of the blend of 250/1000 may lead to the loss of strain hardening characteristics as the material is compressed to 50% strain, compared to 1000 molecular weight amine based material.

  20. Whole genome sequences of four Brucella strains.

    PubMed

    Ding, Jiabo; Pan, Yuanlong; Jiang, Hai; Cheng, Junsheng; Liu, Taotao; Qin, Nan; Yang, Yi; Cui, Buyun; Chen, Chen; Liu, Cuihua; Mao, Kairong; Zhu, Baoli

    2011-07-01

    Brucella melitensis and Brucella suis are intracellular pathogens of livestock and humans. Here we report four genome sequences, those of the virulent strain B. melitensis M28-12 and vaccine strains B. melitensis M5 and M111 and B. suis S2, which show different virulences and pathogenicities, which will help to design a more effective brucellosis vaccine. PMID:21602346

  1. Strain engineering in graphene by laser irradiation

    SciTech Connect

    Papasimakis, N.; Mailis, S.; Huang, C. C.; Al-Saab, F.; Hewak, D. W.; Luo, Z.; Shen, Z. X.

    2015-02-09

    We demonstrate that the Raman spectrum of graphene on lithium niobate can be controlled locally by continuous exposure to laser irradiation. We interpret our results in terms of changes to doping and mechanical strain and show that our observations are consistent with light-induced gradual strain relaxation in the graphene layer.

  2. Differentiation of Lactobacillus strains by ribotyping.

    PubMed Central

    Rodtong, S; Tannock, G W

    1993-01-01

    Fifty-four lactobacillus strains were differentiated by ribotyping. The stability of ribotypes characteristic of four strains of lactobacilli inhabiting the digestive tract of mice was investigated. One of four isolates of Lactobacillus delbrueckii GT21, which had been associated with mice for 22 months, had an altered ribotype. Images PMID:7504432

  3. Bicrystals with strain gradient effects

    SciTech Connect

    Shu, J.Y.

    1997-01-09

    Boundary between two perfectly bonded single crystals plays an important role in determining the deformation of the bicrystals. This work addresses the role of the grain boundary by considering the elevated hardening of a slip system due to a slip gradient. The slip gradients are associated with geometrically necessary dislocations and their effects become pronounced when a representative length scale of the deformation field is comparable to the dominant microstructural length scale of a material. A new rate-dependent crystal plasticity theory is presented and has been implemented within the finite element method framework. A planar bicrystal under uniform in-plane loading is studied using the new crystal theory. The strain is found to be continuous but nonuniform within a boundary layer around the interface. The lattice rotation is also nonuniform within the boundary layer. The width of the layer is determined by the misorientation of the grains, the hardening of slip systems, and most importantly by the characteristic material length scales. The overall yield strength of the bicrystal is also obtained. A significant grain-size dependence of the yield strength, the Hall- Petch effect is predicted.

  4. Iron Meteorites Can Support the Growth of Acidophilic Chemolithoautotrophic Microorganisms

    NASA Astrophysics Data System (ADS)

    González-Toril, Elena; Martínez-Frías, Jesús; Gómez, José María; Rull, Fernando; Amils, Ricardo

    2005-06-01

    Chemolithoautotrophy based on reduced inorganic minerals is considered a primitive energy transduction system. Evidence that a high number of meteorites crashed into the planet during the early period of Earth history led us to test the ability of iron-oxidizing bacteria to grow using iron meteorites as their source of energy. Here we report the growth of two acidophilic iron-oxidizing bacteria, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans, on a piece of the Toluca meteorite as the only source of energy. The alteration of the surface of the exposed piece of meteorite, the solubilization of its oxidized metal constituents, mainly ferric iron, and the formation of goethite precipitates all clearly indicate that iron-meteoritebased chemolithotrophic metabolism is viable.

  5. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    SciTech Connect

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  6. New naphthalene-degrading marine Pseudomonas strains.

    PubMed Central

    García-Valdés, E; Cozar, E; Rotger, R; Lalucat, J; Ursing, J

    1988-01-01

    Over 100 strains that utilized naphthalene as the only carbon and energy source were isolated from samples of marine sediments taken from a heavily polluted area. The isolates were characterized taxonomically and physiologically. Most of these strains belonged to the genus Pseudomonas, and seven of them did not fit any previous taxonomic description. They differed from type strains in a few biochemical characteristics and in the utilization of aromatic compounds. None had catechol 1,2-dioxygenase activity, and catechol 2,3-dioxygenase was responsible for the aromatic ring cleavage. DNA hybridization demonstrated a close relationship between two isolates and the Pseudomonas stutzeri type strain, and between five isolates and the Pseudomonas testosteroni type strain. On the basis of nutritional and enzymatic characteristics, it was assumed that the seven isolates represent new biovars belonging to the species P. testosteroni and P. stutzeri that are able to degrade aromatic hydrocarbons. Images PMID:3202629

  7. New naphthalene-degrading marine Pseudomonas strains

    SciTech Connect

    Garcia-Valdes, E.; Cozar, E.; Rotger, R. Lalucat, J. ); Ursing, J. )

    1988-10-01

    Over 100 strains that utilized naphthalene as the only carbon and energy source were isolated from samples of marine sediments taken from a heavily polluted area. The isolates were characterized taxonomically and physiologically. Most of these strains belonged to the genus Pseudomonas, and seven of them did not fit any previous taxonomic description. They differed from type strains in a few biochemical characteristics and in the utilization of aromatic compounds. None had catechol 1,2-dioxygenase activity, and catechol 2,3-dioxygenase was responsible for the aromatic ring cleavage. DNA hybridizations demonstrated a close relationship between two isolates and the Pseudomonas stutzeri type strain, and between five isolates and the Pseudomonas testosteroni type strain. On the basis of nutritional and enzymatic characteristics, it was assumed that the seven isolates represent new biovars belonging to the species P. testosteroni and P. stutzeri that are able to degrade aromatic hydrocarbons.

  8. Nanoscale strain mapping in battery nanostructures

    SciTech Connect

    Ulvestad, A. Kim, J. W.; Dietze, S. H.; Shpyrko, O. G.; Cho, H. M.; Meng, Y. S.; Harder, R.; Fohtung, E.

    2014-02-17

    Coherent x-ray diffraction imaging is used to map the local three dimensional strain inhomogeneity and electron density distribution of two individual LiNi{sub 0.5}Mn{sub 1.5}O{sub 4−δ} cathode nanoparticles in both ex-situ and in-situ environments. Our reconstructed images revealed a maximum strain of 0.4%. We observed different variations in strain inhomogeneity due to multiple competing effects. The compressive/tensile component of the strain is connected to the local lithium content and, on the surface, interpreted in terms of a local Jahn-Teller distortion of Mn{sup 3+}. Finally, the measured strain distributions are discussed in terms of their impact on competing theoretical models of the lithiation process.

