Science.gov

Sample records for acidophilic iron-oxidizing bacterium

  1. Uncovering a microbial enigma: isolation and characterization of the streamer-generating, iron-oxidizing, acidophilic bacterium "Ferrovum myxofaciens".

    PubMed

    Johnson, D Barrie; Hallberg, Kevin B; Hedrich, Sabrina

    2014-01-01

    A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of "acid streamer" growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified "overlay" solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolate from an abandoned copper mine ("Ferrovum myxofaciens" strain P3G) have been elucidated. "F. myxofaciens" is an extremely acidophilic, psychrotolerant obligate autotroph that appears to use only ferrous iron as an electron donor and oxygen as an electron acceptor. It appears to use the Calvin-Benson-Bassham pathway to fix CO2 and is diazotrophic. It also produces copious amounts of extracellular polymeric materials that cause cells to attach to each other (and to form small streamer-like growth in vitro) and to different solid surfaces. "F. myxofaciens" can catalyze the oxidative dissolution of pyrite and, like many other acidophiles, is tolerant of many (cationic) transition metals. "F. myxofaciens" and related clone sequences form a monophyletic group within the Betaproteobacteria distantly related to classified orders, with genera of the family Nitrosomonadaceae (lithoautotrophic, ammonium-oxidizing neutrophiles) as the closest relatives. On the basis of the phylogenetic and phenotypic differences of "F. myxofaciens" and other Betaproteobacteria, a new family, "Ferrovaceae," and order, "Ferrovales," within the class Betaproteobacteria are proposed. "F. myxofaciens" is the first extreme acidophile to be described in the class Betaproteobacteria.

  2. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1.

    PubMed

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective.

  3. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1

    PubMed Central

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective. PMID:27242761

  4. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1.

    PubMed

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective. PMID:27242761

  5. Uncovering a Microbial Enigma: Isolation and Characterization of the Streamer-Generating, Iron-Oxidizing, Acidophilic Bacterium “Ferrovum myxofaciens”

    PubMed Central

    Hallberg, Kevin B.; Hedrich, Sabrina

    2014-01-01

    A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of “acid streamer” growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified “overlay” solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolate from an abandoned copper mine (“Ferrovum myxofaciens” strain P3G) have been elucidated. “F. myxofaciens” is an extremely acidophilic, psychrotolerant obligate autotroph that appears to use only ferrous iron as an electron donor and oxygen as an electron acceptor. It appears to use the Calvin-Benson-Bassham pathway to fix CO2 and is diazotrophic. It also produces copious amounts of extracellular polymeric materials that cause cells to attach to each other (and to form small streamer-like growth in vitro) and to different solid surfaces. “F. myxofaciens” can catalyze the oxidative dissolution of pyrite and, like many other acidophiles, is tolerant of many (cationic) transition metals. “F. myxofaciens” and related clone sequences form a monophyletic group within the Betaproteobacteria distantly related to classified orders, with genera of the family Nitrosomonadaceae (lithoautotrophic, ammonium-oxidizing neutrophiles) as the closest relatives. On the basis of the phylogenetic and phenotypic differences of “F. myxofaciens” and other Betaproteobacteria, a new family, “Ferrovaceae,” and order, “Ferrovales,” within the class Betaproteobacteria are proposed. “F. myxofaciens” is the first extreme acidophile to be described in the class Betaproteobacteria. PMID:24242243

  6. Genome Sequence of the Acidophilic Iron Oxidizer Ferrimicrobium acidiphilum Strain T23T.

    PubMed

    Eisen, Sebastian; Poehlein, Anja; Johnson, D Barrie; Daniel, Rolf; Schlömann, Michael; Mühling, Martin

    2015-04-30

    Extremely acidophilic iron-oxidizing bacteria have largely been characterized for the phyla Proteobacteria and Nitrospira. Here, we report the draft genome of an iron-oxidizing and -reducing heterotrophic mesophile of the Actinobacteria, Ferrimicrobium acidiphilum, which was isolated from an abandoned pyrite mine. The genome sequence comprises 3.08 Mb.

  7. Genome Sequence of the Acidophilic Iron Oxidizer Ferrimicrobium acidiphilum Strain T23T

    PubMed Central

    Eisen, Sebastian; Poehlein, Anja; Johnson, D. Barrie; Daniel, Rolf; Schlömann, Michael

    2015-01-01

    Extremely acidophilic iron-oxidizing bacteria have largely been characterized for the phyla Proteobacteria and Nitrospira. Here, we report the draft genome of an iron-oxidizing and -reducing heterotrophic mesophile of the Actinobacteria, Ferrimicrobium acidiphilum, which was isolated from an abandoned pyrite mine. The genome sequence comprises 3.08 Mb. PMID:25931604

  8. Missing Iron-Oxidizing Acidophiles Highly Sensitive to Organic Compounds

    PubMed Central

    Ueoka, Nagayoshi; Kouzuma, Atsushi; Watanabe, Kazuya

    2016-01-01

    The genus Acidithiobacillus includes iron-oxidizing lithoautotrophs that thrive in acidic mine environments. Acidithiobacillus ferrooxidans is a representative species and has been extensively studied for its application to the bioleaching of precious metals. In our attempts to cultivate the type strain of A. ferrooxidans (ATCC 23270T), repeated transfers to fresh inorganic media resulted in the emergence of cultures with improved growth traits. Strains were isolated from the resultant culture by forming colonies on inorganic silica-gel plates. A representative isolate (strain NU-1) was unable to form colonies on agarose plates and was more sensitive to organics, such as glucose, than the type strain of A. ferrooxidans. Strain NU-1 exhibited superior growth traits in inorganic iron media to those of other iron-oxidizing acidithiobacilli, suggesting its potential for industrial applications. A draft genome of NU-1 uncovered unique features in catabolic enzymes, indicating that this strain is not a mutant of the A. ferrooxidans type strain. Our results indicate that the use of inorganic silica-gel plates facilitates the isolation of as-yet-unexamined iron-oxidizing acidithiobacilli from environmental samples and enrichment cultures. PMID:27356527

  9. Differentiation and identification of iron-oxidizing acidophilic bacteria using cultivation techniques and amplified ribosomal DNA restriction enzyme analysis.

    PubMed

    Johnson, D Barrie; Okibe, Naoko; Hallberg, Kevin B

    2005-03-01

    Acidophilic iron-oxidizing microorganisms are important both environmentally and in biotechnological applications. Although, as a group, they are readily detected by their ability to generate ferric iron (resulting in a distinctive color change in liquid media), these microbes highly diverse phylogenetically. Various other characteristics, such as optimum growth temperature, response to organic carbon sources, and cellular morphologies, facilitate, in some cases, identification of isolates to a genus or species level, although this approach has limitations and may give erroneous results. In this study, a combined approach of using physiological traits together with amplified ribosomal DNA restriction enzyme analysis (ARDREA) has been successful in identifying all known acidophilic iron-oxidizing bacteria to the species level. Computer-generated maps were used to identify restriction enzymes that allow the differentiation of the acidophiles, and these were confirmed experimentally using authentic bacterial strains. To test further the validity of this approach, six acidophilic moderately thermophilic iron-oxidizing bacteria isolated from Montserrat (West Indies) were analysed using the ARDREA protocol. Three of the isolates were identified as Sulfobacillus acidophilus-like, and one as Sulfobacillus thermosulfidooxidans-like bacteria. The fifth isolate gave DNA digest patterns that were distinct from all known strains of iron-oxidizing acidophiles. Subsequent sequencing of the 16S rRNA genes of these isolates confirmed the identity of the four Sulfobacillus isolates, and also that the fifth isolate was a novel species. Schematic diagrams showing how ARDREA may be used to rapidly identify all known acidophilic iron-oxidizing bacteria are presented.

  10. Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures

    SciTech Connect

    Bacelar-Nicolau, P.; Johnson, D.B.

    1999-02-01

    Seven strains of heterotrophic iron-oxidizing acidophilic bacteria were examined to determine their abilities to promote oxidative dissolution of pyrite (FeS{sub 2}) when they were grown in pure cultures and in mixed cultures with sulfur-oxidizing Thiobacillus spp. Only one of the isolates (strain T-24) oxidized pyrite when it was grown in pyrite-basal salts medium. However, when pyrite-containing cultures were supplemented with 0.02% (wt/vol) yeast extract, most of the isolates oxidized pyrite, and one (strain T-24) promoted rates of mineral dissolution similar to the rates observed with the iron-oxidizing autotroph Thiobacillus ferroxidans. Pyrite oxidation by another isolate (strain T-21) occurred in cultures containing between 0.005 and 0.05% (wt/vol) yeast extract but was completely inhibited in cultures containing 0.5% yeast extract. Ferrous iron was also needed for mineral dissolution by the iron-oxidizing heterotrophs, indicating that these organisms oxidize pyrite via the indirect mechanism. Mixed cultures of three isolates (strains T-21, T-232, and T-24) and the sulfur-oxidizing autotroph Thiobacillus thiooxidans promoted pyrite dissolution; since neither strains T-21 and T-23 nor T. thiooxidans could oxidize this mineral in yeast extract-free media, this was a novel example of bacterial synergism. Mixed cultures of strains T-21 and T-23 and the sulfur-oxidizing mixotroph Thiobacillus acidophilus also oxidized pyrite but to a lesser extent than did mixed cultures containing T. thiooxidans. Pyrite leaching by strain T -23 grown in an organic compound-rich medium and incubated either shaken or unshaken was also assessed. The potential environmental significance of iron-oxidizing heterotrophs in accelerating pyrite oxidation is discussed.

  11. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage.

    PubMed

    Edwards, K J; Bond, P L; Gihring, T M; Banfield, J F

    2000-03-10

    A new species of Archaea grows at pH approximately 0.5 and approximately 40 degrees C in slime streamers and attached to pyrite surfaces at a sulfide ore body, Iron Mountain, California. This iron-oxidizing Archaeon is capable of growth at pH 0. This species represents a dominant prokaryote in the environment studied (slimes and sediments) and constituted up to 85% of the microbial community when solution concentrations were high (conductivity of 100 to 160 millisiemens per centimeter). The presence of this and other closely related Thermoplasmales suggests that these acidophiles are important contributors to acid mine drainage and may substantially impact iron and sulfur cycles. PMID:10710303

  12. Geochemical Niches of Iron-Oxidizing Acidophiles in Acidic Coal Mine Drainage

    PubMed Central

    Kohl, Courtney; Grettenberger, Christen; Larson, Lance N.; Burgos, William D.

    2014-01-01

    A legacy of coal mining in the Appalachians has provided a unique opportunity to study the ecological niches of iron-oxidizing microorganisms. Mine-impacted, anoxic groundwater with high dissolved-metal concentrations emerges at springs and seeps associated with iron oxide mounds and deposits. These deposits are colonized by iron-oxidizing microorganisms that in some cases efficiently remove most of the dissolved iron at low pH, making subsequent treatment of the polluted stream water less expensive. We used full-cycle rRNA methods to describe the composition of sediment communities at two geochemically similar acidic discharges, Upper and Lower Red Eyes in Somerset County, PA, USA. The dominant microorganisms at both discharges were acidophilic Gallionella-like organisms, “Ferrovum” spp., and Acidithiobacillus spp. Archaea and Leptospirillum spp. accounted for less than 2% of cells. The distribution of microorganisms at the two sites could be best explained by a combination of iron(II) concentration and pH. Populations of the Gallionella-like organisms were restricted to locations with pH >3 and iron(II) concentration of >4 mM, while Acidithiobacillus spp. were restricted to pH <3 and iron(II) concentration of <4 mM. Ferrovum spp. were present at low levels in most samples but dominated sediment communities at pH <3 and iron(II) concentration of >4 mM. Our findings offer a predictive framework that could prove useful for describing the distribution of microorganisms in acid mine drainage, based on readily accessible geochemical parameters. PMID:25501473

  13. Draft Genome Sequence of the Iron-Oxidizing, Acidophilic, and Halotolerant "Thiobacillus prosperus" Type Strain DSM 5130.

    PubMed

    Ossandon, Francisco J; Cárdenas, Juan Pablo; Corbett, Melissa; Quatrini, Raquel; Holmes, David S; Watkin, Elizabeth

    2014-10-23

    "Thiobacillus prosperus" is a halotolerant mesophilic acidophile that gains energy through iron and sulfur oxidation. Its physiology is poorly understood. Here, we describe the principal genomic features of the type strain of T. prosperus, DSM 5130. This is the first public genome sequence of an acidophilic halotolerant bacterium.

  14. Draft Genome Sequence of the Iron-Oxidizing, Acidophilic, and Halotolerant “Thiobacillus prosperus” Type Strain DSM 5130

    PubMed Central

    Ossandon, Francisco J.; Cárdenas, Juan Pablo; Corbett, Melissa; Quatrini, Raquel; Holmes, David S.

    2014-01-01

    “Thiobacillus prosperus” is a halotolerant mesophilic acidophile that gains energy through iron and sulfur oxidation. Its physiology is poorly understood. Here, we describe the principal genomic features of the type strain of T. prosperus, DSM 5130. This is the first public genome sequence of an acidophilic halotolerant bacterium. PMID:25342676

  15. Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community

    SciTech Connect

    Verberkmoes, Nathan C; Singer, Steven; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2008-01-01

    We have discovered and characterized a novel membrane cytochrome of an iron oxidizing microbial biofilm obtained from the surface of extremely acidic mine water. This protein was initially identified through proteogenomic analysis as one of many novel gene products of Leptospirillum group II, the dominant bacterium of this community (Ram et al, 2005, Science 308, 1915-20). Extraction of proteins directly from environmental biofilm samples followed by membrane fractionation, detergent solubilization and gel filtration chromatography resulted in the purification of an abundant yellow-red protein. Covalently bound to heme, the purified cytochrome has a unique spectral signature at 572 nm and is thus called Cyt572. It readily oxidizes Fe2+ even in the presence of Fe3+ over a pH range from 0.95 to 3.4. Independent experiments involving 2D blue-native polyacrylamide gel electrophoresis and chemical crosslinking establish a homotetrameric structure for Cyt572. Also, circular dichroism spectroscopy indicates that the protein is largely beta-stranded, consistent with an outer membrane location. Although no significant sequence homology to the full-length cytochrome is detected in protein databases, environmental DNA sequences from both Leptospirillum groups II and III reveal at least 17 strain variants of Cyt572. Due to its abundance, cellular location and Fe2+ oxidation activity, we propose Cyt572 is the iron oxidase of the Leptospirillum bacteria, providing a critical function for fitness within the ecological niche of this acidophilic microbial community.

  16. Evidence of cell surface iron speciation of acidophilic iron-oxidizing microorganisms in indirect bioleaching process.

    PubMed

    Nie, Zhen-yuan; Liu, Hong-chang; Xia, Jin-lan; Yang, Yi; Zhen, Xiang-jun; Zhang, Li-Juan; Qiu, Guan-zhou

    2016-02-01

    While indirect model has been widely accepted in bioleaching, but the evidence of cell surface iron speciation has not been reported. In the present work the iron speciation on the cell surfaces of four typically acidophilic iron-oxidizing microorganism (mesophilic Acidithiobacillus ferrooxidans ATCC 23270, moderately thermophilic Leptospirillum ferriphilum YSK and Sulfobacillus thermosulfidooxidans St, and extremely thermophilic Acidianus manzaensis YN25) grown on different energy substrates (chalcopyrite, pyrite, ferrous sulfate and elemental sulfur (S(0))) were studied in situ firstly by using synchrotron-based micro- X-ray fluorescence analysis and X-ray absorption near-edge structure spectroscopy. Results showed that the cells grown on iron-containing substrates had apparently higher surface iron content than the cells grown on S(0). Both ferrous iron and ferric iron were detected on the cell surface of all tested AIOMs, and the Fe(II)/Fe(III) ratios of the same microorganism were affected by different energy substrates. The iron distribution and bonding state of single cell of A. manzaensis were then studied in situ by scanning transmission soft X-ray microscopy based on dual-energy contrast analysis and stack analysis. Results showed that the iron species distributed evenly on the cell surface and bonded with amino, carboxyl and hydroxyl groups.

  17. A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans.

    PubMed

    Castelle, Cindy; Guiral, Marianne; Malarte, Guillaume; Ledgham, Fouzia; Leroy, Gisèle; Brugna, Myriam; Giudici-Orticoni, Marie-Thérèse

    2008-09-19

    The iron respiratory chain of the acidophilic bacterium Acidithiobacillus ferrooxidans involves various metalloenzymes. Here we demonstrate that the oxygen reduction pathway from ferrous iron (named downhill pathway) is organized as a supercomplex constituted of proteins located in the outer and inner membranes as well as in the periplasm. For the first time, the outer membrane-bound cytochrome c Cyc2 was purified, and we showed that it is responsible for iron oxidation and determined that its redox potential is the highest measured to date for a cytochrome c. The organization of metalloproteins inside the supramolecular structure was specified by protein-protein interaction experiments. The isolated complex spanning the two membranes had iron oxidase as well as oxygen reductase activities, indicating functional electron transfer between the first iron electron acceptor, Cyc2, and the Cu(A) center of cytochrome c oxidase aa(3). This is the first characterization of a respirasome from an acidophilic bacterium. In Acidithiobacillus ferrooxidans,O(2) reduction from ferrous iron must be coupled to the energy-consuming reduction of NAD(+)(P) from ferrous iron (uphill pathway) required for CO(2) fixation and other anabolic processes. Besides the proteins involved in the O(2) reduction, there were additional proteins in the supercomplex, involved in uphill pathway (bc complex and cytochrome Cyc(42)), suggesting a possible physical link between these two pathways.

  18. Draft Genome Sequence of a Novel Acidophilic Iron-Oxidizing Firmicutes Species, "Acidibacillus ferrooxidans" (SLC66T).

    PubMed

    Ñancucheo, Ivan; Oliveira, Renato; Dall'Agnol, Hivana; Johnson, D Barrie; Grail, Barry; Holanda, Roseanne; Nunes, Gisele Lopes; Cuadros-Orellana, Sara; Oliveira, Guilherme

    2016-05-19

    Here, we present the draft genome sequence of the type strain of "Acidibacillus ferrooxidans," a mesophilic, heterotrophic, and acidophilic bacterium that was isolated from mine spoilage subjected to accelerated weathering in humidity cell tests carried out by the former U.S. Bureau of Mines in Salt Lake City, UT.

  19. Draft Genome Sequence of a Novel Acidophilic Iron-Oxidizing Firmicutes Species, “Acidibacillus ferrooxidans” (SLC66T)

    PubMed Central

    Ñancucheo, Ivan; Oliveira, Renato; Dall’Agnol, Hivana; Johnson, D. Barrie; Grail, Barry; Holanda, Roseanne; Nunes, Gisele Lopes; Cuadros-Orellana, Sara

    2016-01-01

    Here, we present the draft genome sequence of the type strain of “Acidibacillus ferrooxidans,” a mesophilic, heterotrophic, and acidophilic bacterium that was isolated from mine spoilage subjected to accelerated weathering in humidity cell tests carried out by the former U.S. Bureau of Mines in Salt Lake City, UT. PMID:27198020

  20. Draft Genome Sequence of a Novel Acidophilic Iron-Oxidizing Firmicutes Species, "Acidibacillus ferrooxidans" (SLC66T).

    PubMed

    Ñancucheo, Ivan; Oliveira, Renato; Dall'Agnol, Hivana; Johnson, D Barrie; Grail, Barry; Holanda, Roseanne; Nunes, Gisele Lopes; Cuadros-Orellana, Sara; Oliveira, Guilherme

    2016-01-01

    Here, we present the draft genome sequence of the type strain of "Acidibacillus ferrooxidans," a mesophilic, heterotrophic, and acidophilic bacterium that was isolated from mine spoilage subjected to accelerated weathering in humidity cell tests carried out by the former U.S. Bureau of Mines in Salt Lake City, UT. PMID:27198020

  1. Genome Sequence of the Acidophilic Ferrous Iron-Oxidizing Isolate Acidithrix ferrooxidans Strain Py-F3, the Proposed Type Strain of the Novel Actinobacterial Genus Acidithrix.

    PubMed

    Eisen, Sebastian; Poehlein, Anja; Johnson, D Barrie; Daniel, Rolf; Schlömann, Michael; Mühling, Martin

    2015-04-30

    Extremely acidophilic iron-oxidizing Gram-positive bacteria comprise species within the phyla Firmicutes and Actinobacteria. Here, we report the 4.02-Mb draft genome of Acidithrix ferrooxidans Py-F3, which was isolated from a stream draining an abandoned copper mine and proposed as the type species of a new genus of Actinobacteria.

  2. Genome Sequence of the Acidophilic Ferrous Iron-Oxidizing Isolate Acidithrix ferrooxidans Strain Py-F3, the Proposed Type Strain of the Novel Actinobacterial Genus Acidithrix

    PubMed Central

    Eisen, Sebastian; Poehlein, Anja; Johnson, D. Barrie; Daniel, Rolf; Schlömann, Michael

    2015-01-01

    Extremely acidophilic iron-oxidizing Gram-positive bacteria comprise species within the phyla Firmicutes and Actinobacteria. Here, we report the 4.02-Mb draft genome of Acidithrix ferrooxidans Py-F3, which was isolated from a stream draining an abandoned copper mine and proposed as the type species of a new genus of Actinobacteria. PMID:25931603

  3. Growth of the acidophilic iron-sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions

    NASA Astrophysics Data System (ADS)

    Bauermeister, Anja; Rettberg, Petra; Flemming, Hans-Curt

    2014-08-01

    The question of life on Mars has been in focus of astrobiological research for several decades, and recent missions in orbit or on the surface of the planet are constantly expanding our knowledge on Martian geochemistry. For example, massive stratified deposits have been identified on Mars containing sulfate minerals and iron oxides, which suggest the existence of acidic aqueous conditions in the past, similar to acidic iron- and sulfur-rich environments on Earth. Acidophilic organisms thriving in such habitats could have been an integral part of a possibly widely extinct Martian ecosystem, but remains might possibly even exist today in protected subsurface niches. The chemolithoautotrophic strain Acidithiobacillus ferrooxidans was selected as a model organism to study the metabolic capacities of acidophilic iron-sulfur bacteria, especially regarding their ability to grow with in situ resources that could be expected on Mars. The experiments were not designed to accurately simulate Martian physical conditions (except when certain single parameters such as oxygen partial pressure were considered), but rather the geochemical environment that can be found on Mars. A. ferrooxidans could grow solely on the minerals contained in synthetic Mars regolith mixtures with no added nutrients, using either O2 as an external electron acceptor for iron oxidation, or H2 as an external electron donor for iron reduction, and thus might play important roles in the redox cycling of iron on Mars. Though the oxygen partial pressure of the Martian atmosphere at the surface was not sufficient for detectable iron oxidation and growth of A. ferrooxidans during short-term incubation (7 days), alternative chemical O2-generating processes in the subsurface might yield microhabitats enriched in oxygen, which principally are possible under such conditions. The bacteria might also contribute to the reductive dissolution of Fe3+-containing minerals like goethite and hematite, which are

  4. Floating filters, a novel technique for isolation and enumeration of fastidious, acidophilic, iron-oxidizing, autotrophic bacteria. [Thiobacillus ferrooxidans

    SciTech Connect

    De Bruyn, J.C.; Boogerd, F.C.; Bos, P.; Kuenen, J.G. )

    1990-09-01

    Nuclepore polycarbonate filters floating on a liquid, FeSO{sub 4}-containing medium (pH 1.6) were used to isolate a moderately thermophilic bacterium from a pyrite-oxidizing enrichment culture. The isolate failed to grow on any of the conventional solid media tried. To test the general applicability of the method, the enumeration of a fastidious acidophilic organism, Thiobacillus ferrooxidans, was carried out and the results compared with those obtained with other filters, solid media, and the most probable number technique. T. ferrooxidans showed better viability on the floating polycarbonate filters and grew in a much shorter time (4 to 5 days) than with the other techniques.

  5. Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms.

    PubMed

    Dopson, Mark; Halinen, Anna-Kaisa; Rahunen, Nelli; Ozkaya, Bestamin; Sahinkaya, Erkan; Kaksonen, Anna H; Lindström, E Börje; Puhakka, Jaakko A

    2007-08-01

    An enrichment culture from a boreal sulfide mine environment containing a low-grade polymetallic ore was tested in column bioreactors for simulation of low temperature heap leaching. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing revealed the enrichment culture contained an Acidithiobacillus ferrooxidans strain with high 16S rRNA gene similarity to the psychrotolerant strain SS3 and a mesophilic Leptospirillum ferrooxidans strain. As the mixed culture contained a strain that was within a clade with SS3, we used the SS3 pure culture to compare leaching rates with the At. ferrooxidans type strain in stirred tank reactors for mineral sulfide dissolution at various temperatures. The psychrotolerant strain SS3 catalyzed pyrite, pyrite/arsenopyrite, and chalcopyrite concentrate leaching. The rates were lower at 5 degrees C than at 30 degrees C, despite that all the available iron was in the oxidized form in the presence of At. ferrooxidans SS3. This suggests that although efficient At. ferrooxidans SS3 mediated biological oxidation of ferrous iron occurred, chemical oxidation of the sulfide minerals by ferric iron was rate limiting. In the column reactors, the leaching rates were much less affected by low temperatures than in the stirred tank reactors. A factor for the relatively high rates of mineral oxidation at 7 degrees C is that ferric iron remained in the soluble phase whereas, at 21 degrees C the ferric iron precipitated. Temperature gradient analysis of ferrous iron oxidation by this enrichment culture demonstrated two temperature optima for ferrous iron oxidation and that the mixed culture was capable of ferrous iron oxidation at 5 degrees C.

  6. Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community.

    PubMed

    Jeans, Chris; Singer, Steven W; Chan, Clara S; Verberkmoes, Nathan C; Shah, Manesh; Hettich, Robert L; Banfield, Jillian F; Thelen, Michael P

    2008-05-01

    Recently, there has been intense interest in the role of electron transfer by microbial communities in biogeochemical systems. We examined the process of iron oxidation by microbial biofilms in one of the most extreme environments on earth, where the inhabited water is pH 0.5-1.2 and laden with toxic metals. To approach the mechanism of Fe(II) oxidation as a means of cellular energy acquisition, we isolated proteins from natural samples and found a conspicuous and novel cytochrome, Cyt(572), which is unlike any known cytochrome. Both the character of its covalently bound prosthetic heme group and protein sequence are unusual. Extraction of proteins directly from environmental biofilm samples followed by membrane fractionation, detergent solubilization and gel filtration chromatography resulted in the purification of an abundant yellow-red protein. The purified protein has a cytochrome c-type heme binding motif, CxxCH, but a unique spectral signature at 572 nm, and thus is called Cyt(572). It readily oxidizes Fe(2+) in the physiologically relevant acidic regime, from pH 0.95-3.4. Other physical characteristics are indicative of a membrane-bound multimeric protein. Circular dichroism spectroscopy indicates that the protein is largely beta-stranded, and 2D Blue-Native polyacrylamide gel electrophoresis and chemical crosslinking independently point to a multi-subunit structure for Cyt(572). By analyzing environmental genomic information from biofilms in several distinctly different mine locations, we found multiple genetic variants of Cyt(572). MS proteomics of extracts from these biofilms substantiated the prevalence of these variants in the ecosystem. Due to its abundance, cellular location and Fe(2+) oxidation activity at very low pH, we propose that Cyt(572) provides a critical function for fitness within the ecological niche of these acidophilic microbial communities.

  7. Predicting Structure and Function for Novel Proteins of an Extremophilic Iron Oxidizing Bacterium

    NASA Astrophysics Data System (ADS)

    Wheeler, K.; Zemla, A.; Banfield, J.; Thelen, M.

    2007-12-01

    Proteins isolated from uncultivated microbial populations represent the functional components of microbial processes and contribute directly to community fitness under natural conditions. Investigations into proteins in the environment are hindered by the lack of genome data, or where available, the high proportion of proteins of unknown function. We have identified thousands of proteins from biofilms in the extremely acidic drainage outflow of an iron mine ecosystem (1). With an extensive genomic and proteomic foundation, we have focused directly on the problem of several hundred proteins of unknown function within this well-defined model system. Here we describe the geobiological insights gained by using a high throughput computational approach for predicting structure and function of 421 novel proteins from the biofilm community. We used a homology based modeling system to compare these proteins to those of known structure (AS2TS) (2). This approach has resulted in the assignment of structures to 360 proteins (85%) and provided functional information for up to 75% of the modeled proteins. Detailed examination of the modeling results enables confident, high-throughput prediction of the roles of many of the novel proteins within the microbial community. For instance, one prediction places a protein in the phosphoenolpyruvate/pyruvate domain superfamily as a carboxylase that fills in a gap in an otherwise complete carbon cycle. Particularly important for a community in such a metal rich environment is the evolution of over 25% of the novel proteins that contain a metal cofactor; of these, one third are likely Fe containing proteins. Two of the most abundant proteins in biofilm samples are unusual c-type cytochromes. Both of these proteins catalyze iron- oxidation, a key metabolic reaction supporting the energy requirements of this community. Structural models of these cytochromes verify our experimental results on heme binding and electron transfer reactivity, and

  8. Iron Kinetics and Evolution of Microbial Populations in Low-pH, Ferrous Iron-Oxidizing Bioreactors.

    PubMed

    Jones, Rose M; Johnson, D Barrie

    2016-08-01

    Iron-rich, acidic wastewaters are commonplace pollutants associated with metal and coal mining. Continuous-flow bioreactors were commissioned and tested for their capacities to oxidize ferrous iron in synthetic and actual acid mine drainage waters using (initially) pure cultures of the recently described acidophilic, iron-oxidizing heterotrophic bacterium Acidithrix ferrooxidans grown in the presence of glucose and yeast extract. The bioreactors became rapidly colonized by this bacterium, which formed macroscopic streamer growths in the flowing waters. Over 97% of ferrous iron in pH 2.0-2.2 synthetic mine water was oxidized (at up to 225 mg L(-1) h(-1)) at dilution rates (D) of 0.6 h(-1). Rates of iron oxidation decreased with pH but were still significant, with influent liquors as low as pH 1.37. When fed with actual mine water, >90% of ferrous iron was oxidized at D values of 0.4 h(-1), and microbial communities within the bioreactors changed over time, with Atx. ferrooxidans becoming increasingly displaced by the autotrophic iron-oxidizing acidophiles Ferrovum myxofaciens, Acidithiobacillus ferrivorans, and Leptospirillum ferrooxidans (which were all indigenous to the mine water), although this did not have a negative impact on net ferrous-iron oxidation. The results confirmed the potential of using a heterotrophic acidophile to facilitate the rapid commissioning of iron-oxidizing bioreactors and illustrated how microbial communities within them can evolve without compromising the performances of the bioreactors. PMID:27377871

  9. Phylogeny and photoheterotrophy in the acidophilic phototrophic purple bacterium Rhodoblastus acidophilus.

    PubMed

    Kempher, Megan L; Madigan, Michael T

    2012-07-01

    Norbert Pfennig isolated the first acidophilic purple bacterium over 40 years ago and named the organism Rhodopseudomonas acidophila (now Rhodoblastusacidophilus). Since the original work of Pfennig, no systematic study has been conducted on the phylogeny and carbon nutrition of a collection of strains of Rbl. acidophilus. We have isolated six new strains of Rbl. acidophilus from a Canadian peat bog. These strains, three of the original Pfennig strains and two additional putative R. acidophilus strains isolated several years ago in this laboratory,were characterized as to their pigments, phylogeny, and carbon sources supporting photoheterotrophic growth. Phototrophic cultures were either purple or orange in color,and the color of a particular strain was linked to phylogeny. As for the Pfennig strains of Rbl. acidophilus, all new strains grew photoheterotrophically at pH 5 on a variety of organic and fatty acids. However, in addition to methanol and ethanol, the new strains as well as the Pfennig strains grew on several other primary alcohols, results not reported in the original species description. Our work shows that some phylogenetic and physiological diversity exists within the species Rbl. acidophilus and supports the observation that few species of acidophilic purple bacteria appear to exist in nature.

  10. Ferrous-iron-dependent uptake of L-glutamate by a mesophilic, mixotrophic iron-oxidizing bacterium strain OKM-9.

    PubMed

    Inoue, Takao; Kamimura, Kazuo; Sugio, Tsuyoshi

    2002-10-01

    Strain OKM-9 is a mesophilic, mixotrophic iron-oxidizing bacterium that absolutely requires ferrous iron as its energy source and L-amino acids (including L-glutamate) as carbon sources for growth. The properties of the L-glutamate transport system were studied with OKM-9 resting cells, plasma membranes, and actively reconstituted proteoliposomes. L-Glutamate uptake into resting cells was totally dependent on ferrous iron that was added to the reaction mixture. Potassium cyanide, an iron oxidase inhibitor, completely inhibited the activity at 1 mM. The optimum pH for Fe2+-dependent uptake activity of L-glutamate was 3.5-4.0. Uptake activity was dependent on the concentration of the L-glutamate. The Km and Vmax for L-glutamate were 0.4 mM and 11.3 nmol x min(-1) x mg(-1), respectively. L-Aspartate, D-aspartate, D-glutamate, and L-cysteine strongly inhibited L-glutamate uptake. L-Aspartate competitively inhibited the activity, and the apparent Ki for this amino acid was 75.9 microM. 2,4-Dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, gramicidin D, valinomycin, and monensin did not inhibit Fe2+-dependent L-glutamate uptake. The OKM-9 plasma membranes had approximately 40% of the iron-oxidizing activity of the resting cells and approximately 85% of the Fe2+-dependent uptake activity. The glutamate transport system was solubilized from the membranes with 1% n-octyl-beta-D-glucopyranoside and reconstituted into a lecithin liposome. The L-glutamate transport activity of the reconstituted proteoliposomes was 8-fold than that of the resting cells. The Fe2+-dependent L-glutamate uptake observed here seems to explain the mixotrophic nature of this strain, which absolutely requires Fe2+ oxidation when using amino acids as carbon sources. PMID:12450111

  11. Alicyclobacillus tengchongensis sp. nov., a thermo-acidophilic bacterium isolated from hot spring soil.

    PubMed

    Kim, Min Goo; Lee, Jae-Chan; Park, Dong-Jin; Li, Wen-Jun; Kim, Chang-Jin

    2014-10-01

    A thermo-acidophilic bacterium, designated strain ACK006(T), was isolated from the soil of a hot spring at Tengchong in China. Cells were Gram-staining-positive, motile, catalase-positive and oxidase-negative, spore-forming rods. The isolate grew aerobically at 30-50°C (optimum at 45°C), pH 2.0-6.0 (optimum pH 3.2) and 0-5.0% (w/v) NaCl (optimum 1% NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain ACK006(T) belongs to the genus Alicyclobacillus with the sequence similarity of 92.3, 92.4, 92.5, and 92.8% to Alicyclobacillus cycloheptanicus SCH(T), Alicyclobacillus ferrooxydans TC-34(T), Alicyclobacillus contaminans 3-A191(T) and Alicyclobacillus disulfidooxidans SD-11(T), respectively. Similarity to other species of the genus Alicyclobacillus was 90.3-92.8% and similarity to species of the genus Tumebacillus was 85.9-87.8%. The genomic DNA G+C content was 53.7 mol%. The predominant menaquinone was MK-7. Major fatty acids were ω-cycloheptane C18:0, iso-C17:0 and anteiso-C17:0. The cell-wall peptidoglycan was the A1γ type; containing meso-diaminopimelic acid as the diagnostic diamino acid. On the basis of polyphasic analysis from this study, strain ACK006(T) represents a novel species of the genus Alicyclobacillus for which the name Alicyclobacillus tengchongensis sp. nov. is proposed. The type strain is ACK006(T) (=KCTC 33022(T) =DSM 25924(T)).

  12. Biochemical and structural studies of N5-carboxyaminoimidazole ribonucleotide mutase from the acidophilic bacterium Acetobacter aceti.

    PubMed

    Constantine, Charles Z; Starks, Courtney M; Mill, Christopher P; Ransome, Aaron E; Karpowicz, Steven J; Francois, Julie A; Goodman, Rena A; Kappock, T Joseph

    2006-07-11

    N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) mutase (PurE) catalyzes the reversible interconversion of acid-labile compounds N5-CAIR and 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). We have examined PurE from the acidophilic bacterium Acetobacter aceti (AaPurE), focusing on its adaptation to acid pH and the roles of conserved residues His59 and His89. Both AaPurE and Escherichia coli PurE showed quasi-reversible acid-mediated inactivation, but wt AaPurE was much more stable at pH 3.5, with a > or = 20 degrees C higher thermal unfolding temperature at all pHs. His89 is not essential and does not function as part of a proton relay system. The kcat pH-rate profile was consistent with the assignment of pK1 to unproductive protonation of bound nucleotide and pK2 to deprotonation of His59. A 1.85 A resolution crystal structure of the inactive mutant H59N-AaPurE soaked in CAIR showed that protonation of CAIR C4 can occur in the absence of His59. The resulting species, modeled as isoCAIR [4(R)-carboxy-5-iminoimidazoline ribonucleotide], is strongly stabilized by extensive interactions with the enzyme and a water molecule. The carboxylate moiety is positioned in a small pocket proposed to facilitate nucleotide decarboxylation in the forward direction (N5-CAIR --> CAIR) [Meyer, E., Kappock, T. J., Osuji, C., and Stubbe, J. (1999) Biochemistry 38, 3012-3018]. Comparisons with model studies suggest that in the reverse (nonbiosynthetic) direction PurE favors protonation of CAIR C4. We suggest that the essential role of protonated His59 is to lower the barrier to decarboxylation by stabilizing a CO2-azaenolate intermediate.

  13. Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans.

    PubMed Central

    Amaro, A M; Chamorro, D; Seeger, M; Arredondo, R; Peirano, I; Jerez, C A

    1991-01-01

    The response of the obligate acidophilic bacterium Thiobacillus ferrooxidans to external pH changes is reported. When T. ferrooxidans cells grown at pH 1.5 were shifted to pH 3.5, there were several changes in the general protein synthesis pattern, including a large stimulation of the synthesis of a 36-kDa protein (p36). The apparent low isoelectric point of p36, its location in the membrane fraction, and its cross-reaction with anti-OmpC from Salmonella typhi suggested that it may be a porin whose expression is regulated by extracellular pH. Images PMID:1987171

  14. Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments.

    PubMed

    Sánchez-Andrea, Irene; Stams, Alfons J M; Hedrich, Sabrina; Ňancucheo, Ivan; Johnson, D Barrie

    2015-01-01

    Three strains of sulfate-reducing bacteria (M1(T), D, and E) were isolated from acidic sediments (White river and Tinto river) and characterized phylogenetically and physiologically. All three strains were obligately anaerobic, mesophilic, spore-forming straight rods, stained Gram-negative and displayed variable motility during active growth. The pH range for growth was 3.8-7.0, with an optimum at pH 5.5. The temperature range for growth was 15-40 °C, with an optimum at 30 °C. Strains M1(T), D, and E used a wide range of electron donors and acceptors, with certain variability within the different strains. The nominated type strain (M1(T)) used ferric iron, nitrate, sulfate, elemental sulfur, and thiosulfate (but not arsenate, sulfite, or fumarate) as electron acceptors, and organic acids (formate, lactate, butyrate, fumarate, malate, and pyruvate), alcohols (glycerol, methanol, and ethanol), yeast extract, and sugars (xylose, glucose, and fructose) as electron donors. It also fermented some substrates such as pyruvate and formate. Strain M1(T) tolerated up to 50 mM ferrous iron and 10 mM aluminum, but was inhibited by 1 mM copper. On the basis of phenotypic, phylogenetic, and genetic characteristics, strains M1(T), D, and E represent a novel species within the genus Desulfosporosinus, for which the name Desulfosporosinus acididurans sp. nov. is proposed. The type strain is M1(T) (=DSM 27692(T) = JCM 19471(T)). Strain M1(T) was the first acidophilic SRB isolated, and it is the third described species of acidophilic SRB besides Desulfosporosinus acidiphilus and Thermodesulfobium narugense.

  15. Gene function analysis in environmental isolates: The nif regulon of the strict iron oxidizing bacterium Leptospirillum ferrooxidans

    PubMed Central

    Parro, Víctor; Moreno-Paz, Mercedes

    2003-01-01

    A random genomic library from an environmental isolate of the Gram-negative bacterium Leptospirillum ferrooxidans has been printed on a microarray. Gene expression analysis was carried out with total RNA extracted from L. ferrooxidans cultures in the presence or absence of ammonium as nitrogen source under aerobic conditions. Although practically nothing is known about the genome sequence of this bacterium, this approach allowed us the selection and sequencing of only those clones bearing genes that showed an altered expression pattern. By sequence comparison, we have identified most of the genes of nitrogen fixation regulon in L. ferrooxidans, like the nifHDKENX operon, encoding the structural components of Mo-Fe nitrogenase; nifSU-hesB-hscBA-fdx operon, for Fe-S cluster assembly; the amtB gene (ammonium transporter); modA (molybdenum ABC type transporter); some regulatory genes like ntrC, nifA (the specific activator of nif genes); or two glnB-like genes (encoding the PII regulatory protein). Our results show that shotgun DNA microarrays are very powerful tools to accomplish gene expression studies with environmental bacteria whose genome sequence is still unknown, avoiding the time and effort necessary for whole genome sequencing projects. PMID:12808145

  16. Characterization of a novel thiosulfate dehydrogenase from a marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH.

    PubMed

    Sharmin, Sultana; Yoshino, Eriko; Kanao, Tadayoshi; Kamimura, Kazuo

    2016-01-01

    A marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH, was isolated to develop a bioleaching process for NaCl-containing sulfide minerals. Because the sulfur moiety of sulfide minerals is metabolized to sulfate via thiosulfate as an intermediate, we purified and characterized the thiosulfate dehydrogenase (TSD) from strain SH. The enzyme had an apparent molecular mass of 44 kDa and was purified 71-fold from the solubilized membrane fraction. Tetrathionate was the product of the TSD-oxidized thiosulfate and ferricyanide or ubiquinone was the electron acceptor. Maximum enzyme activity was observed at pH 4.0, 40 °C, and 200 mM NaCl. To our knowledge, this is the first report of NaCl-stimulated TSD activity. TSD was structurally different from the previously reported thiosulfate-oxidizing enzymes. In addition, TSD activity was strongly inhibited by 2-heptyl-4-hydroxy-quinoline N-oxide, suggesting that the TSD is a novel thiosulfate:quinone reductase.

  17. Crystal structure of truncated haemoglobin from an extremely thermophilic and acidophilic bacterium.

    PubMed

    Jamil, Farrukh; Teh, Aik-Hong; Schadich, Ermin; Saito, Jennifer A; Najimudin, Nazalan; Alam, Maqsudul

    2014-08-01

    A truncated haemoglobin (tHb) has been identified in an acidophilic and thermophilic methanotroph Methylacidiphilium infernorum. Hell's Gate Globin IV (HGbIV) and its related tHbs differ from all other bacterial tHbs due to their distinctively large sequence and polar distal haem pocket residues. Here we report the crystal structure of HGbIV determined at 1.96 Å resolution. The HGbIV structure has the distinctive 2/2 α-helical structure with extensions at both termini. It has a large distal site cavity in the haem pocket surrounded by four polar residues: His70(B9), His71(B10), Ser97(E11) and Trp137(G8). This cavity can bind bulky ligands such as a phosphate ion. Conformational shifts of His71(B10), Leu90(E4) and Leu93(E7) can also provide more space to accommodate larger ligands than the phosphate ion. The entrance/exit of such bulky ligands might be facilitated by positional flexibility in the CD1 loop, E helix and haem-propionate A. Therefore, the large cavity in HGbIV with polar His70(B9) and His71(B10), in contrast to the distal sites of other bacterial tHbs surrounded by non-polar residues, suggests its distinct physiological functions.

  18. Alicyclobacillus dauci sp. nov., a slightly thermophilic, acidophilic bacterium isolated from a spoiled mixed vegetable and fruit juice product.

    PubMed

    Nakano, Chisa; Takahashi, Naoto; Tanaka, Naoto; Okada, Sanae

    2015-02-01

    A novel, moderately thermophilic, acidophilic, Gram-variable, rod-shaped, endospore-forming bacterium was isolated from a spoiled mixed vegetable and fruit juice product that had the off-flavour of guaiacol. The bacterium, strain 4F(T), grew aerobically at 20-50 °C (optimum 40 °C) and pH 3.0-6.0 (optimum pH 4.0) and produced acid from glycerol, d-galactose and d-glucose. It contained menaquinone-7 (MK-7) as the major isoprenoid quinone and the DNA G+C content was 49.6 mol%. The predominant cellular fatty acids of strain 4F(T) were ω-alicyclic (ω-cyclohexane fatty acids), which are characteristic of the genus Alicyclobacillus. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain belongs to the Alicyclobacillus cluster, and is related most closely to the type strains of Alicyclobacillus acidoterrestris (97.4 % similarity) and Alicyclobacillus fastidiosus (97.3 %). Strain 4F(T) produced guaiacol from vanillic acid. It can be distinguished from related species by its acid production type and guaiacol production. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness values, it can be concluded that the strain represents a novel species of the genus Alicyclobacillus, for which the name Alicyclobacillus dauci sp. nov. is proposed; the type strain is 4F(T) ( = DSM 28700(T) = NBRC 108949(T) = NRIC 0938(T)).

  19. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans

    PubMed Central

    Beller, Harry R.; Zhou, Peng; Legler, Tina C.; Chakicherla, Anu; Kane, Staci; Letain, Tracy E.; A. O’Day, Peggy

    2013-01-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process. PMID:24065960

  20. Genome-Enabled Studies of Anaerobic, Nitrate-Dependent Iron Oxidation in the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Zhou, P.; Legler, T. C.; Chakicherla, A.; O'Day, P. A.

    2013-12-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. Of the transposon mutants defective in Fe(II) oxidation, one mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process.

  1. Bioreduction and immobilization of hexavalent chromium by the extremely acidophilic Fe(III)-reducing bacterium Acidocella aromatica strain PFBC.

    PubMed

    Masaki, Yusei; Hirajima, Tsuyoshi; Sasaki, Keiko; Okibe, Naoko

    2015-03-01

    The extremely acidophilic, Fe(III)-reducing heterotrophic bacterium Acidocella aromatica strain PFBC was tested for its potential utility in bioreduction of highly toxic heavy metal, hexavalent chromium, Cr(VI). During its aerobic growth on fructose at pH 2.5, 20 µM Cr(VI) was readily reduced to Cr(III), achieving the final Cr(VI) concentration of 0.4 µM (0.02 mg/L), meeting the WHO drinking water guideline of 0.05 mg/L. Despite of the highly inhibitory effect of Cr(VI) on cell growth at higher concentrations, especially at low pH, Cr(VI) reduction activity was readily observed in growth-decoupled cell suspensions under micro-aerobic and anaerobic conditions. Strain PFBC was not capable of anaerobic growth via dissimilatory reduction of Cr(VI), such as reported for Fe(III). In the presence of both Cr(VI) and Fe(III) under micro-aerobic condition, microbial Fe(III) reduction occurred only upon complete disappearance of Cr(VI) by its reduction to Cr(III). Following Cr(VI) reduction, the resultant Cr(III), supposedly present in the form of cationic Cr (III) (OH2) 6 (3+) , was partially immobilized on the negatively charged cell surface through biosorption. When Cr(III) was externally provided, rather than microbially produced, it was poorly immobilized on the cell surface. Cr(VI) reducing ability was reported for the first time in Acidocella sp. in this study, and its potential role in biogeochemical cycling of Cr, as well as its possible utility in Cr(VI) bioremediation, in highly acidic environments/solutions, were discussed.

  2. Atomic-resolution crystal structure of thioredoxin from the acidophilic bacterium Acetobacter aceti.

    PubMed

    Starks, Courtney M; Francois, Julie A; MacArthur, Kelly M; Heard, Brittney Z; Kappock, T Joseph

    2007-01-01

    The crystal structure of thioredoxin (AaTrx) from the acetic acid bacterium Acetobacter aceti was determined at 1 A resolution. This is currently the highest resolution crystal structure available for any thioredoxin. Thioredoxins facilitate thiol-disulfide exchange, a process that is expected to be slow at the low pH values encountered in the A. aceti cytoplasm. Despite the apparent need to function at low pH, neither the active site nor the surface charge distribution of AaTrx is notably different from that of Escherichia coli thioredoxin. Apparently the ancestral thioredoxin was sufficiently stable for use in A. aceti or the need to interact with multiple targets constrained the variation of surface residues. The AaTrx structure presented here provides a clear view of all ionizable protein moieties and waters, a first step in understanding how thiol-disulfide exchange might occur in a low pH cytoplasm, and is a basis for biophysical studies of the mechanism of acid-mediated unfolding. The high resolution of this structure should be useful for computational studies of thioredoxin function, protein structure and dynamics, and side-chain ionization.

  3. Draft genome of iron-oxidizing bacterium Leptospirillum sp. YQP-1 isolated from a volcanic lake in the Wudalianchi volcano, China.

    PubMed

    Yan, Lei; Zhang, Shuang; Yu, Gaobo; Ni, Yongqing; Wang, Weidong; Hu, Huixin; Chen, Peng

    2015-12-01

    Leptospirillum sp. YQP-1, a member of iron-oxidizing bacteria was isolated from volcanic lake in northeast China. Here, we report the draft genome sequence of the strain YQP-1 with a total genome size of 3,103,789 bp from 85 scaffolds (104 contigs) with 58.64% G + C content. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LIEB00000000. PMID:26697362

  4. Draft genome of iron-oxidizing bacterium Leptospirillum sp. YQP-1 isolated from a volcanic lake in the Wudalianchi volcano, China.

    PubMed

    Yan, Lei; Zhang, Shuang; Yu, Gaobo; Ni, Yongqing; Wang, Weidong; Hu, Huixin; Chen, Peng

    2015-12-01

    Leptospirillum sp. YQP-1, a member of iron-oxidizing bacteria was isolated from volcanic lake in northeast China. Here, we report the draft genome sequence of the strain YQP-1 with a total genome size of 3,103,789 bp from 85 scaffolds (104 contigs) with 58.64% G + C content. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LIEB00000000.

  5. Draft genome of iron-oxidizing bacterium Leptospirillum sp. YQP-1 isolated from a volcanic lake in the Wudalianchi volcano, China

    PubMed Central

    Yan, Lei; Zhang, Shuang; Yu, Gaobo; Ni, Yongqing; Wang, Weidong; Hu, Huixin; Chen, Peng

    2015-01-01

    Leptospirillum sp. YQP-1, a member of iron-oxidizing bacteria was isolated from volcanic lake in northeast China. Here, we report the draft genome sequence of the strain YQP-1 with a total genome size of 3,103,789 bp from 85 scaffolds (104 contigs) with 58.64% G + C content. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LIEB00000000. PMID:26697362

  6. Functional Gene Analysis of Freshwater Iron-Rich Flocs at Circumneutral pH and Isolation of a Stalk-Forming Microaerophilic Iron-Oxidizing Bacterium

    PubMed Central

    Chan, Clara; Itoh, Takashi; Ohkuma, Moriya

    2013-01-01

    Iron-rich flocs often occur where anoxic water containing ferrous iron encounters oxygenated environments. Culture-independent molecular analyses have revealed the presence of 16S rRNA gene sequences related to diverse bacteria, including autotrophic iron oxidizers and methanotrophs in iron-rich flocs; however, the metabolic functions of the microbial communities remain poorly characterized, particularly regarding carbon cycling. In the present study, we cultivated iron-oxidizing bacteria (FeOB) and performed clone library analyses of functional genes related to carbon fixation and methane oxidization (cbbM and pmoA, respectively), in addition to bacterial and archaeal 16S rRNA genes, in freshwater iron-rich flocs at groundwater discharge points. The analyses of 16S rRNA, cbbM, and pmoA genes strongly suggested the coexistence of autotrophic iron oxidizers and methanotrophs in the flocs. Furthermore, a novel stalk-forming microaerophilic FeOB, strain OYT1, was isolated and characterized phylogenetically and physiologically. The 16S rRNA and cbbM gene sequences of OYT1 are related to those of other microaerophilic FeOB in the family Gallionellaceae, of the Betaproteobacteria, isolated from freshwater environments at circumneutral pH. The physiological characteristics of OYT1 will help elucidate the ecophysiology of microaerophilic FeOB. Overall, this study demonstrates functional roles of microorganisms in iron flocs, suggesting several possible linkages between Fe and C cycling. PMID:23811518

  7. Novel Thermo-Acidophilic Bacteria Isolated from Geothermal Sites in Yellowstone National Park: Physiological and Phylogenetic Characteristics

    SciTech Connect

    D. B. Johnson; N. Okibe; F. F. Roberto

    2003-07-01

    Moderately thermophilic acidophilic bacteria were isolated from geothermal (30–83 °C) acidic (pH 2.7– 3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 °C, and pH 1.0–1.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria (Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstone strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the a-Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also a-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes (SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.

  8. Iron oxide surfaces

    NASA Astrophysics Data System (ADS)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  9. Iron oxide surfaces

    NASA Astrophysics Data System (ADS)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  10. Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus.

    PubMed

    Valdes, Jorge; Ossandon, Francisco; Quatrini, Raquel; Dopson, Mark; Holmes, David S

    2011-12-01

    Acidithiobacillus thiooxidans is a mesophilic, extremely acidophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and inorganic sulfur compounds. Here we present the draft genome sequence of A. thiooxidans ATCC 19377, which has allowed the identification of genes for survival and colonization of extremely acidic environments.

  11. Insight into the evolution of the iron oxidation pathways.

    PubMed

    Ilbert, Marianne; Bonnefoy, Violaine

    2013-02-01

    Iron is a ubiquitous element in the universe. Ferrous iron (Fe(II)) was abundant in the primordial ocean until the oxygenation of the Earth's atmosphere led to its widespread oxidation and precipitation. This change of iron bioavailability likely put selective pressure on the evolution of life. This element is essential to most extant life forms and is an important cofactor in many redox-active proteins involved in a number of vital pathways. In addition, iron plays a central role in many environments as an energy source for some microorganisms. This review is focused on Fe(II) oxidation. The fact that the ability to oxidize Fe(II) is widely distributed in Bacteria and Archaea and in a number of quite different biotopes suggests that the dissimilatory Fe(II) oxidation is an ancient energy metabolism. Based on what is known today about Fe(II) oxidation pathways, we propose that they arose independently more than once in evolution and evolved convergently. The iron paleochemistry, the phylogeny, the physiology of the iron oxidizers, and the nature of the cofactors of the redox proteins involved in these pathways suggest a possible scenario for the timescale in which each type of Fe(II) oxidation pathways evolved. The nitrate dependent anoxic iron oxidizers are likely the most ancient iron oxidizers. We suggest that the phototrophic anoxic iron oxidizers arose in surface waters after the Archaea/Bacteria-split but before the Great Oxidation Event. The neutrophilic oxic iron oxidizers possibly appeared in microaerobic marine environments prior to the Great Oxidation Event while the acidophilic ones emerged likely after the advent of atmospheric O(2). This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. PMID:23044392

  12. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Iron oxides. 73.2250 Section 73.2250 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron oxides consist of any one or any combination of synthetically prepared iron oxides, including...

  13. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Iron oxides. 73.2250 Section 73.2250 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron oxides consist of any one or any combination of synthetically prepared iron oxides, including...

  14. Laboratory experiments on the weathering of iron meteorites and carbonaceous chondrites by iron-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Gronstal, A.; Pearson, V.; Kappler, A.; Dooris, C.; Anand, M.; Poitrasson, F.; Kee, T. P.; Cockell, C. S.

    2009-03-01

    Batch culture experiments were performed to investigate the weathering of meteoritic material by iron-oxidizing bacteria. The aerobic, acidophilic iron oxidizer (A. ferrooxidans) was capable of oxidizing iron from both carbonaceous chondrites (Murchison and Cold Bokkeveld) and iron meteorites (York and Casas Grandes). Preliminary iron isotope results clearly show contrasted iron pathways during oxidation with and without bacteria suggesting that a biological role in meteorite weathering could be distinguished isotopically. Anaerobic iron-oxidizers growing under pH-neutral conditions oxidized iron from iron meteorites. These results show that rapid biologicallymediated alteration of extraterrestrial materials can occur in both aerobic and anaerobic environments. These results also demonstrate that iron can act as a source of energy for microorganisms from both iron and carbonaceous chondrites in aerobic and anaerobic conditions with implications for life on the early Earth and the possible use of microorganisms to extract minerals from asteroidal material.

  15. Thermodynamic constraints on microbial iron oxide reduction

    NASA Astrophysics Data System (ADS)

    Bonneville, S.; Behrends, T.; Haese, R.; van Cappellen, P.

    2003-04-01

    Iron oxides are ubiquitous reactive constituents of soils, sediments and aquifers. They exhibit large surface areas which bind trace metals, nutrients and organic molecules. Under suboxic conditions, iron oxides can reductively dissolve via several abiotic and microbial pathways. In particular, they serve as terminal electron acceptors for the oxidation of organic matter by iron reducing bacteria. The aim of our study was to determine the thermodynamic energy yields of dissimilatory iron reduction for different Fe(III) substrates. We used the facultative anaerobic gram-positive bacterium Shewanella putrefaciens as model iron reducing bacterium, with ferrihydrite, hematite, goethite or Fe(III)-salicylate as electron acceptor, and lactate as electron donor. Experiments were conducted in an anaerobic pH-stat batch reactor, equipped with a polarographic electrode to monitor in situ the dissolved ferrous iron activity. The stoichiometry of total Fe(II) production and acid consumption during the experiments indicated that lactate was oxidized to acetate. From the Fe(II) activity and redox potential measurements, free energy yields were calculated for Fe(III) reduction coupled to lactate oxidation. The results showed that the redox potential of the overall reaction was poised by equilibrium between the Fe(III)-substrate and aqueous Fe(II). Hence, the energy yields decreased in the order ferrihydrite > Fe(III)-salicylate > hematite > goethite. Accumulation of Fe(II) in solution only caused small decreases in the energy yields over the course of the experiments. Cessation of iron reduction, which was observed in all experiments, was therefore not due to thermodynamic limitation, but more likely reflected the decline in cell level of activity.

  16. Astrobiological Significance of Chemolithoautotrophic Acidophiles

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2003-01-01

    For more than a century (since Winogradsky discovered lithoautotrophic bacteria) a dilemma in microbiology has concerned life that first inhabited the Earth. Which types of life forms first appeared in the primordial oceans during the earliest geological period on Earth as the primary ancestors of modem biological diversity? How did a metabolism of ancestors evolve: from lithoautotrophic to lithohetherotrophic and organoheterotrophic or from organoheterotrophic to organoautotrophic and lithomixotrophic types? At the present time, it is known that chemolithoheterotrophic and chemolithoautotrophic metabolizing bacteria are wide spread in different ecosystems. On Earth the acidic ecosystems are associated with geysers, volcanic fumaroles, hot springs, deep sea hydrothermal vents, caves, acid mine drainage and other technogenic ecosystems. Bioleaching played a significant role on a global geological scale during the Earth's formation. This important feature of bacteria has been successfully applied in industry. The lithoautotrophs include Bacteria and Archaea belonging to diverse genera containing thermophilic and mesophilic species. In this paper we discuss the lithotrophic microbial acidophiles and present some data with a description of new acidophilic iron- and sulfur- oxidizing bacterium isolated from the Chena Hot Springs in Alaska. We also consider the possible relevance of microbial acidophiles to Venus, Io, and acidic inclusions in glaciers and icy moons.

  17. Astrobiological significance of chemolithoautotrophic acidophiles

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-02-01

    For more than a century (since Winogradsky discovered lithautotrophic bacteria) there has been a dilemma in microbiology about life that first inhabited the Earth. Which types of life forms first appeared in the primordial oceans during the earliest geological period on Earth as the primary ancestors of modern biological diversity? How did a metabolism of ancestors evolve: from lithoautotrophic to lithoheterotrophic and organoheterotrophic or from organoheterotrophic to organautotrophic and lithomixotrophic types? At the present time, it is known that chemolithoheterotrophic and chemolithoautotrophic metabolizing bacteria are wide spread in different ecosystems. On Earth the acidic ecosystems are associated with geysers, volcanic fumaroles, hot springs, deep sea hydrothermal vents, caves, acid mine drainage and other technogenic ecosystems. Bioleaching played a significant roel on a global geological scale during the Earth's formation. This important feature of bacteria has been successfully applied in industry. The lithoautotrophs include Bacteria and Archaea belonging to diverse genera containing thermophilic and mesophilic species. In this paper we discuss the lithotrophic microbial acidophiles and present some data with a description of new acidophilic iron- and sulfur-oxidizing bacterium isolated from the Chena Hot Springs in Alaska. We also consider the possible relevance of microbial acidophiles to Venus, Io, and acidic inclusions in glaciers and icy moons.

  18. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3125 Iron oxides. (a) Identity and specifications. The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform...

  19. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3125 Iron oxides. (a) Identity and specifications. The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform...

  20. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3125 Iron oxides. (a) Identity and specifications. The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform...

  1. Iron oxidation by Thiobacillus ferrooxidans

    SciTech Connect

    Kang, Sunki; Sproull, R.D.

    1991-12-31

    Several investigators have shown that microorganisms are involved in many naturally occurring oxidation processes. At present, microbial leaching, which is the solubilization of metals catalyzed by microorganisms, is widely used commercially to produce copper, and to a lesser extent uranium, from low-grade mining wastes. Microbial leaching can also be used as a pretreatment step in the mining of precious metals, such as gold and silver. In this application, the solubilization of pyrite makes the precious metals more accessible for cyanide leaching. Because ferrous iron oxidation is such an important reaction in microbial leaching operations, this study was undertaken to examine factors affecting the rate of ferrous iron oxidation in the presence of T. ferrooxidans.

  2. Growth Kinetics of Attached Iron-Oxidizing Bacteria

    PubMed Central

    Wichlacz, Paul L.; Unz, Richard F.

    1985-01-01

    A model of growth and substrate utilization for ferrous-iron-oxidizing bacteria attached to the disks of a rotating biological contactor was developed and tested. The model describes attached bacterial growth as a saturation function in which the rate of substrate utilization is determined by a maximum substrate oxidation rate constant (P), a half-saturation constant (Ks), and the concentration of substrate within the rotating biological contactor (S1). The maximum oxidation rate constant was proportional to flow rate, and the substrate concentration in the reactor varied with influent substrate concentration (S0). The model allowed the prediction of metabolic constants and included terms for both constant and growth-rate-dependent maintenance energies. Estimates for metabolic constants of the attached population of acidophilic, chemolithotrophic, iron-oxidizing bacteria limited by ferrous iron were: maximum specific growth rate (μmax), 1.14 h−1; half-saturation constant (Ks) for ferrous iron, 54.9 mg/liter; constant maintenance energy coefficient (m1), 0.154 h−1; growth-rate-dependent maintenance energy coefficient (m′), 0.07 h−1; maximum yield (Yg), 0.063 mg of organic nitrogen per mg of Fe(II) oxidized. PMID:16346863

  3. Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria.

    PubMed

    Hedrich, Sabrina; Johnson, D Barrie

    2013-12-01

    While many prokaryotic species are known to use hydrogen as an electron donor to support their growth, this trait has only previously been reported for two acidophilic bacteria, Hydrogenobaculum acidophilum (in the presence of reduced sulfur) and Acidithiobacillus (At.) ferrooxidans. To test the hypothesis that hydrogen may be utilized more widely by acidophilic bacteria, 38 strains of acidophilic bacteria, including representatives of 20 designated and four proposed species, were screened for their abilities to grow via the dissimilatory oxidation of hydrogen. Growth was demonstrated in several species of acidophiles that also use other inorganic electron donors (ferrous iron and sulfur) but in none of the obligately heterotrophic species tested. Strains of At. ferrooxidans, At. ferridurans and At. caldus, grew chemolithotrophically on hydrogen, though those of At. thiooxidans and At. ferrivorans did not. Growth was also observed with Sulfobacillus acidophilus, Sb. benefaciens and Sb. thermosulfidooxidans, though not with other iron-oxidizing Firmicutes. Similarly, Acidimicrobium ferrooxidans grew on hydrogen, closely related acidophilic actinobacteria did not. Growth yields of At. ferrooxidans and At. ferridurans grown aerobically on hydrogen (c. 10(10)  cells mL(-1) ) were far greater than typically obtained using other electron donors. Several species also grew anaerobically by coupling hydrogen oxidation to the reduction of ferric iron.

  4. 21 CFR 186.1374 - Iron oxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Iron oxides. 186.1374 Section 186.1374 Food and... Substances Affirmed as GRAS § 186.1374 Iron oxides. (a) Iron oxides (oxides of iron, CAS Reg. No. 1332-37-2) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron...

  5. 21 CFR 186.1374 - Iron oxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron oxides. 186.1374 Section 186.1374 Food and... Substances Affirmed as GRAS § 186.1374 Iron oxides. (a) Iron oxides (oxides of iron, CAS Reg. No. 1332-37-2) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron...

  6. Iron Meteorites Can Support the Growth of Acidophilic Chemolithoautotrophic Microorganisms

    NASA Astrophysics Data System (ADS)

    González-Toril, Elena; Martínez-Frías, Jesús; Gómez, José María; Rull, Fernando; Amils, Ricardo

    2005-06-01

    Chemolithoautotrophy based on reduced inorganic minerals is considered a primitive energy transduction system. Evidence that a high number of meteorites crashed into the planet during the early period of Earth history led us to test the ability of iron-oxidizing bacteria to grow using iron meteorites as their source of energy. Here we report the growth of two acidophilic iron-oxidizing bacteria, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans, on a piece of the Toluca meteorite as the only source of energy. The alteration of the surface of the exposed piece of meteorite, the solubilization of its oxidized metal constituents, mainly ferric iron, and the formation of goethite precipitates all clearly indicate that iron-meteoritebased chemolithotrophic metabolism is viable.

  7. Tannin biosynthesis of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Herrera-Becerra, R.; Rius, J. L.; Zorrilla, C.

    2010-08-01

    In this work, iron oxide nanoparticles synthesized with gallic acid and tannic acid are characterized using High-Resolution Transmission Electron Microscopy (HRTEM). Its size, form, and structure are compared with nanoparticles obtained previously using alfalfa biomass in order to find a simpler, consistent, and environmentally friendly method in the production of iron oxide nanoparticles.

