Science.gov

Sample records for acidophilic mining bacteria

  1. Evaluation of a fluorescent lectin-based staining technique for some acidophilic mining bacteria

    SciTech Connect

    Fife, D.J.; Bruhn, D.F.; Miller, K.S.; Stoner, D.L.

    2000-05-01

    A fluorescence-labeled wheat germ agglutinin staining technique was modified and found to be effective for staining gram-positive, acidophilic mining bacteria. Bacteria identified by others as being gram positive through 16S rRNA sequence analyses, yet clustering near the divergence of that group, stained weakly. Gram-negative bacteria did not stain. Background staining of environmental samples was negligible, and pyrite and soil particles in the samples did not interfere with the staining procedure.

  2. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria

    PubMed Central

    Ňancucheo, Ivan; Johnson, D. Barrie

    2012-01-01

    Summary Two continuous‐flow bench‐scale bioreactor systems populated by mixed communities of acidophilic sulfate‐reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic mine water containing a variety of soluble metals) was achieved by maintaining a bioreactor pH of ∼2.2–2.5. The second system was fed with acidic (pH 2.5) synthetic mine water containing 3 mM of both zinc and ferrous iron, and varying concentrations (0.5–30 mM) of aluminium. Selective precipitation of zinc sulfide was possible by operating the bioreactor at pH 4.0 and supplementing the synthetic mine water with 4 mM glycerol. Analysis of the microbial populations in the bioreactors showed that they changed with varying operational parameters, and novel acidophilic bacteria (including one sulfidogen) were isolated from the bioreactors. The acidophilic sulfidogenic bioreactors provided ‘proof of principle’ that segregation of metals present in mine waters is possible using simple online systems within which controlled pH conditions are maintained. The modular units are versatile and robust, and involve minimum engineering complexity. PMID:21895996

  3. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria.

    PubMed

    Nancucheo, Ivan; Johnson, D Barrie

    2012-01-01

    Two continuous-flow bench-scale bioreactor systems populated by mixed communities of acidophilic sulfate-reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic mine water containing a variety of soluble metals) was achieved by maintaining a bioreactor pH of ≈ 2.2-2.5. The second system was fed with acidic (pH 2.5) synthetic mine water containing 3 mM of both zinc and ferrous iron, and varying concentrations (0.5-30 mM) of aluminium. Selective precipitation of zinc sulfide was possible by operating the bioreactor at pH 4.0 and supplementing the synthetic mine water with 4 mM glycerol. Analysis of the microbial populations in the bioreactors showed that they changed with varying operational parameters, and novel acidophilic bacteria (including one sulfidogen) were isolated from the bioreactors. The acidophilic sulfidogenic bioreactors provided 'proof of principle' that segregation of metals present in mine waters is possible using simple online systems within which controlled pH conditions are maintained. The modular units are versatile and robust, and involve minimum engineering complexity.

  4. Genetic transfer in acidophilic bacteria

    SciTech Connect

    Roberto, F.F.; Glenn, A.W.; Bulmer, D.; Ward, T.E.

    1990-01-01

    There is increasing interest in the use of microorganisms to recover metals from ores, as well as to remove sulfur from coal. These so-called bioleaching processes are mediated by a number of bacteria. The best-studied of these organisms are acidophiles including Thiobacillus and Acidiphilium species. Our laboratory has focused on developing genetic strategies to allow the manipulation of acidophilic bacteria to improve and augment their utility in large scale operations. We have recently been successful in employing conjugation for interbacterial transfer of genetic information, as well as in directly transforming Acidiphilium by use of electroporation. We are now testing the properties of IncPl, IncW and IncQ plasmid vectors in Acidiphilium to determine their relative usefulness in routine manipulation of acidophiles and transfer between organisms. This study also allows us to determine the natural ability of these bacteria to transfer genetic material amongst themselves in their particular environment. 21 refs., 3 figs., 2 tabs.

  5. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles.

    PubMed

    Nancucheo, Ivan; Barrie Johnson, D

    2012-01-01

    Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30°C, with a corresponding culture doubling time of 9 h. The isolates displayed similar tolerance (10-50 mM) to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC). Glycolic acid was identified as a significant component (12-14%) of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within 3 days). Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella), and mannitol and glucose (Euglena). These were rapidly metabolized by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp.) though only fructose was utilized by the more fastidious heterotroph "Acidocella aromatica." The significance of algae in promoting the growth of iron- (and sulfate-) reducing heterotrophic acidophiles that are important in remediating mine-impacted waters (MIWs) is discussed.

  6. Reconstruction of the Metabolic Potential of Acidophilic Sideroxydans Strains from the Metagenome of an Microaerophilic Enrichment Culture of Acidophilic Iron-Oxidizing Bacteria from a Pilot Plant for the Treatment of Acid Mine Drainage Reveals Metabolic Versatility and Adaptation to Life at Low pH

    PubMed Central

    Mühling, Martin; Poehlein, Anja; Stuhr, Anna; Voitel, Matthias; Daniel, Rolf; Schlömann, Michael

    2016-01-01

    Bacterial community analyses of samples from a pilot plant for the treatment of acid mine drainage (AMD) from the lignite-mining district in Lusatia (East Germany) had previously demonstrated the dominance of two groups of acidophilic iron oxidizers: the novel candidate genus “Ferrovum” and a group comprising Gallionella-like strains. Since pure culture had proven difficult, previous studies have used genome analyses of co-cultures consisting of “Ferrovum” and a strain of the heterotrophic acidophile Acidiphilium in order to obtain insight into the life style of these novel bacteria. Here we report on attempts to undertake a similar study on Gallionella-like acidophiles from AMD. Isolates belonging to the family Gallionellaceae are still restricted to the microaerophilic and neutrophilic iron oxidizers Sideroxydans and Gallionella. Availability of genomic or metagenomic sequence data of acidophilic strains of these genera should, therefore, be relevant for defining adaptive strategies in pH homeostasis. This is particularly the case since complete genome sequences of the neutrophilic strains G. capsiferriformans ES-2 and S. lithotrophicus ES-1 permit the direct comparison of the metabolic capacity of neutrophilic and acidophilic members of the same genus and, thus, the detection of biochemical features that are specific to acidophilic strains to support life under acidic conditions. Isolation attempts undertaken in this study resulted in the microaerophilic enrichment culture ADE-12-1 which, based on 16S rRNA gene sequence analysis, consisted of at least three to four distinct Gallionellaceae strains that appear to be closely related to the neutrophilic iron oxidizer S. lithotrophicus ES-1. Key hypotheses inferred from the metabolic reconstruction of the metagenomic sequence data of these acidophilic Sideroxydans strains include the putative role of urea hydrolysis, formate oxidation and cyanophycin decarboxylation in pH homeostasis. PMID:28066396

  7. Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample.

    PubMed

    Marhual, N P; Pradhan, N; Kar, R N; Sukla, L B; Mishra, B K

    2008-11-01

    Three acidophilic enrichment consortium were developed from mine water sample of copper mine site at Khetri, India were compared for their copper leaching efficiency. Out of these one was mesophilic (35 degrees C) and two were moderately thermophilic (50 degrees C). Consortia were named as mesophilic acidophilic chemolithotrophic consortia (MACC), thermophilic acidophilic chemolithotrophic consortia (TACC), and Sulfobacillus acidophilic consortia (SAC). Copper extraction ability of both the thermophilic consortia (77-78% extraction) was almost double to that of mesophilic consortia (40% extraction) at 10% pulp density after 55 days. Both the thermophilic consortia were equally effective in leaching of other metals like Ni, Co, Zn, Mn. After 55 days, the percentage of extractions of copper by TACC was 76, 74, 67, 48 and 45 at 5%, 10%, 15%, 20% and 30% pulp density, respectively. Total number of bacteria was maximum at 5% pulp density which decreases with increase in pulp density. Sulfobacillus-like bacteria were seen in the Sulfobacillus enrichment cultures. Moderately thermophilic consortia proved to be better in leaching performance than the mesophilic counterpart.

  8. Effect of physical characteristics on bioleaching using indigenous acidophilic bacteria for recovering the valuable resources

    NASA Astrophysics Data System (ADS)

    Wi, D.; Kim, B.; Cho, K.; Choi, N.; Park, C.

    2011-12-01

    Bioleaching technology which is based on the ability of bacteria to transform solid compounds into soluble or extractable elements that can be recovered, has developed rapidly in recent decades for its advantages, such as mild reaction, low energy consumption, simple process, environmentally friendly and suitable for low-grade mine tailing and residues. This study investigated the bioleaching efficiency of copper matte under batch experimental conditions (various mineral particle size) using the indigenous acidophilic bacteria collected from acidic hot spring in Hatchnobaru, Japan. We conducted the batch experiments at three different mineral particle sizes: 0.06, 0.16 and 1.12mm. The results showed that the pH in the bacteria inoculating sample increased than initial condition, possibly due to buffer effects by phosphate ions in growth medium. After 22 days from incubation the leached accumulation content of Cu was 0.06 mm - 1,197 mg/L, 0.16 mm - 970 mg/L and 1.12 mm - 704 mg/L. Additionally, through SEM analysis we found of gypsum formed crystals which coated the copper matte surface 6 days after inoculation in 1.12mm case. This study informs basic knowledge when bacteria apply to eco-/economic resources utilization studies including the biomining and the recycling of mine waste system.

  9. A method of genetically engineering acidophilic, heterotrophic, bacteria by electroporation and conjugation

    SciTech Connect

    Roberto, F.F.; Glenn, A.W.; Ward, T.E.

    1990-08-07

    A method of genetically manipulating an acidophilic bacteria is provided by two different procedures. Using electroporation, chimeric and broad-host range plasmids are introduced into Acidiphilium. Conjugation is also employed to introduce broad-host range plasmids into Acidiphilium at neutral pH.

  10. Characterization of iron- and sulphide mineral-oxidizing moderately thermophilic acidophilic bacteria from an Indonesian auto-heating copper mine waste heap and a deep South African gold mine.

    PubMed

    Kinnunen, Päivi H-M; Puhakka, Jaakko A

    2004-10-01

    Iron- and chalcopyrite-oxidizing enrichment cultures were obtained at 50 degrees C from acidic, high-temperature, copper/gold mine environments in Indonesia and South Africa. Over 90% copper yield was obtained from chalcopyrite concentrate with the Indonesian enrichment in 3 months with 2% solids concentration, when pH was maintained at around 2. Neither addition of silver cations nor an enhanced nutrient concentration influenced chalcopyrite leaching. Excision and sequencing of bands from denaturing gradient gel electrophoresis of the amplified partial 16S rRNA gene showed that the enrichment cultures from different environments in South Africa and Indonesia were very simple, and similar. Chalcopyrite concentrate supported a simpler and different community than Fe2+. The members of the enrichment cultures were closely related to Sulfobacillus yellowstonensis and Sulfobacillus acidophilus.

  11. [An Acidophilic Desulfosporosinus Isolated from the Oxidized Mining Wastes in the Transbaikal Area].

    PubMed

    Karnachuk, O V; Kurganskaya, I A; Avakyan, M R; Frank, Y A; Ikkert, O P; Filenko, R A; Danilovac, E V; Pimenov, N V

    2015-01-01

    Dissimilatory sulfate reduction plays an important role in removal of dissolved metals from acidic mine waters. Although this process was convincingly shown to occur in acidic waste of metal recovery, few isolates of acid-tolerant sulfate rducers are known. We isolated a new acidophilic sulfidogen, strain BG, from the oxidized acidic waste of the Bom-Gorkhon tungsten deposit, Transbaikalia, Russia. Phylogenetic analysis of its 16S rRNA gene sequence made it possible to identify it as a member of the genus Desulfosporosinus. Unlike other known acidophilic sulfate reducers of this genus, strain BG was tolerant to high copper concentrations (up to 5 g/L), could grow on organic acids at low ambient pH, and formed crystalline copper sulfides (covellite and chalcopyrite). Molecular analysis of the phenotypes predominating in oxidized waste and in enrichment cultures confirmed the presence of various Desulfosporosinus strains.

  12. Culture-independent detection of "TM7" bacteria in a streptomycin-resistant acidophilic nitrifying process

    NASA Astrophysics Data System (ADS)

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T.; Hiraishi, A.

    2014-02-01

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum "TM7" as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L-1 was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  13. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    SciTech Connect

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T.; Hiraishi, A.

    2014-02-20

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum 'TM7' as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L{sup −1} was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  14. Indirect Redox Transformations of Iron, Copper, and Chromium Catalyzed by Extremely Acidophilic Bacteria

    PubMed Central

    Johnson, D. Barrie; Hedrich, Sabrina; Pakostova, Eva

    2017-01-01

    Experiments were carried out to examine redox transformations of copper and chromium by acidophilic bacteria (Acidithiobacillus, Leptospirillum, and Acidiphilium), and also of iron (III) reduction by Acidithiobacillus spp. under aerobic conditions. Reduction of iron (III) was found with all five species of Acidithiobacillus tested, grown aerobically on elemental sulfur. Cultures maintained at pH 1.0 for protracted periods displayed increasing propensity for aerobic iron (III) reduction, which was observed with cell-free culture liquors as well as those containing bacteria. At. caldus grown on hydrogen also reduced iron (III) under aerobic conditions, confirming that the unknown metabolite(s) responsible for iron (III) reduction were not (exclusively) sulfur intermediates. Reduction of copper (II) by aerobic cultures of sulfur-grown Acidithiobacillus spp. showed similar trends to iron (III) reduction in being more pronounced as culture pH declined, and occurring in both the presence and absence of cells. Cultures of Acidithiobacillus grown anaerobically on hydrogen only reduced copper (II) when iron (III) (which was also reduced) was also included; identical results were found with Acidiphilium cryptum grown micro-aerobically on glucose. Harvested biomass of hydrogen-grown At. ferridurans oxidized iron (II) but not copper (I), and copper (I) was only oxidized by growing cultures of Acidithiobacillus spp. when iron (II) was also included. The data confirmed that oxidation and reduction of copper were both mediated by acidophilic bacteria indirectly, via iron (II) and iron (III). No oxidation of chromium (III) by acidophilic bacteria was observed even when, in the case of Leptospirillum spp., the redox potential of oxidized cultures exceeded +900 mV. Cultures of At. ferridurans and A. cryptum reduced chromium (VI), though only when iron (III) was also present, confirming an indirect mechanism and contradicting an earlier report of direct chromium reduction by A

  15. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect.

    PubMed

    Mishra, Debaraj; Kim, Dong J; Ralph, David E; Ahn, Jong G; Rhee, Young H

    2008-04-15

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO3. Bioleach residues were characterized by EDX and XRD.

  16. Electricity generation from an inorganic sulfur compound containing mining wastewater by acidophilic microorganisms.

    PubMed

    Ni, Gaofeng; Christel, Stephan; Roman, Pawel; Wong, Zhen Lim; Bijmans, Martijn F M; Dopson, Mark

    2016-09-01

    Sulfide mineral processing often produces large quantities of wastewaters containing acid-generating inorganic sulfur compounds. If released untreated, these wastewaters can cause catastrophic environmental damage. In this study, microbial fuel cells were inoculated with acidophilic microorganisms to investigate whether inorganic sulfur compound oxidation can generate an electrical current. Cyclic voltammetry suggested that acidophilic microorganisms mediated electron transfer to the anode, and that electricity generation was catalyzed by microorganisms. A cation exchange membrane microbial fuel cell, fed with artificial wastewater containing tetrathionate as electron donor, reached a maximum whole cell voltage of 72 ± 9 mV. Stepwise replacement of the artificial anolyte with real mining process wastewater had no adverse effect on bioelectrochemical performance and generated a maximum voltage of 105 ± 42 mV. 16S rRNA gene sequencing of the microbial consortia resulted in sequences that aligned within the genera Thermoplasma, Ferroplasma, Leptospirillum, Sulfobacillus and Acidithiobacillus. This study opens up possibilities to bioremediate mining wastewater using microbial fuel cell technology.

  17. Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria.

    PubMed

    Ziegler, Sibylle; Dolch, Kerstin; Geiger, Katharina; Krause, Susanne; Asskamp, Maximilian; Eusterhues, Karin; Kriews, Michael; Wilhelms-Dick, Dorothee; Goettlicher, Joerg; Majzlan, Juraj; Gescher, Johannes

    2013-09-01

    Biofilms can provide a number of different ecological niches for microorganisms. Here, a multispecies biofilm was studied in which pyrite-oxidizing microbes are the primary producers. Its stability allowed not only detailed fluorescence in situ hybridization (FISH)-based characterization of the microbial population in different areas of the biofilm but also to integrate these results with oxygen and pH microsensor measurements conducted before. The O2 concentration declined rapidly from the outside to the inside of the biofilm. Hence, part of the population lives under microoxic or anoxic conditions. Leptospirillum ferrooxidans strains dominate the microbial population but are only located in the oxic periphery of the snottite structure. Interestingly, archaea were identified only in the anoxic parts of the biofilm. The archaeal community consists mainly of so far uncultured Thermoplasmatales as well as novel ARMAN (Archaeal Richmond Mine Acidophilic Nanoorganism) species. Inductively coupled plasma analysis and X-ray absorption near edge structure spectra provide further insight in the biofilm characteristics but revealed no other major factors than oxygen affecting the distribution of bacteria and archaea. In addition to catalyzed reporter deposition FISH and oxygen microsensor measurements, microautoradiographic FISH was used to identify areas in which active CO2 fixation takes place. Leptospirilla as well as acidithiobacilli were identified as primary producers. Fixation of gaseous CO2 seems to proceed only in the outer rim of the snottite. Archaea inhabiting the snottite core do not seem to contribute to the primary production. This work gives insight in the ecological niches of acidophilic microorganisms and their role in a consortium. The data provided the basis for the enrichment of uncultured archaea.

  18. Genome sequence of Desulfosporosinus sp. OT, an acidophilic sulfate-reducing bacterium from copper mining waste in Norilsk, Northern Siberia.

    PubMed

    Abicht, Helge K; Mancini, Stefano; Karnachuk, Olga V; Solioz, Marc

    2011-11-01

    We have sequenced the genome of Desulfosporosinus sp. OT, a Gram-positive, acidophilic sulfate-reducing Firmicute isolated from copper tailing sediment in the Norilsk mining-smelting area in Northern Siberia, Russia. This represents the first sequenced genome of a Desulfosporosinus species. The genome has a size of 5.7 Mb and encodes 6,222 putative proteins.

  19. Astrobiological Significance of Chemolithoautotrophic Acidophiles

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2003-01-01

    For more than a century (since Winogradsky discovered lithoautotrophic bacteria) a dilemma in microbiology has concerned life that first inhabited the Earth. Which types of life forms first appeared in the primordial oceans during the earliest geological period on Earth as the primary ancestors of modem biological diversity? How did a metabolism of ancestors evolve: from lithoautotrophic to lithohetherotrophic and organoheterotrophic or from organoheterotrophic to organoautotrophic and lithomixotrophic types? At the present time, it is known that chemolithoheterotrophic and chemolithoautotrophic metabolizing bacteria are wide spread in different ecosystems. On Earth the acidic ecosystems are associated with geysers, volcanic fumaroles, hot springs, deep sea hydrothermal vents, caves, acid mine drainage and other technogenic ecosystems. Bioleaching played a significant role on a global geological scale during the Earth's formation. This important feature of bacteria has been successfully applied in industry. The lithoautotrophs include Bacteria and Archaea belonging to diverse genera containing thermophilic and mesophilic species. In this paper we discuss the lithotrophic microbial acidophiles and present some data with a description of new acidophilic iron- and sulfur- oxidizing bacterium isolated from the Chena Hot Springs in Alaska. We also consider the possible relevance of microbial acidophiles to Venus, Io, and acidic inclusions in glaciers and icy moons.

  20. Geochemical niches of iron-oxidizing acidophiles in acidic coal mine drainage.

    PubMed

    Jones, Daniel S; Kohl, Courtney; Grettenberger, Christen; Larson, Lance N; Burgos, William D; Macaladya, Jennifer L

    2015-02-01

    A legacy of coal mining in the Appalachians has provided a unique opportunity to study the ecological niches of iron-oxidizing microorganisms. Mine-impacted, anoxic groundwater with high dissolved-metal concentrations emerges at springs and seeps associated with iron oxide mounds and deposits. These deposits are colonized by iron-oxidizing microorganisms that in some cases efficiently remove most of the dissolved iron at low pH, making subsequent treatment of the polluted stream water less expensive. We used full-cycle rRNA methods to describe the composition of sediment communities at two geochemically similar acidic discharges, Upper and Lower Red Eyes in Somerset County, PA, USA. The dominant microorganisms at both discharges were acidophilic Gallionella-like organisms, “Ferrovum” spp., and Acidithiobacillus spp. Archaea and Leptospirillum spp. accounted for less than 2% of cells. The distribution of microorganisms at the two sites could be best explained by a combination of iron(II) concentration and pH. Populations of the Gallionella-like organisms were restricted to locations with pH>3 and iron(II) concentration of >4 mM, while Acidithiobacillus spp. were restricted to pH<3 and iron(II) concentration of <4 mM. Ferrovum spp. were present at low levels in most samples but dominated sediment communities at pH<3 and iron(II) concentration of >4 mM. Our findings offer a predictive framework that could prove useful for describing the distribution of microorganisms in acid mine drainage, based on readily accessible geochemical parameters.

  1. Geochemical Niches of Iron-Oxidizing Acidophiles in Acidic Coal Mine Drainage

    PubMed Central

    Kohl, Courtney; Grettenberger, Christen; Larson, Lance N.; Burgos, William D.

    2014-01-01

    A legacy of coal mining in the Appalachians has provided a unique opportunity to study the ecological niches of iron-oxidizing microorganisms. Mine-impacted, anoxic groundwater with high dissolved-metal concentrations emerges at springs and seeps associated with iron oxide mounds and deposits. These deposits are colonized by iron-oxidizing microorganisms that in some cases efficiently remove most of the dissolved iron at low pH, making subsequent treatment of the polluted stream water less expensive. We used full-cycle rRNA methods to describe the composition of sediment communities at two geochemically similar acidic discharges, Upper and Lower Red Eyes in Somerset County, PA, USA. The dominant microorganisms at both discharges were acidophilic Gallionella-like organisms, “Ferrovum” spp., and Acidithiobacillus spp. Archaea and Leptospirillum spp. accounted for less than 2% of cells. The distribution of microorganisms at the two sites could be best explained by a combination of iron(II) concentration and pH. Populations of the Gallionella-like organisms were restricted to locations with pH >3 and iron(II) concentration of >4 mM, while Acidithiobacillus spp. were restricted to pH <3 and iron(II) concentration of <4 mM. Ferrovum spp. were present at low levels in most samples but dominated sediment communities at pH <3 and iron(II) concentration of >4 mM. Our findings offer a predictive framework that could prove useful for describing the distribution of microorganisms in acid mine drainage, based on readily accessible geochemical parameters. PMID:25501473

  2. Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria.

    PubMed

    Zhu, Nengwu; Xiang, Yun; Zhang, Ting; Wu, Pingxiao; Dang, Zhi; Li, Ping; Wu, Jinhua

    2011-08-30

    Metal concentrates of printed circuit boards (PCBs) are the residue valuable metals from which non-metallic components are removed. The non-metallic components show bacterial toxicity in bioleaching process and can be recycled as well. In this study, the effects of initial pH, initial Fe(II) concentration, metal concentrate dosage, particle size, and inoculation quantity on the bioleaching were investigated so as to determine the optimum conditions and evaluate the feasibility of bioleaching of metal concentrates of PCBs by mixed culture of acidophilic bacteria (MCAB). The results showed that the initial pH and Fe(II) concentration played an important role in copper extraction and precipitate formation. Under the optimized conditions of initial pH 2.00, 12g/L initial Fe(II), 12g/L metal concentrate dosage, 10% inoculation quantity, and 60-80 mesh particle size, 96.8% the copper leaching efficiency was achieved in 45h, and aluminum and zinc 88.2% and 91.6% in 98h, respectively. All findings demonstrated that metals could be efficiently leached from metal concentrates of waste PCBs by using the MCAB, and the leaching period was shorten from about 8 days to 45h.

  3. Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities

    SciTech Connect

    Denef, Vincent; Kalnejals, Linda; Muller, R; Wilmes, P; Baker, Brett J.; Thomas, Brian; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2010-01-01

    Bacterial species concepts are controversial. More widely accepted is the need to understand how differences in gene content and sequence lead to ecological divergence. To address this relationship in ecosystem context, we investigated links between genotype and ecology of two genotypic groups of Leptospirillumgroup II bacteria in comprehensively characterized, natural acidophilic biofilm communities. These groups share 99.7% 16S rRNA gene sequence identity and 95% average amino acid identity between their orthologs. One genotypic group predominates during early colonization, and the other group typically proliferates in later successional stages, forming distinct patches tens to hundreds of micrometers in diameter. Among early colonizing populations, we observed dominance of five genotypes that differed from each other by the extent of recombination with the late colonizing type. Our analyses suggest that the specific recombinant variant within the early colonizing group is selected for by environmental parameters such as temperature, consistent with recombination as a mechanism for ecological fine tuning. Evolutionary signatures, and strain-resolved expression patterns measured via mass spectrometry based proteomics, indicate increased cobalamin biosynthesis, (de)methylation, and glycine cleavage in the late colonizer. This may suggest environmental changes within the biofilm during development, accompanied by redirection of compatible solutes from osmoprotectants toward metabolism. Across 27 communities, comparative proteogenomic analyses show that differential regulation of shared genes and expression of a small subset of the 15% of genes unique to each genotype are involved in niche partitioning. In summary, the results show how subtle genetic variations can lead to distinct ecological strategies.

  4. Investigation of energy gene expressions and community structures of free and attached acidophilic bacteria in chalcopyrite bioleaching.

    PubMed

    Zhu, Jianyu; Jiao, Weifeng; Li, Qian; Liu, Xueduan; Qin, Wenqing; Qiu, Guanzhou; Hu, Yuehua; Chai, Liyuan

    2012-12-01

    In order to better understand the bioleaching mechanism, expression of genes involved in energy conservation and community structure of free and attached acidophilic bacteria in chalcopyrite bioleaching were investigated. Using quantitative real-time PCR, we studied the expression of genes involved in energy conservation in free and attached Acidithiobacillus ferrooxidans during bioleaching of chalcopyrite. Sulfur oxidation genes of attached A. ferrooxidans were up-regulated while ferrous iron oxidation genes were down-regulated compared with free A. ferrooxidans in the solution. The up-regulation may be induced by elemental sulfur on the mineral surface. This conclusion was supported by the results of HPLC analysis. Sulfur-oxidizing Acidithiobacillus thiooxidans and ferrous-oxidizing Leptospirillum ferrooxidans were the members of the mixed culture in chalcopyrite bioleaching. Study of the community structure of free and attached bacteria showed that A. thiooxidans dominated the attached bacteria while L. ferrooxidans dominated the free bacteria. With respect to available energy sources during bioleaching of chalcopyrite, sulfur-oxidizers tend to be on the mineral surfaces whereas ferrous iron-oxidizers tend to be suspended in the aqueous phase. Taken together, these results indicate that the main role of attached acidophilic bacteria was to oxidize elemental sulfur and dissolution of chalcopyrite involved chiefly an indirect bioleaching mechanism.

  5. Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures

    SciTech Connect

    Bacelar-Nicolau, P.; Johnson, D.B.

    1999-02-01

    Seven strains of heterotrophic iron-oxidizing acidophilic bacteria were examined to determine their abilities to promote oxidative dissolution of pyrite (FeS{sub 2}) when they were grown in pure cultures and in mixed cultures with sulfur-oxidizing Thiobacillus spp. Only one of the isolates (strain T-24) oxidized pyrite when it was grown in pyrite-basal salts medium. However, when pyrite-containing cultures were supplemented with 0.02% (wt/vol) yeast extract, most of the isolates oxidized pyrite, and one (strain T-24) promoted rates of mineral dissolution similar to the rates observed with the iron-oxidizing autotroph Thiobacillus ferroxidans. Pyrite oxidation by another isolate (strain T-21) occurred in cultures containing between 0.005 and 0.05% (wt/vol) yeast extract but was completely inhibited in cultures containing 0.5% yeast extract. Ferrous iron was also needed for mineral dissolution by the iron-oxidizing heterotrophs, indicating that these organisms oxidize pyrite via the indirect mechanism. Mixed cultures of three isolates (strains T-21, T-232, and T-24) and the sulfur-oxidizing autotroph Thiobacillus thiooxidans promoted pyrite dissolution; since neither strains T-21 and T-23 nor T. thiooxidans could oxidize this mineral in yeast extract-free media, this was a novel example of bacterial synergism. Mixed cultures of strains T-21 and T-23 and the sulfur-oxidizing mixotroph Thiobacillus acidophilus also oxidized pyrite but to a lesser extent than did mixed cultures containing T. thiooxidans. Pyrite leaching by strain T -23 grown in an organic compound-rich medium and incubated either shaken or unshaken was also assessed. The potential environmental significance of iron-oxidizing heterotrophs in accelerating pyrite oxidation is discussed.

  6. Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics.

    PubMed

    Johnson, D Barrie; Okibe, Naoko; Roberto, Francisco F

    2003-07-01

    Moderately thermophilic acidophilic bacteria were isolated from geothermal (30-83 degrees C) acidic (pH 2.7-3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 degrees C, and pH 1.0-1.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria ( Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstone strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the alpha -Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also alpha-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes ( SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.

  7. Novel Thermo-Acidophilic Bacteria Isolated from Geothermal Sites in Yellowstone National Park: Physiological and Phylogenetic Characteristics

    SciTech Connect

    D. B. Johnson; N. Okibe; F. F. Roberto

    2003-07-01

    Moderately thermophilic acidophilic bacteria were isolated from geothermal (30–83 °C) acidic (pH 2.7– 3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 °C, and pH 1.0–1.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria (Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstone strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the a-Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also a-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes (SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.

  8. Genome Sequence of the Acidophilic Iron Oxidizer Ferrimicrobium acidiphilum Strain T23T.

    PubMed

    Eisen, Sebastian; Poehlein, Anja; Johnson, D Barrie; Daniel, Rolf; Schlömann, Michael; Mühling, Martin

    2015-04-30

    Extremely acidophilic iron-oxidizing bacteria have largely been characterized for the phyla Proteobacteria and Nitrospira. Here, we report the draft genome of an iron-oxidizing and -reducing heterotrophic mesophile of the Actinobacteria, Ferrimicrobium acidiphilum, which was isolated from an abandoned pyrite mine. The genome sequence comprises 3.08 Mb.

  9. Biodegradation of polycyclic aromatic hydrocarbons by an acidophilic Stenotrophomonas maltophilia strain AJH1 isolated from a mineral mining site in Saudi Arabia.

    PubMed

    Arulazhagan, P; Al-Shekri, K; Huda, Q; Godon, J J; Basahi, J M; Jeyakumar, D

    2017-01-01

    The present study aims at analyzing the degradation of polycyclic aromatic hydrocarbons (PAHs) at acidic conditions (pH = 2) by acidophilic Stenotrophomonas maltophilia strain AJH1 (KU664513). The strain AJH1 was obtained from an enrichment culture obtained from soil samples of mining area in the presence of PAH as sole sources of carbon and energy. Strain AJH1was able to degrade low (anthracene, phenanthrene, naphthalene, fluorene) and high (pyrene, benzo(e)pyrene and benzo(k)fluoranthene) molecular weight PAHs in acidophilic mineral salt medium at pH 2, with removal rates of up to 95% (LMW PAH) and 80% (HMW PAH), respectively. In addition, strain AJH1 treated petroleum wastewater with 89 ± 1.1% COD removal under acidic condition (pH 2) in a continuously stirred reactor. Acidophilic S. maltophilia strain AJH1, hence holds the promise as an effective degrader for biological treatment of PAHs contaminated wastewater at acidic pH.

  10. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia.

    PubMed

    Nancucheo, Ivan; Johnson, D Barrie

    2010-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacillus spp. Rapid acidification (to pH 1.0) of the culture medium of At. caldus resulted in a large increase in the level of DOC, although the concentration of glycolic acid did not change in proportion. The archaeon Ferroplasma acidiphilum grew in the cell-free spent medium of At. caldus; glycolic acid was not metabolized, although other unidentified compounds in the DOC pool were metabolized. Glycolic acid exhibited levels of toxicity with 21 strains of acidophiles screened similar to those of acetic acid. The most sensitive species were chemolithotrophs (L. ferriphilum and At. ferrivorans), while the most tolerant species were chemoorganotrophs (Acidocella, Acidobacterium, and Ferroplasma species), and the ability to metabolize glycolic acid appeared to be restricted (among acidophiles) to Firmicutes (chiefly Sulfobacillus spp.). Results of this study help explain why Sulfobacillus spp. rather than other acidophiles are the main organic carbon-degrading bacteria in continuously fed stirred tanks used to bioprocess sulfide mineral concentrates and also why temporary cessation of pH control in these systems, resulting in rapid acidification, often results in a plume of the archaeon Ferroplasma.

  11. Bioprospecting for acidophilic lipid-rich green microalgae isolated from abandoned mine site water bodies.

    PubMed

    Eibl, Joseph K; Corcoran, Jason D; Senhorinho, Gerusa N A; Zhang, Kejian; Hosseini, Nekoo Seyed; Marsden, James; Laamanen, Corey A; Scott, John A; Ross, Gregory M

    2014-03-26

    With fossil fuel sources in limited supply, microalgae show tremendous promise as a carbon neutral source of biofuel. Current microalgae biofuel strategies typically rely on growing high-lipid producing laboratory strains of microalgae in open raceways or closed system photobioreactors. Unfortunately, these microalgae species are found to be sensitive to environmental stresses or competition by regional strains. Contamination by invasive species can diminish productivity of commercial algal processes. A potential improvement to current strategies is to identify high-lipid producing microalgae, which thrive in selected culture conditions that reduce the risk of contamination, such as low pH. Here we report the identification of a novel high-lipid producing microalgae which can tolerate low pH growth conditions. Lig 290 is a Scenedesmus spp. isolated from a low pH waterbody (pH = 4.5) in proximity to an abandoned lignite mine in Northern Ontario, Canada. Compared to a laboratory strain of Scendesmus dimorphus, Lig 290 demonstrated robust growth rates, a strong growth profile, and high lipid production. As a consequence, Lig 290 may have potential application as a robust microalgal species for use in biofuel production.

  12. Bioprospecting for acidophilic lipid-rich green microalgae isolated from abandoned mine site water bodies

    PubMed Central

    2014-01-01

    With fossil fuel sources in limited supply, microalgae show tremendous promise as a carbon neutral source of biofuel. Current microalgae biofuel strategies typically rely on growing high-lipid producing laboratory strains of microalgae in open raceways or closed system photobioreactors. Unfortunately, these microalgae species are found to be sensitive to environmental stresses or competition by regional strains. Contamination by invasive species can diminish productivity of commercial algal processes. A potential improvement to current strategies is to identify high-lipid producing microalgae, which thrive in selected culture conditions that reduce the risk of contamination, such as low pH. Here we report the identification of a novel high-lipid producing microalgae which can tolerate low pH growth conditions. Lig 290 is a Scenedesmus spp. isolated from a low pH waterbody (pH = 4.5) in proximity to an abandoned lignite mine in Northern Ontario, Canada. Compared to a laboratory strain of Scendesmus dimorphus, Lig 290 demonstrated robust growth rates, a strong growth profile, and high lipid production. As a consequence, Lig 290 may have potential application as a robust microalgal species for use in biofuel production. PMID:24670060

  13. "Use of acidophilic bacteria of the genus Acidithiobacillus to biosynthesize CdS fluorescent nanoparticles (quantum dots) with high tolerance to acidic pH".

    PubMed

    Ulloa, G; Collao, B; Araneda, M; Escobar, B; Álvarez, S; Bravo, D; Pérez-Donoso, J M

    2016-12-01

    The use of bacterial cells to produce fluorescent semiconductor nanoparticles (quantum dots, QDs) represents a green alternative with promising economic potential. In the present work, we report for the first time the biosynthesis of CdS QDs by acidophilic bacteria of the Acidithiobacillus genus. CdS QDs were obtained by exposing A. ferrooxidans, A. thiooxidans and A. caldus cells to sublethal Cd(2+) concentrations in the presence of cysteine and glutathione. The fluorescence of cadmium-exposed cells moves from green to red with incubation time, a characteristic property of QDs associated with nanocrystals growth. Biosynthesized nanoparticles (NPs) display an absorption peak at 360nm and a broad emission spectra between 450 and 650nm when excited at 370nm, both characteristic of CdS QDs. Average sizes of 6 and 10nm were determined for green and red NPs, respectively. The importance of cysteine and glutathione on QDs biosynthesis in Acidithiobacillus was related with the generation of H2S. Interestingly, QDs produced by acidophilic bacteria display high tolerance to acidic pH. Absorbance and fluorescence properties of QDs was not affected at pH 2.0, a condition that totally inhibits the fluorescence of QDs produced chemically or biosynthesized by mesophilic bacteria (stable until pH 4.5-5.0). Results presented here constitute the first report of the generation of QDs with improved properties by using extremophile microorganisms.

  14. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments.

    PubMed

    Jeremic, Sanja; Beškoski, Vladimir P; Djokic, Lidija; Vasiljevic, Branka; Vrvić, Miroslav M; Avdalović, Jelena; Gojgić Cvijović, Gordana; Beškoski, Latinka Slavković; Nikodinovic-Runic, Jasmina

    2016-05-01

    Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu(2+), Cd(2+) and Cr(6+) and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria- Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions.

  15. Generation of a large, protonophore-sensitive proton motive force and pH difference in the acidophilic bacteria Thermoplasma acidophilum and Bacillus acidocaldarius.

    PubMed Central

    Michels, M; Bakker, E P

    1985-01-01

    The mechanism by which acidophilic bacteria generate and maintain their cytoplasmic pH close to neutrality was investigated. For this purpose we determined the components of proton motive force in the eubacterium Bacillus acidocaldarius and the archaebacterium Thermoplasma acidophilum. After correction for probe binding, the proton motive force of untreated cells was 190 to 240 mV between external pH 2 and 4. Anoxia diminished total proton motive force and the transmembrane pH difference by 60 to 80 mV. The protonophore 2,4-dinitrophenol abolished the total proton motive force almost completely and diminished the transmembrane pH difference by at least two units. However, even after correction for probe binding, protonophore-treated cells maintained a pH difference of approximately one unit. PMID:2981803

  16. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile.

    PubMed

    Korehi, H; Blöthe, M; Sitnikova, M A; Dold, B; Schippers, A

    2013-03-05

    The marine shore sulfidic mine tailings dump at the Chañaral Bay in the Atacama Desert, northern Chile, is characterized by extreme acidity, high salinity, and high heavy metals concentrations. Due to pyrite oxidation, metals (especially copper) are mobilized under acidic conditions and transported toward the tailings surface and precipitate as secondary minerals (Dold, Environ. Sci. Technol. 2006, 40, 752-758.). Depth profiles of total cell counts in this almost organic-carbon free multiple extreme environment showed variable numbers with up to 10(8) cells g(-1) dry weight for 50 samples at four sites. Real-time PCR quantification and bacterial 16S rRNA gene diversity analysis via clone libraries revealed a dominance of Bacteria over Archaea and the frequent occurrence of the acidophilic iron(II)- and sulfur-oxidizing and iron(III)-reducing genera Acidithiobacillus, Alicyclobacillus, and Sulfobacillus. Acidophilic chemolithoautotrophic iron(II)-oxidizing bacteria were also frequently found via most-probable-number (MPN) cultivation. Halotolerant iron(II)-oxidizers in enrichment cultures were active at NaCl concentrations up to 1 M. Maximal microcalorimetrically determined pyrite oxidation rates coincided with maxima of the pyrite content, total cell counts, and MPN of iron(II)-oxidizers. These findings indicate that microbial pyrite oxidation and metal mobilization preferentially occur in distinct tailings layers at high salinity. Microorganisms for biomining with seawater salt concentrations obviously exist in nature.

  17. Model-based evaluation of ferrous iron oxidation by acidophilic bacteria in chemostat and biofilm airlift reactors.

    PubMed

    Ebrahimi, Sirous; Faraghi, Neda; Hosseini, Maryam

    2015-10-01

    This article presents a model-based evaluation of ferrous iron oxidation in chemostat and biofilm airlift reactors inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria. The competition between the two types of bacteria in the chemostat and in the biofilm airlift reactors together with the distribution of both bacteria along the biofilm thickness at different time sections has been studied. The bacterial distribution profiles along the biofilm in the airlift reactor at different time scales show that in the beginning A. ferrooxidans bacteria are dominant, but when the reactor operates for a long time the desirable L. ferrooxidans species outcompete A. ferrooxidans as a result of the low Fe(2+) and high Fe(3+) concentrations. The results obtained from the simulation were compared with the experimental data of continuously operated internal loop airlift biofilm reactor. The model results are in good agreement with the experimental results.

  18. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    PubMed

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  19. Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage.

    PubMed

    Sun, Weimin; Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Chen, Haiyan; Xiao, Qingxiang

    2016-10-01

    A small watershed heavily contaminated by long-term acid mine drainage (AMD) from an upstream abandoned coal mine was selected to study the microbial community developed in such extreme system. The watershed consists of AMD-contaminated creek, adjacent contaminated soils, and a small cascade aeration unit constructed downstream, which provide an excellent contaminated site to study the microbial response in diverse extreme AMD-polluted environments. The results showed that the innate microbial communities were dominated by acidophilic bacteria, especially acidophilic Fe-metabolizing bacteria, suggesting that Fe and pH are the primary environmental factors in governing the indigenous microbial communities. The distribution of Fe-metabolizing bacteria showed distinct site-specific patterns. A pronounced shift from diverse communities in the upstream to Proteobacteria-dominated communities in the downstream was observed in the ecosystem. This location-specific trend was more apparent at genus level. In the upstream samples (sampling sites just below the coal mining adit), a number of Fe(II)-oxidizing bacteria such as Alicyclobacillus spp., Metallibacterium spp., and Acidithrix spp. were dominant, while Halomonas spp. were the major Fe(II)-oxidizing bacteria observed in downstream samples. Additionally, Acidiphilium, an Fe(III)-reducing bacterium, was enriched in the upstream samples, while Shewanella spp. were the dominant Fe(III)-reducing bacteria in downstream samples. Further investigation using linear discriminant analysis (LDA) effect size (LEfSe), principal coordinate analysis (PCoA), and unweighted pair group method with arithmetic mean (UPGMA) clustering confirmed the difference of microbial communities between upstream and downstream samples. Canonical correspondence analysis (CCA) and Spearman's rank correlation indicate that total organic carbon (TOC) content is the primary environmental parameter in structuring the indigenous microbial communities

  20. Remediation of acid mine drainage with sulfate reducing bacteria

    SciTech Connect

    Hauri, J.F.; Schaider, L.A.

    2009-02-15

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed changes in dissolved metal concentrations and pH. Using synthetic acid mine drainage and combinations of inputs, students monitor their bioreactors for decreases in dissolved copper and iron concentrations.

  1. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    ERIC Educational Resources Information Center

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  2. Cultivation and quantitative proteomic analyses of acidophilic microbial communities

    SciTech Connect

    Belnap, Christopher P.; Pan, Chongle; Verberkmoes, Nathan C; Power, Mary E.; Samatova, Nagiza F; Carver, Rudolf L.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2010-01-01

    Acid mine drainage (AMD), an extreme environment characterized by low pH and high metal concentrations, can support dense acidophilic microbial biofilm communities that rely on chemoautotrophic production based on iron oxidation. Field determined production rates indicate that, despite the extreme conditions, these communities are sufficiently well adapted to their habitats to achieve primary production rates comparable to those of microbial communities occurring in some non-extreme environments. To enable laboratory studies of growth, production and ecology of AMD microbial communities, a culturing system was designed to reproduce natural biofilms, including organisms recalcitrant to cultivation. A comprehensive metabolic labeling-based quantitative proteomic analysis was used to verify that natural and laboratory communities were comparable at the functional level. Results confirmed that the composition and core metabolic activities of laboratory-grown communities were similar to a natural community, including the presence of active, low abundance bacteria and archaea that have not yet been isolated. However, laboratory growth rates were slow compared with natural communities, and this correlated with increased abundance of stress response proteins for the dominant bacteria in laboratory communities. Modification of cultivation conditions reduced the abundance of stress response proteins and increased laboratory community growth rates. The research presented here represents the first description of the application of a metabolic labeling-based quantitative proteomic analysis at the community level and resulted in a model microbial community system ideal for testing physiological and ecological hypotheses.

  3. Plant Growth-Promoting Bacteria for Phytostabilization of Mine Tailings

    SciTech Connect

    Grandlic, C.J.; Mendez, M.O.; Chorover, J.; Machado, B.; Maier, R.M.

    2009-05-19

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal content tailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.

  4. Significance of microbial communities and interactions in safeguarding reactive mine tailings by ecological engineering.

    PubMed

    Nancucheo, Ivan; Johnson, D Barrie

    2011-12-01

    Pyritic mine tailings (mineral waste generated by metal mining) pose significant risk to the environment as point sources of acidic, metal-rich effluents (acid mine drainage [AMD]). While the accelerated oxidative dissolution of pyrite and other sulfide minerals in tailings by acidophilic chemolithotrophic prokaryotes has been widely reported, other acidophiles (heterotrophic bacteria that catalyze the dissimilatory reduction of iron and sulfur) can reverse the reactions involved in AMD genesis, and these have been implicated in the "natural attenuation" of mine waters. We have investigated whether by manipulating microbial communities in tailings (inoculating with iron- and sulfur-reducing acidophilic bacteria and phototrophic acidophilic microalgae) it is possible to mitigate the impact of the acid-generating and metal-mobilizing chemolithotrophic prokaryotes that are indigenous to tailing deposits. Sixty tailings mesocosms were set up, using five different microbial inoculation variants, and analyzed at regular intervals for changes in physicochemical and microbiological parameters for up to 1 year. Differences between treatment protocols were most apparent between tailings that had been inoculated with acidophilic algae in addition to aerobic and anaerobic heterotrophic bacteria and those that had been inoculated with only pyrite-oxidizing chemolithotrophs; these differences included higher pH values, lower redox potentials, and smaller concentrations of soluble copper and zinc. The results suggest that empirical ecological engineering of tailing lagoons to promote the growth and activities of iron- and sulfate-reducing bacteria could minimize their risk of AMD production and that the heterotrophic populations could be sustained by facilitating the growth of microalgae to provide continuous inputs of organic carbon.

  5. Significance of Microbial Communities and Interactions in Safeguarding Reactive Mine Tailings by Ecological Engineering▿†

    PubMed Central

    N̆ancucheo, Ivan; Johnson, D. Barrie

    2011-01-01

    Pyritic mine tailings (mineral waste generated by metal mining) pose significant risk to the environment as point sources of acidic, metal-rich effluents (acid mine drainage [AMD]). While the accelerated oxidative dissolution of pyrite and other sulfide minerals in tailings by acidophilic chemolithotrophic prokaryotes has been widely reported, other acidophiles (heterotrophic bacteria that catalyze the dissimilatory reduction of iron and sulfur) can reverse the reactions involved in AMD genesis, and these have been implicated in the “natural attenuation” of mine waters. We have investigated whether by manipulating microbial communities in tailings (inoculating with iron- and sulfur-reducing acidophilic bacteria and phototrophic acidophilic microalgae) it is possible to mitigate the impact of the acid-generating and metal-mobilizing chemolithotrophic prokaryotes that are indigenous to tailing deposits. Sixty tailings mesocosms were set up, using five different microbial inoculation variants, and analyzed at regular intervals for changes in physicochemical and microbiological parameters for up to 1 year. Differences between treatment protocols were most apparent between tailings that had been inoculated with acidophilic algae in addition to aerobic and anaerobic heterotrophic bacteria and those that had been inoculated with only pyrite-oxidizing chemolithotrophs; these differences included higher pH values, lower redox potentials, and smaller concentrations of soluble copper and zinc. The results suggest that empirical ecological engineering of tailing lagoons to promote the growth and activities of iron- and sulfate-reducing bacteria could minimize their risk of AMD production and that the heterotrophic populations could be sustained by facilitating the growth of microalgae to provide continuous inputs of organic carbon. PMID:21965397

  6. Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses.

    PubMed

    Kip, Nardy; Ouyang, Wenjing; van Winden, Julia; Raghoebarsing, Ashna; van Niftrik, Laura; Pol, Arjan; Pan, Yao; Bodrossy, Levente; van Donselaar, Elly G; Reichart, Gert-Jan; Jetten, Mike S M; Damsté, Jaap S Sinninghe; Op den Camp, Huub J M

    2011-08-15

    Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphaproteobacterial methanotrophs was found. With Sphagnum mosses as the inoculum, alpha- and gammaproteobacterial acidophilic methanotrophs were isolated using established and newly designed media. The 16S rRNA, pmoA, pxmA, and mmoX gene sequences showed that the alphaproteobacterial isolates belonged to the Methylocystis and Methylosinus genera. The Methylosinus species isolated are the first acid-tolerant members of this genus. Of the acidophilic gammaproteobacterial strains isolated, strain M5 was affiliated with the Methylomonas genus, and the other strain, M200, may represent a novel genus, most closely related to the genera Methylosoma and Methylovulum. So far, no acidophilic or acid-tolerant methanotrophs in the Gammaproteobacteria class are known. All strains showed the typical features of either type I or II methanotrophs and are, to the best of our knowledge, the first isolated (acidophilic or acid-tolerant) methanotrophs from Sphagnum mosses.

  7. Proposal of six species of moderately thermophilic, acidophilic, endospore-forming bacteria: Alicyclobacillus contaminans sp. nov., Alicyclobacillus fastidiosus sp. nov., Alicyclobacillus kakegawensis sp. nov., Alicyclobacillus macrosporangiidus sp. nov., Alicyclobacillus sacchari sp. nov. and Alicyclobacillus shizuokensis sp. nov.

    PubMed

    Goto, Keiichi; Mochida, Kaoru; Kato, Yuko; Asahara, Mika; Fujita, Rieko; An, Sun-Young; Kasai, Hiroaki; Yokota, Akira

    2007-06-01

    Moderately thermophilic, acidophilic, spore-forming bacteria (146 strains) were isolated from various beverages and environments. Based on the results of sequence analysis of the hypervariable region of the 16S rRNA gene, eight of the strains represent novel species of the genus Alicyclobacillus. These strains were designated 3-A191(T), 4-A336(T), 5-A83J(T), 5-A167N, 5-A239-2O-A(T), E-8, RB718(T) and S-TAB(T). Phylogenetic analyses of 16S rRNA and DNA gyrase B subunit (gyrB) nucleotide sequences confirmed that the eight strains belonged to the Alicyclobacillus clade. Cells of the eight strains were Gram-positive or Gram-variable, strictly aerobic and rod-shaped. The strains grew well under acidic and moderately thermal conditions, produced acid from various sugars, contained menaquinone 7 as the major isoprenoid quinone and did not produce guaiacol. omega-Alicyclic fatty acids were the predominant lipid component of strains 4-A336(T), 5-A83J(T), 5-A167N, RB718(T) and S-TAB(T). No omega-alicyclic fatty acids were detected in strains 3-A191(T), 5-A239-2O-A(T) or E-8, but iso- and anteiso-branched fatty acids and small amounts of straight-chain saturated fatty acids were detected instead. According to the DNA-DNA hybridization data and distinct morphological, physiological, chemotaxonomical and genetic traits, the eight strains represent six novel species within the genus Alicyclobacillus, for which the following names are proposed: Alicyclobacillus contaminans sp. nov. (type strain 3-A191(T)=DSM 17975(T)=IAM 15224(T)), Alicyclobacillus fastidiosus sp. nov. (type strain S-TAB(T)=DSM 17978(T)=IAM 15229(T)), Alicyclobacillus kakegawensis sp. nov. (type strain 5-A83J(T)=DSM 17979(T)=IAM 15227(T)), Alicyclobacillus macrosporangiidus sp. nov. (type strain 5-A239-2O-A(T)=DSM 17980(T)=IAM 15370(T)), Alicyclobacillus sacchari sp. nov. (type strain RB718(T)=DSM 17974(T)=IAM 15230(T)) and Alicyclobacillus shizuokensis sp. nov. (type strain 4-A336(T)=DSM 17981(T)=IAM 15226(T)).

  8. Community Genomic and Proteomic Analyses of Chemoautotrophic Iron-Oxidizing "Leptospirillum rubarum" (Group II) and "Leptospirillum ferrodiazotrophum" (Group III) Bacteria in Acid Mine Drainage Biofilms

    SciTech Connect

    Goltsman, Daniela; Denef, Vincent; Singer, Steven; Verberkmoes, Nathan C; Lefsrud, Mark G; Mueller, Ryan; Dick, Gregory J.; Sun, Christine; Wheeler, Korin; Zelma, Adam; Baker, Brett J.; Hauser, Loren John; Land, Miriam L; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2009-01-01

    We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum group II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, Iron Mountain, CA, acid mine drainage biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum groups II and III, respectively, and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and >60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid carries conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacterial groups have genes for community-essential functions, including carbon fixation and biosynthesis of vitamins, fatty acids, and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum group II uses a methyl-dependent and Leptospirillum group III a methyl-independent response pathway. Although only Leptospirillum group III can fix nitrogen, these proteins were not identified by proteomics. The abundances of core proteins are similar in all communities, but the abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum groups II and III.

  9. MINE WASTE TECHNOLOGY PROGRAM - SULFATE REDUCING BACTERIA REACTIVE WALL DEMO

    EPA Science Inventory


    Efforts reported in this document focused on the demonstration of a passive technology that could be used for remediation of
    thousands of abandoned mines existing in the Western United States that emanate acid mine drainage (AMD). This passive remedial technology takes ad...

  10. Quantitative proteomic analyses of the response of acidophilic microbial communities to different pH conditions.

    PubMed

    Belnap, Christopher P; Pan, Chongle; Denef, Vincent J; Samatova, Nagiza F; Hettich, Robert L; Banfield, Jillian F

    2011-07-01

    Extensive genomic characterization of multi-species acid mine drainage microbial consortia combined with laboratory cultivation has enabled the application of quantitative proteomic analyses at the community level. In this study, quantitative proteomic comparisons were used to functionally characterize laboratory-cultivated acidophilic communities sustained in pH 1.45 or 0.85 conditions. The distributions of all proteins identified for individual organisms indicated biases for either high or low pH, and suggests pH-specific niche partitioning for low abundance bacteria and archaea. Although the proteome of the dominant bacterium, Leptospirillum group II, was largely unaffected by pH treatments, analysis of functional categories indicated proteins involved in amino acid and nucleotide metabolism, as well as cell membrane/envelope biogenesis were overrepresented at high pH. Comparison of specific protein abundances indicates higher pH conditions favor Leptospirillum group III, whereas low pH conditions promote the growth of certain archaea. Thus, quantitative proteomic comparisons revealed distinct differences in community composition and metabolic function of individual organisms during different pH treatments. Proteomic analysis revealed other aspects of community function. Different numbers of phage proteins were identified across biological replicates, indicating stochastic spatial heterogeneity of phage outbreaks. Additionally, proteomic data were used to identify a previously unknown genotypic variant of Leptospirillum group II, an indication of selection for a specific Leptospirillum group II population in laboratory communities. Our results confirm the importance of pH and related geochemical factors in fine-tuning acidophilic microbial community structure and function at the species and strain level, and demonstrate the broad utility of proteomics in laboratory community studies.

  11. Quantitative proteomic analyses of the response of acidophilic microbial communities to different pH conditions

    SciTech Connect

    Belnap, Christopher P.; Pan, Chongle; Denef, Vincent; Samatova, Nagiza F; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2011-01-01

    Extensive genomic characterization of multi-species acid mine drainage microbial consortia combined with laboratory cultivation has enabled the application of quantitative proteomic analyses at the community level. In this study, quantitative proteomic comparisons were used to functionally characterize laboratory-cultivated acidophilic communities sustained in pH 1.45 or 0.85 conditions. The distributions of all proteins identified for individual organisms indicated biases for either high or low pH, and suggests pH-specific niche partitioning for low abundance bacteria and archaea. Although the proteome of the dominant bacterium, Leptospirillum group II, was largely unaffected by pH treatments, analysis of functional categories indicated proteins involved in amino acid and nucleotide metabolism, as well as cell membrane/envelope biogenesis were overrepresented at high pH. Comparison of specific protein abundances indicates higher pH conditions favor Leptospirillum group III, whereas low pH conditions promote the growth of certain archaea. Thus, quantitative proteomic comparisons revealed distinct differences in community composition and metabolic function of individual organisms during different pH treatments. Proteomic analysis revealed other aspects of community function. Different numbers of phage proteins were identified across biological replicates, indicating stochastic spatial heterogeneity of phage outbreaks. Additionally, proteomic data were used to identify a previously unknown genotypic variant of Leptospirillum group II, an indication of selection for a specific Leptospirillum group II population in laboratory communities. Our results confirm the importance of pH and related geochemical factors in fine-tuning acidophilic microbial community structure and function at the species and strain level, and demonstrate the broad utility of proteomics in laboratory community studies.