  9. Mechanical strain effects on black phosphorus nanoresonators.

    PubMed

    Wang, Cui-Xia; Zhang, Chao; Jiang, Jin-Wu; Park, Harold S; Rabczuk, Timon

    2016-01-14

    We perform classical molecular dynamics simulations to investigate the effects of mechanical strain on single-layer black phosphorus nanoresonators at different temperatures. We find that the resonant frequency is highly anisotropic in black phosphorus due to its intrinsic puckered configuration, and that the quality factor in the armchair direction is higher than in the zigzag direction at room temperature. The quality factors are also found to be intrinsically larger than those in graphene and MoS2 nanoresonators. The quality factors can be increased by more than a factor of two by applying tensile strain, with uniaxial strain in the armchair direction being the most effective. However, there is an upper bound for the quality factor increase due to nonlinear effects at large strains, after which the quality factor decreases. The tension induced nonlinear effect is stronger along the zigzag direction, resulting in a smaller maximum strain for quality factor enhancement. PMID:26649476

  10. Effects of phospholipid on pyrite oxidation in the presence of autotrophic and heterotrophic bacteria

    NASA Astrophysics Data System (ADS)

    Hao, Jun; Murphy, Riley; Lim, Eelin; Schoonen, Martin A. A.; Strongin, Daniel R.

    2009-07-01

    Pyrite oxidation occurring in solutions containing iron oxidizing autotrophic bacteria, Acidithiobacillus ferrooxidans ( A. ferrooxidans), and/or heterotrophic bacteria, Acidiphilium acidophilum ( A. acidophilum), has been investigated. Under the conditions used, the amount of pyrite oxidized in the presence of both species was similar to the amount oxidized in the presence of A. ferrooxidans alone over a period of 30 days. Pretreatment of pyrite with the phospholipid, [1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (23:2 Diyne PC)], to form an adsorbed organic layer reduced the amount of pyrite oxidation in the absence of bacteria and in the presence of A. ferrooxidans. The addition of lipid to pyrite prior to its exposure to a mixed A. ferrooxidans/ A. acidophilum solution also showed initial oxidation suppression. However, after 4-5 days the effectiveness of the lipid in suppressing pyrite oxidation was lost and oxidation of the mineral proceeded at a rate that was similar to lipid-free pyrite in the presence of both microbial populations. If, however, lipid/pyrite was pretreated with UV radiation to induce cross-linking of the lipid tails (via polymerization of diacetylene groups in the tails), the lipid layer showed a strong suppression of pyrite oxidation for up to at least 30 days in the presence of both microbial populations. It was also shown with in situ atomic force microscopy (AFM) that the introduction of lipid to pyrite with colonized A. ferrooxidans led to the displacement of a fraction of surface bound bacteria. This lipid-induced displacement was confirmed by ex situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR).

  11. Human prion strain selection in transgenic mice

    PubMed Central

    Giles, Kurt; Glidden, David V.; Patel, Smita; Korth, Carsten; Groth, Darlene; Lemus, Azucena; DeArmond, Stephen J.; Prusiner, Stanley B.

    2010-01-01

    Transgenic (Tg) mice expressing chimeras of mouse and human prion proteins (PrP) have shorter incubation periods for Creutzfeldt-Jakob disease (CJD) prions than mice expressing full-length human PrP. Increasing the sequence similarity of the chimeric PrP to mouse PrP, by reverting human residues to mouse, resulted in a Tg line, denoted Tg22372, which was susceptible to sporadic (s) CJD prions in ~110 days 1. Reversion of one additional residue (M111V) resulted in a new Tg line, termed Tg1014, susceptible to sCJD prions in ~75 days. Tg1014 mice also has shorter incubation periods for variant (v) CJD prions, providing a more tractable model for studying this prion strain. Transmission of vCJD prions to Tg1014 mice resulted in two different strains, determined by neuropathology and biochemical analysis, which correlated with the length of the incubation time. One strain had the biochemical, neuropathological, and transmission characteristics including longer incubation times of the inoculated vCJD strain; the second strain produced a phenotype resembling that of sCJD prions including relatively shorter incubation periods. Mice with intermediate incubation periods for vCJD prions had a mixture of the two strains. Both strains were serially transmitted in Tg1014 mice, which led to further reduction in incubation periods. Conversion of vCJD-like to sCJD-like strains was favored in Tg1014 mice more than in the Tg22372 line. The single amino acid difference therefore appears to offer selective pressure for propagation of the sCJD-like strain. These two Tg mouse lines provide relatively rapid models to study human prion diseases as well as the evolution of human prion strains. PMID:20695008

  12. Micro-scale strain mapping technique: a tool to quantify strain partitioning during creep deformation

    NASA Astrophysics Data System (ADS)

    Quintanilla-Terminel, Alejandra; Zimmerman, Mark; Evans, Brian; Kohlstedt, David

    2016-04-01

    Several deformation mechanisms interact to accommodate plastic deformation. Quantifying the contribution of each to the total strain is necessary for establishing a better link between observed microstructures and mechanical data, as well as to allow more confident extrapolation from laboratory to natural conditions. In this contribution, we present the experimental and computational technique involved in micro-scale strain mapping (MSSM). The MSSM technique relies on analyzing the relative displacement of initially regularly spaced markers after deformation. We present several microfabrication techniques that permit us to pattern various rocks with micrometric and nanometric metal markers, as well as the challenges faced in working at high temperatures and pressures. A Hough transform algorithm was used to detect the markers and automate as much as possible the strain analysis. The von Mises strain is calculated for a set of n-points and their relative displacements, which allow us to map the strain at different length scales. We applied the MSSM technique to study strain partitioning during deformation creep of Carrara marble and San Carlos olivine at a confining pressure, Pc, of 300 MPa and homologous temperatures of 0.3 to 0.6. We measured the local strain and strain heterogeneity produced during creep deformation of split cylinders of Carrara marble under conventional triaxial loading to inelastic strains of 11 to 36% at a strain rate of 3x10‑5s‑1, Pc = 300 MPa and 400o < T <700oC. We conclude that the evolution of deformation structures in marble takes place over a substantial interval in strain and that the duration of this interval depends on strain rate, temperature, and pressure. Our first results on strain mapping of olivine deformed at T = 1150oC and Pc = 300 MPa demonstrate promise for characterizing intragranular strain and better defining the contribution of grain boundary sliding to the total strain.

  13. Nonlinear stress-strain behavior of carbon nanotube fibers subject to slow sustained strain rate

    NASA Astrophysics Data System (ADS)

    Sun, Gengzhi; Wang, Dong; Pang, John H. L.; Liu, Jun; Zheng, Lianxi

    2013-09-01

    Nonlinear stress-strain behavior of carbon nanotube (CNT) fibers is studied based on the test data where fiber strength can be modeled by the Weibull distribution. CNT fibers spun from vertically aligned arrays are tensioned at slow sustained strain rate (0.00001 1/s) to study the tensile strength resulting from sliding-to-failure effects. A model is developed to estimate the Weibull modulus which characterizes the dispersion of fiber strengths in terms of the maximum sustained stress and failure strain of the fibers. The results show that the sliding indeed has great influence on the stress-strain relation of CNT fibers at low strain rate.