  8. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3125 Iron oxides. (a) Identity and...

  9. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron... per million. (c) Uses and restrictions. Iron oxides are safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing...

  10. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron... per million. (c) Uses and restrictions. Iron oxides are safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing...

  11. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron... per million. (c) Uses and restrictions. Iron oxides are safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing...

  12. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume; Kappler, Andreas; Bernard, Sylvain; Obst, Martin; Férard, Céline; Skouri-Panet, Fériel; Guigner, Jean-Michel; Posth, Nicole; Galvez, Matthieu; Brown, Gordon E., Jr.; Guyot, François

    2009-02-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types of precipitates could be discriminated: (1) mineralized filaments at distance from the cells, (2) globules of 100 ± 25 nm in diameter, at the cell surface and (3) a 40-nm thick mineralized layer within the periplasm. All of those phases were shown to be intimately associated with organic molecules. Periplasmic encrustation was accompanied by an accumulation of protein moieties. In the same way, exopolysaccharides were associated with the extracellular mineralized filaments. The evolution of cell encrustation was followed by TEM over the time course of a culture: cell encrustation proceeded progressively, with rapid precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All these findings provide new information to further the understanding of molecular processes involved in iron biomineralization by anaerobic iron-oxidizing bacteria and

  13. Indium Sorption to Iron Oxides

    NASA Astrophysics Data System (ADS)

    White, S. J.; Sacco, S. A.; Hemond, H.; Hussain, F. A.; Runkel, R. L.; Walton-Day, K. E.; Kimball, B. A.; Shine, J. P.

    2014-12-01

    Indium is an increasingly important metal in semiconductors and electronics, and its use is growing rapidly as a semiconductive coating (as indium tin oxide) for liquid crystal displays (LCDs) and flat panel displays. It also has uses in important energy technologies such as light emitting diodes (LEDs) and photovoltaic cells. Despite its rapid increase in use, very little is known about the environmental behavior of indium, and concerns are being raised over the potential health effects of this emerging metal contaminant. One source of indium to the environment is acid mine drainage from the mining of lead, zinc, and copper sulfides. In our previous studies of a stream in Colorado influenced by acid mine drainage from lead and zinc mining activities, indium concentrations were found to be 10,000 times those found in uncontaminated rivers. However, the speciation and mobility of indium could not be reliably modeled because sorption constants to environmental sorbents have not been determined. In this study, we generate sorption constants for indium to ferrihydrite in the laboratory over a range of pHs, sorbent to sorbate ratios, and ionic strengths. Ferrihydrite is one of the most important sorbents in natural systems, and sorption to amorphous iron oxides such as ferrihydrite is thought to be one of the main removal mechanisms of metals from the dissolved phase in aqueous environments. Because of its relatively low solubility, we also find that indium hydroxide precipitation can dominate indium's partitioning at micromolar concentrations of indium. This precipitation may be important in describing indium's behavior in our study stream in Colorado, where modeling sorption to iron-oxides does not explain the complete removal of indium from the dissolved phase when the pH of the system is artificially raised to above 8. This study contributes much-needed data about indium's aqueous behavior, in order to better understand its fate, transport, and impacts in the

  14. Use of an intelligent control system to evaluate multiparametric effects on iron oxidation by thermophilic bacteria

    SciTech Connect

    Stoner, D.L.; Miller, K.S.; Fife, D.J.; Larsen, E.D.; Tolle, C.R.; Johnson, J.A.

    1998-11-01

    A learning-based intelligent control system, the BioExpert, was developed and applied to the evaluation of multiparametric effects on iron oxidation by enrichment cultures of moderately thermophilic, acidophilic mining bacteria. The control system acquired and analyzed the data and then selected and maintained the sets of conditions that were evaluated. Through multiple iterations, the BioExpert suggested that temperature and pH were coupled, or interactive, parameters. Elevated temperatures (51.5 C) in combination with a moderately high pH (pH 1.84) impaired the growth of and iron oxidation by the enrichment culture. Moderate-to-high oxidation rates were achieved with a relatively high pH in combination with a relatively low temperature or, conversely, with a relatively low pH in combination with a relatively high temperature. The interactive effect of pH and temperature was not apparent from the results obtained in an experiment in which temperature was the only parameter that was varied. When the BioExpert was applied to a mixed culture containing mesophilic and thermophilic bacteria, the computer learned that pH 1.8, 45 C, and an inlet iron concentration from 30 to 35 mM were most favorable for iron oxidation. In conclusion, this study demonstrated that the learning-based intelligent control system BioExpert was an effective experimental tool that can be used to examine multiparametric effects on the growth and metabolic activity of mining bacteria.

  15. Arsenic Adsorption Onto Iron Oxides Minerals

    NASA Astrophysics Data System (ADS)

    Aredes, S.; Klein, B.; Pawlik, M.

    2004-12-01

    The predominant form of arsenic in water is as an inorganic ion. Under different redox conditions arsenic in water is stable in the +5 and +3 oxidation states. Arsenic oxidation state governs its toxicity, chemical form and solubility in natural and disturbed environments. As (III) is found in anoxic environments such as ground water , it is toxic and the common species is the neutral form, H3AsO3. As (V) is found in aerobic conditions such as surface water, it is less toxic and the common species in water are: H2AsO4 - and HAsO4 {- 2}. The water pH determines the predominant arsenate or arsenite species, however, both forms of arsenic can be detected in natural water systems. Iron oxides minerals often form in natural waters and sediments at oxic-anoxic boundaries. Over time they undergo transformation to crystalline forms, such as goethite or hematite. Both As(V) and As(III) sorbs strongly to iron oxides, however the sorption behavior of arsenic is dependent on its oxidation state and the mineralogy of the iron oxides. Competition between arsenic and others ions, such fluoride, sulphate and phosphate also play a role. On the other hand, calcium may increase arsenic adsorption onto iron oxides. Electrokinetic studies and adsorption experiments were carried out in order to determine which conditions favour arsenic adsorption. Hematite, goethite and magnetite as iron based sorbents were used. Test were also conducted with a laterite soil rich in iron minerals. The focus of this study is to evaluate physical and chemical conditions which favour arsenic adsorption onto iron oxides minerals, the results contribute to an understanding of arsenic behaviour in natural and disturbed environments. Furthermore, results could contribute in developing an appropriate remediation technology for arsenic removal in water using iron oxides minerals.

  16. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria.

    PubMed

    Zhang, Zhennan; Yin, Naiyi; Du, Huili; Cai, Xiaolin; Cui, Yanshan

    2016-05-01

    Arsenic (As) is a redox-active metalloid whose toxicity and mobility in soil depend on its oxidation state. Arsenite [As(III)] can be oxidized by microbes and adsorbed by minerals in the soil. However, the combined effects of these abiotic and biotic processes are not well understood. In this study, the fate of arsenic in the presence of an isolated As(III)-oxidizing bacterium (Pseudomonas sp. HN-1, 10(9) colony-forming units (CFUs)·ml(-1)) and three iron oxides (goethite, hematite, and magnetite at 1.6 g L(-1)) was determined using batch experiments. The total As adsorption by iron oxides was lower with bacteria present and was higher with iron oxides alone. The total As adsorption decreased by 78.6%, 36.0% and 79.7% for goethite, hematite and magnetite, respectively, due to the presence of bacteria. As(III) adsorbed on iron oxides could also be oxidized by Pseudomonas sp. HN-1, but the oxidation rate (1.3 μmol h(-1)) was much slower than the rate in the aqueous phase (96.2 μmol h(-1)). Therefore, the results of other studies with minerals only might overestimate the adsorptive capacity of solids in natural systems; the presence of minerals might hinder As(III) oxidation by microbes. Under aerobic conditions, in the presence of iron oxides and As(III)-oxidizing bacteria, arsenic is adsorbed onto iron oxides within the adsorption capacity, and As(V) is the primary form in the solid and aqueous phases.

  17. Exploring Microbial Iron Oxidation in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Wang, J.; Muyzer, G.; Bodelier, P. L. E.; den Oudsten, F.; Laanbroek, H. J.

    2009-04-01

    Iron is one of the most abundant elements on earth and is essential for life. Because of its importance, iron cycling and its interaction with other chemical and microbial processes has been the focus of many studies. Iron-oxidizing bacteria (FeOB) have been detected in a wide variety of environments. Among those is the rhizosphere of wetland plants roots which release oxygen into the soil creating suboxic conditions required by these organisms. It has been reported that in these rhizosphere microbial iron oxidation proceeds up to four orders of magnitude faster than strictly abiotic oxidation. On the roots of these wetland plants iron plaques are formed by microbial iron oxidation which are involved in the sequestering of heavy metals as well organic pollutants, which of great environmental significance.Despite their important role being catalysts of iron-cycling in wetland environments, little is known about the diversity and distribution of iron-oxidizing bacteria in various environments. This study aimed at developing a PCR-DGGE assay enabling the detection of iron oxidizers in wetland habitats. Gradient tubes were used to enrich iron-oxidizing bacteria. From these enrichments, a clone library was established based on the almost complete 16s rRNA gene using the universal bacterial primers 27f and 1492r. This clone library consisted of mainly α- and β-Proteobacteria, among which two major clusters were closely related to Gallionella spp. Specific probes and primers were developed on the basis of this 16S rRNA gene clone library. The newly designed Gallionella-specific 16S rRNA gene primer set 122f/998r was applied to community DNA obtained from three contrasting wetland environments, and the PCR products were used in denaturing gradient gel electrophoresis (DGGE) analysis. A second 16S rRNA gene clone library was constructed using the PCR products from one of our sampling sites amplified with the newly developed primer set 122f/998r. The cloned 16S rRNA gene

  18. Acid monolayer functionalized iron oxide nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  19. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  20. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  1. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  2. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  3. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  4. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  5. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  6. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  7. Chemical design of biocompatible iron oxide nanoparticles for medical applications.

    PubMed

    Ling, Daishun; Hyeon, Taeghwan

    2013-05-27

    Iron oxide nanoparticles are one of the most versatile and safe nanomaterials used in medicine. Recent progress in nanochemistry enables fine control of the size, crystallinity, uniformity, and surface properties of iron oxide nanoparticles. In this review, the synthesis of chemically designed biocompatible iron oxide nanoparticles with improved quality and reduced toxicity is discussed for use in diverse biomedical applications.

  8. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: A membrane-bound complex oxidizing ferrous iron.

    PubMed

    Castelle, Cindy J; Roger, Magali; Bauzan, Marielle; Brugna, Myriam; Lignon, Sabrina; Nimtz, Manfred; Golyshina, Olga V; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2015-08-01

    The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far. At present, little is known about the nature or the structural and functional organization of the proteins in F. acidiphilum that impact the iron biogeochemical cycle. We combine here biochemical and biophysical techniques such as enzyme purification, activity measurements, proteomics and spectroscopy to characterize the iron oxidation pathway(s) in F. acidiphilum. We isolated two respiratory membrane protein complexes: a 850 kDa complex containing an aa3-type cytochrome oxidase and a blue copper protein, which directly oxidizes ferrous iron and reduces molecular oxygen, and a 150 kDa cytochrome ba complex likely composed of a di-heme cytochrome and a Rieske protein. We tentatively propose that both of these complexes are involved in iron oxidation respiratory chains, functioning in the so-called uphill and downhill electron flow pathways, consistent with autotrophic life. The cytochrome ba complex could possibly play a role in regenerating reducing equivalents by a reverse ('uphill') electron flow. This study constitutes the first detailed biochemical investigation of the metalloproteins that are potentially directly involved in iron-mediated energy conservation in a member of the acidophilic archaea of the genus Ferroplasma.

  9. Starch vermicelli template for synthesis of magnetic iron oxide nanoclusters

    NASA Astrophysics Data System (ADS)

    Chairam, Sanoe; Somsook, Ekasith

    A novel method for fabricating magnetic iron oxide nanoparticles was achieved by using transparent vermicelli template as a new stabilizing material. The morphology of the as-prepared magnetic iron oxide deposited on the surface of vermicelli was observed as nanoclusters. The magnetization of the magnetic iron oxide nanoparticles at room temperature was decreased after carbonization at 200 °C. Therefore the thermal decomposition of iron oxide nanoparticles stabilized by starch vermicelli template yielded iron oxide/carbon nanocomposites with the soft magnetic behavior which are useful for biomedical applications.

  10. Defluoridation by Bacteriogenic Iron Oxides: Sorption Studies

    NASA Astrophysics Data System (ADS)

    Evans, K.; Ferris, F.

    2009-05-01

    At concentrations above 1 mg/L, fluoride in drinking water can lead to dental and skeletal fluorosis, a disease that causes mottling of the teeth, calcification of ligaments, crippling bone deformities and many other physiological disorders that can, ultimately, lead to death. Conservative estimates are that fluorosis afflicts tens of millions of people worldwide. As there is no treatment for fluorosis, prevention is the only means of controlling the disease. While numerous defluoridation techniques have been explored, no single method has been found to be both effective and inexpensive enough to implement widely. Our research began in India, with a large-scale geochemical study of the groundwater in a fluoride-contaminated region of Orissa. Having developed a better understanding of the geochemical relationships that exist between fluoride and other parameters present in an affected area, as well as the complex relationships that arise among those parameters that can impact the presence of fluoride, we began investigating certain remediation scenarios involving iron oxides. A common approach to remediation involves the partitioning of fluoride from groundwater by sorption onto a variety of materials, one of the most effective of which is iron oxide whose surface area acts as a scavenger for fluoride. In the presence of iron oxidizing bacteria, the oxidation rate of iron has been shown to be ˜6 times greater than in their absence; fluoride should, therefore, be removed from an aqueous environment by bacteriogenic iron oxides (BIOS) much more quickly than by abiotic iron oxides. Most recently, sorption studies have been conducted using both BIOS and synthetic hydrous ferric oxides in order to compare the behavior between biotic and abiotic sorbents. These studies have provided sorption isotherms that allow comparison of fluoride removed by sorption to BIOS versus synthetic iron oxides. Sorption affinity constants have also been determined, which allow for the

  11. Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein.

    PubMed Central

    Corstjens, P L; de Vrind, J P; Westbroek, P; de Vrind-de Jong, E W

    1992-01-01

    An iron-oxidizing factor was identified in the spent culture medium of the iron- and manganese-oxidizing bacterial strain Leptothrix discophora SS-1. It appeared to be a protein, with an apparent molecular weight of approximately 150,000. Its activity could be demonstrated after fractionation of the spent medium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A spontaneous mutant of L. discophora SS-1 was isolated which excreted neither manganese- nor iron-oxidizing activity, whereas excretion of other proteins seemed to be unaffected. Although the excretion of both metal-oxidizing factors was probably linked, the difference in other properties suggests that manganese and iron oxidation represent two different pathways. With a dot-blot assay, it was established that different bacterial species have different metal-oxidizing capacities. Whereas L. discophora oxidized both iron and manganese, Sphaerotilus natans oxidized only iron and two Pseudomonas spp. oxidized only manganese. Images PMID:1610168

  12. Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein.

    PubMed

    Corstjens, P L; de Vrind, J P; Westbroek, P; de Vrind-de Jong, E W

    1992-02-01

    An iron-oxidizing factor was identified in the spent culture medium of the iron- and manganese-oxidizing bacterial strain Leptothrix discophora SS-1. It appeared to be a protein, with an apparent molecular weight of approximately 150,000. Its activity could be demonstrated after fractionation of the spent medium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A spontaneous mutant of L. discophora SS-1 was isolated which excreted neither manganese- nor iron-oxidizing activity, whereas excretion of other proteins seemed to be unaffected. Although the excretion of both metal-oxidizing factors was probably linked, the difference in other properties suggests that manganese and iron oxidation represent two different pathways. With a dot-blot assay, it was established that different bacterial species have different metal-oxidizing capacities. Whereas L. discophora oxidized both iron and manganese, Sphaerotilus natans oxidized only iron and two Pseudomonas spp. oxidized only manganese. PMID:1610168

  13. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments.

    PubMed

    Jeremic, Sanja; Beškoski, Vladimir P; Djokic, Lidija; Vasiljevic, Branka; Vrvić, Miroslav M; Avdalović, Jelena; Gojgić Cvijović, Gordana; Beškoski, Latinka Slavković; Nikodinovic-Runic, Jasmina

    2016-05-01

    Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu(2+), Cd(2+) and Cr(6+) and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria- Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions. PMID:26942859

  14. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments.

    PubMed

    Jeremic, Sanja; Beškoski, Vladimir P; Djokic, Lidija; Vasiljevic, Branka; Vrvić, Miroslav M; Avdalović, Jelena; Gojgić Cvijović, Gordana; Beškoski, Latinka Slavković; Nikodinovic-Runic, Jasmina

    2016-05-01

    Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu(2+), Cd(2+) and Cr(6+) and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria- Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions.

  15. Diversity of acidophilic prokaryotes at two acid mine drainage sites in Turkey.

    PubMed

    Aytar, Pınar; Kay, Catherine Melanie; Mutlu, Mehmet Burçin; Çabuk, Ahmet; Johnson, David Barrie

    2015-04-01

    The biodiversity of acidophilic prokaryotes in two acidic (pH 2.8-3.05) mine drainage (AMD) sites (Balya and Çan) in Turkey was examined using a combined cultivation-based and cultivation-independent approach. The latter included analyzing microbial diversity using fluorescent in situ hybridization (FISH), terminal restriction enzyme fragment length polymorphism (`T-RFLP), and quantitative PCR (qPCR). Numbers of cultivatable heterotrophic acidophilic bacteria were over an order of magnitude greater than those of chemolithotrophic acidophiles in both AMD ponds examined. Isolates identified as strains of Acidithiobacillus ferrivorans, Acidiphilium organovorum, and Ferrimicrobium acidiphilum were isolated from the Balya AMD pond, and others identified as strains of Leptospirillum ferriphilum, Acidicapsa ligni, and Acidiphilium rubrum from Çan AMD. Other isolates were too distantly related (from analysis of their 16S rRNA genes) to be identified at the species level. Archaeal diversity in the two ponds appeared to be far more limited. T-RFLP and qPCR confirmed the presence of Ferroplasma-like prokaryotes, but no archaea were isolated from the two sites. qPCR generated semiquantitative data for genera of some of the iron-oxidizing acidophiles isolated and/or detected, suggesting the order of abundance was Leptospirillum > Ferroplasma > Acidithiobacillus (Balya AMD) and Ferroplasma > Leptospirillum > Acidithiobacillus (Çan AMD).

  16. Phase Formation Behavior in Ultrathin Iron Oxide.

    PubMed

    Jõgi, Indrek; Jacobsson, T Jesper; Fondell, Mattis; Wätjen, Timo; Carlsson, Jan-Otto; Boman, Mats; Edvinsson, Tomas

    2015-11-17

    Nanostructured iron oxides, and especially hematite, are interesting for a wide range of applications ranging from gas sensors to renewable solar hydrogen production. A promising method for deposition of low-dimensional films is atomic layer deposition (ALD). Although a potent technique, ALD of ultrathin films is critically sensitive to the substrate and temperature conditions where initial formation of islands and crystallites influences the properties of the films. In this work, deposition at the border of the ALD window forming a hybrid ALD/pulsed CVD (pCVD) deposition is utilized to obtain a deposition less sensitive to the substrate. A thorough analysis of iron oxide phases formation on two different substrates, Si(100) and SiO2, was performed. Films between 3 and 50 nm were deposited and analyzed with diffraction techniques, high-resolution Raman spectroscopy, and optical spectroscopy. Below 10 nm nominal film thickness, island formation and phase dependent particle crystallization impose constraints for deposition of phase pure iron oxides on non-lattice-matching substrates. Films between 10 and 20 nm thickness on SiO2 could effectively be recrystallized into hematite whereas for the corresponding films on Si(100), no recrystallization occurred. For films thicker than 20 nm, phase pure hematite can be formed directly with ALD/pCVD with very low influence of the substrate on either Si or SiO2. For more lattice matched substrates such as SnO2:F, Raman spectroscopy indicated formation of the hematite phase already for films with 3 nm nominal thickness and clearly for 6 nm films. Analysis of the optical properties corroborated the analysis and showed a quantum confined blue-shift of the absorption edge for the thinnest films. PMID:26506091

  17. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    SciTech Connect

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  18. Magnetic iron oxide nanoparticles for biomedical applications.

    PubMed

    Laurent, Sophie; Bridot, Jean-Luc; Elst, Luce Vander; Muller, Robert N

    2010-03-01

    Due to their high magnetization, superparamagnetic iron oxide nanoparticles induce an important decrease in the transverse relaxation of water protons and are, therefore, very efficient negative MRI contrast agents. The knowledge and control of the chemical and physical characteristics of nanoparticles are of great importance. The choice of the synthesis method (microemulsions, sol-gel synthesis, laser pyrolysis, sonochemical synthesis or coprecipitation) determines the magnetic nanoparticle's size and shape, as well as its size distribution and surface chemistry. Nanoparticles can be used for numerous in vivo applications, such as MRI contrast enhancement and hyperthermia drug delivery. New developments focus on targeting through molecular imaging and cell tracking. PMID:21426176

  19. Modified iron oxide nanomaterials: Functionalization and application

    NASA Astrophysics Data System (ADS)

    Bagheri, Samira; Julkapli, Nurhidayatullaili Muhd

    2016-10-01

    Iron oxide magnetic nanoparticles have aroused the interest of researchers of materials' chemistry due to its exceptional properties such as decent magnetic, electric, catalytic, biocompatibility, and low toxicity. However, these magnetic nanoparticles are predisposed towards aggregation and forming larger particles, due to its strong anisotropic dipolar interactions, particularly in the aqueous phase, consequently depriving them of dispersibility and particular properties, ultimately degrading their performance. Hence, this review focuses on modified magnetic nanoparticles that are stable, easily synthesized, possess a high surface area and could be facile-separated via magnetic forces, and are of low toxicity and costs for applications such as catalyst/catalyst support, food security, biomedical, and pollutant remediation.

  20. The Sulfide Capacity of Iron Oxide-Rich Slags

    NASA Astrophysics Data System (ADS)

    Motlagh, M.

    1988-03-01

    The relationship between the sulfide capacity of slags rich in iron oxide and the sulfur partition ratio between the metal and slag is strongly related to the slag's iron oxide concentration. For slags containing little or no lime, this relationship is linear for a constant concentration of iron oxide in the slag. The effect of silica on changes in the sulfide capacity of slags rich in iron oxide is similar to that of basic steel-making slags, particularly at low activity of silica in slag.

  1. Mineral resource of the month: iron oxide pigments

    USGS Publications Warehouse

    ,

    2008-01-01

    The article discusses iron oxide pigments, which have been used as colorants since human began painting as they resist color change due to sunlight exposure, have good chemical resistance and are stable under normal ambient conditions. Cyprus, Italy and Spain are among the countries that are known for the production of iron oxide pigments. Granular forms of iron oxides and nano-sized materials are cited as developments in the synthetic iron oxide pigment industry which are being used in computer disk drives and nuclear magnetic resonance imaging.

  2. Method for preparing hydrous iron oxide gels and spherules

    DOEpatents

    Collins, Jack L.; Lauf, Robert J.; Anderson, Kimberly K.

    2003-07-29

    The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or strontium ferrite embedded with oxides of Mg, Zn, Pb, Ce and mixtures thereof. These variations of hydrous iron oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters, dielectrics, and ceramics.

  3. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    DOEpatents

    Shen, Ming-Shing; Yang, Ralph T.

    1980-01-01

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  4. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    SciTech Connect

    Shen, M.; Yang, R.T.

    1980-09-30

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  5. Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides.

    PubMed

    Sayed, Farheen N; Polshettiwar, Vivek

    2015-05-05

    A facile and sustainable protocol for synthesis of six different shaped iron oxides is developed. Notably, all the six shapes of iron oxides can be synthesised using exactly same synthetic protocol, by simply changing the precursor iron salts. Several of the synthesised shapes are not reported before. This novel protocol is relatively easy to implement and could contribute to overcome the challenge of obtaining various shaped iron oxides in economical and sustainable manner.

  6. Facile and Sustainable Synthesis of Shaped Iron Oxide Nanoparticles: Effect of Iron Precursor Salts on the Shapes of Iron Oxides

    PubMed Central

    Sayed, Farheen N.; Polshettiwar, Vivek

    2015-01-01

    A facile and sustainable protocol for synthesis of six different shaped iron oxides is developed. Notably, all the six shapes of iron oxides can be synthesised using exactly same synthetic protocol, by simply changing the precursor iron salts. Several of the synthesised shapes are not reported before. This novel protocol is relatively easy to implement and could contribute to overcome the challenge of obtaining various shaped iron oxides in economical and sustainable manner. PMID:25939969

  7. Water clustering on nanostructured iron oxide films

    NASA Astrophysics Data System (ADS)

    Merte, Lindsay R.; Bechstein, Ralf; Peng, Guowen; Rieboldt, Felix; Farberow, Carrie A.; Zeuthen, Helene; Knudsen, Jan; Lægsgaard, Erik; Wendt, Stefan; Mavrikakis, Manos; Besenbacher, Flemming

    2014-06-01

    The adhesion of water to solid surfaces is characterized by the tendency to balance competing molecule-molecule and molecule-surface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moiré-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous water are found to coexist at adjacent hydroxylated and hydroxyl-free domains of the moiré structure.

  8. Water Clustering on Nanostructured Iron Oxide Films

    SciTech Connect

    Merte, L. R.; Bechstein, Ralf; Peng, Guowen; Rieboldt, Felix; Farberow, Carrie A.; Zeuthen, Helene; Knudsen, Jan; Laegsgaard, E.; Wendt, Stefen; Mavrikakis, Manos; Besenbacher, Fleming

    2014-06-30

    The adhesion of water to solid surfaces is characterized by the tendency to balance competing molecule–molecule and molecule–surface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire´-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer islands form on the are film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous water are found to coexist at adjacent hydroxylated and hydroxyl-free domains of the moire´ structure.

  9. Genetic transfer in acidophilic bacteria

    SciTech Connect

    Roberto, F.F.; Glenn, A.W.; Bulmer, D.; Ward, T.E.

    1990-01-01

    There is increasing interest in the use of microorganisms to recover metals from ores, as well as to remove sulfur from coal. These so-called bioleaching processes are mediated by a number of bacteria. The best-studied of these organisms are acidophiles including Thiobacillus and Acidiphilium species. Our laboratory has focused on developing genetic strategies to allow the manipulation of acidophilic bacteria to improve and augment their utility in large scale operations. We have recently been successful in employing conjugation for interbacterial transfer of genetic information, as well as in directly transforming Acidiphilium by use of electroporation. We are now testing the properties of IncPl, IncW and IncQ plasmid vectors in Acidiphilium to determine their relative usefulness in routine manipulation of acidophiles and transfer between organisms. This study also allows us to determine the natural ability of these bacteria to transfer genetic material amongst themselves in their particular environment. 21 refs., 3 figs., 2 tabs.

  10. Multifunctional iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bloemen, M.; Denis, C.; Van Stappen, T.; De Meester, L.; Geukens, N.; Gils, A.; Verbiest, T.

    2015-03-01

    Multifunctional nanoparticles have attracted a lot of attention since they can combine interesting properties like magnetism, fluorescence or plasmonic effects. As a core material, iron oxide nanoparticles have been the subject of intensive research. These cost-effective and non-toxic particles are used nowadays in many applications. We developed a heterobifunctional PEG ligand that can be used to introduce functional groups (carboxylic acids) onto the surface of the NP. Via click chemistry, a siloxane functionality was added to this ligand, for a subsequent covalent ligand exchange reaction. The functionalized nanoparticles have an excellent colloidal stability in complex environments like buffers and serum or plasma. Antibodies were coupled to the introduced carboxylic acids and these NP-antibody bioconjugates were brought into contact with Legionella bacteria for magnetic separation experiments.

  11. Multiple hearth furnace for reducing iron oxide

    DOEpatents

    Brandon, Mark M.; True, Bradford G.

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  12. Washing effect on superparamagnetic iron oxide nanoparticles

    PubMed Central

    Mireles, Laura-Karina; Sacher, Edward; Yahia, L’Hocine; Laurent, Sophie; Stanicki, Dimitri

    2016-01-01

    Much recent research on nanoparticles has occurred in the biomedical area, particularly in the area of superparamagnetic iron oxide nanoparticles (SPIONs); one such area of research is in their use as magnetically directed prodrugs. It has been reported that nanoscale materials exhibit properties different from those of materials in bulk or on a macro scale [1]. Further, an understanding of the batch-to-batch reproducibility and uniformity of the SPION surface is essential to ensure safe biological applications, as noted in the accompanying article [2], because the surface is the first layer that affects the biological response of the human body. Here, we consider a comparison of the surface chemistries of a batch of SPIONs, before and after the supposedly gentle process of dialysis in water. PMID:27141527

  13. Rheological Properties of Iron Oxide Based Ferrofluids

    NASA Astrophysics Data System (ADS)

    Devi, M.; Mohanta, D.

    2009-06-01

    In the present work, we report synthesis and magneto-viscous properties of cationic and anionic surfactant coated, iron oxide nanoparticles based ferrofluids. Structural and morphological aspects are revealed by x-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. We compare the rheological/magneto-viscous properties of different ferrofluids for various shear rates (2-450 sec-1) and applied magnetic fields (0-100 gauss). In the absence of a magnetic field, and under no shear case, the ferrofluid prepared with TMAH coated particle is found to be 12% more viscous compared to its counterpart. The rheological properties are governed by non-Newtonian features, and for a definite shear rate, viscosity of a given ferrofluid is found to be strongly dependent on the applied magnetic field as well as nature of the surfactant.

  14. Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands.

    PubMed

    Dedysh, S N; Panikov, N S; Liesack, W; Grosskopf, R; Zhou, J; Tiedje, J M

    1998-10-01

    Acidic northern wetlands are an important source of methane, one of the gases that contributes to global warming. Methane oxidation in the surface of these acidic wetlands can reduce the methane flux to the atmosphere up to 90 percent. Here the isolation of three methanotrophic microorganisms from three boreal forest sites is reported. They are moderately acidophilic organisms and have a soluble methane monooxygenase. In contrast to the known groups of methanotrophs, 16S ribosomal DNA sequence analysis shows that they are affiliated with the acidophilic heterotrophic bacterium Beijerinckia indica subsp. indica.

  15. Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands.

    PubMed

    Dedysh, S N; Panikov, N S; Liesack, W; Grosskopf, R; Zhou, J; Tiedje, J M

    1998-10-01

    Acidic northern wetlands are an important source of methane, one of the gases that contributes to global warming. Methane oxidation in the surface of these acidic wetlands can reduce the methane flux to the atmosphere up to 90 percent. Here the isolation of three methanotrophic microorganisms from three boreal forest sites is reported. They are moderately acidophilic organisms and have a soluble methane monooxygenase. In contrast to the known groups of methanotrophs, 16S ribosomal DNA sequence analysis shows that they are affiliated with the acidophilic heterotrophic bacterium Beijerinckia indica subsp. indica. PMID:9765151

  16. Controlling barrier penetration via exothermic iron oxidation.

    PubMed

    Wood, Daniel G; Brown, Marc B; Jones, Stuart A

    2011-02-14

    Exothermic iron oxidation is an elegant means to generate heat, with the potential to modulate barrier penetration if reaction kinetics can be controlled. This aim of this study was to gain a fundamental understanding of how these temperature change kinetics influenced barrier diffusion rate. Lidocaine transport through a hydrophilic carboxymethyl cellulose (CMC) gel was compared using two rapid iron oxidation reactions initiated by water (ExoRap(50), T(max)-47.7 ± 0.6 °C, t(max)-3.3 ± 0.6 min, ExoRap(60), T(max)-60.4 ± 0.3 °C, t(max)-9.3 ± 0.6 min) and a slower reaction initiated by oxygen (ExoSl(45)T(max)-ca. 44 °C, t(max) ca. 240 min). Temperature change induced by the oxygen initiated reaction (ExoSl(45)) was almost double those initiated by water (over 4h), but lidocaine diffusion was approximately 4 times higher for the latter (ExoRap(50), 555.61 ± 22.04 μg/cm(2)/h; ExoRap(60), 663.1 ± 50.95 μg/cm(2)/h; compared to ExoSl(45), 159.36 ± 29.44 μg/cm(2)/h). The large influence of temperature change kinetics on lidocaine diffusion suggested that transport was heavily dependent on temperature induced structural changes of the barrier. CMC, like many polymers adsorbs more water when exposed to moderate increases in temperature and this appeared to be a critical determinant of lidocaine barrier diffusion rate.

  17. The effect of acidophilic heterotrophic bacteria on the leaching of cobalt by Thiobacillus ferrooxidans

    SciTech Connect

    Wichlacz, P.L.; Thompson, D.L.

    1987-01-01

    Experiments were conducted to determine if acidophilic heterotrophic bacteria influence the ability of T. ferrooxidans to solubilize cobalt. Short term (7 day) flask leaching studies were conducted wherein 28 strains of T. ferrooxidans were each incubated with one of three different cobalt sulfides (CoS, cobaltite flotation concentrate, or cobaltite ore), with and without ferrous iron and/or heterotrophic bacteria. Growth of T. ferrooxidans was determined by comparing cobalt solubilization and ferrous iron oxidation for inoculated and uninoculated control flasks. Under all conditions tested, except one, the addition of acidophilic heterotrophs was found to enhance the extent of cobalt leaching. Longer term (28 day) studies were conducted which included the addition of glucose as a controlled variable. The presence of heterotrophs enhanced the leaching of CoS by T. ferrooxidans under all conditions. Cobalt leaching from concentrate and high grade ore by T. ferrooxidans was enhanced by the addition of heterotrophs in all cases except when ferrous iron or glucose were absent from the leaching medium. The present studies indicate that cobalt solubilization is substrate and strain dependent and, in most cases, is increased when acidophilic heterotrophic bacteria are present. 13 refs., 3 tabs.

  18. Microbially Induced Iron Oxidation: What, Where, How

    SciTech Connect

    SCHIERMEYER,ELISA M.; PROVENCIO,PAULA P.; NORTHUP,DIANA E.

    2000-08-15

    From the results of the different bacterial cells seen, it is fairly certain that Gallionella is present because of the bean-shaped cells and twisted stalks found with the TEM. The authors cannot confirm, though, what other iron-oxidizing genera exist in the tubes, since the media was only preferential and not one that isolated a specific genus of bacteria. Based on the environment in which they live and the source of the water, they believe their cultures contain Gallionella, Leptothrix, and possibly Crenothrix and Sphaerotilus. They believe the genus Leptothrix rather than Sphaerotilus exist in the tubes because the water source was fresh, unlike the polluted water in which Sphaerotilus are usually found. The TEM preparations worked well. The cryogenic method rapidly froze the cells in place and allowed them to view their morphology. The FAA method, as stated previously, was the best of the three methods because it gave the best contrast. The gluteraldehyde samples did not come out as well. It is possible that the gluteraldehyde the authors prepared was still too concentrated and did not mix well. Although these bacteria were collected from springs and then cultured in an environment containing a presumably pure iron-bearing metal, it seems the tube already containing Manganese Gradient Medium could be used with a piece of metal containing these bacteria. A small piece of corroding metal could then be inserted into the test tube and cultured to study the bacteria.

  19. Sorption of strontium onto bacteriogenic iron oxides.

    PubMed

    Langley, Sean; Gault, Andrew G; Ibrahim, Alexandre; Takahashi, Yoshio; Renaud, Rob; Fortin, Danielle; Clark, Ian D; Ferris, F Grant

    2009-02-15

    Bacteriogenic iron oxides (BIOS) were obtained from a dilute, circumneutral groundwater seep, characterized with respect to mineralogy, and examined for their ability to sorb aqueous Sr2+. BIOS were composed of microbial sheaths encrusted in 2-line ferrihydrite. Sorption experiments indicated that Sr remained completely unbound at pH < 4.5, but sorption increased with increasing pH (maximum of 95% at pH > 7.6). EXAFS analysis of Sr-loaded BIOS failed to elucidate whether Sr sorption occurred on sites specific to the mineral or microbial fraction, but indicated that sorption likely occurred by outer-sphere complexation between BIOS and hydrated Sr2+. Sorption experiments showed that at low ionic strength (I = 0.001 M), sorption followed a Langmuir isotherm (S(max) = 3.41 mol Sr (g of Fe)(1-), K(ads) = 1.26). At higher ionic strength (I = 0.1 M), there was significant inhibition of Sr sorption (S(max) = 1.06 mol Sr (g of Fe)(1-), K(ads) = 1.23), suggesting that sorption to BIOS occurs by outer-sphere complexation. The results suggest that, under dilute circumneutral conditions, BIOS deposits should efficiently sorb dissolved Sr from groundwater flow systems where such deposits exist. This finding has particular relevance to sites impacted by radioactive 90Sr groundwater contamination. PMID:19320150

  20. Sorption of strontium onto bacteriogenic iron oxides.

    PubMed

    Langley, Sean; Gault, Andrew G; Ibrahim, Alexandre; Takahashi, Yoshio; Renaud, Rob; Fortin, Danielle; Clark, Ian D; Ferris, F Grant

    2009-02-15

    Bacteriogenic iron oxides (BIOS) were obtained from a dilute, circumneutral groundwater seep, characterized with respect to mineralogy, and examined for their ability to sorb aqueous Sr2+. BIOS were composed of microbial sheaths encrusted in 2-line ferrihydrite. Sorption experiments indicated that Sr remained completely unbound at pH < 4.5, but sorption increased with increasing pH (maximum of 95% at pH > 7.6). EXAFS analysis of Sr-loaded BIOS failed to elucidate whether Sr sorption occurred on sites specific to the mineral or microbial fraction, but indicated that sorption likely occurred by outer-sphere complexation between BIOS and hydrated Sr2+. Sorption experiments showed that at low ionic strength (I = 0.001 M), sorption followed a Langmuir isotherm (S(max) = 3.41 mol Sr (g of Fe)(1-), K(ads) = 1.26). At higher ionic strength (I = 0.1 M), there was significant inhibition of Sr sorption (S(max) = 1.06 mol Sr (g of Fe)(1-), K(ads) = 1.23), suggesting that sorption to BIOS occurs by outer-sphere complexation. The results suggest that, under dilute circumneutral conditions, BIOS deposits should efficiently sorb dissolved Sr from groundwater flow systems where such deposits exist. This finding has particular relevance to sites impacted by radioactive 90Sr groundwater contamination.

  1. Stem cell tracking using iron oxide nanoparticles.

    PubMed

    Bull, Elizabeth; Madani, Seyed Yazdan; Sheth, Roosey; Seifalian, Amelia; Green, Mark; Seifalian, Alexander M

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI) and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.

  2. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    NASA Astrophysics Data System (ADS)

    Wu, Wei; He, Quanguo; Jiang, Changzhong

    2008-10-01

    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed.

  3. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    PubMed Central

    2008-01-01

    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed. PMID:21749733

  4. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  5. Genetic manipulation of acidophilic bacteria

    SciTech Connect

    Ward, T.E.; Rowland, M.L.; Glenn, A.W.; Watkins, C.S.; Bruhn, D.F.; Bulmer, D.; Roberto, F.F.

    1989-01-01

    Thiobacillus ferrooxidans is important in leaching of metals from mineral ores and in the removal of pyritic sulfur from coal. It is also intimately involved in production of acid mine drainage. Other acidophilic bacteria, including members of the genus Acidiphilium, are usually present in the same environments as T. ferrooxidans, and there is evidence to suggest that these acidophilic heterotrophs may increase the rate of T. ferrooxidans' attack on inorganic sulfides. Our laboratory is studying the genetic characteristics of these acidophilic bacteria and developing techniques for introducing desirable genes into them. Several endogenous plasmids from Acidiphilium strains have been cloned into E. coli vectors. Some of the resulting plasmids are able to confer antibiotic resistance to Acidiphilium after transformation by electroporation. In addition, a broad-host range plasmid conferring resistance to tetracycline has been introduced into Acidiphilium strains by electroporation. This same plasmid, has also been transferred to Acidiphilium from E. coli directly by conjugation. A temperate bacteriophage which infects a number of Acidiphilium isolates has been discovered and partially characterized. It has a lambdoid morphology and a genome of approximately 97 kb, comprised of double-stranded DNA which is probably modified. 16 refs., 2 figs., 4 tabs.

  6. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.

    PubMed

    Zuo, Rongjun; Wood, Thomas K

    2004-11-01

    A gramicidin-S-producing Bacillus brevis 18-3 biofilm was shown to reduce corrosion rates of mild steel by inhibiting both the sulfate-reducing bacterium Desulfosporosinus orientis and the iron-oxidizing bacterium Leptothrix discophora SP-6. When L. discophora SP-6 was introduced along with D. orientis to a non-antimicrobial-producing biofilm control, Paenibacillus polymyxa ATCC 10401, a corrosive synergy was created and mild steel coupons underwent more severe corrosion than when only D. orientis was present, showing a 2.3-fold increase via electrochemical impedance spectroscopy (EIS) and a 1.8-fold difference via mass-loss measurements. However, when a gramicidin-S-producing, protective B. brevis 18-3 biofilm was established on mild steel, the metal coupons were protected against the simultaneous attack of D. orientis and L. discophora SP-6. EIS data showed that the protective B. brevis 18-3 biofilm decreased the corrosion rate about 20-fold compared with the non-gramicidin-producing P. polymyxa ATCC 10401 biofilm control. The mass loss for the protected mild steel coupons was also significantly lower than that for the unprotected ones (4-fold decrease). Scanning electron microscope images corroborated the corrosion inhibition by the gramicidin-S-producing B. brevis biofilm on mild steel by showing that the metal surface remained untarnished, i.e., the polishing grooves were still visible after exposure to the simultaneous attack of the sulfate-reducing bacterium and the iron-oxidizing bacterium. PMID:15278311

  7. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.

    PubMed

    Zuo, Rongjun; Wood, Thomas K

    2004-11-01

    A gramicidin-S-producing Bacillus brevis 18-3 biofilm was shown to reduce corrosion rates of mild steel by inhibiting both the sulfate-reducing bacterium Desulfosporosinus orientis and the iron-oxidizing bacterium Leptothrix discophora SP-6. When L. discophora SP-6 was introduced along with D. orientis to a non-antimicrobial-producing biofilm control, Paenibacillus polymyxa ATCC 10401, a corrosive synergy was created and mild steel coupons underwent more severe corrosion than when only D. orientis was present, showing a 2.3-fold increase via electrochemical impedance spectroscopy (EIS) and a 1.8-fold difference via mass-loss measurements. However, when a gramicidin-S-producing, protective B. brevis 18-3 biofilm was established on mild steel, the metal coupons were protected against the simultaneous attack of D. orientis and L. discophora SP-6. EIS data showed that the protective B. brevis 18-3 biofilm decreased the corrosion rate about 20-fold compared with the non-gramicidin-producing P. polymyxa ATCC 10401 biofilm control. The mass loss for the protected mild steel coupons was also significantly lower than that for the unprotected ones (4-fold decrease). Scanning electron microscope images corroborated the corrosion inhibition by the gramicidin-S-producing B. brevis biofilm on mild steel by showing that the metal surface remained untarnished, i.e., the polishing grooves were still visible after exposure to the simultaneous attack of the sulfate-reducing bacterium and the iron-oxidizing bacterium.

  8. Iron oxide-based nanomagnets in nanomedicine: fabrication and applications

    PubMed Central

    Meng Lin, Meng; Kim, Hyung-Hwan; Kim, Hyuck; Muhammed, Mamoun; Kyung Kim, Do

    2010-01-01

    Iron oxide-based nanomagnets have attracted a great deal of attention in nanomedicine over the past decade. Down to the nanoscale, superparamagnetic iron oxide nanoparticles can only be magnetized in the presence of an external magnetic field, which makes them capable of forming stable colloids in a physio-biological medium. Their superparamagnetic property, together with other intrinsic properties, such as low cytotoxicity, colloidal stability, and bioactive molecule conjugation capability, makes such nanomagnets ideal in both in-vitro and in-vivo biomedical applications. In this review, a chemical, physical, and biological synthetic approach to prepare iron oxide-based nanomagnets with different physicochemical properties was illustrated and compared. The growing interest in iron oxide-based nanomagnets with multifunctionalities was explored in cancer diagnostics and treatment, focusing on their combined roles in a magnetic resonance contrast agent, hyperthermia, and magnetic force assisted drug delivery. Iron oxides as magnetic carriers in gene therapy were reviewed with a focus on the sophisticated design and construction of magnetic vectors. Finally, the iron oxide-based nanomagnet also represents a very promising tool in particle/cell interfacing in controlling cellular functionalities, such as adhesion, proliferation, differentiation, and cell patterning, in stem cell therapy and tissue engineering applications. PMID:22110854

  9. Inflammatory imaging with ultrasmall superparamagnetic iron oxide.

    PubMed

    Matsushita, Taro; Kusakabe, Yoshinori; Fujii, Hitomi; Murase, Katsutoshi; Yamazaki, Youichi; Murase, Kenya

    2011-02-01

    The purpose of this study was to investigate the usefulness and feasibility of magnetic resonance imaging (MRI) with ultrasmall superparamagnetic iron oxide (USPIO) (USPIO-enhanced MRI) for imaging inflammatory tissues. First, we investigated the relationship between the apparent transverse relaxation rate (R2*) and the concentration of USPIO by phantom studies and measured the apparent transverse relaxivity (r2*) of USPIO. Second, we performed animal experiments using a total of 30 mice. The mice were divided into five groups [A (n=6), B (n=6), C (n=6), sham control (n=6), and control (n=6)]. The mice in Groups A, B, C and control were subcutaneously injected with 0.1 ml of turpentine oil on Day 0, while those in the sham control group were subcutaneously injected with 0.1 ml of saline. The mice in Groups A, B, C and sham control were intraperitoneally injected with 200 μmol Fe per kilogram body weight of USPIO (28 nm in diameter) immediately after the first MRI study on Days 3, 5, 7 and 7, respectively, and those in the control group were not injected with USPIO. The second and third MRI studies were performed at 24 and 48 h after USPIO administration, respectively. The maps of R2* were generated from the apparent transverse relaxation time (T2*)-weighted images with six different echo times. The phantom studies showed that there was a linear relationship between R2* and the concentration of USPIO (r=0.99) and the r2* value of USPIO was 105.7 mM(-1) s(-1). There was a significant increase of R2* in inflammatory tissues in Group C at 24 h after USPIO administration compared with the precontrast R2* value. Our results suggest that USPIO-enhanced MRI combined with R2* measurement is useful for detecting inflammatory tissues. PMID:20850245

  10. Ecological succession among iron-oxidizing bacteria

    PubMed Central

    Fleming, Emily J; Cetinić, Ivona; Chan, Clara S; Whitney King, D; Emerson, David

    2014-01-01

    Despite over 125 years of study, the factors that dictate species dominance in neutrophilic iron-oxidizing bacterial (FeOB) communities remain unknown. In a freshwater wetland, we documented a clear ecological succession coupled with niche separation between the helical stalk-forming Gallionellales (for example, Gallionella ferruginea) and tubular sheath-forming Leptothrix ochracea. Changes in the iron-seep community were documented using microscopy and cultivation-independent methods. Quantification of Fe-oxyhydroxide morphotypes by light microscopy was coupled with species-specific fluorescent in situ hybridization (FISH) probes using a protocol that minimized background fluorescence caused by the Fe-oxyhydroxides. Together with scanning electron microscopy, these techniques all indicated that Gallionellales dominated during early spring, with L. ochracea becoming more abundant for the remainder of the year. Analysis of tagged pyrosequencing reads of the small subunit ribosomal RNA gene (SSU rRNA) collected during seasonal progression supported a clear Gallionellales to L. ochracea transition, and community structure grouped according to observed dominant FeOB forms. Axis of redundancy analysis of physicochemical parameters collected from iron mats during the season, plotted with FeOB abundance, corroborated several field and microscopy-based observations and uncovered several unanticipated relationships. On the basis of these relationships, we conclude that the ecological niche of the stalk-forming Gallionellales is in waters with low organic carbon and steep redoxclines, and the sheath-forming L. ochracea is abundant in waters that contain high concentrations of complex organic carbon, high Fe and Mn content and gentle redoxclines. Finally, these findings identify a largely unexplored relationship between FeOB and organic carbon. PMID:24225888

  11. Iron oxidation and biomineralization by Mariprofundus ferrooxydans, a deep-sea microaerophilic lithoautotroph

    NASA Astrophysics Data System (ADS)

    Chan, C. S.; Emerson, D.; Fakra, S.; Edwards, K. J.

    2007-12-01

    The ocean crust contains a large reservoir of reduced iron, available for microbial energy generation. Some of this ferrous iron is mobilized by fluids in hydrothermal fields at seamounts and mid-ocean ridges. A microaerophilic iron oxidizer, Mariprofundus ferrooxydans has been identified (by molecular methods and microscopy) at various sites, and appears to be a key iron-oxidizing bacterium (FeOB) in the deep sea. Originally isolated from microbial mats near vents at the Loihi Seamount in Hawaii, Mariprofundus is distinctive because it forms an extracellular iron-mineralized stalk-like structure. We aim to understand its metabolism and mineral formation using a multidisciplinary approach, including electron microscopy, x-ray spectroscopy, time-lapse light microscopic imaging of live cells, and genomic and biochemical analyses. Microscopy and spectroscopy work shows that as the cells grow, they excretes iron and organic-rich fibrils that make up the stalk, at a rate of ~2 microns/hr. Stalk growth appears to be parallel to the direction of Fe and oxygen gradients. The Mariprofundus genome contains several terminal oxidases/peroxidases, including two cbb3-type cytochrome oxidases with a high affinity for oxygen, consistent with the microaerophilic lifestyle of these organisms. However, we have not identified genes for metabolisms other than aerobic iron oxidation, nor have we found any genes similar to known or suspected iron oxidases, though the genome (2.87 Mb) is rich in cytochromes (32 of 2922 genes). Thus, we are performing experiments to extract and analyze proteins from both cultured and environmental samples in order to find ones that will oxidize iron. UV-Vis spectra of extracts suggest that c-type cytochromes are particularly abundant, so these are candidates for further investigation. In combination with the microscopy and spectroscopy studies, these are the first steps towards understanding the complete pathway of iron from uptake through mineral

  12. Cultivation and quantitative proteomic analyses of acidophilic microbial communities

    SciTech Connect

    Belnap, Christopher P.; Pan, Chongle; Verberkmoes, Nathan C; Power, Mary E.; Samatova, Nagiza F; Carver, Rudolf L.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2010-01-01

    Acid mine drainage (AMD), an extreme environment characterized by low pH and high metal concentrations, can support dense acidophilic microbial biofilm communities that rely on chemoautotrophic production based on iron oxidation. Field determined production rates indicate that, despite the extreme conditions, these communities are sufficiently well adapted to their habitats to achieve primary production rates comparable to those of microbial communities occurring in some non-extreme environments. To enable laboratory studies of growth, production and ecology of AMD microbial communities, a culturing system was designed to reproduce natural biofilms, including organisms recalcitrant to cultivation. A comprehensive metabolic labeling-based quantitative proteomic analysis was used to verify that natural and laboratory communities were comparable at the functional level. Results confirmed that the composition and core metabolic activities of laboratory-grown communities were similar to a natural community, including the presence of active, low abundance bacteria and archaea that have not yet been isolated. However, laboratory growth rates were slow compared with natural communities, and this correlated with increased abundance of stress response proteins for the dominant bacteria in laboratory communities. Modification of cultivation conditions reduced the abundance of stress response proteins and increased laboratory community growth rates. The research presented here represents the first description of the application of a metabolic labeling-based quantitative proteomic analysis at the community level and resulted in a model microbial community system ideal for testing physiological and ecological hypotheses.

  13. A purple acidophilic di-ferric DNA ligase from Ferroplasma.

    PubMed

    Ferrer, Manuel; Golyshina, Olga V; Beloqui, Ana; Böttger, Lars H; Andreu, José M; Polaina, Julio; De Lacey, Antonio L; Trautwein, Alfred X; Timmis, Kenneth N; Golyshin, Peter N

    2008-07-01

    We describe here an extraordinary purple-colored DNA ligase, LigFa, from the acidophilic ferrous iron-oxidizing archaeon Ferroplasma acidiphilum, a di-ferric enzyme with an extremely low pH activity optimum. Unlike any other DNA ligase studied to date, LigFa contains two Fe(3+)-tyrosinate centers and lacks any requirement for either Mg(2+) or K(+) for activity. DNA ligases from closest phylogenetic and ecophysiological relatives have normal pH optima (6.0-7.5), lack iron, and require Mg(2+)/K(+) for activity. Ferric iron retention is pH-dependent, with release resulting in partial protein unfolding and loss of activity. Reduction of the Fe(3+) to Fe(2+) results in an 80% decrease in DNA substrate binding and an increase in the pH activity optimum to 5.0. DNA binding induces significant conformational change around the iron site(s), suggesting that the ferric irons of LigFa act both as structure organizing and stabilizing elements and as Lewis acids facilitating DNA binding at low pH.

  14. Isolation of iron-oxidizing bacteria from corroded concretes of sewage treatment plants.

    PubMed

    Maeda, T; Negishi, A; Komoto, H; Oshima, Y; Kamimura, K; Sugio, T

    1999-01-01

    Thirty-six strains of iron-oxidizing bacteria were isolated from corroded concrete samples obtained at eight sewage treatment plants in Japan. All of the strains isolated grew autotrophically in ferrous sulfate (3.0%), elemental sulfur (1.0%) and FeS (1.0%) media (pH 1.5). Washed intact cells of the 36 isolates had activities to oxidize both ferrous iron and elemental sulfur. Strain SNA-5, a representative of the isolated strains, was a gram-negative, rod-shaped bacterium (0.5-0.6x0.9-1.5 microm). The mean G+C content of its DNA was 55.9 mol%. The pH and temperature optima for growth were 1.5 and 30 degrees C, and the bacterium had activity to assimilate 14CO2 into the cells when ferrous iron or elemental sulfur was used as a sole source of energy. These results suggest that SNA-5 is Thiobacillus ferrooxidans strain. The pHs and numbers of iron-oxidizing bacteria in corroded concrete samples obtained by boring to depths of 0-1, 1-3, and 3-5 cm below the concrete surface were respectively 1.4, 1.7, and 2.0, and 1.2 x 10(8), 5 x 10(7), and 5 x 10(6) cells/g concrete. The degree of corrosion in the sample obtained nearest to the surface was more severe than in the deeper samples. The findings indicated that the levels of acidification and corrosion of the concrete structure corresponded with the number of iron-oxidizing bacteria in a concrete sample. Sulfuric acid produced by the chemolithoautotrophic sulfur-oxidizing bacterium Thiobacillus thiooxidansis known to induce concrete corrosion. Since not only T. thiooxidans but also T. ferrooxidans can oxidize reduced sulfur compounds and produce sulfuric acid, the results strongly suggest that T. ferrooxidans as well as T. thiooxidans is involved in concrete corrosion. PMID:16232615

  15. Isolation of iron-oxidizing bacteria from corroded concretes of sewage treatment plants.

    PubMed

    Maeda, T; Negishi, A; Komoto, H; Oshima, Y; Kamimura, K; Sugio, T

    1999-01-01

    Thirty-six strains of iron-oxidizing bacteria were isolated from corroded concrete samples obtained at eight sewage treatment plants in Japan. All of the strains isolated grew autotrophically in ferrous sulfate (3.0%), elemental sulfur (1.0%) and FeS (1.0%) media (pH 1.5). Washed intact cells of the 36 isolates had activities to oxidize both ferrous iron and elemental sulfur. Strain SNA-5, a representative of the isolated strains, was a gram-negative, rod-shaped bacterium (0.5-0.6x0.9-1.5 microm). The mean G+C content of its DNA was 55.9 mol%. The pH and temperature optima for growth were 1.5 and 30 degrees C, and the bacterium had activity to assimilate 14CO2 into the cells when ferrous iron or elemental sulfur was used as a sole source of energy. These results suggest that SNA-5 is Thiobacillus ferrooxidans strain. The pHs and numbers of iron-oxidizing bacteria in corroded concrete samples obtained by boring to depths of 0-1, 1-3, and 3-5 cm below the concrete surface were respectively 1.4, 1.7, and 2.0, and 1.2 x 10(8), 5 x 10(7), and 5 x 10(6) cells/g concrete. The degree of corrosion in the sample obtained nearest to the surface was more severe than in the deeper samples. The findings indicated that the levels of acidification and corrosion of the concrete structure corresponded with the number of iron-oxidizing bacteria in a concrete sample. Sulfuric acid produced by the chemolithoautotrophic sulfur-oxidizing bacterium Thiobacillus thiooxidansis known to induce concrete corrosion. Since not only T. thiooxidans but also T. ferrooxidans can oxidize reduced sulfur compounds and produce sulfuric acid, the results strongly suggest that T. ferrooxidans as well as T. thiooxidans is involved in concrete corrosion.

  16. Iron oxide and gold nanoparticles in cancer therapy

    NASA Astrophysics Data System (ADS)

    Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.

    2016-08-01

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  17. Targeted iron oxide nanoparticles for the enhancement of radiation therapy.

    PubMed

    Hauser, Anastasia K; Mitov, Mihail I; Daley, Emily F; McGarry, Ronald C; Anderson, Kimberly W; Hilt, J Zach

    2016-10-01

    To increase the efficacy of radiation, iron oxide nanoparticles can be utilized for their ability to produce reactive oxygen species (ROS). Radiation therapy promotes leakage of electrons from the electron transport chain and leads to an increase in mitochondrial production of the superoxide anion which is converted to hydrogen peroxide by superoxide dismutase. Iron oxide nanoparticles can then catalyze the reaction from hydrogen peroxide to the highly reactive hydroxyl radical. Therefore, the overall aim of this project was to utilize iron oxide nanoparticles conjugated to a cell penetrating peptide, TAT, to escape lysosomal encapsulation after internalization by cancer cells and catalyze hydroxyl radical formation. It was determined that TAT functionalized iron oxide nanoparticles and uncoated iron oxide nanoparticles resulted in permeabilization of the lysosomal membranes. Additionally, mitochondrial integrity was compromised when A549 cells were treated with both TAT-functionalized nanoparticles and radiation. Pre-treatment with TAT-functionalized nanoparticles also significantly increased the ROS generation associated with radiation. A long term viability study showed that TAT-functionalized nanoparticles combined with radiation resulted in a synergistic combination treatment. This is likely due to the TAT-functionalized nanoparticles sensitizing the cells to subsequent radiation therapy, because the nanoparticles alone did not result in significant toxicities. PMID:27521615

  18. Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI

    PubMed Central

    Lodhia, J; Mandarano, G; Ferris, NJ; Eu, P; Cowell, SF

    2010-01-01

    Contrast agents, such as iron oxide, enhance MR images by altering the relaxation times of tissues in which the agent is present. They can also be used to label targeted molecular imaging probes. Unfortunately, no molecular imaging probe is currently available on the clinical MRI market. A promising platform for MRI contrast agent development is nanotechnology, where superparamagnetic iron oxide nanoparticles (SPIONS) are tailored for MR contrast enhancement, and/or for molecular imaging. SPIONs can be produced using a range of methods and the choice of method will be influenced by the characteristics most important for a particular application. In addition, the ability to attach molecular markers to SPIONS heralds their application in molecular imaging. There are many reviews on SPION synthesis for MRI; however, these tend to be targeted to a chemistry audience. The development of MRI contrast agents attracts experienced researchers from many fields including some researchers with little knowledge of medical imaging or MRI. This situation presents medical radiation practitioners with opportunities for involvement, collaboration or leadership in research depending on their level of commitment and their ability to learn. Medical radiation practitioners already possess a large portion of the understanding, knowledge and skills necessary for involvement in MRI development and molecular imaging. Their expertise in imaging technology, patient care and radiation safety provides them with skills that are directly applicable to research on the development and application of SPIONs and MRI. In this paper we argue that MRI SPIONs, currently limited to major research centres, will have widespread clinical use in the future. We believe that knowledge about this growing area of research provides an opportunity for medical radiation practitioners to enhance their specialised expertise to ensure best practice in a truly multi-disciplinary environment. This review outlines how and

  19. Investigation of energy gene expressions and community structures of free and attached acidophilic bacteria in chalcopyrite bioleaching.

    PubMed

    Zhu, Jianyu; Jiao, Weifeng; Li, Qian; Liu, Xueduan; Qin, Wenqing; Qiu, Guanzhou; Hu, Yuehua; Chai, Liyuan

    2012-12-01

    In order to better understand the bioleaching mechanism, expression of genes involved in energy conservation and community structure of free and attached acidophilic bacteria in chalcopyrite bioleaching were investigated. Using quantitative real-time PCR, we studied the expression of genes involved in energy conservation in free and attached Acidithiobacillus ferrooxidans during bioleaching of chalcopyrite. Sulfur oxidation genes of attached A. ferrooxidans were up-regulated while ferrous iron oxidation genes were down-regulated compared with free A. ferrooxidans in the solution. The up-regulation may be induced by elemental sulfur on the mineral surface. This conclusion was supported by the results of HPLC analysis. Sulfur-oxidizing Acidithiobacillus thiooxidans and ferrous-oxidizing Leptospirillum ferrooxidans were the members of the mixed culture in chalcopyrite bioleaching. Study of the community structure of free and attached bacteria showed that A. thiooxidans dominated the attached bacteria while L. ferrooxidans dominated the free bacteria. With respect to available energy sources during bioleaching of chalcopyrite, sulfur-oxidizers tend to be on the mineral surfaces whereas ferrous iron-oxidizers tend to be suspended in the aqueous phase. Taken together, these results indicate that the main role of attached acidophilic bacteria was to oxidize elemental sulfur and dissolution of chalcopyrite involved chiefly an indirect bioleaching mechanism.

  20. Virus-Templated Near-Amorphous Iron Oxide Nanotubes.

    PubMed

    Shah, Sachin N; Khan, Abid A; Espinosa, Ana; Garcia, Miguel A; Nuansing, Wiwat; Ungureanu, Mariana; Heddle, Jonathan G; Chuvilin, Andrey L; Wege, Christina; Bittner, Alexander M

    2016-06-14

    We present a simple synthesis of iron oxide nanotubes, grown under very mild conditions from a solution containing Fe(II) and Fe(III), on rod-shaped tobacco mosaic virus templates. Their well-defined shape and surface chemistry suggest that these robust bionanoparticles are a versatile platform for synthesis of small, thin mineral tubes, which was achieved efficiently. Various characterization tools were used to explore the iron oxide in detail: Electron microscopy (SEM, TEM), magnetometry (SQUID-VSM), diffraction (XRD, TEM-SAED), electron spectroscopies (EELS, EDX, XPS), and X-ray absorption (XANES with EXAFS analysis). They allowed determination of the structure, crystallinity, magnetic properties, and composition of the tubes. The protein surface of the viral templates was crucial to nucleate iron oxide, exhibiting analogies to biomineralization in natural compartments such as ferritin cages. PMID:27181278

  1. Virus-Templated Near-Amorphous Iron Oxide Nanotubes.

    PubMed

    Shah, Sachin N; Khan, Abid A; Espinosa, Ana; Garcia, Miguel A; Nuansing, Wiwat; Ungureanu, Mariana; Heddle, Jonathan G; Chuvilin, Andrey L; Wege, Christina; Bittner, Alexander M

    2016-06-14

    We present a simple synthesis of iron oxide nanotubes, grown under very mild conditions from a solution containing Fe(II) and Fe(III), on rod-shaped tobacco mosaic virus templates. Their well-defined shape and surface chemistry suggest that these robust bionanoparticles are a versatile platform for synthesis of small, thin mineral tubes, which was achieved efficiently. Various characterization tools were used to explore the iron oxide in detail: Electron microscopy (SEM, TEM), magnetometry (SQUID-VSM), diffraction (XRD, TEM-SAED), electron spectroscopies (EELS, EDX, XPS), and X-ray absorption (XANES with EXAFS analysis). They allowed determination of the structure, crystallinity, magnetic properties, and composition of the tubes. The protein surface of the viral templates was crucial to nucleate iron oxide, exhibiting analogies to biomineralization in natural compartments such as ferritin cages.

  2. Eyelid allergic contact dermatitis to black iron oxide.

    PubMed

    Saxena, M; Warshaw, E; Ahmed, D D

    2001-03-01

    Eye cosmetics are a common cause of eyelid dermatitis. These products contain pigments, fragrances, resins, preservatives and vehicles. Mascara might cause either irritant or allergic contact dermatitis (ACD) of the eyelids. We present the case of a 44-year-old woman with a 10-month history of periorbital and eyelid dermatitis. Epicutaneous patch testing using the TRUE Test, cosmetic series, steroid series, and her personal products yielded a strong reaction to her mascara. Subsequent patch testing to the mascara components provided by the manufacturer revealed a severe reaction only to 5% black iron oxide. This black iron oxide was further tested in 10 normal controls with no reactions produced. There is only one previous report of eyelid ACD secondary to iron oxide that represents a rare cause of eyelid ACD.

  3. Development of Novel Biopolymer/Synthetic-Polymer/Iron Oxide Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mena Montoya, Marleth; Carranza, Sugeheidy; Hinojosa, Moisés; González, Virgilio

    2009-03-01

    In this work we report the successful development of a family of magnetic nanocomposites based on chitosan or/and polyamide 6 matrix with dispersed iron oxide nanoparticles synthesized by chemical co-precipitation. The iron oxide contents varied from 5 up to 23 wt%, the nanocomposites were studied by FTIR, UV-vis, TGA, XRD, TEM and magnetometry. The FTIR analysis demonstrates an interaction between the amide group of the polyamide 6 and the ceramic material. In formic acid, the nanocomposites absorb in the UV-Vis range, and the magnitude of the band gap (optical), calculated using the band of higher wavelength, is between 2.16 and 2.19 eV. In nanocomposites with chitosan/polyamide 6 matrix the developed morphologies are spherulites of polyamide 6 surrounded by chitosan, with the iron oxide particles presumably in the form of ferrihidryte. The measured magnetic properties revealed a superparamagnetic character on the studied specimens.

  4. Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles.