  12. Draft Genome Sequence of a Novel Acidophilic Iron-Oxidizing Firmicutes Species, “Acidibacillus ferrooxidans” (SLC66T)

    PubMed Central

    Ñancucheo, Ivan; Oliveira, Renato; Dall’Agnol, Hivana; Johnson, D. Barrie; Grail, Barry; Holanda, Roseanne; Nunes, Gisele Lopes; Cuadros-Orellana, Sara

    2016-01-01

    Here, we present the draft genome sequence of the type strain of “Acidibacillus ferrooxidans,” a mesophilic, heterotrophic, and acidophilic bacterium that was isolated from mine spoilage subjected to accelerated weathering in humidity cell tests carried out by the former U.S. Bureau of Mines in Salt Lake City, UT. PMID:27198020

  13. Enzymatic potential of heterotrophic bacteria from a neutral copper mine drainage.

    PubMed

    Costa, Bruna Zucoloto da; Rodrigues, Viviane Drumond; Oliveira, Valéria Maia de; Ottoboni, Laura Maria Mariscal; Marsaioli, Anita Jocelyne

    Copper mine drainages are restricted environments that have been overlooked as sources of new biocatalysts for bioremediation and organic syntheses. Therefore, this study aimed to determine the enzymatic activities (esterase, epoxide hydrolase and monooxygenase) of 56 heterotrophic bacteria isolated from a neutral copper mine drainage (Sossego Mine, Canaã dos Carajás, Brazil). Hydrolase and monooxygenase activities were detected in 75% and 20% of the evaluated bacteria, respectively. Bacterial strains with good oxidative performance were also evaluated for biotransformation of organic sulfides. Fourteen strains with good enzymatic activity were identified by 16S rRNA gene sequencing, revealing the presence of three genera: Bacillus, Pseudomonas and Stenotrophomonas. The bacterial strains B. megaterium (SO5-4 and SO6-2) and Pseudomonas sp. (SO5-9) efficiently oxidized three different organic sulfides to their corresponding sulfoxides. In conclusion, this study revealed that neutral copper mine drainages are a promising source of biocatalysts for ester hydrolysis and sulfide oxidation/bioremediation. Furthermore, this is a novel biotechnological overview of the heterotrophic bacteria from a copper mine drainage, and this report may support further microbiological monitoring of this type of mine environment.

  14. Acidophilic Methanotrophic Communities from Sphagnum Peat Bogs

    PubMed Central

    Dedysh, Svetlana N.; Panikov, Nicolai S.; Tiedje, James M.

    1998-01-01

    Highly enriched methanotrophic communities (>25 serial transfers) were obtained from acidic ombrotrophic peat bogs from four boreal forest sites. The enrichment strategy involved using media conditions that were associated with the highest rates of methane uptake by the original peat samples, namely, the use of diluted mineral medium of low buffering capacity, moderate incubation temperature (20°C), and pH values of 3 to 6. Enriched communities contained a mixture of rod-shaped bacteria arranged in aggregates with a minor contribution of Hyphomicrobium-like cells. The growth stoichiometry of isolates was characteristic of methanotrophic bacteria (CH4/O2/CO2=1:1.1:0.59), with an average apparent yield of 0.41 ± 0.03 g of biomass C/g of CH4-C. DNA from each enrichment yielded a PCR product of the expected size with primers for both mmoX and mmoY genes of soluble methane monooxygenase. Two types of sequences were obtained for PCR-amplified fragments of mmoX. One of them exhibited high identity to the mmoX protein of the Methylocystis-Methylosinus group, whereas the other showed an equal level of divergence from both the Methylosinus-Methylocystis group and Methylococcus capsulatus (Bath) and formed a distinct branch. The pH optimum for growth and for CH4 uptake was 4.5 to 5.5, which is very similar to that for the optimum CH4 uptake observed in the original peat samples. These methanotrophs are moderate acidophiles rather than acidotolerant organisms, since their growth rate and methane uptake were much lower at neutral pH. The growth of the methanotrophic community was enhanced by using media with a very low salt content (20 to 200 mg/liter), more typical of their natural environment. All four enriched communities grew on N-free medium. PMID:9501432

  15. Mine Waste Technology Program. In Situ Source Control Of Acid Generation Using Sulfate-Reducing Bacteria

    EPA Science Inventory

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 3, In Situ Source Control of Acid Generation Using Sulfate-Reducing Bacteria, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S....

  16. Iron Meteorites Can Support the Growth of Acidophilic Chemolithoautotrophic Microorganisms

    NASA Astrophysics Data System (ADS)

    González-Toril, Elena; Martínez-Frías, Jesús; Gómez, José María; Rull, Fernando; Amils, Ricardo

    2005-06-01

    Chemolithoautotrophy based on reduced inorganic minerals is considered a primitive energy transduction system. Evidence that a high number of meteorites crashed into the planet during the early period of Earth history led us to test the ability of iron-oxidizing bacteria to grow using iron meteorites as their source of energy. Here we report the growth of two acidophilic iron-oxidizing bacteria, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans, on a piece of the Toluca meteorite as the only source of energy. The alteration of the surface of the exposed piece of meteorite, the solubilization of its oxidized metal constituents, mainly ferric iron, and the formation of goethite precipitates all clearly indicate that iron-meteoritebased chemolithotrophic metabolism is viable.

  17. Iron meteorites can support the growth of acidophilic chemolithoautotrophic microorganisms.

    PubMed

    González-Toril, Elena; Martínez-Frías, Jesús; Gómez Gómez, José María; Rull, Fernando; Amils, Ricardo

    2005-06-01

    Chemolithoautotrophy based on reduced inorganic minerals is considered a primitive energy transduction system. Evidence that a high number of meteorites crashed into the planet during the early period of Earth history led us to test the ability of iron-oxidizing bacteria to grow using iron meteorites as their source of energy. Here we report the growth of two acidophilic iron-oxidizing bacteria, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans, on a piece of the Toluca meteorite as the only source of energy. The alteration of the surface of the exposed piece of meteorite, the solubilization of its oxidized metal constituents, mainly ferric iron, and the formation of goethite precipitates all clearly indicate that iron-meteorite-based chemolithotrophic metabolism is viable.

  18. Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage.

    PubMed

    Kock, Dagmar; Schippers, Axel

    2008-08-01

    The microbial communities of three different sulfidic and acidic mine waste tailing dumps located in Botswana, Germany, and Sweden were quantitatively analyzed using quantitative real-time PCR (Q-PCR), fluorescence in situ hybridization (FISH), catalyzed reporter deposition-FISH (CARD-FISH), Sybr green II direct counting, and the most probable number (MPN) cultivation technique. Depth profiles of cell numbers showed that the compositions of the microbial communities are greatly different at the three sites and also strongly varied between zones of oxidized and unoxidized tailings. Maximum cell numbers of up to 10(9) cells g(-1) dry weight were determined in the pyrite or pyrrhotite oxidation zones, whereas cell numbers in unoxidized tailings were significantly lower. Bacteria dominated over Archaea and Eukarya at all tailing sites. The acidophilic Fe(II)- and/or sulfur-oxidizing Acidithiobacillus spp. dominated over the acidophilic Fe(II)-oxidizing Leptospirillum spp. among the Bacteria at two sites. The two genera were equally abundant at the third site. The acidophilic Fe(II)- and sulfur-oxidizing Sulfobacillus spp. were generally less abundant. The acidophilic Fe(III)-reducing Acidiphilium spp. could be found at only one site. The neutrophilic Fe(III)-reducing Geobacteraceae as well as the dsrA gene of sulfate reducers were quantifiable at all three sites. FISH analysis provided reliable data only for tailing zones with high microbial activity, whereas CARD-FISH, Q-PCR, Sybr green II staining, and MPN were suitable methods for a quantitative microbial community analysis of tailings in general.

  19. Application Of Immobilized Sulfate Reducing Bacteria For Permeable Reactive Barriers In Abandoned Coal Mines

    NASA Astrophysics Data System (ADS)

    Kim, K.; Hur, W.; Choi, S.; Min, K.; Baek, H.

    2006-05-01

    The decline of the Korean coal industry has been drastic in production and consumption. This has been resulted mainly from the environmental concern and the collapse of commercial viability, which has eventually necessitated the government to implement the coal industry rationalization policies to reduce coal production and close down uneconomical mines. The overall drainage rates from abandoned coal mines reaches up to 80,000 ton/day. As a measure of controlling the acid mine drainage from abandoned coal mines, reactive materials in the pathways of drainage, designed to intercept and to transform the contaminants into environmentally acceptable forms can be applied at mines with small drainage rates. The main objective of this study is to design a permeable reactive barrier(PRB) to treat low flow and/or low contaminant loads of acid mine drainage. The PRB is comprised of immobilized sulfate reducing bacteria in hard beads and limestone to remove heavy metals and to raise the pH of AMD. A laboratory reactor was used to prepare a mixed culture of sulfate reducing bacteria. The microbes were separated and mixed with biodegradable matrix to form spherical beads. In order to maintain the viability of micro-organisms for a prolonged period, substrates such as saw dust, polysaccharide or glycerol was supplemented for the beads preparation. The strength of beads fortified by powered limestone to control the permeability of PRB. Different mixtures of limestone and the immobilized beads were tested to determine hydraulic conductivity and AMD treatment capacities. The characteristics of the spherical beads at various pH of AMD was investigated.

  20. Bacteria and Genes Involved in Arsenic Speciation in Sediment Impacted by Long-Term Gold Mining

    PubMed Central

    Costa, Patrícia S.; Scholte, Larissa L. S.; Reis, Mariana P.; Chaves, Anderson V.; Oliveira, Pollyanna L.; Itabayana, Luiza B.; Suhadolnik, Maria Luiza S.; Barbosa, Francisco A. R.; Chartone-Souza, Edmar; Nascimento, Andréa M. A.

    2014-01-01

    The bacterial community and genes involved in geobiocycling of arsenic (As) from sediment impacted by long-term gold mining were characterized through culture-based analysis of As-transforming bacteria and metagenomic studies of the arsC, arrA, and aioA genes. Sediment was collected from the historically gold mining impacted Mina stream, located in one of the world’s largest mining regions known as the “Iron Quadrangle”. A total of 123 As-resistant bacteria were recovered from the enrichment cultures, which were phenotypically and genotypically characterized for As-transformation. A diverse As-resistant bacteria community was found through phylogenetic analyses of the 16S rRNA gene. Bacterial isolates were affiliated with Proteobacteria, Firmicutes, and Actinobacteria and were represented by 20 genera. Most were AsV-reducing (72%), whereas AsIII-oxidizing accounted for 20%. Bacteria harboring the arsC gene predominated (85%), followed by aioA (20%) and arrA (7%). Additionally, we identified two novel As-transforming genera, Thermomonas and Pannonibacter. Metagenomic analysis of arsC, aioA, and arrA sequences confirmed the presence of these genes, with arrA sequences being more closely related to uncultured organisms. Evolutionary analyses revealed high genetic similarity between some arsC and aioA sequences obtained from isolates and clone libraries, suggesting that those isolates may represent environmentally important bacteria acting in As speciation. In addition, our findings show that the diversity of arrA genes is wider than earlier described, once none arrA-OTUs were affiliated with known reference strains. Therefore, the molecular diversity of arrA genes is far from being fully explored deserving further attention. PMID:24755825

  1. Detection, Isolation, and Characterization of Acidophilic Methanotrophs from Sphagnum Mosses ▿ †

    PubMed Central

    Kip, Nardy; Ouyang, Wenjing; van Winden, Julia; Raghoebarsing, Ashna; van Niftrik, Laura; Pol, Arjan; Pan, Yao; Bodrossy, Levente; van Donselaar, Elly G.; Reichart, Gert-Jan; Jetten, Mike S. M.; Sinninghe Damsté, Jaap S.; Op den Camp, Huub J. M.

    2011-01-01

    Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphaproteobacterial methanotrophs was found. With Sphagnum mosses as the inoculum, alpha- and gammaproteobacterial acidophilic methanotrophs were isolated using established and newly designed media. The 16S rRNA, pmoA, pxmA, and mmoX gene sequences showed that the alphaproteobacterial isolates belonged to the Methylocystis and Methylosinus genera. The Methylosinus species isolated are the first acid-tolerant members of this genus. Of the acidophilic gammaproteobacterial strains isolated, strain M5 was affiliated with the Methylomonas genus, and the other strain, M200, may represent a novel genus, most closely related to the genera Methylosoma and Methylovulum. So far, no acidophilic or acid-tolerant methanotrophs in the Gammaproteobacteria class are known. All strains showed the typical features of either type I or II methanotrophs and are, to the best of our knowledge, the first isolated (acidophilic or acid-tolerant) methanotrophs from Sphagnum mosses. PMID:21724892

  2. Metal adsorption capabilities of clinoptilolite and selected strains of bacteria from mine water

    NASA Astrophysics Data System (ADS)

    Mamba, B. B.; Dlamini, N. P.; Nyembe, D. W.; Mulaba-Bafubiandi, A. F.

    Small-scale mining has socio-economic advantages such as the reduction of unemployment and the general improvement of the economy. However, these operations if not properly managed or controlled have a potential to cause environmental damage, particularly with respect to the contamination of groundwater and water supplies that are not distant from where these mining activities take place. This paper focuses on metal removal from water contaminated by heavy metals emanating from small-scale mining operations using clinoptilolite and bacteria. Removal of As, Ni, Mn, Au, Co, Cu and Fe was carried out on mine water samples using original and HCl-activated (in 0.02 M and 0.04 M) natural clinoptilolite and bacterial strains (a mixed consortia of Bacillus strains ( Bacillus subtilis, Bacillus cereus, Bacillus firmus, Bacillus fusiformis, Bacillus macroides and Bacillus licheniformis), Pseudomonas spp., Shewanella spp. and a mixed consortia of Acidithiobcillus caldus, Leptospirillum spp., Ferroplasma spp. and Sulphobacillus spp.). The purpose of the study was to compare the removal efficiencies of the bacterial strains versus natural clinoptilolite adsorbents for metal cations. The Bacillus consortia removed most of the metals up to 98% metal removal efficiency with the exception of nickel where clinoptilolite showed good removal efficiency. The 0.02 M HCl-activated clinoptilolite also demonstrated excellent removal capabilities with Cu, Co and Fe removal efficiency of up to 98%. Both clinoptilolite and bacteria demonstrated capabilities of removing Cu 2+, Co 2+, Fe 2+, Mn 2+, As 3+ and Au from solution which augurs well for metal recovery from mining and mineral processing solutions, as well as in water decontamination.

  3. Enhanced Productivity of a Lutein-Enriched Novel Acidophile Microalga Grown on Urea

    PubMed Central

    Casal, Carlos; Cuaresma, Maria; Vega, Jose Maria; Vilchez, Carlos

    2011-01-01

    Coccomyxa acidophila is an extremophile eukaryotic microalga isolated from the Tinto River mining area in Huelva, Spain. Coccomyxa acidophila accumulates relevant amounts of β-carotene and lutein, well-known carotenoids with many biotechnological applications, especially in food and health-related industries. The acidic culture medium (pH < 2.5) that prevents outdoor cultivation from non-desired microorganism growth is one of the main advantages of acidophile microalgae production. Conversely, acidophile microalgae growth rates are usually very low compared to common microalgae growth rates. In this work, we show that mixotrophic cultivation on urea efficiently enhances growth and productivity of an acidophile microalga up to typical values for common microalgae, therefore approaching acidophile algal production towards suitable conditions for feasible outdoor production. Algal productivity and potential for carotenoid accumulation were analyzed as a function of the nitrogen source supplied. Several nitrogen conditions were assayed: nitrogen starvation, nitrate and/or nitrite, ammonia and urea. Among them, urea clearly led to the best cell growth (~4 × 108 cells/mL at the end of log phase). Ammonium led to the maximum chlorophyll and carotenoid content per volume unit (220 μg·mL·1 and 35 μg·mL·1, respectively). Interestingly, no significant differences in growth rates were found in cultures grown on urea as C and N source, with respect to those cultures grown on nitrate and CO2 as nitrogen and carbon sources (control cultures). Lutein accumulated up to 3.55 mg·g·1 in the mixotrophic cultures grown on urea. In addition, algal growth in a shaded culture revealed the first evidence for an active xanthophylls cycle operative in acidophile microalgae. PMID:21339944

  4. Enhanced productivity of a lutein-enriched novel acidophile microalga grown on urea.

    PubMed

    Casal, Carlos; Cuaresma, Maria; Vega, Jose Maria; Vilchez, Carlos

    2010-12-24

    Coccomyxa acidophila is an extremophile eukaryotic microalga isolated from the Tinto River mining area in Huelva, Spain. Coccomyxa acidophila accumulates relevant amounts of β-carotene and lutein, well-known carotenoids with many biotechnological applications, especially in food and health-related industries. The acidic culture medium (pH < 2.5) that prevents outdoor cultivation from non-desired microorganism growth is one of the main advantages of acidophile microalgae production. Conversely, acidophile microalgae growth rates are usually very low compared to common microalgae growth rates. In this work, we show that mixotrophic cultivation on urea efficiently enhances growth and productivity of an acidophile microalga up to typical values for common microalgae, therefore approaching acidophile algal production towards suitable conditions for feasible outdoor production. Algal productivity and potential for carotenoid accumulation were analyzed as a function of the nitrogen source supplied. Several nitrogen conditions were assayed: nitrogen starvation, nitrate and/or nitrite, ammonia and urea. Among them, urea clearly led to the best cell growth (~4 × 10(8) cells/mL at the end of log phase). Ammonium led to the maximum chlorophyll and carotenoid content per volume unit (220 μg·mL(·1) and 35 μg·mL(·1), respectively). Interestingly, no significant differences in growth rates were found in cultures grown on urea as C and N source, with respect to those cultures grown on nitrate and CO(2) as nitrogen and carbon sources (control cultures). Lutein accumulated up to 3.55 mg·g(·1) in the mixotrophic cultures grown on urea. In addition, algal growth in a shaded culture revealed the first evidence for an active xanthophylls cycle operative in acidophile microalgae.

  5. Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs.

    PubMed

    Bai, He; Kang, Yong; Quan, Hongen; Han, Yang; Sun, Jiao; Feng, Ying

    2013-01-01

    In order to treat acid mine drainage (AMD) effectively using sulfate-reducing bacteria (SRB) at high concentration of sulfate and heavy metals, Fe(0) was added to enhance the activity of SRB. When AMD was treated by SRB and Fe(0) at 25 °C, more than 61% of sulfate was removed and the effluent pH was improved from 2.75 to 6.20 during the operation. Cu(2+) was removed effectively with the removal efficiency at 99%, while only 86% of Fe(2+) was removed during the AMD treatment, without conspicuous change of Mn(2+) in the effluent in the process.

  6. Isolation and identification of sulfate reducing bacteria (SRB) from the sediment pond after a coal mine in Samarinda, East Kalimantan

    NASA Astrophysics Data System (ADS)

    Kusumawati, Eko; Sudrajat, Putri, Junita Susilaning

    2017-02-01

    Title isolation and identification of sulfate reducing bacteria (SRB) of sediment pond former coal mine in Samarinda, East Kalimantan. Sulfate reducing bacteria (SRB) is a group of microbes that can be used to improve the quality of sediment former coal mine. In the metabolic activities, the SRB can reduce sulfate to H2S which immediately binds to metals that are widely available on mined lands and precipitated in the form of metal sulfides reductive. Isolation and identification of sulfate reducing bacteria carried out in the Laboratory of Microbiology and Molecular Genetics, Faculty of Mathematics and Natural Sciences, University of Mulawarman, Samarinda. Postgate B is a liquid medium used for isolation through serial dilution. Physiological and biochemical characterization was done by Bergey's Manual of Determinative Bacteriology. Six isolates of sulfate reducing bacteria were isolated from the sediment pond former coal mine in Samarinda. Several groups of bacteria can grow at 14 days of incubation, however, another group of bacteria which takes 21 days to grow. The identification results showed that two isolates belong to the genus Desulfotomaculum sp., and each of the other isolates belong to the genus Desulfococcus sp., Desulfobacter sp., Desulfobulbus sp. and Desulfobacterium sp.

  7. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption.

    PubMed

    Andreazza, R; Pieniz, S; Okeke, B C; Camargo, F A O

    2011-01-01

    Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol) were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) experimental station, Bento Gonçalves, RS, Brazil (29°09'53.92″S and 51°31'39.40″W) and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30°29'43.48″S and 53'32'37.87W). Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L(-1) in 24 h. Contrarily isolate N11 (Bacillus pumilus) displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h). GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration.

  8. Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden

    PubMed Central

    Dey, Satarupa; Paul, A.K.

    2013-01-01

    Microbiological analysis of overburden samples collected from chromite mining areas of Orissa, India revealed that they are rich in microbial density as well as diversity and dominated by Gram-negative (58%) bacteria. The phenotypically distinguishable bacterial isolates (130) showed wide degree of tolerance to chromium (2–8 mM) when tested in peptone yeast extract glucose agar medium. Isolates (92) tolerating 2 mM chromium exhibited different degrees of Cr+6 reducing activity in chemically defined Vogel Bonner (VB) broth and complex KSC medium. Three potent isolates, two belonging to Arthrobacter spp. and one to Pseudomonas sp. were able to reduce more than 50 and 80% of 2 mM chromium in defined and complex media respectively. Along with Cr+6 (MIC 8.6–17.8 mM), the isolates showed tolerance to Ni+2, Fe+3, Cu+2 and Co+2 but were extremely sensitive to Hg+2 followed by Cd+2, Mn+2 and Zn+2. In addition, they were resistant to antibiotics like penicillin, methicillin, ampicillin, neomycin and polymyxin B. During growth under shake-flask conditions, Arthrobacter SUK 1201 and SUK 1205 showed 100% reduction of 2 mM Cr+6 in KSC medium with simultaneous formation of insoluble precipitates of chromium salts. Both the isolates were also equally capable of completely reducing the Cr+6 present in mine seepage when grown in mine seepage supplemented with VB concentrate. PMID:24159321

  9. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles.

    PubMed

    Pradhan, Debabrata; Mishra, Debaraj; Kim, Dong J; Ahn, Jong G; Chaudhury, G Roy; Lee, Seoung W

    2010-03-15

    Bioleaching studies were conducted to evaluate the recovery of metal values from waste petroleum catalyst using two different acidophilic microorganisms, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Various leaching parameters such as contact time, pH, oxidant concentration, pulp densities, particle size, and temperature were studied in detail. Activation energy was evaluated from Arrhenius equation and values for Ni, V and Mo were calculated in case of both the acidophiles. In both cases, the dissolution kinetics of Mo was lower than those of V and Ni. The lower dissolution kinetics may have been due to the formation of a sulfur product layer, refractoriness of MoS(2) or both. Multivariate statistical data were presented to interpret the leaching data in the present case. The significance of the leaching parameters was derived through principle component analysis and multi linear regression analyses for both iron and sulfur oxidizing bacteria.

  10. Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community

    SciTech Connect

    Verberkmoes, Nathan C; Singer, Steven; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2008-01-01

    We have discovered and characterized a novel membrane cytochrome of an iron oxidizing microbial biofilm obtained from the surface of extremely acidic mine water. This protein was initially identified through proteogenomic analysis as one of many novel gene products of Leptospirillum group II, the dominant bacterium of this community (Ram et al, 2005, Science 308, 1915-20). Extraction of proteins directly from environmental biofilm samples followed by membrane fractionation, detergent solubilization and gel filtration chromatography resulted in the purification of an abundant yellow-red protein. Covalently bound to heme, the purified cytochrome has a unique spectral signature at 572 nm and is thus called Cyt572. It readily oxidizes Fe2+ even in the presence of Fe3+ over a pH range from 0.95 to 3.4. Independent experiments involving 2D blue-native polyacrylamide gel electrophoresis and chemical crosslinking establish a homotetrameric structure for Cyt572. Also, circular dichroism spectroscopy indicates that the protein is largely beta-stranded, consistent with an outer membrane location. Although no significant sequence homology to the full-length cytochrome is detected in protein databases, environmental DNA sequences from both Leptospirillum groups II and III reveal at least 17 strain variants of Cyt572. Due to its abundance, cellular location and Fe2+ oxidation activity, we propose Cyt572 is the iron oxidase of the Leptospirillum bacteria, providing a critical function for fitness within the ecological niche of this acidophilic microbial community.

  11. Practical applications of sulfate-reducing bacteria to control acid mine drainage at the Lilly/Orphan Boy Mine near Elliston, Montana

    SciTech Connect

    Canty, M.

    1994-12-31

    The overall purpose of this document is to provide a detailed technical description of a technology, biological sulfate reduction, which is being demonstrated under the Mine Waste Technology Pilot Program, and provide the technology evaluation process undertaken to select this technology for demonstration. In addition, this document will link the use of the selected technology to an application at a specific site. The purpose of this project is to develop technical information on the ability of biological sulfate reduction to slow the process of acid generation and, thus, improve water quality at a remote mine site. Several technologies are screened for their potential to treat acid mine water and to function as a source control for a specific acid-generating situation: a mine shaft and associated underground workings flooded with acid mine water and discharging a small flow from a mine opening. The preferred technology is the use of biological sulfate reduction. Sulfate-reducing bacteria are capable of reducing sulfate to sulfide, as well as increasing the pH and alkalinity of water affected by acid generation. Soluble sulfide reacts with the soluble metals in solution to form insoluble metal sulfides. The environment needed for efficient sulfate-reducing bacteria growth decreases acid production by reducing the dissolved oxygen in water and increasing pH. A detailed technical description of the sulfate-reducing bacteria technology, based on an extensive review of the technical literature, is presented. The field demonstration of this technology to be performed at the Lilly/Orphan Boy Mine is also described. Finally, additional in situ applications of biological sulfate reduction are presented.

  12. Role of sulfur-reducing bacteria in a wetland system treating acid mine drainage.

    PubMed

    Riefler, R Guy; Krohn, Jeremy; Stuart, Ben; Socotch, Cheryl

    2008-05-15

    This report describes a twenty month case study of a successive alkalinity producing system (SAPS) treating a strong acid mine drainage (AMD) source in Coshocton County, Ohio. Prior to the commencement of the project, a large volume of black amorphous sludge had accumulated in several of the constructed wetlands. The sludge was found to be 43% organic, with very high concentrations of sulfur, iron, aluminum, and acidity. Based on several biological, physical, and chemical analyses, the sludge was determined to be an anaerobic biofilm with a large population of sulfur-reducing bacteria and a high mineral content due to the formation of iron sulfide and aluminum precipitates. On average the system performed well, generating 26 kg CaCO3/d of alkalinity and capturing 5.0 kg/d of iron and 1.7 kg/d of aluminum. Several simple performance analysis tools were presented in this work. By comparing the pollutant influent and effluent loading, it was determined that the SAPS was performing at capacity and over the past year increased effluent concentrations were due to increased influent loadings and not system deterioration. Further, by performing a detailed cell-by-cell loading analysis of multiple chemical components, the alkalinity generated by limestone dissolution and by sulfate reduction was determined. Interestingly, 61% of the alkalinity generation in the vertical flow wetlands was due to sulfur-reducing bacteria activity, indicating that sulfur-reducing bacteria may play a more significant role in SAPS than expected.

  13. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption

    PubMed Central

    Andreazza, R.; Pieniz, S.; Okeke, B.C.; Camargo, F.A.O

    2011-01-01

    Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol) were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) experimental station, Bento Gonçalves, RS, Brazil (29°09′53.92″S and 51°31′39.40″W) and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30°29′43.48″S and 53′32′37.87W). Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L−1 in 24 h. Contrarily isolate N11 (Bacillus pumilus) displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h). GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration. PMID:24031606

  14. Identification of antimony- and arsenic-oxidizing bacteria associated with antimony mine tailing.

    PubMed

    Hamamura, Natsuko; Fukushima, Koh; Itai, Takaaki

    2013-01-01

    Antimony (Sb) is a naturally occurring toxic element commonly associated with arsenic (As) in the environment and both elements have similar chemistry and toxicity. Increasing numbers of studies have focused on microbial As transformations, while microbial Sb interactions are still not well understood. To gain insight into microbial roles in the geochemical cycling of Sb and As, soils from Sb mine tailing were examined for the presence of Sb- and As-oxidizing bacteria. After aerobic enrichment culturing with As(III) (10 mM) or Sb(III) (100 μM), pure cultures of Pseudomonas- and Stenotrophomonas-related isolates with Sb(III) oxidation activities and a Sinorhizobium-related isolate capable of As(III) oxidation were obtained. The As(III)-oxidizing Sinorhizobium isolate possessed the aerobic arsenite oxidase gene (aioA), the expression of which was induced in the presence of As(III) or Sb(III). However, no Sb(III) oxidation activity was detected from the Sinorhizobium-related isolate, suggesting the involvement of different mechanisms for Sb and As oxidation. These results demonstrate that indigenous microorganisms associated with Sb mine soils are capable of Sb and As oxidation, and potentially contribute to the speciation and mobility of Sb and As in situ.

  15. Heavy metal bioleaching and sludge stabilization in a single-stage reactor using indigenous acidophilic heterotrophs.

    PubMed

    Mehrotra, Akanksha; Sreekrishnan, T R

    2017-01-10

    Simultaneous sludge digestion and metal leaching (SSDML) have been reported at mesophilic temperature. It is generally perceived that while sludge stabilization is effected by heterotrophs at neutral pH, metal bioleaching is done by acidophilic autotrophs. However, little information is available on the microbial communities involved in the process. This study carried out SSDML in a single-stage reactor using sludge indigenous microorganisms and looked at the bacterial communities responsible for the process. Volatile suspended solids were reduced by more than 40%. The concentration of zinc, copper, chromium, cadmium and nickel decreased by more than 45% in the dry sludge. Acidophilic species of Alicyclobacillus genus were the dominant heterotrophs. A few heterotrophic bacteria were detected which can oxidize iron (Alicyclobacillus ferrooxydans, Alicyclobacillus ferripilum and Ferrimicrobium acidiphilum). Acidithiobacillus ferrooxidans (autotroph) was responsible for the oxidation of both iron and sulfur which lead to a change in the pH from neutral to acidic. The presence of acidophilic heterotrophs, which can oxidize either iron or sulfur, enhanced the efficiency of SSDML process with respect to sludge stabilization and metal leaching. This study shows that it is possible to carry out the SSDML in a single-stage reactor with indigenous microorganisms.

  16. Genome Analysis of the Biotechnologically Relevant Acidophilic Iron Oxidising Strain JA12 Indicates Phylogenetic and Metabolic Diversity within the Novel Genus “Ferrovum”

    PubMed Central

    Ullrich, Sophie R.; Poehlein, Anja; Tischler, Judith S.; González, Carolina; Ossandon, Francisco J.; Daniel, Rolf; Holmes, David S.; Schlömann, Michael; Mühling, Martin

    2016-01-01

    Background Members of the genus “Ferrovum” are ubiquitously distributed in acid mine drainage (AMD) waters which are characterised by their high metal and sulfate loads. So far isolation and microbiological characterisation have only been successful for the designated type strain “Ferrovum myxofaciens” P3G. Thus, knowledge about physiological characteristics and the phylogeny of the genus “Ferrovum” is extremely scarce. Objective In order to access the wider genetic pool of the genus “Ferrovum” we sequenced the genome of a “Ferrovum”-containing mixed culture and successfully assembled the almost complete genome sequence of the novel “Ferrovum” strain JA12. Phylogeny and Lifestyle The genome-based phylogenetic analysis indicates that strain JA12 and the type strain represent two distinct “Ferrovum” species. “Ferrovum” strain JA12 is characterised by an unusually small genome in comparison to the type strain and other iron oxidising bacteria. The prediction of nutrient assimilation pathways suggests that “Ferrovum” strain JA12 maintains a chemolithoautotrophic lifestyle utilising carbon dioxide and bicarbonate, ammonium and urea, sulfate, phosphate and ferrous iron as carbon, nitrogen, sulfur, phosphorous and energy sources, respectively. Unique Metabolic Features The potential utilisation of urea by “Ferrovum” strain JA12 is moreover remarkable since it may furthermore represent a strategy among extreme acidophiles to cope with the acidic environment. Unlike other acidophilic chemolithoautotrophs “Ferrovum” strain JA12 exhibits a complete tricarboxylic acid cycle, a metabolic feature shared with the closer related neutrophilic iron oxidisers among the Betaproteobacteria including Sideroxydans lithotrophicus and Thiobacillus denitrificans. Furthermore, the absence of characteristic redox proteins involved in iron oxidation in the well-studied acidophiles Acidithiobacillus ferrooxidans (rusticyanin) and Acidithiobacillus

  17. Enrichment and characteristics of mixed methane-oxidizing bacteria from a Chinese coal mine.

    PubMed

    Jiang, Hao; Duan, Changhong; Luo, Mingfang; Xing, Xin-Hui

    2016-12-01

    In methane-rich environments, methane-oxidizing bacteria usually occur predominantly among consortia including other types of microorganisms. In this study, artificial coal bed gas and methane gas were used to enrich mixed methanotrophic cultures from the soil of a coal mine in China, respectively. The changes in microbial community structure and function during the enrichment were examined. The microbial diversity was reduced as the enrichment proceeded, while the capacity for methane oxidation was significantly enhanced by the increased abundance of methanotrophs. The proportion of type II methanotrophs increased greatly from 7.84 % in the sampled soil to about 50 % in the enrichment cultures, due to the increase of methane concentration. After the microbial community of the cultures got stable, Methylomonas and Methylocystis became the dominant type I and type II methanotrophs, while Methylophilus was the prevailing methylotroph. The sequences affiliated with pigment-producing strains, Methylomonas rubra, Hydrogenophaga sp. AH-24, and Flavobacterium cucumis, could explain the orange appearance of the cultures. Comparing the two cultures, the multi-carbon sources in the artificial coal bed gas caused more variety of non-methanotrophic bacteria, but did not help to maintain the diversity or to increase the quantity and activity of methanotrophs. The results could help to understand the succession and interaction of microbial community in a methane-driven ecosystem.

  18. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    PubMed

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction.

  19. An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria.

    PubMed

    Maansson, Maria; Vynne, Nikolaj G; Klitgaard, Andreas; Nybo, Jane L; Melchiorsen, Jette; Nguyen, Don D; Sanchez, Laura M; Ziemert, Nadine; Dorrestein, Pieter C; Andersen, Mikael R; Gram, Lone

    2016-01-01

    Microorganisms are a rich source of bioactives; however, chemical identification is a major bottleneck. Strategies that can prioritize the most prolific microbial strains and novel compounds are of great interest. Here, we present an integrated approach to evaluate the biosynthetic richness in bacteria and mine the associated chemical diversity. Thirteen strains closely related to Pseudoalteromonas luteoviolacea isolated from all over the Earth were analyzed using an untargeted metabolomics strategy, and metabolomic profiles were correlated with whole-genome sequences of the strains. We found considerable diversity: only 2% of the chemical features and 7% of the biosynthetic genes were common to all strains, while 30% of all features and 24% of the genes were unique to single strains. The list of chemical features was reduced to 50 discriminating features using a genetic algorithm and support vector machines. Features were dereplicated by tandem mass spectrometry (MS/MS) networking to identify molecular families of the same biosynthetic origin, and the associated pathways were probed using comparative genomics. Most of the discriminating features were related to antibacterial compounds, including the thiomarinols that were reported from P. luteoviolacea here for the first time. By comparative genomics, we identified the biosynthetic cluster responsible for the production of the antibiotic indolmycin, which could not be predicted with standard methods. In conclusion, we present an efficient, integrative strategy for elucidating the chemical richness of a given set of bacteria and link the chemistry to biosynthetic genes. IMPORTANCE We here combine chemical analysis and genomics to probe for new bioactive secondary metabolites based on their pattern of distribution within bacterial species. We demonstrate the usefulness of this combined approach in a group of marine Gram-negative bacteria closely related to Pseudoalteromonas luteoviolacea, which is a species known

  20. Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage.

    PubMed

    Utgikar, Vivek P; Harmon, Stephen M; Chaudhary, Navendu; Tabak, Henry H; Govind, Rakesh; Haines, John R

    2002-02-01

    Acid mine drainage (AMD) containing high concentrations of sulfate and heavy metal ions can be treated by biological sulfate reduction. It has been reported that the effect of heavy metals on sulfate-reducing bacteria (SRB) can be stimulatory at lower concentrations and toxic/inhibitory at higher concentrations. The quantification of the toxic/inhibitory effect of dissolved heavy metals is critical for the design and operation of an effective AMD bioremediation process. Serum bottle and batch reactor studies on metal toxicity to SRB indicate that insoluble metal sulfides can inhibit the SRB activity as well. The mechanism of inhibition is postulated to be external to the bacterial cell. The experimental data indicate that the metal sulfides formed due to the reaction between the dissolved metal and biogenic sulfide act as barriers preventing the access of the reactants (sulfate, organic matter) to the necessary enzymes. Scanning electron micrographs of the SRB cultures exposed to copper and zinc provide supporting evidence for this hypothesis. The SRB cultures retained their ability to effect sulfate reduction indicating that the metal sulfides were not lethally toxic to the SRB. This phenomenon of metal sulfide inhibition of the SRB has to be taken into account while designing a sulfate-reducing bioreator, and subsequently an efficient biotreatment strategy for AMD. Any metal sulfide formed in the bioreactor needs to be removed immediately from the system to maintain the efficiency of the process of sulfate reduction.

  1. An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria

    PubMed Central

    Maansson, Maria; Vynne, Nikolaj G.; Klitgaard, Andreas; Nybo, Jane L.; Melchiorsen, Jette; Nguyen, Don D.; Sanchez, Laura M.; Ziemert, Nadine; Dorrestein, Pieter C.

    2016-01-01

    ABSTRACT Microorganisms are a rich source of bioactives; however, chemical identification is a major bottleneck. Strategies that can prioritize the most prolific microbial strains and novel compounds are of great interest. Here, we present an integrated approach to evaluate the biosynthetic richness in bacteria and mine the associated chemical diversity. Thirteen strains closely related to Pseudoalteromonas luteoviolacea isolated from all over the Earth were analyzed using an untargeted metabolomics strategy, and metabolomic profiles were correlated with whole-genome sequences of the strains. We found considerable diversity: only 2% of the chemical features and 7% of the biosynthetic genes were common to all strains, while 30% of all features and 24% of the genes were unique to single strains. The list of chemical features was reduced to 50 discriminating features using a genetic algorithm and support vector machines. Features were dereplicated by tandem mass spectrometry (MS/MS) networking to identify molecular families of the same biosynthetic origin, and the associated pathways were probed using comparative genomics. Most of the discriminating features were related to antibacterial compounds, including the thiomarinols that were reported from P. luteoviolacea here for the first time. By comparative genomics, we identified the biosynthetic cluster responsible for the production of the antibiotic indolmycin, which could not be predicted with standard methods. In conclusion, we present an efficient, integrative strategy for elucidating the chemical richness of a given set of bacteria and link the chemistry to biosynthetic genes. IMPORTANCE We here combine chemical analysis and genomics to probe for new bioactive secondary metabolites based on their pattern of distribution within bacterial species. We demonstrate the usefulness of this combined approach in a group of marine Gram-negative bacteria closely related to Pseudoalteromonas luteoviolacea, which is a

  2. Deep subsurface mine stalactites trap endemic fissure fluid Archaea, Bacteria, and Nematoda possibly originating from ancient seas.

    PubMed

    Borgonie, Gaëtan; Linage-Alvarez, Borja; Ojo, Abidemi; Shivambu, Steven; Kuloyo, Olukayode; Cason, Errol D; Maphanga, Sihle; Vermeulen, Jan-G; Litthauer, Derek; Ralston, Colin D; Onstott, Tullis C; Sherwood-Lollar, Barbara; Van Heerden, Esta

    2015-01-01

    Stalactites (CaCO3 and salt) from water seeps are frequently encountered in ceilings of mine tunnels whenever they intersect water-bearing faults or fractures. To determine whether stalactites could be mineralized traps for indigenous fracture water microorganisms, we analyzed stalactites collected from three different mines ranging in depth from 1.3 to 3.1 km. During sampling in Beatrix gold mine (1.4 km beneath the surface), central South Africa, CaCO3 stalactites growing on the mine tunnel ceiling were collected and observed, in two cases, to contain a living obligate brackish water/marine nematode species, Monhystrella parvella. After sterilization of the outer surface, mineral layers were physically removed from the outside to the interior, and DNA extracted. Based upon 16S and 18S rRNA gene sequencing, Archaea, Bacteria, and Eukarya in different combinations were detected for each layer. Using CT scan and electron microscopy the inner structure of CaCO3 and salt stalactites were analyzed. CaCO3 stalactites show a complex pattern of lamellae carrying bacterially precipitated mineral structures. Nematoda were clearly identified between these layers confirming that bacteria and nematodes live inside the stalactites and not only in the central straw. Salt stalactites exhibit a more uniform internal structure. Surprisingly, several Bacteria showing highest sequence identities to marine species were identified. This, together with the observation that the nematode M. parvella recovered from Beatrix gold mine stalactite can only survive in a salty environment makes the origin of the deep subsurface colonization enigmatic. The possibility of a Permian origin of fracture fluids is discussed. Our results indicate stalactites are suitable for biodiversity recovery and act as natural traps for microorganisms in the fissure water long after the water that formed the stalactite stopped flowing.

  3. Deep subsurface mine stalactites trap endemic fissure fluid Archaea, Bacteria, and Nematoda possibly originating from ancient seas

    PubMed Central

    Borgonie, Gaëtan; Linage-Alvarez, Borja; Ojo, Abidemi; Shivambu, Steven; Kuloyo, Olukayode; Cason, Errol D.; Maphanga, Sihle; Vermeulen, Jan-G; Litthauer, Derek; Ralston, Colin D.; Onstott, Tullis C.; Sherwood-Lollar, Barbara; Van Heerden, Esta

    2015-01-01

    Stalactites (CaCO3 and salt) from water seeps are frequently encountered in ceilings of mine tunnels whenever they intersect water-bearing faults or fractures. To determine whether stalactites could be mineralized traps for indigenous fracture water microorganisms, we analyzed stalactites collected from three different mines ranging in depth from 1.3 to 3.1 km. During sampling in Beatrix gold mine (1.4 km beneath the surface), central South Africa, CaCO3 stalactites growing on the mine tunnel ceiling were collected and observed, in two cases, to contain a living obligate brackish water/marine nematode species, Monhystrella parvella. After sterilization of the outer surface, mineral layers were physically removed from the outside to the interior, and DNA extracted. Based upon 16S and 18S rRNA gene sequencing, Archaea, Bacteria, and Eukarya in different combinations were detected for each layer. Using CT scan and electron microscopy the inner structure of CaCO3 and salt stalactites were analyzed. CaCO3 stalactites show a complex pattern of lamellae carrying bacterially precipitated mineral structures. Nematoda were clearly identified between these layers confirming that bacteria and nematodes live inside the stalactites and not only in the central straw. Salt stalactites exhibit a more uniform internal structure. Surprisingly, several Bacteria showing highest sequence identities to marine species were identified. This, together with the observation that the nematode M. parvella recovered from Beatrix gold mine stalactite can only survive in a salty environment makes the origin of the deep subsurface colonization enigmatic. The possibility of a Permian origin of fracture fluids is discussed. Our results indicate stalactites are suitable for biodiversity recovery and act as natural traps for microorganisms in the fissure water long after the water that formed the stalactite stopped flowing. PMID:26441844

  4. Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium.

    PubMed

    Qiu, Guanzhou; Li, Qian; Yu, Runlan; Sun, Zhanxue; Liu, Yajie; Chen, Miao; Yin, Huaqun; Zhang, Yage; Liang, Yili; Xu, Lingling; Sun, Limin; Liu, Xueduan

    2011-04-01

    A mesophilic acidophilic consortium was enriched from acid mine drainage samples collected from several uranium mines in China. The performance of the consortium in column bioleaching of low-grade uranium embedded in granite porphyry was investigated. The influences of several chemical parameters on uranium extraction in column reactor were also investigated. A uranium recovery of 96.82% was achieved in 97 days column leaching process including 33 days acid pre-leaching stage and 64 days bioleaching stage. It was reflected that indirect leaching mechanism took precedence over direct. Furthermore, the bacterial community structure was analyzed by using Amplified Ribosomal DNA Restriction Analysis. The results showed that microorganisms on the residual surface were more diverse than that in the solution. Acidithiobacillus ferrooxidans was the dominant species in the solution and Leptospirillum ferriphilum on the residual surface.

  5. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems.

    PubMed

    Rowe, Owen F; Sánchez-España, Javier; Hallberg, Kevin B; Johnson, D Barrie

    2007-07-01

    An extremely acidic (pH 2.5-2.75) metal-rich stream draining an abandoned mine in the Iberian Pyrite Belt, Spain, was ramified with stratified macroscopic gelatinous microbial growths ('acid streamers' or 'mats'). Microbial communities of streamer/mat growths sampled at different depths, as well as those present in the stream water itself, were analysed using a combined biomolecular and cultivation-based approach. The oxygen-depleted mine water was dominated by the chemolithotrophic facultative anaerobe Acidithiobacillus ferrooxidans, while the streamer communities were found to be highly heterogeneous and very different to superficially similar growths reported in other extremely acidic environments. Microalgae accounted for a significant proportion of surface streamer biomass, while subsurface layers were dominated by heterotrophic acidophilic bacteria (Acidobacteriacae and Acidiphilium spp.). Sulfidogenic bacteria were isolated from the lowest depth streamer growths, where there was also evidence for selective biomineralization of copper sulfide. Archaeal clones (exclusively Euryarchaeota) were recovered from streamer samples, as well as the mine stream water. Both sunlight and reduced inorganic chemicals (predominantly ferrous iron) served as energy sources for primary producers in this ecosystem, promoting complex microbial interactions involving transfer of electron donors and acceptors and of organic carbon, between microorganisms in the stream water and the gelatinous streamer growths. Microbial transformations were shown to impact the biogeochemical cycling of iron and sulfur in the acidic stream, severely restricting the net oxidation of ferrous iron even when the initially anoxic waters were oxygenated by indigenous acidophilic algae. A model accounting for the biogeochemistry of iron and sulfur in the mine waters is described, and the significance of the acidophilic communities in regulating the geochemistry of acidic, metal-rich waters is described.

  6. Gene Loss and Horizontal Gene Transfer Contributed to the Genome Evolution of the Extreme Acidophile "Ferrovum".

    PubMed

    Ullrich, Sophie R; González, Carolina; Poehlein, Anja; Tischler, Judith S; Daniel, Rolf; Schlömann, Michael; Holmes, David S; Mühling, Martin

    2016-01-01

    Acid mine drainage (AMD), associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus "Ferrovum" are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of "Ferrovum" has proven to be extremely difficult and has so far only been successful for the designated type strain "Ferrovum myxofaciens" P3G. In this study, the genomes of two novel strains of "Ferrovum" (PN-J185 and Z-31) derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of "Ferrovum" sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G). Phylogenomic scrutiny suggests that the four strains represent three "Ferrovum" species that cluster in two groups (1 and 2). Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the "F. myxofaciens" strains (group 1) appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed

  7. Linking Mn(II)-oxidizing bacteria to natural attenuation at a former U mining site

    NASA Astrophysics Data System (ADS)

    Akob, D.; Bohu, T.; Beyer, A.; Schäffner, F.; Händel, M.; Johnson, C.; Merten, D.; Büchel, G.; Totsche, K.; Küsel, K.

    2012-04-01

    Uranium mining near Ronneburg, Germany resulted in widespread environmental contamination with acid mine drainage (AMD) and high concentrations of heavy metals and radionuclides. Despite physical remediation of the area, groundwater is still a source of heavy metal contaminants, e.g., Cd, Ni, Co, Cu and Zn, to nearby ecosystems. However, natural attenuation of heavy metals is occurring in Mn oxide rich soils and sediments ranging in pH from 5 to 7. While microorganisms readily oxidize Mn(II) and precipitate Mn oxides at pH ~7 under oxic conditions, few studies describe Mn(II)-oxidizing bacteria (MOB) at pH ~5 and/or in the presence of heavy metals. In this study we (1) isolated MOB from the contaminated Ronneburg area at pH 5.5 and 7 and (2) evaluated the biological formation of Mn oxides. We isolated nine MOB strains at pH 7 (members of the Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla) and a single isolate at pH 5.5 (Oxalobacteraceae isolate AB_14, within the β-Proteobacteria). LA-ICP-MS showed that all isolates accumulated Mn and Fe in their biomass. However, the Oxalobacteraceae isolate AB_14 oxidizes more Mn without additional Fe in the medium. Preliminary FTIR analysis indicated that all isolates formed precipitates, which showed absorption bands that were characteristic for birnessite. High resolution TEM showed variable morphology of precipitates and EDS confirmed the presence of Mn oxides. Isolate AB_14 was not surrounded with precipitates whereas our Actinobacteria isolate AB_18 was encrusted with Mn oxides. Electron diffraction is currently being used to confirm the presence of birnessite and other Mn oxide phases. This, the first known report of any organism capable of Mn oxidation at low pH, demonstrated that MOB can be involved in the natural attenuation of both moderately acidic and neutral pH soils and sediments via the formation of biogenic Mn oxides. Future work will fully evaluate the minerals formed in this process as well

  8. Genomics of the thermo-acidophilic red alga Galdieria sulphuraria

    NASA Astrophysics Data System (ADS)

    Barbier, Guillaume G.; Zimmermann, Marc; Weber, Andreas P. M.

    2005-09-01

    Extremophilic organisms dwell in environments that are characterized by high or low temperatures (thermophiles or psychrophiles), very low or high pH-values (acidophiles or alkalophiles), high salt concentrations (halophiles), high pressure (barophiles), or extreme drought (xerophiles). Many extremophiles are microbes, and many also belong to the prokaryota. Galdieria sulphuraria, however, is a member of a group of extremophilic eukaryotes that are named Cyanidiales. Cyanidiales are unicellular red micro-algae that occur worldwide in hot acidic waters, volcanic calderas, and in human-made acidic environments such as acidic mine drainage. G. sulphuraria has a unique position within the Cyanidiales because, in contrast to the other obligate photoautotrophic members of this group, it is able to grow photoautotrophically, mixotrophically, and heterotrophically. It is not only resistant to acid (pH 0) and heat (56oC), but also to high salt (1.5 M NaCl), toxic metals, and many other abiotic stressors. This unusual combination of features such as thermophily, acidophily, resistance to a wide array of abiotic stressors, and an extraordinary metabolic plasticity make G. sulphuraria highly interesting model organism to study adaptation to extreme environments. We have started a genomics approach to gain insight into the biology of G. sulphuraria and to identify genes and gene products critical for survival under extreme conditions. To this end, we pursue a whole-genome, shotgun sequencing approach towards unraveling the genome sequence of G. sulphuraria. We report here on the status quo of the genome-sequencing project and we summarize what we have learned to date from the genome sequence about the biology of this truly unique extremophile.

  9. Molecular diversity of the ammonia-oxidizing bacteria community in disused tin-mining ponds located within Kampar, Perak, Malaysia.

    PubMed

    Sow, S L S; Khoo, G; Chong, L K; Smith, T J; Harrison, P L; Ong, H K A

    2014-02-01

    Disused tin-mining ponds make up a significant amount of water bodies in Malaysia particularly at the Kinta Valley in the state of Perak where tin-mining activities were the most extensive, and these abundantly available water sources are widely used in the field of aquaculture and agriculture. However, the natural ecology and physicochemical conditions of these ponds, many of which have been altered due to secondary post-mining activities, remains to be explored. As ammonia-oxidizing bacteria (AOB) are directly related to the nutrient cycles of aquatic environments and are useful bioindicators of environmental variations, the focus of this study was to identify AOBs associated with disused tin-mining ponds that have a history of different secondary activities in comparison to ponds which were left untouched and remained as part of the landscape. The 16S rDNA gene was used to detect AOBs in the sediment and water sampled from the three types of disused mining ponds, namely ponds without secondary activity, ponds that were used for lotus cultivation and post-aquaculture ponds. When the varying pond types were compared with the sequence and phylogenetic analysis of the AOB clone libraries, both Nitrosomonas and Nitrosospira-like AOB were detected though Nitrosospira spp. was seen to be the most ubiquitous AOB as it was present in all ponds types. However, AOBs were not detected in the sediments of idle ponds. Based on rarefaction analysis and diversity indices, the disused mining pond with lotus culture indicated the highest richness of AOBs. Canonical correspondence analysis indicated that among the physicochemical properties of the pond sites, TAN and nitrite were shown to be the main factors that influenced the community structure of AOBs in these disused tin-mining ponds.

  10. Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae.

    PubMed

    Hallberg, Kevin B; Hedrich, Sabrina; Johnson, D Barrie

    2011-03-01

    A comprehensive physiological and phylogenetic characterisation was carried out of "Thiobacillus ferrooxidans" m-1, an acidophilic iron-oxidizing bacterium first described over 25 years ago. Phylogenetically, strain m-1 is a gammaproteobacterium, most closely related to alkaliphilic Ectothiorhodospira spp. and only distantly to iron-oxidizing acidithiobacilli. Physiological examination confirmed that strain m-1 can grow autotrophically not only by ferrous iron oxidation but also, in contrast to previous reports, by oxidation of elemental sulfur, sulfide and tetrathionate, using either oxygen or ferric iron as terminal electron acceptor. The bacterium was also found to be thermo-tolerant, growing optimally at 38°C and up to a maximum of 47°C. Growth in liquid media required an external osmotic potential of >2 bar, and was optimal at ~5 bar, though no growth occurred where the medium osmotic potential was close to that of sea water (~26 bar). From this, it was concluded that strain m-1 is a moderate osmophile. Strain m-1 was also shown to be diazotrophic and tolerant of elevated concentrations of many metals typically found in mine-impacted environments. On the basis of these data, m-1 is proposed as the type strain of a new genus and species of bacteria, Acidiferrobacter thiooxydans (DSM 2392, JCM 17358).

  11. Extreme arsenic resistance by the acidophilic archaeon 'Ferroplasma acidarmanus' Fer1.

    PubMed

    Baker-Austin, Craig; Dopson, Mark; Wexler, Margaret; Sawers, R Gary; Stemmler, Ann; Rosen, Barry P; Bond, Philip L

    2007-05-01

    'Ferroplasma acidarmanus' Fer1 is an arsenic-hypertolerant acidophilic archaeon isolated from the Iron Mountain mine, California; a site characterized by heavy metals contamination. The presence of up to 10 g arsenate per litre [As(V); 133 mM] did not significantly reduce growth yields, whereas between 5 and 10 g arsenite per litre [As(III); 67-133 mM] significantly reduced the yield. Previous bioinformatic analysis indicates that 'F. acidarmanus' Fer1 has only two predicted genes involved in arsenic resistance and lacks a recognizable gene for an arsenate reductase. Biochemical analysis suggests that 'F. acidarmanus' Fer1 does not reduce arsenate indicating that 'F. acidarmanus' Fer1 has an alternative resistance mechanism to arsenate other than reduction to arsenite and efflux. Primer extension analysis of the putative ars transcriptional regulator (arsR) and efflux pump (arsB) demonstrated that these genes are co-transcribed, and expressed in response to arsenite, but not arsenate. Two-dimensional polyacrylamide gel electrophoresis analysis of 'F. acidarmanus' Fer1 cells exposed to arsenite revealed enhanced expression of proteins associated with protein refolding, including the thermosome Group II HSP60 family chaperonin and HSP70 DnaK type heat shock proteins. This report represents the first molecular and proteomic study of arsenic resistance in an acidophilic archaeon.

  12. Extreme arsenic resistance by the acidophilic archaeon 'Ferroplasma acidarmanus' Fer1

    SciTech Connect

    Baker-Austin, C., M. Dopson, M. Wexler, R. G. Sawers, A. Stemmler, B.P. Rosen and P.L. Bond

    2007-01-01

    'Ferroplasma acidarmanus' Fer1 is an arsenic-hypertolerant acidophilic archaeon isolated from the Iron Mountain mine, California; a site characterized by heavy metals contamination. The presence of up to 10 g arsenate per litre [As(V); 133 mM] did not significantly reduce growth yields, whereas between 5 and 10 g arsenite per litre [As(III); 67-133 mM] significantly reduced the yield. Previous bioinformatic analysis indicates that 'F. acidarmanus' Fer1 has only two predicted genes involved in arsenic resistance and lacks a recognizable gene for an arsenate reductase. Biochemical analysis suggests that 'F. acidarmanus' Fer1 does not reduce arsenate indicating that 'F. acidarmanus' Fer1 has an alternative resistance mechanism to arsenate other than reduction to arsenite and efflux. Primer extension analysis of the putative ars transcriptional regulator (arsR) and efflux pump (arsB) demonstrated that these genes are co-transcribed, and expressed in response to arsenite, but not arsenate. Two-dimensional polyacrylamide gel electrophoresis analysis of 'F. acidarmanus' Fer1 cells exposed to arsenite revealed enhanced expression of proteins associated with protein refolding, including the thermosome Group II HSP60 family chaperonin and HSP70 DnaK type heat shock proteins. This report represents the first molecular and proteomic study of arsenic resistance in an acidophilic archaeon.

  13. Molecular diversity of the methanotrophic bacteria communities associated with disused tin-mining ponds in Kampar, Perak, Malaysia.

