Science.gov

Sample records for acidophilic chemolithoautotrophic bacterium

  1. Astrobiological Significance of Chemolithoautotrophic Acidophiles

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2003-01-01

    For more than a century (since Winogradsky discovered lithoautotrophic bacteria) a dilemma in microbiology has concerned life that first inhabited the Earth. Which types of life forms first appeared in the primordial oceans during the earliest geological period on Earth as the primary ancestors of modem biological diversity? How did a metabolism of ancestors evolve: from lithoautotrophic to lithohetherotrophic and organoheterotrophic or from organoheterotrophic to organoautotrophic and lithomixotrophic types? At the present time, it is known that chemolithoheterotrophic and chemolithoautotrophic metabolizing bacteria are wide spread in different ecosystems. On Earth the acidic ecosystems are associated with geysers, volcanic fumaroles, hot springs, deep sea hydrothermal vents, caves, acid mine drainage and other technogenic ecosystems. Bioleaching played a significant role on a global geological scale during the Earth's formation. This important feature of bacteria has been successfully applied in industry. The lithoautotrophs include Bacteria and Archaea belonging to diverse genera containing thermophilic and mesophilic species. In this paper we discuss the lithotrophic microbial acidophiles and present some data with a description of new acidophilic iron- and sulfur- oxidizing bacterium isolated from the Chena Hot Springs in Alaska. We also consider the possible relevance of microbial acidophiles to Venus, Io, and acidic inclusions in glaciers and icy moons.

  2. Astrobiological significance of chemolithoautotrophic acidophiles

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-02-01

    For more than a century (since Winogradsky discovered lithautotrophic bacteria) there has been a dilemma in microbiology about life that first inhabited the Earth. Which types of life forms first appeared in the primordial oceans during the earliest geological period on Earth as the primary ancestors of modern biological diversity? How did a metabolism of ancestors evolve: from lithoautotrophic to lithoheterotrophic and organoheterotrophic or from organoheterotrophic to organautotrophic and lithomixotrophic types? At the present time, it is known that chemolithoheterotrophic and chemolithoautotrophic metabolizing bacteria are wide spread in different ecosystems. On Earth the acidic ecosystems are associated with geysers, volcanic fumaroles, hot springs, deep sea hydrothermal vents, caves, acid mine drainage and other technogenic ecosystems. Bioleaching played a significant roel on a global geological scale during the Earth's formation. This important feature of bacteria has been successfully applied in industry. The lithoautotrophs include Bacteria and Archaea belonging to diverse genera containing thermophilic and mesophilic species. In this paper we discuss the lithotrophic microbial acidophiles and present some data with a description of new acidophilic iron- and sulfur-oxidizing bacterium isolated from the Chena Hot Springs in Alaska. We also consider the possible relevance of microbial acidophiles to Venus, Io, and acidic inclusions in glaciers and icy moons.

  3. Tetrathionate-Forming Thiosulfate Dehydrogenase from the Acidophilic, Chemolithoautotrophic Bacterium Acidithiobacillus ferrooxidans

    PubMed Central

    Kikumoto, Mei; Nogami, Shohei; Kanao, Tadayoshi; Takada, Jun

    2013-01-01

    Thiosulfate dehydrogenase is known to play a significant role in thiosulfate oxidation in the acidophilic, obligately chemolithoautotroph, Acidithiobacillus ferrooxidans. Enzyme activity measured using ferricyanide as the electron acceptor was detected in cell extracts of A. ferrooxidans ATCC 23270 grown on tetrathionate or sulfur, but no activity was detected in ferrous iron-grown cells. The enzyme was enriched 63-fold from cell extracts of tetrathionate-grown cells. Maximum enzyme activity (13.8 U mg−1) was observed at pH 2.5 and 70°C. The end product of the enzyme reaction was tetrathionate. The enzyme reduced neither ubiquinone nor horse heart cytochrome c, which serves as an electron acceptor. A major protein with a molecular mass of ∼25 kDa was detected in the partially purified preparation. Heme was not detected in the preparation, according to the results of spectroscopic analysis and heme staining. The open reading frame of AFE_0042 was identified by BLAST by using the N-terminal amino acid sequence of the protein. The gene was found within a region that was previously noted for sulfur metabolism-related gene clustering. The recombinant protein produced in Escherichia coli had a molecular mass of ∼25 kDa and showed thiosulfate dehydrogenase activity, with maximum enzyme activity (6.5 U mg−1) observed at pH 2.5 and 50°C. PMID:23064330

  4. Iron Meteorites Can Support the Growth of Acidophilic Chemolithoautotrophic Microorganisms

    NASA Astrophysics Data System (ADS)

    González-Toril, Elena; Martínez-Frías, Jesús; Gómez, José María; Rull, Fernando; Amils, Ricardo

    2005-06-01

    Chemolithoautotrophy based on reduced inorganic minerals is considered a primitive energy transduction system. Evidence that a high number of meteorites crashed into the planet during the early period of Earth history led us to test the ability of iron-oxidizing bacteria to grow using iron meteorites as their source of energy. Here we report the growth of two acidophilic iron-oxidizing bacteria, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans, on a piece of the Toluca meteorite as the only source of energy. The alteration of the surface of the exposed piece of meteorite, the solubilization of its oxidized metal constituents, mainly ferric iron, and the formation of goethite precipitates all clearly indicate that iron-meteoritebased chemolithotrophic metabolism is viable.

  5. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea.

    PubMed

    Papp, Benedek; Török, Tibor; Sándor, Erzsébet; Fekete, Erzsébet; Flipphi, Michel; Karaffa, Levente

    2016-05-01

    Nitrosomonas europaea is a chemolithoautotrophic nitrifier, a gram-negative bacterium that can obtain all energy required for growth from the oxidation of ammonia to nitrite, and this may be beneficial for various biotechnological and environmental applications. However, compared to other bacteria, growth of ammonia oxidizing bacteria is very slow. A prerequisite to produce high cell density N. europaea cultures is to minimize the concentrations of inhibitory metabolic by-products. During growth on ammonia nitrite accumulates, as a consequence, N. europaea cannot grow to high cell concentrations under conventional batch conditions. Here, we show that single-vessel dialysis membrane bioreactors can be used to obtain substantially increased N. europaea biomasses and substantially reduced nitrite levels in media initially containing high amounts of the substrate. Dialysis membrane bioreactor fermentations were run in batch as well as in continuous mode. Growth was monitored with cell concentration determinations, by assessing dry cell mass and by monitoring ammonium consumption as well as nitrite formation. In addition, metabolic activity was probed with in vivo acridine orange staining. Under continuous substrate feed, the maximal cell concentration (2.79 × 10(12)/L) and maximal dry cell mass (0.895 g/L) achieved more than doubled the highest values reported for N. europaea cultivations to date. PMID:26358065

  6. Growth of the acidophilic iron-sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions

    NASA Astrophysics Data System (ADS)

    Bauermeister, Anja; Rettberg, Petra; Flemming, Hans-Curt

    2014-08-01

    The question of life on Mars has been in focus of astrobiological research for several decades, and recent missions in orbit or on the surface of the planet are constantly expanding our knowledge on Martian geochemistry. For example, massive stratified deposits have been identified on Mars containing sulfate minerals and iron oxides, which suggest the existence of acidic aqueous conditions in the past, similar to acidic iron- and sulfur-rich environments on Earth. Acidophilic organisms thriving in such habitats could have been an integral part of a possibly widely extinct Martian ecosystem, but remains might possibly even exist today in protected subsurface niches. The chemolithoautotrophic strain Acidithiobacillus ferrooxidans was selected as a model organism to study the metabolic capacities of acidophilic iron-sulfur bacteria, especially regarding their ability to grow with in situ resources that could be expected on Mars. The experiments were not designed to accurately simulate Martian physical conditions (except when certain single parameters such as oxygen partial pressure were considered), but rather the geochemical environment that can be found on Mars. A. ferrooxidans could grow solely on the minerals contained in synthetic Mars regolith mixtures with no added nutrients, using either O2 as an external electron acceptor for iron oxidation, or H2 as an external electron donor for iron reduction, and thus might play important roles in the redox cycling of iron on Mars. Though the oxygen partial pressure of the Martian atmosphere at the surface was not sufficient for detectable iron oxidation and growth of A. ferrooxidans during short-term incubation (7 days), alternative chemical O2-generating processes in the subsurface might yield microhabitats enriched in oxygen, which principally are possible under such conditions. The bacteria might also contribute to the reductive dissolution of Fe3+-containing minerals like goethite and hematite, which are

  7. Genetic manipulation of the obligate chemolithoautotrophic bacterium Thiobacillus denitrificans

    SciTech Connect

    Beller, H.R.; Legler, T.C.; Kane, S.R.

    2011-07-15

    Chemolithoautotrophic bacteria can be of industrial and environmental importance, but they present a challenge for systems biology studies, as their central metabolism deviates from that of model organisms and there is a much less extensive experimental basis for their gene annotation than for typical organoheterotrophs. For microbes with sequenced genomes but unconventional metabolism, the ability to create knockout mutations can be a powerful tool for functional genomics and thereby render an organism more amenable to systems biology approaches. In this chapter, we describe a genetic system for Thiobacillus denitrificans, with which insertion mutations can be introduced by homologous recombination and complemented in trans. Insertion mutations are generated by in vitro transposition, the mutated genes are amplified by the PCR, and the amplicons are introduced into T. denitrificans by electroporation. Use of a complementation vector, pTL2, based on the IncP plasmid pRR10 is also addressed.

  8. Complete genome and comparative analysis of the chemolithoautotrophic bacterium Oligotropha carboxidovorans OM5

    PubMed Central

    2010-01-01

    Background Oligotropha carboxidovorans OM5 T. (DSM 1227, ATCC 49405) is a chemolithoautotrophic bacterium capable of utilizing CO (carbon monoxide) and fixing CO2 (carbon dioxide). We previously published the draft genome of this organism and recently submitted the complete genome sequence to GenBank. Results The genome sequence of the chemolithoautotrophic bacterium Oligotropha carboxidovorans OM5 consists of a 3.74-Mb chromosome and a 133-kb megaplasmid that contains the genes responsible for utilization of carbon monoxide, carbon dioxide, and hydrogen. To our knowledge, this strain is the first one to be sequenced in the genus Oligotropha, the closest fully sequenced relatives being Bradyrhizobium sp. BTAi and USDA110 and Nitrobacter hamburgiensis X14. Analysis of the O. carboxidovorans genome reveals potential links between plasmid-encoded chemolithoautotrophy and chromosomally-encoded lipid metabolism. Comparative analysis of O. carboxidovorans with closely related species revealed differences in metabolic pathways, particularly in carbohydrate and lipid metabolism, as well as transport pathways. Conclusion Oligotropha, Bradyrhizobium sp and Nitrobacter hamburgiensis X14 are phylogenetically proximal. Although there is significant conservation of genome organization between the species, there are major differences in many metabolic pathways that reflect the adaptive strategies unique to each species. PMID:20863402

  9. Anaerobic, Nitrate-Dependent Oxidation of U(IV) Oxide Minerals by the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    PubMed Central

    Beller, Harry R.

    2005-01-01

    Under anaerobic conditions and at circumneutral pH, cells of the widely distributed, obligate chemolithoautotrophic bacterium Thiobacillus denitrificans oxidatively dissolved synthetic and biogenic U(IV) oxides (uraninite) in nitrate-dependent fashion: U(IV) oxidation required the presence of nitrate and was strongly correlated with nitrate consumption. This is the first report of anaerobic U(IV) oxidation by an autotrophic bacterium. PMID:15812053

  10. Anaerobic, Nitrate-Dependent Oxidation of U(IV) Oxide Minerals by the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    SciTech Connect

    Beller, H R

    2004-06-25

    Under anaerobic conditions and at circumneutral pH, cells of the widely-distributed, obligate chemolithoautotrophic bacterium Thiobacillus denitrificans oxidatively dissolved synthetic and biogenic U(IV) oxides (uraninite) in nitrate-dependent fashion: U(IV) oxidation required the presence of nitrate and was strongly correlated to nitrate consumption. This is the first report of anaerobic U(IV) oxidation by an autotrophic bacterium.

  11. A New Chemolithoautotrophic Arsenite-Oxidizing Bacterium Isolated from a Gold Mine: Phylogenetic, Physiological, and Preliminary Biochemical Studies

    PubMed Central

    Santini, Joanne M.; Sly, Lindsay I.; Schnagl, Roger D.; Macy, Joan M.

    2000-01-01

    A previously unknown chemolithoautotrophic arsenite-oxidizing bacterium has been isolated from a gold mine in the Northern Territory of Australia. The organism, designated NT-26, was found to be a gram-negative motile rod with two subterminal flagella. In a minimal medium containing only arsenite as the electron donor (5 mM), oxygen as the electron acceptor, and carbon dioxide-bicarbonate as the carbon source, the doubling time for chemolithoautotrophic growth was 7.6 h. Arsenite oxidation was found to be catalyzed by a periplasmic arsenite oxidase (optimum pH, 5.5). Based upon 16S rDNA phylogenetic sequence analysis, NT-26 belongs to the Agrobacterium/Rhizobium branch of the α-Proteobacteria and may represent a new species. This recently discovered organism is the most rapidly growing chemolithoautotrophic arsenite oxidizer known. PMID:10618208

  12. [Effect of temperature on the rate of oxidation of pyrrhotite-rich sulfide ore flotation concentrate and the structure of the acidophilic chemolithoautotrophic microbial community].

    PubMed

    Moshchanetskii, P V; Pivovarova, T A; Belyi, A V; Kondrat'eva, T F

    2014-01-01

    Oxidation of flotation concentrate of a pyrrhotite-rich sulfide ore by acidophilic chemolithoautotrophic microbial communities at 35, 40, and 45 degrees C was investigated. According to the physicochemical parameters of the liquid phase of the pulp, as well as the results of analysis of the solid residue after biooxidation and cyanidation, the community developed at 40 degrees C exhibited the highest rate of oxidation. The degree of gold recovery at 35, 40, and 45 degrees C was 89.34, 94.59, and 83.25%, respectively. At 40 degrees C, the highest number of microbial cells (6.01 x 10(9) cells/mL) was observed. While temperature had very little effect on the species composition of microbial communities, except for the absence of Leptospirillum ferriphilum at 35 degrees C, the shares of individual species in the communities varied with temperature. Relatively high numbers of Sulfobacillus thermosulfidooxidans, the organism oxidizing iron and elemental sulfur at higher rates than other acidophilic chemolithotrophic species, were observed at 40 degrees C. PMID:25844443

  13. Molecular cloning, sequencing, and expression of omp-40, the gene coding for the major outer membrane protein from the acidophilic bacterium Thiobacillus ferrooxidans.

    PubMed

    Guiliani, N; Jerez, C A

    2000-06-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. Some of the surface components of this microorganism are probably involved in adaptation to their acidic environment and in bacterium-mineral interactions. We have isolated and characterized omp40, the gene coding for the major outer membrane protein from T. ferrooxidans. The deduced amino acid sequence of the Omp40 protein has 382 amino acids and a calculated molecular weight of 40,095.7. Omp40 forms an oligomeric structure of about 120 kDa that dissociates into the monomer (40 kDa) by heating in the presence of sodium dodecyl sulfate. The degree of identity of Omp40 amino acid sequence to porins from enterobacteria was only 22%. Nevertheless, multiple alignments of this sequence with those from several OmpC porins showed several important features conserved in the T. ferrooxidans surface protein, such as the approximate locations of 16 transmembrane beta strands, eight loops, including a large external L3 loop, and eight turns which allowed us to propose a putative 16-stranded beta-barrel porin structure for the protein. These results together with the previously known capacity of Omp40 to form ion channels in planar lipid bilayers strongly support its role as a porin in this chemolithoautotrophic acidophilic microorganism. Some characteristics of the Omp40 protein, such as the presence of a putative L3 loop with an estimated isoelectric point of 7.21 allow us to speculate that this can be the result of an adaptation of the acidophilic T. ferrooxidans to prevent free movement of protons across its outer membrane. PMID:10831405

  14. Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus.

    PubMed

    Valdes, Jorge; Ossandon, Francisco; Quatrini, Raquel; Dopson, Mark; Holmes, David S

    2011-12-01

    Acidithiobacillus thiooxidans is a mesophilic, extremely acidophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and inorganic sulfur compounds. Here we present the draft genome sequence of A. thiooxidans ATCC 19377, which has allowed the identification of genes for survival and colonization of extremely acidic environments. PMID:22123759

  15. Complete Genome Sequence of the Unclassified Iron-Oxidizing, Chemolithoautotrophic Burkholderiales Bacterium GJ-E10, Isolated from an Acidic River

    PubMed Central

    Tojo, Fuyumi; Asano, Ryoki; Kobayashi, Yayoi; Shimura, Yoichiro; Okano, Kunihiro; Miyata, Naoyuki

    2015-01-01

    Burkholderiales bacterium GJ-E10, isolated from the Tamagawa River in Akita Prefecture, Japan, is an unclassified, iron-oxidizing chemolithoautotrophic bacterium. Its single circular genome, consisting of 3,276,549 bp, was sequenced by using three types of next-generation sequencers and the sequences were then confirmed by PCR-based Sanger sequencing. PMID:25657271

  16. Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707

    SciTech Connect

    Klots, Martin G.; Arp, D J; Chain, Patrick S; El-Sheikh, Amal F.; Hauser, Loren John; Hommes, Norman G.; Larimer, Frank W; Malfatti, Stephanie; Norton, Jeanette M.; Poret-Peterson, Amisha T.; Vergez, Lisa; Ward, Bess B.

    2006-01-01

    The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H+-dependent F0F1 type, one Na+-dependent V type).

  17. The Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC19707

    SciTech Connect

    Klotz, M G; Arp, D J; Chain, P S; El-Sheikh, A F; Hauser, L J; Hommes, N G; Larimer, F W; Malfatti, S A; Norton, J M; Poret-Peterson, A T; Vergez, L M; Ward, B B

    2006-08-03

    The Gammaproteobacterium, Nitrosococcus oceani (ATCC 19707), is a Gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; 50.4% G+C) and a plasmid (40,420 bp) that contain 3052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. In contrast to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance and the ability to assimilate carbon via gluconeogenesis. One set of genes for type I RuBisCO was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H{sup +}-dependent F{sub 0}F{sub 1}-type, one Na{sup +}-dependent V-type).

  18. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitfificans.

    SciTech Connect

    Beller, H R; Larimer, Frank W

    2006-02-01

    The complete genome sequence of Thiobacillus denitrificans ATCC 25259 is the first to become available for an obligately chemolithoautotrophic, sulfur-compound-oxidizing, {beta}-proteobacterium. Analysis of the 2,909,809-bp genome will facilitate our molecular and biochemical understanding of the unusual metabolic repertoire of this bacterium, including its ability to couple denitrification to sulfur-compound oxidation, to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV), and to oxidize mineral electron donors. Notable genomic features include (i) genes encoding c-type cytochromes totaling 1 to 2 percent of the genome, which is a proportion greater than for almost all bacterial and archaeal species sequenced to date, (ii) genes encoding two [NiFe]hydrogenases, which is particularly significant because no information on hydrogenases has previously been reported for T. denitrificans and hydrogen oxidation appears to be critical for anaerobic U(IV) oxidation by this species, (iii) a diverse complement of more than 50 genes associated with sulfur-compound oxidation (including sox genes, dsr genes, and genes associated with the AMP-dependent oxidation of sulfite to sulfate), some of which occur in multiple (up to eight) copies, (iv) a relatively large number of genes associated with inorganic ion transport and heavy metal resistance, and (v) a paucity of genes encoding organic-compound transporters, commensurate with obligate chemolithoautotrophy. Ultimately, the genome sequence of T. denitrificans will enable elucidation of the mechanisms of aerobic and anaerobic sulfur-compound oxidation by {beta}-proteobacteria and will help reveal the molecular basis of this organism's role in major biogeochemical cycles (i.e., those involving sulfur, nitrogen, and carbon) and groundwater restoration.

  19. Instrument development to search for biomarkers on mars: Terrestrial acidophile, iron-powered chemolithoautotrophic communities as model systems

    NASA Astrophysics Data System (ADS)

    Parro, V.; Rodríguez-Manfredi, J. A.; Briones, C.; Compostizo, C.; Herrero, P. L.; Vez, E.; Sebastián, E.; Moreno-Paz, M.; García-Villadangos, M.; Fernández-Calvo, P.; González-Toril, E.; Pérez-Mercader, J.; Fernández-Remolar, D.; Gómez-Elvira, J.

    2005-06-01

    Recent findings by the MER rover opportunity confirming the presence of iron minerals that can only be formed in the presence of water emphasize the study of analogous environments to Mars on Earth. The study of chemolithoautotrophic communities living in acidic iron-rich habitats is highly relevant in order to identify Mars analog environment-specific biomarkers. Iron oxidizing bacteria like Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans have ways of life for which it is feasible to identify a past or present hypothetical niche on Mars. We have developed a strategy for biomarker identification based on: (i) search for biosignatures on acid and metal-rich environments; (ii) development of an immunosensor microarray; and (iii) integration into an instrument for autonomous and remote operation. The instrument that we have built, called Signs Of LIfe Detector (SOLID), is capable of processing a variety of samples for the detection of specific biomarkers. Antibodies against several bacterial strains have been developed and tested in a microarray biosensor on SOLID. Tests with field samples have been successfully performed, allowing the detection of L. ferrooxidans, A. ferrooxidans present in sediment samples.

  20. Alicyclobacillus vulcanalis sp. nov., a thermophilic, acidophilic bacterium isolated from Coso Hot Springs, California, USA.

    PubMed

    Simbahan, Jessica; Drijber, Rhae; Blum, Paul

    2004-09-01

    A thermo-acidophilic Gram-positive bacterium, strain CsHg2T, which grows aerobically at 35-65 degrees C (optimum 55 degrees C) and at pH 2.0-6.0 (optimum 4.0), was isolated from a geothermal pool located in Coso Hot Springs in the Mojave Desert, California, USA. Phylogenetic analysis of 16S rRNA gene sequences showed that this bacterium was most closely related to the type strains of Alicyclobacillus acidocaldarius (97.8 % identity) and Alicyclobacillus sendaiensis (96.9 %), three Japanese strains denoted as UZ-1, KHA-31 and MIH 332 (96.1-96.5 %) and Alicyclobacillus genomic species FR-6 (96.3 %). Phenotypic characteristics including temperature and pH optima, G+C composition, acid production from a variety of carbon sources and sensitivity to different metal salts distinguished CsHg2T from A. acidocaldarius, A. sendaiensis and FR-6. The cell lipid membrane was composed mainly of omega-cyclohexyl fatty acid, consistent with membranes from other Alicyclobacillus species. Very low DNA-DNA hybridization values between CsHg2T and the type strains of Alicyclobacillus indicate that CsHg2T represents a distinct species. On the basis of these results, the name Alicyclobacillus vulcanalis sp. nov. is proposed for this organism. The type strain is CsHg2T (ATCC BAA-915T = DSM 16176T). PMID:15388732

  1. Thiobacillus thiophilus sp. nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments.

    PubMed

    Kellermann, Claudia; Griebler, Christian

    2009-03-01

    Strain D24TN(T) was enriched and isolated from sediment collected from a tar oil-contaminated aquifer at a former gasworks site located in Duesseldorf-Flingern, Germany. Cells of strain D24TN(T) were rod-shaped, non-spore-forming and stained Gram-negative. Thiosulfate was used as an electron donor. The organism was obligately chemolithoautotrophic and facultatively anaerobic, and grew with either oxygen or nitrate as electron acceptor. Growth was observed at pH values between 6.3 and 8.7 and at temperatures of -2 to 30 degrees C; optimum growth occurred at pH 7.5-8.3 and 25-30 degrees C. The DNA G+C content was 61.5 mol%. On the basis of the 16S rRNA gene sequence analysis, strain D24TN(T) clustered in the Betaproteobacteria and was most closely related to Thiobacillus denitrificans (97.6 %) and Thiobacillus thioparus (97.5 %). Based on the phenotypic, chemotaxonomic and phylogenetic data, strain D24TN(T) represents a novel species of the genus Thiobacillus, for which the name Thiobacillus thiophilus sp. nov. is proposed. The type strain is D24TN(T) (=DSM 19892(T)=JCM 15047(T)). PMID:19244446

  2. Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255

    SciTech Connect

    Hauser, Loren John; Land, Miriam L; Larimer, Frank W; Arp, D J; Hickey, W J

    2006-03-01

    The alphaproteobacterium Nitrobacter winogradskyi (ATCC 25391) is a gram-negative facultative chemolithoautotroph capable of extracting energy from the oxidation of nitrite to nitrate. Sequencing and analysis of its genome revealed a single circular chromosome of 3,402,093 bp encoding 3,143 predicted proteins. There were extensive similarities to genes in two alphaproteobacteria, Bradyrhizobium japonicum USDA110 (1,300 genes) and Rhodopseudomonas palustris CGA009 CG (815 genes). Genes encoding pathways for known modes of chemolithotrophic and chemoorganotrophic growth were identified. Genes encoding multiple enzymes involved in anapleurotic reactions centered on C2 to C4 metabolism, including a glyoxylate bypass, were annotated. The inability of N. winogradskyi to grow on C6 molecules is consistent with the genome sequence, which lacks genes for complete Embden-Meyerhof and Entner-Doudoroff pathways, and active uptake of sugars. Two gene copies of the nitrite oxidoreductase, type I ribulose-1,5-bisphosphate carboxylase/oxygenase, cytochrome c oxidase, and gene homologs encoding an aerobic-type carbon monoxide dehydrogenase were present. Similarity of nitrite oxidoreductases to respiratory nitrate reductases was confirmed. Approximately 10% of the N. winogradskyi genome codes for genes involved in transport and secretion, including the presence of transporters for various organic-nitrogen molecules. The N. winogradskyi genome provides new insight into the phylogenetic identity and physiological capabilities of nitrite-oxidizing bacteria. The genome will serve as a model to study the cellular and molecular processes that control nitrite oxidation and its interaction with other nitrogen-cycling processes.

  3. Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans.

    PubMed Central

    Amaro, A M; Chamorro, D; Seeger, M; Arredondo, R; Peirano, I; Jerez, C A

    1991-01-01

    The response of the obligate acidophilic bacterium Thiobacillus ferrooxidans to external pH changes is reported. When T. ferrooxidans cells grown at pH 1.5 were shifted to pH 3.5, there were several changes in the general protein synthesis pattern, including a large stimulation of the synthesis of a 36-kDa protein (p36). The apparent low isoelectric point of p36, its location in the membrane fraction, and its cross-reaction with anti-OmpC from Salmonella typhi suggested that it may be a porin whose expression is regulated by extracellular pH. Images PMID:1987171

  4. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans

    PubMed Central

    Beller, Harry R.; Zhou, Peng; Legler, Tina C.; Chakicherla, Anu; Kane, Staci; Letain, Tracy E.; A. O’Day, Peggy

    2013-01-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process. PMID:24065960

  5. Partial genome sequence of Thioalkalivibrio thiocyanodenitrificans ARhD 1T, a chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium capable of complete denitrification

    DOE PAGESBeta

    Berben, Tom; Sorokin, Dimitry Y.; Ivanova, Natalia; Pati, Amrita; Kyrpides, Nikos; Goodwin, Lynne A.; Woyke, Tanja; Muyzer, Gerard

    2015-10-26

    Thioalkalivibrio thiocyanodenitrificans strain ARhD 1T is a motile, Gram-negative bacterium isolated from soda lakes that belongs to the Gammaproteobacteria. It derives energy for growth and carbon fixation from the oxidation of sulfur compounds, most notably thiocyanate, and so is a chemolithoautotroph. It is capable of complete denitrification under anaerobic conditions. In addition, the draft genome sequence consists of 3,746,647 bp in 3 scaffolds, containing 3558 protein-coding and 121 RNA genes. T. thiocyanodenitrificans ARhD 1T was sequenced as part of the DOE Joint Genome Institute Community Science Program.

  6. Complete genome sequence of Thioalkalivibrio paradoxus type strain ARh 1T, an obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium isolated from a Kenyan soda lake

    DOE PAGESBeta

    Berben, Tom; Sorokin, Dimitry Y.; Ivanova, Natalia; Pati, Amrita; Kyrpides, Nikos; Goodwin, Lynne A.; Woyke, Tanja; Muyzer, Gerard

    2015-11-19

    Thioalkalivibrio paradoxus strain ARh 1T is a chemolithoautotrophic, non-motile, Gram-negative bacterium belonging to the Gammaproteobacteria that was isolated from samples of haloalkaline soda lakes. It derives energy from the oxidation of reduced sulfur compounds and is notable for its ability to grow on thiocyanate as its sole source of electrons, sulfur and nitrogen. The full genome consists of 3,756,729 bp and comprises 3,500 protein-coding and 57 RNA-coding genes. Moreover, this organism was sequenced as part of the community science program at the DOE Joint Genome Institute.

  7. Uncovering a microbial enigma: isolation and characterization of the streamer-generating, iron-oxidizing, acidophilic bacterium "Ferrovum myxofaciens".

    PubMed

    Johnson, D Barrie; Hallberg, Kevin B; Hedrich, Sabrina

    2014-01-01

    A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of "acid streamer" growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified "overlay" solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolate from an abandoned copper mine ("Ferrovum myxofaciens" strain P3G) have been elucidated. "F. myxofaciens" is an extremely acidophilic, psychrotolerant obligate autotroph that appears to use only ferrous iron as an electron donor and oxygen as an electron acceptor. It appears to use the Calvin-Benson-Bassham pathway to fix CO2 and is diazotrophic. It also produces copious amounts of extracellular polymeric materials that cause cells to attach to each other (and to form small streamer-like growth in vitro) and to different solid surfaces. "F. myxofaciens" can catalyze the oxidative dissolution of pyrite and, like many other acidophiles, is tolerant of many (cationic) transition metals. "F. myxofaciens" and related clone sequences form a monophyletic group within the Betaproteobacteria distantly related to classified orders, with genera of the family Nitrosomonadaceae (lithoautotrophic, ammonium-oxidizing neutrophiles) as the closest relatives. On the basis of the phylogenetic and phenotypic differences of "F. myxofaciens" and other Betaproteobacteria, a new family, "Ferrovaceae," and order, "Ferrovales," within the class Betaproteobacteria are proposed. "F. myxofaciens" is the first extreme acidophile to be described in the class Betaproteobacteria. PMID:24242243

  8. Cetia pacifica gen. nov., sp. nov., a chemolithoautotrophic, thermophilic, nitrate-ammonifying bacterium from a deep-sea hydrothermal vent.

    PubMed

    Grosche, Ashley; Sekaran, Hema; Pérez-Rodríguez, Ileana; Starovoytov, Valentin; Vetriani, Costantino

    2015-04-01

    A thermophilic, anaerobic, chemolithoautotrophic bacterium, strain TB-6(T), was isolated from a deep-sea hydrothermal vent located on the East Pacific Rise at 9° N. The cells were Gram-staining-negative and rod-shaped with one or more polar flagella. Cell size was approximately 1-1.5 µm in length and 0.5 µm in width. Strain TB-6(T) grew between 45 and 70 °C (optimum 55-60 °C), 0 and 35 g NaCl l(-1) (optimum 20-30 g l(-1)) and pH 4.5 and 7.5 (optimum pH 5.5-6.0). Generation time under optimal conditions was 2 h. Growth of strain TB-6(T) occurred with H2 as the energy source, CO2 as the carbon source and nitrate or sulfur as electron acceptors, with formation of ammonium or hydrogen sulfide, respectively. Acetate, (+)-d-glucose, Casamino acids, sucrose and yeast extract were not used as carbon and energy sources. Inhibition of growth occurred in the presence of lactate, peptone and tryptone under a H2/CO2 (80 : 20; 200 kPa) gas phase. Thiosulfate, sulfite, arsenate, selenate and oxygen were not used as electron acceptors. The G+C content of the genomic DNA was 36.8 mol%. Phylogenetic analysis of the 16S rRNA gene of strain TB-6(T) showed that this organism branched separately from the three most closely related genera, Caminibacter , Nautilia and Lebetimonas , within the family Nautiliaceae . Strain TB-6(T) contained several unique fatty acids in comparison with other members of the family Nautiliaceae . Based on experimental evidence, it is proposed that the organism represents a novel species and genus within the family Nautiliaceae , Cetia pacifica, gen. nov., sp. nov. The type strain is TB-6(T) ( = DSM 27783(T) = JCM 19563(T)). PMID:25604337

  9. Genome-Enabled Studies of Anaerobic, Nitrate-Dependent Iron Oxidation in the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Zhou, P.; Legler, T. C.; Chakicherla, A.; O'Day, P. A.

    2013-12-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. Of the transposon mutants defective in Fe(II) oxidation, one mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process.

  10. Purification and characterization of sulfide:quinone oxidoreductase from an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans.

    PubMed

    Wakai, Satoshi; Tsujita, Mizuho; Kikumoto, Mei; Manchur, Mohammed A; Kanao, Tadayoshi; Kamimura, Kazuo

    2007-11-01

    Sulfide:quinone oxidoreductase (SQR) was purified from membrane of acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans NASF-1 cells grown on sulfur medium. It was composed of a single polypeptide with an apparent molecular mass of 47 kDa. The apparent K(m) values for sulfide and ubiquinone were 42 and 14 muM respectively. The apparent optimum pH for the SQR activity was about 7.0. A gene encoding a putative SQR of A. ferrooxidans NASF-1 was cloned and sequenced. The gene was expressed in Escherichia coli as a thioredoxin-fusion protein in inclusion bodies in an inactive form. A polyclonal antibody prepared against the recombinant protein reacted immunologically with the purified SQR. Western blotting analysis using the antibody revealed an increased level of SQR synthesis in sulfur-grown A. ferrooxidans NASF-1 cells, implying the involvement of SQR in elemental sulfur oxidation in sulfur-grown A. ferrooxidans NASF-1 cells. PMID:17986789

  11. Complete genome sequence of Thermovibrio ammonificans HB-1T, a thermophilic, chemolithoautotrophic bacterium isolated from a deep-sea hydrothermal vent

    SciTech Connect

    Giovannelli, Donato; Ricci, Jessica; Perez-Rodriguez, Ileana; Hugler, Michael; O'Brien, Charles; Keddis, Ramaydalis; Grosche, Ashley; Goodwin, Lynne A.; Bruce, David; Davenport, Karen W.; Detter, J. Chris; Han, James; Han, Cliff; Ivanova, N; Land, Miriam L; Mikhailova, Natalia; Nolan, Matt; Pitluck, Sam; Tapia, Roxanne; Woyke, Tanja; Vetriani, Costantino

    2012-01-01

    Thermovibrio ammonificans type strain HB-1T is a thermophilic (Topt: 75 C), strictly anaero- bic, chemolithoautotrophic bacterium that was isolated from an active, high temperature deep-sea hydrothermal vent on the East Pacific Rise. This organism grows on mineral salts medium in the presence of CO2/H2, using NO3- or S0 as electron acceptors, which are re- duced to ammonium or hydrogen sulfide, respectively. T. ammonificans is one of only three species within the genus Thermovibrio, a member of the family Desulfurobacteriaceae, and it forms a deep branch within the phylum Aquificae. Here we report the main features of the genome of T. ammonificans strain HB-1T (DSM 15698T).

  12. Characterization of a novel thiosulfate dehydrogenase from a marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH.

    PubMed

    Sharmin, Sultana; Yoshino, Eriko; Kanao, Tadayoshi; Kamimura, Kazuo

    2016-01-01

    A marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH, was isolated to develop a bioleaching process for NaCl-containing sulfide minerals. Because the sulfur moiety of sulfide minerals is metabolized to sulfate via thiosulfate as an intermediate, we purified and characterized the thiosulfate dehydrogenase (TSD) from strain SH. The enzyme had an apparent molecular mass of 44 kDa and was purified 71-fold from the solubilized membrane fraction. Tetrathionate was the product of the TSD-oxidized thiosulfate and ferricyanide or ubiquinone was the electron acceptor. Maximum enzyme activity was observed at pH 4.0, 40 °C, and 200 mM NaCl. To our knowledge, this is the first report of NaCl-stimulated TSD activity. TSD was structurally different from the previously reported thiosulfate-oxidizing enzymes. In addition, TSD activity was strongly inhibited by 2-heptyl-4-hydroxy-quinoline N-oxide, suggesting that the TSD is a novel thiosulfate:quinone reductase. PMID:26393925

  13. Alicyclobacillus dauci sp. nov., a slightly thermophilic, acidophilic bacterium isolated from a spoiled mixed vegetable and fruit juice product.

    PubMed

    Nakano, Chisa; Takahashi, Naoto; Tanaka, Naoto; Okada, Sanae

    2015-02-01

    A novel, moderately thermophilic, acidophilic, Gram-variable, rod-shaped, endospore-forming bacterium was isolated from a spoiled mixed vegetable and fruit juice product that had the off-flavour of guaiacol. The bacterium, strain 4F(T), grew aerobically at 20-50 °C (optimum 40 °C) and pH 3.0-6.0 (optimum pH 4.0) and produced acid from glycerol, d-galactose and d-glucose. It contained menaquinone-7 (MK-7) as the major isoprenoid quinone and the DNA G+C content was 49.6 mol%. The predominant cellular fatty acids of strain 4F(T) were ω-alicyclic (ω-cyclohexane fatty acids), which are characteristic of the genus Alicyclobacillus. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain belongs to the Alicyclobacillus cluster, and is related most closely to the type strains of Alicyclobacillus acidoterrestris (97.4 % similarity) and Alicyclobacillus fastidiosus (97.3 %). Strain 4F(T) produced guaiacol from vanillic acid. It can be distinguished from related species by its acid production type and guaiacol production. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness values, it can be concluded that the strain represents a novel species of the genus Alicyclobacillus, for which the name Alicyclobacillus dauci sp. nov. is proposed; the type strain is 4F(T) ( = DSM 28700(T) = NBRC 108949(T) = NRIC 0938(T)). PMID:25505343

  14. Purification and characterization of 2-oxoglutarate:ferredoxin oxidoreductase from a thermophilic, obligately chemolithoautotrophic bacterium, Hydrogenobacter thermophilus TK-6.

    PubMed Central

    Yoon, K S; Ishii, M; Igarashi, Y; Kodama, T

    1996-01-01

    2-Oxoglutarate:ferredoxin oxidoreductase from a thermophilic, obligately autotrophic, hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, was purified to homogeneity by precipitation with ammonium sulfate and by fractionation by DEAE-Sepharose CL-6B, polyacrylate-quaternary amine, hydroxyapatite, and Superdex-200 chromatography. The purified enzyme had a molecular mass of about 105 kDa and comprised two subunits (70 kDa and 35 kDa). The activity of the 2-oxoglutarate:ferredoxin oxidoreductase was detected by the use of 2-oxoglutarate, coenzyme A, and one of several electron acceptors in substrate amounts (ferredoxin isolated from H. thermophilus, flavin adenine dinucleotide, flavin mononucleotide, or methyl viologen). NAD, NADP, and ferredoxins from Chlorella spp. and Clostridium pasteurianum were ineffective. The enzyme was extremely thermostable; the temperature optimum for 2-oxoglutarate oxidation was above 80 degrees C, and the time for a 50% loss of activity at 70 degrees C under anaerobic conditions was 22 h. The optimum pH for a 2-oxoglutarate oxidation reaction was 7.6 to 7.8. The apparent Km values for 2-oxoglutarate and coenzyme A at 70 degrees C were 1.42 mM and 80 microM, respectively. PMID:8655524

  15. Uncovering a Microbial Enigma: Isolation and Characterization of the Streamer-Generating, Iron-Oxidizing, Acidophilic Bacterium “Ferrovum myxofaciens”

    PubMed Central

    Hallberg, Kevin B.; Hedrich, Sabrina

    2014-01-01

    A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of “acid streamer” growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified “overlay” solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolate from an abandoned copper mine (“Ferrovum myxofaciens” strain P3G) have been elucidated. “F. myxofaciens” is an extremely acidophilic, psychrotolerant obligate autotroph that appears to use only ferrous iron as an electron donor and oxygen as an electron acceptor. It appears to use the Calvin-Benson-Bassham pathway to fix CO2 and is diazotrophic. It also produces copious amounts of extracellular polymeric materials that cause cells to attach to each other (and to form small streamer-like growth in vitro) and to different solid surfaces. “F. myxofaciens” can catalyze the oxidative dissolution of pyrite and, like many other acidophiles, is tolerant of many (cationic) transition metals. “F. myxofaciens” and related clone sequences form a monophyletic group within the Betaproteobacteria distantly related to classified orders, with genera of the family Nitrosomonadaceae (lithoautotrophic, ammonium-oxidizing neutrophiles) as the closest relatives. On the basis of the phylogenetic and phenotypic differences of “F. myxofaciens” and other Betaproteobacteria, a new family, “Ferrovaceae,” and order, “Ferrovales,” within the class Betaproteobacteria are proposed. “F. myxofaciens” is the first extreme acidophile to be described in the class Betaproteobacteria. PMID:24242243

  16. Complete genome sequence of Thioalkalivibrio paradoxus type strain ARh 1T, an obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium isolated from a Kenyan soda lake

    SciTech Connect

    Berben, Tom; Sorokin, Dimitry Y.; Ivanova, Natalia; Pati, Amrita; Kyrpides, Nikos; Goodwin, Lynne A.; Woyke, Tanja; Muyzer, Gerard

    2015-11-19

    Thioalkalivibrio paradoxus strain ARh 1T is a chemolithoautotrophic, non-motile, Gram-negative bacterium belonging to the Gammaproteobacteria that was isolated from samples of haloalkaline soda lakes. It derives energy from the oxidation of reduced sulfur compounds and is notable for its ability to grow on thiocyanate as its sole source of electrons, sulfur and nitrogen. The full genome consists of 3,756,729 bp and comprises 3,500 protein-coding and 57 RNA-coding genes. Moreover, this organism was sequenced as part of the community science program at the DOE Joint Genome Institute.

  17. Partial genome sequence of Thioalkalivibrio thiocyanodenitrificans ARhD 1T, a chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium capable of complete denitrification

    SciTech Connect

    Berben, Tom; Sorokin, Dimitry Y.; Ivanova, Natalia; Pati, Amrita; Kyrpides, Nikos; Goodwin, Lynne A.; Woyke, Tanja; Muyzer, Gerard

    2015-10-26

    Thioalkalivibrio thiocyanodenitrificans strain ARhD 1T is a motile, Gram-negative bacterium isolated from soda lakes that belongs to the Gammaproteobacteria. It derives energy for growth and carbon fixation from the oxidation of sulfur compounds, most notably thiocyanate, and so is a chemolithoautotroph. It is capable of complete denitrification under anaerobic conditions. In addition, the draft genome sequence consists of 3,746,647 bp in 3 scaffolds, containing 3558 protein-coding and 121 RNA genes. T. thiocyanodenitrificans ARhD 1T was sequenced as part of the DOE Joint Genome Institute Community Science Program.

  18. Nitrolancea hollandica gen. nov., sp. nov., a chemolithoautotrophic nitrite-oxidizing bacterium isolated from a bioreactor belonging to the phylum Chloroflexi.

    PubMed

    Sorokin, Dimitry Y; Vejmelkova, Dana; Lücker, Sebastian; Streshinskaya, Galina M; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S; Kleerbezem, Robbert; van Loosdrecht, Mark; Muyzer, Gerard; Daims, Holger

    2014-06-01

    A novel nitrite-oxidizing bacterium (NOB), strain Lb(T), was isolated from a nitrifying bioreactor with a high loading of ammonium bicarbonate in a mineral medium with nitrite as the energy source. The cells were oval (lancet-shaped) rods with pointed edges, non-motile, Gram-positive (by staining and from the cell wall structure) and non-spore-forming. Strain Lb(T) was an obligately aerobic, chemolitoautotrophic NOB, utilizing nitrite or formate as the energy source and CO2 as the carbon source. Ammonium served as the only source of assimilated nitrogen. Growth with nitrite was optimal at pH 6.8-7.5 and at 40 °C (maximum 46 °C). The membrane lipids consisted of C20 alkyl 1,2-diols with the dominant fatty acids being 10MeC18 and C(18 : 1)ω9. The peptidoglycan lacked meso-DAP but contained ornithine and lysine. The dominant lipoquinone was MK-8. Phylogenetic analyses of the 16s rRNA gene sequence placed strain Lb(T) into the class Thermomicrobia of the phylum Chloroflexi with Sphaerobacter thermophilus as the closest relative. On the basis of physiological and phylogenetic data, it is proposed that strain Lb(T) represents a novel species of a new genus, with the suggested name Nitrolancea hollandica gen. nov., sp. nov. The type strain of the type species is Lb(T) ( = DSM 23161(T) = UNIQEM U798(T)). PMID:24573161

  19. Sulfuriferula thiophila sp. nov., a chemolithoautotrophic sulfur-oxidizing bacterium, and correction of the name Sulfuriferula plumbophilusWatanabe, Kojima and Fukui 2015 to Sulfuriferula plumbiphila corrig.

    PubMed

    Watanabe, Tomohiro; Kojima, Hisaya; Fukui, Manabu

    2016-05-01

    A novel sulfur-oxidizing bacterium designated strain mst6T was isolated from spring water of Masutomi hot spring in Japan. The cells were rod-shaped (1.2-4.0 × 0.5-0.7 μm) and Gram-stain-negative. The G+C content of genomic DNA was around 52.6 mol%. The isolate possessed summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C12 : 0 as major cellular fatty acids. Strain mst6T grew by inorganic carbon fixation and oxidation of inorganic sulfur compounds with oxygen as an electron acceptor. The isolate grew over a temperature range of 5-34 °C, a NaCl concentration range of 0-110 mM and a pH range of 4.6-8.1. Optimum growth occurred at 32 °C, in the absence of NaCl and at pH 5.9-6.2. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain mst6T belongs to the family Sulfuricellaceae in the class Betaproteobacteria. The closest cultured relative was Sulfuriferula multivorans TTNT with a 16S rRNA gene sequence similarity of 97.0 %. On the basis of the data obtained in this study, strain mst6T represents a novel species of the genus Sulfuriferula, for which the name Sulfuriferula thiophila sp. nov. is proposed. The type strain is mst6T ( = NBRC 111150T = DSM 101871T). In addition, we propose correcting the name Sulfuriferula plumbophilus Watanabe, Kojima and Fukui 2015 to Sulfuriferula plumbiphila corrig. based on Rule 12c, Rule 61 and Appendix 9 of the International Code of Nomenclature of Prokaryotes. PMID:26908287

  20. Draft Genome Sequence of Chemolithoautotrophic Acetogenic Butanol-Producing Eubacterium limosum ATCC 8486

    PubMed Central

    Song, Yoseb

    2015-01-01

    Eubacterium limosum ATCC 8486 is an anaerobic chemolithoautotrophic acetogenic bacterium that converts and transforms syngas and isoflavonoids to butanol and phytoestrogens, respectively. Here, we report the draft genome sequence of the E. limosum ATCC 8486 (4.37 Mb) strain and its annotation information, including syngas fermentation and denitrification metabolic pathways. PMID:25676768

  1. Thiogranum longum gen. nov., sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing bacterium of the family Ectothiorhodospiraceae isolated from a deep-sea hydrothermal field, and an emended description of the genus Thiohalomonas.

    PubMed

    Mori, Koji; Suzuki, Ken-ichiro; Yamaguchi, Kaoru; Urabe, Tetsuro; Hanada, Satoshi

    2015-01-01

    A novel, obligately chemolithoautotrophic, sulfur-oxidizing bacterial strain, designated strain gps52(T), was isolated from a rock sample collected near the hydrothermal vents of the Suiyo Seamount in the Pacific Ocean. The cells possessed a Gram-stain-negative-type cell wall and contained menaquinone-8(H4) and menaquinone-9(H4) as respiratory quinones, and C16 : 1ω7c, C16 : 0 and C18 : 1ω7c as major cellular fatty acids. Neither storage compounds nor extensive internal membranes were observed in the cells. Strain gps52(T) grew using carbon dioxide fixation and oxidation of inorganic sulfur compounds with oxygen as electron acceptor. Optimal growth was observed at 32 °C, pH 6.5 and with 3 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain gps52(T) belongs to the family Ectothiorhodospiraceae and is different from any other known bacteria, with sequence similarities of less than 93 %. Based on phenotypic and phylogenetic findings, the isolate is considered to represent a novel genus and species in the family Ectothiorhodospiraceae, and the name Thiogranum longum gen. nov., sp. nov. is proposed. The type strain is gps52(T) ( = NBRC 101260(T) = DSM 19610(T)). An emended description of the genus Thiohalomonas is also proposed. PMID:25336721

  2. Draft Genome Sequence of the Iron-Oxidizing, Acidophilic, and Halotolerant “Thiobacillus prosperus” Type Strain DSM 5130

    PubMed Central

    Ossandon, Francisco J.; Cárdenas, Juan Pablo; Corbett, Melissa; Quatrini, Raquel; Holmes, David S.

    2014-01-01

    “Thiobacillus prosperus” is a halotolerant mesophilic acidophile that gains energy through iron and sulfur oxidation. Its physiology is poorly understood. Here, we describe the principal genomic features of the type strain of T. prosperus, DSM 5130. This is the first public genome sequence of an acidophilic halotolerant bacterium. PMID:25342676

  3. Genetic transfer in acidophilic bacteria

    SciTech Connect

    Roberto, F.F.; Glenn, A.W.; Bulmer, D.; Ward, T.E.

    1990-01-01

    There is increasing interest in the use of microorganisms to recover metals from ores, as well as to remove sulfur from coal. These so-called bioleaching processes are mediated by a number of bacteria. The best-studied of these organisms are acidophiles including Thiobacillus and Acidiphilium species. Our laboratory has focused on developing genetic strategies to allow the manipulation of acidophilic bacteria to improve and augment their utility in large scale operations. We have recently been successful in employing conjugation for interbacterial transfer of genetic information, as well as in directly transforming Acidiphilium by use of electroporation. We are now testing the properties of IncPl, IncW and IncQ plasmid vectors in Acidiphilium to determine their relative usefulness in routine manipulation of acidophiles and transfer between organisms. This study also allows us to determine the natural ability of these bacteria to transfer genetic material amongst themselves in their particular environment. 21 refs., 3 figs., 2 tabs.

  4. Genomic Analysis Unravels Reduced Inorganic Sulfur Compound Oxidation of Heterotrophic Acidophilic Acidicaldus sp. Strain DX-1

    PubMed Central

    Liu, Yuanyuan; Yang, Hongying; Zhang, Xian; Xiao, Yunhua; Guo, Xue; Liu, Xueduan

    2016-01-01

    Although reduced inorganic sulfur compound (RISC) oxidation in many chemolithoautotrophic sulfur oxidizers has been investigated in recent years, there is little information about RISC oxidation in heterotrophic acidophiles. In this study, Acidicaldus sp. strain DX-1, a heterotrophic sulfur-oxidizing acidophile, was isolated. Its genome was sequenced and then used for comparative genomics. Furthermore, real-time quantitative PCR was performed to identify the expression of genes involved in the RISC oxidation. Gene encoding thiosulfate: quinone oxidoreductase was present in Acidicaldus sp. strain DX-1, while no candidate genes with significant similarity to tetrathionate hydrolase were found. Additionally, there were genes encoding heterodisulfide reductase complex, which was proposed to play a crucial role in oxidizing cytoplasmic sulfur. Like many heterotrophic sulfur oxidizers, Acidicaldus sp. strain DX-1 had no genes encoding enzymes essential for the direct oxidation of sulfite. An indirect oxidation of sulfite via adenosine-5′-phosphosulfate was proposed in Acidicaldus strain DX-1. However, compared to other closely related bacteria Acidiphilium cryptum and Acidiphilium multivorum, which harbored the genes encoding Sox system, almost all of these genes were not detected in Acidicaldus sp. strain DX-1. This study might provide some references for the future study of RISC oxidation in heterotrophic sulfur-oxidizing acidophiles. PMID:27239474

  5. Genomic Analysis Unravels Reduced Inorganic Sulfur Compound Oxidation of Heterotrophic Acidophilic Acidicaldus sp. Strain DX-1.

    PubMed

    Liu, Yuanyuan; Yang, Hongying; Zhang, Xian; Xiao, Yunhua; Guo, Xue; Liu, Xueduan

    2016-01-01

    Although reduced inorganic sulfur compound (RISC) oxidation in many chemolithoautotrophic sulfur oxidizers has been investigated in recent years, there is little information about RISC oxidation in heterotrophic acidophiles. In this study, Acidicaldus sp. strain DX-1, a heterotrophic sulfur-oxidizing acidophile, was isolated. Its genome was sequenced and then used for comparative genomics. Furthermore, real-time quantitative PCR was performed to identify the expression of genes involved in the RISC oxidation. Gene encoding thiosulfate: quinone oxidoreductase was present in Acidicaldus sp. strain DX-1, while no candidate genes with significant similarity to tetrathionate hydrolase were found. Additionally, there were genes encoding heterodisulfide reductase complex, which was proposed to play a crucial role in oxidizing cytoplasmic sulfur. Like many heterotrophic sulfur oxidizers, Acidicaldus sp. strain DX-1 had no genes encoding enzymes essential for the direct oxidation of sulfite. An indirect oxidation of sulfite via adenosine-5'-phosphosulfate was proposed in Acidicaldus strain DX-1. However, compared to other closely related bacteria Acidiphilium cryptum and Acidiphilium multivorum, which harbored the genes encoding Sox system, almost all of these genes were not detected in Acidicaldus sp. strain DX-1. This study might provide some references for the future study of RISC oxidation in heterotrophic sulfur-oxidizing acidophiles. PMID:27239474

  6. Sulfur Metabolism in the Extreme Acidophile Acidithiobacillus Caldus

    PubMed Central

    Mangold, Stefanie; Valdés, Jorge; Holmes, David S.; Dopson, Mark

    2011-01-01

    Given the challenges to life at low pH, an analysis of inorganic sulfur compound (ISC) oxidation was initiated in the chemolithoautotrophic extremophile Acidithiobacillus caldus. A. caldus is able to metabolize elemental sulfur and a broad range of ISCs. It has been implicated in the production of environmentally damaging acidic solutions as well as participating in industrial bioleaching operations where it forms part of microbial consortia used for the recovery of metal ions. Based upon the recently published A. caldus type strain genome sequence, a bioinformatic reconstruction of elemental sulfur and ISC metabolism predicted genes included: sulfide–quinone reductase (sqr), tetrathionate hydrolase (tth), two sox gene clusters potentially involved in thiosulfate oxidation (soxABXYZ), sulfur oxygenase reductase (sor), and various electron transport components. RNA transcript profiles by semi quantitative reverse transcription PCR suggested up-regulation of sox genes in the presence of tetrathionate. Extensive gel based proteomic comparisons of total soluble and membrane enriched protein fractions during growth on elemental sulfur and tetrathionate identified differential protein levels from the two Sox clusters as well as several chaperone and stress proteins up-regulated in the presence of elemental sulfur. Proteomics results also suggested the involvement of heterodisulfide reductase (HdrABC) in A. caldus ISC metabolism. A putative new function of Hdr in acidophiles is discussed. Additional proteomic analysis evaluated protein expression differences between cells grown attached to solid, elemental sulfur versus planktonic cells. This study has provided insights into sulfur metabolism of this acidophilic chemolithotroph and gene expression during attachment to solid elemental sulfur. PMID:21687411

  7. Draft Genome Sequence of a Novel Acidophilic Iron-Oxidizing Firmicutes Species, “Acidibacillus ferrooxidans” (SLC66T)

    PubMed Central

    Ñancucheo, Ivan; Oliveira, Renato; Dall’Agnol, Hivana; Johnson, D. Barrie; Grail, Barry; Holanda, Roseanne; Nunes, Gisele Lopes; Cuadros-Orellana, Sara

    2016-01-01

    Here, we present the draft genome sequence of the type strain of “Acidibacillus ferrooxidans,” a mesophilic, heterotrophic, and acidophilic bacterium that was isolated from mine spoilage subjected to accelerated weathering in humidity cell tests carried out by the former U.S. Bureau of Mines in Salt Lake City, UT. PMID:27198020

  8. Draft Genome Sequence of a Novel Acidophilic Iron-Oxidizing Firmicutes Species, "Acidibacillus ferrooxidans" (SLC66T).

    PubMed

    Ñancucheo, Ivan; Oliveira, Renato; Dall'Agnol, Hivana; Johnson, D Barrie; Grail, Barry; Holanda, Roseanne; Nunes, Gisele Lopes; Cuadros-Orellana, Sara; Oliveira, Guilherme

    2016-01-01

    Here, we present the draft genome sequence of the type strain of "Acidibacillus ferrooxidans," a mesophilic, heterotrophic, and acidophilic bacterium that was isolated from mine spoilage subjected to accelerated weathering in humidity cell tests carried out by the former U.S. Bureau of Mines in Salt Lake City, UT. PMID:27198020

  9. Arsenite oxidation by a facultative chemolithoautotrophic Sinorhizobium sp. KGO-5 isolated from arsenic-contaminated soil.

    PubMed

    Dong, Dan; Ohtsuka, Toshihiko; Dong, Dian Tao; Amachi, Seigo

    2014-01-01

    A chemolithoautotrophic arsenite-oxidizing bacterium, designated strain KGO-5, was isolated from arsenic-contaminated industrial soil. Strain KGO-5 was phylogenetically closely related with Sinorhizobium meliloti with 16S rRNA gene similarity of more than 99%, and oxidized 5 mM arsenite under autotrophic condition within 60 h with a doubling time of 3.0 h. Additions of 0.01-0.1% yeast extract enhanced the growth significantly, and the strain still oxidized arsenite efficiently with much lower doubling times of approximately 1.0 h. Arsenite-oxidizing capacities (11.2-54.1 μmol h(-1) mg dry cells(-1)) as well as arsenite oxidase (Aio) activities (1.76-10.0 mU mg protein(-1)) were found in the cells grown with arsenite, but neither could be detected in the cells grown without arsenite. Strain KGO-5 possessed putative aioA gene, which is closely related with AioA of Ensifer adhaerens. These results suggest that strain KGO-5 is a facultative chemolithoautotrophic arsenite oxidizer, and its Aio is induced by arsenic. PMID:25051896

  10. Acidophil bodies in nonalcoholic steatohepatitis.

    PubMed

    Yeh, Matthew M; Belt, Patricia; Brunt, Elizabeth M; Kowdley, Kris V; Wilson, Laura A; Ferrell, Linda

    2016-06-01

    The significance of the quantity of acidophil bodies (AB) in nonalcoholic steatohepatitis (NASH) is not certain. We quantified AB in liver biopsies and examined the association with the diagnosis of NASH and other histologic features. We reviewed 157 liver biopsies from the NASH Clinical Research Network Database collected in 2006. One hundred twenty-seven biopsies were from adult patients. Diagnoses were 94 definite NASH, 40 borderline NASH, and 23 definitely not NASH. The total length and average width of the core biopsies were measured, and the biopsy areas were calculated (mm(2)). Total AB were counted, and mean AB count per mm(2) was calculated (AB/mm(2)) to derive acidophil body index (ABI). ABI was 0.04 (±0.08) in definite NASH and 0.02 (±0.05) in borderline/definitely not NASH groups combined (P = .02) in all 157 biopsies; similar findings were present in the 127 adult-only biopsies (0.04 ± 0.05 and 0.02 ± 0.05, respectively; P = .05). In all 157 biopsies, increased ABI was associated with greater lobular inflammation (P = .01) and many ballooned hepatocytes (P = .048). There was a positive relationship between ABI and high nonalcoholic fatty liver disease activity scores, but this association was not statistically significant. There was no association between ABI and steatosis or fibrosis stage either in the entire cohorts or in the subset of adult patients. In conclusion, the density of AB is associated with lobular inflammation, ballooned hepatocytes, and the diagnosis of NASH in adult and pediatric liver biopsies, suggesting the implication of the apoptotic pathway in NASH-associated liver cell injury. PMID:26980020

  11. Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria

    PubMed Central

    Johnson, D. Barrie; McGinness, Stephen

    1991-01-01

    Fifty mesophilic and five moderately thermophilic strains of acidophilic heterotrophic bacteria were tested for the ability to reduce ferric iron in liquid and solid media under aerobic conditions; about 40% of the mesophiles (but none of the moderate thermophiles) displayed at least some capacity to reduce iron. Both rates and extents of ferric iron reduction were highly strain dependent. No acidophilic heterotroph reduced nitrate or sulfate, and (limited) reduction of manganese(IV) was noted in only one strain (Acidiphilium facilis), an acidophile which did not reduce iron. Insoluble forms of ferric iron, both amorphous and crystalline, were reduced, as well as soluble iron. There was evidence that, in at least some acidophilic heterotrophs, iron reduction was enzymically mediated and that ferric iron could act as a terminal electron acceptor. In anaerobically incubated cultures, bacterial biomass increased with increasing concentrations of ferric but not ferrous iron. Mixed cultures of Thiobacillus ferrooxidans or Leptospirillum ferrooxidans and an acidophilic heterotroph (SJH) produced sequences of iron cycling in ferrous iron-glucose media. PMID:16348395

  12. Draft Genome Sequence of "Acidibacillus ferrooxidans" ITV01, a Novel Acidophilic Firmicute Isolated from a Chalcopyrite Mine Drainage Site in Brazil.