    PubMed

    Elias, Andrew; Tsourkas, Andrew

    2009-01-01

    The use of nanometer-sized iron oxide nanoparticles and micron-sized iron oxide particles as magnetic resonance (MR) contrast agents has garnered a high degree of interest in diverse areas of biology and medicine. Applications such as cell tracking, molecular imaging, gene detection, and lymphography are being explored to provide insight into disease mechanisms, monitor therapeutic efficacy, and facilitate diagnostic imaging. What makes iron oxide so appealing is a number of favorable properties including high detectability by MR, biodegradability and low toxicity. Here we describe the recent progress on the use of magnetic nanoparticles in imaging circulating cells and lymphoid tissues. The study of the lymph system and the biodistribution of various circulating immune cells is important in the diagnosis, prognosis, and treatment of a wide range of diseases and is expected to have a profound effect on patient outcome.

  5. Visualization study on sedimentation of micron iron oxide particles.

    PubMed

    Chen, Jin-Fang; Luo, Ye; Xu, Jun-Hui; Chen, Qi-Ming; Guo, Jia

    2006-09-15

    In this paper, a novel technique combined light-electronic microscopy and computer imaging trace was used for visualization of the sedimentation of micron iron oxide particles in a customized micro-reactor. Micron iron oxide particles were recovered from the cinder of sulfuric acid production by sedimentation separating and hydraulic rating. Effects of particle size, shape and surface roughness on the sedimentation velocity were investigated. For irregular-shape particles, the sedimentation velocity and the geometric parameters of the particles were measured by the imaging trace technique. A correction coefficient (c) was used to modify the Stokes equation. In this study, the relationship between the correction coefficient and the equivalent diameter (d(p)) was found to be linear: c=0.6272-0.0298d(p), for iron oxide particles with equivalent diameter 4-22 microm.

  6. Analysis of iron oxide precipitates in constructed mine wastewater treatments

    SciTech Connect

    Partezana, J.M.

    1996-10-01

    The purpose or this research project is to characterize iron oxide precipitates collected from abandoned mine drainage (AMD) treatment facilities in order to determine whether these precipitates have possible commercial value. The treatment facilities use constructed wetlands to raise pH levels to near neutral levels and to remove iron and other heavy metals from AMD polluted water. The main commercial value of interest is in the use of pigments in products such as paints, clay and brick. The precipitates arc characterized for composition and quality against natural and synthetic commercial pigment products. Various processing techniques were developed for sample preparation. Analysis tests include: general pigment tests, heavy metals, anions, particle size, and particle composition. Results show that the iron oxide precipitates are chemically similar to the commercial iron oxide but will require additional processing to meet pigment qualifications.

  7. Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes

    DOEpatents

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1985-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  8. Multifunctional Iron Oxide Nanoparticles for Diagnostics, Therapy and Macromolecule Delivery

    PubMed Central

    Yen, Swee Kuan; Padmanabhan, Parasuraman; Selvan, Subramanian Tamil

    2013-01-01

    In recent years, multifunctional nanoparticles (NPs) consisting of either metal (e.g. Au), or magnetic NP (e.g. iron oxide) with other fluorescent components such as quantum dots (QDs) or organic dyes have been emerging as versatile candidate systems for cancer diagnosis, therapy, and macromolecule delivery such as micro ribonucleic acid (microRNA). This review intends to highlight the recent advances in the synthesis and application of multifunctional NPs (mainly iron oxide) in theranostics, an area used to combine therapeutics and diagnostics. The recent applications of NPs in miRNA delivery are also reviewed. PMID:24396508

  9. Electrolytic photodissociation of chemical compounds by iron oxide electrodes

    DOEpatents

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1984-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  10. Recovery of iron oxide from coal fly ash

    DOEpatents

    Dobbins, Michael S.; Murtha, Marlyn J.

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  11. Iron Oxide as an MRI Contrast Agent for Cell Tracking

    PubMed Central

    Korchinski, Daniel J.; Taha, May; Yang, Runze; Nathoo, Nabeela; Dunn, Jeff F.

    2015-01-01

    Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation. PMID:26483609

  12. Size-dependent magnetic properties of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Patsula, Vitalii; Moskvin, Maksym; Dutz, Silvio; Horák, Daniel

    2016-01-01

    Uniform iron oxide nanoparticles in the size range from 10 to 24 nm and polydisperse 14 nm iron oxide particles were prepared by thermal decomposition of Fe(III) carboxylates in the presence of oleic acid and co-precipitation of Fe(II) and Fe(III) chlorides by ammonium hydroxide followed by oxidation, respectively. While the first method produced hydrophobic oleic acid coated particles, the second one formed hydrophilic, but uncoated, nanoparticles. To make the iron oxide particles water dispersible and colloidally stable, their surface was modified with poly(ethylene glycol) and sucrose, respectively. Size and size distribution of the nanoparticles was determined by transmission electron microscopy, dynamic light scattering and X-ray diffraction. Surface of the PEG-functionalized and sucrose-modified iron oxide particles was characterized by Fourier transform infrared (FT-IR) and Raman spectroscopy and thermogravimetric analysis (TGA). Magnetic properties were measured by means of vibration sample magnetometry and specific absorption rate in alternating magnetic fields was determined calorimetrically. It was found, that larger ferrimagnetic particles showed higher heating performance than smaller superparamagnetic ones. In the transition range between superparamagnetism and ferrimagnetism, samples with a broader size distribution provided higher heating power than narrow size distributed particles of comparable mean size. Here presented particles showed promising properties for a possible application in magnetic hyperthermia.

  13. Synthesis of phase pure praseodymium barium copper iron oxide.

    PubMed

    Konne, Joshua L; Davis, Sean A; Glatzel, Stefan; Hall, Simon R

    2013-06-18

    The control of crystallization of praseodymium barium copper iron oxide, an intermediate temperature solid oxide fuel cell cathode material, has been demonstrated for the first time using a biotemplated sol-gel synthesis technique. The results obtained showed significant improvement in purity, synthesis time, surface area and simplicity over that previously reported.

  14. Iron oxides, dissolved silica, and regulation of marine phosphate concentration

    NASA Astrophysics Data System (ADS)

    Planavsky, N.; Reinhard, C.; Lyons, T.

    2008-12-01

    Phosphorous concentrations in iron oxide-rich sediments reflect orthophosphate levels in the water column from which iron oxides precipitated. Sediment P/Fe ratios are also strongly influenced by the concentrations of dissolved species that inhibit orthophosphate-to-ferrihydrite sorption, most notably silica. It may, therefore, be possible to use P/Fe ratios in iron oxide-rich sediments to estimate past dissolved P concentrations, if one considers the evolution of the silica cycle. A compilation of Fe and P data in iron oxide-rich sediments through time reveals an increase in P/Fe ratios after the Jurassic. We propose that this trend indicates evolution of the iron-oxide phosphate removal mechanism caused by decreasing levels of sorption inhibition by dissolved silica. The large difference in P/Fe ratios in Cenozoic versus older iron-oxide rich sediments can be linked with Si drawdown caused by the proliferation of siliceous plankton in the Cretaceous. There is also a late Mesozoic or Cenozoic increase in V/Fe ratios, which provides additional evidence for lower ferrihydrite anion sorption efficiency prior to diatom radiation. P/Fe ratios in iron oxide-rich sediments from the early and middle Phanerozoic are comparable to the ratios in iron formations previously presented as evidence for an early Precambrian phosphate crisis (Bjerrum and Canfield, 2002, Nature, 417:159-162). Given the compelling evidence for higher Si concentrations in the Precambrian compared to the Phanerozoic and dissolved P concentrations comparable to modern levels throughout the Phanerozoic, the presented trend of P/Fe ratios suggests dissolved P concentrations were higher in Precambrian than Phanerozoic oceans. High dissolved P levels in the Precambrian may have been linked to inhibited carbonate fluorapatite (CFA) formation as a result of persistently high levels of carbonate supersaturation. Carbonate ion substitution into CFA scales with the ambient carbonate ion activity and increases

  15. Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans

    PubMed Central

    Quatrini, Raquel; Lefimil, Claudia; Veloso, Felipe A.; Pedroso, Inti; Holmes, David S.; Jedlicki, Eugenia

    2007-01-01

    The γ-proteobacterium Acidithiobacillus ferrooxidans lives in extremely acidic conditions (pH 2) and, unlike most organisms, is confronted with an abundant supply of soluble iron. It is also unusual in that it oxidizes iron as an energy source. Consequently, it faces the challenging dual problems of (i) maintaining intracellular iron homeostasis when confronted with extremely high environmental loads of iron and (ii) of regulating the use of iron both as an energy source and as a metabolic micronutrient. A combined bioinformatic and experimental approach was undertaken to identify Fur regulatory sites in the genome of A. ferrooxidans and to gain insight into the constitution of its Fur regulon. Fur regulatory targets associated with a variety of cellular functions including metal trafficking (e.g. feoPABC, tdr, tonBexbBD, copB, cdf), utilization (e.g. fdx, nif), transcriptional regulation (e.g. phoB, irr, iscR) and redox balance (grx, trx, gst) were identified. Selected predicted Fur regulatory sites were confirmed by FURTA, EMSA and in vitro transcription analyses. This study provides the first model for a Fur-binding site consensus sequence in an acidophilic iron-oxidizing microorganism and lays the foundation for future studies aimed at deepening our understanding of the regulatory networks that control iron uptake, homeostasis and oxidation in extreme acidophiles. PMID:17355989

  16. Extreme zinc tolerance in acidophilic microorganisms from the bacterial and archaeal domains.

    PubMed

    Mangold, Stefanie; Potrykus, Joanna; Björn, Erik; Lövgren, Lars; Dopson, Mark

    2013-01-01

    Zinc can occur in extremely high concentrations in acidic, heavy metal polluted environments inhabited by acidophilic prokaryotes. Although these organisms are able to thrive in such severely contaminated ecosystems their resistance mechanisms have not been well studied. Bioinformatic analysis of a range of acidophilic bacterial and archaeal genomes identified homologues of several known zinc homeostasis systems. These included primary and secondary transporters, such as the primary heavy metal exporter ZntA and Nramp super-family secondary importer MntH. Three acidophilic model microorganisms, the archaeon 'Ferroplasma acidarmanus', the Gram negative bacterium Acidithiobacillus caldus, and the Gram positive bacterium Acidimicrobium ferrooxidans, were selected for detailed analyses. Zinc speciation modeling of the growth media demonstrated that a large fraction of the free metal ion is complexed, potentially affecting its toxicity. Indeed, many of the putative zinc homeostasis genes were constitutively expressed and with the exception of 'F. acidarmanus' ZntA, they were not up-regulated in the presence of excess zinc. Proteomic analysis revealed that zinc played a role in oxidative stress in At. caldus and Am. ferrooxidans. Furthermore, 'F. acidarmanus' kept a constant level of intracellular zinc over all conditions tested whereas the intracellular levels increased with increasing zinc exposure in the remaining organisms.

  17. Synthesis and properties of ammoniojarosites prepared with iron-oxidizing acidophilic microorganisms at 22 65 °C

    NASA Astrophysics Data System (ADS)

    Wang, Hongmei; Bigham, Jerry M.; Jones, Franklin S.; Tuovinen, Olli H.

    2007-01-01

    Ammoniojarosite [(NH 4,H 3O)Fe 3(OH) 6(SO 4) 2], a poorly soluble basic ferric sulfate, was produced by microbiological oxidation of ferrous sulfate at pH 2.0-3.0 over a range of NH4+ concentrations (5.4-805 mM) and temperatures (22-65 °C). Ammoniojarosites were also produced by chemical (abiotic) procedures in parallel thermal (36-95 °C) experiments. At 36 °C, schwertmannite [ideally Fe 8O 8(OH) 6(SO 4)] was the only solid product formed at <10 mM NH4+ concentrations. Between 11.5 and 85.4 mM NH4+, a mixed product of ammoniojarosite and schwertmannite precipitated, as identified by X-ray diffraction. In excess of 165 mM NH4+, ammoniojarosite was the only solid phase produced. An increase in the incubation temperature using thermoacidophiles at 45 and 65 °C accelerated the formation of ammoniojarosite in culture solutions containing 165 mM NH4+. Both the biogenic and chemical ammoniojarosites were yellow (2Y-4Y in Munsell hue), low surface area (<1 m 2/g), well crystalline materials with average co and ao unit cell parameters of 17.467 ± 0.048 Å and 7.330 ± 0.006 Å, respectively. Strong positive correlations were observed between unit cell axial ratios ( co/ ao) and increasing synthesis temperature in both biotic and abiotic systems. All samples were N deficient compared to stoichiometric ammoniojarosite, and both chemical and X-ray data indicated partial replacement of NH4+ by H 3O + to form solid solutions with 0.14-0.24 mole H 3O + per formula unit. The morphology of the biogenic jarosites included aggregated discs, pseudo-cubic crystals and botryoidal particles, whereas the chemical specimens prepared at 36-95 °C were composed of irregular crystals with angular edges. Morphological information may thus be useful to evaluate environmental parameters and mode of formation. The data may also have application in predicting phase boundary conditions for Fe(III) precipitation in biogeochemical processes and treatment systems involving acid sulfate waters.

  18. Intratumoral iron oxide nanoparticle hyperthermia and radiation cancer treatment

    NASA Astrophysics Data System (ADS)

    Hoopes, P. J.; Strawbridge, R. R.; Gibson, U. J.; Zeng, Q.; Pierce, Z. E.; Savellano, M.; Tate, J. A.; Ogden, J. A.; Baker, I.; Ivkov, R.; Foreman, A. R.

    2007-02-01

    The potential synergism and benefit of combined hyperthermia and radiation for cancer treatment is well established, but has yet to be optimized clinically. Specifically, the delivery of heat via external arrays /applicators or interstitial antennas has not demonstrated the spatial precision or specificity necessary to achieve appropriate a highly positive therapeutic ratio. Recently, antibody directed and possibly even non-antibody directed iron oxide nanoparticle hyperthermia has shown significant promise as a tumor treatment modality. Our studies are designed to determine the effects (safety and efficacy) of iron oxide nanoparticle hyperthermia and external beam radiation in a murine breast cancer model. Methods: MTG-B murine breast cancer cells (1 x 106) were implanted subcutaneous in 7 week-old female C3H/HeJ mice and grown to a treatment size of 150 mm3 +/- 50 mm3. Tumors were then injected locally with iron oxide nanoparticles and heated via an alternating magnetic field (AMF) generator operated at approximately 160 kHz and 400 - 550 Oe. Tumor growth was monitored daily using standard 3-D caliper measurement technique and formula. specific Mouse tumors were heated using a cooled, 36 mm diameter square copper tube induction coil which provided optimal heating in a 1 cm wide region in the center of the coil. Double dextran coated 80 nm iron oxide nanoparticles (Triton Biosystems) were used in all studies. Intra-tumor, peri-tumor and rectal (core body) temperatures were continually measured throughout the treatment period. Results: Preliminary in vivo nanoparticle-AMF hyperthermia (167 KHz and 400 or 550 Oe) studies demonstrated dose responsive cytotoxicity which enhanced the effects of external beam radiation. AMF associated eddy currents resulted in nonspecific temperature increases in exposed tissues which did not contain nanoparticles, however these effects were minor and not injurious to the mice. These studies also suggest that iron oxide nanoparticle

  19. Iron oxide nanotubes synthesized via template-based electrodeposition

    NASA Astrophysics Data System (ADS)

    Lim, Jin-Hee; Min, Seong-Gi; Malkinski, Leszek; Wiley, John B.

    2014-04-01

    Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition. In the case of magnetite nanotubes, which consist of slightly larger nanoparticles, magnetization curves show ferromagnetism with weak coercivity at room temperature, while FC-ZFC curves exhibit the Verwey transition at 125 K.Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition

  20. Draft Genome Sequence of "Acidibacillus ferrooxidans" ITV01, a Novel Acidophilic Firmicute Isolated from a Chalcopyrite Mine Drainage Site in Brazil.

    PubMed

    Dall'Agnol, Hivana; Ñancucheo, Ivan; Johnson, D Barrie; Oliveira, Renato; Leite, Laura; Pylro, Victor S; Holanda, Roseanne; Grail, Barry; Carvalho, Nelson; Nunes, Gisele Lopes; Tzotzos, George; Fernandes, Gabriel Rocha; Dutra, Julliane; Orellana, Sara Cuadros; Oliveira, Guilherme

    2016-03-17

    Here, we report the draft genome sequence of "Acidibacillus ferrooxidans" strain ITV01, a ferrous iron- and sulfide-mineral-oxidizing, obligate heterotrophic, and acidophilic bacterium affiliated with the phylum Firmicutes. Strain ITV01 was isolated from neutral drainage from a low-grade chalcopyrite from a mine in northern Brazil.

  1. Draft Genome Sequence of “Acidibacillus ferrooxidans” ITV01, a Novel Acidophilic Firmicute Isolated from a Chalcopyrite Mine Drainage Site in Brazil

    PubMed Central

    Dall’Agnol, Hivana; Ñancucheo, Ivan; Johnson, D. Barrie; Oliveira, Renato; Leite, Laura; Holanda, Roseanne; Grail, Barry; Carvalho, Nelson; Nunes, Gisele Lopes; Tzotzos, George; Fernandes, Gabriel Rocha; Dutra, Julliane; Orellana, Sara Cuadros

    2016-01-01

    Here, we report the draft genome sequence of “Acidibacillus ferrooxidans” strain ITV01, a ferrous iron- and sulfide-mineral-oxidizing, obligate heterotrophic, and acidophilic bacterium affiliated with the phylum Firmicutes. Strain ITV01 was isolated from neutral drainage from a low-grade chalcopyrite from a mine in northern Brazil. PMID:26988062

  2. Promising iron oxide-based magnetic nanoparticles in biomedical engineering.

    PubMed

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Vo, Toi Van; Lee, Beom-Jin

    2012-12-01

    For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.

  3. Dendronized iron oxide colloids for imaging the sentinel lymph node

    NASA Astrophysics Data System (ADS)

    Jouhannaud, J.; Garofalo, A.; Felder-Flesch, D.; Pourroy, G.

    2015-03-01

    Various methods have been used in medicine for more than one century to explore the lymphatic system. Radioactive colloids (RuS labelled with 99mTc) or/and Vital Blue dye are injected around the primary tumour and detected by means of nuclear probe or visual colour inspection respectively. The simultaneous clinical use of both markers (dye and radionuclide) improves the sensitivity of detection close to 100%. Superparamagnetic iron oxides (SPIOs) are currently receiving much attention as strong T2 weighted magnetic resonance imaging contrast agents that can be potentially used for preoperative localization of sentinel nodes, but also for peroperative detection of sentinel node using hand-held probes. In that context, we present the elaboration of dendronized iron oxide nanoparticles elaborated at the Institute of Physics and Chemistry of Materials of Strasbourg.

  4. Reflection spectra and magnetochemistry of iron oxides and natural surfaces

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1978-01-01

    The magnetic properties and spectral characteristics of iron oxides are distinctive. Diagnostic features in reflectance spectra (0.5 to 2.4 micron) for alpha Fe2O3, gamma Fe2O3, and FeOOH include location of Fe3(+) absorption features, intensity ratios at various wavelengths, and the curve shape between 1.2 micron and 2.4 micron. The reflection spectrum of natural rock surfaces are seldom those of the bulk rock because of weathering effects. Coatings are found to be dominated by iron oxides and clay. A simple macroscopic model of rock spectra (based on concepts of stains and coatings) is considered adequate for interpretation of LANDSAT data. The magnetic properties of materials associated with specific spectral types and systematic changes in both spectra and magnetic properties are considered.

  5. Purification of Lysosomes Using Supraparamagnetic Iron Oxide Nanoparticles (SPIONs).

    PubMed

    Rofe, Adam P; Pryor, Paul R

    2016-04-01

    Lysosomes can be rapidly isolated from tissue culture cells using supraparamagnetic iron oxide particles (SPIONs). In this protocol, colloidal iron dextran (FeDex) particles, a type of SPION, are taken up by cultured mouse macrophage cells via the endocytic pathway. The SPIONs accumulate in lysosomes, the end point of the endocytic pathway, permitting the lysosomes to be isolated magnetically. The purified lysosomes are suitable for in vitro fusion assays or for proteomic analysis. PMID:27037068

  6. Purification of Lysosomes Using Supraparamagnetic Iron Oxide Nanoparticles (SPIONs).

    PubMed

    Rofe, Adam P; Pryor, Paul R

    2016-04-01

    Lysosomes can be rapidly isolated from tissue culture cells using supraparamagnetic iron oxide particles (SPIONs). In this protocol, colloidal iron dextran (FeDex) particles, a type of SPION, are taken up by cultured mouse macrophage cells via the endocytic pathway. The SPIONs accumulate in lysosomes, the end point of the endocytic pathway, permitting the lysosomes to be isolated magnetically. The purified lysosomes are suitable for in vitro fusion assays or for proteomic analysis.

  7. Reducing arsenic accumulation in rice grain through iron oxide amendment.

    PubMed

    Farrow, Eric M; Wang, Jianmin; Burken, Joel G; Shi, Honglan; Yan, Wengui; Yang, John; Hua, Bin; Deng, Baolin

    2015-08-01

    Effects of soil-arsenic (As), phosphorus and iron oxide on As accumulation in rice grain were investigated. Cultivars that have significantly different sensitivity to As, straighthead-resistant Zhe 733 and straighthead-susceptible Cocodrie, were used to represent different cultivar varieties. The grain accumulation of other elements of concern, selenium (Se), molybdenum (Mo), and cadmium (Cd) was also monitored. Results demonstrated that high soil-As not only resulted in high grain-As, but could also result in high grain-Se, and Zhe 733 had significantly less grain-As than Cocodrie did. However, soil-As did not impact grain-Mo and Cd. Among all elements monitored, iron oxide amendment significantly reduced grain-As for both cultivars, while the phosphate application only reduced grain-Se for Zhe 733. Results also indicated that cultivar type significantly impacted grain accumulation of all monitored trace elements. Therefore, applying iron oxide to As-contaminated land, in addition to choosing appropriate rice cultivar, can effectively reduce the grain accumulation of As. PMID:25910688

  8. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles.

    PubMed

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; Ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  9. Safety assessment of chronic oral exposure to iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chamorro, Susana; Gutiérrez, Lucía; Vaquero, María Pilar; Verdoy, Dolores; Salas, Gorka; Luengo, Yurena; Brenes, Agustín; José Teran, Francisco

    2015-05-01

    Iron oxide nanoparticles with engineered physical and biochemical properties are finding a rapidly increasing number of biomedical applications. However, a wide variety of safety concerns, especially those related to oral exposure, still need to be addressed for iron oxide nanoparticles in order to reach clinical practice. Here, we report on the effects of chronic oral exposure to low doses of γ-Fe2O3 nanoparticles in growing chickens. Animal observation, weight, and diet intake reveal no adverse signs, symptoms, or mortality. No nanoparticle accumulation was observed in liver, spleen, and duodenum, with feces as the main excretion route. Liver iron level and duodenal villi morphology reflect the bioavailability of the iron released from the partial transformation of γ-Fe2O3 nanoparticles in the acid gastric environment. Duodenal gene expression studies related to the absorption of iron from γ-Fe2O3 nanoparticles indicate the enhancement of a ferric over ferrous pathway supporting the role of mucins. Our findings reveal that oral administration of iron oxide nanoparticles is a safe route for drug delivery at low nanoparticle doses.

  10. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles

    PubMed Central

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  11. In vivo biodistribution of iron oxide nanoparticles: an overview

    NASA Astrophysics Data System (ADS)

    Tate, Jennifer A.; Petryk, Alicia A.; Giustini, Andrew J.; Hoopes, P. Jack

    2011-03-01

    Iron oxide nanoparticles present a promising alternative to conventional energy deposition-based tissue therapies. The success of such nanoparticles as a therapeutic for diseases like cancer, however, depends heavily on the particles' ability to localize to tumor tissue as well as provide minimal toxicity to surrounding tissues and key organs such as those involved in the reticuloendothelial system (RES). We present here the results of a long term clearance study where mice injected intravenously with 2 mg Fe of 100 nm dextran-coated iron oxide nanoparticles were sacrificed at 14 and 580 days post injection. Histological analysis showed accumulation of the nanoparticles in some RES organs by the 14 day time point and clearance of the nanoparticles by the 580 day time point with no obvious toxicity to organs. An additional study reported herein employs 20 nm and 110 nm starch-coated iron oxide nanoparticles at 80 mg Fe/kg mouse in a size/biodistribution study with endpoints at 4, 24 and 72 hours. Preliminary results show nanoparticle accumulation in the liver and spleen with some elevated iron accumulation in tumoral tissues with differences between the 20 nm and the 110 nm nanoparticle depositions.

  12. A study of the dispersity of iron oxide and iron oxide-noble metal (Me = Pd, Pt) supported systems

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z. P.; Shopska, M. G.; Krstić, J. B.; Jovanović, D. M.; Mitov, I. G.; Kadinov, G. B.

    2007-09-01

    Samples of one-(Fe) and two-component (Fe-Pd and Fe-Pt) catalysts were prepared by incipient wetness impregnation of four different supports: TiO2 (anatase), γ-Al2O3, activated carbon, and diatomite. The chosen synthesis conditions resulted in the formation of nanosized supported phases—iron oxide (in the one-component samples), or iron oxide-noble metal (in the two-component ones). Different agglomeration degrees of these phases were obtained as a result of thermal treatment. Ultradisperse size of the supported phase was maintained in some samples, while a process of partial agglomeration occurred in others, giving rise to nearly bidisperse (ultra-and highdisperse) supported particles. The different texture of the used supports and their chemical composition are the reasons for the different stability of the nanosized supported phases. The samples were tested as heterogeneous catalysts in total benzene oxidation reaction.

  13. The reduction of iron oxides by volatiles in a rotary hearth furnace process: Part II. The reduction of iron oxide/carbon composites

    NASA Astrophysics Data System (ADS)

    Sohn, I.; Fruehan, R. J.

    2006-04-01

    The reduction of iron oxide/carbon composite pellets with hydrogen at 900 °C to 1000 °C was studied. Compared to hydrogen, the reduction by carbon was negligible at 900 °C and below. However, significant carbon oxidation of the iron oxide/graphite pellets by H2O generated from the reduction of Fe2O3 by H2 was observed. At higher temperatures, reduction by carbon complicates the overall reduction mechanism, with the iron oxide/graphite composite pellet found to be more reactive than the iron oxide/char composite pellet. From the scanning electron micrographs, partially reduced composite pellets showed a typical topochemical interface with an intermediate region between an oxygen-rich unreacted core and an iron-rich outer shell. To determine the possibility of reduction by volatiles, a layer of iron oxide powders was spread on top of a high volatile containing bituminous coal and heated inside a reactor using infra-red radiation. By separating the individual reactions involved for an iron oxide/coal mixture where a complex set of reactions occur simultaneously, it was possible to determine the sole effect of volatile reduction. It was found that the light reducing gases evolve initially and react with the iron oxide, with complex hydrocarbons evolving at the later stages. The volatiles caused about 20 to 50 pct reduction of the iron oxide.

  14. The reduction of iron oxides by volatiles in a rotary hearth furnace process: Part II. The reduction of iron oxide/carbon composites

    SciTech Connect

    Sohn, I.; Fruehan, R.J.

    2006-04-15

    The reduction of iron oxide/carbon composite pellets with hydrogen at 900{sup o}C to 1000{sup o}C was studied. Compared to hydrogen, the reduction by carbon was negligible at 900 degrees C and below. However, significant carbon oxidation of the iron oxide/graphite pellets by H{sub 2O generated from the reduction of Fe{sub 2}O{sub 3} by H-2 was observed. At higher temperatures, reduction by carbon complicates the overall reduction mechanism, with the iron oxide/graphite composite pellet found to be more reactive than the iron oxide/char composite pellet. From the scanning electron micrographs, partially reduced composite pellets showed a typical topochemical interface with an intermediate region between an oxygen-rich unreacted core and an iron-rich outer shell. To determine the possibility of reduction by volatiles, a layer of iron oxide powders was spread on top of a high volatile containing bituminous coal and heated inside a reactor using infra-red radiation. By separating the individual reactions involved for an iron oxide/coal mixture where a complex set of reactions occur simultaneously, it was possible to determine the sole effect of volatile reduction. It was found that the light reducing gases evolve initially and react with the iron oxide, with complex hydrocarbons evolving at the later stages. The volatiles caused about 20 to 50% reduction of the iron oxide.

  15. RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia.

    PubMed

    Zheng, S W; Huang, M; Hong, R Y; Deng, S M; Cheng, L F; Gao, B; Badami, D

    2014-03-01

    The purpose of this study was to develop a specific targeting magnetic nanoparticle probe for magnetic resonance imaging and therapy in the form of local hyperthermia. Carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles with carboxyl groups were coupled to cyclic arginine-glycine-aspartic peptides for integrin α(v)β₃ targeting. The particle size, magnetic properties, heating effect, and stability of the arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide were measured. The arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide demonstrates excellent stability and fast magneto-temperature response. Magnetic resonance imaging signal intensity of Bcap37 cells incubated with arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide was significantly decreased compared with that incubated with plain ultrasmall superparamagnetic iron oxide. The preferential uptake of arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide by target cells was further confirmed by Prussian blue staining and confocal laser scanning microscopy.

  16. Visualizing acidophilic microorganisms in biofilm communities using acid stable fluorescence dyes.

    PubMed

    Brockmann, Sina; Arnold, Thuro; Schweder, Bernd; Bernhard, Gert

    2010-07-01

    Bacteria in acidophilic biofilm communities, i.e. acid streamers and snottites, obtained from a subsurface mine in Königstein were visualized by fluorescence microscopy using four new fluorescent dyes (DY-601XL, V07-04118, V07-04146, DY-613). The pH of the bulk solution in which these bacteria thrive was pH 2.6 to 2.9. The new fluorescent dyes were all able to clearly stain and microscopically visualize in-situ the bacteria within the biofilm community without changing pH or background ion concentration. The commonly used fluorescent dyes DAPI and SYTO 59 were also applied for comparison. Both dyes, however, were not able to visualize any bacteria in-situ, since they were not stable under the very acid conditions. In addition, dye V07-04118 and dye DY-613 also possess the ability to stain larger cells which were presumably eukaryotic origin and may be attributed to yeast cells or amoeba-like cells. PCR analyses have shown that the dominant bacterial species in these acidophilic biofilm communities was a gram negative bacterium of the species Ferrovum myxofaciens. The presented four new dyes are ideal for in-situ investigations of microorganisms occurring in very acid conditions, e.g. in acidophilic biofilm communities when in parallel information on pH sensitive incorporated fluorescent heavy metals should be acquired.

  17. Genetic manipulation of acidophilic bacteria which are potentially applicable in coal beneficiation

    SciTech Connect

    Roberto, F.F.; Glenn, A.W.; Bulmer, D.; Bruhn, D.F.; Ward, T.E.

    1991-01-01

    The economic and practical aspects of a biological coal desulfurization process are the subject of increasing study. Depyritization of coal by the bacterium Thiobacillus ferrooxidans has been known for some time and pilot scale experiments are underway. A number of limitations have already been recognized for this process, foremost of which is the speed with which the microorganisms grow and attack the pyritic sulfur. Metal toxicity and mass transfer dynamics also present formidable hurdles. Removal of organic sulfur substituents poses even more difficult problems at this time, not least of which is the leak of efficient candidate organisms. Potential candidates at this time resemble members of the Psedomonadaceae, common environmental bacteria. The various limitations in the microorganisms being examined for a viable desulfurization process have led us to initiate studies on the extension of molecular genetic techniques to acidophilic bacteria, with an ultimate goal of introducing desirable characteristics for desulfurization (enhanced growth rate, metal resistance, biochemical capacity to degrade organic sulfur) either directly into T. ferrooxidans, or, alternatively, into a heterotrophic acidophile which can coexist in the same environment as T. ferrooxidans. We are focusing on members of the genus Acidiphilium, one such acidophilic heterotroph. 22 refs., 1 fig., 2 tabs.

  18. Conquering the Dark Side: Colloidal Iron Oxide Nanoparticles

    PubMed Central

    Senpan, Angana; Caruthers, Shelton D.; Rhee, Ilsu; Mauro, Nicholas A.; Pan, Dipanjan; Hu, Grace; Scott, Michael J.; Fuhrhop, Ralph W.; Gaffney, Patrick J.; Wickline, Samuel A.; Lanza, Gregory M.

    2009-01-01

    Nanomedicine approaches to atherosclerotic disease will have significant impact on the practice and outcomes of cardiovascular medicine. Iron oxide nanoparticles have been extensively used for nontargeted and targeted imaging applications based upon highly sensitive T2* imaging properties, which typically result in negative contrast effects that can only be imaged 24 or more hours after systemic administration due to persistent blood pool interference. Although recent advances involving MR pulse sequences have converted these dark contrast voxels into bright ones, the marked delays in imaging from persistent magnetic background interference and prominent dipole blooming effects of the magnetic susceptibility remain barriers to overcome. We report a T1-weighted (T1w) theranostic colloidal iron oxide nanoparticle platform, CION, which is achieved by entrapping oleate-coated magnetite particles within a cross-linked phospholipid nanoemulsion. Contrary to expectations, this formulation decreased T2 effects thus allowing positive T1w contrast detection down to low nanomolar concentrations. CION, a vascular constrained nanoplatform administered in vivo permitted T1w molecular imaging 1 hour after treatment without blood pool interference, although some T2 shortening effects on blood, induced by the superparamagnetic particles persisted. Moreover, CION was shown to encapsulate antiangiogenic drugs, like fumagillin, and retained them under prolonged dissolution, suggesting significant theranostic functionality. Overall, CION is a platform technology, developed with generally recognized as safe components, that overcomes the temporal and spatial imaging challenges associated with current iron oxide nanoparticle T2 imaging agents, and which has theranostic potential in vascular diseases for detecting unstable ruptured plaque or treating atherosclerotic angiogenesis. PMID:19908850

  19. Delivery of tobramycin coupled to iron oxide nanoparticles across the biofilm of mucoidal Pseudonomas aeruginosa and investigation of its efficacy

    NASA Astrophysics Data System (ADS)

    Armijo, Leisha M.; Kopciuch, Michael; Olszá½¹wka, Zuzia; Wawrzyniec, Stephen J.; Rivera, Antonio C.; Plumley, John B.; Cook, Nathaniel C.; Brandt, Yekaterina I.; Huber, Dale L.; Smolyakov, Gennady A.; Adolphi, Natalie L.; Smyth, Hugh D. C.; Osiński, Marek

    2014-03-01

    Pseudomonas aeruginosa bacterium is a deadly pathogen, leading to respiratory failure in cystic fibrosis and nosocomial pneumonia, and responsible for high mortality rates in these diseases. P. aeruginosa has inherent as well as acquired resistance to many drug classes. In this paper, we investigate the effectiveness of two classes; aminoglycoside (tobramycin) and fluoroquinolone (ciprofloxacin) administered alone, as well as conjugated to iron oxide (magnetite) nanoparticles. P. aeruginosa possesses the ability to quickly alter its genetics to impart resistance to the presence of new, unrecognized treatments. As a response to this impending public health threat, we have synthesized and characterized magnetite nanoparticles capped with biodegradable short-chain carboxylic acid derivatives conjugated to common antibiotic drugs. The functionalized nanoparticles may carry the drug past the mucus and biofilm layers to target the bacterial colonies via magnetic gradient-guided transport. Additionally, the magnetic ferrofluid may be used under application of an oscillating magnetic field to raise the local temperature, causing biofilm disruption, slowed growth, and mechanical disruption. These abilities of the ferrofluid would also treat multi-drug resistant strains, which appear to be increasing in many nosocomial as well as acquired opportunistic infections. In this in vitro model, we show that the iron oxide alone can also inhibit bacterial growth and biofilm formation.

  20. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.

    PubMed

    Kalambur, Venkat S; Longmire, Ellen K; Bischof, John C

    2007-11-20

    Superparamagnetic iron oxide nanoparticles (NPs) hold promise for a variety of biomedical applications due to their properties of visualization using magnetic resonance imaging (MRI), heating with radio frequency (rf), and movement in an external magnetic field. In this study, the cellular loading (uptake) mechanism of dextran- and surfactant-coated iron oxide NPs by malignant prostate tumor cells (LNCaP-Pro5) has been studied, and the feasibility of traditional rf treatment and a new laser heating method was evaluated. The kinetics of cell loading was quantified using magnetophoresis and a colorimetric assay. The results showed that loading of surfactant-coated iron oxide NPs with LNCaP-Pro5 was saturable with time (at 24 h) and extracellular concentration (11 pg Fe/cell at 0.5 mg Fe/mL), indicating that the particles are taken up by an "adsorptive endocytosis" pathway. Dextran-coated NPs, however, were taken up less efficiently (1 pg Fe/cell at 0.5 mg Fe/mL). Loading did not saturate with concentration suggesting uptake by fluid-phase endocytosis. Magnetophoresis suggests that NP-loaded cells can be held using external magnetic fields in microcirculatory flow velocities in vivo or in an appropriately designed extracorporeal circuit. Loaded cells were heated using traditional rf (260A, 357 kHz) and a new laser method (532 nm, 7 ns pulse duration, 0.03 J/pulse, 20 pulse/s). Iron oxide in water was found to absorb sufficiently strongly at 532 nm such that heating of individual NPs and thus loaded cells (1 pg Fe/cell) was effective (<10% cell survival) after 30 s of laser exposure. Radio frequency treatment required higher loading (>10 pg Fe/cell) and longer duration (30 min) when compared to laser to accomplish cell destruction (50% viability at 10 pg Fe/cell). Scaling calculations show that the pulsed laser method can lead to single-cell (loaded with NPs) treatments (200 degrees C temperature change at the surface of an individual NP) unlike traditional rf heating

  1. Iron oxide hydroxide nanoflower assisted removal of arsenic from water

    SciTech Connect

    Raul, Prasanta Kumar; Devi, Rashmi Rekha; Umlong, Iohborlang M.; Thakur, Ashim Jyoti; Banerjee, Saumen; Veer, Vijay

    2014-01-01

    Graphical abstract: Non-magnetic polycrystalline iron oxide hydroxide nanoparticle with flower like morphology is found to play as an effective adsorbent media to remove As(III) from 300 μg L{sup −1} to less than 10 μg L{sup −1} from drinking water over wide range of pH. TEM image clearly reveals that the nanoparticle looks flower like morphology with average particle size less than 20 nm. The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic at room temperature and the data fitted to different isotherm models indicate the heterogeneity of the adsorbent surface. The material can be regenerated up to 70% using dilute hydrochloric acid and it would be utilized for de-arsenification purposes. - Highlights: • The work includes synthesis of iron oxide hydroxide nanoflower and its applicability for the removal of arsenic from water. • The nanoparticle was characterized using modern instrumental methods like FESEM, TEM, BET, XRD, etc. • The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic at room temperature. • The sorption is multilayered on the heterogeneous surface of the nano adsorbent. • The mechanism of arsenic removal of IOH nanoflower follows both adsorption and ion-exchange. - Abstract: Non-magnetic polycrystalline iron oxide hydroxide nanoparticle with flower like morphology is found to play as an effective adsorbent media to remove As(III) from 300 μg L{sup −1} to less than 10 μg L{sup −1} from drinking water over wide range of pH. The nanoparticle was characterized by X-ray powder diffraction analysis (XRD), BET surface area, FTIR, FESEM and TEM images. TEM image clearly reveals flower like morphology with average particle size less than 20 nm. The nanoflower morphology is also supported by FESEM images. The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic and the data fitted to different isotherm models indicate the

  2. Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers

    PubMed Central

    Ferguson, Richard Mathew; Khandhar, Amit P; Arami, Hamed; Hua, Loc; Hovorka, Ondrej; Krishnan, Kannan M.

    2014-01-01

    Magnetic particle imaging (MPI) is an attractive new modality for imaging distributions of iron oxide nanoparticle tracers in vivo. With exceptional contrast, high sensitivity, and good spatial resolution, MPI shows promise for clinical imaging in angiography and oncology. Critically, MPI requires high-quality iron oxide nanoparticle tracers with tailored magnetic and surface properties to achieve its full potential. In this review, we discuss optimizing iron oxide nanoparticles’ physical, magnetic, and pharmacokinetic properties for MPI, highlighting results from our recent work in which we demonstrated tailored, biocompatible iron oxide nanoparticle tracers that provided two times better linear spatial resolution and five times better signal-to-noise ratio than Resovist. PMID:23787461

  3. Comparative genomic insights into ecophysiology of neutrophilic, microaerophilic iron oxidizing bacteria

    DOE PAGES

    Kato, Shingo; Ohkuma, Moriya; Powell, Deborah H.; Krepski, Sean T.; Oshima, Kenshiro; Hattori, Masahira; Shapiro, Nicole; Woyke, Tanja; Chan, Clara S.

    2015-11-13

    Neutrophilic microaerophilic iron-oxidizing bacteria (FeOB) are thought to play a significant role in cycling of carbon, iron and associated elements in both freshwater and marine iron-rich environments. However, the roles of the neutrophilic microaerophilic FeOB are still poorly understood due largely to the difficulty of cultivation and lack of functional gene markers. Here, we analyze the genomes of two freshwater neutrophilic microaerophilic stalk-forming FeOB, Ferriphaselus amnicola OYT1 and Ferriphaselus strain R-1. Phylogenetic analyses confirm that these are distinct species within Betaproteobacteria; we describe strain R-1 and propose the name F. globulitus. We compare the genomes to those of two freshwatermore » Betaproteobacterial and three marine Zetaproteobacterial FeOB isolates in order to look for mechanisms common to all FeOB, or just stalk-forming FeOB. The OYT1 and R-1 genomes both contain homologs to cyc2, which encodes a protein that has been shown to oxidize Fe in the acidophilic FeOB, Acidithiobacillus ferrooxidans. This c-type cytochrome common to all seven microaerophilic FeOB isolates, strengthening the case for its common utility in the Fe oxidation pathway. In contrast, the OYT1 and R-1 genomes lack mto genes found in other freshwater FeOB. OYT1 and R-1 both have genes that suggest they can oxidize sulfur species. Both have the genes necessary to fix carbon by the Calvin–Benson– Basshom pathway, while only OYT1 has the genes necessary to fix nitrogen. The stalk-forming FeOB share xag genes that may help form the polysaccharide structure of stalks. Both OYT1 and R-1 make a novel biomineralization structure, short rod-shaped Fe oxyhydroxides much smaller than their stalks; these oxides are constantly shed, and may be a vector for C, P, and metal transport to downstream environments. Lastly, our results show that while different FeOB are adapted to particular niches, freshwater and marine FeOB likely share common mechanisms for Fe

  4. Comparative genomic insights into ecophysiology of neutrophilic, microaerophilic iron oxidizing bacteria

    SciTech Connect

    Kato, Shingo; Ohkuma, Moriya; Powell, Deborah H.; Krepski, Sean T.; Oshima, Kenshiro; Hattori, Masahira; Shapiro, Nicole; Woyke, Tanja; Chan, Clara S.

    2015-11-13

    Neutrophilic microaerophilic iron-oxidizing bacteria (FeOB) are thought to play a significant role in cycling of carbon, iron and associated elements in both freshwater and marine iron-rich environments. However, the roles of the neutrophilic microaerophilic FeOB are still poorly understood due largely to the difficulty of cultivation and lack of functional gene markers. Here, we analyze the genomes of two freshwater neutrophilic microaerophilic stalk-forming FeOB, Ferriphaselus amnicola OYT1 and Ferriphaselus strain R-1. Phylogenetic analyses confirm that these are distinct species within Betaproteobacteria; we describe strain R-1 and propose the name F. globulitus. We compare the genomes to those of two freshwater Betaproteobacterial and three marine Zetaproteobacterial FeOB isolates in order to look for mechanisms common to all FeOB, or just stalk-forming FeOB. The OYT1 and R-1 genomes both contain homologs to cyc2, which encodes a protein that has been shown to oxidize Fe in the acidophilic FeOB, Acidithiobacillus ferrooxidans. This c-type cytochrome common to all seven microaerophilic FeOB isolates, strengthening the case for its common utility in the Fe oxidation pathway. In contrast, the OYT1 and R-1 genomes lack mto genes found in other freshwater FeOB. OYT1 and R-1 both have genes that suggest they can oxidize sulfur species. Both have the genes necessary to fix carbon by the Calvin–Benson– Basshom pathway, while only OYT1 has the genes necessary to fix nitrogen. The stalk-forming FeOB share xag genes that may help form the polysaccharide structure of stalks. Both OYT1 and R-1 make a novel biomineralization structure, short rod-shaped Fe oxyhydroxides much smaller than their stalks; these oxides are constantly shed, and may be a vector for C, P, and metal transport to downstream environments. Lastly, our results show that while different FeOB are adapted to particular niches, freshwater and marine FeOB likely share

  5. Comparative Genomic Insights into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria

    PubMed Central

    Kato, Shingo; Ohkuma, Moriya; Powell, Deborah H.; Krepski, Sean T.; Oshima, Kenshiro; Hattori, Masahira; Shapiro, Nicole; Woyke, Tanja; Chan, Clara S.

    2015-01-01

    Neutrophilic microaerophilic iron-oxidizing bacteria (FeOB) are thought to play a significant role in cycling of carbon, iron and associated elements in both freshwater and marine iron-rich environments. However, the roles of the neutrophilic microaerophilic FeOB are still poorly understood due largely to the difficulty of cultivation and lack of functional gene markers. Here, we analyze the genomes of two freshwater neutrophilic microaerophilic stalk-forming FeOB, Ferriphaselus amnicola OYT1 and Ferriphaselus strain R-1. Phylogenetic analyses confirm that these are distinct species within Betaproteobacteria; we describe strain R-1 and propose the name F. globulitus. We compare the genomes to those of two freshwater Betaproteobacterial and three marine Zetaproteobacterial FeOB isolates in order to look for mechanisms common to all FeOB, or just stalk-forming FeOB. The OYT1 and R-1 genomes both contain homologs to cyc2, which encodes a protein that has been shown to oxidize Fe in the acidophilic FeOB, Acidithiobacillus ferrooxidans. This c-type cytochrome common to all seven microaerophilic FeOB isolates, strengthening the case for its common utility in the Fe oxidation pathway. In contrast, the OYT1 and R-1 genomes lack mto genes found in other freshwater FeOB. OYT1 and R-1 both have genes that suggest they can oxidize sulfur species. Both have the genes necessary to fix carbon by the Calvin–Benson–Basshom pathway, while only OYT1 has the genes necessary to fix nitrogen. The stalk-forming FeOB share xag genes that may help form the polysaccharide structure of stalks. Both OYT1 and R-1 make a novel biomineralization structure, short rod-shaped Fe oxyhydroxides much smaller than their stalks; these oxides are constantly shed, and may be a vector for C, P, and metal transport to downstream environments. Our results show that while different FeOB are adapted to particular niches, freshwater and marine FeOB likely share common mechanisms for Fe oxidation electron

  6. Acidibacter ferrireducens gen. nov., sp. nov.: an acidophilic ferric iron-reducing gammaproteobacterium.

    PubMed

    Falagán, Carmen; Johnson, D Barrie

    2014-11-01

    An acidophilic gammaproteobacterium, isolated from a pit lake at an abandoned metal mine in south-west Spain, was shown to be distantly related to all characterized prokaryotes, and to be the first representative of a novel genus and species. Isolate MCF85 is a Gram-negative, non-motile, rod-shaped mesophilic bacterium with a temperature growth optimum of 32-35 °C (range 8-45 °C). It was categorized as a moderate acidophile, growing optimally at pH 3.5-4.0 and between pH 2.5 and 4.5. Under optimum conditions its culture doubling time was around 75 min. Only organic electron donors were used by MCF85, and the isolate was confirmed to be an obligate heterotroph. It grew on a limited range of sugars (hexoses and disaccharides, though not pentoses) and some other small molecular weight organic compounds, and growth was partially or completely inhibited by small concentrations of some aliphatic acids. The acidophile grew in the presence of >100 mM ferrous iron or aluminium, but was more sensitive to some other metals, such as copper. It was also much more tolerant of arsenic (V) than arsenic (III). Isolate MCF85 catalysed the reductive dissolution of the ferric iron mineral schwertmannite when incubated under micro-aerobic or anaerobic conditions, causing the culture media pH to increase. There was no evidence, however, that the acidophile could grow by ferric iron respiration under strictly anoxic conditions. Isolate MCF85 is the designated type strain of the novel species Acidibacter ferrireducens (=DSM 27237(T) = NCCB 100460(T)).

  7. Evaluation of Nanodispersion of Iron Oxides Using Various Polymers

    PubMed Central

    Tanaka, Y.; Ueyama, H.; Ogata, M.; Daikoku, T.; Morimoto, M.; Kitagawa, A.; Imajo, Y.; Tahara, T.; Inkyo, M.; Yamaguchi, N.; Nagata, S.

    2014-01-01

    In order to create Fe2O3 and Fe2O3·H2O nanoparticles, various polymers were used as dispersing agents, and the resulting effects on the dispersibility and nanoparticulation of the iron oxides were evaluated. It was revealed that not only the solution viscosity but also the molecular length of the polymers and the surface tension of the particles affected the dispersibility of Fe2O3 and Fe2O3·H2O particles. Using the dispersing agents 7.5% hydroxypropylcellulose-SSL, 6.0% Pharmacoat 603, 5.0% and 6.5% Pharmacoat 904 and 7.0% Metolose SM-4, Fe2O3 nanoparticles were successfully fabricated by wet milling using Ultra Apex Mill. Fe2O3·H2O nanoparticles could also be produced using 5.0% hydroxypropylcellulose-SSL and 4.0 and 7.0% Pharmacoat 904. The index for dispersibility developed in this study appears to be an effective indicator of success in fabricating nanoparticles of iron oxides by wet milling using Ultra Apex Mill. PMID:24799739

  8. Tuning the structure and habit of iron oxide mesocrystals.

    PubMed

    Wetterskog, Erik; Klapper, Alice; Disch, Sabrina; Josten, Elisabeth; Hermann, Raphaël P; Rücker, Ulrich; Brückel, Thomas; Bergström, Lennart; Salazar-Alvarez, German

    2016-08-25

    A precise control over the meso- and microstructure of ordered and aligned nanoparticle assemblies, i.e., mesocrystals, is essential in the quest for exploiting the collective material properties for potential applications. In this work, we produced evaporation-induced self-assembled mesocrystals with different mesostructures and crystal habits based on iron oxide nanocubes by varying the nanocube size and shape and by applying magnetic fields. A full 3D characterization of the mesocrystals was performed using image analysis, high-resolution scanning electron microscopy and Grazing Incidence Small Angle X-ray Scattering (GISAXS). This enabled the structural determination of e.g. multi-domain mesocrystals with complex crystal habits and the quantification of interparticle distances with sub-nm precision. Mesocrystals of small nanocubes (l = 8.6-12.6 nm) are isostructural with a body centred tetragonal (bct) lattice whereas assemblies of the largest nanocubes in this study (l = 13.6 nm) additionally form a simple cubic (sc) lattice. The mesocrystal habit can be tuned from a square, hexagonal to star-like and pillar shapes depending on the particle size and shape and the strength of the applied magnetic field. Finally, we outline a qualitative phase diagram of the evaporation-induced self-assembled superparamagnetic iron oxide nanocube mesocrystals based on nanocube edge length and magnetic field strength. PMID:27448065

  9. Tuning the structure and habit of iron oxide mesocrystals

    DOE PAGES

    Wetterskog, Erik; Klapper, Alice; Disch, Sabrina; Josten, Elisabeth; Hermann, Raphaël P.; Rücker, Ulrich; Brückel, Thomas; Bergström, Lennart; Salazar-Alvarez, German

    2016-07-11

    A precise control over the meso- and microstructure of ordered and aligned nanoparticle assemblies, i.e., mesocrystals, is essential in the quest for exploiting the collective material properties for potential applications. In this work, we produced evaporation-induced self-assembled mesocrystals with different mesostructures and crystal habits based on iron oxide nanocubes by varying the nanocube size and shape and by applying magnetic fields. A full 3D characterization of the mesocrystals was performed using image analysis, high-resolution scanning electron microscopy and Grazing Incidence Small Angle X-ray Scattering (GISAXS). This enabled the structural determination of e.g. multi-domain mesocrystals with complex crystal habits and themore » quantification of interparticle distances with sub-nm precision. Mesocrystals of small nanocubes (l = 8.6 12.6 nm) are isostructural with a body centred tetragonal (bct ) lattice whereas assemblies of the largest nanocubes in this study (l = 13.6 nm) additionally form a simple cubic (sc) lattice. The mesocrystal habit can be tuned from a square, hexagonal to star-like and pillar shapes depending on the particle size and shape and the strength of the applied magnetic field. Finally, we outline a qualitative phase diagram of the evaporation-induced self-assembled superparamagnetic iron oxide nanocube mesocrystals based on nanocube edge length and magnetic field strength.« less

  10. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    PubMed

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan.

  11. Tuning the structure and habit of iron oxide mesocrystals

    SciTech Connect

    Wetterskog, Erik; Klapper, Alice; Disch, Sabrina; Josten, Elisabeth; Hermann, Raphael P; Ruecker, Ulrich; Brueckel, Th.; Bergstrom, Lennart; Salazar-Alvarez, G.

    2016-01-01

    A precise control over the meso- and microstructure of ordered and aligned nanoparticle assemblies, i.e., mesocrystals, is essential in the quest for exploiting the collective material properties for potential applications. In this work, we produced evaporation-induced self-assembled mesocrystals with different mesostructures and crystal habits based on iron oxide nanocubes by varying the nanocube size and shape and by applying magnetic fields. A full 3D characterization of the mesocrystals was performed using image analysis, high-resolution scanning electron microscopy and Grazing Incidence Small Angle X-ray Scattering (GISAXS). This enabled the structural determination of e.g. multi-domain mesocrystals with complex crystal habits and the quantification of interparticle distances with sub-nm precision. Mesocrystals of small nanocubes (l = 8.6 12.6 nm) are isostructural with a body centred tetragonal (bct ) lattice whereas assemblies of the largest nanocubes in this study (l = 13.6 nm) additionally form a simple cubic (sc) lattice. The mesocrystal habit can be tuned from a square, hexagonal to star-like and pillar shapes depending on the particle size and shape and the strength of the applied magnetic field. Finally, we outline a qualitative phase diagram of the evaporation-induced self-assembled superparamagnetic iron oxide nanocube mesocrystals based on nanocube edge length and magnetic field strength.

  12. Selective stabilization of aliphatic organic carbon by iron oxide

    PubMed Central

    Adhikari, Dinesh; Yang, Yu

    2015-01-01

    Stabilization of organic matter in soil is important for natural ecosystem to sequestrate carbon and mitigate greenhouse gas emission. It is largely unknown what factors govern the preservation of organic carbon in soil, casting shadow on predicting the response of soil to climate change. Iron oxide was suggested as an important mineral preserving soil organic carbon. However, ferric minerals are subject to reduction, potentially releasing iron and decreasing the stability of iron-bound organic carbon. Information about the stability of iron-bound organic carbon in the redox reaction is limited. Herein, we investigated the sorptive interactions of organic matter with hematite and reductive release of hematite-bound organic matter. Impacts of organic matter composition and conformation on its sorption by hematite and release during the reduction reaction were analyzed. We found that hematite-bound aliphatic carbon was more resistant to reduction release, although hematite preferred to sorb more aromatic carbon. Resistance to reductive release represents a new mechanism that aliphatic soil organic matter was stabilized by association with iron oxide. Selective stabilization of aliphatic over aromatic carbon can greatly contribute to the widely observed accumulation of aliphatic carbon in soil, which cannot be explained by sorptive interactions between minerals and organic matter. PMID:26061259

  13. Selective stabilization of aliphatic organic carbon by iron oxide.

    PubMed

    Adhikari, Dinesh; Yang, Yu

    2015-01-01

    Stabilization of organic matter in soil is important for natural ecosystem to sequestrate carbon and mitigate greenhouse gas emission. It is largely unknown what factors govern the preservation of organic carbon in soil, casting shadow on predicting the response of soil to climate change. Iron oxide was suggested as an important mineral preserving soil organic carbon. However, ferric minerals are subject to reduction, potentially releasing iron and decreasing the stability of iron-bound organic carbon. Information about the stability of iron-bound organic carbon in the redox reaction is limited. Herein, we investigated the sorptive interactions of organic matter with hematite and reductive release of hematite-bound organic matter. Impacts of organic matter composition and conformation on its sorption by hematite and release during the reduction reaction were analyzed. We found that hematite-bound aliphatic carbon was more resistant to reduction release, although hematite preferred to sorb more aromatic carbon. Resistance to reductive release represents a new mechanism that aliphatic soil organic matter was stabilized by association with iron oxide. Selective stabilization of aliphatic over aromatic carbon can greatly contribute to the widely observed accumulation of aliphatic carbon in soil, which cannot be explained by sorptive interactions between minerals and organic matter. PMID:26061259

  14. Electron uptake by iron-oxidizing phototrophic bacteria

    SciTech Connect

    Bose, A; Gardel, EJ; Vidoudez, C; Parra, EA; Girguis, PR

    2014-02-26

    Oxidation-reduction reactions underlie energy generation in nearly all life forms. Although most organisms use soluble oxidants and reductants, some microbes can access solid-phase materials as electron-acceptors or -donors via extracellular electron transfer. Many studies have focused on the reduction of solid-phase oxidants. Far less is known about electron uptake via microbial extracellular electron transfer, and almost nothing is known about the associated mechanisms. Here we show that the iron-oxidizing photoautotroph Rhodopseudomonas palustris TIE-1 accepts electrons from a poised electrode, with carbon dioxide as the sole carbon source/electron acceptor. Both electron uptake and ruBisCo form I expression are stimulated by light. Electron uptake also occurs in the dark, uncoupled from photosynthesis. Notably, the pioABC operon, which encodes a protein system essential for photoautotrophic growth by ferrous iron oxidation, influences electron uptake. These data reveal a previously unknown metabolic versatility of photoferrotrophs to use extracellular electron transfer for electron uptake.

  15. Mercury removal in wastewater by iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vélez, E.; Campillo, G. E.; Morales, G.; Hincapié, C.; Osorio, J.; Arnache, O.; Uribe, J. I.; Jaramillo, F.

    2016-02-01

    Mercury is one of the persistent pollutants in wastewater; it is becoming a severe environmental and public health problem, this is why nowadays its removal is an obligation. Iron oxide nanoparticles are receiving much attention due to their properties, such as: great biocompatibility, ease of separation, high relation of surface-area to volume, surface modifiability, reusability, excellent magnetic properties and relative low cost. In this experiment, Fe3O4 and γ-Fe2O3 nanoparticles were synthesized using iron salts and NaOH as precipitation agents, and Aloe Vera as stabilizing agent; then these nanoparticles were characterized by three different measurements: first, using a Zetasizer Nano ZS for their size estimation, secondly UV-visible spectroscopy which showed the existence of resonance of plasmon at λmax∼360 nm, and lastly by Scanning Electron Microscopy (SEM) to determine nanoparticles form. The results of this characterization showed that the obtained Iron oxides nanoparticles have a narrow size distribution (∼100nm). Mercury removal of 70% approximately was confirmed by atomic absorption spectroscopy measurements.

  16. Magnetic Iron Oxide Nanoparticle Seeded Growth of Nucleotide Coordinated Polymers.

    PubMed

    Liang, Hao; Liu, Biwu; Yuan, Qipeng; Liu, Juewen

    2016-06-22

    The introduction of functional molecules to the surface of magnetic iron oxide nanoparticles (NPs) is of critical importance. Most previously reported methods were focused on surface ligand attachment either by physisorption or covalent conjugation, resulting in limited ligand loading capacity. In this work, we report the seeded growth of a nucleotide coordinated polymer shell, which can be considered as a special form of adsorption by forming a complete shell. Among all of the tested metal ions, Fe(3+) is the most efficient for this seeded growth. A diverse range of guest molecules, including small organic dyes, proteins, DNA, and gold NPs, can be encapsulated in the shell. All of these molecules were loaded at a much higher capacity compared to that on the naked iron oxide NP core, confirming the advantage of the coordination polymer (CP) shell. In addition, the CP shell provides better guest protein stability compared to that of simple physisorption while retaining guest activity as confirmed by the entrapped glucose oxidase assay. Use of this system as a peroxidase nanozyme and glucose biosensor was demonstrated, detecting glucose as low as 1.4 μM with excellent stability. This work describes a new way to functionalize inorganic materials with a biocompatible shell. PMID:27248668

  17. Gene Loss and Horizontal Gene Transfer Contributed to the Genome Evolution of the Extreme Acidophile "Ferrovum".

    PubMed

    Ullrich, Sophie R; González, Carolina; Poehlein, Anja; Tischler, Judith S; Daniel, Rolf; Schlömann, Michael; Holmes, David S; Mühling, Martin

    2016-01-01

    Acid mine drainage (AMD), associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus "Ferrovum" are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of "Ferrovum" has proven to be extremely difficult and has so far only been successful for the designated type strain "Ferrovum myxofaciens" P3G. In this study, the genomes of two novel strains of "Ferrovum" (PN-J185 and Z-31) derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of "Ferrovum" sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G). Phylogenomic scrutiny suggests that the four strains represent three "Ferrovum" species that cluster in two groups (1 and 2). Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the "F. myxofaciens" strains (group 1) appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed

  18. 1H, 13C, and 15N backbone, side-chain, and heme chemical shift assignments for oxidized and reduced forms of the monoheme c-type cytochrome ApcA isolated from the acidophilic metal-reducing bacterium Acidiphilium cryptum.

    SciTech Connect

    Cort, John R.; Swenson, Michael; Magnuson, Timothy S.

    2011-03-04

    We report the 1H, 13C, and 15N chemical shift assignments of both oxidized and reduced forms of an abundant periplasmic c-type cytochrome, designated ApcA, from the acidophilic gram-negative facultatively anaerobic metal-reducing alpha-proteobacterium Acidiphilium cryptum. These resonance assignments prove that ApcA is a monoheme cytochrome c2 and the product of the Acry_2099 gene. An absence of resonance peaks in the NMR spectra for the 21 N-terminal residues suggests that a predicted N-terminal signal sequence is cleaved. We also describe the preparation and purification of the protein in labeled form from laboratory cultures of A. cryptum growing on 13C- and 15N- labeled substrates.

  19. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions.

    PubMed

    de Vet, W W J M; Dinkla, I J T; Rietveld, L C; van Loosdrecht, M C M

    2011-11-01

    Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation.

  20. Composition, nucleation, and growth of iron oxide concretions

    NASA Astrophysics Data System (ADS)

    Parry, W. T.

    Iron oxide concretions are formed from post depositional, paleogroundwater chemical interaction with iron minerals in porous sedimentary rocks. The concretions record a history of iron mobilization and precipitation caused by changes in pH, oxidation conditions, and activity of bacteria. Transport limited growth rates may be used to estimate the duration of fluid flow events. The Jurassic Navajo Sandstone, an important hydrocarbon reservoir and aquifer on the Colorado Plateau, USA, is an ideal stratum to study concretions because it is widely distributed, well exposed and is the host for a variety of iron oxide concretions. Many of the concretions are nearly spherical and some consist of a rind of goethite that nearly completely fills the sandstone porosity and surrounds a central sandstone core. The interior and exterior host-rock sandstones are similar in detrital minerals, but kaolinite and interstratified illite-smectite are less abundant in the interior. Lepidocrocite is present as sand-grain rims in the exterior sandstone, but not present in the interior of the concretions. Widespread sandstone bleaching resulted from dissolution of early diagenetic hematite grain coatings by chemically reducing water that gained access to the sandstone through fault conduits. The iron was transported in solution and precipitated as iron oxide concretions by oxidation and increasing pH. Iron diffusion and advection growth time models place limits on minimum duration of the diagenetic, fluid flow events that formed the concretions. Concretion rinds 2 mm thick and 25 mm in radius would take place in 2000 years from transport by diffusion and advection and in 3600 years if transport was by diffusion only. Solid concretions 10 mm in radius would grow in 3800 years by diffusion or 2800 years with diffusion and advection. Goethite (α-FeO (OH)) and lepidocrocite (γ-FeO (OH)) nucleated on K-feldspar grains, on illite coatings on sand grains, and on pore-filling illite, but not on

  1. Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.

    PubMed

    Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith

    2015-03-01

    Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. PMID:25498641

  2. Preparation of iron oxide-entrapped chitosan nanoparticles for stem cell labeling.

    PubMed

    Chaleawlert-Umpon, Saowaluk; Mayen, Varissaporn; Manotham, Krissanapong; Pimpha, Nuttaporn

    2010-01-01

    This study intended to prepare iron oxide nanoparticle-entrapped chitosan (CS) nanoparticles for stem cell labeling. The nanoparticles were synthesized by polymerizing iron oxide nanoparticle-associated methacrylic acid monomer in the presence of CS. TEM revealed that the well-defined iron oxide nanoparticles were successfully encapsulated inside the CS nanoparticles. The effect of CS at different [NH(2)]/[COOH] molar ratios on particle size, surface charge, thermal stability and magnetic properties was determined systematically. Internalization and localization of the coated nanoparticles were evaluated by atomic absorption spectrometry and confocal laser scanning microscopy. The Kusa O cell line was chosen as a stem cell model. Interestingly, the uptake of iron oxide-entrapped CS nanoparticles was remarkably enhanced under magnetization and the nanoparticles were mostly located inside cellular compartments. It can be concluded that the iron oxide-entrapped CS nanoparticles have a strong potential for stem cell labeling. PMID:20537238

  3. Ferromagnetic Resonance of Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Wosik, Jaroslaw; Xue, Lian; Xie, Lei-Ming; Chan, Dan

    2003-03-01

    Ferromagnetic Resonance (FMR) techniques were used to investigate superparamagnetic iron oxide (SPIO) nanoparticles (NP) with different coatings and sizes ranging from 5 to 50 nm in diameter. The samples were synthesized by standard procedures with or without coating and fractionated by differential centrifugations to generate particles of different sizes. In order to improve detection sensitivity of pathological tissue changes such as atherosclerosis, smaller particles of less than 10 nm were selected for contrast-enhanced magnetic resonance imaging (MRI). We have investigated uncoated, lipid encapsulated and dextran coated SPIO samples in liquid suspension, dry, and in mixed-with-wax forms. The angular dependence of the FMR of NP with easy axes aligned and frozen in wax was measured. Shapes and shifts of FMR lines for each sample was analyzed for size and anisotropy. Examples of rabbit's aorta MRI T2-weigted images showing proton relaxation time T2 shortening due to the pretreatment with SPIO will be presented and discussed.