    PubMed

    Sow, S L S; Khoo, G; Chong, L K; Smith, T J; Harrison, P L; Ong, H K A

    2014-10-01

    In a previous study, notable differences of several physicochemical properties, as well as the community structure of ammonia oxidizing bacteria as judged by 16S rRNA gene analysis, were observed among several disused tin-mining ponds located in the town of Kampar, Malaysia. These variations were associated with the presence of aquatic vegetation as well as past secondary activities that occurred at the ponds. Here, methane oxidizing bacteria (MOB), which are direct participants in the nutrient cycles of aquatic environments and biological indicators of environmental variations, have been characterised via analysis of pmoA functional genes in the same environments. The MOB communities associated with disused tin-mining ponds that were exposed to varying secondary activities were examined in comparison to those in ponds that were left to nature. Comparing the sequence and phylogenetic analysis of the pmoA clone libraries at the different ponds (idle, lotus-cultivated and post-aquaculture), we found pmoA genes indicating the presence of type I and type II MOB at all study sites, but type Ib sequences affiliated with the Methylococcus/Methylocaldum lineage were most ubiquitous (46.7 % of clones). Based on rarefaction analysis and diversity indices, the disused mining pond with lotus culture was observed to harbor the highest richness of MOB. However, varying secondary activity or sample type did not show a strong variation in community patterns as compared to the ammonia oxidizers in our previous study.

  14. Occurrence and activity of iron- and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils.

    PubMed

    Olson, G J; McFeters, G A; Temple, K L

    1981-03-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron- and sulfur-oxidizing bacteria. Spoils examined were of three types: (a) acidic pyrite-rich waste coal, (b) oxidation halo material, and (c) alkaline material, which was the most widespread type. Bacterial numbers, sulfur oxidation, and(14)CO2 uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulfur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH, indicating that bacterial pyrite oxidation occurred where groundwaters contacted either replaced spoils or coal that contained pyrite or other metal sulfides. Bacterial activity may contribute to trace metal and sulfate leaching in the area.

  15. INNOVATIVE, IN SITU TREATMENT OF ACID MINE DRAINAGE USING SULFATE REDUCING BACTERIA

    EPA Science Inventory

    Acid generation in abandoned mines is a widespread problem. There are a numberous quantity of abandoned mines in the west which have no power source, have limited physical accessibility and have limited remediation funds available. Acid is produced chemically, through pyritic min...

  16. Microbiological monitoring of acid mine drainage treatment systems and aquatic surroundings using real-time PCR.

    PubMed

    Han, J S; Kim, C G

    2009-01-01

    In general, acid mine drainage (AMD) causes low pH and high metal concentrations in mining areas and surroundings. The aim of this research was to achieve microbiological monitoring for AMD and to assess whether mine water outflows have any ecological effects on the aqueous ecosystem receiving effluents from different types of treatment system. The water quality of aquatic sample was analyzed and the molecular biological diversity of the samples was assessed using 16S rRNA methods, which were implemented to determine which bacteria existed throughout various unit processes for different AMD treatment systems and their receiving water environments. Acidiphilium cryptum, a heterotrophic acidophile, was found at the AMD sites, and Rhodoferax ferrireducens, which can reduce iron using insoluble Fe(III) as an electron acceptor, was detected at many AMD treatment facilities and downstream of the treatment processes. Subsequently, quantitative real-time PCR was conducted on specific genes of selected bacteria. Surprisingly, obvious trends were observed in the relative abundance of the various bacteria that corresponded to the water quality analytical results. The copy number of Desulfosporosinus orientus, a sulfate reducing bacteria, was also observed to decrease in response to decreases in metals according to the downstream flow of the AMD treatment system.

  17. Growth of the acidophilic iron-sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions

    NASA Astrophysics Data System (ADS)

    Bauermeister, Anja; Rettberg, Petra; Flemming, Hans-Curt

    2014-08-01

    The question of life on Mars has been in focus of astrobiological research for several decades, and recent missions in orbit or on the surface of the planet are constantly expanding our knowledge on Martian geochemistry. For example, massive stratified deposits have been identified on Mars containing sulfate minerals and iron oxides, which suggest the existence of acidic aqueous conditions in the past, similar to acidic iron- and sulfur-rich environments on Earth. Acidophilic organisms thriving in such habitats could have been an integral part of a possibly widely extinct Martian ecosystem, but remains might possibly even exist today in protected subsurface niches. The chemolithoautotrophic strain Acidithiobacillus ferrooxidans was selected as a model organism to study the metabolic capacities of acidophilic iron-sulfur bacteria, especially regarding their ability to grow with in situ resources that could be expected on Mars. The experiments were not designed to accurately simulate Martian physical conditions (except when certain single parameters such as oxygen partial pressure were considered), but rather the geochemical environment that can be found on Mars. A. ferrooxidans could grow solely on the minerals contained in synthetic Mars regolith mixtures with no added nutrients, using either O2 as an external electron acceptor for iron oxidation, or H2 as an external electron donor for iron reduction, and thus might play important roles in the redox cycling of iron on Mars. Though the oxygen partial pressure of the Martian atmosphere at the surface was not sufficient for detectable iron oxidation and growth of A. ferrooxidans during short-term incubation (7 days), alternative chemical O2-generating processes in the subsurface might yield microhabitats enriched in oxygen, which principally are possible under such conditions. The bacteria might also contribute to the reductive dissolution of Fe3+-containing minerals like goethite and hematite, which are

  18. Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine

    USGS Publications Warehouse

    Akob, Denise M.; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-01-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments.

  19. Identification of Mn(II)-Oxidizing Bacteria from a Low-pH Contaminated Former Uranium Mine

    PubMed Central

    Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-01-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments. PMID:24928873

  20. Biodiversity and phylogenetic analysis of culturable bacteria indigenous to Khewra salt mine of pakistan and their industrial importance

    PubMed Central

    Akhtar, Nasrin; Ghauri, Muhammad A.; Iqbal, Aamira; Anwar, Munir A.; Akhtar, Kalsoom

    2008-01-01

    Culturable bacterial biodiversity and industrial importance of the isolates indigenous to Khewra salt mine, Pakistan was assessed. PCR Amplification of 16S rDNA of isolates was carried out by using universal primers FD1 and rP1and products were sequenced commercially. These gene sequences were compared with other gene sequences in the GenBank databases to find the closely related sequences. The alignment of these sequences with sequences available from GenBank database was carried out to construct a phylogenetic tree for these bacteria. These genes were deposited to GenBank and accession numbers were obtained. Most of the isolates belonged to different species of genus Bacillus, sharing 92-99% 16S rDNA identity with the respective type strain. Other isolates had close similarities with Escherichia coli, Staphylococcus arlettae and Staphylococcus gallinarum with 97%, 98% and 99% 16S rDNA similarity respectively. The abilities of isolates to produce industrial enzymes (amylase, carboxymethylcellulase, xylanase, cellulase and protease) were checked. All isolates were tested against starch, carboxymethylcellulose (CMC), xylane, cellulose, and casein degradation in plate assays. BPT-5, 11,18,19 and 25 indicated the production of copious amounts of carbohydrates and protein degrading enzymes. Based on this study it can be concluded that Khewra salt mine is populated with diverse bacterial groups, which are potential source of industrial enzymes for commercial applications. PMID:24031194

  1. Gene Loss and Horizontal Gene Transfer Contributed to the Genome Evolution of the Extreme Acidophile “Ferrovum”

    PubMed Central

    Ullrich, Sophie R.; González, Carolina; Poehlein, Anja; Tischler, Judith S.; Daniel, Rolf; Schlömann, Michael; Holmes, David S.; Mühling, Martin

    2016-01-01

    Acid mine drainage (AMD), associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus “Ferrovum” are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of “Ferrovum” has proven to be extremely difficult and has so far only been successful for the designated type strain “Ferrovum myxofaciens” P3G. In this study, the genomes of two novel strains of “Ferrovum” (PN-J185 and Z-31) derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of “Ferrovum” sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G). Phylogenomic scrutiny suggests that the four strains represent three “Ferrovum” species that cluster in two groups (1 and 2). Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the “F. myxofaciens” strains (group 1) appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features

  2. Culturable and molecular phylogenetic diversity of microorganisms in an open-dumped, extremely acidic Pb/Zn mine tailings.

    PubMed

    Tan, Gui-Liang; Shu, Wen-Sheng; Hallberg, Kevin B; Li, Fang; Lan, Chong-Yu; Zhou, Wen-Hua; Huang, Li-Nan

    2008-09-01

    A combination of cultivation-based and molecular-based approaches was used to reveal the culturable and molecular diversity of the microbes inhabiting an open-dumped Pb/Zn mine tailings that was undergoing intensive acid generation (pH 1.9). Culturable bacteria found in the extremely acidic mine tailings were Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum, Sulfobacillus thermotolerans and Acidiphilium cryptum, where the number of acidophilic heterotrophs was ten times higher than that of the iron- and sulfur-oxidizing bacteria. Cloning and phylogenetic analysis revealed that, in contrast to the adjacent AMD, the mine tailings possessed a low microbial diversity with archaeal sequence types dominating the 16S rRNA gene library. Of the 141 clones examined, 132 were represented by two sequence types phylogenetically affiliated with the iron-oxidizing archaea Ferroplasma acidiphilum and three belonged to two tentative groups within the Thermoplasma lineage so far represented by only a few environmental sequences. Six clones in the library were represented by the only bacterial sequence type and were closely related to the well-described iron-oxidizer L. ferriphilum. The significant differences in the prokaryotic community structures of the extremely acidic mine tailings and the AMD associated with it highlights the importance of studying the microbial communities that are more directly involved in the iron and sulfur cycles of mine tailings.

  3. Genomics and Metagenomics of Extreme Acidophiles in Biomining Environments

    NASA Astrophysics Data System (ADS)

    Holmes, D. S.

    2015-12-01

    Over 160 draft or complete genomes of extreme acidophiles (pH < 3) have been published, many of which are from bioleaching and other biomining environments, or are closely related to such microorganisms. In addition, there are over 20 metagenomic studies of such environments. This provides a rich source of latent data that can be exploited for understanding the biology of biomining environments and for advancing biotechnological applications. Genomic and metagenomic data are already yielding valuable insights into cellular processes, including carbon and nitrogen management, heavy metal and acid resistance, iron and sulfur oxido-reduction, linking biogeochemical processes to organismal physiology. The data also allow the construction of useful models of the ecophysiology of biomining environments and provide insight into the gene and genome evolution of extreme acidophiles. Additionally, since most of these acidophiles are also chemoautolithotrophs that use minerals as energy sources or electron sinks, their genomes can be plundered for clues about the evolution of cellular metabolism and bioenergetic pathways during the Archaean abiotic/biotic transition on early Earth. Acknowledgements: Fondecyt 1130683.

  4. Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria.

    PubMed

    Kjos, Morten; Borrero, Juan; Opsata, Mona; Birri, Dagim J; Holo, Helge; Cintas, Luis M; Snipen, Lars; Hernández, Pablo E; Nes, Ingolf F; Diep, Dzung B

    2011-12-01

    Due to their very potent antimicrobial activity against diverse food-spoiling bacteria and pathogens and their favourable biochemical properties, peptide bacteriocins from Gram-positive bacteria have long been considered promising for applications in food preservation or medical treatment. To take advantage of bacteriocins in different applications, it is crucial to have detailed knowledge on the molecular mechanisms by which these peptides recognize and kill target cells, how producer cells protect themselves from their own bacteriocin (self-immunity) and how target cells may develop resistance. In this review we discuss some important recent progress in these areas for the non-lantibiotic (class II) bacteriocins. We also discuss some examples of how the current wealth of genome sequences provides an invaluable source in the search for novel class II bacteriocins.

  5. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage

    SciTech Connect

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H.

    2006-07-15

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant.

  6. Architecture and Gene Repertoire of the Flexible Genome of the Extreme Acidophile Acidithiobacillus caldus

    PubMed Central

    Acuña, Lillian G.; Cárdenas, Juan Pablo; Covarrubias, Paulo C.; Haristoy, Juan José; Flores, Rodrigo; Nuñez, Harold; Riadi, Gonzalo; Shmaryahu, Amir; Valdés, Jorge; Dopson, Mark; Rawlings, Douglas E.; Banfield, Jillian F.; Holmes, David S.; Quatrini, Raquel

    2013-01-01

    Background Acidithiobacillus caldus is a sulfur oxidizing extreme acidophile and the only known mesothermophile within the Acidithiobacillales. As such, it is one of the preferred microbes for mineral bioprocessing at moderately high temperatures. In this study, we explore the genomic diversity of A. caldus strains using a combination of bioinformatic and experimental techniques, thus contributing first insights into the elucidation of the species pangenome. Principal Findings Comparative sequence analysis of A. caldus ATCC 51756 and SM-1 indicate that, despite sharing a conserved and highly syntenic genomic core, both strains have unique gene complements encompassing nearly 20% of their respective genomes. The differential gene complement of each strain is distributed between the chromosomal compartment, one megaplasmid and a variable number of smaller plasmids, and is directly associated to a diverse pool of mobile genetic elements (MGE). These include integrative conjugative and mobilizable elements, genomic islands and insertion sequences. Some of the accessory functions associated to these MGEs have been linked previously to the flexible gene pool in microorganisms inhabiting completely different econiches. Yet, others had not been unambiguously mapped to the flexible gene pool prior to this report and clearly reflect strain-specific adaption to local environmental conditions. Significance For many years, and because of DNA instability at low pH and recurrent failure to genetically transform acidophilic bacteria, gene transfer in acidic environments was considered negligible. Findings presented herein imply that a more or less conserved pool of actively excising MGEs occurs in the A. caldus population and point to a greater frequency of gene exchange in this econiche than previously recognized. Also, the data suggest that these elements endow the species with capacities to withstand the diverse abiotic and biotic stresses of natural environments, in particular

  7. Uncovering a Microbial Enigma: Isolation and Characterization of the Streamer-Generating, Iron-Oxidizing, Acidophilic Bacterium “Ferrovum myxofaciens”

    PubMed Central

    Hallberg, Kevin B.; Hedrich, Sabrina

    2014-01-01

    A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of “acid streamer” growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified “overlay” solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolate from an abandoned copper mine (“Ferrovum myxofaciens” strain P3G) have been elucidated. “F. myxofaciens” is an extremely acidophilic, psychrotolerant obligate autotroph that appears to use only ferrous iron as an electron donor and oxygen as an electron acceptor. It appears to use the Calvin-Benson-Bassham pathway to fix CO2 and is diazotrophic. It also produces copious amounts of extracellular polymeric materials that cause cells to attach to each other (and to form small streamer-like growth in vitro) and to different solid surfaces. “F. myxofaciens” can catalyze the oxidative dissolution of pyrite and, like many other acidophiles, is tolerant of many (cationic) transition metals. “F. myxofaciens” and related clone sequences form a monophyletic group within the Betaproteobacteria distantly related to classified orders, with genera of the family Nitrosomonadaceae (lithoautotrophic, ammonium-oxidizing neutrophiles) as the closest relatives. On the basis of the phylogenetic and phenotypic differences of “F. myxofaciens” and other Betaproteobacteria, a new family, “Ferrovaceae,” and order, “Ferrovales,” within the class Betaproteobacteria are proposed. “F. myxofaciens” is the first extreme acidophile to be described in the class Betaproteobacteria. PMID:24242243

  8. Acid mine drainage

    USGS Publications Warehouse

    Bigham, Jerry M.; Cravotta, Charles A.

    2016-01-01

    Acid mine drainage (AMD) consists of metal-laden solutions produced by the oxidative dissolution of iron sulfide minerals exposed to air, moisture, and acidophilic microbes during the mining of coal and metal deposits. The pH of AMD is usually in the range of 2–6, but mine-impacted waters at circumneutral pH (5–8) are also common. Mine drainage usually contains elevated concentrations of sulfate, iron, aluminum, and other potentially toxic metals leached from rock that hydrolyze and coprecipitate to form rust-colored encrustations or sediments. When AMD is discharged into surface waters or groundwaters, degradation of water quality, injury to aquatic life, and corrosion or encrustation of engineered structures can occur for substantial distances. Prevention and remediation strategies should consider the biogeochemical complexity of the system, the longevity of AMD pollution, the predictive power of geochemical modeling, and the full range of available field technologies for problem mitigation.

  9. Bacteria diversity and arsenic mobilization in rock biofilm from an ancient gold and arsenic mine.

    PubMed

    Tomczyk-Żak, Karolina; Kaczanowski, Szymon; Drewniak, Łukasz; Dmoch, Łukasz; Sklodowska, Aleksandra; Zielenkiewicz, Urszula

    2013-09-01

    In this paper we characterize the biofilm community from an ancient Złoty Stok gold and arsenic mine. Bacterial diversity was examined using a culture-independent technique based on 16S rRNA gene amplification, cloning and sequencing. We show that unexpectedly the microbial diversity of this community was extremely high (more than 190 OTUs detected), with the most numerous members from Rhizobiales (α-Proteobacteria). Although the level of rock biofilm diversity was similar to the microbial mat community we have previously characterized in the same adit, its taxonomic composition was completely different. Detailed analysis of functional arrA and aioA genes, chemical properties of siderophores found in pore water as well as the biofilm chemical composition suggest that the biofilm community contributes to arsenic pollution of surrounding water in a biogeochemical cycle similar to the one observed in bacterial mats. To interpret our results concerning the biological arsenic cycle, we applied the theory of ecological pyramids of Charles Elton.

  10. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment.

    PubMed

    Zagury, Gerald J; Kulnieks, Viktors I; Neculita, Carmen M

    2006-08-01

    Acid mine drainage (AMD), which contains high concentrations of sulphate and dissolved metals, is a serious environmental problem. It can be treated in situ by sulphate reducing bacteria (SRB), but effectiveness of the treatment process depends on the organic substrate chosen to supply the bacteria's carbon source. Six natural organic materials were characterized in order to investigate how well these promote sulphate reduction and metal precipitation by SRB. Maple wood chips, sphagnum peat moss, leaf compost, conifer compost, poultry manure and conifer sawdust were investigated in terms of their carbon (TOC, TIC, DOC) and nitrogen (TKN) content, as well as their easily available substances content (EAS). Single substrates, ethanol, a mixture of leaf compost (30% w/w), poultry manure (18% w/w), and maple wood chips (2% w/w), and the same mixture spiked with formaldehyde were then tested in a 70-day batch experiment to evaluate their performance in sulphate reduction and metal removal from synthetic AMD. Metal removal efficiency in batch reactors was as high as 100% for Fe, 99% for Mn, 99% for Cd, 99% for Ni, and 94% for Zn depending on reactive mixtures. Early metal removal (0-12d) was attributed to the precipitation of (oxy)hydroxides and carbonate minerals. The lowest metal and sulphate removal efficiency was found in the reactor containing poultry manure as the single carbon source despite its high DOC and EAS content. The mixture of organic materials was most effective in promoting sulphate reduction, followed by ethanol and maple wood chips, and single natural organic substrates generally showed low reactivity. Formaldehyde (0.015% (w/v)) provided only temporary bacterial inhibition. Although characterization of substrates on an individual basis provided insight on their chemical make-up, it did not give a clear indication of their ability to promote sulphate reduction and metal removal.

  11. Pollutant element forms within sludges generated by treatment of two acid mine waters with lime, inorganic sulfide and sulfate reducing bacteria

    SciTech Connect

    Chatham, B.; Diebold, F.

    1995-10-01

    One of the research projects within the Mine Waste Technology Pilot Program conducted at Montana Tech under subcontract to MSE, Inc., Butte, MT is entitled {open_quotes}Formation, Properties and Stability of Sludge Generated During Treatment of Acid Mine Water.{close_quotes} One area of study within this activity is the determination of the element-solid associations within the three sludges being studied, namely, a lime initiated sludge, an inorganic sulfide initiated sludge and a sulfate reducing bacteria initiated sludge. These sludges are formed from treatment of two acid mine waters; one from an abandoned metal sulfide open pit mine (the Berkeley Pit in Butte, MT) and another from an abandoned metal sulfide underground mine (the Crystal Mine NW of Basin, MT). A sequential leaching scheme has been used to determine the form of the pollutant elements (Cu, Zn, Cd, Fe, Mn, and As) within these sludges. Significant differences are observed between these pollutant elements for each sludge. These data are interpreted in terms of the potential for release of the pollutant elements within a sludge containment pond storage system.

  12. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China.

    PubMed

    Xie, Pin; Hao, Xiuli; Herzberg, Martin; Luo, Yantao; Nies, Dietrich H; Wei, Gehong

    2015-01-01

    To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China.

  13. Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines.

    PubMed

    García G, Mariandrea; Márquez G, Marco Antonio; Moreno H, Claudia Ximena

    2016-01-01

    Bacterial carbonate precipitation has implications in geological processes and important biotechnological applications. Bacteria capable of precipitating carbonates have been isolated from different calcium carbonate deposits (speleothems) in caves, soil, freshwater and seawater around the world. However, the diversity of bacteria from calcareous deposits in Colombia, and their ability to precipitate carbonates, remains unknown. In this study, conventional microbiological methods and molecular tools, such as temporal temperature gradient electrophoresis (TTGE), were used to assess the composition of bacterial communities associated with carbonate deposits and drip-waters from two Colombian mines. A genetic analysis of these bacterial communities revealed a similar level of diversity, based on the number of bands detected using TTGE. The dominant phylogenetic affiliations of the bacteria, determined using 16S rRNA gene sequencing, were grouped into two phyla: Proteobacteria and Firmicutes. Within these phyla, seven genera were capable of precipitating calcium carbonates: Lysinibacillus, Bacillus, Strenotophomonas, Brevibacillus, Methylobacterium, Aeromicrobium and Acinetobacter. FTIR and SEM/EDX were used to analyze calcium carbonate crystals produced by isolated Acinetobacter gyllenbergii. The results showed that rhombohedral and angular calcite crystals with sizes of 90μm were precipitated. This research provides information regarding the presence of complex bacterial communities in secondary carbonate deposits from mines and their ability to precipitate calcium carbonate from calcareous deposits of Colombian mines.

  14. Culturable Heavy Metal-Resistant and Plant Growth Promoting Bacteria in V-Ti Magnetite Mine Tailing Soil from Panzhihua, China

    PubMed Central

    Zhang, Chu; Liu, Huiying; Liu, Jin; Zheng, Wenwen; Kang, Xia; Leng, Xuejun; Zhao, Ke; Gu, Yunfu; Zhang, Xiaoping; Xiang, Quanju; Chen, Qiang

    2014-01-01

    To provide a basis for using indigenous bacteria for bioremediation of heavy metal contaminated soil, the heavy metal resistance and plant growth-promoting activity of 136 isolates from V-Ti magnetite mine tailing soil were systematically analyzed. Among the 13 identified bacterial genera, the most abundant genus was Bacillus (79 isolates) out of which 32 represented B. subtilis and 14 B. pumilus, followed by Rhizobium sp. (29 isolates) and Ochrobactrum intermedium (13 isolates). Altogether 93 isolates tolerated the highest concentration (1000 mg kg−1) of at least one of the six tested heavy metals. Five strains were tolerant against all the tested heavy metals, 71 strains tolerated 1,000 mg kg−1 cadmium whereas only one strain tolerated 1,000 mg kg−1 cobalt. Altogether 67% of the bacteria produced indoleacetic acid (IAA), a plant growth-promoting phytohormone. The concentration of IAA produced by 53 isolates was higher than 20 µg ml−1. In total 21% of the bacteria produced siderophore (5.50–167.67 µg ml−1) with two Bacillus sp. producing more than 100 µg ml−1. Eighteen isolates produced both IAA and siderophore. The results suggested that the indigenous bacteria in the soil have beneficial characteristics for remediating the contaminated mine tailing soil. PMID:25188470

  15. Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China.

    PubMed

    Yu, Xiumei; Li, Yanmei; Zhang, Chu; Liu, Huiying; Liu, Jin; Zheng, Wenwen; Kang, Xia; Leng, Xuejun; Zhao, Ke; Gu, Yunfu; Zhang, Xiaoping; Xiang, Quanju; Chen, Qiang

    2014-01-01

    To provide a basis for using indigenous bacteria for bioremediation of heavy metal contaminated soil, the heavy metal resistance and plant growth-promoting activity of 136 isolates from V-Ti magnetite mine tailing soil were systematically analyzed. Among the 13 identified bacterial genera, the most abundant genus was Bacillus (79 isolates) out of which 32 represented B. subtilis and 14 B. pumilus, followed by Rhizobium sp. (29 isolates) and Ochrobactrum intermedium (13 isolates). Altogether 93 isolates tolerated the highest concentration (1000 mg kg(-1)) of at least one of the six tested heavy metals. Five strains were tolerant against all the tested heavy metals, 71 strains tolerated 1,000 mg kg(-1) cadmium whereas only one strain tolerated 1,000 mg kg(-1) cobalt. Altogether 67% of the bacteria produced indoleacetic acid (IAA), a plant growth-promoting phytohormone. The concentration of IAA produced by 53 isolates was higher than 20 µg ml(-1). In total 21% of the bacteria produced siderophore (5.50-167.67 µg ml(-1)) with two Bacillus sp. producing more than 100 µg ml(-1). Eighteen isolates produced both IAA and siderophore. The results suggested that the indigenous bacteria in the soil have beneficial characteristics for remediating the contaminated mine tailing soil.

  16. [Study on fast discrimination of varieties of acidophilous milk using near infrared spectra].

    PubMed

    He, Yong; Feng, Shui-juan; Li, Xiao-li; Qiu, Zheng-jun

    2006-11-01

    A new method for the discrimination of varieties of near acidophilous milk by means of near infrared spectroscopy (NIRS) was developed. Firstly, through the principal component analysis (PCA) of spectroscopic curves of 5 typical kinds of acidophilous milk, the clustering of acidophilous milk varieties was processed. The analysis results showed that the cumulate reliabilities of PC1 and PC2 (the first two principal components) reached 98.96%, and the cumulate reliabilities of PC1 to PC7 (the first seven principal components) were 99.97%. Secondly, a discrimination model of artificial neural network (ANN-BP) was set up. The first seven principal components of the samples were applied as ANN-BP inputs, and the values of type of acidophilous milk were applied as outputs, then the three layer ANN-BP model was build. In this model, every variety of acidophilous milk includes 27 samples, the total number of samples is 135, and the rest 25 samples were used as prediction set. Calculation results showed that the distinguishing rate of the five acidophilous milk varieties was 100%. This model is reliable and practicable. So a new approach to the rapid and lossless discrimination of varieties of acidophilous milk was put forward.

  17. Burkholderia dabaoshanensis sp. nov., a Heavy-Metal-Tolerant Bacteria Isolated from Dabaoshan Mining Area Soil in China

    PubMed Central

    Zhu, Honghui; Guo, Jianhua; Chen, Meibiao; Feng, Guangda; Yao, Qing

    2012-01-01

    Heavy-metal-tolerant bacteria, GIMN1.004T, was isolated from mine soils of Dabaoshan in South China, which were acidic (pH 2–4) and polluted with heavy metals. The isolation was Gram-negative, aerobic, non-spore-forming, and rod-shaped bacteria having a cellular width of 0.5−0.6 µm and a length of 1.3−1.8 µm. They showed a normal growth pattern at pH 4.0–9.0 in a temperature ranging from 5°C to 40°C.The organism contained ubiquinone Q-8 as the predominant isoprenoid quinine, and C16∶0, summed feature 8 (C18∶1ω7c and C18∶1ω6c), C18∶0, summed feature 3 (C16∶1ω7c or iso-C15∶0 2-OH), C17∶0 cyclo, C18∶1ω9c, C19∶0 cyclo ω8c, C14∶0 as major fatty acid. These profiles were similar to those reported for Burkholderia species. The DNA G+C % of this strain was 61.6%. Based on the similarity to 16S rRNA gene sequence, GIMN1.004T was considered to be in the genus Burkholderia. The similarities of 16S rRNA gene sequence between strain GIMN1.004T and members of the genus Burkholderia were 96−99.4%, indicating that this novel strain was phylogenetically related to members of that genus. The novel strain showed the highest sequence similarities to Burkholderia soli DSM 18235T (99.4%); Levels of DNA-DNA hybridization with DSM 18235T was 25%. Physiological and biochemical tests including cell wall composition analysis, differentiated phenotype of this strain from that closely related Burkholderia species. The isolation had great tolerance to cadmium with MIC of 22 mmol/L, and adsorbability of 144.94 mg/g cadmium,and it was found to exhibit antibiotic resistance characteristics. The adsorptive mechanism of GIMN1.004T for cadmium depended on the action of the amide,carboxy and phosphate of cell surface and producing low-molecular-weight (LMW ) organic acids to complex or chelated Cd2+.Therefore, the strain GIMN1.004T represented a new cadmium resistance species, which was tentatively named as Burkholderia dabaoshanensis sp. nov. The strain type is

  18. Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State.

    PubMed

    Baker, Brett J; Moser, Duane P; MacGregor, Barbara J; Fishbain, Susan; Wagner, Michael; Fry, Norman K; Jackson, Brad; Speolstra, Nico; Loos, Steffen; Takai, Ken; Lollar, Barbara Sherwood; Fredrickson, Jim; Balkwill, David; Onstott, Tullis C; Wimpee, Charles F; Stahl, David A

    2003-04-01

    We characterized the diversity of sulphate-reducing bacteria (SRB) associated with South African gold mine boreholes and deep aquifer systems in Washington State, USA. Sterile cartridges filled with crushed country rock were installed on two hydrologically isolated and chemically distinct sites at depths of 3.2 and 2.7 km below the land surface (kmbls) to allow development of biofilms. Enrichments of sulphate-reducing chemolithotrophic (H2) and organotrophic (lactate) bacteria were established from each site under both meso- and thermophilic conditions. Dissimilatory sulphite reductase (Dsr) and 16S ribosomal RNA (rRNA) genes amplified from DNA extracted from the cartridges were most closely related to the Gram-positive species Desulfotomaculum thermosapovorans and Desulfotomaculum geothermicum, or affiliated with a novel deeply branching clade. The dsr sequences recovered from the Washington State deep aquifer systems affiliated closely with the South African sequences, suggesting that Gram-positive sulphate-reducing bacteria are widely distributed in the deep subsurface.

  19. Isolation and characterisation of mineral-oxidising "Acidibacillus" spp. from mine sites and geothermal environments in different global locations.

    PubMed

    Holanda, Roseanne; Hedrich, Sabrina; Ňancucheo, Ivan; Oliveira, Guilherme; Grail, Barry M; Johnson, D Barrie

    2016-09-01

    Eight strains of acidophilic bacteria, isolated from mine-impacted and geothermal sites from different parts of the world, were shown to form a distinct clade (proposed genus "Acidibacillus") within the phylum Firmicutes, well separated from the acidophilic genera Sulfobacillus and Alicyclobacillus. Two of the strains (both isolated from sites in Yellowstone National Park, USA) were moderate thermophiles that oxidised both ferrous iron and elemental sulphur, while the other six were mesophiles that also oxidised ferrous iron, but not sulphur. All eight isolates reduced ferric iron to varying degrees. The two groups shared <95% similarity of their 16S rRNA genes and were therefore considered to be distinct species: "Acidibacillus sulfuroxidans" (moderately thermophilic isolates) and "Acidibacillus ferrooxidans" (mesophilic isolates). Both species were obligate heterotrophs; none of the eight strains grew in the absence of organic carbon. "Acidibacillus" spp. were generally highly tolerant of elevated concentrations of cationic transition metals, though "A. sulfuroxidans" strains were more sensitive to some (e.g. nickel and zinc) than those of "A. ferrooxidans". Initial annotation of the genomes of two strains of "A. ferrooxidans" revealed the presence of genes (cbbL) involved in the RuBisCO pathway for CO2 assimilation and iron oxidation (rus), though with relatively low sequence identities.

  20. Microbiological oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments

    USGS Publications Warehouse

    Terry, Lee R.; Kulp, Thomas R.; Wiatrowski, Heather A.; Miller, Laurence G.; Oremland, Ronald S.

    2015-01-01

    Bacterial oxidation of arsenite [As(III)] is a well-studied and important biogeochemical pathway that directly influences the mobility and toxicity of arsenic in the environment. In contrast, little is known about microbiological oxidation of the chemically similar anion antimonite [Sb(III)]. In this study, two bacterial strains, designated IDSBO-1 and IDSBO-4, which grow on tartrate compounds and oxidize Sb(III) using either oxygen or nitrate, respectively, as a terminal electron acceptor, were isolated from contaminated mine sediments. Both isolates belonged to the Comamonadaceae family and were 99% similar to previously described species. We identify these novel strains as Hydrogenophagataeniospiralis strain IDSBO-1 and Variovorax paradoxus strain IDSBO-4. Both strains possess a gene with homology to the aioA gene, which encodes an As(III)-oxidase, and both oxidize As(III) aerobically, but only IDSBO-4 oxidized Sb(III) in the presence of air, while strain IDSBO-1 could achieve this via nitrate respiration. Our results suggest that expression of aioA is not induced by Sb(III) but may be involved in Sb(III) oxidation along with an Sb(III)-specific pathway. Phylogenetic analysis of proteins encoded by the aioA genes revealed a close sequence similarity (90%) among the two isolates and other known As(III)-oxidizing bacteria, particularly Acidovorax sp. strain NO1. Both isolates were capable of chemolithoautotrophic growth using As(III) as a primary electron donor, and strain IDSBO-4 exhibited incorporation of radiolabeled [14C]bicarbonate while oxidizing Sb(III) from Sb(III)-tartrate, suggesting possible Sb(III)-dependent autotrophy. Enrichment cultures produced the Sb(V) oxide mineral mopungite and lesser amounts of Sb(III)-bearing senarmontite as precipitates.

  1. Microbiological Oxidation of Antimony(III) with Oxygen or Nitrate by Bacteria Isolated from Contaminated Mine Sediments

    PubMed Central

    Terry, Lee R.; Wiatrowski, Heather; Miller, Laurence G.; Oremland, Ronald S.

    2015-01-01

    Bacterial oxidation of arsenite [As(III)] is a well-studied and important biogeochemical pathway that directly influences the mobility and toxicity of arsenic in the environment. In contrast, little is known about microbiological oxidation of the chemically similar anion antimonite [Sb(III)]. In this study, two bacterial strains, designated IDSBO-1 and IDSBO-4, which grow on tartrate compounds and oxidize Sb(III) using either oxygen or nitrate, respectively, as a terminal electron acceptor, were isolated from contaminated mine sediments. Both isolates belonged to the Comamonadaceae family and were 99% similar to previously described species. We identify these novel strains as Hydrogenophaga taeniospiralis strain IDSBO-1 and Variovorax paradoxus strain IDSBO-4. Both strains possess a gene with homology to the aioA gene, which encodes an As(III)-oxidase, and both oxidize As(III) aerobically, but only IDSBO-4 oxidized Sb(III) in the presence of air, while strain IDSBO-1 could achieve this via nitrate respiration. Our results suggest that expression of aioA is not induced by Sb(III) but may be involved in Sb(III) oxidation along with an Sb(III)-specific pathway. Phylogenetic analysis of proteins encoded by the aioA genes revealed a close sequence similarity (90%) among the two isolates and other known As(III)-oxidizing bacteria, particularly Acidovorax sp. strain NO1. Both isolates were capable of chemolithoautotrophic growth using As(III) as a primary electron donor, and strain IDSBO-4 exhibited incorporation of radiolabeled [14C]bicarbonate while oxidizing Sb(III) from Sb(III)-tartrate, suggesting possible Sb(III)-dependent autotrophy. Enrichment cultures produced the Sb(V) oxide mineral mopungite and lesser amounts of Sb(III)-bearing senarmontite as precipitates. PMID:26431974

  2. Microbiological oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments.

    PubMed

    Terry, Lee R; Kulp, Thomas R; Wiatrowski, Heather; Miller, Laurence G; Oremland, Ronald S

    2015-12-01

    Bacterial oxidation of arsenite [As(III)] is a well-studied and important biogeochemical pathway that directly influences the mobility and toxicity of arsenic in the environment. In contrast, little is known about microbiological oxidation of the chemically similar anion antimonite [Sb(III)]. In this study, two bacterial strains, designated IDSBO-1 and IDSBO-4, which grow on tartrate compounds and oxidize Sb(III) using either oxygen or nitrate, respectively, as a terminal electron acceptor, were isolated from contaminated mine sediments. Both isolates belonged to the Comamonadaceae family and were 99% similar to previously described species. We identify these novel strains as Hydrogenophaga taeniospiralis strain IDSBO-1 and Variovorax paradoxus strain IDSBO-4. Both strains possess a gene with homology to the aioA gene, which encodes an As(III)-oxidase, and both oxidize As(III) aerobically, but only IDSBO-4 oxidized Sb(III) in the presence of air, while strain IDSBO-1 could achieve this via nitrate respiration. Our results suggest that expression of aioA is not induced by Sb(III) but may be involved in Sb(III) oxidation along with an Sb(III)-specific pathway. Phylogenetic analysis of proteins encoded by the aioA genes revealed a close sequence similarity (90%) among the two isolates and other known As(III)-oxidizing bacteria, particularly Acidovorax sp. strain NO1. Both isolates were capable of chemolithoautotrophic growth using As(III) as a primary electron donor, and strain IDSBO-4 exhibited incorporation of radiolabeled [(14)C]bicarbonate while oxidizing Sb(III) from Sb(III)-tartrate, suggesting possible Sb(III)-dependent autotrophy. Enrichment cultures produced the Sb(V) oxide mineral mopungite and lesser amounts of Sb(III)-bearing senarmontite as precipitates.

  3. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds

    PubMed Central

    Lehtovirta-Morley, Laura E; Ge, Chaorong; Ross, Jenna; Yao, Huaiying; Nicol, Graeme W; Prosser, James I

    2014-01-01

    Autotrophic ammonia oxidation is performed by two distinct groups of microorganisms: ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB). AOA outnumber their bacterial counterparts in many soils, at times by several orders of magnitude, but relatively little is known of their physiology due to the lack of cultivated isolates. Although a number of AOA have been cultivated from soil, Nitrososphaera viennensis was the sole terrestrial AOA in pure culture and requires pyruvate for growth in the laboratory. Here, we describe isolation in pure culture and characterisation of two acidophilic terrestrial AOA representing the Candidatus genus Nitrosotalea and their responses to organic acids. Interestingly, despite their close phylogenetic relatedness, the two Nitrosotalea strains exhibited differences in physiological features, including specific growth rate, temperature preference and to an extent, response to organic compounds. In contrast to N. viennensis, both Nitrosotalea isolates were inhibited by pyruvate but their growth yield increased in the presence of oxaloacetate. This study demonstrates physiological diversity within AOA species and between different AOA genera. Different preferences for organic compounds potentially influence the favoured localisation of ammonia oxidisers within the soil and the structure of ammonia-oxidising communities in terrestrial ecosystems. PMID:24909965

  4. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds.

    PubMed

    Lehtovirta-Morley, Laura E; Ge, Chaorong; Ross, Jenna; Yao, Huaiying; Nicol, Graeme W; Prosser, James I

    2014-09-01

    Autotrophic ammonia oxidation is performed by two distinct groups of microorganisms: ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB). AOA outnumber their bacterial counterparts in many soils, at times by several orders of magnitude, but relatively little is known of their physiology due to the lack of cultivated isolates. Although a number of AOA have been cultivated from soil, Nitrososphaera viennensis was the sole terrestrial AOA in pure culture and requires pyruvate for growth in the laboratory. Here, we describe isolation in pure culture and characterisation of two acidophilic terrestrial AOA representing the Candidatus genus Nitrosotalea and their responses to organic acids. Interestingly, despite their close phylogenetic relatedness, the two Nitrosotalea strains exhibited differences in physiological features, including specific growth rate, temperature preference and to an extent, response to organic compounds. In contrast to N. viennensis, both Nitrosotalea isolates were inhibited by pyruvate but their growth yield increased in the presence of oxaloacetate. This study demonstrates physiological diversity within AOA species and between different AOA genera. Different preferences for organic compounds potentially influence the favoured localisation of ammonia oxidisers within the soil and the structure of ammonia-oxidising communities in terrestrial ecosystems.

  5. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil.

    PubMed

    Lehtovirta-Morley, Laura E; Stoecker, Kilian; Vilcinskas, Andreas; Prosser, James I; Nicol, Graeme W

    2011-09-20

    Nitrification is a fundamental component of the global nitrogen cycle and leads to significant fertilizer loss and atmospheric and groundwater pollution. Nitrification rates in acidic soils (pH < 5.5), which comprise 30% of the world's soils, equal or exceed those of neutral soils. Paradoxically, autotrophic ammonia oxidizing bacteria and archaea, which perform the first stage in nitrification, demonstrate little or no growth in suspended liquid culture below pH 6.5, at which ammonia availability is reduced by ionization. Here we report the discovery and cultivation of a chemolithotrophic, obligately acidophilic thaumarchaeal ammonia oxidizer, "Candidatus Nitrosotalea devanaterra," from an acidic agricultural soil. Phylogenetic analysis places the organism within a previously uncultivated thaumarchaeal lineage that has been observed in acidic soils. Growth of the organism is optimal in the pH range 4 to 5 and is restricted to the pH range 4 to 5.5, unlike all previously cultivated ammonia oxidizers. Growth of this organism and associated ammonia oxidation and autotrophy also occur during nitrification in soil at pH 4.5. The discovery of Nitrosotalea devanaterra provides a previously unsuspected explanation for high rates of nitrification in acidic soils, and confirms the vital role that thaumarchaea play in terrestrial nitrogen cycling. Growth at extremely low ammonia concentration (0.18 nM) also challenges accepted views on ammonia uptake and metabolism and indicates novel mechanisms for ammonia oxidation at low pH.

  6. Alicyclobacillus fodiniaquatilis sp. nov., isolated from acid mine water.

    PubMed

    Zhang, Bo; Wu, Yu-Fan; Song, Jin-Long; Huang, Zhong-Sheng; Wang, Bao-Jun; Liu, Shuang-Jiang; Jiang, Cheng-Ying

    2015-12-01

    Two novel, Gram-stain-variable, moderately thermophilic, acidophilic, rod-shaped, endospore-forming bacteria, G45-16T and G45-17, were isolated from acid mine water of Zijin copper mine in Fujian Province, China. Phylogenetic analysis of 16S rRNA gene sequences showed that they were closely related to Alicyclobacillus acidoterrestris ATCC 49025T with sequence similarities of 96.8 %. Cells grew aerobically at 20-45 °C (optimum, 40 °C), at pH 2.5-5.5(optimum, pH 3.5) and in the presence of 0-4.0 % (w/v) NaCl. Strains contained MK-7 as the major menaquinone and the major cellular fatty acids were ω-cyclohexane C19 : 0 and ω-cyclohexane C17 : 0. The DNA G+C content was 51.3 and 49.8 mol% (Tm) for G45-16T and G45-17, respectively. On the basis of phenotypic, chemotaxonomic and phylogenetic comparisons with their relatives and DNA-DNA relatedness values, it is concluded that strains G45-16T and G45-17 represent a novel species within the genus Alicyclobacillus, for which the name Alicyclobacillus fodiniaquatilis sp. nov. is proposed; the type strain is G45-16T(=CGMCC 1.15049T=NBRC 111483T).

  7. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals.

    PubMed

    Dziewit, Lukasz; Pyzik, Adam; Szuplewska, Magdalena; Matlakowska, Renata; Mielnicki, Sebastian; Wibberg, Daniel; Schlüter, Andreas; Pühler, Alfred; Bartosik, Dariusz

    2015-01-01

    The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland). It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m) Lubin mine were taken and 20 bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e., they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface.

  8. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals

    PubMed Central

    Dziewit, Lukasz; Pyzik, Adam; Szuplewska, Magdalena; Matlakowska, Renata; Mielnicki, Sebastian; Wibberg, Daniel; Schlüter, Andreas; Pühler, Alfred; Bartosik, Dariusz

    2015-01-01

    The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland). It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m) Lubin mine were taken and 20 bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e., they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface. PMID:26074880

  9. Development of an enzyme-linked immunosorbent assay to determine the numbers of chemolithotrophic bacteria at acid-mine-drainage sites. Technical report (Final)

    SciTech Connect

    Blake, R.C.; Revis, N.W.; Holdsworth, G.

    1990-09-01

    Thiobacillus ferrooxidans is a prominent member of a group of chemo-lithotrophic bacteria that bear principal responsibility for the formation of acid mine drainage. A prototype enzyme-linked immunosorbent assay (ELISA) for enumerating and qualifying T. ferrooxidans was assembled and characterized. The immunoassay protocol consisted of sequential incubations of the sample with (i) the primary antibody, (ii) the enzyme-labeled secondary antibody, and (iii) a chromogenic substrate specific for the enzyme lable. The necessary reagents comprised primary polyclonal rabbit antibodies directed against T. ferrooxidans ATCC 23270, alkaline phosphatase-copled goat anti-rabbit polyclonal antibodies, and phenolphrhalein monophosphate. The ELISA developed herein correctly identified whether iron-oxidizing bacteria were present in each of 4 samples supplied and analyzed by an independent laboratory. Sufficient preliminary data was obtained to warrant further research and development activities.

  10. Study of the effect of bacteria on the disappearance and transformation of CO in the sealed fire zone of coal mine

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaowei; Wu, Shibo; Deng, Jun; Yang, Yifan; Jiang, Hua; Wang, Kai

    2017-01-01

    When the underground coal mine gob area has been sealed due to the coal spontaneous combustion, under the low oxygen and potentially high temperature environment, the CO concentration could drop sharply and disappear quickly. But it could rise rapidly after re-opening. These indicate that the disappearance is the only index for coal burnt out. In order to find a way how let CO disappear, experiments have been conducted using the newly developed experiment setup for three samples, raw, watered and bacteria-free coal sample. The CO and CO2 concentration have been monitored and analyzed. The results show the bacteria in the coal do consume CO and increase the chance of CO transfer to CO2. These results reveal how let CO disappear in a sealed zone from a new aspect. And the accuracy was improved when used gas index to determine combustion status for coal spontaneous combustion.

  11. Microbial Communities in Biofilms of an Acid Mine Drainage Site Determined by Phospholipid Analysis

    NASA Astrophysics Data System (ADS)

    Das Gupta, S.; Fang, J.

    2008-12-01

    Phospholipids were extracted to determine the microbial biomass and community structure of biofims from an acid mine drainage (AMD) at the Green Valley coal mine site (GVS) in western Indiana. The distribution of specific biomarkers indicated the presence of a variety of microorganisms. Phototrophic microeukaryotes, which include Euglena mutabilis, algae, and cyanobacteria were the most dominant organisms, as indicated by the presence of polyunsaturated fatty acids. The presence of terminally methyl branched fatty acids suggests the presence of Gram-positive bacteria, and the mid-methyl branched fatty acids indicates the presence of sulfate-reducing bacteria. Fungi appear to also be an important part of the AMD microbial communities as suggested by the presence of 18:2 fatty acid. The acidophilic microeukaryotes Euglena dominated the biofilm microbial communities. These microorganisms appear to play a prominent role in the formation and preservation of stromatolites and in releasing oxygen to the atmosphere by oxygenic photosynthesis. Thus, the AMD environment comprises a host of microorganisms spreading out within the phylogenetic tree of life. Novel insights on the roles of microbial consortia in the formation and preservation of stromatolites and the production of oxygen through photosynthesis in AMD systems may have significance in the understanding of the interaction of Precambrian microbial communities in environments that produced microbially-mediated sedimentary structures and that caused oxygenation of Earth's atmosphere.

  12. Characterization of a Bacterial Community in an Abandoned Semiarid Lead-Zinc Mine Tailing Site▿ †

    PubMed Central

    Mendez, Monica O.; Neilson, Julia W.; Maier, Raina M.

    2008-01-01

    Bacterial diversity in mine tailing microbial communities has not been thoroughly investigated despite the correlations that have been observed between the relative microbial diversity and the success of revegetation efforts at tailing sites. This study employed phylogenetic analyses of 16S rRNA genes to compare the bacterial communities present in highly disturbed, extremely (pH 2.7) and moderately (pH 5.7) acidic lead-zinc mine tailing samples from a semiarid environment with those from a vegetated off-site (OS) control sample (pH 8). Phylotype richness in these communities decreased from 42 in the OS control to 24 in the moderately acidic samples and 8 in the extremely acidic tailing samples. The clones in the extremely acidic tailing sample were most closely related to acidophiles, none of which were detected in the OS control sample. The comparison generated by this study between the bacteria present in extremely acidic tailing and that in moderately acidic tailing communities with those in an OS control soil provides a reference point from which to evaluate the successful restoration of mine tailing disposal sites by phytostabilization. PMID:18424534

  13. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site.

    PubMed

    Mendez, Monica O; Neilson, Julia W; Maier, Raina M

    2008-06-01

    Bacterial diversity in mine tailing microbial communities has not been thoroughly investigated despite the correlations that have been observed between the relative microbial diversity and the success of revegetation efforts at tailing sites. This study employed phylogenetic analyses of 16S rRNA genes to compare the bacterial communities present in highly disturbed, extremely (pH 2.7) and moderately (pH 5.7) acidic lead-zinc mine tailing samples from a semiarid environment with those from a vegetated off-site (OS) control sample (pH 8). Phylotype richness in these communities decreased from 42 in the OS control to 24 in the moderately acidic samples and 8 in the extremely acidic tailing samples. The clones in the extremely acidic tailing sample were most closely related to acidophiles, none of which were detected in the OS control sample. The comparison generated by this study between the bacteria present in extremely acidic tailing and that in moderately acidic tailing communities with those in an OS control soil provides a reference point from which to evaluate the successful restoration of mine tailing disposal sites by phytostabilization.

  14. Examining microbial community response to a strong chemical gradient: the effects of surface coal mining on stream bacteria

    NASA Astrophysics Data System (ADS)

    Bier, R.; Lindberg, T. T.; Wang, S.; Ellis, J. C.; Di Giulio, R. T.; Bernhardt, E. S.

    2012-12-01

    Surface coal mining is the dominant form of land cover change in northern and central Appalachia. In this process, shallow coal seams are exposed by removing overlying rock with explosives. The resulting fragmented carbonate rock and coal residues are disposed of in stream valleys. These valley fills generate alkaline mine drainage (AlkMD), dramatically increasing alkalinity, ionic strength, substrate supply (esp. SO42-), and trace element (Mn, Li, Se, U) concentrations in downstream rivers as well as significant losses of sensitive fish and macroinvertebrate species. In prior work within the Mud River, which drains the largest surface mine complex in Appalachia, we found that concentrations of AlkMD increase proportionally with the extent of upstream mining. Here we ask "How do stream microbial communities change along this strong chemical gradient?" We collected surface water and benthic biofilms from 25 stream reaches throughout the Mud River spanning the full range of surface mining impacts, with 0-96% of the contributing watershed area converted to surface coal mines. Microbial communities were collected from biofilms grown on a common substrate (red maple veneers) that were incubated in each stream reach for four months prior to collection in April, 2011. 16S rRNA genes from microbial communities at each study site were examined using 454 sequencing and compared with a generalized UniFrac distance matrix (674 sequence eveness) that was used in statistical analyses. Water chemistry at the sites was sampled monthly from July 2010 to December 2010 and again in April 2011. In April, surface water concentrations of SO42-, Ca2+, Mg2+, and Se2- increased linearly with the extent of upstream mining (all regressions R2 >0.43; p<0.004), with the resulting gradient in ionic strength extending from low conductivity (average 83 μS cm-1 S.E. 27.4) in unmined streams (n=6) to as high as 899 μS cm-1 in the mainstem and 1889 μS cm-1 immediately below the Connelly Branch

  15. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage.

    PubMed

    Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard R; Richter, Michael; Diez, María Suárez; Solano, Jennifer; Bargiela, Rafael; Golyshina, Olga V; Manteca, Ángel; Ramos, Juan Luis; Gallego, José R; Llorente, Irene; Martins dos Santos, Vitor A P; Jensen, Ole N; Peláez, Ana I; Sánchez, Jesús; Ferrer, Manuel

    2014-06-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH ∼2) in three distinct compartments: two from a stratified streamer (uppermost oxic and lowermost anoxic sediment-attached strata) and one from a submerged anoxic non-stratified mat biofilm. The communities colonising pyrite and those in the mature formations appear to be populated by the greatest diversity of bacteria and archaea (including 'ARMAN' (archaeal Richmond Mine acidophilic nano-organisms)-related), as compared with the known AMD, with ∼44.9% unclassified sequences. We propose that the thick polymeric matrix may provide a safety shield against the prevailing extreme condition and also a massive carbon source, enabling non-typical acidophiles to develop more easily. Only 1 of 39 species were shared, suggesting a high metabolic heterogeneity in local microenvironments, defined by the O2 concentration, spatial location and biofilm architecture. The suboxic mats, compositionally most similar to each other, are more diverse and active for S, CO2, CH4, fatty acid and lipopolysaccharide metabolism. The oxic stratum of the streamer, displaying a higher diversity of the so-called 'ARMAN'-related Euryarchaeota, shows a higher expression level of proteins involved in signal transduction, cell growth and N, H2, Fe, aromatic amino acids, sphingolipid and peptidoglycan metabolism. Our study is the first to highlight profound taxonomic and functional shifts in single AMD formations, as well as new microbial species and the importance of H2 in acidic suboxic macroscopic growths.

  16. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage

    PubMed Central

    Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard R; Richter, Michael; Diez, María Suárez; Solano, Jennifer; Bargiela, Rafael; Golyshina, Olga V; Manteca, Ángel; Ramos, Juan Luis; Gallego, José R; Llorente, Irene; Martins dos Santos, Vitor AP; Jensen, Ole N; Peláez, Ana I; Sánchez, Jesús; Ferrer, Manuel

    2014-01-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH ∼2) in three distinct compartments: two from a stratified streamer (uppermost oxic and lowermost anoxic sediment-attached strata) and one from a submerged anoxic non-stratified mat biofilm. The communities colonising pyrite and those in the mature formations appear to be populated by the greatest diversity of bacteria and archaea (including ‘ARMAN' (archaeal Richmond Mine acidophilic nano-organisms)-related), as compared with the known AMD, with ∼44.9% unclassified sequences. We propose that the thick polymeric matrix may provide a safety shield against the prevailing extreme condition and also a massive carbon source, enabling non-typical acidophiles to develop more easily. Only 1 of 39 species were shared, suggesting a high metabolic heterogeneity in local microenvironments, defined by the O2 concentration, spatial location and biofilm architecture. The suboxic mats, compositionally most similar to each other, are more diverse and active for S, CO2, CH4, fatty acid and lipopolysaccharide metabolism. The oxic stratum of the streamer, displaying a higher diversity of the so-called ‘ARMAN'-related Euryarchaeota, shows a higher expression level of proteins involved in signal transduction, cell growth and N, H2, Fe, aromatic amino acids, sphingolipid and peptidoglycan metabolism. Our study is the first to highlight profound taxonomic and functional shifts in single AMD formations, as well as new microbial species and the importance of H2 in acidic suboxic macroscopic growths. PMID:24430486

  17. Characterization of boron resistant and accumulating bacteria Lysinibacillus fusiformis M1, Bacillus cereus M2, Bacillus cereus M3, Bacillus pumilus M4 isolated from former mining site, Hokkaido, Japan.

    PubMed

    Raja, Chellaiah Edward; Omine, Kiyoshi

    2012-01-01

    Boron is known to be widespread environmental contaminant that is relatively mobile in soil when compared to other metal contaminants. The present study made an attempt to isolate and characterize the boron resistant and accumulating bacteria from former mining site at Hokkaido, Japan. Four potential strains M1, M2, M3 and M4 were selected based on high degree of boron and heavy metal resistances. The morphological, biochemical and 16S rDNA sequencing analysis of mining bacteria revealed that the isolates were highly homology to Lysinibacillus fusiformis M1 (99 %), Bacillus cereus M2 (99 %), Bacillus cereus M3 (99 %) and Bacillus pumilus M4 (99 %) respectively. The strains M1, M2, M3 and M4 showed resistance to several heavy metals such as As (III), As (V) and Cr (VI), Cu, Ni, Pb and Zn. The selected strains were found to be arsenic oxidizing bacteria confirmed by Silver nitrate test. The resting and growing cells of mining bacteria were used for boron accumulation analysis. Selected strains were found to be efficiently accumulating boron concentration ranging from 0.1-2.3 mg L (-1) and 1.5-4.7 mg L (-1) at 24 h and 168 h, respectively. The following results conclude that the mining bacteria act as potent bioaccumulator of boron and its resistant, removal characteristic can be valuable in boron bioremediation.

  18. Acidophilic and acid-tolerant fungi and yeasts

    USGS Publications Warehouse

    Gross, S.; Robbins, E.I.

    2000-01-01

    Fungi have not been systematically studied from mines and mine drainage waters, even though they are often encountered there. This paper provides a key from literature sources and lists morphological characteristics and habitat information for the 81 fungal species that have been collected or identified in pH <4 environments.