    PubMed

    Dall'Agnol, Hivana; Ñancucheo, Ivan; Johnson, D Barrie; Oliveira, Renato; Leite, Laura; Pylro, Victor S; Holanda, Roseanne; Grail, Barry; Carvalho, Nelson; Nunes, Gisele Lopes; Tzotzos, George; Fernandes, Gabriel Rocha; Dutra, Julliane; Orellana, Sara Cuadros; Oliveira, Guilherme

    2016-01-01

    Here, we report the draft genome sequence of "Acidibacillus ferrooxidans" strain ITV01, a ferrous iron- and sulfide-mineral-oxidizing, obligate heterotrophic, and acidophilic bacterium affiliated with the phylum Firmicutes. Strain ITV01 was isolated from neutral drainage from a low-grade chalcopyrite from a mine in northern Brazil. PMID:26988062

  13. Draft Genome Sequence of “Acidibacillus ferrooxidans” ITV01, a Novel Acidophilic Firmicute Isolated from a Chalcopyrite Mine Drainage Site in Brazil

    PubMed Central

    Dall’Agnol, Hivana; Ñancucheo, Ivan; Johnson, D. Barrie; Oliveira, Renato; Leite, Laura; Holanda, Roseanne; Grail, Barry; Carvalho, Nelson; Nunes, Gisele Lopes; Tzotzos, George; Fernandes, Gabriel Rocha; Dutra, Julliane; Orellana, Sara Cuadros

    2016-01-01

    Here, we report the draft genome sequence of “Acidibacillus ferrooxidans” strain ITV01, a ferrous iron- and sulfide-mineral-oxidizing, obligate heterotrophic, and acidophilic bacterium affiliated with the phylum Firmicutes. Strain ITV01 was isolated from neutral drainage from a low-grade chalcopyrite from a mine in northern Brazil. PMID:26988062

  14. Proteome and Membrane Fatty Acid Analyses on Oligotropha carboxidovorans OM5 Grown under Chemolithoautotrophic and Heterotrophic Conditions

    PubMed Central

    Paul, Debarati; Kumar, Ranjit; Nanduri, Bindu; French, Todd; Pendarvis, Ken; Brown, Ashli; Lawrence, Mark L.; Burgess, Shane C.

    2011-01-01

    Oligotropha carboxidovorans OM5 T. (DSM 1227, ATCC 49405) is a chemolithoautotrophic bacterium able to utilize CO and H2 to derive energy for fixation of CO2. Thus, it is capable of growth using syngas, which is a mixture of varying amounts of CO and H2 generated by organic waste gasification. O. carboxidovorans is capable also of heterotrophic growth in standard bacteriologic media. Here we characterize how the O. carboxidovorans proteome adapts to different lifestyles of chemolithoautotrophy and heterotrophy. Fatty acid methyl ester (FAME) analysis of O. carboxidovorans grown with acetate or with syngas showed that the bacterium changes membrane fatty acid composition. Quantitative shotgun proteomic analysis of O. carboxidovorans grown in the presence of acetate and syngas showed production of proteins encoded on the megaplasmid for assimilating CO and H2 as well as proteins encoded on the chromosome that might have contributed to fatty acid and acetate metabolism. We found that adaptation to chemolithoautotrophic growth involved adaptations in cell envelope, oxidative homeostasis, and metabolic pathways such as glyoxylate shunt and amino acid/cofactor biosynthetic enzymes. PMID:21386900

  15. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    PubMed

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. PMID:26853478

  16. Oxidation of Molecular Hydrogen by a Chemolithoautotrophic Beggiatoa Strain

    PubMed Central

    2016-01-01

    ABSTRACT A chemolithoautotrophic strain of the family Beggiatoaceae, Beggiatoa sp. strain 35Flor, was found to oxidize molecular hydrogen when grown in a medium with diffusional gradients of oxygen, sulfide, and hydrogen. Microsensor profiles and rate measurements suggested that the strain oxidized hydrogen aerobically when oxygen was available, while hydrogen consumption under anoxic conditions was presumably driven by sulfur respiration. Beggiatoa sp. 35Flor reached significantly higher biomass in hydrogen-supplemented oxygen-sulfide gradient media, but hydrogen did not support growth of the strain in the absence of reduced sulfur compounds. Nevertheless, hydrogen oxidation can provide Beggiatoa sp. 35Flor with energy for maintenance and assimilatory purposes and may support the disposal of internally stored sulfur to prevent physical damage resulting from excessive sulfur accumulation. Our knowledge about the exposure of natural populations of Beggiatoaceae to hydrogen is very limited, but significant amounts of hydrogen could be provided by nitrogen fixation, fermentation, and geochemical processes in several of their typical habitats such as photosynthetic microbial mats and submarine sites of hydrothermal fluid flow. IMPORTANCE Reduced sulfur compounds are certainly the main electron donors for chemolithoautotrophic Beggiatoaceae, but the traditional focus on this topic has left other possible inorganic electron donors largely unexplored. In this paper, we provide evidence that hydrogen oxidation has the potential to strengthen the ecophysiological plasticity of Beggiatoaceae in several ways. Moreover, we show that hydrogen oxidation by members of this family can significantly influence biogeochemical gradients and therefore should be considered in environmental studies. PMID:26896131

  17. Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction

    SciTech Connect

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.

    1989-05-10

    A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.

  18. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    PubMed Central

    Ňancucheo, Ivan; Barrie Johnson, D.

    2012-01-01

    Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30°C, with a corresponding culture doubling time of 9 h. The isolates displayed similar tolerance (10–50 mM) to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC). Glycolic acid was identified as a significant component (12–14%) of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within 3 days). Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella), and mannitol and glucose (Euglena). These were rapidly metabolized by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp.) though only fructose was utilized by the more fastidious heterotroph “Acidocella aromatica.” The significance of algae in promoting the growth of iron- (and sulfate-) reducing heterotrophic acidophiles that are important in remediating mine-impacted waters (MIWs) is discussed. PMID:22973267

  19. Genome Analysis of the Biotechnologically Relevant Acidophilic Iron Oxidising Strain JA12 Indicates Phylogenetic and Metabolic Diversity within the Novel Genus “Ferrovum”

    PubMed Central

    Ullrich, Sophie R.; Poehlein, Anja; Tischler, Judith S.; González, Carolina; Ossandon, Francisco J.; Daniel, Rolf; Holmes, David S.; Schlömann, Michael; Mühling, Martin

    2016-01-01

    Background Members of the genus “Ferrovum” are ubiquitously distributed in acid mine drainage (AMD) waters which are characterised by their high metal and sulfate loads. So far isolation and microbiological characterisation have only been successful for the designated type strain “Ferrovum myxofaciens” P3G. Thus, knowledge about physiological characteristics and the phylogeny of the genus “Ferrovum” is extremely scarce. Objective In order to access the wider genetic pool of the genus “Ferrovum” we sequenced the genome of a “Ferrovum”-containing mixed culture and successfully assembled the almost complete genome sequence of the novel “Ferrovum” strain JA12. Phylogeny and Lifestyle The genome-based phylogenetic analysis indicates that strain JA12 and the type strain represent two distinct “Ferrovum” species. “Ferrovum” strain JA12 is characterised by an unusually small genome in comparison to the type strain and other iron oxidising bacteria. The prediction of nutrient assimilation pathways suggests that “Ferrovum” strain JA12 maintains a chemolithoautotrophic lifestyle utilising carbon dioxide and bicarbonate, ammonium and urea, sulfate, phosphate and ferrous iron as carbon, nitrogen, sulfur, phosphorous and energy sources, respectively. Unique Metabolic Features The potential utilisation of urea by “Ferrovum” strain JA12 is moreover remarkable since it may furthermore represent a strategy among extreme acidophiles to cope with the acidic environment. Unlike other acidophilic chemolithoautotrophs “Ferrovum” strain JA12 exhibits a complete tricarboxylic acid cycle, a metabolic feature shared with the closer related neutrophilic iron oxidisers among the Betaproteobacteria including Sideroxydans lithotrophicus and Thiobacillus denitrificans. Furthermore, the absence of characteristic redox proteins involved in iron oxidation in the well-studied acidophiles Acidithiobacillus ferrooxidans (rusticyanin) and Acidithiobacillus

  20. Streptomyces thermoautotrophicus sp. nov., a Thermophilic CO- and H2-Oxidizing Obligate Chemolithoautotroph

    PubMed Central

    Gadkari, Dilip; Schricker, Karl; Acker, Georg; Kroppenstedt, Reiner M.; Meyer, Ortwin

    1990-01-01

    The novel thermophilic CO- and H2-oxidizing bacterium UBT1 has been isolated from the covering soil of a burning charcoal pile. The isolate is gram positive and obligately chemolithoautotrophic and has been named Streptomyces thermoautotrophicus on the basis of G+C content (70.6 ± 0.19 mol%), a phospholipid pattern of type II, MK-9(H4) as the major quinone, and other chemotaxonomic and morphological properties. S. thermoautotrophicus could grow with CO (td = 8 h), H2 plus CO2 (td = 6 h), car exhaust, or gas produced by the incomplete combustion of wood. Complex media or heterotrophic substrates such as sugars, organic acids, amino acids, and alcohols did not support growth. Molybdenum was required for CO-autotrophic growth. For growth with H2, nickel was not necessary. The optimum growth temperature was 65°C; no growth was observed below 40°C. However, CO-grown cells were able to oxidize CO at temperatures of 10 to 70°C. Temperature profiles of burning charcoal piles revealed that, up to a depth of about 10 to 25 cm, the entire covering soil provides a suitable habitat for S. thermoautotrophicus. The Km was 88 μl of CO liter−1 and Vmax was 20.2 μl of CO h−1 mg of protein−1. The threshold value of S. thermoautotrophicus of 0.2 μl of CO liter−1 was similar to those of various soils. The specific CO-oxidizing activity in extracts with phenazinemethosulfate plus 2,6-dichlorophenolindophenol as electron acceptors was 246 μmol min−1 mg of protein−1. In exception to other carboxydotrophic bacteria, S. thermoautotrophicus CO dehydrogenase was able to reduce low potential electron acceptors such as methyl and benzyl viologens. Images PMID:16348374

  1. Chemolithoautotrophic arsenite oxidation by a thermophilic Anoxybacillus flavithermus strain TCC9-4 from a hot spring in Tengchong of Yunnan, China

    PubMed Central

    Jiang, Dawei; Li, Ping; Jiang, Zhou; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Guo, Qinghai; Wang, Yanxin

    2015-01-01

    A new facultative chemolithoautotrophic arsenite (AsIII)-oxidizing bacterium TCC9-4 was isolated from a hot spring microbial mat in Tengchong of Yunnan, China. This strain could grow with AsIII as an energy source, CO2–HCO3- as a carbon source and oxygen as the electron acceptor in a minimal salts medium. Under chemolithoautotrophic conditions, more than 90% of 100 mg/L AsIII could be oxidized by the strain TCC9-4 in 36 h. Temperature was an important environmental factor that strongly influenced the AsIII oxidation rate and AsIII oxidase (Aio) activity; the highest Aio activity was found at the temperature of 40∘C. Addition of 0.01% yeast extract enhanced the growth significantly, but delayed the AsIII oxidation. On the basis of 16S rRNA phylogenetic sequence analysis, strain TCC9-4 was identified as Anoxybacillus flavithermus. To our best knowledge, this is the first report of arsenic (As) oxidation by A. flavithermus. The Aio gene in TCC9-4 might be quite novel relative to currently known gene sequences. The results of this study expand our current understanding of microbially mediated As oxidation in hot springs. PMID:25999920

  2. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources

    PubMed Central

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe2+ ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD+ through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats. PMID:26500609

  3. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources.

    PubMed

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe(2+) ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD(+) through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats. PMID:26500609

  4. Metal resistance in acidophilic microorganisms and its significance for biotechnologies.

    PubMed

    Dopson, Mark; Holmes, David S

    2014-10-01

    Extremely acidophilic microorganisms have an optimal pH of <3 and are found in all three domains of life. As metals are more soluble at acid pH, acidophiles are often challenged by very high metal concentrations. Acidophiles are metal-tolerant by both intrinsic, passive mechanisms as well as active systems. Passive mechanisms include an internal positive membrane potential that creates a chemiosmotic gradient against which metal cations must move, as well as the formation of metal sulfate complexes reducing the concentration of the free metal ion. Active systems include efflux proteins that pump metals out of the cytoplasm and conversion of the metal to a less toxic form. Acidophiles are exploited in a number of biotechnologies including biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications. PMID:25104030

  5. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.; Mccollom, Thomas; Schulte, Mithell D.

    1995-01-01

    Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of reduced hydrothermal fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of hydrothermal fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from hydrothermal fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of hydrothermal fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of hydrothermal systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.

  6. The chemolithoautotroph Acidithiobacillus ferrooxidans can survive under phosphate-limiting conditions by expressing a C-P lyase operon that allows it to grow on phosphonates.

    PubMed

    Vera, Mario; Pagliai, Fernando; Guiliani, Nicolas; Jerez, Carlos A

    2008-03-01

    The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans is of great importance in biomining operations. During the bioleaching of ores, microorganisms are subjected to a variety of environmental stresses and to the limitations of some nutrients, such as inorganic phosphate (P(i)), which is an essential component for all living cells. Although the primary source of phosphorus for microorganisms is P(i), some bacteria are also able to metabolize P(i) esters (with a C-O-P bond) and phosphonates (with a very inert C-P bond). By using bioinformatic analysis of genomic sequences of the type strain of A. ferrooxidans (ATCC 23270), we found that as part of a Pho regulon, this bacterium has a complete gene cluster encoding C-P lyase, which is the main bacterial enzyme involved in phosphonate (Pn) degradation in other microorganisms. A. ferrooxidans was able to grow in the presence of methyl-Pn or ethyl-Pn as an alternative phosphorus source. Under these growth conditions, a great reduction in inorganic polyphosphate (polyP) levels was seen compared with the level for cells grown in the presence of P(i). By means of reverse transcription-PCR (RT-PCR), DNA macroarrays, and real-time RT-PCR experiments, it was found that A. ferrooxidans phn genes were cotranscribed and their expression was induced when the microorganism was grown in methyl-Pn as the only phosphorus source. This is the first report of phosphonate utilization in a chemolithoautotrophic microorganism. The existence of a functional C-P lyase system is a clear advantage for the survival under P(i) limitation, a condition that may greatly affect the bioleaching of ores. PMID:18203861

  7. Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals.

    PubMed

    Nybo, S Eric; Khan, Nymul E; Woolston, Benjamin M; Curtis, Wayne R

    2015-07-01

    The ability of autotrophic organisms to fix CO2 presents an opportunity to utilize this 'greenhouse gas' as an inexpensive substrate for biochemical production. Unlike conventional heterotrophic microorganisms that consume carbohydrates and amino acids, prokaryotic chemolithoautotrophs have evolved the capacity to utilize reduced chemical compounds to fix CO2 and drive metabolic processes. The use of chemolithoautotrophic hosts as production platforms has been renewed by the prospect of metabolically engineered commodity chemicals and fuels. Efforts such as the ARPA-E electrofuels program highlight both the potential and obstacles that chemolithoautotrophic biosynthetic platforms provide. This review surveys the numerous advances that have been made in chemolithoautotrophic metabolic engineering with a focus on hydrogen oxidizing bacteria such as the model chemolithoautotrophic organism (Ralstonia), the purple photosynthetic bacteria (Rhodobacter), and anaerobic acetogens. Two alternative strategies of microbial chassis development are considered: (1) introducing or enhancing autotrophic capabilities (carbon fixation, hydrogen utilization) in model heterotrophic organisms, or (2) improving tools for pathway engineering (transformation methods, promoters, vectors etc.) in native autotrophic organisms. Unique characteristics of autotrophic growth as they relate to bioreactor design and process development are also discussed in the context of challenges and opportunities for genetic manipulation of organisms as production platforms. PMID:25959019

  8. Quantitative proteomic analyses of the response of acidophilic microbial communities to different pH conditions

    SciTech Connect

    Belnap, Christopher P.; Pan, Chongle; Denef, Vincent; Samatova, Nagiza F; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2011-01-01

    Extensive genomic characterization of multi-species acid mine drainage microbial consortia combined with laboratory cultivation has enabled the application of quantitative proteomic analyses at the community level. In this study, quantitative proteomic comparisons were used to functionally characterize laboratory-cultivated acidophilic communities sustained in pH 1.45 or 0.85 conditions. The distributions of all proteins identified for individual organisms indicated biases for either high or low pH, and suggests pH-specific niche partitioning for low abundance bacteria and archaea. Although the proteome of the dominant bacterium, Leptospirillum group II, was largely unaffected by pH treatments, analysis of functional categories indicated proteins involved in amino acid and nucleotide metabolism, as well as cell membrane/envelope biogenesis were overrepresented at high pH. Comparison of specific protein abundances indicates higher pH conditions favor Leptospirillum group III, whereas low pH conditions promote the growth of certain archaea. Thus, quantitative proteomic comparisons revealed distinct differences in community composition and metabolic function of individual organisms during different pH treatments. Proteomic analysis revealed other aspects of community function. Different numbers of phage proteins were identified across biological replicates, indicating stochastic spatial heterogeneity of phage outbreaks. Additionally, proteomic data were used to identify a previously unknown genotypic variant of Leptospirillum group II, an indication of selection for a specific Leptospirillum group II population in laboratory communities. Our results confirm the importance of pH and related geochemical factors in fine-tuning acidophilic microbial community structure and function at the species and strain level, and demonstrate the broad utility of proteomics in laboratory community studies.

  9. Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant.

    PubMed

    Ghosh, Wriddhiman; Roy, Pradosh

    2006-01-01

    The bacterial strain SJT(T), along with 15 other mesophilic, neutrophilic and facultatively sulfur-oxidizing chemolithotrophic isolates, was isolated by enrichment on reduced sulfur compounds as the sole energy and electron source from soils immediately adjacent to the roots of Clitoria ternatea, a slender leguminous herb of the Lower Gangetic plains of India. Strain SJT(T) was able to oxidize thiosulfate and elemental sulfur for chemolithoautotrophic growth. 16S rRNA and recA gene sequence-based phylogenetic analyses showed that the Gram-negative rod-shaped bacterium belonged to the genus Mesorhizobium and was most closely related to Mesorhizobium loti, Mesorhizobium plurifarium, Mesorhizobium amorphae and Mesorhizobium chacoense. Unequivocally low 16S rRNA (<97 %) and recA (< or =88 %) gene sequence similarities to all existing species of the most closely related genera, a unique fatty acid profile, a distinct G+C content (59.6 mol%) and phenotypic characteristics all suggested that strain SJT(T) represents a novel species. DNA-DNA hybridization and SDS-PAGE analysis of whole-cell proteins also confirmed the taxonomic uniqueness of SJT(T). It is therefore proposed that isolate SJT(T) (= LMG 22697T = MTCC 7001T) be classified as the type strain of a novel species, Mesorhizobium thiogangeticum sp. nov. PMID:16403872

  10. Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions

    NASA Astrophysics Data System (ADS)

    Gómez, Felipe; Mateo-Martí, Eva; Prieto-Ballesteros, Olga; Martín-Gago, Jose; Amils, Ricardo

    2010-10-01

    Current surface conditions (strong oxidative atmosphere, UV radiation, low temperatures and xeric conditions) on Mars are considered extremely challenging for life. The question is whether there are any features on Mars that could exert a protective effect against the sterilizing conditions detected on its surface. Potential habitability in the subsurface would increase if the overlaying material played a protective role. With the aim of evaluating this possibility we studied the viability of two microorganisms under different conditions in a Mars simulation chamber. An acidophilic chemolithotroph isolated from Río Tinto belonging to the Acidithiobacillus genus and Deinococcus radiodurans, a radiation resistant microorganism, were exposed to simulated Mars conditions under the protection of a layer of ferric oxides and hydroxides, a Mars regolith analogue. Samples of these microorganisms were exposed to UV radiation in Mars atmospheric conditions at different time intervals under the protection of 2 and 5 mm layers of oxidized iron minerals. Viability was evaluated by inoculation on fresh media and characterization of their growth cultures. Here we report the survival capability of both bacteria to simulated Mars environmental conditions.

  11. Isolation and Characterization of Novel Psychrophilic, Neutrophilic, Fe-Oxidizing, Chemolithoautotrophic α- and γ-Proteobacteria from the Deep Sea†

    PubMed Central

    Edwards, K. J.; Rogers, D. R.; Wirsen, C. O.; McCollom, T. M.

    2003-01-01

    We report the isolation and physiological characterization of novel, psychrophilic, iron-oxidizing bacteria (FeOB) from low-temperature weathering habitats in the vicinity of the Juan de Fuca deep-sea hydrothermal area. The FeOB were cultured from the surfaces of weathered rock and metalliferous sediments. They are capable of growth on a variety of natural and synthetic solid rock and mineral substrates, such as pyrite (FeS2), basalt glass (∼10 wt% FeO), and siderite (FeCO3), as their sole energy source, as well as numerous aqueous Fe substrates. Growth temperature characteristics correspond to the in situ environmental conditions of sample origin; the FeOB grow optimally at 3 to 10°C and at generation times ranging from 57 to 74 h. They are obligate chemolithoautotrophs and grow optimally under microaerobic conditions in the presence of an oxygen gradient or anaerobically in the presence of nitrate. None of the strains are capable of using any organic or alternate inorganic substrates tested. The bacteria are phylogenetically diverse and have no close Fe-oxidizing or autotrophic relatives represented in pure culture. One group of isolates are γ-Proteobacteria most closely related to the heterotrophic bacterium Marinobacter aquaeolei (87 to 94% sequence similarity). A second group of isolates are α-Proteobacteria most closely related to the deep-sea heterotrophic bacterium Hyphomonas jannaschiana (81 to 89% sequence similarity). This study provides further evidence for the evolutionarily widespread capacity for Fe oxidation among bacteria and suggests that FeOB may play an unrecognized geomicrobiological role in rock weathering in the deep sea. PMID:12732565

  12. Phylogenetic diversity of acidophilic sporoactinobacteria isolated from various soils.

    PubMed

    Cho, Sung-Heun; Han, Ji-Hye; Seong, Chi Nam; Kim, Seung Bum

    2006-12-01

    Spore forming actinobacteria (sporoactinobacteria) isolated from soils with an acidic pH in Pinus thunbergii forests and coal mine waste were subjected to taxonomic characterization. For the isolation of acidophilic actinobacteria, acidified starch casein agar (pH adjusted to 4-5) was used. The numbers of actinobacteria growing in acidic media were between 3.2 x 10(4) and 8.0 x 10(6) CFU/g soil. Forty three acidophilic actinobacterial strains were isolated and their 16S rDNA sequences were determined. The isolates were divided into eight distinctive phylogenetic clusters within the variation encompassed by the family Streptomycetaceae. Four clusters among them were assigned to the genus Streptacidiphilus, whereas the remaining four were assigned to Streptomyces. The clusters belonging to either Streptomyces or Streptacidiphilus did not form monophyletic clade. The growth pH profiles indicated that the representative isolates grew best between pH 5 and 6. It is evident from this study that acidity has played a critical role in the differentiation of the family Streptomycetaceae, and also that different mechanisms might have resulted in the evolution of two groups, Streptacidiphilus (strict acidophiles) and neutrotolerant acidophilic Streptomyces. The effect of geographic separation was clearly seen among the Streptacidiphilus isolates, which may be a key factor in speciation of the genus. PMID:17205037

  13. Genomics and Metagenomics of Extreme Acidophiles in Biomining Environments

    NASA Astrophysics Data System (ADS)

    Holmes, D. S.

    2015-12-01

    Over 160 draft or complete genomes of extreme acidophiles (pH < 3) have been published, many of which are from bioleaching and other biomining environments, or are closely related to such microorganisms. In addition, there are over 20 metagenomic studies of such environments. This provides a rich source of latent data that can be exploited for understanding the biology of biomining environments and for advancing biotechnological applications. Genomic and metagenomic data are already yielding valuable insights into cellular processes, including carbon and nitrogen management, heavy metal and acid resistance, iron and sulfur oxido-reduction, linking biogeochemical processes to organismal physiology. The data also allow the construction of useful models of the ecophysiology of biomining environments and provide insight into the gene and genome evolution of extreme acidophiles. Additionally, since most of these acidophiles are also chemoautolithotrophs that use minerals as energy sources or electron sinks, their genomes can be plundered for clues about the evolution of cellular metabolism and bioenergetic pathways during the Archaean abiotic/biotic transition on early Earth. Acknowledgements: Fondecyt 1130683.

  14. A New Iron-oxidizing/O2-reducing Supercomplex Spanning Both Inner and Outer Membranes, Isolated from the Extreme Acidophile Acidithiobacillus ferrooxidans*

    PubMed Central

    Castelle, Cindy; Guiral, Marianne; Malarte, Guillaume; Ledgham, Fouzia; Leroy, Gisèle; Brugna, Myriam; Giudici-Orticoni, Marie-Thérèse

    2008-01-01

    The iron respiratory chain of the acidophilic bacterium Acidithiobacillus ferrooxidans involves various metalloenzymes. Here we demonstrate that the oxygen reduction pathway from ferrous iron (named downhill pathway) is organized as a supercomplex constituted of proteins located in the outer and inner membranes as well as in the periplasm. For the first time, the outer membrane-bound cytochrome c Cyc2 was purified, and we showed that it is responsible for iron oxidation and determined that its redox potential is the highest measured to date for a cytochrome c. The organization of metalloproteins inside the supramolecular structure was specified by protein-protein interaction experiments. The isolated complex spanning the two membranes had iron oxidase as well as oxygen reductase activities, indicating functional electron transfer between the first iron electron acceptor, Cyc2, and the CuA center of cytochrome c oxidase aa3. This is the first characterization of a respirasome from an acidophilic bacterium. In Acidithiobacillus ferrooxidans,O2 reduction from ferrous iron must be coupled to the energy-consuming reduction of NAD+(P) from ferrous iron (uphill pathway) required for CO2 fixation and other anabolic processes. Besides the proteins involved in the O2 reduction, there were additional proteins in the supercomplex, involved in uphill pathway (bc complex and cytochrome Cyc42), suggesting a possible physical link between these two pathways. PMID:18632666

  15. Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production.

    PubMed

    Kernan, Timothy; Majumdar, Sudipta; Li, Xiaozheng; Guan, Jingyang; West, Alan C; Banta, Scott

    2016-01-01

    There is growing interest in developing non-photosynthetic routes for the conversion of CO2 to fuels and chemicals. One underexplored approach is the transfer of energy to the metabolism of genetically modified chemolithoautotrophic bacteria. Acidithiobacillus ferrooxidans is an obligate chemolithoautotroph that derives its metabolic energy from the oxidation of iron or sulfur at low pH. Two heterologous biosynthetic pathways have been expressed in A. ferrooxidans to produce either isobutyric acid or heptadecane from CO2 and the oxidation of Fe(2+). A sevenfold improvement in productivity of isobutyric acid was obtained through improved media formulations in batch cultures. Steady-state efficiencies were lower in continuous cultures, likely due to ferric inhibition. If coupled to solar panels, the photon-to-fuel efficiency of this proof-of-principle process approaches estimates for agriculture-derived biofuels. These efforts lay the foundation for the utilization of this organism in the exploitation of electrical energy for biochemical synthesis. PMID:26174759

  16. Novel Thermo-Acidophilic Bacteria Isolated from Geothermal Sites in Yellowstone National Park: Physiological and Phylogenetic Characteristics

    SciTech Connect

    D. B. Johnson; N. Okibe; F. F. Roberto

    2003-07-01

    Moderately thermophilic acidophilic bacteria were isolated from geothermal (30–83 °C) acidic (pH 2.7– 3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 °C, and pH 1.0–1.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria (Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstone strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the a-Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also a-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes (SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.

  17. Effect of uncouplers on endogenous respiration and ferrous iron oxidation in a chemolithoautotrophic bacterium Acidithiobacillus (Thiobacillus) ferrooxidans.

    PubMed

    Chen, Yongqiang; Suzuki, Isamu

    2004-08-01

    Oxidation of ferrous iron (Fe2+) to ferric iron (Fe3+) with oxygen (O2) by Acidithiobacillus (Thiobacillus) ferrooxidans is considered to be inhibited by uncouplers. Oxidation of the endogenous substrates (presumably NADH) with O2 or Fe3+, on the other hand, was stimulated by uncouplers, 2,4-dinitrophenol (DNP) and carbonylcyanide-m-chlorophenyl-hydrazone (CCCP), as expected in respiratorily controlled mitochondria or heterotrophic bacteria. Amytal and rotenone were inhibitory. Fe3+ reduction by endogenous substrates was studied extensively and was found to be stimulated by a permeable anion, SCN- and weak acids, as well as the above uncouplers. Proton translocating properties of some of these stimulators were shown by following a pH change in the cell suspension. It was concluded that any compounds that destroy proton electrochemical gradient, Deltap, stimulated endogenous respiration. Stimulation of Fe2+ or ascorbate oxidation by lower concentrations of uncouplers was successfully demonstrated by shortening the reaction time, but only to a small extent. Uncouplers at concentrations stimulatory to endogenous respiration inhibited Fe2+ oxidation if present before Fe2+ addition. The inhibition by 10 microM CCCP was reversed by washing the cells in a buffer. Complex I inhibitors, atabrine, rotenone and amytal inhibited Fe2+ oxidation, more strongly in the presence of 0.1 mM DNP. It is proposed that Fe2+ oxidation required Deltap perhaps to climb an energetically uphill reaction or to reduce NAD+ to NADH by reversed electron flow for CO2 fixation. The latter interpretation implies some obligatory coupling between Fe2+ oxidation and NAD+ reduction. PMID:15268949

  18. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring

    PubMed Central

    Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki

    2016-01-01

    We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ. PMID:27297893

  19. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring.

    PubMed

    Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki

    2016-06-25

    We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ. PMID:27297893

  20. A Description of an Acidophilic, Iron Reducer, Geobacter sp. FeAm09 Isolated from Tropical Soils

    NASA Astrophysics Data System (ADS)

    Healy, O.; Souchek, J.; Heithoff, A.; LaMere, B.; Pan, D.; Hollis, G.; Yang, W. H.; Silver, W. L.; Weber, K. A.

    2014-12-01

    Iron (Fe) is the fourth most abundant element in the Earth's crust and plays a significant role controlling the geochemistry in soils, sediments, and aquatic systems. As part of a study to understand microbially-catalysed iron biogeochemical cycling in tropical soils, an iron reducing isolate, strain FeAm09, was obtained. Strain FeAm09 was isolated from acidic, Fe-rich soils collected from a tropical forest (Luquillo Experimental Forest, Puerto Rico). Strain FeAm09 is a rod-shaped, motile, Gram-negative bacterium. Taxonomic analysis of the near complete 16S rRNA gene sequence revealed that strain FeAm09 is 94.7% similar to Geobacter lovleyi, placing it in the genus Geobacter within the Family Geobacteraceae in the Deltaproteobacteria. Characterization of the optimal growth conditions revealed that strain FeAm09 is a moderate acidophile with an optimal growth pH of 5.0. The optimal growth temperature was 37°C. Growth of FeAm09 was coupled to the reduction of soluble Fe(III), Fe(III)-NTA, with H2, fumarate, ethanol, and various organic acids and sugars serving as the electron donor. Insoluble Fe(III), in the form of synthetic ferrihydrite, was reduced by strain FeAm09 using acetate or H2 as the electron donor. The use of H2 as an electron donor in the presence of CO2 and absence of organic carbon and assimilation of 14C-labelled CO2 into biomass indicate that strain FeAm09 is an autotrophic Fe(III)-reducing bacterium. Together, these data describe the first acidophilic, autotrophic Geobacter species. Iron reducing bacteria were previously shown to be as abundant in tropical soils as in saturated sediments (lake-bottoms) and saturated soils (wetlands) where Fe(III) reduction is more commonly recognized as a dominant mode of microbial respiration. Furthermore, Fe(III) reduction was identified as a primary driver of carbon mineralization in these tropical soils (Dubinsky et al. 2010). In addition to mineralizing organic carbon, Geobacter sp. FeAm09 is likely to also

  1. [Effects of sex hormone on the dilatation of urinary tubule and acidophil body in NON mice].

    PubMed

    Sahata, H; Suzuki, S; Ago, A; Mifune, H; Sakamoto, H

    1994-10-01

    The influences of sex hormones on the dilatation of the urinary tubules and acidophil bodies were histologically investigated in NON (Non-Obese Non-diabetic) mice. Although the dilatation of the proximal tubules and acidophil bodies in NON mice were observed only in female but not in male, a slight dilatation and a few bodies were also observed in castrated male NON mice. Moreover, in ovariectomized female NON mice the dilatation and bodies were less compared with intact female NON mice. Estradiol administration induced prominent dilatation and numerous acidophil bodies, while the administration of testosterone showed a complete preventive effect. Therefore, it is suggested that the dilatation of the tubules and the acidophil bodies can be profoundly influenced by sex hormones. PMID:7805803

  2. Identification of the Hydrogen Uptake Gene Cluster for Chemolithoautotrophic Growth and Symbiosis Hydrogen Uptake in Bradyrhizobium Diazoefficiens

    PubMed Central

    Masuda, Sachiko; Saito, Masaki; Sugawara, Chiaki; Itakura, Manabu; Eda, Shima; Minamisawa, Kiwamu

    2016-01-01

    The hydrogen uptake (Hup) system of Bradyrhizobium diazoefficiens recycles the H2 released by nitrogenase in soybean nodule symbiosis, and is responsible for H2-dependent chemolithoautotrophic growth. The strain USDA110 has two hup gene clusters located outside (locus I) and inside (locus II) a symbiosis island. Bacterial growth under H2-dependent chemolithoautotrophic conditions was markedly weaker and H2 production by soybean nodules was markedly stronger for the mutant of hup locus I (ΔhupS1L1) than for the mutant of hup locus II (ΔhupS2L2). These results indicate that locus I is primarily responsible for Hup activity. PMID:26911707

  3. Environment or kin: whence do bees obtain acidophilic bacteria?

    PubMed

    McFrederick, Quinn S; Wcislo, William T; Taylor, Douglas R; Ishak, Heather D; Dowd, Scot E; Mueller, Ulrich G

    2012-04-01

    As honey bee populations decline, interest in pathogenic and mutualistic relationships between bees and microorganisms has increased. Honey bees and bumble bees appear to have a simple intestinal bacterial fauna that includes acidophilic bacteria. Here, we explore the hypothesis that sweat bees can acquire acidophilic bacteria from the environment. To quantify bacterial communities associated with two species of North American and one species of Neotropical sweat bees, we conducted 16S rDNA amplicon 454 pyrosequencing of bacteria associated with the bees, their brood cells and their nests. Lactobacillus spp. were the most abundant bacteria in many, but not all, of the samples. To determine whether bee-associated lactobacilli can also be found in the environment, we reconstructed the phylogenetic relationships of the genus Lactobacillus. Previously described groups that associate with Bombus and Apis appeared relatively specific to these genera. Close relatives of several bacteria that have been isolated from flowers, however, were isolated from bees. Additionally, all three sweat bee species associated with lactobacilli related to flower-associated lactobacilli. These data suggest that there may be at least two different means by which bees acquire putative probiotics. Some lactobacilli appear specific to corbiculate apids, possibly because they are largely maternally inherited (vertically transmitted). Other lactobacilli, however, may be regularly acquired from environmental sources such as flowers. Sweat bee-associated lactobacilli were found to be abundant in the pollen and frass inside the nests of halictids, suggesting that they could play a role in suppressing the growth of moulds and other spoilage organisms. PMID:22340254

  4. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    SciTech Connect

    Bollmann, Annette; Sedlacek, Christopher J; Laanbroek, Hendrikus J; Suwa, Yuichi; Stein, Lisa Y; Klotz, Martin G; Arp, D J; Sayavedra-Soto, LA; Lu, Megan; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, James; Woyke, Tanja; Lucas, Susan; Pitluck, Sam; Pennacchio, Len; Nolan, Matt; Land, Miriam L; Huntemann, Marcel; Deshpande, Shweta; Han, Cliff; Chen, Amy; Kyrpides, Nikos C; Mavromatis, K; Markowitz, Victor; Szeto, Ernest; Ivanova, N; Mikhailova, Natalia; Pagani, Ioanna; Pati, Amrita; Peters, Lin; Ovchinnikova, Galina; Goodwin, Lynne A.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

  5. The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2

    SciTech Connect

    Scott, K M; Sievert, S M; Abril, F N; Ball, L A; Barrett, C J; Blake, R A; Boller, A J; Chain, P G; Clark, J A; Davis, C R; Detter, C; Do, K F; Dobrinski, K P; Faza, B I; Fitzpatrick, K A; Freyermuth, S K; Harmer, T L; Hauser, L J; Hugler, M; Kerfeld, C A; Klotz, M G; Kong, W W; Land, M; Lapidus, A; Larimer, F W; Longo, D L; Lucas, S; Malfatti, S A; Massey, S E; Martin, D D; McCuddin, Z; Meyer, F; Moore, J L; Ocampo Jr., L H; Paul, J H; Paulsen, I T; Reep, D K; Ren, Q; Ross, R L; Sato, P Y; Thomas, P; Tinkham, L E; Zerugh, G T

    2007-01-10

    Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 bp), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of CDSs encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. T. crunogena XCL-2 is unusual among obligate sulfur oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. A 38 kb prophage is present, and a high level of prophage induction was observed, which may play a role in keeping competing populations of close relatives in check. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome.

  6. Importance of Chemolithoautotrophic Production to Mobile Benthic Predators in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Morgan, E.; Macavoy, S.; Carney, R.

    2005-05-01

    The continental slope of the Gulf of Mexico is characterized by substantial hydrocarbon seepage which provides reduced energy sources, both CH4 and H2S, for chemolithoautotrophs existing as endosymbionts within mussels and tubeworms found in dense colonies that provide habitat for an array of endemic and colonial fauna. The extent of trophic export of chemosynthetic biomass to the seep communities and the surrounding benthic communities in the Gulf, however, remains an open question. To elucidate the nutritional associations between seep residents and the surrounding benthos the carbon, nitrogen and sulfur stable isotope values of the hagfish Eptatretus sp., the giant isopod Bathynomus giganteus and the predatory snail Phymorhyncus sp. were interpreted through a three source, dual isotope mixing model. The model was able to assess the contributions of different isotopic signals to a mixture and thus could distinguish between photosynthetic/phytodetritus based sources, methanotrophic sources and thiotrophic sources. Incorporation of chemosynthetic based food sources was minimal on the whole and species specific; however some of the organisms considered in this study did incorporate nutrition from chemolithoautotrophic sources.

  7. Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community

    SciTech Connect

    Verberkmoes, Nathan C; Singer, Steven; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2008-01-01

    We have discovered and characterized a novel membrane cytochrome of an iron oxidizing microbial biofilm obtained from the surface of extremely acidic mine water. This protein was initially identified through proteogenomic analysis as one of many novel gene products of Leptospirillum group II, the dominant bacterium of this community (Ram et al, 2005, Science 308, 1915-20). Extraction of proteins directly from environmental biofilm samples followed by membrane fractionation, detergent solubilization and gel filtration chromatography resulted in the purification of an abundant yellow-red protein. Covalently bound to heme, the purified cytochrome has a unique spectral signature at 572 nm and is thus called Cyt572. It readily oxidizes Fe2+ even in the presence of Fe3+ over a pH range from 0.95 to 3.4. Independent experiments involving 2D blue-native polyacrylamide gel electrophoresis and chemical crosslinking establish a homotetrameric structure for Cyt572. Also, circular dichroism spectroscopy indicates that the protein is largely beta-stranded, consistent with an outer membrane location. Although no significant sequence homology to the full-length cytochrome is detected in protein databases, environmental DNA sequences from both Leptospirillum groups II and III reveal at least 17 strain variants of Cyt572. Due to its abundance, cellular location and Fe2+ oxidation activity, we propose Cyt572 is the iron oxidase of the Leptospirillum bacteria, providing a critical function for fitness within the ecological niche of this acidophilic microbial community.

  8. Construction of conjugative gene transfer system between E. coli and moderately thermophilic, extremely acidophilic Acidithiobacillus caldus MTH-04.

    PubMed

    Liu, Xiangmei; Lin, Jianqun; Zhang, Zheng; Bian, Jiang; Zhao, Qing; Liu, Ying; Lin, Jianqiang; Yan, Wangming

    2007-01-01

    A genetic transfer system for introducing foreign genes to biomining microorganisms is urgently needed. Thus, a conjugative gene transfer system was investigated for a moderately thermophilic, extremely acidophilic biomining bacterium, Acidithiobacillus caldus MTH-04. The broad-host-range IncP plasmids RP4 and R68.45 were transferred directly into A. caldus MTH-04 from Escherichia coli by conjugation at relatively high frequencies. Additionally the broad-host-range IncQ plasmids pJRD215, pVLT33, and pVLT35 were also transferred into A. caldus MTH-04 with the help of plasmid RP4 or strains with plasmid RP4 integrated into their chromosome, such as E. coli SM10. The Km(r) and Sm(r) selectable markers from these plasmids were successfully expressed in A. caldus MTH-04. Futhermore, the IncP and IncQ plasmids were transferred back into E. coli cells from A. caldus MTH-04, thereby confirming the initial transfer of these plasmids from E. coli to A. caldus MTH-04. All the IncP and IncQ plasmids studied were stable in A. caldus MTH-04. Consequently, this development of a conjugational system for A. caldus MTH-04 will greatly facilitate its genetic study. PMID:18051368

  9. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms

    PubMed Central

    Dopson, Mark; Ossandon, Francisco J.; Lövgren, Lars; Holmes, David S.

    2014-01-01

    All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Extremely acidophilic microorganisms have an optimum growth of pH <3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account. PMID:24782845

  10. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms.

    PubMed

    Dopson, Mark; Ossandon, Francisco J; Lövgren, Lars; Holmes, David S

    2014-01-01

    All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Extremely acidophilic microorganisms have an optimum growth of pH <3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account. PMID:24782845

  11. Cultivation and quantitative proteomic analyses of acidophilic microbial communities

    SciTech Connect

    Belnap, Christopher P.; Pan, Chongle; Verberkmoes, Nathan C; Power, Mary E.; Samatova, Nagiza F; Carver, Rudolf L.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2010-01-01

    Acid mine drainage (AMD), an extreme environment characterized by low pH and high metal concentrations, can support dense acidophilic microbial biofilm communities that rely on chemoautotrophic production based on iron oxidation. Field determined production rates indicate that, despite the extreme conditions, these communities are sufficiently well adapted to their habitats to achieve primary production rates comparable to those of microbial communities occurring in some non-extreme environments. To enable laboratory studies of growth, production and ecology of AMD microbial communities, a culturing system was designed to reproduce natural biofilms, including organisms recalcitrant to cultivation. A comprehensive metabolic labeling-based quantitative proteomic analysis was used to verify that natural and laboratory communities were comparable at the functional level. Results confirmed that the composition and core metabolic activities of laboratory-grown communities were similar to a natural community, including the presence of active, low abundance bacteria and archaea that have not yet been isolated. However, laboratory growth rates were slow compared with natural communities, and this correlated with increased abundance of stress response proteins for the dominant bacteria in laboratory communities. Modification of cultivation conditions reduced the abundance of stress response proteins and increased laboratory community growth rates. The research presented here represents the first description of the application of a metabolic labeling-based quantitative proteomic analysis at the community level and resulted in a model microbial community system ideal for testing physiological and ecological hypotheses.

  12. Transcriptional Response of the Sulfur Chemolithoautotroph Thiomicrospira crunogena to Dissolved Inorganic Carbon Limitation

    PubMed Central

    Dobrinski, Kimberly P.; Enkemann, Steven A.; Yoder, Sean J.; Haller, Edward

    2012-01-01

    The hydrothermal vent gammaproteobacterium Thiomicrospira crunogena inhabits an unstable environment and must endure dramatic changes in habitat chemistry. This sulfur chemolithoautotroph responds to changes in dissolved inorganic carbon (DIC) (DIC = CO2 + HCO3− + CO3−2) availability with a carbon-concentrating mechanism (CCM) in which whole-cell affinity for DIC, as well as the intracellular DIC concentration, increases substantially under DIC limitation. To determine whether this CCM is regulated at the level of transcription, we resuspended cells that were cultivated under high-DIC conditions in chemostats in growth medium with low concentrations of DIC and tracked CCM development in the presence and absence of the RNA polymerase inhibitor rifampin. Induction of the CCM, as measured by silicone oil centrifugation, was hindered in the presence of rifampin. Similar results were observed for carboxysome gene transcription and assembly, as assayed by quantitative reverse transcription-PCR (qRT-PCR) and transmission electron microscopy, respectively. Genome-wide transcription patterns for cells grown under DIC limitation and those grown under ammonia limitation were assayed via microarrays and compared. In addition to carboxysome genes, two novel genes (Tcr_1019 and Tcr_1315) present in other organisms, including chemolithoautotrophs, but whose function(s) has not been elucidated in any organism were found to be upregulated under low-DIC conditions. Likewise, under ammonia limitation, in addition to the expected enhancement of ammonia transporter and PII gene transcription, the transcription of two novel genes (Tcr_0466 and Tcr_2018) was measurably enhanced. Upregulation of all four genes (Tcr_1019, 4-fold; Tcr_131, ∼7-fold; Tcr_0466, >200-fold; Tcr_2018, 7-fold), which suggests that novel components are part of the response to nutrient limitation by this organism, was verified via qRT-PCR. PMID:22328671

  13. Population structure of deep-sea chemolithoautotrophs: identification of phenotypic and genotypic correlations

    NASA Astrophysics Data System (ADS)

    Mino, S.; Nakagawa, S.; Sawabe, T.; Miyazaki, J.; Makita, H.; Nunoura, T.; Yamamoto, M.; Takai, K.

    2012-12-01

    Deep-sea hydrothermal fields are areas on the seafloor of high biological productivity fueled primarily by microbial chemosynthesis. Chemolithoautotrophic Epsilonproteobacteria and Persephonella with an ability to utilize inorganic substrates such as elemental sulfur and hydrogen are important members in wide range of temperature conditions in deep-sea hydrothermal vents. However, little is known about their population genetic structure such as intraspecific genetic diversity, distribution pattern, and phenotypic characteristics. Previously, using genetic approach based on multi-locus sequence analysis (MLSA), we clarified that Epsilonproteobacteria Group A, B, F, and Persephonella populations were geographically separated, and Epsilonproteobacteria appeared to diverge by mutation rather than recombination. Contrary to genetic evidence for allopatric segregation in deep-sea chemoautotrophs, however, phenotypic evidence has never been found. In addition, analyzing such a phenotypic characteristic may lead to a better understanding of the interactions microbes have with their environment. In this study, we present a metabolomic approach based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to reveal phenotypic biogeographical discrimination. We demonstrated the whole-cell MALDI-TOF MS method on Epsilonproteobacteria and Persephonella populations. These chemoautotrophic strains used in this study were isolated from chimney structures, vent fluids, and hydrothermal sediments. These hydrothermal samples were collected from geographically separated hydrothermal areas of the South Mariana Trough, Okinawa Trough and Central Indian Ridge. Based on mass peaks (signal/noise >10) within the m/z range of 2000-14000, phenotypic analysis was carried out by cluster analysis. The result of phenotypic analysis was compared with the genotypic clusters. The whole-cell MALDI-TOF MS revealed that Persephonella population was identified to

  14. Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae.

    PubMed

    Hallberg, Kevin B; Hedrich, Sabrina; Johnson, D Barrie

    2011-03-01

    A comprehensive physiological and phylogenetic characterisation was carried out of "Thiobacillus ferrooxidans" m-1, an acidophilic iron-oxidizing bacterium first described over 25 years ago. Phylogenetically, strain m-1 is a gammaproteobacterium, most closely related to alkaliphilic Ectothiorhodospira spp. and only distantly to iron-oxidizing acidithiobacilli. Physiological examination confirmed that strain m-1 can grow autotrophically not only by ferrous iron oxidation but also, in contrast to previous reports, by oxidation of elemental sulfur, sulfide and tetrathionate, using either oxygen or ferric iron as terminal electron acceptor. The bacterium was also found to be thermo-tolerant, growing optimally at 38°C and up to a maximum of 47°C. Growth in liquid media required an external osmotic potential of >2 bar, and was optimal at ~5 bar, though no growth occurred where the medium osmotic potential was close to that of sea water (~26 bar). From this, it was concluded that strain m-1 is a moderate osmophile. Strain m-1 was also shown to be diazotrophic and tolerant of elevated concentrations of many metals typically found in mine-impacted environments. On the basis of these data, m-1 is proposed as the type strain of a new genus and species of bacteria, Acidiferrobacter thiooxydans (DSM 2392, JCM 17358). PMID:21311931

  15. Genomics of the thermo-acidophilic red alga Galdieria sulphuraria

    NASA Astrophysics Data System (ADS)

    Barbier, Guillaume G.; Zimmermann, Marc; Weber, Andreas P. M.

    2005-09-01

    Extremophilic organisms dwell in environments that are characterized by high or low temperatures (thermophiles or psychrophiles), very low or high pH-values (acidophiles or alkalophiles), high salt concentrations (halophiles), high pressure (barophiles), or extreme drought (xerophiles). Many extremophiles are microbes, and many also belong to the prokaryota. Galdieria sulphuraria, however, is a member of a group of extremophilic eukaryotes that are named Cyanidiales. Cyanidiales are unicellular red micro-algae that occur worldwide in hot acidic waters, volcanic calderas, and in human-made acidic environments such as acidic mine drainage. G. sulphuraria has a unique position within the Cyanidiales because, in contrast to the other obligate photoautotrophic members of this group, it is able to grow photoautotrophically, mixotrophically, and heterotrophically. It is not only resistant to acid (pH 0) and heat (56oC), but also to high salt (1.5 M NaCl), toxic metals, and many other abiotic stressors. This unusual combination of features such as thermophily, acidophily, resistance to a wide array of abiotic stressors, and an extraordinary metabolic plasticity make G. sulphuraria highly interesting model organism to study adaptation to extreme environments. We have started a genomics approach to gain insight into the biology of G. sulphuraria and to identify genes and gene products critical for survival under extreme conditions. To this end, we pursue a whole-genome, shotgun sequencing approach towards unraveling the genome sequence of G. sulphuraria. We report here on the status quo of the genome-sequencing project and we summarize what we have learned to date from the genome sequence about the biology of this truly unique extremophile.

  16. Comparing chemolithoautotrophic subseafloor communities across geochemical gradients using meta-omics and RNA-SIP

    NASA Astrophysics Data System (ADS)

    Fortunato, C. S.; Huber, J. A.

    2015-12-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. Past studies have shown that the taxonomic structure of subseafloor communities differs based on the geochemical signatures of individual vents. In this study, we expanded beyond phylogeny and used a combination of metagenomic, metatranscriptomic, and RNA-based stable isotope probing (RNA-SIP) analyses to identify the metabolic potential, expression patterns, and the active autotrophic players and genomic pathways present in venting fluids from Axial Seamount, an active submarine volcano off the coast of Oregon, USA. Low-temperature diffuse vent fluids from three hydrothermal vents, Marker 113, Marker 33, and Anemone, were filtered and preserved on the seafloor for metagenome and metatranscriptome analyses. Fluid for RNA-SIP was also collected and incubated shipboard with 13C-labeled sodium bicarbonate at 30ºC, 55ºC, and 80ºC for each vent. Taxonomically, Epsilonproteobacteria comprised a significant proportion of the community at all three vents, but each vent also had distinct groups that were abundant including SUP05 at Anemone and Methanococcus at Marker 113. Functionally, vents shared many metabolic processes including genes for denitrification, sulfur reduction and sulfur, hydrogen, and ammonium oxidation, which were present and expressed in similar abundance across all three vents. One metabolic difference between vents was the presence and expression of genes for methanogenesis, which were highly abundant and expressed at Marker 113, in lower abundance and expression at Marker 33, and not present at Anemone. RNA-SIP analysis is ongoing but initial results from Marker 113 revealed that at mesophilic, thermophilic, or hyperthemophilic temperatures, different genera and autotrophic metabolisms dominated

  17. Diversity of acidophilic prokaryotes at two acid mine drainage sites in Turkey.

    PubMed

    Aytar, Pınar; Kay, Catherine Melanie; Mutlu, Mehmet Burçin; Çabuk, Ahmet; Johnson, David Barrie

    2015-04-01

    The biodiversity of acidophilic prokaryotes in two acidic (pH 2.8-3.05) mine drainage (AMD) sites (Balya and Çan) in Turkey was examined using a combined cultivation-based and cultivation-independent approach. The latter included analyzing microbial diversity using fluorescent in situ hybridization (FISH), terminal restriction enzyme fragment length polymorphism (`T-RFLP), and quantitative PCR (qPCR). Numbers of cultivatable heterotrophic acidophilic bacteria were over an order of magnitude greater than those of chemolithotrophic acidophiles in both AMD ponds examined. Isolates identified as strains of Acidithiobacillus ferrivorans, Acidiphilium organovorum, and Ferrimicrobium acidiphilum were isolated from the Balya AMD pond, and others identified as strains of Leptospirillum ferriphilum, Acidicapsa ligni, and Acidiphilium rubrum from Çan AMD. Other isolates were too distantly related (from analysis of their 16S rRNA genes) to be identified at the species level. Archaeal diversity in the two ponds appeared to be far more limited. T-RFLP and qPCR confirmed the presence of Ferroplasma-like prokaryotes, but no archaea were isolated from the two sites. qPCR generated semiquantitative data for genera of some of the iron-oxidizing acidophiles isolated and/or detected, suggesting the order of abundance was Leptospirillum > Ferroplasma > Acidithiobacillus (Balya AMD) and Ferroplasma > Leptospirillum > Acidithiobacillus (Çan AMD). PMID:25380633

  18. Simultaneous sulfate and zinc removal from acid wastewater using an acidophilic and autotrophic biocathode.

    PubMed

    Teng, Wenkai; Liu, Guangli; Luo, Haiping; Zhang, Renduo; Xiang, Yinbo

    2016-03-01

    The aim of this study was to develop microbial electrolysis cell (MEC) with a novel acidophilic and autotrophic biocathode for treatment of acid wastewater. A biocathode was developed using acidophilic sulfate-reducing bacteria as the catalyst. Artificial wastewater with 200mgL(-1) sulfate and different Zn concentrations (0, 15, 25, and 40 mg L(-1)) was used as the MEC catholyte. The acidophilic biocathode dominated by Desulfovibrio sp. with an abundance of 66% (with 82% of Desulfovibrio sequences similar to Desulfovibrio simplex) and achieved a considerable sulfate reductive rate of 32 gm(-3)d(-1). With 15 mg L(-1) Zn added, the sulfate reductive rate of MEC improved by 16%. The formation of ZnS alleviated the inhibition from sulfide and sped the sulfate reduction. With 15 and 25 mgL(-1) Zn added, more than 99% of Zn was removed from the wastewater. Dissolved Zn ions in the catholyte were converted into insoluble Zn compounds, such as zinc sulfide and zinc hydroxide, due to the sulfide and elevated pH produced by sulfate reduction. The MEC with acidophilic and autotrophic biocathode can be used as an alternative to simultaneously remove sulfate and metals from acid wastewaters, such as acid mine drainage. PMID:26561748

  19. A method of genetically engineering acidophilic, heterotrophic, bacteria by electroporation and conjugation

    SciTech Connect

    Roberto, F.F.; Glenn, A.W.; Ward, T.E.

    1990-08-07

    A method of genetically manipulating an acidophilic bacteria is provided by two different procedures. Using electroporation, chimeric and broad-host range plasmids are introduced into Acidiphilium. Conjugation is also employed to introduce broad-host range plasmids into Acidiphilium at neutral pH.

  20. Genome Sequence of the Acidophilic Sulfate-Reducing Peptococcaceae Strain CEB3

    PubMed Central

    Petzsch, Patrick; Poehlein, Anja; Johnson, D. Barrie; Daniel, Rolf; Schlömann, Michael

    2015-01-01

    We report the draft genome of the Peptococcaceae strain CEB3 that originated from an acidic (pH 2.5) stream draining an abandoned copper mine. Strain CEB3 is one of the very few reported acidophilic sulfate-reducing isolates. The 5.04-Mb draft genome harbors 5,069 predicted protein-encoding and 66 RNA genes. PMID:26251503

  1. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.

    PubMed

    Navarro, Claudio A; von Bernath, Diego; Jerez, Carlos A

    2013-01-01

    Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI), which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each of these

  2. Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor.

    PubMed

    Orsi, William D; Barker Jørgensen, Bo; Biddle, Jennifer F

    2016-08-01

    Sulfate reducing bacteria (SRB) oxidize a significant proportion of subseafloor organic carbon, but their metabolic activities and subsistence mechanisms are poorly understood. Here, we report in depth phylogenetic and metabolic analyses of SRB transcripts in the Peru Margin subseafloor and interpret these results in the context of sulfate reduction activity in the sediment. Relative abundance of overall SRB gene transcripts declines strongly whereas relative abundance of ribosomal protein transcripts from sulfate reducing δ-Proteobacteria peak at 90 m below seafloor (mbsf) within a deep sulfate methane transition zone. This coincides with isotopically heavy δ(34) S values of pore water sulfate (70‰), indicating active subseafloor microbial sulfate reduction. Within the shallow sulfate reduction zone (0-5 mbsf), a transcript encoding the beta subunit of dissimilatory sulfite reductase (dsrB) was related to Desulfitobacterium dehalogenans and environmental sequences from Aarhus Bay (Denmark). At 159 mbsf we discovered a transcript encoding the reversely operating dissimilatory sulfite reductase α-subunit (rdsrA), with basal phylogenetic relation to the chemolithoautotrophic SUP05 Group II clade. A diversity of SRB transcripts involved in cellular maintenance point toward potential subsistence mechanisms under low-energy over long time periods, and provide a detailed new picture of SRB activities underlying sulfur cycling in the deep subseafloor. PMID:26991974

  3. Bacterial community succession during the enrichment of chemolithoautotrophic arsenite oxidizing bacteria at high arsenic concentrations.

    PubMed

    Le Nguyen, Ai; Sato, Akiko; Inoue, Daisuke; Sei, Kazunari; Soda, Satoshi; Ike, Michihiko

    2012-01-01

    To generate cost-effective technologies for the removal of arsenic from water, we developed an enrichment culture of chemolithoautotrophic arsenite oxidizing bacteria (CAOs) that could effectively oxidize widely ranging concentrations of As(III) to As(V). In addition, we attempted to elucidate the enrichment process and characterize the microbial composition of the enrichment culture. A CAOs enrichment culture capable of stably oxidizing As(lII) to As(V) was successfully constructed through repeated batch cultivation for more than 700 days, during which time the initial As(III) concentrations were increased in a stepwise manner from 1 to 10-12 mmol/L. As(III) oxidation activity of the enrichment culture gradually improved, and 10-12 mmol/L As(III) was almost completely oxidized within four days. Terminal restriction fragment length polymorphism analysis showed that the dominant bacteria in the enrichment culture varied drastically during the enrichment process depending on the As(III) concentration. Isolation and characterization of bacteria in the enrichment culture revealed that the presence of multiple CAOs with various As(III) oxidation abilities enabled the culture to adapt to a wide range of As(III) concentrations. The CAOs enrichment culture constructed here may be useful for pretreatment of water from which arsenic is being removed. PMID:23534210

  4. Draft genome sequence of extremely acidophilic bacterium Acidithiobacillus ferrooxidans DLC-5 isolated from acid mine drainage in Northeast China.

    PubMed

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Xu, Ruixiang; Li, Suyue; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2015-12-01

    Acidithiobacillus ferrooxidans type strain DLC-5, isolated from Wudalianchi in Heihe of Heilongjiang Province, China. Here, we present the draft genome of strain DLC-5 which contains 4,232,149 bp in 2745 contigs with 57.628% GC content and includes 32,719 protein-coding genes and 64 tRNA-encoding genes. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. JNNH00000000.1. PMID:26697393

  5. Draft genome sequence of extremely acidophilic bacterium Acidithiobacillus ferrooxidans DLC-5 isolated from acid mine drainage in Northeast China

    PubMed Central

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Xu, Ruixiang; Li, Suyue; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2015-01-01

    Acidithiobacillus ferrooxidans type strain DLC-5, isolated from Wudalianchi in Heihe of Heilongjiang Province, China. Here, we present the draft genome of strain DLC-5 which contains 4,232,149 bp in 2745 contigs with 57.628% GC content and includes 32,719 protein-coding genes and 64 tRNA-encoding genes. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. JNNH00000000.1. PMID:26697393

  6. Involvement of sulfide:quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1.

    PubMed

    Wakai, Satoshi; Kikumoto, Mei; Kanao, Tadayoshi; Kamimura, Kazuo

    2004-12-01

    The effects of cyanide, azide, and 2-n-Heptyl-4-hydroxy-quinoline-N-oxide (HQNO) on the oxidation of ferrous ion or elemental sulfur with Acidithiobacillus ferrooxidans NASF-1 cells grown in iron- or sulfur-medium were examined. The iron oxidation of both iron- and sulfur-grown cells was strongly inhibited by cyanide and azide, but not by HQNO. Sulfur oxidation was relatively resistant to cyanide and azide, and inhibited by HQNO. Higher sulfide oxidation, ubiquinol dehydrogenase activity, and sulfide:quinone oxidoreductase (SQR) activity were observed in sulfur-grown cells more than in iron-grown cells. Sulfide oxidation in the presence of ubiquinone with the membrane fraction was inhibited by HQNO, but not by cyanide, azide, antimycin A, and myxothiazol. The transcription of three genes, encoding an aa(3)-type cytochrome c oxidase (coxB), a bd-type ubiquinol oxidase (cydA), and an sqr, were measured by real-time reverse transcription polymerase chain reaction. The transcriptional levels of coxB and cydA genes were similar in sulfur- and iron-grown cells, but that of sqr was 3-fold higher in sulfur-grown cells than in iron-grown cells. A model is proposed for the oxidation of reduced inorganic sulfur compounds in A. ferrooxidans NASF-1 cells. PMID:15618623

  7. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1.