  4. Preparation of polylysine-modified superparamagnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Gao; Zhang, Baolin; Wang, Jun; Xie, Songbo; Li, Xuan

    2015-01-01

    Polylysine (PLL) coated iron oxide nanoparticles (SPIONs) have potential in biomedical application. In the present work PEG coated SPIONs (PEG-SPIONs) with the particle size of 9.4±1.4 nm were synthesized by thermal decomposition of Fe(acac)3 in PEG, and then coated with PLL (PLL/PEG-SPIONs). The PEG-SPIONs and PLL/PEG-SPIONs were superparamagnetic with the saturation magnetization of 53 and 44 emu/g, respectively. The hydrodynamic diameter of PEG-SPIONs in deionized water was 18.8 nm, which increased to 21.3-28.2 nm after mixing with different amount of PLL. The zeta potentials of PLL/PEG-SPIONs were -8.9 - -3.4 mV which were changing with time. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses indicated that PLL was attached to the PEG-SPIONs.

  5. Photocatalytic Iron Oxide Coatings Produced by Thermal Spraying Process

    NASA Astrophysics Data System (ADS)

    Navidpour, A. H.; Salehi, M.; Amirnasr, M.; Salimijazi, H. R.; Azarpour Siahkali, M.; Kalantari, Y.; Mohammadnezhad, M.

    2015-12-01

    Recently, hematite coatings with semiconductor properties have received attention for photocatalytic applications. In this study, plasma and flame spraying techniques were used for hematite deposition on 316 stainless steel plates. X-ray diffraction was used for phase composition analysis, and methylene blue was used as an organic pollutant to evaluate the photocatalytic activity of thermally sprayed coatings. The results showed that all these coatings could act under visible-light irradiation but the one deposited by flame spraying at 20 cm stand-off distance showed the highest photocatalytic activity. The results showed that wavelength of the light source and pH of the solution affected the photocatalytic activity significantly. It was also shown that thermally sprayed iron oxide coatings could have a high photo-absorption ability, which could positively affect the photocatalytic activity.

  6. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction.

    PubMed

    Weber, Karrie A; Achenbach, Laurie A; Coates, John D

    2006-10-01

    Iron (Fe) has long been a recognized physiological requirement for life, yet for many microorganisms that persist in water, soils and sediments, its role extends well beyond that of a nutritional necessity. Fe(II) can function as an electron source for iron-oxidizing microorganisms under both oxic and anoxic conditions and Fe(III) can function as a terminal electron acceptor under anoxic conditions for iron-reducing microorganisms. Given that iron is the fourth most abundant element in the Earth's crust, iron redox reactions have the potential to support substantial microbial populations in soil and sedimentary environments. As such, biological iron apportionment has been described as one of the most ancient forms of microbial metabolism on Earth, and as a conceivable extraterrestrial metabolism on other iron-mineral-rich planets such as Mars. Furthermore, the metabolic versatility of the microorganisms involved in these reactions has resulted in the development of biotechnological applications to remediate contaminated environments and harvest energy.

  7. System for recycling char in iron oxide reducing kilns

    SciTech Connect

    Baker, A.C.; Keran, V.P.

    1983-03-08

    A method and means for improving the efficiency of the process for directly reducing ore containing iron oxide in a rotary kiln using a solid carbonaceous reducing agent, such as coal, introduced from the ore feed and discharge ends of the kiln, as both fuel and reductant, is disclosed wherein the charred coal or char found in the discharge product is recycled into the process at the discharge end of the kiln rather than the feed end as in the prior art. In particular, the recovered char, both coarse and finer particles, are transported to a recycle bin from which they are returned at a preselected rate to the kiln process by being injected along with the coal blown into the discharge end of the kiln. Alternatively, the recycle char alone may be fed without any coal at the discharge end of the kiln.

  8. Identification of iron oxide and hydroxide in soil clays

    NASA Astrophysics Data System (ADS)

    Taneja, S. P.; Raj, D.

    1993-04-01

    Clay fractions of soils collected at different depths from the foothills of Karbi Anglong, Assam (India), have been analysed by Mössbauer spectroscopy. Mössbauer data, recorded at room and liquid nitrogen temperatures, show the presence of iron oxide (α-Fe 2O 3, hematite) and iron oxyhydroxide (α-FeOOH, goethite) in the form of fine particles/Al-substituted. All samples exhibited strong superparamagnetism, characteristic of the fine size of the oxide particles and the effect of aluminum substitution. Both hematite and goethite are present in the lower horizon while only goethite occurs in the upper horizon. In addition, silicate clay minerals e.g. kaolinite and illite are also identified.

  9. Study of nanocomposites based on iron oxides and pectin

    NASA Astrophysics Data System (ADS)

    Chistyakova, Nataliya I.; Shapkin, Alexey A.; Sirazhdinov, Ruslan R.; Gubaidulina, Tatiana V.; Kiseleva, Tatiana Yu.; Kazakov, Alexander P.; Rusakov, Vyacheslav S.

    2014-10-01

    Mössbauer and X-ray diffraction study of nanocomposites based on iron oxides and pectin (PC) was carried out involving magnetization measurements. The concentrations of PC in nanocomposites varied from 0 to 10%. Mössbauer investigations of nanocomposites were carried out in the temperature range from 5 to 300 K. Many-state superparamagnetic relaxation model was used for spectra fitting. The magnetization, M(T,H), was measured in the temperature interval of 80-300 K and magnetic field up to 10 kOe. Formation of the "iron-polymer" interface was not observed. Particle sizes were estimated using the Mössbauer and X-ray powder diffraction data.

  10. Heterobifunctional PEG Ligands for Bioconjugation Reactions on Iron Oxide Nanoparticles

    PubMed Central

    Bloemen, Maarten; Van Stappen, Thomas; Willot, Pieter; Lammertyn, Jeroen; Koeckelberghs, Guy; Geukens, Nick; Gils, Ann; Verbiest, Thierry

    2014-01-01

    Ever since iron oxide nanoparticles have been recognized as promising scaffolds for biomedical applications, their surface functionalization has become even more important. We report the synthesis of a novel polyethylene glycol-based ligand that combines multiple advantageous properties for these applications. The ligand is covalently bound to the surface via a siloxane group, while its polyethylene glycol backbone significantly improves the colloidal stability of the particle in complex environments. End-capping the molecule with a carboxylic acid introduces a variety of coupling chemistry possibilities. In this study an antibody targeting plasminogen activator inhibitor-1 was coupled to the surface and its presence and binding activity was assessed by enzyme-linked immunosorbent assay and surface plasmon resonance experiments. The results indicate that the ligand has high potential towards biomedical applications where colloidal stability and advanced functionality is crucial. PMID:25275378

  11. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells

    PubMed Central

    Pöttler, Marina; Staicu, Andreas; Zaloga, Jan; Unterweger, Harald; Weigel, Bianca; Schreiber, Eveline; Hofmann, Simone; Wiest, Irmi; Jeschke, Udo; Alexiou, Christoph; Janko, Christina

    2015-01-01

    Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs) on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5) were treated with SPIONs, either coated with lauric acid (SEONLA) only, or additionally with a protein corona of bovine serum albumin (BSA; SEONLA-BSA), or with dextran (SEONDEX). Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system. PMID:26540051

  12. Iron oxide nanoparticles in different modifications for antimicrobial phototherapy

    NASA Astrophysics Data System (ADS)

    Tuchina, Elena S.; Kozina, Kristina V.; Shelest, Nikita A.; Kochubey, Vyacheslav I.; Tuchin, Valery V.

    2014-03-01

    The main goal of this study was to investigate the sensitivity of microorganisms to combined action of blue light and iron oxide nanoparticles. Two strains of Staphylococcus aureus - methicillin-sensitive and meticillin-resistant were used. As a blue light source LED with spectral maximum at 405 nm was taken. The light exposure was ranged from 5 to 30 min. The Fe2O3 (diameter ˜27 nm), Fe3O4 nanoparticles (diameter ˜19 nm), and composite Fe2O3/TiO2 nanoparticles (diameter ˜100 nm) were synthesized. It was shown that irradiation by blue light caused from 20% to 88% decrease in the number of microorganisms treated with nanoparticles. Morphological changes in bacterial cells after phototreatment were analyzed using scanning electron microscope.

  13. Red Dawn: Characterizing Iron Oxide Minerals in Atmospheric Dust

    NASA Astrophysics Data System (ADS)

    Yauk, K.; Ottenfeld, C. F.; Reynolds, R. L.; Goldstein, H.; Cattle, S.; Berquo, T. S.; Moskowitz, B. M.

    2012-12-01

    Atmospheric dust is comprised of many components including small amounts of iron oxide minerals. Although the iron oxides make up a small weight percent of the bulk dust, they are important because of their roles in ocean fertilization, controls on climate, and as a potential health hazard to humans. Here we report on the iron oxide mineralogy in dust from a large dust storm, dubbed Red Dawn, which engulfed eastern Australia along a 3000 km front on 23 September 2009. Red Dawn originated from the lower Lake Eyre Basin of South Australia, western New South Wales (NSW) and southwestern Queensland and was the worst dust storm to have hit the city of Sydney in more than 60 years. Dust samples were collected from various locations across eastern Australia (Lake Cowal, Orange, Hornsby, Sydney) following the Red Dawn event. Our dust collection provides a good opportunity to study the physical and mineralogical properties of iron oxides from Red Dawn using a combination of reflectance spectroscopy, Mössbauer spectroscopy (MB), and magnetic measurements. Magnetization measurements from 20-400 K reveal that magnetite/maghemite, hematite and goethite are present in all samples with magnetite occurring in trace amounts (< 0.5wt%). However, the amount of magnetite/maghemite even in trace concentrations generally increases from Lake Cowal from west to east (0.01 to 0.29 wt%), with highest magnetite contents in the urban-Sydney sites. These observations indicate the additions of magnetite from local urban sources. Variable temperature Mössbauer spectroscopy (300 K and 4.2 K) indicate that goethite and hematite compose approximately 25-45 % of the Fe-bearing phases in the Orange and Lake Cowal samples. Goethite is more abundant than hematite in the Lake Cowal samples whereas the opposite is observed for Orange. Hematite is observed at both temperatures but goethite only at 4.2 K. The identification of goethite in Mössbauer analyses at low-temperature but not at room temperature

  14. Study of nanocomposites based on iron oxides and pectin

    SciTech Connect

    Chistyakova, Nataliya I. Shapkin, Alexey A. Sirazhdinov, Ruslan R. Gubaidulina, Tatiana V. Kiseleva, Tatiana Yu. Kazakov, Alexander P. Rusakov, Vyacheslav S.

    2014-10-27

    Mössbauer and X-ray diffraction study of nanocomposites based on iron oxides and pectin (PC) was carried out involving magnetization measurements. The concentrations of PC in nanocomposites varied from 0 to 10%. Mössbauer investigations of nanocomposites were carried out in the temperature range from 5 to 300 K. Many-state superparamagnetic relaxation model was used for spectra fitting. The magnetization, M(T,H), was measured in the temperature interval of 80-300 K and magnetic field up to 10 kOe. Formation of the 'iron-polymer' interface was not observed. Particle sizes were estimated using the Mössbauer and X-ray powder diffraction data.

  15. Transformation of iron oxides on PI electrospun membranes

    NASA Astrophysics Data System (ADS)

    Li, Penggang; Lv, Fengzhu; Liu, Leipeng; Ding, Ling; Zhang, Yihe

    2016-09-01

    Iron oxides/PI fiber membranes, especially magnetic PI membranes, are important flexible porous materials available application in the field of wave absorption, magnetic recording, membrane separation and catalysts. Therefore, α-Fe2O3 loaded PI composite fibers were prepared by electrospinning of poly(amic acid) PAA solution followed by loading Fe3+ on the PAA membrane by ion-exchange and then imidization. Then the α-Fe2O3 on PI membrane were reduced by H2 to give magnetic PI membranes. The content of α-Fe2O3 and Fe3O4 on PI can be controlled by adjustment the ion-exchange time. The saturation magnetization of the composite membranes can reach up to 4 emu/g and the final composite membranes have magnetic response ability.

  16. NMR relaxation induced by iron oxide particles: testing theoretical models

    NASA Astrophysics Data System (ADS)

    Gossuin, Y.; Orlando, T.; Basini, M.; Henrard, D.; Lascialfari, A.; Mattea, C.; Stapf, S.; Vuong, Q. L.

    2016-04-01

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.

  17. Mutagenic Effects of Iron Oxide Nanoparticles on Biological Cells

    PubMed Central

    Dissanayake, Niluka M.; Current, Kelley M.; Obare, Sherine O.

    2015-01-01

    In recent years, there has been an increased interest in the design and use of iron oxide materials with nanoscale dimensions for magnetic, catalytic, biomedical, and electronic applications. The increased manufacture and use of iron oxide nanoparticles (IONPs) in consumer products as well as industrial processes is expected to lead to the unintentional release of IONPs into the environment. The impact of IONPs on the environment and on biological species is not well understood but remains a concern due to the increased chemical reactivity of nanoparticles relative to their bulk counterparts. This review article describes the impact of IONPs on cellular genetic components. The mutagenic impact of IONPs may damage an organism’s ability to develop or reproduce. To date, there has been experimental evidence of IONPs having mutagenic interactions on human cell lines including lymphoblastoids, fibroblasts, microvascular endothelial cells, bone marrow cells, lung epithelial cells, alveolar type II like epithelial cells, bronchial fibroblasts, skin epithelial cells, hepatocytes, cerebral endothelial cells, fibrosarcoma cells, breast carcinoma cells, lung carcinoma cells, and cervix carcinoma cells. Other cell lines including the Chinese hamster ovary cells, mouse fibroblast cells, murine fibroblast cells, Mytilus galloprovincialis sperm cells, mice lung cells, murine alveolar macrophages, mice hepatic and renal tissue cells, and vero cells have also shown mutagenic effects upon exposure to IONPs. We further show the influence of IONPs on microorganisms in the presence and absence of dissolved organic carbon. The results shed light on the transformations IONPs undergo in the environment and the nature of the potential mutagenic impact on biological cells. PMID:26437397

  18. NMR relaxation induced by iron oxide particles: testing theoretical models.

    PubMed

    Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L

    2016-04-15

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.

  19. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers

    PubMed Central

    Wahajuddin; Arora, Sumit

    2012-01-01

    A targeted drug delivery system is the need of the hour. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of superparamagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. SPIONs are small synthetic γ-Fe2O3 (maghemite) or Fe3O4 (magnetite) particles with a core ranging between 10 nm and 100 nm in diameter. These magnetic particles are coated with certain biocompatible polymers, such as dextran or polyethylene glycol, which provide chemical handles for the conjugation of therapeutic agents and also improve their blood distribution profile. The current research on SPIONs is opening up wide horizons for their use as diagnostic agents in magnetic resonance imaging as well as for drug delivery vehicles. Delivery of anticancer drugs by coupling with functionalized SPIONs to their targeted site is one of the most pursued areas of research in the development of cancer treatment strategies. SPIONs have also demonstrated their efficiency as nonviral gene vectors that facilitate the introduction of plasmids into the nucleus at rates multifold those of routinely available standard technologies. SPION-induced hyperthermia has also been utilized for localized killing of cancerous cells. Despite their potential biomedical application, alteration in gene expression profiles, disturbance in iron homeostasis, oxidative stress, and altered cellular responses are some SPION-related toxicological aspects which require due consideration. This review provides a comprehensive understanding of SPIONs with regard to their method of preparation, their utility as drug delivery vehicles, and some concerns which need to be resolved before they can be moved from bench top to bedside. PMID:22848170

  20. NMR relaxation induced by iron oxide particles: testing theoretical models.

    PubMed

    Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L

    2016-04-15

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water. PMID:26933908

  1. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    PubMed

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. PMID:26853478

  2. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    PubMed

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments.

  3. Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality.

    PubMed

    Meng, Xiangpeng; Ryu, Jina; Kim, Bumsik; Ko, Sanghoon

    2016-07-01

    Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry.

  4. Role of humic substances in promoting autotrophic growth in nitrate-dependent iron-oxidizing bacteria.

    PubMed

    Kanaparthi, Dheeraj; Conrad, Ralf

    2015-05-01

    Nitrate-dependent iron oxidation was discovered in 1996 and has been reported from various environments ever since. To date, despite the widespread nature of this process, all attempts to cultivate chemolithoautotrophic nitrate-dependent iron oxidizers have been unsuccessful. The present study was focused on understanding the influence of natural chelating agents of iron, like humic substances, on the culturability, activity, and enumeration, of these microorganisms. Pure culture studies conducted with Thiobacillus denitrificans showed a constant increase in cell mass with a corresponding nitrate-dependent iron oxidation activity only when Fe(II) was provided together with humic substances, compared to no growth in control incubations without humic substances. The presence of a relatively strong chelating agent, such as EDTA, inhibited the growth of Thiobacillus denitrificans. It was concluded that complex formation between humic substances and iron was required for chemolithoautotrophic nitrate-dependent iron oxidation. Most probable number enumerations showed that numbers of chemolithoautotrophic nitrate-dependent iron-oxidizing bacteria were one to three orders of magnitude higher in the presence of humic substances compared to media without. Similar results were obtained when potential nitrate-dependent iron oxidation activity was determined in soil samples. In summary, this study showed that humic substances significantly enhanced the growth and activity of autotrophic nitrate-dependent iron-oxidizing microorganisms, probably by chelation of iron.

  5. Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality

    PubMed Central

    2016-01-01

    Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry. PMID:27482521

  6. Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality.

    PubMed

    Meng, Xiangpeng; Ryu, Jina; Kim, Bumsik; Ko, Sanghoon

    2016-07-01

    Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry. PMID:27482521

  7. Investigating the cytotoxicity of iron oxide nanoparticles in in vivo and in vitro studies.

    PubMed

    Ghasempour, Sarieh; Shokrgozar, Mohammad Ali; Ghasempour, Roghayeh; Alipour, Mohsen

    2015-10-01

    In recent years, iron oxide nanorods find a lot of applications including drug delivery, cell separation, hyperthermia and magnetic resonance imaging. In this study the cytotoxicity of iron oxide nanorods was evaluated based on mouse fibroblast cell behavior and wistar rat's liver and kidney function. At first for modification, nanorods were added to Dulbecco's modified Eagle's medium (DMEM) which contained a lot of sources of vitamins, amino acids, proteins in Fetal Bovine Serum (FBS). The MTT assay was employed for evaluating the toxic effects of 200 and 400 μg/mL modified and non-modified iron oxide nanorods on L929 mouse fibroblast cells in a 24h period. Changes in cell granularity and size as well as cell cycle were investigated using flow cytometry. Moreover liver and kidney function test and serum iron level measurement were performed 24h after the injection of modified iron oxide nanorods via the tail peripheral vein of wistar rats. Results indicated that greater concentration of modified iron oxide nanorods had no significant effect on cell viability while greater concentration of non-modified iron oxide nanorods significantly decreased cell viability. Modified iron oxide nanorods did not have significant effects on cell cycle. The results of liver and kidney function tests did not differ significantly while a significant increase in serum iron level was observed. After H&E staining of slices, there were no changes on morphology of rat's kidney and liver cells. This study suggests that short-time use of 200 and 400 μg/mL iron oxide nanorods are probably safe. Further studies are needed for investigation of toxic effects of different concentrations, coatings, and exposure time periods of iron oxide nanorods. PMID:26279467

  8. An evaluation of iron oxide nanofluids in enhanced oil recovery application

    NASA Astrophysics Data System (ADS)

    Guan, Beh Hoe; Khalid, M. Hanafi M.; Matraji, Herman Hari; Chuan, Lee Kean; Soleimani, Hassan

    2014-10-01

    This paper evaluates the oil recover efficiency of Iron Oxide (Fe2O3) nanofluids in EOR. Iron Oxide nanoparticles were synthesized at two different temperatures via sol-gel method. TEM results show that the Fe2O3 prepared at 300°C and 600°C were ranged from 10-25nm and 30-90nm, respectively. Results showed that the nanofluid composed of Iron Oxide nanoparticles prepared at 300°C gives 10% increase in the oil recovery in comparison with Fe2O3 nanoparticles calcined at 600°C.

  9. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOEpatents

    Rashid Khan, M.

    1988-05-05

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere is described. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis. 4 figs., 8 tabs.

  10. Synthesis and magnetic study of carbon coated iron oxide nanoparticles by laser ablation in solution

    NASA Astrophysics Data System (ADS)

    Prajapat, C. L.; Sharma, P.; Gonal, M. R.; Vatsa, R. K.; Singh, M. R.; Ravikumar, G.

    2016-05-01

    Magnetic Iron oxides nanoparticles (NPs) were prepared by Laser Ablation in Solution method. Formation and average size of iron oxide NPs (~8 nm) is confirmed by XRD pattern and magnetization studies. Detailed magnetic studies have been carried out using SQUID magnetometer. The saturation magnetization for the iron oxide NPs was found to be 60.07 emu/g. Below the blocking temperature of 150 K the hysteresis loop shows ferromagnetic nature, whereas it shows superparamagnetic behavior at 300 K, for the synthesized NPs.

  11. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOEpatents

    Khan, M. Rashid

    1989-01-01

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

  12. Hawaiian submarine manganese-iron oxide crusts - A dating tool?

    USGS Publications Warehouse

    Moore, J.G.; Clague, D.A.

    2004-01-01

    Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae

  13. Handling of iron oxide and silver nanoparticles by astrocytes.

    PubMed

    Hohnholt, Michaela C; Geppert, Mark; Luther, Eva M; Petters, Charlotte; Bulcke, Felix; Dringen, Ralf

    2013-02-01

    Metal-containing nanoparticles (NPs) are currently used for various biomedical applications. Since such NPs are able to enter the brain, the cells of this organ have to deal with NPs and with NP-derived metal ions. In brain, astrocytes are considered to play a key function in regulating metal homeostasis and in protecting other brain cells against metal toxicity. Thus, among the different types of brain cells, especially astrocytes are of interest regarding the uptake and the handling of metal-containing NPs. This article summarizes the current knowledge on the consequences of an exposure of astrocytes to NPs. Special focus will be given to magnetic iron oxide nanoparticles (IONPs) and silver nanoparticles (AgNPs), since the biocompatibility of these NPs has been studied for astrocytes in detail. Cultured astrocytes efficiently accumulate IONPs and AgNPs in a time-, concentration- and temperature-dependent manner by endocytotic processes. Astrocytes are neither acutely damaged by the exposure to high concentrations of NPs nor by the prolonged intracellular presence of large amounts of accumulated NPs. Although metal ions are liberated from accumulated NPs, NP-derived iron and silver ions are not exported from astrocytes but are rather stored in proteins such as ferritin and metallothioneins which are synthesized in NP-treated astrocytes. The efficient accumulation of large amounts of metal-containing NPs and the upregulation of proteins that safely store NP-derived metal ions suggest that astrocytes protect the brain against the potential toxicity of metal-containing NPs.

  14. Magnetic resonance imaging of microvessels using iron-oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Olamaei, N.; Cheriet, F.; Martel, S.

    2013-03-01

    The visualization of microstructures including blood vessels with an inner overall cross-sectional area below approximately 200 μm remains beyond the capabilities of current clinical imaging modalities. But with magnetic resonance (MR) imaging, magnetic entities cause susceptibility artifacts in the images by disrupting the homogeneous magnetic field in a much larger scale than their actual size. As validated in this paper through simulation and in-vitro experiments, these artifacts can serve as a source of contrast, enabling microvessels with an inner diameter below the spatial resolution of any medical imaging modalities to be visualized using a clinical MR scanner. For such experiments, micron-sized agglomerations of iron-oxide (Fe3O4) nanoparticles were injected in microchannels with internal diameters of 200 and 50 μm equivalent to a narrower artery or a larger arteriole, and down to a smaller arteriole, respectively. The results show the feasibility of the proposed method for micro-particle detection and the visualization of microvessels using a 1.5 T clinical MR scanner. It was confirmed that the method is reproducible and accurate at the sub-pixel level.

  15. Manganese and iron oxidation by fungi isolated from building stone.

    PubMed

    de la Torre, M A; Gomez-Alarcon, G

    1994-01-01

    Acid and nonacid generating fungal strains isolated from weathered sandstone, limestone, and granite of Spanish cathedrals were assayed for their ability to oxidize iron and manganese. In general, the concentration of the different cations present in the mineral salt media directly affected Mn(IV) oxide formation, although in some cases, the addition of glucose and nitrate to the culture media was necessary. Mn(II) oxidation in acidogenic strains was greater in a medium containing the highest concentrations of glucose, nitrate, and manganese. High concentrations of Fe(II), glucose, and mineral salts were optimal for iron oxidation. Mn(IV) precipitated as oxides or hydroxides adhered to the mycelium. Most of the Fe(III) remained in solution by chelation with organic acids excreted by acidogenic strains. Other metabolites acted as Fe(III) chelators in nonacidogenic strains, although Fe(III) deposits around the mycelium were also detected. Both iron and manganese oxidation were shown to involve extracellular, hydrosoluble enzymes, with maximum specific activities during exponential growth. Strains able to oxidize manganese were also able to oxidize iron. It is concluded that iron and manganese oxidation reported in this work were biologically induced by filamentous fungi mainly by direct (enzymatic) mechanisms.

  16. Observational evidence of crystalline iron oxides on Mars

    SciTech Connect

    Bell, J.F. III; McCord, T.B.; Owensby, P.D. )

    1990-08-30

    Visible to near-IR (0.4-1.0 {mu}m) spectral reflectance observations of Mars during the 1988 opposition were performed at Mauna Kea Observatory using a circular variable filter spectrometer at a spectral resolution R = {lambda}/{Delta}{lambda} {approx} 80. On August 13 and 14 1988, UT, 41 regions 500-600 km in diameter were observed on Mars. The data have been reduced both to reflectance relative to solar analog (Mars/16 Cyg B) and to relative reflectance (spot/spot). The spectra show the strong near-UV reflectance dropoff characteristic of Mars as well as absorptions at 0.62-0.72 {mu}m and 0.81-0.94 {mu}m both seen here clearly for the first time. These absorption features are interpreted as Fe{sup 3+} electronic transition bands that indicate the presence of crystalline ferric oxide or hydroxide minerals on the Martian surface. Comparison of these data with laboratory spectra obtained by other workers supports the conclusion that a single iron oxide phase, most likely hematite, could account for all of the observed spectral behavior of the Martian surface soils and airborne dust in the 0.4-1.0 {mu}m region. This possibility must be reconciled with data from other possible spectral analogs and other wavelength regions as well as geochemical and mineral stability considerations to arrive at a more complete understanding of the role of ferric minerals in Martian surface mineralogy and weathering.

  17. Magnetic hyperthermia in phosphate coated iron oxide nanofluids

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Muthukumaran, T.; Philip, John

    2016-06-01

    We study the magnetic field induced hyperthermia in water based phosphate coated Fe3O4 nanofluids, synthesized by a co-precipitation method using ferrous and ferric salt solutions, ammonia and orthophosphoric acid. The specific absorption rate (SAR) values were measured at a fixed frequency of 126 kHz and at extremely low field amplitudes. The SAR values were determined from the initial rate of temperature rise curves under non-adiabatic conditions. It was observed that the SAR initially increases with sample concentration, attains a maximum at an optimum concentration and beyond which SAR decreases. The decrease in SAR values beyond the optimum concentration was attributed to the enhancement of dipolar interaction and agglomeration of the particles. The system independent intrinsic loss power (ILP) values, obtained by normalizing the SAR values with respect to field amplitude and frequency, were found to vary between 158-125 nHm2 kg-1, which were the highest benchmark values reported in the biologically safe experimental limit of 1.03-0.92×108 Am-1 s-1. The very high value of ILP observed in the bio-compatible phosphate coated iron oxide nanofluids may find practical applications for these nanoparticles in tumor targeted hyperthermia treatment.

  18. Superparamagnetic Iron Oxide Nanoparticle-Based Delivery Systems for Biotherapeutics

    PubMed Central

    Mok, Hyejung; Zhang, Miqin

    2014-01-01

    Introduction Superparamagnetic iron oxide nanoparticle (SPION)-based carrier systems have many advantages over other nanoparticle-based systems. They are biocompatible, biodegradable, facilely tunable, and superparamagnetic and thus controllable by an external magnetic field. These attributes enable their broad biomedical applications. In particular, magnetically-driven carriers are drawing considerable interest as an emerging therapeutic delivery system because of their superior delivery efficiency. Area covered This article reviews the recent advances in use of SPION-based carrier systems to improve the delivery efficiency and target specificity of biotherapeutics. We examine various formulations of SPION-based delivery systems, including SPION micelles, clusters, hydrogels, liposomes, and micro/nanospheres, as well as their specific applications in delivery of biotherapeutics. Expert opinion Recently, biotherapeutics including therapeutic cells, proteins and genes have been studied as alternative treatments to various diseases. Despite the advantages of high target specificity and low adverse effects, clinical translation of biotherapeutics has been hindered by the poor stability and low delivery efficiency compared to chemical drugs. Accordingly, biotherapeutic delivery systems that can overcome these limitations are actively pursued. SPION-based materials can be ideal candidates for developing such delivery systems because of their excellent biocompatibility and superparamagnetism that enables long-term accumulation/retention at target sites by utilization of a suitable magnet. In addition, synthesis technologies for production of finely-tuned, homogeneous SPIONs have been well developed, which may promise their rapid clinical translation. PMID:23199200

  19. Synthesis and magnetic properties of gold coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pal, Susmita; Morales, Marienette; Mukherjee, Pritish; Srikanth, Hariharan

    2009-04-01

    We report on synthesis, structural, and magnetic properties of chemically synthesized iron oxide (Fe3O4) and Fe3O4@Au core-shell nanoparticles. Structural characterization was done using x-ray diffraction and transmission electron microscopy, and the magnetite phase of the core (˜6nm) and fcc Au shell (thickness of ˜1nm) were confirmed. Magnetization (M) versus temperature (T) data at H =200Oe for zero-field-cooled and field-cooled modes exhibited a superparamagnetic blocking temperature TB˜35K (40K) for parent (core-shell) system. Enhanced coercivity (Hc˜200Oe) at 5K along with nonsaturating M-H loops observed for Fe3O4@Au nanoparticles indicate the possible role of spin disorder at the Au -Fe3O4 interface and weak exchange coupling between surface and core spins. Analysis of ac susceptibility (χ' and χ″) data shows that the interparticle interaction is reduced upon Au coating and the relaxation mechanism follows the Vogel-Fulcher law.

  20. Iron oxide nanoparticles for magnetically assisted patterned coatings

    NASA Astrophysics Data System (ADS)

    Dodi, Gianina; Hritcu, Doina; Draganescu, Dan; Popa, Marcel I.

    2015-08-01

    Iron oxide nanoparticles able to magnetically assemble during the curing stage of a polymeric support to create micro-scale surface protuberances in a controlled manner were prepared and characterized. The bare Fe3O4 particles were obtained by two methods: co-precipitation from an aqueous solution containing Fe3+/Fe2+ ions with a molar ratio of 2:1 and partial oxidation of ferrous ions in alkaline conditions. The products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and magnetization measurement. They were subsequently functionalized using oleic acid, sodium oleate, or non-ionic surfactant mixtures with various hydrophilic to lipophilic balance (HLB) values. Composite nanoparticle-polymer films prepared by spraying were deposited and cured by drying on glass slides under a static magnetic field in the range of 1.5-5.5 mT. Magnetic field generated surface roughness was evidenced by optical and scanning electron microscopy. The optimum hierarchical patterning was obtained with the nanoparticles produced by partial oxidation and functionalized with hydrophobic surfactants. Possible applications may include ice-phobic composite coatings.

  1. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells.

    PubMed

    Pöttler, Marina; Staicu, Andreas; Zaloga, Jan; Unterweger, Harald; Weigel, Bianca; Schreiber, Eveline; Hofmann, Simone; Wiest, Irmi; Jeschke, Udo; Alexiou, Christoph; Janko, Christina

    2015-01-01

    Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs) on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5) were treated with SPIONs, either coated with lauric acid (SEONLA) only, or additionally with a protein corona of bovine serum albumin (BSA; SEON(LA-BSA)), or with dextran (SEON(DEX)). Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEON(LA-BSA), SEON(DEX) or SEON(LA). Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system. PMID:26540051

  2. Superparamagnetic iron oxide nanoparticles regulate smooth muscle cell phenotype

    PubMed Central

    Angelopoulos, Ioannis; Southern, Paul; Pankhurst, Quentin A.

    2016-01-01

    Abstract Superparamagnetic iron oxide nanoparticles (SPION) are used for an increasing range of biomedical applications, from imaging to mechanical actuation of cells and tissue. The aim of this study was to investigate the loading of smooth muscle cells (SMC) with SPION and to explore what effect this has on the phenotype of the cells. Adherent human SMC were loaded with ∼17 pg of unconjugated, negatively charged, 50 nm SPION. Clusters of the internalized SPION particles were held in discrete cytoplasmic vesicles. Internalized SPION did not cause any change in cell morphology, proliferation, metabolic activity, or staining pattern of actin and calponin, two of the muscle contractile proteins involved in force generation. However, internalized SPION inhibited the increased gene expression of actin and calponin normally observed when cells are incubated under differentiation conditions. The observed change in the control of gene expression of muscle contractile apparatus by SPION has not previously been described. This finding could offer novel approaches for regulating the phenotype of SMC and warrants further investigation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2412–2419, 2016. PMID:27176658

  3. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection

    NASA Astrophysics Data System (ADS)

    Sharma, Anshu; Baral, Dinesh; Rawat, Kamla; Solanki, Pratima R.; Bohidar, H. B.

    2015-05-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe3O4)) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe3O4 and CA-Fe3O4/ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe3O4, CA-Fe3O4 nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe3O4) and 189.51 nm (CA-Fe3O4) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe2O3/ITO immunosensor exhibits a good detection range of 12.5-500 ng mL-1 with a low detection limit of 0.32 ng mL-1, sensitivity 0.03 Ω/ng ml-1 cm-2, and reproducibility more than 11 times.

  4. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection.

    PubMed

    Sharma, Anshu; Baral, Dinesh; Rawat, Kamla; Solanki, Pratima R; Bohidar, H B

    2015-05-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe(3)O(4))) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe(3)O(4) and CA-Fe(3)O(4)/ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe(3)O(4), CA-Fe(3)O(4) nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe(3)O(4)) and 189.51 nm (CA-Fe(3)O(4)) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe(2)O(3)/ITO immunosensor exhibits a good detection range of 12.5-500 ng mL(-1) with a low detection limit of 0.32 ng mL(-1), sensitivity 0.03 Ω/ng ml(-1) cm(-2), and reproducibility more than 11 times.

  5. Solvothermal synthesis and characterization of monodisperse superparamagnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Shichuan; Zhang, Tonglai; Tang, Runze; Qiu, Hao; Wang, Caiqin; Zhou, Zunning

    2015-04-01

    A series of magnetic iron oxide nanoparticle clusters with different structure guide agents were synthesized by a modified solvothermal method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analyses (TG), a vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FTIR). It is found that the superparamagnetic nanoparticles guided by NaCit (sodium citrate) have high saturation magnetization (Ms) of 69.641 emu/g and low retentivity (Mr) of 0.8 emu/g. Guiding to form superparamagnetic clusters with size range of 80-110 nm, the adherent small-molecule citrate groups on the surface prevent the prefabricated ferrite crystals growing further. In contrast, the primary small crystal guided and stabilized by the PVP long-chain molecules assemble freely to larger ones and stop growing in size range of 100-150 nm, which has saturation magnetization (Ms) of 97.979 emu/g and retentivity (Mr) of 46.323 emu/g. The relevant formation mechanisms of the two types of samples are proposed at the end. The superparamagnetic ferrite clusters guided by sodium citrate are expected to be used for movement controlling of passive interference particles to avoid aggregation and the sample guided by PVP will be a candidate of nanometer wave absorbing material.

  6. Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles.

    PubMed

    Tefft, Brandon J; Uthamaraj, Susheil; Harburn, J Jonathan; Klabusay, Martin; Dragomir-Daescu, Dan; Sandhu, Gurpreet S

    2015-10-19

    Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering.

  7. Macroscopic and microscopic biodistribution of intravenously administered iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Misra, Adwiteeya; Petryk, Alicia A.; Strawbridge, Rendall R.; Hoopes, P. Jack

    2015-03-01

    Iron oxide nanoparticles (IONP) are being developed for use as a cancer treatment. They have demonstrated efficacy when used either as a monotherapy or in conjunction with conventional chemotherapy and radiation. The success of IONP as a therapeutic tool depends on the delivery of a safe and controlled cytotoxic thermal dose to tumor tissue following activation with an alternating magnetic field (AMF). Prior to clinical approval, knowledge of IONP toxicity, biodistribution and physiological clearance is essential. This preliminary time-course study determines the acute toxicity and biodistribution of 110 nm dextran-coated IONP (iron) in mice, 7 days post systemic, at doses of 0.4, 0.6, and 1.0 mg Fe/ g mouse bodyweight. Acute toxicity, manifested as changes in the behavior of mice, was only observed temporarily at 1.0 mg Fe/ g mouse bodyweight, the highest dose administered. Regardless of dose, mass spectrometry and histological analysis demonstrated over 3 mg Fe/g tissue in organs within the reticuloendotheilial system (i.e. liver, spleen, and lymph nodes). Other organs (brain, heart, lungs, and kidney) had less than 0.5 mg Fe/g tissue with iron predominantly confined to the organ vasculature.

  8. Ultrafast optical modification of exchange interactions in iron oxides

    PubMed Central

    Mikhaylovskiy, R.V.; Hendry, E.; Secchi, A.; Mentink, J.H.; Eckstein, M.; Wu, A.; Pisarev, R.V.; Kruglyak, V.V.; Katsnelson, M.I.; Rasing, Th.; Kimel, A.V.

    2015-01-01

    Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 103 Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm−2 acts as a pulsed effective magnetic field of 0.01 Tesla. PMID:26373688

  9. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation.

    PubMed

    Braunschweig, Juliane; Bosch, Julian; Meckenstock, Rainer U

    2013-09-25

    Iron oxides are important constituents of soils and sediments and microbial iron reduction is considered to be a significant anaerobic respiration process in the subsurface, however low microbial reduction rates of macroparticulate Fe oxides in laboratory studies led to an underestimation of the role of Fe oxides in the global Fe redox cycle. Recent studies show the high potential of nano-sized Fe oxides in the environment as, for example, electron acceptor for microbial respiration, electron shuttle between different microorganisms, and scavenger for heavy metals. Biotic and abiotic reactivity of iron macroparticles differ significantly from nano-sized Fe oxides, which are usually much more reactive. Factors such as particle size, solubility, ferrous iron, crystal structure, and organic molecules were identified to influence the reactivity. This review discusses factors influencing the microbial reactivity of Fe oxides. It highlights the differences between natural and synthetic Fe oxides especially regarding the presence of organic molecules such as humic acids and natural organic matter. Attention is given to the transport behavior of Fe oxides in laboratory systems and in the environment, because of the high affinity of different contaminants to Fe oxide surfaces and associated co-transport of pollutants. The high reactivity of Fe oxides and their potential as adsorbents for different pollutants are discussed with respect to application and development of remediation technologies.

  10. Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community

    PubMed Central

    2010-01-01

    Background Extreme acidic environments are characterized by their high metal content and lack of nutrients (oligotrophy). Macroscopic biofilms and filaments usually grow on the water-air interface or under the stream attached to solid substrates (streamers). In the Río Tinto (Spain), brown filaments develop under the water stream where the Gram-negative iron-oxidizing bacteria Leptospirillum spp. (L. ferrooxidans and L. ferriphilum) and Acidithiobacillus ferrooxidans are abundant. These microorganisms play a critical role in bioleaching processes for industrial (biominery) and environmental applications (acid mine drainage, bioremediation). The aim of this study was to investigate the physiological differences between the free living (planktonic) and the sessile (biofilm associated) lifestyles of Leptospirillum spp. as part of its natural extremely acidophilic community. Results Total RNA extracted from environmental samples was used to determine the composition of the metabolically active members of the microbial community and then to compare the biofilm and planktonic environmental transcriptomes by hybridizing to a genomic microarray of L. ferrooxidans. Genes up-regulated in the filamentous biofilm are involved in cellular functions related to biofilm formation and maintenance, such as: motility and quorum sensing (mqsR, cheAY, fliA, motAB), synthesis of cell wall structures (lnt, murA, murB), specific proteases (clpX/clpP), stress response chaperons (clpB, clpC, grpE-dnaKJ, groESL), etc. Additionally, genes involved in mixed acid fermentation (poxB, ackA) were up-regulated in the biofilm. This result, together with the presence of small organic acids like acetate and formate (1.36 mM and 0.06 mM respectively) in the acidic (pH 1.8) water stream, suggests that either L. ferrooxidans or other member of the microbial community are producing acetate in the acidophilic biofilm under microaerophilic conditions. Conclusions Our results indicate that the acidophilic

  11. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    NASA Astrophysics Data System (ADS)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  12. Discovery of Fe7O9: a new iron oxide with a complex monoclinic structure.

    PubMed

    Sinmyo, Ryosuke; Bykova, Elena; Ovsyannikov, Sergey V; McCammon, Catherine; Kupenko, Ilya; Ismailova, Leyla; Dubrovinsky, Leonid

    2016-01-01

    Iron oxides are fundamentally important compounds for basic and applied sciences as well as in numerous industrial applications. In this work we report the synthesis and investigation of a new binary iron oxide with the hitherto unknown stoichiometry of Fe7O9. This new oxide was synthesized at high-pressure high-temperature (HP-HT) conditions, and its black single crystals were successfully recovered at ambient conditions. By means of single crystal X-ray diffraction we determined that Fe7O9 adopts a monoclinic C2/m lattice with the most distorted crystal structure among the binary iron oxides known to date. The synthesis of Fe7O9 opens a new portal to exotic iron-rich (M,Fe)7O9 oxides with unusual stoichiometry and distorted crystal structures. Moreover, the crystal structure and phase relations of such new iron oxide groups may provide new insight into the cycling of volatiles in the Earth's interior.

  13. Interaction of aromatic amines with iron oxides: implications for prebiotic chemistry.

    PubMed

    Shanker, Uma; Singh, Gurinder; Kamaluddin

    2013-06-01

    The interaction of aromatic amines (aniline, p-chloroaniline, p-toludine and p-anisidine) with iron oxides (goethite, akaganeite and hematite) has been studied. Maximum uptake of amines was observed around pH 7. The adsorption data obtained at neutral pH were found to follow Langmuir adsorption. Anisidine was found to be a better adsorbate probably due to its higher basicity. In alkaline medium (pH > 8), amines reacted on goethite and akaganeite to give colored products. Analysis of the products by GC-MS showed benzoquinone and azobenzene as the reaction products of aniline while p-anisidine afforded a dimer. IR analysis of the amine-iron oxide hydroxide adduct suggests that the surface acidity of iron oxide hydroxides is responsible for the interaction. The present study suggests that iron oxide hydroxides might have played a role in the stabilization of organic molecules through their surface activity and in prebiotic condensation reactions.

  14. Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Changzhong Jiang, Affc; Roy, Vellaisamy A. L.

    2014-11-01

    Photocatalytic degradation of toxic organic pollutants is a challenging tasks in ecological and environmental protection. Recent research shows that the magnetic iron oxide-semiconductor composite photocatalytic system can effectively break through the bottleneck of single-component semiconductor oxides with low activity under visible light and the challenging recycling of the photocatalyst from the final products. With high reactivity in visible light, magnetic iron oxide-semiconductors can be exploited as an important magnetic recovery photocatalyst (MRP) with a bright future. On this regard, various composite structures, the charge-transfer mechanism and outstanding properties of magnetic iron oxide-semiconductor composite nanomaterials are sketched. The latest synthesis methods and recent progress in the photocatalytic applications of magnetic iron oxide-semiconductor composite nanomaterials are reviewed. The problems and challenges still need to be resolved and development strategies are discussed.

  15. Eco-Friendly Magnetic Iron Oxide Pillared Montmorillonite for Advanced Catalytic Degradation of Dichlorophenol

    EPA Science Inventory

    Eco-friendly pillared montmorillonites, in which the pillars consist of iron oxide are expected to have interesting and unusual magnetic properties that are applicable for environmental decontamination. Completely “green” and effective composite was synthesized using mild reactio...

  16. Magnetothermal release of payload from iron oxide/silica drug delivery agents

    NASA Astrophysics Data System (ADS)

    Luong, T. T.; Knoppe, S.; Bloemen, M.; Brullot, W.; Strobbe, R.; Locquet, J.-P.; Verbiest, T.

    2016-10-01

    The release of covalently bound Rhodamine B from iron oxide/mesoporous silica core/shell nanoparticles under magnetically induced heating was studied. The system acts as a model to study drug delivery and payload release under magnetothermal heating.

  17. Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts.

    PubMed

    Wu, Wei; Changzhong Jiang; Roy, Vellaisamy A L

    2015-01-01

    Photocatalytic degradation of toxic organic pollutants is a challenging tasks in ecological and environmental protection. Recent research shows that the magnetic iron oxide-semiconductor composite photocatalytic system can effectively break through the bottleneck of single-component semiconductor oxides with low activity under visible light and the challenging recycling of the photocatalyst from the final products. With high reactivity in visible light, magnetic iron oxide-semiconductors can be exploited as an important magnetic recovery photocatalyst (MRP) with a bright future. On this regard, various composite structures, the charge-transfer mechanism and outstanding properties of magnetic iron oxide-semiconductor composite nanomaterials are sketched. The latest synthesis methods and recent progress in the photocatalytic applications of magnetic iron oxide-semiconductor composite nanomaterials are reviewed. The problems and challenges still need to be resolved and development strategies are discussed. PMID:25406760

  18. Effects of Iron Oxides on the Rheological Properties of Cementitious Slurry

    SciTech Connect

    Chung, Chul-Woo; Chun, Jaehun; Wang, Guohui; Um, Wooyong

    2014-04-02

    Iron oxide has been considered a promising host for immobilizing and encapsulating radioactive 99Tc (t1/2=2.1x105 year), which significantly enhances the stability of 99Tc within a cementitious waste form. However, the flow behavior of cementitious slurry containing iron oxide has never been investigated to ensure its workability, which directly influences the preparation and performance of the cementitious waste form monolith. Variation in the rheological properties of the cementitious slurry were studied using rheometry and ultrasonic wave reflection to understand the effects of various iron oxides (magnetite, hematite, ferrihydrite, and goethite) during the cement setting and stiffening processes. The rheological behavior significantly varied with the addition of different chemical compounds of iron oxides. Complementary microscopic characteristics such as colloidal vibration currents, morphology, and particle size distributions further suggest that the most adverse alteration of cement setting and stiffening behavior caused by the presence of goethite may be attributed to its acicular shape.

  19. Chemical characterization of iron oxide precipitates from wetlands constructed to treat polluted mine drainage

    SciTech Connect

    Fish, C.L.; Partezana, J.M.; Hedin, R.S.

    1996-12-31

    The passive treatment of abandoned mine drainage using wetlands will produce a significant amount of iron rich sludge which will require costly removal and disposal. An alternative to disposal may be the use of this iron oxide material as pigments which could defray some of these costs. In this research, iron deposits from five alkaline mine drainage wetlands were collected and a series of standard tests were run. The tests included loss on ignition, moisture, pH, acid soluble metals, oil absorption, and water soluble matter. The results of these tests were compared to those achieved using commercially available natural and synthetic iron oxides. The results indicate that iron oxides from constructed wetlands have chemical properties that are intermediate to those of natural and synthetic iron oxide products.

  20. Photoreductive dissolution of iron oxides trapped in ice and its environmental implications.

    PubMed

    Kim, Kitae; Choi, Wonyong; Hoffmann, Michael R; Yoon, Ho-Il; Park, Byong-Kwon

    2010-06-01

    The availability of iron has been thought to be a main limiting factor for the productivity of phytoplankton and related with the uptake of atmospheric CO(2) and algal blooms in fresh and sea waters. In this work, the formation of bioavailable iron (Fe(II)(aq)) from the dissolution of iron oxide particles was investigated in the ice phase under both UV and visible light irradiation. The photoreductive dissolution of iron oxides proceeded slowly in aqueous solution (pH 3.5) but was significantly accelerated in polycrystalline ice, subsequently releasing more bioavailable ferrous iron upon thawing. The enhanced photogeneration of Fe(II)(aq) in ice was confirmed regardless of the type of iron oxides [hematite, maghemite (gamma-Fe(2)O(3)), goethite (alpha-FeOOH)] and the kind of electron donors. The ice-enhanced dissolution of iron oxides was also observed under visible light irradiation, although the dissolution rate was much slower compared with the case of UV radiation. The iron oxide particles and organic electron donors (if any) in ice are concentrated and aggregated in the liquid-like grain boundary region (freeze concentration effect) where protons are also highly concentrated (lower pH). The enhanced photodissolution of iron oxides should occur in this confined boundary region. We hypothesized that electron hopping through the interconnected grain boundaries of iron oxide particles facilitates the separation of photoinduced charge pairs. The outdoor experiments carried out under ambient solar radiation of Ny-Alesund (Svalbard, 78 degrees 55'N) also showed that the generation of dissolved Fe(II)(aq) via photoreductive dissolution is enhanced when iron oxides are trapped in ice. Our results imply that the ice(snow)-covered surfaces and ice-cloud particles containing iron-rich mineral dusts in the polar and cold environments provide a source of bioavailable iron when they thaw.

  1. A microbial-mineralization approach for syntheses of iron oxides with a high specific surface area.

    PubMed

    Yagita, Naoki; Oaki, Yuya; Imai, Hiroaki

    2013-04-01

    Of minerals and microbes: A microbial-mineralization-inspired approach was used to facilitate the syntheses of iron oxides with a high specific surface area, such as 253 m(2)g(-1) for maghemite (γ-Fe(2)O(3)) and 148 m(2)g(-1) for hematite (α-Fe(2)O(3)). These iron oxides can be applied to electrode material of lithium-ion batteries, adsorbents, and catalysts.

  2. Biomedical properties and preparation of iron oxide-dextran nanostructures by MAPLE technique

    PubMed Central

    2012-01-01

    Background In this work the chemical structure of dextran-iron oxide thin films was reported. The films were obtained by MAPLE technique from composite targets containing 10 wt. % dextran with 1 and 5 wt.% iron oxide nanoparticles (IONPs). The IONPs were synthesized by co-precipitation method. A KrF* excimer laser source (λ = 248 nm, τFWHM≅25 ns, ν = 10 Hz) was used for the growth of the hybrid, iron oxide NPs-dextran thin films. Results Dextran coated iron oxide nanoparticles thin films were indexed into the spinel cubic lattice with a lattice parameter of 8.36 Å. The particle sized calculated was estimated at around 7.7 nm. The XPS shows that the binding energy of the Fe 2p3/2 of two thin films of dextran coated iron oxide is consistent with Fe3+ oxides. The atomic percentage of the C, O and Fe are 66.71, 32.76 and 0.53 for the films deposited from composite targets containing 1 wt.% maghemite and 64.36, 33.92 and 1.72 respectively for the films deposited from composite targets containing 5 wt.% maghemite. In the case of cells cultivated on dextran coated 5% maghemite γ-Fe2O3, the number of cells and the level of F-actin were lower compared to the other two types of thin films and control. Conclusions The dextran-iron oxide continuous thin films obtained by MAPLE technique from composite targets containing 10 wt.% dextran as well as 1 and 5 wt.% iron oxide nanoparticles synthesized by co-precipitation method presented granular surface morphology. Our data proved a good viability of Hep G2 cells grown on dextran coated maghemite thin films. Also, no changes in cells morphology were noticed under phase contrast microscopy. The data strongly suggest the potential use of iron oxide-dextran nanocomposites as a potential marker for biomedical applications. PMID:22410001

  3. Gold and iron oxide associations under supergene conditions: An experimental approach

    NASA Astrophysics Data System (ADS)

    Greffié, Catherine; Benedetti, Marc F.; Parron, Claude; Amouric, Marc

    1996-05-01

    Abstract-The interaction of gold hydroxo-chloro complexes with iron oxides (ferrihydrites, goethites) during coprecipitation experiments is investigated. Chemical analyses of solids and solutions are coupled with a detailed characterization of the iron oxides with various methods, including X-ray diffraction, High Resolution Transmission Electron Microscopy (HRTEM), and Mössbauer spectroscopy. HCl solutions containing varying amounts of AuCl 4- and ferric nitrate were titrated to neutral or alkaline pH, resulting in the coprecipitation of gold and iron oxide phases (ferrihydrite or goethite). Reference titrations were performed in the absence of iron. Most of the gold was removed from solution in the presence of iron oxides whereas gold remained dissolved in the reference samples. In association with iron oxides two forms of gold have been identified by HRTEM and 197Au Mössbauer spectroscopy: metallic gold as well as chloro and/or hydroxo combined gold. This combined gold is in a trivalent state as the primary product which means that a reduction process is not a necessary step for the adsorption of gold species on iron oxides. Metallic gold characterized in these products by means of HRTEM consists mainly of colloids ranging from 3-60 nm in diameter embedded in the ferrihydrite matrix, as isolated particles or as particles associated with goethite laths. The smallest metallic gold particles detected would be almost invisible to classical observation techniques used for solid phases. In our experiments, oxidation-reduction reactions between Fe 2+ and Au 3+ are responsible for the presence of metallic gold observed on the iron phases. Photochemical reactions may also take part in the reduction process. Colloidal gold and gold complexes could be associated to the iron oxides by strong electrostatic interactions. Our results suggest that poorly ordered iron oxides are highly efficient in trapping gold from solutions thanks to their high surface area, and favor gold

  4. Planktonic marine iron oxidizers drive iron mineralization under low-oxygen conditions.

    PubMed

    Field, E K; Kato, S; Findlay, A J; MacDonald, D J; Chiu, B K; Luther, G W; Chan, C S

    2016-09-01

    Observations of modern microbes have led to several hypotheses on how microbes precipitated the extensive iron formations in the geologic record, but we have yet to resolve the exact microbial contributions. An initial hypothesis was that cyanobacteria produced oxygen which oxidized iron abiotically; however, in modern environments such as microbial mats, where Fe(II) and O2 coexist, we commonly find microaerophilic chemolithotrophic iron-oxidizing bacteria producing Fe(III) oxyhydroxides. This suggests that such iron oxidizers could have inhabited niches in ancient coastal oceans where Fe(II) and O2 coexisted, and therefore contributed to banded iron formations (BIFs) and other ferruginous deposits. However, there is currently little evidence for planktonic marine iron oxidizers in modern analogs. Here, we demonstrate successful cultivation of planktonic microaerophilic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay during seasonal stratification. Iron oxidizers were associated with low oxygen concentrations and active iron redox cycling in the oxic-anoxic transition zone (<3 μm O2 , <0.2 μm H2 S). While cyanobacteria were also detected in this transition zone, oxygen concentrations were too low to support significant rates of abiotic iron oxidation. Cyanobacteria may be providing oxygen for microaerophilic iron oxidation through a symbiotic relationship; at high Fe(II) levels, cyanobacteria would gain protection against Fe(II) toxicity. A Zetaproteobacteria isolate from this site oxidized iron at rates sufficient to account for deposition of geologic iron formations. In sum, our results suggest that once oxygenic photosynthesis evolved, microaerophilic chemolithotrophic iron oxidizers were likely important drivers of iron mineralization in ancient oceans. PMID:27384464

  5. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sun, Sheng-Nan; Wei, Chao; Zhu, Zan-Zan; Hou, Yang-Long; Subbu, S. Venkatraman; Xu, Zhi-Chuan

    2014-03-01

    Iron oxide nanoparticles are the most popular magnetic nanoparticles used in biomedical applications due to their low cost, low toxicity, and unique magnetic property. Magnetic iron oxide nanoparticles, including magnetite (Fe3O4) and maghemite (γ-Fe2O3), usually exhibit a superparamagnetic property as their size goes smaller than 20 nm, which are often denoted as superparamagnetic iron oxide nanoparticles (SPIONs) and utilized for drug delivery, diagnosis, therapy, and etc. This review article gives a brief introduction on magnetic iron oxide nanoparticles in terms of their fundamentals of magnetism, magnetic resonance imaging (MRI), and drug delivery, as well as the synthesis approaches, surface coating, and application examples from recent key literatures. Because the quality and surface chemistry play important roles in biomedical applications, our review focuses on the synthesis approaches and surface modifications of iron oxide nanoparticles. We aim to provide a detailed introduction to readers who are new to this field, helping them to choose suitable synthesis methods and to optimize the surface chemistry of iron oxide nanoparticles for their interests.

  6. Induced Clustered Nanoconfinement of Superparamagnetic Iron Oxide in Biodegradable Nanoparticles Enhances Transverse Relaxivity for Targeted Theranostics

    PubMed Central

    Ragheb, Ragy R. T.; Kim, Dongin; Bandyopadhyay, Arunima; Chahboune, Halima; Bulutoglu, Beyza; Ezaldein, Harib; Criscione, Jason M.; Fahmy, Tarek M.

    2013-01-01

    Purpose Combined therapeutic and diagnostic agents, “theranostics” are emerging valuable tools for noninvasive imaging and drug delivery. Here, we report on a solid biodegradable multifunctional nanoparticle that combines both features. Methods Poly(lactide-co-glycolide) nanoparticles were engineered to confine superparamagnetic iron oxide contrast for magnetic resonance imaging while enabling controlled drug delivery and targeting to specific cells. To achieve this dual modality, fatty acids were used as anchors for surface ligands and for encapsulated iron oxide in the polymer matrix. Results We demonstrate that fatty acid modified iron oxide prolonged retention of the contrast agent in the polymer matrix during degradative release of drug. Antibody-fatty acid surface modification facilitated cellular targeting and subsequent internalization in cells while inducing clustering of encapsulated fatty-acid modified superparamagnetic iron oxide during particle formulation. This induced clustered confinement led to an aggregation within the nanoparticle and, hence, higher transverse relaxivity, r2, (294 mM−1 s−1) compared with nanoparticles without fatty-acid ligands (160 mM−1 s−1) and higher than commercially available superparamagnetic iron oxide nanoparticles (89 mM−1 s−1). Conclusion Clustering of superparamagnetic iron oxide in poly(lactide-co-glycolide) did not affect the controlled release of encapsulated drugs such as methotrexate or clodronate and their subsequent pharmacological activity, thus highlighting the full theranostic capability of our system. PMID:23401099

  7. Vapour phase approach for iron oxide nanoparticle synthesis from solid precursors

    SciTech Connect

    Singh, Mandeep; Ulbrich, Pavel; Prokopec, Vadym; Svoboda, Pavel; Šantavá, Eva; Štěpánek, František

    2013-04-15

    A new non-solution mediated approach to the synthesis of iron oxide nanoparticles directly from solid FeCl{sub 2} salt precursors has been developed. The method is rapid, simple and scalable. The structural properties and the phase of the resulting iron oxide particles has been determined by a range of methods including XRD, FT-IR and Mössbauer spectroscopy, and the phase is shown to be maghemite (γ-Fe{sub 2}O{sub 3}). The magnetic properties of the iron oxide particles have been measured using SQUID, confirming superparamagnetic behaviour of the powder and a saturation magnetization of 53.0 emu g{sup −1} at 300 K. Aqueous dispersions at increasing concentrations were prepared and their heating rate under a 400 kHz alternating magnetic field measured. The specific absorption rate (SAR) of the iron oxide was found to be 84.8 W g{sup −1}, which makes the material suitable for the formulation of ferrofluids or ferrogels with RF heating properties. - Graphical Abstract: Superparamagnetic iron oxide nanoparticles obtained by a novel vapour phase approach. Highlights: ► Novel vapour phase (non-solvent) approach for iron oxide nanoparticle synthesis. ► Attractive alternative approach to the present co-precipitation method. ► Better magnetic properties with high coercivity of nanoparticles. ► A high specific absorption rate (SAR) for hyperthermia applications.

  8. Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction

    SciTech Connect

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.

    1989-05-10

    A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.

  9. New Insight into Microbial Iron Oxidation as Revealed by the Proteomic Profile of an Obligate Iron-Oxidizing Chemolithoautotroph

    PubMed Central

    Emerson, David; Sylvan, Jason B.; Orcutt, Beth N.; Jacobson Meyers, Myrna E.; Ramírez, Gustavo A.; Zhong, John D.; Edwards, Katrina J.

    2015-01-01

    Microaerophilic, neutrophilic, iron-oxidizing bacteria (FeOB) grow via the oxidation of reduced Fe(II) at or near neutral pH, in the presence of oxygen, making them relevant in numerous environments with elevated Fe(II) concentrations. However, the biochemical mechanisms for Fe(II) oxidation by these neutrophilic FeOB are unknown, and genetic markers for this process are unavailable. In the ocean, microaerophilic microorganisms in the genus Mariprofundus of the class Zetaproteobacteria are the only organisms known to chemolithoautotrophically oxidize Fe and concurrently biomineralize it in the form of twisted stalks of iron oxyhydroxides. The aim of this study was to identify highly expressed proteins associated with the electron transport chain of microaerophilic, neutrophilic FeOB. To this end, Mariprofundus ferrooxydans PV-1 was cultivated, and its proteins were extracted, assayed for redox activity, and analyzed via liquid chromatography-tandem mass spectrometry for identification of peptides. The results indicate that a cytochrome c4, cbb3-type cytochrome oxidase subunits, and an outer membrane cytochrome c were among the most highly expressed proteins and suggest an involvement in the process of aerobic, neutrophilic bacterial Fe oxidation. Proteins associated with alternative complex III, phosphate transport, carbon fixation, and biofilm formation were abundant, consistent with the lifestyle of Mariprofundus. PMID:26092463

  10. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    SciTech Connect

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Pearce, Carolyn; McCloy, John S.

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite, so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.

  11. Isolation of an extremely acidophilic and highly efficient strain Acidithiobacillus sp. for chalcopyrite bioleaching.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Xin, Yu; Zhang, Ling; Kang, Wenliang; Wang, Wu

    2012-11-01

    An extremely acidophilic sulfur-oxidizing bacterium was isolated from an industrial-scale bioheap of the Zijinshan copper mine and was named ZJJN. A tuft of flagella and a layer of thick capsule outside the cell envelope were clearly observed under transmission electron microscopy (TEM), which might be closely related to the extremely acid-proof capacity of ZJJN cells in the bioleaching system; 16S ribosomal RNA (rRNA) phylogeny showed that the isolated strain was highly homologous to the genera of Acidithiobacillus. The optimum temperature of ZJJN was determined at 30 °C and pH at 1.0. It was capable of growth at even pH 0. Strain ZJJN can utilize reduced sulfur as an energy source but not with organics or ferrous ion. Strain ZJJN was sensitive to all antibiotics with different concentrations; when it showed a certain resistance to different concentrations of Cu(2+). In the mixed strains of ZJJN and A. ferrooxidans system (initial pH 1.0), the copper-leaching efficiency was up to 60.1 %, which was far higher than other systems. Scanning electron microscopy (SEM) analysis showed that less jarosite precipitation was produced in the most efficient system. The extremely acidophilic strain ZJJN would be of great potential in the application of chalcopyrite bioleaching.

  12. Transfer of IncP plasmids to extremely acidophilic Thiobacillus thiooxidans

    SciTech Connect

    Jin, S.M.; Yan, W.M.; Wang, Z.N. )

    1992-01-01

    Thiobacillus thiooxidans is an acidophilic, obligately autotrophic bacterium which derives its energy by oxidizing reduced or partially reduced sulfur compounds and obtains its carbon by fixing carbon dioxide from the atmosphere. The strain is able to live in inorganic, acidic environments and is present in large numbers in coal mine drainage and in mineral ores. T. thiooxidans has been used industrially in metal leaching from mineral ores and in the microbial desulfurization of coal in combination with Thiobacillus ferrooxidans. Although T. thiooxidans has been well studied physiologically, very little is known about it genetics. The broad-host-range IncP plasmids RP4, R68.45, RP1::Tn501, and pUB307 were transferred directly to extremely acidophilic Thiobacillus thiooxidans from Escherichia coli by conjugation at frequencies of 10{sup {minus}5} to 10{sup {minus}7} per recipient. The ability of T. thiooxidans to receive and express the antibiotic resistance markers was examined. The plasmid RP4 was transferred back to E. coli from T. thiooxidans at a frequency of 1.0 {times} 10{sup {minus}3} per recipient.