  19. Acidophilic Green Alga Pseudochlorella sp. YKT1 Accumulates High Amount of Lipid Droplets under a Nitrogen-Depleted Condition at a Low-pH

    PubMed Central

    Hirooka, Shunsuke; Higuchi, Sumio; Uzuka, Akihiro; Nozaki, Hisayoshi; Miyagishima, Shin-ya

    2014-01-01

    Microalgal storage lipids are considered to be a promising source for next-generation biofuel feedstock. However, microalgal biodiesel is not yet economically feasible due to the high cost of production. One of the reasons for this is that the use of a low-cost open pond system is currently limited because of the unavoidable contamination with undesirable organisms. Extremophiles have an advantage in culturing in an open pond system because they grow in extreme environments toxic to other organisms. In this study, we isolated the acidophilic green alga Pseudochlorella sp. YKT1 from sulfuric acid mine drainage in Nagano Prefecture, Japan. The vegetative cells of YKT1 display the morphological characteristics of Trebouxiophyceae and molecular phylogenetic analyses indicated it to be most closely related to Pseudochlorella pringsheimii. The optimal pH and temperature for the growth of YKT1 are pH 3.0–5.0 and a temperature 20–25°C, respectively. Further, YKT1 is able to grow at pH 2.0 and at 32°C, which corresponds to the usual water temperature in the outdoors in summer in many countries. YKT1 accumulates a large amount of storage lipids (∼30% of dry weigh) under a nitrogen-depleted condition at low-pH (pH 3.0). These results show that acidophilic green algae will be useful for industrial applications by acidic open culture systems. PMID:25221913

  20. Presence of glucose, xylose, and glycerol fermenting bacteria in the deep biosphere of the former Homestake gold mine, South Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eight fermentative bacterial strains were isolated from mixed enrichment cultures of a composite soil sample collected at 1.34 km depth from the former Homestake gold mine in Lead, SD, USA. Phylogenetic analysis of their 16S rRNA gene sequences revealed that these isolates were affiliated with the p...

  1. Biochemistry and Ecology of Novel Cytochromes Catalyzing Fe(II) Oxidation by an Acidophilic Microbial Community

    NASA Astrophysics Data System (ADS)

    Singer, S. W.; Jeans, C. J.; Thelen, M. P.; Verberkmoes, N. C.; Hettich, R. C.; Chan, C. S.; Banfield, J. F.

    2007-12-01

    An acidophilic microbial community found in the Richmond Mine at Iron Mountain, CA forms abundant biofilms in extremely acidic (pH<1) and toxic metal conditions. In this ecosystem, biological Fe(II) oxidation is critical to the metabolic functioning of the community, and in turn this process generates acid mine drainage, causing an environmental catastrophe. Two conspicuous novel proteins isolated from these biofilms were identified as gene products of Leptospirillum group II and were characterized as cytochromes with unique properties. Sulfuric acid extraction of biofilm samples liberated one of these proteins, a 16 kDa cytochrome with an unusual alpha-band absorption at 579 (Cyt579). Genomic sequencing of multiple biofilms indicated that several variants of Cyt579 were present in Leptospirillum strains. Intact protein MS analysis identified the dominant variants in each biofilm and documented multiple N-terminal cleavage sites for Cyt579. By combining biochemical, geochemical and microbiological data, we established that the sequence variation and N-terminal processing of Cyt579 are selected by ecological conditions. In addition to the soluble Cyt579, the second cytochrome appears as a much larger protein complex of ~210 kDa predominant in the biofilm membrane fraction, and has an alpha-band absorption at 572 nm. The 60 kDa cytochrome subunit, Cyt572, resides in the outer membrane of LeptoII, and readily oxidizes Fe(II) at low pH (0.95 - 3.0). Several genes encoding Cyt572 were localized within a recombination hotspot between two strains of LeptoII, causing a large range of variation in the sequences. Genomic sequencing and MS proteomic studies established that the variants were also selected by ecological conditions. A general mechanistic model for Fe(II) oxidation has been developed from these studies. Initial Fe(II) oxidation by Cyt572 occurs at the outer membrane. Cyt572 then transfers electrons to Cyt579, perhaps representing an initial step in energy flow

  2. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage.

    PubMed

    Nicomrat, Duongruitai; Dick, Warren A; Tuovinen, Olli H

    2006-01-01

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant. Heterotrophs in the Acidiphilium genus totaled 20% of the bacterial population. Leptospirillum ferrooxidans was below the level of detection in the bacterial community. The results from the FISH technique from this field study are consistent with results from other experiments involving enumeration by most probable number, dot-blot hybridization, and denaturing gradient gel electrophoresis analyses and with the geochemistry of the site.

  3. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination.

    PubMed

    Martins, Mónica; Faleiro, M Leonor; Barros, Raúl J; Veríssimo, A Raquel; Barreiros, M Alexandra; Costa, M Clara

    2009-07-30

    Biological treatment with sulphate-reducing bacteria (SRB) has been considered as the most promising alternative for acid mine drainage (AMD) decontamination. Normally, these wastewaters contain high concentrations of sulphate and heavy metals, so the search for SRB highly resistant to metals is extremely important for the development of a bioremediation technology. A SRB consortium resistant to high concentrations of heavy metals (Fe, Cu and Zn), similar to those typically present in AMD, was obtained among several environmental samples, from a wastewater treatment plant. The phylogenetic analysis of the dsr gene sequence revealed that this consortium contains species of SRB affiliated to Desulfovibrio desulfuricans and Desulfobulbus rhabdoformis. The results show that the presence of usually lethal concentrations of Fe (400mg/L), Zn (150 mg/L) and Cu (80 mg/L) is not toxic for the sulphate-reducing bacteria present in this sample. As a consequence, a very good efficiency in terms of sulphate reduction and metals removal was obtained. Both ethanol and lactate can be used by this inoculum as carbon source. With the other samples tested sulphate reduction was inhibited by the presence of copper and zinc. This highly metal resistant consortium will be used to inoculate a bioreactor to carry out AMD decontamination.

  4. Effect of Phospholipid on Pyrite Oxidation and Microbial Communities under Simulated Acid Mine Drainage (AMD) Conditions.

    PubMed

    Pierre Louis, Andro-Marc; Yu, Hui; Shumlas, Samantha L; Van Aken, Benoit; Schoonen, Martin A A; Strongin, Daniel R

    2015-07-07

    The effect of phospholipid on the biogeochemistry of pyrite oxidation, which leads to acid mine drainage (AMD) chemistry in the environment, was investigated. Metagenomic analyses were carried out to understand how the microbial community structure, which developed during the oxidation of pyrite-containing coal mining overburden/waste rock (OWR), was affected by the presence of adsorbed phospholipid. Using columns packed with OWR (with and without lipid adsorption), the release of sulfate (SO4(2-)) and soluble iron (FeTot) was investigated. Exposure of lipid-free OWR to flowing pH-neutral water resulted in an acidic effluent with a pH range of 2-4.5 over a 3-year period. The average concentration of FeTot and SO4(2-) in the effluent was ≥20 and ≥30 mg/L, respectively. In contrast, in packed-column experiments where OWR was first treated with phospholipid, the effluent pH remained at ∼6.5 and the average concentrations of FeTot and SO4(2-) were ≤2 and l.6 mg/L, respectively. 16S rDNA metagenomic pyrosequencing analysis of the microbial communities associated with OWR samples revealed the development of AMD-like communities dominated by acidophilic sulfide-oxidizing bacteria on untreated OWR samples, but not on refuse pretreated with phospholipid.

  5. Biofilm formation and interspecies interactions in mixed cultures of thermo-acidophilic archaea Acidianus spp. and Sulfolobus metallicus.

    PubMed

    Castro, Camila; Zhang, Ruiyong; Liu, Jing; Bellenberg, Sören; Neu, Thomas R; Donati, Edgardo; Sand, Wolfgang; Vera, Mario

    2016-09-01

    The understanding of biofilm formation by bioleaching microorganisms is of great importance for influencing mineral dissolution rates and to prevent acid mine drainage (AMD). Thermo-acidophilic archaea such as Acidianus, Sulfolobus and Metallosphaera are of special interest due to their ability to perform leaching at high temperatures, thereby enhancing leaching rates. In this work, leaching experiments and visualization by microscopy of cell attachment and biofilm formation patterns of the crenarchaeotes Sulfolobus metallicus DSM 6482(T) and the Acidianus isolates DSM 29038 and DSM 29099 in pure and mixed cultures on sulfur or pyrite were studied. Confocal laser scanning microscopy (CLSM) combined with fluorescent dyes as well as fluorescently labeled lectins were used to visualize different components (e.g. DNA, proteins or glycoconjugates) of the aforementioned species. The data indicate that cell attachment and the subsequently formed biofilms were species- and substrate-dependent. Pyrite leaching experiments coupled with pre-colonization and further inoculation with a second species suggest that both species may negatively influence each other during pyrite leaching with respect to initial attachment and pyrite dissolution rates. In addition, the investigation of binary biofilms on pyrite showed that both species were heterogeneously distributed on pyrite surfaces in the form of individual cells or microcolonies. Physical contact between the two species seems to occur, as revealed by specific lectins able to specifically bind single species within mixed cultures.

  6. Diversity and community structure of culturable arsenic-resistant bacteria across a soil arsenic gradient at an abandoned tungsten-tin mining area.

    PubMed

    Valverde, Angel; González-Tirante, María; Medina-Sierra, Marisol; Santa-Regina, Ignacio; García-Sánchez, Antonio; Igual, José M

    2011-09-01

    We studied the bacterial diversity at a single location (the Terrubias mine; Salamanca province, Spain) with a gradient of soil As contamination to test if increasing levels of As would (1) change the preponderant groups of arsenic-resistant bacteria and (2) increase the tolerance thresholds to arsenite [As(III)] and arsenate [As(V)] of such bacteria. We studied the genetic and taxonomic diversity of culturable arsenic-resistant bacteria by PCR fingerprinting techniques and 16S rRNA gene sequencing. Then, the tolerance thresholds to As(III) and As(V) were determined for representative strains and mathematically analyzed to determine relationships between tolerances to As(III) and As(V), as well as these tolerances with the soil contamination level. The diversity of the bacterial community was, as expected, inversely related to the soil As content. The overall preponderant arsenic-resistant bacteria were Firmicutes (mainly Bacillus spp.) followed by γ-Proteobacteria (mainly Pseudomonas spp.), with increasing relative frequencies of the former as the soil arsenic concentration increased. Moreover, a strain of the species Rahnella aquatilis (γ-Proteobacteria class) exhibited strong endurance to arsenic, being described for the first time in literature such a phenotype within this bacterial species. Tolerances of the isolates to As(III) and As(V) were correlated but not with their origin (soil contamination level). Most of the strains (64%) showed relatively low tolerances to As(III) and As(V), but the second most numerous group of isolates (19%) showed increased tolerance to As(III) rather than to As(V), even though the As(V) anion is the prevalent arsenic species in soil solution at this location. To our knowledge, this is the first study to report a shift towards preponderance of Gram-positive bacteria (Firmicutes) related to high concentrations of soil arsenic. It was also shown that, under aerobic conditions, strains with relatively enhanced tolerance to As

  7. Presence of glucose, xylose, and glycerol fermenting bacteria in the deep biosphere of the former Homestake gold mine, South Dakota

    PubMed Central

    Rastogi, Gurdeep; Gurram, Raghu N.; Bhalla, Aditya; Gonzalez, Ramon; Bischoff, Kenneth M.; Hughes, Stephen R.; Kumar, Sudhir; Sani, Rajesh K.

    2012-01-01

    Eight fermentative bacterial strains were isolated from mixed enrichment cultures of a composite soil sample collected at 1.34 km depth from the former Homestake gold mine in Lead, SD, USA. Phylogenetic analysis of their 16S rRNA gene sequences revealed that these isolates were affiliated with the phylum Firmicutes belonging to genera Bacillus and Clostridium. Batch fermentation studies demonstrated that isolates had the ability to ferment glucose, xylose, or glycerol to industrially valuable products such as ethanol and 1,3-propanediol (PDO). Ethanol was detected as the major fermentation end product in glucose-fermenting cultures at pH 10 with yields of 0.205–0.304 g of ethanol/g of glucose. While a xylose-fermenting strain yielded 0.189 g of ethanol/g of xylose and 0.585 g of acetic acid/g of xylose at the end of fermentation. At pH 7, glycerol-fermenting isolates produced PDO (0.323–0.458 g of PDO/g of glycerol) and ethanol (0.284–0.350 g of ethanol/g of glycerol) as major end products while acetic acid and succinic acid were identified as minor by-products in fermentation broths. These results suggest that the deep biosphere of the former Homestake gold mine harbors bacterial strains which could be used in bio-based production of ethanol and PDO. PMID:23919089

  8. Diffusion susceptibility demonstrates relative inhibition potential of sorbent-immobilized heavy metals against sulfur oxidizing acidophiles.

    PubMed

    Caicedo-Ramirez, Alejandro; Ling, Alison L; Hernandez, Mark

    2016-12-01

    A new generation of laminates and cementitious materials incorporate antimicrobial metals into domestic infrastructure. Conventional culturing approaches are unsuitable for assessing the inhibitory properties of these materials. Modifications to the radial Kirby-Bauer antibiotic assay, which incorporate metal impregnated activated carbon in linear formats, reveal relative metal sensitivities of destructive acidophiles.

  9. Use of an Intelligent Control System To Evaluate Multiparametric Effects on Iron Oxidation by Thermophilic Bacteria

    PubMed Central

    Stoner, Daphne L.; Miller, Karen S.; Fife, Dee Jay; Larsen, Eric D.; Tolle, Charles R.; Johnson, John A.

    1998-01-01

    A learning-based intelligent control system, the BioExpert, was developed and applied to the evaluation of multiparametric effects on iron oxidation by enrichment cultures of moderately thermophilic, acidophilic mining bacteria. The control system acquired and analyzed the data and then selected and maintained the sets of conditions that were evaluated. Through multiple iterations, the BioExpert selected sets of conditions that resulted in improved iron oxidation rates. The results obtained with the BioExpert suggested that temperature and pH were coupled, or interactive, parameters. Elevated temperatures (51.5°C) in combination with a moderately high pH (pH 1.84) impaired the growth of and iron oxidation by the enrichment culture. Moderate-to-high oxidation rates were achieved with a relatively high pH in combination with a relatively low temperature or, conversely, with a relatively low pH in combination with a relatively high temperature. The interactive effect of pH and temperature was not apparent from the results obtained in an experiment in which temperature was the only parameter that was varied. When the BioExpert was applied to a mixed culture containing mesophilic and thermophilic bacteria, the computer “learned” that pH 1.8, 45°C, and an inlet iron concentration from 30 to 35 mM were most favorable for iron oxidation. In conclusion, this study demonstrated that the learning-based intelligent control system BioExpert was an effective experimental tool that can be used to examine multiparametric effects on the growth and metabolic activity of mining bacteria. PMID:9797322

  10. Acidisoma tundrae gen. nov., sp. nov. and Acidisoma sibiricum sp. nov., two acidophilic, psychrotolerant members of the Alphaproteobacteria from acidic northern wetlands.

    PubMed

    Belova, Svetlana E; Pankratov, Timofei A; Detkova, Ekaterina N; Kaparullina, Elena N; Dedysh, Svetlana N

    2009-09-01

    Three obligately aerobic, heterotrophic bacteria, designated strains WM1T, TPB606T and TPB621, were isolated from acidic Sphagnum-dominated tundra and Siberian wetlands in Russia. Cells of these isolates were Gram-negative, non-motile coccobacilli that occurred singly, in pairs or in chains, and were covered by large capsules. The novel strains were moderately acidophilic and psychrotolerant organisms capable of growth at pH 3.0-7.6 and 2-30 degrees C. Cells contained numerous intracellular poly-beta-hydroxybutyrate granules (3-4 per cell). The major cellular fatty acid was cyclo C19:0omega8c and the predominant quinone was Q-10. Strains TPB606T and TPB621, isolated from Siberian wetland, possessed almost identical 16S rRNA gene sequences and shared 97.2% sequence similarity with tundra strain WM1T. The three strains were shown to belong to the Alphaproteobacteria, but were related only distantly to the type strains of acidophilic bacteria Acidisphaera rubrifaciens (93.4-94.3% 16S rRNA gene sequence similarity), Rhodopila globiformis (92.2-93.3%), and members of the genera Acidiphilium (91.3-93%) and Acidocella (91.8-92.4%). The DNA G+C contents of the novel strains were 60.5-61.9 mol%. The low levels of DNA-DNA relatedness (37%) and a number of phenotypic differences between the Siberian strains TPB606T and TPB621 and the tundra strain WM1T indicated that they represent two separate species. As the three isolates are clearly distinct from all recognized acidophilic members of the Alphaproteobacteria, they are considered to represent two novel species of a new genus, for which the names Acidisoma tundrae gen. nov., sp. nov. and Acidisoma sibiricum sp. nov. are proposed. The type strain of Acidisoma sibiricum is TPB606T (=DSM 21000T=VKM B-2487T) and the type strain of Acidisoma tundrae is WM1T (=DSM 19999T=VKM B-2488T).

  11. A Description of an Acidophilic, Iron Reducer, Geobacter sp. FeAm09 Isolated from Tropical Soils

    NASA Astrophysics Data System (ADS)

    Healy, O.; Souchek, J.; Heithoff, A.; LaMere, B.; Pan, D.; Hollis, G.; Yang, W. H.; Silver, W. L.; Weber, K. A.

    2014-12-01

    Iron (Fe) is the fourth most abundant element in the Earth's crust and plays a significant role controlling the geochemistry in soils, sediments, and aquatic systems. As part of a study to understand microbially-catalysed iron biogeochemical cycling in tropical soils, an iron reducing isolate, strain FeAm09, was obtained. Strain FeAm09 was isolated from acidic, Fe-rich soils collected from a tropical forest (Luquillo Experimental Forest, Puerto Rico). Strain FeAm09 is a rod-shaped, motile, Gram-negative bacterium. Taxonomic analysis of the near complete 16S rRNA gene sequence revealed that strain FeAm09 is 94.7% similar to Geobacter lovleyi, placing it in the genus Geobacter within the Family Geobacteraceae in the Deltaproteobacteria. Characterization of the optimal growth conditions revealed that strain FeAm09 is a moderate acidophile with an optimal growth pH of 5.0. The optimal growth temperature was 37°C. Growth of FeAm09 was coupled to the reduction of soluble Fe(III), Fe(III)-NTA, with H2, fumarate, ethanol, and various organic acids and sugars serving as the electron donor. Insoluble Fe(III), in the form of synthetic ferrihydrite, was reduced by strain FeAm09 using acetate or H2 as the electron donor. The use of H2 as an electron donor in the presence of CO2 and absence of organic carbon and assimilation of 14C-labelled CO2 into biomass indicate that strain FeAm09 is an autotrophic Fe(III)-reducing bacterium. Together, these data describe the first acidophilic, autotrophic Geobacter species. Iron reducing bacteria were previously shown to be as abundant in tropical soils as in saturated sediments (lake-bottoms) and saturated soils (wetlands) where Fe(III) reduction is more commonly recognized as a dominant mode of microbial respiration. Furthermore, Fe(III) reduction was identified as a primary driver of carbon mineralization in these tropical soils (Dubinsky et al. 2010). In addition to mineralizing organic carbon, Geobacter sp. FeAm09 is likely to also

  12. Biodiversity, abundance, and activity of nitrogen-fixing bacteria during primary succession on a copper mine tailings.

    PubMed

    Huang, Li-Nan; Tang, Feng-Zao; Song, Yong-Sheng; Wan, Cai-Yun; Wang, Sheng-Long; Liu, Wei-Qiu; Shu, Wen-Sheng

    2011-12-01

    Microorganisms are important in soil development, inputs and biogeochemical cycling of nutrients and organic matter during early stages of ecosystem development, but little is known about their diversity, distribution, and function in relation to the chemical and physical changes associated with the progress of succession. In this study, we characterized the community structure and activity of nitrogen-fixing microbes during primary succession on a copper tailings. Terminal fragment length polymorphism (T-RFLP) and clone sequencing of nifH genes indicated that different N(2) -fixing communities developed under primary succession. Phylogenetic analysis revealed a diversity of nifH sequences that were mostly novel, and many of these could be assigned to the taxonomic divisions Proteobacteria, Cyanobacteria, and Firmicutes. Members of the Cyanobacteria, mostly affiliated with Nostocales or not closely related to any known organisms, were detected exclusively in the biological soil crusts and represented a substantial fraction of the respective diazotrophic communities. Quantitative PCR (and statistical analyses) revealed that, overall, copy number of nifH sequences increased with progressing succession and correlated with changes in physiochemical properties (including elementary elements such as carbon and nitrogen) and the recorded nitrogenase activities of the tailings. Our study provides an initial insight into the biodiversity and community structure evolution of N(2) -fixing microorganisms in ecological succession of mine tailings.

  13. Distribution of Thermophilic Acidophiles at Cerro Negro, Nicaragua, an Analog for Acid-Sulfate Weathering Environments on Early Mars

    NASA Astrophysics Data System (ADS)

    Rogers, K. L.; Stephenson, S.; McCollom, T. M.; Hynek, B. M.

    2010-04-01

    Cerro Negro, Nicaragua is an excellent terrestrial analog for putative acid-sulfate weathering systems on early Mars. Sulfur- and sulfate-reducing acidophiles are found throughout Cerro Negro and can further elucidate the habitability of early Mars.

  14. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities.

    PubMed

    Golińska, Patrycja; Wypij, Magdalena; Rathod, Dnyaneshwar; Tikar, Sagar; Dahm, Hanna; Rai, Mahendra

    2016-05-01

    Biosynthesis of silver nanoparticles (AgNPs) is an eco-friendly approach by using different biological sources; for example, plants and microorganisms such as bacteria, fungi, and actinobacteria. In this report, we present the biological synthesis of silver nanoparticles (AgNPs) by acidophilic actinomycetes SL19 and SL24 strains isolated from pine forest soil (pH < 4.0). The isolates based on 16S rRNA gene sequence were identified as Pilimelia columellifera subsp. pallida. The synthesized AgNPs were characterized by visual observations of colour change from light-yellow to dark-brown. The UV-vis spectra of AgNPs were recorded at 425 and 430 nm. The AgNPs were further characterized by Nanoparticle tracking analysis (NTA), Zeta potential, Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM). FTIR analysis revealed the presence of proteins as a capping agent. TEM analysis confirmed the formation of spherical and polydispersed NPs of 12.7 and 15.9 nm sizes. The in vitro antibacterial activity of AgNPs alone and in combination with antibiotics was evaluated against clinical bacteria viz., Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and uropathogens such as Enterobacter, S. aureus, P. aeruginosa, K. pneumoniae, and E. coli. The lowest MIC (40 μg ml(-1) ) was demonstrated by AgNPs synthesized from SL24 against E. coli. However, the AgNPs of SL19 showed lowest MIC (70 μg ml(-1) ) against S. aureus. The activity of antibiotic was enhanced, when tested in combination with silver nanoparticles synthesized from both actinobacterial strains.

  15. α-fur, an antisense RNA gene to fur in the extreme acidophile Acidithiobacillus ferrooxidans.

    PubMed

    Lefimil, C; Jedlicki, E; Holmes, D S

    2014-03-01

    A large non-coding RNA, termed α-Fur, of ~1000 nt has been detected in the extreme acidophile Acidithiobacillus ferrooxidans encoded on the antisense strand to the iron-responsive master regulator fur (ferric uptake regulator) gene. A promoter for α-fur was predicted bioinformatically and validated using gene fusion experiments. The promoter is situated within the coding region and in the same sense as proB, potentially encoding a glutamate 5-kinase. The 3' termination site of the α-fur transcript was determined by 3' rapid amplification of cDNA ends to lie 7 nt downstream of the start of transcription of fur. Thus, α-fur is antisense to the complete coding region of fur, including its predicted ribosome-binding site. The genetic context of α-fur is conserved in several members of the genus Acidithiobacillus but not in all acidophiles, indicating that it is monophyletic but not niche specific. It is hypothesized that α-Fur regulates the cellular level of Fur. This is the fourth example of an antisense RNA to fur, although it is the first in an extreme acidophile, and underscores the growing importance of cis-encoded non-coding RNAs as potential regulators involved in the microbial iron-responsive stimulon.

  16. Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community.

    PubMed

    Jeans, Chris; Singer, Steven W; Chan, Clara S; Verberkmoes, Nathan C; Shah, Manesh; Hettich, Robert L; Banfield, Jillian F; Thelen, Michael P

    2008-05-01

    Recently, there has been intense interest in the role of electron transfer by microbial communities in biogeochemical systems. We examined the process of iron oxidation by microbial biofilms in one of the most extreme environments on earth, where the inhabited water is pH 0.5-1.2 and laden with toxic metals. To approach the mechanism of Fe(II) oxidation as a means of cellular energy acquisition, we isolated proteins from natural samples and found a conspicuous and novel cytochrome, Cyt(572), which is unlike any known cytochrome. Both the character of its covalently bound prosthetic heme group and protein sequence are unusual. Extraction of proteins directly from environmental biofilm samples followed by membrane fractionation, detergent solubilization and gel filtration chromatography resulted in the purification of an abundant yellow-red protein. The purified protein has a cytochrome c-type heme binding motif, CxxCH, but a unique spectral signature at 572 nm, and thus is called Cyt(572). It readily oxidizes Fe(2+) in the physiologically relevant acidic regime, from pH 0.95-3.4. Other physical characteristics are indicative of a membrane-bound multimeric protein. Circular dichroism spectroscopy indicates that the protein is largely beta-stranded, and 2D Blue-Native polyacrylamide gel electrophoresis and chemical crosslinking independently point to a multi-subunit structure for Cyt(572). By analyzing environmental genomic information from biofilms in several distinctly different mine locations, we found multiple genetic variants of Cyt(572). MS proteomics of extracts from these biofilms substantiated the prevalence of these variants in the ecosystem. Due to its abundance, cellular location and Fe(2+) oxidation activity at very low pH, we propose that Cyt(572) provides a critical function for fitness within the ecological niche of these acidophilic microbial communities.

  17. Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals.

    PubMed

    Orell, Alvaro; Navarro, Claudio A; Arancibia, Rafaela; Mobarec, Juan C; Jerez, Carlos A

    2010-01-01

    Industrial biomining processes to extract copper, gold and other metals involve the use of extremophiles such as the acidophilic Acidithiobacillus ferrooxidans (Bacteria), and the thermoacidophilic Sulfolobus metallicus (Archaea). Together with other extremophiles these microorganisms subsist in habitats where they are exposed to copper concentrations higher than 100mM. Herein we review the current knowledge on the Cu-resistance mechanisms found in these microorganisms. Recent information suggests that biomining extremophiles respond to extremely high Cu concentrations by using simultaneously all or most of the following key elements: 1) a wide repertoire of Cu-resistance determinants; 2) duplication of some of these Cu-resistance determinants; 3) existence of novel Cu chaperones; 4) a polyP-based Cu-resistance system, and 5) an oxidative stress defense system. Further insight of the biomining community members and their individual response to copper is highly relevant, since this could provide key information to the mining industry. In turn, this information could be used to select the more fit members of the bioleaching community to attain more efficient industrial biomining processes.

  18. Methane Oxidation and Molecular Characterization of Methanotrophs from a Former Mercury Mine Impoundment.

    PubMed

    Baesman, Shaun M; Miller, Laurence G; Wei, Jeremy H; Cho, Yirang; Matys, Emily D; Summons, Roger E; Welander, Paula V; Oremland, Ronald S

    2015-06-23

    The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO₂ with some CH₄ present. The δ(13)CH₄ value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively (12)C-enriched CO₂ suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation.

  19. Methane Oxidation and Molecular Characterization of Methanotrophs from a Former Mercury Mine Impoundment

    PubMed Central

    Baesman, Shaun M.; Miller, Laurence G.; Wei, Jeremy H.; Cho, Yirang; Matys, Emily D.; Summons, Roger E.; Welander, Paula V.; Oremland, Ronald S.

    2015-01-01

    The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation. PMID:27682090

  20. Biofilm bacterial community structure in streams affected by acid mine drainage.

    PubMed

    Lear, Gavin; Niyogi, Dev; Harding, Jon; Dong, Yimin; Lewis, Gillian

    2009-06-01

    We examined the bacterial communities of epilithic biofilms in 17 streams which represented a gradient ranging from relatively pristine streams to streams highly impacted by acid mine drainage (AMD). A combination of automated ribosomal intergenic spacer analysis with multivariate analysis and ordination provided a sensitive, high-throughput method to monitor the impact of AMD on stream bacterial communities. Significant differences in community structure were detected among neutral to alkaline (pH 6.7 to 8.3), acidic (pH 3.9 to 5.7), and very acidic (pH 2.8 to 3.5) streams. DNA sequence analysis revealed that the acidic streams were generally dominated by bacteria related to the iron-oxidizing genus Gallionella, while the organisms in very acidic streams were less diverse and included a high proportion of acidophilic eukaryotes, including taxa related to the algal genera Navicula and Klebsormidium. Despite the presence of high concentrations of dissolved metals (e.g., Al and Zn) and deposits of iron hydroxide in some of the streams studied, pH was the most important determinant of the observed differences in bacterial community variability. These findings confirm that any restoration activities in such systems must focus on dealing with pH as the first priority.

  1. Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment

    USGS Publications Warehouse

    Baesman, Shaun; Miller, Laurence G.; Wei, Jeremy H.; Cho, Yirang; Matys, Emily D.; Summons, Roger E.; Welander, Paula V.; Oremland, Ronald S.

    2015-01-01

    The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation.

  2. Electricity generation from tetrathionate in microbial fuel cells by acidophiles.

    PubMed

    Sulonen, Mira L K; Kokko, Marika E; Lakaniemi, Aino-Maija; Puhakka, Jaakko A

    2015-03-02

    Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m(-2) and 13.9 mW m(-2) and 433 mA m(-2) and 17.6 mW m(-2), respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2-2.5.

  3. pH Gradient-Induced Heterogeneity of Fe(III)-Reducing Microorganisms in Coal Mining-Associated Lake Sediments▿ †

    PubMed Central

    Blöthe, Marco; Akob, Denise M.; Kostka, Joel E.; Göschel, Kathrin; Drake, Harold L.; Küsel, Kirsten

    2008-01-01

    Lakes formed because of coal mining are characterized by low pH and high concentrations of Fe(II) and sulfate. The anoxic sediment is often separated into an upper acidic zone (pH 3; zone I) with large amounts of reactive iron and a deeper slightly acidic zone (pH 5.5; zone III) with smaller amounts of iron. In this study, the impact of pH on the Fe(III)-reducing activities in both of these sediment zones was investigated, and molecular analyses that elucidated the sediment microbial diversity were performed. Fe(II) was formed in zone I and III sediment microcosms at rates that were approximately 710 and 895 nmol cm−3 day−1, respectively. A shift to pH 5.3 conditions increased Fe(II) formation in zone I by a factor of 2. A shift to pH 3 conditions inhibited Fe(II) formation in zone III. Clone libraries revealed that the majority of the clones from both zones (approximately 44%) belonged to the Acidobacteria phylum. Since moderately acidophilic Acidobacteria species have the ability to oxidize Fe(II) and since Acidobacterium capsulatum reduced Fe oxides at pHs ranging from 2 to 5, this group appeared to be involved in the cycling of iron. PCR products specific for species related to Acidiphilium revealed that there were higher numbers of phylotypes related to cultured Acidiphilium or Acidisphaera species in zone III than in zone I. From the PCR products obtained for bioleaching-associated bacteria, only one phylotype with a level of similarity to Acidithiobacillus ferrooxidans of 99% was obtained. Using primer sets specific for Geobacteraceae, PCR products were obtained in higher DNA dilutions from zone III than from zone I. Phylogenetic analysis of clone libraries obtained from Fe(III)-reducing enrichment cultures grown at pH 5.5 revealed that the majority of clones were closely related to members of the Betaproteobacteria, primarily species of Thiomonas. Our results demonstrated that the upper acidic sediment was inhabited by acidophiles or moderate

  4. Denitrifying bacteria from the terrestrial subsurface exposed to mixed waste contamination

    SciTech Connect

    Green, Stefan; Prakash, Om; Gihring, Thomas; Akob, Denise M.; Jasrotia, Puja; Jardine, Philip M; Watson, David B; Brown, Steven D; Palumbo, Anthony Vito; Kostka, Joel

    2010-01-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available with which to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy s Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria) and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were confirmed as complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. Ribosomal RNA gene analyses reveal that bacteria from the genus Rhodanobacter comprise a diverse population of circumneutral to moderately acidophilic denitrifiers at the ORIFRC site, with a high relative abundance in areas of the acidic source zone. Rhodanobacter species do not contain a periplasmic nitrite reductase and have not been previously detected in functional gene surveys of denitrifying bacteria at the OR-IFRC site. Sequences of nitrite and nitrous oxide reductase genes were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation, genomic and metagenomic data are essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifying microorganisms. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

  5. Effects of Long-Term Acid-Mine Drainage Contamination on Diversity and Activity of Sulfate-Reducing Bacteria in a Natural Salt Marsh.

    NASA Astrophysics Data System (ADS)

    Moreau, J. W.; Banfield, J. F.

    2003-12-01

    Constructed wetlands have been studied as sites or analogs for in situ bioremediation of metal contaminants from acid mine drainage (AMD) or industrial sources (e.g. Webb et al. 1998). Wetlands bioremediation necessarily invokes the ubiquity and robustness of sulfate-reducing bacteria (SRB) to sequester dissolved metals into various poorly soluble metal-sulfides (e.g. PbS, CdS). However, few studies of natural wetlands under long-term ecological forcing by AMD or other contaminant sources are available for context. We are investigating the microbial diversity, mineralogy and geochemistry of a highly contaminated salt marsh along the East Central San Francisco Bay. For nearly a half-century, areas within this marsh have received acidic and/or metal-rich groundwaters from near-surface pyrite tailings (transported there from Iron Mountain Mine, near Redding, CA) and local industrial sources (e.g. paint and explosives manufacturers). Sediment cores (30-40 cm long) were taken from six contaminated sites in the marsh with pH range of ˜2 to ˜8. Previous analyses (URS Corp. 2001) reported As, Cd, Cu, Se, Zn, and Pb present in sediments at extremely high concentrations (100s of ppm), yet our ICP-AES analyses of pore waters showed only As present at concentrations of 10-50 ppb. We infer, from high-resolution transmission electron microscope (HRTEM) studies of biogenic (SRB biofilm) ZnS (Moreau et al. 2003, in review) and marsh sediments, that contaminant metals have been sequestered into aggregates of nanocrystalline metal-sulfides. Continuous-flow isotope ratio mass spectrometer (CF-IRMS) analyses of pore-water sulfate and sedimentary sulfides allow resolution of contributions to dissolved sulfate and sulfide from tailings oxidation and dissimilatory sulfate reduction. Sulfate analyses from subsections of three cores (pH 2-3, 6-7, 7-8, respectively) all yield δ 34S values consistent with bacterial sulfate reduction. We note that all three cores also contain very fine

  6. Acidophilic actinomycetes from rhizosphere soil: diversity and properties beneficial to plants.

    PubMed

    Poomthongdee, Nalin; Duangmal, Kannika; Pathom-aree, Wasu

    2015-02-01

    Three hundred and fifty-one isolates of actinomycetes were recovered from 21 rhizospheric soil samples using acidified media of pH 5.5. They were evaluated for their antifungal, siderophore production and phosphate solubilization activities. The total count of actinomycetes growing on acidified starch casein agar and Gause no. 1 agar were below 2.48 × 10(4) CFU g(-1) soil. Two hundred and twelve isolates were assigned to acidophiles and the remaining 139 isolates were neutrophiles. Of these actinomycetes, 57.8, 32.5 and 50.4%, showed antagonistic activity against three rice pathogenic fungi; Fusarium moniliforme, Helminthosporium oryzae and Rhizoctonia solani, respectively. More than half of the isolates (68.1%) inhibited at least one tested pathogenic fungus, whereas 25.9% exhibited antifungal activities against all tested fungi. Three hundred and thirty-eight isolates (96.3%) produced siderophore and 266 isolates (75.8%) solubilized phosphate. A greater proportion of the acidophilic actinomycetes exhibited antifungal, siderophore production and phosphate solubilization activity compared with the neutrophiles. Three hundred and twenty-five isolates (92.6%) were classified as streptomycetes based on their morphological characteristics and the presence of the LL-isomeric form of diaminopimelic acid in whole-cell hydrolysates. The 16S ribosomal RNA (rRNA) gene analysis of representative non-streptomycete strains showed that the isolates belonged to seven genera, that is, Allokutzneria, Amycolatopsis, Mycobacterium, Nocardia, Nonomuraea, Saccharopolyspora and Verrucosispora. The potential antifungal acidophilic isolates, R9-4, R14-1, R14-5 and R20-5, showed close similarity to Streptomyces misionensis NBRC 13063(T) (AB184285) in terms of morphological characteristics and 16S rRNA gene sequences.

  7. Spatial and Temporal Analysis of the Microbial Community in the Tailings of a Pb-Zn Mine Generating Acidic Drainage ▿ †

    PubMed Central

    Huang, Li-Nan; Zhou, Wen-Hua; Hallberg, Kevin B.; Wan, Cai-Yun; Li, Jie; Shu, Wen-Sheng

    2011-01-01

    Analysis of spatial and temporal variations in the microbial community in the abandoned tailings impoundment of a Pb-Zn mine revealed distinct microbial populations associated with the different oxidation stages of the tailings. Although Acidithiobacillus ferrooxidans and Leptospirillum spp. were consistently present in the acidic tailings, acidophilic archaea, mostly Ferroplasma acidiphilum, were predominant in the oxidized zones and the oxidation front, indicating their importance to generation of acid mine drainage. PMID:21705549

  8. Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low‐grade copper sulfide ore monitored by real‐time PCR and oligonucleotide prokaryotic acidophile microarray

    PubMed Central

    Remonsellez, Francisco; Galleguillos, Felipe; Moreno‐Paz, Mercedes; Parro, Víctor; Acosta, Mauricio; Demergasso, Cecilia

    2009-01-01

    Summary The bioleaching of metal sulfide has developed into a very important industrial process and understanding the microbial dynamic is key to advancing commercial bioleaching operations. Here we report the first quantitative description of the dynamic of active communities in an industrial bioleaching heap. Acidithiobacillus ferrooxidans was the most abundant during the first part of the leaching cycle, while the abundance of Leptospirillum ferriphilum and Ferroplasma acidiphilum increased with age of the heap. Acidithiobacillus thiooxidans kept constant throughout the leaching cycle, and Firmicutes group showed a low and a patchy distribution in the heap. The Acidiphilium‐like bacteria reached their highest abundance corresponding to the amount of autotrophs. The active microorganisms in the leaching system were determined using two RNA‐based sensitive techniques. In most cases, the 16S rRNA copy numbers of At. ferrooxidans, L. ferriphilum, At. thiooxidans and F. acidiphilum, was concomitant with the DNA copy numbers, whereas Acidiphilium‐like bacteria and some Firmicutes members did not show a clear correlation between 16S rRNA accumulation and DNA copy numbers. However, the prokaryotic acidophile microarray (PAM) analysis showed active members of Alphaproteobacteria in all samples and of Sulfobacillus genus in older ones. Also, new active groups such as Actinobacteria and Acidobacterium genus were detected by PAM. The results suggest that changes during the leaching cycle in chemical and physical conditions, such as pH and Fe3+/Fe2+ ion rate, are primary factors shaping the microbial dynamic in the heap. PMID:21255296

  9. Investigations on the "Extreme" Microbial Methane Cycle within the Sediments of an Acidic Impoundment of the Inactive Sulfur Bank Mercury Mine: Herman Pit, Clear Lake, California.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.; Wei, J. H. C.; Welander, P. V.

    2014-12-01

    The inactive Sulfur Bank Mercury Mine is located in a volcanic region having geothermal flow and gas inputs into the Herman Pit impoundment. The acidic (pH 2 - 4) waters of the Herman Pit are permeated by hundreds of continuous flow gas seeps that contain CO2, H2S and CH4. We sampled one seep and found it to be composed of 95 % CO2 and 5 % CH4, in agreement with earlier measurements. Only a trace of ethane (10 - 20 ppm) was found and propane was below detection, resulting in a high CH4/C2H6 + C3H8 ratio of > 5,000, while the δ13CH4 and the δ13CO2 were respectively - 24 and - 11 per mil. Collectively, these results suggested a complex origin for the methane, being made up of a thermogenic component resulting from pyrolysis of buried organics, along with an active methanogenic portion. The relatively 12C-enriched value for the CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. We found that dissolved methane in the collected water from 2-4 m depth was high (~ 400 µM), which would support methanotrophy in the lake's aerobic biomes. We therefore tested the ability of bottom sediments to consume methane by conducting aerobic incubations of slurried bottom sediments. Methane was removed from the headspace of live slurries, and subsequent additions of methane to the headspace over the course of 2-3 months resulted in faster removal rates suggesting a buildup of the population of methanotrophs. This activity could be transferred to an artificial medium originally devised for the cultivation of acidophilic iron oxidizing bacteria (Silverman and Lundgren, 1959; J. Bacteriol. 77: 642 - 647), suggesting the possibility of future cultivation of acidophilic methanotrophs. A successful extraction of some hopanoid compounds from the sediments was achieved, although the results were too preliminary at the time of this writing to identify any hopanoids specifically linked to methanotrophic bacteria. Further efforts to amplify functional genes for

  10. [Preparation of Copper and Nickel from Metallurgical Waste Products with the Use of Acidophilic Chemolithotrophic Microorganisms].

    PubMed

    Fomchenko, N V; Murav'ev, M I

    2015-01-01

    The study concerns the leaching of copper, nickel, and cobalt from metallurgical production slag with trivalent iron sulphates prepared in the process of oxidation of bivalent iron ions with the use of associations of acidophilic chemolithotrophic microorganisms. At the same time, copper extraction in the solution reached 91.2%, nickel reached 74.9%, and cobalt reached 90.1%. Copper was extracted by cementation, and nickel as sulphate was extracted by electrolysis. Associations of microorganisms can then completely bioregenerate the solution obtained after leaching.

  11. Community genomic and proteomic analysis of chemoautotrophic, iron-oxidizing "Leptospirillum rubarum" (Group II) and Leptospirillum ferrodiazotrophum (Group III) in acid mine drainage biofilms

    SciTech Connect

    Goltsman, Daniela; Denef, Vincent; Singer, Steven; Verberkmoes, Nathan C; Lefsrud, Mark G; Mueller, Ryan; Dick, Gregory J.; Sun, Christine; Wheeler, Korin; Zelma, Adam; Baker, Brett J.; Hauser, Loren John; Land, Miriam L; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2009-01-01

    We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum Groups II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, CA acid mine drainage (AMD) biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum Groups II and III, respectively and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and > 60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid encodes conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacteria have genes for community-essential functions, including carbon fixation, biosynthesis of vitamins, fatty acids and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum Group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum Group II uses a methyl-dependent and Leptospirillum Group III a methyl-independent response pathway. Although only Leptospirillum Group III can fix nitrogen, these proteins were not identified by proteomics. Abundances of core proteins are similar in all communities, but abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum Groups II and III.

  12. Acidiphilium iwatense sp. nov., isolated from an acid mine drainage treatment plant, and emendation of the genus Acidiphilium.

    PubMed

    Okamura, Keiko; Kawai, Akiko; Wakao, Norio; Yamada, Takeshi; Hiraishi, Akira

    2015-01-01

    Several strains of aerobic, acidophilic, chemo-organotrophic bacteria belonging to the genus Acidiphilium were isolated from an acid mine drainage (AMD) (pH 2.2) treatment plant. 16S rRNA gene sequence comparisons showed that most of the novel isolates formed a phylogenetically coherent group (designated Group Ia) distinguishable from any of the previously established species of the genus Acidiphilium at <98% similarity. This was supported by genomic DNA-DNA hybridization assays. The Group Ia isolates were characterized phenotypically by an oval cell morphology, non-motility, growth in the range pH 2.0-5.5 (optimum pH 3.5), lack of photosynthetic pigment and the presence of C19:0 cyclo ω8c as the main component of the cellular fatty acids and ubiquinone-10 as the major quinone. On the basis of these data, the name Acidiphilium iwatense sp. nov. is proposed to accommodate the Group Ia isolates, and the description of the genus Acidiphilium is emended. The type strain of Acidiphilium iwatense sp. nov. is MS8(T) ( =NBRC 107608(T)=KCTC 23505(T)).

  13. Draft Genome Sequence of the Acidophilic, Halotolerant, and Iron/Sulfur-Oxidizing Acidihalobacter prosperus DSM 14174 (Strain V6)

    PubMed Central

    Khaleque, Himel Nahreen; Ramsay, Joshua P.; Murphy, Riley J. T.; Kaksonen, Anna H.; Boxall, Naomi J.

    2017-01-01

    ABSTRACT The principal genomic features of Acidihalobacter prosperus DSM 14174 (strain V6) are presented here. This is a mesophilic, halotolerant, and iron/sulfur-oxidizing acidophile that was isolated from seawater at Vulcano, Italy. It has potential for use in biomining applications in regions where high salinity exists in the source water and ores. PMID:28104654

  14. Morphological and ultrastructural characterization of the acidophilic and lipid-producer strain Chlamydomonas acidophila LAFIC-004 (Chlorophyta) under different culture conditions.

    PubMed

    Souza, Luana Dos S; Simioni, Carmen; Bouzon, Zenilda L; Schneider, Rosana de Cassia da S; Gressler, Pablo; Miotto, Maria Cecília; Rossi, Marcio J; Rörig, Leonardo R

    2016-09-30

    Chlamydomonas acidophila LAFIC-004 is an acidophilic strain of green microalgae isolated from coal mining drainage. In the present work, this strain was cultivated in acidic medium (pH 3.6) under phototrophic, mixotrophic, and heterotrophic regimes to determine the best condition for growth and lipid production, simultaneously assessing possible morphological and ultrastructural alterations in the cells. For heterotrophic and mixotrophic treatments, two organic carbon sources were tested: 1 % glucose and 1 % sodium acetate. Lipid content and fatty acid profiles were only determined in phototrophic condition. The higher growth rates were achieved in phototrophic conditions, varying from 0.18 to 0.82 day(-1). Glucose did not result in significant growth increase in either mixotrophic or heterotrophic conditions, and acetate proved to be toxic to the strain in both conditions. Oil content under phototrophic condition was 15.9 % at exponential growth phase and increased to 54.63 % at stationary phase. Based on cell morphology (flow cytometry and light microscopy) and ultrastructure (transmission electron microscopy), similar characteristics were observed between phototrophic and mixotrophic conditions with glucose evidencing many lipid bodies, starch granules, and intense fluorescence. Under the tested conditions, mixotrophic and heterotrophic modes did not result in increased neutral lipid fluorescence. It can be concluded that the strain is a promising lipid producer when grown until stationary phase in acidic medium and under a phototrophic regime, presenting a fatty acid profile suitable for biodiesel production. The ability to grow this strain in acidic mining residues suggests a potential for bioremediation with production of useful biomass.

  15. Binning of shallowly sampled metagenomic sequence fragments reveals that low abundance bacteria play important roles in sulfur cycling and degradation of complex organic polymers in an acid mine drainage community

    NASA Astrophysics Data System (ADS)

    Dick, G. J.; Andersson, A.; Banfield, J. F.

    2007-12-01

    Our understanding of environmental microbiology has been greatly enhanced by community genome sequencing of DNA recovered directly the environment. Community genomics provides insights into the diversity, community structure, metabolic function, and evolution of natural populations of uncultivated microbes, thereby revealing dynamics of how microorganisms interact with each other and their environment. Recent studies have demonstrated the potential for reconstructing near-complete genomes from natural environments while highlighting the challenges of analyzing community genomic sequence, especially from diverse environments. A major challenge of shotgun community genome sequencing is identification of DNA fragments from minor community members for which only low coverage of genomic sequence is present. We analyzed community genome sequence retrieved from biofilms in an acid mine drainage (AMD) system in the Richmond Mine at Iron Mountain, CA, with an emphasis on identification and assembly of DNA fragments from low-abundance community members. The Richmond mine hosts an extensive, relatively low diversity subterranean chemolithoautotrophic community that is sustained entirely by oxidative dissolution of pyrite. The activity of these microorganisms greatly accelerates the generation of AMD. Previous and ongoing work in our laboratory has focused on reconstrucing genomes of dominant community members, including several bacteria and archaea. We binned contigs from several samples (including one new sample and two that had been previously analyzed) by tetranucleotide frequency with clustering by Self-Organizing Maps (SOM). The binning, evaluated by comparison with information from the manually curated assembly of the dominant organisms, was found to be very effective: fragments were correctly assigned with 95% accuracy. Improperly assigned fragments often contained sequences that are either evolutionarily constrained (e.g. 16S rRNA genes) or mobile elements that are

  16. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.

    PubMed

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-08-19

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60-80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h(-1)). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions.

  17. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    SciTech Connect

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  18. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis

    PubMed Central

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-01-01

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60–80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h−1). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions. PMID:26295411

  19. Flagella and pili of iron-oxidizing thiobacilli isolated from a uranium mine in northern Ontario, Canada

    SciTech Connect

    DiSpirito, A.A.; Silver, M.; Voss, L.; Tuovinen, O.H.

    1982-05-01

    Five strains of Thiobacillus ferrooxidans, which included three recent isolates from a uranium mine, possessed flagella. Three of the strains had several pili per cell. The dimensions, fine structure, and orientation of the flagella were different. Both polar and peritrichous flagella were observed, indicating strain-dependent ultrastructural variation in acidophilic thiobacilli. Neither flagella nor pili were detected in eight other strains of T. ferrooxidans and two strains of Thiobacillus acidophilus by electron microscopy, although all of the cultures contained motile cells.

  20. Biodiversity of acidophilic moderate thermophiles isolated from two sites in Yellowstone National Park and their roles in the dissimilatory oxido-reduction of iron

    SciTech Connect

    D. B. Johnson; D.A. Body; T. A. M. Bridge; D. F. Bruhn; F. F. Roberto

    2001-07-01

    Some of the thermal sites within Yellowstone National Park are extremely acidic and are therefore potential sites for isolating novel strains of acidophilic thermophiles, including those that are involved in the biogeochemical cycling of iron. This paper describes the isolation and characterization of thermotolerant, acidophilic “iron bacteria” isolated from two such sites in Yellowstone National Park, and reports the biodiversity of isolates in terms of their physiological traits and their phylogenetic make-up.

  1. Corrosion by bacteria of concrete in sewerage systems and inhibitory effects of formates on their growth.

    PubMed

    Yamanaka, Tateo; Aso, Iwao; Togashi, Shunsuke; Tanigawa, Minoru; Shoji, Kazuo; Watanabe, Tsugumichi; Watanabe, Naoki; Maki, Kazuo; Suzuki, Hiroshi

    2002-05-01

    Not only sulfur-oxidizing bacteria but also an acidophilic iron-oxidizing bacterium (or bacteria) were found in the corroded concrete from several sewerage systems in Japan. The surface pH of concrete test piece exposed to an atmosphere containing hydrogen sulfide of the concentrations more than 600 ppm in the systems was usually below 2 after a month. This was attributable to ability of the sulfur-oxidizing bacteria to grow in the thin water layer which contained hydrogen sulfide and covered the piece even when the surface pH of concrete was 12-13. When the sulfuroxidizing bacteria grew in the surface of concrete and produced sulfuric acid, the pH of the inner parts of concrete was lowered where the bacteria were hardly found. Probably, sulfuric acid formed by the bacteria in the surface parts penetrated into the inner parts. The different species of sulfur-oxidizing bacteria were found in different sewerage systems. The growth of the sulfur-oxidizing and acidophilic iron-oxidizing bacteria was completely inhibited by formates, especially by calcium formate of concentrations more than 50 mM. Calcium formate can protect concrete in sewerage systems from bacterial corrosion.

  2. Depth-dependent geochemical and microbiological gradients in Fe(III) deposits resulting from coal mine-derived acid mine drainage

    PubMed Central

    Brantner, Justin S.; Haake, Zachary J.; Burwick, John E.; Menge, Christopher M.; Hotchkiss, Shane T.; Senko, John M.

    2014-01-01

    We evaluated the depth-dependent geochemistry and microbiology of sediments that have developed via the microbially-mediated oxidation of Fe(II) dissolved in acid mine drainage (AMD), giving rise to a 8–10 cm deep “iron mound” that is composed primarily of Fe(III) (hydr)oxide phases. Chemical analyses of iron mound sediments indicated a zone of maximal Fe(III) reducing bacterial activity at a depth of approximately 2.5 cm despite the availability of dissolved O2 at this depth. Subsequently, Fe(II) was depleted at depths within the iron mound sediments that did not contain abundant O2. Evaluations of microbial communities at 1 cm depth intervals within the iron mound sediments using “next generation” nucleic acid sequencing approaches revealed an abundance of phylotypes attributable to acidophilic Fe(II) oxidizing Betaproteobacteria and the chloroplasts of photosynthetic microeukaryotic organisms in the upper 4 cm of the iron mound sediments. While we observed a depth-dependent transition in microbial community structure within the iron mound sediments, phylotypes attributable to Gammaproteobacterial lineages capable of both Fe(II) oxidation and Fe(III) reduction were abundant in sequence libraries (comprising ≥20% of sequences) from all depths. Similarly, abundances of total cells and culturable Fe(II) oxidizing bacteria were uniform throughout the iron mound sediments. Our results indicate that O2 and Fe(III) reduction co-occur in AMD-induced iron mound sediments, but that Fe(II)-oxidizing activity may be sustained in regions of the sediments that are depleted in O2. PMID:24860562

  3. Spectroscopic study on biological mackinawite (FeS) synthesized by ferric reducing bacteria (FRB) and sulfate reducing bacteria (SRB): Implications for in-situ remediation of acid mine drainage

    NASA Astrophysics Data System (ADS)

    Zhou, Lei; Liu, Jing; Dong, Faqin

    2017-02-01

    Mackinawite (FeS), widespread in low temperature aquatic environments, is generally considered to be the first Fe sulfide formed in sedimentary environments which has shown effective immobilization of heavy metals and toxic oxyanions through various sorption reactions. The spectroscopic study researches on mackinawite formed by FRB and SRB and its environmental implication for in-situ remediation of acid mine drainage where contains large amounts of Fe3 + and SO42 -. The XRD result of biologically synthetic particles shows that these particles are mainly composed of mackinawite (FeS0.9). The Raman peaks observed at 208, 256, 282, 298 cm- 1 are attributed to Fesbnd S stretching vibrations of mackinawite. The Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) reveals that the diagnostic bands of low intensity for these FeS particles occur at 412-425 cm- 1 and 607-622 cm- 1, which are assigned to the stretching vibrations of Ssbnd S and Fesbnd S bonds. The Raman and IR vibrations from organic components both confirm that these particles are biogenic origin. The IR spectra of biologically synthesized mackinawite for different aging times show that the nano-sized particles mackinwate will be completely oxidized within 10 h. All these findings have good implications for in-situ remediation of acid mine drainage.

  4. pH gradient-induced heterogeneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments.

    PubMed

    Blöthe, Marco; Akob, Denise M; Kostka, Joel E; Göschel, Kathrin; Drake, Harold L; Küsel, Kirsten

    2008-02-01

    Lakes formed because of coal mining are characterized by low pH and high concentrations of Fe(II) and sulfate. The anoxic sediment is often separated into an upper acidic zone (pH 3; zone I) with large amounts of reactive iron and a deeper slightly acidic zone (pH 5.5; zone III) with smaller amounts of iron. In this study, the impact of pH on the Fe(III)-reducing activities in both of these sediment zones was investigated, and molecular analyses that elucidated the sediment microbial diversity were performed. Fe(II) was formed in zone I and III sediment microcosms at rates that were approximately 710 and 895 nmol cm(-3) day(-1), respectively. A shift to pH 5.3 conditions increased Fe(II) formation in zone I by a factor of 2. A shift to pH 3 conditions inhibited Fe(II) formation in zone III. Clone libraries revealed that the majority of the clones from both zones (approximately 44%) belonged to the Acidobacteria phylum. Since Acidobacterium capsulatum reduced Fe oxides at pHs ranging from 2 to 5, Acidobacteria might be involved in the cycling of iron [corrected]. PCR products specific for species related to Acidiphilium revealed that there were higher numbers of phylotypes related to cultured Acidiphilium or Acidisphaera species in zone III than in zone I. From the PCR products obtained for bioleaching-associated bacteria, only one phylotype with a level of similarity to Acidithiobacillus ferrooxidans of 99% was obtained. Using primer sets specific for Geobacteraceae, PCR products were obtained in higher DNA dilutions from zone III than from zone I. Phylogenetic analysis of clone libraries obtained from Fe(III)-reducing enrichment cultures grown at pH 5.5 revealed that the majority of clones were closely related to members of the Betaproteobacteria, primarily species of Thiomonas. Our results demonstrated that the upper acidic sediment was inhabited by acidophiles or moderate acidophiles which can also reduce Fe(III) under slightly acidic conditions. The majority of

  5. Analysis of iron- and sulfur-oxidizing bacteria in a treatment plant of acid rock drainage from a Japanese pyrite mine by use of ribulose-1, 5-bisphosphate carboxylase/oxygenase large-subunit gene.