    PubMed

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective. PMID:27242761

  8. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1

    PubMed Central

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective. PMID:27242761

  9. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles.

    PubMed

    Pradhan, Debabrata; Mishra, Debaraj; Kim, Dong J; Ahn, Jong G; Chaudhury, G Roy; Lee, Seoung W

    2010-03-15

    Bioleaching studies were conducted to evaluate the recovery of metal values from waste petroleum catalyst using two different acidophilic microorganisms, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Various leaching parameters such as contact time, pH, oxidant concentration, pulp densities, particle size, and temperature were studied in detail. Activation energy was evaluated from Arrhenius equation and values for Ni, V and Mo were calculated in case of both the acidophiles. In both cases, the dissolution kinetics of Mo was lower than those of V and Ni. The lower dissolution kinetics may have been due to the formation of a sulfur product layer, refractoriness of MoS(2) or both. Multivariate statistical data were presented to interpret the leaching data in the present case. The significance of the leaching parameters was derived through principle component analysis and multi linear regression analyses for both iron and sulfur oxidizing bacteria. PMID:19879686

  10. [An Acidophilic Desulfosporosinus Isolated from the Oxidized Mining Wastes in the Transbaikal Area].

    PubMed

    Karnachuk, O V; Kurganskaya, I A; Avakyan, M R; Frank, Y A; Ikkert, O P; Filenko, R A; Danilovac, E V; Pimenov, N V

    2015-01-01

    Dissimilatory sulfate reduction plays an important role in removal of dissolved metals from acidic mine waters. Although this process was convincingly shown to occur in acidic waste of metal recovery, few isolates of acid-tolerant sulfate rducers are known. We isolated a new acidophilic sulfidogen, strain BG, from the oxidized acidic waste of the Bom-Gorkhon tungsten deposit, Transbaikalia, Russia. Phylogenetic analysis of its 16S rRNA gene sequence made it possible to identify it as a member of the genus Desulfosporosinus. Unlike other known acidophilic sulfate reducers of this genus, strain BG was tolerant to high copper concentrations (up to 5 g/L), could grow on organic acids at low ambient pH, and formed crystalline copper sulfides (covellite and chalcopyrite). Molecular analysis of the phenotypes predominating in oxidized waste and in enrichment cultures confirmed the presence of various Desulfosporosinus strains. PMID:27169248

  11. Evaluation of a fluorescent lectin-based staining technique for some acidophilic mining bacteria

    SciTech Connect

    Fife, D.J.; Bruhn, D.F.; Miller, K.S.; Stoner, D.L.

    2000-05-01

    A fluorescence-labeled wheat germ agglutinin staining technique was modified and found to be effective for staining gram-positive, acidophilic mining bacteria. Bacteria identified by others as being gram positive through 16S rRNA sequence analyses, yet clustering near the divergence of that group, stained weakly. Gram-negative bacteria did not stain. Background staining of environmental samples was negligible, and pyrite and soil particles in the samples did not interfere with the staining procedure.

  12. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria

    PubMed Central

    Ňancucheo, Ivan; Johnson, D. Barrie

    2012-01-01

    Summary Two continuous‐flow bench‐scale bioreactor systems populated by mixed communities of acidophilic sulfate‐reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic mine water containing a variety of soluble metals) was achieved by maintaining a bioreactor pH of ∼2.2–2.5. The second system was fed with acidic (pH 2.5) synthetic mine water containing 3 mM of both zinc and ferrous iron, and varying concentrations (0.5–30 mM) of aluminium. Selective precipitation of zinc sulfide was possible by operating the bioreactor at pH 4.0 and supplementing the synthetic mine water with 4 mM glycerol. Analysis of the microbial populations in the bioreactors showed that they changed with varying operational parameters, and novel acidophilic bacteria (including one sulfidogen) were isolated from the bioreactors. The acidophilic sulfidogenic bioreactors provided ‘proof of principle’ that segregation of metals present in mine waters is possible using simple online systems within which controlled pH conditions are maintained. The modular units are versatile and robust, and involve minimum engineering complexity. PMID:21895996

  13. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent.

    PubMed

    Fortunato, Caroline S; Huber, Julie A

    2016-08-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched (13)C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent. PMID:26872039

  14. Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production

    NASA Astrophysics Data System (ADS)

    Bach, Wolfgang; Edwards, Katrina J.

    2003-10-01

    Microbial processes within the ocean crust are of potential importance in controlling rates of chemical reactions and thereby affecting chemical exchange between the oceans and lithosphere. We here assess the oxidation state of altered ocean crust and estimate the magnitude of microbial biomass production that might be supported by oxidative and nonoxidative alteration. Compilations of Fe 2O 3, FeO, and S concentrations from DSDP/ODP drill core samples representing upper basaltic ocean crust suggest that Fe 3+/ΣFe increases from 0.15 ± 0.05 to 0.45 ± 0.15 within the first 10-20 Myr of crustal evolution. Within the same time frame 70 ± 25% of primary sulfides in basalt are oxidized. With an annual production of 4.0 ± 1.8 × 10 15 g of upper (500 ± 200 m) crust and average initial concentrations of 8.0 ± 1.3 wt% Fe and 0.125 ± 0.020 wt% S, we estimate annual oxidation rates of 1.7 ± 1.2 × 10 12 mol Fe and 1.1 ± 0.7 × 10 11 mol S. We estimate that 50% of Fe oxidation may be attributed to hydrolysis, producing 4.5 ± 3.0 × 10 11 mol H 2/yr. Thermodynamic and bioenergetic calculations were used to estimate the potential chemolithoautotrophic microbial biomass production within ridge flanks. Combined, aerobic and anaerobic Fe and S oxidation may support production of up to 48 ± 21 × 10 10 g cellular carbon (C). Hydrogen-consuming reactions may support production of a similar or larger microbial biomass if iron reduction, nitrate reduction, or hydrogen oxidation by O 2(aq) are the prevailing metabolic reactions. If autotrophic sulfate reduction or methanogenesis prevail, the potential biomass production is 9 ± 7 × 10 10 g C/yr and 3 ± 2 × 10 10 g C/yr, respectively. Combined primary biomass production of up to ˜1 × 10 12 g C/yr may be similar to that fueled by anaerobic oxidation of organic matter in deep-seated heterotrophic systems. These estimates suggest that water-rock reactions may support significant microbial life within ridge flank

  15. Bioleaching in brackish waters--effect of chloride ions on the acidophile population and proteomes of model species.

    PubMed

    Zammit, Carla M; Mangold, Stefanie; Jonna, Venkateswara rao; Mutch, Lesley A; Watling, Helen R; Dopson, Mark; Watkin, Elizabeth L J

    2012-01-01

    High concentrations of chloride ions inhibit the growth of acidophilic microorganisms used in biomining, a problem particularly relevant to Western Australian and Chilean biomining operations. Despite this, little is known about the mechanisms acidophiles adopt in order to tolerate high chloride ion concentrations. This study aimed to investigate the impact of increasing concentrations of chloride ions on the population dynamics of a mixed culture during pyrite bioleaching and apply proteomics to elucidate how two species from this mixed culture alter their proteomes under chloride stress. A mixture consisting of well-known biomining microorganisms and an enrichment culture obtained from an acidic saline drain were tested for their ability to bioleach pyrite in the presence of 0, 3.5, 7, and 20 g L(-1) NaCl. Microorganisms from the enrichment culture were found to out-compete the known biomining microorganisms, independent of the chloride ion concentration. The proteomes of the Gram-positive acidophile Acidimicrobium ferrooxidans and the Gram-negative acidophile Acidithiobacillus caldus grown in the presence or absence of chloride ions were investigated. Analysis of differential expression showed that acidophilic microorganisms adopted several changes in their proteomes in the presence of chloride ions, suggesting the following strategies to combat the NaCl stress: adaptation of the cell membrane, the accumulation of amino acids possibly as a form of osmoprotectant, and the expression of a YceI family protein involved in acid and osmotic-related stress. PMID:22124722

  16. Genome Analysis of Thermosulfurimonas dismutans, the First Thermophilic Sulfur-Disproportionating Bacterium of the Phylum Thermodesulfobacteria.

    PubMed

    Mardanov, Andrey V; Beletsky, Alexey V; Kadnikov, Vitaly V; Slobodkin, Alexander I; Ravin, Nikolai V

    2016-01-01

    Thermosulfurimonas dismutans S95(T), isolated from a deep-sea hydrothermal vent is the first bacterium of the phylum Thermodesulfobacteria reported to grow by the disproportionation of elemental sulfur, sulfite, or thiosulfate with carbon dioxide as the sole carbon source. In contrast to its phylogenetically close relatives, which are dissimilatory sulfate-reducers, T. dismutans is unable to grow by sulfate respiration. The features of this organism and its 2,1 Mb draft genome sequence are described in this report. Genome analysis revealed that the T. dismutans genome contains the set of genes for dissimilatory sulfate reduction including ATP sulfurylase, the AprA and B subunits of adenosine-5'-phosphosulfate reductase, and dissimilatory sulfite reductase. The oxidation of elemental sulfur to sulfite could be enabled by APS reductase-associated electron transfer complex QmoABC and heterodisulfide reductase. The genome also contains several membrane-linked molybdopterin oxidoreductases that are thought to be involved in sulfur metabolism as subunits of thiosulfate, polysulfide, or tetrathionate reductases. Nitrate could be used as an electron acceptor and reduced to ammonium, as indicated by the presence of periplasmic nitrate and nitrite reductases. Autotrophic carbon fixation is enabled by the Wood-Ljungdahl pathway, and the complete set of genes that is required for nitrogen fixation is also present in T. dismutans. Overall, our results provide genomic insights into energy and carbon metabolism of chemolithoautotrophic sulfur-disproportionating bacterium that could be important primary producer in microbial communities of deep-sea hydrothermal vents. PMID:27379079

  17. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    SciTech Connect

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T.; Hiraishi, A.

    2014-02-20

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum 'TM7' as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L{sup −1} was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  18. Enhanced bioleaching on attachment of indigenous acidophilic bacteria to pyrite surface

    NASA Astrophysics Data System (ADS)

    Wi, D. W.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    In recent years, bioleaching has been widely applied on an industrial scale due to the advantages of low cost and environment friendliness. The direct contact mechanism of bioleaching assumes the action of a metal sulfide-attached cell oxidizing the mineral by an enzyme system with oxygen to sulfate and metal cations. Fundamental surface properties of sulfide particles and leaching-bacteria in bioleaching play the key role in the efficiency of this process. The aim of this work is to investigate of direct contact bioleaching mechanism on pyrite through attachment properties between indigenous acidophilic bacteria and pyrite surfaces. The bacteria were obtained from sulfur hot springs, Hatchobaru thermal electricity plant in Japan. And pyrite was collected from mine waste from Gwang-yang abandoned gold mines, Korea. In XRD analyses of the pyrite, x-ray diffracted d-value belong to pyrite was observed. The indigenous acidophilic bacteria grew well in a solution and over the course of incubation pH decreased and Eh increased. In relation to a bacterial growth-curve, the lag phase was hardly shown while the exponential phase was very fast. Bioleaching experiment result was showed that twenty days after the indigenous acidophilic bacteria were inoculated to a pyrite-leaching medium, the bacterial sample had a greater concentration of Fe and Zn than within the control sample. In SEM-EDS analyses, rod-shaped bacteria and round-shaped microbes were well attached to the surface of pyrite. The size of the rod-shaped bacteria ranged from 1.05~1.10 ? to 4.01~5.38 ?. Round-shaped microbes were more than 3.0 ? in diameter. Paired cells of rod-shaped bacteria were attached to the surface of pyrite linearly.

  19. Culture-independent detection of "TM7" bacteria in a streptomycin-resistant acidophilic nitrifying process

    NASA Astrophysics Data System (ADS)

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T.; Hiraishi, A.

    2014-02-01

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum "TM7" as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L-1 was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  20. Evaluation of a fluorescent lectin-based staining technique for some acidophilic mining bacteria.

    PubMed

    Fife, D J; Bruhn, D F; Miller, K S; Stoner, D L

    2000-05-01

    A fluorescence-labeled wheat germ agglutinin staining technique (R. K. Sizemore et al., Appl. Environ. Microbiol. 56:2245-2247, 1990) was modified and found to be effective for staining gram-positive, acidophilic mining bacteria. Bacteria identified by others as being gram positive through 16S rRNA sequence analyses, yet clustering near the divergence of that group, stained weakly. Gram-negative bacteria did not stain. Background staining of environmental samples was negligible, and pyrite and soil particles in the samples did not interfere with the staining procedure. PMID:10788401

  1. Whole-Genome Transcriptional Analysis of Chemolithoautotrophic Thiosulfate Oxidation by Thiobacillus denitrificans Under Aerobic vs. Denitrifying Conditions

    SciTech Connect

    Beller, H R; Letain, T E; Chakicherla, A; Kane, S R; Legler, T C; Coleman, M A

    2006-04-22

    Thiobacillus denitrificans is one of the few known obligate chemolithoautotrophic bacteria capable of energetically coupling thiosulfate oxidation to denitrification as well as aerobic respiration. As very little is known about the differential expression of genes associated with ke chemolithoautotrophic functions (such as sulfur-compound oxidation and CO2 fixation) under aerobic versus denitrifying conditions, we conducted whole-genome, cDNA microarray studies to explore this topic systematically. The microarrays identified 277 genes (approximately ten percent of the genome) as differentially expressed using Robust Multi-array Average statistical analysis and a 2-fold cutoff. Genes upregulated (ca. 6- to 150-fold) under aerobic conditions included a cluster of genes associated with iron acquisition (e.g., siderophore-related genes), a cluster of cytochrome cbb3 oxidase genes, cbbL and cbbS (encoding the large and small subunits of form I ribulose 1,5-bisphosphate carboxylase/oxygenase, or RubisCO), and multiple molecular chaperone genes. Genes upregulated (ca. 4- to 95-fold) under denitrifying conditions included nar, nir, and nor genes (associated respectively with nitrate reductase, nitrite reductase, and nitric oxide reductase, which catalyze successive steps of denitrification), cbbM (encoding form II RubisCO), and genes involved with sulfur-compound oxidation (including two physically separated but highly similar copies of sulfide:quinone oxidoreductase and of dsrC, associated with dissimilatory sulfite reductase). Among genes associated with denitrification, relative expression levels (i.e., degree of upregulation with nitrate) tended to decrease in the order nar > nir > nor > nos. Reverse transcription, quantitative PCR analysis was used to validate these trends.

  2. Reduction of Cr(VI) under acidic conditions by the facultative Fe(III)-reducing bacterium Acidiphilium cryptum

    SciTech Connect

    David E. Cummings; Scott Fendorf; Rajesh K. Sani; Brent M. Peyton; Timothy S. Magnuson

    2007-01-01

    The potential for biological reduction of Cr(VI) under acidic conditions was evaluated with the acidophilic, facultatively metal-reducing bacterium Acidiphilium cryptum strain JF-5 to explore the role of acidophilic microorganisms in the Cr cycle in low-pH environments. An anaerobic suspension of washed A. cryptum cells rapidly reduced 50 M Cr(VI) at pH 3.2; biological reduction was detected from pH 1.7-4.7. The reduction product, confirmed by XANES analysis, was entirely Cr(III) that was associated predominantly with the cell biomass (70-80%) with the residual residing in the aqueous phase. Reduction of Cr(VI) showed a pH optimum similar to that for growth and was inhibited by 5 mM HgCl2, suggesting that the reaction was enzyme-mediated. Introduction of O2 into the reaction medium slowed the reduction rate only slightly, whereas soluble Fe(III) (as ferric sulfate) increased the rate dramatically, presumably by the shuttling of electrons from bioreduced Fe(II) to Cr(VI) in a coupled biotic-abiotic cycle. Starved cells could not reduce Cr(VI) when provided as sole electron acceptor, indicating that Cr(VI) reduction is not an energy-conserving process in A. cryptum. We speculate, rather, that Cr(VI) reduction is used here as a detoxification mechanism.

  3. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect.

    PubMed

    Mishra, Debaraj; Kim, Dong J; Ralph, David E; Ahn, Jong G; Rhee, Young H

    2008-04-15

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO3. Bioleach residues were characterized by EDX and XRD. PMID:17825485

  4. Extreme arsenic resistance by the acidophilic archaeon 'Ferroplasma acidarmanus' Fer1

    SciTech Connect

    Baker-Austin, C., M. Dopson, M. Wexler, R. G. Sawers, A. Stemmler, B.P. Rosen and P.L. Bond

    2007-01-01

    'Ferroplasma acidarmanus' Fer1 is an arsenic-hypertolerant acidophilic archaeon isolated from the Iron Mountain mine, California; a site characterized by heavy metals contamination. The presence of up to 10 g arsenate per litre [As(V); 133 mM] did not significantly reduce growth yields, whereas between 5 and 10 g arsenite per litre [As(III); 67-133 mM] significantly reduced the yield. Previous bioinformatic analysis indicates that 'F. acidarmanus' Fer1 has only two predicted genes involved in arsenic resistance and lacks a recognizable gene for an arsenate reductase. Biochemical analysis suggests that 'F. acidarmanus' Fer1 does not reduce arsenate indicating that 'F. acidarmanus' Fer1 has an alternative resistance mechanism to arsenate other than reduction to arsenite and efflux. Primer extension analysis of the putative ars transcriptional regulator (arsR) and efflux pump (arsB) demonstrated that these genes are co-transcribed, and expressed in response to arsenite, but not arsenate. Two-dimensional polyacrylamide gel electrophoresis analysis of 'F. acidarmanus' Fer1 cells exposed to arsenite revealed enhanced expression of proteins associated with protein refolding, including the thermosome Group II HSP60 family chaperonin and HSP70 DnaK type heat shock proteins. This report represents the first molecular and proteomic study of arsenic resistance in an acidophilic archaeon.

  5. A proton shelter inspired by the sugar coating of acidophilic archaea

    NASA Astrophysics Data System (ADS)

    Wang, Xiumei; Lv, Bei'er; Cai, Guixin; Fu, Long; Wu, Yuanzi; Wang, Xiang; Ren, Bin; Ma, Hongwei

    2012-11-01

    The acidophilic archaeons are a group of single-celled microorganisms that flourish in hot acid springs (usually pH < 3) but maintain their internal pH near neutral. Although there is a lack of direct evidence, the abundance of sugar modifications on the cell surface has been suggested to provide the acidophiles with protection against proton invasion. In this study, a hydroxyl (OH)-rich polymer brush layer was prepared to mimic the OH-rich sugar coating. Using a novel pH-sensitive dithioacetal molecule as a probe, we studied the proton-resisting property and found that a 10-nm-thick polymer layer was able to raise the pH from 1.0 to > 5.0, indicating that the densely packed OH-rich layer is a proton shelter. As strong evidence for the role of sugar coatings as proton barriers, this biomimetic study provides insight into evolutionary biology, and the results also could be expanded for the development of biocompatible anti-acid materials.

  6. Iron homeostasis and responses to iron limitation in extreme acidophiles from the Ferroplasma genus.

    PubMed

    Potrykus, Joanna; Jonna, Venkateswara Rao; Dopson, Mark

    2011-01-01

    Extremely acidophilic archaea from the genus Ferroplasma inhabit iron-rich biomining environments and are important constituents of naturally occurring microbial consortia that catalyze the production of acid mine drainage. A combined bioinformatic, transcript profiling, and proteomic approach was used to elucidate iron homeostasis mechanisms in "F. acidarmanus" Fer1 and F. acidiphilum Y(T) . Bioinformatic analysis of the "F. acidarmanus" Fer1 genome sequence revealed genes encoding proteins hypothesized to be involved in iron-dependent gene regulation and siderophore biosynthesis; the Fhu and NRAMP cation acquisition systems; iron storage proteins; and the SUF machinery for the biogenesis of Fe-S clusters. A subset of homologous genes was identified on the F. acidiphilum Y(T) chromosome by direct PCR probing. In both strains, some of the genes appeared to be regulated in a ferrous/ferric iron-dependent manner, as indicated by RT-PCR. A detailed gel-based proteomics analysis of responses to iron depletion showed that a putative isochorismatase, presumably involved in siderophore biosynthesis, and the SufBCD system were upregulated under iron-limiting conditions. No evidence was obtained for iron sparing response during iron limitation. This study constitutes the first detailed investigation of iron homeostasis in extremely acidophilic archaea. PMID:21182194

  7. Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals.

    PubMed

    Beolchini, Francesca; Dell'Anno, Antonio; De Propris, Luciano; Ubaldini, Stefano; Cerrone, Federico; Danovaro, Roberto

    2009-03-01

    This study deals with bioremediation treatments of dredged sediments contaminated by heavy metals based on the bioaugmentation of different bacterial strains. The efficiency of the following bacterial consortia was compared: (i) acidophilic chemoautotrophic, Fe/S-oxidising bacteria, (ii) acidophilic heterotrophic bacteria able to reduce Fe/Mn fraction, co-respiring oxygen and ferric iron and (iii) the chemoautotrophic and heterotrophic bacteria reported above, pooled together, as it was hypothesised that the two strains could cooperate through a mutual substrate supply. The effect of the bioremediation treatment based on the bioaugmentation of Fe/S-oxidising strains alone was similar to the one based only on Fe-reducing bacteria, and resulted in heavy-metal extraction yields typically ranging from 40% to 50%. The efficiency of the process based only upon autotrophic bacteria was limited by sulphur availability. However, when the treatment was based on the addition of Fe-reducing bacteria and the Fe/S oxidizing bacteria together, their growth rates and efficiency in mobilising heavy metals increased significantly, reaching extraction yields >90% for Cu, Cd, Hg and Zn. The additional advantage of the new bioaugmentation approach proposed here is that it is independent from the availability of sulphur. These results open new perspectives for the bioremediation technology for the removal of heavy metals from highly contaminated sediments. PMID:19118863

  8. Large-Scale Cultivation of Acidophilic Hyperthermophiles for Recovery of Secreted Proteins

    PubMed Central

    Worthington, Penny; Blum, Paul; Perez-Pomares, Francisco; Elthon, Tom

    2003-01-01

    An electric water heater was modified for large-scale cultivation of aerobic acidophilic hyperthermophiles to enable recovery of secreted proteins. Critical changes included thermostat replacement, redesign of the temperature control circuit, and removal of the cathodic anticorrosion system. These alterations provided accurate temperature and pH control. The bioreactor was used to cultivate selected strains of the archaeon Sulfolobus solfataricus and other species within this genus. Reformulation of a basal salts medium facilitated preparation of large culture volumes and eliminated sterilization-induced precipitation of medium components. Substrate induction of synthesis of the S. solfataricus-secreted alpha-amylase during growth in a defined medium supported the utility of the bioreactor for studies of physiologically regulated processes. An improved purification strategy was developed by using strong cation-exchange chromatography for recovery of the alpha-amylase and the processing of large sample volumes of acidic culture supernatant. These findings should simplify efforts to study acidophilic hyperthermophilic microbes and their secreted proteins. PMID:12514002

  9. Dense fouling in acid transfer pipelines by an acidophilic rubber degrading fungus.

    PubMed

    Joshi, M Hiren; Balamurugan, P; Venugopalan, V P; Rao, T S

    2011-07-01

    An unique case of dense fouling by an acidophilic, hard rubber (polymerized rubber) degrading fungus in the acid transfer pipelines of a boron enrichment plant located at Kalpakkam, India is reported. In spite of a highly adverse environment for survival (pH 1.5, no dissolved nutrients), the fungus thrived and clogged the pipeline used for transferring 0.1N hydrochloric acid (HCl). Detailed investigations were carried out to isolate and identify the fungus and examine the nutrient source for such profuse growth inside the system. Microscopic observation showed the presence of a thick filamentous fungal biomass. Molecular characterization by 18S rRNA gene sequencing showed 98% similarity of the isolate with the acidophilic fungus Bispora sp. In laboratory studies the fungus showed luxuriant growth (specific growth rate of 13 mg day⁻¹) when scrapings of the hard rubber were used as the sole source of carbon. Scanning electron microscopy revealed extensive incursion of the fungus into the hard rubber matrix. In the laboratory, fungal growth was completely inhibited by the antifungal agent sodium omadine. The study illustrates an interesting example of biofouling under extreme conditions and demonstrates that organisms can physiologically adapt to grow under unfavourable conditions, provided that a nutrient source is available and competition is low. The use of this fungal strain in biodegradation and in development of environmentally compatible processes for disposal of rubber wastes is envisaged. PMID:21722066

  10. A proton shelter inspired by the sugar coating of acidophilic archaea.

    PubMed

    Wang, Xiumei; Lv, Bei'er; Cai, Guixin; Fu, Long; Wu, Yuanzi; Wang, Xiang; Ren, Bin; Ma, Hongwei

    2012-01-01

    The acidophilic archaeons are a group of single-celled microorganisms that flourish in hot acid springs (usually pH < 3) but maintain their internal pH near neutral. Although there is a lack of direct evidence, the abundance of sugar modifications on the cell surface has been suggested to provide the acidophiles with protection against proton invasion. In this study, a hydroxyl (OH)-rich polymer brush layer was prepared to mimic the OH-rich sugar coating. Using a novel pH-sensitive dithioacetal molecule as a probe, we studied the proton-resisting property and found that a 10-nm-thick polymer layer was able to raise the pH from 1.0 to > 5.0, indicating that the densely packed OH-rich layer is a proton shelter. As strong evidence for the role of sugar coatings as proton barriers, this biomimetic study provides insight into evolutionary biology, and the results also could be expanded for the development of biocompatible anti-acid materials. PMID:23189241

  11. Electricity generation from an inorganic sulfur compound containing mining wastewater by acidophilic microorganisms.

    PubMed

    Ni, Gaofeng; Christel, Stephan; Roman, Pawel; Wong, Zhen Lim; Bijmans, Martijn F M; Dopson, Mark

    2016-09-01

    Sulfide mineral processing often produces large quantities of wastewaters containing acid-generating inorganic sulfur compounds. If released untreated, these wastewaters can cause catastrophic environmental damage. In this study, microbial fuel cells were inoculated with acidophilic microorganisms to investigate whether inorganic sulfur compound oxidation can generate an electrical current. Cyclic voltammetry suggested that acidophilic microorganisms mediated electron transfer to the anode, and that electricity generation was catalyzed by microorganisms. A cation exchange membrane microbial fuel cell, fed with artificial wastewater containing tetrathionate as electron donor, reached a maximum whole cell voltage of 72 ± 9 mV. Stepwise replacement of the artificial anolyte with real mining process wastewater had no adverse effect on bioelectrochemical performance and generated a maximum voltage of 105 ± 42 mV. 16S rRNA gene sequencing of the microbial consortia resulted in sequences that aligned within the genera Thermoplasma, Ferroplasma, Leptospirillum, Sulfobacillus and Acidithiobacillus. This study opens up possibilities to bioremediate mining wastewater using microbial fuel cell technology. PMID:27155452

  12. 13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea.

    PubMed

    Glaubitz, Sabine; Lueders, Tillmann; Abraham, Wolf-Rainer; Jost, Günter; Jürgens, Klaus; Labrenz, Matthias

    2009-02-01

    Marine pelagic redoxclines are zones of high dark CO(2) fixation rates, which can correspond up to 30% of the surface primary production. However, despite this significant contribution to the pelagic carbon cycle, the identity of most chemolithoautotrophic organisms is still unknown. Therefore, the aim of this study was to directly link the dark CO(2) fixation capacity of a pelagic redoxcline in the central Baltic Sea (Landsort Deep) with the identity of the main chemolithoautotrophs involved. Our approach was based on the analysis of natural carbon isotope signatures in fatty acid methyl esters (FAMEs) and on measurements of CO(2) incorporation in (13)C-bicarbonate pulse experiments. The incorporation of (13)C into chemolithoautotrophic cells was investigated by rRNA-based stable isotope probing (RNA-SIP) and FAME analysis after incubation for 24 and 72 h under in situ conditions. Our results demonstrated that fatty acids indicative of Proteobacteria were significantly enriched in (13)C slightly below the chemocline. RNA-SIP analyses revealed that two different Gammaproteobacteria and three closely related Epsilonproteobacteria of the Sulfurimonas cluster were active dark CO(2)-fixing microorganisms, with a time-dependent community shift between these groups. Labelling of Archaea was not detectable, but after 72 h of incubation the (13)C-label had been transferred to a potentially bacterivorous ciliate related to Euplotes sp. Thus, RNA-SIP provided direct evidence for the contribution of chemolithoautotrophic production to the microbial food web in this marine pelagic redoxcline, emphasizing the importance of dark CO(2)-fixing Proteobacteria within this habitat. PMID:18793316

  13. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile.

    PubMed

    Messerli, Mark A; Amaral-Zettler, Linda A; Zettler, Erik; Jung, Sung-Kwon; Smith, Peter J S; Sogin, Mitchell L

    2005-07-01

    Organisms growing in acidic environments, pH<3, would be expected to possess fundamentally different molecular structures and physiological controls in comparison with similar species restricted to neutral pH. We begin to investigate this premise by determining the magnitude of the transmembrane electrochemical H+ gradient in an acidophilic Chlamydomonas sp. (ATCC PRA-125) isolated from the Rio Tinto, a heavy metal laden, acidic river (pH 1.7-2.5). This acidophile grows most rapidly at pH 2 but is capable of growth over a wide pH range (1.5-7.0), while Chlamydomonas reinhardtii is restricted to growth at pH>or=3 with optimal growth between pH 5.5 and 8.5. With the fluorescent H+ indicator, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), we show that the acidophilic Chlamydomonas maintains an average cytosolic pH of 6.6 in culture medium at both pH 2 and pH 7 while Chlamydomonas reinhardtii maintains an average cytosolic pH of 7.1 in pH 7 culture medium. The transmembrane electric potential difference of Chlamydomonas sp., measured using intracellular electrodes at both pH 2 and 7, is close to 0 mV, a rare value for plants, animals and protists. The 40,000-fold difference in [H+] could be the result of either active or passive mechanisms. Evidence for active maintenance was detected by monitoring the rate of ATP consumption. At the peak, cells consume about 7% more ATP per second in medium at pH 2 than at pH 7. This increased rate of consumption is sufficient to account for removal of H+ entering the cytosol across a membrane with relatively high permeability to H+ (7x10(-8) cm s-1). Our results indicate that the small increase in the rate of ATP consumption can account for maintenance of the transmembrane H+ gradient without the imposition of cell surface H+ barriers. PMID:15961743

  14. Chemolithoautotrophic production mediating the cycling of the greenhouses gases N2O and CH4 in an upwelling ecosystem

    NASA Astrophysics Data System (ADS)

    Farías, L.; Fernández, C.; Faúndez, J.; Cornejo, M.; Alcaman, M. E.

    2009-06-01

    Coastal upwelling ecosystems with marked oxyclines (redoxclines) present high availability of electron donors that favour chemoautotrophy, leading in turn to high N2O and CH4 cycling associated with aerobic NH4+ (AAO) and CH4 oxidation (AMO). This is the case of the highly productive coastal upwelling area off Central Chile (36° S), where we evaluated the importance of total chemolithoautotrophic vs. photoautotrophic production, the specific contributions of AAO and AMO to chemosynthesis and their role in gas cycling. Chemoautotrophy (involving bacteria and archaea) was studied at a time-series station during monthly (2002-2009) and seasonal cruises (January 2008, September 2008, January 2009) and was assessed in terms of dark carbon assimilation (CA), N2O and CH4 cycling, and the natural C isotopic ratio of particulate organic carbon (δ13POC). Total Integrated dark CA fluctuated between 19.4 and 2.924 mg C m-2 d-1. It was higher during active upwelling and represented on average 27% of the integrated photoautotrophic production (from 135 to 7.626 mg C m-2d-1). At the oxycline, δ13POC averaged -22.209‰ this was significantly lighter compared to the surface (-19.674‰) and bottom layers (-20.716‰). This pattern, along with low NH4+ content and high accumulations of N2O, NO2- and NO3- within the oxycline indicates that chemolithoautotrophs and specifically AA oxydisers were active. Dark CA was reduced from 27 to 48% after addition of a specific AAO inhibitor (ATU) and from 24 to 76% with GC7, a specific archaea inhibitor, indicating that AAO and maybe AMO microbes (most of them archaea) were performing dark CA through oxidation of NH4+ and CH4. AAO produced N2O at rates from 8.88 to 43 nM d-1 and a fraction of it was effluxed into the atmosphere (up to 42.85 μmol m-2 d-1). AMO on the other hand consumed CH4 at rates between 0.41 and 26.8 nM d-1 therefore preventing its efflux to the atmosphere (up to 18.69 μmol m-2 d-1). These findings show that chemically

  15. Isosulfazecin, a new beta-lactam antibiotic, produced by an acidophilic pseudomonad. Fermentation, isolation and characterization.

    PubMed

    Kintaka, K; Haibara, K; Asai, M; Imada, A

    1981-09-01

    A novel beta-lactam antibiotic, isosulfazecin (iSZ), was found to be produced by an acidophilic pseudomonad, Pseudomonas mesoacidophila sp. nov. iSZ was produced in parallel with bacterial growth in nutrient broth containing glycerol and sodium thiosulfate under aerated conditions. iSZ was isolated by chromatography on activated charcoal and anion-exchangers and crystallized from 70% aqueous methanol. The molecular formula was determined to be C12H20N4O9S from physiochemical data. The IR and NMR spectra suggested that iSZ has a beta-lactam ring, methoxyl and sulfonate groups. On acid hydrolysis, it gave L-alanine and D-glutamic acid. iSZ is an epimeric isomer of sulfazecin. iSZ was weakly active against Gram-positive and -negative bacteria, and was strongly active against mutants hypersensitive to beta-lactam antibiotics. PMID:7328050

  16. Evaluation of a thermo-tolerant acidophilic alga, Galdieria sulphuraria, for nutrient removal from urban wastewaters.

    PubMed

    Selvaratnam, T; Pegallapati, A K; Montelya, F; Rodriguez, G; Nirmalakhandan, N; Van Voorhies, W; Lammers, P J

    2014-03-01

    Nutrient removal from primary wastewater effluent was tested using Galdieria sulphuraria, an acidophilic and moderately thermophilic alga. Biomass yield recorded in this study (27.42g biomass per g nitrogen removed) is higher than the average reported in the literature (25.75g g(-1)) while, the theoretical yield estimated from the empirical molecular formula of algal biomass is 15.8g g(-1). Seven-day removal efficiencies were 88.3% for ammoniacal-nitrogen and 95.5% for phosphates; corresponding removal rates were 4.85 and 1.21mg L(-1)d(-1). Although these rates are lower than the average literature values for other strains (6.36 and 1.34mg L(-1)d(-1), respectively), potential advantages of G. sulphuraria for accomplishing energy-positive nutrient removal are highlighted. Feasibility of growing G. sulphuraria outdoors at densities higher than in high-rate oxidation ponds is also demonstrated. PMID:24582952

  17. Diabetes mellitus in a dog with a growth hormone-producing acidophilic adenoma of the adenohypophysis.

    PubMed

    van Keulen, L J; Wesdorp, J L; Kooistra, H S

    1996-07-01

    A 9-year-old male Doberman Pinscher was referred to the Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, for polyuria/polydipsia, anorexia, and vomiting. Laboratory examination of blood and urine revealed hyperglycemia, glucosuria, and acidosis. Diabetes mellitus was diagnosed but was very resistant to subsequent insulin treatment. At the owners' request, the dog was euthanatized and a postmortem examination was performed. In addition to hepatic, pancreatic, and renal changes compatible with diabetes mellitus, an acidophilic adenoma of the adenohypophysis was found. Immunohistochemical staining for growth hormone, adrenocorticotropic hormone, and prolactin showed a strong immunolabeling for growth hormone within the cytoplasm of the tumor cells. Although growth hormone level was not measured in the plasma, our findings suggest that the diabetes mellitus in this dog was caused by excess growth hormone secreted by the pituitary neoplasm. PMID:8817849

  18. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    SciTech Connect

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  19. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis

    PubMed Central

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-01-01

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60–80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h−1). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions. PMID:26295411

  20. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.

    PubMed

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-01-01

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60-80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h(-1)). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions. PMID:26295411

  1. Biodiversity of acidophilic moderate thermophiles isolated from two sites in Yellowstone National Park and their roles in the dissimilatory oxido-reduction of iron

    SciTech Connect

    D. B. Johnson; D.A. Body; T. A. M. Bridge; D. F. Bruhn; F. F. Roberto

    2001-07-01

    Some of the thermal sites within Yellowstone National Park are extremely acidic and are therefore potential sites for isolating novel strains of acidophilic thermophiles, including those that are involved in the biogeochemical cycling of iron. This paper describes the isolation and characterization of thermotolerant, acidophilic “iron bacteria” isolated from two such sites in Yellowstone National Park, and reports the biodiversity of isolates in terms of their physiological traits and their phylogenetic make-up.

  2. Architecture and Gene Repertoire of the Flexible Genome of the Extreme Acidophile Acidithiobacillus caldus

    PubMed Central

    Acuña, Lillian G.; Cárdenas, Juan Pablo; Covarrubias, Paulo C.; Haristoy, Juan José; Flores, Rodrigo; Nuñez, Harold; Riadi, Gonzalo; Shmaryahu, Amir; Valdés, Jorge; Dopson, Mark; Rawlings, Douglas E.; Banfield, Jillian F.; Holmes, David S.; Quatrini, Raquel

    2013-01-01

    Background Acidithiobacillus caldus is a sulfur oxidizing extreme acidophile and the only known mesothermophile within the Acidithiobacillales. As such, it is one of the preferred microbes for mineral bioprocessing at moderately high temperatures. In this study, we explore the genomic diversity of A. caldus strains using a combination of bioinformatic and experimental techniques, thus contributing first insights into the elucidation of the species pangenome. Principal Findings Comparative sequence analysis of A. caldus ATCC 51756 and SM-1 indicate that, despite sharing a conserved and highly syntenic genomic core, both strains have unique gene complements encompassing nearly 20% of their respective genomes. The differential gene complement of each strain is distributed between the chromosomal compartment, one megaplasmid and a variable number of smaller plasmids, and is directly associated to a diverse pool of mobile genetic elements (MGE). These include integrative conjugative and mobilizable elements, genomic islands and insertion sequences. Some of the accessory functions associated to these MGEs have been linked previously to the flexible gene pool in microorganisms inhabiting completely different econiches. Yet, others had not been unambiguously mapped to the flexible gene pool prior to this report and clearly reflect strain-specific adaption to local environmental conditions. Significance For many years, and because of DNA instability at low pH and recurrent failure to genetically transform acidophilic bacteria, gene transfer in acidic environments was considered negligible. Findings presented herein imply that a more or less conserved pool of actively excising MGEs occurs in the A. caldus population and point to a greater frequency of gene exchange in this econiche than previously recognized. Also, the data suggest that these elements endow the species with capacities to withstand the diverse abiotic and biotic stresses of natural environments, in particular

  3. New Insight into Microbial Iron Oxidation as Revealed by the Proteomic Profile of an Obligate Iron-Oxidizing Chemolithoautotroph

    PubMed Central

    Emerson, David; Sylvan, Jason B.; Orcutt, Beth N.; Jacobson Meyers, Myrna E.; Ramírez, Gustavo A.; Zhong, John D.; Edwards, Katrina J.

    2015-01-01

    Microaerophilic, neutrophilic, iron-oxidizing bacteria (FeOB) grow via the oxidation of reduced Fe(II) at or near neutral pH, in the presence of oxygen, making them relevant in numerous environments with elevated Fe(II) concentrations. However, the biochemical mechanisms for Fe(II) oxidation by these neutrophilic FeOB are unknown, and genetic markers for this process are unavailable. In the ocean, microaerophilic microorganisms in the genus Mariprofundus of the class Zetaproteobacteria are the only organisms known to chemolithoautotrophically oxidize Fe and concurrently biomineralize it in the form of twisted stalks of iron oxyhydroxides. The aim of this study was to identify highly expressed proteins associated with the electron transport chain of microaerophilic, neutrophilic FeOB. To this end, Mariprofundus ferrooxydans PV-1 was cultivated, and its proteins were extracted, assayed for redox activity, and analyzed via liquid chromatography-tandem mass spectrometry for identification of peptides. The results indicate that a cytochrome c4, cbb3-type cytochrome oxidase subunits, and an outer membrane cytochrome c were among the most highly expressed proteins and suggest an involvement in the process of aerobic, neutrophilic bacterial Fe oxidation. Proteins associated with alternative complex III, phosphate transport, carbon fixation, and biofilm formation were abundant, consistent with the lifestyle of Mariprofundus. PMID:26092463

  4. Complete genome sequence of the facultatively chemolithoautotrophic and methylotrophic alpha Proteobacterium Starkeya novella type strain (ATCC 8093T)

    SciTech Connect

    Kappler, Ulrike; Davenport, Karen W.; Beatson, Scott; Lucas, Susan; Lapidus, Alla L.; Copeland, A; Berry, Kerrie W.; Glavina Del Rio, Tijana; Hammon, Nancy; Dalin, Eileen; Tice, Hope; Pitluck, Sam; Richardson, P M; Bruce, David; Goodwin, Lynne A.; Han, Cliff; Tapia, Roxanne; Detter, J. Chris; Chang, Yun-Juan; Jeffries, Cynthia; Land, Miriam L; Hauser, Loren John; Kyrpides, Nikos C; Goker, Markus; Ivanova, N; Klenk, Hans-Peter; Woyke, Tanja

    2012-01-01

    Starkeya novella (Starkey 1934) Kelly et al. 2000 is a member of the family Xanthobacteraceae in the order Rhizobiales , which is thus far poorly characterized at the genome level. Cultures from this spe- cies are most interesting due to their facultatively chemolithoautotrophic lifestyle, which allows them to both consume carbon dioxide and to produce it. This feature makes S. novella an interesting model or- ganism for studying the genomic basis of regulatory networks required for the switch between con- sumption and production of carbon dioxide, a key component of the global carbon cycle. In addition, S. novella is of interest for its ability to grow on various inorganic sulfur compounds and several C1- compounds such as methanol. Besides Azorhizobium caulinodans, S. novella is only the second spe- cies in the family Xanthobacteraceae with a completely sequenced genome of a type strain. The cur- rent taxonomic classification of this group is in significant conflict with the 16S rRNA data. The ge- nomic data indicate that the physiological capabilities of the organism might have been underestimat- ed. The 4,765,023 bp long chromosome with its 4,511 protein-coding and 52 RNA genes was se- quenced as part of the DOE Joint Genome Institute Community Sequencing Program (CSP) 2008.

  5. Paracoccus bengalensis sp. nov., a novel sulfur-oxidizing chemolithoautotroph from the rhizospheric soil of an Indian tropical leguminous plant.

    PubMed

    Ghosh, Wriddhiman; Mandal, Sukhendu; Roy, Pradosh

    2006-07-01

    Paracoccus versutus-like isolates from the rhizosphere of Clitoria ternatea, a slender leguminous herb (family--Papilionaceae), found ubiquitously in waste places and village forests of the Lower Gangetic plains of India, presented a case of graduated infraspecific variation that was capped by the identification of a new species Paracoccus bengalensis (type strain JJJ(T) = LMG 22700(T) = MTCC 7003(T)). The diverged phenetic and genetic structure of these sulfur-oxidizing chemolithoautotrophs presented a case of apparent nonconformity of 16S rRNA gene sequence similarities with results of DNA-DNA hybridization. Despite high 16S rRNA gene sequence similarity with P. versutus one of the newly isolated strains, viz., JJJ(T) was identified as a new species of Paracoccus by virtue of its explicitly low DNA-DNA hybridization (42-45%) with the type strain of the closest species P. versutus (), distinct G + C content (65.3 mol%), physiological and biochemical differences amounting to <60% phenetic similarity with strains of P. versutus as well as new isolates akin to the species. The newly described species also had a unique fatty acid profile that was distinguished by the absence of 18:1 omega9c, unique possession of Summed feature 3 (16:1omega7c & 15:0 iso 2-OH), 19:0 10 methyl, and a much higher concentration of 19:0 cycloomega8c. PMID:16824961

  6. Single Bacterium Detection Using Sers

    NASA Astrophysics Data System (ADS)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  7. Genome Analysis of Thermosulfurimonas dismutans, the First Thermophilic Sulfur-Disproportionating Bacterium of the Phylum Thermodesulfobacteria

    PubMed Central

    Mardanov, Andrey V.; Beletsky, Alexey V.; Kadnikov, Vitaly V.; Slobodkin, Alexander I.; Ravin, Nikolai V.

    2016-01-01

    Thermosulfurimonas dismutans S95T, isolated from a deep-sea hydrothermal vent is the first bacterium of the phylum Thermodesulfobacteria reported to grow by the disproportionation of elemental sulfur, sulfite, or thiosulfate with carbon dioxide as the sole carbon source. In contrast to its phylogenetically close relatives, which are dissimilatory sulfate-reducers, T. dismutans is unable to grow by sulfate respiration. The features of this organism and its 2,1 Mb draft genome sequence are described in this report. Genome analysis revealed that the T. dismutans genome contains the set of genes for dissimilatory sulfate reduction including ATP sulfurylase, the AprA and B subunits of adenosine-5′-phosphosulfate reductase, and dissimilatory sulfite reductase. The oxidation of elemental sulfur to sulfite could be enabled by APS reductase-associated electron transfer complex QmoABC and heterodisulfide reductase. The genome also contains several membrane-linked molybdopterin oxidoreductases that are thought to be involved in sulfur metabolism as subunits of thiosulfate, polysulfide, or tetrathionate reductases. Nitrate could be used as an electron acceptor and reduced to ammonium, as indicated by the presence of periplasmic nitrate and nitrite reductases. Autotrophic carbon fixation is enabled by the Wood–Ljungdahl pathway, and the complete set of genes that is required for nitrogen fixation is also present in T. dismutans. Overall, our results provide genomic insights into energy and carbon metabolism of chemolithoautotrophic sulfur-disproportionating bacterium that could be important primary producer in microbial communities of deep-sea hydrothermal vents. PMID:27379079

  8. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: A membrane-bound complex oxidizing ferrous iron.

    PubMed

    Castelle, Cindy J; Roger, Magali; Bauzan, Marielle; Brugna, Myriam; Lignon, Sabrina; Nimtz, Manfred; Golyshina, Olga V; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2015-08-01

    The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far. At present, little is known about the nature or the structural and functional organization of the proteins in F. acidiphilum that impact the iron biogeochemical cycle. We combine here biochemical and biophysical techniques such as enzyme purification, activity measurements, proteomics and spectroscopy to characterize the iron oxidation pathway(s) in F. acidiphilum. We isolated two respiratory membrane protein complexes: a 850 kDa complex containing an aa3-type cytochrome oxidase and a blue copper protein, which directly oxidizes ferrous iron and reduces molecular oxygen, and a 150 kDa cytochrome ba complex likely composed of a di-heme cytochrome and a Rieske protein. We tentatively propose that both of these complexes are involved in iron oxidation respiratory chains, functioning in the so-called uphill and downhill electron flow pathways, consistent with autotrophic life. The cytochrome ba complex could possibly play a role in regenerating reducing equivalents by a reverse ('uphill') electron flow. This study constitutes the first detailed biochemical investigation of the metalloproteins that are potentially directly involved in iron-mediated energy conservation in a member of the acidophilic archaea of the genus Ferroplasma. PMID:25896560

  9. Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms

    PubMed Central

    Zhang, R Y; Neu, T R; Bellenberg, S; Kuhlicke, U; Sand, W; Vera, M

    2015-01-01

    Biofilm formation and the production of extracellular polymeric substances (EPS) by meso- and thermoacidophilic metal-oxidizing archaea on relevant substrates have been studied to a limited extent. In order to investigate glycoconjugates, a major part of the EPS, during biofilm formation/bioleaching by archaea on pyrite, a screening with 75 commercially available lectins by fluorescence lectin-binding analysis (FLBA) has been performed. Three representative archaeal species, Ferroplasma acidiphilum DSM 28986, Sulfolobus metallicus DSM 6482T and a novel isolate Acidianus sp. DSM 29099 were used. In addition, Acidianus sp. DSM 29099 biofilms on elemental sulfur were studied. The results of FLBA indicate (i) 22 lectins bound to archaeal biofilms on pyrite and 21 lectins were binding to Acidianus sp. DSM 29099 biofilms on elemental sulfur; (ii) major binding patterns, e.g. tightly bound EPS and loosely bound EPS, were detected on both substrates; (iii) the three archaeal species produced various EPS glycoconjugates on pyrite surfaces. Additionally, the substratum induced different EPS glycoconjugates and biofilm structures of cells of Acidianus sp. DSM 29099. Our data provide new insights into interactions between acidophilic archaea on relevant surfaces and also indicate that FLBA is a valuable tool for in situ investigations on archaeal biofilms. PMID:25488256

  10. Microbial population Diversity of indigenous acidophilic bacteria for recovering the valuable resources

    NASA Astrophysics Data System (ADS)

    Kim, B.; Cho, K.; Lee, D.; Choi, N.; Park, C.

    2011-12-01

    A taxon- or group-specific PCR primer serves as a valuable tool for studying the bioleaching mechanisms of a particular group of microorganisms. Especially for an uncultured (or very difficult to isolate from their environments) group of microorganisms, the group-specific PCR primer is essential for the investigation of distribution patterns and the estimation of genetic diversity of the target microorganisms. This study investigated the Biodiversity through molecular biology method using the three different indigenous acidophilic bacteria collected from acid mine drainage in Go-seong and Yeon-hwa, Korea and acidic hot spring in Hatchnobaru, Japan. We performed the optical analysis (phase-contrast microscope and SEM), base sequencing. In the phase-contrast microscope(X 4,000) and SEM analysis, the rod-shaped bacteria with 1μm in length were observed. The results of base sequencing using EzTaxon server data revealed Acidithiobacillus ferrooxidans (Go-seong - 97.79%, Yeon-hwa - 97.90% and Hatchnobaru - 97.97%)

  11. A microbial fuel cell operating at low pH using an acidophile, Acidiphilium cryptum.

    SciTech Connect

    Borole, Abhijeet P; Cesar, Scott A; O'Neill, Hugh Michael; Tsouris, Costas

    2008-01-01

    A microbial fuel cell using an acidophilic microorganism, Acidiphilium cryptum, as the anode biocatalyst was investigated. The mode of electron transfer by this organism to the electrode was studied. Electricity production in the presence of a mediator was demonstrated using its natural electron acceptor, iron, as well as phenosafranin as the electron mediating agent. Production of Fe(II), as a result of iron reduction, at a pH of 4.0 or below was found to support electricity production. Accumulation of the oxidized iron, Fe(III) as a result of electron donation to the electrode, however, restricted higher current output. Addition of nitrilotriacetic acid helped resolve the problem by redissolution of deposited Fe(III). Further, use of phenosafranin as a secondary mediator resulted in improvement in power output. At a cell loading equivalent to OD600 of 1.0, a power output of 12.7 mW/m2 was obtained in a two-chamber air-sparged fuel cell. Potential for direct electron transfer was also investigated but not detected under the conditions studied.

  12. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    SciTech Connect

    John E Aston; William A Apel; Brady D Lee; Brent M Peyton

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  13. Newly Isolated Penicillium ramulosum N1 Is Excellent for Producing Protease-Resistant Acidophilic Xylanase.

    PubMed

    Lin, Chaoyang; Shen, Zhicheng; Zhu, Tingheng; Qin, Wensheng

    2015-01-01

    Penicillium ramulosum N1 was isolated from decaying wood. This strain produces extracellular xylanases and cellulases. The highest activities of xylanases (250 U/ml) and carboxymethyl cellulose (CMCase; 6.5 U/ml) were produced when 1% barley straw was added as a carbon source. The optimum temperature and pH for xylanase activity was 55 and 3.0 °C, respectively. The xylanases exhibited strong protease resistance. CMCase revealed maximum activities at pH 3.0 and in the range of 60-70 °C. Filter paper activity was optimally active at pH 5.0 and 55 °C. The zymograms produced by the SDS-PAGE resolution of the crude enzymes indicated that there are four bands of protein with xylanase activity and three bands of proteins with endoglucanase. The results revealed that P. ramulosum N1 is a promising acidophilic and protease-resistant xylanase-producing microorganism that has great potential to be used in animal feed and food industry applications. PMID:26431535

  14. Effect of adaptation and pulp density on bioleaching of mine waste using indigenous acidophilic bacteria

    NASA Astrophysics Data System (ADS)

    Cho, K.; Kim, B.; Lee, D.; Choi, N.; Park, C.

    2011-12-01

    Adaptation to environment is a natural phenomena that takes place in many animals, plants and microorganisms. These adapted organisms achieve stronger applicability than unadapted organisms after habitation in a specific environment for a long time. In the biohydrometallurgical industry, adaptation to special environment conditions by selective culturing is the most popular method for improving bioleaching activity of strains-although that is time consuming. This study investigated the influence of the bioleaching efficiency of mine waste under batch experimental conditions (adaptation and pulp density) using the indigenous acidophilic bacteria collected from acid mine drainage in Go-seong and Yeon-hwa, Korea. We conducted the batch experiments at the influences of parameters, such as the adaptation of bacteria and pulp density of the mine waste. In the adaptation case, the value of pH in 1'st adaptation bacteria sample exhibited lower than in 2'nd adaptation bacteria sample. And the content of both Cu and Zn at 1'st adaptation bacteria sample appeared lower than at 2'nd adaptation bacteria sample. In the SEM analysis, the rod-shaped bacteria with 1μm in length were observed on the filter paper (pore size - 0.45μm). The results of pulp density experiments revealed that the content of both Cu and Zn increased with increasing pulp density, since the increment of pulp density resulted in the enhancement of bioleaching capacity.

  15. Chloride transport pathways and their bioenergetic implications in the obligate acidophile Bacillus coagulans.

    PubMed Central

    McLaggan, D; Keyhan, M; Matin, A

    1990-01-01

    The protonophore-mediated collapse of the large delta pH that acidophiles maintain across their cytoplasmic membranes was augmented by the presence of Cl-, and Cl- influx into the cells occurred evidently in response to the protonophore-induced increase in the inside-positive membrane potential (+ delta psi). In respiring cells, the addition of Cl- but not SO4(2-) salts caused a rapid and precipitous decrease in the + delta psi. A Nernstian relationship between the imposed transmembrane K+ gradient and the valinomycin-induced K+ diffusion potentials was observed when everted membrane vesicles were loaded with K2SO4 or KH2PO4 but not when loaded with KCl or KNO3. Thus, electrogenic Cl- transport occurred in Bacillus coagulans. In addition, a nonelectrogenic temperature-sensitive Cl- transport mechanism, with the net Cl- efflux coefficient (PCl-) ranging from 1.5 x 10(-4) to 6.1 x 10(-6) cm/s, accounted for the massive Cl- efflux from Cl(-)-loaded cells. Thus, B. coagulans, despite its dependence on the + delta psi and therefore the need to exclude anions, apparently possesses specific mechanisms for Cl- permeation. Active cells of B. coagulans prevented Cl- accumulation from attaining an electrochemical equilibrium, maintaining a delta micro Cl- of ca. -63 mV. B. coagulans therefore also possesses an energy-dependent mechanism for Cl- exclusion from the cells. PMID:2307657

  16. Toxicity of select organic acids to the slightly thermophilic acidophile Acidithiobacillus caldus.

    PubMed

    Aston, John E; Apel, William A; Lee, Brady D; Peyton, Brent M

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 microM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 microM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids. PMID:18803441

  17. RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans.

    PubMed

    Christel, Stephan; Fridlund, Jimmy; Buetti-Dinh, Antoine; Buck, Moritz; Watkin, Elizabeth L; Dopson, Mark

    2016-04-01

    Acidithiobacillus ferrivorans is an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals. Acidithiobacillus ferrivorans obtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing of At. ferrivorans RNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by the tetH1 gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase (doxDAgenes). However, a lack of heme-binding sites in soxX suggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase (hdrgenes) rather than sulfur oxygenase reductase (sor). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving the sat gene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknown At. ferrivorans tetrathionate metabolic pathway that is important in biomining. PMID:26956550

  18. Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms.

    PubMed

    Zhang, R Y; Neu, T R; Bellenberg, S; Kuhlicke, U; Sand, W; Vera, M

    2015-05-01

    Biofilm formation and the production of extracellular polymeric substances (EPS) by meso- and thermoacidophilic metal-oxidizing archaea on relevant substrates have been studied to a limited extent. In order to investigate glycoconjugates, a major part of the EPS, during biofilm formation/bioleaching by archaea on pyrite, a screening with 75 commercially available lectins by fluorescence lectin-binding analysis (FLBA) has been performed. Three representative archaeal species, Ferroplasma acidiphilum DSM 28986, Sulfolobus metallicus DSM 6482(T) and a novel isolate Acidianus sp. DSM 29099 were used. In addition, Acidianus sp. DSM 29099 biofilms on elemental sulfur were studied. The results of FLBA indicate (i) 22 lectins bound to archaeal biofilms on pyrite and 21 lectins were binding to Acidianus sp. DSM 29099 biofilms on elemental sulfur; (ii) major binding patterns, e.g. tightly bound EPS and loosely bound EPS, were detected on both substrates; (iii) the three archaeal species produced various EPS glycoconjugates on pyrite surfaces. Additionally, the substratum induced different EPS glycoconjugates and biofilm structures of cells of Acidianus sp. DSM 29099. Our data provide new insights into interactions between acidophilic archaea on relevant surfaces and also indicate that FLBA is a valuable tool for in situ investigations on archaeal biofilms. PMID:25488256

  19. Effect of physical characteristics on bioleaching using indigenous acidophilic bacteria for recovering the valuable resources

    NASA Astrophysics Data System (ADS)

    Wi, D.; Kim, B.; Cho, K.; Choi, N.; Park, C.

    2011-12-01

    Bioleaching technology which is based on the ability of bacteria to transform solid compounds into soluble or extractable elements that can be recovered, has developed rapidly in recent decades for its advantages, such as mild reaction, low energy consumption, simple process, environmentally friendly and suitable for low-grade mine tailing and residues. This study investigated the bioleaching efficiency of copper matte under batch experimental conditions (various mineral particle size) using the indigenous acidophilic bacteria collected from acidic hot spring in Hatchnobaru, Japan. We conducted the batch experiments at three different mineral particle sizes: 0.06, 0.16 and 1.12mm. The results showed that the pH in the bacteria inoculating sample increased than initial condition, possibly due to buffer effects by phosphate ions in growth medium. After 22 days from incubation the leached accumulation content of Cu was 0.06 mm - 1,197 mg/L, 0.16 mm - 970 mg/L and 1.12 mm - 704 mg/L. Additionally, through SEM analysis we found of gypsum formed crystals which coated the copper matte surface 6 days after inoculation in 1.12mm case. This study informs basic knowledge when bacteria apply to eco-/economic resources utilization studies including the biomining and the recycling of mine waste system.

  20. Evidence of cell surface iron speciation of acidophilic iron-oxidizing microorganisms in indirect bioleaching process.

    PubMed

    Nie, Zhen-yuan; Liu, Hong-chang; Xia, Jin-lan; Yang, Yi; Zhen, Xiang-jun; Zhang, Li-Juan; Qiu, Guan-zhou

    2016-02-01

    While indirect model has been widely accepted in bioleaching, but the evidence of cell surface iron speciation has not been reported. In the present work the iron speciation on the cell surfaces of four typically acidophilic iron-oxidizing microorganism (mesophilic Acidithiobacillus ferrooxidans ATCC 23270, moderately thermophilic Leptospirillum ferriphilum YSK and Sulfobacillus thermosulfidooxidans St, and extremely thermophilic Acidianus manzaensis YN25) grown on different energy substrates (chalcopyrite, pyrite, ferrous sulfate and elemental sulfur (S(0))) were studied in situ firstly by using synchrotron-based micro- X-ray fluorescence analysis and X-ray absorption near-edge structure spectroscopy. Results showed that the cells grown on iron-containing substrates had apparently higher surface iron content than the cells grown on S(0). Both ferrous iron and ferric iron were detected on the cell surface of all tested AIOMs, and the Fe(II)/Fe(III) ratios of the same microorganism were affected by different energy substrates. The iron distribution and bonding state of single cell of A. manzaensis were then studied in situ by scanning transmission soft X-ray microscopy based on dual-energy contrast analysis and stack analysis. Results showed that the iron species distributed evenly on the cell surface and bonded with amino, carboxyl and hydroxyl groups. PMID:26645388

  1. Bacteria of the Candidate Phylum TM7 are Prevalent in Acidophilic Nitrifying Sequencing-Batch Reactors

    PubMed Central

    Hanada, Akiko; Kurogi, Takashi; Giang, Nguyen Minh; Yamada, Takeshi; Kamimoto, Yuki; Kiso, Yoshiaki; Hiraishi, Akira

    2014-01-01

    Laboratory-scale acidophilic nitrifying sequencing-batch reactors (ANSBRs) were constructed by seeding with sewage-activated sludge and cultivating with ammonium-containing acidic mineral medium (pH 4.0) with or without a trace amount of yeast extract. In every batch cycle, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate. Attempts to detect nitrifying functional genes in the fully acclimated ANSBRs by PCR with previously designed primers mostly gave negative results. 16S rRNA gene-targeted PCR and a subsequent denaturating gradient gel electrophoresis analysis revealed that a marked change occurred in the bacterial community during the overall period of operation, in which members of the candidate phylum TM7 and the class Gammaproteobacteria became predominant at the fully acclimated stage. This result was fully supported by a 16S rRNA gene clone library analysis, as the major phylogenetic groups of clones detected (>5% of the total) were TM7 (33%), Gammaproteobacteria (37%), Actinobacteria (10%), and Alphaproteobacteria (8%). Fluorescence in situ hybridization with specific probes also demonstrated the prevalence of TM7 bacteria and Gammaproteobacteria. These results suggest that previously unknown nitrifying microorganisms may play a major role in ANSBRs; however, the ecophysiological significance of the TM7 bacteria predominating in this process remains unclear. PMID:25241805

  2. Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities

    SciTech Connect

    Denef, Vincent; Kalnejals, Linda; Muller, R; Wilmes, P; Baker, Brett J.; Thomas, Brian; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2010-01-01

    Bacterial species concepts are controversial. More widely accepted is the need to understand how differences in gene content and sequence lead to ecological divergence. To address this relationship in ecosystem context, we investigated links between genotype and ecology of two genotypic groups of Leptospirillumgroup II bacteria in comprehensively characterized, natural acidophilic biofilm communities. These groups share 99.7% 16S rRNA gene sequence identity and 95% average amino acid identity between their orthologs. One genotypic group predominates during early colonization, and the other group typically proliferates in later successional stages, forming distinct patches tens to hundreds of micrometers in diameter. Among early colonizing populations, we observed dominance of five genotypes that differed from each other by the extent of recombination with the late colonizing type. Our analyses suggest that the specific recombinant variant within the early colonizing group is selected for by environmental parameters such as temperature, consistent with recombination as a mechanism for ecological fine tuning. Evolutionary signatures, and strain-resolved expression patterns measured via mass spectrometry based proteomics, indicate increased cobalamin biosynthesis, (de)methylation, and glycine cleavage in the late colonizer. This may suggest environmental changes within the biofilm during development, accompanied by redirection of compatible solutes from osmoprotectants toward metabolism. Across 27 communities, comparative proteogenomic analyses show that differential regulation of shared genes and expression of a small subset of the 15% of genes unique to each genotype are involved in niche partitioning. In summary, the results show how subtle genetic variations can lead to distinct ecological strategies.