  14. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun

    2013-10-01

    Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.

  15. Strain relaxation in buried strained layers by mixture of single and dipolar dislocation arrays

    NASA Astrophysics Data System (ADS)

    Jin, Z.; Yang, S.; Ma, C.; Liu, S.

    1999-06-01

    The strain relaxation in buried strained layers is investigated using an elastic continuum model. The mixture of single dislocations residing at the substrate/strained layer interface (lower interface) and dipolar dislocations in which one is at the lower interface and the other at the strained layer/capping layer interface (upper interface), is proposed. In the mixture, the dislocation distributions are denoted by a parameter which is the ratio of the density of misfit dislocations at the upper interface to that at the lower interface. In a buried strained layer, relaxation of mean strain occurs by introduction of two orthogonal arrays of mixture of single and dipolar dislocations. Considering both the free surface and interactions between dislocations, the total elastic energy per unit area of buried strained layer containing two orthogonal arrays of mixture of single and dipolar dislocations is calculated. The energy is dependent on the misfit dislocation distributions. On energy minimization considerations, the expression of the misfit dislocation distributions in a buried strained layer with arbitrary strain relaxation and capping layer thickness is derived. It is demonstrated that the strain is initially relaxed by the single misfit dislocations and relaxed by the mixture of single and dipolar misfit dislocations in the final stage of strain relaxation in many buried layers of practical interest.

  16. In vitro strain measurement in the porcine antrum using ultrasound doppler strain rate imaging.

    PubMed

    Ahmed, Aymen Bushra; Gilja, Odd Helge; Gregersen, Hans; Ødegaard, Svein; Matre, Knut

    2006-04-01

    Strain rate imaging (SRI) enables study of deformation in soft tissues. The aim of this study was to evaluate the accuracy of SRI in measuring strain in the porcine antral wall in vitro. An experimental set-up enabled controlled distension of a porcine stomach in a saline reservoir. Radial strain obtained by SRI was compared with radial strain calculated from B-mode ultrasonography. Circumferential strain obtained by SRI was compared with circumferential strain calculated from sonomicrometry. The agreement between radial strain values measured by SRI and B-mode, along and across several ultrasound (US) beams, using US frequency 6.7 MHz and strain length (SL) = 1.9 mm was = -1.0 +/- 12.1% and 0.5 +/- 13.4%, respectively (mean difference +/- 2SD%) and it was better than with SL 1.2 mm. Compared with sonomicrometry, SRI-determined circumferential strain using 6.7 MHz and SL = 1.9 mm was less accurate, whether averaging along or across several US beams (-9.2 +/- 46.7% and 13.8 +/- 51.2%, respectively). In conclusion, SRI gave accurate measurement of radial strain of the antral wall, but seemed to be less accurate for measurement of circumferential strain for this in vitro set-up. PMID:16616598

  17. Amerindian Helicobacter pylori Strains Go Extinct, as European Strains Expand Their Host Range

    PubMed Central

    Domínguez-Bello, Maria G.; Pérez, Maria E.; Bortolini, Maria C.; Salzano, Francisco M.; Pericchi, Luis R.; Zambrano-Guzmán, Orlisbeth; Linz, Bodo

    2008-01-01

    We studied the diversity of bacteria and host in the H. pylori-human model. The human indigenous bacterium H. pylori diverged along with humans, into African, European, Asian and Amerindian groups. Of these, Amerindians have the least genetic diversity. Since niche diversity widens the sets of resources for colonizing species, we predicted that the Amerindian H. pylori strains would be the least diverse. We analyzed the multilocus sequence (7 housekeeping genes) of 131 strains: 19 cultured from Africans, 36 from Spanish, 11 from Koreans, 43 from Amerindians and 22 from South American Mestizos. We found that all strains that had been cultured from Africans were African strains (hpAfrica1), all from Spanish were European (hpEurope) and all from Koreans were hspEAsia but that Amerindians and Mestizos carried mixed strains: hspAmerind and hpEurope strains had been cultured from Amerindians and hpEurope and hpAfrica1 were cultured from Mestizos. The least genetically diverse H. pylori strains were hspAmerind. Strains hpEurope were the most diverse and showed remarkable multilocus sequence mosaicism (indicating recombination). The lower genetic structure in hpEurope strains is consistent with colonization of a diversity of hosts. If diversity is important for the success of H. pylori, then the low diversity of Amerindian strains might be linked to their apparent tendency to disappear. This suggests that Amerindian strains may lack the needed diversity to survive the diversity brought by non-Amerindian hosts. PMID:18830403

  18. Fabrication and device characteristics of strained-Si-on-insulator (strained-SOI) CMOS

    NASA Astrophysics Data System (ADS)

    Takagi, Shin-ichi; Mizuno, Tomohisa; Tezuka, Tsutomu; Sugiyama, Naoharu; Numata, Toshinori; Usuda, Koji; Moriyama, Yoshihiko; Nakaharai, Shu; Koga, Junji; Tanabe, Akihito; Maeda, Tatsuro

    2004-03-01

    Strained-Si-on-insulator (strained-SOI) CMOS is a promising device structure for satisfying requirements of both high current drive and low supply voltage under sub-100 nm nodes, because of the combination of advantages of SOI MOSFETs and high mobility strained-Si channels. In this paper, we present the concept, the device structures and the fabrication techniques of strained-SOI CMOS. We introduce our original fabrication method of strained-SOI substrates, called the Ge condensation technique. It is experimentally shown that strained-SOI CMOS has higher electron and hole mobility and that strained-SOI CMOS ring oscillators successfully operate with the performance enhancement of 30-70% against conventional SOI CMOS ones.

  19. Highly Invasive Listeria monocytogenes Strains Have Growth and Invasion Advantages in Strain Competition

    PubMed Central

    Manthou, Evanthia; Ciolacu, Luminita; Wagner, Martin; Skandamis, Panagiotis N.