    PubMed

    Kamimura, Kazuo; Okabayashi, Ai; Kikumoto, Mei; Manchur, Mohammed Abul; Wakai, Satoshi; Kanao, Tadayoshi

    2010-03-01

    Iron- and sulfur-oxidizing bacteria in a treatment plant of acid rock drainage (ARD) from a pyrite mine in Yanahara, Okayama prefecture, Japan, were analyzed using the gene (cbbL) encoding the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO). Analyses of partial sequences of cbbL genes from Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidithiobacillus caldus strains revealed the diversity in their cbbL gene sequences. In contrast to the presence of two copies of form I cbbL genes (cbbL1 and cbbL2) in A. ferrooxidans genome, A. thiooxidans and A. caldus had a single copy of form I cbbL gene in their genomes. A phylogenetic analysis based on deduced amino acid sequences from cbbL genes detected in the ARD treatment plant and their close relatives revealed that 89% of the total clones were affiliated with A. ferrooxidans. Clones loosely affiliated with the cbbL from A. thiooxidans NB1-3 or Thiobacillus denitrificans was also detected in the treatment plant. cbbL gene sequences of iron- or sulfur-oxidizing bacteria isolated from the ARD and the ARD treatment plant were not detected in the cbbL libraries from the treatment plant, suggesting the low frequencies of isolates in the samples.

  6. Impact of Acid Mine Drainage on the hydrogeological system at Sia, Cyprus

    NASA Astrophysics Data System (ADS)

    Ng, Stephen; Malpas, John

    2013-04-01

    Discontinued mining of the volcanogenic massive sulphide ore bodies of Cyprus has left significant environmental concerns including Acid Mine Drainage. Remnant sulphide ore and tailings in waste dumps react with oxygenated rainwater to produce sulphuric acid, a process which is multiplied when metal-loving acidophilic bacteria are present. Given that Cyprus has a Mediterranean climate, characterized by its warm and dry summers and cool and wet winters, the low pH effluent with high levels of trace elements, particularly metals, is leached out of the waste tips particularly during the wet season. The Sia site includes an open mine-pit lake, waste rock and tailings dumps, a river leading to a downstream dam-lake, and a localised groundwater system. The study intends to: identify the point source and nature of contamination; analyze the mechanism and results of local acid generation; and understand how the hydrogeological system responds to seasonal variations. During two sampling campaigns, in the wet and dry seasons of 2011, water samples were collected from the mine pit lake, from upstream of the adjacent river down to the dam catchment, and from various boreholes close to the sulphide mine. The concentration of ions in waters varies between wet and dry seasons but, in both, relative amounts are directly related to pH. In the mine-pit lake, Fe, Mn, Mg, Cu, Pb, Zn, Ni, Co and Cd are found in higher concentrations in the dry season, as a result of substantial evaporation of water. The Sia River runs continuously in the wet season, and waters collected close to the waste tips have pH as low as 2.5 and higher concentrations of Al, Cu, Fe and Zn. Further downstream there is a significant decrease in trace metal contents with a concomitant rise of pH. Al and Fe dominate total cation content when pH is lower than 4. Al is derived from the weathering of clay minerals, especially during the wet season. Fe is derived from the oxidation of pyrite. Once pH's exceed 4, a white

  7. In situ phytostabilisation capacity of three legumes and their associated Plant Growth Promoting Bacteria (PGPBs) in mine tailings of northern Tunisia.

    PubMed

    Saadani, Omar; Fatnassi, Imen Challougui; Chiboub, Manel; Abdelkrim, Souhir; Barhoumi, Fathi; Jebara, Moez; Jebara, Salwa Harzalli

    2016-08-01

    PGPBs-legumes associations represent an alternative procedure for phytostabilisation of heavy metals polluted soils mainly generated by industrial and agricultural practices. In this study we evaluated the capacity of Vicia faba, Lens culinaris and Sulla coronaria, inoculated in situ by specific heavy metals resistant inocula, for the phytostabilisation of copper, lead and cadmium respectively. The experimentation was performed in mine tailings of northern Tunisia. Results proved that inoculation enhanced roots and shoots biomass production of faba bean by 14% and 12%, respectively, and significantly improved pods yield by 91%. In lentil, the inoculation ameliorated shoot biomass up to 27%. The highest nitrogen fixation was recorded by Sulla coronaria. The three symbioses accumulated heavy metals essentially in roots, and poorly in shoots. In addition, cadmium accumulation in roots of inoculated sulla was enhanced by 39%. Furthermore, inoculations decreased heavy metals availability in the soil up to -10% of Cu and -47% of Pb respectively in roots of faba bean and lentil. Our results suggested a positive effect of co-inoculation of legumes by appropriate heavy metals resistant PGPBs for the phytostabilisation of mine tailings. Elsewhere, the enhancement in the antioxidant enzymes activities demonstrated the role of the three inocula to alleviate the heavy metals induced stress.

  8. Bioweathering of Kupferschiefer black shale (Fore-Sudetic Monocline, SW Poland) by indigenous bacteria: implication for dissolution and precipitation of minerals in deep underground mine.

    PubMed

    Matlakowska, Renata; Skłodowska, Aleksandra; Nejbert, Krzysztof

    2012-07-01

    The Upper Permian polymetallic, organic-rich Kupferschiefer black shale in the Fore-Sudetic Monocline is acknowledged to be one of the largest Cu-Ag deposits in the world. Here we report the results of the first study of bioweathering of this sedimentary rock by indigenous heterotrophic bacteria. Experiments were performed under laboratory conditions, employing both petrological and microbiological methods, which permitted the monitoring and visualization of geomicrobiological processes. The results demonstrate that bacteria play a prominent role in the weathering of black shale and in the biogeochemical cycles of elements occurring in this rock. It was shown that bacteria directly interact with black shale organic matter to produce a widespread biofilm on the Kupferschiefer shale surface. As a result of bacterial activity, the formation of pits, bioweathering of ore and rock-forming minerals, the mobilization of elements and secondary mineral precipitation were observed. The chemistry of the secondary minerals unequivocally demonstrates the mobilization of elements from minerals comprising Kupferschiefer. The redistribution of P, Al, Si, Ca, Mg, K, Fe, S, Cu and Pb was confirmed. The presence of bacterial outer membrane vesicles on the surface of black shale was observed for the first time. Biomineralization reactions occurred in both the membrane vesicles and the bacterial cells.

  9. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  10. Bacterial Formation of As(V) and As(III) Ferric Oxyhydroxides in Acid Mine Drainage.

    NASA Astrophysics Data System (ADS)

    Morin, G.; Juillot, F.; Lebrun, S.; Casiot, C.; Elbaz-Poulichet, F.; Bruneel, O.; Personne, J.; Leblanc, M.; Ildefonse, P.; Calas, G.

    2002-12-01

    The oxidation of dissolved Fe(II) which is often promoted by acidophilic bacteria in acid mine drainage (AMD) and some hot springs, leads to the precipitation of Fe(III) oxy-hydroxides which incorporate toxic elements within their structure or adsorb them at their surface, thus limiting their mobility. In such complex natural systems, synchrotron-based techniques as X-ray absorption spectroscopy offer the opportunity to monitor surface/solution interactions as well as redox changes affecting the mobility and toxicity of trace elements as arsenic. Spatial and seasonal variations of the (bio-) oxidation of Fe(II) and As(III), and the subsequent precipitation of As-Fe gels, were followed by XANES, XRD, and SEM along the CarnoulŠs AMD (Gard, France). Chemical and mineralogical data collected on sediments, stromatolite, and bioassay samples showed that some indigenous bacteria living in the As-rich CarnoulŠs water ([As] = up to 350 mg.l-1) play an important role in the nature and composition of the solid phases that sequester arsenic at the site. The formation of nano-crystalline and amorphous As(III) ferric oxy-hydroxides has been related to the presence of bacteria able to oxidize Fe(II) but not As(III), which are only present in winter in the upstream area. A rare ferric arsenite sulfate oxy-hydroxide mineral was discovered in this context. Other types of bacteria, occurring in the downstream area whatever the season, are able to catalyze As(III) to As(V) oxidation and, provided that enough Fe(II) oxidizes, promote the formation of amorphous As(V) rich ferric oxy-hydroxides. These bacterially mediated reactions significantly reduce the concentration of dissolved As(III), which is more toxic and mobile than As(V), and might thus be helpful for designing As-removal processes. This work was supported by the French PEVS and ACI Ecologie Quantitative Programs and the PIRAMID EC program. ?Deceased, 26 October 1999 Juillot F., Ildefonse Ph., Morin G., Calas G., De

  11. Quantification of Tinto River Sediment Microbial Communities: Importance of Sulfate-Reducing Bacteria and Their Role in Attenuating Acid Mine Drainage

    PubMed Central

    Sánchez-Andrea, Irene; Knittel, Katrin; Amann, Rudolf; Amils, Ricardo

    2012-01-01

    Tinto River (Huelva, Spain) is a natural acidic rock drainage (ARD) environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. This study quantified the abundance of diverse microbial populations inhabiting ARD-related sediments from two physicochemically contrasting sampling sites (SN and JL dams). Depth profiles of total cell numbers differed greatly between the two sites yet were consistent in decreasing sharply at greater depths. Although catalyzed reporter deposition fluorescence in situ hybridization with domain-specific probes showed that Bacteria (>98%) dominated over Archaea (<2%) at both sites, important differences were detected at the class and genus levels, reflecting differences in pH, redox potential, and heavy metal concentrations. At SN, where the pH and redox potential are similar to that of the water column (pH 2.5 and +400 mV), the most abundant organisms were identified as iron-reducing bacteria: Acidithiobacillus spp. and Acidiphilium spp., probably related to the higher iron solubility at low pH. At the JL dam, characterized by a banded sediment with higher pH (4.2 to 6.2), more reducing redox potential (−210 mV to 50 mV), and a lower solubility of iron, members of sulfate-reducing genera Syntrophobacter, Desulfosporosinus, and Desulfurella were dominant. The latter was quantified with a newly designed CARD-FISH probe. In layers where sulfate-reducing bacteria were abundant, pH was higher and redox potential and levels of dissolved metals and iron were lower. These results suggest that the attenuation of ARD characteristics is biologically driven by sulfate reducers and the consequent precipitation of metals and iron as sulfides. PMID:22544246

  12. RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans.

    PubMed

    Christel, Stephan; Fridlund, Jimmy; Buetti-Dinh, Antoine; Buck, Moritz; Watkin, Elizabeth L; Dopson, Mark

    2016-04-01

    Acidithiobacillus ferrivorans is an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals. Acidithiobacillus ferrivorans obtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing of At. ferrivorans RNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by the tetH1 gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase (doxDAgenes). However, a lack of heme-binding sites in soxX suggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase (hdrgenes) rather than sulfur oxygenase reductase (sor). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving the sat gene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknown At. ferrivorans tetrathionate metabolic pathway that is important in biomining.

  13. Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria.

    PubMed

    Oesterhelt, Christine; Schmälzlin, Elmar; Schmitt, Jürgen M; Lokstein, Heiko

    2007-08-01

    Extremophilic organisms are gaining increasing interest because of their unique metabolic capacities and great biotechnological potential. The unicellular acidophilic and mesothermophilic red alga Galdieria sulphuraria (074G) can grow autotrophically in light as well as heterotrophically in the dark. In this paper, the effects of externally added glucose on primary and secondary photosynthetic reactions are assessed to elucidate mixotrophic capacities of the alga. Photosynthetic O2 evolution was quantified in an open system with a constant supply of CO2 to avoid rapid volatilization of dissolved inorganic carbon at low pH levels. In the presence of glucose, O2 evolution was repressed even in illuminated cells. Ratios of variable to maximum chlorophyll fluorescence (Fv/Fm) and 77 K fluorescence spectra indicated a reduced photochemical efficiency of photosystem II. The results were corroborated by strongly reduced levels of the photosystem II reaction centre protein D1. The downregulation of primary photosynthetic reactions was accompanied by reduced levels of the Calvin Cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Both effects depended on functional sugar uptake and are thus initiated by intracellular rather than extracellular glucose. Following glucose depletion, photosynthetic O2 evolution of illuminated cells commenced after 15 h and Rubisco levels again reached the levels of autotrophic cells. It is concluded that true mixotrophy, involving electron transport across both photosystems, does not occur in G. sulphuraria 074G, and that heterotrophic growth is favoured over autotrophic growth if sufficient organic carbon is available.

  14. Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms

    PubMed Central

    Zhang, R Y; Neu, T R; Bellenberg, S; Kuhlicke, U; Sand, W; Vera, M

    2015-01-01

    Biofilm formation and the production of extracellular polymeric substances (EPS) by meso- and thermoacidophilic metal-oxidizing archaea on relevant substrates have been studied to a limited extent. In order to investigate glycoconjugates, a major part of the EPS, during biofilm formation/bioleaching by archaea on pyrite, a screening with 75 commercially available lectins by fluorescence lectin-binding analysis (FLBA) has been performed. Three representative archaeal species, Ferroplasma acidiphilum DSM 28986, Sulfolobus metallicus DSM 6482T and a novel isolate Acidianus sp. DSM 29099 were used. In addition, Acidianus sp. DSM 29099 biofilms on elemental sulfur were studied. The results of FLBA indicate (i) 22 lectins bound to archaeal biofilms on pyrite and 21 lectins were binding to Acidianus sp. DSM 29099 biofilms on elemental sulfur; (ii) major binding patterns, e.g. tightly bound EPS and loosely bound EPS, were detected on both substrates; (iii) the three archaeal species produced various EPS glycoconjugates on pyrite surfaces. Additionally, the substratum induced different EPS glycoconjugates and biofilm structures of cells of Acidianus sp. DSM 29099. Our data provide new insights into interactions between acidophilic archaea on relevant surfaces and also indicate that FLBA is a valuable tool for in situ investigations on archaeal biofilms. PMID:25488256

  15. Vulcanisaeta thermophila sp. nov., a hyperthermophilic and acidophilic crenarchaeon isolated from solfataric soil.

    PubMed

    Yim, Kyung June; Cha, In-Tae; Rhee, Jin-Kyu; Song, Hye Seon; Hyun, Dong-Wook; Lee, Hae-Won; Kim, Daekyung; Kim, Kil-Nam; Nam, Young-Do; Seo, Myung-Ji; Bae, Jin-Woo; Roh, Seong Woon

    2015-01-01

    An anaerobic, rod-shaped, hyperthermophilic and acidophilic crenarchaeon, designated strain CBA1501(T), was isolated from solfataric soil of the Mayon volcano in the Republic of the Philippines. Phylogenetic analysis showed that strain CBA1501(T) is affiliated with the genus Vulcanisaeta in the phylum Crenarchaeota. DNA sequence similarities between the 16S rRNA gene of strain CBA1501(T) and those of Vulcanisaeta distributa IC-017(T) and Vulcanisaeta souniana IC-059(T) were 98.5 and 97.4 %, respectively. Strain CBA1501(T) grew between 75-90 °C, over a pH range of 4.0-6.0 and in the presence of 0-1.0 % (w/v) NaCl, with optimal growth occurring at 85 °C, pH 5.0, and with 0 % (w/v) NaCl. Fumarate, malate, oxidized glutathione, sulfur and thiosulfate were used as final electron acceptors, but FeCl3, nitrate and sulfate were not. The DNA G+C content of strain CBA1501(T) was 43.1 mol%. On the basis of polyphasic taxonomic analysis, strain CBA1501(T) represents a novel species of the genus Vulcanisaeta in the phylum Crenarchaeota, for which we propose the name Vulcanisaeta thermophila sp. nov. The type strain is CBA1501(T) ( = ATCC BAA-2415(T) = JCM 17228(T)).

  16. Solar Radiation Stress in Natural Acidophilic Biofilms of Euglena mutabilis Revealed by Metatranscriptomics and PAM Fluorometry.

    PubMed

    Puente-Sánchez, Fernando; Olsson, Sanna; Gómez-Rodriguez, Manuel; Souza-Egipsy, Virginia; Altamirano-Jeschke, Maria; Amils, Ricardo; Parro, Victor; Aguilera, Angeles

    2016-02-01

    The daily photosynthetic performance of a natural biofilm of the extreme acidophilic Euglena mutabilis from Río Tinto (SW, Spain) under full solar radiation was analyzed by means of pulse amplitude-modulated (PAM) fluorescence measurements and metatrascriptomic analysis. Natural E. mutabilis biofilms undergo large-scale transcriptomic reprogramming during midday due to a dynamic photoinhibition and solar radiation stress. Photoinhibition is due to UV radiation and not to light intensity, as revealed by PAM fluorometry analysis. In order to minimize the negative effects of solar radiation, our data supports the presence of a circadian rhythm in this euglenophyte that increases their opportunity to survive. Differential gene expression throughout the day (at 12:00, 20:00 and night) was monitored by massive Illumina parallel sequencing of metatranscriptomic libraries. The transcription pattern was altered in genes involved in Photosystem II stability and repair, UV damaged DNA repair, non-photochemical quenching and oxidative stress, supporting the photoinhibition detected by PAM fluorometry at midday.

  17. Alicyclobacillus vulcanalis sp. nov., a thermophilic, acidophilic bacterium isolated from Coso Hot Springs, California, USA.

    PubMed

    Simbahan, Jessica; Drijber, Rhae; Blum, Paul

    2004-09-01

    A thermo-acidophilic Gram-positive bacterium, strain CsHg2T, which grows aerobically at 35-65 degrees C (optimum 55 degrees C) and at pH 2.0-6.0 (optimum 4.0), was isolated from a geothermal pool located in Coso Hot Springs in the Mojave Desert, California, USA. Phylogenetic analysis of 16S rRNA gene sequences showed that this bacterium was most closely related to the type strains of Alicyclobacillus acidocaldarius (97.8 % identity) and Alicyclobacillus sendaiensis (96.9 %), three Japanese strains denoted as UZ-1, KHA-31 and MIH 332 (96.1-96.5 %) and Alicyclobacillus genomic species FR-6 (96.3 %). Phenotypic characteristics including temperature and pH optima, G+C composition, acid production from a variety of carbon sources and sensitivity to different metal salts distinguished CsHg2T from A. acidocaldarius, A. sendaiensis and FR-6. The cell lipid membrane was composed mainly of omega-cyclohexyl fatty acid, consistent with membranes from other Alicyclobacillus species. Very low DNA-DNA hybridization values between CsHg2T and the type strains of Alicyclobacillus indicate that CsHg2T represents a distinct species. On the basis of these results, the name Alicyclobacillus vulcanalis sp. nov. is proposed for this organism. The type strain is CsHg2T (ATCC BAA-915T = DSM 16176T).

  18. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland.

    PubMed

    Sun, Le-Ni; Zhang, Yan-Feng; He, Lin-Yan; Chen, Zhao-Jin; Wang, Qing-Ya; Qian, Meng; Sheng, Xia-Fang

    2010-01-01

    The diversity of endophytic bacteria from the copper-tolerant species Elsholtzia splendens and Commelina communis was evaluated by using cultivation and cultivation-independent techniques. Phylogenetic analysis based on 16S rDNA sequences showed that the Cu-resistant isolates belonged to three major phylogenetic groups: Firmicutes, Actinobacteria and Proteobacteria. Bacillus and Acinetobacter were predominant among the Cu-resistant isolates. Sequence analysis from the 16S rDNA clone libraries of the two plant roots revealed sequences of Alpha-, Beta-, Gamma-Proteobacteria, Firmicutes,Actinobacteria and Bacteroidetes. Gammaproteobacteria was predominant in the two 16S rDNA clone libraries. Thirty-two endophytic bacteria were isolated and characterized with respect to heavy metal resistance and production of plant growth-promoting factors. In experiments involving rape plants grown in vermiculite containing 4 mg kg(-1) of Cu, inoculation with the isolates was found to increase the dry weights of roots (ranging from 132% to 155%) and above-ground tissues (ranging from 71% to 83%) compared to the uninoculated control. Increase in above-ground tissue Cu content varied from 63% to 125% in inoculated-rape plants cultivated in Cu-contaminated substrate compared to the uninoculated control.

  19. Longwall mining

    SciTech Connect

    1995-03-14

    As part of EIA`s program to provide information on coal, this report, Longwall-Mining, describes longwall mining and compares it with other underground mining methods. Using data from EIA and private sector surveys, the report describes major changes in the geologic, technological, and operating characteristics of longwall mining over the past decade. Most important, the report shows how these changes led to dramatic improvements in longwall mining productivity. For readers interested in the history of longwall mining and greater detail on recent developments affecting longwall mining, the report includes a bibliography.

  20. Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant-microorganism-rhizosphere soil system and isolation of metal-tolerant bacteria.

    PubMed

    Becerra-Castro, C; Monterroso, C; Prieto-Fernández, A; Rodríguez-Lamas, L; Loureiro-Viñas, M; Acea, M J; Kidd, P S

    2012-05-30

    The plant-microorganism-soil system of three pseudometallophytes (Betula celtiberica, Cytisus scoparius and Festuca rubra) growing in a Pb/Zn mine was characterised. Plant metal accumulation, soil metal fractions (rhizosphere and non-vegetated) and bacterial densities were determined. Total Cd, Pb and Zn in non-vegetated soils was up to 50, 3000 and 20,000 mg kg(-1) dry weight, respectively. The residual fraction dominated non-vegetated soils, whereas plant-available fractions became important in rhizosphere soils. All plant species effectively excluded metals from the shoot. F. rubra presented a shoot:root transport factor of ≤0.2 and this population could be useful in future phytostabilisation trials. Culturable bacterial densities and diversity were low (predominantly Actinobacteria). Rhizosphere soils hosted higher total and metal-tolerant bacterial densities. Seventy-four metal-tolerant rhizobacteria were isolated, and characterised genotypically (BOX-PCR, 16S rDNA) and phenotypically [Cd/Zn tolerance, biosurfactant production and plant growth promoting (PGP) traits]. Several isolates resisted high concentrations of Cd and Zn, and only a few presented PGP traits. Fourteen isolates were evaluated for promoting plant growth of two species (Salix viminalis and Festuca pratensis). Thirteen inoculants enhanced growth of F. pratensis, while only three enhanced growth of S. viminalis. Growth enhancement could not always be related to isolate PGP traits. In conclusion, some isolates show potential application in phytostabilisation or phytoextraction techniques.

  1. Study of Lateral Gene Transfer in an Acid Mine Drainage Community Enabled by Comparative Genomics

    NASA Astrophysics Data System (ADS)

    Hugenholtz, P.; Croft, L.; Tyson, G. W.; Baker, B. J.; Detter, C.; Richardson, P. M.; Banfield, J. F.

    2002-12-01

    Lateral gene transfer (LGT) is thought to play a crucial role in the ecology and evolution of prokaryotes. We are investigating the role of LGT in an acid mine drainage community hosted in a pyrite-dominated metal sulfide deposit at the Richmond mine at Iron Mountain, CA. Due to biologically-mediated pyrite dissolution, the prevailing conditions within the mine are extremely low pH (< 1.0), very high ionic concentrations (molar concentrations of iron sulfate and mM concentrations of arsenic, copper and zinc), and moderate to high temperatures (30 to >50 C). These conditions are thought to largely isolate the community from potential external gene donors since naked DNA, phage and prokaryotes native to neutral pH habitats do not persist at pH <1.0 precluding an external influx of genes by transformation, transduction and conjugation, respectively. Microbial communities exist in several distinct habitats within Richmond mine including biofilms (subaqueous slime streamers and subaerial slimes) and cells attached directly to pyrite granules. This, however, belies an unusual simplicity in community composition. All communities investigated to date comprise only a handful of phylogenetically distinct organisms, typically dominated by the iron-oxidizing genera Leptospirillum and Ferroplasma. We have undertaken a community genomics analysis of a subaerial biofilm dominated by a Leptospirillum population to facilitate the study of LGT in this type of environment. The genome of Ferroplasma acidarmanus fer1, a minor component of the target community (but a major component of other Richmond mine communities), has been sequenced. Comparative genome analyses indicate that F. acidarmanus and the ancestor of two acidophilic Thermoplasma species belonging to the Euryarchaeota have traded many genes with phylogenetically remote acidophilic Sulfolobus species (Crenarchaeota). The putatively transferred sets of Sulfolobus genes in Ferroplasma and the Thermoplasma ancestor are distinct

  2. Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H(2)-oxidizing bacteria.

    PubMed

    Constant, Philippe; Chowdhury, Soumitra Paul; Hesse, Laura; Pratscher, Jennifer; Conrad, Ralf

    2011-09-01

    Streptomyces soil isolates exhibiting the unique ability to oxidize atmospheric H(2) possess genes specifying a putative high-affinity [NiFe]-hydrogenase. This study was undertaken to explore the taxonomic diversity and the ecological importance of this novel functional group. We propose to designate the genes encoding the small and large subunits of the putative high-affinity hydrogenase hhyS and hhyL, respectively. Genome data mining revealed that the hhyL gene is unevenly distributed in the phyla Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria. The hhyL gene sequences comprised a phylogenetically distinct group, namely, the group 5 [NiFe]-hydrogenase genes. The presumptive high-affinity H(2)-oxidizing bacteria constituting group 5 were shown to possess a hydrogenase gene cluster, including the genes encoding auxiliary and structural components of the enzyme and four additional open reading frames (ORFs) of unknown function. A soil survey confirmed that both high-affinity H(2) oxidation activity and the hhyL gene are ubiquitous. A quantitative PCR assay revealed that soil contained 10(6) to 10(8) hhyL gene copies g (dry weight)(-1). Assuming one hhyL gene copy per genome, the abundance of presumptive high-affinity H(2)-oxidizing bacteria was higher than the maximal population size for which maintenance energy requirements would be fully supplied through the H(2) oxidation activity measured in soil. Our data indicate that the abundance of the hhyL gene should not be taken as a reliable proxy for the uptake of atmospheric H(2) by soil, because high-affinity H(2) oxidation is a facultatively mixotrophic metabolism, and microorganisms harboring a nonfunctional group 5 [NiFe]-hydrogenase may occur.

  3. Isolation and Identification of Concrete Environment Bacteria

    NASA Astrophysics Data System (ADS)

    Irwan, J. M.; Anneza, L. H.; Othman, N.; Husnul, T.; Alshalif, A. F.

    2016-07-01

    This paper presents the isolation and molecular method for bacteria identification through PCR and DNA sequencing. Identification of the bacteria species is required in order to fully utilize the bacterium capability for precipitation of calcium carbonate in concrete. This process is to enable the addition of suitable catalyst according to the bacterium enzymatic pathway that is known through the bacteria species used. The objective of this study is to isolate, enriched and identify the bacteria species. The bacteria in this study was isolated from fresh urine and acid mine drainage water, Kota Tinggi, Johor. Enrichment of the isolated bacteria was conducted to ensure the bacteria survivability in concrete. The identification of bacteria species was done through polymerase chain reaction (PCR) and rRDNA sequencing. The isolation and enrichment of the bacteria was done successfully. Whereas, the results for bacteria identification showed that the isolated bacteria strains are Bacillus sp and Enterococus faecalis.

  4. LIBP-Pred: web server for lipid binding proteins using structural network parameters; PDB mining of human cancer biomarkers and drug targets in parasites and bacteria.

    PubMed

    González-Díaz, Humberto; Munteanu, Cristian R; Postelnicu, Lucian; Prado-Prado, Francisco; Gestal, Marcos; Pazos, Alejandro

    2012-03-01

    Lipid-Binding Proteins (LIBPs) or Fatty Acid-Binding Proteins (FABPs) play an important role in many diseases such as different types of cancer, kidney injury, atherosclerosis, diabetes, intestinal ischemia and parasitic infections. Thus, the computational methods that can predict LIBPs based on 3D structure parameters became a goal of major importance for drug-target discovery, vaccine design and biomarker selection. In addition, the Protein Data Bank (PDB) contains 3000+ protein 3D structures with unknown function. This list, as well as new experimental outcomes in proteomics research, is a very interesting source to discover relevant proteins, including LIBPs. However, to the best of our knowledge, there are no general models to predict new LIBPs based on 3D structures. We developed new Quantitative Structure-Activity Relationship (QSAR) models based on 3D electrostatic parameters of 1801 different proteins, including 801 LIBPs. We calculated these electrostatic parameters with the MARCH-INSIDE software and they correspond to the entire protein or to specific protein regions named core, inner, middle, and surface. We used these parameters as inputs to develop a simple Linear Discriminant Analysis (LDA) classifier to discriminate 3D structure of LIBPs from other proteins. We implemented this predictor in the web server named LIBP-Pred, freely available at , along with other important web servers of the Bio-AIMS portal. The users can carry out an automatic retrieval of protein structures from PDB or upload their custom protein structural models from their disk created with LOMETS server. We demonstrated the PDB mining option performing a predictive study of 2000+ proteins with unknown function. Interesting results regarding the discovery of new Cancer Biomarkers in humans or drug targets in parasites have been discussed here in this sense.

  5. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings.

    PubMed

    Zhang, Wen-hui; Huang, Zhi; He, Lin-yan; Sheng, Xia-fang

    2012-06-01

    Bacterial communities in the rhizosphere soils of metal tolerant and accumulating Chenopodium ambrosioides grown in highly and moderately lead-zinc mine tailings contaminated-soils as well as the adjacent soils with low metal contamination were characterized by using cultivation-independent and cultivation techniques. A total of 69, 73, and 83 bacterial operational taxonomic units (OTUs) having 84.8-100% similarity with the closest match in the database were detected among high, moderate, and low-contamination soil clone libraries, respectively. These OTUs had a Shannon diversity index value in the range of 4.06-4.30. There were 9, 10, and 14 bacterial genera specific to high, moderate, and low metal-contaminated soil clone libraries, respectively. Phylogenetic analysis showed that the Pb-resistant isolates belonged to 8 genera. Pseudomonas and Arthrobacter were predominant among the isolates. Most of the isolates (82-86%) produced indole acetic acid and siderophores. More strains from the highly metal-contaminated soil produced 1-aminocyclopropane-1-carboxylate deaminase than the strains from the moderately and lowly metal-contaminated soils. In experiments involving canola grown in quartz sand containing 200 mg kg(-1) of Pb, inoculation with the isolated Paenibacillus jamilae HTb8 and Pseudomonas sp. GTa5 was found to significantly increase the above-ground tissues dry weight (ranging from 19% to 36%) and Pb uptake (ranging from 30% to 40%) compared to the uninoculated control. These results show that C. ambrosioides harbor different metal-resistant bacterial communities in their rhizosphere soils and the isolates expressing plant growth promoting traits may be exploited for improving the phytoextraction efficiency of Pb-polluted environment.

  6. Propyl gallate synthesis using acidophilic tannase and simultaneous production of tannase and gallic acid by marine Aspergillus awamori BTMFW032.

    PubMed

    Beena, P S; Basheer, Soorej M; Bhat, Sarita G; Bahkali, Ali H; Chandrasekaran, M

    2011-07-01

    Marine Aspergillus awamori BTMFW032, recently reported by us, produce acidophilic tannase as extracellular enzyme. Here, we report the application of this enzyme for synthesis of propyl gallate by direct transesterification of tannic acid and in tea cream solubilisation besides the simultaneous production of gallic acid along with tannase under submerged fermentation by this fungus. This acidophilic tannase enabled synthesis of propyl gallate by direct transesterification of tannic acid using propanol as organic reaction media under low water conditions. The identity of the product was confirmed with thin layer chromatography and Fourier transform infrared spectroscopy. It was noted that 699 U/ml of enzyme could give 60% solubilisation of tea cream within 1 h. Enzyme production medium was optimized adopting Box-Behnken design for simultaneous synthesis of tannase and gallic acid. Process variables including tannic acid, sodium chloride, ferrous sulphate, dipotassium hydrogen phosphate, incubation period and agitation were recognized as the critical factors that influenced tannase and gallic acid production. The model obtained predicted 4,824.61 U/ml of tannase and 136.206 μg/ml gallic acid after 48 h of incubation, whereas optimized medium supported 5,085 U/ml tannase and 372.6 μg/ml of gallic acid production after 36 and 84 h of incubation, respectively, with a 15-fold increase in both enzyme and gallic acid production. Results indicated scope for utilization of this acidophilic tannase for transesterification of tannic acid into propyl gallate, tea cream solubilisation and simultaneous production of gallic acid along with tannase.

  7. Photochemical Performance of the Acidophilic Red Alga Cyanidium sp. in a pH Gradient

    NASA Astrophysics Data System (ADS)

    Kvíderová, Jana

    2012-06-01

    The acidophilic red alga Cyanidium sp. is one of the dominant mat-forming species in the highly acidic waters of Río Tinto, Spain. The culture of Cyanidium sp., isolated from a microbial mat sample collected at Río Tinto, was exposed to 9 different pH conditions in a gradient from 0.5 to 5 for 24 h and its physiological status evaluated by variable chlorophyll a fluorescence kinetics measurements. Maximum quantum yield was determined after 30 min, 1 h, 2 h, 4 h, 6 h and 24 h of exposure after 15 min dark adaptation. The effect of pH on photochemical activity of Cyanidium sp. was observable as early as 30 min after exposure and the pattern remained stable or with only minor modifications for 24 h. The optimum pH ranged from 1.5 to 2.5. A steep decrease of the photochemical activity was observed at pH below 1 even after 30 min of exposure. Although the alga had tolerated the exposure to pH = 1 for at least 6 h, longer (24 h) exposure resulted in reduction of the photochemical activity. At pH above 2.5, the decline was more moderate and its negative effect on photochemistry was less severe. According to the fluorescence measurements, the red alga Cyanidium sp. is well-adapted to prevailing pH at its original locality at Río Tinto, i.e. pH of 1 to 3. The short-term survival in pH < 1.5 may be adaptation to rare exposures to such low pH in the field. The tolerance of pH above 3 could be caused by adaptation to the microenvironment of the inner parts of microbial mats in which Cyanidium sp. usually dominates and where higher pH could occur due to photosynthetic oxygen production.

  8. Microalgae as a safe food source for animals: nutritional characteristics of the acidophilic microalga Coccomyxa onubensis

    PubMed Central

    Navarro, Francisco; Forján, Eduardo; Vázquez, María; Montero, Zaida; Bermejo, Elisabeth; Castaño, Miguel Ángel; Toimil, Alberto; Chagüaceda, Enrique; García-Sevillano, Miguel Ángel; Sánchez, Marisa; Domínguez, María José; Pásaro, Rosario; Garbayo, Inés; Vílchez, Carlos; Vega, José María

    2016-01-01

    Background Edible microalgae are marine or fresh water mesophilic species. Although the harvesting of microalgae offers an abundance of opportunities to the food and pharmaceutical industries, the possibility to use extremophilic microalgae as a food source for animals is not well-documented. Objective We studied the effects of dietary supplementation of a powdered form of the acidophilic microalga Coccomyxa onubensis on growth and health parameters of laboratory rats. Method Four randomly organized groups of rats (n=6) were fed a standard diet (Diet 1, control) or with a diet in which 0.4% (Diet 2), 1.25% (Diet 3), or 6.25% (Diet 4) (w/w) of the standard diet weight was substituted with dried microalgae powder, respectively. The four groups of animals were provided ad libitum access to feed for 45 days. Results C. onubensis biomass is rich in protein (44.60% of dry weight) and dietary fiber (15.73%), and has a moderate carbohydrate content (24.8%) and a low lipid content (5.4%) in which polyunsaturated fatty acids represent 65% of the total fatty acid. Nucleic acids are present at 4.8%. No significant difference was found in growth rates or feed efficiency ratios of the four groups of rats. Histological studies of liver and kidney tissue revealed healthy organs in control and C. onubensis-fed animals, while plasma hematological and biochemical parameters were within healthy ranges for all animals. Furthermore, animals fed a microalgae-enriched diet exhibited a statistically significant decrease in both blood cholesterol and triglyceride levels. The blood triglyceride content and very low density lipoprotein-cholesterol levels decreased by about 50% in rats fed Diet 4. Conclusions These data suggest that C. onubensis may be useful as a food supplement for laboratory animals and may also serve as a nutraceutical in functional foods. In addition, microalgae powder-supplemented diets exerted a significant hypocholesterolemic and hypotriglyceridemic effect in animals

  9. Halarchaeum rubridurum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt samples.

    PubMed

    Yamauchi, Yuto; Minegishi, Hiroaki; Echigo, Akinobu; Shimane, Yasuhiro; Kamekura, Masahiro; Itoh, Takashi; Ohkuma, Moriya; Doukyu, Noriyuki; Inoue, Akira; Usami, Ron

    2013-09-01

    Six halo-acidophilic archaeal strains were isolated from four commercial salt samples obtained from seawater in the Philippines, Indonesia (Bali) and Japan (Okinawa) on agar plates at pH 4.5. Cells of the six strains were pleomorphic, and stained Gram-negative. Two strains were pink-red pigmented, while four other strains were orange-pink pigmented. Strain MH1-16-3(T) was able to grow at 9-30% (w/v) NaCl [with optimum at 18% (w/v) NaCl], at pH 4.5-6.8 (optimum, pH 5.5) and at 20-50 °C (optimum, 42 °C). The five other strains grew at slightly different ranges. The six strains required at least 1 mM Mg(2+) for growth. The 16S rRNA gene sequences of the six strains were almost identical, sharing 99.9 (1-2 nt differences) to 100% similarity. The closest relatives were Halarchaeum acidiphilum MH1-52-1(T) and Halarchaeum salinum MH1-34-1(T) with 97.7% similarity. The DNA G+C contents of the six strains were 63.2-63.7 mol%. Levels of DNA-DNA relatedness amongst the six strains were 79-86%, while those between MH1-16-3(T) and H. acidiphilum MH1-52-1(T) and H. salinum MH1-34-1(T) were both 43 and 45% (reciprocally), respectively. Based on the phenotypic, genotypic and phylogenetic analyses, it is proposed that the six isolates represent a novel species of the genus Halarchaeum, for which the name Halarchaeum rubridurum sp. nov. is proposed. The type strain is MH1-16-3(T) ( =JCM 16108(T) =CECT 7535(T)).

  10. Acidophilic actinobacteria synthesised silver nanoparticles showed remarkable activity against fungi-causing superficial mycoses in humans.

    PubMed

    Anasane, N; Golińska, P; Wypij, M; Rathod, D; Dahm, H; Rai, M

    2016-03-01

    Superficial mycoses are limited to the most external part of the skin and hair and caused by Malassezia sp., Trichophyton sp. and Candida sp. We report extracellular biosynthesis of silver nanoparticles (AgNPs) by acidophilic actinobacteria (SF23, C9) and its in vitro antifungal activity against fungi-causing superficial mycoses. The phylogenetic analysis based on the 16S rRNA gene sequence of strains SF23 and C9 showed that they are most closely related to Pilimelia columellifera subsp. pallida GU269552(T). The detection of AgNPs was confirmed by visual observation of colour changes from colourless to brown, and UV-vis spectrophotometer analysis, which showed peaks at 432 and 427 nm, respectively. These AgNPs were further characterised by nanoparticle tracking analysis (NTA), Zeta potential, Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The FTIR analysis exhibited the presence of proteins as capping agents. The TEM analysis revealed the formation of spherical and polydispersed nanoparticles in the size range of 4-36 nm and 8-60 nm, respectively. The biosynthesised AgNPs were screened against fungi-causing superficial mycoses viz., Malassezia furfur, Trichophyton rubrum, Candida albicans and C. tropicalis. The highest antifungal activity of AgNPs from SF23 and C9 against T. rubrum and the least against M. furfur and C. albicans was observed as compared to other tested fungi. The biosynthesised AgNPs were found to be potential anti-antifungal agent against fungi-causing superficial mycoses.

  11. Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans.

    PubMed Central

    Amaro, A M; Chamorro, D; Seeger, M; Arredondo, R; Peirano, I; Jerez, C A

    1991-01-01

    The response of the obligate acidophilic bacterium Thiobacillus ferrooxidans to external pH changes is reported. When T. ferrooxidans cells grown at pH 1.5 were shifted to pH 3.5, there were several changes in the general protein synthesis pattern, including a large stimulation of the synthesis of a 36-kDa protein (p36). The apparent low isoelectric point of p36, its location in the membrane fraction, and its cross-reaction with anti-OmpC from Salmonella typhi suggested that it may be a porin whose expression is regulated by extracellular pH. Images PMID:1987171

  12. Web Mining

    NASA Astrophysics Data System (ADS)

    Fürnkranz, Johannes

    The World-Wide Web provides every internet citizen with access to an abundance of information, but it becomes increasingly difficult to identify the relevant pieces of information. Research in web mining tries to address this problem by applying techniques from data mining and machine learning to Web data and documents. This chapter provides a brief overview of web mining techniques and research areas, most notably hypertext classification, wrapper induction, recommender systems and web usage mining.

  13. Data Mining.

    ERIC Educational Resources Information Center

    Benoit, Gerald

    2002-01-01

    Discusses data mining (DM) and knowledge discovery in databases (KDD), taking the view that KDD is the larger view of the entire process, with DM emphasizing the cleaning, warehousing, mining, and visualization of knowledge discovery in databases. Highlights include algorithms; users; the Internet; text mining; and information extraction.…

  14. The lowering of external pH in confined environments by thermo-acidophilic algae (class: Cyanidiophyceae).

    PubMed

    Lowell, Christina; Castenholz, Richard W

    2013-10-01

    The unicellular, asexual thermo-acidophilic algae of the class Cyanidiophyceae, order Cyanidiales (the 'cyanidia') include only three genera, walled Cyanidium and Galdieria, and 'naked' Cyanidioschyzon, names based on morphological and cytological characters. Most species and strains of this class live in acid hot springs or acid soils or steam vents associated with these springs at pH 0.5 to ~ 4.0 at temperatures of ~ 38-56 °C. No other phototrophs live in this combination of factors in these habitats, except for a small overlap with other acidophilic algae at the highest pH and the lowest temperature. The optimum pH for growth of the 'cyanidia' in this study was ~ 2.3. Galdieria-like walled cells of Cyanidioschyzon and naked Cyanidioschyzon cells were exposed in culture to higher pH conditions of 6.0, 5.5 and 5.0 in confined, illuminated environments (cotton plugged flasks). The subsequent acidification of the medium towards or to 2.3 occurred as growth and biomass increased. There was a direct correlation with final biomass (Chl a) and lower pH. All eight strains isolated from Yellowstone acidic conditions were able to lower the supra-optimal pH of their medium, while only two from other continents and none of the three from Japan were competent. It is probable that the ability to lower pH to an optimal level has survival value in some niches in natural habitats.

  15. BIORECOVERY OF METALS FROM ACID MINE DRAINAGE

    EPA Science Inventory

    Acid mine water is an acidic, metal-bearing wastewater generated by the oxidation of metallic sulfides by certain bacteria in both active and abandoned mining operations. The wastewaters contain substantial quantities of dissolved solids with the particular pollutants dependant u...

  16. Halarchaeum nitratireducens sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt.

    PubMed

    Minegishi, Hiroaki; Yamauchi, Yuto; Echigo, Akinobu; Shimane, Yasuhiro; Kamekura, Masahiro; Itoh, Takashi; Ohkuma, Moriya; Usami, Ron

    2013-11-01

    Two halophilic moderately acidophilic archaeal strains, MH1-136-2(T) and MH1-370-1 were isolated from commercial salt samples made from seawater in Japan and Indonesia, respectively. Cells of the two strains were pleomorphic and Gram-stain-negative. Strain MH1-136-2(T) was pink pigmented, while MH1-370-1 was orange-red pigmented. Strain MH1-136-2(T) was able to grow at 9-30 % (w/v) NaCl (with optimum, 21 % NaCl, w/v) at pH 4.5-6.2 (optimum, pH 5.2-5.5) and at 18-55 °C (optimum, 45 °C). Strain MH1-370-1 was able to grow at 12-30 % (w/v) NaCl (optimum, 18 %, w/v) at pH 4.2-6.0 (optimum, pH 5.2-5.5) and 20-50 °C (optimum, 45 °C). Strain MH1-136-2(T) required at least 1 mM Mg(2+), while MH1-370-1 required at least 10 mM for growth. Both strains reduced nitrate and nitrite under aerobic conditions. The 16S rRNA gene sequences of strains MH1-136-2(T) and MH1-370-1 were identical, and the closest relative was Halarchaeum rubridurum MH1-16-3(T) with 98.3 % similarity. The level of DNA-DNA relatedness between these strains was 90.9 % and 92.4 % (reciprocally), while that between MH1-136-2(T) and Halarchaeum acidiphilum MH1-52-1(T), Halarchaeum salinum MH1-34-1(T) and Halarchaeum rubridurum MH1-16-3(T) was 37.7 %, 44.3 % and 41.1 % (each an average), respectively. Based on the phenotypic, genotypic and phylogenetic analyses, it is proposed that the isolates represent a novel species of the genus Halarchaeum, for which the name Halarchaeum nitratireducens sp. nov. is proposed. The type strain is MH1-136-2(T) ( = JCM 16331(T) = CECT 7573(T)) isolated from solar salt produced in Japan.

  17. Microbial Communities and a Novel Symbiotic Interaction in Extremely Acidic Mine Drainage at Iron Mountain, California

    NASA Astrophysics Data System (ADS)

    Baker, B. J.; Banfield, J. F.

    2002-12-01

    Culture-independent studies of microbial communities in the acid mine drainage (AMD) system associated with the Richmond ore body at Iron Mountain, CA, demonstrated that the total number of prokaryote lineages is small compared to other environments. Phylogenetic analyses of 232 small subunit ribosomal RNA (rRNA) genes from six clone libraries revealed some novel lines of descent. Many of the novel clones were from libraries constructed from subaerial biofilms associated with fine grained pyrite. The clones form several distinct groups within the order Thermoplasmatales and are most closely related to Ferroplasma spp. and Thermoplasma spp. Another novel group detected in a pH 1.4 pool and a pH 0.8 biofilm falls within the Rickettsiales (alpha-proteobacteria and related to mitochondria) and is most closely related to a-proteobacterial endosymbionts of Acanthamoeba spp. An oligonucleotide rRNA probe designed to target alpha-proteobacteria revealed that these are protist endosymbionts, and that they are associated with a small percentage (2%) of the total eukaryotes in samples from the Richmond mine. Measurements of the internal pH of these protists show that their cytosol is close to neutral. Thus, protists provide a habitat within the AMD system that is at least 5 pH units less acidic than the surroundings. The uncultured AMD endosymbionts have a conserved 273 nucleotide intervening sequence (IVS) in the variable V1 region of their 16S rRNA gene. The IVS does not match any sequence in current databases, but predicted secondary structure form well defined stem loops. The discovery of inserts within a highly conserved gene is extremely rare. At present we have not identified the protist host. However, it is interesting to note that protists previously shown to have a-proteobacterial endosymbionts possess 18S rRNA genes that contain both IVSs and group I introns. The possibility that the IVS in the AMD bacteria is a result of extensive genetic exchange between a

  18. Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs.

    PubMed

    Pankratov, Timofey A; Dedysh, Svetlana N

    2010-12-01

    Five strains of strictly aerobic, heterotrophic bacteria that form pink-red colonies and are capable of hydrolysing pectin, xylan, laminarin, lichenan and starch were isolated from acidic Sphagnum peat bogs and were designated OB1010(T), LCBR1, TPB6011(T), TPB6028(T) and TPO1014(T). Cells of these isolates were Gram-negative, non-motile rods that produced an amorphous extracellular polysaccharide-like substance. Old cultures contained spherical bodies of varying sizes, which represent starvation forms. Cells of all five strains were acidophilic and psychrotolerant, capable of growth at pH 3.0-7.5 (optimum pH 3.8-4.5) and at 2-33°C (optimum 15-22°C). The major fatty acids were iso-C(15 : 0), C(16 : 0) and summed feature 3 (C(16 : 1)ω7c and/or iso-C(15 : 0) 2-OH). The major menaquinone detected was MK-8. The pigments were carotenoids. The genomic DNA G+C contents were 57.3-59.3 mol%. The five isolates were found to be members of subdivision 1 of the phylum Acidobacteria and displayed 95.3-98.9 % 16S rRNA gene sequence similarity to each other. The closest described relatives to strains OB1010(T), LCBR1, TPB6011(T), TPB6028(T), and TPO1014(T) were members of the genera Terriglobus (94.6-95.8 % 16S rRNA gene sequence similarity) and Edaphobacter (94.2-95.4 %). Based on differences in cell morphology, phenotypic characteristics and hydrolytic capabilities, we propose a novel genus, Granulicella gen. nov., containing four novel species, Granulicella paludicola sp. nov. with type strain OB1010(T) (=DSM 22464(T) =LMG 25275(T)) and strain LCBR1, Granulicella pectinivorans sp. nov. with type strain TPB6011(T) (=VKM B-2509(T) =DSM 21001(T)), Granulicella rosea sp. nov. with type strain TPO1014(T) (=DSM 18704(T) =ATCC BAA-1396(T)) and Granulicella aggregans sp. nov. with type strain TPB6028(T) (=LMG 25274(T) =VKM B-2571(T)).

  19. Bacillus acidicola sp. nov., a novel mesophilic, acidophilic species isolated from acidic Sphagnum peat bogs in Wisconsin.

    PubMed

    Albert, Richard A; Archambault, Julieta; Rosselló-Mora, Ramón; Tindall, Brian J; Matheny, Mike

    2005-09-01

    A mesophilic, acidophilic, spore-forming bacterium, strain 105-2(T), was isolated from an acidic Sphagnum peat bog in Wisconsin, USA. Strain 105-2(T) has 16S rRNA gene sequence similarity to Bacillus sporothermodurans DSM 10599(T) and Bacillus oleronius DSM 9356(T) of 97.4 and 97.8%, respectively. The primary lipoquinone is MK-7 and the major fatty acids are 15:0 iso, 15:0 anteiso and 17:0 anteiso. The predominant polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and a glycolipid. The DNA G+C content was found to be 43.2 mol%. The phenotypic, chemotaxonomic and molecular analyses identified strain 105-2(T) as a novel Bacillus species, for which the name Bacillus acidicola is proposed. The type strain is 105-2(T) (=DSM 14745(T)=ATCC BAA-366(T)=NRRL B-23453(T)).

  20. [Leaching of copper ore of the Udokanskoe deposit at low temperatures by an association of acidophilic chemolithotrophic microorganisms].

    PubMed

    Kondrat'eva, T F; Pivovarova, T A; Krylova, L N; Melamud, V S; Adamov, E V; Karavaĭko, G I

    2011-01-01

    Pure cultures of indigenous microorganisms Acidithiobacillus ferrooxidans strain TFUd, Leptospirillum ferrooxidans strain LUd, and Sulfobacillus thermotolerans strain SUd have been isolated from the oxidation zone of sulfide copper ore of the Udokanskoe deposit. Regimes of bacterial-chemical leaching of ore have been studied over a temperature range from -10 to +20 degrees C. Effects of pH, temperature, and the presence of microorganisms on the extraction of copper have been shown. Bacterial leaching has been detected only at positive values of temperature, and has been much more active at +20 than at +4 degrees C. The process of leaching was more active when the ore contained more hydrophilic and oxidized minerals. The possibility of copper ore leaching of the Udokanskoe deposit using sulfuric acid with pH 0.4 at negative values of temperature and applying acidophilic chemolithotrophic microorganisms at positive values of temperature and low pH values was shown.

  1. Acidophilic denitrifiers dominate the N2O production in a 100-year-old tea orchard soil.

    PubMed

    Huang, Ying; Long, Xi-En; Chapman, Stephen J; Yao, Huaiying

    2015-03-01

    Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N2O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg(-1) of NO3 (-)-N) addition. Results showed the highest N2O emission (10.1 mg kg(-1) over 21 days) from the soil at pH 3.71 with 1000 mg kg(-1) NO3 (-) addition. The N2O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N2O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N2O emission in this highly acidic tea soil.

  2. [Methanotrophic bacteria of acid sphagnum bogs].

    PubMed

    Dedysh, S N

    2002-01-01

    Acid sphagnum bogs cover a considerable part of the territory of Russia and are an important natural source of biogenic methane, which is formed in their anaerobic layers. A considerable portion of this methane is consumed in the aerobic part of the bog profile by acidophilic methanotrophic bacteria, which comprise the methane filter of sphagnum bogs and decrease CH4 emission to the atmosphere. For a long time, these bacteria escaped isolation, which became possible only after the elucidation of the optimal conditions of their functioning in situ: pH 4.5 to 5.5; temperature, from 15 to 20 degrees C; and low salt concentration in the solution. Reproduction of these conditions and rejection of earlier used media with a high content of biogenic elements allowed methanotrophic bacteria of two new genera and species--Methylocella palustris and Methylocapsa acidophila--to be isolated from the peat of sphagnum bogs of the northern part of European Russia and West Siberia. These bacteria are well adapted to the conditions in cold, acid, oligotrophic sphagnum bogs. They grow in a pH range of 4.2-7.5 with an optimum at 5.0-5.5, prefer moderate temperatures (15-25 degrees C) and media with a low content of mineral salts (200-500 mg/l), and are capable of active nitrogen fixation. Design of fluorescently labeled 16S rRNA-targeted oligonucleotide probes for the detection of Methylocella palustris and Methylocapsa acidophila and their application to the analysis of sphagnum peat samples showed that these bacteria represent dominant populations of methanotrophs with a density of 10(5)-10(6) cells/g peat. In addition to Methylocella and Methylocapsa populations, one more abundant population of methanotrophs was revealed (10(6) cells/g peat), which were phylogenetically close to the genus Methylocystis.

  3. Comparative biochemistry and physiology of iron-respiring bacteria from acidic and neutral-pH environments: Final Technical Report

    SciTech Connect

    Magnuson, T S

    2009-04-07

    Acidophilic dissimilatory iron-reducing bacteria (DIRB) are now being detected in a variety of ‘extreme’ low-pH, radionuclide- and heavy-metal contaminated habitats where Fe(III) reduction is taking place, and may represent a significant proportion of metal-transforming organisms in these environments. Acidiphilium cryptum is our model organism, a facultative iron-respiring Alphaproteobacterium. Major findings of this project have been 1) Discovery of novel outer-membrane and periplasmic cytochromes c in acidophiles that are reactive with Fe and Cr, 2) Discovery of Cr(VI) reduction mechanisms in acidophiles, mediated by c-type cytochromes and other reductase activity, 3) Development of enzyme detection methods specific for Cr-reducing enzymes, 4) Characterization of biofilm formation in A. cryptum, and 5) Annotation of the Acidiphilium cryptum genome (Magnuson, Kusel, and Cummings, DOE-JGI 2005-2006). Two manuscripts and one book chapter have been published, and several more mauscripts are prepared for submission.

  4. African mining

    SciTech Connect

    Not Available

    1987-01-01

    This book contains papers presented at a conference addressing the development of the minerals industry in Africa. Topics covered include: A review - past, present and future - of Zimbabwe's mining industry; Geomorphological processes and related mineralization in Tanzania; and Rock mechanics investigations at Mufulira mine, Zambia.

  5. Revealing the microbial community structure of clogging materials in dewatering wells differing in physico-chemical parameters in an open-cast mining area.

    PubMed

    Wang, Juanjuan; Sickinger, Maren; Ciobota, Valerian; Herrmann, Martina; Rasch, Helfried; Rösch, Petra; Popp, Jürgen; Küsel, Kirsten

    2014-10-15

    Iron rich deposits cause clogging the pumps and pipes of dewatering wells in open-cast mines, interfering with their function; however, little is known about either the microbial community structure or their potential role in the formation of these deposits. The microbial diversity and abundance of iron-oxidizing and -reducing bacteria were compared in pipe deposit samples with different levels of encrustation from 16 wells at three lignite mining sites. The groundwater varied in pH values from slightly acidic (4.5) to neutral (7.3), Fe(II) concentrations from 0.48 to 7.55 mM, oxygen content from 1.8 to 5.8 mg L(-1), and dissolved organic carbon (DOC) from 1.43 to 12.59 mg L(-1). There were high numbers of bacterial 16S rRNA gene copies in deposits, up to 2.5 × 10(10) copies g(-1) wet weight. Pyrosequencing analysis of bacterial 16S rRNA genes revealed that Proteobacteria was the most abundant phylum (63.3% of the total reads on average), followed by Actinobacteria (10.2%) and Chloroflexi (6.4%). Gallionella-related sequences dominated the bacterial community of pipe deposits and accounted for 48% of total sequence reads. Pipe deposits with amorphous ferrihydrite and schwertmannite mostly contained Gallionella (up to 1.51 × 10(10) 16S rRNA gene copies g(-1) wet weight), while more crystalline deposits showed a higher bacterial diversity. Surprisingly, the abundance of Gallionella was not correlated with groundwater pH, oxygen, or DOC content. Sideroxydans-related 16S rRNA gene copy numbers were one order of magnitude less than Gallionella, followed by acidophilic Ferrovum-related groups. Iron reducing bacteria were detected at rather low abundance, as was expected given the low iron reduction potential, although they could be stimulated by lactate amendment. The overall high abundance of Gallionella suggests that microbes may make major contributions to pipe deposit formation irrespective of the water geochemistry. Their iron oxidation activity might

  6. Magnetic Bacteria.

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  7. Organization and regulation of the arsenite oxidase operon of the moderately acidophilic and facultative chemoautotrophic Thiomonas arsenitoxydans.