  3. Solar Radiation Stress in Natural Acidophilic Biofilms of Euglena mutabilis Revealed by Metatranscriptomics and PAM Fluorometry.

    PubMed

    Puente-Sánchez, Fernando; Olsson, Sanna; Gómez-Rodriguez, Manuel; Souza-Egipsy, Virginia; Altamirano-Jeschke, Maria; Amils, Ricardo; Parro, Victor; Aguilera, Angeles

    2016-02-01

    The daily photosynthetic performance of a natural biofilm of the extreme acidophilic Euglena mutabilis from Río Tinto (SW, Spain) under full solar radiation was analyzed by means of pulse amplitude-modulated (PAM) fluorescence measurements and metatrascriptomic analysis. Natural E. mutabilis biofilms undergo large-scale transcriptomic reprogramming during midday due to a dynamic photoinhibition and solar radiation stress. Photoinhibition is due to UV radiation and not to light intensity, as revealed by PAM fluorometry analysis. In order to minimize the negative effects of solar radiation, our data supports the presence of a circadian rhythm in this euglenophyte that increases their opportunity to survive. Differential gene expression throughout the day (at 12:00, 20:00 and night) was monitored by massive Illumina parallel sequencing of metatranscriptomic libraries. The transcription pattern was altered in genes involved in Photosystem II stability and repair, UV damaged DNA repair, non-photochemical quenching and oxidative stress, supporting the photoinhibition detected by PAM fluorometry at midday. PMID:26827143

  4. Effects of inhibitors and NaCl on the oxidation of reduced inorganic sulfur compounds by a marine acidophilic, sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH.

    PubMed

    Kamimura, Kazuo; Higashino, Emi; Kanao, Tadayoshi; Sugio, Tsuyoshi

    2005-02-01

    The effect of NaCl and the pathways of the oxidation of reduced inorganic sulfur compounds were studied using resting cells and cell-free extracts of Acidithiobacillus thiooxidans strain SH. This isolate specifically requires NaCl for growth. The oxidation of sulfur and sulfite by resting cells was strongly inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide. Carbonylcyanide m-chlorophenyl-hydrazone and monensin were also relatively strong inhibitors. Thiosulfate-oxidizing activity was not inhibited by these uncouplers. Valinomycin did not inhibit the oxidation of sulfur compounds. NaCl stimulated the sulfur- and sulfite-oxidizing activities in resting cells but not in cell-free extracts. The tetrathionate-oxidizing activity in resting cells was slightly stimulated by NaCl, whereas it did not influence the thiosulfate-oxidizing activity. Sulfide oxidation was biphasic, suggesting the formation of intermediate sulfur. The initial phase of sulfide oxidation was not affected by NaCl, whereas the subsequent oxidation of sulfur in the second phase was Na+-dependent. A model is proposed for the role of NaCl in the metabolism of reduced sulfur compounds in A. thiooxidans strain SH. PMID:15375674

  5. Chemolithoautotrophic production mediating the cycling of the greenhouse gases N2O and CH4 in an upwelling ecosystem

    NASA Astrophysics Data System (ADS)

    Farías, L.; Fernández, C.; Faúndez, J.; Cornejo, M.; Alcaman, M. E.

    2009-12-01

    The high availability of electron donors occurring in coastal upwelling ecosystems with marked oxyclines favours chemoautotrophy, in turn leading to high N2O and CH4 cycling associated with aerobic NH4+ (AAO) and CH4 oxidation (AMO). This is the case of the highly productive coastal upwelling area off central Chile (36° S), where we evaluated the importance of total chemolithoautotrophic vs. photoautotrophic production, the specific contributions of AAO and AMO to chemosynthesis and their role in gas cycling. Chemolithoautotrophy was studied at a time-series station during monthly (2007-2009) and seasonal cruises (January 2008, September 2008, January 2009) and was assessed in terms of the natural C isotopic ratio of particulate organic carbon (δ13POC), total and specific (associated with AAO and AMO) dark carbon assimilation (CA), and N2O and CH4 cycling experiments. At the oxycline, δ13POC averaged -22.2‰; this was significantly lighter compared to the surface (-19.7‰) and bottom layers (-20.7‰). Total integrated dark CA in the whole water column fluctuated between 19.4 and 2.924 mg C m-2 d-1, was higher during active upwelling, and contributed 0.7 to 49.7% of the total integrated autotrophic CA (photo plus chemoautotrophy), which ranged from 135 to 7.626 mg C m-2 d-1, and averaged 20.3% for the whole sampling period. Dark CA was reduced by 27 to 48% after adding a specific AAO inhibitor (ATU) and by 24 to 76% with GC7, a specific archaea inhibitor. This indicates that AAO and AMO microbes (most of them archaea) were performing dark CA through the oxidation of NH4+ and CH4. Net N2O cycling rates varied between 8.88 and 43 nM d-1, whereas net CH4 cycling rates ranged from -0.41 to -26.8 nM d-1. The addition of both ATU and GC7 reduced N2O accumulation and increased CH4 consumption, suggesting that AAO and AMO were responsible, in part, for the cycling of these gases. These findings show that chemically driven chemolithoautotrophy (with NH4+ and CH4 acting

  6. Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities

    PubMed Central

    Denef, Vincent J.; Kalnejais, Linda H.; Mueller, Ryan S.; Wilmes, Paul; Baker, Brett J.; Thomas, Brian C.; VerBerkmoes, Nathan C.; Hettich, Robert L.; Banfield, Jillian F.

    2010-01-01

    Bacterial species concepts are controversial. More widely accepted is the need to understand how differences in gene content and sequence lead to ecological divergence. To address this relationship in ecosystem context, we investigated links between genotype and ecology of two genotypic groups of Leptospirillum group II bacteria in comprehensively characterized, natural acidophilic biofilm communities. These groups share 99.7% 16S rRNA gene sequence identity and 95% average amino acid identity between their orthologs. One genotypic group predominates during early colonization, and the other group typically proliferates in later successional stages, forming distinct patches tens to hundreds of micrometers in diameter. Among early colonizing populations, we observed dominance of five genotypes that differed from each other by the extent of recombination with the late colonizing type. Our analyses suggest that the specific recombinant variant within the early colonizing group is selected for by environmental parameters such as temperature, consistent with recombination as a mechanism for ecological fine tuning. Evolutionary signatures, and strain-resolved expression patterns measured via mass spectrometry–based proteomics, indicate increased cobalamin biosynthesis, (de)methylation, and glycine cleavage in the late colonizer. This may suggest environmental changes within the biofilm during development, accompanied by redirection of compatible solutes from osmoprotectants toward metabolism. Across 27 communities, comparative proteogenomic analyses show that differential regulation of shared genes and expression of a small subset of the ∼15% of genes unique to each genotype are involved in niche partitioning. In summary, the results show how subtle genetic variations can lead to distinct ecological strategies. PMID:20133593

  7. Photochemical Performance of the Acidophilic Red Alga Cyanidium sp. in a pH Gradient

    NASA Astrophysics Data System (ADS)

    Kvíderová, Jana

    2012-06-01

    The acidophilic red alga Cyanidium sp. is one of the dominant mat-forming species in the highly acidic waters of Río Tinto, Spain. The culture of Cyanidium sp., isolated from a microbial mat sample collected at Río Tinto, was exposed to 9 different pH conditions in a gradient from 0.5 to 5 for 24 h and its physiological status evaluated by variable chlorophyll a fluorescence kinetics measurements. Maximum quantum yield was determined after 30 min, 1 h, 2 h, 4 h, 6 h and 24 h of exposure after 15 min dark adaptation. The effect of pH on photochemical activity of Cyanidium sp. was observable as early as 30 min after exposure and the pattern remained stable or with only minor modifications for 24 h. The optimum pH ranged from 1.5 to 2.5. A steep decrease of the photochemical activity was observed at pH below 1 even after 30 min of exposure. Although the alga had tolerated the exposure to pH = 1 for at least 6 h, longer (24 h) exposure resulted in reduction of the photochemical activity. At pH above 2.5, the decline was more moderate and its negative effect on photochemistry was less severe. According to the fluorescence measurements, the red alga Cyanidium sp. is well-adapted to prevailing pH at its original locality at Río Tinto, i.e. pH of 1 to 3. The short-term survival in pH < 1.5 may be adaptation to rare exposures to such low pH in the field. The tolerance of pH above 3 could be caused by adaptation to the microenvironment of the inner parts of microbial mats in which Cyanidium sp. usually dominates and where higher pH could occur due to photosynthetic oxygen production.

  8. A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1.

    PubMed

    Luo, Huiying; Li, Jiang; Yang, Jun; Wang, Hui; Yang, Yuhui; Huang, Huoqing; Shi, Pengjun; Yuan, Tiezheng; Fan, Yunliu; Yao, Bin

    2009-09-01

    A complete gene, xyl10C, encoding a thermophilic endo-1,4-beta-xylanase (XYL10C), was cloned from the acidophilic fungus Bispora sp. MEY-1 and expressed in Pichia pastoris. XYL10C shares highest nucleotide and amino acid sequence identities of 57.3 and 49.7%, respectively, with a putative xylanase from Aspergillus fumigatus Af293 of glycoside hydrolase family 10. A high expression level in P. pastoris (73,400 U ml(-1)) was achieved in a 3.7-l fermenter. The purified recombinant XYL10C was thermophilic, exhibiting maximum activity at 85 degrees C, which is higher than that reported from any fungal xylanase. The enzyme was also highly thermostable, exhibiting approximately 100% of the initial activity after incubation at 80 degrees C for 60 min and >87% of activity at 90 degrees C for 10 min. The half lives of XYL10C at 80 and 85 degrees C were approximately 45 and 3 h, respectively. It had two activity peaks at pH 3.0 and 4.5-5.0 (maximum), respectively, and was very acid stable, retaining more than 80% activity after incubation at pH 1.5-6.0 for 1 h. The enzyme was resistant to Co(2+), Mn(2+), Cr(3+) and Ag(+). The specific activity of XYL10C for oat spelt xylan was 18,831 U mg(-1). It also had wide substrate specificity and produced simple products (65.1% xylose, 25.0% xylobiose and 9.9% xylan polymer) from oat spelt xylan. PMID:19655217

  9. Diversity and ecophysiology of new isolates of extremely acidophilic CS2-converting Acidithiobacillus strains.

    PubMed

    Smeulders, Marjan J; Pol, Arjan; Zandvoort, Marcel H; Jetten, Mike S M; Op den Camp, Huub J M

    2013-11-01

    Biofiltration of industrial carbon disulfide (CS2)-contaminated waste air streams results in the acidification of biofilters and therefore reduced performance, high water use, and increased costs. To address these issues, we isolated 16 extremely acidophilic CS2-converting Acidithiobacillus thiooxidans strains that tolerated up to 6% (vol/vol) sulfuric acid. The ecophysiological properties of five selected strains (2Bp, Sts 4-3, S1p, G8, and BBW1) were compared. These five strains had pH optima between 1 (2Bp) and 2 (S1p). Their affinities for CS2 ranged between 80 (G8) and 130 (2Bp) μM. Strains S1p, G8, and BBW1 had more hydrophobic cell surfaces and produced less extracellular polymeric substance than did strains 2Bp and Sts 4-3. All five strains converted about 80% of the S added as CS2 to S(0) when CS2 was supplied in excess. The rate of S(0) consumption varied between 7 (Sts 4-3) and 63 (S1p) nmol O2 min(-1) ml culture(-1). Low S(0) consumption rates correlated partly with low levels of cell attachment to externally produced S(0) globules. During chemostat growth, the relative amount of CS2 hydrolase in the cell increased with decreasing growth rates. This resulted in more S(0) accumulation during CS2 overloads at low growth rates. Intermittent interruptions of the CS2 supply affected all five strains. Strains S1p, G8, and BBW1 recovered from 24 h of starvation within 4 h, and strains 2Bp and Sts 4-3 recovered within 24 h after CS2 was resupplied. We recommend the use of mixtures of Acidithiobacillus strains in industrial biofilters. PMID:23995926

  10. Diversity and Ecophysiology of New Isolates of Extremely Acidophilic CS2-Converting Acidithiobacillus Strains

    PubMed Central

    Smeulders, Marjan J.; Pol, Arjan; Zandvoort, Marcel H.; Jetten, Mike S. M.

    2013-01-01

    Biofiltration of industrial carbon disulfide (CS2)-contaminated waste air streams results in the acidification of biofilters and therefore reduced performance, high water use, and increased costs. To address these issues, we isolated 16 extremely acidophilic CS2-converting Acidithiobacillus thiooxidans strains that tolerated up to 6% (vol/vol) sulfuric acid. The ecophysiological properties of five selected strains (2Bp, Sts 4-3, S1p, G8, and BBW1) were compared. These five strains had pH optima between 1 (2Bp) and 2 (S1p). Their affinities for CS2 ranged between 80 (G8) and 130 (2Bp) μM. Strains S1p, G8, and BBW1 had more hydrophobic cell surfaces and produced less extracellular polymeric substance than did strains 2Bp and Sts 4-3. All five strains converted about 80% of the S added as CS2 to S0 when CS2 was supplied in excess. The rate of S0 consumption varied between 7 (Sts 4-3) and 63 (S1p) nmol O2 min−1 ml culture−1. Low S0 consumption rates correlated partly with low levels of cell attachment to externally produced S0 globules. During chemostat growth, the relative amount of CS2 hydrolase in the cell increased with decreasing growth rates. This resulted in more S0 accumulation during CS2 overloads at low growth rates. Intermittent interruptions of the CS2 supply affected all five strains. Strains S1p, G8, and BBW1 recovered from 24 h of starvation within 4 h, and strains 2Bp and Sts 4-3 recovered within 24 h after CS2 was resupplied. We recommend the use of mixtures of Acidithiobacillus strains in industrial biofilters. PMID:23995926

  11. Thermodynamic and kinetic characterization using process dynamics: acidophilic ferrous iron oxidation by Leptospirillum ferrooxidans.

    PubMed

    Kleerebezem, Robbert; van Loosdrecht, Mark C M

    2008-05-01

    Kinetic and stoichiometric properties of acidophilic aerobic ferrous iron oxidation by growing and non-growing Leptospirillum ferrooxidans cultures were investigated. The use of a continuous stirred tank reactor operated at a variable dilution rate and equipped with on-line measurement of the electron donor, acceptor and anabolic substrate uptake rate enabled detailed kinetic characterization from a single experiment. It was demonstrated that substrate conversion and microbial growth are tightly coupled processes in L. ferrooxidans, and uncoupling occurs only due to the minor impact of substrate conversion for growth-independent maintenance purposes. The tight stoichiometric coupling implies bioenergetic uncoupling of the catabolism and anabolism because the Gibbs energy change for ferrous iron oxidation as a function of the actual growth rate of the culture ranges from -45 to -25 kJ mol-FeII(-1). Bioenergetic description of the process could only be achieved by introduction of a growth rate dependent Gibbs energy dissipation term. Removal of carbon dioxide from the influent gas stopped biomass growth, but the biomass specific respiration rate was unaffected or slightly stimulated. The uncoupling of the catabolism and anabolism is suggested to induce instantaneously an energy dissipation pathway. Also dosage of a low concentration propionic acid resulted in complete inhibition of the anabolism. Propionic acid served as an uncoupler of the membrane potential and all catabolic energy is required for the increased maintenance requirements. Recovery of the anabolism after reestablishment of the normal cultivation conditions was obtained only after 1-2 days. The results obtained provide additional constraints on cultivation of L. ferrooxidans for biotechnological application. PMID:18080344

  12. Geochemical niches of iron-oxidizing acidophiles in acidic coal mine drainage.

    PubMed

    Jones, Daniel S; Kohl, Courtney; Grettenberger, Christen; Larson, Lance N; Burgos, William D; Macaladya, Jennifer L

    2015-02-01

    A legacy of coal mining in the Appalachians has provided a unique opportunity to study the ecological niches of iron-oxidizing microorganisms. Mine-impacted, anoxic groundwater with high dissolved-metal concentrations emerges at springs and seeps associated with iron oxide mounds and deposits. These deposits are colonized by iron-oxidizing microorganisms that in some cases efficiently remove most of the dissolved iron at low pH, making subsequent treatment of the polluted stream water less expensive. We used full-cycle rRNA methods to describe the composition of sediment communities at two geochemically similar acidic discharges, Upper and Lower Red Eyes in Somerset County, PA, USA. The dominant microorganisms at both discharges were acidophilic Gallionella-like organisms, “Ferrovum” spp., and Acidithiobacillus spp. Archaea and Leptospirillum spp. accounted for less than 2% of cells. The distribution of microorganisms at the two sites could be best explained by a combination of iron(II) concentration and pH. Populations of the Gallionella-like organisms were restricted to locations with pH>3 and iron(II) concentration of >4 mM, while Acidithiobacillus spp. were restricted to pH<3 and iron(II) concentration of <4 mM. Ferrovum spp. were present at low levels in most samples but dominated sediment communities at pH<3 and iron(II) concentration of >4 mM. Our findings offer a predictive framework that could prove useful for describing the distribution of microorganisms in acid mine drainage, based on readily accessible geochemical parameters. PMID:25501473

  13. Acidophilic actinobacteria synthesised silver nanoparticles showed remarkable activity against fungi-causing superficial mycoses in humans.

    PubMed

    Anasane, N; Golińska, P; Wypij, M; Rathod, D; Dahm, H; Rai, M

    2016-03-01

    Superficial mycoses are limited to the most external part of the skin and hair and caused by Malassezia sp., Trichophyton sp. and Candida sp. We report extracellular biosynthesis of silver nanoparticles (AgNPs) by acidophilic actinobacteria (SF23, C9) and its in vitro antifungal activity against fungi-causing superficial mycoses. The phylogenetic analysis based on the 16S rRNA gene sequence of strains SF23 and C9 showed that they are most closely related to Pilimelia columellifera subsp. pallida GU269552(T) . The detection of AgNPs was confirmed by visual observation of colour changes from colourless to brown, and UV-vis spectrophotometer analysis, which showed peaks at 432 and 427 nm, respectively. These AgNPs were further characterised by nanoparticle tracking analysis (NTA), Zeta potential, Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The FTIR analysis exhibited the presence of proteins as capping agents. The TEM analysis revealed the formation of spherical and polydispersed nanoparticles in the size range of 4-36 nm and 8-60 nm, respectively. The biosynthesised AgNPs were screened against fungi-causing superficial mycoses viz., Malassezia furfur, Trichophyton rubrum, Candida albicans and C. tropicalis. The highest antifungal activity of AgNPs from SF23 and C9 against T. rubrum and the least against M. furfur and C. albicans was observed as compared to other tested fungi. The biosynthesised AgNPs were found to be potential anti-antifungal agent against fungi-causing superficial mycoses. PMID:26671603

  14. Effect of VOCs and methane in the biological oxidation of the ferrous ion by an acidophilic consortium.

    PubMed

    Almenglo, F; Ramírez, M; Gómez, J M; Cantero, D; Revah, S; González-Sánchez, A

    2012-01-01

    During the elimination of H2S from biogas in an aqueous ferric sulphate solution, volatile organic compounds (VOCs) and methane are absorbed and may have an effect on the subsequent biological regeneration of ferric ion. This study was conducted to investigate the effect of maximum concentrations of methane and some VOCs found in biogas on the ferrous oxidation of an acidophilic microbial consortium (FO consortium). The presence and impact of heterotrophic microorganisms on the activity of the acidophilic consortium was also evaluated. No effect on the ferrous oxidation rate was found with gas concentrations of 1500 mg toluene m(-3), 1400 mg 2-butanol m(-3) or 1250 mg 1,2-dichloroethane m(-3), nor with methane at gas concentrations ranging from 15-25% (v/v). A tenfold increase in VOCs concentrations totally inhibited the microbial activity of the FO consortium and the heterotrophs. The presence of a heterotrophic fungus may promote the autotrophic growth of the FO consortium. PMID:22629626

  15. Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria.

    PubMed

    Ňancucheo, Ivan; Rowe, Owen F; Hedrich, Sabrina; Johnson, D Barrie

    2016-05-01

    Growth media have been developed to facilitate the enrichment and isolation of acidophilic and acid-tolerant sulfate-reducing bacteria (aSRB) from environmental and industrial samples, and to allow their cultivation in vitro The main features of the 'standard' solid and liquid devised media are as follows: (i) use of glycerol rather than an aliphatic acid as electron donor; (ii) inclusion of stoichiometric concentrations of zinc ions to both buffer pH and to convert potentially harmful hydrogen sulphide produced by the aSRB to insoluble zinc sulphide; (iii) inclusion of Acidocella aromatica (an heterotrophic acidophile that does not metabolize glycerol or yeast extract) in the gel underlayer of double layered (overlay) solid media, to remove acetic acid produced by aSRB that incompletely oxidize glycerol and also aliphatic acids (mostly pyruvic) released by acid hydrolysis of the gelling agent used (agarose). Colonies of aSRB are readily distinguished from those of other anaerobes due to their deposition and accumulation of metal sulphide precipitates. Data presented illustrate the effectiveness of the overlay solid media described for isolating aSRB from acidic anaerobic sediments and low pH sulfidogenic bioreactors. PMID:27036143

  16. Genome Sequence of the Acidophilic Ferrous Iron-Oxidizing Isolate Acidithrix ferrooxidans Strain Py-F3, the Proposed Type Strain of the Novel Actinobacterial Genus Acidithrix.

    PubMed

    Eisen, Sebastian; Poehlein, Anja; Johnson, D Barrie; Daniel, Rolf; Schlömann, Michael; Mühling, Martin

    2015-01-01

    Extremely acidophilic iron-oxidizing Gram-positive bacteria comprise species within the phyla Firmicutes and Actinobacteria. Here, we report the 4.02-Mb draft genome of Acidithrix ferrooxidans Py-F3, which was isolated from a stream draining an abandoned copper mine and proposed as the type species of a new genus of Actinobacteria. PMID:25931603

  17. Sulfurihydrogenibium rodmanii sp. nov., a sulfur-oxidizing chemolithoautotroph from the Uzon Caldera, Kamchatka Peninsula, Russia, and emended description of the genus Sulfurihydrogenibium.

    PubMed

    O'Neill, Andrew H; Liu, Yitai; Ferrera, Isabel; Beveridge, Terry J; Reysenbach, Anna-Louise

    2008-05-01

    Four thermophilic, sulfur-oxidizing, chemolithoautotrophic strains with >99 % 16S rRNA gene sequence similarity were isolated from terrestrial hot springs in the Geyser Valley and the Uzon Caldera, Kamchatka, Russia. One strain, designated UZ3-5T, was characterized fully. Cells of UZ3-5T were Gram-negative, motile, slightly oval rods (about 0.7 microm wide and 1.0 microm long) with multiple polar flagella. All four strains were obligately microaerophilic chemolithoautotrophs and could use elemental sulfur or thiosulfate as electron donors and oxygen (1-14 %, v/v) as the electron acceptor. Strain UZ3-5T grew at temperatures between 55 and 80 degrees C (optimally at 75 degrees C; 1.1 h doubling time), at pH 5.0-7.2 (optimally at pH 6.0-6.3) and at 0-0.9 % NaCl (optimally in the absence of NaCl). The G+C content of the genomic DNA of strain UZ3-5T was 35 mol%. Phylogenetic analysis revealed that strain UZ3-5T was a member of the genus Sulfurihydrogenibium, its closest relative in culture being Sulfurihydrogenibium azorense Az-Fu1T (98.3 % 16S rRNA gene sequence similarity). On the basis of its physiological and molecular characteristics, strain UZ3-5T represents a novel species of the genus Sulfurihydrogenibium, for which the name Sulfurihydrogenibium rodmanii sp. nov. is proposed. The type strain is UZ3-5T (=OCM 900T =ATCC BAA-1536T =DSM 19533T). PMID:18450704

  18. Biochemistry and Ecology of Novel Cytochromes Catalyzing Fe(II) Oxidation by an Acidophilic Microbial Community

    NASA Astrophysics Data System (ADS)

    Singer, S. W.; Jeans, C. J.; Thelen, M. P.; Verberkmoes, N. C.; Hettich, R. C.; Chan, C. S.; Banfield, J. F.

    2007-12-01

    An acidophilic microbial community found in the Richmond Mine at Iron Mountain, CA forms abundant biofilms in extremely acidic (pH<1) and toxic metal conditions. In this ecosystem, biological Fe(II) oxidation is critical to the metabolic functioning of the community, and in turn this process generates acid mine drainage, causing an environmental catastrophe. Two conspicuous novel proteins isolated from these biofilms were identified as gene products of Leptospirillum group II and were characterized as cytochromes with unique properties. Sulfuric acid extraction of biofilm samples liberated one of these proteins, a 16 kDa cytochrome with an unusual alpha-band absorption at 579 (Cyt579). Genomic sequencing of multiple biofilms indicated that several variants of Cyt579 were present in Leptospirillum strains. Intact protein MS analysis identified the dominant variants in each biofilm and documented multiple N-terminal cleavage sites for Cyt579. By combining biochemical, geochemical and microbiological data, we established that the sequence variation and N-terminal processing of Cyt579 are selected by ecological conditions. In addition to the soluble Cyt579, the second cytochrome appears as a much larger protein complex of ~210 kDa predominant in the biofilm membrane fraction, and has an alpha-band absorption at 572 nm. The 60 kDa cytochrome subunit, Cyt572, resides in the outer membrane of LeptoII, and readily oxidizes Fe(II) at low pH (0.95 - 3.0). Several genes encoding Cyt572 were localized within a recombination hotspot between two strains of LeptoII, causing a large range of variation in the sequences. Genomic sequencing and MS proteomic studies established that the variants were also selected by ecological conditions. A general mechanistic model for Fe(II) oxidation has been developed from these studies. Initial Fe(II) oxidation by Cyt572 occurs at the outer membrane. Cyt572 then transfers electrons to Cyt579, perhaps representing an initial step in energy flow

  19. Quantifying adhesion of acidophilic bioleaching bacteria to silica and pyrite by atomic force microscopy with a bacterial probe.

    PubMed

    Diao, Mengxue; Taran, Elena; Mahler, Stephen; Nguyen, Tuan A H; Nguyen, Anh V

    2014-03-01

    The adhesion of acidophilic bacteria to mineral surfaces is an important phenomenon in bioleaching processes. In this study, functionalized colloidal probes covered by bioleaching bacterial cells (Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans) were developed and used to sense specific adhesion forces to a silica surface and a pyrite surface in various solutions. Experimentally, recorded retraction curves of A. thiooxidans revealed sawtooth features that were in good agreement with the wormlike chain model, while that of L. ferrooxidans exhibited stair-step separation. The magnitudes of adhesion forces and snap-off distances were strongly influenced by the ionic strength and pH. Macroscopic surface properties including hydrophobicity and surface potential for bacterial cells and substrata were measured by a sessile drop method and microelectrophoresis. The ATR-FTIR spectra indicated the presence of different types of biopolymers on two strains of bacteria. PMID:24355385

  20. Growth rate characteristics of acidophilic heterotrophic organisms from mine waste rock piles

    NASA Astrophysics Data System (ADS)

    Yacob, T. W.; Silverstein, J.; Jenkins, J.; Andre, B. J.; Rajaram, H.

    2010-12-01

    Autotrophic iron oxidizing bacteria play a key role in pyrite oxidation and generation of acid mine drainage AMD. Scarcity of organic substrates in many disturbed sites insures that IOB have sufficient oxygen and other nutrients for growth. It is proposed that addition of organic carbon substrate to waste rock piles will result in enrichment of heterotrophic microorganisms limiting the role of IOB in AMD generation. Previous researchers have used the acidophilic heterotroph Acidiphilium cryptum as a model to study the effects of organic substrate addition on the pyrite oxidation/AMD cycle. In order to develop a quantitative model of effects such as competition for oxygen, it is necessary to use growth and substrate consumption rate expressions, and one approach is to choose a model strain such as A. cryptum for kinetic studies. However we have found that the growth rate characteristics of A. cryptum may not provide an accurate model of the remediation effects of organic addition to subsurface mined sites. Fluorescent in-situ hybridization (FISH) assays of extracts of mine waste rock enriched with glucose and yeast extract did not produce countable numbers of cells in the Acidiphilium genus, with a detection limit of3 x 104 cells/gram rock, despite evidence of the presence of well established heterotrophic organisms. However, an MPN enrichment produced heterotrophic population estimates of 1x107 and 1x109 cells/gram rock. Growth rate studies of A. cryptum showed that cultures took 120 hours to degrade 50% of an initial glucose concentration of 2,000 mg/L. However a mixed culture enriched from mine waste rock consumed 100% of the same amount of glucose in 24 hours. Substrate consumption data for the mixed culture were fit to a Monod growth model: {dS}/{dt} = μ_{max}S {( {X_0}/{Y} + S_0 -S )}/{(K_s +S)} Kinetic parameters were estimated utilizing a non linear regression method coupled with an ODE solver. The maximum specific growth rate of the mixed population with

  1. Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria

    PubMed Central

    Ziegler, Sibylle; Dolch, Kerstin; Geiger, Katharina; Krause, Susanne; Asskamp, Maximilian; Eusterhues, Karin; Kriews, Michael; Wilhelms-Dick, Dorothee; Goettlicher, Joerg; Majzlan, Juraj; Gescher, Johannes

    2013-01-01

    Biofilms can provide a number of different ecological niches for microorganisms. Here, a multispecies biofilm was studied in which pyrite-oxidizing microbes are the primary producers. Its stability allowed not only detailed fluorescence in situ hybridization (FISH)-based characterization of the microbial population in different areas of the biofilm but also to integrate these results with oxygen and pH microsensor measurements conducted before. The O2 concentration declined rapidly from the outside to the inside of the biofilm. Hence, part of the population lives under microoxic or anoxic conditions. Leptospirillum ferrooxidans strains dominate the microbial population but are only located in the oxic periphery of the snottite structure. Interestingly, archaea were identified only in the anoxic parts of the biofilm. The archaeal community consists mainly of so far uncultured Thermoplasmatales as well as novel ARMAN (Archaeal Richmond Mine Acidophilic Nanoorganism) species. Inductively coupled plasma analysis and X-ray absorption near edge structure spectra provide further insight in the biofilm characteristics but revealed no other major factors than oxygen affecting the distribution of bacteria and archaea. In addition to catalyzed reporter deposition FISH and oxygen microsensor measurements, microautoradiographic FISH was used to identify areas in which active CO2 fixation takes place. Leptospirilla as well as acidithiobacilli were identified as primary producers. Fixation of gaseous CO2 seems to proceed only in the outer rim of the snottite. Archaea inhabiting the snottite core do not seem to contribute to the primary production. This work gives insight in the ecological niches of acidophilic microorganisms and their role in a consortium. The data provided the basis for the enrichment of uncultured archaea. PMID:23619304

  2. Gene Loss and Horizontal Gene Transfer Contributed to the Genome Evolution of the Extreme Acidophile “Ferrovum”

    PubMed Central

    Ullrich, Sophie R.; González, Carolina; Poehlein, Anja; Tischler, Judith S.; Daniel, Rolf; Schlömann, Michael; Holmes, David S.; Mühling, Martin

    2016-01-01

    Acid mine drainage (AMD), associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus “Ferrovum” are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of “Ferrovum” has proven to be extremely difficult and has so far only been successful for the designated type strain “Ferrovum myxofaciens” P3G. In this study, the genomes of two novel strains of “Ferrovum” (PN-J185 and Z-31) derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of “Ferrovum” sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G). Phylogenomic scrutiny suggests that the four strains represent three “Ferrovum” species that cluster in two groups (1 and 2). Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the “F. myxofaciens” strains (group 1) appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features

  3. Gene identification and substrate regulation provide insights into sulfur accumulation during bioleaching with the psychrotolerant acidophile Acidithiobacillus ferrivorans.

    PubMed

    Liljeqvist, Maria; Rzhepishevska, Olena I; Dopson, Mark

    2013-02-01

    The psychrotolerant acidophile Acidithiobacillus ferrivorans has been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested that Acidithiobacillus ferrivorans utilized a ferrous iron oxidation pathway similar to that of the related species Acidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since the Acidithiobacillus ferrivorans genome contained genes from both Acidithiobacillus ferrooxidans and Acidithiobacillus caldus encoding enzymes whose assigned functions are redundant. Transcriptional analysis revealed that the petA1 and petB1 genes (implicated in ferrous iron oxidation) were downregulated upon growth on the inorganic sulfur compound tetrathionate but were on average 10.5-fold upregulated in the presence of ferrous iron. In contrast, expression of cyoB1 (involved in inorganic sulfur compound oxidation) was decreased 6.6-fold upon growth on ferrous iron alone. Competition assays between ferrous iron and tetrathionate with Acidithiobacillus ferrivorans SS3 precultured on chalcopyrite mineral showed a preference for ferrous iron oxidation over tetrathionate oxidation. Also, pure and mixed cultures of psychrotolerant acidophiles were utilized for the bioleaching of metal sulfide minerals in stirred tank reactors at 5 and 25°C in order to investigate the fate of ferrous iron and inorganic sulfur compounds. Solid sulfur accumulated in bioleaching cultures growing on a chalcopyrite concentrate. Sulfur accumulation halted mineral solubilization, but sulfur was oxidized after metal release had ceased. The data indicated that ferrous iron was preferentially oxidized during growth on chalcopyrite, a finding with important implications for biomining in cold environments. PMID:23183980

  4. Acidophilic denitrifiers dominate the N2O production in a 100-year-old tea orchard soil.

    PubMed

    Huang, Ying; Long, Xi-En; Chapman, Stephen J; Yao, Huaiying

    2015-03-01

    Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N2O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg(-1) of NO3 (-)-N) addition. Results showed the highest N2O emission (10.1 mg kg(-1) over 21 days) from the soil at pH 3.71 with 1000 mg kg(-1) NO3 (-) addition. The N2O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N2O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N2O emission in this highly acidic tea soil. PMID:25273518

  5. Purification and some properties of ubiquinol oxidase from obligately chemolithotrophic iron-oxidizing bacterium, Thiobacillus ferrooxidans NASF-1.

    PubMed

    Kamimura, K; Fujii, S; Sugio, T

    2001-01-01

    Ubiquinol-oxidizing activity was detected in an acidophilic chemolithotrophic iron-oxidizing bacterium, T. ferrooxidans. The ubiquinol oxidase was purified 79-fold from plasma membranes of T. ferrooxidans NASF-1 cells. The purified oxidase is composed of two polypeptides with apparent molecular masses of 32,600 and 50,100 Da, as measured by gel electrophoresis in the presence of sodium dodecyl sulfate. The absorption spectrum of the reduced enzyme at room temperature showed big peaks at 530 and 563, and a small broad peak at 635 nm, indicating the involvement of cytochromes b and d. Characteristic peaks of cytochromes a and c were not observed in the spectrum at around 600 and 550 nm, respectively. This enzyme combined with CO, and its CO-reduced minus reduced difference spectrum showed peaks at 409 nm and 563 nm and a trough at 431 nm. These results indicated that the oxidase contained cytochrome b, but the involvement of cytochrome d was not clear. The enzyme catalyzed the oxidations of ubiquinol-2 and reduced N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride. The ubiquinol oxidase activity was activated by the addition of albumin and lecithin to the reaction mixture and inhibited by the respiratory inhibitors KCN, HQNO, NaN3, and antimycin A1, although the enzyme was relatively resistant to KCN, and the divalent cation, Zn2+, compared with ubiquinol oxidases of E. coli. PMID:11272847

  6. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia.

    PubMed

    Nancucheo, Ivan; Johnson, D Barrie

    2010-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacillus spp. Rapid acidification (to pH 1.0) of the culture medium of At. caldus resulted in a large increase in the level of DOC, although the concentration of glycolic acid did not change in proportion. The archaeon Ferroplasma acidiphilum grew in the cell-free spent medium of At. caldus; glycolic acid was not metabolized, although other unidentified compounds in the DOC pool were metabolized. Glycolic acid exhibited levels of toxicity with 21 strains of acidophiles screened similar to those of acetic acid. The most sensitive species were chemolithotrophs (L. ferriphilum and At. ferrivorans), while the most tolerant species were chemoorganotrophs (Acidocella, Acidobacterium, and Ferroplasma species), and the ability to metabolize glycolic acid appeared to be restricted (among acidophiles) to Firmicutes (chiefly Sulfobacillus spp.). Results of this study help explain why Sulfobacillus spp. rather than other acidophiles are the main organic carbon-degrading bacteria in continuously fed stirred tanks used to bioprocess sulfide mineral concentrates and also why temporary cessation of pH control in these systems, resulting in rapid acidification, often results in a plume of the archaeon Ferroplasma. PMID:19933342

  7. Biochemical characterization of an acidophilic β-mannanase from Gloeophyllum trabeum CBS900.73 with significant transglycosylation activity and feed digesting ability.

    PubMed

    Wang, Caihong; Zhang, Jiankang; Wang, Yuan; Niu, Canfang; Ma, Rui; Wang, Yaru; Bai, Yingguo; Luo, Huiying; Yao, Bin

    2016-04-15

    Acidophilic β-mannanases have been attracting much attention due to their excellent activity under extreme acidic conditions and significant industrial applications. In this study, a β-mannanase gene of glycoside hydrolase family 5, man5A, was cloned from Gloeophyllum trabeum CBS900.73, and successfully expressed in Pichia pastoris. Purified recombinant Man5A was acidophilic with a pH optimum of 2.5 and exhibited great pH adaptability and stability (>80% activity over pH 2.0-6.0 and pH 2.0-10.0, respectively). It had a high specific activity (1356 U/mg) against locust bean gum, was able to degrade galactomannan and glucomannan in a classical four-site binding mode, and catalyzed the transglycosylation of mannotetrose to mannooligosaccharides with higher degree of polymerization. Besides, it had great resistance to pepsin and trypsin and digested corn-soybean meal based diet in a comparable way with a commercial β-mannanase under the simulated gastrointestinal conditions of pigs. This acidophilic β-mannanase represents a valuable candidate for wide use in various industries, especially in the feed. PMID:26616977

  8. Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm.

    PubMed

    Jones, Daniel S; Albrecht, Heidi L; Dawson, Katherine S; Schaperdoth, Irene; Freeman, Katherine H; Pi, Yundan; Pearson, Ann; Macalady, Jennifer L

    2012-01-01

    Highly acidic (pH 0-1) biofilms, known as 'snottites', form on the walls and ceilings of hydrogen sulfide-rich caves. We investigated the population structure, physiology and biogeochemistry of these biofilms using metagenomics, rRNA methods and lipid geochemistry. Snottites from the Frasassi cave system (Italy) are dominated (>70% of cells) by Acidithiobacillus thiooxidans, with smaller populations including an archaeon in the uncultivated 'G-plasma' clade of Thermoplasmatales (>15%) and a bacterium in the Acidimicrobiaceae family (>5%). Based on metagenomic evidence, the Acidithiobacillus population is autotrophic (ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), carboxysomes) and oxidizes sulfur by the sulfide-quinone reductase and sox pathways. No reads matching nitrogen fixation genes were detected in the metagenome, whereas multiple matches to nitrogen assimilation functions are present, consistent with geochemical evidence, that fixed nitrogen is available in the snottite environment to support autotrophic growth. Evidence for adaptations to extreme acidity include Acidithiobacillus sequences for cation transporters and hopanoid synthesis, and direct measurements of hopanoid membrane lipids. Based on combined metagenomic, molecular and geochemical evidence, we suggest that Acidithiobacillus is the snottite architect and main primary producer, and that snottite morphology and distributions in the cave environment are directly related to the supply of C, N and energy substrates from the cave atmosphere. PMID:21716305

  9. Microbial oxidative sulfur metabolism: biochemical evidence of the membrane-bound heterodisulfide reductase-like complex of the bacterium Aquifex aeolicus.

    PubMed

    Boughanemi, Souhela; Lyonnet, Jordan; Infossi, Pascale; Bauzan, Marielle; Kosta, Artémis; Lignon, Sabrina; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2016-08-01

    The Hdr (heterodisulfide reductase)-like enzyme is predicted, from gene transcript profiling experiments previously published, to be essential in oxidative sulfur metabolism in a number of bacteria and archaea. Nevertheless, no biochemical and physicochemical data are available so far about this enzyme. Genes coding for it were identified in Aquifex aeolicus, a Gram-negative, hyperthermophilic, chemolithoautotrophic and microaerophilic bacterium that uses inorganic sulfur compounds as electron donor to grow. We provide biochemical evidence that this Hdr-like enzyme is present in this sulfur-oxidizing prokaryote (cultivated with thiosulfate or elemental sulfur). We demonstrate, by immunolocalization and cell fractionation, that Hdr-like enzyme is associated, presumably monotopically, with the membrane fraction. We show by co-immunoprecipitation assay or partial purification, that the Hdr proteins form a stable complex composed of at least five subunits, HdrA, HdrB1, HdrB2, HdrC1 and HdrC2, present in two forms of high molecular mass on native gel (∼240 and 450 kDa). These studies allow us to propose a revised model for dissimilatory sulfur oxidation pathways in A. aeolicus, with Hdr predicted to generate sulfite. PMID:27284018

  10. Tumebacillus flagellatus sp. nov., an α-amylase/pullulanase-producing bacterium isolated from cassava wastewater.

    PubMed

    Wang, Qingyan; Xie, Nengzhong; Qin, Yan; Shen, Naikun; Zhu, Jing; Mi, Huizhi; Huang, Ribo

    2013-09-01

    A novel α-amylase/pullulanase-producing bacterium, designated strain GST4(T), was isolated from samples collected from the wastewater of a cassava starch factory in Nanning, Guangxi Autonomous Region, southern China. Cells of strain GST4(T) were rod-shaped bacilli containing ellipsoidal terminal spores and found to be Gram-reaction-positive, aerobic, motile, oxidase-positive, catalase-negative and formed light yellow colonies on agar plates. Strain GST4(T) was able to grow at pH 4.5-8.5 (optimum at pH 5.5), temperatures ranging from 20 to 42 °C (optimum at 37 °C) and salt concentrations of 0-1% (w/v) NaCl (optimum at 0.5%, w/v) on R2A medium. Strain GST4(T) grew heterotrophically on complex carbon substrates and chemolithoautotrophically on inorganic sulfur compounds, as demonstrated by growth on sodium thiosulfate and sulfite as sole electron donors. It can reduce nitrate and nitrite. Strain GST4(T) contained iso-C(15:0) and anteiso-C(15:0) as the major cellular fatty acids and menaquinone 7 (MK-7) as the major respiratory quinone. The cell-wall peptidoglycan was of type A1γ. The genomic DNA G+C content of strain GST4(T) was 53.7 mol%. Physiological and chemotaxonomic characteristics combined with phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GST4(T) was a member of the genus Tumebacillus and most closely related to Tumebacillus permanentifrigoris DSM 18773(T) and Tumebacillus ginsengisoli DSM 18389(T) with 97.3 and 94.5% sequence similarity, respectively. The DNA-DNA relatedness values between strain GST4(T) and T. permanentifrigoris DSM 18773(T), and strain GST4(T) and T. ginsengisoli DSM 18389(T) were 44.0 and 60.4%, respectively. The new isolate differed from those species of the genus Tumebacillus in that it has peritrichous flagella for motility. Based on the evidence obtained from this study, strain GST4(T) represents a novel species of the genus Tumebacillus, for which the name Tumebacillus flagellatus sp. nov. is proposed

  11. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico

    PubMed Central

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A.

    2015-01-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc. PMID:26583968

  12. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico.

    PubMed

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A; Setién, Alvaro Aguilar

    2015-12-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc. PMID:26583968

  13. Multisite-specific archaeosine tRNA-guanine transglycosylase (ArcTGT) from Thermoplasma acidophilum, a thermo-acidophilic archaeon

    PubMed Central

    Kawamura, Takuya; Hirata, Akira; Ohno, Satoshi; Nomura, Yuichiro; Nagano, Tomoko; Nameki, Nobukazu; Yokogawa, Takashi; Hori, Hiroyuki

    2016-01-01

    Archaeosine (G+), which is found only at position 15 in many archaeal tRNA, is formed by two steps, the replacement of the guanine base with preQ0 by archaeosine tRNA-guanine transglycosylase (ArcTGT) and the subsequent modification of preQ0 to G+ by archaeosine synthase. However, tRNALeu from Thermoplasma acidophilum, a thermo-acidophilic archaeon, exceptionally has two G+13 and G+15 modifications. In this study, we focused on the biosynthesis mechanism of G+13 and G+15 modifications in this tRNALeu. Purified ArcTGT from Pyrococcus horikoshii, for which the tRNA recognition mechanism and structure were previously characterized, exchanged only the G15 base in a tRNALeu transcript with 14C-guanine. In contrast, T. acidophilum cell extract exchanged both G13 and G15 bases. Because T. acidophilum ArcTGT could not be expressed as a soluble protein in Escherichia coli, we employed an expression system using another thermophilic archaeon, Thermococcus kodakarensis. The arcTGT gene in T. kodakarensis was disrupted, complemented with the T. acidophilum arcTGT gene, and tRNALeu variants were expressed. Mass spectrometry analysis of purified tRNALeu variants revealed the modifications of G+13 and G+15 in the wild-type tRNALeu. Thus, T. acidophilum ArcTGT has a multisite specificity and is responsible for the formation of both G+13 and G+15 modifications. PMID:26721388

  14. Characterization of Ferroplasma Isolates and Ferroplasma acidarmanus sp. nov., Extreme Acidophiles from Acid Mine Drainage and Industrial Bioleaching Environments

    PubMed Central

    Dopson, Mark; Baker-Austin, Craig; Hind, Andrew; Bowman, John P.; Bond, Philip L.

    2004-01-01

    Three recently isolated extremely acidophilic archaeal strains have been shown to be phylogenetically similar to Ferroplasma acidiphilum YT by 16S rRNA gene sequencing. All four Ferroplasma isolates were capable of growing chemoorganotrophically on yeast extract or a range of sugars and chemomixotrophically on ferrous iron and yeast extract or sugars, and isolate “Ferroplasma acidarmanus” Fer1T required much higher levels of organic carbon. All four isolates were facultative anaerobes, coupling chemoorganotrophic growth on yeast extract to the reduction of ferric iron. The temperature optima for the four isolates were between 35 and 42°C and the pH optima were 1.0 to 1.7, and “F. acidarmanus” Fer1T was capable of growing at pH 0. The optimum yeast extract concentration for “F. acidarmanus” Fer1T was higher than that for the other three isolates. Phenotypic results suggested that isolate “F. acidarmanus” Fer1T is of a different species than the other three strains, and 16S rRNA sequence data, DNA-DNA similarity values, and two-dimensional polyacrylamide gel electrophoresis protein profiles clearly showed that strains DR1, MT17, and YT group as a single species. “F. acidarmanus” Fer1T groups separately, and we propose the new species “F. acidarmanus” Fer1T sp. nov. PMID:15066799

  15. Biofilm formation and interspecies interactions in mixed cultures of thermo-acidophilic archaea Acidianus spp. and Sulfolobus metallicus.

    PubMed

    Castro, Camila; Zhang, Ruiyong; Liu, Jing; Bellenberg, Sören; Neu, Thomas R; Donati, Edgardo; Sand, Wolfgang; Vera, Mario

    2016-09-01

    The understanding of biofilm formation by bioleaching microorganisms is of great importance for influencing mineral dissolution rates and to prevent acid mine drainage (AMD). Thermo-acidophilic archaea such as Acidianus, Sulfolobus and Metallosphaera are of special interest due to their ability to perform leaching at high temperatures, thereby enhancing leaching rates. In this work, leaching experiments and visualization by microscopy of cell attachment and biofilm formation patterns of the crenarchaeotes Sulfolobus metallicus DSM 6482(T) and the Acidianus isolates DSM 29038 and DSM 29099 in pure and mixed cultures on sulfur or pyrite were studied. Confocal laser scanning microscopy (CLSM) combined with fluorescent dyes as well as fluorescently labeled lectins were used to visualize different components (e.g. DNA, proteins or glycoconjugates) of the aforementioned species. The data indicate that cell attachment and the subsequently formed biofilms were species- and substrate-dependent. Pyrite leaching experiments coupled with pre-colonization and further inoculation with a second species suggest that both species may negatively influence each other during pyrite leaching with respect to initial attachment and pyrite dissolution rates. In addition, the investigation of binary biofilms on pyrite showed that both species were heterogeneously distributed on pyrite surfaces in the form of individual cells or microcolonies. Physical contact between the two species seems to occur, as revealed by specific lectins able to specifically bind single species within mixed cultures. PMID:27388200

  16. Ribulose-1,5-bisphosphate carboxylase/oxygenase genes as a functional marker for chemolithoautotrophic halophilic sulfur-oxidizing bacteria in hypersaline habitats.

    PubMed

    Tourova, Tatjana P; Kovaleva, Olga L; Sorokin, Dimitry Yu; Muyzer, Gerard

    2010-07-01

    The presence and diversity of the cbb genes encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) (a key enzyme of the Calvin-Benson cycle of autotrophic CO(2) assimilation) were investigated in pure cultures of seven genera of halophilic chemolithoautotrophic sulfur-oxidizing bacteria (SOB) and in sediments from a hypersaline lake in which such bacteria have been recently discovered. All of the halophilic SOB strains (with the exception of Thiohalomonas nitratireducens) possessed the cbbL gene encoding RuBisCO form I, while the cbbM gene encoding RuBisCO form II was detected only in some of the pure cultures. The general topologies of the CbbL/CbbM trees and the 16S rRNA gene tree were different, but both markers showed that the halophilic SOB genera formed independent lineages in the Gammaproteobacteria. In some cases, such as with several strains of the genus Thiohalospira and with Thioalkalibacter halophilus, the cbbL clustering was incongruent with the positions of these strains on the ribosomal tree. In the cbbM tree, the clustering of Thiohalospira and Thiohalorhabdus strains was incongruent with their branching in both cbbL and 16S rRNA gene trees. cbbL and cbbM genes related to those found in the analysed halophilic SOB were also detected in a sediment from a hypersaline lake in Kulunda Steppe (Russia). Most of the cbbL and cbbM genes belonged to members of the genus Thiohalorhabdus. In the cbbL clone library, sequences related to those of Halothiobacillus and Thiohalospira were detected as minor components. Some of the environmental cbbM sequences belonged to as yet unknown phylotypes, representing deep lineages of halophilic autotrophs. PMID:20299400

  17. [The use of real-time PCR technology to assess the effectiveness of methods of DNA extraction from cultures of acidophilic chemolithotrophic microorganisms].

    PubMed

    Rogatykh, S V; Dokshukina, A A; Khaĭnasova, T S; Muradov, S V; Kofiadi, I A

    2011-01-01

    Comparative evaluation of efficiency of several methods of DNA extraction from storage cultures of acidophilic chemolithotrophic microorganism communities isolated from sulfide ores of Shanuch ore deposit (Kamchatka peninsula) was conducted. DNA extraction methods in various combinations of physical (heating to 65-98 degrees C, grinding with SiO2 particles), enzymatic (treatment with lysozyme and proteinase K), and chemical (GuSCN, CTAB and KOH) treatments were tested. The evaluation of efficiency was performed using Real-time PCR. The best result was obtained for the combined method based on GuSCN lysis activity (lysis at 65 degrees C) followed by purification with phenol and chloroform. PMID:22808748

  18. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities.

    PubMed

    Golińska, Patrycja; Wypij, Magdalena; Rathod, Dnyaneshwar; Tikar, Sagar; Dahm, Hanna; Rai, Mahendra

    2016-05-01

    Biosynthesis of silver nanoparticles (AgNPs) is an eco-friendly approach by using different biological sources; for example, plants and microorganisms such as bacteria, fungi, and actinobacteria. In this report, we present the biological synthesis of silver nanoparticles (AgNPs) by acidophilic actinomycetes SL19 and SL24 strains isolated from pine forest soil (pH < 4.0). The isolates based on 16S rRNA gene sequence were identified as Pilimelia columellifera subsp. pallida. The synthesized AgNPs were characterized by visual observations of colour change from light-yellow to dark-brown. The UV-vis spectra of AgNPs were recorded at 425 and 430 nm. The AgNPs were further characterized by Nanoparticle tracking analysis (NTA), Zeta potential, Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM). FTIR analysis revealed the presence of proteins as a capping agent. TEM analysis confirmed the formation of spherical and polydispersed NPs of 12.7 and 15.9 nm sizes. The in vitro antibacterial activity of AgNPs alone and in combination with antibiotics was evaluated against clinical bacteria viz., Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and uropathogens such as Enterobacter, S. aureus, P. aeruginosa, K. pneumoniae, and E. coli. The lowest MIC (40 μg ml(-1) ) was demonstrated by AgNPs synthesized from SL24 against E. coli. However, the AgNPs of SL19 showed lowest MIC (70 μg ml(-1) ) against S. aureus. The activity of antibiotic was enhanced, when tested in combination with silver nanoparticles synthesized from both actinobacterial strains. PMID:27151174

  19. [Hydrocarbon-Oxidizing potential and the genes for n-alkane biodegradation in a new acidophilic mycobacterial association from sulfur blocks].

    PubMed

    Ivanova, I E; Sukhacheva, M V; Kanat'eva, A Yu; Kravchenko, I K; Kurganov, A A

    2014-01-01

    Capacity of AG(S10), a new aerobic acidophilic (growing within the pH range from 1.3 to 4.5 with the optimum at 2.0-2.5) bacterial association from sulfur blocks of the Astrakhan gas-processing complex (AGC), for oxidation of hydrocarbons of various chemical structure was investigated. A broad spectrum of normal (C10-C21) and iso-alkanes, toluene, naphthalene, andphenanthrene, as well as isoprenoids resistant to microbial degradation, pristane and phytane (components of paraffin oil), and 2,2,4,4,6,8,8,-heptamethylnonane, a branched hydrocarbon, were biodegraded under acidic conditions. Microbiological investigation revealed the dominance of mycobacteria in the AGS10 association, which was confirmed by analysis of the 16S rRNA gene clone library. In the phylogenetic tree, the 16S rRNA sequences formed a branch within the cluster of slow-growing mycobacteria, with 98% homology to the closest species Mycobacterium florentinum. Genomic DNA of AG(S10) culture grown on C14-C17 n-alkanes at pH 2.5 was found to contain the genes of two hydroxylase families, alkB and Cyp 153, indicating their combined involvement in hydrocarbon biodegradation. The high hydrocarbon-oxidizing potential of the AGS10 bacterial association, indicated that further search for the genes responsible for degradation of various hydrocarbons in acidophilic mycobacteria could be promising. PMID:25941716

  20. Lipase production from a novel thermo-tolerant and extreme acidophile Bacillus pumilus using palm oil as the substrate and treatment of palm oil-containing wastewater.

    PubMed

    Saranya, P; Sukanya Kumari, H; Prasad Rao, B; Sekaran, G

    2014-03-01

    The thermo-tolerant and extreme acidophilic microorganism Bacillus pumilus was isolated from the soil collected from a commercial edible-oil extraction industry. Optimisation of conditions for the lipase production was conducted using response surface methodology. The optimum conditions for obtaining the maximum activity (1,100 U/mL) of extremely acidic thermostable lipase were fermentation time, 96 h; pH, 1; temperature, 50 °C; and concentration of palm oil, 50 g/L. After purification, a 7.1-fold purity of lipase with specific activity of 5,173 U/mg protein was obtained. The molecular weight of the thermo-tolerant acidophilic lipase (TAL) was 55 kDa. The predominant amino acid in the TAL was glycine. The functional groups of lipase were determined by Fourier transform infrared spectroscopy. TAL exhibited enhanced activity (114 %) with dimethyl sulphoxide (20 %, v/v), and it showed a moderate activity with methanol, hexane and benzene. The optimum conditions for the treatment of palm oil in wastewater using the TAL were found to be time, 3 h; pH, 1; temperature, 50 °C with pseudo second-order kinetic constant of 1.88 × 10(-3) L mol(-1) min(-1). The Michaelis-Menten enzyme kinetic model and the nonlinear kinetic model were evaluated for the TAL. TAL established hydrolysis efficiency of 96 % for palm oil in wastewater at 50 °C. PMID:24293300

  1. Acidithrix ferrooxidans gen. nov., sp. nov.; a filamentous and obligately heterotrophic, acidophilic member of the Actinobacteria that catalyzes dissimilatory oxido-reduction of iron.

    PubMed

    Jones, Rose M; Johnson, D Barrie

    2015-01-01

    A novel acidophilic member of the phylum Actinobacteria was isolated from an acidic stream draining an abandoned copper mine in north Wales. The isolate (PY-F3) was demonstrated to be a heterotroph that catalyzed the oxidation of ferrous iron (but not of sulfur or hydrogen) under aerobic conditions, and the reduction of ferric iron under micro-aerobic and anaerobic conditions. PY-F3 formed long entangled filaments of cells (>50 μm long) during active growth phases, though these degenerated into smaller fragments and single cells in late stationary phase. Although isolate PY-F3 was not observed to grow below pH 2.0 and 10 °C, harvested biomass was found to oxidize ferrous iron at relatively fast rates at pH 1.5 and 5 °C. Phylogenetic analysis, based on comparisons of 16S rRNA gene sequences, showed that isolate PY-F3 has 91-93% gene similarity to those of the four classified genera and species of acidophilic Actinobacteria, and therefore is a representative of a novel genus. The binomial Acidithrix ferrooxidans is proposed for this new species, with PY-F3 as the designated type strain (=DSM 28176(T), =JCM 19728(T)). PMID:25638020

  2. Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH.

    PubMed

    Hirooka, Shunsuke; Higuchi, Sumio; Uzuka, Akihiro; Nozaki, Hisayoshi; Miyagishima, Shin-ya

    2014-01-01

    Microalgal storage lipids are considered to be a promising source for next-generation biofuel feedstock. However, microalgal biodiesel is not yet economically feasible due to the high cost of production. One of the reasons for this is that the use of a low-cost open pond system is currently limited because of the unavoidable contamination with undesirable organisms. Extremophiles have an advantage in culturing in an open pond system because they grow in extreme environments toxic to other organisms. In this study, we isolated the acidophilic green alga Pseudochlorella sp. YKT1 from sulfuric acid mine drainage in Nagano Prefecture, Japan. The vegetative cells of YKT1 display the morphological characteristics of Trebouxiophyceae and molecular phylogenetic analyses indicated it to be most closely related to Pseudochlorella pringsheimii. The optimal pH and temperature for the growth of YKT1 are pH 3.0-5.0 and a temperature 20-25°C, respectively. Further, YKT1 is able to grow at pH 2.0 and at 32°C, which corresponds to the usual water temperature in the outdoors in summer in many countries. YKT1 accumulates a large amount of storage lipids (∼30% of dry weigh) under a nitrogen-depleted condition at low-pH (pH 3.0). These results show that acidophilic green algae will be useful for industrial applications by acidic open culture systems. PMID:25221913

  3. Ratoon stunting disease of sugarcane: isolation of the causal bacterium.

    PubMed

    Davis, M J; Gillaspie, A G; Harris, R W; Lawson, R H

    1980-12-19

    A small coryneform bacterium was consistently isolated from sugarcane with ratoon stunting disease and shown to be the causal agent. A similar bacterium was isolated from Bermuda grass. Both strains multiplied in sugarcane and Bermuda grass, but the Bermuda grass strain did not incite the symptoms of ratoon stunting disease in sugarcane. Shoot growth in Bermuda grass was retarded by both strains. PMID:17817853

  4. Deferrisoma palaeochoriense sp. nov., a thermophilic, iron(III)-reducing bacterium from a shallow-water hydrothermal vent in the Mediterranean Sea.