    2015-01-01

    Multiple Listeria monocytogenes strains can be present in the same food sample; moreover, infection with more than one L. monocytogenes strain can also occur. In this study we investigated the impact of strain competition on the growth and in vitro virulence potential of L. monocytogenes. We identified two strong competitor strains, whose growth was not (or only slightly) influenced by the presence of other strains and two weak competitor strains, which were outcompeted by other strains. Cell contact was essential for growth inhibition. In vitro virulence assays using human intestinal epithelial Caco2 cells showed a correlation between the invasion efficiency and growth inhibition: the strong growth competitor strains showed high invasiveness. Moreover, invasion efficiency of the highly invasive strain was further increased in certain combinations by the presence of a low invasive strain. In all tested combinations, the less invasive strain was outcompeted by the higher invasive strain. Studying the effect of cell contact on in vitro virulence competition revealed a complex pattern in which the observed effects depended only partially on cell-contact suggesting that competition occurs at two different levels: i) during co-cultivation prior to infection, which might influence the expression of virulence factors, and ii) during infection, when bacterial cells compete for the host cell. In conclusion, we show that growth of L. monocytogenes can be inhibited by strains of the same species leading potentially to biased recovery during enrichment procedures. Furthermore, the presence of more than one L. monocytogenes strain in food can lead to increased infection rates due to synergistic effects on the virulence potential. PMID:26529510

  20. Volume strain within The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Mossop, Antony; Segall, Paul

    1999-12-01

    During the 1970s and 1980s, The Geysers geothermal region was rapidly developed as a site of geothermal power production. The likelihood that this could cause significant strain within the reservoir, with corresponding surface displacements, led to a series of deformation monitoring surveys. In 1973, 1975, 1977, and 1980, The Geysers region was surveyed using first-order, class I, spirit leveling. In 1994, 1995, and 1996, many of the leveling control monuments were resurveyed using high-precision Global Positioning System receivers. The two survey methods are reconciled using the GEOID96 geoid model. The displacements are inverted to determine volume strain within the reservoir. For the period 1980-1994, peak volume strains in excess of 5×10-4 are imaged. There is an excellent correlation between the observed changes in reservoir steam pressures and the imaged volume strain. If reservoir pressure changes are inducing volume strain, then the reservoir quasi-static bulk modulus K must be <4.6×109 Pa. However, seismic velocities indicate a much suffer reservoir with K = 3.4 × 1010 Pa. This apparent discrepancy is shown to be consistent with predicted frequency dependence in K for fractured and water-saturated rock. Inversion of surface deformation data therefore appears to be a powerful method for imaging pressure change within the body of the reservoir. Correlation between induced seismicity at The Geysers and volume strain is observed. However, earthquake distribution does not appear to have a simple relationship with volume strain rate.

  1. Strain engineering of graphene: a review.

    PubMed

    Si, Chen; Sun, Zhimei; Liu, Feng

    2016-02-14

    Graphene has intrigued the science community by many unique properties not found in conventional materials. In particular, it is the strongest two-dimensional material ever measured, being able to sustain reversible tensile elastic strain larger than 20%, which yields an interesting possibility to tune the properties of graphene by strain and thus opens a new field called "straintronics". In this article, the current progress in the strain engineering of graphene is reviewed. We first summarize the strain effects on the electronic structure and Raman spectra of graphene. We then highlight the electron-phonon coupling greatly enhanced by the biaxial strain and the strong pseudomagnetic field induced by the non-uniform strain with specific distribution. Finally, the potential application of strain-engineering in the self-assembly of foreign atoms on the graphene surface is also discussed. Given the short history of graphene straintronics research, the current progress has been notable, and many further advances in this field are expected. PMID:26796960

  2. Strain mapping analysis of textile composites

    NASA Astrophysics Data System (ADS)

    Ivanov, Dmitry; Ivanov, Sergey; Lomov, Stepan; Verpoest, Ignaas

    2009-03-01

    The focus of the work is meso-scale analysis (scale level of the fabric unit cell) of textile composite deformation and failure. The surface strain measurement is used for: (1) experimental investigation, which includes study of strain distribution at various stages of deformation, plasticity detection, damage initiation; (2) numerical validation of the correspondent finite element (FE) models. Two examples are considered: carbon-epoxy triaxial-braided and glass polypropylene-woven composite. The surface strain measurement (by digital image correlation technique) accompanies the tensile tests, aiming at: (1) elastic anisotropic constants characterisation, (2) study of non-linear material behaviour (for the thermoplastic composite), (3) control of homogeneity of the macro-strain distribution, and (4) analysis of damage initiation in brittle composites. Validation of meso-FE models by strain measurements encounters difficulties arising from (1) resolution of the strain measurements, (2) irregularities of the initial structure such as random layer nesting, ply interaction, and deviation of yarns from their theoretical position, which affects the measured strain fields. The paper discusses these difficulties and demonstrates a qualitative agreement with the FE analysis of idealised composite configurations.

  3. Biological characterization of Trypanosoma cruzi strains.

    PubMed

    Martínez-Díaz, R A; Escario, J A; Nogal-Ruiz, J J; Gómez-Barrio, A

    2001-01-01

    Biological parameters of five Trypanosoma cruzi strains from different sources were determined in order to know the laboratory behaviour of natural populations. The parameters evaluated were growth kinetics of epimastigotes, differentiation into metacyclic forms, infectivity in mammalian cells grown in vitro and parasite susceptibility to nifurtimox, benznidazole and gentian violet. Differences in transformation to metacyclic, in the percentage of infected cells as well as in the number of amastigotes per cell were observed among the strains. Regarding to pharmacological assays, Y strain was the most sensitive to the three assayed compounds. These data demonstrate the heterogeneity of natural populations of T. cruzi, the only responsible of infection in humans. PMID:11285475

  4. Electrical measurements as stress-strain monitors

    USGS Publications Warehouse

    Madden, T. R.

    1979-01-01

    Many of the measurements of phyiscal properties being made in earthquake prediction studies are based on the premise that these properties are influenced by stresses and strains, especially so near the failure point. Electrical properties of rocks are controlled by the fluid in the pores and cracks in the rocks. Because these regions are most influenced by stresses, one should expect electrical measurements to be sensitive measures of changing stresses and strains. Nevertheless, the strain changes we are dealing with are very small, and, consequently, we need very sensitive instruments to detect them.  

  5. Dark field electron holography for strain measurement.

    PubMed

    Béché, A; Rouvière, J L; Barnes, J P; Cooper, D

    2011-02-01

    Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity. PMID:21333860

  6. Strain Determination Using Electron Backscatter Diffraction

    SciTech Connect

    Krause, M.; Graff, A.; Altmann, F.

    2010-11-24

    In the present paper we demonstrate the use of electron backscatter diffraction (EBSD) for high resolution elastic strain determination. Here, we focus on analysis methods based on determination of small shifts in EBSD pattern with respect to a reference pattern using cross-correlation algorithms. Additionally we highlight the excellent spatial and depth resolution of EBSD and introduce the use of simulated diffraction patterns based on dynamical diffraction theory for sensitivity estimation. Moreover the potential of EBSD for strain analysis of strained thin films with particular emphasis on appropriate target preparation which respect to occurring lattice defects is demonstrated.

  7. Transport in Strained Graphene at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Aguilera-Servin, Juan; Nosek, Adrian; Pan, Cheng; Bockrath, Marc

    2015-03-01

    Strain in graphene layers produces synthetic gauge fields that may be used to modify the properties of its electron system. We study single layers of graphene transferred over Ti/Au electrical contacts on oxidized Si wafers with etched triangular holes in the oxide. The layers are strained by applying pressure electrostatically using a gate voltage and hydrostatically using an external inert gas. We investigate electronic transport in this suspended variable-strain graphene system at low temperatures. We will discuss our latest results.