    PubMed

    Slyemi, Djamila; Moinier, Danielle; Talla, Emmanuel; Bonnefoy, Violaine

    2013-11-01

    Thiomonas arsenitoxydans is an acidophilic and facultatively autotrophic bacterium that can grow by oxidizing arsenite to arsenate. A comparative genomic analysis showed that the T. arsenitoxydans aioBA cluster encoding the two subunits of arsenite oxidase is distinct from the other clusters, with two specific genes encoding a cytochrome c and a metalloregulator belonging to the ArsR/SmtB family. These genes are cotranscribed with aioBA, suggesting that these cytochromes c are involved in arsenite oxidation and that this operon is controlled by the metalloregulator. The growth of T. arsenitoxydans in the presence of thiosulfate and arsenite, or arsenate, is biphasic. Real-time PCR experiments showed that the operon is transcribed during the second growth phase in the presence of arsenite or arsenate, whereas antimonite had no effect. These results suggest that the expression of the aioBA operon of T. arsenitoxydans is regulated by the electron donor present in the medium, i.e., is induced in the presence of arsenic but is repressed by more energetic substrates. Our data indicate that the genetic organization and regulation of the aioBA operon of T. arsenitoxydans differ from those of the other arsenite oxidizers.

  8. Multisite-specific archaeosine tRNA-guanine transglycosylase (ArcTGT) from Thermoplasma acidophilum, a thermo-acidophilic archaeon

    PubMed Central

    Kawamura, Takuya; Hirata, Akira; Ohno, Satoshi; Nomura, Yuichiro; Nagano, Tomoko; Nameki, Nobukazu; Yokogawa, Takashi; Hori, Hiroyuki

    2016-01-01

    Archaeosine (G+), which is found only at position 15 in many archaeal tRNA, is formed by two steps, the replacement of the guanine base with preQ0 by archaeosine tRNA-guanine transglycosylase (ArcTGT) and the subsequent modification of preQ0 to G+ by archaeosine synthase. However, tRNALeu from Thermoplasma acidophilum, a thermo-acidophilic archaeon, exceptionally has two G+13 and G+15 modifications. In this study, we focused on the biosynthesis mechanism of G+13 and G+15 modifications in this tRNALeu. Purified ArcTGT from Pyrococcus horikoshii, for which the tRNA recognition mechanism and structure were previously characterized, exchanged only the G15 base in a tRNALeu transcript with 14C-guanine. In contrast, T. acidophilum cell extract exchanged both G13 and G15 bases. Because T. acidophilum ArcTGT could not be expressed as a soluble protein in Escherichia coli, we employed an expression system using another thermophilic archaeon, Thermococcus kodakarensis. The arcTGT gene in T. kodakarensis was disrupted, complemented with the T. acidophilum arcTGT gene, and tRNALeu variants were expressed. Mass spectrometry analysis of purified tRNALeu variants revealed the modifications of G+13 and G+15 in the wild-type tRNALeu. Thus, T. acidophilum ArcTGT has a multisite specificity and is responsible for the formation of both G+13 and G+15 modifications. PMID:26721388

  9. A novel acidophilic, thermophilic iron and sulfur-oxidizing archaeon isolated from a hot spring of tengchong, yunnan, China

    PubMed Central

    Ding, Jiannan; Zhang, Ruiyong; Yu, Yizun; Jin, Decai; Liang, Changli; Yi, Yang; Zhu, Wei; Xia, Jinlan

    2011-01-01

    A novel thermoacidophilic iron and sulfur-oxidizing archaeon, strain YN25, was isolated from an in situ enriched acid hot spring sample collected in Yunnan, China. Cells were irregular cocci, about 0.9–1.02 µm × 1.0–1.31 µm in the medium containing elemental sulfur and 1.5–2.22 µm × 1.8–2.54 µm in ferrous sulfate medium. The ranges of growth and pH were 50–85 (optimum 65) and pH 1.0–6.0 (optimum 1.5–2.5). The acidophile was able to grow heterotrophically on several organic substrates, including various monosaccharides, alcohols and amino acids, though the growth on single substrate required yeast extract as growth factor. Growth occurred under aerobic conditions or via anaerobic respiration using elemental sulfur as terminal electron acceptor. Results of morphology, physiology, fatty acid analysis and analysis based on 16S rRNA gene sequence indicated that the strain YN25 should be grouped in the species Acidianus manzaensis. Bioleaching experiments indicated that this strain had excellent leaching capacity, with a copper yielding ratio up to 79.16% in 24 d. The type strain YN25 was deposited in China Center for Type Culture Collection (=CCTCCZNDX0050). PMID:24031663

  10. [Basic proteins in the granules of mast cells. Demonstration of masked proteins, acidophilic staining of the granules].

    PubMed

    Anikó, K; Lajos, K

    1976-07-01

    Basic proteins of the granules of mast cells in nativ, formalin-, alcohol- and aceton fixed preparations without any preliminary treatment, when stained with acidic dye at the pH 9 cytochemically seem to be masked. After various preliminary treatment (treatment with acid, with cetylpiridinumchlorid, CPC) mast-cell granula stained with acidic-dye at pH 9 appear intensively acidophile. This phenomenon can be explained by the presence of basic proteins in the mast cell granula. Preliminary treatment with CPC inhibits acid radicals of the heparin. This may lead to the disintegration of the linkage between proteins of the heparin, thus amino-group of the basic proteins become reactivated and can be identified by acidic dyes. It can not be excluded as well, that CPC linked to the heparin with free positive radicals reveals acidic-dye-binding capacity. In cases of preliminary treatment with various acids this mechanism does not seem possible to lay on the base of changing of the dye binding capacity.

  11. Asteroid mining

    NASA Technical Reports Server (NTRS)

    Gertsch, Richard E.

    1992-01-01

    The earliest studies of asteroid mining proposed retrieving a main belt asteroid. Because of the very long travel times to the main asteroid belt, attention has shifted to the asteroids whose orbits bring them fairly close to the Earth. In these schemes, the asteroids would be bagged and then processed during the return trip, with the asteroid itself providing the reaction mass to propel the mission homeward. A mission to one of these near-Earth asteroids would be shorter, involve less weight, and require a somewhat lower change in velocity. Since these asteroids apparently contain a wide range of potentially useful materials, our study group considered only them. The topics covered include asteroid materials and properties, asteroid mission selection, manned versus automated missions, mining in zero gravity, and a conceptual mining method.

  12. Construction of small plasmid vectors for use in genetic improvement of the extremely acidophilic Acidithiobacillus caldus.

    PubMed

    Meng, Jianzhou; Wang, Huiyan; Liu, Xiangmei; Lin, Jianqun; Pang, Xin; Lin, Jianqiang

    2013-10-01

    The genetic improvement of biomining bacteria including Acidithiobacillus caldus could facilitate the bioleaching process of sulfur-containing minerals. However, the available vectors for use in A. caldus are very scanty and limited to relatively large broad-host-range IncQ plasmids. In this study, a set of small, mobilizable plasmid vectors (pBBR1MCS-6, pMSD1 and pMSD2) were constructed based on plasmid pBBR1MCS-2, which does not belong to the IncQ, IncW, or IncP groups. The function of the tac promoter on 5.8-kb pMSD2 was determined by inserting a kanamycin-resistant reporter gene. The resulting recombinant pMSD2-Km was successfully transferred by conjugation into A. caldus MTH-04 with transfer frequency of 1.38±0.64×10(-5). The stability and plasmid copy number of pMSD2-Km in A. caldus MTH-04 were 75±2.7% and 5-6 copies per cell, respectively. By inserting an arsABC operon into pMSD2, an arsenic-resistant recombinant pMSD2-As was constructed and transferred into A. caldus MTH-04 by conjugation. The arsenic tolerance of A. caldus MTH-04 containing pMSD2-As was obviously increased up to 45mM of NaAsO2. These vectors could be applied in genetic improvement of A. caldus as well as other bioleaching bacteria.

  13. From Río Tinto to Mars: the terrestrial and extraterrestrial ecology of acidophiles.

    PubMed

    Amils, R; González-Toril, E; Aguilera, A; Rodríguez, N; Fernández-Remolar, D; Gómez, F; García-Moyano, A; Malki, M; Oggerin, M; Sánchez-Andrea, I; Sanz, J L

    2011-01-01

    The recent geomicrobiological characterization of Río Tinto, Iberian Pyrite Belt (IPB), has proven the importance of the iron cycle, not only in generating the extreme conditions of the habitat (low pH, high concentration of toxic heavy metals) but also in maintaining the high level of microbial diversity, both prokaryotic and eukaryotic, detected in the water column and the sediments. The extreme conditions of the Tinto basin are not the product of industrial contamination but the consequence of the presence of an underground bioreactor that obtains its energy from the massive sulfide minerals of the IPB. To test this hypothesis, a drilling project was carried out to intersect ground waters that interact with the mineral ore in order to provide evidence of subsurface microbial activities and the potential resources to support these activities. The oxidants that drive the system appear to come from the rock matrix, contradicting conventional acid mine drainage models. These resources need only groundwater to launch microbial metabolism. There are several similarities between the vast deposits of sulfates and iron oxides on Mars and the main sulfide-containing iron bioleaching products found in the Tinto. Firstly, the short-lived methane detected both in Mars' atmosphere and in the sediments and subsurface of the IPB and secondly, the abundance of iron, common to both. The physicochemical properties of iron make it a source of energy, a shield against radiation and oxidative stress as well as a natural pH controller. These similarities have led to Río Tinto's status as a Mars terrestrial analogue.

  14. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  15. Planning the Mine and Mining the Plan

    NASA Astrophysics Data System (ADS)

    Boucher, D. S.; Chen, N.

    2016-11-01

    Overview of best practices used in the terrestrial mining industry when developing a mine site towards production. The intent is to guide planners towards an effective and well constructed roadmap for the development of ISRU mining activities. A strawman scenario is presented as an illustration for lunar mining of water ice.

  16. Geochemical and Temporal Influences on the Enrichment of Acidophilic Iron-Oxidizing Bacterial Communities

    PubMed Central

    Sheng, Yizhi; Bibby, Kyle; Grettenberger, Christen; Kaley, Bradley; Macalady, Jennifer L.; Wang, Guangcai

    2016-01-01

    ABSTRACT Two acid mine drainage (AMD) sites in the Appalachian bituminous coal basin were selected to enrich for Fe(II)-oxidizing microbes and measure rates of low-pH Fe(II) oxidation in chemostatic bioreactors. Microbial communities were enriched for 74 to 128 days in fed-batch mode, then switched to flowthrough mode (additional 52 to 138 d) to measure rates of Fe(II) oxidation as a function of pH (2.1 to 4.2) and influent Fe(II) concentration (80 to 2,400 mg/liter). Biofilm samples were collected throughout these operations, and the microbial community structure was analyzed to evaluate impacts of geochemistry and incubation time. Alpha diversity decreased as the pH decreased and as the Fe(II) concentration increased, coincident with conditions that attained the highest rates of Fe(II) oxidation. The distribution of the seven most abundant bacterial genera could be explained by a combination of pH and Fe(II) concentration. Acidithiobacillus, Ferrovum, Gallionella, Leptospirillum, Ferrimicrobium, Acidiphilium, and Acidocella were all found to be restricted within specific bounds of pH and Fe(II) concentration. Temporal distance, defined as the cumulative number of pore volumes from the start of flowthrough mode, appeared to be as important as geochemical conditions in controlling microbial community structure. Both alpha and beta diversities of microbial communities were significantly correlated to temporal distance in the flowthrough experiments. Even after long-term operation under nearly identical geochemical conditions, microbial communities enriched from the different sites remained distinct. While these microbial communities were enriched from sites that displayed markedly different field rates of Fe(II) oxidation, rates of Fe(II) oxidation measured in laboratory bioreactors were essentially the same. These results suggest that the performance of suspended-growth bioreactors for AMD treatment may not be strongly dependent on the inoculum used for reactor

  17. MICROBIAL SULFATE REDUCTION AND METAL ATTENUATION IN PH 4 ACID MINE WATER

    EPA Science Inventory

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing...

  18. Unmodified prolactin (PRL) promotes PRL secretion and acidophil hypertrophy and is associated with pituitary hyperplasia in female rats.

    PubMed

    Johnson, Terence E; Vue, Mayza; Brekhus, Sharyn; Khong, Amy; Ho, Timothy W C; Walker, Ameae M

    2003-01-01

    In this study, we have tested the hypothesis that unmodified prolactin (U-PRL) and phosphorylated prolactin (P-PRL) have differential roles in the autoregulation of PRL secretion in vivo. Recombinant human U-PRL and a molecular mimic of P-PRL (S179D PRL) were administered to male rats and to female rats in different physiological states and the effect on rat PRL release was measured. Administration of U-PRL elevated rat PRL in all female animals, but was without effect in males. By contrast, S179D PRL was inactive in females, but inhibited PRL release in males. Morphometric and immunohistochemical analyses demonstrated acidophil hypertrophy and evidence of increased PRL secretion in the pituitaries of U-PRL-treated females. Analysis of the two forms of PRL during prolactinoma induction in two differentially susceptible strains of rats found a strong temporal correlation among increased ratios of U-PRL: P-PRL, increased circulating PRL, and increased cell proliferation. We conclude (1). that the autoregulatory mechanism(s) can distinguish between the two major forms of PRL and that higher proportions of U-PRL not only allow for higher circulating levels of PRL, but are also autostimulatory, (2). that the autoregulatory mechanism( s) are set differently in males and females such that females are more sensitive to autostimulation by U-PRL and less sensitive to inhibition by P-PRL, and (3). that U-PRL and P-PRL may also have differential roles in the regulation of pituitary cell proliferation.

  19. Microbial community and metabolic pathway succession driven by changed nutrient inputs in tailings: effects of different nutrients on tailing remediation.

    PubMed

    Zhang, Mingjiang; Liu, Xingyu; Li, Yibin; Wang, Guangyuan; Wang, Zining; Wen, Jiankang

    2017-03-28

    To solve the competition problem of acidophilic bacteria and sulfate-reducing bacteria in the practical application of mine tailing bioremediation, research into the mechanisms of using different nutrients to adjust the microbial community was conducted. Competition experiments involving acidophilic bacteria and sulfate-reducing bacteria were performed by supplementing the media with yeast extract, tryptone, lactate, and glucose. The physiochemical properties were determined, and the microbial community structure and biomass were investigated using MiSeq sequencing and qRT-PCR, respectively. Four nutrients had different remediation mechanisms and yielded different remediation effects. Yeast extract and tryptone (more than 1.6 g/L) promoted sulfate-reducing bacteria and inhibited acidophilic bacteria. Lactate inhibited both sulfate-reducing and acidophilic bacteria. Glucose promoted acidophilic bacteria more than sulfate-reducing bacteria. Yeast extract was the best choice for adjusting the microbial community and bioremediation, followed by tryptone. Lactate kept the physiochemical properties stable or made slight improvements; however, glucose was not suitable for mine tailing remediation. Different nutrients had significant effects on the abundance of the second enzyme of the sulfate-reducing pathway (p < 0.05), which is the rate-limiting step of sulfate-reducing pathways. Nutrients changed the remediation effects effectively by adjusting the microbial community and the abundance of the sulfate-reducing rate-limiting enzyme.

  20. The Mechanization of Mining.

    ERIC Educational Resources Information Center

    Marovelli, Robert L.; Karhnak, John M.

    1982-01-01

    Mechanization of mining is explained in terms of its effect on the mining of coal, focusing on, among others, types of mining, productivity, machinery, benefits to retired miners, fatality rate in underground coal mines, and output of U.S. mining industry. (Author/JN)

  1. Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces.

    PubMed

    Bellenberg, Sören; Díaz, Mauricio; Noël, Nanni; Sand, Wolfgang; Poetsch, Ansgar; Guiliani, Nicolas; Vera, Mario

    2014-11-01

    Bioleaching of metal sulfides is an interfacial process where biofilm formation is considered to be important in the initial steps of this process. Among the factors regulating biofilm formation, molecular cell-to-cell communication such as quorum sensing is involved. A functional LuxIR-type I quorum sensing system is present in Acidithiobacillus ferrooxidans. However, cell-to-cell communication among different species of acidophilic mineral-oxidizing bacteria has not been studied in detail. These aspects were the scope of this study with emphasis on the effects exerted by the external addition of mixtures of synthetic N-acyl-homoserine-lactones on pure and binary cultures. Results revealed that some mixtures had inhibitory effects on pyrite leaching. Some of them correlated with changes in biofilm formation patterns on pyrite coupons. We also provide evidence that A. thiooxidans and Acidiferrobacter spp. produce N-acyl-homoserine-lactones. In addition, the observation that A. thiooxidans cells attached more readily to pyrite pre-colonized by living iron-oxidizing acidophiles than to heat-inactivated or biofilm-free pyrite grains suggests that other interactions also occur. Our experiments show that pre-cultivation conditions influence A. ferrooxidans attachment to pre-colonized pyrite surfaces. The understanding of cell-to-cell communication may consequently be used to develop attempts to influence biomining/bioremediation processes.

  2. Bacteria Counter

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.

  3. Northern Trust Mines

    EPA Pesticide Factsheets

    The United States and the Navajo Nation entered into settlement agreements that provide funds to conduct investigations and any needed cleanup at 16 of the 46 priority mines, including six mines in the Northern Abandoned Uranium Mine Region.

  4. Exploration and Mining Roadmap

    SciTech Connect

    none,

    2002-09-01

    This Exploration and Mining Technology Roadmap represents the third roadmap for the Mining Industry of the Future. It is based upon the results of the Exploration and Mining Roadmap Workshop held May 10 ñ 11, 2001.

  5. Lipase production from a novel thermo-tolerant and extreme acidophile Bacillus pumilus using palm oil as the substrate and treatment of palm oil-containing wastewater.

    PubMed

    Saranya, P; Sukanya Kumari, H; Prasad Rao, B; Sekaran, G

    2014-03-01

    The thermo-tolerant and extreme acidophilic microorganism Bacillus pumilus was isolated from the soil collected from a commercial edible-oil extraction industry. Optimisation of conditions for the lipase production was conducted using response surface methodology. The optimum conditions for obtaining the maximum activity (1,100 U/mL) of extremely acidic thermostable lipase were fermentation time, 96 h; pH, 1; temperature, 50 °C; and concentration of palm oil, 50 g/L. After purification, a 7.1-fold purity of lipase with specific activity of 5,173 U/mg protein was obtained. The molecular weight of the thermo-tolerant acidophilic lipase (TAL) was 55 kDa. The predominant amino acid in the TAL was glycine. The functional groups of lipase were determined by Fourier transform infrared spectroscopy. TAL exhibited enhanced activity (114 %) with dimethyl sulphoxide (20 %, v/v), and it showed a moderate activity with methanol, hexane and benzene. The optimum conditions for the treatment of palm oil in wastewater using the TAL were found to be time, 3 h; pH, 1; temperature, 50 °C with pseudo second-order kinetic constant of 1.88 × 10(-3) L mol(-1) min(-1). The Michaelis-Menten enzyme kinetic model and the nonlinear kinetic model were evaluated for the TAL. TAL established hydrolysis efficiency of 96 % for palm oil in wastewater at 50 °C.

  6. The response of an acidophilic and circumneutral clone of the planktonic diatom Asterionella to aluminum: The importance of pH and trace metal interactions

    SciTech Connect

    Riseng, C.M.; Gensemer, R.W. )

    1987-06-01

    The growth rates of an acidophilic and a circumneutral clone of Asterionella were assessed over a range of total aluminum concentrations from 0 to 800 {mu}g/L, and a pH range from 5 to 7. Increasing Al levels stimulated the growth of both clones in the growth medium FRAQUIL, and the growth optima for these effects were pH dependent. Maximum growth stimulation for the circumneutral clone occurred from 200 to 400 {mu}g/L total Al at pH 6, whereas at pH 7, increasing Al levels corresponded to increasing growth rates up to the maximum treatment concentration of 80 {mu}g/L total Al. Similar qualitative responses were observed for the acidophilic clone, but at one pH unit lower than the circumneutral clone. This growth stimulation probably results from Al ions replacing apparently growth limiting trace elements from the media chelator EDTA. The same growth responses can be achieved by manipulating trace mental ion activities by altering total EDTA levels.

  7. [Hydrocarbon-Oxidizing potential and the genes for n-alkane biodegradation in a new acidophilic mycobacterial association from sulfur blocks].

    PubMed

    Ivanova, I E; Sukhacheva, M V; Kanat'eva, A Yu; Kravchenko, I K; Kurganov, A A

    2014-01-01

    Capacity of AG(S10), a new aerobic acidophilic (growing within the pH range from 1.3 to 4.5 with the optimum at 2.0-2.5) bacterial association from sulfur blocks of the Astrakhan gas-processing complex (AGC), for oxidation of hydrocarbons of various chemical structure was investigated. A broad spectrum of normal (C10-C21) and iso-alkanes, toluene, naphthalene, andphenanthrene, as well as isoprenoids resistant to microbial degradation, pristane and phytane (components of paraffin oil), and 2,2,4,4,6,8,8,-heptamethylnonane, a branched hydrocarbon, were biodegraded under acidic conditions. Microbiological investigation revealed the dominance of mycobacteria in the AGS10 association, which was confirmed by analysis of the 16S rRNA gene clone library. In the phylogenetic tree, the 16S rRNA sequences formed a branch within the cluster of slow-growing mycobacteria, with 98% homology to the closest species Mycobacterium florentinum. Genomic DNA of AG(S10) culture grown on C14-C17 n-alkanes at pH 2.5 was found to contain the genes of two hydroxylase families, alkB and Cyp 153, indicating their combined involvement in hydrocarbon biodegradation. The high hydrocarbon-oxidizing potential of the AGS10 bacterial association, indicated that further search for the genes responsible for degradation of various hydrocarbons in acidophilic mycobacteria could be promising.

  8. Mining review

    USGS Publications Warehouse

    McCartan, L.; Morse, D.E.; Plunkert, P.A.; Sibley, S.F.

    2004-01-01

    The average annual growth rate of real gross domestic product (GDP) from the third quarter of 2001 through the second quarter of 2003 in the United States was about 2.6 percent. GDP growth rates in the third and fourth quarters of 2003 were about 8 percent and 4 percent, respectively. The upward trends in many sectors of the U.S. economy in 2003, however, were shared by few of the mineral materials industries. Annual output declined in most nonfuel mining and mineral processing industries, although there was an upward turn toward yearend as prices began to increase.

  9. Surface mining

    SciTech Connect

    Not Available

    1989-06-01

    This paper reports on a GAO study of attorney and expert witness fees awarded as a result of litigation brought under the Surface Mining Control and Reclamation Act. As of March 24, 1989, a total of about $1.4 million had been awarded in attorney fees and expenses - about $1.3 subject to the provisions of the Employee Retirement Income Security Act, a comparison of its features with provisions of ERISA showed that the plan differed from ERISA provisions in areas such as eligibility, funding, and contribution limits.

  10. Cultivation of Acidophilic Algae Galdieria sulphuraria and Pseudochlorella sp. YKT1 in Media Derived from Acidic Hot Springs.

    PubMed

    Hirooka, Shunsuke; Miyagishima, Shin-Ya

    2016-01-01

    Microalgae possess a high potential for producing pigments, antioxidants, and lipophilic compounds for industrial applications. However, the cultivation of microalgae comes at a high cost. To reduce the cost, changes from a closed bioreactor to open pond system and from a synthetic medium to environmental or wastewater-based medium are being sought. However, the use of open pond systems is currently limited because of contamination by undesirable organisms. To overcome this issue, one strategy is to combine acidophilic algae and acidic drainage in which other organisms are unable to thrive. Here, we tested waters from sulfuric acidic hot springs (Tamagawa, pH 1.15 and Tsukahara, pH 1.14) in Japan for the cultivation of the red alga Galdieria sulphuraria 074G and the green alga Pseudochlorella sp. YKT1. Both of these spring waters are rich in phosphate (0.043 and 0.145 mM, respectively) compared to other environmental freshwater sources. Neither alga grew in the spring water but they grew very well when the waters were supplemented with an inorganic nitrogen source. The algal yields were ∼2.73 g dry weight/L for G. sulphuraria and ∼2.49 g dry weight/L for P. sp. YKT1, which were comparable to those in an autotrophic synthetic medium. P. sp. YKT1 grew in the spring waters supplemented either of NH4(+), NO3(-) or urea, while G. sulphuraria grew only when NH4(+) was supplemented. For P. sp. YKT1, the spring water was adjusted to pH 2.0, while for G. sulphuraria, no pH adjustment was required. In both cases, no additional pH-buffering compound was required. The phycocyanin of the thermophilic G. sulphuraria is known to be more thermostable than that from the Spirulina platensis currently used in phycocyanin production for commercial use. The phycocyanin content in G. sulphuraria in the Tsukahara water supplemented with NH4(+) was 107.42 ± 1.81 μg/mg dry weight, which is comparable to the level in S. platensis (148.3 μg/mg dry weight). P. sp. YKT1 cells in the

  11. Cultivation of Acidophilic Algae Galdieria sulphuraria and Pseudochlorella sp. YKT1 in Media Derived from Acidic Hot Springs

    PubMed Central

    Hirooka, Shunsuke; Miyagishima, Shin-ya

    2016-01-01

    Microalgae possess a high potential for producing pigments, antioxidants, and lipophilic compounds for industrial applications. However, the cultivation of microalgae comes at a high cost. To reduce the cost, changes from a closed bioreactor to open pond system and from a synthetic medium to environmental or wastewater-based medium are being sought. However, the use of open pond systems is currently limited because of contamination by undesirable organisms. To overcome this issue, one strategy is to combine acidophilic algae and acidic drainage in which other organisms are unable to thrive. Here, we tested waters from sulfuric acidic hot springs (Tamagawa, pH 1.15 and Tsukahara, pH 1.14) in Japan for the cultivation of the red alga Galdieria sulphuraria 074G and the green alga Pseudochlorella sp. YKT1. Both of these spring waters are rich in phosphate (0.043 and 0.145 mM, respectively) compared to other environmental freshwater sources. Neither alga grew in the spring water but they grew very well when the waters were supplemented with an inorganic nitrogen source. The algal yields were ∼2.73 g dry weight/L for G. sulphuraria and ∼2.49 g dry weight/L for P. sp. YKT1, which were comparable to those in an autotrophic synthetic medium. P. sp. YKT1 grew in the spring waters supplemented either of NH4+, NO3- or urea, while G. sulphuraria grew only when NH4+ was supplemented. For P. sp. YKT1, the spring water was adjusted to pH 2.0, while for G. sulphuraria, no pH adjustment was required. In both cases, no additional pH-buffering compound was required. The phycocyanin of the thermophilic G. sulphuraria is known to be more thermostable than that from the Spirulina platensis currently used in phycocyanin production for commercial use. The phycocyanin content in G. sulphuraria in the Tsukahara water supplemented with NH4+ was 107.42 ± 1.81 μg/mg dry weight, which is comparable to the level in S. platensis (148.3 μg/mg dry weight). P. sp. YKT1 cells in the Tamagawa

  12. Halarchaeum grantii sp. nov., a moderately acidophilic haloarchaeon isolated from a commercial salt sample made in Okinawa, Japan.

    PubMed

    Shimane, Yasuhiro; Minegishi, Hiroaki; Echigo, Akinobu; Kamekura, Masahiro; Itoh, Takashi; Ohkuma, Moriya; Tsubouchi, Taishi; Usui, Keiko; Maruyama, Tadashi; Usami, Ron; Hatada, Yuji

    2015-08-03

    Three moderately acidophilic, halophilic archaeal strains, MH1-243-3T, MH1-243-5 and MH1-243-6 were isolated from a commercial salt sample made from seawater in Okinawa, Japan. Cells of the three strains were pleomorphic, and stained Gram-negative. Colonies of the strains were orange-red pigmented. Strain MH1-243-3T was able to grow at 15-27 % (w/v) NaCl (optimum at 24 %), at pH 4.5-6.5 (pH 5.5) and at 35-50 °C (45 °C). Strains MH1-243-5 and MH1-243-6 grew in slightly different ranges (shown in text). The 16S rRNA gene sequences of the three strains were identical, and the closest relative was Halarchaeum salinum MH1-34-1T with 97.0 % similarities. The rpoB' gene sequences of the three strains were also identical, and the closest relative was Hla. acidiphilum JCM 16109T with 92.0 % similarities. The DNA G+C contents of MH1-243-3T, MH1-243-5 and MH1-243-6 were 65.2 mol%. The levels of DNA-DNA relatedness amongst the three strains were 84.1-99.8 %, while that between MH1-243-3T and Halarchaeum salinum MH1-34-1 T was 30.6 % and 31.6 % (reciprocally), and those between MH1-243-3T and type strains of other species in the genus Halarchaeum were 42.3-29.4 %. Based on the phenotypic, genotypic and phylogenetic analyses, it is proposed that the isolates should represent a new species of the genus Halarchaeum, for which the name Halarchaeum grantii sp. nov. is proposed. The type strain is MH1-243-3T (= JCM 19585T = KCTC 4142T) isolated from commercial sea salt produced in Okinawa, Japan. MH1-243-5 (= JCM 19586) and MH1-243-6 (= JCM 18422) are additional strains of the species.

  13. Wikipedia Mining

    NASA Astrophysics Data System (ADS)

    Nakayama, Kotaro; Ito, Masahiro; Erdmann, Maike; Shirakawa, Masumi; Michishita, Tomoyuki; Hara, Takahiro; Nishio, Shojiro

    Wikipedia, a collaborative Wiki-based encyclopedia, has become a huge phenomenon among Internet users. It covers a huge number of concepts of various fields such as arts, geography, history, science, sports and games. As a corpus for knowledge extraction, Wikipedia's impressive characteristics are not limited to the scale, but also include the dense link structure, URL based word sense disambiguation, and brief anchor texts. Because of these characteristics, Wikipedia has become a promising corpus and a new frontier for research. In the past few years, a considerable number of researches have been conducted in various areas such as semantic relatedness measurement, bilingual dictionary construction, and ontology construction. Extracting machine understandable knowledge from Wikipedia to enhance the intelligence on computational systems is the main goal of "Wikipedia Mining," a project on CREP (Challenge for Realizing Early Profits) in JSAI. In this paper, we take a comprehensive, panoramic view of Wikipedia Mining research and the current status of our challenge. After that, we will discuss about the future vision of this challenge.

  14. Bioreactor for acid mine drainage control

    DOEpatents

    Zaluski, Marek H.; Manchester, Kenneth R.

    2001-01-01

    A bioreactor for reacting an aqueous heavy metal and sulfate containing mine drainage solution with sulfate reducing bacteria to produce heavy metal sulfides and reduce the sulfuric acid content of the solution. The reactor is an elongated, horizontal trough defining an inlet section and a reaction section. An inlet manifold adjacent the inlet section distributes aqueous mine drainage solution into the inlet section for flow through the inlet section and reaction section. A sulfate reducing bacteria and bacteria nutrient composition in the inlet section provides sulfate reducing bacteria that with the sulfuric acid and heavy metals in the solution to form solid metal sulfides. The sulfate reducing bacteria and bacteria nutrient composition is retained in the cells of a honeycomb structure formed of cellular honeycomb panels mounted in the reactor inlet section. The honeycomb panels extend upwardly in the inlet section at an acute angle with respect to the horizontal. The cells defined in each panel are thereby offset with respect to the honeycomb cells in each adjacent panel in order to define a tortuous path for the flow of the aqueous solution.

  15. Prevention of Acid Mine Drainage Through Complexation of Ferric Iron by Soluble Microbial Growth Products

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Yacob, T. W.; Silverstein, J.; Rajaram, H.; Minchow, K.; Basta, J.

    2011-12-01

    Acid mine drainage (AMD) is a widespread environmental problem with deleterious impacts on water quality in streams and watersheds. AMD is generated largely by the oxidation of metal sulfides (i.e. pyrite) by ferric iron. This abiotic reaction is catalyzed by conversion of ferrous to ferric iron by iron and sulfur oxidizing microorganisms. Biostimulation is currently being investigated as an attempt to inhibit the oxidation of pyrite and growth of iron oxidizing bacteria through addition of organic carbon. This may stimulate growth of indigenous communities of acidophilic heterotrophic bacteria to compete for oxygen. The goal of this research is to investigate a secondary mechanism associated with carbon addition: complexation of free Fe(III) by soluble microbial growth products (SMPs) produced by microorganisms growing in waste rock. Exploratory research at the laboratory scale examined the effect of soluble microbial products (SMPs) on the kinetics of oxidation of pure pyrite during shaker flask experiments. The results confirmed a decrease in the rate of pyrite oxidation that was dependent upon the concentration of SMPs in solution. We are using these data to verify results from a pyrite oxidation model that accounts for SMPs. This reactor model involves differential-algebraic equations incorporating total component mass balances and mass action laws for equilibrium reactions. Species concentrations determined in each time step are applied to abiotic pyrite oxidation rate expressions from the literature to determine the evolution of total component concentrations. The model was embedded in a parameter estimation algorithm to determine the reactive surface area of pyrite in an abiotic control experiment, yielding an optimized value of 0.0037 m2. The optimized model exhibited similar behavior to the experiment for this case; the root mean squared of residuals for Fe(III) was calculated to be 7.58 x 10-4 M, which is several orders of magnitude less than the actual

  16. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 2. MEMBRANE BIOREACTOR SYSTEM FOR SULFATE REDUCTION

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both the active and abandoned mining operations. The wastew...

  17. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 1. METAL PRECIPITATION FOR RECOVERY AND RECYCLE

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both active and abandoned mining operations. The wastewater...

  18. Microgravity effects on magnetotactic bacteria

    NASA Astrophysics Data System (ADS)

    Urban, James E.

    1998-01-01

    situations studied, bacteria were impaired in their ability to orient to magnets, suggesting that on earth the bacteria use magnetosomes to respond to gravity. These experiments could have significant commercial utility and could lead to the use of magnetosomes to direct biodegrading bacteria to contaminated aquifers or soils and likewise could be used to direct and localize bacteria used in element leaching and microbial mining.

  19. Bioleaching of ilmenite and basalt in the presence of iron-oxidizing and iron-scavenging bacteria

    NASA Astrophysics Data System (ADS)

    Navarrete, Jesica U.; Cappelle, Ian J.; Schnittker, Kimberlin; Borrok, David M.

    2013-04-01

    Bioleaching has been suggested as an alternative to traditional mining techniques in extraterrestrial environments because it does not require extensive infrastructure and bulky hardware. In situ bioleaching of silicate minerals, such as those found on the moon or Mars, has been proposed as a feasible alternative to traditional extraction techniques that require either extreme heat and/or substantial chemical treatment. In this study, we investigated the biotic and abiotic leaching of basaltic rocks (analogues to those found on the moon and Mars) and the mineral ilmenite (FeTiO3) in aqueous environments under acidic (pH ˜ 2.5) and circumneutral pH conditions. The biological leaching experiments were conducted using Acidithiobacillus ferrooxidans, an iron (Fe)-oxidizing bacteria, and Pseudomonas mendocina, an Fe-scavenging bacteria. We found that both strains were able to grow using the Fe(II) derived from the tested basaltic rocks and ilmenite. Although silica leaching rates were the same or slightly less in the bacterial systems with A. ferrooxidans than in the abiotic control systems, the extent of Fe, Al and Ti released (and re-precipitated in new solid phases) was actually greater in the biotic systems. This is likely because the Fe(II) leached from the basalt was immediately oxidized by A. ferrooxidans, and precipitated into Fe(III) phases which causes a change in the equilibrium of the system, i.e. Le Chatelier's principle. Iron(II) in the abiotic experiment was allowed to build up in solution which led to a decrease in its overall release rate. For example, the percentage of Fe, Al and Ti leached (dissolved + reactive mineral precipitates) from the Mars simulant in the A. ferrooxidans experimental system was 34, 41 and 13% of the total Fe, Al and Ti in the basalt, respectively, while the abiotic experimental system released totals of only 11, 25 and 2%. There was, however, no measurable difference in the amounts of Fe and Ti released from ilmenite in the

  20. German mining equipment

    SciTech Connect

    Not Available

    1993-10-01

    The German mining equipment industry developed to supply machines and services to the local mining industry, i.e., coal, lignite, salt, potash, ore mining, industrial minerals, and quarrying. The sophistication and reliability of its technology also won it worldwide export markets -- which is just as well since former major domestic mining sectors such as coal and potash have declined precipitously, and others such as ore mining have all but disappeared. Today, German mining equipment suppliers focus strongly on export sales, and formerly unique German mining technologies such as continuous mining with bucket wheel excavators and conveyors for open pits, or plowing of underground coal longwalls are widely used abroad. The status of the German mining equipment industry is reviewed.

  1. 4. OVERALL VIEW OF MINE SITE, SHOWING MINE CAR TRACKS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. OVERALL VIEW OF MINE SITE, SHOWING MINE CAR TRACKS, SNOWSHEDS AND TIPPLE (LEFT BACKGROUND). VIEW TO EAST. - Park Utah Mining Company: Keetley Mine Complex, 1 mile East of U.S. 40 at Keetley, Heber City, Wasatch County, UT

  2. Exposures from mining and mine tailings

    NASA Astrophysics Data System (ADS)

    Chambers, Douglas B.; Cassaday, Valerie J.; Lowe, Leo M.

    The mining, milling and tailings management of uranium ores results in environmental radiation exposures. This paper describes the sources of radioactive emissions to the environment associated with these activities, reviews the basic approach used to estimate the resultant radiation exposures and presents examples of typical uranium mind and mill facilities. Similar concepts apply to radiation exposures associated with the mining of non-radioactive ores although the magnitudes of the exposures would normally be smaller than those associated with uranium mining.

  3. Mining lease handbook

    SciTech Connect

    Not Available

    1992-01-01

    Mining leases and similar agreements are some of the most common documents encountered by mining attorneys. The mining Lease Handbook contains a collection of mining lease clauses which have been organized and assembled for over 25 years. The clauses in this book have been coordinated and cross-referenced to enable the Handbook user to create a mining lease having a logical structure with consistent terminology throughout. In many cases, alternative clauses are included. The accompanying commentary provides insight into the use of the various clauses while pointing our pitfalls to be avoided. This Handbook is devoted primarily to mining leases, several chapters cover the subjects of options, subleases, and ancillary documents.

  4. Acid mine water treatment using engineered wetlands

    NASA Astrophysics Data System (ADS)

    Kleinmann, Robert L. P.

    1990-03-01

    During the last two decades, the United States mining industry has greatly increased the amount it spends on pollution control. The application of biotechnology to mine water can reduce the industry's water treatment costs (estimated at over a million dollars a day) and improve water quality in streams and rivers adversely affected by acidic mine water draining from abandoned mines. Biological treatment of mine waste water is typically conducted in a series of small excavated ponds that resemble, in a superficial way, a small marsh area. The ponds are engineered to first facilitate bacterial oxidation of iron; ideally, the water then flows through a composted organic substrate that supports a population of sulfate-reducing bacteria. The latter process raises the pH. During the past four years, over 400 wetland water treatment systems have been built on mined lands as a result of research by the U.S. Bureau of Mines. In general, mine operators find that the wetlands reduce chemical treatment costs enough to repay the cost of wetland construction in less than a year. Actual rates of iron removal at field sites have been used to develop empirical sizing criteria based on iron loading and pH. If the pH is 6 or above, the wetland area (m2) required is equivalent to the iron load (grams/day) divided by 10. Theis requirement doubles at a pH of 4 to 5. At a pH below 4, the iron load (grams/day) should be divided by 2 to estimate the area required (m2).

  5. Back To Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  6. Abandoned Mine Lands

    EPA Pesticide Factsheets

    Abandoned Mine Lands are those lands, waters, and surrounding watersheds where extraction, beneficiation, or processing of ores and minerals (excluding coal) has occurred. These lands also include areas where mining or processing activity is inactive.

  7. Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China.

    PubMed

    Hao, Chunbo; Wei, Pengfei; Pei, Lixin; Du, Zerui; Zhang, Yi; Lu, Yanchun; Dong, Hailiang

    2017-04-01

    Acid mine drainage (AMD),characterized by strong acidity and high metal concentrations, generates from the oxidative dissolution of metal sulfides, and acidophiles can accelerate the process significantly. Despite extensive research in microbial diversity and community composition, little is known about seasonal variations of microbial community structure (especially micro eukaryotes) in response to environmental conditions in AMD ecosystem. To this end, AMD samples were collected from Nanshan AMD lake, Anhui Province, China, over a full seasonal cycle from 2013 to 2014, and water chemistry and microbial composition were studied. pH of lake water was stable (∼3.0) across the sampling period, while the concentrations of ions varied dramatically. The highest metal concentrations in the lake were found for Mg and Al, not commonly found Fe. Unexpectedly, ultrahigh concentration of chlorophyll a was measured in the extremely acidic lake, reaching 226.43-280.95 μg/L in winter, even higher than those in most eutrophic freshwater lakes. Both prokaryotic and eukaryotic communities showed a strong seasonal variation. Among the prokaryotes, "Ferrovum", a chemolithotrophic iron-oxidizing bacterium was predominant in most sampling seasons, although it was a minor member prior to September, 2012. Fe(2+) was the initial geochemical factor that drove the variation of the prokaryotic community. The eukaryotic community was simple but varied more drastically than the prokaryotic community. Photoautotrophic algae (primary producers) formed a food web with protozoa or flagellate (top consumers) across all four seasons, and temperature appeared to be responsible for the observed seasonal variation. Ochromonas and Chlamydomonas (responsible for high algal bloom in winter) occurred in autumn/summer and winter/spring seasons, respectively, because of their distinct growth temperatures. The closest phylogenetic relationship between Chlamydomonas species in the lake and those in Arctic

  8. Mountaintop mining update

    SciTech Connect

    Buchsbaum, L.

    2006-07-15

    In a bad year for the US mining industry's safety record and public image, Morehead State University hosted a public meeting titled 'Mountaintop mining, health and safety forum'. This was a balanced event, with representatives from the mining industry as well as activists from the environmental community. A full account is given of the presentations and debate at the forum. 6 photos.

  9. Data Mining for CRM

    NASA Astrophysics Data System (ADS)

    Thearling, Kurt

    Data Mining technology allows marketing organizations to better understand their customers and respond to their needs. This chapter describes how Data Mining can be combined with customer relationship management to help drive improved interactions with customers. An example showing how to use Data Mining to drive customer acquisition activities is presented.

  10. Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions

    NASA Astrophysics Data System (ADS)

    Gómez, Felipe; Mateo-Martí, Eva; Prieto-Ballesteros, Olga; Martín-Gago, Jose; Amils, Ricardo

    2010-10-01

    Current surface conditions (strong oxidative atmosphere, UV radiation, low temperatures and xeric conditions) on Mars are considered extremely challenging for life. The question is whether there are any features on Mars that could exert a protective effect against the sterilizing conditions detected on its surface. Potential habitability in the subsurface would increase if the overlaying material played a protective role. With the aim of evaluating this possibility we studied the viability of two microorganisms under different conditions in a Mars simulation chamber. An acidophilic chemolithotroph isolated from Río Tinto belonging to the Acidithiobacillus genus and Deinococcus radiodurans, a radiation resistant microorganism, were exposed to simulated Mars conditions under the protection of a layer of ferric oxides and hydroxides, a Mars regolith analogue. Samples of these microorganisms were exposed to UV radiation in Mars atmospheric conditions at different time intervals under the protection of 2 and 5 mm layers of oxidized iron minerals. Viability was evaluated by inoculation on fresh media and characterization of their growth cultures. Here we report the survival capability of both bacteria to simulated Mars environmental conditions.

  11. Bacteriohopanepolyol signatures as markers for methanotrophic bacteria in peat moss

    NASA Astrophysics Data System (ADS)

    van Winden, Julia F.; Talbot, Helen M.; Kip, Nardy; Reichart, Gert-Jan; Pol, Arjan; McNamara, Niall P.; Jetten, Mike S. M.; Op den Camp, Huub J. M.; Sinninghe Damsté, Jaap S.

    2012-01-01

    Bacteriohopanepolyols (BHPs) are bacterial biomarkers with a likely potential to identify present and past methanotrophic communities. To unravel the methanotrophic community in peat bogs, we report the BHP signatures of type I and type II methanotrophs isolated from Sphagnum mosses and of an extreme acidophilic verrucomicrobial methanotroph. A type I Methylovulum-like strain (M200) contains a remarkable combination of BHPs, including a complete suite of mono-unsaturated aminobacteriohopanepentol, -tetrol and -triol. The Methylomonas-like strain (M5) mainly produces aminobacteriohopanepentol, characteristic for type I methanotrophs, and the Methylosinus-like strain (29) contains both aminobacteriohopanetetrol and aminobacteriohopanetriol, typical for a type II methanotroph. The type II methanotroph Methylocella palustris and the verrucomicrobial Methylacidiphilum fumariolicum strain SolV primarily produce aminotriol, which is also produced by many other bacteria. In Sphagnum mosses and underlying peat from a peat bog from Moorhouse, UK, the only detectable BHPs indicative of methanotrophs are aminobacteriohopanepentol (aminopentol) and aminobacteriohopanetetrol (aminotetrol), although both are relatively low in abundance compared to other BHPs. Aminopentol serves as a marker for type I methanotrophs, while aminotetrol may reflect the presence of both type I and type II methanotrophs. The similar quantities of aminotetrol and aminopentol indicate that the methanotrophic community in Sphagnum peat probably consist of a combination of both type I and type II methanotrophs, which is in line with previously published pmoA-based micro-array results.

  12. ACUTE TOXICITY OF HEAVY METALS TO ACETATE-UTILIZING MIXED CULTURES OF SULFATE-REDUCING BACTERIA: EC100 AND EC50

    EPA Science Inventory

    Acid mine drainage (AMD) from abandoned mines and acid mine pitlakes is an important environmental contaminant concern and usually contains appreciable concentrations of heavy metals. Since sulfate-reducing bacteria (SRB) are involved in the treatment of AMD, knowledge of acute m...

  13. Data mining in radiology.

    PubMed

    Kharat, Amit T; Singh, Amarjit; Kulkarni, Vilas M; Shah, Digish

    2014-04-01

    Data mining facilitates the study of radiology data in various dimensions. It converts large patient image and text datasets into useful information that helps in improving patient care and provides informative reports. Data mining technology analyzes data within the Radiology Information System and Hospital Information System using specialized software which assesses relationships and agreement in available information. By using similar data analysis tools, radiologists can make informed decisions and predict the future outcome of a particular imaging finding. Data, information and knowledge are the components of data mining. Classes, Clusters, Associations, Sequential patterns, Classification, Prediction and Decision tree are the various types of data mining. Data mining has the potential to make delivery of health care affordable and ensure that the best imaging practices are followed. It is a tool for academic research. Data mining is considered to be ethically neutral, however concerns regarding privacy and legality exists which need to be addressed to ensure success of data mining.

  14. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    PubMed

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  15. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    PubMed Central

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  16. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  17. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  18. Structure and Properties of a Non-processive, Salt-requiring, and Acidophilic Pectin Methylesterase from Aspergillus niger Provide Insights into the Key Determinants of Processivity Control*

    PubMed Central

    Kent, Lisa M.; Loo, Trevor S.; Melton, Laurence D.; Mercadante, Davide; Williams, Martin A. K.; Jameson, Geoffrey B.

    2016-01-01

    Many pectin methylesterases (PMEs) are expressed in plants to modify plant cell-wall pectins for various physiological roles. These pectins are also attacked by PMEs from phytopathogens and phytophagous insects. The de-methylesterification by PMEs of the O6-methyl ester groups of the homogalacturonan component of pectin, exposing galacturonic acids, can occur processively or non-processively, respectively, describing sequential versus single de-methylesterification events occurring before enzyme-substrate dissociation. The high resolution x-ray structures of a PME from Aspergillus niger in deglycosylated and Asn-linked N-acetylglucosamine-stub forms reveal a 10⅔-turn parallel β-helix (similar to but with less extensive loops than bacterial, plant, and insect PMEs). Capillary electrophoresis shows that this PME is non-processive, halophilic, and acidophilic. Molecular dynamics simulations and electrostatic potential calculations reveal very different behavior and properties compared with processive PMEs. Specifically, uncorrelated rotations are observed about the glycosidic bonds of a partially de-methyl-esterified decasaccharide model substrate, in sharp contrast to the correlated rotations of processive PMEs, and the substrate-binding groove is negatively not positively charged. PMID:26567911

  19. [An autopsy case with peculiar acidophilic bodies in the dentate nucleus and brain stem, associated with degeneration of the pyramidal-extrapyramidal systems].

    PubMed

    Kato, Y; Kashima, H; Tominaga, I; Nojima, T; Yanai, K; Takayama, K; Tamazawa, A; Miura, I; Oyanagi, S

    1985-12-01

    Case S.S. 59 years of age, male. At the age of 25, he had admitted to sanatorium for 7 years because of pulmonary tuberculosis. After his discharge, at the age of 45, he had started complaining of depressive mood or the idea of suicide and admitted to a mental hospital. Psychiatric diagnosis was depression and slight mental retardation. Shortly after, his depressive mood was improved, but his hypochondriac attitude was unchanged. No tendency toward dementia was proven. At the age of 54, he became enable to walk. Neurologically, pyramidal and some sort of extrapyramidal signs, dysarthria, disturbance of swallowing, fecal and urinary incontinence became apparent. Laboratory data showed scarcely any abnormality. At the age of 59, he died of bronchopneumonia. Neuropathologically, moderate degeneration of dentate nucleus, slight degeneration of pyramidal tract from medulla oblongata to spinal cord, striatum, substantia nigra were found. Neither senile plaques nor neurofibrillary changes could be seen throughout central nervous system. The most important finding is the presence of peculiar acidophilic bodies. They are round or oval, 10 approximately 20 mu in diameter and distributed in dentate nucleus, oculomotor nucleus, central grey of midbrain, superior colliculus, putamen, pallidum, subthalamic nucleus, Zona incerta, hypothalamus, Locus coeruleus, reticular formation of midbrain and pons, pontine nucleus, raphe nucleus, vestibular nucleus, inferior olive in order of number of the bodies. These bodies are scattered in so-called ground substance, and have no relations to any cell bodies or cell processes.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Adaptation of a mixed culture of acidophiles for a tank biooxidation of refractory gold concentrates containing a high concentration of arsenic.

    PubMed

    Hong, Jeongsik; Silva, Rene A; Park, Jeonghyun; Lee, Eunseong; Park, Jayhyun; Kim, Hyunjung

    2016-05-01

    We adapted a mixed culture of acidophiles to high arsenic concentrations to confirm the possibility of achieving more than 70% biooxidation of refractory gold concentrates containing high arsenic (As) concentration. The biooxidation process was applied to refractory gold concentrates containing approximately 139.67 g/kg of total As in a stirred tank reactor using an adapted mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The percentage of the biooxidation process was analyzed based on the total As removal efficiency. The As removal was monitored by inductively coupled plasma (ICP) analysis, conducted every 24 h. The results obtained with the adapted culture were compared with the percentage of biooxidation obtained with a non-adapted mixed culture of A. ferrooxidans and A. thiooxidans, and with their respective pure cultures. The percentages of biooxidation obtained during 358 h of reaction were 72.20%, 38.20%, 27.70%, and 11.45% for adapted culture, non-adapted culture, and pure cultures of A. thiooxidans and A. ferrooxidans, respectively. The adapted culture showed a peak maximum percentage of biooxidation of 77% at 120 h of reaction, confirming that it is possible to obtain biooxidation percentages over 70% in gold concentrates containing high As concentrations.

  1. A study on the selection of indigenous leaching-bacteria for effective bioleaching

    NASA Astrophysics Data System (ADS)

    Oh, S. J.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    Bioleaching technology, which is based on the ability of microorganisms to transform solid compounds into soluble and extractable valuable elements that can be recovered, has been rapidly developed in recent decades for its advantages, which include mild reaction condition, low energy consumption, simple process, low environmental impact and being suitable for low grade mine tailings and residues. The bacteria activities (survival, adaptation of toxically environments etc.) in the bioleaching technology play a key role in the solubilization of metals. The purpose of this study was to selection of optimal leaching-bacteria through changed pH and redox potential on bio-oxidation in batch experiments for successful bioleaching technology. Twenty three indigenous bacteria used throughout this study, leaching-bacteria were obtained from various geochemical conditions; bacteria inhabitation type (acid mine drainage, mine wastes leachate and sulfur hot springs) and base-metal type (sulfur, sulfide, iron and coal). Bio-oxidation experiment result was showed that 9 cycles (1 cycle - 28days) after the leaching-bacteria were inoculated to a leaching medium, pH was observed decreasing and redox potential increased. In the bacteria inhabitation type, bio-oxidation of sulfur hot springs bacteria was greater than other types (acid mine drainage and mine wastes leachate). In addition, bio-oxidation on base-metal type was appeared sulfur was greater than other types (sulfide, iron and coal). This study informs basic knowledge when bacteria apply to eco-/economic resources utilization studies including the biomining and the recycling of mine waste system.

  2. DEVELOPMENT OF SRB TREATMENT SYSTEMS FOR ACID MINE DRAINAGE

    EPA Science Inventory

    Over the past decade, significant advances have been made in the development of sulfate- reducing bacteria (SRB) technology to treat acid mine drainage (AMD), Bench-scale testing, field demonstrations, and engineered applications of SRBs for the treatment of AMD will be presented...

  3. The effect of species diversity on metal adsorption onto bacteria

    NASA Astrophysics Data System (ADS)

    Ginn, Brian R.; Fein, Jeremy B.

    2008-08-01

    In this study, we measure proton, Pb, and Cd adsorption onto the bacteria Deinococcus radiodurans, Thermus thermophilus, Acidiphlium angustum, Flavobacterium aquatile, and Flavobacterium hibernum, and we calculate the thermodynamic stability constants for the important surface complexes. These bacterial species represent a wide genetic diversity of bacteria, and they occupy a wide range of habitats. All of the species, except for A. angustum, exhibit similar proton and metal uptake. The only species tested that exhibits significantly different protonation behavior is A. angustum, an acidophile that grows at significantly lower pH than the other species of this study. We demonstrate that a single, metal-specific, surface complexation model can be used to reasonably account for the acid/base and metal adsorption behaviors of each species. We use a four discrete site non-electrostatic model to describe the protonation of the bacterial functional groups, with averaged p Ka values of 3.1 ± 0.3, 4.8 ± 0.2, 6.7 ± 0.1, and 9.2 ± 0.3, and site concentrations of (1.0 ± 0.17) × 10 -4, (9.0 ± 3.0) × 10 -5, (4.6 ± 1.8) × 10 -5, and (6.1 ± 2.3) × 10 -5 mol of sites per gram wet mass of bacteria, respectively. Adsorption of Cd and Pb onto the bacteria can be accounted for by the formation of complexes with each of the bacterial surface sites. The average log stability constants for Cd complexes with Sites 1-4 are 2.4 ± 0.4, 3.2 ± 0.1, 4.4 ± 0.1, and 5.3 ± 0.1, respectively. The average log stability constants for Pb complexes with Sites 1-4 are 3.3 ± 0.2, 4.5 ± 0.3, 6.5 ± 0.1, and 7.9 ± 0.5, respectively. This study demonstrates that a wide range of bacteria exhibit similar proton and metal adsorption behaviors, and that a single set of averaged acidity constants, site concentrations, and stability constants for metal-bacterial surface complexes yields a reasonable model for the adsorption behavior of many of these species. The differences in adsorption

  4. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    PubMed Central

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  5. Implementation of paste backfill mining technology in Chinese coal mines.

    PubMed

    Chang, Qingliang; Chen, Jianhang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application.

  6. Bioavailability of jarosite for stimulating acid mine drainage attenuation

    NASA Astrophysics Data System (ADS)

    Coggon, Matthew; Becerra, Caryl Ann; Nüsslein, Klaus; Miller, Karen; Yuretich, Richard; Ergas, Sarina J.

    2012-02-01

    Biological reduction of iron-sulfate minerals, such as jarosite, has the potential to contribute to the natural attenuation of acid mine drainage (AMD) sites. Previous studies of AMD attenuation at Davis Mine, an abandoned pyrite mine in Rowe Massachusetts, provided evidence of iron and sulfate reduction by indigenous bacteria. Jarosite is a large component of the sediment at Davis Mine and may play a role in AMD attenuation. In this study, microcosms were constructed with groundwater and sediment from Davis Mine and amended with glycerol, nitrogen and phosphorus (GNP) and naturally formed natrojarosite. Over time, higher total iron, sulfate, pH and sodium concentrations and lower oxidation-reduction potentials were observed in microcosms amended with GNP and jarosite, compared with unamended microcosms and killed controls. Geochemical modeling predicted jarosite precipitation under microcosm conditions, suggesting that abiotic processes were unlikely contributors to jarosite dissolution. SEM imaging at the jarosite surface showed microbial attachment. Microbial community composition analysis revealed a shift to higher populations of Clostridia, which are known to reduce both iron and sulfate. The results show that jarosite may be utilized as an electron acceptor by iron and/or sulfate reducing bacteria at Davis Mine and its presence may aid in the attenuation of AMD.

  7. Preferential Use of an Anode as an Electron Acceptor by an Acidophilic Bacterium in the Presence of Oxygen▿

    PubMed Central

    Malki, Moustafa; De Lacey, Antonio L.; Rodríguez, Nuria; Amils, Ricardo; Fernandez, Victor M.