    PubMed

    Pérez-Rodríguez, Ileana; Rawls, Matthew; Coykendall, D Katharine; Foustoukos, Dionysis I

    2016-02-01

    A novel thermophilic, anaerobic, mixotrophic bacterium, designated strain MAG-PB1T, was isolated from a shallow-water hydrothermal vent system in Palaeochori Bay off the coast of the island of Milos, Greece. The cells were Gram-negative, rugose, short rods, approximately 1.0 μm long and 0.5 μm wide. Strain MAG-PB1T grew at 30-70 °C (optimum 60 °C), 0-50 g NaCl l- 1 (optimum 15-20 g l- 1) and pH 5.5-8.0 (optimum pH 6.0). Generation time under optimal conditions was 2.5 h. Optimal growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Fe(III), Mn(IV), arsenate and selenate were used as electron acceptors. Peptone, tryptone, Casamino acids, sucrose, yeast extract, d-fructose, α-d-glucose and ( - )-d-arabinose also served as electron donors. No growth occurred in the presence of lactate or formate. The G+C content of the genomic DNA was 66.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Deferrisoma camini, the first species of a recently described genus in the Deltaproteobacteria. Based on the 16S rRNA gene phylogenetic analysis and on physiological, biochemical and structural characteristics, the strain was found to represent a novel species, for which the name Deferrisoma palaeochoriense sp. nov. is proposed. The type strain is MAG-PB1T ( = JCM 30394T = DSM 29363T). PMID:26610851

  5. Deferrisoma paleochoriense sp. nov., a thermophilic, iron(III)-reducing bacterium from a shallow-water hydrothermal vent in the Mediterranean Sea

    USGS Publications Warehouse

    Perez-Rodriguez, Ileana; Rawls, Matthew; Coykendall, Dolly K.; Foustoukos, Dionysis I.

    2016-01-01

    A novel thermophilic, anaerobic, mixotrophic bacterium, designated strain MAG-PB1T, was isolated from a shallow-water hydrothermal vent system in Paleochori Bay off the coast of Milos Island, Greece. The cells were Gram-negative, rugose short rods approximately 1.0 μm in length and 0.5 μm in width. Strain MAG-PB1T grew between 30 and 70°C (optimum 60°C), 0 and 50 g NaCl l-1 (optimum 15-20 g l-1) and pH 5.5 and 8.0 (optimum pH 6.0). Generation time under optimal conditions was 2.5 hours. Optimal growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Fe(III), Mn(IV), arsenate and selenate were used as electron acceptors. Peptone, tryptone, Casamino acids, dextrose, sucrose, yeast extract, D-fructose, α-D-glucose and D-(-)-arabinose also served as electron donors. No growth occurred in the presence of lactate or formate. G + C content of the genomic DNA was 66.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Deferrisoma camini, a recently described genus in the Deltaproteobacteria. Based on the 16S rDNA phylogenetic analysis and on physiological, biochemical and structural characteristics, the strain was found to represent a novel species for which the name Deferrisoma paleochoriense sp. nov. is proposed. The type strain of Deferrisoma paleochoriense is MAG-PB1T (=JCM 30394 T; = DSM 29363T).

  6. Deferrisoma paleochoriense sp. nov., a thermophilic, iron(III)-reducing bacterium from a shallow-water hydrothermal vent in the Mediterranean Sea

    USGS Publications Warehouse

    Perez-Rodriguez, Ileana M.; Rawls, Matthew; Coykendall, Dolly K.; Foustoukos, Dionysis I.

    2016-01-01

    A novel thermophilic, anaerobic, mixotrophic bacterium, designated strain MAG-PB1T, was isolated from a shallow-water hydrothermal vent system in Palaeochori Bay off the coast of the island of Milos, Greece. The cells were Gram-negative, rugose, short rods, approximately 1.0 μm long and 0.5 μm wide. Strain MAG-PB1T grew at 30–70 °C (optimum 60 °C), 0–50 g NaCl l− 1 (optimum 15–20 g l− 1) and pH 5.5–8.0 (optimum pH 6.0). Generation time under optimal conditions was 2.5 h. Optimal growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Fe(III), Mn(IV), arsenate and selenate were used as electron acceptors. Peptone, tryptone, Casamino acids, sucrose, yeast extract, d-fructose, α-d-glucose and ( − )-d-arabinose also served as electron donors. No growth occurred in the presence of lactate or formate. The G+C content of the genomic DNA was 66.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Deferrisoma camini, the first species of a recently described genus in the Deltaproteobacteria. Based on the 16S rRNA gene phylogenetic analysis and on physiological, biochemical and structural characteristics, the strain was found to represent a novel species, for which the name Deferrisoma palaeochoriense sp. nov. is proposed. The type strain is MAG-PB1T ( = JCM 30394T = DSM 29363T). 

  7. Caldimicrobium thiodismutans sp. nov., a sulfur-disproportionating bacterium isolated from a hot spring, and emended description of the genus Caldimicrobium.

    PubMed

    Kojima, Hisaya; Umezawa, Kazuhiro; Fukui, Manabu

    2016-04-01

    A novel autotrophic, thermophilic bacterium, strain TF1T, was isolated from a hot spring in Japan. Cells of strain TF1T were motile, Gram-stain-negative, rod-shaped, 1.0-2.0 μm in length and 0.5-0.6 μm in width. Major components in the cellular fatty acid profile were C16 : 0, C18 : 0 and anteiso-C17 : 0. The temperature range for growth was 40-77 °C, and optimum temperature was 75 °C. The pH range for growth was 5.9-9.5, and the optimum pH was 7.5-8.8. Strain TF1T grew chemolithoautotrophically by disproportionation of sulfur, thiosulfate and sulfite. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belongs to the family Thermodesulfobacteriaceae. The closest cultivated relative was Caldimicrobium rimae DST, with highest 16S rRNA gene sequence similarity of 96 %. The genome of strain TF1T consists of one circular chromosome, with a size of 1.8 Mbp and G+C content of 38.30 mol%. On the basis of its phylogenetic and phenotypic properties, strain TF1T ( = DSM 29380T = NBRC 110713T) is proposed as the type strain of a novel species, Caldimicrobium thiodismutans sp. nov. PMID:26842785

  8. Agrobacterium tumefaciens is a diazotrophic bacterium

    SciTech Connect

    Kanvinde, L.; Sastry, G.R.K. )

    1990-07-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate {sup 15}N supplied as {sup 15}N{sub 2}. As with most other well-characterized diazotrophic bacteria, the presence of NH{sub 4}{sup +} in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.

  9. The chemical formula of a magnetotactic bacterium.

    PubMed

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life. PMID:22170293

  10. Enhancement of anaerobic acidogenesis by integrating an electrochemical system into an acidogenic reactor: effect of hydraulic retention times (HRT) and role of bacteria and acidophilic methanogenic Archaea.

    PubMed

    Zhang, Jingxin; Zhang, Yaobin; Quan, Xie; Chen, Shuo

    2015-03-01

    In this study, an acidogenic reactor packed with a pair of Fe-carbon electrodes (R1) was developed to enhance anaerobic acidogenesis of organic wastewater at short hydraulic retention times. The results indicated that the acidogenic efficiency was improved by settling a bio-electrochemical system. When hydraulic retention times decreased from 12 to 3h, R1 showed 18.9% more chemical oxygen demand removal and 13.8% more acidification efficiency. After cutting off the voltage of R1, the COD removal decreased by about 5%. Coupling of Fe(2+) leaching and electric field accelerated the hydrolysis of polysaccharide, relieving its accumulation in the sludge phase. Several acidophilic methanogenic Archaea such as Methanosarcina sp. were enriched in R1, which was favorable for consuming organic acids and preventing excessive pH decline. Thus, the developed acidogenic reactor with Fe-carbon electrodes is expected to be potentially effective and useful for wastewater treatment. PMID:25514401

  11. Acidophilic sulfur disproportionation

    NASA Astrophysics Data System (ADS)

    Hardisty, Dalton S.; Olyphant, Greg A.; Bell, Jonathan B.; Johnson, Adam P.; Pratt, Lisa M.

    2013-07-01

    Bacterial disproportionation of elemental sulfur (S0) is a well-studied metabolism and is not previously reported to occur at pH values less than 4.5. In this study, a sediment core from an abandoned-coal-mine-waste deposit in Southwest Indiana revealed sulfur isotope fractionations between S0 and pyrite (Δ34Ses-py) of up to -35‰, inferred to indicate intense recycling of S0 via bacterial disproportionation and sulfide oxidation. Additionally, the chemistry of seasonally collected pore-water profiles were found to vary, with pore-water pH ranging from 2.2 to 3.8 and observed seasonal redox shifts expressed as abrupt transitions from Fe(III) to Fe(II) dominated conditions, often controlled by fluctuating water table depths. S0 is a common product during the oxidation of pyrite, a process known to generate acidic waters during weathering and production of acid mine drainage. The H2S product of S0 disproportionation, fractionated by up to -8.6‰, is rapidly oxidized to S0 near redox gradients via reaction with Fe(III) allowing for the accumulation of isotopically light S0 that can then become subject to further sulfur disproportionation. A mass-balance model for S0 incorporating pyrite oxidation, S0 disproportionation, and S0 oxidation readily explains the range of observed Δ34Ses-py and emphasizes the necessity of seasonally varying pyrite weathering and metabolic rates, as indicated by the pore water chemistry. The findings of this research suggest that S0 disproportionation is potentially a common microbial process at a pH < 4.5 and can create large sulfur isotope fractionations, even in the absence of sulfate reduction.

  12. Characterizations of intracellular arsenic in a bacterium

    NASA Astrophysics Data System (ADS)

    Wolfe-Simon, F.; Yannone, S. M.; Tainer, J. A.

    2011-12-01

    Life requires a key set of chemical elements to sustain growth. Yet, a growing body of literature suggests that microbes can alter their nutritional requirements based on the availability of these chemical elements. Under limiting conditions for one element microbes have been shown to utilize a variety of other elements to serve similar functions often (but not always) in similar molecular structures. Well-characterized elemental exchanges include manganese for iron, tungsten for molybdenum and sulfur for phosphorus or oxygen. These exchanges can be found in a wide variety of biomolecules ranging from protein to lipids and DNA. Recent evidence suggested that arsenic, as arsenate or As(V), was taken up and incorporated into the cellular material of the bacterium GFAJ-1. The evidence was interpreted to support As(V) acting in an analogous role to phosphate. We will therefore discuss our ongoing efforts to characterize intracellular arsenate and how it may partition among the cellular fractions of the microbial isolate GFAJ-1 when exposed to As(V) in the presence of various levels of phosphate. Under high As(V) conditions, cells express a dramatically different proteome than when grown given only phosphate. Ongoing studies on the diversity and potential role of proteins and metabolites produced in the presence of As(V) will be reported. These investigations promise to inform the role and additional metabolic potential for As in biology. Arsenic assimilation into biomolecules contributes to the expanding set of chemical elements utilized by microbes in unusual environmental niches.

  13. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711.

    PubMed

    Shoemaker, William R; Muscarella, Mario E; Lennon, Jay T

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments. PMID:26089434

  14. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711

    PubMed Central

    Shoemaker, William R.; Muscarella, Mario E.

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments. PMID:26089434

  15. Detection of Salmonella bacterium in drinking water using microring resonator.

    PubMed

    Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha

    2016-01-01

    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU. PMID:25133457

  16. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    SciTech Connect

    Dees, C.; Ringleberg, D.; Scott, T.C.; Phelps, T.

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  17. Pangenome Evolution in the Marine Bacterium Alteromonas

    PubMed Central

    López-Pérez, Mario; Rodriguez-Valera, Francisco

    2016-01-01

    We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7–83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9–5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed. PMID:27189983

  18. Pangenome Evolution in the Marine Bacterium Alteromonas.

    PubMed

    López-Pérez, Mario; Rodriguez-Valera, Francisco

    2016-01-01

    We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7-83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9-5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed. PMID:27189983

  19. [Isolation, identification and oxidizing characterization of an iron-sulfur oxidizing bacterium LY01 from acid mine drainage].

    PubMed

    Liu, Yu-jiao; Yang, Xin-ping; Wang, Shi-mei; Liang, Yin

    2013-05-01

    An acidophilic iron-sulfur oxidizing bacterium LY01 was isolated from acid mine drainage of coal in Guizhou Province, China. Strain LY01 was identified as Acidithiobacillusferrooxidans by morphological and physiological characteristics, and phylogenetic analysis of its 16S rRNA gene sequence. Strain LY01 was able to grow using ferrous ion (Fe2+), elemental sulfur (S0) and pyrite as sole energy source, respectively, but significant differences in oxidation efficiency and bacterial growth were observed when different energy source was used. When strain LY01 was cultured in 9K medium with 44.2 g x L(-1) FeSO4.7H2O as the substrate, the oxidation efficiency of Fe2+ was 100% in 30 h and the cell number of strain LY01 reached to 4.2 x 10(7) cell x mL(-1). When LY01 was cultured in 9K medium with 10 g x L(-1) S0 as the substrate, 6.7% S0 oxidation efficiency, 2001 mg x L(-1) SO4(2-) concentration and 8.9 x 10(7) cell x mL(-1) cell number were observed in 21 d respectively. When LY01 was cultured with 30 g x L(-1) pyrite as the substrate, the oxidation efficiency of pyrite, SO4(2-) concentration and cell number reached 10%, 4443 mg x L(-1) and 3.4 x 10(8) cell x mL(-1) respectively in 20 d. The effects of different heavy metals (Ni2+, Pb2+) on oxidation activity of strain LY01 cultured with pyrite were investigated. Results showed that the oxidation activity of strain LY01 was inhibited to a certain extent with the addition of Ni2+ at 10-100 mg x L(-1) to the medium, but the addition of 10-100 mg x L(-1) Pb2+ had no effect on LY01 activity. PMID:23914550

  20. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana.

    PubMed

    Pradhan, Nirakar; Dipasquale, Laura; d'Ippolito, Giuliana; Panico, Antonio; Lens, Piet N L; Esposito, Giovanni; Fontana, Angelo

    2015-01-01

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production. PMID:26053393

  1. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    PubMed Central

    Pradhan, Nirakar; Dipasquale, Laura; d’Ippolito, Giuliana; Panico, Antonio; Lens, Piet N. L.; Esposito, Giovanni; Fontana, Angelo

    2015-01-01

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production. PMID:26053393

  2. Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low‐grade copper sulfide ore monitored by real‐time PCR and oligonucleotide prokaryotic acidophile microarray

    PubMed Central

    Remonsellez, Francisco; Galleguillos, Felipe; Moreno‐Paz, Mercedes; Parro, Víctor; Acosta, Mauricio; Demergasso, Cecilia

    2009-01-01

    Summary The bioleaching of metal sulfide has developed into a very important industrial process and understanding the microbial dynamic is key to advancing commercial bioleaching operations. Here we report the first quantitative description of the dynamic of active communities in an industrial bioleaching heap. Acidithiobacillus ferrooxidans was the most abundant during the first part of the leaching cycle, while the abundance of Leptospirillum ferriphilum and Ferroplasma acidiphilum increased with age of the heap. Acidithiobacillus thiooxidans kept constant throughout the leaching cycle, and Firmicutes group showed a low and a patchy distribution in the heap. The Acidiphilium‐like bacteria reached their highest abundance corresponding to the amount of autotrophs. The active microorganisms in the leaching system were determined using two RNA‐based sensitive techniques. In most cases, the 16S rRNA copy numbers of At. ferrooxidans, L. ferriphilum, At. thiooxidans and F. acidiphilum, was concomitant with the DNA copy numbers, whereas Acidiphilium‐like bacteria and some Firmicutes members did not show a clear correlation between 16S rRNA accumulation and DNA copy numbers. However, the prokaryotic acidophile microarray (PAM) analysis showed active members of Alphaproteobacteria in all samples and of Sulfobacillus genus in older ones. Also, new active groups such as Actinobacteria and Acidobacterium genus were detected by PAM. The results suggest that changes during the leaching cycle in chemical and physical conditions, such as pH and Fe3+/Fe2+ ion rate, are primary factors shaping the microbial dynamic in the heap. PMID:21255296

  3. Adaptation of a mixed culture of acidophiles for a tank biooxidation of refractory gold concentrates containing a high concentration of arsenic.

    PubMed

    Hong, Jeongsik; Silva, Rene A; Park, Jeonghyun; Lee, Eunseong; Park, Jayhyun; Kim, Hyunjung

    2016-05-01

    We adapted a mixed culture of acidophiles to high arsenic concentrations to confirm the possibility of achieving more than 70% biooxidation of refractory gold concentrates containing high arsenic (As) concentration. The biooxidation process was applied to refractory gold concentrates containing approximately 139.67 g/kg of total As in a stirred tank reactor using an adapted mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The percentage of the biooxidation process was analyzed based on the total As removal efficiency. The As removal was monitored by inductively coupled plasma (ICP) analysis, conducted every 24 h. The results obtained with the adapted culture were compared with the percentage of biooxidation obtained with a non-adapted mixed culture of A. ferrooxidans and A. thiooxidans, and with their respective pure cultures. The percentages of biooxidation obtained during 358 h of reaction were 72.20%, 38.20%, 27.70%, and 11.45% for adapted culture, non-adapted culture, and pure cultures of A. thiooxidans and A. ferrooxidans, respectively. The adapted culture showed a peak maximum percentage of biooxidation of 77% at 120 h of reaction, confirming that it is possible to obtain biooxidation percentages over 70% in gold concentrates containing high As concentrations. PMID:26481159

  4. Structure and Properties of a Non-processive, Salt-requiring, and Acidophilic Pectin Methylesterase from Aspergillus niger Provide Insights into the Key Determinants of Processivity Control.

    PubMed

    Kent, Lisa M; Loo, Trevor S; Melton, Laurence D; Mercadante, Davide; Williams, Martin A K; Jameson, Geoffrey B

    2016-01-15

    Many pectin methylesterases (PMEs) are expressed in plants to modify plant cell-wall pectins for various physiological roles. These pectins are also attacked by PMEs from phytopathogens and phytophagous insects. The de-methylesterification by PMEs of the O6-methyl ester groups of the homogalacturonan component of pectin, exposing galacturonic acids, can occur processively or non-processively, respectively, describing sequential versus single de-methylesterification events occurring before enzyme-substrate dissociation. The high resolution x-ray structures of a PME from Aspergillus niger in deglycosylated and Asn-linked N-acetylglucosamine-stub forms reveal a 10⅔-turn parallel β-helix (similar to but with less extensive loops than bacterial, plant, and insect PMEs). Capillary electrophoresis shows that this PME is non-processive, halophilic, and acidophilic. Molecular dynamics simulations and electrostatic potential calculations reveal very different behavior and properties compared with processive PMEs. Specifically, uncorrelated rotations are observed about the glycosidic bonds of a partially de-methyl-esterified decasaccharide model substrate, in sharp contrast to the correlated rotations of processive PMEs, and the substrate-binding groove is negatively not positively charged. PMID:26567911

  5. The All Taxa Biodiversity Inventory of Algae in the Great Smoky Mountains National Park, with a Focus on the Acidophilic Diatom, Eunotia Ehrenberg

    NASA Astrophysics Data System (ADS)

    Furey, P. C.; Lowe, R.; Johansen, J. R.

    2005-05-01

    Since the late 1990's, the National Park Service and Discover Life In America have taken on the ambitious task of completing an All Taxa Biodiversity Inventory in the Great Smoky Mountains National Park (GSMNP). As one of the most species-rich areas in the temperate zone, GSMNP is considered a hot spot of biological diversity and has been designated as an International Biosphere Reserve. Previous research has suggested that the algal diversity is high in the GSMNP and many species are new, endemic, or restricted in range. To date, 67 species new to science and 163 taxa new to the park have been reported. An update of new species and new park findings will be presented. In particular, the GSMNP supports a diverse community of the acidophilic diatom Eunotia Ehr., both in terms of number of species and geographical distribution. Eunotia species can flourish in the park because of aquatic and aerial habitats that are 5-10X more acidic than normal, in combination with the presence of a complex geology and range of altitudes. An image-rich documentation of the Eunotia will be presented, including both light microscope and scanning electron micrographs that show the diversity, distribution and the variability in morphology.

  6. Detection and validation of a small broad-host-range plasmid pBBR1MCS-2 for use in genetic manipulation of the extremely acidophilic Acidithiobacillus sp.

    PubMed

    Hao, Likai; Liu, Xiangmei; Wang, Huiyan; Lin, Jianqun; Pang, Xin; Lin, Jianqiang

    2012-09-01

    An efficient genetic system for introducing genes into biomining microorganisms is essential not only to experimentally determine the functions of genes predicted based on bioinformatic analysis, but also for their genetic breeding. In this study, a small broad-host-range vector named pBBR1MCS-2, which does not belong to the IncQ, IncW, or IncP groups, was studied for the feasibility of its use in conjugative gene transfer into extremely acidophilic strains of Acidithiobacillus. To do this, a recombinant plasmid pBBR-tac-Sm, a derivative of pBBR1MCS-2, was constructed and the streptomycin resistant gene (Sm(r)) was used as the reporter gene. Using conjugation, pBBR-tac-Sm was successfully transferred into three tested strains of Acidithiobacillus. Then we measured its transfer frequency, its stability in Acidithiobacillus cells, and the level of resistance to streptomycin of the transconjugants and compared this with the IncQ plasmid pJRD215 control. Our results indicate that pBBR1MCS-2 provides a new and useful tool in the genetic manipulation of Acidithiobacillus strains. PMID:22705922

  7. A novel α-glucosidase from the acidophilic archaeon Ferroplasma acidiphilum strain Y with high transglycosylation activity and an unusual catalytic nucleophile

    PubMed Central

    Ferrer, Manuel; Golyshina, Olga V.; Plou, Francisco J.; Timmis, Kenneth N.; Golyshin, Peter N.

    2005-01-01

    Ferroplasma acidiphilum strain Y (DSM 12658), a ferrous iron-oxidizing, acidophilic and mesophilic archaeon, was found to produce a membrane-bound α-glucosidase (αGluFa) showing no significant similarity to any of the known glycoside hydrolases classified in different families and having an unusual catalytic site consisting of a threonine and a histidine residue. The highest α-glucosidase activity was found at low pH, 2.4–3.5, and the substrate preference order was: sucrose>maltose>maltotriose ≫maltotetraose≫malto-oligosaccharides from maltopentaose to maltoheptaose⋙soluble starch (kcat/Km was 293.0, 197.0, 18.8, 0.3 and 0.02 s−1·mM−1 respectively). The enzyme was able to transfer glucosyl groups from maltose as donor, to produce exclusively maltotriose (up to 300 g/l). Chemical modification and electrospray ionization MS analysis of 5-fluoro-α-D-glucopyranosyl-enzyme derivatives, coupled with site-directed mutagenesis, strongly suggested that the putative catalytic nucleophile in this enzyme is Thr212. Iron was found to be essential for enzyme activity and integrity, and His390 was shown to be essential for iron binding. These results suggest that the metalloenzyme αGluFa is a new member of the glycosyl hydrolase family that uses a novel mechanism for sugar glycosylation and/or transglycosylation. PMID:15954864

  8. Genomic insights into a new acidophilic, copper-resistant Desulfosporosinus isolate from the oxidized tailings area of an abandoned gold mine.

    PubMed

    Mardanov, Andrey V; Panova, Inna A; Beletsky, Alexey V; Avakyan, Marat R; Kadnikov, Vitaly V; Antsiferov, Dmitry V; Banks, David; Frank, Yulia A; Pimenov, Nikolay V; Ravin, Nikolai V; Karnachuk, Olga V

    2016-08-01

    Microbial sulfate reduction in acid mine drainage is still considered to be confined to anoxic conditions, although several reports have shown that sulfate-reducing bacteria occur under microaerophilic or aerobic conditions. We have measured sulfate reduction rates of up to 60 nmol S cm(-3) day(-1) in oxidized layers of gold mine tailings in Kuzbass (SW Siberia). A novel, acidophilic, copper-tolerant Desulfosporosinus sp. I2 was isolated from the same sample and its genome was sequenced. The genomic analysis and physiological data indicate the involvement of transporters and additional mechanisms to tolerate metals, such as sequestration by polyphosphates. Desulfosporinus sp. I2 encodes systems for a metabolically versatile life style. The genome possessed a complete Embden-Meyerhof pathway for glycolysis and gluconeogenesis. Complete oxidation of organic substrates could be enabled by the complete TCA cycle. Genomic analysis found all major components of the electron transfer chain necessary for energy generation via oxidative phosphorylation. Autotrophic CO2 fixation could be performed through the Wood-Ljungdahl pathway. Multiple oxygen detoxification systems were identified in the genome. Taking into account the metabolic activity and genomic analysis, the traits of the novel isolate broaden our understanding of active sulfate reduction and associated metabolism beyond strictly anaerobic niches. PMID:27222219

  9. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  10. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2012-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  11. Microcalorimetric Measurements of Glucose Metabolism by Marine Bacterium Vibrio alginolyticus

    PubMed Central

    Gordon, Andrew S.; Millero, Frank J.; Gerchakov, Sol M.

    1982-01-01

    Microcalorimetric measurements of heat production from glucose by Vibrio alginolyticus were made to assess the viability of calorimetry as a technique for studying the metabolism of marine bacteria at organic nutrient concentrations found in marine waters. The results show that the metabolism of glucose by this bacterium can be measured by calorimetry at submicromolar concentrations. A linear correlation between glucose concentration and total heat production was observed over a concentration range of 8 mM to 0.35 μM. It is suggested that these data indicate a constant efficiency of metabolism for this bacterium over the wide range of glucose concentrations studied. PMID:16346131

  12. Thiobacillus cuprinus sp. nov. , a novel facultatively organotrophic metal-mobilizing bacterium

    SciTech Connect

    Huber, H.; Stetter, K.O. )

    1990-02-01

    Five strains of mesophilic, facultatively organotrophic, ore-leaching eubacteria were isolated from solfatara fields in Iceland and a uranium mine in the Federal Republic of Germany. The new organisms are aerobic gram-negative rods. They can use sulfidic ores or elemental sulfur as sole energy source, indicating that they belong to the genus Thiobacillus. Alternatively, they grow on organic substrates such as yeast extract, peptone, and pyruvate. In contrast to the other leaching bacteria known so far, the new isolates are unable to oxidize ferrous iron. They consist of extreme and moderate acidophiles growing optimally at pH 3 and 4, respectively. The extreme acidophiles showed leaching characteristics similar to those shown by Thiobacillus ferrooxidans, while the moderate acidophiles exhibited a pronounced preference for copper leaching on some chalcopyrite ores. The G+C content of the DNA is between 66 and 69 mol%, depending on the isolate. In DNA-DNA hybridization experiments, the new strains showed homologies among each other of >70%, indicating that they belong to the same species. No significant DNA homology to Thiobacillus reference strains was detectable. Therefore, the new isolates represent a new species of Thiobacillus, which the authors named Thiobacillus cuprinus. Isolate Hoe5 is designated as the type strain (DSM 5495).

  13. Thiobacillus cuprinus sp. nov., a Novel Facultatively Organotrophic Metal-Mobilizing Bacterium

    PubMed Central

    Huber, Harald; Stetter, Karl O.

    1990-01-01

    Five strains of mesophilic, facultatively organotrophic, ore-leaching eubacteria were isolated from solfatara fields in Iceland and a uranium mine in the Federal Republic of Germany. The new organisms are aerobic gram-negative rods. They can use sulfidic ores or elemental sulfur as sole energy source, indicating that they belong to the genus Thiobacillus. Alternatively, they grow on organic substrates such as yeast extract, peptone, and pyruvate. In contrast to the other leaching bacteria known so far, the new isolates are unable to oxidize ferrous iron. They consist of extreme and moderate acidophiles growing optimally at pH 3 and 4, respectively. The extreme acidophiles showed leaching characteristics similar to those shown by Thiobacillus ferrooxidans, while the moderate acidophiles exhibited a pronounced preference for copper leaching on some chalcopyrite ores. The G+C content of the DNA is between 66 and 69 mol%, depending on the isolate. In DNA-DNA hybridization experiments, the new strains showed homologies among each other of >70%, indicating that they belong to the same species. No significant DNA homology to Thiobacillus reference strains was detectable. Therefore, the new isolates represent a new species of Thiobacillus, which we name Thiobacillus cuprinus. Isolate Hö5 is designated as the type strain (DSM 5495). Images PMID:16348110

  14. Complete Genome of the Cellulolytic Ruminal Bacterium Ruminococcus albus 7

    SciTech Connect

    Suen, Garret; Stevenson, David M; Bruce, David; Chertkov, Olga; Copeland, A; Cheng, Jan-Fang; Detter, J. Chris; Goodwin, Lynne A.; Han, Cliff; Hauser, Loren John; Ivanova, N; Kyrpides, Nikos C; Land, Miriam L; Lapidus, Alla L.; Lucas, Susan; Ovchinnikova, Galina; Pitluck, Sam; Tapia, Roxanne; Woyke, Tanja; Boyum, Julie; Mead, David; Weimer, Paul J

    2011-01-01

    Ruminococcus albus 7 is a highly cellulolytic ruminal bacterium that is a member of the phylum Firmicutes. Here, we describe the complete genome of this microbe. This genome will be useful for rumen microbiology and cellulosome biology and in biofuel production, as one of its major fermentation products is ethanol.

  15. Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ruminococcus albus 7 is a highly cellulolytic rumen bacterium that is a member of the phylum Firmicutes. Here, we describe the complete genome for this microbe. This genome will be useful for rumen microbiology, cellulosome biology, and in biofuel production, as one of its major fermentation product...

  16. Draft Genome Sequence of Oral Bacterium Streptococcus mutans JH1140.

    PubMed

    Escano, Jerome; Deng, Peng; Lu, Shi-En; Smith, Lief

    2016-01-01

    Streptococcus mutans JH1140 is an oral bacterium known to produce the bacteriocin mutacin 1140, and the strain has been genetically engineered to combat dental caries. Here, we report the 2.0-Mb draft genome of S. mutans JH1140. This genome provides new insights into the strain's superior colonization properties and its utility in replacement therapy. PMID:27257196

  17. Draft Genome Sequence of Oral Bacterium Streptococcus mutans JH1140

    PubMed Central

    Escano, Jerome; Deng, Peng; Lu, Shi-En

    2016-01-01

    Streptococcus mutans JH1140 is an oral bacterium known to produce the bacteriocin mutacin 1140, and the strain has been genetically engineered to combat dental caries. Here, we report the 2.0-Mb draft genome of S. mutans JH1140. This genome provides new insights into the strain’s superior colonization properties and its utility in replacement therapy. PMID:27257196

  18. Extremely Acidophilic Protists from Acid Mine Drainage Host Rickettsiales-Lineage Endosymbionts That Have Intervening Sequences in Their 16S rRNA Genes

    PubMed Central

    Baker, Brett J.; Hugenholtz, Philip; Dawson, Scott C.; Banfield, Jillian F.

    2003-01-01

    During a molecular phylogenetic survey of extremely acidic (pH < 1), metal-rich acid mine drainage habitats in the Richmond Mine at Iron Mountain, Calif., we detected 16S rRNA gene sequences of a novel bacterial group belonging to the order Rickettsiales in the Alphaproteobacteria. The closest known relatives of this group (92% 16S rRNA gene sequence identity) are endosymbionts of the protist Acanthamoeba. Oligonucleotide 16S rRNA probes were designed and used to observe members of this group within acidophilic protists. To improve visualization of eukaryotic populations in the acid mine drainage samples, broad-specificity probes for eukaryotes were redesigned and combined to highlight this component of the acid mine drainage community. Approximately 4% of protists in the acid mine drainage samples contained endosymbionts. Measurements of internal pH of the protists showed that their cytosol is close to neutral, indicating that the endosymbionts may be neutrophilic. The endosymbionts had a conserved 273-nucleotide intervening sequence (IVS) in variable region V1 of their 16S rRNA genes. The IVS does not match any sequence in current databases, but the predicted secondary structure forms well-defined stem loops. IVSs are uncommon in rRNA genes and appear to be confined to bacteria living in close association with eukaryotes. Based on the phylogenetic novelty of the endosymbiont sequences and initial culture-independent characterization, we propose the name “Candidatus Captivus acidiprotistae.” To our knowledge, this is the first report of an endosymbiotic relationship in an extremely acidic habitat. PMID:12957940

  19. A new acidophilic endo-β-1,4-xylanase from Penicillium oxalicum: cloning, purification, and insights into the influence of metal ions on xylanase activity.

    PubMed

    Liao, Hanpeng; Sun, Shaowei; Wang, Pan; Bi, Wenli; Tan, Shiyong; Wei, Zhong; Mei, Xinlan; Liu, Dongyang; Raza, Waseem; Shen, Qirong; Xu, Yangchun

    2014-07-01

    A new acidophilic xylanase (XYN11A) from Penicillium oxalicum GZ-2 has been purified, identified and characterized. Synchronized fluorescence spectroscopy was used for the first time to evaluate the influence of metal ions on xylanase activity. The purified enzyme was identified by MALDI TOF/TOF mass spectrometry, and its gene (xyn11A) was identified as an open reading frame of 706 bp with a 68 bp intron. This gene encodes a mature protein of 196 residues with a predicted molecular weight of 21.3 kDa that has the 100 % identity with the putative xylanase from the P. oxalicum 114-2. The enzyme shows a structure comprising a catalytic module family 10 (GH10) and no carbohydrate-binding module family. The specific activities were 150.2, 60.2, and 72.6 U/mg for beechwood xylan, birchwood xylan, and oat spelt xylan, respectively. XYN11A exhibited optimal activity at pH 4.0 and remarkable pH stability under extremely acidic condition (pH 3). The specific activity, K m and V max values were 150.2 U/mg, 30.7 mg/mL, and 403.9 μmol/min/mg for beechwood xylan, respectively. XYN11A is a endo-β-1,4-xylanase since it release xylobiose and xylotriose as the main products by hydrolyzing xylans. The activity of XYN11A was enhanced 155 % by 1 mM Fe(2+) ions, but was inhibited strongly by Fe(3+). The reason of enhancing the xylanase activity of XYN11A with 1 mM Fe(2+) treatment may be responsible for the change of microenvironment of tryptophan residues studied by synchronous fluorescence spectrophotometry. Inhibition of the xylanase activity by Fe(3+) was first time demonstrated to associate tryptophan fluorescence quenching. PMID:24818699

  20. Acidophilic granulocytes in the gills of gilthead seabream Sparus aurata: evidence for their responses to a natural infection by a copepod ectoparasite.

    PubMed

    Lui, Alice; Manera, Maurizio; Giari, Luisa; Mulero, Victoriano; Dezfuli, Bahram Sayyaf

    2013-09-01

    Immunohistochemical and ultrastructural studies were conducted on the gills of gilthead seabream, Sparus aurata L., naturally infected with the copepod ectoparasite Ergasilus lizae (Krøyer, 1863) in order to assess pathology and the host immune cell response. Gills of 56 gilthead seabream were screened for ectoparasites; 36 specimens (64.3%) harbored E. lizae. Intensity of infection was 32.7 ± 8.7 (mean ± SE). Pathological alterations to the gills of the host were more pronounced in close proximity to the copepod site of attachment. The parasite attached to the gills by means of its modified second antennae, occluded the arteries, provoked epithelial hyperplasia and hemorrhages and most often caused lamellar disruption. Numerous granular cells were encountered near the site of E. lizae attachment. In both infected and uninfected gills, the granular cells lay within the filaments and frequently occurred within the connective tissue inside and outside the blood vessels of the filaments. The type of granular cell was identified by immunohistochemical staining by using the monoclonal antibody G7 (mAb G7), which specifically recognizes acidophilic granulocytes (AGs) of S. aurata and with an anti-histamine antibody (as a marker for mast cells, MCs) on sections from 13 uninfected gills and 21 parasitized gills. The use of mAb G7 revealed that, in gills harboring copepods, the number of G7-positive cells (i.e., AGs; 32.9 ± 3.9, mean number of cells per 45,000 μm2 ± SE) was significantly higher than the density of the same cells in uninfected gills (15.3 ± 3.8; ANOVA, P < 0.05). Few histamine-positive granular cells (i.e., MCs) were found in the uninfected and parasitized gills. Here, we show, for the first time in S. aurata infected gills, that AGs rather than MCs are recruited and involved in the response to E. lizae infection in seabream. PMID:23644766

  1. Periplasmic Proteins of the Extremophile Acidithiobacillus ferrooxidans

    PubMed Central

    Chi, An; Valenzuela, Lissette; Beard, Simon; Mackey, Aaron J.; Shabanowitz, Jeffrey; Hunt, Donald F.; Jerez, Carlos A.

    2015-01-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction of A. ferrooxidans ATCC 23270 was performed by using high resolution linear ion trap-FT MS. We identified a total of 131 proteins in the periplasm of the microorganism grown in thiosulfate. When possible, functional categories were assigned to the proteins: 13.8% were transport and binding proteins, 14.6% were several kinds of cell envelope proteins, 10.8% were involved in energy metabolism, 10% were related to protein fate and folding, 10% were proteins with unknown functions, and 26.1% were proteins without homologues in databases. These last proteins are most likely characteristic of A. ferrooxidans and may have important roles yet to be assigned. The majority of the periplasmic proteins from A. ferrooxidans were very basic compared with those of neutrophilic microorganisms such as Escherichia coli, suggesting a special adaptation of the chemolithoautotrophic bacterium to its very acidic environment. The high throughput proteomics approach used here not only helps to understand the physiology of this extreme acidophile but also offers an important contribution to the functional annotation for the available genomes of biomining microorganisms such as A. ferrooxidans for which no efficient genetic systems are available to disrupt genes by procedures such as homologous recombination. PMID:17911085

  2. Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans: a high throughput proteomics analysis.

    PubMed

    Chi, An; Valenzuela, Lissette; Beard, Simon; Mackey, Aaron J; Shabanowitz, Jeffrey; Hunt, Donald F; Jerez, Carlos A

    2007-12-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction of A. ferrooxidans ATCC 23270 was performed by using high resolution linear ion trap-FT MS. We identified a total of 131 proteins in the periplasm of the microorganism grown in thiosulfate. When possible, functional categories were assigned to the proteins: 13.8% were transport and binding proteins, 14.6% were several kinds of cell envelope proteins, 10.8% were involved in energy metabolism, 10% were related to protein fate and folding, 10% were proteins with unknown functions, and 26.1% were proteins without homologues in databases. These last proteins are most likely characteristic of A. ferrooxidans and may have important roles yet to be assigned. The majority of the periplasmic proteins from A. ferrooxidans were very basic compared with those of neutrophilic microorganisms such as Escherichia coli, suggesting a special adaptation of the chemolithoautotrophic bacterium to its very acidic environment. The high throughput proteomics approach used here not only helps to understand the physiology of this extreme acidophile but also offers an important contribution to the functional annotation for the available genomes of biomining microorganisms such as A. ferrooxidans for which no efficient genetic systems are available to disrupt genes by procedures such as homologous recombination. PMID:17911085

  3. Isolation of a bacterium capable of degrading peanut hull lignin

    SciTech Connect

    Kerr, T.A.; Kerr, R.D.; Benner, R.

    1983-11-01

    Thirty-seven bacterial strains capable of degrading peanut hull lignin were isolated by using four types of lignin preparations and hot-water-extracted peanut hulls. One of the isolates, tentatively identified as Arthrobacter species, was capable of utilizing all four lignin preparations as well as extracted peanut hulls as a sole source of carbon. The bacterium was also capable of degrading specifically labeled (/sup 14/C) lignin-labeled lignocellulose and (/sup 14/C)cellulose-labeled lignocellulose from the cordgrass Spartina alterniflora and could also degrade (/sup 14/C) Kraft lignin from slash pine. After 10 days of incubation with (/sup 14/C) cellulose-labeled lignocellulose or (/sup 14/C) lignin-labeled lignocellulose from S. alterniflora, the bacterium mineralized 6.5% of the polysaccharide component and 2.9% of the lignin component. (Refs. 24).

  4. A Streamlined Strategy for Biohydrogen Production with an Alkaliphilic Bacterium

    SciTech Connect

    Elias, Dwayne A; Wall, Judy D.; Mormile, Dr. Melanie R.; Begemann, Matthew B

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, biohydrogen production remains inefficient and heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium strain sapolanicus, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. sapolanicus ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen and acetate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  5. Thermostable purified endoglucanase from thermophilic bacterium acidothermus cellulolyticus

    DOEpatents

    Tucker, Melvin P.; Grohmann, Karel; Himmel, Michael E.; Mohagheghi, Ali

    1992-01-01

    A substantially purified high molecular weight cellulase enzyme having a molecular weight of between about 156,000 to about 203,400 daltons isolated from the bacterium Acidothermus cellulolyticus (ATCC 43068) and a method of producing it are disclosed. The enzyme is water soluble, possesses both C.sub.1 and C.sub.x types of enzymatic activity, has a high degree of stability toward heat and exhibits both a high optimum temperature activity and high inactivation characteristics.

  6. Delta8(14)-steroids in the bacterium Methylococcus capsulatus.

    PubMed Central

    Bouvier, P; Rohmer, M; Benveniste, P; Ourisson, G

    1976-01-01

    The 4,4-dimethyl and 4alpha-methyl sterols of the bacterium Methylococcus capsulatus were identified as 4,4-dimethyl- and 4alpha-methyl-5alpha-cholest-8(14)-en-3beta-ol and 4,4-dimethyl- and 4alpha-methyl-5alpha-cholesta-8(14),24-dien-3beta-ol. Sterol biosynthesis is blocked at the level of 4alpha-methyl delta8(14)-sterols. PMID:999649

  7. Isolation and Characterization of a Chlorinated-Pyridinol-Degrading Bacterium

    PubMed Central

    Feng, Y.; Racke, K. D.; Bollag, J.

    1997-01-01

    The isolation of a pure culture of bacteria able to use 3,5,6-trichloro-2-pyridinol (TCP) as a sole source of carbon and energy under aerobic conditions was achieved for the first time. The bacterium was identified as a Pseudomonas sp. and designated ATCC 700113. [2,6-(sup14)C]TCP degradation yielded (sup14)CO(inf2), chloride, and unidentified polar metabolites. PMID:16535719

  8. An on-bacterium flow cytometric immunoassay for protein quantification.

    PubMed

    Lan, Wen-Jun; Lan, Wei; Wang, Hai-Yan; Yan, Lei; Wang, Zhe-Li

    2013-09-01

    The polystyrene bead-based flow cytometric immunoassay has been widely reported. However, the preparation of functional polystyrene bead is still inconvenient. This study describes a simple and easy on-bacterium flow cytometric immunoassay for protein quantification, in which Staphylococcus aureus (SAC) is used as an antibody-antigen carrier to replace the polystyrene bead. The SAC beads were prepared by carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling, paraformaldehyde fixation and antibody binding. Carcinoembryonic antigen (CEA) and cytokeratin-19 fragment (CYFRA 21-1) proteins were used as models in the test system. Using prepared SAC beads, biotinylated proteins, and streptavidin-phycoerythrin (SA-PE), the on-bacterium flow cytometric immunoassay was validated by quantifying CEA and CYFRA 21-1 in sample. Obtained data demonstrated a concordant result between the logarithm of the protein concentration and the logarithm of the PE mean fluorescence intensity (MFI). The limit of detection (LOD) in this immunoassay was at least 0.25 ng/ml. Precision and accuracy assessments appeared that either the relative standard deviation (R.S.D.) or the relative error (R.E.) was <10%. The comparison between this immunoassay and a polystyrene bead-based flow cytometric immunoassay showed a correlation coefficient of 0.998 for serum CEA or 0.996 for serum CYFRA 21-1. In conclusion, the on-bacterium flow cytometric immunoassay may be of use in the quantification of serum protein. PMID:23739299

  9. The novel extremely acidophilic, cell-wall-deficient archaeon Cuniculiplasma divulgatum gen. nov., sp. nov. represents a new family, Cuniculiplasmataceae fam. nov., of the order Thermoplasmatales.

    PubMed

    Golyshina, Olga V; Lünsdorf, Heinrich; Kublanov, Ilya V; Goldenstein, Nadine I; Hinrichs, Kai-Uwe; Golyshin, Peter N

    2016-01-01

    Two novel cell-wall-less, acidophilic, mesophilic, organotrophic and facultatively anaerobic archaeal strains were isolated from acidic streamers formed on the surfaces of copper-ore-containing sulfidic deposits in south-west Spain and North Wales, UK. Cells of the strains varied from 0.1 to 2 μm in size and were pleomorphic, with a tendency to form filamentous structures. The optimal pH and temperature for growth for both strains were 1.0-1.2 and 37-40 °C, with the optimal substrates for growth being beef extract (3 g l- 1) for strain S5T and beef extract with tryptone (3 and 1 g l- 1, respectively) for strain PM4. The lipid composition was dominated by intact polar lipids consisting of a glycerol dibiphytanyl glycerol tetraether (GDGT) core attached to predominantly glycosidic polar headgroups. In addition, free GDGT and small relative amounts of intact and core diether lipids were present. Strains S5T and PM4 possessed mainly menaquinones with minor fractions of thermoplasmaquinones. The DNA G+C content was 37.3 mol% in strain S5T and 37.16 mol% for strain PM4. A similarity matrix of 16S rRNA gene sequences (identical for both strains) showed their affiliation to the order Thermoplasmatales, with 73.9-86.3 % identity with sequences from members of the order with validly published names. The average nucleotide identity between genomes of the strains determined in silico was 98.75 %, suggesting, together with the 16S rRNA gene-based phylogenetic analysis, that the strains belong to the same species. A novel family, Cuniculiplasmataceae fam. nov., genus Cuniculiplasma gen. nov. and species Cuniculiplasma divulgatum sp. nov. are proposed based on the phylogenetic, chemotaxonomic analyses and physiological properties of the two isolates, S5T and PM4 ( = JCM 30641 = VKM B-2940). The type strain of Cuniculiplasma divulgatum is S5T ( = JCM 30642T = VKM B-2941T). PMID:26518885

  10. Influence of plaque-forming bacterium, Rhodobacteraceae sp. on the growth of Chlorella vulgaris.

    PubMed

    Chen, Zhangran; Zhang, Jingyan; Lei, Xueqian; Zhang, Bangzhou; Cai, Guanjing; Zhang, Huajun; Li, Yi; Zheng, Wei; Tian, Yun; Xu, Hong; Zheng, Tianling

    2014-10-01

    Experiments were conducted to find out the molecular features, infection process of a special alga plaque-forming microorganism and its potential influence on the biomass of Chlorella vulgaris during the infection process. Direct contact between the algal cell and the bacterium may be the primary steps needed for the bacterium to lyse the alga. Addition of C. vulgaris cells into f/2 medium allowed us obtain the object bacterium. The 16S rRNA gene sequence comparisons results showed that the plaque-forming bacterium kept the closest relationship with Labrenzia aggregata IAM 12614(T) at 98.90%. The existence of the bacterium could influence both the dry weight and lipid content of C. vulgaris. This study demonstrated that direct cell wall disruption of C. vulgaris by the bacterium would be a potentially effective method to utilize the biomass of microalgae. PMID:25086475

  11. Fast Neutron Irradiation of the Highly Radioresistant Bacterium Deinococcus Radiodurans

    NASA Astrophysics Data System (ADS)

    Case, Diane Louise

    Fast neutron dose survival curves were generated for the bacterium Deinococcus radiodurans, which is renowned for its unusually high resistance to gamma, x-ray, and ultraviolet radiation, but for which fast neutron response was unknown. The fast neutrons were produced by the University of Massachusetts Lowell 5.5-MV, type CN Van de Graaff accelerator through the ^7Li(p,n)^7 Be reaction by bombarding a thick metallic lithium target with a 4-MeV proton beam. The bacteria were uniformly distributed on 150-mm agar plates and were exposed to the fast neutron beam under conditions of charged particle equilibrium. The plates were subdivided into concentric rings of increasing diameter from the center to the periphery of the plate, within which the average neutron dose was calculated as the product of the precisely known neutron fluence at the average radius of the ring and the neutron energy dependent kerma factor. The neutron fluence and dose ranged from approximately 3 times 1013 n cm^ {-2} to 1 times 1012 n cm^ {-2}, and 200 kilorad to 5 kilorad, respectively, from the center to the periphery of the plate. Percent survival for Deinococcus radiodurans as a function of fast neutron dose was derived from the ability of the irradiated cells to produce visible colonies within each ring compared to that of a nonirradiated control population. The bacterium Escherichia coli B/r (CSH) was irradiated under identical conditions for comparative purposes. The survival response of Deinococcus radiodurans as a result of cumulative fast neutron exposures was also investigated. The quantification of the ability of Deinococcus radiodurans to survive cellular insult from secondary charged particles, which are produced by fast neutron interactions in biological materials, will provide valuable information about damage and repair mechanisms under extreme cellular stress, and may provide new insight into the origin of this bacterium's unprecedented radiation resistance.

  12. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    SciTech Connect

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  13. Intracellular iron minerals in a dissimilatory iron-reducing bacterium.

    PubMed

    Glasauer, Susan; Langley, Sean; Beveridge, Terry J

    2002-01-01

    Among prokaryotes, there are few examples of controlled mineral formation; the formation of crystalline iron oxides and sulfides [magnetite (Fe3O4) or greigite (Fe3S4)] by magnetotactic bacteria is an exception. Shewanella putrefaciens CN32, a Gram-negative, facultative anaerobic bacterium that is capable of dissimilatory iron reduction, produced microscopic intracellular grains of iron oxide minerals during growth on two-line ferrihydrite in a hydrogen-argon atmosphere. The minerals, formed at iron concentrations found in the soil and sedimentary environments where these bacteria are active, could represent an unexplored pathway for the cycling of iron by bacteria. PMID:11778045

  14. The terminal oxidase in the marine bacterium Pseudomonas nautica 617.

    PubMed

    Simpson, H; Denis, M; Malatesta, F

    1997-06-01

    The molecular properties of a novel membrane quinol oxidase from the marine bacterium Pseudomonas nautica 617 are presented. The protein contains 2b hemes/mole which may be distinguished by EPR spectroscopy but not by optical spectroscopy and electrochemistry. Respiration, though being cyanide insensitive, is not inhibited by carbon monoxide and oxygen reduction is carried out only half-way with production of hydrogen peroxide. The terminal oxidase represents, therefore, a unique example in the large family of terminal oxidases known up to date. PMID:9337488

  15. Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides

    SciTech Connect

    Brown, A.E.; Gilbert, C.W.; Guy, R.; Arntzen, C.J.

    1984-10-01

    The photoaffinity herbicide azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-s-triazine) selectively labels the L subunit of the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Herbicide-resistant mutants retain the L subunit and have altered binding properties for methylthio- and chloro-substituted triazines as well as altered equilibrium constants for electron transfer between primary and secondary electron acceptors. We suggest that a subtle alteration in the L subunit is responsible for herbicide resistance and that the L subunit is the functional analog of the 32-kDa Q/sub B/ protein of chloroplast membranes. 42 references, 6 figures, 1 table.

  16. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    PubMed

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain. PMID:26972517

  17. Molybdate Reduction to Molybdenum Blue by an Antarctic Bacterium

    PubMed Central

    Ahmad, S. A.; Shukor, M. Y.; Shamaan, N. A.; Mac Cormack, W. P.; Syed, M. A.

    2013-01-01

    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo6+ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries. PMID:24381945

  18. Molybdate reduction to molybdenum blue by an Antarctic bacterium.

    PubMed

    Ahmad, S A; Shukor, M Y; Shamaan, N A; Mac Cormack, W P; Syed, M A

    2013-01-01

    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo⁶⁺ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries. PMID:24381945

  19. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    PubMed Central

    Park, Jiyeong; Seo, Yunhee; Kim, Young Ho

    2014-01-01

    We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN) Meloidogyne hapla in carrot (Daucus carota subsp. sativus) and tomato (Solanum lycopersicum). Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla. PMID:25289015

  20. Radiation response mechanisms of the extremely radioresistant bacterium Deinococcus radiodurans.

    PubMed

    Kobayashi, Yasuhiko; Narumi, Issay; Satoh, Katsuya; Funayama, Tomoo; Kikuchi, Masahiro; Kitayama, Shigeru; Watanabe, Hiroshi

    2004-11-01

    Effect of microgravity on recovery of bacterial cells from radiation damage was examined in IML-2, S/MM-4 and S/MM-9 experiments using the extremely radioresistant bacterium Deinococcus radiodurans. The cells were irradiated with gamma rays before the space flight and incubated on board the Space Shuttle. The survival of the wild type cells incubated in space increased compared with the ground controls, suggesting that the recovery of this bacterium from radiation damage was enhanced under the space environment. No difference was observed between the survivals of radiosensitive mutant rec30 cells incubated in space and on the ground. The amount of DNA-repair related RecA protein induced under microgravity was similar to those of ground controls, however, induction of PprA protein, product of a unique radiation-inducible gene (designated pprA) responsible for loss of radiation resistance in repair-deficient mutant, KH311, was enhanced under microgravity compared with ground controls. Recent investigation in vitro showed that PprA preferentially bound to double-stranded DNA carrying strand breaks, inhibited Escherichia coli exonuclease III activity, and stimulated the DNA end-joining reaction catalyzed by DNA ligases. These results suggest that D. radiodurans has a radiation-induced non-homologous end-joining (NHEJ) repair mechanism in which PprA plays a critical role. PMID:15858357

  1. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.

    PubMed

    Gardner, Jeffrey G

    2016-07-01

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. This review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkable ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications. PMID:27263016

  2. Metabolism of threo-beta-methylmalate by a soil bacterium.

    PubMed

    Suzuki, S; Takeuchi, Y; Sasaki, K; Katsuki, H

    1976-10-01

    Studies on threo-beta-methylmalate metabolism in a soil bacterium of the genus Bacillus which can utilize threo-beta-methylmalate as a sole carbon source were carried out. When DL-threo-beta-methylmalate was incubated with a cell-free extract of the bacterium, citramalate was found to be formed. Similarly, formation of threo-beta-methylmalate from DL-citramalate was confirmed. These dicarbosylic acids were identified by gas chromatography-mass spectrometry. Examination of inducibility, substrate specificity, and cofactor requirement of the enzymes involved in the reactions showed the existence of two interconversion reactions between the threo-beta-methylmalate and citramalate. One was an interconversion reaction between L-threo-beta-methylmalate and L-citramalate via mesaconate and the other was an interconversion reaction between D-threo-beta-methylmalate and D-citramalate via citraconate. These reactions were both reversible and were catalyzed by distinct and inducible enzymes. It is suggested that the two reactions participate in the catabolism of threo-beta-methylmalate. PMID:1010849

  3. Isolation and characterization of luminescent bacterium for sludge biodegradation.

    PubMed

    Zahaba, Maryam; Halmi, Mohd Izuan Effendi; Ahmad, Siti Aqlima; Shukor, Mohd Yunus; Syed, Mohd Arif

    2015-11-01

    Microtox is based on the inhibition of luminescence of the bacterium Vibrio fischeri by the toxicants. This technique has been accepted by the USEPA (United States Environmental Protection Agency) as a biomonitoring tool for remediation of toxicants such as hydrocarbon sludge. In the present study, a luminescent bacterium was isolated from yellow striped scad (Selaroides leptolepis) and was tentatively identified as Vibrio sp. isolate MZ. This aerobic isolate showed high luminescence activity in a broad range of temperature from 25 to 35 °C. In addition, optimal conditions for high bioluminescence activity in range of pH 7.5 to 8.5 and 10 gl(-1) of sodium chloride, 10 gl(-1) of peptone and 10 gl(-1) of sucrose as carbon source. Bench scale biodegradation 1% sludge (w/v) was set up and degradation was determined using gas chromatography with flame ionised detector (GC-FID). In this study, Rhodococcus sp. strain AQ5NOL2 was used to degrade the sludge. Based on the preliminary results obtained, Vibrio sp. isolate MZwas able to monitor the biodegradation of sludge. Therefore, Vibrio sp. isolate MZ has the potential to be used as a biomonitoring agent for biomonitoring of sludge biodegradation particularly in the tropical ranged environment. PMID:26688958

  4. Hydrogenomics of the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus▿ †

    PubMed Central

    van de Werken, Harmen J. G.; Verhaart, Marcel R. A.; VanFossen, Amy L.; Willquist, Karin; Lewis, Derrick L.; Nichols, Jason D.; Goorissen, Heleen P.; Mongodin, Emmanuel F.; Nelson, Karen E.; van Niel, Ed W. J.; Stams, Alfons J. M.; Ward, Donald E.; de Vos, Willem M.; van der Oost, John; Kelly, Robert M.; Kengen, Servé W. M.

    2008-01-01

    Caldicellulosiruptor saccharolyticus is an extremely thermophilic, gram-positive anaerobe which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO2, and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to coutilize glucose and xylose make this bacterium an attractive candidate for microbial bioenergy production. Here, the complete genome sequence of C. saccharolyticus, consisting of a 2,970,275-bp circular chromosome encoding 2,679 predicted proteins, is described. Analysis of the genome revealed that C. saccharolyticus has an extensive polysaccharide-hydrolyzing capacity for cellulose, hemicellulose, pectin, and starch, coupled to a large number of ABC transporters for monomeric and oligomeric sugar uptake. The components of the Embden-Meyerhof and nonoxidative pentose phosphate pathways are all present; however, there is no evidence that an Entner-Doudoroff pathway is present. Catabolic pathways for a range of sugars, including rhamnose, fucose, arabinose, glucuronate, fructose, and galactose, were identified. These pathways lead to the production of NADH and reduced ferredoxin. NADH and reduced ferredoxin are subsequently used by two distinct hydrogenases to generate hydrogen. Whole-genome transcriptome analysis revealed that there is significant upregulation of the glycolytic pathway and an ABC-type sugar transporter during growth on glucose and xylose, indicating that C. saccharolyticus coferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks is a highly desirable feature of this lignocellulose-utilizing, biofuel-producing bacterium. PMID:18776029

  5. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus

    DOE PAGESBeta

    Gardner, Jeffrey G.

    2016-06-04

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. Furthermore, this review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkablemore » ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.« less

  6. Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans

    SciTech Connect

    Sievert, Stefan M; Scott, Kathleen M; Klotz, Martin G; Chain, Patrick S. G.; Hauser, Loren John; Hemp, James; Hugler, Michael; Land, Miriam L; Lapidus, Alla L.; Larimer, Frank W; Lucas, Susan; Malfatti, Stephanie; Meyer, Folker; Paulsen, Ian T; Ren, Qinghu; Simon, Jorg

    2008-01-01

    Sulfur-oxidizing epsilonproteobacteria are common in a variety of sulfidogenic environments. These autotrophic and mixotrophic sulfur-oxidizing bacteria are believed to contribute substantially to the oxidative portion of the global sulfur cycle. In order to better understand the ecology and roles of sulfur-oxidizing epsilonproteobacteria, in particular those of the widespread genus Sulfurimonas, in biogeochemical cycles, the genome of Sulfurimonas denitrificans DSM1251 was sequenced. This genome has many features, including a larger size (2.2 Mbp), that suggest a greater degree of metabolic versatility or responsiveness to the environment than seen for most of the other sequenced epsilonproteobacteria. A branched electron transport chain is apparent, with genes encoding complexes for the oxidation of hydrogen, reduced sulfur compounds, and formate and the reduction of nitrate and oxygen. Genes are present for a complete, autotrophic reductive citric acid cycle. Many genes are present that could facilitate growth in the spatially and temporally heterogeneous sediment habitat from where Sulfurimonas denitrificans was originally isolated. Many resistance-nodulation-development family transporter genes (10 total) are present; of these, several are predicted to encode heavy metal efflux transporters. An elaborate arsenal of sensory and regulatory protein-encoding genes is in place, as are genes necessary to prevent and respond to oxidative stress.

  7. Sulfur Production by Obligately Chemolithoautotrophic Thiobacillus Species

    PubMed Central

    Visser, J. M.; Robertson, L. A.; Van Verseveld, H. W.; Kuenen, J. G.

    1997-01-01

    Transient-state experiments with the obligately autotrophic Thiobacillus sp. strain W5 revealed that sulfide oxidation proceeds in two physiological phases, (i) the sulfate-producing phase and (ii) the sulfur- and sulfate-producing phase, after which sulfide toxicity occurs. Specific sulfur-producing characteristics were independent of the growth rate. Sulfur formation was shown to occur when the maximum oxidative capacity of the culture was approached. In order to be able to oxidize increasing amounts of sulfide, the organism has to convert part of the sulfide to sulfur (HS(sup-)(symbl)S(sup0) + H(sup+) + 2e(sup-)) instead of sulfate (HS(sup-) + 4H(inf2)O(symbl)SO(inf4)(sup2-) + 9 H(sup+) + 8e(sup-)), thereby keeping the electron flux constant. Measurements of the in vivo degree of reduction of the cytochrome pool as a function of increasing sulfide supply suggested a redox-related down-regulation of the sulfur oxidation rate. Comparison of the sulfur-producing properties of Thiobacillus sp. strain W5 and Thiobacillus neapolitanus showed that the former has twice the maximum specific sulfide-oxidizing capacity of the latter (3.6 versus 1.9 (mu)mol/mg of protein/min). Their maximum specific oxygen uptake rates were very similar. Significant mechanistic differences in sulfur production between the high-sulfur-producing Thiobacillus sp. strain W5 and the moderate-sulfur-producing species T. neapolitanus were not observed. The limited sulfide-oxidizing capacity of T. neapolitanus appears to be the reason that it can convert only 50% of the incoming sulfide to elemental sulfur. PMID:16535627

  8. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    USGS Publications Warehouse

    Sparks, N.H.C.; Mann, S.; Bazylinski, D.A.; Lovley, D.R.; Jannasch, H.W.; Frankel, R.B.