  8. Strain gage balances and buffet gages

    NASA Technical Reports Server (NTRS)

    Ferris, A. T.

    1983-01-01

    One-piece strain gage force balances were developed for use in the National Transonic Facility (NTF). This was accomplished by studying the effects of the cryogenic environment on materials, strain gages, cements, solders, and moisture proofing agents, and selecting those that minimized strain gage output changes due to temperature. In addition, because of the higher loads that may be imposed by the NTF, these balances are designed to carry a larger load for a given diameter than conventional balances. Full cryogenic calibrations were accomplished, and wind tunnel results that were obtained from the Langley 0-3-Meter Transonic Cryogenic Tunnel were used to verify laboratory test results.

  9. Microstructural Analysis of Welding: Deformation and Strain

    NASA Astrophysics Data System (ADS)

    Quane, S. L.; Russell, K.

    2003-12-01

    Welding in pyroclastic deposits involves the sintering, compaction and flattening of hot glassy particles and is attended by systematic changes in physical properties. Welded materials contain implicit information regarding the total accumulated strain as well as the mechanisms of deformation. Here, we use detailed microstructural analysis of synthetic and natural welded materials to make quantitative estimates of strain and constrain the rheology of these materials during the welding process. Part one of our study comprises microstructural analysis of end products from unconfined high temperature deformation experiments on sintered cores of soda-lime silica glass spheres. This analogue material has relatively simple and well-characterized starting properties. Furthermore, the initially spherical shapes of particles provide excellent strain markers. Experiments were run at a variety of temperatures, strain rates and stresses resulting in end products with varying degrees of total strain. The nature of strain partitioning and accumulation are evaluated using image analysis techniques on scanned images and photomicrographs of thin sections cut perpendicular to the loading direction of each experimental product. Shapes of the individual deformed particles (e.g., oblate spheroids) were determined and the Scion image analysis program was used to create a best-fit ellipse for each particle. Statistics collected on each particle include: axial dimension (a), vertical dimension (c) and angle from the horizontal. The data are used to calculate the oblateness of each particle (1-c/a) and the angle of deformation induced foliation. Furthermore, the relative proportions of visible blue epoxy in the sample scans determine bulk porosity. The average oblateness of the particles is a direct, independent measure of the accumulated strain in each sample. Results indicate that these measured values are equal to calculated theoretical values of oblateness for spheroids undergoing the

  10. Freeze-drying Various Strains of Shigella

    PubMed Central

    Berman, Sanford; Altieri, Patricia L.; Groffinger, Albert; Lowenthal, Joseph P.; Formal, Samuel B.

    1968-01-01

    Of six candidate strains of Shigella prepared in Brain Heart Infusion broth as freeze-dried vaccine, low survival rates were obtained with two of the most promising strains. Survival rates with these two strains were increased to acceptable levels when the organisms were suspended in a medium consisting of 8.2% sucrose, 0.01 M phosphate, 0.07% monosodium glutamate, and 2.5% human serum albumin. Alteration of the freezing temperature did not improve the recovery rates significantly. PMID:5726151

  11. A study of the effect of apparent strain on thermal stress measurement for two types of elevated temperature strain gages

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1983-01-01

    A weldable type strain gage was used to measure low level thermal stress in an elevated temperature environment. Foil strain gages used in a comparative manner reveal that the apparent strain of weldable strain gages is not sufficiently known to acquire accurate low level thermal stress data. Apparent strain data acquired from coupon tests reveals a large scatter in apparent strain characteristics among the weldable strain gages. It is concluded that apparent strain data for individual weldable strain gages must be required prior to installation if valid thermal stress data is to be obtained through the temperature range of room temperature to 755 K (900 F).

  12. 40 CFR 180.1209 - Bacillus subtilis strain QST 713 and strain QST 713 variant soil; exemption from the requirement...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... strain QST 713 variant soil; exemption from the requirement of a tolerance. 180.1209 Section 180.1209... strain QST 713 and strain QST 713 variant soil; exemption from the requirement of a tolerance. An... Bacillus subtilis strain QST 713 and strain QST 713 variant soil when used in or on all food commodities....

  13. 40 CFR 180.1209 - Bacillus subtilis strain QST 713 and strain QST 713 variant soil; exemption from the requirement...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... strain QST 713 variant soil; exemption from the requirement of a tolerance. 180.1209 Section 180.1209... strain QST 713 and strain QST 713 variant soil; exemption from the requirement of a tolerance. An... Bacillus subtilis strain QST 713 and strain QST 713 variant soil when used in or on all food commodities....

  14. Signatures of Autotrophic and Heterotrophic Metabolic Activity in Enrichment Cultures from a Sulphur Oxidizing Acid Mine Site

    NASA Astrophysics Data System (ADS)

    Slater, G. F.; Bernier, L.; Cowie, B. R.; Warren, L. A.

    2006-12-01

    Delineating the role of microorganisms in geochemical processes of interest in natural environments requires the development of tools that provide the ability to distinguish amongst microbial activity associated with different metabolic guilds. The gap between phylogenetic characterization and phenotypic understanding remains, underscoring the need to consider alternative methods. Compound specific analysis of cellular components has the potential to differentiate between active metabolic processes supporting microbial communities and may be especially useful in extreme environments. The goal of this study was to determine whether the phospholipids fatty acid (PLFA) distribution and isotopic signatures associated with autotrophs and heterotrophs enriched from an acid mine drainage (AMD) system differed, and further whether natural consortial autotrophic isolates showed similar signatures to autotrophic pure strains of Acidithiobacillus ferrooxidans and A. thiooxidans. Two distinct initial enrichments with tetrathionate and CO2 yielded primarily autotrophic (95%) Acidithiobaccillus spp. sulphur oxidizing communities. The remaining microbial members of theses enrichments (<5%) were morphologically distinct and heterotrophic, as subculture of the consortial isolates in a medium amended with glucose but without tetrathionate selectively resulted in their visible growth. PLFA profiles and δ13C signatures from autotrophic (1) natural enrichments, pure cultures of (2) A. ferrooxidans and (3) A. thiooxidans were similar, but collectively differed from those of the natural heterotrophic enrichment cultures. The PLFA profiles for the heterotrophic communities were made up of primarily (88-99%) C16:0 and two isomers of C18:1. In contrast, the autotrophic communities had high proportions of C16:1 (up to 18%) as well as cyclo C17 and cyclo C19 PLFA that combined comprised 18 to 58% of the observed PLFA. The δ13C signatures of the PLFA also differed strongly between the two

  15. Bioleaching of Ilmenite and Basalt in the Presence of Iron-oxidizing and Iron-scavenging Bacteria

    NASA Astrophysics Data System (ADS)