    2008-01-01

    Several anaerobic metal-reducing bacteria have been shown to be able to donate electrons directly to an electrode. This property is of great interest for microbial fuel cell development. To date, microbial fuel cell design requires avoiding O2 diffusion from the cathodic compartment to the sensitive anodic compartment. Here, we show that Acidiphilium sp. strain 3.2 Sup 5 cells that were isolated from an extreme acidic environment are able to colonize graphite felt electrodes. These bacterial electrodes were able to produce high-density electrocatalytic currents, up to 3 A/m2 at a poised potential of +0.15 V (compared to the value for the reference standard calomel electrode) in the absence of redox mediators, by oxidizing glucose even at saturating air concentrations and very low pHs. PMID:18487393

  8. Land Mines (Landminen)

    DTIC Science & Technology

    1978-02-02

    making contact with the safety pin of the pull fuze 42. Two locking bolts held the upper and lower case in position during transport, so that there... safety pin out of the extended striker, thus releasing it. These mines were filled with 200 g of explosives. This type of mine was the model for the...by inserting the detonator slide. However, the mine is not fully armed until the safety pin is removed and reinserted until it makes contact with the

  9. Mining agreements III

    SciTech Connect

    Not Available

    1991-01-01

    This book cover the following: Forms of mining agreements; Preliminary letter agreements; Acquisition of mineral interests involving securities; Partnership tax treatment in mining agreements; Non-tax consequences of partnerships under state law; Protection against joint venturers' liabilities; Joint venture decision making; Mining royalties; Commingling and unitization provisions; Indemnification and insurance provisions; Area of interest provision; Dispute resolution; and Non-participation and default provisions.

  10. Bacteria Inactivation During Lithotripsy

    NASA Astrophysics Data System (ADS)

    del Sol Quintero, María; Mora, Ulises; Gutiérrez, Jorge; Mues, Enrique; Castaño, Eduardo; Fernández, Francisco; Loske, Achim M.

    2006-09-01

    The influence of extracorporeal and intracorporeal lithotripsy on the viability of bacteria contained inside artificial kidney stones was investigated in vitro. Two different bacteria were exposed to the action of one extracorporeal shock wave generator and four intracorporeal lithotripters.

  11. A baseline lunar mine

    NASA Technical Reports Server (NTRS)

    Gertsch, Richard E.

    1992-01-01

    A models lunar mining method is proposed that illustrates the problems to be expected in lunar mining and how they might be solved. While the method is quite feasible, it is, more importantly, a useful baseline system against which to test other, possible better, methods. Our study group proposed the slusher to stimulate discussion of how a lunar mining operation might be successfully accomplished. Critics of the slusher system were invited to propose better methods. The group noted that while nonterrestrial mining has been a vital part of past space manufacturing proposals, no one has proposed a lunar mining system in any real detail. The group considered it essential that the design of actual, workable, and specific lunar mining methods begin immediately. Based on an earlier proposal, the method is a three-drum slusher, also known as a cable-operated drag scraper. Its terrestrial application is quite limited, as it is relatively inefficient and inflexible. The method usually finds use in underwater mining from the shore and in moving small amounts of ore underground. When lunar mining scales up, the lunarized slusher will be replaced by more efficient, high-volume methods. Other aspects of lunar mining are discussed.

  12. Mine waste technology program

    SciTech Connect

    Wilmoth, R.C.; Powers, T.J.

    1995-10-01

    The Mine Waste Technology Program (MWTP) was initiated to address mining waste generated by active and inactive mining production facilities. In June 1991, an Interagency Agreement was signed between the U.S. Environmental Protection Agency and the Department of Energy which outlined the following activities: To identify and prioritize treatment technologies as candidates for demonstration projects; To propose and conduct large pilot-/field-scale demonstration projects of several innovative technologies that show promise for cost effectively remediating local, regional, and national mine waste problems.

  13. Data mining support systems

    NASA Astrophysics Data System (ADS)

    Zhao, Yinliang; Yao, JingTao; Yao, Yiyu

    2004-04-01

    The main stream of research in data mining (or knowledge discovery in databases) focuses on algorithms and automatic or semi-automatic processes for discovering knowledge hidden in data. In this paper, we adopt a more general and goal oriented view of data mining. Data mining is regarded as a field of study covering the theories, methodologies, techniques, and activities with the goal of discovering new and useful knowledge. One of its objectives is to design and implement data mining systems. A miner solves problems of data mining manually, or semi-automatically by using such systems. However, there is a lack of studies on how to assist a miner in solving data mining problems. From the experiences and lessons of decision support systems, we introduce the concept of data mining support systems (DMSS). We draw an analogy between the field of decision-making and the field of data mining, and between the role of a manager and the role of a data miner. A DMSS is an active and highly interactive computer system that assists data mining activities. The needs and the basic features of DMSS are discussed.

  14. Mercury mine drainage and processes that control its environmental impact

    USGS Publications Warehouse

    Rytuba, J.J.

    2000-01-01

    Mine drainage from mercury mines in the California Coast Range mercury mineral belt is an environmental concern because of its acidity and high sulfate, mercury, and methylmercury concentrations. Two types of mercury deposits are present in the mineral belt, silica-carbonate and hot-spring type. Mine drainage is associated with both deposit types but more commonly with the silica-carbonate type because of the extensive underground workings present at these mines. Mercury ores consisting primarily of cinnabar were processed in rotary furnaces and retorts and elemental mercury recovered from condensing systems. During the roasting process mercury phases more soluble than cinnabar are formed and concentrated in the mine tailings, commonly termed calcines. Differences in mineralogy and trace metal geochemistry between the two deposit types are reflected in mine drainage composition. Silica-carbonate type deposits have higher iron sulfide content than hot- spring type deposits and mine drainage from these deposits may have extreme acidity and very high concentrations of iron and sulfate. Mercury and methylmercury concentrations in mine drainage are relatively low at the point of discharge from mine workings. The concentration of both mercury species increases significantly in mine drainage that flows through and reacts with calcines. The soluble mercury phases in the calcines are dissolved and sulfate is added such that methylation of mercury by sulfate reducing bacteria is enhanced in calcines that are saturated with mine drainage. Where mercury mine drainage enters and first mixes with stream water, the addition of high concentrations of mercury and sulfate generates a favorable environment for methylation of mercury. Mixing of oxygenated stream water with mine drainage causes oxidation of dissolved iron(II) and precipitation of iron oxyhydroxide that accumulates in the streambed. Both mercury and methylmercury are strongly adsorbed onto iron oxyhydroxide over the p

  15. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1

    PubMed Central

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective. PMID:27242761

  16. Underground Coal Mining

    NASA Technical Reports Server (NTRS)

    Hill, G. M.

    1980-01-01

    Computer program models coal-mining production, equipment failure and equipment repair. Underground mine is represented as collection of work stations requiring service by production and repair crews alternately. Model projects equipment availability and productivity, and indicates proper balance of labor and equipment. Program is in FORTRAN IV for batch execution; it has been implemented on UNIVAC 1108.

  17. Biotreatment of mine drainage

    SciTech Connect

    Bender, J.; Phillips, R.

    1996-12-31

    Several experiments and field tests of microbial mats are described. One study determined the removal rate of Uranium 238 and metals from groundwater by microbial mats. Free floating mats, immobilized mats, excised mats, and pond treatment were examined. Field tests of acid coal mine drainage and precious metal mine drainage are also summarized. The mechanisms of metal removal are briefly described.

  18. Mining outlook in Indonesia

    SciTech Connect

    Not Available

    1984-06-01

    The outlook for mining in Indonesia is presented. Coal appears to be the most promising growth area for Indonesian mining interests, with production slated to reach 1.5 million t/yr by 1985, up from 0.5 million ton in 1983. Also discussed production and trends, aluminum, copper, nickel, silver, gold, tin and iron sands in Indonesia.

  19. PRB mines mature

    SciTech Connect

    Buchsbaum, L.

    2007-08-15

    Already seeing the results of reclamation efforts, America's largest surface mines advance as engineers prepare for the future. 30 years after the signing of the Surface Mining Control and Reclamation Act by Jimmy Carter, western strip mines in the USA, especially in the Powder River Basin, are producing more coal than ever. The article describes the construction and installation of a $38.5 million near-pit crusher and overland belt conveyor system at Foundation Coal West's (FCW) Belle Ayr surface mine in Wyoming, one of the earliest PRB mines. It goes on to describe the development by Rio Tinto of an elk conservatory, the Rochelle Hill Conservation Easement, on reclaimed land at Jacobs Ranch, adjacent to the Rochelle Hills. 4 photos.

  20. Mining Deployment Optimization

    NASA Astrophysics Data System (ADS)

    Čech, Jozef

    2016-09-01

    The deployment problem, researched primarily in the military sector, is emerging in some other industries, mining included. The principal decision is how to deploy some activities in space and time to achieve desired outcome while complying with certain requirements or limits. Requirements and limits are on the side constraints, while minimizing costs or maximizing some benefits are on the side of objectives. A model with application to mining of polymetallic deposit is presented. To obtain quick and immediate decision solutions for a mining engineer with experimental possibilities is the main intention of a computer-based tool. The task is to determine strategic deployment of mining activities on a deposit, meeting planned output from the mine and at the same time complying with limited reserves and haulage capacities. Priorities and benefits can be formulated by the planner.

  1. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog.

    PubMed

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270(T) and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidans (T), the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidans (T) cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270(T) genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis.

  2. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog

    PubMed Central

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270T and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidansT, the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidansT cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270T genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis. PMID:27683573

  3. 2. EMPIRE STATE MINE. VIEW OF COLLAPSED BUILDINGS AT MINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EMPIRE STATE MINE. VIEW OF COLLAPSED BUILDINGS AT MINE WITH TAILINGS ON RIGHT. CAMERA POINTED SOUTHWEST. COLLAPSED ADIT APPROXIMATELY 25 YARDS UPHILL TO THE LEFT OF FAR BUILDING. TIP TOP AND ONTARIO ARE LOCATED OUT OF THE PICTURE TO THE RIGHT. - Florida Mountain Mining Sites, Empire State Mine, West side of Florida Mountain, Silver City, Owyhee County, ID

  4. Land Mines Removal

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The same rocket fuel that helps power the Space Shuttle as it thunders into orbit will now be taking on a new role, with the potential to benefit millions of people worldwide. Leftover rocket fuel from NASA is being used to make a flare that destroys land mines where they were buried, without using explosives. The flare is safe to handle and easy to use. People working to deactivate the mines simply place the flare next to the uncovered land mine and ignite it from a safe distance using a battery-triggered electric match. The flare burns a hole in the land mine's case and ignites its explosive contents. The explosive burns away, disabling the mine and rendering it harmless. Using leftover rocket fuel to help destroy land mines incurs no additional costs to taxpayers. To ensure enough propellant is available for each Shuttle mission, NASA allows for a small percentage of extra propellant in each batch. Once mixed, surplus fuel solidifies and carnot be saved for use in another launch. In its solid form, it is an ideal ingredient for new the flare. The flare was developed by Thiokol Propulsion in Brigham City, Utah, the NASA contractor that designs and builds rocket motors for the Solid Rocket Booster Space Shuttle. An estimated 80 million or more active land mines are scattered around the world in at least 70 countries, and kill or maim 26,000 people a year. Worldwide, there is one casualty every 22 minutes.

  5. Land Mines Removal

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The same rocket fuel that helps power the Space Shuttle as it thunders into orbit will now be taking on a new role, with the potential to benefit millions of people worldwide. Leftover rocket fuel from NASA is being used to make a flare that destroys land mines where they were buried, without using explosives. The flare is safe to handle and easy to use. People working to deactivate the mines simply place the flare next to the uncovered land mine and ignite it from a safe distance using a battery-triggered electric match. The flare burns a hole in the land mine's case and ignites its explosive contents. The explosive burns away, disabling the mine and rendering it harmless. Using leftover rocket fuel to help destroy land mines incurs no additional costs to taxpayers. To ensure enough propellant is available for each Shuttle mission, NASA allows for a small percentage of extra propellant in each batch. Once mixed, surplus fuel solidifies and carnot be saved for use in another launch. In its solid form, it is an ideal ingredient for the new flare. The flare was developed by Thiokol Propulsion in Brigham City, Utah, the NASA contractor that designs and builds rocket motors for the Solid Rocket Booster Space Shuttle. An estimated 80 million or more active land mines are scattered around the world in at least 70 countries, and kill or maim 26,000 people a year. Worldwide, there is one casualty every 22 minutes

  6. Land reclamation beautifies coal mines

    SciTech Connect

    Coblentz, B.

    2009-07-15

    The article explains how the Mississippi Agricultural and Forestry Experiments station, MAFES, has helped prepare land exploited by strip mining at North American Coal Corporation's Red Hills Mine. The 5,800 acre lignite mine is over 200 ft deep and uncovers six layers of coal. About 100 acres of land a year is mined and reclaimed, mostly as pine plantations. 5 photos.

  7. Data Mining in Child Welfare.

    ERIC Educational Resources Information Center

    Schoech, Dick; Quinn, Andrew; Rycraft, Joan R.

    2000-01-01

    Examines the historical and larger context of data mining and describes data mining processes, techniques, and tools. Illustrates these using a child welfare dataset concerning the employee turnover that is mined, using logistic regression and a Bayesian neural network. Discusses the data mining process, the resulting models, their predictive…

  8. Genomics of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  9. Relationships between microbial communities and environmental parameters at sites impacted by mining of volcanogenic massive sulfide deposits, Prince William Sound, Alaska

    USGS Publications Warehouse

    Foster, A.L.; Munk, L.; Koski, R.A.; Shanks, Wayne C.; Stillings, L.L.

    2008-01-01

    The relations among geochemical parameters and sediment microbial communities were examined at three shoreline sites in the Prince William Sound, Alaska, which display varying degrees of impact by acid-rock drainage (ARD) associated with historic mining of volcanogenic massive sulfide deposits. Microbial communities were examined using total fatty acid methyl esters (FAMEs), a class of compounds derived from lipids produced by eukaryotes and prokaryotes (bacteria and Archaea); standard extraction techniques detect FAMEs from both living (viable) and dead (non-viable) biomass, but do not detect Archaeal FAMEs. Biomass and diversity (as estimated by FAMEs) varied strongly as a function of position in the tidal zone, not by study site; subtidal muds, Fe oxyhydroxide undergoing biogenic reductive dissolution, and peat-rich intertidal sediment had the highest values. These estimates were lowest in acid-generating, intertidal zone sediment; if valid, the estimates suggest that only one or two bacterial species predominate in these communities, and/or that Archeal species are important members of the microbial community in this sediment. All samples were dominated by bacterial FAMEs (median value >90%). Samples with the highest absolute abundance of eukaryotic FAMEs were biogenic Fe oxyhydroxides from shallow freshwater pools (fungi) and subtidal muds (diatoms). Eukaryotic FAMEs were practically absent from low-pH, sulfide-rich intertidal zone sediments. The relative abundance of general microbial functional groups such as aerobes/anaerobes and gram(+)/gram(-) was not estimated due to severe inconsistency among the results obtained using several metrics reported in the literature. Principal component analyses (PCAs) were performed to investigate the relationship among samples as separate functions of water, sediment, and FAMEs data. PCAs based on water chemistry and FAMEs data resulted in similar relations among samples, whereas the PCA based on sediment chemistry

  10. Controlling coal mine bumps

    SciTech Connect

    Goode, C.A.; Campoli, A.A.; Zona, A.

    1984-10-01

    A coal bump or burst is defined as the instantaneous violent failure of a coal pillar(s) from overstress. The causes of coal bumps are not well understood, even though minor disturbances are a daily occurrence in bump prone seams. Lack of knowledge about coal bumps coupled with questionable mining practices can create disastrous consequences. Much of the early work on bumps was documented by US Bureau of Mines (BOM) researchers and operators of mines prone to bumps. In 1954 the BOM published Bulletin 535, This study compares recent events with those findings and suggests measures that can be taken to minimize the potential occurrence and severity of coal bumps.

  11. Closedure - Mine Closure Technologies Resource

    NASA Astrophysics Data System (ADS)

    Kauppila, Päivi; Kauppila, Tommi; Pasanen, Antti; Backnäs, Soile; Liisa Räisänen, Marja; Turunen, Kaisa; Karlsson, Teemu; Solismaa, Lauri; Hentinen, Kimmo

    2015-04-01

    Closure of mining operations is an essential part of the development of eco-efficient mining and the Green Mining concept in Finland to reduce the environmental footprint of mining. Closedure is a 2-year joint research project between Geological Survey of Finland and Technical Research Centre of Finland that aims at developing accessible tools and resources for planning, executing and monitoring mine closure. The main outcome of the Closedure project is an updatable wiki technology-based internet platform (http://mineclosure.gtk.fi) in which comprehensive guidance on the mine closure is provided and main methods and technologies related to mine closure are evaluated. Closedure also provides new data on the key issues of mine closure, such as performance of passive water treatment in Finland, applicability of test methods for evaluating cover structures for mining wastes, prediction of water effluents from mine wastes, and isotopic and geophysical methods to recognize contaminant transport paths in crystalline bedrock.

  12. Microbial Sulfur Geochemistry in Mine Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Warren, L. A.; Norlund, K. L.; Hitchcock, A.

    2010-12-01

    Acid mine drainage (AMD), metal laden, acidic water, is the most pressing mining environmental issue on a global scale. While it is well recognized that the activity of autotrophic Fe and S bacteria amplify the oxidation of the sulfidic wastes, thereby generating acidity and leaching metals; the underlying microbial geochemistry is not well described. This talk will highlight results revealing the importance of microbial cooperation associated with a novel sulfur-metabolizing consortium enriched from mine waters. Results generated by an integrated approach, combining field characterization, geochemical experimentation, scanning transmission X-ray microscopy (STXM), and fluorescence in situ hybridization (FISH) [1]describing the underlying ecological drivers, the functionally relevant biogeochemical architecture of the consortial macrostructure as well as the identities of this environmental sulphur redox cycling consortium will be presented. The two common mine bacterial strains involved in this consortium, Acidithiobacillus ferroxidans and Acidiphilium sp., are specifically spatially segregated within a macrostructure (pod) of extracellular polymeric substance (EPS) that enables coupled sulphur oxidation and reduction reactions despite bulk, oxygenated conditions. Identical pod formation by type culture strains was induced and linked to ecological conditions. The proposed sulphur geochemistry associated with this bacterial consortium produces 40-90% less acid than expected based on abiotic AMD models, with implications for both AMD mitigation and AMD carbon flux modeling. We are currently investigating the implications of these sulphur-processing pods for metal dynamics in mine systems. These results demonstrate how microbes can orchestrate their geochemical environment to facilitate metabolism, and underscore the need to consider microbial interactions and ecology in constraining their geochemical impacts. [1] Norlund, Southam, Tyliszcczak, Hu, Karunakaran, Obst

  13. Indigenous and Contaminant Microbes in Ultradeep Mines

    NASA Technical Reports Server (NTRS)

    Onstott, T. C.; Moser, D. P.; Pfiffner, S. M.; Fredrickson, J. K.; Brockman, F. J.; Phelps, T. J.; White, D. C.; Peacock, A.; Balkwill, D.; Hoover, R. B.; Krumholz, L. R.; Borscik, M.; Kieft, T. L.; Wilson, R.

    2003-01-01

    Rock, air and service water samples were collected for microbial analyses from 3.2 kilometers depth in a working Au mine in the Witwatersrand basin, South Africa. The approx. 1 meter wide mined zone was comprised of a carbonaceous, quartz, sulfide, uraninite and Au bearing layer, called the Carbon Leader, sandwiched by quartzite and conglomerates. The microbial community in the service water was dominated by mesophilic aerobic and anaerobic, alpha, beta, and gamma-Proteobacteria with a total biomass concentration approx. 10(exp 4) cells/ml, whereas, that of the mine air was dominated by members of the Chlorobi and Bacteroidetes groups and a fungal component. The microorganisms in the Carbon Leader were predominantly mesophilic, aerobic heterotrophic, nitrate reducing and methylotrophic, beta and gamma-Proteobacteria that were more closely related to service water microorganisms rather than air microbes. Rhodamine WT dye and fluorescent microspheres employed as contaminant tracers, however, indicated that service water contamination of most of the rock samples was < 0.01% during acquisition. The microbial contaminants most likely originated from the service water, infiltrated the low permeability rock through and accumulated within mining-induced fractures where they survived for several days prior to being mined. Combined PLFA and terminal restriction fragment length profile (T-RFLP) analyses suggest that the maximum concentration of indigenous microorganisms in the Carbon Leader was < 10(exp 2) cells/g. PLFA, (35)S autoradiography and enrichments suggest that the adjacent quartzite was less contaminated and contained approx. 10(exp 3) cells/gram of a thermophilic, sulfate reducing bacteria, SRB, some of whom are delta Proteobacteria. Pore water and rock geochemical analyses suggest that these SRB's may have been sustained by sulfate diffusing from the adjacent U-rich, Carbon Leader where it was formed by radiolysis of sulfide.

  14. Indigenous and Contaminant Microbes in Ultradeep Mines

    NASA Technical Reports Server (NTRS)

    Onstott, T. C.; Moser, D. P.; Pfiffner, S. M.; Fredrickson, J. F.; Brockman, F. J.; Phelps, T. J.; White, D. C.; Peacock, A.; Balkwill, D.; Hoover, R.; Krumholz, L. R.; Borscik, M.; Kieft, T. L.; Wilson, R.

    2003-01-01

    Rock, air and service water samples were collected for microbial analyses from 3.2 kilometers depth in a working Au mine in the Witwatersrand basin, South Africa. The approx. 1 meter wide mined zone was comprised of a carbonaceous, quartz, sulfide, uraninite and Au bearing layer, called the Carbon Leader, sandwiched by quartzite and conglomerates. The microbial community in the service water was dominated by mesophilic aerobic and anaerobic, alpha, beta and gamma-Proteobacteria with a total biomass concentration approx. l0(exp 4) cells/ ml, whereas, that of the mine air was dominated by members of the Chlorobi and Bacteroidetes groups and a fungal component. The microorganisms in the Carbon Leader were predominantly mesophilic, aerobic heterotrophic, nitrate reducing and methylotrophic, beta and gamma - Proteobacteria that were more closely related to service water microorganisms rather than air microbes. Rhodamine WT dye and fluorescent microspheres employed as contaminant tracers, however, indicated that service water contamination of most of the rock samples was less that 0.01% during acquisition. The microbial contaminants most likely originated from the service water, infiltrated the low permeability rock through and accumulated within mining-induced fractures where they survived for several days prior to being mined. Combined PLFA and terminal restriction fragment length profile (T-RFLP) analyses suggest that the maximum concentration of indigenous microorganisms in the Carbon Leader was less than lo(exp 2) cells/ g. PLFA, S-35 autoradiography and enrichments suggest that the adjacent quartzite was less contaminated and contained -10(exp 3) cells/gram of a thermophilic, sulfate reducing bacteria, SRB, some of who are delta Proteobacteria. Pore water and rock geochemical analyses suggest that these SRB's may have been sustained by sulfate diffusing from the adjacent U-rich, Carbon Leader where it was formed by radiolysis of sulfide.

  15. Indigenous and contaminant microbes in ultradeep mines.

    PubMed

    Onstott, T C; Moser, D P; Pfiffner, S M; Fredrickson, J K; Brockman, F J; Phelps, T J; White, D C; Peacock, A; Balkwill, D; Hoover, R; Krumholz, L R; Borscik, M; Kieft, T L; Wilson, R

    2003-11-01

    Rock, air and service water samples were collected for microbial analyses from 3.2 kilometres depth in a working Au mine in the Witwatersrand basin, South Africa. The approximately metre-wide mined zone was comprised of a carbonaceous, quartz, sulphide, uraninite and Au bearing layer, called the Carbon Leader, sandwiched by quartzite and conglomerate. The microbial community in the service water was dominated by mesophilic aerobic and anaerobic, alpha-, beta- and gamma-Proteobacteria with a total biomass concentration approximately 10(4) cells ml(-1), whereas, that of the mine air was dominated by members of the Chlorobi and Bacteroidetes groups and a fungal component. The microorganisms in the Carbon Leader were predominantly mesophilic, aerobic heterotrophic, nitrate reducing and methylotrophic, beta- and gamma-Proteobacteria that were more closely related to service water microorganisms than to air microbes. Rhodamine WT dye and fluorescent microspheres employed as contaminant tracers, however, indicated that service water contamination of most of the rock samples was < 0.01% during acquisition. The microbial contaminants most likely originated from the service water, infiltrated the low permeability rock through and accumulated within mining-induced fractures where they survived for several days before being mined. Combined PLFA and terminal restriction fragment length profile (T-RFLP) analyses suggest that the maximum concentration of indigenous microorganisms in the Carbon Leader was < 10(2) cells g(-1). PLFA, 35S autoradiography and enrichments suggest that the adjacent quartzite was less contaminated and contained approximately 10(3) cells gram(-1) of thermophilic, sulphate reducing bacteria, SRB, some of which are delta-Proteobacteria. Pore water and rock geochemical analyses suggest that these SRB's may have been sustained by sulphate diffusing from the adjacent U-rich, Carbon Leader where it was formed by radiolysis of sulphide.

  16. The role of algae in mine drainage bioremediation

    SciTech Connect

    Davison, J. )

    1990-06-01

    The effect of mine drainage effluent on aquatic ecosystems has been abundantly documented and remediation efforts to data have always been costly and temporary at best. Bioremediation, using natural environmental microbes, to treat acid mine drainage has shown great promise as an affordable, permanent treatment. At Lambda, we used mixatrophic cultures of bacteria, algae, protozoans and fungal groups on four different jobs and it has proven effective. The role of two particular algal groups, the Euglena mutabilis and the Ochramonas sp. are particularly of phycological interest.

  17. Upper Animas Mining District

    EPA Pesticide Factsheets

    Web page provides narrative of What's New?, Site Description, Site Risk, Cleanup Progress, Community Involvement, Next Steps, Site Documents, FAQ, Contacts and LInks for the Upper Animas Mining District site in San Juan County, Colorado.

  18. Indonesian coal mining

    SciTech Connect

    2008-11-15

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  19. Eukaryotic stromatolite builders in acid mine drainage: Implications for Precambrian iron formations and oxygenation of the atmosphere?

    NASA Astrophysics Data System (ADS)

    Brake, S. S.; Hasiotis, S. T.; Dannelly, H. K.; Connors, K. A.

    2002-07-01

    Biological activity of Euglena mutabilis, an acidophilic, photosynthetic protozoan, contributes to the formation of Fe-rich stromatolites in acid mine drainage systems. E. mutabilis is the dominant microbe in bright green benthic mats (biofilm), coating drainage channels at abandoned coal mine sites in Indiana. It builds biolaminates through phototactic and aerotactic behavior, similar to prokaryotes, by moving through precipitates that periodically cover the mats. E. mutabilis also contributes to formation of Fe-rich stromatolites by (1) intracellularly storing Fe compounds released after death, contributing to the solid material of stromatolites and acting as nucleation sites for precipitation of authigenic Fe minerals, and (2) generating O2 via photosynthesis that further facilitates precipitation of reduced Fe, any excess O2 not consumed by Fe precipitation being released to the atmosphere. Recognition of E. mutabilis dominated biofilm in acidic systems raises a provocative hypothesis relating processes involved in formation of Fe-rich stromatolites by E. mutabilis to those responsible for development of Precambrian stromatolitic Fe formations and oxygenation of the early atmosphere.

  20. Data Stream Mining

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed Medhat; Zaslavsky, Arkady; Krishnaswamy, Shonali

    Data mining is concerned with the process of computationally extracting hidden knowledge structures represented in models and patterns from large data repositories. It is an interdisciplinary field of study that has its roots in databases, statistics, machine learning, and data visualization. Data mining has emerged as a direct outcome of the data explosion that resulted from the success in database and data warehousing technologies over the past two decades (Fayyad, 1997,Fayyad, 1998,Kantardzic, 2003).

  1. Mining Specifications: A Roadmap

    NASA Astrophysics Data System (ADS)

    Zeller, Andreas

    Recent advances in software validation and verification make it possible to widely automate whether a specification is satisfied. This progress is hampered, though, by the persistent difficulty of writing specifications. Are we facing a “specification crisis”? In this paper, I show how to alleviate the burden of writing specifications by reusing and extending specifications as mined from existing software and give an overview on the state of the art in specification mining, its origins, and its potential.

  2. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    USGS Publications Warehouse

    Church, C.D.; Wilkin, R.T.; Alpers, C.N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  3. Bleach vs. Bacteria

    MedlinePlus

    ... Inside Life Science > Bleach vs. Bacteria Inside Life Science View All Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds ... For Proteins, Form Shapes Function This Inside Life Science article also appears on LiveScience . Learn about related ...

  4. Some bacteria are beneficial!

    USGS Publications Warehouse

    McMahon, Peter B.

    1995-01-01

    Most people would agree that bacteria usually spell trouble where the quality of drinking water is con cerned. However, recent studies conducted by the U.S. Geological Survey (USGS) under the National Water-Quality Assessment (NAWQA) program have shown that some bacteria can improve the quality of water.

  5. Bacteria turn tiny gears

    SciTech Connect

    2009-01-01

    Swarms of bacteria turn two 380-micron long gears, opening the possibility of building hybrid biological machines at the microscopic scale. Read more at Wired: http://www.wired.com/wiredscience/2009/12/bacterial-micro-machine/#more-15684 or Scientific American: http://www.scientificamerican.com/article.cfm?id=brownian-motion-bacteria

  6. Morenci Mine, AZ

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Morenci open-pit copper mine in southeast Arizona is North America's leading producer of copper. In the 1860s, prospectors arrived looking for gold; instead they found copper. Underground mining began in the 1870s, and the first pit was opened in 1939. Phelps Dodge employs over 200 people in the mining and refining operations. Around-the-clock removal of 700,000 tons of rock per day results in production of 382 thousand tons of copper per year. Phelps Dodge is now developing the Safford Mine, about 12 km southwest of Morenci. It will be the first new copper mine in the US in more than 30 years. When production starts in 2008, the Safford Mine will produce 109 thousand tons of copper. This ASTER image uses shortwavelength infrared bands to highlight in bright pink the altered rocks in the Morenci pit associated with copper mineralization.

    The image covers an area of 21 x 16.9 km, was acquired on July 14, 2007, and is centered near 33.1 degrees north latitude, 109.5 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  7. Underground at Black Diamond Mines

    SciTech Connect

    Higgins, C.T.

    1989-10-01

    Although California is noted for its mining history and annually leads the nation in total monetary value of minerals produced, there a few opportunities for the public to tour underground mines. One reason is that nearly all mining in the state today is done above ground in open pits. Another reason is that active underground mines are not commonly favorable to public tours. There is one place, Black Diamond Mines Regional Preserve, where the public can safely tour a formerly active underground mine. Black Diamond Mines Regional Preserve is a 3,600-acre parkland about 5 miles southwest of Antioch in Contra Costa County. The Preserve was established in the early 1970s and is administered by the East Bay Regional Park District. Black Diamond Mines Preserve is noteworthy for its mining history as well as its natural history, both of which are briefly described here.

  8. The novel extremely acidophilic, cell-wall-deficient archaeon Cuniculiplasma divulgatum gen. nov., sp. nov. represents a new family, Cuniculiplasmataceae fam. nov., of the order Thermoplasmatales

    PubMed Central

    Lünsdorf, Heinrich; Kublanov, Ilya V.; Goldenstein, Nadine I.; Hinrichs, Kai-Uwe; Golyshin, Peter N.

    2016-01-01

    Two novel cell-wall-less, acidophilic, mesophilic, organotrophic and facultatively anaerobic archaeal strains were isolated from acidic streamers formed on the surfaces of copper-ore-containing sulfidic deposits in south-west Spain and North Wales, UK. Cells of the strains varied from 0.1 to 2 μm in size and were pleomorphic, with a tendency to form filamentous structures. The optimal pH and temperature for growth for both strains were 1.0–1.2 and 37–40 °C, with the optimal substrates for growth being beef extract (3 g l− 1) for strain S5T and beef extract with tryptone (3 and 1 g l− 1, respectively) for strain PM4. The lipid composition was dominated by intact polar lipids consisting of a glycerol dibiphytanyl glycerol tetraether (GDGT) core attached to predominantly glycosidic polar headgroups. In addition, free GDGT and small relative amounts of intact and core diether lipids were present. Strains S5T and PM4 possessed mainly menaquinones with minor fractions of thermoplasmaquinones. The DNA G+C content was 37.3 mol% in strain S5T and 37.16 mol% for strain PM4. A similarity matrix of 16S rRNA gene sequences (identical for both strains) showed their affiliation to the order Thermoplasmatales, with 73.9–86.3 % identity with sequences from members of the order with validly published names. The average nucleotide identity between genomes of the strains determined in silico was 98.75 %, suggesting, together with the 16S rRNA gene-based phylogenetic analysis, that the strains belong to the same species. A novel family, Cuniculiplasmataceae fam. nov., genus Cuniculiplasma gen. nov. and species Cuniculiplasma divulgatum sp. nov. are proposed based on the phylogenetic, chemotaxonomic analyses and physiological properties of the two isolates, S5T and PM4 ( = JCM 30641 = VKM B-2940). The type strain of Cuniculiplasma divulgatum is S5T ( = JCM 30642T = VKM B-2941T). PMID:26518885

  9. Characterization of the core microbiota of the drainage and surrounding soil of a Brazilian copper mine

    PubMed Central

    Pereira, Letícia Bianca; Vicentini, Renato; Ottoboni, Laura M.M.

    2015-01-01

    Abstract The core microbiota of a neutral mine drainage and the surrounding high heavy metal content soil at a Brazilian copper mine were characterized by 16S rDNA pyrosequencing. The core microbiota of the drainage was dominated by the generalist genus Meiothermus. The soil samples contained a more heterogeneous bacterial community, with the presence of both generalist and specialist bacteria. Both environments supported mainly heterotrophic bacteria, including organisms resistant to heavy metals, although many of the bacterial groups identified remain poorly characterized. The results contribute to the understanding of bacterial communities in soils impacted by neutral mine drainage, for which information is scarce, and demonstrate that heavy metals can play an important role in shaping the microbial communities in mine environments. PMID:26537607

  10. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  11. Antibiotics from predatory bacteria

    PubMed Central

    Korp, Juliane; Vela Gurovic, María S

    2016-01-01

    Summary Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism. PMID:27340451

  12. String Mining in Bioinformatics

    NASA Astrophysics Data System (ADS)

    Abouelhoda, Mohamed; Ghanem, Moustafa

    Sequence analysis is a major area in bioinformatics encompassing the methods and techniques for studying the biological sequences, DNA, RNA, and proteins, on the linear structure level. The focus of this area is generally on the identification of intra- and inter-molecular similarities. Identifying intra-molecular similarities boils down to detecting repeated segments within a given sequence, while identifying inter-molecular similarities amounts to spotting common segments among two or multiple sequences. From a data mining point of view, sequence analysis is nothing but string- or pattern mining specific to biological strings. For a long time, this point of view, however, has not been explicitly embraced neither in the data mining nor in the sequence analysis text books, which may be attributed to the co-evolution of the two apparently independent fields. In other words, although the word "data-mining" is almost missing in the sequence analysis literature, its basic concepts have been implicitly applied. Interestingly, recent research in biological sequence analysis introduced efficient solutions to many problems in data mining, such as querying and analyzing time series [49,53], extracting information from web pages [20], fighting spam mails [50], detecting plagiarism [22], and spotting duplications in software systems [14].

  13. Mining the earth

    SciTech Connect

    Young, J.E.

    1992-01-01

    Substances extracted from the earth - stone, iron, bronze - have been so critical to human development that historians name the ages of our past after them. But while scholars have carefully tracked human use of minerals, they have never accounted for the vast environmental damage incurred in mineral production. Few people would guess that a copper mining operation has removed a piece of Utah seven times the weight of all the material dug for the Panama Canal. Few would dream that mines and smelters take up to a tenth of all the energy used each year, or that the waste left by mining measures in the billions of tons - dwarfing the world's total accumulation of more familiar kinds of waste, such as municipal garbage. Indeed, more material is now stripped from the earth by mining than by all the natural erosion of the earth's rivers. The effects of mining operations on the environment are discussed under the following topics: minerals in the global economy, laying waste, at what cost cleaning up, and dipping out. It is concluded that in the long run, the most effective strategy for minimizing new damage is not merely to make mineral extraction cleaner, but to reduce the rich nations needs for virgin (non-recycled) minerals.

  14. Indicator For Pseudomonas Bacteria

    NASA Technical Reports Server (NTRS)

    Margalit, Ruth

    1990-01-01

    Characteristic protein extracted and detected. Natural protein marker found in Pseudomonas bacteria. Azurin, protein containing copper readily extracted, purified, and used to prepare antibodies. Possible to develop simple, fast, and accurate test for marker carried out in doctor's office.

  15. Longwall mining system

    SciTech Connect

    Guay, P.J.; Ludlow, J.E.; Peake, C.V.

    1983-05-10

    A longwall mining system includes a bidirectional shearer and a roof supporting structure. The shearer includes a pair of angled floor drums, a pivotable roof drum and a loading conveyor. Each drum has a plurality of picks disposed about the drum surface for cutting a material to be mined and a plurality of vanes disposed on the drum surface for carrying the cut material to the loading conveyor. The roof supporting structure includes a load carrying shield which is braced by a pair of supports. The supports are located under the shield in a position between the shearer and a face conveyor. The face conveyor, which is fed by the loading conveyor, carries the mined material to main conveyor for haulage to the outside.

  16. Gravity in a Mine Shaft.

    ERIC Educational Resources Information Center

    Hall, Peter M.; Hall, David J.

    1995-01-01

    Discusses the effects of gravity, local density compared to the density of the earth, the mine shaft, centrifugal force, and air buoyancy on the weight of an object at the top and at the bottom of a mine shaft. (JRH)

  17. Sulphates Removal from Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Luptáková, Alena; Mačingová, Eva; Kotuličová, Ingrida; Rudzanová, Dominika

    2016-10-01

    Acid mine drainage (AMD) are a worldwide problem leading to ecological destruction in river basins and the contamination of water sources. AMD are characterized by low pH and high content of heavy metals and sulphates. In order to minimize negative impacts of AMD appropriate treatment techniques has to be chosen. Treatment processes are focused on neutralizing, stabilizing and removing pollutants. From this reason efficient and environmental friendly methods are needed to be developed in order to reduce heavy metals as well as sulphates. Various methods are used for remediation of acid mine drainage, but any of them have been applied under commercial-scale conditions. Their application depends on geochemical, technical, natural, financial, and other factors. The aim of the present work was to interpret the study of biological methods for sulphates removal from AMD out-flowing from the shaft Pech of the deposit Smolmk in Slovak Republic. In the experimental works AMD were used after removal of heavy metals by precipitation and sorption using the synthetic sorbent Slovakite. The base of the studied method for the sulphates elimination was the anaerobic bacterial sulphate reduction using sulphate-reducing bacteria (SRB) genera Desulfovibrio. SRB represent a group of bacteria that uses sulphates as a terminal electron acceptor for their metabolism. These bacteria realize the conversion of sulphate to hydrogen sulphide under anaerobic conditions. For the purposes of experiments a few variants of the selective medium DSM-63 culture media were used in term of the sulphates and sodium lactate contents in the selective medium as well as sulphates in the studied AMD.

  18. Lipopolysaccharides in diazotrophic bacteria.

    PubMed

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  19. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  20. Carbon and hydrogen isotopic compositions of algae and bacteria from hydrothermal environments, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Estep, Marilyn L. F.

    1984-03-01

    Stromatolites forming today on a small scale in hydrothermal environments are chemical and biological analogues of much larger Precambrian formations. Carbon isotopic composition varied as a function of CO 2 concentration, pH, and species composition. Stratiform, layered stromatolites grew in silica-depositing springs at 55° to 70°C; they consisted mainly of a unicellular alga, Synechococcus, and a filamentous, photosynthetic bacterium, Chloroflexus. These thermophiles become enriched in 12C as the concentration of carbon dioxide in the effluent waters increases. At a concentration of 40 ppm total inorganic C, and δ 13C of organic carbon was ˜ -12%., whereas at 900 ppm total inorganic C, the δ 13C of similar species was ˜ -25%.. Conical stromatolites or conophytons (principally a filamentous, blue-green alga Phormidium and Chloroflexus) grew at 40°-55°C. In older, broader conophytons, Chloroflexus was the dominant organism. Their δ 13C values were ˜ -18%. in a variety of hot springs. In carbonate-depositing springs, i.e., carbon dioxide saturated, conophytons and stromatolites consisting of a variety of blue-green algae and photosynthetic bacteria had the most negative δ 13C values (to -30%.). These carbon isotope ratios are directly comparable to carbon isotope ratios of kerogen from Precambrian stromatolites. The presence and activity of methanogenic bacteria or heterotrophic, aerobic and anaerobic bacteria did not alter significantly the δ 13C of the original organic matter. The hydrogen isotopic fractionation between thermophilic organisms and water is 0 to -74 for temperatures of 85° to 46°C, respectively. Acidophilic algae fractionated hydrogen isotopes to a lesser extent than did the photosynthetic organisms inhabiting neutral pH springs. Because organic matter retains some of its original isotopic signature, relationships of CO 2 levels, pH, temperature, and species composition between modern stromatolites and their environment and those of

  1. An appraisal of biological responses and network of environmental interactions in non-mining and mining impacted coastal waters.

    PubMed

    Fernandes, Christabelle E G; Malik, Ashish; Jineesh, V K; Fernandes, Sheryl O; Das, Anindita; Pandey, Sunita S; Kanolkar, Geeta; Sujith, P P; Velip, Dhillan M; Shaikh, Shagufta; Helekar, Samita; Gonsalves, Maria Judith; Nair, Shanta; LokaBharathi, P A

    2015-08-01

    The coastal waters of Goa and Ratnagiri lying on the West coast of India are influenced by terrestrial influx. However, Goa is influenced anthropogenically by iron-ore mining, while Ratnagiri is influenced by deposition of heavy minerals containing iron brought from the hinterlands. We hypothesize that there could be a shift in biological response along with changes in network of interactions between environmental and biological variables in these mining and non-mining impacted regions, lying 160 nmi apart. Biological and environmental parameters were analyzed during pre-monsoon season. Except silicates, the measured parameters were higher at Goa and related significantly, suggesting bacteria centric, detritus-driven region. At Ratnagiri, phytoplankton biomass related positively with silicate suggesting a region dominated by primary producers. This dominance perhaps got reflected as a higher tertiary yield. Thus, even though the regions are geographically proximate, the different biological response could be attributed to the differences in the web of interactions between the measured variables.

  2. Pneumatic stowing seals mines

    SciTech Connect

    Brezovec, D.

    1983-11-01

    A mechanized technique to seal abandoned mines has been used successfully to close 13 openings at Duquesne Light Co.'s mined-out Warwick No. 2 mine, near Greensboro, Pa. The mechanized system, which uses a pneumatic stower and crushed limestone, closed the entries more economically and in less time than it would have taken to install traditional concrete block stopping and clay plug seals, according to John C. Draper. Draper, a mining engineer with Duquesne Light's coal department, was in charge of installing the Warwick seals in a Bureau of Mines-sponsored field test on the pneumatic sealing technique. The lowest estimated cost for installing conventional stopping and plug closures for the 13 Warwick openings was $225,000, says Draper, while the openings were closed using the mechanized system for $245,000. Draper says the newer stopping cost more in the instance because work was stopped often to gather information for the experiment. The experimental closures were installed in 38 days. The job would have taken at least 149 days if traditional closures were being installed, Draper say. To install a traditional concrete block/clay plug closure, the mine opening must be cleaned thoroughly and the roof must be supported for some 3 ft from the outside. Then a solid wall or stopping must be built 25 ft from the surface and the entry must be packed with clay to the surface. Much of this job requires workers to remain underground. In pneumatic stowing, 1 1/2-in. crushed limestone with fines is conveyed through a pipeline and into the mine opening under low air pressure. Watertight seals can be installed by blowing about 10 ft of rock into the opening against the top to act as roof support. Safety posts are installed and about 10 or 15 ft of mine entry is cleaned. About 2 in. of raw cement or bentonite is placed on the floor and limestone mixed with dry cement or bentonite is blown into the opening.

  3. Abandoned Mine Lands: Site Information

    EPA Pesticide Factsheets

    A catalogue of mining sites proposed for and listed on the NPL as well as mining sites being cleaned up using the Superfund Alternative Approach. Also mine sites not on the NPL but that have had removal or emergency response cleanup actions.

  4. REMOTE SENSING AND MOUNTAINTOP MINING

    EPA Science Inventory

    Coal mining is Appalachia has undergone dramatic changes in the past decade. Modem mining practices know as Mountaintop Mining (MTM) and Valley Fills (VF) are at the center of an environmental and legal controversy that has spawned lawsuits and major environmental investigations....

  5. Humanitarian Consequences of Land Mines.

    ERIC Educational Resources Information Center

    Rutherford, Ken

    1997-01-01

    Investigates the human and economic consequences of the continuing use and abandonment of land mines. Discusses the reasons for the worldwide proliferation (over 85 million uncleared mines in at least 62 countries) and the legal complexities in curtailing their use. Includes a brief account by a land-mine victim. (MJP)

  6. Mine-Mouth Geyser Problem.

    ERIC Educational Resources Information Center

    de Nevers, Noel

    1982-01-01

    An oilwell drilling rig accidentally drilled into an underground salt mine, draining a lake and filling the mine, with water jetting out of the mine 400 feet into the air. An explanation of the jetting phenomenon is offered in terms of the laws of fluid dynamics, with supporting diagrams and calculations. (Author/JN)

  7. Community of thermoacidophilic and arsenic resistant microorganisms isolated from a deep profile of mine heaps.

    PubMed

    Casas-Flores, S; Gómez-Rodríguez, E Y; García-Meza, J V

    2015-12-01

    Soluble arsenic (As) in acidic feed solution may inhibit the copper (Cu) bioleaching process within mine heaps. To clarify the effect of soluble arsenic on the live biomass and bioxidative activity in heaps, toxicological assays were performed using a synthetic feed solution given by a mine company. The microorganisms had previously been isolated from two heap samples at up to 66 m depth, and cultured using specific media for chemolithotrophic acidophiles (pH 1-2) and moderate thermophiles (48°C), for arsenic tolerance assay. The four media with the highest biomass were selected to assay As-resistance; one culture (Q63h) was chosen to assay biooxidative activity, using a heap sample that contained chalcopyrite and covellite. We found that 0.5 g/L of As does not affect living biomass or biooxidative activity on Cu sulfides, but it dissolves Cu, while As precipitates as arsenic acid (H3AsO4·½H2O). The arsenic tolerant community, as identified by 16S rDNA gene sequence analysis, was composed of three main metabolic groups: chemolithotrophs (Leptospirillum, Sulfobacillus); chemolithoheterotrophs and organoheterotrophs as Acidovorax temperans, Pseudomonas alcaligenes, P. mendocina and Sphingomonas spp. Leptospirillum spp. and S. thermosulfidooxidans were the dominant taxa in the Q63-66 cultures from the deepest sample of the oldest, highest-temperature heap. The results indicated arsenic resistance in the microbial community, therefore specific primers were used to amplify ars (arsenic resistance system), aio (arsenite oxidase), or arr (arsenate respiratory reduction) genes from total sample DNA. Presence of arsB genes in S. thermosulfidooxidans in the Q63-66 cultures permits H3AsO4-As(V) detoxification and strengthens the community's response to As.

  8. Under-mining health: environmental justice and mining in India.

    PubMed

    Saha, Shubhayu; Pattanayak, Subhrendu K; Sills, Erin O; Singha, Ashok K

    2011-01-01

    Despite the potential for economic growth, extractive mineral industries can impose negative health externalities in mining communities. We estimate the size of these externalities by combining household interviews with mine location and estimating statistical functions of respiratory illness and malaria among villagers living along a gradient of proximity to iron-ore mines in rural India. Two-stage regression modeling with cluster corrections suggests that villagers living closer to mines had higher respiratory illness and malaria-related workday loss, but the evidence for mine workers is mixed. These findings contribute to the thin empirical literature on environmental justice and public health in developing countries.

  9. 76 FR 70075 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION... addressing Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines. This... Continuous Mining Machines in Underground Coal Mines. MSHA conducted hearings on October 18, October...

  10. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  11. Generation of acid mine drainage around the Karaerik copper mine (Espiye, Giresun, NE Turkey): implications from the bacterial population in the Acısu effluent.

    PubMed

    Sağlam, Emine Selva; Akçay, Miğraç; Çolak, Dilşat Nigar; İnan Bektaş, Kadriye; Beldüz, Ali Osman

    2016-09-01

    The Karaerik Cu mine is a worked-out deposit with large volumes of tailings and slags which were left around the mine site without any protection. Natural feeding of these material and run-off water from the mineralised zones into the Acısu effluent causes a serious environmental degradation and creation of acid mine drainage (AMD) along its entire length. This research aims at modelling the formation of AMD with a specific attempt on the characterisation of the bacterial population in association with AMD and their role on its occurrence. Based on 16SrRNA analyses of the clones obtained from a composite water sample, the bacterial community was determined to consist of Acidithiobacillus ferrivorans, Ferrovum myxofaciens, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans as iron-oxidising bacteria, Acidocella facilis, Acidocella aluminiidurans, Acidiphilium cryptum and Acidiphilium multivorum as iron-reducing bacteria, and Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidiphilium cryptum as sulphur-oxidising bacteria. This association of bacteria with varying roles was interpreted as evidence of a concomitant occurrence of sulphur and iron cycles during the generation of AMD along the Acısu effluent draining the Karaerik mine.

  12. Fungi outcompete bacteria under increased uranium concentration in culture media.

    PubMed

    Mumtaz, Saqib; Streten-Joyce, Claire; Parry, David L; McGuinness, Keith A; Lu, Ping; Gibb, Karen S

    2013-06-01

    As a key part of water management at the Ranger Uranium Mine (Northern Territory, Australia), stockpile (ore and waste) runoff water was applied to natural woodland on the mine lease in accordance with regulatory requirements. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium concentrations. Soil samples were collected from LAAs with different concentrations of uranium and extracts were plated onto LB media containing no (0 ppm), low (3 ppm), medium (250 ppm), high (600 ppm) and very high (1500 ppm) uranium concentrations. These concentrations were similar to the range of measured uranium concentrations in the LAAs soils. Bacteria grew on all plates except for the very high uranium concentrations, where only fungi were recovered. Identifications based on bacterial 16S rRNA sequence analysis showed that the dominant cultivable bacteria belonged to the genus Bacillus. Members of the genera Paenibacillus, Lysinibacillus, Klebsiella, Microbacterium and Chryseobacterium were also isolated from the LAAs soil samples. Fungi were identified by sequence analysis of the intergenic spacer region, and members of the genera Aspergillus, Cryptococcus, Penicillium and Curvularia were dominant on plates with very high uranium concentrations. Members of the Paecilomyces and Alternaria were also present but in lower numbers. These findings indicate that fungi can tolerate very high concentrations of uranium and are more resistant than bacteria. Bacteria and fungi isolated at the Ranger LAAs from soils with high concentrations of uranium may have uranium binding capability and hence the potential for uranium bioremediation.

  13. Grants Mining District

    EPA Pesticide Factsheets

    The Grants Mineral Belt was the focus of uranium extraction and production activities from the 1950s until the late 1990s. EPA is working with state, local, and federal partners to assess and address health risks and environmental effects of the mines

  14. Bioremediation of mine water.

    PubMed

    Klein, Robert; Tischler, Judith S; Mühling, Martin; Schlömann, Michael

    2014-01-01

    Caused by the oxidative dissolution of sulfide minerals, mine waters are often acidic and contaminated with high concentrations of sulfates, metals, and metalloids. Because the so-called acid mine drainage (AMD) affects the environment or poses severe problems for later use, treatment of these waters is required. Therefore, various remediation strategies have been developed to remove soluble metals and sulfates through immobilization using physical, chemical, and biological approaches. Conventionally, iron and sulfate-the main pollutants in mine waters-are removed by addition of neutralization reagents and subsequent chemical iron oxidation and sulfate mineral precipitation. Biological treatment strategies take advantage of the ability of microorganisms that occur in mine waters to metabolize iron and sulfate. As a rule, these can be grouped into oxidative and reductive processes, reflecting the redox state of mobilized iron (reduced form) and sulfur (oxidized form) in AMD. Changing the redox states of iron and sulfur results in iron and sulfur compounds with low solubility, thus leading to their precipitation and removal. Various techniques have been developed to enhance the efficacy of these microbial processes, as outlined in this review.

  15. Pneumatic stowing seals mines

    SciTech Connect

    Brezovec, D.

    1983-11-01

    A pneumatic stowing technique has been used in the US to seal entries to abandoned mines. Limestone mixed with dry cement or bentonite is blown into the opening. Sealing can be accomplished in much less time than with traditional concrete block/clay plug methods.

  16. String Mining in Bioinformatics

    NASA Astrophysics Data System (ADS)

    Abouelhoda, Mohamed; Ghanem, Moustafa

    Sequence analysis is a major area in bioinformatics encompassing the methods and techniques for studying the biological sequences, DNA, RNA, and proteins, on the linear structure level. The focus of this area is generally on the identification of intra- and inter-molecular similarities. Identifying intra-molecular similarities boils down to detecting repeated segments within a given sequence, while identifying inter-molecular similarities amounts to spotting common segments among two or multiple sequences. From a data mining point of view, sequence analysis is nothing but string- or pattern mining specific to biological strings. For a long time, this point of view, however, has not been explicitly embraced neither in the data mining nor in the sequence analysis text books, which may be attributed to the co-evolution of the two apparently independent fields. In other words, although the word “data-mining” is almost missing in the sequence analysis literature, its basic concepts have been implicitly applied. Interestingly, recent research in biological sequence analysis introduced efficient solutions to many problems in data mining, such as querying and analyzing time series [49,53], extracting information from web pages [20], fighting spam mails [50], detecting plagiarism [22], and spotting duplications in software systems [14].

  17. Mining Task Force Report.

    ERIC Educational Resources Information Center

    Saskatchewan Inst. of Applied Science and Technology, Saskatoon.

    In fall 1988, the Board of Directors of the Saskatchewan Institute of Applied Science and Technology (SIAST) created a task force to study the training needs of the mining industry in the province and evaluate SIAST's responsiveness to those needs. After assessing the technological changes taking place in the industry, surveying manpower needs,…

  18. Lunabotics Mining Competition

    NASA Technical Reports Server (NTRS)

    Mueller, Rob; Murphy, Gloria

    2010-01-01

    This slide presentation describes a competition to design a lunar robot (lunabot) that can be controlled either remotely or autonomously, isolated from the operator, and is designed to mine a lunar aggregate simulant. The competition is part of a systems engineering curriculum. The 2010 competition winners in five areas of the competition were acknowledged, and the 2011 competition was announced.

  19. Contextual Text Mining

    ERIC Educational Resources Information Center

    Mei, Qiaozhu

    2009-01-01

    With the dramatic growth of text information, there is an increasing need for powerful text mining systems that can automatically discover useful knowledge from text. Text is generally associated with all kinds of contextual information. Those contexts can be explicit, such as the time and the location where a blog article is written, and the…

  20. Mining (except Oil and Gas) Sector (NAICS 212)

    EPA Pesticide Factsheets

    EPA Regulatory and enforcement information for the mining sector, including metal mining & nonmetallic mineral mining and quarrying. Includes information about asbestos, coal mining, mountaintop mining, Clean Water Act section 404, and abandoned mine lands

  1. Technologies for Decreasing Mining Losses

    NASA Astrophysics Data System (ADS)

    Valgma, Ingo; Väizene, Vivika; Kolats, Margit; Saarnak, Martin

    2013-12-01

    In case of stratified deposits like oil shale deposit in Estonia, mining losses depend on mining technologies. Current research focuses on extraction and separation possibilities of mineral resources. Selective mining, selective crushing and separation tests have been performed, showing possibilities of decreasing mining losses. Rock crushing and screening process simulations were used for optimizing rock fractions. In addition mine backfilling, fine separation, and optimized drilling and blasting have been analyzed. All tested methods show potential and depend on mineral usage. Usage in addition depends on the utilization technology. The questions like stability of the material flow and influences of the quality fluctuations to the final yield are raised.

  2. Multisource causal data mining

    NASA Astrophysics Data System (ADS)

    Woodley, Robert; Gosnell, Michael; Shallenberger, Kevin

    2012-06-01

    Analysts are faced with mountains of data, and finding that relevant piece of information is the proverbial needle in a haystack, only with dozens of haystacks. Analysis tools that facilitate identifying causal relationships across multiple data sets are sorely needed. 21st Century Systems, Inc. (21CSi) has initiated research called Causal-View, a causal datamining visualization tool, to address this challenge. Causal-View is built on an agent-enabled framework. Much of the processing that Causal-View will do is in the background. When a user requests information, Data Extraction Agents launch to gather information. This initial search is a raw, Monte Carlo type search designed to gather everything available that may have relevance to an individual, location, associations, and more. This data is then processed by Data- Mining Agents. The Data-Mining Agents are driven by user supplied feature parameters. If the analyst is looking to see if the individual frequents a known haven for insurgents he may request information on his last known locations. Or, if the analyst is trying to see if there is a pattern in the individual's contacts, the mining agent can be instructed with the type and relevance of the information fields to look at. The same data is extracted from the database, but the Data Mining Agents customize the feature set to determine causal relationships the user is interested in. At this point, a Hypothesis Generation and Data Reasoning Agents take over to form conditional hypotheses about the data and pare the data, respectively. The newly formed information is then published to the agent communication backbone of Causal- View to be displayed. Causal-View provides causal analysis tools to fill the gaps in the causal chain. We present here the Causal-View concept, the initial research into data mining tools that assist in forming the causal relationships, and our initial findings.