  13. The responses of immune cells to iron oxide nanoparticles.

    PubMed

    Xu, Yaolin; Sherwood, Jennifer A; Lackey, Kimberly H; Qin, Ying; Bao, Yuping

    2016-04-01

    Immune cells play an important role in recognizing and removing foreign objects, such as nanoparticles. Among various parameters, surface coatings of nanoparticles are the first contact with biological system, which critically affect nanoparticle interactions. Here, surface coating effects on nanoparticle cellular uptake, toxicity and ability to trigger immune response were evaluated on a human monocyte cell line using iron oxide nanoparticles. The cells were treated with nanoparticles of three types of coatings (negatively charged polyacrylic acid, positively charged polyethylenimine and neutral polyethylene glycol). The cells were treated at various nanoparticle concentrations (5, 10, 20, 30, 50 μg ml(-1) or 2, 4, 8, 12, 20 μg cm(-2)) with 6 h incubation or treated at a nanoparticle concentration of 50 μg ml(-1) (20 μg cm(-2)) at different incubation times (6, 12, 24, 48 or 72 h). Cell viability over 80% was observed for all nanoparticle treatment experiments, regardless of surface coatings, nanoparticle concentrations and incubation times. The much lower cell viability for cells treated with free ligands (e.g. ~10% for polyethylenimine) suggested that the surface coatings were tightly attached to the nanoparticle surfaces. The immune responses of cells to nanoparticles were evaluated by quantifying the expression of toll-like receptor 2 and tumor necrosis factor-α. The expression of tumor necrosis factor-α and toll-like receptor 2 were not significant in any case of the surface coatings, nanoparticle concentrations and incubation times. These results provide useful information to select nanoparticle surface coatings for biological and biomedical applications. PMID:26817529

  14. Physicochemical Characterization of Nebulized Superparamagnetic Iron Oxide Nanoparticles (SPIONs)

    PubMed Central

    Graczyk, Halshka; Bryan, Louise C.; Lewinski, Nastassja; Suarez, Guillaume; Coullerez, Geraldine; Bowen, Paul

    2015-01-01

    Abstract Background: Aerosol-mediated delivery of nano-based therapeutics to the lung has emerged as a promising alternative for treatment and prevention of lung diseases. Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted significant attention for such applications due to their biocompatibility and magnetic properties. However, information is lacking about the characteristics of nebulized SPIONs for use as a therapeutic aerosol. To address this need, we conducted a physicochemical characterization of nebulized Rienso, a SPION-based formulation for intravenous treatment of anemia. Methods: Four different concentrations of SPION suspensions were nebulized with a one-jet nebulizer. Particle size was measured in suspension by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), and nanoparticle tracking analysis (NTA), and in the aerosol by a scanning mobility particle sizer (SMPS). Results: The average particle size in suspension as measured by TEM, PCS, and NTA was 9±2 nm, 27±7 nm, and 56±10 nm, respectively. The particle size in suspension remained the same before and after the nebulization process. However, after aerosol collection in an impinger, the suspended particle size increased to 159±46 nm as measured by NTA. The aerosol particle concentration increased linearly with increasing suspension concentration, and the aerodynamic diameter remained relatively stable at around 75 nm as measured by SMPS. Conclusions: We demonstrated that the total number and particle size in the aerosol were modulated as a function of the initial concentration in the nebulizer. The data obtained mark the first known independent characterization of nebulized Rienso and, as such, provide critical information on the behavior of Rienso nanoparticles in an aerosol. The data obtained in this study add new knowledge to the existing body of literature on potential applications of SPION suspensions as inhaled aerosol therapeutics. PMID

  15. Iron oxide nanoparticle hyperthermia and radiation cancer treatment

    NASA Astrophysics Data System (ADS)

    Cassim, S. M.; Giustini, A. J.; Petryk, A. A.; Strawbridge, R. A.; Hoopes, P. J.

    2009-02-01

    It is established that heat can enhance the effect of radiation cancer treatment. Due to the ability to localize thermal energy using nanoparticle hyperthermia, as opposed to other, less targeted, hyperthermia modalities, it appears such enhancement could be accomplished without complications normally associated with systemic or regional hyperthermia. This study employs non-curative (suboptimal), doses of heat and radiation, in an effort to determine the therapeutic enhancement potential for IONP hyperthermia and radiation. Methods: MTG-B murine breast adenocarcinoma cell are inoculated into the right flanks of female CH3/HEJ mice and grown to volumes of 150mm3+ /- 40 mm3. A single dose of 15 Gy (6 MeV) radiation was uniformly delivered to the tumor. A pre-defined thermal dose is delivered by direct injection of iron oxide nanoparticles into the tumor. By adjusting the field strength of the 160 KHz alternating magnetic field (AMF) an intra-tumoral temperature between 41.5 and 43 degrees Celsius was maintained for 10min. The alternating magnetic field was delivered by a water-cooled 36mm diameter square copper tube induction coil operating at 160 kHz with variable magnet field strengths up to 450 Oe . The primary endpoint of the study is the number of days required for the tumor to achieve a volume 3 fold greater than the volume at the time of treatment (tumor regrowth delay). Results: Preliminary results suggest the addition of a modest IONP hyperthermia to 15 Gy radiation achieved an approximate 50% increase in tumor regrowth delay as compared to a 15 Gy radiation treatment alone. The therapeutic effects of IONP heat and radiation combined were considered additive, however in mice that demonstrated complete response (no tumor present after 30 days), the effect was considered superadditive or synergistic. Although this data is very encouraging from a multimodality cancer therapy standpoint, additional temporal and dose related information is clearly necessary to

  16. Mechanisms of iron oxide transformation in hydrothermal systems.

    SciTech Connect

    Otake, Tsubasa; Wesolowski, David J; Anovitz, Lawrence {Larry} M

    2010-11-01

    Coexistence of magnetite and hematite in hydrothermal systems has often been used to constrain the redox potential of fluids, assuming that the redox equilibrium is attained among all minerals and aqueous species. However, as temperature decreases, disequilibrium mineral assemblages may occur due to the slow kinetics of reaction involving the minerals and fluids. In this study, we conducted a series of experiments in which hematite or magnetite was reacted with an acidic solution under H{sub 2}-rich hydrothermal conditions (T = 100-250 C, P{sub H{sub 2}} = 0.05-5 MPa) to investigate the kinetics of redox and non-redox transformations between hematite and magnetite, and the mechanisms of iron oxide transformation under hydrothermal conditions. The formation of euhedral crystals of hematite in 150 and 200 C experiments, in which magnetite was used as the starting material, indicates that non-redox transformation of magnetite to hematite occurred within 24 h. The chemical composition of the experimental solutions was controlled by the non-redox transformation between magnetite and hematite throughout the experiments. While solution compositions were controlled by the non-redox transformation in the first 3 days in a 250 C experiment, reductive dissolution of magnetite became important after 5 days and affected the solution chemistry. At 100 C, the presence of maghemite was indicated in the first 7 days. Based on these results, equilibrium constants of non-redox transformation between magnetite and hematite and those of non-redox transformation between magnetite and maghemite were calculated. Our results suggest that the redox transformation of hematite to magnetite occurs in the following steps: (1) reductive dissolution of hematite to Fe{sub (aq)}{sup 2+} and (2) non-redox transformation of hematite and Fe{sub (aq)}{sup 2+} to magnetite.

  17. Mechanisms of iron oxide transformations in hydrothermal systems.

    SciTech Connect

    Otake, Tsubasa; Wesolowski, David J; Anovitz, Lawrence {Larry} M; Allard Jr, Lawrence Frederick; Ohmoto, Hiroshi

    2010-01-01

    Coexistence of magnetite and hematite in hydrothermal systems has often been used to constrain the redox potential of fluids, assuming that the redox equilibrium is attained among all minerals and aqueous species. However, as temperature decreases, disequilibrium mineral assemblages may occur due to the slow kinetics of reaction involving the minerals and fluids. In this study, we conducted a series of experiments in which hematite or magnetite was reacted with an acidic solution under H2-rich hydrothermal conditions (T = 100 250 C,) to investigate the kinetics of redox and non-redox transformations between hematite and magnetite, and the mechanisms of iron oxide transformation under hydrothermal conditions. The formation of euhedral crystals of hematite in 150 and 200 C experiments, in which magnetite was used as the starting material, indicates that non-redox transformation of magnetite to hematite occurred within 24 h. The chemical composition of the experimental solutions was controlled by the non-redox transformation between magnetite and hematite throughout the experiments. While solution compositions were controlled by the non-redox transformation in the first 3 days in a 250 C experiment, reductive dissolution of magnetite became important after 5 days and affected the solution chemistry. At 100 C, the presence of maghemite was indicated in the first 7 days. Based on these results, equilibrium constants of non-redox transformation between magnetite and hematite and those of non-redox transformation between magnetite and maghemite were calculated. Our results suggest that the redox transformation of hematite to magnetite occurs in the following steps: (1) reductive dissolution of hematite to and (2) non-redox transformation of hematite and to magnetite.

  18. Biogeochemistry of Iron Oxidation in a Circumneutral Freshwater Habitat

    NASA Astrophysics Data System (ADS)

    Duckworth, O.; Homstrom, S.; Pena, J.; Zacharias, E.; Sposito, G.

    2007-12-01

    Iron(II) oxidation in natural waters at circumneutral pH, often regarded as an abiotic process, may be biologically- mediated when it occurs in iron-rich redox gradients. West Berry Creek, a small circumneutral tributary flowing through a mixed coniferous forest in Big Basin State Park, California, contains localized iron (hydr)oxide precipitates at points along its course where anoxic groundwater meets oxygenated creek water. These mixing zones establish redox gradients and iron-rich microbial mats that may create microenvironments that promote active biogeochemical cycling of Fe. Water sampling revealed strong correlations between the concentrations of aqueous inorganic species, suggesting a rock-weathering source for most of these solutes. Liquid chromatography-mass spectrometry detected significant concentrations of organic exudates, including low molecular mass organic acids and siderophores, indicating active biogeochemical cycling of iron is occurring in the creek. X-ray diffraction and elemental analysis showed the iron precipitates to be amorphous minerals, such as ferrihydrite. Microbial biofilm communities are associated with the iron (hydr)oxide deposits. Clone libraries developed from 16s rDNA sequences revealed the presence of microorganisms related to the neutrophilic iron- oxidizing bacteria Gallionella and Siderooxidans; in addition, micrographs suggest the widespread presence of sheath-forming bacteria (e.g., Leptothrix). Sequences from these libraries also indicated the presence of significant populations of organisms related to bacteria in the genera Pseudomonas, Sphingomonas, and Nitrospira. These geosymbiotic systems appear to be significant not only for the biogeochemical cycling of iron in the creek, but also for the cycling of organic species, inorganic nutrients, and trace metals.

  19. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles.

    PubMed

    Nancucheo, Ivan; Barrie Johnson, D

    2012-01-01

    Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30°C, with a corresponding culture doubling time of 9 h. The isolates displayed similar tolerance (10-50 mM) to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC). Glycolic acid was identified as a significant component (12-14%) of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within 3 days). Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella), and mannitol and glucose (Euglena). These were rapidly metabolized by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp.) though only fructose was utilized by the more fastidious heterotroph "Acidocella aromatica." The significance of algae in promoting the growth of iron- (and sulfate-) reducing heterotrophic acidophiles that are important in remediating mine-impacted waters (MIWs) is discussed.

  20. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    PubMed Central

    Ňancucheo, Ivan; Barrie Johnson, D.

    2012-01-01

    Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30°C, with a corresponding culture doubling time of 9 h. The isolates displayed similar tolerance (10–50 mM) to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC). Glycolic acid was identified as a significant component (12–14%) of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within 3 days). Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella), and mannitol and glucose (Euglena). These were rapidly metabolized by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp.) though only fructose was utilized by the more fastidious heterotroph “Acidocella aromatica.” The significance of algae in promoting the growth of iron- (and sulfate-) reducing heterotrophic acidophiles that are important in remediating mine-impacted waters (MIWs) is discussed. PMID:22973267

  1. Synthesis and characterization of platinum decorated iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Palchoudhury, Soubantika

    This dissertation focuses on the development of a bifunctional nanoparticle system that can potentially offer simultaneous imaging and therapy in the future. Recently, small platinum (Pt) nanoparticles (< 5 nm) have shown great potential in therapeutic applications, such as DNA dissociation, radiation therapy, and oxidative stress treatment. Therefore, the small Pt nanoparticles of size comparable to DNA grooves are chosen as potential therapeutic components in this research. However, such small sized Pt nanoparticles tends to aggregate, and are difficult to target. Therefore, this research reports the synthesis, characterization, and DNA interaction of small Pt decorated iron oxide nanoparticles. The iron oxide carriers provide stability to the small Pt nanoparticles, and can potentially serve as MRI contrast agents. The hypothesis of this research is that the Pt nanoparticles supported on iron oxide nanoparticle surfaces can effectively interact with DNA molecules similar to the free Pt nanoparticles. A reproducible synthetic technique was first developed to prepare iron oxide nanoparticles with excellent size control and narrow size distribution. Subsequently, two different approaches were utilized to produce multiple small Pt nanoparticle attached iron oxide nanoparticles. The first route involved attachment of Pt nanoparticles onto iron oxide seeds of various shapes in an organic solvent, followed by an aqueous phase transfer. Here, the shape of the nanoparticles was controlled to facilitate heterogeneous nucleation of Pt nanoparticles. The protective biocompatible polymer coating (polyacrylic acid) in this method could prevent interaction of the Pt nanoparticles with undesirable biomolecules. Several non-spherical iron oxide nanoparticles were explored, including whiskers, worms, plates, and flowers. In the second method, an aqueous phase ligand exchange process was performed first, prior to the deposition of multiple Pt nanoparticles. This facile method

  2. [Acidophilic methanogens and their applications in anaerobic digestion].

    PubMed

    Guo, Xiao-Hui; Wu, Wei-Xiang; Han, Zhi-Ying; Shi, De-Zhi

    2011-02-01

    Methanogens play an important role in global carbon cycle. There exists a range of unknown methanogenic archaea in acidic peat lands, among which, acidophilic methanogens have attracted increasing research interests because of their special metabolic characteristics. To introduce acidophilic methanogens in the anaerobic digestion process of high concentration organic wastes or waste water could essentially overcome the inhibition of acid accumulation on the methanogens and help reduce the operation cost, broadening the industrial application of anaerobic bio-treatment technology. In this paper, we reviewed the recent researches on acidophilic methanogens, with the focus on enrichment and isolation methods, physiological and biochemical characters, metabolic characteristics, and application of molecular biology. The potential applications of acidophilic methanogens in anaerobic digestion process were analyzed and proposed, and the directions for further researches were suggested.

  3. Acidophilic, heterotrophic bacteria of acidic mine waters

    SciTech Connect

    Wichlacz, P.L.; Unz, R.F.

    1981-05-01

    Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and oxidase positive, strictly aerobic, and capable of growth on citric acid. The bacteria were cultivatable on solid nutrient media only if agarose was employed as the hardening agent. Bacterial densities in natural mine waters ranged from approximately 20 to 250 cells per ml, depending upon source and culture medium.

  4. Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications.

    PubMed

    Tuček, Jiří; Kemp, Kingsley Christian; Kim, Kwang Soo; Zbořil, Radek

    2014-08-26

    Owing to the three different orbital hybridizations carbon can adopt, the existence of various carbon nanoallotropes differing also in dimensionality has been already affirmed with other structures predicted and expected to emerge in the future. Despite numerous unique features and applications of 2D graphene, 1D carbon nanotubes, or 0D fullerenes, nanodiamonds, and carbon quantum dots, which have been already heavily explored, any of the existing carbon allotropes do not offer competitive magnetic properties. For challenging applications, carbon nanoallotropes are functionalized with magnetic species, especially of iron oxide nature, due to their interesting magnetic properties (superparamagnetism and strong magnetic response under external magnetic fields), easy availability, biocompatibility, and low cost. In addition, combination of iron oxides (magnetite, maghemite, hematite) and carbon nanostructures brings enhanced electrochemical performance and (photo)catalytic capability due to synergetic and cooperative effects. This work aims at reviewing these advanced applications of iron-oxide-supported nanocarbon composites where iron oxides play a diverse role. Various architectures of carbon/iron oxide nanocomposites, their synthetic procedures, physicochemical properties, and applications are discussed in details. A special attention is devoted to hybrids of carbon nanotubes and rare forms (mesoporous carbon, nanofoam) with magnetic iron oxide carriers for advanced environmental technologies. The review also covers the huge application potential of graphene/iron oxide nanocomposites in the field of energy storage, biomedicine, and remediation of environment. Among various discussed medical applications, magnetic composites of zero-dimensional fullerenes and carbon dots are emphasized as promising candidates for complex theranostics and dual magneto-fluorescence imaging.

  5. Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling.

    PubMed

    Babic, Michal; Horák, Daniel; Trchová, Miroslava; Jendelová, Pavla; Glogarová, Katerina; Lesný, Petr; Herynek, Vít; Hájek, Milan; Syková, Eva

    2008-03-01

    New surface-modified iron oxide nanoparticles were developed by precipitation of Fe(II) and Fe(III) salts with ammonium hydroxide and oxidation of the resulting magnetite with sodium hypochlorite, followed by the addition of poly( L-lysine) (PLL) solution. PLL of several molecular weights ranging from 146 ( L-lysine) to 579 000 was tested as a coating to boost the intracellular uptake of the nanoparticles. The nanoparticles were characterized by TEM, dynamic light scattering, FTIR, and ultrasonic spectrometry. TEM revealed that the particles were ca. 6 nm in diameter, while FTIR showed that their surfaces were well-coated with PLL. The interaction of PLL-modified iron oxide nanoparticles with DMEM culture medium was verified by UV-vis spectroscopy. Rat bone marrow stromal cells (rMSCs) and human mesenchymal stem cells (hMSC) were labeled with PLL-modified iron oxide nanoparticles or with Endorem (control). Optical microscopy and TEM confirmed the presence of PLL-modified iron oxide nanoparticles inside the cells. Cellular uptake was very high (more than 92%) for PLL-modified nanoparticles that were coated with PLL (molecular weight 388 00) at a concentration of 0.02 mg PLL per milliliter of colloid. The cellular uptake of PLL-modified iron oxide was facilitated by its interaction with the negatively charged cell surface and subsequent endosomolytic uptake. The relaxivity of rMSCs labeled with PLL-modified iron oxide and the amount of iron in the cells were determined. PLL-modified iron oxide-labeled rMSCs were imaged in vitro and in vivo after intracerebral grafting into the contralateral hemisphere of the adult rat brain. The implanted cells were visible on magnetic resonance (MR) images as a hypointense area at the injection site and in the lesion. In comparison with Endorem, nanoparticles modified with PLL of an optimum molecular weight demonstrated a higher efficiency of intracellular uptake by MSC cells.

  6. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst.

    PubMed

    Flores, Rubia Gomes; Andersen, Silvia Layara Floriani; Maia, Leonardo Kenji Komay; José, Humberto Jorge; Moreira, Regina de Fatima Peralta Muniz

    2012-11-30

    Iron oxide particles recovered from acid mine drainage represent a potential low-cost feedstock to replace reagent-grade chemicals in the production of goethite, ferrihydrite or magnetite with relatively high purity. Also, the properties of iron oxides recovered from acid mine drainage mean that they can be exploited as catalysts and/or adsorbents to remove azo dyes from aqueous solutions. The main aim of this study was to recover iron oxides with relatively high purity from acid mine drainage to act as a catalyst in the oxidation of dye through a Fenton-like mechanism or as an adsorbent to remove dyes from an aqueous solution. Iron oxides (goethite) were recovered from acid mine drainage through a sequential precipitation method. Thermal treatment at temperatures higher than 300 °C produces hematite through a decrease in the BET area and an increase in the point of zero charge. In the absence of hydrogen peroxide, the solids adsorbed the textile dye Procion Red H-E7B according to the Langmuir model, and the maximum amount adsorbed decreased as the temperature of the thermal treatment increased. The decomposition kinetics of hydrogen peroxide is dependent on the H(2)O(2) concentration and iron oxides dosage, but the second-order rate constant normalized to the BET surface area is similar to that for different iron oxides tested in this and others studies. These results indicate that acid mine drainage could be used as a source material for the production of iron oxide catalysts/adsorbents, with comparable quality to those produced using analytical-grade reagents.

  7. Altering the structure and properties of iron oxide nanoparticles and graphene oxide/iron oxide composites by urea

    NASA Astrophysics Data System (ADS)

    Naghdi, Samira; Rhee, Kyong Yop; Jaleh, Babak; Park, Soo Jin

    2016-02-01

    Iron oxide (Fe2O3) nanoparticles were grown on graphene oxide (GO) using a simple microwave-assisted method. The effects of urea concentration on Fe2O3 nanoparticles and GO/Fe2O3 composite were examined. The as-prepared samples were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The Fe2O3 nanoparticles were uniformly developed on GO sheets. The results showed that urea affects both Fe2O3 morphology and particle size. In the absence of urea, the Fe2O3 nanostructures exhibited a rod-like morphology. However, increasing urea concentration altered the morphology and decreased the particle size. The Raman results of GO/Fe2O3 showed that the intensity ratio of D band to G band (ID/IG) was decreased by addition of urea, indicating that urea can preserve the GO sheets during synthesis of the composite from exposing more defects. The surface area and thermal stability of GO/Fe2O3 and Fe2O3 were compared using the Brunauer-Emmett-Teller method and thermal gravimetric analysis, respectively. The results showed that the increased concentration of urea induced a larger surface area with more active sites in the Fe2O3 nanoparticles. However, the increase in urea concentration led to decreased thermal stability of the Fe2O3 nanoparticles. The magnetic properties of Fe2O3 nanoparticles were characterized by a vibrating sample magnetometer and results revealed that the magnetic properties of Fe2O3 nanoparticles are affected by the morphology.

  8. Gene Loss and Horizontal Gene Transfer Contributed to the Genome Evolution of the Extreme Acidophile “Ferrovum”

    PubMed Central

    Ullrich, Sophie R.; González, Carolina; Poehlein, Anja; Tischler, Judith S.; Daniel, Rolf; Schlömann, Michael; Holmes, David S.; Mühling, Martin

    2016-01-01

    Acid mine drainage (AMD), associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus “Ferrovum” are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of “Ferrovum” has proven to be extremely difficult and has so far only been successful for the designated type strain “Ferrovum myxofaciens” P3G. In this study, the genomes of two novel strains of “Ferrovum” (PN-J185 and Z-31) derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of “Ferrovum” sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G). Phylogenomic scrutiny suggests that the four strains represent three “Ferrovum” species that cluster in two groups (1 and 2). Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the “F. myxofaciens” strains (group 1) appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features

  9. Effect of iron oxide loading on the phase transformation and physicochemical properties of nanosized mesoporous ZrO{sub 2}

    SciTech Connect

    Basahel, S.N.; Ali, Tarek T.; Narasimharao, K.; Bagabas, A.A.; Mokhtar, M.

    2012-11-15

    Highlights: ► Modified preparation method for nanosized iron oxide supported ZrO{sub 2} catalysts. ► Systematic study of effect of high iron oxide loading over ZrO{sub 2}. ► Influence of iron oxide on the stabilization of tetragonal ZrO{sub 2} phase. ► A mesoporous nature of zirconia changed upon changing iron oxide loading. ► Surface to bulk migration of iron oxide evidenced by XPS technique. -- Abstract: Mesoporous ZrO{sub 2}-supported iron oxide materials were prepared with nominal loadings of iron oxide of 5, 10, 15 and 20 wt.% using a modified co-precipitation method. The physicochemical properties of the catalysts were characterized by thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, Raman spectroscopy, high resolution transmission electron microscopy, N{sub 2} adsorption, X-ray photoelectron spectroscopy and infrared spectroscopy methods. A delay in the ZrO{sub 2} phase transformation as a result of the incorporation of iron was determined using TG/DSC measurements. XRD, Raman spectroscopy and HRTEM results revealed that an increase of iron oxide loading from 5 to 15 wt.% enhanced the transformation of the monoclinic to tetragonal phase. Unexpectedly, 20 wt.% iron oxide loading was required for complete tetragonal structure stabilization due to the mesoporosity of the ZrO{sub 2} support. Iron oxide loadings from 5 to 15 wt.% showed an increase in the BET-surface area due to the presence of amorphous iron oxide on the surface. XPS and FTIR results indicated that increasing the iron oxide content to 20 wt.% resulted in stabilization of the tetragonal zirconia phase as a result of surface-to-bulk migration and incorporation of Fe{sup 3+} ions in the ZrO{sub 2} lattice.

  10. Synthesis of hybrid gold/iron oxide nanoparticles in block copolymer micelles for imaging, drug delivery and magnetic hyperthermia.

    SciTech Connect

    Kim, D.-H.; Rozhkova, E. A.; Rajh, T.; Bader, S. D.; Novosad, V.

    2009-10-01

    In our study, hybrid gold/iron oxide loaded thermoresponsive micelles were synthesized for combined hyperthermia and chemotherapy, and optical imaging. Polymeric micelles made of amphiphilic block copolymer of poly(N-isopropylacrylamide-co-acrylamide)-block-poly({var_epsilon}-caprolactone) were conjugated with gold/iron oxide particles which are self-assembled at the hydrophobic polymer core. Thermal sensitivity and magnetic and optical properties of the hybrid gold/iron oxide micelles were investigated for the combined therapy and optical imaging.

  11. Quantification of Iron Oxides and Hydroxides in Desert Aeolian Particles

    NASA Astrophysics Data System (ADS)

    Lafon, S.; Rajot, J.; Alfaro, S.; Gaudichet, A.

    2002-12-01

    Long range transport of desert dust over oceans constitute a source of iron for the surface water. Assessing the iron cycle and its biogeochemical implications in oceanic areas requires determination and quantification of the iron status in aeolian particles. Indeed, in such aerosols, the iron is either trapped in the silicate structure or present under the form of oxides and hydroxides (free iron). We propose a method to apportion iron between free and entrapped forms in mineral aerosols. It consists in the adaptation of a well known method used for soil characterization to the treatment of aerosol samples, which represent less than 1 mg of material collected by air filtration on polycarbonate filters. The iron oxides and hydroxides are extracted selectively using the combined action of reductive and complexant agents in a buffered solution. The iron content is measured before and after this chemical extraction using X ray fluorescence spectrometry. We attempt to give some values for three main desert source areas using aerosol samples collected near Niamey (Niger) either during Harmattan events or during local erosion events, and samples collected downwind of the Gobi desert in China. Results emphasize firstly that iron trapped in the structure of silicate minerals represents an important part of total iron content. This suggests that, regarding dissolution processes in sea water, total elemental iron content of aeolian dust can not be used directly to calculate the flux of iron available. Secondly, our results show that the free iron content vary according to the origin of dusts. Niger samples have contents in free iron of 4.4 % (SD = 0.8) for local erosion and 2.8 % (SD = 1.0) for Harmattan. Chinese samples contain 3.7 % (SD = 0.5) of free iron. These differences could be linked to the parent soil mineralogical composition that varies with geographical location, but for some of our samples it also could be linked to a size fractionation process occurring first

  12. Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Nordmeyer, Daniel; Stumpf, Patrick; Gröger, Dominic; Hofmann, Andreas; Enders, Sven; Riese, Sebastian B.; Dernedde, Jens; Taupitz, Matthias; Rauch, Ursula; Haag, Rainer; Rühl, Eckart; Graf, Christina

    2014-07-01

    Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI.Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a

  13. DLVO and XDLVO calculations for bacteriophage MS2 adhesion to iron oxide particles.

    PubMed

    Park, Jeong-Ann; Kim, Song-Bae

    2015-10-01

    In this study, batch experiments were performed to examine the adhesion of bacteriophage MS2 to three iron oxide particles (IOP1, IOP2 and IOP3) with different particle properties. The characteristics of MS2 and iron oxides were analyzed using various techniques to construct the classical DLVO and XDLVO potential energy profiles between MS2 and iron oxides. X-ray diffractometry peaks indicated that IOP1 was mainly composed of maghemite (γ-Fe2O3), but also contained some goethite (α-FeOOH). IOP2 was composed of hematite (α-Fe2O3) and IOP3 was composed of iron (Fe), magnetite (Fe3O4) and iron oxide (FeO). Transmission electron microscope images showed that the primary particle size of IOP1 (γ-Fe2O3) was 12.3±4.1nm. IOP2 and IOP3 had primary particle sizes of 167±35nm and 484±192nm, respectively. A surface angle analyzer demonstrated that water contact angles of IOP1, IOP2, IOP3 and MS2 were 44.83, 64.00, 34.33 and 33.00°, respectively. A vibrating sample magnetometer showed that the magnetic saturations of IOP1, IOP2 and IOP3 were 176.87, 17.02 and 946.85kA/m, respectively. Surface potentials measured in artificial ground water (AGW; 0.075mM CaCl2, 0.082mM MgCl2, 0.051mM KCl, and 1.5mM NaHCO3; pH7.6) indicated that iron oxides and MS2 were negatively charged in AGW (IOP1=-0.0185V; IOP2=-0.0194V; IOP3=-0.0301V; MS2=-0.0245V). Batch experiments demonstrated that MS2 adhesion to iron oxides was favorable in the order of IOP1>IOP2>IOP3. This tendency was well predicted by the classical DLVO model. In the DLVO calculations, both the sphere-plate and sphere-sphere geometries predicted the same trend of MS2 adhesion to iron oxides. Additionally, noticeable differences were not found between the DLVO and XDLVO interaction energy profiles, indicating that hydrophobic interactions did not play a major role; electrostatic interactions, however, did influence MS2 adhesion to iron oxides. Furthermore, the aggregation of iron oxides was investigated with a modified XDLVO

  14. DLVO and XDLVO calculations for bacteriophage MS2 adhesion to iron oxide particles.

    PubMed

    Park, Jeong-Ann; Kim, Song-Bae

    2015-10-01

    In this study, batch experiments were performed to examine the adhesion of bacteriophage MS2 to three iron oxide particles (IOP1, IOP2 and IOP3) with different particle properties. The characteristics of MS2 and iron oxides were analyzed using various techniques to construct the classical DLVO and XDLVO potential energy profiles between MS2 and iron oxides. X-ray diffractometry peaks indicated that IOP1 was mainly composed of maghemite (γ-Fe2O3), but also contained some goethite (α-FeOOH). IOP2 was composed of hematite (α-Fe2O3) and IOP3 was composed of iron (Fe), magnetite (Fe3O4) and iron oxide (FeO). Transmission electron microscope images showed that the primary particle size of IOP1 (γ-Fe2O3) was 12.3±4.1nm. IOP2 and IOP3 had primary particle sizes of 167±35nm and 484±192nm, respectively. A surface angle analyzer demonstrated that water contact angles of IOP1, IOP2, IOP3 and MS2 were 44.83, 64.00, 34.33 and 33.00°, respectively. A vibrating sample magnetometer showed that the magnetic saturations of IOP1, IOP2 and IOP3 were 176.87, 17.02 and 946.85kA/m, respectively. Surface potentials measured in artificial ground water (AGW; 0.075mM CaCl2, 0.082mM MgCl2, 0.051mM KCl, and 1.5mM NaHCO3; pH7.6) indicated that iron oxides and MS2 were negatively charged in AGW (IOP1=-0.0185V; IOP2=-0.0194V; IOP3=-0.0301V; MS2=-0.0245V). Batch experiments demonstrated that MS2 adhesion to iron oxides was favorable in the order of IOP1>IOP2>IOP3. This tendency was well predicted by the classical DLVO model. In the DLVO calculations, both the sphere-plate and sphere-sphere geometries predicted the same trend of MS2 adhesion to iron oxides. Additionally, noticeable differences were not found between the DLVO and XDLVO interaction energy profiles, indicating that hydrophobic interactions did not play a major role; electrostatic interactions, however, did influence MS2 adhesion to iron oxides. Furthermore, the aggregation of iron oxides was investigated with a modified XDLVO

  15. Iron oxide deposits associated with the ectosymbiotic bacteria in the hydrothermal vent shrimp Rimicaris exoculata

    NASA Astrophysics Data System (ADS)

    Corbari, L.; Cambon-Bonavita, M.-A.; Long, G. J.; Grandjean, F.; Zbinden, M.; Gaill, F.; Compère, P.

    2008-04-01

    The Rimicaris exoculata shrimp is considered a primary consumer that dominates the fauna of most Mid-Atlantic Ridge (MAR) hydrothermal ecosystems. These shrimps harbour in their gill chambers an important ectosymbiotic community of chemoautotrophic bacteria associated with iron oxide deposits. The structure and elemental composition of the minerals associated with these bacteria have been investigated by using X-ray microanalyses, light microscopy, and transmission, environmental scanning and scanning transmission electron microscopy. The nature of the iron oxides in shrimps obtained from the Rainbow vent field at 36°14.0' N, has also been determined by Mössbauer spectroscopy. This multidisciplinary approach has revealed that the three step-levels of mineral crust found in the Rimicaris exoculata shrimps consist of heavy concretions formed by nanoparticles of two-line ferrihydrite intermixed with minor inorganic SiO2, (Ca,Mg)SO4, and (Ca,Mg)3(PO4)2 minerals that may stabilise the ferrihydrite form of iron oxides. Morphological observations on the bacteria have revealed their close interactions with these minerals and, thus, indicate the biogenic origin of the iron oxide deposits. The evolution of the bacterial density in the three mineral crust levels is related to the amount of the iron deposits and it is proposed that the lower crust level is the most likely region for the location of the iron-oxidizing bacteria.

  16. Dominance of Ferritrophicum populations at an AMD site with rapid iron oxidation

    NASA Astrophysics Data System (ADS)

    Grettenberger, C.; Pearce, A.; Bibby, K. J.; Burgos, W.; Jones, D. S.; Macalady, J.

    2015-12-01

    Acid mine drainage is a major environmental problem affecting watersheds across the globe. Bioremediation of AMD relies on microbial communities to oxidize and thus remove iron from the system. Iron-oxidation rates in AMD environments are highly variable across sites. At Scalp Level Run in Summerset County PA, iron-oxidation rates are five to eight times faster than other coal-associated AMD sites. We examined the microbial community at Scalp Level Run to determine whether a unique microbial community may be responsible for the observed rapid iron-oxidation rates. Using MiSeq sequence tags, 16S rRNA gene clone libraries, and fluorescence in situ hybridization, we found that Scalp Level Run sediments host microbial populations closely related to the betaproteobacterium Ferritrophicum radicicola, an iron-oxidizing species isolated from an acid mine drainage wetland in Virginia. Ferritrophicum spp. was not found at the four other coal-associated AMD sites in the study and is uncommon in the published literature. The influence of Ferritrophicum spp. populations in biogeochemical cycling, specifically their role in determining the iron-oxidation rate at Scalp Level Run is unknown. Therefore, we employed metagenomic sequencing to examine the metabolic potential of the microbial community at Scalp Level Run.

  17. Three-dimensionally ordered macroporous iron oxide for removal of H2S at medium temperatures.

    PubMed

    Fan, Hui-Ling; Sun, Ting; Zhao, Yan-Peng; Shangguan, Ju; Lin, Jian-Ying

    2013-05-01

    A series of iron oxide sorbents with novel structures of three-dimensionally ordered macropores (3DOM), ranging in size from 60 to 550 nm, were fabricated and creatively used as sorbents for the removal of H2S at medium temperatures of 300-350 °C. Evaluation tests using thermogravimetric analysis (TGA) and a fixed-bed reactor showed that, in comparison to the iron oxide sorbent prepared by a conventional mixing method, the fabricated iron oxide sorbent with a 3DOM structure exhibited much higher reactivity and efficiency, as well as high sorbent utilization with low regeneration temperature. The excellent performance of 3DOM iron oxide as a sulfur sorbent is attributed to its special texture, i.e., the open and interconnected macroporous, large surface area, and nanoparticles of iron oxide, which are revealed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and nitrogen adsorption techniques. The investigation results of the pore effect on the performance of the sorbent show that sorbents with pores size around 150 nm in diameter revealed the best performance. The reason is that pores of this size are large enough to allow gas to pass through even if the channel is partially blocked during the reaction process while remaining a large surface area that can provide more active sites for the reaction.

  18. Preparation and characterization of thermosensitive PNIPAA-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Shengmao; Zhang, Linna; He, Benfang; Wu, Zhishen

    2008-08-01

    A new and facile approach was established to fabricate thermoresponsive poly(N-isopropylacrylamide) (PNIPAA) coated iron oxide nanoparticles in a non-aqueous medium. The morphology and structure of the nanoparticle-doped composite were analyzed by means of transmission electron microscopy (TEM), x-ray powder diffraction (XRD), and Fourier transformation infrared spectrometry (FTIR). The thermosensitivity of the composite was also investigated. Results indicated that the oil-soluble iron oxide nanoparticles encapsulated with PNIPAA, composed of an inorganic iron oxide core and biocompatible PNIPAA shell, were dispersed well in water and had a sphere-like shape. The PNIPAA-coated iron oxide nanoparticles with such a kind of core-shell structure showed excellent thermosensitivity. Namely, the aqueous suspension of PNIPAA-coated iron oxide nanoparticles dramatically changed from transparent to opaque as the temperature increased from room temperature to 38 °C, showing potential as optical transmittance switch materials and their significance in the fields of protein adsorption and purification controlled release, and drug delivery.

  19. Nanobiocomposite from Collagen Waste Using Iron Oxide Nanoparticles and Its Conversion Into Magnetic Nanocarbon.

    PubMed

    Thanikaivelan, P; Narayanan, T N; Gupta, B K; Reddy, A L M; Ajayan, P M

    2015-06-01

    Collagenous wastes discarded from leather industry were stabilized using superparamagnetic iron oxide nanoparticles and further converted into a magnetic nanocarbon. Stabilization of collagen using iron oxide nanoparticles treatment (25% offer) was confirmed through differential scanning calorimetric analysis and further evidenced through scanning electron microscopic analysis. A simple high temperature treatment of the collagen-iron oxide nanoparticle composite at 850 degrees C for 2 h under Ar atmosphere yielded a bi-functional, magnetic and conducting, nanocarbon. The X-ray diffraction and Raman spectroscopic analysis reveal the partial graphitation and X-ray photoelectron spectroscopic results show the presence of trace-iron containing carbon, naturally doped with nitrogen and oxygen. Transmission electron microscopic analysis show the presence of larger iron oxide nanocrystals embedded in graphitic carbon layers while superconducting quantum interference device based analysis reveals a perfect ferrimagnetic property with saturation magnetization. Thus, we have stabilized the collagen waste fibers using iron oxide nanoparticles and converted them into a bi-functional nanocarbon, which has potential for various applications including energy, leather making and environmental remediation. PMID:26369072

  20. New carboxysilane-coated iron oxide nanoparticles for nonspecific cell labelling.

    PubMed

    Bridot, Jean-Luc; Stanicki, Dimitri; Laurent, Sophie; Boutry, Sébastien; Gossuin, Yves; Leclère, Philippe; Lazzaroni, Roberto; Vander Elst, Luce; Muller, Robert N

    2013-01-01

    Magnetic resonance imaging (MRI) offers the possibility of tracking cells labelled with a contrast agent and evaluating the progress of cell therapies. This requires efficient cell labelling with contrast agents. A basic incubation of cells with iron oxide nanoparticles (NPs) is a common method. This study reports the synthesis at the gram scale of iron oxide nanoparticles as MRI T₂ contrast agents for cell labelling. These NPs are based on small iron oxide cores coated with a thin polysiloxane shell presenting carboxylic acid functions. The iron oxide cores produced have been characterized by transmission electron microscopy, X-ray diffraction, ζ-potential, infrared, photon correlation spectroscopy, atomic force microscopy, magnetometry and relaxometric measurements. These measurements confirmed the expected surface modification by carboxysilane. Carboxylic groups created electrostatic repulsion between NPs when they are deprotonated. Therefore, highly concentrated aqueous solutions of carboxysilane coated iron oxide NPs can be obtained, up to 70% (w/w). These NPs could be used for cell labelling owing to their aggregation and re-dispersion properties. NPs precipitated in Dulbecco's modified Eagle medium induced a rapid association with 3 T6 fibroblast cells and could easily be re-dispersed in phosphate buffer saline solution to obtain properly labelled cells. PMID:24375902

  1. Structural and Morphological Features of Concentric Iron Oxide/Carbon Nanotubes Obtained from Phospholipids

    SciTech Connect

    Yu, Min; Howe, Jane Y; Jeong, Kyunghoon; Shim, Inbo; Kim, Woochul; Kim, Chulsung; Ahn, Jaepyoung; Lee, Jaegab; Urban, Mark W.

    2010-01-01

    Biologically active 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC{sub 8,9}PC) nanotube-forming phospholipids (PLs) have been utilized as templates to prepare ferromagnetic nanotubes (FMNTs). Combining X-ray diffraction (XRD), selected area electron diffraction (SAD), high-resolution transmission electron microscopy (HRTEM), Raman, and Moessbauer spectroscopy measurements, FMNTs morphological features and chemical composition were determined. These studies showed that FMNTs consist of iron oxide/carbon/iron oxide concentric nanotubes with the amorphous carbon phase sandwiched between two iron oxide layers. The iron oxide phase consists of nanocrystalline magnetite (Fe{sub 3}O{sub 4}) which coexist as tetrahedral Fe{sup 3+} and octahedral Fe{sup 2.5+} sites containing minute quantities of hematite ({alpha}-Fe{sub 2}O{sub 3}) phase. The carbon phase consists of amorphous carbon forming an amorphous carbon nanotube (ACNT). Magnetic measurements showed that saturation magnetization (M{sub s}) of FMNTs is 79 emu/g, but upon removal of the iron oxide outer and inner layers, ACNTs become paramagnetic. The electrical resistivity ({rho}) of single FMNT is 3.3 x 10{sup -2} {Omega} {center_dot} m, which decreases to 5.06 x 10{sup -4} {Omega} {center_dot} m for ACNT. These magneto-electric properties can be easily tailored, depending upon desired applications and needs.

  2. Three-dimensionally ordered macroporous iron oxide for removal of H2S at medium temperatures.

    PubMed

    Fan, Hui-Ling; Sun, Ting; Zhao, Yan-Peng; Shangguan, Ju; Lin, Jian-Ying

    2013-05-01

    A series of iron oxide sorbents with novel structures of three-dimensionally ordered macropores (3DOM), ranging in size from 60 to 550 nm, were fabricated and creatively used as sorbents for the removal of H2S at medium temperatures of 300-350 °C. Evaluation tests using thermogravimetric analysis (TGA) and a fixed-bed reactor showed that, in comparison to the iron oxide sorbent prepared by a conventional mixing method, the fabricated iron oxide sorbent with a 3DOM structure exhibited much higher reactivity and efficiency, as well as high sorbent utilization with low regeneration temperature. The excellent performance of 3DOM iron oxide as a sulfur sorbent is attributed to its special texture, i.e., the open and interconnected macroporous, large surface area, and nanoparticles of iron oxide, which are revealed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and nitrogen adsorption techniques. The investigation results of the pore effect on the performance of the sorbent show that sorbents with pores size around 150 nm in diameter revealed the best performance. The reason is that pores of this size are large enough to allow gas to pass through even if the channel is partially blocked during the reaction process while remaining a large surface area that can provide more active sites for the reaction. PMID:23528010

  3. Ligand-Enhanced Abiotic Iron Oxidation and the Effects of Chemical versus Biological Iron Cycling in Anoxic Environments

    PubMed Central

    2013-01-01

    This study introduces a newly isolated, genetically tractable bacterium (Pseudogulbenkiania sp. strain MAI-1) and explores the extent to which its nitrate-dependent iron-oxidation activity is directly biologically catalyzed. Specifically, we focused on the role of iron chelating ligands in promoting chemical oxidation of Fe(II) by nitrite under anoxic conditions. Strong organic ligands such as nitrilotriacetate and citrate can substantially enhance chemical oxidation of Fe(II) by nitrite at circumneutral pH. We show that strain MAI-1 exhibits unambiguous biological Fe(II) oxidation despite a significant contribution (∼30–35%) from ligand-enhanced chemical oxidation. Our work with the model denitrifying strain Paracoccus denitrificans further shows that ligand-enhanced chemical oxidation of Fe(II) by microbially produced nitrite can be an important general side effect of biological denitrification. Our assessment of reaction rates derived from literature reports of anaerobic Fe(II) oxidation, both chemical and biological, highlights the potential competition and likely co-occurrence of chemical Fe(II) oxidation (mediated by microbial production of nitrite) and truly biological Fe(II) oxidation. PMID:23402562

  4. Enhanced Yields of Iron-Oxidizing Bacteria by In Situ Electrochemical Reduction of Soluble Iron in the Growth Medium

    PubMed Central

    Blake, Robert C.; Howard, Gary T.; McGinness, Stephen

    1994-01-01

    An electrochemical apparatus for culturing chemolithotrophic bacteria that respire aerobically on ferrous ions is described. Enhanced yields of the bacteria were achieved by the in situ electrochemical reduction of soluble iron in the growth medium. When subjected to a direct current of 30 A for 60 days, a 45-liter culture of Thiobacillus ferrooxidans grew from 6 × 107 to 9.5 × 109 cells per ml. Growth of the bacterium within the electrolytic bioreactor was linear with time. A final cell density corresponding to 4.7 g of wet cell paste per liter was achieved, and a total of 320 g of wet cell paste was harvested from one culture. The apparatus was designed to deliver protons concomitantly with electrons; therefore, the pH of the culture remained stable at 1.6 ± 0.1 for the duration of growth. This laboratory-scale apparatus may be readily adapted to pilot or production scale. It is thus anticipated that abundant numbers of iron-oxidizing bacteria may be obtained for both fundamental and applied studies. PMID:16349344

  5. Characteristics and Kinetic Analysis of AQS Transformation and Microbial Goethite Reduction:Insight into "Redox mediator-Microbe-Iron oxide" Interaction Process.

    PubMed

    Zhu, Weihuang; Shi, Mengran; Yu, Dan; Liu, Chongxuan; Huang, Tinglin; Wu, Fengchang

    2016-01-01

    The characteristics and kinetics of redox transformation of a redox mediator, anthraquinone-2-sulfonate (AQS), during microbial goethite reduction by Shewanella decolorationis S12, a dissimilatory iron reduction bacterium (DIRB), were investigated to provide insights into "redox mediator-iron oxide" interaction in the presence of DIRB. Two pre-incubation reaction systems of the "strain S12- goethite" and the "strain S12-AQS" were used to investigate the dynamics of goethite reduction and AQS redox transformation. Results show that the concentrations of goethite and redox mediator, and the inoculation cell density all affect the characteristics of microbial goethite reduction, kinetic transformation between oxidized and reduced species of the redox mediator. Both abiotic and biotic reactions and their coupling regulate the kinetic process for "Quinone-Iron" interaction in the presence of DIRB. Our results provide some new insights into the characteristics and mechanisms of interaction among "quinone-DIRB- goethite" under biotic/abiotic driven.

  6. Size- and Composition-Dependent Radio Frequency Magnetic Permeability of Iron Oxide Nanocrystals

    SciTech Connect

    Yun, H; Liu, XY; Paik, T; Palanisamy, D; Kim, J; Vogel, WD; Viescas, AJ; Chen, J; Papaefthymiou, GC; Kikkawa, JM; Allen, MG; Murray, CB

    2014-12-01

    We investigate the size- and composition-dependent ac magnetic permeability of superparamagnetic iron oxide nanocrystals for radio frequency (RF) applications. The nanocrystals are obtained through high-temperature decomposition synthesis, and their stoichiometry is determined by Mossbauer spectroscopy. Two sets of oxides are studied: (a) as-synthesized magnetite-rich and (b) aged maghemite nanocrystals. All nanocrystalline samples are confirmed to be in the superparamagnetic state at room temperature by SQUID magnetometry. Through the one-turn inductor method, the ac magnetic properties of the nanocrystalline oxides are characterized. In magnetite-rich iron oxide nanocrystals, size-dependent magnetic permeability is not observed, while maghemite iron oxide nanocrystals show clear size dependence. The inductance, resistance, and quality factor of hand-wound inductors with a superparamagnetic composite core are measured. The superparamagnetic nanocrystals are successfully embedded into hand-wound inductors to function as inductor cores.

  7. Defective iron-oxide nanoparticles synthesised by high temperature plasma processing: a magnetic characterisation versus temperature.

    PubMed

    Balasubramanian, C; Joseph, B; Orpe, P B; Saini, N L; Mukherjee, S; Dziedzic-Kocurek, K; Stanek, J; Di Gioacchino, D; Marcelli, A

    2016-11-01

    Magnetic properties and phase compositions of iron-oxide nanoparticles synthesised by a high temperature arc plasma route have been investigated by Mössbauer spectroscopy and high harmonic magnetic AC susceptibility measurements, and correlated with morphological and structural properties for different synthesis conditions. The Mössbauer spectra precisely determined the presence of different iron-oxide fractions in the investigated nanoparticles, while the high harmonic magnetic susceptibility measurements revealed the occurrence of metastable magnetic phases evolving in temperature and time. This study illustrates magnetic properties and dynamics of the magnetic configurations of iron-oxide nanoparticles grown by high temperature plasma, a process less explored so far but extremely useful for synthesising large numbers of nanoparticles for industrial applications. PMID:27668803

  8. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    NASA Astrophysics Data System (ADS)

    Braga, Tiago P.; Vasconcelos, Igor F.; Sasaki, José M.; Fabris, J. D.; de Oliveira, Diana Q. L.; Valentini, Antoninho

    2010-03-01

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Mössbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Mössbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  9. Defective iron-oxide nanoparticles synthesised by high temperature plasma processing: a magnetic characterisation versus temperature.

    PubMed

    Balasubramanian, C; Joseph, B; Orpe, P B; Saini, N L; Mukherjee, S; Dziedzic-Kocurek, K; Stanek, J; Di Gioacchino, D; Marcelli, A

    2016-11-01

    Magnetic properties and phase compositions of iron-oxide nanoparticles synthesised by a high temperature arc plasma route have been investigated by Mössbauer spectroscopy and high harmonic magnetic AC susceptibility measurements, and correlated with morphological and structural properties for different synthesis conditions. The Mössbauer spectra precisely determined the presence of different iron-oxide fractions in the investigated nanoparticles, while the high harmonic magnetic susceptibility measurements revealed the occurrence of metastable magnetic phases evolving in temperature and time. This study illustrates magnetic properties and dynamics of the magnetic configurations of iron-oxide nanoparticles grown by high temperature plasma, a process less explored so far but extremely useful for synthesising large numbers of nanoparticles for industrial applications.

  10. Identification of iron oxide impurities in earliest industrial-scale processed platinum

    SciTech Connect

    Weerd, Jaap van der; Rehren, Thilo . E-mail: th.rehren@ucl.ac.uk; Firth, Steven; Clark, Robin J.H. . E-mail: r.j.h.clark@ucl.ac.uk

    2004-09-15

    A detailed investigation of iron oxide inclusions in a 19th century Russian platinum coin is presented. Such coins represent the products of the first industrial-scale purification of platinum metal. The processed metal is far from pure, however, and two types of iron oxide inclusions are identified by electron microprobe and Raman microscopy. The results show that the inclusions mainly consist of magnetite and haematite. The Raman band of magnetite at 668 cm{sup -1} was found to shift to about 680 cm{sup -1} with an increase in the average oxidation state of the iron. It is concluded that the iron oxides are formed during the heating of the platinum metal powder in the manufacturing process.

  11. Size- and composition-dependent radio frequency magnetic permeability of iron oxide nanocrystals.

    PubMed

    Yun, Hongseok; Liu, Xiyu; Paik, Taejong; Palanisamy, Duraivelan; Kim, Jungkwun; Vogel, William D; Viescas, Arthur J; Chen, Jun; Papaefthymiou, Georgia C; Kikkawa, James M; Allen, Mark G; Murray, Christopher B

    2014-12-23

    We investigate the size- and composition-dependent ac magnetic permeability of superparamagnetic iron oxide nanocrystals for radio frequency (RF) applications. The nanocrystals are obtained through high-temperature decomposition synthesis, and their stoichiometry is determined by Mössbauer spectroscopy. Two sets of oxides are studied: (a) as-synthesized magnetite-rich and (b) aged maghemite nanocrystals. All nanocrystalline samples are confirmed to be in the superparamagnetic state at room temperature by SQUID magnetometry. Through the one-turn inductor method, the ac magnetic properties of the nanocrystalline oxides are characterized. In magnetite-rich iron oxide nanocrystals, size-dependent magnetic permeability is not observed, while maghemite iron oxide nanocrystals show clear size dependence. The inductance, resistance, and quality factor of hand-wound inductors with a superparamagnetic composite core are measured. The superparamagnetic nanocrystals are successfully embedded into hand-wound inductors to function as inductor cores.

  12. Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy

    PubMed Central

    Sneha, Murugesan; Sundaram, Nachiappan Meenakshi

    2015-01-01

    Recently, multifunctional magnetic nanostructures have been found to have potential applications in biomedical and tissue engineering. Iron oxide nanoparticles are biocompatible and have distinctive magnetic properties that allow their use in vivo for drug delivery and hyperthermia, and as T2 contrast agents for magnetic resonance imaging. Hydroxyapatite is used frequently due to its well-known biocompatibility, bioactivity, and lack of toxicity, so a combination of iron oxide and hydroxyapatite materials could be useful because hydroxyapatite has better bone-bonding ability. In this study, we prepared nanocomposites of iron oxide and hydroxyapatite and analyzed their physicochemical properties. The results suggest that these composites have superparamagnetic as well as biocompatible properties. This type of material architecture would be well suited for bone cancer therapy and other biomedical applications. PMID:26491311

  13. Synthesis and characterization of PEG-iron oxide core-shell composite nanoparticles for thermal therapy.

    PubMed

    Wydra, Robert J; Kruse, Anastasia M; Bae, Younsoo; Anderson, Kimberly W; Hilt, J Zach

    2013-12-01

    In this study, core-shell nanoparticles were developed to achieve thermal therapy that can ablate cancer cells in a remotely controlled manner. The core-shell nanoparticles were prepared using atomic transfer radical polymerization (ATRP) to coat iron oxide (Fe3O4) nanoparticles with a poly(ethylene glycol) (PEG) based polymer shell. The iron oxide core allows for the remote heating of the particles in an alternating magnetic field (AMF). The coating of iron oxide with PEG was verified through Fourier transform infrared spectroscopy and thermal gravimetric analysis. A thermoablation (55°C) study was performed on A549 lung carcinoma cells exposed to nanoparticles and over a 10 min AMF exposure. The successful thermoablation of A549 demonstrates the potential use of polymer coated particles for thermal therapy.

  14. Influence of Fe(2+)-catalysed iron oxide recrystallization on metal cycling.

    PubMed

    Latta, Drew E; Gorski, Christopher A; Scherer, Michelle M

    2012-12-01

    Recent work has indicated that iron (oxyhydr-)oxides are capable of structurally incorporating and releasing metals and nutrients as a result of Fe2+-induced iron oxide recrystallization. In the present paper, we briefly review the current literature examining the mechanisms by which iron oxides recrystallize and summarize how recrystallization affects metal incorporation and release. We also provide new experimental evidence for the Fe2+-induced release of structural manganese from manganese-doped goethite. Currently, the exact mechanism(s) for Fe2+-induced recrystallization remain elusive, although they are likely to be both oxide-and metal-dependent. We conclude by discussing some future research directions for Fe2+-catalysed iron oxide recrystallization.

  15. Surface Engineering of Core/Shell Iron/Iron Oxide Nanoparticles from Microemulsions for Hyperthermia

    PubMed Central

    Zhang, Guandong; Liao, Yifeng; Baker, Ian

    2011-01-01

    This paper describes the synthesis and surface engineering of core/shell-type iron/iron oxide nanoparticles for magnetic hyperthermia cancer therapy. Iron/iron oxide nanoparticles were synthesized from microemulsions of NaBH4 and FeCl3, followed by surface modification in which a thin hydrophobic hexamethyldisilazane layer - used to protect the iron core - replaced the CTAB coating on the particles. Phosphatidylcholine was then assembled on the nanoparticle surface. The resulting nanocomposite particles have a biocompatible surface and show good stability in both air and aqueous solution. Compared to iron oxide nanoparticles, the nanocomposites show much better heating in an alternating magnetic field. They are good candidates for both hyperthermia and magnetic resonance imaging applications. PMID:21833157

  16. Magnetic iron oxide nanoparticles as drug delivery system in breast cancer

    NASA Astrophysics Data System (ADS)

    Marcu, A.; Pop, S.; Dumitrache, F.; Mocanu, M.; Niculite, C. M.; Gherghiceanu, M.; Lungu, C. P.; Fleaca, C.; Ianchis, R.; Barbut, A.; Grigoriu, C.; Morjan, I.

    2013-09-01

    Present work was focused on producing improved iron oxide nanoparticles for targeted drug delivery in breast cancer. Nanometric-sized iron oxide particles were synthesized by laser pyrolysis and were morphologically/structurally characterized. These new nanoparticles were compared with some commercial, chemically prepared iron oxide ones. Cytotoxicity and the anti-proliferation effects of nanoparticles were tested in vitro on the breast adenocarcinoma cell line MCF-7. Nanoparticles were further coated with the antracyclinic antibiotic Violamycine B1 and tested for the anti-tumor effect on MCF-7 cells. The nanoparticles produced by us seem more effective in vitro than the commercial ones, with respect to cellular uptake and VB1 delivery. Violamycine B1 bound on nanoparticles is as efficient as the free form, but is better delivered into tumor cells.

  17. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    SciTech Connect

    Ngoi, Kuan Hoon; Chia, Chin-Hua Zakaria, Sarani; Chiu, Wee Siong

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  18. Defective iron-oxide nanoparticles synthesised by high temperature plasma processing: a magnetic characterisation versus temperature

    NASA Astrophysics Data System (ADS)

    Balasubramanian, C.; Joseph, B.; Orpe, PB; Saini, NL; Mukherjee, S.; Dziedzic-Kocurek, K.; Stanek, J.; Di Gioacchino, D.; Marcelli, A.

    2016-11-01

    Magnetic properties and phase compositions of iron-oxide nanoparticles synthesised by a high temperature arc plasma route have been investigated by Mössbauer spectroscopy and high harmonic magnetic AC susceptibility measurements, and correlated with morphological and structural properties for different synthesis conditions. The Mössbauer spectra precisely determined the presence of different iron-oxide fractions in the investigated nanoparticles, while the high harmonic magnetic susceptibility measurements revealed the occurrence of metastable magnetic phases evolving in temperature and time. This study illustrates magnetic properties and dynamics of the magnetic configurations of iron-oxide nanoparticles grown by high temperature plasma, a process less explored so far but extremely useful for synthesising large numbers of nanoparticles for industrial applications.

  19. Investigation of the reactions of small neutral iron oxide clusters with methanol

    NASA Astrophysics Data System (ADS)

    Xie, Yan; Dong, Feng; Heinbuch, Scott; Rocca, Jorge J.; Bernstein, Elliot R.

    2009-03-01

    Reactions of neutral iron oxide clusters (FemOn, m =1-2, n =0-5) with methanol (CH3OH) in a fast flow reactor are investigated by time of flight mass spectrometry. Detection of the neutral iron oxide cluster distribution and reaction intermediates and products is accomplished through single photon ionization by a 118 nm (10.5 eV) VUV laser. Partially deuterated methanol (CD3OH) is employed to distinguish reaction products and reaction mechanisms. Three major reactions are identified experimentally: CH3OH association with FeO; methanol dehydrogenation on FeO1,2 and Fe2O2-5; and (CH2O)Fe formation. Density functional theory calculations are carried out to identify reaction products, and to explore the geometric and electronic structures of the iron oxide clusters, reaction intermediates, and transition states, and to evaluate reaction pathways. Neutral formaldehyde is calculated to be formed on FeO1,2 and Fe2O2-5 clusters. Hydrogen transfer from methanol to iron oxide clusters occurs first from the O-H moiety of methanol, and is followed by a hydrogen transfer from the C-H moiety of methanol. Computational results are in good agreement with experimental observations and reveal reaction mechanisms for neutral iron oxide clusters taking methanol to formaldehyde through various reaction intermediates. Based on the experimental results and the calculated reaction mechanisms and pathways, complete catalytic cycles are suggested for the heterogeneous reaction of CH3OH to CH2O facilitated by an iron oxide catalyst.

  20. Pilot scale application of nanosized iron oxides as electron acceptors for bioremediation

    NASA Astrophysics Data System (ADS)

    Bosch, Julian; Fritzsche, Andreas; Frank-Fahle, Beatrice; Lüders, Tilmann; Höss, Sebastian; Eisenmann, Heinrich; Held, Thomas; Totsche, Kai U.; Meckenstock, Rainer U.

    2014-05-01

    Microbial reduction of ferric iron is a major biogeochemical process in groundwater aquifer ecosystems and often associated with the degradation of organic contaminants, as bacteria couple iron reduction to the oxidation reduced carbon like e.g. BTEX. Yet in general the low bioavailability of natural iron oxides limits microbial reduction rates. However, nanosized iron oxides have an unequally enhanced bioavailability and reactivity compared to their respective bulk, macro-sized, and more crystalline materials. At the same time, nanosized iron oxides can be produced in stable colloidal suspensions, permitting efficient injections into contaminated aquifers. We examined the reactivity of nanosized synthetic colloidal iron oxides in microbial iron reduction. Application of colloidal nanoparticles led to a strong and sustainable enhancement of microbial reaction rates in batch experiments and sediment columns. Toluene oxidation was increased five-fold as compared to bulk, non-colloidal ferrihydrite as electron acceptor. Furthermore, we developed a unique approach for custom-tailoring the subsurface mobility of these particles after being injected into a contaminant plume. In a field pilot application, we injected 18 m3 of an iron oxide nanoparticle solution into a BTEX contaminated aquifer with a maximum excess pressure as low as 0.2 bar. The applied suspension showed a superior subsurface mobility, creating a reactive zone of 4 m height (corresponding to the height of the confined aquifer) and 6 m in diameter. Subsequent monitoring of BTEX, microbial BTEX degradation metabolites, ferrous iron generation, stable isotopes fractionation, microbial populations, and methanogenesis demonstrated the strong impact of our approach. Mathematic processed X-ray diffractograms and FTIR spectra provided a semi-quantitatively estimate of the long-term fate of the iron oxide colloids in the aquifer. Potential environmental risks of the injection itself were monitored with

  1. Synthesis, purification and assembly of gold and iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Qiu, Penghe

    , 6 & 7), nanoparticles were assembled into three different hierachical structures through both template-assisted and template-free approaches. In the template-assisted assembly, gold nanorods were aligned into ordered 1D linear pattern by using soft biological filamentous, namely bacteria flagella, as templates. Two different ways of assembling nanorods onto flagella were investigated. In another study, a highly commercialized polymer, polyvinylpyrrolidone (PVP), was discovered for the first time to be able to self-assemble into branched hollow fibers. Based on this discovery, two approaches (one through direct deposition of silica onto the PVP aggregate and the other through co-assembly of PVP covered gold nanoparticles with free PVP molecules) by which the self-assembly behavior of PVP could be exploited to template the formation of branched hollow inorganic fibers were demonstrated. In the template-free assembly, a general method for assembling nanoparticle into clusters (NPCs) in an oil-in-water emulsion system was investigated. Detailed studies on the mechanism of formation of NPCs structure, optimized conditions, scalable production and surface chemistry manipulation were carried out. Besides, comparison of the properties of individual and clustered iron oxide nanoparticles was conducted. It was discovered that due to their collective properties, NPCs are more responsive to an external magnetic field and can potentially serve as better contrast enhancement agents than individually dispersed magnetic NPs in Magnetic Resonance Imaging (MRI).

  2. Colloidal Stability and Monodispersible Magnetic Iron Oxide Nanoparticles in Biotechnology Application

    NASA Astrophysics Data System (ADS)

    Shamili, K.; Rajesh, E. M.; Rajendran, R.; Madhan Shankar, S. R.; Elango, M.; Abitha Devi, N.

    2013-02-01

    Magnetic iron oxide nanoparticles are promising material for various biological applications. In the recent decades, magnetic iron oxide nanoparticles (MNPs) have great attention in biomedical applications such as drug delivery, magnetic resonance imaging (MRI) and magnetic fluid hyperthermia (MFH). This review focuses on the colloidal stability and monodispersity properties of MNPs, which pay more attention toward biomedical applications. The simplest and the most promising method for the synthesis of MNPs is co-precipitation. The biocompatible MNPs are more interested in MRI application. This review also apportions synthesis, characterization and applications of MNP in biological and biomedical as theranostics and imaging.

  3. Development of an intelligent control system for ferrous iron oxidation by Thiobacillus ferrooxidans

    SciTech Connect

    Light, M.D.; Torma, A.E.; Cordes, G.A.

    1991-01-01

    An intelligent control system (ICS) is being developed for ferrous iron oxidation by Thiobacillus ferroxidans. The ICS provides compterized data acquisition and control of process variables (temperature, Eh, pH, dissolved oxygen and carbon dioxide concentrations, and dilution rate) to maintain the ferrous iron oxidation at the highest possible rate. The ICS uses fuzzy logic for analysis of data inputs and implementation of control strategies. This paper provides preliminary information on the development of the ICS and its operation. 17 refs., 3 figs.

  4. Eco-friendly hybrid pigments made of cellulose and iron oxides.

    PubMed

    Neves, M C; Pascoal Neto, C; Trindade, T

    2012-08-01

    The controlled hydrolysis of FeC2O4 in the presence of vegetable cellulose fibres was investigated to produce a pallet of cellulose/iron oxide hybrid colored materials. Distinct iron oxide phases have been deposited at the cellulose fibres surfaces by varying the relative amount of FeC2O4 and NaOH, here used as starting materials, by performing the synthesis in hydrothermal conditions. This is a new chemical strategy for the production of a number of hybrid materials whose coloristic properties have been evaluated aiming their potential use as novel pigments for polymer based products. PMID:22962828

  5. Two-component magnetic structure of iron oxide nanoparticles mineralized in Listeria innocua protein cages

    NASA Astrophysics Data System (ADS)

    Usselman, Robert J.; Klem, Michael T.; Russek, Stephen E.; Young, Mark; Douglas, Trevor; Goldfarb, Ron B.

    2010-06-01

    Magnetometry was used to determine the magnetic properties of maghemite (γ-Fe2O3) nanoparticles formed within Listeria innocua protein cage. The electron magnetic resonance spectrum shows the presence of at least two magnetization components. The magnetization curves are explained by a sum of two Langevin functions in which each filled protein cage contains both a large magnetic iron oxide core plus an amorphous surface consisting of small noncoupled iron oxide spin clusters. This model qualitatively explains the observed decrease in the temperature dependent saturation moment and removes an unrealistic temperature dependent increase in the particle moment often observed in nanoparticle magnetization measurements.

  6. Microbial Communities Associated with Biogenic Iron Oxide Mineralization in Circumneutral pH Environments

    NASA Astrophysics Data System (ADS)

    Chan, C. S.; Banfield, J. F.