    1990-01-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo??ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 ?? 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of {110} faces which are capped and truncated by {111} end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization. ?? 1990.

  9. Genome Sequence of the Antarctic Psychrophile Bacterium Planococcus antarcticus DSM 14505

    PubMed Central

    Margolles, Abelardo; Gueimonde, Miguel

    2012-01-01

    Planococcus antarcticus DSM 14505 is a psychrophile bacterium that was isolated from cyanobacterial mat samples, originally collected from ponds in McMurdo, Antarctica. This orange-pigmented bacterium grows at 4°C and may possess interesting enzymatic activities at low temperatures. Here we report the first genomic sequence of P. antarcticus DSM 14505. PMID:22843594

  10. Draft Genome Sequence of Ensifer adhaerens M78, a Mineral-Weathering Bacterium Isolated from Soil.

    PubMed

    Wang, Yuanli; Chen, Wei; He, Linyan; Wang, Qi; Sheng, Xia-Fang

    2016-01-01

    Ensifer adhaerens M78, a bacterium isolated from soil, can weather potash feldspar and release Fe, Si, and Al from rock under nutrient-poor conditions. Here, we report the draft genome sequence of strain M78, which may facilitate a better understanding of the molecular mechanism involved in mineral weathering by the bacterium. PMID:27609930

  11. Kinetic study of trichloroethylene and toluene degradation by a bioluminescent reporter bacterium

    SciTech Connect

    Kelly, C.J.; Sanseverino, J.; Bienkowski, P.R.; Sayler, G.S.

    1995-12-31

    A constructed bioluminescent reporter bacterium, Pseudomonas putida B2, is very briefly described in this paper. The bacterium degrades toluene and trichloroethylene (TCE), and produces light in the presence of toluene. The light response is an indication of cellular viability and expression of the genes encoding toluene and TCE degrading enzymes.

  12. Near-complete genome sequence of the cellulolytic Bacterium Bacteroides (Pseudobacteroides) cellulosolvens ATCC 35603

    DOE PAGESBeta

    Dassa, Bareket; Utturkar, Sagar M.; Hurt, Richard A.; Klingeman, Dawn Marie; Keller, Martin; Xu, Jian; Reddy, Harish Kumar; Borovok, Ilya; Grinberg, Inna Rozman; Lamed, Raphael; et al

    2015-09-24

    We report the single-contig genome sequence of the anaerobic, mesophilic, cellulolytic bacterium, Bacteroides cellulosolvens. The bacterium produces a particularly elaborate cellulosome system, whereas the types of cohesin-dockerin interactions are opposite of other known cellulosome systems: cell-surface attachment is thus mediated via type-I interactions whereas enzymes are integrated via type-II interactions.

  13. FEEDING EXPERIMENTS WITH BACTERIUM PULLORUM. THE TOXICITY OF INFECTED EGGS.

    PubMed

    Rettger, L F; Hull, T G; Sturges, W S

    1916-04-01

    The problem of eradicating ovarian infection in the domestic fowl assumes still greater importance than heretofore, in the light of data recently acquired. Not only is it of great significance to eliminate the permanent carriers of Bacterium pullorum from all flocks of fowls from the standpoint of successful poultry breeding, but also because they constitute a possible source of danger to man. Eggs which harbor Bacterium pullorum in the yolk in large numbers may produce abnormal conditions, when fed, not only in young chicks, but in adult fowls, young rabbits, guinea pigs, and kittens. The toxicity for young rabbits is most pronounced, the infection usually resulting in the death of the animals. In kittens the most prominent symptoms are those of severe food-poisoning with members of the paratyphoid group of bacteria. The possibility of infected eggs causing serious disturbances in young children and in the sick and convalescent of all ages must therefore receive serious consideration. Ovarian infection of fowls is very common throughout this country. Hence, a large proportion of the marketed eggs are infected with Bacterium pullorum. When such eggs are allowed to remain in nests under broody hens, or in warm storage places, for comparatively few hours, they contain large numbers of the organism. Soft boiling, coddling, and frying on one side only do not necessarily render the yolks free from viable bacteria; therefore, eggs which have gone through these processes may, like raw eggs, be the cause of serious disturbances in persons who are particularly susceptible to such influences, and especially to infants. That no well authenticated instances of egg-poisoning of this kind are on record does not warrant the assumption that there have been no cases. The etiology of infantile stomach and intestinal disturbances is as yet too little understood; in fact, it may be said that many of these disorders have no known cause, and almost as much may be said regarding gastro

  14. Fungal lysis by a soil bacterium fermenting cellulose.

    PubMed

    Tolonen, Andrew C; Cerisy, Tristan; El-Sayyed, Hafez; Boutard, Magali; Salanoubat, Marcel; Church, George M

    2015-08-01

    Recycling of plant biomass by a community of bacteria and fungi is fundamental to carbon flow in terrestrial ecosystems. Here we report how the plant fermenting, soil bacterium Clostridium phytofermentans enhances growth on cellulose by simultaneously lysing and consuming model fungi from soil. We investigate the mechanism of fungal lysis to show that among the dozens of different glycoside hydrolases C. phytofermentans secretes on cellulose, the most highly expressed enzymes degrade fungi rather than plant substrates. These enzymes, the GH18 Cphy1799 and Cphy1800, synergize to hydrolyse chitin, a main component of the fungal cell wall. Purified enzymes inhibit fungal growth and mutants lacking either GH18 grow normally on cellulose and other plant substrates, but have a reduced ability to hydrolyse chitinous substrates and fungal hyphae. Thus, C. phytofermentans boosts growth on cellulose by lysing fungi with its most highly expressed hydrolases, highlighting the importance of fungal interactions to the ecology of cellulolytic bacteria. PMID:24798076

  15. Characterization of the quinones in purple sulfur bacterium Thermochromatium tepidum.

    PubMed

    Kimura, Yuuka; Kawakami, Tomoaki; Yu, Long-Jiang; Yoshimura, Miku; Kobayashi, Masayuki; Wang-Otomo, Zheng-Yu

    2015-07-01

    Quinone distributions in the thermophilic purple sulfur bacterium Thermochromatium tepidum have been investigated at different levels of the photosynthetic apparatus. Here we show that, on average, the intracytoplasmic membrane contains 18 ubiquinones (UQ) and 4 menaquinones (MQ) per reaction center (RC). About one-third of the quinones are retained in the light-harvesting-reaction center core complex (LH1-RC) with a similar ratio of UQ to MQ. The numbers of quinones essentially remains unchanged during crystallization of the LH1-RC. There are 1-2 UQ and 1 MQ associated with the RC-only complex in the purified solution sample. Our results suggest that a large proportion of the quinones are confined to the core complex and at least five UQs remain invisible in the current LH1-RC crystal structure. PMID:26048701

  16. Mechanism of anaerobic degradation of triethanolamine by a homoacetogenic bacterium

    SciTech Connect

    Speranza, Giovanna . E-mail: giovanna.speranza@unimi.it; Morelli, Carlo F.; Cairoli, Paola; Mueller, Britta; Schink, Bernhard

    2006-10-20

    Triethanolamine (TEA) is converted into acetate and ammonia by a strictly anaerobic, gram-positive Acetobacterium strain LuTria3. Fermentation experiments with resting cell suspensions and specifically deuterated substrates indicate that in the acetate molecule the carboxylate and the methyl groups correspond to the alcoholic function and to its adjacent methylene group, respectively, of the 2-hydroxyethyl unit of TEA. A 1,2 shift of a hydrogen (deuterium) atom from -CH{sub 2} -O- to =N-CH{sub 2} - without exchange with the medium was observed. This fact gives evidence that a radical mechanism occurs involving the enzyme and/or coenzyme molecule as a hydrogen carrier. Such a biodegradation appears analogous to the conversion of 2-phenoxyethanol into acetate mediated by another strain of the anaerobic homoacetogenic bacterium Acetobacterium.

  17. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    PubMed

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. PMID:26965627

  18. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene

    SciTech Connect

    Maymo-Gatell, X.; Chien, Yueh-tyng; Zinder, S.H.

    1997-06-06

    Tetrachloroethene is a prominent groundwater pollutant that can be reductively dechlorinated by mixed anaerobic microbial populations to the nontoxic product ethene. Strain 195, a coccoid bacterium that dechlorinates tetrachlorethene to ethene, was isolated and characterized. Growth of strain 195 with H{sub 2} and tetrachloroethene as the electron donor and acceptor pair required extracts from mixed microbial cultures. Growth of strain 195 was resistant to ampicillin and vancomycin; its cell wall did not react with a peptidoglycan-specific lectin and its ultrastructure resembled S-layers of Archaea. Analysis of the 16S ribosomal DNA sequence of strain 195 indicated that it is a eubacterium without close affiliation to any known groups. 24 refs., 4 figs., 1 tab.

  19. The domestication of the probiotic bacterium Lactobacillus acidophilus

    PubMed Central

    Bull, Matthew J.; Jolley, Keith A.; Bray, James E.; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C. J.; Marchesi, Julian R.; Mahenthiralingam, Eshwar

    2014-01-01

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population. PMID:25425319

  20. The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis.

    PubMed

    Kondratieva, E N; Zhukov, V G; Ivanovsky, R N; Petushkova, U P; Monosov, E Z

    1976-07-01

    Purple sulfur bacterium Thiocapsa roseopersicina strain BBS requiring vitamin B12 may grow in the dark in media containing no other organic compounds. Under such conditions the cells oxidize sulfide and thiosulfate with the use of O2 and assimilate carbon dioxide. After 10--30s assimilation of NaH14CO3 about 60% of radioactivity is found in phosphorylated compounds characteristic for the reductive pentose phosphate cycle. The possibility of the function of this cycle in the dark in the presence of O2 is confirmed by the capacity of cells grown under such conditions to synthesize ribulose-1,5-diphosphate carboxylase. All this evidence suggests the ability of T. roseopersicina to change from phototrophy to aerobic chemolithoautotrophy. PMID:942280

  1. Metabolic characterisation of a novel vanillylmandelate-degrading bacterium.

    PubMed

    Turner, J E; Allison, N; Fewson, C A

    1996-10-01

    A newly isolated gram-negative bacterium, possibly Brevundimonas diminuta, utilised D,L-vanillylmandelate (D,L-VMA) as a sole carbon and energy source. The organism converted D,L-VMA to vanillylglyoxylate using a soluble NAD-dependent dehydrogenase specific for D-VMA and a dye-linked, membrane-associated L-VMA dehydrogenase. Vanillylglyoxylate was further metabolised by decarboxylation, dehydrogenation and demethylation to protocatechuate. A 4,5-dioxygenase cleaved protocatechuate to 2-hydroxy-4-carboxymuconic semialdehyde. Partially purified d-VMA dehydrogenase exhibited optimal activity at 30 degrees C and pH 9.5 and had an apparent Km for D-VMA of 470 microM. Although induced by several substituted mandelates, the enzyme had a narrow substrate specificity range with virtually no activity towards D-mandelate. Such properties render the enzyme of potential use in both diagnostic and biosynthetic applications. PMID:8824148

  2. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    SciTech Connect

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  3. Genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812T)

    SciTech Connect

    Anderson, Iain; Saunders, Elizabeth H; Lapidus, Alla L.; Nolan, Matt; Lucas, Susan; Tice, Hope; Glavina Del Rio, Tijana; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, K; Pagani, Ioanna; Ivanova, N; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Jeffries, Cynthia; Chang, Yun-Juan; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Goker, Markus; Detter, J. Chris; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2012-01-01

    Thermodesulfatator indicus Moussard et al. 2004 is a member of the genomically so far poorly characterized family Thermodesulfobacteriaceae in the phylum Thermodesulfobacteria. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli.

    PubMed

    Butcher, B G; Deane, S M; Rawlings, D E

    2000-05-01

    The chromosomal arsenic resistance genes of the acidophilic, chemolithoautotrophic, biomining bacterium Thiobacillus ferrooxidans were cloned and sequenced. Homologues of four arsenic resistance genes, arsB, arsC, arsH, and a putative arsR gene, were identified. The T. ferrooxidans arsB (arsenite export) and arsC (arsenate reductase) gene products were functional when they were cloned in an Escherichia coli ars deletion mutant and conferred increased resistance to arsenite, arsenate, and antimony. Therefore, despite the fact that the ars genes originated from an obligately acidophilic bacterium, they were functional in E. coli. Although T. ferrooxidans is gram negative, its ArsC was more closely related to the ArsC molecules of gram-positive bacteria. Furthermore, a functional trxA (thioredoxin) gene was required for ArsC-mediated arsenate resistance in E. coli; this finding confirmed the gram-positive ArsC-like status of this resistance and indicated that the division of ArsC molecules based on Gram staining results is artificial. Although arsH was expressed in an E. coli-derived in vitro transcription-translation system, ArsH was not required for and did not enhance arsenic resistance in E. coli. The T. ferrooxidans ars genes were arranged in an unusual manner, and the putative arsR and arsC genes and the arsBH genes were translated in opposite directions. This divergent orientation was conserved in the four T. ferrooxidans strains investigated. PMID:10788346

  5. Mineral respiration under extreme acidic conditions: from a supramolecular organization to a molecular adaptation in Acidithiobacillus ferrooxidans.

    PubMed

    Roger, Magali; Castelle, Cindy; Guiral, Marianne; Infossi, Pascale; Lojou, Elisabeth; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2012-12-01

    Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotrophic Gram-negative bacterium that can derive energy from the oxidation of ferrous iron at pH 2 using oxygen as electron acceptor. The study of this bacterium has economic and fundamental biological interest because of its use in the industrial extraction of copper and uranium from ores. For this reason, its respiratory chain has been analysed in detail in recent years. Studies have shown the presence of a functional supercomplex that spans the outer and the inner membranes and allows a direct electron transfer from the extracellular Fe2+ ions to the inner membrane cytochrome c oxidase. Iron induces the expression of two operons encoding proteins implicated in this complex as well as in the regeneration of the reducing power. Most of these are metalloproteins that have been characterized biochemically, structurally and biophysically. For some of them, the molecular basis of their adaptation to the periplasmic acidic environment has been described. Modifications in the metal surroundings have been highlighted for cytochrome c and rusticyanin, whereas, for the cytochrome c oxidase, an additional partner that maintains its stability and activity has been demonstrated recently. PMID:23176476

  6. Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii.

    PubMed

    Miquel, Sylvie; Martín, Rebeca; Bridonneau, Chantal; Robert, Véronique; Sokol, Harry; Bermúdez-Humarán, Luis G; Thomas, Muriel; Langella, Philippe

    2014-01-01

    Faecalibacterium prausnitzii is a major commensal bacterium, and its prevalence is often decreased in conditions of intestinal dysbiosis. The phylogenic identity of this bacterium was described only recently. It is still poorly characterized, and its specific growth requirements in the human gastrointestinal tract are not known. In this review, we consider F. prausnitzii metabolism, its ecophysiology in both humans and animals, and the effects of drugs and nutrition on its population. We list important questions about this beneficial and ubiquitous commensal bacterium that it would be valuable to answer. PMID:24637606

  7. Anaerobic degradation of toluene by a denitrifying bacterium.

    PubMed Central

    Evans, P J; Mang, D T; Kim, K S; Young, L Y

    1991-01-01

    A denitrifying bacterium, designated strain T1, that grew with toluene as the sole source of carbon under anaerobic conditions was isolated. The type of agar used in solid media and the toxicity of toluene were determinative factors in the successful isolation of strain T1. Greater than 50% of the toluene carbon was oxidized to CO2, and 29% was assimilated into biomass. The oxidation of toluene to CO2 was stoichiometrically coupled to nitrate reduction and denitrification. Strain T1 was tolerant of and grew on 3 mM toluene after a lag phase. The rate of toluene degradation was 1.8 mumol min-1 liter-1 (56 nmol min-1 mg of protein-1) in a cell suspension. Strain T1 was distinct from other bacteria that oxidize toluene anaerobically, but it may utilize a similar biochemical pathway of oxidation. In addition, o-xylene was transformed to a metabolite in the presence of toluene but did not serve as the sole source of carbon for growth of strain T1. This transformation was dependent on the degradation of toluene. Images PMID:2059037

  8. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium.

    PubMed

    Zheng, Haiyan; Liu, Ying; Sun, Guangdong; Gao, Xiyan; Zhang, Qingling; Liu, Zhipei

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium, strain S1-1, was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system. Strain S1-1 was preliminarily identified as Psychrobacter sp. based on the analysis of its 16S rRNA gene sequence, which showed 100% sequence similarity to that of Psychrobacter sp. TSBY-70. Strain S1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite, and the total nitrogen removal rates could reach to 46.48% and 31.89%, respectively. The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low level accumulation of nitrite, suggesting that the aerobic denitrification process of strain S1-1 occurred mainly in this phase. The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1. Finally, factors affecting the growth of strain S1-1 and its aerobic denitrifying ability were also investigated. Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source, C/N ratio15, salinity 10 g/L NaCl, incubation temperature 20 degrees C and initial pH 6.5. PMID:22432315

  9. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans.

    PubMed

    Reith, Frank; Etschmann, Barbara; Grosse, Cornelia; Moors, Hugo; Benotmane, Mohammed A; Monsieurs, Pieter; Grass, Gregor; Doonan, Christian; Vogt, Stefan; Lai, Barry; Martinez-Criado, Gema; George, Graham N; Nies, Dietrich H; Mergeay, Max; Pring, Allan; Southam, Gordon; Brugger, Joël

    2009-10-20

    While the role of microorganisms as main drivers of metal mobility and mineral formation under Earth surface conditions is now widely accepted, the formation of secondary gold (Au) is commonly attributed to abiotic processes. Here we report that the biomineralization of Au nanoparticles in the metallophillic bacterium Cupriavidus metallidurans CH34 is the result of Au-regulated gene expression leading to the energy-dependent reductive precipitation of toxic Au(III)-complexes. C. metallidurans, which forms biofilms on Au grains, rapidly accumulates Au(III)-complexes from solution. Bulk and microbeam synchrotron X-ray analyses revealed that cellular Au accumulation is coupled to the formation of Au(I)-S complexes. This process promotes Au toxicity and C. metallidurans reacts by inducing oxidative stress and metal resistances gene clusters (including a Au-specific operon) to promote cellular defense. As a result, Au detoxification is mediated by a combination of efflux, reduction, and possibly methylation of Au-complexes, leading to the formation of Au(I)-C-compounds and nanoparticulate Au(0). Similar particles were observed in bacterial biofilms on Au grains, suggesting that bacteria actively contribute to the formation of Au grains in surface environments. The recognition of specific genetic responses to Au opens the way for the development of bioexploration and bioprocessing tools. PMID:19815503

  10. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7

    PubMed Central

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-01-01

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments. PMID:26426011

  11. Yersinia ruckeri sp. nov., the redmouth (RM) bacterium

    USGS Publications Warehouse

    Ewing, W.H.; Ross, A.J.; Brenner, Don J.; Fanning, G. R.

    1978-01-01

    Cultures of the redmouth (RM) bacterium, one of the etiological agents of redmouth disease in rainbow trout (Salmo gairdneri) and certain other fishes, were characterized by means of their biochemical reactions, by deoxyribonucleic acid (DNA) hybridization, and by determination of guanine-plus-cytosine (G+C) ratios in DNA. The DNA relatedness studies confirmed the fact that the RM bacteria are members of the family Enterobacteriaceae and that they comprise a single species that is not closely related to any other species of Enterobacteriaceae. They are about 30% related to species of both Serratia and Yersinia. A comparison of the biochemical reactions of RM bacteria and serratiae indicated that there are many differences between these organisms and that biochemically the RM bacteria are most closely related to yersiniae. The G+C ratios of RM bacteria were approximated to be between 47.5 and 48.5% These values are similar to those of yersiniae but markedly different from those of serratiae. On the basis of their biochemical reactions and their G+C ratios, the RM bacteria are considered to be a new species of Yersinia, for which the name Yersinia ruckeri is proposed. Strain 2396-61 (= ATCC 29473) is designated the type strain of the species.

  12. Novel Rickettsiella Bacterium in the Leafhopper Orosius albicinctus (Hemiptera: Cicadellidae)

    PubMed Central

    Iasur-Kruh, Lilach; Weintraub, Phyllis G.; Mozes-Daube, Netta; Robinson, Wyatt E.; Perlman, Steve J.

    2013-01-01

    Bacteria in the genus Rickettsiella (Coxiellaceae), which are mainly known as arthropod pathogens, are emerging as excellent models to study transitions between mutualism and pathogenicity. The current report characterizes a novel Rickettsiella found in the leafhopper Orosius albicinctus (Hemiptera: Cicadellidae), a major vector of phytoplasma diseases in Europe and Asia. Denaturing gradient gel electrophoresis (DGGE) and pyrosequencing were used to survey the main symbionts of O. albicinctus, revealing the obligate symbionts Sulcia and Nasuia, and the facultative symbionts Arsenophonus and Wolbachia, in addition to Rickettsiella. The leafhopper Rickettsiella is allied with bacteria found in ticks. Screening O. albicinctus from the field showed that Rickettsiella is highly prevalent, with over 60% of individuals infected. A stable Rickettsiella infection was maintained in a leafhopper laboratory colony for at least 10 generations, and fluorescence microscopy localized bacteria to accessory glands of the female reproductive tract, suggesting that the bacterium is vertically transmitted. Future studies will be needed to examine how Rickettsiella affects host fitess and its ability to vector phytopathogens. PMID:23645190

  13. Bacterium organizes hierarchical amorphous structure in microbial cellulose

    NASA Astrophysics Data System (ADS)

    Koizumi, S.; Yue, Z.; Tomita, Y.; Kondo, T.; Iwase, H.; Yamaguchi, D.; Hashimoto, T.

    2008-05-01

    A pellicle, a gel film of microbial cellulose, is a supermolecular system containing 99% of water by weight, which is closely related to an amorphous structure in it. Using ultra-small-angle neutron scattering, in order to cover over a wide range of length scales from nm to 10μm, we examined the hierarchical amorphous structure in the microbial cellulose, which is synthesized by a bacterium (Acetobacter xylinum). The microbial cellulose swollen by water shows small-angle scattering that obeys a power law q -behavior according to q-α as a function of the magnitude of the scattering vector q . The power law, determined by scattering, is attributed to a mass fractal due to the distribution of the center of mass for the crystallite (microfibril) in amorphous cellulose swollen by water. As q increases, α takes the values of 2.5, 1, and 2.35, corresponding, respectively, to a gel network composed of bundles, a bundle composed of cellulose ribbons, and concentration fluctuations in a bundle. From the mass fractal q -behavior and its length scale limits, we evaluated a volume fraction of crystallite in microbial cellulose. It was found that 90% of the cellulose bundle is occupied by amorphous cellulose containing water.

  14. Fitness correlates with the extent of cheating in a bacterium.

    PubMed

    Jiricny, N; Diggle, S P; West, S A; Evans, B A; Ballantyne, G; Ross-Gillespie, A; Griffin, A S

    2010-04-01

    There is growing awareness of the importance of cooperative behaviours in microbial communities. Empirical support for this insight comes from experiments using mutant strains, termed 'cheats', which exploit the cooperative behaviour of wild-type strains. However, little detailed work has gone into characterising the competitive dynamics of cooperative and cheating strains. We test three specific predictions about the fitness consequences of cheating to different extents by examining the production of the iron-scavenging siderophore molecule, pyoverdin, in the bacterium Pseudomonas aeruginosa. We create a collection of mutants that differ in the amount of pyoverdin that they produce (from 1% to 96% of the production of paired wild types) and demonstrate that these production levels correlate with both gene activity and the ability to bind iron. Across these mutants, we found that (1) when grown in a mixed culture with a cooperative wild-type strain, the relative fitness of a mutant is negatively correlated with the amount of pyoverdin that it produces; (2) the absolute and relative fitness of the wild-type strain in the mixed culture is positively correlated with the amount of pyoverdin that the mutant produces; and (3) when grown in a monoculture, the absolute fitness of the mutant is positively correlated with the amount of pyoverdin that it produces. Overall, we demonstrate that cooperative pyoverdin production is exploitable and illustrate how variation in a social behaviour determines fitness differently, depending on the social environment. PMID:20210835

  15. P450 enzymes from the bacterium Novosphingobium aromaticivorans.

    PubMed

    Bell, Stephen G; Wong, Luet-Lok

    2007-08-31

    Twelve of the fifteen potential P450 enzymes from the bacterium Novosphingobium aromaticivorans, which is known to degrade a wide range of aromatic hydrocarbons, have been produced via heterologous expression in Escherichia coli. The enzymes were tested for their ability to bind a range of substrates including polyaromatic hydrocarbons. While two of the enzymes were found to bind aromatic compounds (CYP108D1 and CYP203A2), the others show binding with a variety of compounds including linear alkanes (CYP153C1) and mono- and sesqui-terpenoid compounds (CYP101B1, CYP101C1, CYP101D1, CYP101D2, CYP111A1, and CYP219A1). A 2Fe-2S ferredoxin (Arx-A), which is associated with CYP101D2, was also produced. The activity of five of the P450 enzymes (CYP101B1, CYP101C1, CYP101D1, CYP101D2, and CYP111A2) was reconstituted with Arx-A and putidaredoxin reductase (of the P450cam system from Pseudomonas putida) in a Class I type electron transfer system. Preliminary characterisation of the majority of the substrate oxidation products is reported. PMID:17618912

  16. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    PubMed Central

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels. PMID:26902345

  17. A serine sensor for multicellularity in a bacterium

    PubMed Central

    Subramaniam, Arvind R; DeLoughery, Aaron; Bradshaw, Niels; Chen, Yun; O’Shea, Erin; Losick, Richard; Chai, Yunrong

    2013-01-01

    We report the discovery of a simple environmental sensing mechanism for biofilm formation in the bacterium Bacillus subtilis that operates without the involvement of a dedicated RNA or protein. Certain serine codons, the four TCN codons, in the gene for the biofilm repressor SinR caused a lowering of SinR levels under biofilm-inducing conditions. Synonymous substitutions of these TCN codons with AGC or AGT impaired biofilm formation and gene expression. Conversely, switching AGC or AGT to TCN codons upregulated biofilm formation. Genome-wide ribosome profiling showed that ribosome density was higher at UCN codons than at AGC or AGU during biofilm formation. Serine starvation recapitulated the effect of biofilm-inducing conditions on ribosome occupancy and SinR production. As serine is one of the first amino acids to be exhausted at the end of exponential phase growth, reduced translation speed at serine codons may be exploited by other microbes in adapting to stationary phase. DOI: http://dx.doi.org/10.7554/eLife.01501.001 PMID:24347549

  18. P450 enzymes from the bacterium Novosphingobium aromaticivorans

    SciTech Connect

    Bell, Stephen G. . E-mail: stephen.bell@chem.ox.ac.uk; Wong, Luet-Lok

    2007-08-31

    Twelve of the fifteen potential P450 enzymes from the bacterium Novosphingobium aromaticivorans, which is known to degrade a wide range of aromatic hydrocarbons, have been produced via heterologous expression in Escherichia coli. The enzymes were tested for their ability to bind a range of substrates including polyaromatic hydrocarbons. While two of the enzymes were found to bind aromatic compounds (CYP108D1 and CYP203A2), the others show binding with a variety of compounds including linear alkanes (CYP153C1) and mono- and sesqui-terpenoid compounds (CYP101B1, CYP101C1, CYP101D1, CYP101D2, CYP111A1, and CYP219A1). A 2Fe-2S ferredoxin (Arx-A), which is associated with CYP101D2, was also produced. The activity of five of the P450 enzymes (CYP101B1, CYP101C1, CYP101D1, CYP101D2, and CYP111A2) was reconstituted with Arx-A and putidaredoxin reductase (of the P450cam system from Pseudomonas putida) in a Class I type electron transfer system. Preliminary characterisation of the majority of the substrate oxidation products is reported.

  19. The acetylproteome of Gram-positive model bacterium Bacillus subtilis.

    PubMed

    Kim, Dooil; Yu, Byung Jo; Kim, Jung Ae; Lee, Yong-Jik; Choi, Soo-Geun; Kang, Sunghyun; Pan, Jae-Gu

    2013-05-01

    N(ε) -lysine acetylation, a reversible and highly regulated PTM, has been shown to occur in the model Gram-negative bacteria Escherichia coli and Salmonella enterica. Here, we extend this acetylproteome analysis to Bacillus subtilis, a model Gram-positive bacterium. Through anti-acetyllysine antibody-based immunoseparation of acetylpeptides followed by nano-HPLC/MS/MS analysis, we identified 332 unique lysine-acetylated sites on 185 proteins. These proteins are mainly involved in cellular housekeeping functions such as central metabolism and protein synthesis. Fifity-nine of the lysine-acetylated proteins showed homology with lysine-acetylated proteins previously identified in E. coli, suggesting that acetylated proteins are more conserved. Notably, acetylation was found at or near the active sites predicted by Prosite signature, including SdhA, RocA, Kbl, YwjH, and YfmT, indicating that lysine acetylation may affect their activities. In 2-amino-3-ketobutyrate CoA ligase Kbl, a class II aminotransferase, a lysine residue involved in pyridoxal phosphate attachment was found to be acetylated. This data set provides evidence for the generality of lysine acetylation in eubacteria and opens opportunities to explore the consequences of acetylation modification on the molecular physiology of B. subtilis. PMID:23468065

  20. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7.

    PubMed

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-01-01

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments. PMID:26426011

  1. Hydrodynamics and collective behavior of the tethered bacterium Thiovulum majus

    PubMed Central

    Petroff, Alexander; Libchaber, Albert

    2014-01-01

    The ecology and dynamics of many microbial systems, particularly in mats and soils, are shaped by how bacteria respond to evolving nutrient gradients and microenvironments. Here we show how the response of the sulfur-oxidizing bacterium Thiovulum majus to changing oxygen gradients causes cells to organize into large-scale fronts. To study this phenomenon, we develop a technique to isolate and enrich these bacteria from the environment. Using this enrichment culture, we observe the formation and dynamics of T. majus fronts in oxygen gradients. We show that these dynamics can be understood as occurring in two steps. First, chemotactic cells moving up the oxygen gradient form a front that propagates with constant velocity. We then show, through observation and mathematical analysis, that this front becomes unstable to changes in cell density. Random perturbations in cell density create oxygen gradients. The response of cells magnifies these gradients and leads to the formation of millimeter-scale fluid flows that actively pull oxygenated water through the front. We argue that this flow results from a nonlinear instability excited by stochastic fluctuations in the density of cells. Finally, we show that the dynamics by which these modes interact can be understood from the chemotactic response of cells. These results provide a mathematically tractable example of how collective phenomena in ecological systems can arise from the individual response of cells to a shared resource. PMID:24459183

  2. Molecular study on cloned endoglucanase gene from rumen bacterium.

    PubMed

    Ozkose, Emin; Akyol, Ismail; Ekinci, Mehmet Sait

    2004-01-01

    An endoglucanase gene was subcloned from anaerobic rumen bacterium Ruminococcus flavefaciens strain 17. To express endoglucanase gene in Escherichia coli and Streptococcus bovis JB1, an endoglucanase gene fragment was inserted into pVA838-based shuttle vectors. Removal of endoglucanase gene promoter and expression of endoglucanase by promoter of S. bovis JB1 alpha-amylase gene (pACMCS) was also achieved. Survival of constructs pVACMCI, pTACMC and pACMCS, which carry endoglucanase gene, and stability of endoglucanase gene in S. bovis JB1, were observed. Maximal endoglucanase activities from S. bovis JB1/pVACMCI were 2- to 3-fold higher than from E. coli/pVACMCI. Specific cell activity of E. coli/pACMCS was found to be approximately 2- to -3 fold higher than the both E. coli/pVACMCI and E. coli/pTACMC. Specific cell activity of S. bovis JB1/pACMCS was also found to be approximately 2-fold higher than the both S. bovis/pVACMCI and S. bovis JB1/pTACMC. PMID:15925902

  3. Bioconversion of methane to lactate by an obligate methanotrophic bacterium.

    PubMed

    Henard, Calvin A; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G; Pienkos, Philip T; Guarnieri, Michael T

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to "green" chemicals and fuels. PMID:26902345

  4. Mutation of bacterium Vibrio gazogenes for selective preparation of colorants.

    PubMed

    Alihosseini, Farzaneh; Lango, Jozsef; Ju, Kou-San; Hammock, Bruce D; Sun, Gang

    2010-01-01

    A novel marine bacterium strain effectively produced prodiginine type pigments. These colorants could dye wool, silk and synthetic fabrics such as polyester and polyacrylic and also show antibacterial properties against Escherichia coli and Staphylococcus aureus bacteria on the dyed products. Methyl nitrosoguanidine was used as a mutation agent to increase the genetic diversity and the production yield of the bacteria of the family of Vibrio gazogenes. The analysis of the mutated samples showed that two new main colorants as well as three previously found ones were produced. Liquid chromatography electro spray ionization mass spectrometry (LC-ESI-MS) and nuclear magnetic resonance (NMR) spectroscopic techniques were used to elucidate the structures of the newly produced colorants. Mass measurements revealed that the colorants C1, C2, C3, C4 have molecular masses of 321, 323, 351, and 295 Da. One unstable colorant C5 with molecular mass of 309 Da was detected as well. The mutated bacteria strains increased the yield of pigment production by about 81% and produced prodigiosin in 97% purity. The antibiotic activities of pure colorants are discussed as well. Based on their bio-activity and excellent dyeing capabilities, these colorants could be employed in cosmetic and textile industries. PMID:19902486

  5. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans

    PubMed Central

    Reith, Frank; Etschmann, Barbara; Grosse, Cornelia; Moors, Hugo; Benotmane, Mohammed A.; Monsieurs, Pieter; Grass, Gregor; Doonan, Christian; Vogt, Stefan; Lai, Barry; Martinez-Criado, Gema; George, Graham N.; Nies, Dietrich H.; Mergeay, Max; Pring, Allan; Southam, Gordon; Brugger, Joël

    2009-01-01

    While the role of microorganisms as main drivers of metal mobility and mineral formation under Earth surface conditions is now widely accepted, the formation of secondary gold (Au) is commonly attributed to abiotic processes. Here we report that the biomineralization of Au nanoparticles in the metallophillic bacterium Cupriavidus metallidurans CH34 is the result of Au-regulated gene expression leading to the energy-dependent reductive precipitation of toxic Au(III)-complexes. C. metallidurans, which forms biofilms on Au grains, rapidly accumulates Au(III)-complexes from solution. Bulk and microbeam synchrotron X-ray analyses revealed that cellular Au accumulation is coupled to the formation of Au(I)-S complexes. This process promotes Au toxicity and C. metallidurans reacts by inducing oxidative stress and metal resistances gene clusters (including a Au-specific operon) to promote cellular defense. As a result, Au detoxification is mediated by a combination of efflux, reduction, and possibly methylation of Au-complexes, leading to the formation of Au(I)-C-compounds and nanoparticulate Au0. Similar particles were observed in bacterial biofilms on Au grains, suggesting that bacteria actively contribute to the formation of Au grains in surface environments. The recognition of specific genetic responses to Au opens the way for the development of bioexploration and bioprocessing tools. PMID:19815503

  6. Novel Trypanosomatid-Bacterium Association: Evolution of Endosymbiosis in Action

    PubMed Central

    Kostygov, Alexei Y.; Dobáková, Eva; Grybchuk-Ieremenko, Anastasiia; Váhala, Dalibor; Maslov, Dmitri A.; Votýpka, Jan

    2016-01-01

    ABSTRACT We describe a novel symbiotic association between a kinetoplastid protist, Novymonas esmeraldas gen. nov., sp. nov., and an intracytoplasmic bacterium, “Candidatus Pandoraea novymonadis” sp. nov., discovered as a result of a broad-scale survey of insect trypanosomatid biodiversity in Ecuador. We characterize this association by describing the morphology of both organisms, as well as their interactions, and by establishing their phylogenetic affinities. Importantly, neither partner is closely related to other known organisms previously implicated in eukaryote-bacterial symbiosis. This symbiotic association seems to be relatively recent, as the host does not exert a stringent control over the number of bacteria harbored in its cytoplasm. We argue that this unique relationship may represent a suitable model for studying the initial stages of establishment of endosymbiosis between a single-cellular eukaryote and a prokaryote. Based on phylogenetic analyses, Novymonas could be considered a proxy for the insect-only ancestor of the dixenous genus Leishmania and shed light on the origin of the two-host life cycle within the subfamily Leishmaniinae. PMID:26980834

  7. Gracilibacillus kimchii sp. nov., a halophilic bacterium isolated from kimchi.

    PubMed

    Oh, Young Joon; Lee, Hae-Won; Lim, Seul Ki; Kwon, Min-Sung; Lee, Jieun; Jang, Ja-Young; Park, Hae Woong; Nam, Young-Do; Seo, Myung-Ji; Choi, Hak-Jong

    2016-09-01

    A novel halophilic bacterium, strain K7(T), was isolated from kimchi, a traditional Korean fermented food. The strain is Gram-positive, motile, and produces terminal endospores. The isolate is facultative aerobic and grows at salinities of 0.0-25.0% (w/v) NaCl (optimum 10-15% NaCl), pH 5.5-8.5 (optimum pH 7.0-7.5), and 15-42°C (optimum 37°C). The predominant isoprenoid quinone in the strain is menaquinone-7 and the peptidoglycan of the strain is meso-diaminopimelic acid. The major fatty acids of the strain are anteisio-C15:0, iso-C15:0, and, C16:0 (other components were < 10.0%), while the major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and three unidentified lipids. A phylogenetic analysis of 16S rRNA gene sequence similarity showed that the isolated strain was a cluster of the genus Gracilibacillus. High levels of gene sequence similarity were observed between strain K7(T) and Gracilibacillus orientalis XH-63(T) (96.5%), and between the present strain and Gracilibacillus xinjiangensis (96.5%). The DNA G+C content of this strain is 37.7 mol%. Based on these findings, strain K7(T) is proposed as a novel species: Gracilibacillus kimchii sp. nov. The type strain is K7(T) (KACC 18669(T); JCM 31344(T)). PMID:27572507

  8. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    DOE PAGESBeta

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-02-23

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resultedmore » in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.« less

  9. A new isolation method for labyrinthulids using a bacterium, Psychrobacter phenylpyruvicus.

    PubMed

    Yokochi, T; Nakahara, T; Higashihara, T; Yamaoka, M; Kurane, R

    2001-01-01

    A new isolation method for labyrinthulids, marine microbes with spindle-shaped vegetative cells and gliding movement, is presented. The method for isolating labyrinthulids has been found to be more difficult and less reproducible than that for thraustochytrids, classified in the same order. So far serum seawater agar fortified with antibiotics has been proposed to be the best for isolation of labyrinthulids. The method presented here involves placing plant samples on an agar medium on which a marine bacterium, Psychrobacter phenylpyruvicus, has been grown. The new method, which utilizes fallen mangrove leaves as source material, was more than twice as effective as isolation agar medium without the bacterium. The increased effectiveness appears to derive partly from the bacterial colonies' delaying extension of fungal mycelium. The bacterium was more effective for the isolation of labyrinthulids than either the bacterium Shewanella sp. or the yeast Rhodotorula rubra. PMID:14961392

  10. IN SITU RT-PCR WITH A SULFATE-REDUCING BACTERIUM ISOLATED FROM SEAGRASS ROOTS

    EPA Science Inventory

    Bacteria considered to be obligate anaerobes internally colonize roots of the submerged macrophyte Halodule wrightii. A sulfate reducing bacterium, Summer lac 1, was isolated on lactate from H. wrightii roots. The isolate has physiological characteristics typical of Desulfovibri...

  11. Characterization of a Neochlamydia-like bacterium associated with epitheliocystis in cultured Arctic charr Salvelinus alpinus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infections of branchial epithelium by intracellular gram-negative bacteria, termed epitheliocystis, have limited culture of Arctic char (Salvelinus alpinus). To characterize a bacterium associated with epitheliocystis in cultured char, gills were sampled for histopathologic examination, conventiona...

  12. Extracellular electron transfer of a highly adhesive and metabolically versatile bacterium.

    PubMed

    Liu, Huan; Ishikawa, Masahito; Matsuda, Shoichi; Kimoto, Yuki; Hori, Katsutoshi; Hashimoto, Kazuhito; Nakanishi, Shuji

    2013-08-01

    Bacterial adhesion to a solid plays a predominant role in mediating the extracellular electron transfer for genus Acinetobactor, a metabolically versatile bacterium that can couple toluene degradation and electricity generation. PMID:23813865

  13. Draft Genome Sequence of the Versatile Alkane-Degrading Bacterium Aquabacterium sp. Strain NJ1

    PubMed Central

    Shiwa, Yuh; Yoshikawa, Hirofumi; Zylstra, Gerben J.

    2014-01-01

    The draft genome sequence of a soil bacterium, Aquabacterium sp. strain NJ1, capable of utilizing both liquid and solid alkanes, was deciphered. This is the first report of an Aquabacterium genome sequence. PMID:25477416

  14. Characterization of a Neochlamydia-like Bacterium Associated with Epitheliocystis in Cultured Artic Char Salvelinus alpinus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infections of branchial epithelium by intracellular gram-negative bacteria, termed epitheliocystis, have limited culture of Arctic char (Salvelinus alpinus). To characterize a bacterium associated with epitheliocystis in cultured char, gills were sampled for histopathologic examination, conventional...

  15. Enhancement of xylose utilization from corn stover by a recombinant bacterium for ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant ethanologenic Escherichia coli ferments glucose, xylose and arabinose to ethanol. However, the bacterium preferentially utilizes glucose first, then arabinose and finally xylose (sequential utilization of sugars) during fermentation of lignocellulosic hydrolyzates to ethanol making the p...

  16. Draft Genome Sequence of Erythrobacter vulgaris Strain O1, a Glycosyl Hydrolase-Producing Bacterium

    PubMed Central

    Yaakop, Amira Suriaty; Chan, Chia Sing; Kahar, Ummirul Mukminin; Ee, Robson

    2015-01-01

    Erythrobacter vulgaris strain O1, a moderate halophile, was isolated from a beach in Johor, Malaysia. Here, we present the draft genome and suggest potential applications of this bacterium. PMID:25977433

  17. Draft Genome Sequence of DLB, a Dyella-Like Bacterium from the Planthopper Hyalesthes obsoletus

    PubMed Central

    Lahav, Tamar; Zchori-Fein, Einat; Naor, Vered; Freilich, Shiri

    2016-01-01

    We report here the draft genome sequence of a Dyella-like bacterium (DLB) isolated from Hyalesthes obsoletus, the insect vector of the uncultivable mollicute bacterium “Candidatus Phytoplasma.” This isolate inhibits Spiroplasma melliferum, a cultivable mollicute. The draft genome of DLB consists of 4,196,214 bp, with a 68.6% G+C content, and 3,757 genes were predicted. PMID:27445378

  18. Complete genome of Martelella sp. AD-3, a moderately halophilic polycyclic aromatic hydrocarbons-degrading bacterium.

    PubMed

    Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi

    2016-05-10

    Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. PMID:26988395

  19. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    PubMed Central

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

  20. Metabolomics evaluation of the impact of smokeless tobacco exposure on the oral bacterium Capnocytophaga sputigena.

    PubMed

    Sun, Jinchun; Jin, Jinshan; Beger, Richard D; Cerniglia, Carl E; Yang, Maocheng; Chen, Huizhong

    2016-10-01

    The association between exposure to smokeless tobacco products (STP) and oral diseases is partially due to the physiological and pathological changes in the composition of the oral microbiome and its metabolic profile. However, it is not clear how STPs affect the physiology and ecology of oral microbiota. A UPLC/QTof-MS-based metabolomics study was employed to analyze metabolic alterations in oral bacterium, Capnocytophaga sputigena as a result of smokeless tobacco exposure and to assess the capability of the bacterium to metabolize nicotine. Pathway analysis of the metabolome profiles indicated that smokeless tobacco extracts caused oxidative stress in the bacterium. The metabolomics data also showed that the arginine-nitric oxide pathway was perturbed by the smokeless tobacco treatment. Results also showed that LC/MS was useful in identifying STP constituents and additives, including caffeine and many flavoring compounds. No significant changes in levels of nicotine and its major metabolites were found when C. sputigena was cultured in a nutrient rich medium, although hydroxylnicotine and cotinine N-oxide were detected in the bacterial metabolites suggesting that nicotine metabolism might be present as a minor degradation pathway in the bacterium. Study results provide new insights regarding the physiological and toxicological effects of smokeless tobacco on oral bacterium C. sputigena and associated oral health as well as measuring the ability of the oral bacterium to metabolize nicotine. PMID:27480511

  1. Metabolic Evolution of a Deep-Branching Hyperthermophilic Chemoautotrophic Bacterium

    PubMed Central

    Braakman, Rogier; Smith, Eric

    2014-01-01

    Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA) cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere. PMID:24516572

  2. Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium.

    PubMed

    Rivas, Raúl; Mateos, Pedro F; Martínez-Molina, Eustoquio; Velázquez, Encarna

    2005-01-01

    During a search for xylan-degrading micro-organisms, a sporulating bacterium was recovered from xylan-containing agar plates exposed to air in a research laboratory (Salamanca University, Spain). The airborne isolate (designated strain XIL14T) was identified by 16S rRNA gene sequencing as representing a Paenibacillus species most closely related to Paenibacillus illinoisensis JCM 9907T (99.3 % sequence similarity) and Paenibacillus pabuli DSM 3036T (98 % sequence similarity). Phenotypic, chemotaxonomic and DNA-DNA hybridization data indicated that the isolate belongs to a novel species of the genus Paenibacillus. Cells of strain XIL14T were motile, sporulating, rod-shaped, Gram-positive and facultatively anaerobic. The predominant cellular fatty acids were anteiso-C(15 : 0) and C(16 : 0). The DNA G+C content of strain XIL14T was 50.5 mol%. Growth was observed with many carbohydrates, including xylan, as the only carbon source and gas production was not observed from glucose. Catalase was positive and oxidase was negative. The airborne isolate produced a variety of hydrolytic enzymes, including xylanases, amylases, gelatinase and beta-galactosidase. DNA-DNA hybridization levels between strain XIL14T and P. illinoisensis DSM 11733T and P. pabuli DSM 3036T were 43.3 and 36.3 %, respectively. According to the data obtained, strain XIL14T is considered to represent a novel species for which the name Paenibacillus xylanilyticus sp. nov. is proposed (=LMG 21957T=CECT 5839T). PMID:15653909

  3. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.

    PubMed

    Braakman, Rogier; Smith, Eric

    2014-01-01

    Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA) cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere. PMID:24516572

  4. Jeongeupia chitinilytica sp. nov., a chitinolytic bacterium isolated from soil.

    PubMed

    Chen, Wen-Ming; Chang, Rey-Chang; Cheng, Chih-Yu; Shiau, Yu-Wen; Sheu, Shih-Yi

    2013-03-01

    A novel bacterium, designated strain Jchi(T), was isolated from soil in Taiwan and characterized using a polyphasic approach. Cells of strain Jchi(T) were aerobic, Gram-stain-negative, motile and rod-shaped. They contained poly-β-hydroxybutyrate granules and formed dark-yellow colonies. Growth occurred at 20-37 °C (optimum between 25 and 30 °C), at pH 6.0-8.0 (optimum between pH 7.0 and pH 8.0) and with 0-2 % NaCl (optimum between 0 and 1 %). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain Jchi(T) belonged to the genus Jeongeupia and that its closest neighbour was Jeongeupia naejangsanensis BIO-TAS4-2(T) (98.0 % sequence similarity). The major fatty acids (>10 %) of strain Jchi(T) were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C18 : 1ω7c. The major cellular hydroxy fatty acid was C12 : 0 3-OH. The isoprenoid quinone was Q-8 and the genomic DNA G+C content was 66.1 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylserine and two unidentified phospholipids. The DNA-DNA relatedness value between strain Jchi(T) and J. naejangsanensis BIO-TAS4-2(T) was about 41.0 %. On the basis of the genotypic and phenotypic data, strain Jchi(T) represents a novel species in the genus Jeongeupia, for which the name Jeongeupia chitinilytica sp. nov. is proposed. The type strain is Jchi(T) ( = BCRC 80367(T)  = KCTC 23701(T)). PMID:22659500

  5. Characterization of a rhodanese from the cyanogenic bacterium Pseudomonas aeruginosa.

    PubMed

    Cipollone, Rita; Bigotti, Maria Giulia; Frangipani, Emanuela; Ascenzi, Paolo; Visca, Paolo

    2004-12-01

    Pseudomonas aeruginosa, the rRNA group I type species of genus Pseudomonas, is a Gram-negative, aerobic bacterium responsible for serious infection in humans. P. aeruginosa pathogenicity has been associated with the production of several virulence factors, including cyanide. Here, the biochemical characterization of recombinant P. aeruginosa rhodanese (Pa RhdA), catalyzing the sulfur transfer from thiosulfate to a thiophilic acceptor, e.g., cyanide, is reported. Sequence homology analysis of Pa RhdA predicts the sulfur-transfer reaction to occur through persulfuration of the conserved catalytic Cys230 residue. Accordingly, the titration of active Pa RhdA with cyanide indicates the presence of one extra sulfur bound to the Cys230 Sgamma atom per active enzyme molecule. Values of K(m) for thiosulfate binding to Pa RhdA are 1.0 and 7.4mM at pH 7.3 and 8.6, respectively, and 25 degrees C. However, the value of K(m) for cyanide binding to Pa RhdA (=14 mM, at 25 degrees C) and the value of V(max) (=750 micromol min(-1)mg(-1), at 25 degrees C) for the Pa RhdA-catalyzed sulfur-transfer reaction are essentially pH- and substrate-independent. Therefore, the thiosulfate-dependent Pa RhdA persulfuration is favored at pH 7.3 (i.e., the cytosolic pH of the bacterial cell) rather than pH 8.6 (i.e., the standard pH for rhodanese activity assay). Within this pH range, conformational change(s) occur at the Pa RhdA active site during the catalytic cycle. As a whole, rhodanese may participate in multiple detoxification mechanisms protecting P. aeruginosa from endogenous and environmental cyanide. PMID:15522204

  6. Carbonate biomineralization induced by soil bacterium Bacillus megaterium

    NASA Astrophysics Data System (ADS)

    Lian, Bin; Hu, Qiaona; Chen, Jun; Ji, Junfeng; Teng, H. Henry

    2006-11-01

    Biogenic carbonates spawned from microbial activities are common occurrences in soils. Here, we investigate the carbonate biomineralization mediated by the bacterium Bacillus megaterium, a dominant strain separated from a loess profile in China. Upon completing bacterial cultivation, the ensuring products are centrifuged, and the resultant supernatant and the concentrated bacterial sludge as well as the un-separated culture are added separately into a Ca-CO 3 containing solution for crystallization experiments. Results of XRD and SEM analysis indicate that calcite is the dominant mineral phase formed when the bacteria are present. When the supernatant alone is used, however, a significant portion of vaterite is also precipitated. Experimental results further reveal that the bacteria have a strong tendency to colonize the center area of the calcite {1 0 1¯ 4} faces. Observed crystal morphology suggests that the bacterial colony may promote the growth normal to each individual {1 0 1¯ 4} face of calcite when the cell concentration is high, but may retard it or even cause dissolution of the immediate substrate surfaces when the concentration is low. SEM images taken at earlier stages of the crystallization experiments demonstrate the nucleation of calcite on the bacterial cell walls but do not show obvious morphological changes on the nanometer- to submicron-sized nuclei. δ 13C measurements unveil that the crystals grown in the presence of bacteria are further enriched in the heavy carbon isotope, implying that the bacterial metabolism may not be the carbon sources for the mineralization. Based upon these findings, we propose a mechanism for the B. megaterium mediated calcite mineralization and conclude that the whole process involves epi- and inter-cellular growth in the local microenvironments whose conditions may be controlled by cell sequestration and proton pumping during bacterial respiration.

  7. Bacterium-Mimicking Nanoparticle Surface Functionalization with Targeting Motifs

    PubMed Central

    Lai, Mei-Hsiu; Clay, Nicholas E.; Kim, Dong Hyun; Kong, Hyunjoon

    2015-01-01

    In recent years, surface modification of nanocarriers with targeting motifs has been explored to modulate delivery of various diagnostic, sensing and therapeutic molecular cargos to desired sites of interest in in vitro bioengineering platforms and in vivo pathologic tissue. However, most surface functionalization approaches are often plagued by complex chemical modifications and effortful purifications. To resolve such challenges, this study demonstrates a unique method to immobilize antibodies that can act as targeting motifs on the surfaces of nanocarriers, inspired by a process that bacteria use for immobilization of the host’s antibodies. We hypothesized that alkylated Staphylococcus aureus protein A (SpA) would self-assemble with micelles and subsequently induce stable coupling of antibodies to the micelles. We examined this hypothesis by using poly(2-hydroxyethyl-co-octadecyl aspartamide) (PHEA-g-C18) as a model polymer to form micelles. The self-assembly between micelles and alkylated SpA became more thermodynamically favorable by increasing the degree of substitution of octadecyl chains to PHEA-g-C18, due to a positive entropy change. Lastly, the simple mixing of SpA-PA-coupled micelles with antibodies resulted in the micelles coated by antibodies, as confirmed with a fluorescence resonance energy transfer (FRET) assay. The micelles coated by antibodies to VCAM-1 or integrin αv displayed higher binding affinity to a substrate coated by VCAM-1 and integrin αvβ3, respectively, than other controls, as evaluated with surface plasmon resonance (SPR) spectroscopy and a circulation-simulating flow chamber. We envisage this bacterium-inspired protein immobilization approach will be useful to improving the quality of targeted delivery of nanoparticles, and can be extended to modify the surface of a wide array of nanocarriers. PMID:25804130

  8. Interaction of Cadmium With the Aerobic Bacterium Pseudomonas Mendocina

    NASA Astrophysics Data System (ADS)

    Schramm, P. J.; Haack, E. A.; Maurice, P. A.

    2006-05-01

    The fate of toxic metals in the environment can be heavily influenced by interaction with bacteria in the vadose zone. This research focuses on the interactions of cadmium with the strict aerobe Pseudomonas mendocina. P. mendocina is a gram-negative bacterium that has shown potential in the bioremediation of recalcitrant organic compounds. Cadmium is a common environmental contaminant of wide-spread ecological consequence. In batch experiments P. mendocina shows typical bacterial growth curves, with an initial lag phase followed by an exponential phase and a stationary to death phase; concomitant with growth was an increase in pH from initial values of 7 to final values at 96 hours of 8.8. Cd both delays the onset of the exponential phase and decreases the maximum population size, as quantified by optical density and microscopic cell counts (DAPI). The total amount of Cd removed from solution increases over time, as does the amount of Cd removed from solution normalized per bacterial cell. Images obtained with transmission electron microscopy (TEM) showed the production of a cadmium, phosphorus, and iron containing precipitate that was similar in form and composition to precipitates formed abiotically at elevated pH. However, by late stationary phase, the precipitate had been re-dissolved, perhaps by biotic processes in order to obtain Fe. Stressed conditions are suggested by TEM images showing the formation of pili, or nanowires, when 20ppm Cd was present and a marked decrease in exopolysaccharide and biofilm material in comparison to control cells (no cadmium added).

  9. Regulation of caffeate respiration in the acetogenic bacterium Acetobacterium woodii.

    PubMed

    Dilling, Sabrina; Imkamp, Frank; Schmidt, Silke; Müller, Volker

    2007-06-01

    The anaerobic acetogenic bacterium Acetobacterium woodii can conserve energy by oxidation of various substrates coupled to either carbonate or caffeate respiration. We used a cell suspension system to study the regulation and kinetics of induction of caffeate respiration. After addition of caffeate to suspensions of fructose-grown cells, there was a lag phase of about 90 min before caffeate reduction commenced. However, in the presence of tetracycline caffeate was not reduced, indicating that de novo protein synthesis is required for the ability to respire caffeate. Induction also took place in the presence of CO(2), and once a culture was induced, caffeate and CO(2) were used simultaneously as electron acceptors. Induction of caffeate reduction was also observed with H(2) plus CO(2) as the substrate, but the lag phase was much longer. Again, caffeate and CO(2) were used simultaneously as electron acceptors. In contrast, during oxidation of methyl groups derived from methanol or betaine, acetogenesis was the preferred energy-conserving pathway, and caffeate reduction started only after acetogenesis was completed. The differential flow of reductants was also observed with suspensions of resting cells in which caffeate reduction was induced prior to harvest of the cells. These cell suspensions utilized caffeate and CO(2) simultaneously with fructose or hydrogen as electron donors, but CO(2) was preferred over caffeate during methyl group oxidation. Caffeate-induced resting cells could reduce caffeate and also p-coumarate or ferulate with hydrogen as the electron donor. p-Coumarate or ferulate also served as an inducer for caffeate reduction. Interestingly, caffeate-induced cells reduced ferulate in the absence of an external reductant, indicating that caffeate also induces the enzymes required for oxidation of the methyl group of ferulate. PMID:17416687

  10. Methylated sulfur compounds in microbial mats: In situ concentrations and metabolism by a colorless sulfur bacterium

    SciTech Connect

    Visscher, P.T. Netherlands Inst. for Sea Research, Den Burg ); Quist, P.; vanGemerden, H. )

    1991-06-01

    The concentrations of the volatile organic sulfur compounds methanethiol, dimethyl disulfide, and dimethyl sulfide (DMS) and the viable population capable of DMS utilization in laminated microbial ecosystems were evaluated. Significant levels of DMS and dimethyl disulfide (maximum concentrations of 220 and 24 nmol cm{sup 3} of sediment{sup {minus}1}, respectively) could be detected only at the top 20 mm of the microbial mat, whereas methanethiol was found only at depth horizons from 20 to 50 mm (maximum concentrations of 42 nmol cm{sup 3} of sediment{sup {minus}1}). DMS concentrations in the surface layer doubled after cold hydrolysis of its precursor, dimethylsulfoniopropioinate. Most-probable-number counts revealed 2.2 {times} 10{sup 5} cells cm{sup 3} of sediment{sup {minus}1}, in the 0- to 5-mm depth horizon, capable of growth on DMS as the sole source of energy. An obligately chemolithoautotrophic bacillus designated strain T5 was isolated from the top layer of the marine sediment. Continuous culture studies in which DMS was the growth-limiting substrate revealed a maximum specific growth rate of 0.10 h{sup {minus}1} and a saturation constant of 90 {mu}mol liter{sup {minus}1} for aerobic growth on this substrate.

  11. Competitive PCR for Quantitation of a Cytophaga-Flexibacter-Bacteroides Phylum Bacterium Associated with the Tuber borchii Vittad. Mycelium

    PubMed Central

    Barbieri, Elena; Riccioni, Giulia; Pisano, Anna; Sisti, Davide; Zeppa, Sabrina; Agostini, Deborah; Stocchi, Vilberto

    2002-01-01

    An uncultured bacterium associated with the ectomycorrhizal fungus Tuber borchii Vittad. was identified as a novel member of the Cytophaga-Flexibacter-Bacteroides group. Utilizing a quantitative PCR targeting the 16S rRNA gene, we relatively quantified this bacterium in the host. The estimated number of bacteria was found to be approximately 106 cells per 30-day-old T. borchii mycelium culture. This represents the first molecular attempt to enumerate an uncultured bacterium associated with a mycorrhizal fungus. PMID:12450871

  12. Regulation of Polyhydroxybutyrate Synthesis in the Soil Bacterium Bradyrhizobium diazoefficiens.

    PubMed

    Quelas, J I; Mesa, S; Mongiardini, E J; Jendrossek, D; Lodeiro, A R

    2016-07-15

    Polyhydroxybutyrate (PHB) is a carbon and energy reserve polymer in various prokaryotic species. We determined that, when grown with mannitol as the sole carbon source, Bradyrhizobium diazoefficiens produces a homopolymer composed only of 3-hydroxybutyrate units (PHB). Conditions of oxygen limitation (such as microoxia, oxic stationary phase, and bacteroids inside legume nodules) were permissive for the synthesis of PHB, which was observed as cytoplasmic granules. To study the regulation of PHB synthesis, we generated mutations in the regulator gene phaR and the phasin genes phaP1 and phaP4 Under permissive conditions, mutation of phaR impaired PHB accumulation, and a phaP1 phaP4 double mutant produced more PHB than the wild type, which was accumulated in a single, large cytoplasmic granule. Moreover, PhaR negatively regulated the expression of phaP1 and phaP4 as well as the expression of phaA1 and phaA2 (encoding a 3-ketoacyl coenzyme A [CoA] thiolases), phaC1 and phaC2 (encoding PHB synthases), and fixK2 (encoding a cyclic AMP receptor protein [CRP]/fumarate and nitrate reductase regulator [FNR]-type transcription factor of genes for microoxic lifestyle). In addition to the depressed PHB cycling, phaR mutants accumulated more extracellular polysaccharides and promoted higher plant shoot dry weight and competitiveness for nodulation than the wild type, in contrast to the phaC1 mutant strain, which is defective in PHB synthesis. These results suggest that phaR not only regulates PHB granule formation by controlling the expression of phasins and biosynthetic enzymes but also acts as a global regulator of excess carbon allocation and symbiosis by controlling fixK2 IMPORTANCE: In this work, we investigated the regulation of polyhydroxybutyrate synthesis in the soybean-nodulating bacterium Bradyrhizobium diazoefficiens and its influence in bacterial free-living and symbiotic lifestyles. We uncovered a new interplay between the synthesis of this carbon reserve polymer

  13. Photoactive yellow protein from the halophilic bacterium Salinibacter ruber.

    PubMed

    Memmi, Samy; Kyndt, John; Meyer, Terry; Devreese, Bart; Cusanovich, Michael; Van Beeumen, Jozef

    2008-02-19

    A gene for photoactive yellow protein (PYP) was identified from the genome sequence of the extremely halophilic aerobic bacterium Salinibacter ruber (Sr). The sequence is distantly related to the prototypic PYP from Halorhodospira halophila (Hh) (37% identity) and contains most of the amino acid residues identified as necessary for function. However, the Sr pyp gene is not flanked by its two biosynthetic genes as in other species. To determine as to whether the Sr pyp gene encodes a functional protein, we cloned and expressed it in Escherichia coli, along with the genes for chromophore biosynthesis from Rhodobacter capsulatus. The Sr PYP has a 31-residue N-terminal extension as compared to other PYPs that appears to be important for dimerization; however, truncation of these extra residues did not change the spectral and photokinetic properties. Sr PYP has an absorption maximum at 431 nm, which is at shorter wavelengths than the prototypical Hh PYP (at 446 nm). It is also photoactive, being reversibly bleached by either blue or white light. The kinetics of dark recovery is slower than any of the PYPs reported to date (4.27 x 10(-4) s(-1) at pH 7.5). Sr PYP appears to have a normal photocycle with the I1 and I2 intermediates. The presence of the I2' intermediate is also inferred on the basis of the effects of temperature and alchohol on recovery. Sr PYP has an intermediate spectral form in equilibrium with the 431 nm form, similar to R. capsulatus PYP and the Y42F mutant of Hh PYP. Increasing ionic strength stabilizes the 431 nm form at the expense of the intermediate spectral form, and the kinetics of recovery is accelerated 6.4-fold between 0 and 3.5 M salt. This is observed with ions from both the chaotropic and the kosmotropic series. Ionic strength also stabilizes PYP against thermal denaturation, as the melting temperature is increased from 74 degrees C in buffer alone to 92 degrees C in 2 M KCl. Sr accumulates KCl in the cytoplasm, like Halobacterium, to

  14. Further studies on a human intestinal bacterium Ruminococcus sp. END-1 for transformation of plant lignans to mammalian lignans.