    Navarrete, J. U.; Cappelle, I.; Borrok, D.; Isru-Bio Team

    2010-12-01

    Understanding the biogeochemical processes that control mineral weathering rates is not only important for Earth systems, but may be a useful for developing technologies for the in-situ utilization of resources from other planets, moons, and asteroids. Traditional techniques that may be used to extract metals like iron, titanium, and aluminum from planetary rocks have large energy and/or hardware requirements that may not always be feasible. In this study, we performed biotic and abiotic leaching experiments with basalt and ilmenite (FeTiO3) to determine whether bacteria increased elemental leaching rates. Our secondary objectives were (1) to determine whether Acidithiobacillus ferrooxidans, an Fe-oxidizing bacterial strain, could grow on the low concentrations of ferrous Fe generated by the available substrates, and (2) to determine whether Pseudomonas mendocina, a heterotrophic Fe-scavenging bacteria, could grow on the low concentrations of nutrient elements generated by the available substrates. Experimental results demonstrate that the Fe(II) leached from ilmenite was rapidly depleted and replaced by Fe(III) in the presence of the Fe-oxidizing bacteria. The Fe in the abiotic control system remained as Fe(II) over the entire duration of the experiment. This suggests that the bacteria were able to grow using the Fe(II) from ilmenite (and the metal-free growth media) as a substrate. The iron-oxidizing bacteria were also able to grow in the presence of basaltic rock types; however the elemental release rates of Si, Ca, and Al in the presence of A. ferrooxidans were actually the same or lower than those from the abiotic control experiments. This may be attributable to the metabolically active bacteria creating a thick altered layer at the mineral surface that decreased the rate of diffusion or it may be caused in part by adsorption or precipitation of Fe(III) onto the existing mineral surfaces. Blending of the basaltic rock with ilmenite to further stimulate the

  16. A new radial strain and strain rate estimation method using autocorrelation for carotid artery

    NASA Astrophysics Data System (ADS)

    Ye, Jihui; Kim, Hoonmin; Park, Jongho; Yeo, Sunmi; Shim, Hwan; Lim, Hyungjoon; Yoo, Yangmo

    2014-03-01

    Atherosclerosis is a leading cause of cardiovascular disease. The early diagnosis of atherosclerosis is of clinical interest since it can prevent any adverse effects of atherosclerotic vascular diseases. In this paper, a new carotid artery radial strain estimation method based on autocorrelation is presented. In the proposed method, the strain is first estimated by the autocorrelation of two complex signals from the consecutive frames. Then, the angular phase from autocorrelation is converted to strain and strain rate and they are analyzed over time. In addition, a 2D strain image over region of interest in a carotid artery can be displayed. To evaluate the feasibility of the proposed radial strain estimation method, radiofrequency (RF) data of 408 frames in the carotid artery of a volunteer were acquired by a commercial ultrasound system equipped with a research package (V10, Samsung Medison, Korea) by using a L5-13IS linear array transducer. From in vivo carotid artery data, the mean strain estimate was -0.1372 while its minimum and maximum values were -2.961 and 0.909, respectively. Moreover, the overall strain estimates are highly correlated with the reconstructed M-mode trace. Similar results were obtained from the estimation of the strain rate change over time. These results indicate that the proposed carotid artery radial strain estimation method is useful for assessing the arterial wall's stiffness noninvasively without increasing the computational complexity.

  17. Tropical Strains of Ralstonia solanacearum Outcompete Race 3 Biovar 2 Strains at Lowland Tropical Temperatures

    PubMed Central

    Huerta, Alejandra I.; Milling, Annett

    2015-01-01

    Bacterial wilt, caused by members of the heterogenous Ralstonia solanacearum species complex, is an economically important vascular disease affecting many crops. Human activity has widely disseminated R. solanacearum strains, increasing their global agricultural impact. However, tropical highland race 3 biovar 2 (R3bv2) strains do not cause disease in tropical lowlands, even though they are virulent at warm temperatures. We tested the hypothesis that differences in temperature adaptation and competitive fitness explain the uneven geographic distribution of R. solanacearum strains. Using three phylogenetically and ecologically distinct strains, we measured competitive fitness at two temperatures following paired-strain inoculations of their shared host, tomato. Lowland tropical strain GMI1000 was only weakly virulent on tomato under temperate conditions (24°C for day and 19°C for night [24/19°C]), but highland tropical R3bv2 strain UW551 and U.S. warm temperate strain K60 were highly virulent at both 24/19°C and 28°C. Strain K60 was significantly more competitive than both GMI1000 and UW551 in tomato rhizospheres and stems at 28°C, and GMI1000 also outcompeted UW551 at 28°C. The results were reversed at cooler temperatures, at which highland strain UW551 generally outcompeted GMI1000 and K60 in planta. The superior competitive index of UW551 at 24/19°C suggests that adaptation to cool temperatures could explain why only R3bv2 strains threaten highland agriculture. Strains K60 and GMI1000 each produced different bacteriocins that inhibited growth of UW551 in culture. Such interstrain inhibition could explain why R3bv2 strains do not cause disease in tropical lowlands. PMID:25769835

  18. Clostridium thermosaccharolyticum strain deficient in acetate production

    SciTech Connect

    Rothstein, D.M.

    1986-01-01

    A mutant of Clostridium thermosaccharolyticum that is blocked in acetate production was isolated after treatment with nitrosoguanidine and selection for fluoroacetate resistance. The mutant produced more ethanol than the parent strain did.

  19. High Strain Rate Rheology of Polymer Melts

    NASA Astrophysics Data System (ADS)

    Kelly, Adrian; Gough, Tim; Whiteside, Ben; Coates, Phil D.

    2009-07-01

    A modified servo electric injection moulding machine has been used in air-shot mode with capillary dies fitted at the nozzle to examine the rheology of a number of commercial polymers at wall shear strain rates of up to 107 s-1. Shear and extensional flow properties were obtained through the use of long and orifice (close to zero land length) dies of the same diameter. A range of polyethylene, polypropylene and polystyrene melts have been characterized; good agreement was found between the three techniques used in the ranges where strain rates overlapped. Shear viscosity of the polymers studied was found to exhibit a plateau above approximately 1×106 s-1. A relationship between the measured high strain rate rheological behaviour and molecular structure was noted, with polymers containing larger side groups reaching the rate independent plateau at lower strain rates than those with simpler structures.

  20. Strained Hydrocarbons as Potential Hypergolic Fuels

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A storable combination of high-energy hypergolic fuel and oxidizer is advantageous to the future of reusable launch vehicles (RLVs). The combination will allow an increase in energy per unit volume of fuel and eliminate the need for an external ignition system. Strained systems have been studied as potential high-density fuels. Adding hypergolic functional groups, such as amino groups, to these hydrocarbons will potentially allow auto ignition of strained systems with hydrogen peroxide. Several straight chain amines and their strained counterparts containing an equivalent number of carbon atoms have been purchased and synthesized. These amines provide initial studies to determine the effects of fuel vapor pressure, strain energy, fuel miscibility, and amine substitution upon fuel ignition time and hypergolicity with hydrogen peroxide as an oxidizer.