    2002-12-01

    Lithotrophic growth on iron is a metabolism that has been found in a variety of neutral pH environments and is likely important in sustaining life in microaerophilic solutions, especially those low in organics. The composition of the microbial communities, especially the organisms that are responsible for iron oxidation, and carbon and nitrogen fixation, are not known, yet the ability to recognize these contributions is vital to our understanding of iron cycling in natural environments. Our approach has been to study the microbial community structure, mineralogy, and geochemistry of ~20 cm thick, 100's meters long, fluffy iron oxide-encrusted biological mats growing in the Piquette Mine tunnel, and to compare the results to those from geochemically similar environments. In situ measurements (Hydrolab) and geochemical characterization of bulk water samples and peepers (dialysis sampling vials) indicate that the environment is microaerobic, with micromolar levels of iron, high carbonate and sulfate, and typical groundwater nitrate and nitrite concentrations. 16S rDNA clone libraries show that the microbial mat and water contain communities with considerable diversity within the Bacterial domain, a large proportion of Nitrospira and Betaproteobacteria, and no Archaea. Because clone library data are not necessarily indicative of actual abundance, fluorescence in-situ hybridization (FISH) was performed on water, mat, and sediment samples from the Piquette mine and two circumneutral iron- and carbonate-rich springs in the Oregon Cascade Range. Domain- and phylum-level probes were chosen based on the clone library results (Nitrospira, Beta- and Gammaproteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Planctomyces). FISH data reveal spatial associations between specific microbial groups and mineralized structures. The organisms responsible for making the mineralized sheaths that compose the bulk of the iron oxide mat are Betaproteobacteria (probably Leptothrix

  7. Kinetics of reduction of iron oxides using microwaves as power source

    SciTech Connect

    Gomez, I.; Aguilar, J.; Gonzalez, M.; Morales, J.

    1996-12-31

    This work deals with kinetic description of carbothermic reduction of iron oxides using microwaves as power source. Previous researches show that it is possible to conduct this kind of process successfully, but real kinetic comparisons between conventional and microwaves procedure have been presented partially. The aim of this work is to describe reduction kinetics, taking into account how the iron oxide is reduced by microwaves compared with conventional energy supply. In this study the authors used iron ore in pellet shape and dust. They found that both, pellet and dust reduction stops when it reaches approximately 40%, even at whole power.

  8. Metal resistance in acidophilic microorganisms and its significance for biotechnologies.

    PubMed

    Dopson, Mark; Holmes, David S

    2014-10-01

    Extremely acidophilic microorganisms have an optimal pH of <3 and are found in all three domains of life. As metals are more soluble at acid pH, acidophiles are often challenged by very high metal concentrations. Acidophiles are metal-tolerant by both intrinsic, passive mechanisms as well as active systems. Passive mechanisms include an internal positive membrane potential that creates a chemiosmotic gradient against which metal cations must move, as well as the formation of metal sulfate complexes reducing the concentration of the free metal ion. Active systems include efflux proteins that pump metals out of the cytoplasm and conversion of the metal to a less toxic form. Acidophiles are exploited in a number of biotechnologies including biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications.

  9. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations

    USGS Publications Warehouse

    Fabisch, Maria; Beulig, Felix; Akob, Denise M.; Küsel, Kirsten

    2013-01-01

    We identified and quantified abundant iron-oxidizing bacteria (FeOB) at three iron-rich, metal-contaminated creek sites with increasing sediment pH from extremely acidic (R1, pH 2.7), to moderately acidic (R2, pH 4.4), to slightly acidic (R3, pH 6.3) in a former uranium-mining district. The geochemical parameters showed little variations over the 1.5 year study period. The highest metal concentrations found in creek sediments always coincided with the lowest metal concentrations in creek water at the slightly acidic site R3. Sequential extractions of R3 sediment revealed large portions of heavy metals (Ni, Cu, Zn, Pb, U) bound to the iron oxide fraction. Light microscopy of glass slides exposed in creeks detected twisted stalks characteristic of microaerobic FeOB of the family Gallionellaceae at R3 but also at the acidic site R2. Sequences related to FeOB such as Gallionella ferruginea, Sideroxydans sp. CL21, Ferritrophicum radicicola, and Acidovorax sp. BrG1 were identified in the sediments. The highest fraction of clone sequences similar to the acidophilic “Ferrovum myxofaciens” was detected in R1. Quantitative PCR using primer sets specific for Gallionella spp., Sideroxydans spp., and “Ferrovum myxofaciens” revealed that ~72% (R2 sediment) and 37% (R3 sediment) of total bacterial 16S rRNA gene copies could be assigned to groups of FeOB with dominance of microaerobic Gallionella spp. at both sites. Gallionella spp. had similar and very high absolute and relative gene copy numbers in both sediment communities. Thus, Gallionella-like organisms appear to exhibit a greater acid and metal tolerance than shown before. Microaerobic FeOB from R3 creek sediment enriched in newly developed metal gradient tubes tolerated metal concentrations of 35 mM Co, 24 mM Ni, and 1.3 mM Cd, higher than those in sediments. Our results will extend the limited knowledge of FeOB at contaminated, moderately to slightly acidic environments.

  10. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations

    PubMed Central

    Fabisch, Maria; Beulig, Felix; Akob, Denise M.; Küsel, Kirsten

    2013-01-01

    We identified and quantified abundant iron-oxidizing bacteria (FeOB) at three iron-rich, metal-contaminated creek sites with increasing sediment pH from extremely acidic (R1, pH 2.7), to moderately acidic (R2, pH 4.4), to slightly acidic (R3, pH 6.3) in a former uranium-mining district. The geochemical parameters showed little variations over the 1.5 year study period. The highest metal concentrations found in creek sediments always coincided with the lowest metal concentrations in creek water at the slightly acidic site R3. Sequential extractions of R3 sediment revealed large portions of heavy metals (Ni, Cu, Zn, Pb, U) bound to the iron oxide fraction. Light microscopy of glass slides exposed in creeks detected twisted stalks characteristic of microaerobic FeOB of the family Gallionellaceae at R3 but also at the acidic site R2. Sequences related to FeOB such as Gallionella ferruginea, Sideroxydans sp. CL21, Ferritrophicum radicicola, and Acidovorax sp. BrG1 were identified in the sediments. The highest fraction of clone sequences similar to the acidophilic “Ferrovum myxofaciens” was detected in R1. Quantitative PCR using primer sets specific for Gallionella spp., Sideroxydans spp., and “Ferrovum myxofaciens” revealed that ~72% (R2 sediment) and 37% (R3 sediment) of total bacterial 16S rRNA gene copies could be assigned to groups of FeOB with dominance of microaerobic Gallionella spp. at both sites. Gallionella spp. had similar and very high absolute and relative gene copy numbers in both sediment communities. Thus, Gallionella-like organisms appear to exhibit a greater acid and metal tolerance than shown before. Microaerobic FeOB from R3 creek sediment enriched in newly developed metal gradient tubes tolerated metal concentrations of 35 mM Co, 24 mM Ni, and 1.3 mM Cd, higher than those in sediments. Our results will extend the limited knowledge of FeOB at contaminated, moderately to slightly acidic environments. PMID:24385973

  11. Review of the Evidence from Epidemiology, Toxicology, and Lung Bioavailability on the Carcinogenicity of Inhaled Iron Oxide Particulates.

    PubMed

    Pease, Camilla; Rücker, Thomas; Birk, Thomas

    2016-03-21

    Since the iron-age and throughout the industrial age, humans have been exposed to iron oxides. Here, we review the evidence from epidemiology, toxicology, and lung bioavailability as to whether iron oxides are likely to act as human lung carcinogens. Current evidence suggests that observed lung tumors in rats result from a generic particle overload effect and local inflammation that is rat-specific under the dosing conditions of intratracheal instillation. This mode of action therefore, is not relevant to human exposure. However, there are emerging differences seen in vitro, in cell uptake and cell bioavailability between "bulk" iron oxides and "nano" iron oxides. "Bulk" particulates, as defined here, are those where greater than 70% are >100 nm in diameter. Similarly, "nano" iron oxides are defined in this context as particulates where the majority, usually >95% for pure engineered forms of primary particulates (not agglomerates), fall in the range 1-100 nm in diameter. From the weight of scientific evidence, "bulk" iron oxides are not genotoxic/mutagenic. Recent evidence for "nano" iron oxide is conflicting regarding genotoxic potential, albeit genotoxicity was not observed in an in vivo acute oral dose study, and "nano" iron oxides are considered safe and are being investigated for biomedical uses; there is no specific in vivo genotoxicity study on "nano" iron oxides via inhalation. Some evidence is available that suggests, hypothetically due to the larger surface area of "nano" iron oxide particulates, that toxicity could be exerted via the generation of reactive oxygen species (ROS) in the cell. However, the potential for ROS generation as a basis for explaining rodent tumorigenicity is only apparent if free iron from intracellular "nano" scale iron oxide becomes bioavailable at significant levels inside the cell. This would not be expected from "bulk" iron oxide particulates. Furthermore, human epidemiological evidence from a number of studies suggests that

  12. Spectral characteristics of the iron oxides with application to the Martian bright region mineralogy

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.; Burns, R. G.; Mee Burns, V.

    1982-01-01

    Reflectance spectra of eight polymorphs of FeOOH and Fe2O3 are determined in order to clarify the nature and significance of the iron oxide mineralogy on Mars. The effect of other components that might interfere with iron oxide absorption features is qualitatively constrained through the use of the Kebulka-Munk theory. It is found that the effect of temperature complicates the identification of a given Fe(3+) phase based on the position of the 6A1-4T1 absorption feature. While the Fe(3+) crystal field transitions are spin forbidden, most of the iron oxide polymorphs exhibit anomalously intense crystal field absorption features due to magnetic coupling between adjacent FeO6 octahedra. It is suggested that the resulting deviations from observed remotely sensed reflectance spectra of Mars may provide a basis for the exclusion of many iron oxide phases as significant components of the Martian Fe(3+) mineralogy. A comparison of these results with the visible region spectra of Martian bright regions indicates that the predominant Fe(3+)-bearing phase may be a magnetically disordered material, such as amorphous gels, some ferric sulphates, and other minerals in which Fe(3+) ions in the crystal structure are not magnetically coupled.

  13. Identification of a membrane cytochrome c from neutrophilic, iron-oxidizing Mariprofundus ferrooxydans, strain PV-1

    NASA Astrophysics Data System (ADS)

    Barco, R. A.; Zhong, J.; Ramirez, G. A.; Reese, B. K.; Edwards, K. J.

    2012-12-01

    Neutrophilic-iron oxidizing bacteria (FeOB) are a group of bacteria that can oxidize iron at -or near neutral pH, making them relevant in habitats with naturally high levels of reduced iron (i.e. Fe2+) such as hydrothermal vents. In the ocean, microorganisms in the Mariprofundus genus (zeta- Proteobacteria) are the only known organisms to chemolithoautotrophically oxidize iron. In order to identify the active bacterial oxidation of iron in the environment (i.e. in the deep biosphere), biomarkers for this functionality are needed. The aim of this study is to confirm the expression of potential functional biomarkers that are diagnostic of neutrophilic bacterial iron-oxidation. To this end, Mariprofundus ferrooxydans, strain PV-1 was cultivated in large batches and its proteins extracted via a methodology to circumvent protein binding to filamentous material. Proteins were assayed for redox-activity and for iron-oxidation activity. The bands of the gel that showed activity were analyzed via LC-MS/MS for identification of peptides and subsequently protein-matched to the M. ferrooxydans proteome database. The results indicate that a membrane cytochrome c with homology to the iron-oxidizing Cyt572 from Leptospirillum Group II is expressed in M. ferrooxydans when it is active. Other proteins associated with the electron transport chain of M. ferroxydans such as cbb3-type cytochrome oxidase subunits were identified and validated separately through reverse transcription followed by PCR amplification.

  14. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition

    SciTech Connect

    Hufschmid, Ryan D.; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric M.; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.

    2015-06-03

    We present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting properties. Monodisperse superparamagnetic iron oxide nanoparticles were synthesized by thermal decomposition of three different iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) in organic solvents under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution. In particular, large quantities of excess surfactant (up to 25:1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase is also critical for establishing magnetic properties. As an example, we show the importance of obtaining the required iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled.

  15. Descriptive and Grade-Tonnage Models and Database for Iron Oxide Cu-Au Deposits

    USGS Publications Warehouse

    Cox, Dennis P.; Singer, Donald A.

    2007-01-01

    Iron oxide Cu-Au deposits are veins and breccia-hosted bodies of hematite and/or magnetite with disseminated Cu + Au ? Ag ? Pd ? Pt ? Ni ? U ? LREE minerals formed in sedimentary or volcano-sedimentary basins intruded by igneous rocks. Deposits are associated with broad redox boundaries and feature sodic alteration of source rocks and potassic alteration of host rocks.

  16. Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles

    SciTech Connect

    Bystrzejewski, M.

    2011-06-15

    The encapsulation of iron nanoparticles in protective carbon cages leads to unique hybrid core-shell nanomaterials. Recent literature reports suggest that such nanocomposites can be obtained in a relatively simple process involving the solid state carbothermal reduction of iron oxide nanoparticles. This approach is very attractive because it does not require advanced equipment and consumes less energy in comparison to widely used plasma methods. The presented more-in-depth study shows that the carbothermal approach is sensitive to temperature and the process yield strongly depends on the morphology and crystallinity of the carbon material used as a reductant. - Graphical abstract: Reduction of iron oxide nanoparticles by carbon black at 1200 deg. C yields well crystallized carbon-encapsulated iron nanoparticles. Highlights: > Carbon-encapsulated iron nanoparticles were synthesized by carbothermal reduction of iron oxide nanoparticles. > The process has the highest selectivity at 1200 C. > Lower temperatures result in iron oxide nanoparticles wrapped in carbon matrix. > The encapsulation rate of Fe at 1200 deg. C was found to be 15%.

  17. Chemical Insight into the Adsorption of Chromium(III) on Iron Oxide/Mesoporous Silica Nanocomposites.

    PubMed

    Egodawatte, Shani; Datt, Ashish; Burns, Eric A; Larsen, Sarah C

    2015-07-14

    Magnetic iron oxide/mesoporous silica nanocomposites consisting of iron oxide nanoparticles embedded within mesoporous silica (MCM-41) and modified with aminopropyl functional groups were prepared for application to Cr(III) adsorption followed by magnetic recovery of the nanocomposite materials from aqueous solution. The composite materials were extensively characterized using physicochemical techniques, such as powder X-ray diffraction, thermogravimetric and elemental analysis, nitrogen adsorption, and zeta potential measurements. For aqueous Cr(III) at pH 5.4, the iron oxide/mesoporous silica nanocomposite exhibited a superior equilibrium adsorption capacity of 0.71 mmol/g, relative to 0.17 mmol/g for unmodified mesoporous silica. The aminopropyl-functionalized iron oxide/mesoporous silica nanocomposites displayed an equilibrium adsorption capacity of 2.08 mmol/g, the highest adsorption capacity for Cr(III) of all the materials evaluated in this study. Energy-dispersive spectroscopy (EDS) with transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) experiments provided insight into the chemical nature of the adsorbed chromium species.

  18. Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion.

    PubMed

    Prabhakar, Nirmal; Thakur, Himkusha; Bharti, Anu; Kaur, Navpreet

    2016-10-01

    An electrochemical aptasensor based on chitosan-iron oxide nanocomposite (CHIT-IO) film deposited on fluorine tin Oxide (FTO) was developed for the detection of malathion. Iron oxide nanoparticles were prepared by co-precipitation method and characterized by Transmission electron microscopy and UV-Visible spectroscopy. The biotinylated DNA aptamer sequence specific to the malathion was immobilized onto the iron oxide doped-chitosan/FTO electrode by using streptavidin as linking molecule. Various characterization studies like Field Emission-Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Electrochemical studies were performed to attest the successful fabrication of bioelectrodes. Experimental parameters like aptamer concentration, response time, stability of electrode and reusability studies were optimized. Aptamer immobilized chitosan-iron oxide nanocomposite (APT/SA/CHIT-IO/FTO) bioelectrodes exhibited LOD of about 0.001 ng/mL within 15 min and spike-in studies revealed about 80-92% recovery of malathion from the lettuce leaves and soil sample.

  19. Thermal and magnetic properties of iron oxide colloids: influence of surfactants.

    PubMed

    Soares, Paula I P; Lochte, Frederik; Echeverria, Coro; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João P M R

    2015-10-23

    Iron oxide nanoparticles (NPs) have been extensively studied in the last few decades for several biomedical applications such as magnetic resonance imaging, magnetic drug delivery and hyperthermia. Hyperthermia is a technique used for cancer treatment which consists in inducing a temperature of about 41-45 °C in cancerous cells through magnetic NPs and an external magnetic field. Chemical precipitation was used to produce iron oxide NPs 9 nm in size coated with oleic acid and trisodium citrate. The influence of both stabilizers on the heating ability and in vitro cytotoxicity of the produced iron oxide NPs was assessed. Physicochemical characterization of the samples confirmed that the used surfactants do not change the particles' average size and that the presence of the surfactants has a strong effect on both the magnetic properties and the heating ability. The heating ability of Fe3O4 NPs shows a proportional increase with the increase of iron concentration, although when coated with trisodium citrate or oleic acid the heating ability decreases. Cytotoxicity assays demonstrated that both pristine and trisodium citrate Fe3O4 samples do not reduce cell viability. However, oleic acid Fe3O4 strongly reduces cell viability, more drastically in the SaOs-2 cell line. The produced iron oxide NPs are suitable for cancer hyperthermia treatment and the use of a surfactant brings great advantages concerning the dispersion of NPs, also allowing better control of the hyperthermia temperature. PMID:26421876

  20. Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion.

    PubMed

    Prabhakar, Nirmal; Thakur, Himkusha; Bharti, Anu; Kaur, Navpreet

    2016-10-01

    An electrochemical aptasensor based on chitosan-iron oxide nanocomposite (CHIT-IO) film deposited on fluorine tin Oxide (FTO) was developed for the detection of malathion. Iron oxide nanoparticles were prepared by co-precipitation method and characterized by Transmission electron microscopy and UV-Visible spectroscopy. The biotinylated DNA aptamer sequence specific to the malathion was immobilized onto the iron oxide doped-chitosan/FTO electrode by using streptavidin as linking molecule. Various characterization studies like Field Emission-Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Electrochemical studies were performed to attest the successful fabrication of bioelectrodes. Experimental parameters like aptamer concentration, response time, stability of electrode and reusability studies were optimized. Aptamer immobilized chitosan-iron oxide nanocomposite (APT/SA/CHIT-IO/FTO) bioelectrodes exhibited LOD of about 0.001 ng/mL within 15 min and spike-in studies revealed about 80-92% recovery of malathion from the lettuce leaves and soil sample. PMID:27639149

  1. Toward a mechanistic understanding of anaerobic nitrate-dependent iron oxidation: balancing electron uptake and detoxification.

    PubMed

    Carlson, Hans K; Clark, Iain C; Melnyk, Ryan A; Coates, John D

    2012-01-01

    The anaerobic oxidation of Fe(II) by subsurface microorganisms is an important part of biogeochemical cycling in the environment, but the biochemical mechanisms used to couple iron oxidation to nitrate respiration are not well understood. Based on our own work and the evidence available in the literature, we propose a mechanistic model for anaerobic nitrate-dependent iron oxidation. We suggest that anaerobic iron-oxidizing microorganisms likely exist along a continuum including: (1) bacteria that inadvertently oxidize Fe(II) by abiotic or biotic reactions with enzymes or chemical intermediates in their metabolic pathways (e.g., denitrification) and suffer from toxicity or energetic penalty, (2) Fe(II) tolerant bacteria that gain little or no growth benefit from iron oxidation but can manage the toxic reactions, and (3) bacteria that efficiently accept electrons from Fe(II) to gain a growth advantage while preventing or mitigating the toxic reactions. Predictions of the proposed model are highlighted and experimental approaches are discussed. PMID:22363331

  2. Thermal and magnetic properties of iron oxide colloids: influence of surfactants.

    PubMed

    Soares, Paula I P; Lochte, Frederik; Echeverria, Coro; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João P M R

    2015-10-23

    Iron oxide nanoparticles (NPs) have been extensively studied in the last few decades for several biomedical applications such as magnetic resonance imaging, magnetic drug delivery and hyperthermia. Hyperthermia is a technique used for cancer treatment which consists in inducing a temperature of about 41-45 °C in cancerous cells through magnetic NPs and an external magnetic field. Chemical precipitation was used to produce iron oxide NPs 9 nm in size coated with oleic acid and trisodium citrate. The influence of both stabilizers on the heating ability and in vitro cytotoxicity of the produced iron oxide NPs was assessed. Physicochemical characterization of the samples confirmed that the used surfactants do not change the particles' average size and that the presence of the surfactants has a strong effect on both the magnetic properties and the heating ability. The heating ability of Fe3O4 NPs shows a proportional increase with the increase of iron concentration, although when coated with trisodium citrate or oleic acid the heating ability decreases. Cytotoxicity assays demonstrated that both pristine and trisodium citrate Fe3O4 samples do not reduce cell viability. However, oleic acid Fe3O4 strongly reduces cell viability, more drastically in the SaOs-2 cell line. The produced iron oxide NPs are suitable for cancer hyperthermia treatment and the use of a surfactant brings great advantages concerning the dispersion of NPs, also allowing better control of the hyperthermia temperature.

  3. Magnetic iron oxide nanoparticle functionalization: isocyanate moiety as a suitable monodentate anchoring group.

    PubMed

    Carrara, Claudio; Sala, Maria C; Caneva, Enrico; Cauteruccio, Silvia; Licandro, Emanuela

    2014-01-17

    A new strategy for anchoring organic molecules onto superparamagnetic iron oxide nanoparticles (SPIONs) using isocyanate containing linkers has been realized. This functional group easily and efficiently reacts with the hydroxyl residues of the nanoparticle surface, leading to the formation of a stable carbamate bond, as confirmed by means of spectroscopic and analytical data.

  4. Electrophoretic deposition of adsorbed arsenic on fine iron oxide particles in tap water

    NASA Astrophysics Data System (ADS)

    Sharif, Syahira Mohd; Bakar, Noor Fitrah Abu; Naim, M. Nazli; Rahman, Norazah Abd; Talib, Suhaimi Abdul

    2016-02-01

    Electrophoretic deposition (EPD) technique has been demonstrated to remove arsenic with natural adsorbent (fine iron oxide particles) in tap water samples. Characterizations of metal element particularly arsenic and fine iron oxide particles in tap water from two different locations, i.e. commercial and residential areas, were conducted. Results showed that the concentration of arsenic in tap water from residential area was higher than commercial area samples i.e. 0.022 ± 0.004 and 0.016 ± 0.008 ppm, respectively. The same finding was observed in zeta potential value where it was higher in the residential area than commercial area, i.e. -42.27 ± 0.12 and -34.83 ± 0.23 mV, respectively. During the removal of arsenic using the EPD technique, direct current (DC) voltage was varied from 5 to 25V at a constant electrode distance of 30 mm. Effect of zeta potential, voltage and electrode type were intensively investigated. High percentage removal of arsenic was obtained from carbon plate than carbon fibre electrode. The percentage removal of arsenic from all samples slightly decreased with increasing of the applied voltage. EDX analysis confirmed that arsenic has adsorbed onto deposited iron oxide particles on the anode electrode. Overall, EPD technique was found to be successful in removing arsenic onto fine iron oxide particles in tap water with 26% ± 1.05 of removal.

  5. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants.

    PubMed

    Makarov, Valentin V; Makarova, Svetlana S; Love, Andrew J; Sinitsyna, Olga V; Dudnik, Anna O; Yaminsky, Igor V; Taliansky, Michael E; Kalinina, Natalia O

    2014-05-27

    We report the synthesis and characterization of amorphous iron oxide nanoparticles from iron salts in aqueous extracts of monocotyledonous (Hordeum vulgare) and dicotyledonous (Rumex acetosa) plants. The nanoparticles were characterized by TEM, absorbance spectroscopy, SAED, EELS, XPS, and DLS methods and were shown to contain mainly iron oxide and iron oxohydroxide. H. vulgare extracts produced amorphous iron oxide nanoparticles with diameters of up to 30 nm. These iron nanoparticles are intrinsically unstable and prone to aggregation; however, we rendered them stable in the long term by addition of 40 mM citrate buffer pH 3.0. In contrast, amorphous iron oxide nanoparticles (diameters of 10-40 nm) produced using R. acetosa extracts are highly stable. The total protein content and antioxidant capacity are similar for both extracts, but pH values differ (H. vulgare pH 5.8 vs R. acetosa pH 3.7). We suggest that the presence of organic acids (such oxalic or citric acids) plays an important role in the stabilization of iron nanoparticles, and that plants containing such constituents may be more efficacious for the green synthesis of iron nanoparticles.

  6. Synthesis and visible light photocatalytic properties of iron oxide-silver orthophosphate composites

    NASA Astrophysics Data System (ADS)

    Febiyanto, Eliani, Irma Vania; Riapanitra, Anung; Sulaeman, U.

    2016-04-01

    The iron oxide-silver orthophosphate composites were successfully synthesized by co-precipitation method using Fe(NO3)3.9H2O, AgNO3, and Na2HPO4.12 H2O, followed by calcination at 500°C for 5 hours. The Fe/Ag mole ratios of iron oxide-silver orthophosphate composites were designed at 0, 0.1, 0.2, 0.3 and 0.4. The samples were characterized using X-ray Diffraction, Diffuse Reflectance Spectroscopy, Scanning Electron Microscopy and Specific Surface Area. The photocatalytic activities were evaluated using Rhodamine B degradation under visible light irradiation. The iron oxide-silver orthophosphate composite with the Fe/Ag mole ratio of 0.2 exhibited higher photocatalytic activity compared to the pure Ag3PO4 under visible light irradiation. The enhanced photocatalytic activity could be attributed to the effective separation of hole (+) and electron pairs in the iron oxide-silver orthophosphate composite.

  7. Application of novel iron core/iron oxide shell nanoparticles to sentinel lymph node identification

    NASA Astrophysics Data System (ADS)

    Cousins, Aidan; Howard, Douglas; Henning, Anna M.; Nelson, Melanie R. M.; Tilley, Richard D.; Thierry, Benjamin

    2015-12-01

    Current `gold standard' staging of breast cancer and melanoma relies on accurate in vivo identification of the sentinel lymph node. By replacing conventional tracers (dyes and radiocolloids) with magnetic nanoparticles and using a handheld magnetometer probe for in vivo identification, it is believed the accuracy of sentinel node identification in nonsuperficial cancers can be improved due to increased spatial resolution of magnetometer probes and additional anatomical information afforded by MRI road-mapping. By using novel iron core/iron oxide shell nanoparticles, the sensitivity of sentinel node mapping via MRI can be increased due to an increased magnetic saturation compared to traditional iron oxide nanoparticles. A series of in vitro magnetic phantoms (iron core vs. iron oxide nanoparticles) were prepared to simulate magnetic particle accumulation in the sentinel lymph node. A novel handheld magnetometer probe was used to measure the relative signals of each phantom, and determine if clinical application of iron core particles can improve in vivo detection of the sentinel node compared to traditional iron oxide nanoparticles. The findings indicate that novel iron core nanoparticles above a certain size possess high magnetic saturation, but can also be produced with low coercivity and high susceptibility. While some modification to the design of handheld magnetometer probes may be required for particles with large coercivity, use of iron core particles could improve MRI and magnetometer probe detection sensitivity by up to 330 %.

  8. DETERMINATION OF THE RATES AND PRODUCTS OF FERROUS IRON OXIDATION IN ARSENIC-CONTAMINATED POND WATER.

    EPA Science Inventory

    Dissolved ferrous iron and arsenic in the presence of insufficient oxygenated ground water is released into a pond. When the mixing of ferrous iron and oxygenated water within the pond occurs, the ferrous iron is oxidized and precipitated as an iron oxide. Groups of experiments...

  9. Predictable Heating and Positive MRI Contrast from a Mesoporous Silica-Coated Iron Oxide Nanoparticle.

    PubMed

    Hurley, Katie R; Ring, Hattie L; Etheridge, Michael; Zhang, Jinjin; Gao, Zhe; Shao, Qi; Klein, Nathan D; Szlag, Victoria M; Chung, Connie; Reineke, Theresa M; Garwood, Michael; Bischof, John C; Haynes, Christy L

    2016-07-01

    Iron oxide nanoparticles have great potential as diagnostic and therapeutic agents in cancer and other diseases; however, biological aggregation severely limits their function in vivo. Aggregates can cause poor biodistribution, reduced heating capability, and can confound their visualization and quantification by magnetic resonance imaging (MRI). Herein, we demonstrate that the incorporation of a functionalized mesoporous silica shell can prevent aggregation and enable the practical use of high-heating, high-contrast iron oxide nanoparticles in vitro and in vivo. Unmodified and mesoporous silica-coated iron oxide nanoparticles were characterized in biologically relevant environments including phosphate buffered saline, simulated body fluid, whole mouse blood, lymph node carcinoma of prostate (LNCaP) cells, and after direct injection into LNCaP prostate cancer tumors in nude mice. Once coated, iron oxide nanoparticles maintained colloidal stability along with high heating and relaxivity behaviors (SARFe = 204 W/g Fe at 190 kHz and 20 kA/m and r1 = 6.9 mM(-1) s(-1) at 1.4 T). Colloidal stability and minimal nonspecific cell uptake allowed for effective heating in salt and agarose suspensions and strong signal enhancement in MR imaging in vivo. These results show that (1) aggregation can lower the heating and imaging performance of magnetic nanoparticles and (2) a coating of functionalized mesoporous silica can mitigate this issue, potentially improving clinical planning and practical use. PMID:26991550

  10. Expeditious organic–free assembly: morphologically controlled synthesis of iron oxides using microwaves

    EPA Science Inventory

    A microwave hydrothermal method is developed for the synthesis of iron oxides, α-Fe2O3, β-FeOOH, and the junction of α-Fe2O3–β-FeOOH. This method is absolutely organic-free, and various structures could be obtained simply by changing th...

  11. Discovery of Fe7O9: a new iron oxide with a complex monoclinic structure

    PubMed Central

    Sinmyo, Ryosuke; Bykova, Elena; Ovsyannikov, Sergey V.; McCammon, Catherine; Kupenko, Ilya; Ismailova, Leyla; Dubrovinsky, Leonid

    2016-01-01

    Iron oxides are fundamentally important compounds for basic and applied sciences as well as in numerous industrial applications. In this work we report the synthesis and investigation of a new binary iron oxide with the hitherto unknown stoichiometry of Fe7O9. This new oxide was synthesized at high-pressure high-temperature (HP-HT) conditions, and its black single crystals were successfully recovered at ambient conditions. By means of single crystal X-ray diffraction we determined that Fe7O9 adopts a monoclinic C2/m lattice with the most distorted crystal structure among the binary iron oxides known to date. The synthesis of Fe7O9 opens a new portal to exotic iron-rich (M,Fe)7O9 oxides with unusual stoichiometry and distorted crystal structures. Moreover, the crystal structure and phase relations of such new iron oxide groups may provide new insight into the cycling of volatiles in the Earth’s interior. PMID:27605075

  12. Suppressing iron oxide nanoparticle toxicity by vascular targeted antioxidant polymer nanoparticles.

    PubMed

    Cochran, David B; Wattamwar, Paritosh P; Wydra, Robert; Hilt, J Zach; Anderson, Kimberly W; Eitel, Richard E; Dziubla, Thomas D

    2013-12-01

    The biomedical use of superparamagnetic iron oxide nanoparticles has been of continued interest in the literature and clinic. Their ability to be used as contrast agents for imaging and/or responsive agents for remote actuation makes them exciting materials for a wide range of clinical applications. Recently, however, concern has arisen regarding the potential health effects of these particles. Iron oxide toxicity has been demonstrated in in vivo and in vitro models, with oxidative stress being implicated as playing a key role in this pathology. One of the key cell types implicated in this injury is the vascular endothelial cells. Here, we report on the development of a targeted polymeric antioxidant, poly(trolox ester), nanoparticle that can suppress oxidative damage. As the polymer undergoes enzymatic hydrolysis, active trolox is locally released, providing a long term protection against pro-oxidant agents. In this work, poly(trolox) nanoparticles are targeted to platelet endothelial cell adhesion molecules (PECAM-1), which are able to bind to and internalize in endothelial cells and provide localized protection against the cytotoxicity caused by iron oxide nanoparticles. These results indicate the potential of using poly(trolox ester) as a means of mitigating iron oxide toxicity, potentially expanding the clinical use and relevance of these exciting systems.

  13. Adsorption and desorption properties of arsenate onto nano-sized iron-oxide-coated quartz.

    PubMed

    Mostafa, M G; Chen, Yen-Hua; Jean, Jiin-Shuh; Liu, Chia-Chuan; Teng, Hsisheng

    2010-01-01

    This study was conducted to investigate the adsorption and desorption properties of arsenate [As(V)] on nano-sized iron-oxide-coated quartz (IOCQ) through batch experiments. The coating of nano-sized iron oxide on the quartz surface was performed using the heat treatment process which aimed to utilize the adsorption properties of the nano-sized iron oxide and the filtration properties of the quartz. Environmental SEM-EDAX and BET techniques were used to analyze the surface morphology, elemental composition, surface area and the porosity of the adsorbent. SEM-EDAX analyses confirmed that arsenate was adsorbed on the IOCQ surface. BET results showed that the IOCQ adsorbent had higher pore volumes and high specific surface areas compared with the pure quartz. The study revealed that the adsorption rate of As(V) ion was very rapid and reached the equilibrium within 5 min. This study also revealed that almost 100% of As(V) removal was achieved within 5 minutes of adsorption reaction from the initial solution containing 1,000 microg-As(V)/L. The Langmuir adsorption isotherm model suitably explained the sorption characteristics of As(V) onto IOCQ. This desorption study showed that the adsorbent could be reused after reacting with mild HCl solution but the concentration of acid eluant or pH has a great impact on the coated adsorbent surface. The results indicate that the nano-sized iron oxide-coated adsorbent is potentially suitable for removal of arsenate from drinking water.

  14. Discovery of Fe7O9: a new iron oxide with a complex monoclinic structure.

    PubMed

    Sinmyo, Ryosuke; Bykova, Elena; Ovsyannikov, Sergey V; McCammon, Catherine; Kupenko, Ilya; Ismailova, Leyla; Dubrovinsky, Leonid

    2016-01-01

    Iron oxides are fundamentally important compounds for basic and applied sciences as well as in numerous industrial applications. In this work we report the synthesis and investigation of a new binary iron oxide with the hitherto unknown stoichiometry of Fe7O9. This new oxide was synthesized at high-pressure high-temperature (HP-HT) conditions, and its black single crystals were successfully recovered at ambient conditions. By means of single crystal X-ray diffraction we determined that Fe7O9 adopts a monoclinic C2/m lattice with the most distorted crystal structure among the binary iron oxides known to date. The synthesis of Fe7O9 opens a new portal to exotic iron-rich (M,Fe)7O9 oxides with unusual stoichiometry and distorted crystal structures. Moreover, the crystal structure and phase relations of such new iron oxide groups may provide new insight into the cycling of volatiles in the Earth's interior. PMID:27605075

  15. Unprecedented Selective Oxidation of Styrene Derivatives using a Supported Iron Oxide Nanocatalyst in Aqueous Medium

    EPA Science Inventory

    Iron oxide nanoparticles supported on mesoporous silica-type materials have been successfully utilized in the aqueous selective oxidation of alkenes under mild conditions using hydrogen peroxide as a green oxidant. Catalysts could be easily recovered after completion of the reac...

  16. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section 148.275 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE... be transported on open hold all-steel barges after exposure to air for a period of at least ten days....

  17. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section 148.275 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE... be transported on open hold all-steel barges after exposure to air for a period of at least ten days....

  18. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section 148.275 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE... be transported on open hold all-steel barges after exposure to air for a period of at least ten days....

  19. Complexity of High-Pressure Orthorhombic Iron Oxides, the Characterization of Fe5O6

    NASA Astrophysics Data System (ADS)

    Lavina, B.; Meng, Y.

    2014-12-01

    Occurring as accessory minerals in most rocks and forming large deposits of considerable economical importance, iron oxides have a major petrological importance. Their role as oxygen buffers, in differentiation processes and as magnetic phases summarize the critical importance of iron oxides in most petrological contexts, independently of their abundance.The discovery of a new compound in the Fe-O system, Fe4O5[1], reshaped our assumptions on the behavior of iron oxides in the Earth's deep interior, where phases of FeO and Fe3O4 were considered the sole plausible players. Further studies found that Fe4O5 is stable in a wide compositional range[2] and can accept a wide extent of isomorphic substitutions[3].We used laser heating synthesis in diamond anvil cell and microdiffraction mapping with high brilliance synchrotron x-ray[4] to explore the complexity of the Fe-O system at high pressure and temperature. We found coexistence of two to three oxides in most of the samples we investigated. By means of a careful exploration of diffraction effects in the reciprocal space, we singled-out the diffraction peaks of a few grains in multiphase diffraction patterns. These allowed a reliable characterization of yet a new iron oxide, Fe5O6. This compound, synthesized between 10 and 20 GPa, is also orthorhombic and can be described with the same building blocks of the other known orthorhombic iron oxides. A comparison of compressibility and lattice parameters of the latest iron oxides will be presented. [1] Lavina, B. et al. Discovery of the recoverable high-pressure iron oxide Fe4O5. Proc Natl Acad Sci U S A 108, 17281-5 (2011).[2] Woodland, A. B., Frost, D. J., Trots, D. M., Klimm, K. & Mezouar, M. In situ observation of the breakdown of magnetite (Fe3O4) to Fe4O5 and hematite at high pressures and temperatures. Am Mineral 97, 1808-1811 (2012).[3] Woodland, A. B. et al. Fe4O5 and its solid solutions in several simple systems. Cotrib Mineral Petrol 166, 1677-1686 (2013

  20. Quantitative proteomic analyses of the response of acidophilic microbial communities to different pH conditions

    SciTech Connect

    Belnap, Christopher P.; Pan, Chongle; Denef, Vincent; Samatova, Nagiza F; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2011-01-01

    Extensive genomic characterization of multi-species acid mine drainage microbial consortia combined with laboratory cultivation has enabled the application of quantitative proteomic analyses at the community level. In this study, quantitative proteomic comparisons were used to functionally characterize laboratory-cultivated acidophilic communities sustained in pH 1.45 or 0.85 conditions. The distributions of all proteins identified for individual organisms indicated biases for either high or low pH, and suggests pH-specific niche partitioning for low abundance bacteria and archaea. Although the proteome of the dominant bacterium, Leptospirillum group II, was largely unaffected by pH treatments, analysis of functional categories indicated proteins involved in amino acid and nucleotide metabolism, as well as cell membrane/envelope biogenesis were overrepresented at high pH. Comparison of specific protein abundances indicates higher pH conditions favor Leptospirillum group III, whereas low pH conditions promote the growth of certain archaea. Thus, quantitative proteomic comparisons revealed distinct differences in community composition and metabolic function of individual organisms during different pH treatments. Proteomic analysis revealed other aspects of community function. Different numbers of phage proteins were identified across biological replicates, indicating stochastic spatial heterogeneity of phage outbreaks. Additionally, proteomic data were used to identify a previously unknown genotypic variant of Leptospirillum group II, an indication of selection for a specific Leptospirillum group II population in laboratory communities. Our results confirm the importance of pH and related geochemical factors in fine-tuning acidophilic microbial community structure and function at the species and strain level, and demonstrate the broad utility of proteomics in laboratory community studies.

  1. 'NC100150', a preparation of iron oxide nanoparticles ideal for positive-contrast MR angiography.

    PubMed

    Kellar, K E; Fujii, D K; Gunther, W H; Briley-Saebø, K; Spiller, M; Koenig, S H

    1999-08-01

    A laboratory-scale synthesis of NC100150 (iron oxide particles with an oxidized starch coating) was characterized by magnetization measurements (vibrating sample magnetometry, VSM), relaxometry (1/T1 NMRD profiles and 1/T2 at 10 and 20 MHz), and dynamic light scattering (photon correlation spectroscopy, PCS). The results were related to give a self-consistent physical description of the particles: a water-impenetrable part making up 12% of the total particle volume, 82% of this volume consisting of an iron oxide core and the remaining 18% consisting of an oxidized starch rind; and, a water-penetrable part making up 88% of the total particle volume, consisting of oxidized starch polymers and entrained water molecules. Relating the magnetization to the relaxometry results required that the oxidized starch coating slows the diffusivity of solvent water molecules in the vicinity of the iron oxide cores. The effect of the organic coating on water diffusivity, not previously considered in the application of relaxation theory to iron oxide nanoparticles, is supported by the much greater (factor of about 2) diameter obtained from the dynamic light scattering measurements in comparison to that obtained from the magnetization measurements. The present work shows that three physical techniques--VSM, relaxometry, and PCS--are needed for properly assessing iron oxide nanoparticles for use as contrast agents for magnetic resonance angiography (MRA). It is also shown that NC100150 has a narrow range of diameters and the smallest value of r2/r1 reported to date, an asset for MRA. PMID:10504049

  2. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.

    PubMed

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-11-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration--a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder.

  3. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition.

    PubMed

    Hufschmid, Ryan; Arami, Hamed; Ferguson, R Matthew; Gonzales, Marcela; Teeman, Eric; Brush, Lucien N; Browning, Nigel D; Krishnan, Kannan M

    2015-07-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical applications requiring precise control over their physical and magnetic properties, which are dependent on their size and crystallographic phase. Here we present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting magnetic properties. We investigate critical parameters for synthesis of monodisperse SPIONs by organic thermal decomposition. Three different, commonly used, iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) are evaluated under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution, phase, and magnetic properties. In particular, large quantities of excess surfactant (up to 25 : 1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase, in addition to nanoparticle size and shape, is critical for establishing magnetic properties such as differential susceptibility (dm/dH) and anisotropy. As an example, we show the importance of obtaining the required size and iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled. These results provide much of the information necessary to determine which iron oxide synthesis protocol is best suited to a particular

  4. Early diagenetic quartz formation at a deep iron oxidation front in the Eastern Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Meister, Patrick; Chapligin, Bernhard; Picard, Aude; Meyer, Hanno; Fischer, Cornelius; Rettenwander, Daniel; Amthauer, Georg; Vogt, Christoph; Aiello, Ivano

    2015-04-01

    The mechanisms of early diagenetic quartz formation under low-temperature conditions are still poorly understood. We studied lithified cherts consisting of microcrystalline quartz recovered from ODP Site 1226 in the Eastern Equatorial Pacific. The cherts occur near the base of a 420-m-thick Miocene-Holocene sequence within unlithified nannofossil and diatom ooze. Palaeo-temperatures reconstructed from δ18O values in the cherts are near to present porewater temperatures and a sharp depletion in dissolved silica occurs around 385 mbsf indicating that silica precipitation is still ongoing. Also a deep iron oxidation front occurs at the same depth, which is caused by upward diffusing nitrate from an oxic seawater aquifer in the underlying basaltic crust. Sequential iron extraction and analysis of the X-ray absorption near-edge structure (XANES) revealed that iron in the cherts predominantly occurs as illite and amorphous iron oxide, whereas iron in the nannofossil and diatom ooze occurs mainly as smectites. Mössbauer spectroscopy confirmed that the illite iron in the cherts is largely oxidized. A possible mechanisms that may be operative is quartz precipitation initiated by adsorption of silica to freshly precipitated iron oxides. The decrease in porewater silica concentration below opal-A and opal-CT saturation then allows for the precipitation of the thermodynamically more stable phase: quartz. We suggest that the formation of early-diagenetic chert at iron oxidation fronts is an important process in suboxic zones of silica-rich sediments. The largest iron oxidation front ever occurred during the great oxidation event ca. 2.5 Ga ago, when large amounts of iron and chert beds were deposited.

  5. Community genomic and proteomic analysis of chemoautotrophic, iron-oxidizing "Leptospirillum rubarum" (Group II) and Leptospirillum ferrodiazotrophum (Group III) in acid mine drainage biofilms

    SciTech Connect

    Goltsman, Daniela; Denef, Vincent; Singer, Steven; Verberkmoes, Nathan C; Lefsrud, Mark G; Mueller, Ryan; Dick, Gregory J.; Sun, Christine; Wheeler, Korin; Zelma, Adam; Baker, Brett J.; Hauser, Loren John; Land, Miriam L; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2009-01-01

    We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum Groups II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, CA acid mine drainage (AMD) biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum Groups II and III, respectively and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and > 60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid encodes conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacteria have genes for community-essential functions, including carbon fixation, biosynthesis of vitamins, fatty acids and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum Group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum Group II uses a methyl-dependent and Leptospirillum Group III a methyl-independent response pathway. Although only Leptospirillum Group III can fix nitrogen, these proteins were not identified by proteomics. Abundances of core proteins are similar in all communities, but abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum Groups II and III.

  6. Community Genomic and Proteomic Analyses of Chemoautotrophic Iron-Oxidizing "Leptospirillum rubarum" (Group II) and "Leptospirillum ferrodiazotrophum" (Group III) Bacteria in Acid Mine Drainage Biofilms

    SciTech Connect

    Goltsman, Daniela; Denef, Vincent; Singer, Steven; Verberkmoes, Nathan C; Lefsrud, Mark G; Mueller, Ryan; Dick, Gregory J.; Sun, Christine; Wheeler, Korin; Zelma, Adam; Baker, Brett J.; Hauser, Loren John; Land, Miriam L; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2009-01-01

    We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum group II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, Iron Mountain, CA, acid mine drainage biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum groups II and III, respectively, and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and >60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid carries conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacterial groups have genes for community-essential functions, including carbon fixation and biosynthesis of vitamins, fatty acids, and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum group II uses a methyl-dependent and Leptospirillum group III a methyl-independent response pathway. Although only Leptospirillum group III can fix nitrogen, these proteins were not identified by proteomics. The abundances of core proteins are similar in all communities, but the abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum groups II and III.

  7. Draft Genome Sequence of the Sulfobacillus thermosulfidooxidans Cutipay Strain, an Indigenous Bacterium Isolated from a Naturally Extreme Mining Environment in Northern Chile

    PubMed Central

    Travisany, Dante; Di Genova, Alex; Sepúlveda, Andrea; Bobadilla-Fazzini, Roberto A.; Parada, Pilar

    2012-01-01

    Sulfobacillus thermosulfidooxidans strain Cutipay is a mixotrophic, acidophilic, moderately thermophilic bacterium isolated from mining environments of the north of Chile, making it an interesting subject for studying the bioleaching of copper. We introduce the draft genome sequence and annotation of this strain, which provide insights into its mechanisms for heavy metal resistance. PMID:23105067

  8. Fossilization of Iron-Oxidizing Bacteria at Hydrothermal Vents: a Useful Biosignature on Mars?

    NASA Astrophysics Data System (ADS)

    Leveille, R. J.; Lui, S.

    2009-05-01

    Iron oxidizing bacteria are ubiquitous in marine and terrestrial environments on Earth, where they often display distinctive cell morphologies and are commonly encrusted by minerals, especially bacteriogenic iron oxides and silica. Putative microfossils of iron oxidizing bacteria have been found in jaspers as old as 490Ma and microbial iron oxidation may be an ancient metabolic pathway. In order to investigate the usefulness of mineralized iron oxidizing bacteria as a biosignature, we have examined mineral samples collected from relict hydrothermal systems along Explorer Ridge, NE Pacific Ocean. In addition, microaerophilic, neutrophilic iron oxidizing bacteria, isolated from Pacific hydrothermal vents, were grown in a Fe-enriched seawater medium at constant pH (6.5) and oxygen concentration (5 percent) in a controlled bioreactor system. Both natural samples and experimental products were examined with a combination of variable pressure scanning electron microscopy (SEM), field emission gun SEM, and in some cases by preparing samples with a focused ion beam (FIB) milling system. Natural seafloor samples display abundant filamentous forms often resembling, in both size and shape, the twisted stalks of Gallionella and the elongated filaments of Leptothrix. Generally, these filamentous features are 1-5 microns in diameter and up to several microns in length. Some samples consist entirely of low- density, porous masses of silica encrusted filamentous forms. Presumably, these masses were formed by a rapid precipitation by the influx of silica-rich fluids into a microbial mat dominated by bacteria with filamentous morphologies. The presence of rare, amorphous (unmineralized) filamentous matter rich in C and Fe suggests that these bacteria were iron oxidizers. There is no evidence that sulfur oxidizers were present. Filamentous features sectioned by FIB milling show internal material within semi-hollow tubular-like features. Silica encrustations also show pseudo

  9. Mineralized iron oxidizing bacteria from hydrothermal vents: targeting biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Leveille, R. J.

    2010-12-01

    Putative hydrothermal systems have been identified on Mars based on orbital imagery and rover-based analyses. Based on Earth analogs, hydrothermal systems on Mars would be highly attractive for their potential for preserving organic and inorganic biosignatures. For example, iron oxidizing bacteria are ubiquitous in marine and terrestrial hydrothermal systems, where they often display distinctive cell morphologies and are commonly encrusted by minerals, especially bacteriogenic iron oxides and silica. Microfossils of iron oxidizing bacteria have been found in ancient Si-Fe deposits and iron oxidation may be an ancient and widespread metabolic pathway. In order to investigate mineralized iron oxidizing bacteria as a biosignature, we have examined samples collected from extinct hydrothermal vents along Explorer Ridge, NE Pacific Ocean. In addition, microaerophilic iron oxidizing bacteria, isolated from active Pacific hydrothermal vents, were grown in a Fe-enriched seawater medium at constant pH (6.5) and O2 concentration (5%) in a controlled bioreactor system. Samples and experimental products were examined with a combination of variable-pressure and field-emission scanning electron microscopy (SEM), in some cases by preparing samples with a focused ion beam (FIB) milling system. Light-toned seafloor samples display abundant filamentous forms resembling, in both size and shape (1-5 microns in diameter and up to several microns in length), the twisted stalks of Gallionella and the elongated filaments of Leptothrix. Some samples consist entirely of low-density masses of silica (>90% Si) encrusted filamentous forms. The presence of unmineralized filamentous matter rich in C and Fe suggests that these are the remains of iron oxidizing bacteria. Mineralized filaments sectioned by FIB show variable internal material within semi-hollow, tubular-like features. Silica encrustations also show pseudo-concentric growth bands. In the bioreactor runs, abundant microbial growth and

  10. Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses.

    PubMed

    Kip, Nardy; Ouyang, Wenjing; van Winden, Julia; Raghoebarsing, Ashna; van Niftrik, Laura; Pol, Arjan; Pan, Yao; Bodrossy, Levente; van Donselaar, Elly G; Reichart, Gert-Jan; Jetten, Mike S M; Damsté, Jaap S Sinninghe; Op den Camp, Huub J M

    2011-08-15

    Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphaproteobacterial methanotrophs was found. With Sphagnum mosses as the inoculum, alpha- and gammaproteobacterial acidophilic methanotrophs were isolated using established and newly designed media. The 16S rRNA, pmoA, pxmA, and mmoX gene sequences showed that the alphaproteobacterial isolates belonged to the Methylocystis and Methylosinus genera. The Methylosinus species isolated are the first acid-tolerant members of this genus. Of the acidophilic gammaproteobacterial strains isolated, strain M5 was affiliated with the Methylomonas genus, and the other strain, M200, may represent a novel genus, most closely related to the genera Methylosoma and Methylovulum. So far, no acidophilic or acid-tolerant methanotrophs in the Gammaproteobacteria class are known. All strains showed the typical features of either type I or II methanotrophs and are, to the best of our knowledge, the first isolated (acidophilic or acid-tolerant) methanotrophs from Sphagnum mosses.

  11. PCR-mediated detection of acidophilic, bioleaching-associated bacteria.

    PubMed Central

    De Wulf-Durand, P; Bryant, L J; Sly, L I

    1997-01-01

    The detection of acidophilic microorganisms from mining environments by culture methods is time consuming and unreliable. Several PCR approaches were developed to amplify small-subunit rRNA sequences from the DNA of six bacterial phylotypes associated with acidic mining environments, permitting the detection of the target DNA at concentrations as low as 10 fg. PMID:9212441

  12. In Situ Probing Nucleation, Growth, and Aggregation of Iron Oxides in Geochemical Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Jun, Y.; Hu, Y.; Ray, J. R.

    2012-12-01

    Nucleation, growth, and aggregation of iron oxide nanoparticles can significantly alter the fate of organic and inorganic contaminants in geochemical aquatic systems. This talk will address how we can improve our understanding of nucleation, growth, and aggregation of iron oxide nanoparticles by providing more accurate quantitative and qualitative empirical information. In this study, a novel environmental setup—which allows time-resolved simultaneous measurements of small angle x-ray scattering (SAXS) and grazing incidence small-angle scattering (GISAXS) in the presence of bulk solution—was utilized for real-time monitoring of nanoparticle formation at water-mineral interfaces. This setup enabled us to probe the size, shape, and location of iron oxide nanoparticles on the substrate and in solution without dehydration of samples. Experiments were conducted with 10-4 M ferric ions in the presence of environmentally important and abundant anions (nitrate, chlorite, sulfate) and cations (aluminum) at pH = 3.7 ± 0.1. The substrates used were geologically ubiquitous media such as quartz, mica, and organic polymer-coated surfaces. Once ferric solutions were introduced, the homogeneous and heterogeneous nucleation of iron oxides occurred and the size and volume evolution of nanoparticles were monitored. To complement these observations, atomic force microscopy, high-resolution transmission electron microscopy, high-resolution x-ray diffraction, contact angle analysis, dynamic light scattering, and electrophoretic mobility analysis were utilized. Based on in situ measurements of initial nuclei evolution at aqueous interfaces, this approach provided new, important information for upscaling such as size, volume, surface area, and location (i.e., in solution vs. on mineral surfaces) of iron oxides precipitates formed in the presence of organic matter and different substrate morphological and chemical properties. Using this quantitative information, we identified the

  13. Fractionation of oxygen isotopes in phosphate during its interactions with iron oxides

    NASA Astrophysics Data System (ADS)

    Jaisi, Deb P.; Blake, Ruth E.; Kukkadapu, Ravi K.

    2010-02-01

    Iron (III) oxides are ubiquitous in near-surface soils and sediments and interact strongly with dissolved phosphates via sorption, co-precipitation, mineral transformation and redox-cycling reactions. Iron oxide phases are thus, an important reservoir for dissolved phosphate, and phosphate bound to iron oxides may reflect dissolved phosphate sources as well as carry a history of the biogeochemical cycling of phosphorus (P). It has recently been demonstrated that dissolved inorganic phosphate (DIP) in rivers, lakes, estuaries and the open ocean can be used to distinguish different P sources and biological reaction pathways in the ratio of 18O/ 16O (δ 18O P) in PO 43-. Here we present results of experimental studies aimed at determining whether non-biological interactions between dissolved inorganic phosphate and solid iron oxides involve fractionation of oxygen isotopes in PO 4. Determination of such fractionations is critical to any interpretation of δ 18O P values of modern (e.g., hydrothermal iron oxide deposits, marine sediments, soils, groundwater systems) to ancient and extraterrestrial samples (e.g., BIF's, Martian soils). Batch sorption experiments were performed using varied concentrations of synthetic ferrihydrite and isotopically-labeled dissolved ortho-phosphate at temperatures ranging from 4 to 95 °C. Mineral transformations and morphological changes were determined by X-Ray, Mössbauer spectroscopy and SEM image analyses. Our results show that isotopic fractionation between sorbed and aqueous phosphate occurs during the early phase of sorption with isotopically-light phosphate (P 16O 4) preferentially incorporated into sorbed/solid phases. This fractionation showed negligible temperature-dependence and gradually decreased as a result of O-isotope exchange between sorbed and aqueous-phase phosphate, to become insignificant at greater than ˜100 h of reaction. In high-temperature experiments, this exchange was very rapid resulting in negligible

  14. Simultaneous reductive dissolution of iron oxide and oxidation of iodide in ice.

    NASA Astrophysics Data System (ADS)

    Kim, Kitae; Choi, Wonyong

    2015-04-01

    Iron is an important trace element controlling the metabolism and growth of all kinds of living species. Especially, the bio-availability of iron has been regarded as the limiting factor for primary productivity in HNLC (High Nutrients Low Chlorophyll) regions including Southern ocean. The dissolution of iron oxide provides enhanced the bio-availability of iron for phytoplankton growth. The halogen chemistry in polar regions is related to various important environmental processes such as Antarctic Ozone Depletion Event(ODE), mercury depletion, oxidative processes in atmosphere, and the formation of CCN (Cloud Condensation Nuclei). In this study, we investigated the reductive dissolution of iron oxide particles to produce Fe(II)aq and simultaneous oxidation of I- (iodide) to I3- (tri-iodide) in ice phase under UV irradiation or dark condition. The reductive generation of Fe(II)aq from iron oxides and oxidation of iodide to I3- were negligible in water but significantly accelerated in frozen solution both in the presence and absence of light. The enhanced reductive generation of Fe(II)aq and oxidative formation of I3- in ice were observed regardless of the various types of iron oxides [hematite (α-Fe2O3) maghemite (γ- Fe2O3), goethite (α-FeOOH), lepidocrocite (γ-FeOOH) and, magnetite (Fe3O4)]. We explained that the enhanced redox production of Fe(II)aq and I3- in ice is contributed to the freeze concentration of iodides, protons, and dissolved oxygen in the unfrozen solution. When the concentration of both iodides and protons were raised by 10-fold each, the formation of Fe(II)aq in water under UV irradiation was approached to those in ice. The outdoor experiments were carried out under ambient solar radiation in winter season of mid-latitude (Pohang, Korea: 36°N latitude) and also confirmed that the production of Fe(II)aq via reductive dissolution of iron oxide and I3- generation via I- oxidation were enhanced in frozen solution. These results suggest that iron

  15. Specific Bonds between an Iron Oxide Surface and Outer Membrane Cytochromes MtrC and OmcA from Shewanella oneidensis MR-1

    SciTech Connect

    Lower, Brian H.; Shi, Liang; Yongsunthon, Ruchirej; Droubay, Timothy C.; Mccready, David E.; Lower, Steven

    2007-07-31

    Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration.  A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface.  Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe2O3) thin film, created with oxygen plasma assisted molecular beam epitaxy (MBE), and recombinant MtrC or OmcA molecules coupled to gold substrates.  Force spectra displayed a unique force signature indicative of a specific bond between each cytochrome and the hematite surface.  The strength of the OmcA-hematite bond was approximately twice as strong as the MtrC-hematite bond, but direct binding to hematite was twice as favorable for MtrC.  Reversible folding/unfolding reactions were observed for mechanically denatured MtrC molecules bound to hematite.  The force measurements for the hematite-cytochrome pairs were compared to spectra collected between an iron oxide and S. oneidensis under anaerobic conditions.  There is a strong correlation between the whole cell and pure protein force spectra suggesting that the unique binding attributes of each cytochrome complement one another and allow both MtrC and OmcA to play a prominent role in the transfer of electrons to Fe(III) in minerals.  Finally, by comparing the magnitude of binding force for the whole cell vs. pure protein data, we were able to estimate that a single bacterium of S. oneidensis (2 x 0.5 μm) expresses ~104 cytochromes on its outer surface. 

  16. Persulfate activation by iron oxide-immobilized MnO2 composite: identification of iron oxide and the optimum pH for degradations.

    PubMed

    Jo, Young-Hoon; Do, Si-Hyun; Kong, Sung-Ho

    2014-01-01

    Iron oxide-immobilized manganese oxide (MnO2) composite was prepared and the reactivity of persulfate (PS) with the composite as activator was investigated for degradation of carbon tetrachloride and benzene at various pH levels. Brunauer-Emmett-Teller (BET) surface area of the composite was similar to that of pure MnO2 while the pore volume and diameter of composite was larger than those of MnO2. Scanning electron microscopy couples with energy dispersive spectroscopy (SEM-EDS) showed that Fe and Mn were detected on the surface of the composite, and X-ray diffraction (XRD) analysis indicated the possibilities of the existence of various iron oxides on the composite surface. Furthermore, the analyses of X-ray photoelectron (XPS) spectra revealed that the oxidation state of iron was identified as 1.74. In PS/composite system, the same pH for the highest degradation rates of both carbon tetrachloride and benzene were observed and the value of pH was 9. Scavenger test was suggested that both oxidants (i.e. hydroxyl radical, sulfate radical) and reductant (i.e. superoxide anion) were effectively produced when PS was activated with the iron-immobilized MnO2.

  17. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications

    NASA Astrophysics Data System (ADS)

    Soares, Paula I. P.; Laia, César A. T.; Carvalho, Alexandra; Pereira, Laura C. J.; Coutinho, Joana T.; Ferreira, Isabel M. M.; Novo, Carlos M. M.; Borges, João Paulo

    2016-10-01

    Iron oxide nanoparticles (Fe3O4, IONPs) are promising candidates for several biomedical applications such as magnetic hyperthermia and as contrast agents for magnetic resonance imaging (MRI). However, their colloidal stability in physiological conditions hinders their application requiring the use of biocompatible surfactant agents. The present investigation focuses on obtaining highly stable IONPs, stabilized by the presence of an oleic acid bilayer. Critical aspects such as oleic acid concentration and pH were optimized to ensure maximum stability. NPs composed of an iron oxide core with an average diameter of 9 nm measured using transmission electron microscopy (TEM) form agglomerates with an hydrodynamic diameter of around 170 nm when dispersed in water in the presence of an oleic acid bilayer, remaining stable (zeta potential of -120 mV). Magnetic hyperthermia and the relaxivities measurements show high efficiency at neutral pH which enables their use for both magnetic hyperthermia and MRI.

  18. Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance

    PubMed Central

    Ma, L L; Borwankar, A U; Willsey, B W; Yoon, K Y; Tam, J O; Sokolov, K V; Feldman, M D; Milner, T E; Johnston, K P

    2013-01-01

    A homologous series of Au-coated iron oxide nanoparticles, with hydrodynamic diameters smaller than 60 nm was synthesized with very low Auto-iron mass ratios as low as 0.15. The hydrodynamic diameter was determined by dynamic light scattering and the composition by atomic absorption spectroscopy and energy dispersive x-ray spectroscopy (EDS). Unusually low Au precursor supersaturation levels were utilized to nucleate and grow Au coatings on iron oxide relative to formation of pure Au nanoparticles. This approach produced unusually thin coatings, by lowering autocatalytic growth of Au on Au, as shown by transmission electron microscopy (TEM). Nearly all of the nanoparticles were attracted by a magnet indicating a minimal amount of pure Au particles The coatings were sufficiently thin to shift the surface plasmon resonance (SPR) to the near infrared (NIR), with large extinction coefficients., despite the small particle hydrodynamic diameters, observed from dynamic light scattering to be less than 60 nm. PMID:23238021

  19. Cobalt-promoted Iron Oxide Nanoparticles for the Selective Oxidative Dehydrogenation of Cyclohexane

    NASA Astrophysics Data System (ADS)

    Rutter, Matthew

    Recent work has shown that both cobalt and iron oxide nanoparticles are active for the oxidative dehydrogenation (ODH) of cyclohexane to benzene, the former more active than the latter. Further study has shown that the addition of gold species as a minority component into iron oxide nanocrystals increases the selectivity of the reaction to benzene. Since a primary motivation for this work is the addition of catalysts in jet fuels to facilitate the dehydrogenation and cracking reactions preceding their combustion, a low-cost, sacrificial catalyst is sought after. In this application, catalyst nanoparticles suspended in the fuel stream will dehydrogenate cyclic alkanes (cyclohexane) to their aromatic counterparts (benzene). Alkenes and aromatics have a much higher rate of combustion, which decreases the amount of uncombusted fuel in the exhaust, thereby increasing performance. As these catalysts are not recyclable, there is significant impetus to substitute cheaper base metals for expensive noble metals. In this work, iron oxide nanoparticles are doped with varying levels of cobalt to examine the effect of cobalt content and oxidation state on the selectivity and activity of the iron oxide for the oxidative dehydrogenation of cyclohexane, used as a model cyclic alkane in jet fuel. We have shown previously that small (˜5nm) cobalt oxide nanoparticles favor the production of benzene over the partial dehydrogenation products cyclohexene and cyclohexadiene, or the complete oxidation product carbon dioxide. It is the aim of this work to examine the surface of these cobalt-iron oxide nanoparticles to determine the conditions most favorable for this selective oxidative dehydrogenation. Cobalt-doped iron nanoparticles were prepared by a surfactant-free hydrothermal co-precipitation technique that enabled a high degree of composition control and size control. These samples were characterized via Transmission Electron Microscopy (TEM), powder X-Ray Diffraction (XRD), X

  20. Shape and size controlled synthesis of uniform iron oxide nanocrystals through new non-hydrolytic routes

    NASA Astrophysics Data System (ADS)

    Li, Wenlu; Lee, Seung Soo; Wu, Jiewei; Hinton, Carl H.; Fortner, John D.

    2016-08-01

    New, non-hydrolytic routes to synthesize highly crystalline iron oxide nanocrystals (8–40 nm, magnetite) are described in this report whereby particle size and morphology were precisely controlled through reactant (precursor, e.g. (FeO(OH)) ratios, co-surfactant and organic additive, and/or reaction time. Particle size, with high monodispersivity (<10%), is demonstrated to be a function of precursor concentrations and through the addition of different cosurfactants and/or additives, cubic, octahedral, potato-like, and flower-like iron oxide nanocrystals can be reproducibly synthesized through simple one-pot thermal decomposition methods. High resolution transmission electron microscope, x-ray diffraction, and superconducting quantum interference device were used to characterize the size, structure and magnetic properties of the resulting nanocrystals. For aqueous applications, materials synthesized/purified in organic solvents are broadly water dispersible through a variety of phase (aqueous) transfer method(s).

  1. Synthesis and Magneto-Thermal Actuation of Iron Oxide Core–PNIPAM Shell Nanoparticles

    PubMed Central

    2015-01-01

    Superparamagnetic nanoparticles have been proposed for many applications in biotechnology and medicine. In this paper, it is demonstrated how the excellent colloidal stability and magnetic properties of monodisperse and individually densely grafted iron oxide nanoparticles can be used to manipulate reversibly the solubility of nanoparticles with a poly(N-isopropylacrylamide)nitrodopamine shell. “Grafting-to” and “grafting-from” methods for synthesis of an irreversibly anchored brush shell to monodisperse, oleic acid coated iron oxide cores are compared. Thereafter, it is shown that local heating by magnetic fields as well as global thermal heating can be used to efficiently and reversibly aggregate, magnetically extract nanoparticles from solution and spontaneously redisperse them. The coupling of magnetic and thermally responsive properties points to novel uses as smart materials, for example, in integrated devices for molecular separation and extraction. PMID:26270412

  2. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia.