    PubMed

    Jin, Jong-Sik; Hattori, Masao

    2009-08-26

    A human intestinal bacterium Ruminococcus (R.) sp. END-1 capable of oxidizing (-)-enterodiol to (-)-enterolactone, enantioselectively, was further investigated from the perspective of transformation of plant lignans to mammalian lignans; A cell-free extract of the bacterium transformed (-)-enterodiol to (-)-enterolactone through an intermediate, enterolactol. The bacterium showed not only oxidation but also demethylation and deglucosylation activities for plant lignans. Arctiin and secoisolariciresinol diglucoside were converted to (-)-dihydroxyenterolactone and (+)-dihydroxyenterodiol, respectively. Moreover, by coincubation with Eggerthella sp. SDG-2, the bacterium transformed arctiin and secoisolariciresinol diglucoside to (-)-enterolactone and (+)-enterodiol, respectively. PMID:19630415

  15. Studying the Transfer of Optical Orbital Angular Momentum to a Helical Bacterium

    NASA Astrophysics Data System (ADS)

    Davis, Dana; Horton, Timothy; Reichman, Steven; Link, Justin; Schmitzer, Heidrun; Robbins, Jennifer; Engle, Dorothy

    2014-03-01

    The purpose of this research is to study how the angular momentum of an optical vortex created by a 1064 nm laser is transferred to a helical shaped bacterium. When under the influence of a laser in optical tweezers, the helical shape of the bacteria causes it to spin in the trap. A spatial light modulator reshapes the beam and is twisted either into a left handed or right handed helix. This results in an optical vortex with a diameter which can be adjusted from roughly half a micron to three microns. The rotational speed of a helical bacterium in this type of optical trap should depend on the handedness of the vortex and the handedness of the bacterium being tweezed. When both the tweezing beam and the bacterium have the same handedness, a slight reduction in rotational speed should be observed; when the tweezing beam has the opposite handedness of the bacterium, a slight increase in rotational speed should be expected. We present our first experiments with magnetospirillum magnetotacticum and rhodospirillum rubrum.

  16. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    PubMed Central

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  17. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    SciTech Connect

    Xie, Gary; Dalin, Eileen; Tice, Hope; Chertkov, Olga; Land, Miriam L

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  18. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    SciTech Connect

    Rhee, Mun Su; Moritz, Brelan E.; Xie, Gary; Glavina Del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne A.; Chertkov, Olga; Brettin, Thomas S; Han, Cliff; Detter, J. Chris; Pitluck, Sam; Land, Miriam L; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, Keelnathan T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  19. Investigations of Iron Minerals Formed by Dissimilatory Alkaliphilic Bacterium with {sup 57}Fe Moessbauer Spectroscopy

    SciTech Connect

    Chistyakova, N. I.; Rusakov, V. S.; Shapkin, A. A.; Zhilina, T. N.; Zavarzina, D. G.; Kohout, J.

    2010-07-13

    Anaerobic alkaliphilic bacterium of Geoalkalibacter ferrihydriticus type (strain Z-0531), isolated from a bottom sediment sample from the weakly mineralized soda Lake Khadyn, have been analyzed. The strain uses the amorphous Fe(III)-hydroxide (AFH) as an electron acceptor and acetate CH{sub 3}COO{sup -} as an electron donor. Moessbauer investigations of solid phase samples obtained during the process of the bacterium growth were carried out at room temperature, 77.8 K, 4.2 K without and with the presence of an external magnetic field (6 T) applied perpendicular to the {gamma}-bebam.

  20. Ammonificins C and D, Hydroxyethylamine Chromene Derivatives from a Cultured Marine Hydrothermal Vent Bacterium, Thermovibrio ammonificans

    PubMed Central

    Andrianasolo, Eric H.; Haramaty, Liti; Rosario-Passapera, Richard; Vetriani, Costantino; Falkowski, Paul; White, Eileen; Lutz, Richard

    2012-01-01

    Chemical and biological investigation of the cultured marine hydrothermal vent bacterium, Thermovibrio ammonifican led to the isolation of two hydroxyethylamine chromene derivatives, ammonificins C and D. Their structures were elucidated using combination of NMR and mass spectrometry. Absolute stereochemistry was ascertained by comparison of experimental and calculated CD spectra. Biological evaluation and assessment were determined using the patented ApopScreen cell-based screen for apoptosis-induction. Ammonificins C and D induce apoptosis in micromolar concentrations. To our knowledge, this finding is the first report of chemical compounds that induce apoptosis from the cultured deep-sea marine organism, hydrothermal vent bacterium, Thermovibrio ammonificans. PMID:23170085

  1. From Genome to Function: Systematic Analysis of the Soil Bacterium Bacillus Subtilis

    PubMed Central

    Crawshaw, Samuel G.; Wipat, Anil

    2001-01-01

    Bacillus subtilis is a sporulating Gram-positive bacterium that lives primarily in the soil and associated water sources. Whilst this bacterium has been studied extensively in the laboratory, relatively few studies have been undertaken to study its activity in natural environments. The publication of the B. subtilis genome sequence and subsequent systematic functional analysis programme have provided an opportunity to develop tools for analysing the role and expression of Bacillus genes in situ. In this paper we discuss analytical approaches that are being developed to relate genes to function in environments such as the rhizosphere. PMID:18628943

  2. Description of a bacterium associated with redmouth disease of rainbow trout (Salmo gairdneri)

    USGS Publications Warehouse

    1966-01-01

    A description was given of a gram-negative, peritrichously flagellated, fermentative bacterium that was isolated on numerous occasions from kidney tissues of rainbow trout (Salmo gairdneri) afflicted with redmouth disease. Although the bacteria apparently were members of the family Enterobacteriaceae, it was impossible to determine their taxonomic position within the family with certainty. Hence it was recommended that their taxonomic position remain sub judice for the present. As a temporary designation RM bacterium was used. Redmouth disease was transmitted from infected to normal fish through the medium of water.

  3. ICE Afe 1, an actively excising genetic element from the biomining bacterium Acidithiobacillus ferrooxidans.

    PubMed

    Bustamante, Paula; Covarrubias, Paulo C; Levicán, Gloria; Katz, Assaf; Tapia, Pablo; Holmes, David; Quatrini, Raquel; Orellana, Omar

    2012-01-01

    Integrative conjugative elements (ICEs) are self-transferred mobile genetic elements that contribute to horizontal gene transfer. An ICE (ICEAfe1) was identified in the genome of Acidithiobacillus ferrooxidans ATCC 23270. Excision of the element and expression of relevant genes under normal and DNA-damaging growth conditions was analyzed. Bioinformatic tools and DNA amplification methods were used to identify and to assess the excision and expression of genes related to the mobility of the element. Both basal and mitomycin C-inducible excision as well as expression and induction of the genes for integration/excision are demonstrated, suggesting that ICEAfe1 is an actively excising SOS-regulated mobile genetic element. The presence of a complete set of genes encoding self-transfer functions that are induced in response to DNA damage caused by mitomycin C additionally suggests that this element is capable of conjugative transfer to suitable recipient strains. Transfer of ICEAfe1 may provide selective advantages to other acidophiles in this ecological niche through dissemination of gene clusters expressing transfer RNAs, CRISPRs, and exopolysaccharide biosynthesis enzymes, probably by modification of translation efficiency, resistance to bacteriophage infection and biofilm formation, respectively. These data open novel avenues of research on conjugative transformation of biotechnologically relevant microorganisms recalcitrant to genetic manipulation. PMID:23486178

  4. Cadherin Domains in the Polysaccharide-Degrading Marine Bacterium Saccharophagus degradans 2-40 Are Carbohydrate-Binding Modules▿

    PubMed Central

    Fraiberg, Milana; Borovok, Ilya; Bayer, Edward A.; Weiner, Ronald M.; Lamed, Raphael

    2011-01-01

    The complex polysaccharide-degrading marine bacterium Saccharophagus degradans strain 2-40 produces putative proteins that contain numerous cadherin and cadherin-like domains involved in intercellular contact interactions. The current study reveals that both domain types exhibit reversible calcium-dependent binding to different complex polysaccharides which serve as growth substrates for the bacterium. PMID:21036994

  5. Draft Genome Sequence of an Anaerobic and Extremophilic Bacterium, Caldanaerobacter yonseiensis, Isolated from a Geothermal Hot Stream

    PubMed Central

    Lee, Sang-Jae; Lee, Yong-Jik; Park, Gun-Seok; Kim, Byoung-Chan; Lee, Sang Jun; Shin, Jae-Ho

    2013-01-01

    Caldanaerobacter yonseiensis is a strictly anaerobic, thermophilic, spore-forming bacterium, which was isolated from a geothermal hot stream in Indonesia. This bacterium utilizes xylose and produces a variety of proteases. Here, we report the draft genome sequence of C. yonseiensis, which reveals insights into the pentose phosphate pathway and protein degradation metabolism in thermophilic microorganisms. PMID:24201201

  6. Genome Sequence of Lactobacillus delbrueckii subsp. lactis CNRZ327, a Dairy Bacterium with Anti-Inflammatory Properties

    PubMed Central

    El Kafsi, Hela; Binesse, Johan; Loux, Valentin; Buratti, Julien; Boudebbouze, Samira; Dervyn, Rozenn; Hammani, Amal; Maguin, Emmanuelle

    2014-01-01

    Lactobacillus delbrueckii subsp. lactis CNRZ327 is a dairy bacterium with anti-inflammatory properties both in vitro and in vivo. Here, we report the genome sequence of this bacterium, which appears to contain no less than 215 insertion sequence (IS) elements, an exceptionally high number regarding the small genome size of the strain. PMID:25035318

  7. Draft Genome Sequence of Arthrobacter sp. Strain SPG23, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium

    PubMed Central

    Gkorezis, Panagiotis; Bottos, Eric M.; Van Hamme, Jonathan D.; Thijs, Sofie; Rineau, Francois; Balseiro-Romero, Maria; Weyens, Nele

    2015-01-01

    We report here the 4.7-Mb draft genome of Arthrobacter sp. SPG23, a hydrocarbonoclastic Gram-positive bacterium belonging to the Actinobacteria, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain SPG23 is a potent plant growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. PMID:26701084

  8. Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators.

    PubMed

    Hödar, Christian; Moreno, Pablo; di Genova, Alex; Latorre, Mauricio; Reyes-Jara, Angélica; Maass, Alejandro; González, Mauricio; Cambiazo, Verónica

    2012-02-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophilic bacterium that obtains its energy from the oxidation of ferrous iron, elemental sulfur, or reduced sulfur minerals. This capability makes it of great industrial importance due to its applications in biomining. During the industrial processes, A. ferrooxidans survives to stressing circumstances in its environment, such as an extremely acidic pH and high concentration of transition metals. In order to gain insight into the organization of A. ferrooxidans regulatory networks and to provide a framework for further studies in bacterial growth under extreme conditions, we applied a genome-wide annotation procedure to identify 87 A. ferrooxidans transcription factors. We classified them into 19 families that were conserved among diverse prokaryotic phyla. Our annotation procedure revealed that A. ferrooxidans genome contains several members of the ArsR and MerR families, which are involved in metal resistance and detoxification. Analysis of their sequences revealed known and potentially new mechanism to coordinate gene-expression in response to metal availability. A. ferrooxidans inhabit some of the most metal-rich environments known, thus transcription factors identified here seem to be good candidates for functional studies in order to determine their physiological roles and to place them into A. ferrooxidans transcriptional regulatory networks. PMID:21830017

  9. Response to comments on "A bacterium that can grow using arsenic instead of phosphorus"

    USGS Publications Warehouse

    Wolfe-Simon, Felisa; Blum, Jodi Switzer; Kulp, Thomas R.; Gordon, Gwyneth W.; Hoeft, Shelley E.; Pett-Ridge, Jennifer; Stolz, John F.; Webb, Samuel M.; Weber, Peter K.; Davies, Paul C.W.; Anbar, Ariel D.; Oremland, Ronald S.

    2011-01-01

    Concerns have been raised about our recent study suggesting that arsenic (As) substitutes for phosphorus in major biomolecules of a bacterium that tolerates extreme As concentrations. We welcome the opportunity to better explain our methods and results and to consider alternative interpretations. We maintain that our interpretation of As substitution, based on multiple congruent lines of evidence, is viable.

  10. Draft Genome Sequence of Sphingobium yanoikuyae TJ, a Halotolerant Di-n-Butyl-Phthalate-Degrading Bacterium

    PubMed Central

    Jin, Decai; Zhu, Ying; Wang, Xinxin; Kong, Xiao; Liu, Huijun; Wang, Yafeng

    2016-01-01

    Sphingobium yanoikuyae TJ is a halotolerant di-n-butyl-phthalate-degrading bacterium, isolated from the Haihe estuary in Bohai Bay, Tianjin, China. Here, we report the 5.1-Mb draft genome sequence of this strain, which will provide insights into the diversity of Sphingobium spp. and the mechanism of phthalate ester degradation in the estuary. PMID:27313307

  11. Draft Genome Sequence and Annotation of the Entomopathogenic Bacterium Xenorhabdus nematophila Strain F1

    PubMed Central

    Lanois, Anne; Ogier, Jean-Claude; Gouzy, Jérome; Laroui, Christine; Rouy, Zoé; Givaudan, Alain

    2013-01-01

    We report the 4.3-Mb genome sequence of Xenorhabdus nematophila strain F1, a Gram-negative bacterium that is a symbiont of the entomopathogenic nematode Steinernema carpocapsae and pathogenic by direct injection for a wide variety of insects. PMID:23788541

  12. Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes.

    PubMed

    Ghazal, Shimaa; Oshone, Rediet; Simpson, Stephen; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Khalil, Kamal M; Tisa, Louis S

    2016-01-01

    Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes. PMID:26988056

  13. Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes

    PubMed Central

    Ghazal, Shimaa; Oshone, Rediet; Simpson, Stephen; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W. Kelley; Khalil, Kamal M.

    2016-01-01

    Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes. PMID:26988056

  14. Genome Sequence of Marichromatium gracile YL-28, a Purple Sulfur Bacterium with Bioremediation Potential

    PubMed Central

    Zhang, Xiaobo; Zhao, Chungui; Hong, Xuan

    2016-01-01

    The draft genome sequence of Marichromatium gracile YL-28 contains 3,840,251 bp, with a G+C content of 68.84%. The annotated genome sequence provides the genetic basis for revealing its role as a purple sulfur bacterium in the harvesting of energy and the development of bioremediation applications. PMID:27151789

  15. Aerobic mineralization of vinyl chlorides by a bacterium of the order Actinomycetales

    SciTech Connect

    Phelps, T.J.; Malachowsky, K.; Schram, R.M. ); White, D.C. Oak Ridge National Lab., TN )

    1991-04-01

    A gram-positive branched bacterium isolated from a trichloroethylene-degrading consortium mineralized vinyl chloride in growing cultures and cell suspensions. Greater than 67% of the (1,2-{sup 14}C)vinyl chloride was mineralized to carbon dioxide, with approximately 10% of the radioactivity appearing in {sup 14}C-aqueous-phase products.

  16. Complete Genome Sequence of Enterobacter cloacae B2-DHA, a Chromium-Resistant Bacterium

    PubMed Central

    Rahman, Aminur; Nahar, Noor; Olsson, Björn

    2016-01-01

    Previously, we reported a chromium-resistant bacterium, Enterobacter cloacae B2-DHA, isolated from the landfills of tannery industries in Bangladesh. Here, we investigated its genetic composition using massively parallel sequencing and comparative analysis with other known Enterobacter genomes. Assembly of the sequencing reads revealed a genome of ~4.21 Mb in size. PMID:27257201

  17. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    PubMed

    Yang, Yu; Yang, Jun; Jiang, Lei

    2016-08-19

    Yoshida et al (Report, 11 March 2016, p. 1196) reported that the bacterium Ideonella sakaiensis 201-F6 can degrade and assimilate poly(ethylene terephthalate) (PET). However, the authors exaggerated degradation efficiency using a low-crystallinity PET and presented no straightforward experiments to verify depolymerization and assimilation of PET. Thus, the authors' conclusions are rather misleading. PMID:27540159

  18. Draft Genome Sequence of Alcaligenes faecalis Strain IITR89, an Indole-Oxidizing Bacterium.

    PubMed

    Regar, Raj Kumar; Gaur, Vivek Kumar; Mishra, Gayatri; Jadhao, Sudhir; Kamthan, Mohan; Manickam, Natesan

    2016-01-01

    We report the draft genome sequence of Alcaligenes faecalis strain IITR89, a bacterium able to form indigo by utilizing indole as the sole carbon source. The Alcaligenes species is increasingly reported for biodegradation of diverse toxicants and thus complete sequencing may provide insight into biodegradation capabilities and other phenotypes. PMID:26941148

  19. Draft Genome Sequence of Alcaligenes faecalis Strain IITR89, an Indole-Oxidizing Bacterium

    PubMed Central

    Regar, Raj Kumar; Gaur, Vivek Kumar; Mishra, Gayatri; Jadhao, Sudhir; Kamthan, Mohan

    2016-01-01

    We report the draft genome sequence of Alcaligenes faecalis strain IITR89, a bacterium able to form indigo by utilizing indole as the sole carbon source. The Alcaligenes species is increasingly reported for biodegradation of diverse toxicants and thus complete sequencing may provide insight into biodegradation capabilities and other phenotypes. PMID:26941148

  20. Complete Genome Sequence of Lysinibacillus sphaericus B1-CDA, a Bacterium That Accumulates Arsenic

    PubMed Central

    Rahman, Aminur; Nahar, Noor; Jass, Jana; Olsson, Björn

    2016-01-01

    Here, we report the genomic sequence and genetic composition of an arsenic-resistant bacterium, Lysinibacillus sphaericus B1-CDA. Assembly of the sequencing reads revealed that the genome size is ~4.5 Mb, encompassing ~80% of the chromosomal DNA. PMID:26798084

  1. Draft Genome Sequence of an Anaerobic Ammonium-Oxidizing Bacterium, “Candidatus Brocadia sinica”

    PubMed Central

    Oshiki, Mamoru; Shinyako-Hata, Kaori; Satoh, Hisashi

    2015-01-01

    A draft genome sequence of an anaerobic ammonium-oxidizing (anammox) bacterium, “Candidatus Brocadia sinica,” was determined by pyrosequencing and by screening a fosmid library. A 4.07-Mb genome sequence comprising 3 contigs was assembled, in which 3,912 gene-coding regions, 47 tRNAs, and a single rrn operon were annotated. PMID:25883286

  2. Draft Genome Sequence of the Obligately Alkaliphilic Sulfate-Reducing Bacterium Desulfonatronum thiodismutans Strain MLF1

    PubMed Central

    Trubitsyn, Denis; Geurink, Corey; Pikuta, Elena; Lefèvre, Christopher T.; McShan, W. Michael; Gillaspy, Allison F.

    2014-01-01

    Desulfonatronum thiodismutans strain MLF1, an alkaliphilic bacterium capable of sulfate reduction, was isolated from Mono Lake, California. Here we report the 3.92-Mb draft genome sequence comprising 34 contigs and some results of its automated annotation. These data will improve our knowledge of mechanisms by which bacteria withstand extreme environments. PMID:25081260

  3. Draft Genome Sequence of a Thermophilic Desulfurization Bacterium, Geobacillus thermoglucosidasius Strain W-2

    PubMed Central

    Zhu, Lin; Li, Mingchang; Guo, Shuyi

    2016-01-01

    Geobacillus thermoglucosidasius strain W-2 is a thermophilic bacterium isolated from a deep-subsurface oil reservoir in northern China, which is capable of degrading organosulfur compounds. Here, we report the draft genome sequence of G. thermoglucosidasius strain W-2, which may help to elucidate the genetic basis of biodegradation of organosulfur pollutants under heated conditions. PMID:27491977

  4. Draft Genome Sequence of Pontibacter sp. nov. BAB1700, a Halotolerant, Industrially Important Bacterium

    PubMed Central

    Joshi, M. N.; Sharma, A. C.; Pandya, R. V.; Patel, R. P.; Saiyed, Z. M.; Saxena, A. K.

    2012-01-01

    Pontibacter sp. nov. BAB1700 is a halotolerant, Gram-negative, rod-shaped, pink-pigmented, menaquinone-7-producing bacterium isolated from sediments of a drilling well. The draft genome sequence of the strain, consisting of one chromosome of 4.5 Mb, revealed vital gene clusters involved in vitamin biosynthesis and resistance against various metals and antibiotics. PMID:23105068

  5. Draft Genome Sequence of the Halophilic Bacterium Halobacillus sp. Strain BAB-2008

    PubMed Central

    Joshi, M. N.; Pandit, A. S.; Sharma, A.; Pandya, R. V.; Saxena, A. K.

    2013-01-01

    The Halobacillus sp. strain BAB-2008 is a moderately halophilic, rod-shaped, Gram-positive, orange-pigmented, carotenoid-producing bacterium isolated from saline soil near Zazam-Solar Park Road, Gujarat, India. Here we present the 3.7-Mb genome sequence to provide insights into its functional genomics and potential applications for carotenoid and enzyme production. PMID:23469348

  6. Draft genome sequence of Pontibacter sp. nov. BAB1700, a halotolerant, industrially important bacterium.

    PubMed

    Joshi, M N; Sharma, A C; Pandya, R V; Patel, R P; Saiyed, Z M; Saxena, A K; Bagatharia, S B

    2012-11-01

    Pontibacter sp. nov. BAB1700 is a halotolerant, Gram-negative, rod-shaped, pink-pigmented, menaquinone-7-producing bacterium isolated from sediments of a drilling well. The draft genome sequence of the strain, consisting of one chromosome of 4.5 Mb, revealed vital gene clusters involved in vitamin biosynthesis and resistance against various metals and antibiotics. PMID:23105068

  7. Draft Genome Sequence of the Halophilic Bacterium Halobacillus sp. Strain BAB-2008.

    PubMed

    Joshi, M N; Pandit, A S; Sharma, A; Pandya, R V; Saxena, A K; Bagatharia, S B

    2013-01-01

    The Halobacillus sp. strain BAB-2008 is a moderately halophilic, rod-shaped, Gram-positive, orange-pigmented, carotenoid-producing bacterium isolated from saline soil near Zazam-Solar Park Road, Gujarat, India. Here we present the 3.7-Mb genome sequence to provide insights into its functional genomics and potential applications for carotenoid and enzyme production. PMID:23469348

  8. Complete genome sequence of the xylan-degrading subseafloor bacterium Microcella alkaliphila JAM-AC0309.

    PubMed

    Kurata, Atsushi; Hirose, Yuu; Misawa, Naomi; Wakazuki, Sachiko; Kishimoto, Noriaki; Kobayashi, Tohru

    2016-03-10

    Here we report the complete genome sequence of Microcella alkaliphila JAM-AC0309, which was newly isolated from the deep subseafloor core sediment from offshore of the Shimokita Peninsula of Japan. An array of genes related to utilization of xylan in this bacterium was identified by whole genome analysis. PMID:26808869

  9. Genome Sequence of Marichromatium gracile YL-28, a Purple Sulfur Bacterium with Bioremediation Potential.

    PubMed

    Zhang, Xiaobo; Zhao, Chungui; Hong, Xuan; Chen, Shicheng; Yang, Suping

    2016-01-01

    The draft genome sequence of Marichromatium gracile YL-28 contains 3,840,251 bp, with a G+C content of 68.84%. The annotated genome sequence provides the genetic basis for revealing its role as a purple sulfur bacterium in the harvesting of energy and the development of bioremediation applications. PMID:27151789

  10. Genome Sequence of the Spinosyns-Producing Bacterium Saccharopolyspora spinosa NRRL 18395 ▿

    PubMed Central

    Pan, Yuanlong; Yang, Xi; Li, Jing; Zhang, Ruifen; Hu, Yongfei; Zhou, Yuguang; Wang, Jun; Zhu, Baoli

    2011-01-01

    Saccharopolyspora spinosa is a Gram-positive bacterium that produces spinosad, a well-known biodegradable insecticide that is used for agricultural pest control and has an excellent environmental and mammalian toxicological profile. Here, we present the first draft genome sequence of the type strain Saccharopolyspora spinosa NRRL 18395, which consists of 22 scaffolds. PMID:21478350

  11. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium.

    PubMed

    Ho, Ying-Ning; Huang, Chieh-Chen

    2015-01-01

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia. PMID:26564046

  12. Draft Genome Sequence and Gene Annotation of the Uropathogenic Bacterium Proteus mirabilis Pr2921

    PubMed Central

    Giorello, F. M.; Romero, V.; Farias, J.; Scavone, P.; Umpiérrez, A.; Zunino, P.

    2016-01-01

    Here, we report the genome sequence of Proteus mirabilis Pr2921, a uropathogenic bacterium that can cause severe complicated urinary tract infections. After gene annotation, we identified two additional copies of ucaA, one of the most studied fimbrial protein genes, and other fimbriae related-proteins that are not present in P. mirabilis HI4320. PMID:27340058

  13. Complete Genome Sequence of the Cellulose-Degrading Bacterium Cellulosilyticum lentocellum

    SciTech Connect

    Miller, David A; Suen, Garret; Bruce, David; Copeland, A; Cheng, Jan-Fang; Detter, J. Chris; Goodwin, Lynne A.; Han, Cliff; Hauser, Loren John; Land, Miriam L; Lapidus, Alla L.; Lucas, Susan; Meincke, Linda; Pitluck, Sam; Tapia, Roxanne; Teshima, Hazuki; Woyke, Tanja; Fox, Brian G.; Angert, Esther R.; Currie, Cameron

    2011-01-01

    Cellulosilyticum lentocellum DSM 5427 is an anaerobic, endospore-forming member of the Firmicutes. We describe the complete genome sequence of this cellulose-degrading bacterium; originally isolated from estuarine sediment of a river that received both domestic and paper mill waste. Comparative genomics of cellulolytic clostridia will provide insight into factors that influence degradation rates.

  14. Effect of tannic acid on the transcriptome of the soil bacterium Pseudomonas protegens Pf-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tannins are plant-produced organic compounds that are found in soils, are able to sequester iron, and have antimicrobial properties. We studied the effect of tannic acid on the molecular physiology of the soil-inhabiting biocontrol bacterium Pseudomonas protegens Pf-5 (formerly Pseudomonas fluoresce...

  15. Draft Genome Sequence of a Bacillus Bacterium from the Atacama Desert Wetlands Metagenome.

    PubMed

    Vilo, Claudia; Galetovic, Alexandra; Araya, Jorge E; Gómez-Silva, Benito; Dong, Qunfeng

    2015-01-01

    We report here the draft genome sequence of a Bacillus bacterium isolated from the microflora of Nostoc colonies grown at the Andean wetlands in northern Chile. We consider this genome sequence to be a molecular tool for exploring microbial relationships and adaptation strategies to the prevailing extreme conditions at the Atacama Desert. PMID:26294639

  16. Genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens BBc6R8

    SciTech Connect

    Deveau, Aurelie; Grob, Harald; Morin, Emmanuelle; Karpinets, Tatiana V; Utturkar, Sagar M; Mehnaz, Samina; Kurz, Sven; Martin, Francis; Frey-Klett, Pascale; Labbe, Jessy L

    2014-01-01

    We report the draft genome sequence of the mycorrhiza helper bacterium Pseudomonas fluorescens strain BBc6R8 . Several traits which could be involved in the mycorrhiza helper ability of the bacterial strain such as multiple secretion systems, auxin metabolism and phosphate mobilization were evidenced in the genome.

  17. Draft Genome Sequence of “Candidatus Phytoplasma pruni” Strain CX, a Plant-Pathogenic Bacterium

    PubMed Central

    Shao, J.; Bottner-Parker, K. D.; Gundersen-Rindal, D. E.; Zhao, Y.; Davis, R. E.

    2015-01-01

    “Candidatus Phytoplasma pruni” strain CX, belonging to subgroup 16SrIII-A, is a plant-pathogenic bacterium causing economically important diseases in many fruit crops. Here, we report the draft genome sequence, which consists of 598,508 bases, with a G+C content of 27.21 mol%. PMID:26472824

  18. The construction of an engineered bacterium to remove cadmium from wastewater.

    PubMed

    Chang, S; Shu, H

    2014-01-01

    The removal of cadmium (Cd) from wastewater before it is released from factories is important for protecting human health. Although some researchers have developed engineered bacteria, the resistance of these engineered bacteria to Cd have not been improved. In this study, two key genes involved in glutathione synthesis (gshA and gshB), a serine acetyltransferase gene (cysE), a Thlaspi caerulescens phytochelatin synthase gene (TcPCS1), and a heavy metal ATPase gene (TcHMA3) were transformed into Escherichia coli BL21. The resistance of the engineered bacterium to Cd was significantly greater than that of the initial bacterium and the Cd accumulation in the engineered bacterium was much higher than in the initial bacterium. In addition, the Cd resistance of the bacteria harboring gshB, gshA, cysE, and TcPCS1 was higher than that of the bacteria harboring gshA, cysE, and TcPCS1. This finding demonstrated that gshB played an important role in glutathione synthesis and that the reaction catalyzed by glutathione synthase was the limiting step for producing phytochelatins. Furthermore, TcPCS1 had a greater specificity and a higher capacity for removing Cd than SpPCS1, and TcHMA3 not only played a role in T. caerulescens but also functioned in E. coli. PMID:25521138

  19. Five New Amicoumacins Isolated from a Marine-Derived Bacterium Bacillus subtilis

    PubMed Central

    Li, Yongxin; Xu, Ying; Liu, Lingli; Han, Zhuang; Lai, Pok Yui; Guo, Xiangrong; Zhang, Xixiang; Lin, Wenhan; Qian, Pei-Yuan

    2012-01-01

    Four novel amicoumacins, namely lipoamicoumacins A–D (1–4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. PMID:22412803

  20. Draft Genome Sequence of the Deinococcus-Thermus Bacterium Meiothermus ruber Strain A

    DOE PAGESBeta

    Thiel, Vera; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Schuster, Stephan C.; Ward, David M.; Bryant, Donald A.

    2015-03-26

    The draft genome sequence of the Deinococcus-Thermus group bacterium Meiothermus ruber strain A, isolated from a cyanobacterial enrichment culture obtained from Octopus Spring (Yellowstone National Park, WY), comprises 2,968,099 bp in 170 contigs. It is predicted to contain 2,895 protein-coding genes, 44 tRNA-coding genes, and 2 rRNA operons.

  1. Genome Sequence of Bacillus mycoides B38V, a Growth-Promoting Bacterium of Sunflower.

    PubMed

    Ambrosini, Adriana; Sant'Anna, Fernando Hayashi; de Souza, Rocheli; Tadra-Sfeir, Michele; Faoro, Helisson; Alvarenga, Samuel M; Pedrosa, Fabio Oliveira; Souza, Emanuel Maltempi; Passaglia, Luciane M P

    2015-01-01

    Bacillus mycoides B38V is a bacterium isolated from the sunflower rhizosphere that is able to promote plant growth and N uptake. The genome of the isolate has approximately 5.80 Mb and presents sequence codifiers for plant growth-promoting characteristics, such as nitrate reduction and ammonification and iron-siderophore uptake. PMID:25838494

  2. Genome Sequence of Bacillus mycoides B38V, a Growth-Promoting Bacterium of Sunflower

    PubMed Central

    Ambrosini, Adriana; Sant’Anna, Fernando Hayashi; de Souza, Rocheli; Tadra-Sfeir, Michele; Faoro, Helisson; Alvarenga, Samuel M.; Pedrosa, Fabio Oliveira; Souza, Emanuel Maltempi

    2015-01-01

    Bacillus mycoides B38V is a bacterium isolated from the sunflower rhizosphere that is able to promote plant growth and N uptake. The genome of the isolate has approximately 5.80 Mb and presents sequence codifiers for plant growth-promoting characteristics, such as nitrate reduction and ammonification and iron-siderophore uptake. PMID:25838494

  3. Draft Genome Sequence of the Syntrophic Lactate-Degrading Bacterium Tepidanaerobacter syntrophicus JLT

    PubMed Central

    Matsuura, Norihisa; Ohashi, Akiko; Tourlousse, Dieter M.

    2016-01-01

    We report here a high-quality draft genome sequence of the type strain (JL) of Tepidanaerobacter syntrophicus, an obligately anaerobic and moderately thermophilic bacterium, which is able to perform syntrophic lactate degradation with hydrogenotrophic methanogens. The genome comprises 2.43 Mb in 9 scaffolds, with a G+C content of 38.6%. PMID:26868399

  4. Draft Genome Sequence of the Moderately Halophilic Bacterium Marinobacter lipolyticus Strain SM19

    PubMed Central

    Papke, R. Thane; de la Haba, Rafael R.; Infante-Domínguez, Carmen; Pérez, Dolores; Sánchez-Porro, Cristina; Lapierre, Pascal

    2013-01-01

    Marinobacter lipolyticus strain SM19, isolated from saline soil in Spain, is a moderately halophilic bacterium belonging to the class Gammaproteobacteria. Here, we report the draft genome sequence of this strain, which consists of a 4.0-Mb chromosome and which is able to produce the halophilic enzyme lipase LipBL. PMID:23814106

  5. First Insights into the Genome of the Moderately Thermophilic Bacterium Clostridium tepidiprofundi SG 508T.

    PubMed

    Poehlein, Anja; Friedrich, Ines; Krüger, Larissa; Daniel, Rolf

    2016-01-01

    The moderately thermophilic bacterium Clostridium tepidiprofundi is Gram-positive and belongs to clostridial cluster I. It was isolated from a hydrothermal vent chimney. Substrates utilized by C. tepidiprofundi include casein, peptone, tryptone, yeast extract, beef extract, starch, maltose, and glucose. The genome consists of one replicon (3.06 Mb). PMID:27174286

  6. Draft Genome Sequence of Potato ‘Zebra Chip’ Associated Bacterium ‘Candidatus Liberibacter solanacearum’

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new species of Candidatus Liberibacter, ‘Ca. L. solanacearum’ (Lso) was recently confirmed to be associated with potato zebra chip (ZC) disease. The bacterium belongs to gram negative, phloem-limited, a-Proteobacteria. Because Koch’s postulates have not been fulfilled, information regarding the et...

  7. Robinsoniella peoriensis: A model anaerobic commensal bacterium for acquisition of antibiotic resistance?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: R. peoriensis was characterized in our laboratories from swine manure and feces as a Gram-positive, anaerobic bacterium. Since then strains of this species have been identified from a variety of mammalian and other gastrointestinal (GI) tracts, suggesting it is a member of the commensal ...

  8. First Insights into the Genome of the Moderately Thermophilic Bacterium Clostridium tepidiprofundi SG 508T

    PubMed Central

    Poehlein, Anja; Friedrich, Ines; Krüger, Larissa

    2016-01-01

    The moderately thermophilic bacterium Clostridium tepidiprofundi is Gram-positive and belongs to clostridial cluster I. It was isolated from a hydrothermal vent chimney. Substrates utilized by C. tepidiprofundi include casein, peptone, tryptone, yeast extract, beef extract, starch, maltose, and glucose. The genome consists of one replicon (3.06 Mb). PMID:27174286

  9. Rapid detection of Flavobacterium columnare, the bacterium causing Columnaris Disease in fish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium columnare is a ubiquitous bacterium that causes columnaris disease in a wide variety of fish resulting in devastating losses particularly in the commercial aquaculture industry worldwide. Timely diagnosis of disease is imperative for prevention of spread and to reduce the economic los...

  10. Genome Sequence of the Acetogenic Bacterium Moorella mulderi DSM 14980T

    PubMed Central

    Castillo Villamizar, Genis Andrés

    2016-01-01

    Here, we report the draft genome sequence of Moorella mulderi DSM 14980T, a thermophilic acetogenic bacterium, which is able to grow autotrophically on H2 plus CO2 using the Wood-Ljungdahl pathway. The genome consists of a circular chromosome (2.99 Mb). PMID:27231372

  11. Complete Genome Sequence of the Haloalkaliphilic, Hydrogen-Producing Bacterium Halanaerobium hydrogeniformans▿

    PubMed Central

    Brown, Steven D.; Begemann, Matthew B.; Mormile, Melanie R.; Wall, Judy D.; Han, Cliff S.; Goodwin, Lynne A.; Pitluck, Samuel; Land, Miriam L.; Hauser, Loren J.; Elias, Dwayne A.

    2011-01-01

    Halanaerobium hydrogenoformans is an alkaliphilic bacterium capable of biohydrogen production at pH 11 and 7% (wt/vol) salt. We present the 2.6-Mb genome sequence to provide insights into its physiology and potential for bioenergy applications. PMID:21602336

  12. Complete Genome Sequence of a γ-Hexachlorocyclohexane-Degrading Bacterium, Sphingobium sp. Strain MI1205

    PubMed Central

    Tabata, Michiro; Ohhata, Satoshi; Nikawadori, Yuki; Sato, Takuya; Kishida, Kouhei; Ohtsubo, Yoshiyuki; Tsuda, Masataka

    2016-01-01

    Here, we report the complete genome sequence of a γ-hexachlorocyclohexane (γ-HCH)-degrading bacterium, Sphingobium sp. strain MI1205. The genome of MI1205 consists of two chromosomes and four plasmids with sizes of 33 to 292 kb. All the lin genes for γ-HCH metabolism are dispersed on the four plasmids. PMID:27056230

  13. Complete Genome Sequence of the Type Strain of the Acetogenic Bacterium Moorella thermoacetica DSM 521T

    PubMed Central

    Poehlein, Anja; Bengelsdorf, Frank R.; Esser, Carola; Schiel-Bengelsdorf, Bettina; Daniel, Rolf

    2015-01-01

    Here we report the closed genome sequence of the type strain Moorella thermoacetica DSM 521T, an acetogenic bacterium, which is able to grow autotrophically on H2 + CO2 and/or CO, using the Wood-Ljungdahl pathway. The genome consists of a circular chromosome (2.53 Mb). PMID:26450731

  14. Draft Genome Sequence of the Ionic Liquid-Tolerant Bacterium Bacillus amyloliquefaciens CMW1

    PubMed Central

    Hirose, Yuu; Misawa, Naomi; Hurunaka, Kohei; Kishimoto, Noriaki

    2014-01-01

    Here, we report the draft genome sequence of an ionic liquid-tolerant bacterium, Bacillus amyloliquefaciens CMW1, which is newly isolated from a Japanese fermented soybean paste. The genome sequence will allow for a characterization of the molecular mechanism of its ionic liquid tolerance. PMID:25323721

  15. Complete Genome Sequence of Sphingomonas sp. Strain NIC1, an Efficient Nicotine-Degrading Bacterium

    PubMed Central

    Zhu, Xiongyu; Wang, Weiwei; Xu, Ping

    2016-01-01

    Sphingomonas sp. strain NIC1, an efficient nicotine-degrading bacterium, was isolated from tobacco leaves. Here, we present the complete genome sequence of strain NIC1, which contains one circular chromosome and two circular plasmids. The genomic information will provide insights into its molecular mechanism for nicotine degradation. PMID:27417841

  16. Complete Genome Sequence of Enterobacter cloacae B2-DHA, a Chromium-Resistant Bacterium.

    PubMed

    Rahman, Aminur; Nahar, Noor; Olsson, Björn; Mandal, Abul

    2016-01-01

    Previously, we reported a chromium-resistant bacterium, Enterobacter cloacae B2-DHA, isolated from the landfills of tannery industries in Bangladesh. Here, we investigated its genetic composition using massively parallel sequencing and comparative analysis with other known Enterobacter genomes. Assembly of the sequencing reads revealed a genome of ~4.21 Mb in size. PMID:27257201

  17. Draft Genome Sequence of a Bacillus Bacterium from the Atacama Desert Wetlands Metagenome

    PubMed Central

    Vilo, Claudia; Galetovic, Alexandra; Araya, Jorge E.; Dong, Qunfeng

    2015-01-01

    We report here the draft genome sequence of a Bacillus bacterium isolated from the microflora of Nostoc colonies grown at the Andean wetlands in northern Chile. We consider this genome sequence to be a molecular tool for exploring microbial relationships and adaptation strategies to the prevailing extreme conditions at the Atacama Desert. PMID:26294639

  18. Draft Genome Sequence of Jeotgalibacillus soli DSM 23228, a Bacterium Isolated from Alkaline Sandy Soil

    PubMed Central

    Chan, Kok-Gan; Yaakop, Amira Suriaty; Chan, Chia Sing; Ee, Robson; Tan, Wen-Si; Gan, Han Ming

    2015-01-01

    Jeotgalibacillus soli, a bacterium capable of degrading N-acyl homoserine lactone, was isolated from a soil sample in Portugal. J. soli constitutes the only Jeotgalibacillus species isolated from a non-marine source. Here, the draft genome, several interesting glycosyl hydrolases, and its putative N-acyl homoserine lactonases are presented. PMID:25999554

  19. Draft Genome Sequence of the Radioresistant Bacterium Deinococcus grandis, Isolated from Freshwater Fish in Japan

    PubMed Central

    Onodera, Takefumi; Omoso, Kota; Takeda-Yano, Kiyoko; Katayama, Takeshi; Oono, Yutaka; Narumi, Issay

    2016-01-01

    Deinococcus grandis is a radioresistant bacterium isolated from freshwater fish in Japan. Here we reported the draft genome sequence of D. grandis (4.1 Mb), which will be useful for elucidating the common principles of radioresistance in Deinococcus species through the comparative analysis of genomic sequences. PMID:26868384

  20. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium

    PubMed Central

    Ho, Ying-Ning

    2015-01-01

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia. PMID:26564046

  1. Draft Genome Sequence of a Benzo[a]pyrene-Degrading Bacterium, Olleya sp. Strain ITB9

    PubMed Central

    Okai, Masahiko; Watanabe, Akihiro; Ishida, Masami

    2015-01-01

    Olleya sp. ITB9 is a benzo[a]pyrene-degrading bacterium, isolated from surface water near a waste treatment plant at Tokyo Bay, Japan. Here, we present the draft genome sequence of this strain, which consists of 58 contigs corresponding to 3.4 Mb and a G+C content of 31.2%. PMID:26564047

  2. Draft Genome Sequence of Perfluorooctane Acid-Degrading Bacterium Pseudomonas parafulva YAB-1

    PubMed Central

    Tang, Chongjian; Peng, Qingjing; Peng, Qingzhong

    2015-01-01

    Pseudomonas parafulva YAB-1, isolated from perfluorinated compound-contaminated soil, has the ability to degrade perfluorooctane acid (PFOA) compound. Here, we report the draft genome sequence and annotation of the PFOA-degrading bacterium P. parafulva YAB-1. The data provide the basis to investigate the molecular mechanism of PFOA metabolism. PMID:26337877

  3. Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber

    PubMed Central

    Antón, Josefa; Peña, Arantxa; Santos, Fernando; Martínez-García, Manuel; Schmitt-Kopplin, Philippe; Rosselló-Mora, Ramon

    2008-01-01

    Since its discovery in 1998, representatives of the extremely halophilic bacterium Salinibacter ruber have been found in many hypersaline environments across the world, including coastal and solar salterns and solar lakes. Here, we review the available information about the distribution, abundance and diversity of this member of the Bacteroidetes. PMID:18957079

  4. Competitive PCR for quantitation of a Cytophaga-Flexibacter-Bacteroides phylum bacterium associated with the Tuber borchii Vittad. mycelium.

    PubMed

    Barbieri, Elena; Riccioni, Giulia; Pisano, Anna; Sisti, Davide; Zeppa, Sabrina; Agostini, Deborah; Stocchi, Vilberto

    2002-12-01

    An uncultured bacterium associated with the ectomycorrhizal fungus Tuber borchii Vittad. was identified as a novel member of the Cytophaga-Flexibacter-Bacteroides group. Utilizing a quantitative PCR targeting the 16S rRNA gene, we relatively quantified this bacterium in the host. The estimated number of bacteria was found to be approximately 10(6) cells per 30-day-old T. borchii mycelium culture. This represents the first molecular attempt to enumerate an uncultured bacterium associated with a mycorrhizal fungus. PMID:12450871

  5. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium

    PubMed Central

    Tago, Damian; Meyer, Damien F.

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria. PMID:27610355

  6. Gene function analysis in extremophiles: the "nif" regulon of the strict iron oxidizing bacterium "Leptospirillum ferrooxidans"

    NASA Astrophysics Data System (ADS)

    Parro, Victor; Moreno-Paz, Mercedes

    2004-03-01

    In Centro de Astrobiologia it has been considered the Tinto river as a model ecosystem to study life based on iron. The final goal is to study the biological and metabolic diversity in microorganisms living there, following a genomic approach, to get insights to the mechanisms of adaptation to this environment. The Gram-negative bacterium Leptospirillum ferrooxidans is one of the most abundant microorganisms in the river, and it is one of the main responsible in maintenance of pH balance and, as a consequence, the physico-chemical properties of the exosystem. We have constructed a Shotgun DNA microarrays from this bacterium and we have used it to studied its genetic capacity for nitrogen fixation. With this approach we have identified most of the genes necessary for dinitrogen (N2) reduction, confirming the capacity of L. ferrooxidans as a free diazotrophic (nitrogen fixer) microorganism.

  7. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells

    NASA Astrophysics Data System (ADS)

    Aguayo, S.; Donos, N.; Spratt, D.; Bozec, L.

    2015-02-01

    The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine.

  8. Isolation and biological characteristics of aerobic marine magnetotactic bacterium YSC-1

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Pan, Hongmiao; Yue, Haidong; Song, Tao; Zhao, Yong; Chen, Guanjun; Wu, Longfei; Xiao, Tian

    2006-12-01

    Magnetotactic bacteria have become a hot spot of research in microbiology attracting intensive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fastidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in diameter of 100nm, and consist of Fe and Co shown on energy dispersive X-ray spectrum. The biological and physiological characteristics of this bacterium were also described. The colour of YSC-1 colony is white in small rod. The gram stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.

  9. Crystal structure of ribosomal protein L1 from the bacterium Aquifex aeolicus

    NASA Astrophysics Data System (ADS)

    Nikonova, E. Yu.; Tishchenko, S. V.; Gabdulkhakov, A. G.; Shklyaeva, A. A.; Garber, M. B.; Nikonov, S. V.; Nevskaya, N. A.

    2011-07-01

    The crystal structure of ribosomal protein L1 from the bacterium Aquifex aeolicus was solved by the molecular-replacement method and refined to R cryst = 19.4% and R free = 25.1% at 2.1 Å protein consists of two domains linked together by a flexible hinge region. In the structure under consideration, the domains are in close proximity and adopt a closed conformation. Earlier, this conformation has been found in the structure of protein L1 from the bacterium Thermus thermophilus, whereas the structures of archaeal L1 proteins and the structures of all L1 proteins in the RNA-bound form have an open conformation. The fact that a closed conformation was found in the structures of two L1 proteins which crystallize in different space groups and belong to different bacteria suggests that this conformation is a characteristic feature of L1 bacterial proteins in the free form.

  10. Methanogenesis from acetate: a nonmethanogenic bacterium from an anaerobic acetate enrichment.

    PubMed

    Ward, D M; Mah, R A; Kaplan, I R

    1978-06-01

    A methanogenic acetate enrichment was initiated by inoculation of an acetate-mineral salts medium with domestic anaerobic digestor sludge and maintained by weekly transfer for 2 years. The enrichment culture contained a Methanosarcina and several obligately anaerobic nonmethanogenic bacteria. These latter organisms formed varying degrees of association with the Methanosarcina, ranging from the nutritionally fastidious gram-negative rod called the satellite bacterium to the nutritionally nonfastidious Eubacterium limosum. The satellite bacterium had growth requirements for amino acids, a peptide, a purine base, vitamin B12, and other B vitamins. Glucose, mannitol, starch, pyruvate, cysteine, lysine, leucine, isoleucine, arginine, and asparagine stimulated growth and hydrogen production. Acetate was neither incorporated nor metabolized by the satellite organism. Since acetate was the sole organic carbon source in the enrichment culture, organism(s) which metabolize acetate (such as the Methanosarcina) must produce substrates and growth factors for associated organisms which do not metabolize acetate. PMID:677881

  11. Comparative genome analysis of Lysinibacillus B1-CDA, a bacterium that accumulates arsenics.

    PubMed

    Rahman, Aminur; Nahar, Noor; Nawani, Neelu N; Jass, Jana; Ghosh, Sibdas; Olsson, Björn; Mandal, Abul

    2015-12-01

    Previously, we reported an arsenic resistant bacterium Lysinibacillus sphaericus B1-CDA, isolated from an arsenic contaminated lands. Here, we have investigated its genetic composition and evolutionary history by using massively parallel sequencing and comparative analysis with other known Lysinibacillus genomes. Assembly of the sequencing reads revealed a genome of ~4.5 Mb in size encompassing ~80% of the chromosomal DNA. We found that the set of ordered contigs contains abundant regions of similarity with other Lysinibacillus genomes and clearly identifiable genome rearrangements. Furthermore, all genes of B1-CDA that were predicted be involved in its resistance to arsenic and/or other heavy metals were annotated. The presence of arsenic responsive genes was verified by PCR in vitro conditions. The findings of this study highlight the significance of this bacterium in removing arsenics and other toxic metals from the contaminated sources. The genetic mechanisms of the isolate could be used to cope with arsenic toxicity. PMID:26387925

  12. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium

    PubMed Central

    Begemann, Matthew B.; Mormile, Melanie R.; Sitton, Oliver C.; Wall, Judy D.; Elias, Dwayne A.

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium hydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6-carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate, and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources. PMID:22509174

  13. Copper-binding characteristics of exopolymers from a freshwater-sediment bacterium

    SciTech Connect

    Mittelman, M.W.; Geesey, G.G.

    1985-04-01

    Copper-binding activity by exopolymers from adherent cells of freshwater-sediment bacterium was demonstrated by a combination of equilibrium dialysis and flameless atomic absorption spectrometry. Crude, cell-free exopolymer preparations containing protein and polysaccharide components bound up to 37 nmol of Cu per mg (dry weight). A highly purified exopolysaccharide preparation bound up to 253 nmol of Cu per mg of carbohydrate. The conditional stability constant for the crude exopolymer-Cu complex was 7.3 x 10/sup 8/. This value was similar to those obtained for Cu complexes formed with humic acids and xanthan, an exopolysaccharide produced by Xanthomonas campestris. Studies conducted at copper concentrations, pHs, and temperatures found in sediments from which the bacterium was isolated indicated that the exopolymers were capable of binding copper under natural conditions.

  14. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    PubMed

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria. PMID:27610355

  15. N-Acyl Dehydrotyrosines, Tyrosinase Inhibitors from the Marine Bacterium Thalassotalea sp. PP2-459.

    PubMed

    Deering, Robert W; Chen, Jianwei; Sun, Jiadong; Ma, Hang; Dubert, Javier; Barja, Juan L; Seeram, Navindra P; Wang, Hong; Rowley, David C

    2016-02-26

    Thalassotalic acids A-C and thalassotalamides A and B are new N-acyl dehydrotyrosine derivatives produced by Thalassotalea sp. PP2-459, a Gram-negative bacterium isolated from a marine bivalve aquaculture facility. The structures were elucidated via a combination of spectroscopic analyses emphasizing two-dimensional NMR and high-resolution mass spectrometric data. Thalassotalic acid A (1) displays in vitro inhibition of the enzyme tyrosinase with an IC50 value (130 μM) that compares favorably to the commercially used control compounds kojic acid (46 μM) and arbutin (100 μM). These are the first natural products reported from a bacterium belonging to the genus Thalassotalea. PMID:26824128

  16. Draft Genome Sequence of a Strictly Anaerobic Dichloromethane-Degrading Bacterium.

    PubMed

    Kleindienst, Sara; Higgins, Steven A; Tsementzi, Despina; Konstantinidis, Konstantinos T; Mack, E Erin; Löffler, Frank E

    2016-01-01

    An anaerobic, dichloromethane-degrading bacterium affiliated with novel Peptococcaceae was maintained in a microbial consortium. The organism originated from pristine freshwater sediment collected from Rio Mameyes in Luquillo, Puerto Rico, in October 2009 (latitude 18°21'43.9″, longitude -65°46'8.4″). The draft genome sequence is 2.1 Mb and has a G+C content of 43.5%. PMID:26941136

  17. The F- or V-type Na(+)-ATPase of the thermophilic bacterium Clostridium fervidus.

    PubMed Central

    Speelmans, G; Poolman, B; Abee, T; Konings, W N

    1994-01-01

    Clostridium fervidus is a thermophilic, anaerobic bacterium which uses solely Na+ as a coupling ion for energy transduction. Important features of the primary Na+ pump (ATPase) that generates the sodium motive force are presented. The advantage of using a sodium rather than a proton motive force at high temperatures becomes apparent from the effect of temperature on H+ and Na+ permeation in liposomes. PMID:8051034

  18. Draft Genome Sequence of Uncultured SAR324 Bacterium lautmerah10, Binned from a Red Sea Metagenome

    PubMed Central

    Thompson, Luke R.

    2016-01-01

    A draft genome of SAR324 bacterium lautmerah10 was assembled from a metagenome of a surface water sample from the Red Sea, Saudi Arabia. The genome is more complete and has a higher G+C content than that of previously sequenced SAR324 representatives. Its genomic information shows a versatile metabolism that confers an advantage to SAR324, which is reflected in its distribution throughout different depths of the marine water column. PMID:26868398

  19. Massilia sp. BS-1, a novel violacein-producing bacterium isolated from soil.

    PubMed

    Agematu, Hitosi; Suzuki, Kazuya; Tsuya, Hiroaki

    2011-01-01

    A novel bacterium, Massilia sp. BS-1, producing violacein and deoxyviolacein was isolated from a soil sample collected from Akita Prefecture, Japan. The 16S ribosomal DNA of strain BS-1 displayed 93% homology with its nearest violacein-producing neighbor, Janthinobacterium lividum. Strain BS-1 grew well in a synthetic medium, but required both L-tryptophan and a small amount of L-histidine to produce violacein. PMID:21979084

  20. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  1. Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Hochstein, L. I.

    1976-01-01

    The previously described extremely halophilic bacterium, strain M6, metabolizes a variety of carbohydrates with the production of acid. In addition, the organism produces nitrite (but no gas) from nitrate, is motile, and grows most rapidly at about 50 C. These characteristics distinguish it from all previously described halophilic bacteria in the genus Halobacterium. It is suggested that it be designated as a new species, Halobacterium saccharovorum.

  2. Complete Genome Sequence of the Thermophilic, Piezophilic, Heterotrophic Bacterium Marinitoga piezophila KA3

    SciTech Connect

    Lucas, Susan; Han, James; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Peters, Lin; Mikhailova, Natalia; Teshima, Hazuki; Detter, J. Chris; Han, Cliff; Tapia, Roxanne; Land, Miriam L; Hauser, Loren John; Kyrpides, Nikos C; Ivanova, N; Pagani, Ioanna; Vannier, Pauline; Oger, Phil; Bartlett, Douglas; Noll, Kenneth M; Woyke, Tanja; Jebbar, Mohamed

    2012-01-01

    Marinitoga piezophila KA3 is a thermophilic, anaerobic, chemoorganotrophic, sulfur-reducing bacterium isolated from the Grandbonum deep-sea hydrothermal vent site at the East Pacific Rise (13 degrees N, 2,630-m depth). The genome of M. piezophila KA3 comprises a 2,231,407-bp circular chromosome and a 13,386-bp circular plasmid. This genome was sequenced within Department of Energy Joint Genome Institute CSP 2010.

  3. Draft Genome Sequence of the Extremely Halophilic Phototrophic Purple Sulfur Bacterium Halorhodospira halochloris

    PubMed Central

    Singh, Kumar Saurabh; Kirksey, Jared; Hoff, Wouter D.; Deole, Ratnakar

    2014-01-01

    Halorhodospira halochloris is an extremely halophilic bacterium isolated from hypersaline Wadi Nantrun lakes in Egypt. Here we report the draft genome sequence of this gammaproteobacteria (GI number: 589289709, GenBank Accession number: CP007268). The 3.5-Mb genome encodes for photosynthesis and biosynthesis of organic osmoprotectants. Comparison with the genome of H.halophila promises to yield insights into the evolution of halophilic adaptations. PMID:25057327

  4. Draft Genome Sequence of the Deinococcus-Thermus Bacterium Meiothermus ruber Strain A

    PubMed Central

    Thiel, Vera; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Schuster, Stephan C.; Ward, David M.

    2015-01-01

    The draft genome sequence of the Deinococcus-Thermus group bacterium Meiothermus ruber strain A, isolated from a cyanobacterial enrichment culture obtained from Octopus Spring (Yellowstone National Park, WY), comprises 2,968,099 bp in 170 contigs. It is predicted to contain 2,895 protein-coding genes, 44 tRNA-coding genes, and 2 rRNA operons. PMID:25814606

  5. Draft Genome Sequence of the Deinococcus-Thermus Bacterium Meiothermus ruber Strain A.

    PubMed

    Thiel, Vera; Tomsho, Lynn P; Burhans, Richard; Gay, Scott E; Schuster, Stephan C; Ward, David M; Bryant, Donald A

    2015-01-01

    The draft genome sequence of the Deinococcus-Thermus group bacterium Meiothermus ruber strain A, isolated from a cyanobacterial enrichment culture obtained from Octopus Spring (Yellowstone National Park, WY), comprises 2,968,099 bp in 170 contigs. It is predicted to contain 2,895 protein-coding genes, 44 tRNA-coding genes, and 2 rRNA operons. PMID:25814606

  6. Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes).

    PubMed

    Thiel, Vera; Hamilton, Trinity L; Tomsho, Lynn P; Burhans, Richard; Gay, Scott E; Ramaley, Robert F; Schuster, Stephan C; Steinke, Laurey; Bryant, Donald A

    2014-01-01

    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons. PMID:25169864

  7. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans.

    PubMed

    Peng, J B; Yan, W M; Bao, X Z

    1994-07-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host. PMID:16349341

  8. PSEUDOMONAS NATRIEGENS, A MARINE BACTERIUM WITH A GENERATION TIME OF LESS THAN 10 MINUTES

    PubMed Central

    Eagon, R. G.

    1962-01-01

    Eagon, R. G. (University of Georgia, Athens). Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. J. Bacteriol. 83:736–737. 1962.—Pseudomonas natriegens, a marine microorganism, was demonstrated to have a generation time of 9.8 min. This is the shortest generation time reported to date. Optimal growth occurred at 37 C in brain heart infusion broth supplemented with 1.5% sea salt. PMID:13888946

  9. Sexual Transmission of a Plant Pathogenic Bacterium, Candidatus Liberibacter asiaticus, between Conspecific Insect Vectors during Mating

    PubMed Central

    Mann, Rajinder S.; Pelz-Stelinski, Kirsten; Hermann, Sara L.; Tiwari, Siddharth; Stelinski, Lukasz L.