  1. Strain accumulation along the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Murray, Mark H.; Lisowski, Michael

    2000-11-01

    We combine triangulation, trilateration, and GPS observations to determine horizontal strain rates along the Cascadia subduction zone from Cape Mendocino to the Strait of Juan de Fuca. Shear-strain rates are significantly greater than zero (95% confidence) in all forearc regions (26-167 nanoradians/yr), and are not significant in the arc and backarc regions. The deformation is primarily uniaxial contraction nearly parallel to Juan de Fuca-North America plate convergence (N55°-80°E). The strain rates are consistent with an elastic dislocation model for interseismic slip with a shallow 100-km wide locked zone and a deeper 75-km transition zone along the entire megathrust, except along the central Oregon coast where relatively lower strain rates are consistent with 30-40 km wide locked and transition zones.

  2. Tuning strain in flexible graphene nanoelectromechanical resonators

    NASA Astrophysics Data System (ADS)

    Guan, Fen; Kumaravadivel, Piranavan; Averin, Dmitri V.; Du, Xu

    2015-11-01

    The structural flexibility of low dimensional nanomaterials offers unique opportunities for studying the impact of strain on their physical properties and for developing innovative devices utilizing strain engineering. A key towards such goals is a device platform which allows the independent tuning and reliable calibration of the strain. Here, we report the fabrication and characterization of graphene nanoelectromechanical resonators (GNEMRs) on flexible substrates. Combining substrate bending and electrostatic gating, we achieve the independent tuning of the strain and sagging in graphene and explore the nonlinear dynamics over a wide parameter space. Analytical and numerical studies of a continuum mechanics model, including the competing higher order nonlinear terms, reveal a comprehensive nonlinear dynamics phase diagram, which quantitatively explains the complex behaviors of GNEMRs.

  3. Measuring strain distributions in amorphous materials

    NASA Astrophysics Data System (ADS)

    Poulsen, Henning F.; Wert, John A.; Neuefeind, Jörg; Honkimäki, Veijo; Daymond, Mark

    2005-01-01

    A number of properties of amorphous materials including fatigue, fracture and component performance are governed by the magnitude of strain fields around inhomogeneities such as inclusions, voids and cracks. At present, localized strain information is only available from surface probes such as optical or electron microscopy. This is unfortunate because surface and bulk characteristics in general differ. Hence, to a large extent, the assessment of strain distributions relies on untested models. Here we present a universal diffraction method for characterizing bulk stress and strain fields in amorphous materials and demonstrate its efficacy by work on a material of current interest in materials engineering: a bulk metallic glass. The macroscopic response is shown to be less stiff than the atomic next-neighbour bonds because of structural rearrangements at the scale of 4-10 Å. The method is also applicable to composites comprising an amorphous matrix and crystalline inclusions.

  4. Survival of Bacillus megaterium strains in water.

    PubMed

    Palmada, F M; Sanchez-Rivas, C

    1996-01-01

    Cultures of Bacillus megaterium strains, producers or not of poly-beta-hydroxy-butyrate (PHB+ and PHB-) were submitted to several shift-downs: nutritional (one hundred fold dilution in saline water S or artificial fresh water ADA) or nutritional and osmotic (one hundred fold dilution in water or W). In all conditions tested, the wild type strain survived, duplicated five times and sporulated. However, the PHB- mutant strain showed a drastic loss of viability in water (< 0.1%) not observed when the shift was only nutritional (S or ADA). Discussion was focused on the advantages of the potential use of Bacillus megaterium as host for delivering bio-insecticides in waters instead of natural hosts such as B. thuringiensis strains. PMID:9017852

  5. Method of transferring strained semiconductor structure

    DOEpatents

    Nastasi, Michael A.; Shao, Lin

    2009-12-29

    The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the deposited multilayer structure is bonded to a second substrate and is separated away at the interface, which results in transferring a multilayer structure from one substrate to the other substrate. The multilayer structure includes at least one strained semiconductor layer and at least one strain-induced seed layer. The strain-induced seed layer can be optionally etched away after the layer transfer.

  6. Strain Gauges Mounted To Retain Calibration

    NASA Technical Reports Server (NTRS)

    Butler, Barry L.

    1993-01-01

    Silicon-based semiconductor strain gauges mounted in such way they retain original calibration for several years instead of few months. Improvement effected by bonding gauges to ceramic substrates with glasses instead of epoxies as adhesives.

  7. Thin film strain gage development program

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.; Anderson, W. L.; Claing, R. G.

    1983-01-01

    Sputtered thin-film dynamic strain gages of 2 millimeter (0.08 in) gage length and 10 micrometer (0.0004 in) thickness were fabricated on turbojet engine blades and tested in a simulated compressor environment. Four designs were developed, two for service to 600 K (600 F) and two for service to 900 K (1200 F). The program included a detailed study of guidelines for formulating strain-gage alloys to achieve superior dynamic and static gage performance. The tests included gage factor, fatigue, temperature cycling, spin to 100,000 G, and erosion. Since the installations are 30 times thinner than conventional wire strain gage installations, and any alteration of the aerodynamic, thermal, or structural performance of the blade is correspondingly reduced, dynamic strain measurement accuracy higher than that attained with conventional gages is expected. The low profile and good adherence of the thin film elements is expected to result in improved durability over conventional gage elements in engine tests.

  8. Strain field of a buried oxide aperture

    NASA Astrophysics Data System (ADS)

    Kießling, F.; Niermann, T.; Lehmann, M.; Schulze, J.-H.; Strittmatter, A.; Schliwa, A.; Pohl, U. W.

    2015-02-01

    The strain field of an AlOx current aperture, fabricated by selective oxidation of an AlAs/GaAs layer buried in a circular GaAs mesa, is studied. Components of the strain tensor for a thin cross-section lamella cut out of such a structure are evaluated from dark-field electron holography, proving the validity of simulations based on linear elasticity. Simulation of the entire structure is utilized to prepare mesa surfaces with tailored strain fields for controlling the nucleation site of InGaAs quantum dots. The experimental proof of strain simulations allows estimating the magnitude of piezoelectricity, yielding for the studied mesa structures a piezoelectric potential up to 50 mV.

  9. Can a strain yield a qubit?

    NASA Astrophysics Data System (ADS)

    Benjamin, Colin

    2015-03-01

    A Josepshon qubit is designed via the application of a tensile strain to a topological insulator surface, sandwiched between two s-wave superconductors. The strain applied leads to a shift in Dirac point without changing the conducting states existing on the surface of a topological insulator. This strain applied can be tuned to form a π-junction in such a structure. Combining two such junctions in a ring architecture leads to the ground state of the ring being in a doubly degenerate state- ``0'' and ``1'' states of the qubit. A qubit designed this way is easily controlled via the tunable strain. We report on the conditions necessary to design such a qubit. Finally the operating time of a single qubit phase gate is derived. This work was supported by funds from Dept. of Science and Technology (Nanomission), Govt. of India, Grant No. SR/NM/NS-1101/2011.