    PubMed

    Blanco-Andujar, Cristina; Walter, Aurelie; Cotin, Geoffrey; Bordeianu, Catalina; Mertz, Damien; Felder-Flesch, Delphine; Begin-Colin, Sylvie

    2016-07-01

    Iron oxide nanoparticles are widely used for biological applications thanks to their outstanding balance between magnetic properties, surface-to-volume ratio suitable for efficient functionalization and proven biocompatibility. Their development for MRI or magnetic particle hyperthermia concentrates much of the attention as these nanomaterials are already used within the health system as contrast agents and heating mediators. As such, the constant improvement and development for better and more reliable materials is of key importance. On this basis, this review aims to cover the rational design of iron oxide nanoparticles to be used as MRI contrast agents or heating mediators in magnetic hyperthermia, and reviews the state of the art of their use as nanomedicine tools. PMID:27389703

  3. Effect of iron oxide loading on magnetoferritin structure in solution as revealed by SAXS and SANS.

    PubMed

    Melníková, L; Petrenko, V I; Avdeev, M V; Garamus, V M; Almásy, L; Ivankov, O I; Bulavin, L A; Mitróová, Z; Kopčanský, P

    2014-11-01

    Synthetic biological macromolecule of magnetoferritin containing an iron oxide core inside a protein shell (apoferritin) is prepared with different content of iron. Its structure in aqueous solution is analysed by small-angle synchrotron X-ray (SAXS) and neutron (SANS) scattering. The loading factor (LF) defined as the average number of iron atoms per protein is varied up to LF=800. With an increase of the LF, the scattering curves exhibit a relative increase in the total scattered intensity, a partial smearing and a shift of the match point in the SANS contrast variation data. The analysis shows an increase in the polydispersity of the proteins and a corresponding effective increase in the relative content of magnetic material against the protein moiety of the shell with the LF growth. At LFs above ∼150, the apoferritin shell undergoes structural changes, which is strongly indicative of the fact that the shell stability is affected by iron oxide presence.

  4. Template assisted self-assembly of iron oxide nanoparticles: An x-ray structural analysis

    SciTech Connect

    Mishra, D.; Zabel, H.; Ulyanov, S. V.; Romanov, V. P.; Uzdin, V. M.

    2014-02-07

    We have fabricated by e-beam lithography periodic arrays of rectangular shaped trenches of different widths into Si substrates. The trenches were filled with iron oxide nanoparticles, 20 nm in diameter, by spin-coating them onto the Si substrate. The trenches have the purpose to assist the self-assembly of the iron oxide nanoparticles. Using x-ray scattering techniques, we have analyzed the structure factor of the trenches before and after filling in order to determine the filling factor. We present a theoretical analysis of the x-ray scattering function within the distorted-wave Born approximation and we present a quantitative comparison between theory and experiment.

  5. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    PubMed

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances.

  6. A novel nanostructured iron oxide-gold bioelectrode for hydrogen peroxide sensing

    NASA Astrophysics Data System (ADS)

    Thandavan, Kavitha; Gandhi, Sakthivel; Sethuraman, Swaminathan; Bosco Balaguru Rayappan, John; Maheswari Krishnan, Uma

    2011-07-01

    Fe3O4 nanoparticles covalently linked to a gold electrode have been used for immobilizing catalase (CAT) enzyme to sense the presence of various concentrations of H2O2. These nanoparticles ranging from 20 to 30 nm were synthesized by thermal co-precipitation of ferric and ferrous chlorides. SEM and XRD have been used for morphological and structural characterization of Fe3O4 nanoparticles. CAT enzyme was linked covalently to the surface of iron oxide using carbodiimide in phosphate buffer (pH 7.4) at 4 °C. The enzyme-iron oxide link was confirmed by FT-IR spectroscopy. Sensing studies carried out using cyclic voltammetry showed a linear response of the CAT/nano Fe3O4/Au bioelectrode towards H2O2 between 1.5 and 13.5 µM with a very sharp response time of 2 s.

  7. Nucleation of Iron Oxide Nanoparticles Mediated by Mms6 Protein in Situ

    SciTech Connect

    Kashyap, Sanjay; Woehl, Taylor J; Liu, Xunpei; Mallapragada, Surya K; Prozorov, Tanya

    2014-09-23

    Biomineralization proteins are widely used as templating agents in biomimetic synthesis of a variety of organic–inorganic nanostructures. However, the role of the protein in controlling the nucleation and growth of biomimetic particles is not well understood, because the mechanism of the bioinspired reaction is often deduced from ex situ analysis of the resultant nanoscale mineral phase. Here we report the direct visualization of biomimetic iron oxide nanoparticle nucleation mediated by an acidic bacterial recombinant protein, Mms6, during an in situ reaction induced by the controlled addition of sodium hydroxide to solution-phase Mms6 protein micelles incubated with ferric chloride. Using in situ liquid cell scanning transmission electron microscopy we observe the liquid iron prenucleation phase and nascent amorphous nanoparticles forming preferentially on the surface of protein micelles. Our results provide insight into the early steps of protein-mediated biomimetic nucleation of iron oxide and point to the importance of an extended protein surface during nanoparticle formation.

  8. Effect of Iron Oxide and Phase Separation on the Color of Blue Jun Ware Glaze.

    PubMed

    Wang, Fen; Yang, Changan; Zhu, Jianfeng; Lin, Ying

    2015-09-01

    Based on the traditional Jun ware glaze, the imitated Jun ware glazes were prepared by adding iron oxide and introducing phase separation agent apatite through four-angle-method. The effect of iron oxide contents, phase separation and the firing temperature on the color of Jun ware glazes were investigated by a neutral atmosphere experiment, optical microscope and scanning electronic microscope. The results showed that the colorant, mainly Fe2O3, contributed to the Jun ware glaze blue and cyan colors of Jun ware glaze. The light scatter caused by the small droplets in phase separation structure only influenced the shade of the glaze color, intensify or weaken the color, and thus made the glaze perfect and elegant opal visual effects, but was not the origin of general blue or cyan colors of Jun ware glaze. In addition, the firing temperature and the basic glaze composition affected the glaze colors to some extent. PMID:26716336

  9. Integrated Chemical Systems: The Simultaneous Formation of Hybrid Nanocomposites of Iron Oxide and Organo Silsesquioxanes

    SciTech Connect

    Zhao, L; Clapsaddle, B; Jr., J S; Schaefer, D; Shea, K

    2004-10-15

    A sol-gel approach for the synthesis of hybrid nanocomposites of iron oxide and bridged polysilsesquioxanes has been established. The procedures allow for the simultaneous formation of iron oxide and polysilsesquioxane networks in monolithic xerogels and aerogels. These hybrid nanocomposites are synthesized from FeCl{sub 3} {center_dot} 6H{sub 2}O and functionalized silsesquioxane monomers in a one-pot reaction using epoxides as a gelation agent. The porosity and microstructure of the materials has been determined by nitrogen porosimetry, electron microscopy and ultra small angle X-ray scattering (USAXS). The hybrid nanocomposites exhibit a uniform dispersion of both components with no evidence for phase separation at length scales > 5 nm. At this limit of resolution it is not possible to distinguish between two independent interpenetrating networks integrated at molecular length scales or a random copolymer or mixtures of both.

  10. Magnetic Iron Oxide Nanoparticles for Multimodal Imaging and Therapy of Cancer

    PubMed Central

    Thomas, Reju; Park, In-Kyu; Jeong, Yong Yeon

    2013-01-01

    Superparamagnetic iron oxide nanoparticles (SPION) have emerged as an MRI contrast agent for tumor imaging due to their efficacy and safety. Their utility has been proven in clinical applications with a series of marketed SPION-based contrast agents. Extensive research has been performed to study various strategies that could improve SPION by tailoring the surface chemistry and by applying additional therapeutic functionality. Research into the dual-modal contrast uses of SPION has developed because these applications can save time and effort by reducing the number of imaging sessions. In addition to multimodal strategies, efforts have been made to develop multifunctional nanoparticles that carry both diagnostic and therapeutic cargos specifically for cancer. This review provides an overview of recent advances in multimodality imaging agents and focuses on iron oxide based nanoparticles and their theranostic applications for cancer. Furthermore, we discuss the physiochemical properties and compare different synthesis methods of SPION for the development of multimodal contrast agents. PMID:23912234

  11. Synthetic effect between iron oxide and sulfate mineral on the anaerobic transformation of organic substance.

    PubMed

    Chen, Tian-Hu; Wang, Jin; Zhou, Yue-Fei; Yue, Zheng-Bo; Xie, Qiao-Qin; Pan, Min

    2014-01-01

    Synthetic effect between sulfate minerals (gypsum) and iron oxide (hematite) on the anaerobic transformation of organic substance was investigated in the current study. The results showed that gypsum was completely decomposed while hematite was partially reduced. The mineral phase analysis results showed that FeS and CaCO3 was the major mineralization product. Methane generation process was inhibited and inorganic carbon contents in the precipitates were enhanced compared to the control without hematite and gypsum. The inorganic carbon content increased with the increasing of hematite dosages. Co-addition of sulfate minerals and iron oxide would have a potential application prospect in the carbon sequestration area and reduction of the greenhouse gas release. The results would also reveal the role of inorganic mineral in the global carbon cycle. PMID:24189378

  12. Structural diversity in iron oxide nanoparticle assemblies as directed by particle morphology and orientation.

    PubMed

    Disch, Sabrina; Wetterskog, Erik; Hermann, Raphaël P; Korolkov, Denis; Busch, Peter; Boesecke, Peter; Lyon, Olivier; Vainio, Ulla; Salazar-Alvarez, German; Bergström, Lennart; Brückel, Thomas

    2013-05-01

    The mesostructure of ordered arrays of anisotropic nanoparticles is controlled by a combination of packing constraints and interparticle interactions, two factors that are strongly dependent on the particle morphology. We have investigated how the degree of truncation of iron oxide nanocubes controls the mesostructure and particle orientation in drop cast mesocrystal arrays. The combination of grazing incidence small-angle X-ray scattering and scanning electron microscopy shows that mesocrystals of highly truncated cubic nanoparticles assemble in an fcc-type mesostructure, similar to arrays formed by iron oxide nanospheres, but with a significantly reduced packing density and displaying two different growth orientations. Strong satellite reflections in the GISAXS pattern indicate a commensurate mesoscopic superstructure that is related to stacking faults in mesocrystals of the anisotropic nanocubes. Our results show how subtle variation in shape anisotropy can induce oriented arrangements of nanoparticles of different structures and also create mesoscopic superstructures of larger periodicity.

  13. Study of Organic and Inorganic Binders on Strength of Iron Oxide Pellets

    NASA Astrophysics Data System (ADS)

    Srivastava, Urvashi; Kawatra, S. Komar; Eisele, Timothy C.

    2013-08-01

    Bentonite is a predominant binder used in iron ore pelletization. However, the presence of a high content of silica and alumina in bentonite is considered undesirable for ironmaking operations. The objective of this study was to identify the alternatives of bentonite for iron ore pelletization. To achieve this goal, different types of organic and inorganic binders were utilized to produce iron oxide pellets. The quality of these iron oxide pellets was compared with pellets made using bentonite. All pellets were tested for physical strength at different stages of pelletization to determine their ability to survive during shipping and handling. The results show that organic binders such as lactose monohydrate, hemicellulose, and sodium lignosulfonate can provide sufficient strength to indurated pellets.

  14. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)

    NASA Astrophysics Data System (ADS)

    Bauer, Lisa M.; Situ, Shu F.; Griswold, Mark A.; Samia, Anna Cristina S.

    2016-06-01

    Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI).Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal

  15. Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides.

    PubMed

    Indra, Arindam; Menezes, Prashanth W; Sahraie, Nastaran Ranjbar; Bergmann, Arno; Das, Chittaranjan; Tallarida, Massimo; Schmeißer, Dieter; Strasser, Peter; Driess, Matthias

    2014-12-17

    Catalytic water splitting to hydrogen and oxygen is considered as one of the convenient routes for the sustainable energy conversion. Bifunctional catalysts for the electrocatalytic oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are pivotal for the energy conversion and storage, and alternatively, the photochemical water oxidation in biomimetic fashion is also considered as the most useful way to convert solar energy into chemical energy. Here we present a facile solvothermal route to control the synthesis of amorphous and crystalline cobalt iron oxides by controlling the crystallinity of the materials with changing solvent and reaction time and further utilize these materials as multifunctional catalysts for the unification of photochemical and electrochemical water oxidation as well as for the oxygen reduction reaction. Notably, the amorphous cobalt iron oxide produces superior catalytic activity over the crystalline one under photochemical and electrochemical water oxidation and oxygen reduction conditions.

  16. Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance

    NASA Astrophysics Data System (ADS)

    Li, Hongyan; Klem, Michael T.; Sebby, Karl B.; Singel, David J.; Young, Mark; Douglas, Trevor; Idzerda, Yves U.

    2009-02-01

    Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles' easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size.

  17. Preparation of iron oxide nanoparticles from FeCl3 solid powder using microemulsions

    NASA Astrophysics Data System (ADS)

    Nassar, Nashaat; Husein, Maen

    2006-05-01

    Nanoparticles of iron oxide were prepared by subjecting iron chloride powder to (w/o) microemulsions consisting of sodium bis(2-ethylhexyl) sulfosuccinate (AOT), isooctane and water. FeCl3 was first dissolved in the water pools of the microemulsion, and then reacted with NaOH added as an aqueous solution to form iron oxide. The amount of NaOH solution was limited so that single microemulsion phase is obtained. This technique serves as an in-situ nanoparticle preparation technique aimed at minimizing particle aggregation associated with particle transportation to required sites. In this study, the effects of AOT concentration and water to AOT mole ratio on the nanoparticle size were investigated. UV/Vis spectrophotometry and transmission electron microscopy (TEM) were used to measure the particle size distribution.

  18. Surface modification of iron oxide nanoparticles and their conjuntion with water soluble polymers for biomedical application

    NASA Astrophysics Data System (ADS)

    Thanh Huong, Nguyen; Thi Kieu Giang, Lam; Thanh Binh, Nguyen; Minh, Le Quoc

    2009-09-01

    Superparamagnetic iron oxide nanoparticles (SPION) coated with suitable bio-compatible substances have been used in biomedicine, particularly in magnetic resonance imaging (MRI), tissue engineering, and hyperthermia and drug delivery. In this study, we describe the synthesis of SPION and its surface modification for in-vitro experiments. The particle diameter and structure were estimated by FESEM, TEM, XRD analyses. The saturation magnetization was characterized. SPION with a mean size of 12 nm have been prepared under N2 atmosphere, with support of natural polymeric starch, by controlling chemical coprecipitation of magnetite phase from aqueous solutions containing suitable salts ratios of Fe2+ and Fe3+. The surface of SPION-nanoparticles was treated with a coordinatable agent for higher dispersion ability in water and remaining the superparamagnetic behavior. The prepared iron oxide nanoparticles were coated with starch, dextran, PEG or MPEG to extend the application potential in the quite different engineering field of nano biomedicine.

  19. [Application and advancement of magnetic iron-oxide nanoparticles in tumor-targeted therapy].

    PubMed

    Chen, Yue; Chen, Bao-An

    2010-01-01

    Recently, nanometer-sized magnetic particles have been intensively concerned and investigated due to their particularly large surface-to-volume ratio, quantum-size effect, magnetic character as well as their potential application in the area of bioscience and medicine. The most promising nanoparticles are magnetic iron oxide nanoparticles with appropriate surface modification, which have been widely used experimentally for numerous in vivo applications such as magnetic resonance imaging contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, drug delivery, hyperthermia and cell separation. To focus on one of the most important and fascinating subjects in nanobiotechnology, this review describes the current situation and development of magnetic iron oxide nanoparticles and their applications in drug delivery and hyperthermia in tumor-targeted therapy. The possible perspectives and some challenges to further development of these nanoparticles are also analyzed and discussed. PMID:20038325

  20. Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging.

    PubMed

    Bae, Hongsub; Ahmad, Tanveer; Rhee, Ilsu; Chang, Yongmin; Jin, Seong-Uk; Hong, Sungwook

    2012-01-01

    Coprecipitated ferrite nanoparticles were coated with carbon using a hydrothermal method. From transmission electron microscope pictures, we could see that the coated iron oxide nanoparticles were spherical in shape with an average diameter of 90 nm. The strong bonding of carbon on the nanoparticle surfaces was checked by noting the C = O and C = C vibrations in Fourier transform infrared spectra. The spin-lattice relaxation process [T1] and spin-spin relaxation process [T2] relaxivities of hydrogen protons in the aqueous solution of coated nanoparticles were determined to be 1.139 (mM·s)-1 and 1.115 (mM·s)-1, respectively. These results showed that the carbon-coated iron oxide nanoparticles are applicable as both T1 and T2 contrast agents in magnetic resonance imaging.PACS: 81.05.y; 76.60.Es; 61.46; 75.50.k; 87.61.

  1. Daunomycin-loaded superparamagnetic iron oxide nanoparticles: Preparation, magnetic targeting, cell cytotoxicity, and protein delivery research.

    PubMed

    Liu, Min-Chao; Jin, Shu-Fang; Zheng, Min; Wang, Yan; Zhao, Peng-Liang; Tang, Ding-Tong; Chen, Jiong; Lin, Jia-Qi; Wang, Xia-Hong; Zhao, Ping

    2016-08-01

    The clinical use of daunomycin is restricted by dose-dependent toxicity and low specificity against cancer cells. In the present study, modified superparamagnetic iron oxide nanoparticles were employed to load daunomycin and the drug-loaded nanospheres exhibited satisfactory size and smart pH-responsive release. The cellular uptake efficiency, targeted cell accumulation, and cell cytotoxicity experimental results proved that the superparamagnetic iron oxide nanoparticle-loading process brings high drug targeting without decreasing the cytotoxicity of daunomycin. Moreover, a new concern for the evaluation of nanophase drug delivery's effects was considered, with monitoring the interactions between human serum albumin and the drug-loaded nanospheres. Results from the multispectroscopic techniques and molecular modeling calculation elucidate that the drug delivery has detectable deleterious effects on the frame conformation of protein, which may affect its physiological function. PMID:27288463

  2. Shape and size controlled synthesis of uniform iron oxide nanocrystals through new non-hydrolytic routes

    NASA Astrophysics Data System (ADS)

    Li, Wenlu; Lee, Seung Soo; Wu, Jiewei; Hinton, Carl H.; Fortner, John D.

    2016-08-01

    New, non-hydrolytic routes to synthesize highly crystalline iron oxide nanocrystals (8-40 nm, magnetite) are described in this report whereby particle size and morphology were precisely controlled through reactant (precursor, e.g. (FeO(OH)) ratios, co-surfactant and organic additive, and/or reaction time. Particle size, with high monodispersivity (<10%), is demonstrated to be a function of precursor concentrations and through the addition of different cosurfactants and/or additives, cubic, octahedral, potato-like, and flower-like iron oxide nanocrystals can be reproducibly synthesized through simple one-pot thermal decomposition methods. High resolution transmission electron microscope, x-ray diffraction, and superconducting quantum interference device were used to characterize the size, structure and magnetic properties of the resulting nanocrystals. For aqueous applications, materials synthesized/purified in organic solvents are broadly water dispersible through a variety of phase (aqueous) transfer method(s).

  3. A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides.

    PubMed

    Dias, A M G C; Hussain, A; Marcos, A S; Roque, A C A

    2011-01-01

    Iron oxide magnetic nanoparticles (MNPs) alone are suitable for a broad spectrum of applications, but the low stability and heterogeneous size distribution in aqueous medium represent major setbacks. These setbacks can however be reduced or diminished through the coating of MNPs with various polymers, especially biopolymers such as polysaccharides. Polysaccharides are biocompatible, non-toxic and renewable; in addition, they possess chemical groups that permit further functionalization of the MNPs. Multifunctional entities can be created through decoration with specific molecules e.g. proteins, peptides, drugs, antibodies, biomimetic ligands, transfection agents, cells, and other ligands. This development opens a whole range of applications for iron oxide nanoparticles. In this review the properties of magnetic structures composed of MNPs and several polysaccharides (Agarose, Alginate, Carrageenan, Chitosan, Dextran, Heparin, Gum Arabic, Pullulan and Starch) will be discussed, in view of their recent and future biomedical and biotechnological applications.

  4. Characterization of the oleic acid/iron oxide nanoparticle interface by magnetic resonance

    NASA Astrophysics Data System (ADS)

    Masur, S.; Zingsem, B.; Marzi, T.; Meckenstock, R.; Farle, M.

    2016-10-01

    The synthesis of colloidal nanoparticles involves surfactant molecules, which bind to the particle surface and stabilize nanoparticles against aggregation. In many cases these protecting shells also can be used for further functionalization. In this study, we investigated monodisperse single crystalline iron oxide core/shell nanoparticles (FexOy-NPs) in situ covered with an oleic acid layer which showed two electron spin resonance (ESR) signals. The nanoparticles with the ligands attached were characterized by transmission electron microscopy (TEM) and ferro- and paramagnetic resonance (FMR, EPR). Infrared spectroscopy confirmed the presence of the functional groups and revealed that the oleic acid (OA) is chemisorbed as a carboxylate on the iron oxide and is coordinated symmetrically to the oxide atoms. We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle.

  5. Synthesis and Magneto-Thermal Actuation of Iron Oxide Core-PNIPAM Shell Nanoparticles.

    PubMed

    Kurzhals, Steffen; Zirbs, Ronald; Reimhult, Erik

    2015-09-01

    Superparamagnetic nanoparticles have been proposed for many applications in biotechnology and medicine. In this paper, it is demonstrated how the excellent colloidal stability and magnetic properties of monodisperse and individually densely grafted iron oxide nanoparticles can be used to manipulate reversibly the solubility of nanoparticles with a poly(N-isopropylacrylamide)nitrodopamine shell. "Grafting-to" and "grafting-from" methods for synthesis of an irreversibly anchored brush shell to monodisperse, oleic acid coated iron oxide cores are compared. Thereafter, it is shown that local heating by magnetic fields as well as global thermal heating can be used to efficiently and reversibly aggregate, magnetically extract nanoparticles from solution and spontaneously redisperse them. The coupling of magnetic and thermally responsive properties points to novel uses as smart materials, for example, in integrated devices for molecular separation and extraction.

  6. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder

    PubMed Central

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-01-01

    Iron oxide (Fe2O3) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe2O3 gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability. PMID:26569253

  7. Electrochemical remediation of trichloroethene-contaminated groundwater using palladized iron oxides.

    PubMed

    Roh, Y; Cho, K S; Lee, S

    2001-01-01

    The objective of this study is to develop electrochemically-enhanced dechlorination of trichloroethene (TCE) using palladized iron oxides minerals for ex situ remediation of contaminated groundwaters. A bench-scale column packed with the palladized iron oxide media connected to a cathode and an anode embedded in a carbon pad was prepared for flow through column tests. Contaminated groundwaters with about 14-16 mg/L TCE were passed from the cathode side to the anode side of the column while the system was supplied with direct current. All of the TCE in the groundwater was dechlorinated even after 300 pore volumes were passed. Furthermore, intermediate reaction products, dichloroethene isomers and vinyl chloride, were not detected in the treated water.

  8. Tissue Plasminogen Activator Binding to Superparamagnetic Iron Oxide Nanoparticle—Covalent Versus Adsorptive Approach

    NASA Astrophysics Data System (ADS)

    Friedrich, Ralf P.; Zaloga, Jan; Schreiber, Eveline; Tóth, Ildikó Y.; Tombácz, Etelka; Lyer, Stefan; Alexiou, Christoph

    2016-06-01

    Functionalized superparamagnetic iron oxide nanoparticles are frequently used to develop vehicles for drug delivery, hyperthermia, and photodynamic therapy and as tools used for magnetic separation and purification of proteins or for biomolecular imaging. Depending on the application, there are various possible covalent and non-covalent approaches for the functionalization of particles, each of them shows different advantages and disadvantages for drug release and activity at the desired location.

  9. Trace element cycling through iron oxide minerals during redox-driven dynamic recrystallization

    SciTech Connect

    Frierdich, Andrew J.; Luo, Yun; Catalano, Jeffrey G.

    2011-11-17

    Microbially driven iron redox cycling in soil and sedimentary systems, including during diagenesis and fluid migration, may activate secondary abiotic reactions between aqueous Fe(II) and solid Fe(III) oxides. These reactions catalyze dynamic recrystallization of iron oxide minerals through localized and simultaneous oxidative adsorption of Fe(II) and reductive dissolution of Fe(III). Redox-active trace elements undergo speciation changes during this process, but the impact redox-driven recrystallization has on redox-inactive trace elements associated with iron oxides is uncertain. Here we demonstrate that Ni is cycled through the minerals goethite and hematite during redox-driven recrystallization. X-ray absorption spectroscopy demonstrates that during this process adsorbed Ni becomes progressively incorporated into the minerals. Kinetic studies using batch reactors containing aqueous Fe(II) and Ni preincorporated into iron oxides display substantial release of Ni to solution. We conclude that iron oxide recrystallization activated by aqueous Fe(II) induces cycling of Ni through the mineral structure, with adsorbed Ni overgrown in regions of Fe(II) oxidative adsorption and incorporated Ni released in regions of reductive dissolution of structural Fe(III). The redistribution of Ni among the mineral bulk, mineral surface, and aqueous solution appears to be thermodynamically controlled and catalyzed by Fe(II). Our work suggests that important proxies for ocean composition on the early Earth may be invalid, identifies new processes controlling micronutrient availability in soil, sedimentary, and aquatic ecosystems, and points toward a mechanism for trace element mobilization during diagenesis and enrichment in geologic fluids.

  10. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    NASA Astrophysics Data System (ADS)

    Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.

    2016-11-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.

  11. Cluster molecular orbital description of the electronic structures of mixed-valence iron oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1986-01-01

    A molecular orbital description, based on spin-unrestricted X??-scattered wave calculations, is given for the electronic structures of mixed valence iron oxides and silicates. The cluster calculations show that electron hopping and optical intervalence charge-transger result from weak FeFe bonding across shared edges of FeO6 coordination polyhedra. In agreement with Zener's double exchange model, FeFe bonding is found to stabilize ferromagnetic coupling between Fe2+ and Fe3+ cations. ?? 1986.

  12. High temperature oxidation of iron-iron oxide core-shell nanowires composed of iron nanoparticles.

    PubMed

    Krajewski, M; Brzozka, K; Lin, W S; Lin, H M; Tokarczyk, M; Borysiuk, J; Kowalski, G; Wasik, D

    2016-02-01

    This work describes an oxidation process of iron-iron oxide core-shell nanowires at temperatures between 100 °C and 800 °C. The studied nanomaterial was synthesized through a simple chemical reduction of iron trichloride in an external magnetic field under a constant flow of argon. The electron microscopy investigations allowed determining that the as-prepared nanowires were composed of self-assembled iron nanoparticles which were covered by a 3 nm thick oxide shell and separated from each other by a thin interface layer. Both these layers exhibited an amorphous or highly-disordered character which was traced by means of transmission electron microscopy and Mössbauer spectroscopy. The thermal oxidation was carried out under a constant flow of argon which contained the traces of oxygen. The first stage of process was related to slow transformations of amorphous Fe and amorphous iron oxides into crystalline phases and disappearance of interfaces between iron nanoparticles forming the studied nanomaterial (range: 25-300 °C). After that, the crystalline iron core and iron oxide shell became oxidized and signals for different compositions of iron oxide sheath were observed (range: 300-800 °C) using X-ray diffraction, Raman spectroscopy and Mössbauer spectroscopy. According to the thermal gravimetric analysis, the nanowires heated up to 800 °C under argon atmosphere gained 37% of mass with respect to their initial weight. The structure of the studied nanomaterial oxidized at 800 °C was mainly composed of α-Fe2O3 (∼ 93%). Moreover, iron nanowires treated above 600 °C lost their wire-like shape due to their shrinkage and collapse caused by the void coalescence. PMID:26766540

  13. Chitosan-Iron Oxide Coated Graphene Oxide Nanocomposite Hydrogel: A Robust and Soft Antimicrobial Biofilm.

    PubMed

    Konwar, Achyut; Kalita, Sanjeeb; Kotoky, Jibon; Chowdhury, Devasish

    2016-08-17

    We report a robust biofilm with antimicrobial properties fabricated from chitosan-iron oxide coated graphene oxide nanocomposite hydrogel. For the first time, the coprecipitation method was used for the successful synthesis of iron oxide coated graphene oxide (GIO) nanomaterial. After this, films were fabricated by the gel-casting technique aided by the self-healing ability of the chitosan hydrogel network system. Both the nanomaterial and the nanocomposite films were characterized by techniques such as scanning electron microscopy, FT-IR spectroscopy, X-ray diffraction, and vibrating sample magnetometry. Measurements of the thermodynamic stability and mechanical properties of the films indictaed a significant improvement in their thermal and mechanical properties. Moreover, the stress-strain profile indicated the tough nature of the nanocomposite hydrogel films. These improvements, therefore, indicated an effective interaction and good compatibility of the GIO nanomaterial with the chitosan hydrogel matrix. In addition, it was also possible to fabricate films with tunable surface properties such as hydrophobicity simply by varying the loading percentage of GIO nanomaterial in the hydrogel matrix. Fascinatingly, the chitosan-iron oxide coated graphene oxide nanocomposite hydrogel films displayed significant antimicrobial activities against both Gram-positive and Gram-negative bacterial strains, such as methicillin-resistant Staphylococcus aureus, Staphylococcus aureus, and Escherichia coli, and also against the opportunistic dermatophyte Candida albicans. The antimicrobial activities of the films were tested by agar diffusion assay and antimicrobial testing based on direct contact. A comparison of the antimicrobial activity of the chitosan-GIO nanocomposite hydrogel films with those of individual chitosan-graphene oxide and chitosan-iron oxide nanocomposite films demonstrated a higher antimicrobial activity for the former in both types of tests. In vitro hemolysis

  14. Microbial Iron Oxidation in the Arctic Tundra and Its Implications for Biogeochemical Cycling

    PubMed Central

    Scott, Jarrod J.; Benes, Joshua; Bowden, William B.

    2015-01-01

    The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long −149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides. PMID:26386054

  15. Surfactant free superparamagnetic iron oxide nanoparticles for stable ferrofluids in physiological solutions.

    PubMed

    Mandel, K; Straßer, M; Granath, T; Dembski, S; Sextl, G

    2015-02-18

    A process is reported to obtain a nanoparticle sol from co-precipitated iron oxide particles without using any surfactant. The sol - a true ferrofluid - is not only stable over a wide range of pH but also in physiological solutions. This is a decisive step towards biomedical applications where nanoparticle agglomeration could so far only be prevented by using unwanted surfactants. PMID:25580829

  16. Microbial iron oxidation in the Arctic tundra and its implications for biogeochemical cycling.

    PubMed

    Emerson, David; Scott, Jarrod J; Benes, Joshua; Bowden, William B

    2015-12-01

    The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long -149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides.

  17. Preparation of iron oxide nanoparticles by laser ablation in DMF under effect of external magnetic field

    NASA Astrophysics Data System (ADS)

    Ismail, Raid A.; Sulaiman, Ghassan M.; Abdulrahman, Safa A.

    2016-05-01

    We have studied the effect of applying an external magnetic field on the characteristics of iron oxide (IO) nanoparticles (NPs) synthesized by pulsed laser ablation in dimethylformamide (DMF). The NPs synthesized with and without applying of magnetic field were characterized by Fourier transformation infrared spectroscopy (FT-IR), UV-Vis absorption, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD). SEM results confirmed that the particle size was decreased after applying magnetic field.

  18. Iron Oxide-Gold Core-Shell Nanoparticles and Thin-Film Assembly

    SciTech Connect

    Wang, Lingyan; Luo, Jin; Maye, Mathew M.; Fan, Quan; Qiang, Rendeng; Engelhard, Mark H.; Wang, Chong M.; Lin, Yuehe; Zhong, Chuan-Jian

    2005-05-04

    This paper reports findings of an investigation of the synthesis of monolayer-capped iron oxide and core (iron oxide)–shell (gold) nanocomposite and their assembly towards thin film materials. Pre-synthesized and size-defined iron oxide nanoparticles were used as seeding materials for the reduction of gold precursors, which was shown to be effective for coating the iron oxide cores with gold shells (Fe oxide@Au). The unique aspect of our synthesis is the formation of Fe oxide@Au core–shell nanoparticles with controllable surface properties. The novelty of our assembly strategy is the exploitation of the ligand-exchange reactivity at the gold shells for the thin film assembly of the core–shell nanoparticles. The core–shell nanocomposites and assemblies have been characterized using TEM, XRD, XPS, FTIR, TGA, and DCP-AES techniques. In addition to evidence from TEM detection of the change in particle size, UV-Vis observation of the change in the surface plasmon resonance band, and XRD detection of disappearance of the magnetite diffraction peaks after coating the gold shell, the formation of the core–shell morphology was further confirmed by DCP-AES composition analysis of Au and Fe in the molecularly-mediated thin film assembly of Fe oxide@Au particles. The interparticle ligand exchange–precipitation chemistry at the gold shell is to our knowledge the first example demonstrating the inter-shell reactivity for constructing thin films of Fe oxide@Au particles. The results have provided important insights into the design of interfacial reactivities via core–shell nanocomposites for magnetic, catalytic and biosensing applications.

  19. Correction: Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim

    2016-02-01

    Correction for `Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents' by Roxanne Hachani et al., Nanoscale, 2015, DOI: 10.1039/c5nr03867g.

  20. Correction: Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents.

    PubMed

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguyen Thi Kim

    2016-02-21

    Correction for 'Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents' by Roxanne Hachani et al., Nanoscale, 2015, DOI: 10.1039/c5nr03867g. PMID:26823197

  1. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation

    SciTech Connect

    Klein, Stefanie; Sommer, Anja; Distel, Luitpold V.R.; Neuhuber, Winfried; Kryschi, Carola

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Ultrasmall citrate-coated SPIONs with {gamma}Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} structure were prepared. Black-Right-Pointing-Pointer SPIONs uptaken by MCF-7 cells increase the ROS production for about 240%. Black-Right-Pointing-Pointer The SPION induced ROS production is due to released iron ions and catalytically active surfaces. Black-Right-Pointing-Pointer Released iron ions and SPION surfaces initiate the Fenton and Haber-Weiss reaction. Black-Right-Pointing-Pointer X-ray irradiation of internalized SPIONs leads to an increase of catalytically active surfaces. -- Abstract: Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolic and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber-Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.

  2. Evaluation of folate conjugated superparamagnetic iron oxide nanoparticles for scintigraphic/magnetic resonance imaging.

    PubMed

    Chauhan, Ram Prakash; Mathur, Rashi; Singh, Gurjaspreet; Kaul, Ankur; Bag, Narmada; Singh, Sweta; Kumar, Hemanth; Patra, Manoj; Mishra, Anil K

    2013-03-01

    The physical and chemical properties of the nanoparticles influence their pharmacokinetics and ability to accumulate in tumors. In this paper we report a facile method to conjugate folic acid molecule to iron oxide nanoparticles to increase the specific uptake of these nanoparticles by the tumor, which will be useful in targeted imaging of the tumor. The iron oxide nanoparticles were synthesized by alkaline co precipitation method and were surface modified with dextranto make them stable. The folic acid is conjugated to the dextran modified iron oxide nanoparticles by reductive amination process after the oxidation of the dextran with periodate. The synthesized folic acid conjugated nanoparticles were characterized for size, phase, morphology and magnetization by using various physicochemical characterization techniques such as transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy, vibrating sample magnetometry, dynamic light scattering and zetasizer etc. The quantification of the generated carbonyl groups and folic acid conjugated to the surface of the magnetic nanoparticles was done by colorimetric estimations using UV-Visible spectroscopy. The in vitro MR studies were carried out over a range of concentrations and showed significant shortening of the transverse relaxation rate, showing the ability of the nanoconjugate to act as an efficient probe for MR imaging. The biodistribution studies and the scintigraphy done by radiolabeling the nanoconjugate with 99mTc show the enhanced uptake at the tumor site showing its enhanced specificity. PMID:23620987

  3. Synthesis of iron oxide nanotubes and their applications in neuroscience and drug delivery

    NASA Astrophysics Data System (ADS)

    Chen, Linfeng; Xie, Jining; Aatre, Kiran R.; Yancey, Justin; Srivatsan, Malathi; Varadan, Vijay K.

    2012-10-01

    This paper reports the synthesis of three types of iron oxide nanotubes, including hematite (α-Fe2O3), maghemite (γ-Fe2O3) and magnetite (Fe3O4), and their applications in neuroscience and drug delivery. Two methods, template-assisted thermal decomposition method and hydrothermal method, were used for synthesizing hematite nanotubes, and maghemite nanotubes were obtained from hematite nanotubes by thermal treatment. Template-assisted filtering method was used for synthesizing magnetite nanotubes from ferrofluid. The crystalline, morphology and magnetic properties of the synthesized iron oxide nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM), respectively. The biocompatibility of the synthesized hematite nanotubes was confirmed by the survival and differentiation of PC12 cells in the presence of the hematite nanotubes coupled to nerve growth factor (NGF). The capacity of hematite nanotubes for coupling and leasing NGF was confirmed by cultivating PC12 cells in the presence of NGF-loaded hematite nanotubes. The drug loading and release capabilities of hematite nanotubes were tested by using ibuprofen sodium salt (ISS) as a drug model. Based on the experimental results presented in this paper, it can be concluded that iron oxide nanotubes have good biocompatibility with neurons, could be used in guding neurite growth, and are promising candidates for drug delivery.

  4. Oligomerization of Glycine and Alanine Catalyzed by Iron Oxides: Implications for Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G.; Kamaluddin

    2012-02-01

    Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.

  5. [Determination of amorphous iron oxides in soil by hydroxylamine extraction-spectrophotometry].

    PubMed

    Chi, Guang-yu; Zhang, Zhao-wei; Chen, Xin; Shi, Yi

    2008-12-01

    Amorphous iron oxides in soil were determined by hydroxylamine extraction-spectrophotometry. The results showed that hydroxylamrnine extraction eliminates interference of magnetite and the defect of results being on the high side was overcome to a certain degree compared with oxalic acid-oxalic acid ammonium extraction. The hydroxylamine extraction-spectrophotometry for the detection of amorphous iron oxides in soil was highly precise (relative standard deviation was less than 2.0%) and highly reliable (recovery rates ranged from 97.5% to 101.5%). Other advantages of the method were rapidness,simplicity and a shorter chromogenic time. In addition, soil incubated anaerobically at constant temperature under laboratory condition was investigated. The results suggested that iron reduction rates during initiation, rapid reaction and steady phases in the soil samples anaerobic incubation were 0.030-0.053, 0.186-0.333 and 0.015-0.030 g x d(-1) x kg(-1), respectively. Significant relationship between the concentrations of hydroxylamine extraction iron and iron reduction rates during rapid reaction phase in soil incubation (r= 0.9907, p<0.01) indicated that hydroxylamine had a higher degree of selectivity in amorphous iron oxides extraction than oxalic acid-oxalic acid ammonium extraction.

  6. Gold and gold-iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties.

    PubMed

    de la Fuente, Jesús M; Alcántara, David; Eaton, Peter; Crespo, Patricia; Rojas, Teresa C; Fernandez, Asunción; Hernando, Antonio; Penadés, Soledad

    2006-07-01

    The preparation, characterization and the magnetic properties of gold and gold-iron oxide glyconanoparticles (GNPs) are described. Glyconanoparticles were prepared in a single step procedure in the presence of aqueous solution of thiol functionalized neoglycoconjugates and either gold salts or both gold and iron salts. Neoglycoconjugates of lactose and maltose disaccharides with different linkers were used. Iron-free gold or gold-iron oxide GNPs with controlled gold-iron ratios were obtained. The average core-size diameters are in the range of 1.5-2.5 nm. The GNPs are fully characterized by (1)H NMR spectrometry, transmission electron microscopy (TEM), and UV-vis and X-ray absorption (XAS) spectroscopies. Inductive plasma-atomic emission spectrometry (ICP) and elemental analysis gave the average number of neoglycoconjugates per cluster. The magnetic properties were measured in a SQUID magnetometer. The most remarkable results was the observation of a permanent magnetism up to room temperature in the iron-free gold GNPs, that was not present in the corresponding gold-iron oxide GNPs. PMID:16805609

  7. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride.

    PubMed

    Mallick, Neha; Anwar, Mohammed; Asfer, Mohammed; Mehdi, Syed Hassan; Rizvi, Mohammed Moshahid Alam; Panda, Amulya Kumar; Talegaonkar, Sushama; Ahmad, Farhan Jalees

    2016-10-20

    Chondroitin-4-sulfate (CS), a glycosaminoglycan, was used to prepare CS-capped super-paramagnetic iron oxide nanoparticles, which were further employed for loading a water-soluble chemotherapeutic agent (doxorubicin hydrochloride, DOX). CS-capped SPIONs have potential biomedical application in cancer targeting. The optimized formulation had a hydrodynamic size of 91.2±0.8nm (PDI; 0.228±0.004) and zeta potential of -49.1±1.66mV. DOX was loaded onto the formulation up to 2% (w/w) by physical interaction with CS. TEM showed nano-sized particles having a core-shell structure. XRD confirmed crystal phase of iron oxide. FT-IR conceived the interaction of iron oxide with CS as bidentate chelation and also confirmed DOX loading. Vibration sample magnetometry confirmed super-paramagnetic nature of nanoparticles, with saturation magnetization of 0.238emug(-1). In vitro release profile at pH 7.4 showed that 96.67% of DOX was released within 24h (first order kinetics). MTT assay in MCF7 cells showed significantly higher (p<0.0001) cytotoxicity for DOX in SPIONs than DOX solution (IC50 values 6.294±0.4169 and 11.316±0.1102μgmL(-1), respectively). PMID:27474599

  8. Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Osborne, Elizabeth A.; Atkins, Tonya M.; Gilbert, Dustin A.; Kauzlarich, Susan M.; Liu, Kai; Louie, Angelique Y.

    2012-06-01

    Currently, magnetic iron oxide nanoparticles are the only nanosized magnetic resonance imaging (MRI) contrast agents approved for clinical use, yet commercial manufacturing of these agents has been limited or discontinued. Though there is still widespread demand for these particles both for clinical use and research, they are difficult to obtain commercially, and complicated syntheses make in-house preparation unfeasible for most biological research labs or clinics. To make commercial production viable and increase accessibility of these products, it is crucial to develop simple, rapid and reproducible preparations of biocompatible iron oxide nanoparticles. Here, we report a rapid, straightforward microwave-assisted synthesis of superparamagnetic dextran-coated iron oxide nanoparticles. The nanoparticles were produced in two hydrodynamic sizes with differing core morphologies by varying the synthetic method as either a two-step or single-step process. A striking benefit of these methods is the ability to obtain swift and consistent results without the necessity for air-, pH- or temperature-sensitive techniques; therefore, reaction times and complex manufacturing processes are greatly reduced as compared to conventional synthetic methods. This is a great benefit for cost-effective translation to commercial production. The nanoparticles are found to be superparamagnetic and exhibit properties consistent for use in MRI. In addition, the dextran coating imparts the water solubility and biocompatibility necessary for in vivo utilization.

  9. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.

    PubMed

    Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong

    2015-11-01

    Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process.

  10. Synthesis and characterization of hybrid materials containing iron oxide for removal of sulfides from water.

    PubMed

    Jacukowicz-Sobala, Irena; Wilk, Łukasz J; Drabent, Krzysztof; Kociołek-Balawejder, Elżbieta

    2015-12-15

    Hybrid materials containing iron oxides based on macroporous and gel-type sulfonic and carboxylic cation exchangers as supporting materials were obtained. Multiple factors, including the kind of functional groups, ion exchange capacity, and polymer matrix type (chemical constitution and porous structure), affected the amount of iron oxides introduced into their matrix (7.8-35.2% Fe). Products containing the highest iron content were obtained using carboxylic cation exchangers, with their inorganic deposit being mostly a mixture of iron(III) oxides, including maghemite. Obtained hybrid polymers were used for removal of sulfides from anoxic aqueous solutions (50-200mgS(2-)/dm(3)). The research showed that the form (Na(+) or H(+)) of ionic groups of hybrid materials had a crucial impact on the sulfide removal process. Due to high iron oxide content (35% Fe), advantageous chemical constitution and porous structure, the highest removal efficiency (60mgS(2-)/g) was exhibited by a hybrid polymer obtained using a macroporous carboxylic cation exchanger as the host material. The process of sulfide removal was very complex and proceeded with heterogeneous oxidation, iron(III) oxide reductive dissolution and formation of sulfide oxidation and precipitation products such as iron(II) sulfides, thiosulfates and polysulfides.

  11. DNA-Based Synthesis and Assembly of Organized Iron Oxide Nanostructures

    NASA Astrophysics Data System (ADS)

    Khomutov, Gennady B.

    Organized bio-inorganic and hybrid bio-organic-inorganic nanostructures consisting of iron oxide nanoparticles and DNA complexes have been formed using methods based on biomineralization, interfacial and bulk phase assembly, ligand exchange and substitution, Langmuir-Blodgett technique, DNA templating and scaffolding. Interfacially formed planar DNA complexes with water-insoluble amphiphilic polycation or intercalator Langmuir monolayers were prepared and deposited on solid substrates to form immobilized DNA complexes. Those complexes were then used for the synthesis of organized DNA-based iron oxide nanostructures. Planar net-like and circular nanostructures of magnetic Fe3O4 nanoparticles were obtained via interaction of cationic colloid magnetite nanoparticles with preformed immobilized DNA/amphiphilic polycation complexes of net-like and toroidal morphologies. The processes of the generation of iron oxide nanoparticles in immobilized DNA complexes via redox synthesis with various iron sources of biological (ferritin) and artificial (FeCl3) nature have been studied. Bulk-phase complexes of magnetite nanoparticles with biomolecular ligands (DNA, spermine) were formed and studied. Novel nano-scale organized bio-inorganic nanostructures - free-floating sheet-like spermine/magnetite nanoparticle complexes and DNA/spermine/magnetite nanoparticle complexes were synthesized in bulk aqueous phase and the effect of DNA molecules on the structure of complexes was discovered.

  12. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture.

    PubMed

    Wang, Zhe; Lin, Yan; Wu, Deyi; Kong, Hainan

    2016-02-01

    A simple method to functionalize diatomite with hydrous iron oxide was attempted and its performance as a new active filtration material to remove and recover phosphate from water was investigated under varying solution conditions. The Langmuir phosphate adsorption capacity increased from 0.6 mgP/g for raw diatomite to 4.89, 14.71, 25.02 mgP/g for hydrous iron oxide modified diatomite (HIOMD), depending on the amount of iron loaded. Loading of hydrous iron oxide caused the increase in true and bulk density and a decline in filtration rate, but to a lesser extent. It was shown that the HIOMD product with suitable iron content could retain a good filtration performance with a greatly increased adsorption capacity for phosphate. The phosphate adsorption increased by decreasing pH and by increasing ionic strength at high pH levels. The adsorption process was interpreted by ligand exchange. Coexisting oxyanions of sulfate, nitrate, citrate, carbonate, silicate and humic acid showed different effects on phosphate fixation but it was presumed that their influence at their concentrations and pH levels commonly encountered in effluent or natural waters was limited, i.e., HIOMD had a reasonably good selectivity. Results in repeated adsorption, desorption and regeneration experiment showed that the adsorbed phosphate could be recovered and the material could be reused after regeneration. The column test showed that HIOMD could be potentially utilized as an adsorption filtration medium for phosphate removal and recovery from water.

  13. Optimization of preparation of chitosan-coated iron oxide nanoparticles for biomedical applications by chemometrics approaches

    NASA Astrophysics Data System (ADS)

    Honary, Soheila; Ebrahimi, Pouneh; Rad, Hossein Asgari; Asgari, Mahsa

    2013-08-01

    Functionalized magnetic nanoparticles are used in several biomedical applications, such as drug delivery, magnetic cell separation, and magnetic resonance imaging. Size and surface properties of iron oxide nanoparticles are the two important factors which could dramatically affect the nanoparticle efficiency as well as their stability. In this study, the chemometrics approach was applied to optimize the coating process of iron oxide nanoparticles. To optimize the size of nanoparticles, the effect of two experimental parameters on size was investigated by means of multivariate analysis. The factors considered were chitosan molecular weight and chitosan-to-tripolyphosphate concentration ratio. The experiments were performed according to face-centered cube central composite response surface design. A second-order regression model was obtained which characterized by both descriptive and predictive abilities. The method was optimized with respect to the percent of Z average diameter's increasing after coating as response. It can be concluded that experimental design provides a suitable means of optimizing and testing the robustness of iron oxide nanoparticle coating method.

  14. Magnetic Properties of Core/Shell Structured Iron/Iron-oxide Nanoparticles Dispersed in Polymer Matrix

    NASA Astrophysics Data System (ADS)

    Nemati Porshokouh, Zohreh; Khurshid, Hafsa; Phan, Manh-Huong; Srikanth, Hariharan

    2014-03-01

    Iron-based nanoparticles (NPs) show interesting magnetic properties for a wide range of applications; however rapid oxidation of iron limits its practical use. Protecting iron with a thin layer of iron-oxide is a possible way to prevent oxidation, forming core/shell (CS) iron/iron-oxide. Due to the different diffusivity rates of the two materials, a gap appears between the core and shell after a period of time (Kirkendall effect), degrading the magnetic properties of the sample. We minimize the Kirkendall effect while retaining good magnetic properties of ~12.5 nm CS iron/iron-oxide NPs by dispersing them into a polymer matrix. Magnetic measurements reveal that after a period of 3 months the blocking temperature (TB) of as-made CS NPs decreases from 107 K to 90 K. The change in TB marks the formation of a gap between the core and shell, which is also evident from HRTEM studies. By contrast, NPs dispersed in RP show no change in TB over the same time period. We repeated experiments with ~10.5 nm CS NPs and the results are consistent. Our study shows the importance of dispersing CS NPs in polymers to preserve desirable magnetic properties for practical applications, ranging from RF sensors and microwave devices to bioengineering.

  15. Reduction of iron-oxide-carbon composites: part I. Estimation of the rate constants

    SciTech Connect

    Halder, S.; Fruehan, R.J.

    2008-12-15

    A new ironmaking concept using iron-oxide-carbon composite pellets has been proposed, which involves the combination of a rotary hearth furnace (RHF) and an iron bath smelter. This part of the research focuses on studying the two primary chemical kinetic steps. Efforts have been made to experimentally measure the kinetics of the carbon gasification by CO{sub 2} and wustite reduction by CO by isolating them from the influence of heat- and mass-transport steps. A combined reaction model was used to interpret the experimental data and determine the rate constants. Results showed that the reduction is likely to be influenced by the chemical kinetics of both carbon oxidation and wustite reduction at the temperatures of interest. Devolatilized wood-charcoal was observed to be a far more reactive form of carbon in comparison to coal-char. Sintering of the iron-oxide at the high temperatures of interest was found to exert a considerable influence on the reactivity of wustite by virtue of altering the internal pore surface area available for the reaction. Sintering was found to be predominant for highly porous oxides and less of an influence on the denser ores. It was found using an indirect measurement technique that the rate constants for wustite reduction were higher for the porous iron-oxide than dense hematite ore at higher temperatures (> 1423 K). Such an indirect mode of measurement was used to minimize the influence of sintering of the porous oxide at these temperatures.

  16. Size and space controlled hexagonal arrays of superparamagnetic iron oxide nanodots: magnetic studies and application

    PubMed Central

    Ghoshal, Tandra; Maity, Tuhin; Senthamaraikannan, Ramsankar; Shaw, Matthew T.; Carolan, Patrick; Holmes, Justin D.; Roy, Saibal; Morris, Michael A.

    2013-01-01

    Highly dense hexagonally arranged iron oxide nanodots array were fabricated using PS-b-PEO self-assembled patterns. The copolymer molecular weight, composition and choice of annealing solvent/s allows dimensional and structural control of the nanopatterns at large scale. A mechanism is proposed to create scaffolds through degradation and/or modification of cylindrical domains. A methodology based on selective metal ion inclusion and subsequent processing was used to create iron oxide nanodots array. The nanodots have uniform size and shape and their placement mimics the original self-assembled nanopatterns. For the first time these precisely defined and size selective systems of ordered nanodots allow careful investigation of magnetic properties in dimensions from 50 nm to 10 nm, which delineate the nanodots are superparamagnetic, well-isolated and size monodispersed. This diameter/spacing controlled iron oxide nanodots systems were demonstrated as a resistant mask over silicon to fabricate densely packed, identical ordered, high aspect ratio silicon nanopillars and nanowire features. PMID:24072037

  17. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  18. Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications

    PubMed Central

    Nadeem, Muhammad; Ahmad, Munir; Akhtar, Muhammad Saeed; Shaari, Amiruddin; Riaz, Saira; Naseem, Shahzad; Masood, Misbah; Saeed, M. A.

    2016-01-01

    The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs) and impact of hydrophilic polymer polyvinyl alcohol (PVA) coating concentration as well as anticancer drug doxorubicin (DOX) loading on saturation magnetization for target drug delivery applications. Iron oxide nanoparticles particles were synthesized by a reformed version of the co-precipitation method. The coating of polyvinyl alcohol along with doxorubicin loading was carried out by the physical immobilization method. X-ray diffraction confirmed the magnetite (Fe3O4) structure of particles that remained unchanged before and after polyvinyl alcohol coating and drug loading. Microstructure and morphological analysis was carried out by transmission electron microscopy revealing the formation of nanoparticles with an average size of 10 nm with slight variation after coating and drug loading. Transmission electron microscopy, energy dispersive, and Fourier transform infrared spectra further confirmed the conjugation of polymer and doxorubicin with iron oxide nanoparticles. The room temperature superparamagnetic behavior of polymer-coated and drug-loaded magnetite nanoparticles were studied by vibrating sample magnetometer. The variation in saturation magnetization after coating evaluated that a sufficient amount of polyvinyl alcohol would be 3 wt. % regarding the externally controlled movement of IONPs in blood under the influence of applied magnetic field for in-vivo target drug delivery. PMID:27348436

  19. Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry.

    PubMed

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G; Kamaluddin

    2012-02-01

    Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.

  20. Nitrite Induces the Extravasation of Iron Oxide Nanoparticles in Hypoxic Tumor Tissue

    PubMed Central

    Mistry, Nilesh; Stokes, Ashley M; Van Gambrell, James; Quarles, Christopher Chad

    2014-01-01

    Nitrite undergoes reconversion to nitric oxide (NO) under conditions characteristic of the tumor microenvironment, such as hypoxia and low pH. This selective conversion of nitrite into NO in tumor tissue has led to the possibility of using nitrite to enhance drug delivery and radiation response. In this work we propose to serially characterize the vascular response of brain tumor bearing rats to nitrite using contrast-enhanced R2* mapping. Imaging is performed using a multi-echo gradient echo sequence at baseline, post iron-oxide nanoparticle injection, and post-nitrite injection, while the animal is breathing air. The results indicate that nitrite sufficiently increases vascular permeability in C6 gliomas such that the iron oxide nanoparticles accumulate within the tumor tissue. When animals breathed 100% oxygen, the contrast agent remained within the vasculature indicating that the conversion of nitrite to nitric oxide occurs in the presence of hypoxia within the tumor. The hypoxia-dependent, nitrite-induced extravasation of iron-oxide nanoparticles observed herein has implications for the enhancement of conventional and nanotherapeutic drug delivery. PMID:24470164

  1. In situ synthesis of hydroxyapatite nanocomposites using iron oxide nanofluids at ambient conditions.

    PubMed

    Sheikh, Lubna; Mahto, Neha; Nayar, Suprabha

    2015-01-01

    This paper describes a simple method for the room temperature synthesis of magnetite/hydroxyapatite composite nanocomposites using ferrofluids. The in situ synthesis of magnetic-hydroxyapatite results in a homogenous distribution of the two phases as seen both in transmission electron micrographs and assembled to a micron range in the confocal micrographs. The selected area diffraction pattern analysis shows the presence of both phases of iron oxide and hydroxyapatite. To the dialyzed ferrofluid, the constituents of hydroxyapatite synthesis was added, the presence of the superparamagnetic iron oxide particles imparts directionality to the hydroxyapatite crystal growth. Electron probe microanalysis confirms the co-existence of both iron and calcium atoms. Vibrating Sample magnetometer data shows magnetization three times more than the parent ferrofluid, the local concentration of iron oxide nanoparticles affects the strength of dipolar interparticle interactions changing the energy barrier for determining the collective magnetic behavior of the sample. The limitations inherent to the use of external magnetic fields which can be circumvented by the introduction of internal magnets located in the proximity of the target by a minimal surgery or by using a superparamagnetic scaffold under the influence of externally applied magnetic field inspires us to increase the magnetization of our samples. The composite in addition shows anti-bacterial properties against the two gram (-ve) bacteria tested. This work is significant as magnetite-hydroxyapatite composites are attracting a lot of attention as adsorbents, catalysts, hyperthermia agents and even as regenerative medicine. PMID:25589209

  2. Cold catalytic recovery of loaded activated carbon using iron oxide-based nanoparticles.

    PubMed

    Bach, Altai; Zelmanov, Grigory; Semiat, Raphael

    2008-01-01

    A novel approach for the recovery of spent activated carbon by an advanced oxidation process using iron oxide-based nanocatalysts was proposed and investigated. Model organic contaminants, such as ethylene glycol and phenol, were chosen for this study as water pollutants. It was shown that there are several advantages in using catalytic oxidation recovery of activated carbon with iron oxide-based nanocatalysts: low temperature reactivity of catalytic recovery without heating; and a relatively large number of adsorption-recovery cycles, without a reduction in the adsorptive properties of the virgin activated carbon or without a performance decrease from the first adsorption-recovery cycle of the new modified adsorptive properties of the activated carbon. The catalytic recovery takes place without ultraviolet light or any visible radiation sources. Results show a high efficiency of catalytic recovery of spent activated carbon using iron oxide-based nanocatalysts. A 97-99% efficiency of spent activated carbon catalytic regeneration was achieved under chosen conditions after 15-20 min of reaction. The process may be also considered as cold in situ recovery of active carbon.

  3. Removal of crystal violet from water by magnetically modified activated carbon and nanomagnetic iron oxide.

    PubMed

    Hamidzadeh, Soheila; Torabbeigi, Marzieh; Shahtaheri, Seyed Jamaleddin

    2015-01-01

    Magnetically modified activated carbon, which synthesized by nanomagnetic iron oxide, was used for fast and effective removal of Crystal Violet from aqueous solutions. The scanning electron microscopy (SEM) images of nano-adsorbent showed that the average sizes of adsorbent are less than 100 nm. The various parameters, affecting on adsorption process, were examined including pH and temperature of dye solution, dose of adsorbent, and contact time. Then, thermodynamic parameters of sorption were calculated. Langmuir and Freundlich isotherms were used to fit the resulting data. Adsorption kinetics was consistent with a pseudo second order equation. Thermodynamic parameters of adsorption, ∆H(0), and ∆S(0) were calculated. Also, for further investigations, nano magnetic iron oxides was synthesized and used as adsorbent. Sorption capacities were depending on the temperature varied from 44.7 to 67.1 mg/g and from 12.7 to 16.5 mg/g for magnetically modified activated carbon and nanomagnetic iron oxide, respectively. PMID:25699186

  4. Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles.

    PubMed

    Jansch, M; Stumpf, P; Graf, C; Rühl, E; Müller, R H

    2012-05-30

    In this study the kinetics of plasma protein adsorption onto ultrasmall superparamagnetic iron oxide (USPIO) particles have been analyzed and compared to previously published kinetic studies on polystyrene particles (PS particles), oil-in-water nanoemulsions and solid lipid nanoparticles (SLNs). SPIO and USPIO nanoparticles are commonly used as magnetic resonance imaging (MRI) enhancers for tumor imaging as well as in drug delivery applications. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) has been used to determine the plasma protein adsorption onto the citrate/triethylene glycol-stabilized iron oxide surface. The results indicate that the existence of a Vroman effect, a displacement of previously adsorbed abundant proteins, such as albumin or fibrinogen, respectively, on USPIO particles has to be denied. Previously, identical findings have been reported for oil-in-water nanoemulsions. Furthermore, the protein adsorption kinetics differs dramatically from that of other solid drug delivery systems (PS, SLN). More relevant for the in vivo fate of long circulating particles is the protein corona after several minutes or even hours. Interestingly, the patterns received after an incubation time of 0.5 min to 240 min are found to be qualitatively and quantitatively similar. This leads to the assumption of a long-lived ("hard") protein corona around the iron oxide nanoparticles. PMID:22342465

  5. Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings.

    PubMed

    Zeng, Le; Li, Xiaomei; Liu, Jindun

    2004-03-01

    This study explored the feasibility of utilizing industrial waste iron oxide tailings for phosphate removal in laboratory experiments. The experimental work emphasized on the evaluation of phosphate adsorption and desorption characteristics of the tailing material. The adsorption isotherm, kinetics, pH effect and desorption were examined in batch experiments. Five isotherm models were used for data fitting. The three-parameter equations (Redlich-Peterson and Langmuir-Freundlich) showed more applicability than the two-parameter equations (Freundlich, Langmuir and Temkin). A modified equation for calculation of the separation factor using the Langmuir-Freundlich equation constants was developed. The initial phosphate adsorption on the tailings was rapid. The adsorption kinetics can be best described by either the simple Elovich or power function equation. The phosphate adsorption on the tailings tended to decrease with an increase of pH. A phosphate desorbability of approximately 13-14% was observed, and this low desorbability likely resulted from a strong bonding between the adsorbed PO(4)(3-)and iron oxides in the tailings. Column flow-through tests using both synthetic phosphate solution and liquid hog manure confirmed the phosphate removal ability of the tailings. Due to their low cost and high capability, this type of iron oxide tailings has the potential to be utilized for cost-effective removal of phosphate from wastewater.

  6. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.

    PubMed

    Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong

    2015-11-01

    Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process. PMID:26444653

  7. Potassium promotion of iron oxide dehydrogenation catalysts supported on magnesium oxide: 1. Preparation and characterization

    SciTech Connect

    Stobbe, D.E.; Buren, F.R. van ); Dillen, A.J. van; Geus, J.W. )

    1992-06-01

    Catalysts of iron oxide supported on magnesium oxide and promoted with potassium were prepared by incipient wetness impregnation of preshaped magnesium oxide support pellets with a solution of an iron complex, either ammonium iron (III) citrate or ammonium iron (III) EDTA and potassium carbonate. Iron and potassium were applied wither simultaneously or consecutively. As determined using X-ray diffraction, thermogravimetric analysis, and magnetic measurements, calcination above 923 K results in the formation of a mixed oxide of iron and potassium, viz., KFeO[sub 2]. After calcination at 973 K the average crystallite size of the KFeO[sub 2] phase is about 300 [angstrom]. The formation of KFeO[sub 2] appeared to have a strong retarding effect on the reduction of the iron oxide phase to metallic iron. It was found that the KFeO[sub 2] phase is unstable in atomspheric air due to reaction with carbon dioxide and moisture to form potassium (hydrogen) carbonate and (hydrated) iron oxide.

  8. Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI

    PubMed Central

    Hajesmaeelzadeh, Farzaneh; Shanehsazzadeh, Saeed; Grüttner, Cordula; Daha, Fariba Johari; Oghabian, Mohammad Ali

    2016-01-01

    Objective(s): Iron oxide nanoparticles have found prevalent applications in various fields including drug delivery, cell separation and as contrast agents. Super paramagnetic iron oxide (SPIO) nanoparticles allow researchers and clinicians to enhance the tissue contrast of an area of interest by increasing the relaxation rate of water. In this study, we evaluate the dependency of hydrodynamic size of iron oxide nanoparticles coated with Polyethylene glycol (PEG) on their relativities with 3 Tesla clinical MRI. Materials and Methods: We used three groups of nanoparticles with nominal sizes 20, 50 and 100 nm with a core size of 8.86 nm, 8.69 nm and 10.4 nm that they were covered with PEG 300 and 600 Da. A clinical magnetic resonance scanner determines the T1 and T2 relaxation times for various concentrations of PEG-coated nanoparticles. Results: The size measurement by photon correlation spectroscopy showed the hydrodynamic sizes of MNPs with nominal 20, 50 and 100 nm with 70, 82 and 116 nm for particles with PEG 600 coating and 74, 93 and 100 nm for particles with PEG 300 coating, respectively. We foud that the relaxivity decreased with increasing overall particle size (via coating thickness). Magnetic resonance imaging showed that by increasing the size of the nanoparticles, r2/r1 increases linearly. Conclusion: According to the data obtained from this study it can be concluded that increments in coating thickness have more influence on relaxivities compared to the changes in core size of magnetic nanoparticles. PMID:27081461

  9. Gold and gold-iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties.

    PubMed

    de la Fuente, Jesús M; Alcántara, David; Eaton, Peter; Crespo, Patricia; Rojas, Teresa C; Fernandez, Asunción; Hernando, Antonio; Penadés, Soledad

    2006-07-01

    The preparation, characterization and the magnetic properties of gold and gold-iron oxide glyconanoparticles (GNPs) are described. Glyconanoparticles were prepared in a single step procedure in the presence of aqueous solution of thiol functionalized neoglycoconjugates and either gold salts or both gold and iron salts. Neoglycoconjugates of lactose and maltose disaccharides with different linkers were used. Iron-free gold or gold-iron oxide GNPs with controlled gold-iron ratios were obtained. The average core-size diameters are in the range of 1.5-2.5 nm. The GNPs are fully characterized by (1)H NMR spectrometry, transmission electron microscopy (TEM), and UV-vis and X-ray absorption (XAS) spectroscopies. Inductive plasma-atomic emission spectrometry (ICP) and elemental analysis gave the average number of neoglycoconjugates per cluster. The magnetic properties were measured in a SQUID magnetometer. The most remarkable results was the observation of a permanent magnetism up to room temperature in the iron-free gold GNPs, that was not present in the corresponding gold-iron oxide GNPs.