    2011-01-01

    Candidatus Liberibacter asiaticus is a fastidious, phloem-inhabiting, gram-negative bacterium transmitted by Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae). The bacterium is the presumed causal agent of huanglongbing (HLB), one of the most destructive and economically important diseases of citrus. We investigated whether Las is transmitted between infected and uninfected D. citri adults during courtship. Our results indicate that Las was sexually transmitted from Las-infected male D. citri to uninfected females at a low rate (<4%) during mating. Sexual transmission was not observed following mating of infected females and uninfected males or among adult pairs of the same sex. Las was detected in genitalia of both sexes and also in eggs of infected females. A latent period of 7 days or more was required to detect the bacterium in recipient females. Rod shaped as well as spherical structures resembling Las were observed in ovaries of Las-infected females with transmission electron microscopy, but were absent in ovaries from uninfected D. citri females. The size of the rod shaped structures varied from 0.39 to 0.67 µm in length and 0.19 to 0.39 µm in width. The spherical structures measured from 0.61 to 0.80 µm in diameter. This investigation provides convincing evidence that a plant pathogenic bacterium is sexually transmitted from male to female insects during courtship and established evidence that bacteria persist in reproductive organs. Moreover, these findings provide an alternative sexually horizontal mechanism for the spread of Las within populations of D. citri, even in the absence of infected host trees. PMID:22216209

  10. Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes)

    PubMed Central

    Thiel, Vera; Hamilton, Trinity L.; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Ramaley, Robert F.; Schuster, Stephan C.; Steinke, Laurey

    2014-01-01

    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons. PMID:25169864

  11. Draft Genome Sequence of Gordonia sihwensis Strain 9, a Branched Alkane-Degrading Bacterium

    PubMed Central

    Brown, Lisa M.; Gunasekera, Thusitha S.; Striebich, Richard C.

    2016-01-01

    Gordonia sihwensis strain 9 is a Gram-positive bacterium capable of efficient aerobic degradation of branched and normal alkanes. The draft genome of G. sihwensis S9 is 4.16 Mb in size, with 3,686 coding sequences and 68.1% G+C content. Alkane monooxygenase and P-450 cytochrome genes required for alkane degradation are predicted in G. sihwensis S9. PMID:27340079

  12. Draft Genome Sequence of Pseudomonas frederiksbergensis SI8, a Psychrotrophic Aromatic-Degrading Bacterium

    PubMed Central

    Brown, Lisa M.; Striebich, Richard C.; Mueller, Susan S.; Gunasekera, Thusitha S.

    2015-01-01

    Pseudomonas frederiksbergensis strain SI8 is a psychrotrophic bacterium capable of efficient aerobic degradation of aromatic hydrocarbons. The draft genome of P. frederiksbergensis SI8 is 6.57 Mb in size, with 5,904 coding sequences and 60.5% G+C content. The isopropylbenzene (cumene) degradation pathway is predicted to be present in P. frederiksbergensis SI8. PMID:26184950

  13. Draft Genome Sequence of a Strictly Anaerobic Dichloromethane-Degrading Bacterium

    PubMed Central

    Higgins, Steven A.; Tsementzi, Despina; Konstantinidis, Konstantinos T.; Mack, E. Erin

    2016-01-01

    An anaerobic, dichloromethane-degrading bacterium affiliated with novel Peptococcaceae was maintained in a microbial consortium. The organism originated from pristine freshwater sediment collected from Rio Mameyes in Luquillo, Puerto Rico, in October 2009 (latitude 18°21′43.9″, longitude −65°46′8.4″). The draft genome sequence is 2.1 Mb and has a G+C content of 43.5%. PMID:26941136

  14. Effect of Tannic Acid on the Transcriptome of the Soil Bacterium Pseudomonas protegens Pf-5

    PubMed Central

    Lim, Chee Kent; Penesyan, Anahit; Hassan, Karl A.

    2013-01-01

    Tannins are a diverse group of plant-produced, polyphenolic compounds with metal-chelating and antimicrobial properties that are prevalent in many soils. Using transcriptomics, we determined that tannic acid, a form of hydrolysable tannin, broadly affects the expression of genes involved in iron and zinc homeostases, sulfur metabolism, biofilm formation, motility, and secondary metabolite biosynthesis in the soil- and rhizosphere-inhabiting bacterium Pseudomonas protegens Pf-5. PMID:23435890

  15. Isolation and Characterization of Strain MMB-1 (CECT 4803), a Novel Melanogenic Marine Bacterium.

    PubMed

    Solano, F; Garcia, E; Perez, D; Sanchez-Amat, A

    1997-09-01

    A novel marine melanogenic bacterium, strain MMB-1, was isolated from the Mediterranean Sea. The taxonomic characterization of this strain indicated that it belongs to the genus Alteromonas. Under in vivo conditions, L-tyrosine was the specific monophenolic precursor for melanin synthesis. This bacterium contained all types of activities associated with polyphenol oxidases (PPOs), cresolase (EC 1.18.14.1), catecholase (EC 1.10.3.1), and laccase (EC 1.10.3.2). These activities were due to the presence of two different PPOs. The first one showed all the enzymatic activities, but it was not involved in melanogenesis in vivo, since amelanogenic mutant strains obtained by nitrosoguanidine treatment contained levels of this PPO similar to that of the wild-type MMB-1 strain. The second PPO showed cresolase and catecholase activities but no laccase, and it was involved in melanogenesis, since this enzyme was lost in amelanogenic mutant strains. This PPO was strongly activated by sodium dodecyl sulfate below the critical micelle concentration, and it is a tyrosinase-like enzyme showing a lag period in its tyrosine hydroxylase activity that could be avoided by small amounts of L-dopa. This is the first report of a bacterium that contains two PPOs and also the first report of a pluripotent PPO showing all types of oxidase activities. The bacterium and the pluripotent PPO may be useful models for exploring the roles of PPOs in cellular physiology, aside from melanin formation. On the other hand, the high oxidizing capacity of the PPO for a wide range of substrates could make possible its application in phenolic biotransformations, food processing, or the cosmetic industry, where fungal and plant PPOs are being used. PMID:16535688

  16. Isolation and Characterization of Strain MMB-1 (CECT 4803), a Novel Melanogenic Marine Bacterium

    PubMed Central

    Solano, F.; Garcia, E.; Perez, De; Sanchez-Amat, A.

    1997-01-01

    A novel marine melanogenic bacterium, strain MMB-1, was isolated from the Mediterranean Sea. The taxonomic characterization of this strain indicated that it belongs to the genus Alteromonas. Under in vivo conditions, L-tyrosine was the specific monophenolic precursor for melanin synthesis. This bacterium contained all types of activities associated with polyphenol oxidases (PPOs), cresolase (EC 1.18.14.1), catecholase (EC 1.10.3.1), and laccase (EC 1.10.3.2). These activities were due to the presence of two different PPOs. The first one showed all the enzymatic activities, but it was not involved in melanogenesis in vivo, since amelanogenic mutant strains obtained by nitrosoguanidine treatment contained levels of this PPO similar to that of the wild-type MMB-1 strain. The second PPO showed cresolase and catecholase activities but no laccase, and it was involved in melanogenesis, since this enzyme was lost in amelanogenic mutant strains. This PPO was strongly activated by sodium dodecyl sulfate below the critical micelle concentration, and it is a tyrosinase-like enzyme showing a lag period in its tyrosine hydroxylase activity that could be avoided by small amounts of L-dopa. This is the first report of a bacterium that contains two PPOs and also the first report of a pluripotent PPO showing all types of oxidase activities. The bacterium and the pluripotent PPO may be useful models for exploring the roles of PPOs in cellular physiology, aside from melanin formation. On the other hand, the high oxidizing capacity of the PPO for a wide range of substrates could make possible its application in phenolic biotransformations, food processing, or the cosmetic industry, where fungal and plant PPOs are being used. PMID:16535688

  17. Complete genome sequence of Lactobacillus helveticus MB2-1, a probiotic bacterium producing exopolysaccharides.

    PubMed

    Li, Wei; Xia, Xiudong; Chen, Xiaohong; Rui, Xin; Jiang, Mei; Zhang, Qiuqin; Zhou, Jianzhong; Dong, Mingsheng

    2015-09-10

    Lactobacillus helveticus MB2-1 is a probiotic bacterium producing exopolysaccharides (EPS), which was isolated from traditional Sayram ropy fermented milk in southern Xinjiang, China. The genome consists of a circular 2,084,058bp chromosome with no plasmid. The genome sequence indicated that this strain includes a 15.20kb gene cluster involved in EPS biosynthesis. Genome sequencing information has provided the basis for understanding the potential molecular mechanism behind the EPS production. PMID:26065338

  18. Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent.

    PubMed

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z; Nisar, Muhammad A; Zulfiqar, Soumble; Shakoori, Abdul R

    2016-12-01

    Cadmium resistant bacterium, isolated from industrial wastewater, was characterized as Salmonella enterica 43C on the basis of biochemical and 16S rRNA ribotyping. It is first ever reported S. enterica 43C bared extreme resistance against heavy metal consortia in order of Pb(2+)>Cd(2+)>As(3+)>Zn(2+)>Cr(6+)>Cu(2+)>Hg(2+). Cd(2+) stress altered growth pattern of the bacterium in time dependent manner. It could remove nearly 57 % Cd(2+) from the medium over a period of 8 days. Kinetic and thermodynamic studies based on various adsorption isotherm models (Langmuir and Freundlich) depicted the Cd(2+) biosorption as spontaneous, feasible and endothermic in nature. Interestingly, the bacterium followed pseudo first order kinetics, making it a good biosorbent for heavy metal ions. The S. enterica 43C Cd(2+) processivity was significantly influenced by temperature, pH, initial Cd(2+) concentration, biomass dosage and co-metal ions. FTIR analysis of the bacterium revealed the active participation of amide and carbonyl moieties in Cd(2+) adsorption confirmed by EDX analysis. Electron micrographs beckoned further surface adsorption and increased bacterial size due to intracellular Cd(2+) accumulation. An overwhelming increase in glutathione and other non-protein thiols levels played a significant role in thriving oxidative stress generated by metal cations. Presence of metallothionein clearly depicted the role of such proteins in bacterial metal resistance mechanism. The present study results clearly declare S. enterica 43C a suitable candidate for green chemistry to bioremediate environmental Cd(2+). PMID:27491862

  19. Catalytic Biomineralization of Fluorescent Calcite by the Thermophilic Bacterium Geobacillus thermoglucosidasius▿

    PubMed Central

    Yoshida, Naoto; Higashimura, Eiji; Saeki, Yuichi

    2010-01-01

    The thermophilic Geobacillus bacterium catalyzed the formation of 100-μm hexagonal crystals at 60°C in a hydrogel containing sodium acetate, calcium chloride, and magnesium sulfate. Under fluorescence microscopy, crystals fluoresced upon excitation at 365 ± 5, 480 ± 20, or 545 ± 15 nm. X-ray diffraction indicated that the crystals were magnesium-calcite in calcite-type calcium carbonate. PMID:20851984

  20. Draft Genome Sequence of Staphylococcus succinus Strain CSM-77, a Moderately Halophilic Bacterium Isolated from a Triassic Salt Mine.

    PubMed

    Megaw, Julianne; Gilmore, Brendan F

    2016-01-01

    Here, we report the draft genome sequence of Staphylococcus succinus strain CSM-77. This moderately halophilic bacterium was isolated from the surface of a halite sample obtained from a Triassic salt mine. PMID:27284152

  1. Draft Genome Sequence of Staphylococcus succinus Strain CSM-77, a Moderately Halophilic Bacterium Isolated from a Triassic Salt Mine

    PubMed Central

    Gilmore, Brendan F.

    2016-01-01

    Here, we report the draft genome sequence of Staphylococcus succinus strain CSM-77. This moderately halophilic bacterium was isolated from the surface of a halite sample obtained from a Triassic salt mine. PMID:27284152

  2. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens.

    PubMed

    Jeong, Haeyoung; Jo, Sung Hee; Hong, Chi Eun; Park, Jeong Mee

    2016-01-01

    ITALIC! Bacillus thuringiensisis the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium ITALIC! Bacillus thuringiensisstrain KB1, which exhibits antagonism against phytopathogens. PMID:27103716

  3. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens

    PubMed Central

    Jo, Sung Hee; Hong, Chi Eun

    2016-01-01

    Bacillus thuringiensis is the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium Bacillus thuringiensis strain KB1, which exhibits antagonism against phytopathogens. PMID:27103716

  4. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5.

    PubMed

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production. PMID:24717418

  5. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes--Final Report

    SciTech Connect

    Mary E. Lidstrom

    2003-12-26

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions.

  6. Deinococcus mumbaiensis sp. nov., a radiation-resistant pleomorphic bacterium isolated from Mumbai, India.

    PubMed

    Shashidhar, Ravindranath; Bandekar, Jayant R

    2006-01-01

    A radiation-resistant, Gram-negative and pleomorphic bacterium (CON-1) was isolated from a contaminated tryptone glucose yeast extract agar plate in the laboratory. It was red pigmented, nonmotile, nonsporulating, and aerobic, and contained MK-8 as respiratory quinone. The cell wall of this bacterium contained ornithine. The major fatty acids were C16:0, C16:1, C17:0, C18:1 and iso C18:0. The DNA of CON-1 had a G+C content of 70 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that CON-1 exhibited a maximum similarity (94.72%) with Deinococcus grandis. Based on the genotypic, phenotypic and chemotaxonomic characteristics, the bacterium CON-1 was identified as a new species of the genus Deinococcus, for which the name Deinococcus mumbaiensis sp. nov. is proposed. The type strain of D. mumbaiensis is CON-1 (MTCC 7297(T)=DSM 17424(T)). PMID:16445756

  7. [Mechanisms of Forespore Formation during Polysporogenesis of an Anaerobic Bacterium Anaerobacter polyendosporus PST(T)].

    PubMed

    Duda, V I; Suzina, N E

    2015-01-01

    Forespore formation in the anaerobic bacterium Anaerobacterpolyendosporus PS-1(T) was studied by phase contrast, fluorescence, and electron microscopy. It is concluded that in this bacterium the formation of all forespores in multispore sporangia occurs via the same mechanism as that operating in all known bacilli and clostridia during the single-spore variant of endogenous sporogenesis. Its cytological indicators are as follows: (1) formation of the forespore septum, (2) engulfment of the smaller prespore cell by the larger mother cell, (3) cortex synthesis, (4) assembly of the spore coats, (5) exosporium formation, and (6) lysis of the mother cell. Polysporogenesis in strain PS-1(T) is characterized by synchronous formation of all spores (siblings) in a given sporangium and by the absence of any indication of forespore division within the mother cell. These data suggest that multiple spores within a single PS-1(T) cell result not from division of the first forespores developing at one or two cell poles, as it was reported for another polysporogenic bacterium, "Metabacterium polyspora", but rather from simultaneous independent formation of several prespores in a single mother cell in the course of modified cell division. PMID:27169242

  8. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin

    PubMed Central

    Svitil, A. L.; Chadhain, S.; Moore, J. A.; Kirchman, D. L.

    1997-01-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products. PMID:16535505

  9. Development of a markerless deletion system for the fish-pathogenic bacterium Flavobacterium psychrophilum.

    PubMed

    Gómez, Esther; Álvarez, Beatriz; Duchaud, Eric; Guijarro, José A

    2015-01-01

    Flavobacterium psychrophilum is a Gram-negative fish pathogen that causes important economic losses in aquaculture worldwide. Although the genome of this bacterium has been determined, the function and relative importance of genes in relation to virulence remain to be established. To investigate their respective contribution to the bacterial pathogenesis, effective tools for gene inactivation are required. In the present study, a markerless gene deletion system has been successfully developed for the first time in this bacterium. Using this method, the F. psychrophilum fcpB gene, encoding a predicted cysteine protease homologous to Streptococcus pyogenes streptopain, was deleted. The developed system involved the construction of a conjugative plasmid that harbors the flanking sequences of the fcpB gene and an I-SceI meganuclease restriction site. Once this plasmid was integrated in the genome by homologous recombination, the merodiploid was resolved by the introduction of a plasmid expressing I-SceI under the control of the fpp2 F. psychrophilum inducible promoter. The resulting deleted fcpB mutant presented a decrease in extracellular proteolytic activity compared to the parental strain. However, there were not significant differences between their LD50 in an intramuscularly challenged rainbow trout infection model. The mutagenesis approach developed in this work represents an improvement over the gene inactivation tools existing hitherto for this "fastidious" bacterium. Unlike transposon mutagenesis and gene disruption, gene markerless deletion has less potential for polar effects and allows the mutation of virtually any non-essential gene or gene clusters. PMID:25692569

  10. Anomalous Magnetic Orientations of Magnetosome Chains in a Magnetotactic Bacterium: Magnetovibrio blakemorei Strain MV-1

    PubMed Central

    Kalirai, Samanbir S.; Bazylinski, Dennis A.; Hitchcock, Adam P.

    2013-01-01

    There is a good deal of published evidence that indicates that all magnetosomes within a single cell of a magnetotactic bacterium are magnetically oriented in the same direction so that they form a single magnetic dipole believed to assist navigation of the cell to optimal environments for their growth and survival. Some cells of the cultured magnetotactic bacterium Magnetovibrio blakemorei strain MV-1 are known to have relatively wide gaps between groups of magnetosomes that do not seem to interfere with the larger, overall linear arrangement of the magnetosomes along the long axis of the cell. We determined the magnetic orientation of the magnetosomes in individual cells of this bacterium using Fe 2p X-ray magnetic circular dichroism (XMCD) spectra measured with scanning transmission X-ray microscopy (STXM). We observed a significant number of cases in which there are sub-chains in a single cell, with spatial gaps between them, in which one or more sub-chains are magnetically polarized opposite to other sub-chains in the same cell. These occur with an estimated frequency of 4.0±0.2%, based on a sample size of 150 cells. We propose possible explanations for these anomalous cases which shed insight into the mechanisms of chain formation and magnetic alignment. PMID:23308202

  11. Purification and Characterization of Haloalkaline, Organic Solvent Stable Xylanase from Newly Isolated Halophilic Bacterium-OKH

    PubMed Central

    Sanghvi, Gaurav; Jivrajani, Mehul; Patel, Nirav; Jivrajani, Heta; Bhaskara, Govinal Badiger; Patel, Shivani

    2014-01-01

    A novel, alkali-tolerant halophilic bacterium-OKH with an ability to produce extracellular halophilic, alkali-tolerant, organic solvent stable, and moderately thermostable xylanase was isolated from salt salterns of Mithapur region, Gujarat, India. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. Maximum xylanase production was achieved at pH 9.0 and 37°C temperature in the medium containing 15% NaCl and 1% (w/v) corn cobs. Sugarcane bagasse and wheat straw also induce xylanase production when used as carbon source. The enzyme was active over a range of 0–25% sodium chloride examined in culture broth. The optimum xylanase activity was observed at 5% sodium chloride. Xylanase was purified with 25.81%-fold purification and 17.1% yield. Kinetic properties such as Km and Vmax were 4.2 mg/mL and 0.31 μmol/min/mL, respectively. The enzyme was stable at pH 6.0 and 50°C with 60% activity after 8 hours of incubation. Enzyme activity was enhanced by Ca2+, Mn2+, and Mg2+ but strongly inhibited by heavy metals such as Hg2+, Fe3+, Ni2+, and Zn2+. Xylanase was found to be stable in organic solvents like glutaraldehyde and isopropanol. The purified enzyme hydrolysed lignocellulosic substrates. Xylanase, purified from the halophilic bacterium-OKH, has potential biotechnological applications. PMID:27350996

  12. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    PubMed Central

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production. PMID:24717418

  13. Draft Genome Sequence of Bacillus murimartini LMG 21005T, an Alkalitolerant Bacterium Isolated from a Church Wall Mural in Germany

    PubMed Central

    Wang, Jie-ping; Liu, Guo-hong; Xiao, Rong-feng; Zheng, Xue-fang; Shi, Huai; Ge, Ci-bin

    2015-01-01

    Bacillus murimartini LMG 21005T is a Gram-positive, spore-forming, and alkalitolerant bacterium isolated from a church wall mural. Here, we report the 4.17-Mb genome sequence of B. murimartini LMG 21005T, which will accelerate the application of this alkalitolerant bacterium and provide useful information for genomic taxonomy and phylogenomics of Bacillus-like bacteria. PMID:26494676

  14. Alcanivorax dieselolei, an alkane-degrading bacterium associated with the mucus of the zoanthid Palythoa caribaeorum (Cnidaria, Anthozoa).

    PubMed

    Campos, F F; Garcia, J E; Luna-Finkler, C L; Davolos, C C; Lemos, M V F; Pérez, C D

    2015-05-01

    Analyses of 16S rDNA genes were used to identify the microbiota isolated from the mucus of the zoanthid Palythoa caribaeorum at Porto de Galinhas on the coast of Pernambuco State, Brazil. This study is important as the first report of this association, because of the potential biotechnological applications of the bacterium Alcanivorax dieselolei, and as evidence for the presence of a hydrocarbon degrading bacterium in a reef ecosystem such as Porto de Galinhas. PMID:26132028

  15. Draft Genome Sequence of Bacillus licheniformis Strain GB2, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium

    PubMed Central

    Gkorezis, Panagiotis; Van Hamme, Jonathan; Bottos, Eric; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Sillen, Wouter

    2016-01-01

    We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. PMID:27340073

  16. Draft Genome Sequence of Bacillus licheniformis Strain GB2, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium.

    PubMed

    Gkorezis, Panagiotis; Van Hamme, Jonathan; Bottos, Eric; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Sillen, Wouter; Vangronsveld, Jaco

    2016-01-01

    We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. PMID:27340073

  17. Effect of arsenite-oxidizing bacterium B. laterosporus on arsenite toxicity and arsenic translocation in rice seedlings.

    PubMed

    Yang, Gui-Di; Xie, Wan-Ying; Zhu, Xi; Huang, Yi; Yang, Xiao-Jun; Qiu, Zong-Qing; Lv, Zhen-Mao; Wang, Wen-Na; Lin, Wen-Xiong

    2015-10-01

    Arsenite [As (III)] oxidation can be accelerated by bacterial catalysis, but the effects of the accelerated oxidation on arsenic toxicity and translocation in rice plants are poorly understood. Herein we investigated how an arsenite-oxidizing bacterium, namely Brevibacillus laterosporus, influences As (III) toxicity and translocation in rice plants. Rice seedlings of four cultivars, namely Guangyou Ming 118 (GM), Teyou Hang II (TH), Shanyou 63 (SY) and Minghui 63 (MH), inoculated with or without the bacterium were grown hydroponically with As (III) to investigate its effects on arsenic toxicity and translocation in the plants. Percentages of As (III) oxidation in the solutions with the bacterium (100%) were all significantly higher than those without (30-72%). The addition of the bacterium significantly decreased As (III) concentrations in SY root, GM root and shoot, while increased the As (III) concentrations in the shoot of SY, MH and TH and in the root of MH. Furthermore, the As (III) concentrations in the root and shoot of SY were both the lowest among the treatments with the bacterium. On the other hand, its addition significantly alleviated the As (III) toxicity on four rice cultivars. Among the treatments amended with B. laterosporus, the bacterium showed the best remediation on SY seedlings, with respect to the subdued As (III) toxicity and decreased As (III) concentration in its roots. These results indicated that As (III) oxidation accelerated by B. laterosporus could be an effective method to alleviate As (III) toxicity on rice seedlings. PMID:26024808

  18. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium

    PubMed Central

    Watts, Mathew P.; Khijniak, Tatiana V.; Boothman, Christopher

    2015-01-01

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  19. Studies of the extracellular glycocalyx of the anaerobic cellulolytic bacterium Ruminococcus albus 7.

    PubMed

    Weimer, Paul J; Price, Neil P J; Kroukamp, Otini; Joubert, Lydia-Marie; Wolfaardt, Gideon M; Van Zyl, Willem H

    2006-12-01

    Anaerobic cellulolytic bacteria are thought to adhere to cellulose via several mechanisms, including production of a glycocalyx containing extracellular polymeric substances (EPS). As the compositions and structures of these glycocalyces have not been elucidated, variable-pressure scanning electron microscopy (VP-SEM) and chemical analysis were used to characterize the glycocalyx of the ruminal bacterium Ruminococcus albus strain 7. VP-SEM revealed that growth of this strain was accompanied by the formation of thin cellular extensions that allowed the bacterium to adhere to cellulose, followed by formation of a ramifying network that interconnected individual cells to one another and to the unraveling cellulose microfibrils. Extraction of 48-h-old whole-culture pellets (bacterial cells plus glycocalyx [G] plus residual cellulose [C]) with 0.1 N NaOH released carbohydrate and protein in a ratio of 1:5. Boiling of the cellulose fermentation residue in a neutral detergent solution removed almost all of the adherent cells and protein while retaining a residual network of adhering noncellular material. Trifluoroacetic acid hydrolysis of this residue (G plus C) released primarily glucose, along with substantial amounts of xylose and mannose, but only traces of galactose, the most abundant sugar in most characterized bacterial exopolysaccharides. Linkage analysis and characterization by nuclear magnetic resonance suggested that most of the glucosyl units were not present as partially degraded cellulose. Calculations suggested that the energy demand for synthesis of the nonprotein fraction of EPS by this organism represents only a small fraction (<4%) of the anabolic ATP expenditure of the bacterium. PMID:17028224

  20. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    PubMed

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  1. NH4+ transport system of a psychrophilic marine bacterium, Vibrio sp. strain ABE-1.

    PubMed

    Chou, M; Matsunaga, T; Takada, Y; Fukunaga, N

    1999-05-01

    NH4(+) transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3+) into the intact cells. 14CH3NH3+ uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3+ as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3+ completely inhibited 14CH3NH3+ uptake. These results indicate that 14CH3NH3+ uptake in this bacterium is mediated via an NH4+ transport system and not by a specific carrier for CH3NH3+. The respiratory substrate succinate was required to drive 14CH3NH3+ uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl activated 14CH3NH3+ uptake. The 14CH3NH3+ uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0 degrees and 15 degrees C, and the apparent Km value for CH3NH3+ of the uptake did not change significantly over the temperature range from 0 degrees to 25 degrees C. Thus, the NH4+ transport system of this bacterium was highly active at low temperatures. PMID:10356994

  2. Measurement of soil bacterial colony temperatures and isolation of a high heat-producing bacterium

    PubMed Central

    2013-01-01

    Background The cellular temperatures of microorganisms are considered to be the same as those of their surroundings because the cellular volume is too small to maintain a cellular temperature that is different from the ambient temperature. However, by forming a colony or a biofilm, microorganisms may be able to maintain a cellular temperature that is different from the ambient temperature. In this study, we measured the temperatures of bacterial colonies isolated from soils using an infrared imager and investigated the thermogenesis by a bacterium that increases its colony temperature. Results The temperatures of some colonies were higher or lower than that of the surrounding medium. A bacterial isolate with the highest colony temperature was identified as Pseudomonas putida. This bacterial isolate had an increased colony temperature when it grew at a temperature suboptimal for its growth. Measurements of heat production using a microcalorimeter showed that the temperature of this extraordinary, microcalorimetrically determined thermogenesis corresponded with the thermographically observed increase in bacterial colony temperature. When investigating the effects of the energy source on this thermal behavior, we found that heat production by this bacterium increased without additional biomass production at a temperature suboptimal for its growth. Conclusions We found that heat production by bacteria affected the bacterial colony temperature and that a bacterium identified as Pseudomonas putida could maintain a cellular temperature different from the ambient temperature, particularly at a sub-optimal growth temperature. The bacterial isolate P. putida KT1401 increased its colony temperature by an energy-spilling reaction when the incubation temperature limited its growth. PMID:23497132

  3. Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine

    SciTech Connect

    Bhupathiraju, V.K.; Sharma, P.K.; Tanner, R.S.; McInerney, M.J.; Oren, A.; Woese, C.R.

    1994-07-01

    A strictly anaerobic, moderately halophilic, gram-negative bacterium was isolated from a highly saline oil field brine. The bacterium was a non-spore-forming, nonmotile rod, appearing singly, in pairs, or occasionally as long chains, and measured 0.3 to 0.4 by 2.6 to 4 {micro}m. The bacterium had a specific requirement for NaCl and grew at NaCl concentrations of between 6 and 24%, with optimal growth at 9% NaCl. The isolate grew at temperatures of between 22 and 51 C and pH values of between 5.6 and 8.0. The doubling time in a complex medium containing 10% NaCl was 9 h. Growth was inhibited by chloramphenicol, tetracycline, and penicillin but not by cycloheximide or azide. Fermentable substrates were predominantly carbohydrates. The end products of glucose fermentation were acetate, ethanol, CO{sub 2}, and H{sub 2}. The major components of the cellular fatty acids were C{sub 14:0}, C{sub 16:0}, C{sub 16:1}, and C{sub 17:0 cyc} acids. The DNA base composition of the isolate was 34 mol% G+C. Oligonucleotide catalog and sequence analyses of the 16S rRNA showed that strain VS-752{sup T} was most closely related to Haloanaerobium praevalens GSL{sup T} (ATCC 33744), the sole member of the genus Haloanaerobium. The authors propose that strain VS-752 (ATCC 51327) by established as the type strain of a new species, Haloanaerobium salsugo, in the genus Haloanaerobium. 40 refs., 3 figs, 5 tabs.

  4. Development of a Markerless Deletion System for the Fish-Pathogenic Bacterium Flavobacterium psychrophilum

    PubMed Central

    Gómez, Esther; Álvarez, Beatriz; Duchaud, Eric; Guijarro, José A.

    2015-01-01

    Flavobacterium psychrophilum is a Gram-negative fish pathogen that causes important economic losses in aquaculture worldwide. Although the genome of this bacterium has been determined, the function and relative importance of genes in relation to virulence remain to be established. To investigate their respective contribution to the bacterial pathogenesis, effective tools for gene inactivation are required. In the present study, a markerless gene deletion system has been successfully developed for the first time in this bacterium. Using this method, the F. psychrophilum fcpB gene, encoding a predicted cysteine protease homologous to Streptococcus pyogenes streptopain, was deleted. The developed system involved the construction of a conjugative plasmid that harbors the flanking sequences of the fcpB gene and an I-SceI meganuclease restriction site. Once this plasmid was integrated in the genome by homologous recombination, the merodiploid was resolved by the introduction of a plasmid expressing I-SceI under the control of the fpp2 F. psychrophilum inducible promoter. The resulting deleted fcpB mutant presented a decrease in extracellular proteolytic activity compared to the parental strain. However, there were not significant differences between their LD50 in an intramuscularly challenged rainbow trout infection model. The mutagenesis approach developed in this work represents an improvement over the gene inactivation tools existing hitherto for this “fastidious” bacterium. Unlike transposon mutagenesis and gene disruption, gene markerless deletion has less potential for polar effects and allows the mutation of virtually any non-essential gene or gene clusters. PMID:25692569

  5. Pontibacter diazotrophicus sp. nov., a Novel Nitrogen-Fixing Bacterium of the Family Cytophagaceae

    PubMed Central

    Xu, Linghua; Zeng, Xian-Chun; Nie, Yao; Luo, Xuesong; Zhou, Enmin; Zhou, Lingli; Pan, Yunfan; Li, Wenjun

    2014-01-01

    Few diazotrophs have been found to belong to the family Cytophagaceae so far. In the present study, a Gram-negative, rod-shaped bacterium that forms red colonies, was isolated from sands of the Takalamakan desert. It was designated H4XT. Phylogenetic and biochemical analysis indicated that the isolate is a new species of the genus Pontibacter. The 16S rRNA gene of H4XT displays 94.2–96.8% sequence similarities to those of other strains in Pontibacter. The major respiratory quinone is menaquinone-7 (MK-7). The DNA G+C content is 46.6 mol%. The major cellular fatty acids are iso-C15∶0, C16∶1ω5c, summed feature 3 (containing C16∶1ω6c and/or C16∶1ω7c) and summed feature 4 (comprising anteiso-C17∶1B and/or iso-C17∶1I). The major polar lipids are phosphatidylethanolamine (PE), one aminophospholipid (APL) and some unknown phospholipids (PLs). It is interesting to see that this bacterium can grow very well in a nitrogen-free medium. PCR amplification suggested that the bacterium possesses at least one type of nitrogenase gene. Acetylene reduction assay showed that H4XT actually possesses nitrogen-fixing activity. Therefore, it can be concluded that H4XT is a new diazotroph. We thus referred it to as Pontibacter diazotrophicus sp. nov. The type strain is H4XT ( = CCTCC AB 2013049T = NRRL B-59974T). PMID:24647674

  6. Draft Genome Sequence of the Endophytic Strain Rhodococcus kyotonensis KB10, a Potential Biodegrading and Antibacterial Bacterium Isolated from Arabidopsis thaliana

    PubMed Central

    Hong, Chi Eun; Jo, Sung Hee

    2016-01-01

    Rhodococcus kyotonensis KB10 is an endophytic bacterium isolated from Arabidopsis thaliana. The organism showed mild antibacterial activity against the phytopathogen Pseudomonas syringae pv. tomato DC3000. This study reports the genome sequence of R. kyotonensis KB10. This bacterium contains an ectoine biosynthesis gene cluster and has the potential to degrade nitroaromatic compounds. The identified bacterium may be a suitable biocontrol agent and degrader of environmental pollutants. PMID:27389269

  7. Draft Genome Sequence of the Endophytic Strain Rhodococcus kyotonensis KB10, a Potential Biodegrading and Antibacterial Bacterium Isolated from Arabidopsis thaliana.

    PubMed

    Hong, Chi Eun; Jo, Sung Hee; Jeong, Haeyoung; Park, Jeong Mee

    2016-01-01

    Rhodococcus kyotonensis KB10 is an endophytic bacterium isolated from Arabidopsis thaliana The organism showed mild antibacterial activity against the phytopathogen Pseudomonas syringae pv. tomato DC3000. This study reports the genome sequence of R. kyotonensis KB10. This bacterium contains an ectoine biosynthesis gene cluster and has the potential to degrade nitroaromatic compounds. The identified bacterium may be a suitable biocontrol agent and degrader of environmental pollutants. PMID:27389269

  8. Complete genome of a coastal marine bacterium Muricauda lutaonensis KCTC 22339(T).

    PubMed

    Oh, Jeongsu; Choe, Hanna; Kim, Byung Kwon; Kim, Kyung Mo

    2015-10-01

    Muricauda lutaonensis KCTC 22339(T) is a yellow-pigmented, gram-negative, rod-shaped bacterium that was isolated from a coastal hot spring of a volcanic island in the Pacific Ocean, off the eastern coast of Taiwan. We here report the complete genome of M. lutaonensis KCTC 22339(T), which consists of 3,274,259bp with the G+C content of 44.97%. The completion of the M. lutaonensis genome sequence is expected to provide a valuable resource for understanding the secondary metabolic pathways related to bacterial pigmentation. PMID:25986927

  9. Genome sequence of Xanthomonas sacchari R1, a biocontrol bacterium isolated from the rice seed.

    PubMed

    Fang, Yunxia; Lin, Haiyan; Wu, Liwen; Ren, Deyong; Ye, Weijun; Dong, Guojun; Zhu, Li; Guo, Longbiao

    2015-07-20

    Xanthomonas sacchari, was first identified as a pathogenic bacterium isolated from diseased sugarcane in Guadeloupe. In this study, R1 was first isolated from rice seed samples from Philippines in 2002. The antagonistic ability against several rice pathogens raises our attention. The genomic feature of this strain was described in this paper. The total genome size of X. sacchari R1 is 5,000,479 bp with 4315 coding sequences (CDS), 59 tRNAs, 2rRNAs and one plasmid. PMID:25931193

  10. Aggregation of the rhizospheric bacterium Azospirillum brasilense in response to oxygen

    NASA Astrophysics Data System (ADS)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2016-04-01

    Azospirillum brasilense spp. have ecological, scientific and agricultural importance. As model plant growth promoting rhizobacteria they interact with a large variety of plants, including important food and cash crops. Azospirillum strains are known for their production of plant growth hormones that enhance root systems and for their ability to fix nitrogen. Azospirillum cells transform in response to environmental cues. The production of exopolysaccharides and cell aggregation during cellular transformation are important steps in the attachment of Azospirillum to roots. We investigate signals that induce cellular transformation and aggregation in the Azospirillum and report on the importance of oxygen to the process of aggregation in this rhizospheric bacterium.

  11. Cadmium-nickel toxicity interactions towards a bacterium, filamentous fungi, and a cultured mammalian cell line

    SciTech Connect

    Babich, H.; Shopsis, C.; Borenfreund, E.

    1986-10-01

    The response of the biota to exposure to individual metals may differ from its response to multiple metals, as mixtures of metals may interact antagonistically or synergistically in their resultant toxicity. The present study evaluated the effects of a combination of Cd and Ni on the freshwater bacterium, Aeromonas hydrophila, the terrestrial fungi, Trichodema viride and Aspergillus niger, and the mammalian cell line, BALB/c mouse 3T3 fibroblasts. This particular spectrum of target cells was selected because studies in the literature show a wide variety of possible interactions between Cd and Ni in their combined toxicities towards bacteria cyanobacteria, slime molds, isolated rat hepatocytes, and rats.

  12. An Updated genome annotation for the model marine bacterium Ruegeria pomeroyi DSS-3

    PubMed Central

    2014-01-01

    When the genome of Ruegeria pomeroyi DSS-3 was published in 2004, it represented the first sequence from a heterotrophic marine bacterium. Over the last ten years, the strain has become a valuable model for understanding the cycling of sulfur and carbon in the ocean. To ensure that this genome remains useful, we have updated 69 genes to incorporate functional annotations based on new experimental data, and improved the identification of 120 protein-coding regions based on proteomic and transcriptomic data. We review the progress made in understanding the biology of R. pomeroyi DSS-3 and list the changes made to the genome. PMID:25780504

  13. Complete genome sequence of Enterobacter cloacae GGT036: a furfural tolerant soil bacterium.

    PubMed

    Gong, Gyeongtaek; Um, Youngsoon; Park, Tai Hyun; Woo, Han Min

    2015-01-10

    Enterobacter cloacae is a facultative anaerobic bacterium to be an important cause of nosocomial infection. However, the isolated E. cloacae GGT036 showed higher furfural-tolerant cellular growth, compared to industrial relevant strains such as Escherichia coli and Corynebacterium glutamicum. Here, we report the complete genome sequence of E. cloacae GGT036 isolated from Mt. Gwanak, Seoul, Republic of Korea. The genomic DNA sequence of E. cloacae GGT036 will provide valuable genetic resources for engineering of industrially relevant strains being tolerant to cellular inhibitors present in lignocellulosic hydrolysates. PMID:25444880

  14. Illuminating the landscape of host–pathogen interactions with the bacterium Listeria monocytogenes

    PubMed Central

    Cossart, Pascale

    2011-01-01

    Listeria monocytogenes has, in 25 y, become a model in infection biology. Through the analysis of both its saprophytic life and infectious process, new concepts in microbiology, cell biology, and pathogenesis have been discovered. This review will update our knowledge on this intracellular pathogen and highlight the most recent breakthroughs. Promising areas of investigation such as the increasingly recognized relevance for the infectious process, of RNA-mediated regulations in the bacterium, and the role of bacterially controlled posttranslational and epigenetic modifications in the host will also be discussed. PMID:22114192

  15. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium

    SciTech Connect

    Maurice, P.

    2004-12-13

    This project investigated the effects of an aerobic Pseudomonas mendocina bacterium on the dissolution of Fe(III)(hydr)oxides. The research is important because metals and radionuclides that adsorb to Fe(III)(hydr)oxides could potentially be remobilized by dissolving bacteria. We showed that P. mendocina is capable of dissolving Fe-bearing minerals by a variety of mechanisms, including production of siderophores, pH changes, and formation of reductants. The production of siderophores by P. mendocina was quantified under a variety of growth conditions. Finally, we demonstrated that microbial siderophores may adsorb to and enhance dissolution of clay minerals.

  16. Complete genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344.

    PubMed

    Wibberg, Daniel; Luque-Almagro, Víctor M; Igeño, Ma Isabel; Bremges, Andreas; Roldán, Ma Dolores; Merchán, Faustino; Sáez, Lara P; Guijo, Ma Isabel; Manso, Ma Isabel; Macías, Daniel; Cabello, Purificación; Becerra, Gracia; Ibáñez, Ma Isabel; Carmona, Ma Isabel; Escribano, Ma María Paz; Castillo, Francisco; Sczyrba, Alexander; Moreno-Vivián, Conrado; Blasco, Rafael; Pühler, Alfred; Schlüter, Andreas

    2014-04-10

    Pseudomonas pseudoalcaligenes CECT5344, a Gram-negative bacterium isolated from the Guadalquir River (Córdoba, Spain), is able to utilize different cyano-derivatives. Here, the complete genome sequence of P. pseudoalcaligenes CECT5344 harboring a 4,686,340bp circular chromosome encoding 4513 genes and featuring a GC-content of 62.34% is reported. Necessarily, remaining gaps in the genome had to be closed by assembly of few long reads obtained from PacBio single molecule real-time sequencing. Here, the first complete genome sequence for the species P. pseudoalcaligenes is presented. PMID:24553071

  17. Coarse grained simulation reveals antifreeze properties of hyperactive antifreeze protein from Antarctic bacterium Colwellia sp.

    NASA Astrophysics Data System (ADS)

    Nguyen, Hung; Van, Thanh Dac; Le, Ly

    2015-10-01

    The novel hyperactive antifreeze protein (AFP) of Antarctic sea ice bacterium Colwellia sp. provides a target for studying the protection of psychrophilic microgoranisms against freezing environment. Interestingly, the Colwellia sp. hyperactive antifreeze protein (ColAFP) was crystallized without the structural dynamic characteristics. Here, the result indicated, through coarse grained simulation of ColAFP under various subfreezing temperature, that ColAFP remains active at temperature of equal and greater than 275 K (∼2 °C). Extensive simulation analyses also revealed the adaptive mechanism of ColAFP in subfreezing environment. Our result provides a structural dynamic understanding of the ColAFP.

  18. Chronic granulomatous disease: fatal septicemia caused by an unnamed gram-negative bacterium.

    PubMed Central

    Seger, R A; Hollis, D G; Weaver, R E; Hitzig, W H

    1982-01-01

    A 2-year-old boy with proven X-linked chronic granulomatous disease was placed under continuous co-trimoxazole prophylaxis. He remained free of infection for 4 years. At age 6.25 years, he suddenly developed a fever with no localizing signs and died 16 days later in septic shock. A gram-negative, catalase-positive, halophilic, aerobic bacterium was cultured from blood, bone marrow, and ascitic fluid. This organism could not be identified in microbiological laboratories in Europe and the United States. Its biochemical features indicate that it may belong to a species which has not previously been described. PMID:7153335

  19. Complete Genome Sequence of the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus aurantiacus

    SciTech Connect

    Tang, Kuo-Hsiang; Barry, Kerrie; Chertkov, Olga; Dalin, Eileen; Han, Cliff; Hauser, Loren John; Honchak, Barbara M; Karbach, Lauren E; Land, Miriam L; Lapidus, Alla L.; Larimer, Frank W; Mikhailova, Natalia; Pitluck, Sam; Pierson, Beverly K

    2011-01-01

    Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria.

  20. Numerical Simulation of the Twitching Motility of Bacterium Crawling on a Solid Surface

    NASA Astrophysics Data System (ADS)

    Morikawa, Ryota; Tamakoshi, Masatada; Miyakawa, Takeshi; Takasu, Masako

    A dynamics model of bacterial twitching motility is devised. A bacterial body is bound on a plane surface and driven by multiple type IV pili (TFP) which are appendages of the bacterium. The drag force following Stokes' law also applies to the bacterial body in the viscous fluid. By using the individual model, the numerical simulations are performed and the velocities and the rotational velocity of the bacterial body are investigated. From the results of the simulations, a rapid motion with rotationcalled slingshot, which was found in P. aeruginosa, is reproduced. There is a possibility that the slingshot motion may be carried out widely in many species of bacteria having TFP.

  1. Bisucaberin B, a linear hydroxamate class siderophore from the marine bacterium Tenacibaculum mesophilum.

    PubMed

    Fujita, Masaki J; Nakano, Koji; Sakai, Ryuichi

    2013-01-01

    A siderophore, named bisucaberin B, was isolated from Tenacibaculum mesophilum bacteria separated from a marine sponge collected in the Republic of Palau. Using spectroscopic and chemical methods, the structure of bisucaberin B (1) was clearly determined to be a linear dimeric hydroxamate class siderophore. Although compound 1 is an open form of the known macrocyclic dimer bisucaberin (2), and was previously described as a bacterial degradation product of desferrioxamine B (4), the present report is the first description of the de novo biosynthesis of 1. To the best of our knowledge, compound 1 is the first chemically characterized siderophore isolated from a bacterium belonging to the phylum Bacteroidetes. PMID:23549298

  2. Complete genome sequence of Pseudomonas azotoformans S4, a potential biocontrol bacterium.

    PubMed

    Fang, Yang; Wu, Lijuan; Chen, Guoqing; Feng, Guozhong

    2016-06-10

    Pseudomonas azotoformans is a Gram-negative bacterium and infects cereal grains, especially rice. P. azotoformans S4 from soil sample derived from Lijiang, Yunnan Province, China, appeared to be strong inhibitory activity against Fusarium fujikurio, a serious rice fungal pathogen. Here, we present the complete genome of P. azotoformans S4, which consists of 6,859,618bp with a circle chromosome, 5991 coding DNA sequences, 70 tRNA and 19 rRNA. The genomic analysis revealed that 9 candidate gene clusters are involved in the biosynthesis of secondary metabolites. PMID:27080451

  3. A bacterium that can grow by using arsenic instead of phosphorus

    USGS Publications Warehouse

    Wolfe-Simon, Felisa; Blum, J.S.; Kulp, T.R.; Gordon, G.W.; Hoeft, S.E.; Pett-Ridge, J.; Stolz, J.F.; Webb, S.M.; Weber, P.K.; Davies, P.C.W.; Anbar, A.D.; Oremland, R.S.

    2011-01-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.

  4. Aerobic Reduction of Arsenate by a Bacterium Isolated From Activated Sludge

    NASA Astrophysics Data System (ADS)

    Kozai, N.; Ohnuki, T.; Hanada, S.; Nakamura, K.; Francis, A. J.

    2006-12-01

    Microlunatus phosphovorus strain NM-1 is a polyphosphate-accumulating bacterium isolated from activated sludge. This bacterium takes up a large amount of polyphosphate under aerobic conditions and release phosphate ions by hydrolysis of polyphosphate to orthophosphate under anaerobic conditions to derive energy for taking up substrates. To understand the nature of this strain, especially, influence of potential contaminants in sewage and wastewater on growth, we have been investigating behavior of this bacterium in media containing arsenic. The present paper mainly reports reduction of arsenate by this bacterium under aerobic conditions. The strain NM-1 (JCM 9379) was aerobically cultured at 30 °C in a nutrient medium containing 2.5 g/l peptone, 0.5 g/l glucose, 1.5 g/l yeast extract, and arsenic [Na2HAsO4 (As(V)) or Na3AsO3 (As(III))] at concentrations between 0 and 50 mM. The cells collected from arsenic-free media were dispersed in buffer solutions containing 2mM HEPES, 10mM NaCl, prescribed concentrations of As(V), and 0-0.2 percent glucose. Then, this cell suspension was kept at 20 °C under aerobic or anaerobic conditions. The speciation of arsenic was carried out by ion chromatography and ICP-MS. The growth of the strain under aerobic conditions was enhanced by the addition of As(V) at the concentration between 1 and 10 mM. The maximum optical density of the culture in the medium containing 5mM As(V) was 1.4 times greater than that of the control culture. Below the As(V) concentration of 10mM, most of the As(V) was reduced to As(III). The growth of the strain under anaerobic conditions has not been observed so far. The cells in the buffer solutions reduced As(V) under aerobic condition. The reduction was enhanced by the addition of glucose. However, the cell did not reduce As(V) under anaerobic conditions. The strain NM-1 showed high resistance to As(V) and As(III). The maximum optical density of the culture grown in a medium containing 50 mM As(V) was only

  5. A bacterium that can grow by using arsenic instead of phosphorus

    SciTech Connect

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2010-11-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus. Although these six elements make up nucleic acids, proteins and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, CA, which substitutes arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical significance.

  6. Complete genome sequence of Pseudomonas azotoformans S4, a potential biocontrol bacterium

    PubMed Central

    Fang, Yang; Wu, Lijuan; Chen, Guoqing; Feng, Guozhong

    2016-01-01

    Pseudomonas azotoformans is a Gram-negative bacterium and infects cereal grains, especially rice. P. azotoformans S4 from soil sample derived from Lijiang, Yunnan Province, China, appeared to be strong inhibitory activity against Fusarium fujikurio, a serious rice fungal pathogen. Here, we present the complete genome of P. azotoformans S4, which consists of 6,859,618 bp with a circle chromosome, 5991 coding DNA sequences, 70 tRNA and 19 rRNA. The genomic analysis revealed that 9 candidate gene clusters are involved in the biosynthesis of secondary metabolites. PMID:27080451

  7. Response to Comments on "A Bacterium That Can Grow Using Arsenic Instead of Phosphorus"

    SciTech Connect

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2011-03-07

    Concerns have been raised about our recent study describing a bacterium that can grow using arsenic (As) instead of phosphorus (P). Our data suggested that As could act as a substitute for P in major biomolecules in this organism. Although the issues raised are of investigative interest, we contend that they do not invalidate our conclusions. We argue that while no single line of evidence we presented was sufficient to support our interpretation of the data, taken as an entire dataset we find no plausible alternative to our conclusions. Here we reply to the critiques and provide additional arguments supporting the assessment of the data we reported.

  8. Clostridium perfringens: a flesh-eating bacterium living in your garden.

    PubMed

    Rothwell, Ann

    2010-10-01

    Gas gangrene is a painful, rapidly developing and potentially fatal infection despite antibiotic treatment. During the First World War thousands of soldiers died from this disease. Dr Alexis Carrel pioneered a controversial method of irrigating wounds with Dakin's solution to destroy Clostridium perfringens, a bacterium found in heavily fertilised soils that causes gas gangrene. Although this method is no longer used due to the discovery of antibiotics, many of his other ideas, such as scientifically determining the type and number of bacteria and delaying the closure of a wound until the bacteria had been eradicated, are still used today. PMID:21049805

  9. Partial genome sequence of the haloalkaliphilic soda lake bacterium Thioalkalivibrio thiocyanoxidans ARh 2T

    DOE PAGESBeta

    Berben, Tom; Sorokin, Dimitry Y.; Ivanova, Natalia; Pati, Amrita; Kyrpides, Nikos; Goodwin, Lynne A.; Woyke, Tanja; Muyzer, Gerard

    2015-10-26

    Thioalkalivibrio thiocyanoxidans strain ARh 2T is a sulfur-oxidizing bacterium isolated from haloalkaline soda lakes. It is a motile, Gram-negative member of the Gammaproteobacteria. Remarkable properties include the ability to grow on thiocyanate as the sole energy, sulfur and nitrogen source, and the capability of growth at salinities of up to 4.3 M total Na+. This draft genome sequence consists of 61 scaffolds comprising 2,765,337 bp, and contains 2616 protein-coding and 61 RNA-coding genes. In conclusion, this organism was sequenced as part of the Community Science Program of the DOE Joint Genome Institute.

  10. An O2-sensing stressosome from a Gram-negative bacterium

    PubMed Central

    Jia, Xin; Wang, Jian-bo; Rivera, Shannon; Duong, Duc; Weinert, Emily E.

    2016-01-01

    Bacteria have evolved numerous pathways to sense and respond to changing environmental conditions, including, within Gram-positive bacteria, the stressosome complex that regulates transcription of general stress response genes. However, the signalling molecules recognized by Gram-positive stressosomes have yet to be identified, hindering our understanding of the signal transduction mechanism within the complex. Furthermore, an analogous pathway has yet to be described in Gram-negative bacteria. Here we characterize a putative stressosome from the Gram-negative bacterium Vibrio brasiliensis. The sensor protein RsbR binds haem and exhibits ligand-dependent control of the stressosome complex activity. Oxygen binding to the haem decreases activity, while ferrous RsbR results in increased activity, suggesting that the V. brasiliensis stressosome may be activated when the bacterium enters anaerobic growth conditions. The findings provide a model system for investigating ligand-dependent signalling within stressosome complexes, as well as insights into potential pathways controlled by oxygen-dependent signalling within Vibrio species. PMID:27488264

  11. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    PubMed

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment. PMID:26086561

  12. A highly infective plant-associated bacterium influences reproductive rates in pea aphids

    PubMed Central

    Hendry, Tory A.; Clark, Kelley J.; Baltrus, David A.

    2016-01-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321

  13. Application of DNA adductomics to soil bacterium Sphingobium sp. strain KK22.

    PubMed

    Kanaly, Robert A; Micheletto, Ruggero; Matsuda, Tomonari; Utsuno, Youko; Ozeki, Yasuhiro; Hamamura, Natsuko

    2015-10-01

    Toward the development of ecotoxicology methods to investigate microbial markers of impacts of hydrocarbon processing activities, DNA adductomic analyses were conducted on a sphingomonad soil bacterium. From growing cells that were exposed or unexposed to acrolein, a commonly used biocide in hydraulic fracturing processes, DNA was extracted, digested to 2'-deoxynucleosides and analyzed by liquid chromatography-positive ionization electrospray-tandem mass spectrometry in selected reaction monitoring mode transmitting the [M + H](+) > [M + H - 116](+) transition over 100 transitions. Overall data shown as DNA adductome maps revealed numerous putative DNA adducts under both conditions with some occurring specifically for each condition. Adductomic analyses of triplicate samples indicated that elevated levels of some targeted putative adducts occurred in exposed cells. Two exposure-specific adducts were identified in exposed cells as 3-(2'-deoxyribosyl)-5,6,7,8-tetrahydro-6-hydroxy-(and 8-hydroxy-)pyrimido[1,2-a]- purine-(3H)-one (6- and 8-hydroxy-PdG) following synthesis of authentic standards of these compounds and subsequent analyses. A time course experiment showed that 6- and 8-hydroxy-PdG were detected in bacterial DNA within 30 min of acrolein exposure but were not detected in unexposed cells. This work demonstrated the first application of DNA adductomics to examine DNA damage in a bacterium and sets a foundation for future work. PMID:26305056

  14. Melanin from the Nitrogen-Fixing Bacterium Azotobacter chroococcum: A Spectroscopic Characterization

    PubMed Central

    Banerjee, Raja

    2014-01-01

    Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state 13C NMR), we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation. PMID:24416247

  15. The effect of low pH on protein expression by the probiotic bacterium Lactobacillus reuteri.

    PubMed

    Lee, KiBeom; Lee, Hong-Gu; Pi, KyungBae; Choi, Yun-Jaie

    2008-04-01

    The ability of a lactic acid bacterium to survive passage through the gastrointestinal tract is a key point in its function as a probiotic. In this study, protein synthesis by the probiotic bacterium, Lactobacillus reuteri, was analyzed under transiently decreased pH conditions. L. reuteri cells grown to the midexponential growth phase at 37 degrees C were exposed to transient (1 h) low-pH stresses from pH 6.8 to pH 5.0, 4.5, or 4.0. 2-DE allowed us to identify 40 common proteins that were consistently and significantly altered under all three low-pH conditions. PMF was used to identify these 40 proteins, and functional annotation allowed them to be distributed to six major classes: (i) transport and binding proteins; (ii) transcription-translation; (iii) nucleotide metabolism and amino acid biosynthesis; (iv) carbon energy metabolism; (v) pH homeostasis and stress; and (vi) unassigned. These findings provide new insight into the inducible mechanisms underlying the capacity of gastrointestinal L. reuteri to tolerate acid stress. PMID:18351691

  16. Accurate Cell Division in Bacteria: How Does a Bacterium Know Where its Middle Is?

    NASA Astrophysics Data System (ADS)

    Howard, Martin; Rutenberg, Andrew

    2004-03-01

    I will discuss the physical principles lying behind the acquisition of accurate positional information in bacteria. A good application of these ideas is to the rod-shaped bacterium E. coli which divides precisely at its cellular midplane. This positioning is controlled by the Min system of proteins. These proteins coherently oscillate from end to end of the bacterium. I will present a reaction-diffusion model that describes the diffusion of the Min proteins, and their binding/unbinding from the cell membrane. The system possesses an instability that spontaneously generates the Min oscillations, which control accurate placement of the midcell division site. I will then discuss the role of fluctuations in protein dynamics, and investigate whether fluctuations set optimal protein concentration levels. Finally I will examine cell division in a different bacteria, B. subtilis. where different physical principles are used to regulate accurate cell division. See: Howard, Rutenberg, de Vet: Dynamic compartmentalization of bacteria: accurate division in E. coli. Phys. Rev. Lett. 87 278102 (2001). Howard, Rutenberg: Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. Phys. Rev. Lett. 90 128102 (2003). Howard: A mechanism for polar protein localization in bacteria. J. Mol. Biol. 335 655-663 (2004).

  17. Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036.

    PubMed

    Choi, Sun Young; Gong, Gyeongtaek; Park, Hong-Sil; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2015-01-10

    Detoxification process of cellular inhibitors including furfural is essential for production of bio-based chemicals from lignocellulosic biomass. Here we isolated an extreme furfural-tolerant bacterium Enterobacter cloacae GGT036 from soil sample collected in Mt. Gwanak, Republic of Korea. Among isolated bacteria, only E. cloacae GGT036 showed cell growth with 35 mM furfural under aerobic culture. Compared to the maximal half inhibitory concentration (IC50) of well-known industrial strains Escherichia coli (24.9 mM furfural) and Corynebacterium glutamicum (10 mM furfural) based on the cell density, IC50 of E. cloacae GGT036 (47.7 mM) was significantly higher after 24 h, compared to E. coli and C. glutamicum. Since bacterial cell growth was exponentially inhibited depending on linearly increased furfural concentrations in the medium, we concluded that E. cloacae GGT036 is an extreme furfural-tolerant bacterium. Recently, the complete genome sequence of E. cloacae GGT036 was announced and this could provide an insight for engineering of E. cloacae GGT036 itself or other industrially relevant bacteria. PMID:25444876

  18. Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture.

    PubMed Central

    Shima, J; Takase, S; Takahashi, Y; Iwai, Y; Fujimoto, H; Yamazaki, M; Ochi, K

    1997-01-01

    A mixed microbial culture capable of metabolizing deoxynivalenol was obtained from soil samples by an enrichment culture procedure. A bacterium (strain E3-39) isolated from the enrichment culture completely removed exogenously supplied deoxynivalenol from culture medium after incubation for 1 day. On the basis of morphological, physiological, and phylogenetic studies, strain E3-39 was classified as a bacterium belonging to the Agrobacterium-Rhizobium group. Thin-layer chromatographic analysis indicated the presence of one major and two minor metabolites of deoxynivalenol in ethyl acetate extracts of the E3-39 culture filtrates. The main metabolite was identified as 3-keto-4-deoxynivalenol by mass spectroscopy and 1H and 13C nuclear magnetic resonance analysis. The immunosuppressive toxicity of 3-keto-4-deoxynivalenol was evaluated by means of a bioassay based on the mitogen-induced and mitogen-free proliferations of mouse spleen lymphocytes. This compound exhibited a remarkably decreased (to less than one tenth) immunosuppressive toxicity relative to deoxynivalenol, indicating that the 3-OH group in deoxynivalenol is likely to be involved in exerting its immunosuppressive toxicity. Strain E3-39 was also capable of transforming 3-acetyldeoxynivalenol but not nivalenol and fusarenon-X. PMID:9327545

  19. Inflammasomes Coordinate Pyroptosis and Natural Killer Cell Cytotoxicity to Clear Infection by a Ubiquitous Environmental Bacterium.

    PubMed

    Maltez, Vivien I; Tubbs, Alan L; Cook, Kevin D; Aachoui, Youssef; Falcone, E Liana; Holland, Steven M; Whitmire, Jason K; Miao, Edward A

    2015-11-17

    Defective neutrophils in patients with chronic granulomatous disease (CGD) cause susceptibility to extracellular and intracellular infections. Microbes must first be ejected from intracellular niches to expose them to neutrophil attack, so we hypothesized that inflammasomes detect certain CGD pathogens upstream of neutrophil killing. Here, we identified one such ubiquitous environmental bacterium, Chromobacterium violaceum, whose extreme virulence was fully counteracted by the NLRC4 inflammasome. Caspase-1 protected via two parallel pathways that eliminated intracellular replication niches. Pyroptosis was the primary bacterial clearance mechanism in the spleen, but both pyroptosis and interleukin-18 (IL-18)-driven natural killer (NK) cell responses were required for liver defense. NK cells cleared hepatocyte replication niches via perforin-dependent cytotoxicity, whereas interferon-γ was not required. These insights suggested a therapeutic approach: exogenous IL-18 restored perforin-dependent cytotoxicity during infection by the inflammasome-evasive bacterium Listeria monocytogenes. Therefore, inflammasomes can trigger complementary programmed cell death mechanisms, directing sterilizing immunity against intracellular bacterial pathogens. PMID:26572063

  20. Non-specific immune response of bullfrog Rana catesbeiana to intraperitoneal injection of bacterium Aeromonas hydrophila

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Zou, Wenzheng; Yan, Qingpi

    2008-08-01

    Non-specific immune response of bullfrog Rana catesbeiana to pathogenic Aeromonas hydrophila was studied to 60 individuals in two groups. Each bullfrog in bacterium-injected group was injected intraperitoneally (i.p.) with 0.2 ml bacterial suspension at a density of 5.2 × 106 CFU/ml, while each one in control group injected i.p. with 0.2 ml sterile saline solution (0.85%, w/v). Three bullfrogs in both groups were sampled at 0, 1, 3, 7, 11, 15 and 20 days post-injection (dpi) for the evaluation of non-specific immune parameters. It was observed that intraperitoneal injection of A. hydrophila significantly increased the number of leucocytes and that of NBT-positive cells in peripheral blood. Significant increases in serum bactericidal activity and serum acid phosphatase activity were also observed in the bacterium-injected frogs when compared with those in the control group. However, a significant reduction was detected in vitro in phagocytosis activity of peripheral blood phagocytes. No significant difference in changes in the number of peripheral erythrocytes, serum superoxide dismutase (SOD) activity, and lysozyme activity was detected between the two groups. It is suggested that bullfrogs may produce a series of non-specific immune reactions in response to the A. hydrophila infection.