  10. Design parameters for borehole strain instrumentation

    NASA Astrophysics Data System (ADS)

    Gladwin, Michael T.; Hart, Rhodes

    1985-01-01

    The response of a borehole strain meter to hydrostatic and shear deformations in an isotropic medium is calculated to facilitate optimum instrument design and produce instrument response factors for parameters typically encountered in installed instruments. Results for an empty borehole are first compared with results for an instrument in intimate contact with the surrounding rock. The effects of the grout used to install the instrument are then examined. Where possible, analytic forms for the response factors are given. Results for typical installations are then presented in graphical form for optimizing instrument design in an environment of known elastic parameters. Alternatively, the results may be applied in the measurement of unknown strain signals, to correct for instrument response or to provide in-situ estimates of the elastic properties of the environment by examination of observed strain response to known strain signals.

  11. Broken Bones, Sprains, and Strains (For Parents)

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Broken Bones, Sprains, and Strains KidsHealth > For Parents > Broken Bones, ... home. What to Do: For a Suspected Broken Bone: Do not move a child whose injury involves ...

  12. Dynamic Force Measurement with Strain Gauges

    ERIC Educational Resources Information Center

    Lee, Bruce E.

    1974-01-01

    Discusses the use of four strain gauges, a Wheatstone bridge, and an oscilloscope to measure forces dynamically. Included is an example of determining the centripetal force of a pendulum in a general physics laboratory. (CC)

  13. Silicon ribbon stress-strain activities

    NASA Technical Reports Server (NTRS)

    Wada, B. K.; Shih, C. F.; Kuo, C. P.; Phillips, W. M.

    1984-01-01

    The finite element method is used to investigate stress/strain in silicon ribbon. Failure considerations such as residual stress, buckling material non-linearity and creep are discussed. Temperature profiles are presented.

  14. [Improvement of Trichoderma strains for biocontrol].

    PubMed

    Benítez, T; Rey, M; Delgado-Jarana, J; Rincón, A M; Limón, M C

    2000-03-01

    The use of the fungal genus Trichoderma to control fungal plant diseases is a promising alternative to the use of chemical compounds. The aim of this work has been to obtain Trichoderma strains with improved capacity as biological control agents. To do so, the hydrolytic capacity on fungal cell walls of strains of the fungus Trichoderma harzianum has been increased. On one hand, transformation experiments with genes which coded for chitinases and glucanases have been carried out in T. harzianumstra ins. On the other hand, the medium composition has also been modified in order to eliminate proteolytic degradation of some of the overproduced enzymes. Finally, hybrid chitinolytic enzymes with substrate-binding domains have been produced as an alternative to obtain improved biocontrol strains. The transformant strains, when compared with the wild type, showed improved antifungal capacity against the phytopathogenic fungus Rhizoctonia solani, in in vitro experiments. PMID:15762779

  15. Heat strain during explosive ordnance disposal.

    PubMed

    Stewart, Ian B; Rojek, Amanda M; Hunt, Andrew P

    2011-08-01

    Bomb technicians perform their work while encapsulated in explosive ordnance disposal suits. Designed primarily for safety, these suits have an unintended consequence of impairing the body's natural mechanisms for heat dissipation. Consequently, bomb technicians are known to experience symptoms of heat illness while performing their work. This research provides the first field based analysis of heat strain in bomb technicians. Six participants undertook simulated operational tasks across 2 days of variable climate. All subjects demonstrated high levels of heat strain as evidenced by elevated heart rate, core body temperature, and physiological strain index. Participants also reported signs and symptoms associated with heat illness. These results were exacerbated by more intense physical activity despite being undertaken in a cooler environment. The universal experience of heat strain in this sample has significant implications for the health of bomb technicians and additional research examining methods to improve temperature regulation and performance is warranted. PMID:21882791

  16. The Development of Electrical Strain Gages

    NASA Technical Reports Server (NTRS)

    De Forest, A V; Leaderman, H

    1940-01-01

    The design, construction, and properties of an electrical-resistance strain gage consisting of fine wires molded in a laminated plastic are described. The properties of such gages are discussed and also the problems of molding of wires in plastic materials, temperature compensation, and cementing and removal of the gages. Further work to be carried out on the strain gage, together with instrument problems, is discussed.

  17. Geometric reconstruction using tracked ultrasound strain imaging

    NASA Astrophysics Data System (ADS)

    Pheiffer, Thomas S.; Simpson, Amber L.; Ondrake, Janet E.; Miga, Michael I.

    2013-03-01

    The accurate identification of tumor margins during neurosurgery is a primary concern for the surgeon in order to maximize resection of malignant tissue while preserving normal function. The use of preoperative imaging for guidance is standard of care, but tumor margins are not always clear even when contrast agents are used, and so margins are often determined intraoperatively by visual and tactile feedback. Ultrasound strain imaging creates a quantitative representation of tissue stiffness which can be used in real-time. The information offered by strain imaging can be placed within a conventional image-guidance workflow by tracking the ultrasound probe and calibrating the image plane, which facilitates interpretation of the data by placing it within a common coordinate space with preoperative imaging. Tumor geometry in strain imaging is then directly comparable to the geometry in preoperative imaging. This paper presents a tracked ultrasound strain imaging system capable of co-registering with preoperative tomograms and also of reconstructing a 3D surface using the border of the strain lesion. In a preliminary study using four phantoms with subsurface tumors, tracked strain imaging was registered to preoperative image volumes and then tumor surfaces were reconstructed using contours extracted from strain image slices. The volumes of the phantom tumors reconstructed from tracked strain imaging were approximately between 1.5 to 2.4 cm3, which was similar to the CT volumes of 1.0 to 2.3 cm3. Future work will be done to robustly characterize the reconstruction accuracy of the system.

  18. High Temperature Strain Gage Calibration Fixture

    NASA Technical Reports Server (NTRS)

    Vranas, T. (Inventor)

    1976-01-01

    An apparatus and method are described for calibrating high temperature strain gases which serve for both dead weight and constant deflection measurements. A cantilever support arm allows the test unit to slide into a furnace while one end is subjected to bending strain either by hanging weights upon it or by deflecting it with a push rod. The dual nature of the fixture permits both tests to be run without change of the test specimen or removal from the furnace.

  19. High-Temperature Adhesive Strain Gage Developed

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  20. [Consumption of hydrocarbons by psychrotolerant degrader strains].

    PubMed

    Andeeva, I S; Emel'ianova, E K; Ol'kin, S E; Reznikova, I K; Zagrebel'nyĭ, S N; Repin, V E

    2007-01-01

    Oil-oxidizing microorganisms have been sampled in various regions of Siberia and used in strain associations, which degrade n-alkanes of oil from various fields by 64-92% after 6 days of growth in a wide temperature range. These strains are salt-tolerant and psychrotolerant. They are compatible with aboriginal soil microflora. Promising results have been obtained in experiments on growing plants on oil-polluted soil purified with a biodegrader of this series. PMID:17476811