  10. Ordered Mesoporous Carbon/Iron Oxide Nanoparticle Composites for Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Wang, Xinyu; Watkins, James

    2013-03-01

    Novel mesoporous carbon/iron oxide composites were prepared through a simple carbonization procedure of blends of block copolymer precursors containing the source of carbon, i.e., polyacrylonitrile-block-poly(t-butyl acrylate) (PtBA-b-PAN) with iron oxide nanoparticles. The addition of functionalized nanoparticles that selectively hydrogen bond with PAN segments was shown to induce order in otherwise disordered system. The ordered mesostructure of the composites was confirmed by both small x-ray scattering and transmission electron microscopy. The preparation of nanocomposites with pore structure was enabled by the high ?delity preservation of the phase-separated nanostructure between two polymer blocks driven by nanoparticle additive upon carbonization at 700oC. The electrochemical performance of the composite films was compared to that of the neat carbon and the mesoporous carbon without iron oxide nanoparticles. The mesoporous structure together with the high iron contents in such materials make them particularly promising for use in supercapacitor applications. This work was supported by the NSF Center for Hierarchical Manufacturing at the University of Massachusetts (CMMI-0531171).

  11. In situ synthesis of hydroxyapatite nanocomposites using iron oxide nanofluids at ambient conditions.

    PubMed

    Sheikh, Lubna; Mahto, Neha; Nayar, Suprabha

    2015-01-01

    This paper describes a simple method for the room temperature synthesis of magnetite/hydroxyapatite composite nanocomposites using ferrofluids. The in situ synthesis of magnetic-hydroxyapatite results in a homogenous distribution of the two phases as seen both in transmission electron micrographs and assembled to a micron range in the confocal micrographs. The selected area diffraction pattern analysis shows the presence of both phases of iron oxide and hydroxyapatite. To the dialyzed ferrofluid, the constituents of hydroxyapatite synthesis was added, the presence of the superparamagnetic iron oxide particles imparts directionality to the hydroxyapatite crystal growth. Electron probe microanalysis confirms the co-existence of both iron and calcium atoms. Vibrating Sample magnetometer data shows magnetization three times more than the parent ferrofluid, the local concentration of iron oxide nanoparticles affects the strength of dipolar interparticle interactions changing the energy barrier for determining the collective magnetic behavior of the sample. The limitations inherent to the use of external magnetic fields which can be circumvented by the introduction of internal magnets located in the proximity of the target by a minimal surgery or by using a superparamagnetic scaffold under the influence of externally applied magnetic field inspires us to increase the magnetization of our samples. The composite in addition shows anti-bacterial properties against the two gram (-ve) bacteria tested. This work is significant as magnetite-hydroxyapatite composites are attracting a lot of attention as adsorbents, catalysts, hyperthermia agents and even as regenerative medicine.

  12. Iron-oxide colloidal nanoclusters: from fundamental physical properties to diagnosis and therapy

    NASA Astrophysics Data System (ADS)

    Kostopoulou, Athanasia; Brintakis, Konstantinos; Lascialfari, Alessandro; Angelakeris, Mavroeidis; Vasilakaki, Marianna; Trohidou, Kalliopi; Douvalis, Alexios P.; Psycharakis, Stylianos; Ranella, Anthi; Manna, Liberato; Lappas, Alexandros

    2014-03-01

    Research on magnetic nanocrystals attracts wide-spread interest because of their challenging fundamental properties, but it is also driven by problems of practical importance to the society, ranging from electronics (e.g. magnetic recording) to biomedicine. In that respect, iron oxides are model functional materials as they adopt a variety of oxidation states and coordinations that facilitate their use. We show that a promising way to engineer further their technological potential in diagnosis and therapy is the assembly of primary nanocrystals into larger colloidal entities, possibly with increased structural complexity. In this context, elevated-temperature nanochemistry (c.f. based on a polyol approach) permitted us to develop size-tunable, low-cytotoxicity iron-oxide nanoclusters, entailing iso-oriented nanocrystals, with enhanced magnetization. Experimental (magnetometry, electron microscopy, Mössbauer and NMR spectroscopies) results supported by Monte Carlo simulations are reviewed to show that such assemblies of surface-functionalized iron oxide nanocrystals have a strong potential for innovation. The clusters' optimized magnetic anisotropy (including microscopic surface spin disorder) and weak ferrimagnetism at room temperature, while they do not undermine colloidal stability, endow them a profound advantage as efficient MRI contrast agents and hyperthermic mediators with important biomedical potential.

  13. Magnetically stimulated ciprofloxacin release from polymeric microspheres entrapping iron oxide nanoparticles

    PubMed Central

    Sirivisoot, Sirinrath; Harrison, Benjamin S

    2015-01-01

    To extend the external control capability of drug release, iron oxide nanoparticles (NPs) encapsulated into polymeric microspheres were used as magnetic media to stimulate drug release using an alternating magnetic field. Chemically synthesized iron oxide NPs, maghemite or hematite, and the antibiotic ciprofloxacin were encapsulated together within polycaprolactone microspheres. The polycaprolactone microspheres entrapping ciprofloxacin and magnetic NPs could be triggered for immediate drug release by magnetic stimulation at a maximum value of 40%. Moreover, the microspheres were cytocompatible with fibroblasts in vitro with a cell viability percentage of more than 100% relative to a nontreated control after 24 hours of culture. Macrophage cell cultures showed no signs of increased inflammatory responses after in vitro incubation for 56 hours. Treatment of Staphylococcus aureus with the magnetic microspheres under an alternating (isolating) magnetic field increased bacterial inhibition further after 2 days and 5 days in a broth inhibition assay. The findings of the present study indicate that iron oxide NPs, maghemite and hematite, can be used as media for stimulation by an external magnetic energy to activate immediate drug release. PMID:26185446

  14. Evaluation of folate conjugated superparamagnetic iron oxide nanoparticles for scintigraphic/magnetic resonance imaging.

    PubMed

    Chauhan, Ram Prakash; Mathur, Rashi; Singh, Gurjaspreet; Kaul, Ankur; Bag, Narmada; Singh, Sweta; Kumar, Hemanth; Patra, Manoj; Mishra, Anil K

    2013-03-01

    The physical and chemical properties of the nanoparticles influence their pharmacokinetics and ability to accumulate in tumors. In this paper we report a facile method to conjugate folic acid molecule to iron oxide nanoparticles to increase the specific uptake of these nanoparticles by the tumor, which will be useful in targeted imaging of the tumor. The iron oxide nanoparticles were synthesized by alkaline co precipitation method and were surface modified with dextranto make them stable. The folic acid is conjugated to the dextran modified iron oxide nanoparticles by reductive amination process after the oxidation of the dextran with periodate. The synthesized folic acid conjugated nanoparticles were characterized for size, phase, morphology and magnetization by using various physicochemical characterization techniques such as transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy, vibrating sample magnetometry, dynamic light scattering and zetasizer etc. The quantification of the generated carbonyl groups and folic acid conjugated to the surface of the magnetic nanoparticles was done by colorimetric estimations using UV-Visible spectroscopy. The in vitro MR studies were carried out over a range of concentrations and showed significant shortening of the transverse relaxation rate, showing the ability of the nanoconjugate to act as an efficient probe for MR imaging. The biodistribution studies and the scintigraphy done by radiolabeling the nanoconjugate with 99mTc show the enhanced uptake at the tumor site showing its enhanced specificity.

  15. Manganese Doping of Magnetic Iron Oxide Nanoparticles: Tailoring Surface Reactivity for a Regenerable Heavy Metal Sorbent

    SciTech Connect

    Warner, Cynthia L.; Chouyyok, Wilaiwan; Mackie, Katherine E.; Neiner, Doinita; Saraf, Laxmikant; Droubay, Timothy C.; Warner, Marvin G.; Addleman, Raymond S.

    2012-02-28

    A method for tuning the analyte affinity of magnetic, inorganic nanostructured sorbents for heavy metal contaminants is described. The manganese-doped iron oxide nanoparticle sorbents have a remarkably high affinity compared to the precursor material. Sorbent affinity can be tuned toward an analyte of interest simply by adjustment of the dopant quantity. The results show that following the Mn doping process there is a large increase in affinity and capacity for heavy metals (i.e., Co, Ni, Zn, As, Ag, Cd, Hg, and Tl). Capacity measurements were carried out for the removal of cadmium from river water and showed significantly higher loading than the relevant commercial sorbents tested for comparison. The reduction in Cd concentration from 100 ppb spiked river water to 1 ppb (less than the EPA drinking water limit of 5 ppb for Cd) was achieved following treatment with the Mn-doped iron oxide nanoparticles. The Mn-doped iron oxide nanoparticles were able to load 1 ppm of Cd followed by complete stripping and recovery of the Cd with a mild acid wash. The Cd loading and stripping is shown to be consistent through multiple cycles with no loss of sorbent performance.

  16. Biodiversity and Emerging Biogeography of the Neutrophilic Iron-Oxidizing Zetaproteobacteria ▿ †

    PubMed Central

    McAllister, Sean M.; Davis, Richard E.; McBeth, Joyce M.; Tebo, Bradley M.; Emerson, David; Moyer, Craig L.

    2011-01-01

    Members of the neutrophilic iron-oxidizing candidate class Zetaproteobacteria have predominantly been found at sites of microbially mediated iron oxidation in marine environments around the Pacific Ocean. Eighty-four full-length (>1,400-bp) and 48 partial-length Zetaproteobacteria small-subunit (SSU) rRNA gene sequences from five novel clone libraries, one novel Zetaproteobacteria isolate, and the GenBank database were analyzed to assess the biodiversity of this burgeoning class of the Proteobacteria and to investigate its biogeography between three major sampling regions in the Pacific Ocean: Loihi Seamount, the Southern Mariana Trough, and the Tonga Arc. Sequences were grouped into operational taxonomic units (OTUs) on the basis of a 97% minimum similarity. Of the 28 OTUs detected, 13 were found to be endemic to one of the three main sampling regions and 2 were ubiquitous throughout the Pacific Ocean. Additionally, two deeply rooted OTUs that potentially dominate communities of iron oxidizers originating in the deep subsurface were identified. Spatial autocorrelation analysis and analysis of molecular variance (AMOVA) showed that geographic distance played a significant role in the distribution of Zetaproteobacteria biodiversity, whereas environmental parameters, such as temperature, pH, or total Fe concentration, did not have a significant effect. These results, detected using the coarse resolution of the SSU rRNA gene, indicate that the Zetaproteobacteria have a strong biogeographic signal. PMID:21666021

  17. A Silica-Supported Iron Oxide Catalyst Capable of Activating Hydrogen Peroxide at Neutral pH Values

    PubMed Central

    Pham, Anh Le-Tuan; Lee, Changha; Doyle, Fiona M.; Sedlak, David L.

    2009-01-01

    Iron oxides catalyze the conversion of hydrogen peroxide (H2O2) into oxidants capable of transforming recalcitrant contaminants. Unfortunately, the process is relatively inefficient at circumneutral pH values due to competing reactions that decompose H2O2 without producing oxidants. Silica- and alumina-containing iron oxides prepared by sol-gel processing of aqueous solutions containing Fe(ClO4)3, AlCl3 and tetraethyl orthosilicate efficiently catalyzed the decomposition of H2O2 into oxidants capable of transforming phenol at circumneutral pH values. Relative to hematite, goethite and amorphous FeOOH, the silica-iron oxide catalyst exhibited a stoichiometric efficiency, defined as the number of moles of phenol transformed per mole of H2O2 consumed, that was 10 to 40 times higher than that of the iron oxides. The silica-alumina-iron oxide catalyst had a stoichiometric efficiency that was 50 to 80 times higher than that of the iron oxides. The significant enhancement in oxidant production is attributable to the interaction of Fe with Al and Si in the mixed oxides, which alters the surface redox processes, favoring the production of strong oxidants during H2O2 decomposition. PMID:19943668

  18. Use of magnetic iron oxide to determine soil losses in rainfed olive orchard plots

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Gómez, J. A.; Giráldez, J. V.

    2012-04-01

    Soil erosion is a major threat for sustainability of olive cropped areas in Mediterranean countries, like southern Spain where ~17% of its surface is covered by olive orchards (Gómez et al. 2005). Despite the large number of research dedicated to the study of soil erosion in olive orchards, a significant uncertainty persists in the estimation of actual erosion rates in these areas (Gómez et al. 2008; Fleskens and Stroosnijder, 2007). Due to the technical and economic limitations of traditional methods used in erosion measurement, there is a growing interest in the use of new methods including tracking of soil incorporating tracers in experiments performed at different scales and time periods. Magnetic iron oxide particles are good tracers to complement, or even replace traditional techniques of soil loss measurement after rainfall events under controlled rainfall conditions, especially at the small scale (Guzmán et al. 2010). From October 2008 to August 2010 soil losses were measured in two olive orchard runoff plots. During that period magnetic iron oxide concentration changes were also determined to estimate total soil losses and soil redistribution by water and tillage erosion in the plots, differentiating between the inter-tree rows, tree rows and rill areas influence. Average measured and estimated soil losses in the plots were 14.1 and 14.2 kg·m-2 respectively. Magnetic iron oxide as a sediment tracer allowed the estimation of soil losses with a RSME of 0.72 kg·m-2. Although soil erosion rates from tree rows were lower (0.6 kg·m-2·month-1) compared to inter-tree row rates (1.1 kg·m-2·month-1), the contribution of tree row areas to total soil losses was considerably high because of the great volume of the tree canopies in the plots and therefore, covered area (53.5 %). Magnetite content variations both overland and within the soil profile, selectivity of the tracer for finer soil particles, and soil bulk density changes, due to tillage-compaction and

  19. Fractionation of Oxygen Isotopes in Phosphate during its Interactions with Iron Oxides

    SciTech Connect

    Jaisi, Deb P; Blake, Ruth E; Kukkadapu, Ravi K

    2010-02-15

    Iron (III) oxides are ubiquitous in near-surface soils and sediments and interact strongly with dissolved phosphates via sorption, co-precipitation, mineral transformation and redox-cycling reactions. Iron oxide phases are thus, an important reservoir for dissolved phosphate, and phosphate bound to iron oxides should reflect dissolved sources as well as carry a history of the biogeochemical cycling of phosphorus (P). It has recently been demonstrated that dissolved inorganic phosphate (DIP) in rivers, lakes, estuaries and the open ocean can be used to distinguish different P sources and biological reaction pathways in the ratio of 18O/16O (δ18OP) in PO43-. Here we present results of experimental studies aimed at determining whether non-biological interactions between dissolved inorganic phosphate and solid iron-oxides involve fractionation of oxygen isotopes in PO4. Determination of such fractionations is critical to any interpretation of δ18OP values of modern (e.g. hydrothermal iron oxide deposits, marine sediments, soils, groundwater systems) to ancient and extraterrestrial samples (e.g., BIF’s, Martian soils). Batch sorption experiments were performed using varied concentrations of synthetic ferrihydrite and isotopically- labeled dissolved ortho-phosphate at temperatures ranging from 4 to 95 oC. Mineral transformations and morphological changes were determined by X-Ray, Mössbauer spectroscopy and SEM image analyses. Our results reveal that isotopic fractionation between sorbed and aqueous phosphate occurs during the early phase of sorption with isotopically light phosphate preferentially incorporated into sorbed/solid phases. This fractionation showed negligible temperature-dependence and gradually decreased as a result of O-isotopic exchange between sorbed and aqueous phase phosphate, to become insignificant at greater than ~100 hours of reaction. In high-temperature experiments, this exchange was very rapid

  20. Iron oxides as pedoenvironmental indicators: state of the art, answers and questions (Philippe Duchaufour Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Torrent, J.

    2012-04-01

    The colour and magnetic properties of soils largely reflect the content and mineralogy of their iron oxides, which in turn relate to the physical, chemical and biological characteristics of the soil environment. For more than 50 years, soil mineralogists and chemists have collected data for iron oxides in soils formed in widely different environments and tried to understand the complex nature of the different suites and formation pathways for these minerals via laboratory experiments. The discovery of ferrihydrite —the poorly crystalline precursor of most Fe oxides— in 1971, and the recognition of its common presence in soils, raised interest in deciphering the environmental factors that affect its transformation into goethite and hematite, the two most abundant crystalline iron oxides in soil. Field observations were consistent with laboratory experiments in which temperature, water activity, pH, foreign ions and organic matter were found to play a key role in the crystallization of ferrihydrite. Thus, the hematite/(hematite + goethite) ratio increased with increasing temperature and also with the likelihood of seasonal soil drying. Exploiting this ratio as a (pedo)environment indicator is, however, not devoid of problems derived from insufficient knowledge of the interactions between the influential chemical variables, difficulties in quantifying the two minerals and changes brought about by reductive dissolution. Soil formation usually leads to magnetic enhancement as a result of the production of magnetite and/or maghemite, which are ferrimagnetic iron oxides, and, possibly, an ordered ferrimagnetic ferrihydrite, as suggested by recent laboratory experiments. The concentration of pedogenic ferrimagnets as estimated via proxies such as magnetic susceptibility or frequency-dependent magnetic susceptibility has been found to relate to climate variables [particularly (paleo)rainfall] in many studies reported over the last 30 years. However, extracting accurate

  1. Climatic thresholds for pedogenic iron oxides under aerobic conditions: Processes and their significance in paleoclimate reconstruction

    NASA Astrophysics Data System (ADS)

    Long, Xiaoyong; Ji, Junfeng; Barrón, Vidal; Torrent, José

    2016-10-01

    Iron oxides are widely distributed across the surface of the Earth as a result of the aerobic weathering of primary Fe-bearing minerals. Pedogenic iron oxides which consist mainly of hematite (Hm), goethite (Gt), maghemite (Mgh), are often concentrated synchronously in aerobic soils under low to moderate rainfall regimes. Magnetic susceptibility (χ) and redness, which respectively reflect the content of Mgh and Hm in soils, are considered reasonable pedogenic and climatic indicators in soil taxonomy and paleorainfall reconstruction. However, under high rainfall regimes, the grain growth of Mgh and transformation to Hm, combined with the prior formation of Gt under conditions of high relative humidity (RH), can result in magnetic reduction and dramatic yellowing of soils and sediments, which explains the existence of rainfall thresholds for Mgh and Hm at a large scale even before the pedogenic environment turns anaerobic. In order to capture the rainfall thresholds for Mgh and Hm occurring under aerobic conditions, we explored a tropical transect across a granitic region where the soil color turned from red to yellow under a wide rainfall range of 900-2200 mm/yr and a corresponding mean annual RH range of 77%-85%. We observed a lower rainfall threshold of ∼1500 mm/yr and a corresponding RH ∼80% for Mgh and Hm along this transect, as well as a higher rainfall threshold of ∼1700 mm/yr and a corresponding RH of ∼81% for Gt and total pedogenic iron oxides (citrate/bicarbonate/dithionite-extractable Fe, Fed). Cross-referencing with comparable studies in temperate and subtropical regions, we noted that the rainfall or RH thresholds for Fed and Hm or Mgh likewise increase with temperature. Moreover, the different thresholds for total and individual iron oxide phase indicates that a negative correlation between chemical weathering intensity and redness or χ in sediment sequences can occur under the prevalent climate regime just between their thresholds. Finally

  2. Magnetic Properties of Iron Oxide Minerals in Atmospheric Dust and Source Sediments from Western US

    NASA Astrophysics Data System (ADS)

    Moskowitz, B. M.; Yauk, K.; Till, J. L.; Berquo, T. S.; Banerjee, S. K.; Reynolds, R. L.; Goldstein, H. L.

    2011-12-01

    Atmospheric dust contains iron oxide minerals that can play important roles in various physical and biological processes affecting atmospheric and surface temperatures, marine phytoplankton productivity, and human health. Iron oxide minerals in dust deposited on mountain snow cover are especially important because these minerals absorb solar and IR radiation leading to changes in albedo and affecting the timing and rate of spring and summer snowpack melting. As part of an ongoing project to study physical and chemical properties of dust from sources to sinks in the western US, we will describe one approach to characterize iron oxide mineralogy using magnetic property measurements and Mossbauer spectroscopy. Magnetic property measurements over a wide range of temperatures (2-300 K) and magnetic fields (0-5 T) are particularly sensitive to composition, particle size (from nanometer to micrometer), and concentration of iron oxide and oxyhydroxide minerals. The high sensitivity of magnetic measurements to target minerals allows the measurement of bulk samples preventing any aliasing of composition or grain size resulting from attempts at prior magnetic separation. In addition, different magnetic measurement protocols can isolate different particle-size assemblages and different compositions in multicomponent mixtures and help to identify dust-source areas. These techniques have been applied to dust deposited on snow (DOS) cover of the San Juan Mountains, Colorado (collected 2005-2010) and Wasatch Mountains, Utah (collected 2010) and possible dust-source sediments from the North American Great Basin and Colorado Plateau deserts. Results show that all samples contain a high coercivity phase consistent with hematite and/or goethite as the dominate ferric oxide mineral plus minor amounts of magnetite (<0.5 wt%). The presence of magnetite was determined from the detection of the characteristic Verwey transition (T=121 K) on low-temperature (< 300 K) remanence and

  3. Surface Complexation of Actinides with Iron Oxides: Implications for Radionuclide Transport in Near-Surface Aquifers

    NASA Astrophysics Data System (ADS)

    Jerden, J. L.; Kropf, A. J.; Tsai, Y.

    2005-12-01

    The surface complexation of actinides with iron oxides plays a key role in actinide transport and retardation in geosphere-biosphere systems. The development of accurate actinide transport models therefore requires a mechanistic understanding of surface complexation reactions (i.e. knowledge of chemical speciation at mineral/fluid interfaces). Iron oxides are particularly important actinide sorbents due to their pH dependent surface charges, relatively high surface areas and ubiquity in oxic and suboxic near-surface systems. In this paper we present results from field and laboratory investigations that elucidate the mechanisms involved in binding uranium and neptunium to iron oxide mineral substrates in near neutral groundwaters. The field study involved sampling and characterizing uranium-bearing groundwaters and solids from a saprolite aquifer overlying an unmined uranium deposit in the Virginia Piedmont. The groundwaters were analyzed by inductively coupled mass spectrometry and ion chromatography and the aquifer solids were analyzed by electron microprobe. The laboratory study involved a series of batch sorption tests in which U(VI) and Np(V) were reacted with goethite, hematite and magnetite in simulated groundwaters. The pH, ionic strength, aging time, and sorbent/sorbate ratios were varied in these experiments. The oxidation state and coordination environment of neptunium in solutions and sorbents from the batch tests were characterized by X-ray absorption spectroscopy (XAS) at the Advanced Photon Source, Argonne National Laboratory. Results from this work indicate that, in oxidizing near-surface aquifers, the dissolved concentration of uranium may be limited to less than 30 parts per billion due to uptake by iron oxide mineral coatings and the precipitation of sparingly soluble U(VI) phosphate minerals. Results from the batch adsorption tests showed that, in near neutral groundwaters, a significant fraction of the uranium and neptunium adsorbed as strongly

  4. SURFACE COMPLEXATION OF ACTINIDES WITH IRON OXIDES: IMPLICATIONS FOR RADIONUCLIDE TRANSPORT IN NEAR-SURFACE AQUIFERS

    SciTech Connect

    J.L. Jerden Jr.; A.J. Kropf; Y. Tsai

    2005-08-25

    The surface complexation of actinides with iron oxides plays a key role in actinide transport and retardation in geosphere-biosphere systems. The development of accurate actinide transport models therefore requires a mechanistic understanding of surface complexation reactions (i.e. knowledge of chemical speciation at mineral/fluid interfaces). Iron oxides are particularly important actinide sorbents due to their pH dependent surface charges, relatively high surface areas and ubiquity in oxic and suboxic near-surface systems. In this paper we present results from field and laboratory investigations that elucidate the mechanisms involved in binding uranium and neptunium to iron oxide mineral substrates in near neutral groundwaters. The field study involved sampling and characterizing uranium-bearing groundwaters and solids from a saprolite aquifer overlying an unmined uranium deposit in the Virginia Piedmont. The groundwaters were analyzed by inductively coupled mass spectrometry and ion chromatography and the aquifer solids were analyzed by electron microprobe. The laboratory study involved a series of batch sorption tests in which U(VI) and Np(V) were reacted with goethite, hematite and magnetite in simulated groundwaters. The pH, ionic strength, aging time, and sorbent/sorbate ratios were varied in these experiments. The oxidation state and coordination environment of neptunium in solutions and sorbents from the batch tests were characterized by X-ray absorption spectroscopy (XAS) at the Advanced Photon Source, Argonne National Laboratory. Results from this work indicate that, in oxidizing near-surface aquifers, the dissolved concentration of uranium may be limited to less than 30 parts per billion due to uptake by iron oxide mineral coatings and the precipitation of sparingly soluble U(VI) phosphate minerals. Results from the batch adsorption tests showed that, in near neutral groundwaters, a significant fraction of the uranium and neptunium adsorbed as strongly

  5. Characterization of a moderately halo-acidophilic bacterium isolated from Lake Brown, western Australia

    NASA Astrophysics Data System (ADS)

    Mormile, Melanie R.; Hong, Bo-young; Adams, Nicholas T.; Benison, Kathleen C.; Oboh-Ikuenobe, Francisca

    2007-09-01

    Compared to prevalent alkaline to neutral hypersaline environments, acidic hypersaline environments have been scarcely studied. However, they hold interest to many researchers in that these environments have similar geological and geochemical characteristics as those found in lithified strata on Mars. Fieldwork indicated that Lake Brown, located in Western Australia, possessed pH values of 3.1-4.5 and salinity between 13.0-23.0%. Water column, groundwater, and sediment samples were collected from the lake during the austral winter of 2005. These samples were analyzed with both traditional culture and molecular methods. Modified growth media and minimal media were designed to match the composition (Cl, Na, Mg, SO4, K, Ca, and Br) of Lake Brown surface and ground waters for the enrichment of microorganisms. One of the isolates obtained, Brown 1, can grow in media that possesses pH values of 3-7 with optimal growth at pH 4, salinity that ranged from 5% to saturation with optimal growth at 5% and could grow under temperatures that ranged from 20°C to 65°C with optimal grow occurring at 37°C. The isolate's optimum growth conditions are similar to those found in Lake Brown. The isolate is a Gram-negative rod that forms yellow colonies on 17% Phytogel. Its 16S rRNA gene can be amplified with bacterial primers but not with archaeal primers. Its 16S rRNA gene sequence suggests that the isolate is a gamma proteobacterium. Studies on organisms isolated from environments such as Lake Brown, an acid hypersaline lake, can provide an opportunity to both expand our knowledge of terrestrial extremophiles and gain insight on the possible forms of life that might have existed on Mars.

  6. Genomics and Metagenomics of Extreme Acidophiles in Biomining Environments

    NASA Astrophysics Data System (ADS)

    Holmes, D. S.

    2015-12-01

    Over 160 draft or complete genomes of extreme acidophiles (pH < 3) have been published, many of which are from bioleaching and other biomining environments, or are closely related to such microorganisms. In addition, there are over 20 metagenomic studies of such environments. This provides a rich source of latent data that can be exploited for understanding the biology of biomining environments and for advancing biotechnological applications. Genomic and metagenomic data are already yielding valuable insights into cellular processes, including carbon and nitrogen management, heavy metal and acid resistance, iron and sulfur oxido-reduction, linking biogeochemical processes to organismal physiology. The data also allow the construction of useful models of the ecophysiology of biomining environments and provide insight into the gene and genome evolution of extreme acidophiles. Additionally, since most of these acidophiles are also chemoautolithotrophs that use minerals as energy sources or electron sinks, their genomes can be plundered for clues about the evolution of cellular metabolism and bioenergetic pathways during the Archaean abiotic/biotic transition on early Earth. Acknowledgements: Fondecyt 1130683.

  7. Genome Analysis of the Biotechnologically Relevant Acidophilic Iron Oxidising Strain JA12 Indicates Phylogenetic and Metabolic Diversity within the Novel Genus “Ferrovum”

    PubMed Central

    Ullrich, Sophie R.; Poehlein, Anja; Tischler, Judith S.; González, Carolina; Ossandon, Francisco J.; Daniel, Rolf; Holmes, David S.; Schlömann, Michael; Mühling, Martin

    2016-01-01

    Background Members of the genus “Ferrovum” are ubiquitously distributed in acid mine drainage (AMD) waters which are characterised by their high metal and sulfate loads. So far isolation and microbiological characterisation have only been successful for the designated type strain “Ferrovum myxofaciens” P3G. Thus, knowledge about physiological characteristics and the phylogeny of the genus “Ferrovum” is extremely scarce. Objective In order to access the wider genetic pool of the genus “Ferrovum” we sequenced the genome of a “Ferrovum”-containing mixed culture and successfully assembled the almost complete genome sequence of the novel “Ferrovum” strain JA12. Phylogeny and Lifestyle The genome-based phylogenetic analysis indicates that strain JA12 and the type strain represent two distinct “Ferrovum” species. “Ferrovum” strain JA12 is characterised by an unusually small genome in comparison to the type strain and other iron oxidising bacteria. The prediction of nutrient assimilation pathways suggests that “Ferrovum” strain JA12 maintains a chemolithoautotrophic lifestyle utilising carbon dioxide and bicarbonate, ammonium and urea, sulfate, phosphate and ferrous iron as carbon, nitrogen, sulfur, phosphorous and energy sources, respectively. Unique Metabolic Features The potential utilisation of urea by “Ferrovum” strain JA12 is moreover remarkable since it may furthermore represent a strategy among extreme acidophiles to cope with the acidic environment. Unlike other acidophilic chemolithoautotrophs “Ferrovum” strain JA12 exhibits a complete tricarboxylic acid cycle, a metabolic feature shared with the closer related neutrophilic iron oxidisers among the Betaproteobacteria including Sideroxydans lithotrophicus and Thiobacillus denitrificans. Furthermore, the absence of characteristic redox proteins involved in iron oxidation in the well-studied acidophiles Acidithiobacillus ferrooxidans (rusticyanin) and Acidithiobacillus

  8. Potential for iron oxides to control metal releases in CO2 sequestration scenarios

    USGS Publications Warehouse

    Berger, P.M.; Roy, W.R.

    2011-01-01

    The potential for the release of metals into groundwater following the injection of carbon dioxide (CO2) into the subsurface during carbon sequestration projects remains an open research question. Changing the chemical composition of even the relatively deep formation brines during CO2 injection and storage may be of concern because of the recognized risks associated with the limited potential for leakage of CO2-impacted brine to the surface. Geochemical modeling allows for proactive evaluation of site geochemistry before CO2 injection takes place to predict whether the release of metals from iron oxides may occur in the reservoir. Geochemical modeling can also help evaluate potential changes in shallow aquifers were CO2 leakage to occur near the surface. In this study, we created three batch-reaction models that simulate chemical changes in groundwater resulting from the introduction of CO2 at two carbon sequestration sites operated by the Midwest Geological Sequestration Consortium (MGSC). In each of these models, we input the chemical composition of groundwater samples into React??, and equilibrated them with selected mineral phases and CO 2 at reservoir pressure and temperature. The model then simulated the kinetic reactions with other mineral phases over a period of up to 100 years. For two of the simulations, the water was also at equilibrium with iron oxide surface complexes. The first model simulated a recently completed enhanced oil recovery (EOR) project in south-central Illinois in which the MGSC injected into, and then produced CO2, from a sandstone oil reservoir. The MGSC afterwards periodically measured the brine chemistry from several wells in the reservoir for approximately two years. The sandstone contains a relatively small amount of iron oxide, and the batch simulation for the injection process showed detectable changes in several aqueous species that were attributable to changes in surface complexation sites. After using the batch reaction

  9. Gadolinium-Encapsulating Iron Oxide Nanoprobe as Activatable NMR/MRI Contrast Agent

    PubMed Central

    Santra, Santimukul; Jativa, Samuel D.; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J. Manuel

    2012-01-01

    Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the polyacrylic acid (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA) yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T1). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T1 relaxation rate (1/T1) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T1-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T1 signal was observed. This result suggests that upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH = 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T1 activation. No change in T1 was observed when the Gd-DTPA complex was chemically conjugated on the surface of the nanoparticle's polymeric coating or when encapsulated in the polymeric coating of a non-magnetic nanoparticle. These results confirmed that the observed (T1) quenching of the composite magnetic nanoprobe is due to the encapsulation and close proximity of the Gd ion to the nanoparticles superparamagnetic iron oxide (IO) core. In addition, when an anticancer drug (Taxol) was co-encapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T1 activation of the probe coincide with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T1 nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI. PMID:22809405

  10. In situ precipitation: a novel approach for preparation of iron-oxide magnetoliposomes

    PubMed Central

    Xia, Shudong; Li, Peng; Chen, Qiang; Armah, Malik; Ying, Xiaoying; Wu, Jian; Lai, Jiangtao

    2014-01-01

    Background Conventional methods of preparing magnetoliposomes are complicated and inefficient. A novel approach for magnetoliposomes preparation was investigated in the study reported here. Methods FeCl3/FeCl2 solutions were hydrated with lipid films to obtain liposome-encapsulated iron ions by ultrasonic dispersion. Non-encapsulated iron ions were removed by dialysis. NH3 · H2O was added to the system to adjust the pH to a critical value. Four different systems were prepared. Each was incubated at a different temperature for a different length of time to facilitate the permeation of NH3 · H2O into the inner phase of the liposomes and the in situ formation of magnetic iron-oxide cores in the liposomes. Single-factor analysis and orthogonal-design experiments were applied to determinate the effects of alkalization pH, temperature, duration, and initial Fe concentration on encapsulation efficiency and drug loading. Results The magnetoliposomes prepared by in situ precipitation had an average particle size of 168±14 nm, zeta potential of −26.2±1.9 mV and polydispersity index of 0.23±0.06. The iron-oxide cores were confirmed as Fe3O4 by X-ray diffraction and demonstrated a superparamagnetic response. Encapsulation efficiency ranged from 3% to 22%, while drug loading ranged from 0.2 to 1.58 mol Fe/mol lipid. The optimal conditions for in situ precipitation were found to be an alkalization pH of 12, temperature of 60°C, time of 60 minutes, and initial Fe concentration of 100 mM Fe3+ + 50 mM Fe2+. Conclusion In situ precipitation could be a simple and efficient approach for the preparation of iron-oxide magnetoliposomes. PMID:24920898

  11. Temperature-tunable iron oxide nanoparticles for remote-controlled drug release.

    PubMed

    Dani, Raj K; Schumann, Canan; Taratula, Olena; Taratula, Oleh

    2014-08-01

    Herein, we report the successful development of a novel nanosystem capable of an efficient delivery and temperature-triggered drug release specifically aimed at cancer. The water-soluble 130.1 ± 0.2 nm iron oxide nanoparticles (IONPs) were obtained via synthesis of a monodispersed iron oxide core stabilized with tetramethylammonium hydroxide pentahydrate (TMAOH), followed by coating with the thermoresponsive copolymer poly-(NIPAM-stat-AAm)-block-PEI (PNAP). The PNAP layer on the surface of the IONP undergoes reversible temperature-dependent structural changes from a swollen to a collapsed state resulting in the controlled release of anticancer drugs loaded in the delivery vehicle. We demonstrated that the phase transition temperature of the prepared copolymer can be precisely tuned to the desired value in the range of 36°C-44°C by changing the monomers ratio during the preparation of the nanoparticles. Evidence of modification of the IONPs with the thermoresponsive copolymer is proven by ATR-FTIR and a quantitative analysis of the polymeric and iron oxide content obtained by thermogravimetric analysis. When loaded with doxorubicin (DOX), the IONPs-PNAP revealed a triggered drug release at a temperature that is a few degrees higher than the phase transition temperature of a copolymer. Furthermore, an in vitro study demonstrated an efficient internalization of the nanoparticles into the cancer cells and showed that the drug-free IONPs-PNAP were nontoxic toward the cells. In contrast, sufficient therapeutic effect was observed for the DOX-loaded nanosystem as a function of temperature. Thus, the developed temperature-tunable IONPs-based delivery system showed high potential for remotely triggered drug delivery and the eradication of cancer cells. PMID:24821220

  12. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application.

    PubMed

    Wang, Yi-Xiang J

    2011-12-01

    Superparamagnetic iron oxide (SPIO) MR contrast agents are composed of nano-sized iron oxide crystals coated with dextran or carboxydextran. Two SPIO agents are clinically approved, namely: ferumoxides (Feridex in the USA, Endorem in Europe) with a particle size of 120 to 180 nm, and ferucarbotran (Resovist) with a particle size of about 60 nm. The principal effect of the SPIO particles is on T2* relaxation and thus MR imaging is usually performed using T2/T2*-weighted sequences in which the tissue signal loss is due to the susceptibility effects of the iron oxide core. Enhancement on T1-weighted images can also be seen with the smaller Resovist. Both Feridex and Resovist are approved specifically for MRI of the liver. The difference being that Resovist can be administered as a rapid bolus (and thus can be used with both dynamic and delayed imaging), whereas Feridex needs to be administered as a slow infusion and is used solely in delayed phase imaging. In the liver, these particles are sequestered by phagocytic Kupffer cells in normal reticuloendothelial system (RES), but are not retained in lesions lacking Kupffer cells. Consequently, there are significant differences in T2/T2* relaxation between normal tissue and lesions, resulting in increased lesion conspicuity and detectability. SPIO substantially increase the detectability of hepatic metastases. For focal hepatocellular lesions, SPIO-enhanced MR imaging exhibits slightly better diagnostic performance than dynamic CT. A combination of dynamic and static MR imaging technique using T1- and T2 imaging criteria appears to provide clinically more useful patterns of enhancement. Feridex and Resovist are also used for evaluating macrophage activities in some inflammatory lesions, but their clinical values remain to be further confirmed. The clinical development of Ferumoxtran (Combidex in the USA, Sinerem in Europe), designed for lymph node metastasis evaluation, is currently stopped.

  13. Optimization of synthesis and peptization steps to obtain iron oxide nanoparticles with high energy dissipation rates

    NASA Astrophysics Data System (ADS)

    Mérida, Fernando; Chiu-Lam, Andreina; Bohórquez, Ana C.; Maldonado-Camargo, Lorena; Pérez, María-Eglée; Pericchi, Luis; Torres-Lugo, Madeline; Rinaldi, Carlos

    2015-11-01

    Magnetic Fluid Hyperthermia (MFH) uses heat generated by magnetic nanoparticles exposed to alternating magnetic fields to cause a temperature increase in tumors to the hyperthermia range (43-47 °C), inducing apoptotic cancer cell death. As with all cancer nanomedicines, one of the most significant challenges with MFH is achieving high nanoparticle accumulation at the tumor site. This motivates development of synthesis strategies that maximize the rate of energy dissipation of iron oxide magnetic nanoparticles, preferable due to their intrinsic biocompatibility. This has led to development of synthesis strategies that, although attractive from the point of view of chemical elegance, may not be suitable for scale-up to quantities necessary for clinical use. On the other hand, to date the aqueous co-precipitation synthesis, which readily yields gram quantities of nanoparticles, has only been reported to yield sufficiently high specific absorption rates after laborious size selective fractionation. This work focuses on improvements to the aqueous co-precipitation of iron oxide nanoparticles to increase the specific absorption rate (SAR), by optimizing synthesis conditions and the subsequent peptization step. Heating efficiencies up to 1048 W/gFe (36.5 kA/m, 341 kHz; ILP=2.3 nH m2 kg-1) were obtained, which represent one of the highest values reported for iron oxide particles synthesized by co-precipitation without size-selective fractionation. Furthermore, particles reached SAR values of up to 719 W/gFe (36.5 kA/m, 341 kHz; ILP=1.6 nH m2 kg-1) when in a solid matrix, demonstrating they were capable of significant rates of energy dissipation even when restricted from physical rotation. Reduction in energy dissipation rate due to immobilization has been identified as an obstacle to clinical translation of MFH. Hence, particles obtained with the conditions reported here have great potential for application in nanoscale thermal cancer therapy.

  14. Local Structure, Electronic Behavior, and Electrocatalytic Reactivity of CO-Reduced Platinum-Iron Oxide Nanoparticles

    SciTech Connect

    Duchesne, Paul N.; Chen, Guangxu; Zheng, Nanfeng; Zhang, Peng

    2014-02-18

    A series of platinum–iron oxide nanoparticles was synthesized using a “clean” CO-reduction method that employed different ratios of Pt-Fe precursor salts in oleylamine at elevated temperatures. High-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDS) studies revealed that nearly monodisperse (i.e., with relative standard deviations of less than 15%) nanoparticles with mean diameters of 3.5–4.4 nm and varied elemental compositions (Pt54Fe46 Pt70Fe30, and Pt87Fe13) were obtained. X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements at the Pt L3- and Fe K-edges revealed that these nanoparticles all consisted of a Pt core with amorphous iron oxide on the surface. Furthermore, it was observed that the local structure (e.g., Pt–Pt bond distance and coordination number) and electronic behavior of the Pt–FeO nanoparticles (e.g., Pt d electron density and Fe valence state) are dependent on the Pt-Fe precursor ratios used in their synthesis. Quantum mechanical ab initio calculations were employed to interpret the results from X-ray spectroscopy and help elucidate the relationships between local structure and electronic properties in the nanoparticle samples. Finally, the surface reactivity of these nanoparticles in the oxygen reduction reaction (ORR) was explored, demonstrating higher electrocatalytic activity for all three platinum–iron oxide samples in comparison with a commercial Pt catalyst. The surface reactivity was also found to be sensitive to the Pt-Fe ratios of the nanoparticles and could be correlated with their local structure and electronic behavior.

  15. Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes.

    PubMed

    Huang, Li-Zhi; Hansen, Hans Christian B; Bjerrum, Morten Jannik

    2016-04-01

    Nitroaromatic compounds are substantial hazard to the environment and to the supply of clean drinking water. We report here the successful reduction of nitroaromatic compounds by use of iron oxide coated electrodes, and demonstrate that single sheet iron oxides formed from layered iron(II)-iron(III) hydroxides have unusual electrocatalytic reactivity. Electrodes were produced by coating of single sheet iron oxides on indium tin oxide electrodes. A reduction current density of 10 to 30μAcm(-2) was observed in stirred aqueous solution at pH 7 with concentrations of 25 to 400μM of the nitroaromatic compound at a potential of -0.7V vs. SHE. Fast mass transfer favors the initial reduction of the nitroaromatic compound which is well explained by a diffusion layer model. Reduction was found to comprise two consecutive reactions: a fast four-electron first-order reduction of the nitro-group to the hydroxylamine-intermediate (rate constant=0.28h(-1)) followed by a slower two-electron zero-order reduction resulting in the final amino product (rate constant=6.9μM h(-1)). The zero-order of the latter reduction was attributed to saturation of the electrode surface with hydroxylamine-intermediates which have a more negative half-wave potential than the parent compound. For reduction of nitroaromatic compounds, the SSI electrode is found superior to metal electrodes due to low cost and high stability, and superior to carbon-based electrodes in terms of high coulombic efficiency and low over potential.

  16. Reduction of Iron-Oxide-Carbon Composites: Part I. Estimation of the Rate Constants

    NASA Astrophysics Data System (ADS)

    Halder, S.; Fruehan, R. J.

    2008-12-01

    A new ironmaking concept using iron-oxide-carbon composite pellets has been proposed, which involves the combination of a rotary hearth furnace (RHF) and an iron bath smelter. This part of the research focuses on studying the two primary chemical kinetic steps. Efforts have been made to experimentally measure the kinetics of the carbon gasification by CO2 and wüstite reduction by CO by isolating them from the influence of heat- and mass-transport steps. A combined reaction model was used to interpret the experimental data and determine the rate constants. Results showed that the reduction is likely to be influenced by the chemical kinetics of both carbon oxidation and wüstite reduction at the temperatures of interest. Devolatilized wood-charcoal was observed to be a far more reactive form of carbon in comparison to coal-char. Sintering of the iron-oxide at the high temperatures of interest was found to exert a considerable influence on the reactivity of wüstite by virtue of altering the internal pore surface area available for the reaction. Sintering was found to be predominant for highly porous oxides and less of an influence on the denser ores. It was found using an indirect measurement technique that the rate constants for wüstite reduction were higher for the porous iron-oxide than dense hematite ore at higher temperatures (>1423 K). Such an indirect mode of measurement was used to minimize the influence of sintering of the porous oxide at these temperatures.

  17. Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes.

    PubMed

    Huang, Li-Zhi; Hansen, Hans Christian B; Bjerrum, Morten Jannik

    2016-04-01

    Nitroaromatic compounds are substantial hazard to the environment and to the supply of clean drinking water. We report here the successful reduction of nitroaromatic compounds by use of iron oxide coated electrodes, and demonstrate that single sheet iron oxides formed from layered iron(II)-iron(III) hydroxides have unusual electrocatalytic reactivity. Electrodes were produced by coating of single sheet iron oxides on indium tin oxide electrodes. A reduction current density of 10 to 30μAcm(-2) was observed in stirred aqueous solution at pH 7 with concentrations of 25 to 400μM of the nitroaromatic compound at a potential of -0.7V vs. SHE. Fast mass transfer favors the initial reduction of the nitroaromatic compound which is well explained by a diffusion layer model. Reduction was found to comprise two consecutive reactions: a fast four-electron first-order reduction of the nitro-group to the hydroxylamine-intermediate (rate constant=0.28h(-1)) followed by a slower two-electron zero-order reduction resulting in the final amino product (rate constant=6.9μM h(-1)). The zero-order of the latter reduction was attributed to saturation of the electrode surface with hydroxylamine-intermediates which have a more negative half-wave potential than the parent compound. For reduction of nitroaromatic compounds, the SSI electrode is found superior to metal electrodes due to low cost and high stability, and superior to carbon-based electrodes in terms of high coulombic efficiency and low over potential. PMID:26716570

  18. Oxidation of H2S by iron oxides in unsaturated conditions.

    PubMed

    Cantrell, Kirk J; Yabusaki, Steven B; Engelhard, Mark H; Mitroshkov, Alexandre V; Thornton, Edward C

    2003-05-15

    Previous studies have demonstrated that gas-phase H2S can immobilize certain redox-sensitive contaminants (e.g., Cr, U, Tc) in vadose zone environments. A key issue for effective and efficient delivery of H2S in these environments is the reactivity of the gas with indigenous iron oxides. To elucidate the factors that control the transport of H2S in the vadose zone, laboratory column experiments were conducted to identify reaction mechanisms and measure rates of H2S oxidation by iron oxide-coated sands using several carrier gas compositions (N2, air, and O2) and flow rates. Most experiments were conducted using ferrihydrite-coated sand. Additional studies were conducted with goethite- and hematite-coated sand and a natural sediment. Selective extractions were conducted at the end of each column experiment to determine the mass balance of the reaction products. XPS was used to confirm the presence of the reaction products. For column experiments in which ferrihydrite-coated sand was the substrate and N2 was the carrier gas, the major H2S oxidation products were FeS and elemental sulfur (mostly S8(0), represented as S(0) for simplicity) at ratios that were consistent with the stoichiometry of the postulated reactions. When air or O2 were used as the carrier gas, S(0) became the dominant reaction product along with FeS2 and smaller amounts of FeS, sulfate, and thiosulfate. A mathematical model of reactive transport was used to test the hypothesis that S(0) forming on the iron oxide surfaces reduces access of H2S to the reactive surface. Several conceptual models were assessed in the context of the postulated reactions with the final model based on a linear surface poisoning model and fitted reaction rates. These results indicate that carrier gas selection is a critical consideration with significant tradeoffs for remediation objectives.

  19. Iron oxidation chemistry in ferritin. Increasing Fe/O2 stoichiometry during core formation.

    PubMed

    Xu, B; Chasteen, N D

    1991-10-25

    The origin of previously observed variations in stoichiometry of iron oxidation during the oxidative deposition of iron in ferritin has been poorly understood. Knowledge of the stoichiometry of Fe(II) oxidation by O2 is essential to establishing the mechanism of iron core formation. In the present work, the amount of Fe(II) oxidized was measured by Mössbauer spectrometry and the O2 consumed by mass spectrometry. The number of protons produced in the reaction was measured by "pH stat" titration and hydrogen peroxide production by the effect of the enzyme catalase on the measured stoichiometry. For protein samples containing low levels of iron (24 Fe(II)/protein) the stoichiometry was found to be 1.95 +/- 0.18 Fe(II)/O2 with H2O2 being a product, viz. Equation 1. 2Fe2+ + O2 + 4H2O----2FeOOH + H2O2 + 4H+ (1) EPR spin trapping experiments showed no evidence of superoxide radical formation. The stoichiometry markedly increased with additional iron (240-960 Fe/protein), to a value of 4 Fe(II)/O2 as in Equation 2. 4Fe2+ + O2 + 6H2O----4FeOOH + 8H+ (2) As the iron core is progressively laid down, the mechanism of iron oxidation changes from a protein dominated process with H2O2 being the primary product of O2 reduction to a mineral surface dominated process where H2O is the primary product. These results emphasize the importance of the apoferritin shell in facilitating iron oxidation in the early stage of iron deposition prior to significant development of the polynuclear iron core.

  20. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis.

    PubMed

    Zhu, Mo-Tao; Wang, Bing; Wang, Yun; Yuan, Lan; Wang, Hua-Jian; Wang, Meng; Ouyang, Hong; Chai, Zhi-Fang; Feng, Wei-Yue; Zhao, Yu-Liang

    2011-06-10

    More recently, the correlation between exposure to nanoparticles and cardiovascular diseases is of particular concern in nanotoxicology related fields. Nanoparticle-triggered endothelial dysfunction is hypothesized to be a dominant mechanism in the development of the diseases. To test this hypothesis, iron oxide nanoparticles (Fe₂O₃ and Fe₃O₄), as two widely used nanomaterials and the main metallic components in particulate matter, were selected to assess their potential risks on human endothelial system. The direct effects of iron oxide nanoparticles on human aortic endothelial cells (HAECs) and the possible effects mediated by monocyte (U937 cells) phagocytosis and activation were investigated. In the study, HAECs and U937 cells were exposed to 2, 20, 100 μg/mL of 22-nm-Fe₂O₃ and 43-nm-Fe₃O₄ particles. Our results indicate that cytoplasmic vacuolation, mitochondrial swelling and cell death were induced in HAEC. A significant increase in nitric oxide (NO) production was induced which coincided with the elevation of nitric oxide synthase (NOS) activity in HAECs. Adhesion of monocytes to the HAECs was significantly enhanced as a consequence of the up-regulation of intracellular cell adhesion molecule-1 (ICAM-1) and interleukin-8 (IL-8) expression, all of which are considered as early steps of atheroscelerosis. Phagocytosis and dissolution of nanoparticles by monocytes were found to simultaneously provoke oxidative stress and mediate severe endothelial toxicity. We conclude that intravascular iron oxide nanoparticles may induce endothelial system inflammation and dysfunction by three ways: (1) nanoparticles may escape from phagocytosis that interact directly with the endothelial monolayer; (2) nanoparticles are phagocytized by monocytes and then dissolved, thus impact the endothelial cells as free iron ions; or (3) nanoparticles are phagocytized by monocytes to provoke oxidative stress responses.

  1. Iron oxide nanoparticles: the Influence of synthesis method and size on composition and magnetic properties

    SciTech Connect

    Carvalho, M.D.; Godinho, M.; Cruz, M.M.

    2013-05-01

    Iron oxide nanoparticles with mean diameter ranging from 7 to 20 nm were synthesized using two routes: the precipitation method in controlled atmosphere and a reduction–precipitation method under air, in some cases followed by a hydrothermal treatment. The smallest nanoparticles were obtained by the reduction–precipitation method. In order to establish the composition of the iron oxide nanoparticles and its relation with size, the morphological, structural and magnetic properties of the prepared samples were investigated using X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy and SQUID magnetometry. The results allow to conclude that the nanoparticles can be essentially described as Fe3–xO₄, x decreasing with the particle size increase. The composition and magnetic behavior of the synthesized iron oxide nanoparticles are directly related with their size. The overall results are compatible with a core@shell structure model, where a magnetite core is surrounded by an oxidized magnetite layer (labeled as maghemite), the magnetite core dimension depending on the average particle size. - Graphical abstract: TEM images and Mössbauer spectroscopy spectra of Fe3–xO₄ samples with different sizes. Highlights: • Fe3–xO₄ nanoparticles with a mean size between 7 and 20 nm were synthesized. • The smallest nanoparticles were obtained by a reduction precipitation method, under air. • The increase of particles size was succeeded using a hydrothermal treatment at 150 °C. • The magnetic properties of the nanoparticles are directly related with their size.

  2. Competitive adsorption, displacement, and transport of organic matter on iron oxide: II. Displacement and transport

    SciTech Connect

    Gu, B; Mehlhorn, T.L.; Liang, Liyuan

    1996-08-01

    The competitive interactions between organic matter compounds and mineral surfaces are poorly understood, yet these interactions may play a significant role in the stability and co-transport of mineral colloids and/or environmental contaminants. In this study, the processes of competitive adsorption, displacement, and transport of Suwannee River natural organic matter (SR-NOM) are investigated with several model organic compounds in packed beds of iron oxide-coated quartz columns. Results demonstrated that strongly-binding organic compounds are competitively adsorbed and displace those weakly-bound organic compounds along the flow path. Among the four organic compounds studied, polyacrylic acid (PAA) appeared to be the most competitive, whereas SR-NOM was more competitive than phthalic and salicylic acids. A diffuse adsorption and sharp desorption front (giving an appearance of irreversible adsorption) of the SR-NOM breakthrough curves are explained as being a result of the competitive time-dependent adsorption and displacement processes between different organic components within the SR-NOM. The stability and transport of iron oxide colloids varied as one organic component competitively displaces another. Relatively large quantities of iron oxide colloids are transported when the more strongly-binding PAA competitively displaces the weakly-binding SR-NOM or when SR-NOM competitively displaces phthalic and salicylic acids. Results of this study suggest that the chemical composition and hence the functional behavior of NOM (e.g., in stabilizing mineral colloids and in complexing contaminants) can change along its flow path as a result of the dynamic competitive interactions between heterogeneous NOM subcomponents. Further studies are needed to better define and quantify these NOM components as well as their roles in contaminant partitioning and transport. 37 refs., 10 figs.

  3. A New Nano-sized Iron Oxide Particle with High Sensitivity for Cellular Magnetic Resonance Imaging

    PubMed Central

    Chen, Chih-Lung; Zhang, Haosen; Ye, Qing; Hsieh, Wen-Yuan; Hitchens, T. Kevin; Shen, Hsin-Hsin; Liu, Li; Wu, Yi-Jen; Foley, Lesley M.; Wang, Shian-Jy; Ho, Chien

    2011-01-01

    Purpose In this study, we investigated the labeling efficiency and magnetic resonance imaging (MRI) signal sensitivity of a newly synthesized, nano-sized iron oxide particle (IOP) coated with polyethylene glycol (PEG), designed by Industrial Technology Research Institute (ITRI). Procedures Macrophages, bone-marrow-derived dendritic cells, and mesenchymal stem cells (MSCs) were isolated from rats and labeled by incubating with ITRI-IOP, along with three other iron oxide particles in different sizes and coatings as reference. These labeled cells were characterized with transmission electron microscopy (TEM), light and fluorescence microscopy, phantom MRI, and finally in vivo MRI and ex vivo magnetic resonance microscopy (MRM) of transplanted hearts in rats infused with labeled macrophages. Results The longitudinal (r1) and transverse (r2) relaxivities of ITRI-IOP are 22.71 and 319.2 s−1 mM−1, respectively. TEM and microscopic images indicate the uptake of multiple ITRI-IOP particles per cell for all cell types. ITRI-IOP provides sensitivity comparable or higher than the other three particles shown in phantom MRI. In vivo MRI and ex vivo MRM detect punctate spots of hypointensity in rejecting hearts, most likely caused by the accumulation of macrophages labeled by ITRI-IOP. Conclusion ITRI-IOP, the nano-sized iron oxide particle, shows high efficiency in cell labeling, including both phagocytic and non-phagocytic cells. Furthermore, it provides excellent sensitivity in T2*-weighted MRI, and thus can serve as a promising contrast agent for in vivo cellular MRI. PMID:20862612

  4. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps

    NASA Astrophysics Data System (ADS)

    Sivan, Orit; Antler, Gilad; Turchyn, Alexandra V.; Marlow, Jeffrey J.; Orphan, Victoria J.

    2014-10-01

    Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organic carbon oxidation or in diffusive sedimentary sulfate-methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. These results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling.

  5. Competitive adsorption, displacement, and transport of organic matter on iron oxide: II. Displacement and transport

    NASA Astrophysics Data System (ADS)

    Gu, Baohua; Mehlhorn, Tonia L.; Liang, Liyuan; McCarthy, John F.

    1996-08-01

    The competitive interactions between organic matter compounds and mineral surfaces are poorly understood, yet these interactions may play a significant role in the stability and co-transport of mineral colloids and/or environmental contaminants. In this study, the processes of competitive adsorption, displacement, and transport of Suwannee River natural organic matter (SR-NOM) are investigated with several model organic compounds in packed beds of iron oxide-coated quartz columns. Results demonstrated that strongly-binding organic compounds are competitively adsorbed and displace those weakly-bound organic compounds along the flow path. Among the four organic compounds studied, polyacrylic acid (PAA) appeared to be the most competitive, whereas SR-NOM was more competitive than phthalic and salycylic acids. The transport of SR-NOM is found to involve a complex competitive interaction and displacement of different NOM subcomponents. A diffuse adsorption and sharp desorption front (giving an appearance of irreversible adsorption) of the SR-NOM breakthrough curves are explained as being a result of the competitive time-dependent adsorption and displacement processes between different organic components within the SR-NOM. The stability and transport of iron oxide colloids varied as one organic component competitively displaces another. Relatively large quantities of iron oxide colloids are transported when the more strongly-binding PAA competitively displaces the weakly-binding SR-NOM or when SR-NOM competitively displaces phthalic and salicylic acids. Results of this study suggest that the chemical composition and hence the functional behavior of NOM (e.g., in stabilizing mineral colloids and in complexing contaminants) can change along its flow path as a result of the dynamic competitive interactions between heterogeneous NOM subcomponents. Further studies are needed to better define and quantify these NOM components as well as their roles in contaminant partitioning

  6. Design and fabrication of N-alkyl-polyethylenimine-stabilized iron oxide nanoclusters for gene delivery.

    PubMed

    Liu, Gang; Wang, Zhiyong; Lee, Seulki; Ai, Hua; Chen, Xiaoyuan

    2012-01-01

    With the rapid development of nanotechnology, inorganic magnetic nanoparticles, especially iron oxide nanoparticles (IOs), have emerged as great vehicles for biomedical diagnostic and therapeutic applications. In order to rationally design IO-based gene delivery nanovectors, surface modification is essential and determines the loading and release of the gene of interest. Here we highlight the basic concepts and applications of nonviral gene delivery vehicles based on low molecular weight N-alkyl polyethylenimine-stabilized IOs. The experimental protocols related to these topics are described in this chapter. PMID:22568910

  7. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging.

    PubMed

    Sharifi, Shahriar; Seyednejad, Hajar; Laurent, Sophie; Atyabi, Fatemeh; Saei, Amir Ata; Mahmoudi, Morteza

    2015-01-01

    In the last decade, the biomedical applications of nanoparticles (NPs) (e.g. cell tracking, biosensing, magnetic resonance imaging (MRI), targeted drug delivery, and tissue engineering) have been increasingly developed. Among the various NP types, superparamagnetic iron oxide NPs (SPIONs) have attracted considerable attention for early detection of diseases due to their specific physicochemical properties and their molecular imaging capabilities. A comprehensive review is presented on the recent advances in the development of in vitro and in vivo SPION applications for molecular imaging, along with opportunities and challenges.

  8. Superparamagnetic Iron Oxide Nanoparticles: Promises for Diagnosis and Treatment of Multiple Sclerosis

    PubMed Central

    2011-01-01

    Smart superparamagnetic iron oxide nanoparticles (SPIONs) are the most promising candidate for theragnosis (i.e., diagnosis and treatment) of multiple sclerosis. A deep understanding of the dynamics of the in vivo neuropathology of multiple sclerosis can be achieved by improving the efficiency of various medical techniques (e.g., positron emission tomography and magnetic resonance imaging) using multimodal SPIONs. In this Review, recent advances and challenges in the development of smart SPIONs for theragnostic applications are comprehensively described. In addition, critical outlines of emerging developments are provided from the points of view of both clinicians and nanotechnologists. PMID:22778862

  9. Magneto-inductive heating of water-based iron oxide ferrofluids

    NASA Astrophysics Data System (ADS)

    Novoselova, Iu. P.; Safronov, A. P.; Samatov, O. M.; Kurlyandskaya, G. V.

    2016-09-01

    Spherical magnetic nanoparticles (MNPs) of iron oxide were fabricated by laser target evaporation technique. Water-based ferrofluids were prepared on the basis of obtained MNPs. Their structure and magnetic properties were studied by a number of methods including transmission electron microscopy, X-ray diffraction, SQUID-magnetometry and magnetic relaxation losses measurements. Magneto-inductive heating experiment showed the specific power loss value of 2 W/g for 1.8 kA/m alternating magnetic field of 214 kHz frequency. These parameters indicate that LTE MNPs are perspective materials for biomedical applications such as hyperthermia.

  10. Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions

    NASA Astrophysics Data System (ADS)

    Burke, Benjamin P.; Baghdadi, Neazar; Kownacka, Alicja E.; Nigam, Shubhanchi; Clemente, Gonçalo S.; Al-Yassiry, Mustafa M.; Domarkas, Juozas; Lorch, Mark; Pickles, Martin; Gibbs, Peter; Tripier, Raphaël; Cawthorne, Christopher; Archibald, Stephen J.

    2015-09-01

    The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no significant release of gallium-68 metal ions, validating our innovation to provide a novel simple method for labelling of iron oxide NRs with a radiometal in the absence of a chelating unit that can be used for high sensitivity liver imaging.The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no

  11. Electric polarization, magnetoelectric effect, and orbital state of a layered iron oxide with frustrated geometry.

    PubMed

    Nagano, A; Naka, M; Nasu, J; Ishihara, S

    2007-11-23

    A layered iron oxide RFe2O4 (R denotes rare-earth-metal elements) is an exotic dielectric material with charge-order (CO) driven electric polarization and magnetoelectric effect caused by spin-charge coupling. In this paper, a theory of electronic structure and dielectric property in RFe2O4 is presented. Charge frustration in paired-triangular lattices allows a charge imbalance without inversion symmetry. Spin frustration induces reinforcement of this polar CO by a magnetic ordering. We also analyze an orbital model for the Fe ion which does not show a conventional long-range order.

  12. Comparison of lime and iron oxide for high temperature sulfur removal

    SciTech Connect

    Reid, K.J.

    1991-01-01

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantage in that they can be staged to reduce NO{sub x} and SO{sub x} emissions. Lime or limestone are the currently preferred sorbent materials but iron oxide, as an alternative to lime or limestone, may be effective not only as a desulfurizing agent, but, under the right conditions of oxygen potential, it can act as a flux to produce a glassy slag. This glassy slag should be dense and environmentally inert.

  13. Biocompatible superparamagnetic iron oxide nanoparticles used for contrast agents: a structural and magnetic study

    NASA Astrophysics Data System (ADS)

    Gamarra, L. F.; Brito, G. E. S.; Pontuschka, W. M.; Amaro, E.; Parma, A. H. C.; Goya, G. F.

    2005-03-01

    The magnetic properties of different biocompatible magnetic iron oxide nanoparticles (MION) are presented. Dextran-coated, magnetite (Fe 3O 4) MIONs were studied as supplied and after lyophilization, to disentangle the effects of particle interactions. All samples showed superparamagnetic behavior at room temperature, with blocking transitions at TB˜40-56 K (at 100 Oe), depending on the particle interactions. The dynamics of the thermally activated blocking process reveals that the effect of dipolar interactions is to increase the energy barriers of the individual particles.

  14. Electron paramagnetic resonance as an effective method for a characterization of functionalized iron oxide

    NASA Astrophysics Data System (ADS)

    Dobosz, Bernadeta; Krzyminiewski, Ryszard; Schroeder, Grzegorz; Kurczewska, Joanna

    2014-05-01

    Iron(II, III) oxide magnetic nanoparticles (NPs) have been coated with (3-Chloropropyl) trimethoxysilane and subsequently functionalized with 4-Amino-2,2,6,6-tetramethylpiperidine-N-oxyl and Amoxicillin. Finally, the functionalized iron oxide NPs have been coated with natural polymer, chitosan, in order to prevent NPs agglomeration in aqueous environment. The product was characterized by Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). It was studied by the electron paramagnetic resonance method and the parameters describing the magnetic properties of the investigated nanoparticles, such as g-factor and line width, were calculated.

  15. Room temperature positive magnetoresistance via charge trapping in polyaniline-iron oxide nanoparticle composites

    NASA Astrophysics Data System (ADS)

    Lin, Aigu L.; Wu, Tom; Chen, Wei; Wee, Andrew T. S.

    2013-07-01

    We demonstrate a polyaniline-iron oxide nanoparticle (PANI-NP) organic hybrid composite device with room temperature positive magnetoresistance of 85.7%. Temperature dependent resistivity measurements attribute this observation to the decrease in localization length of the charge carriers in the presence of an external magnetic field which result in them being trapped within the device between the insulating PANI layer, hence allowing the device to maintain its resistive state even when the power is switched off, thus exhibiting a memory effect.

  16. Interaction of pyridine and ammonia with a sulfate-promoted iron oxide catalyst

    SciTech Connect

    Lee, J.S.; Park, D.S. )

    1989-11-01

    Interactions of sulfate-promoted iron oxide, SO{sup 2{minus}}{sub 4}-Fe{sub 2}O{sub 3}, with pyridine or ammonia were investigated by means of infrared spectroscopy and temperature-programmed desorption/reaction coupled with mass spectrometry. Both molecules reacted with the sulfate group upon adsorption followed by heating to change the structure of the sulfate group and the acid properties of SO{sup 2{minus}}{sub 4}-Fe{sub 2}O{sub 3}. They also promoted the decomposition of the sulfate group and its removal from the surface. These effects were more pronounced for pyridine.

  17. Vascular and plaque imaging with ultrasmall superparamagnetic particles of iron oxide.

    PubMed

    Alam, Shirjel R; Stirrat, Colin; Richards, Jennifer; Mirsadraee, Saeed; Semple, Scott I K; Tse, George; Henriksen, Peter; Newby, David E

    2015-01-01

    Cardiovascular Magnetic Resonance (CMR) has become a primary tool for non-invasive assessment of cardiovascular anatomy, pathology and function. Existing contrast agents have been utilised for the identification of infarction, fibrosis, perfusion deficits and for angiography. Novel ultrasmall superparamagnetic particles of iron <