  3. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  4. Microbiological and Geochemical Characterization of Fluvially Deposited Sulfidic Mine Tailings

    PubMed Central

    Wielinga, Bruce; Lucy, Juliette K.; Moore, Johnnie N.; Seastone, October F.; Gannon, James E.

    1999-01-01

    The fluvial deposition of mine tailings generated from historic mining operations near Butte, Montana, has resulted in substantial surface and shallow groundwater contamination along Silver Bow Creek. Biogeochemical processes in the sediment and underlying hyporheic zone were studied in an attempt to characterize interactions consequential to heavy-metal contamination of shallow groundwater. Sediment cores were extracted and fractionated based on sediment stratification. Subsamples of each fraction were assayed for culturable heterotrophic microbiota, specific microbial guilds involved in metal redox transformations, and both aqueous- and solid-phase geochemistry. Populations of cultivable Fe(III)-reducing bacteria were most prominent in the anoxic, circumneutral pH regions associated with a ferricrete layer or in an oxic zone high in organic carbon and soluble iron. Sulfur- and iron-oxidizing bacteria were distributed in discrete zones throughout the tailings and were often recovered from sections at and below the anoxic groundwater interface. Sulfate-reducing bacteria were also widely distributed in the cores and often occurred in zones overlapping iron and sulfur oxidizers. Sulfate-reducing bacteria were consistently recovered from oxic zones that contained high concentrations of metals in the oxidizable fraction. Altogether, these results suggest a highly varied and complex microbial ecology within a very heterogeneous geochemical environment. Such physical and biological heterogeneity has often been overlooked when remediation strategies for metal contaminated environments are formulated. PMID:10103249

  5. Biological Potential of Chitinolytic Marine Bacteria

    PubMed Central

    Paulsen, Sara Skøtt; Andersen, Birgitte; Gram, Lone; Machado, Henrique

    2016-01-01

    Chitinolytic microorganisms secrete a range of chitin modifying enzymes, which can be exploited for production of chitin derived products or as fungal or pest control agents. Here, we explored the potential of 11 marine bacteria (Pseudoalteromonadaceae, Vibrionaceae) for chitin degradation using in silico and phenotypic assays. Of 10 chitinolytic strains, three strains, Photobacterium galatheae S2753, Pseudoalteromonas piscicida S2040 and S2724, produced large clearing zones on chitin plates. All strains were antifungal, but against different fungal targets. One strain, Pseudoalteromonas piscicida S2040, had a pronounced antifungal activity against all seven fungal strains. There was no correlation between the number of chitin modifying enzymes as found by genome mining and the chitin degrading activity as measured by size of clearing zones on chitin agar. Based on in silico and in vitro analyses, we cloned and expressed two ChiA-like chitinases from the two most potent candidates to exemplify the industrial potential. PMID:27999269

  6. Mining-Induced Coal Permeability Change Under Different Mining Layouts

    NASA Astrophysics Data System (ADS)

    Zhang, Zetian; Zhang, Ru; Xie, Heping; Gao, Mingzhong; Xie, Jing

    2016-09-01

    To comprehensively understand the mining-induced coal permeability change, a series of laboratory unloading experiments are conducted based on a simplifying assumption of the actual mining-induced stress evolution processes of three typical longwall mining layouts in China, i.e., non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (PCM). A theoretical expression of the mining-induced permeability change ratio (MPCR) is derived and validated by laboratory experiments and in situ observations. The mining-induced coal permeability variation under the three typical mining layouts is quantitatively analyzed using the MPCR based on the test results. The experimental results show that the mining-induced stress evolution processes of different mining layouts do have an influence on the mechanical behavior and evolution of MPCR of coal. The coal mass in the PCM simulation has the lowest stress concentration but the highest peak MPCR (approximately 4000 %), whereas the opposite trends are observed for the coal mass under NM. The results of the coal mass under TCM fall between those for PCM and NM. The evolution of the MPCR of coal under different layouts can be divided into three sections, i.e., stable increasing section, accelerated increasing section and reducing section, but the evolution processes are slightly different for the different mining layouts. A coal bed gas intensive extraction region is recommended based on the MPCR distribution of coal seams obtained by simplifying assumptions and the laboratory testing results. The presented results are also compared with existing conventional triaxial compression test results to fully comprehend the effect of actual mining-induced stress evolution on coal property tests.

  7. Text Mining for Neuroscience

    NASA Astrophysics Data System (ADS)

    Tirupattur, Naveen; Lapish, Christopher C.; Mukhopadhyay, Snehasis

    2011-06-01

    Text mining, sometimes alternately referred to as text analytics, refers to the process of extracting high-quality knowledge from the analysis of textual data. Text mining has wide variety of applications in areas such as biomedical science, news analysis, and homeland security. In this paper, we describe an approach and some relatively small-scale experiments which apply text mining to neuroscience research literature to find novel associations among a diverse set of entities. Neuroscience is a discipline which encompasses an exceptionally wide range of experimental approaches and rapidly growing interest. This combination results in an overwhelmingly large and often diffuse literature which makes a comprehensive synthesis difficult. Understanding the relations or associations among the entities appearing in the literature not only improves the researchers current understanding of recent advances in their field, but also provides an important computational tool to formulate novel hypotheses and thereby assist in scientific discoveries. We describe a methodology to automatically mine the literature and form novel associations through direct analysis of published texts. The method first retrieves a set of documents from databases such as PubMed using a set of relevant domain terms. In the current study these terms yielded a set of documents ranging from 160,909 to 367,214 documents. Each document is then represented in a numerical vector form from which an Association Graph is computed which represents relationships between all pairs of domain terms, based on co-occurrence. Association graphs can then be subjected to various graph theoretic algorithms such as transitive closure and cycle (circuit) detection to derive additional information, and can also be visually presented to a human researcher for understanding. In this paper, we present three relatively small-scale problem-specific case studies to demonstrate that such an approach is very successful in

  8. Rehabilitation of gypsum-mined lands in the Indian desert

    USGS Publications Warehouse

    Sharma, K.D.; Kumar, S.; Gough, L.P.

    2001-01-01

    The economic importance of mining in the Indian Desert is second only to agriculture. Land disturbed by mining, however, has only recently been the focus of rehabilitation efforts. This research assesses the success of rehabilitation plans used to revegetate gypsum mine spoils within the environmental constraints of the north-west Indian hot-desert ecosystem. The rehabilitation plan first examined both mined and unmined areas and established assessments of existing vegetative cover and the quality of native soils and mine spoils. Tests were made on the effect of the use, and conservation, of available water through rainwater harvesting, amendment application (for physical and chemical spoil modification), plant establishment protocols, and the selection of appropriate germ plasm. Our results show that the resulting vegetative cover is capable of perpetuating itself under natural conditions while concurrently meeting the needs of farmers. Although the mine spoils are deficient in organic matter and phosphorus, they possess adequate amounts of all other nutrients. Total boron concentrations (>5.0 mg kg-1) in both the topsail and mine spoil indicate potentially phytotoxic conditions. Electrical conductance of mine spoil is 6-10 times higher than for topsail with a near-neutral pH. Populations of spoil fungi, Azotobactor, and nitrifying bacteria are low. The soil moisture storage in rainwater harvesting plots increased by 8% over the control and 48% over the unmined area. As a result of rehabilitation efforts, mine spoils show a steady buildup in organic carbon, and P and K due to the decomposition of farmyard manure and the contribution of nitrogen fixation by the established leguminous plant species. The rehabilitation protocol used at the site appears to have been successful. Following revegetation of the area with a mixture of trees, shrubs, and grasses, native implanted species have become established. Species diversity, measured in terms of species richness

  9. The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria.

    PubMed

    Karwowska, Ewa; Wojtkowska, Małgorzata; Andrzejewska, Dorota

    2015-12-15

    Metal leachability from ash and combustion slag is related to the physico-chemical properties, including their speciation in the waste. Metals speciation is an important factor that influences the efficiency of metal bioleaching from combustion wastes in a mixed culture of acidophilic and biosurfactant-producing bacteria. It was observed that individual metals tended to occur in different fractions, which reflects their susceptibility to bioleaching. Cr and Ni were readily removed from wastes when present with a high fraction bound to carbonates. Cd and Pb where not effectively bioleached when present in high amounts in a fraction bound to organic matter. The best bioleaching results were obtained for power plant slag, which had a high metal content in the exchangeable, bound to carbonates and bound to Fe and Mg oxides fractions- the metal recovery percentage for Zn, Cu and Ni from this waste exceeded 90%.

  10. COMPUTER SIMULATOR (BEST) FOR DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS

    EPA Science Inventory

    BEST (bioreactor economics, size and time of operation) is a spreadsheet-based model that is used in conjunction with public domain software, PhreeqcI. BEST is used in the design process of sulfate-reducing bacteria (SRB) field bioreactors to passively treat acid mine drainage (A...

  11. Antibiotic-Resistant Bacteria.

    ERIC Educational Resources Information Center

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  12. Bacteria-surface interactions.

    PubMed

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  13. PATHOGENICITY OF BIOFILM BACTERIA

    EPA Science Inventory

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  14. Monoclonal antibodies against bacteria.

    PubMed

    Macario, A J; Conway de Macario, E

    1988-01-01

    Highlights are presented of most recent work in which monoclonal antibodies have been instrumental in the study of bacteria and their products. Topics summarized pertain to human and veterinary medicines, dentistry, phytopathology, ichthyology, and bacterial ecophysiology, differentiation, evolution and methanogenic biotechnology.

  15. Enteric bacteria mandibular osteomyelitis.

    PubMed

    Scolozzi, Paolo; Lombardi, Tommaso; Edney, Timothy; Jaques, Bertrand

    2005-06-01

    Osteomyelitis of the mandible is a relatively rare inflammatory disease that usually stems from the odontogenic polymicrobial flora of the oral cavity. We are reporting 2 unusual cases of mandibular osteomyelitis resulting from enteric bacteria infection. In one patient, abundant clinical evidence suggested a diagnosis of a chronic factitious disease, whereas in the second patient no obvious etiology was found.

  16. Bacteria-surface interactions

    PubMed Central

    Tuson, Hannah H.; Weibel, Douglas B.

    2013-01-01

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field. PMID:23930134

  17. Microbial Community Structure and Physiological Status of Different Types of Biofilms in an Acid Mine Drainage Site Determined by Phospholipid Analysis

    NASA Astrophysics Data System (ADS)

    Fang, J.

    2009-12-01

    A unique aspect of the acid mine drainage (AMD) system at the Green Valley coal mine site (GVS) in western Indiana is the abundance of biofims and biolaminates - stromatolites. Three major types of biofilms have been observed from the AMD site: bright green biofilm dominated by the acidophilic, oxygenic photosynthetic protozoan Euglena mutabilis, olive green biofilm of photosynthetic diatom belonging to the genus Nitzschia, and an olive-green to brownish-green filamentous algae-dominated community. These biofilms are either attached to hard substrata of the effluent channel, or floating at the surface of the effluent with abundant oxygen bubbles, with or without encrusted Fe precipitates. We analyzed lipids (hydrocarbons, wax esters, phospholipids, glycolipids, and neutral lipids) to determine the microbial biomass, community structure and physiological status of biofims collected from the GVS site. Distinctive lipid compositions were observed. The attached, red-crusted biofilms were characterized by abundant wax esters, monounsaturated fatty acids, whereas the floating biofilms by phytadienes, phytanol, polyunsaturated n-alkenes, polyunsaturated fatty acids. The accumulation of abundant wax esters probably reflects the readily available carbon and limitation of nutrients to the biofilm. Alternatively, the wax esters may be the biochemical relics of the anaerobic past of the Earth and the detection of these compounds has important implications for the evolution of eukaryotes and the paleo-environmental conditions on early Earth. This type of biochemical machine may have allowed early eukaryotes to survive recurrent anoxic conditions on early Earth.

  18. Alchemy and mining: metallogenesis and prospecting in early mining books.

    PubMed

    Dym, Warren Alexander

    2008-11-01

    Historians have assumed that alchemy had a close association with mining, but exactly how and why miners were interested in alchemy remains unclear. This paper argues that alchemical theory began to be synthesised with classical and Christian theories of the earth in mining books after 1500, and served an important practical function. The theory of metals that mining officials addressed spoke of mineral vapours (Witterungen) that left visible markings on the earth's surface. The prospector searched for mineral ore in part by studying these indications. Mineral vapours also explained the functioning of the dowsing rod, which prospectors applied to the discovery of ore. Historians of early chemistry and mining have claimed that mining had a modernising influence by stripping alchemy of its theoretical component, but this paper shows something quite to the contrary: mining officials may have been sceptical of the possibility of artificial transmutation, but they were interested in a theory of the earth that could translate into prospecting knowledge.

  19. Alma Data Mining Toolkit

    NASA Astrophysics Data System (ADS)

    Friedel, Douglas; Looney, Leslie; Teuben, Peter J.; Pound, Marc W.; Rauch, Kevin P.; Mundy, Lee; Harris, Robert J.; Xu, Lisa

    2016-06-01

    ADMIT (ALMA Data Mining Toolkit) is a Python based pipeline toolkit for the creation and analysis of new science products from ALMA data. ADMIT quickly provides users with a detailed overview of their science products, for example: line identifications, line 'cutout' cubes, moment maps, and emission type analysis (e.g., feature detection). Users can download the small ADMIT pipeline product (< 20MB), analyze the results, then fine-tune and re-run the ADMIT pipeline (or any part thereof) on their own machines and interactively inspect the results. ADMIT has both a web browser and command line interface available for this purpose. By analyzing multiple data cubes simultaneously, data mining between many astronomical sources and line transitions are possible. Users are also able to enhance the capabilities of ADMIT by creating customized ADMIT tasks satisfying any special processing needs. We will present some of the salient features of ADMIT and example use cases.

  20. Mine roof support

    SciTech Connect

    Bollmann, A.

    1981-02-24

    A mine roof support has a base and a roof shield pivoted to the base and carrying at its upper end a pivoted cap which is urged upwardly against the mine roof by a hydraulic pit prop reacting between the cap and the base. The lower end of the roof shield is connected to the base by two links each having a pivot cooperating with a pivot on the roof shield, and a pivot cooperating with a pivot on the base. In addition, the base and/or the lower end of the roof shield has an auxiliary for each link and each link has an auxiliary pivot which can be connected with one of the auxiliary pivots of the base or lower end.

  1. Multievidence microarray mining.

    PubMed

    Seifert, Martin; Scherf, Matthias; Epple, Anton; Werner, Thomas

    2005-10-01

    Microarray mining is a challenging task because of the superposition of several processes in the data. We believe that the combination of microarray data-based analyses (statistical significance analysis of gene expression) with array-independent analyses (literature-mining and promoter analysis) enables some of the problems of traditional array analysis to be overcome. As a proof-of-principle, we revisited publicly available microarray data derived from an experiment with platelet-derived growth factor (PDGF)-stimulated fibroblasts. Our strategy revealed results beyond the detection of the major metabolic pathway known to be linked to the PDGF response: we were able to identify the crosstalking regulatory networks underlying the metabolic pathway without using a priori knowledge about the experiment.

  2. Phosphate Mines, Jordan

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Jordan's leading industry and export commodities are phosphate and potash, ranked in the top three in the world. These are used to make fertilizer. The Jordan Phosphate Mines Company is the sole producer, having started operations in 1935. In addition to mining activities, the company produces phosphoric acid (for fertilizers, detergents, pharmaceuticals), diammonium phosphate (for fertilizer), sulphuric acid (many uses), and aluminum fluoride (a catalyst to make aluminum and magnesium).

    The image covers an area of 27.5 x 49.4 km, was acquired on September 17, 2005, and is located near 30.8 degrees north latitude, 36.1 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  3. Mining in chemometrics.

    PubMed

    Mutihac, Lucia; Mutihac, Radu

    2008-03-31

    Some of the increasingly spread data mining methods in chemometrics like exploratory data analysis, artificial neural networks, pattern recognition, and digital image processing with their highs and lows along with some of their representative applications are discussed. The development of more complex analytical instruments and the need to cope with larger experimental data sets have demanded for new approaches in data analysis, which have led to advanced methods in experimental design and data processing. Hypothesis-driven methods typified by inferential statistics have been gradually complemented or even replaced by data-driven model-free methods that seek for structure in data without reference to the experimental protocol or prior hypotheses. The emphasis is put on the ability of data mining methods to solve multivariate-multiresponse problems on the basis of experimental data and minimal statistical assumptions only, in contrast to classical methods, which require predefined priors to be tested against some null-hypothesis.

  4. Drum cutter mining machine

    SciTech Connect

    Oberste-beulmann, K.; Schupphaus, H.

    1980-02-19

    A drum cutter mining machine includes a machine frame with a winch having a drive wheel to engage a rack or chain which extends along the path of travel by the mining machine to propel the machine along a mine face. The mining machine is made up of discrete units which include a machine body and machine housings joined to opposite sides of the machine body. The winch is either coupled through a drive train with a feed drive motor or coupled to the drive motor for cutter drums. The machine housings each support a pivot shaft coupled by an arm to a drum cutter. One of these housings includes a removable end cover and a recess adapted to receive a support housing for a spur gear system used to transmit torque from a feed drive motor to a reduction gear system which is, in turn, coupled to the drive wheel of the winch. In one embodiment, a removable end cover on the machine housing provides access to the feed drive motor. The feed drive motor is arranged so that the rotational axis of its drive output shaft extends transversely to the stow side of the machine frame. In another embodiment, the reduction gear system is arranged at one side of the pivot shaft for the cutter drum while the drive motor therefor is arranged at the other side of the pivot shaft and coupled thereto through the spur gear system. In a further embodiment, the reduction gear system is disposed between the feed motor and the pivot shaft.

  5. National Underground Mines Inventory

    DTIC Science & Technology

    1983-10-01

    that the contents necessaZiy reflect the views and policies of the Federal Emergency Management Agency. FINAL REPORT RTI/2506/OO-O1F NATIONAL...UNDERGROUND MINES INVENTORY Prepared by: M. Wright R. Chessin K. Reeves S. York, III Prepared for: Federal Emergency Management Agency Washington , D.C. 20472...Emergency Management Agency October 1983 Washington , DC 20472 I. NUMBEROFPAGES 80 14. MONITORING AGENCY NAME A ADORESS(1lierent bum Controflhi Office

  6. Germany knows mining

    SciTech Connect

    2006-11-15

    Whether it is the nuance of precision or robust rock breaking strength, German suppliers have the expertise. Germany has about 120 companies in the mining equipment industry, employing some 16,000 people. The article describes some recent developments of the following companies: DBT, Liebherr, Atlas Copco, BASF, Boart Longyear, Eickhoff, IBS, Maschinenfabrik Glueckauf, Komatsu, TAKRA, Terex O & R, Thyssen Krupp Foerdertechnik and Wirtgen. 7 photos.

  7. Characterization of novel archaeal lineages associated with acid mine drainage in Iron Mountain, CA using anaerobic cultivation and cultivation-independent genomic analysis

    NASA Astrophysics Data System (ADS)

    Baker, B. J.; Tyson, G. W.; Hugenholtz, P.; Banfield, J. F.

    2003-12-01

    Iron Mountain in northern California, contains a pyritic orebody undergoing dissolution from mining creating extremely acidic (generally ~pH 0.8), warm (>40° C), and highly concentrated metal solutions, referred to as acid mine drainage (AMD). AMD communities are limited in the number of lineages that have been associated with them. The archaeal members of the mine community, in the past, have been restricted to the Thermoplasmatales order. The various clades within the Thermoplasmatales have been named the "alphabet plasma" (ie. Aplasma through Gplasma). The majority of them remain uncultured. Anaerobic media containing ferric sulfate and glucose has been successful in enriching and maintaining members of the "alphabet plasmas". Analysis of aqueous chemistry of these cultures shows a reduction of ferric iron, suggesting a subset of these archaea are capable of iron reduction. This may be a relevant part of iron cycling in the mine previously overlooked. Recently, another deeply branched archaeal group, named WTF1102, has been identified. Completely independent of all previously identified AMD lineages, its closest relative available in present databases is to that of the euryarchaeota group referred to as VAL1, which consists entirely of uncultured and poorly represented in sequences. Screening of the community genomic library constructed from the site revealed a contiguous fragment from two shotgun clones, totaling ~4.4kb in length. These clones have been fully sequenced and contain two genes, a phosphatase and 16S rRNA. The 16S rRNA gene has a 515 bp long intron at 1102 (E. coli numbering) that contains an open reading frame which encodes for a ubitiquitin-like protein modifier. Phylogenetic analysis of the phosphotase amino acid sequence revealed it branches with that of other acidophiles, Thermoplasma and Ferroplasma. We are developing FISH probes to target the individual "alphabet plasma" and WTF1102. This work extends what we know about the diversity and

  8. NVESD mine lane facility

    NASA Astrophysics Data System (ADS)

    Habersat, James D.; Marshall, Christopher; Maksymonko, George

    2003-09-01

    The NVESD Mine Lane Facility has recently undergone an extensive renovation. It now consists of an indoor, dry lane portion, a greenhouse portion with moisture-controlled lanes, a control room, and two outdoor lanes. The indoor structure contains six mine lanes, each approximately 2.5m (width) × 1.2m (depth) × 33m(length). These lanes contain six different soil types: magnetite/sand, silt, crusher run gravel (bluestone gravel), bank run gravel (tan gravel), red clay, and white sand. An automated trolley system is used for mounting the various mine detection systems and sensors under test. Data acquisition and data logging is fully automated. The greenhouse structure was added to provide moisture controlled lanes for measuring the effect of moisture on sensor effectiveness. A gantry type crane was installed to permit remotely controlled positioning of a sensor package over any portion of the greenhouse lanes at elevations from ground level up to 5m without shadowing the target area. The roof of the greenhouse is motorized, and can be rolled back to allow full solar loading. A control room overlooking the lanes is complete with recording and monitoring devices and contains controls to operate the trolleys. A facility overview is presented and typical results from recent data collection exercises are presented.

  9. Data Mining and Analysis

    NASA Technical Reports Server (NTRS)

    Samms, Kevin O.

    2015-01-01

    The Data Mining project seeks to bring the capability of data visualization to NASA anomaly and problem reporting systems for the purpose of improving data trending, evaluations, and analyses. Currently NASA systems are tailored to meet the specific needs of its organizations. This tailoring has led to a variety of nomenclatures and levels of annotation for procedures, parts, and anomalies making difficult the realization of the common causes for anomalies. Making significant observations and realizing the connection between these causes without a common way to view large data sets is difficult to impossible. In the first phase of the Data Mining project a portal was created to present a common visualization of normalized sensitive data to customers with the appropriate security access. The tool of the visualization itself was also developed and fine-tuned. In the second phase of the project we took on the difficult task of searching and analyzing the target data set for common causes between anomalies. In the final part of the second phase we have learned more about how much of the analysis work will be the job of the Data Mining team, how to perform that work, and how that work may be used by different customers in different ways. In this paper I detail how our perspective has changed after gaining more insight into how the customers wish to interact with the output and how that has changed the product.

  10. Organizational Data Mining

    NASA Astrophysics Data System (ADS)

    Nemati, Hamid R.; Barko, Christopher D.

    Many organizations today possess substantial quantities of business information but have very little real business knowledge. A recent survey of 450 business executives reported that managerial intuition and instinct are more prevalent than hard facts in driving organizational decisions. To reverse this trend, businesses of all sizes would be well advised to adopt Organizational Data Mining (ODM). ODM is defined as leveraging Data Mining tools and technologies to enhance the decision-making process by transforming data into valuable and actionable knowledge to gain a competitive advantage. ODM has helped many organizations optimize internal resource allocations while better understanding and responding to the needs of their customers. The fundamental aspects of ODM can be categorized into Artificial Intelligence (AI), Information Technology (IT), and Organizational Theory (OT), with OT being the key distinction between ODM and Data Mining. In this chapter, we introduce ODM, explain its unique characteristics, and report on the current status of ODM research. Next we illustrate how several leading organizations have adopted ODM and are benefiting from it. Then we examine the evolution of ODM to the present day and conclude our chapter by contemplating ODM's challenging yet opportunistic future.

  11. 30 CFR 77.1200 - Mine map.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Mine map. 77.1200 Section 77.1200 Mineral... SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Maps § 77.1200 Mine map. The operator shall maintain an accurate and up-to-date map of the mine, on a scale of not...

  12. 30 CFR 75.203 - Mining methods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Mining methods. 75.203 Section 75.203 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.203 Mining methods. (a) The method of mining... used to maintain the projected direction of mining in entries, rooms, crosscuts and pillar splits....

  13. 30 CFR 75.203 - Mining methods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mining methods. 75.203 Section 75.203 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.203 Mining methods. (a) The method of mining... used to maintain the projected direction of mining in entries, rooms, crosscuts and pillar splits....

  14. 30 CFR 75.203 - Mining methods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mining methods. 75.203 Section 75.203 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.203 Mining methods. (a) The method of mining... used to maintain the projected direction of mining in entries, rooms, crosscuts and pillar splits....

  15. 30 CFR 75.203 - Mining methods.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mining methods. 75.203 Section 75.203 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.203 Mining methods. (a) The method of mining... used to maintain the projected direction of mining in entries, rooms, crosscuts and pillar splits....

  16. 30 CFR 75.203 - Mining methods.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mining methods. 75.203 Section 75.203 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.203 Mining methods. (a) The method of mining... used to maintain the projected direction of mining in entries, rooms, crosscuts and pillar splits....

  17. Lead biotransformation potential of allochthonous Bacillus sp. SKK11 with sesame oil cake in mine soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was aimed at assessing the potential of allochthonous Bacillus sp. SKK11 and sesame oil cake extract for transformation of Pb in mine soil. The bacteria were isolated from a brackish environment and identified as Bacillus sp. based on partial 16S rDNA sequences. The isolate SKK11 exhibite...

  18. Application of fuel cell for pyrite and heavy metal containing mining waste

    NASA Astrophysics Data System (ADS)

    Keum, H.; Ju, W. J.; Jho, E. H.; Nam, K.

    2015-12-01

    Once pyrite and heavy metal containing mining waste reacts with water and air it produces acid mine drainage (AMD) and leads to the other environmental problems such as contamination of surrounding soils. Pyrite is the major source of AMD and it can be controlled using a biological-electrochemical dissolution method. By enhancing the dissolution of pyrite using fuel cell technology, not only mining waste be beneficially utilized but also be treated at the same time by. As pyrite-containing mining waste is oxidized in the anode of the fuel cell, electrons and protons are generated, and electrons moves through an external load to cathode reducing oxygen to water while protons migrate to cathode through a proton exchange membrane. Iron-oxidizing bacteria such as Acidithiobacillus ferrooxidans, which can utilize Fe as an electron donor promotes pyrite dissolution and hence enhances electrochemical dissolution of pyrite from mining waste. In this study mining waste from a zinc mine in Korea containing 17 wt% pyrite and 9% As was utilized as a fuel for the fuel cell inoculated with A. ferrooxidans. Electrochemically dissolved As content and chemically dissolved As content was compared. With the initial pH of 3.5 at 23℃, the dissolved As concentration increased (from 4.0 to 13 mg/L after 20 d) in the fuel cell, while it kept decreased in the chemical reactor (from 12 to 0.43 mg/L after 20 d). The fuel cell produced 0.09 V of open circuit voltage with the maximum power density of 0.84 mW/m2. Dissolution of As from mining waste was enhanced through electrochemical reaction. Application of fuel cell technology is a novel treatment method for pyrite and heavy metals containing mining waste, and this method is beneficial for mining environment as well as local community of mining areas.

  19. Ground control for highwall mining

    SciTech Connect

    Zipf, R.K.; Mark, C.

    2007-09-15

    Perhaps the greatest risk to both equipment and personnel associated with highwall mining is from ground control. The two most significant ground control hazards are rock falls from highwall and equipment entrapment underground. In the central Appalachians, where the majority of highwall mining occurs in the USA, hillseams (or mountain cracks) are the most prominent structure that affects highwall stability. The article discusses measures to minimise the risk of failure associated with hillstreams. A 'stuck' or trapped highwall miner, and the ensuring retrieval or recovery operation, can be extremely disruptive to the highwall mining process. Most entrapment, are due to roof falls in the hole. The options for recovery are surface retrieval, surface excavation or underground recovery. Proper pillar design is essential to maintain highwall stability and prevent entrapments. NIOSH has developed the Analysis of Retreat Mining Pillar stability-Highwall Mining (ARMPS-HWM) computer program to help mine planners with this process. 10 figs.

  20. Economics of mining law

    USGS Publications Warehouse

    Long, K.R.

    1995-01-01

    Modern mining law, by facilitating socially and environmentally acceptable exploration, development, and production of mineral materials, helps secure the benefits of mineral production while minimizing environmental harm and accounting for increasing land-use competition. Mining investments are sunk costs, irreversibly tied to a particular mineral site, and require many years to recoup. Providing security of tenure is the most critical element of a practical mining law. Governments owning mineral rights have a conflict of interest between their roles as a profit-maximizing landowner and as a guardian of public welfare. As a monopoly supplier, governments have considerable power to manipulate mineral-rights markets. To avoid monopoly rent-seeking by governments, a competitive market for government-owned mineral rights must be created by artifice. What mining firms will pay for mineral rights depends on expected exploration success and extraction costs. Landowners and mining firms will negotlate respective shares of anticipated differential rents, usually allowing for some form of risk sharing. Private landowners do not normally account for external benefits or costs of minerals use. Government ownership of mineral rights allows for direct accounting of social prices for mineral-bearing lands and external costs. An equitable and efficient method is to charge an appropriate reservation price for surface land use, net of the value of land after reclamation, and to recover all or part of differential rents through a flat income or resource-rent tax. The traditional royalty on gross value of production, essentially a regressive income tax, cannot recover as much rent as a flat income tax, causes arbitrary mineral-reserve sterilization, and creates a bias toward development on the extensive margin where marginal environmental costs are higher. Mitigating environmental costs and resolving land-use conflicts require local evaluation and planning. National oversight ensures

  1. 30 CFR 819.21 - Auger mining: Protection of underground mining.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Auger mining: Protection of underground mining. 819.21 Section 819.21 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... STANDARDS-AUGER MINING § 819.21 Auger mining: Protection of underground mining. Auger holes shall not...

  2. 30 CFR 77.1712 - Reopening mines; notification; inspection prior to mining.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to mining. 77.1712 Section 77.1712 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... prior to mining. Prior to reopening any surface coal mine after it has been abandoned or declared... an authorized representative of the Secretary before any mining operations in such mine...

  3. 30 CFR 49.4 - Alternative mine rescue capability for special mining conditions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mining conditions. 49.4 Section 49.4 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT... special mining conditions. (a) If an underground mine is operating under special mining conditions, the... review and approval. (c) To be considered “operating under special mining conditions,” the operator...

  4. 30 CFR 819.21 - Auger mining: Protection of underground mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Protection of underground mining. 819.21 Section 819.21 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... STANDARDS-AUGER MINING § 819.21 Auger mining: Protection of underground mining. Auger holes shall not...

  5. 30 CFR 77.1712 - Reopening mines; notification; inspection prior to mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to mining. 77.1712 Section 77.1712 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... prior to mining. Prior to reopening any surface coal mine after it has been abandoned or declared... an authorized representative of the Secretary before any mining operations in such mine...

  6. 30 CFR 77.1712 - Reopening mines; notification; inspection prior to mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to mining. 77.1712 Section 77.1712 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... prior to mining. Prior to reopening any surface coal mine after it has been abandoned or declared... an authorized representative of the Secretary before any mining operations in such mine...

  7. 30 CFR 819.21 - Auger mining: Protection of underground mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Auger mining: Protection of underground mining. 819.21 Section 819.21 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... STANDARDS-AUGER MINING § 819.21 Auger mining: Protection of underground mining. Auger holes shall not...

  8. 30 CFR 819.21 - Auger mining: Protection of underground mining.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Auger mining: Protection of underground mining. 819.21 Section 819.21 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... STANDARDS-AUGER MINING § 819.21 Auger mining: Protection of underground mining. Auger holes shall not...

  9. 30 CFR 819.21 - Auger mining: Protection of underground mining.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Auger mining: Protection of underground mining. 819.21 Section 819.21 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... STANDARDS-AUGER MINING § 819.21 Auger mining: Protection of underground mining. Auger holes shall not...

  10. Changes in the bacterial community of soil from a neutral mine drainage channel.

    PubMed

    Pereira, Letícia Bianca; Vicentini, Renato; Ottoboni, Laura M M

    2014-01-01

    Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments.

  11. Changes in the Bacterial Community of Soil from a Neutral Mine Drainage Channel

    PubMed Central

    Pereira, Letícia Bianca; Vicentini, Renato; Ottoboni, Laura M. M.

    2014-01-01

    Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments. PMID:24796430

  12. New Equipment for Mine Safety

    NASA Technical Reports Server (NTRS)

    1983-01-01

    While planning for the space shuttle, Bendix Corporation with the help of Johnson Space Center expanded the anthropometric data base for aerospace and nonaerospace use in clothing, workplace, etc. The result was the Anthropometric Source Book which was later utilized by the U.S. Bureau of Mines in designing advanced mining systems. The book was particularly valuable in the design of a remote cab used in mining.

  13. Data Mining in Social Media

    NASA Astrophysics Data System (ADS)

    Barbier, Geoffrey; Liu, Huan

    The rise of online social media is providing a wealth of social network data. Data mining techniques provide researchers and practitioners the tools needed to analyze large, complex, and frequently changing social media data. This chapter introduces the basics of data mining, reviews social media, discusses how to mine social media data, and highlights some illustrative examples with an emphasis on social networking sites and blogs.

  14. Distribution and diversity of halophilic bacteria in a subsurface salt formation.

    PubMed

    Vreeland, R H; Piselli, A F; McDonnough, S; Meyers, S S

    1998-08-01

    The Waste Isolation Pilot Plant (WIPP) is a salt mine constructed 650 meters below the ground surface by the United States Department of Energy. The facility will be used for permanent disposal of transuranic wastes. This underground repository has been constructed in the geologically stable Permian age Salado salt formation. Of the wastes to be placed into the facility, 85% will be biodegradable cellulose. A 3-year survey of the bacterial populations existing within the facility was conducted. Bacterial populations were found to be heterogeneously distributed throughout the mine. Populations in some mine areas reached as high as 1.0 x 10(4) colony-forming units per gram of NaCl. The heterogeneous distribution of bacteria within the mine did not follow any recognizable pattern related to either age of the workings or to human activity. A biochemical comparison between ten known species of halophilic bacteria, and strains isolated from both the mine and nearby surface hypersaline lakes, showed the presence of extreme halophiles with wide biochemical diversity, some of which could prove to represent previously undescribed groups. The halophilic bacteria isolated from the mine were found to degrade cellulose and a wide variety of other carbon compounds. When exposed to two types of common laboratory paper, the cellulose-degrading halophiles attached to the substrate within 30 minutes of inoculation. Cultures enriched directly from a brine seep in the mine easily destroyed both papers and produced detectable amounts of oxalacetic and pyruvic acids. The combination of heterogeneity in the distribution of organisms, the presence of a physiologically diverse community, and the relatively slow metabolism of cellulose may explain several long-standing debates about the existence of microorganisms in ancient underground salt formations.

  15. Mining's impact on groundwater assessed

    NASA Astrophysics Data System (ADS)

    Detailed studies have indicated that groundwater is contaminated in the immediate vicinity of many mines in the eastern United States. However, no underground mines and very few refuse disposal areas have monitoring systems that can provide adequate warning of impending threats to groundwater quality.This was one of the conclusions of a 3-year study by Geraghty & Miller, Inc., a firm of consulting groundwater geologists and hydrologists based in Syosset, New York. The study focused on mines east of the 100th meridian. These mines will produce an estimated 1.1 billion tons of coal and 200 million tons of waste by 1985.

  16. Data Mining for Financial Applications

    NASA Astrophysics Data System (ADS)

    Kovalerchuk, Boris; Vityaev, Evgenii

    This chapter describes Data Mining in finance by discussing financial tasks, specifics of methodologies and techniques in this Data Mining area. It includes time dependence, data selection, forecast horizon, measures of success, quality of patterns, hypothesis evaluation, problem ID, method profile, attribute-based and relational methodologies. The second part of the chapter discusses Data Mining models and practice in finance. It covers use of neural networks in portfolio management, design of interpretable trading rules and discovering money laundering schemes using decision rules and relational Data Mining methodology.

  17. Data mining applications in healthcare.

    PubMed

    Koh, Hian Chye; Tan, Gerald

    2005-01-01

    Data mining has been used intensively and extensively by many organizations. In healthcare, data mining is becoming increasingly popular, if not increasingly essential. Data mining applications can greatly benefit all parties involved in the healthcare industry. For example, data mining can help healthcare insurers detect fraud and abuse, healthcare organizations make customer relationship management decisions, physicians identify effective treatments and best practices, and patients receive better and more affordable healthcare services. The huge amounts of data generated by healthcare transactions are too complex and voluminous to be processed and analyzed by traditional methods. Data mining provides the methodology and technology to transform these mounds of data into useful information for decision making. This article explores data mining applications in healthcare. In particular, it discusses data mining and its applications within healthcare in major areas such as the evaluation of treatment effectiveness, management of healthcare, customer relationship management, and the detection of fraud and abuse. It also gives an illustrative example of a healthcare data mining application involving the identification of risk factors associated with the onset of diabetes. Finally, the article highlights the limitations of data mining and discusses some future directions.

  18. Reanimation of Ancient Bacteria

    SciTech Connect

    Vreeland, Russell H.

    2009-01-09

    Recent highly publicized experiments conducted on salt crystals taken from the Permian Salado Formation in Southeastern New Mexico have shown that some ancient crystals contain viable microorganisms trapped within fluid inclusions. Stringent geological and microbiological selection criteria were used to select crystals and conduct all sampling. This talk will focus on how each of these lines of data support the conclusion that such isolated bacteria are as old as the rock in which they are trapped. In this case, the isolated microbes are salt tolerant bacilli that grow best in media containing 8% NaCl, and respond to concentrated brines by forming spores. One of the organisms is phylogenetically related to several bacilli, but does have several unique characteristics. This talk will trace the interdisciplinary data and procedures supporting these discoveries, and describe the various isolated bacteria.

  19. Reanimation of Ancient Bacteria

    SciTech Connect

    Vreeland, Russell H.

    2002-01-09

    Recent highly publicized experiments conducted on salt crystals taken from the Permian Salado Formation in Southeastern New Mexico have shown that some ancient crystals contain viable microorganisms trapped within fluid inclusions. Stringent geological and microbiological selection criteria were used to select crystals and conduct all sampling. This talk will focus on how each of these lines of data support the conclusion that such isolated bacteria are as old as the rock in which they are trapped. In this case, the isolated microbes are salt tolerant bacilli that grow best in media containing 8% NaCl, and respond to concentrated brines by forming spores. One of the organisms is phylogenetically related to several bacilli, but does have several unique characteristics. This talk will trace the interdisciplinary data and procedures supporting these discoveries, and describe the various isolated bacteria.

  20. Manufacture of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  1. Computation by Bacteria

    DTIC Science & Technology

    2011-01-03

    inversion symmetry and time reversal symmetry by dissipat - ing energy , and breaking both these symmetries allows ratcheting. The ability of...durations. All of these devices take advantage of the conversion of chemical energy into propulsion that occurs within bacteria. These devices break spatial...micromachines relying on energy that microorganisms would dissipate “anyway” even in the absence of ratchet structures suggests that researchers could

  2. Role of Bacteria, Archaea and fungi involved in methane release

    NASA Astrophysics Data System (ADS)

    Beckmann, Sabrina; Krüger, Martin; Engelen, Bert; Cypionka, Heribert

    2010-05-01

    Abandoned coal mines release substantial amounts of methane which is largely biogenic. The aim of this study was to understand the microbial processes involved in mine-gas formation in two abandoned coal mines in Germany. Therefore, untreated coal- and mine timber samples and anaerobic enrichment cultures derived from them were subjected to DGGE analyses and quantitative PCR. The primers used were specific for Bacteria, Archaea, fungi, and the key functional genes for sulfate reduction (dsrA) and methanogenesis (mcrA). Original samples and enrichment cultures harboured a broad spectrum of facultative aerobes, fermenters, nitrate- and sulfate reducers belonging to all five groups (α - ɛ) of the Proteobacteria, as well as the Bacteroidetes, Tenericutes, Actinobacteria, Chlorobi and Chloroflexi. Only two groups of Archaea (representing 0.01% of the bacterial abundance) were detected. Based on specific 16 S-rRNA primer sets Methanosarcinales comprised 34% of these, corresponding to 45% detected with primers specific for the mcrA gene. The second group (55%) were uncultivated Crenarchaeota with an unknown metabolism. The detected Fungi (Ascomycetes and Basidiomycetes) were typical wood degraders. To get a perception ofdevelop a metabolic model for the ongoing processes, we linked the detected phylogenetic groups to possible activities promoting methane release.

  3. Biocide tolerance in bacteria.

    PubMed

    Ortega Morente, Elena; Fernández-Fuentes, Miguel Angel; Grande Burgos, Maria José; Abriouel, Hikmate; Pérez Pulido, Rubén; Gálvez, Antonio

    2013-03-01

    Biocides have been employed for centuries, so today a wide range of compounds showing different levels of antimicrobial activity have become available. At the present time, understanding the mechanisms of action of biocides has also become an important issue with the emergence of bacterial tolerance to biocides and the suggestion that biocide and antibiotic resistance in bacteria might be linked. While most of the mechanisms providing antibiotic resistance are agent specific, providing resistance to a single antimicrobial or class of antimicrobial, there are currently numerous examples of efflux systems that accommodate and, thus, provide tolerance to a broad range of structurally unrelated antimicrobials, both antibiotics and biocides. If biocide tolerance becomes increasingly common and it is linked to antibiotic resistance, not only resistant (even multi-resistant) bacteria could be passed along the food chain, but also there are resistance determinants that can spread and lead to the emergence of new resistant microorganisms, which can only be detected and monitored when the building blocks of resistance traits are understood on the molecular level. This review summarizes the main advances reached in understanding the mechanism of action of biocides, the mechanisms of bacterial resistance to both biocides and antibiotics, and the incidence of biocide tolerance in bacteria of concern to human health and the food industry.

  4. How honey kills bacteria.

    PubMed

    Kwakman, Paulus H S; te Velde, Anje A; de Boer, Leonie; Speijer, Dave; Vandenbroucke-Grauls, Christina M J E; Zaat, Sebastian A J

    2010-07-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria tested, including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase producing Escherichia coli, ciprofloxacin-resistant Pseudomonas aeruginosa, and vancomycin-resistant Enterococcus faecium, were killed by 10-20% (v/v) honey, whereas > or = 40% (v/v) of a honey-equivalent sugar solution was required for similar activity. Honey accumulated up to 5.62 +/- 0.54 mM H(2)O(2) and contained 0.25 +/- 0.01 mM methylglyoxal (MGO). After enzymatic neutralization of these two compounds, honey retained substantial activity. Using B. subtilis for activity-guided isolation of the additional antimicrobial factors, we discovered bee defensin-1 in honey. After combined neutralization of H(2)O(2), MGO, and bee defensin-1, 20% honey had only minimal activity left, and subsequent adjustment of the pH of this honey from 3.3 to 7.0 reduced the activity to that of sugar alone. Activity against all other bacteria tested depended on sugar, H(2)O(2), MGO, and bee defensin-1. Thus, we fully characterized the antibacterial activity of medical-grade honey.

  5. Uranium Mines and Mills Location Database

    EPA Pesticide Factsheets

    The Uranium Mines and Mills location database identifies and shows the location of active and inactive uranium mines and mills, as well as mines which principally produced other minerals, but were known to have uranium in the ore.

  6. Denitrification by extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  7. MINE WASTE TECHNOLOGY PROGRAM - UNDERGROUND MINE SOURCE CONTROL DEMONSTRATION PROJECT

    EPA Science Inventory

    This report presents results of the Mine Waste Technology Program Activity III, Project 8, Underground Mine Source Control Demonstration Project implemented and funded by the U. S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U. S. Department of E...

  8. Mining the Home Environment

    PubMed Central

    Cook, Diane J.; Krishnan, Narayanan

    2014-01-01

    Individuals spend a majority of their time in their home or workplace and for many, these places are our sanctuaries. As society and technology advance there is a growing interest in improving the intelligence of the environments in which we live and work. By filling home environments with sensors and collecting data during daily routines, researchers can gain insights on human daily behavior and the impact of behavior on the residents and their environments. In this article we provide an overview of the data mining opportunities and challenges that smart environments provide for researchers and offer some suggestions for future work in this area. PMID:25506128

  9. Respiratory cancers in mining

    SciTech Connect

    Reger, R.B.; Morgan, W.K. )

    1993-01-01

    The issue of carcinogenicity among mine workers and among workers in selected nonmining industries is examined. In the late 19th century, a high frequency of lung cancers was noted among metal miners in Bohemia, which probably related to their exposure to radon. Subsequently, other substances, including arsenic, asbestos, chromates, nickel, and chloroethers, have been linked causally to lung cancer. The IARC classification of substances as carcinogens is summarized, and the epidemiologic studies of humans employed in occupations with high rates of lung cancer due to carcinogen exposures are reviewed. 146 refs.

  10. Hydraulic mining method

    DOEpatents

    Huffman, Lester H.; Knoke, Gerald S.

    1985-08-20

    A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.

  11. Airflow obstruction and mining

    SciTech Connect

    Stenton, S.C.; Hendrick, D.J. )

    1993-01-01

    Bronchitis and emphysema have long been described as diseases of miners, but the precise contribution of occupational exposures to coal and other mine dusts in causing these disorders, as opposed to cofactors such as social class, environmental pollution, and cigarette smoking, has not been fully defined. Epidemiologic studies have attempted, with varying degrees of success, to determine the incidence and severity of chronic obstructive pulmonary diseases in miners as compared to the general population. The results from these studies, and those in other nonmining industries with dust exposures, are examined. 98 refs.

  12. Web data mining

    NASA Astrophysics Data System (ADS)

    Wibonele, Kasanda J.; Zhang, Yanqing

    2002-03-01

    A web data mining system using granular computing and ASP programming is proposed. This is a web based application, which allows web users to submit survey data for many different companies. This survey is a collection of questions that will help these companies develop and improve their business and customer service with their clients by analyzing survey data. This web application allows users to submit data anywhere. All the survey data is collected into a database for further analysis. An administrator of this web application can login to the system and view all the data submitted. This web application resides on a web server, and the database resides on the MS SQL server.

  13. Mineral mining installation

    SciTech Connect

    Plevak, L.; Weirich, W.

    1982-04-20

    A longwall mineral mining installation has a longwall conveyor and a plurality of roof support units positioned side-by-side at the goaf side of the conveyor. The hydraulic appliances of the roof support units, such as their hydraulic props, hydraulic advance rams and hydraulic control valves, are supplied with pressurized hydraulic fluid from hydraulic supply lines which run along the goaf side of the conveyor. A plurality of flat, platelike intermediate members are provided at the goaf side of the conveyor. These intermediate members are formed with internal ducts for feeding the hydraulic fluid from the supply lines to the hydraulic appliances of the roof support units.

  14. 30 CFR 49.19 - Mine emergency notification plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.19 Mine emergency notification... follow in notifying the mine rescue teams when there is an emergency that requires their services. (b)...

  15. Proceedings, 26th international conference on ground control in mining

    SciTech Connect

    Peng, S.S.; Mark, C.; Finfinger, G.

    2007-07-01

    Papers are presented under the following topic headings: multiple-seam mining, surface subsidence, coal pillar, bunker and roadway/entry supports, mine design and highwall mining, longwall, roof bolting, stone and hardrock mining, rock mechanics and mine seal.

  16. Study Mine-Hunting Techniques

    DTIC Science & Technology

    This report summarizes over ten years of work on problems in the field of mine countermeasures. It deals with problems of clustering--of...deals with the design and performance of a radio-controlled catamaran for marking the position of sonar contacts or for placing a destructive charge near the mine.

  17. Education Roadmap for Mining Professionals

    SciTech Connect

    none,

    2002-12-01

    This document represents the roadmap for education in the U.S. mining industry. It was developed based on the results of an Education Roadmap Workshop sponsored by the National Mining Association in conjunction with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Industrial Technologies. The Workshop was held February 23, 2002 in Phoenix, Arizona.

  18. Finding Gold in Data Mining

    ERIC Educational Resources Information Center

    Flaherty, Bill

    2013-01-01

    Data-mining systems provide a variety of opportunities for school district personnel to streamline operations and focus on student achievement. This article describes the value of data mining for school personnel, finance departments, teacher evaluations, and in the classroom. It suggests that much could be learned about district practices if one…

  19. Process Mining Online Assessment Data

    ERIC Educational Resources Information Center

    Pechenizkiy, Mykola; Trcka, Nikola; Vasilyeva, Ekaterina; van der Aalst, Wil; De Bra, Paul

    2009-01-01

    Traditional data mining techniques have been extensively applied to find interesting patterns, build descriptive and predictive models from large volumes of data accumulated through the use of different information systems. The results of data mining can be used for getting a better understanding of the underlying educational processes, for…

  20. Implications of Emerging Data Mining

    NASA Astrophysics Data System (ADS)

    Kulathuramaiyer, Narayanan; Maurer, Hermann

    Data Mining describes a technology that discovers non-trivial hidden patterns in a large collection of data. Although this technology has a tremendous impact on our lives, the invaluable contributions of this invisible technology often go unnoticed. This paper discusses advances in data mining while focusing on the emerging data mining capability. Such data mining applications perform multidimensional mining on a wide variety of heterogeneous data sources, providing solutions to many unresolved problems. This paper also highlights the advantages and disadvantages arising from the ever-expanding scope of data mining. Data Mining augments human intelligence by equipping us with a wealth of knowledge and by empowering us to perform our daily tasks better. As the mining scope and capacity increases, users and organizations become more willing to compromise privacy. The huge data stores of the ‚master miners` allow them to gain deep insights into individual lifestyles and their social and behavioural patterns. Data integration and analysis capability of combining business and financial trends together with the ability to deterministically track market changes will drastically affect our lives.

  1. Automatic Coal-Mining System

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1985-01-01

    Coal cutting and removal done with minimal hazard to people. Automatic coal mine cutting, transport and roof-support movement all done by automatic machinery. Exposure of people to hazardous conditions reduced to inspection tours, maintenance, repair, and possibly entry mining.

  2. Lunar surface mine feasibility study

    NASA Astrophysics Data System (ADS)

    Blair, Brad R.

    This paper describes a lunar surface mine, and demonstrates the economic feasibility of mining oxygen from the moon. The mine will be at the Apollo 16 landing site. Mine design issues include pit size and shape, excavation equipment, muck transport, and processing requirements. The final mine design will be driven by production requirements, and constrained by the lunar environment. This mining scenario assumes the presence of an operating lunar base. Lunar base personnel will set-up a and run the mine. The goal of producing lunar oxygen is to reduce dependence on fuel shipped from Earth. Thus, the lunar base is the customer for the finished product. The perspective of this paper is that of a mining contractor who must produce a specific product at a remote location, pay local labor, and sell the product to an onsite captive market. To make a profit, it must be less costly to build and ship specialized equipment to the site, and pay high labor and operating costs, than to export the product directly to the site.

  3. Living bacteria in silica gels

    NASA Astrophysics Data System (ADS)

    Nassif, Nadine; Bouvet, Odile; Noelle Rager, Marie; Roux, Cécile; Coradin, Thibaud; Livage, Jacques

    2002-09-01

    The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors. Yeast spores and bacteria have also been recently immobilized within silica gels where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol-gel processes. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'.

  4. Measuring mine roof bolt strains

    DOEpatents

    Steblay, Bernard J.

    1986-01-01

    A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.

  5. Lunar surface mining equipment study

    NASA Astrophysics Data System (ADS)

    Podnieks, Egons R.; Siekmeier, John A.

    Results of a NASA-sponsored assessment of the various proposed lunar surface mining equipment concepts submitted to NASA are presented. The proposed equipment was reviewed and evaluated with due consideration of equipment design criteria, basic mining principles, and the lunar environment. On the basis of this assessment, two pieces of mining equipment were conceptualized for surface mining operations: the ripper-excavator-loader, also capable of operating as a load-haul-dump vehicle, and the haulage vehicle, capable of transporting feedstock from the pit, liquid oxygen containers from the processing plant, and materials during construction. Reliable and durable lunar mining equipment is found to be best developed by the evolution of proven terrestrial technology adapted to the lunar environment.

  6. In Brief: Coal mining regulations

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-12-01

    The U.S. Department of the Interior (DOI) announced on 18 November measures to strengthen the oversight of state surface coal mining programs and to promulgate federal regulations to protect streams affected by surface coal mining operations. DOI's Office of Surface Mining Reclamation and Enforcement (OSM) is publishing an advance notice of a proposed rule about protecting streams from adverse impacts of surface coal mining operations. A rule issued by the Bush administration in December 2008 allows coal mine operators to place excess excavated materials into streams if they can show it is not reasonably possible to avoid doing so. “We are moving as quickly as possible under the law to gather public input for a new rule, based on sound science, that will govern how companies handle fill removed from mountaintop coal seams,” according to Wilma Lewis, assistant secretary for Land and Minerals Management at DOI.

  7. Introduction to Space Resource Mining

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.

    2013-01-01

    There are vast amounts of resources in the solar system that will be useful to humans in space and possibly on Earth. None of these resources can be exploited without the first necessary step of extra-terrestrial mining. The necessary technologies for tele-robotic and autonomous mining have not matured sufficiently yet. The current state of technology was assessed for terrestrial and extraterrestrial mining and a taxonomy of robotic space mining mechanisms was presented which was based on current existing prototypes. Terrestrial and extra-terrestrial mining methods and technologies are on the cusp of massive changes towards automation and autonomy for economic and safety reasons. It is highly likely that these industries will benefit from mutual cooperation and technology transfer.

  8. Robust stochastic mine production scheduling

    NASA Astrophysics Data System (ADS)

    Kumral, Mustafa

    2010-06-01

    The production scheduling of open pit mines aims to determine the extraction sequence of blocks such that the net present value (NPV) of a mining project is maximized under capacity and access constraints. This sequencing has significant effect on the profitability of the mining venture. However, given that the values of coefficients in the optimization procedure are obtained in a medium of sparse data and unknown future events, implementations based on deterministic models may lead to destructive consequences to the company. In this article, a robust stochastic optimization (RSO) approach is used to deal with mine production scheduling in a manner such that the solution is insensitive to changes in input data. The approach seeks a trade off between optimality and feasibility. The model is demonstrated on a case study. The findings showed that the approach can be used in mine production scheduling problems efficiently.

  9. Data mining and education.

    PubMed

    Koedinger, Kenneth R; D'Mello, Sidney; McLaughlin, Elizabeth A; Pardos, Zachary A; Rosé, Carolyn P

    2015-01-01

    An emerging field of educational data mining (EDM) is building on and contributing to a wide variety of disciplines through analysis of data coming from various educational technologies. EDM researchers are addressing questions of cognition, metacognition, motivation, affect, language, social discourse, etc. using data from intelligent tutoring systems, massive open online courses, educational games and simulations, and discussion forums. The data include detailed action and timing logs of student interactions in user interfaces such as graded responses to questions or essays, steps in rich problem solving environments, games or simulations, discussion forum posts, or chat dialogs. They might also include external sensors such as eye tracking, facial expression, body movement, etc. We review how EDM has addressed the research questions that surround the psychology of learning with an emphasis on assessment, transfer of learning and model discovery, the role of affect, motivation and metacognition on learning, and analysis of language data and collaborative learning. For example, we discuss (1) how different statistical assessment methods were used in a data mining competition to improve prediction of student responses to intelligent tutor tasks, (2) how better cognitive models can be discovered from data and used to improve instruction, (3) how data-driven models of student affect can be used to focus discussion in a dialog-based tutoring system, and (4) how machine learning techniques applied to discussion data can be used to produce automated agents that support student learning as they collaborate in a chat room or a discussion board.

  10. Microbial diversity in uranium mining-impacted soils as revealed by high-density 16S microarray and clone library.

    PubMed

    Rastogi, Gurdeep; Osman, Shariff; Vaishampayan, Parag A; Andersen, Gary L; Stetler, Larry D; Sani, Rajesh K

    2010-01-01

    Microbial diversity was characterized in mining-impacted soils collected from two abandoned uranium mine sites, the Edgemont and the North Cave Hills, South Dakota, using a high-density 16S microarray (PhyloChip) and clone libraries. Characterization of the elemental compositions of soils by X-ray fluorescence spectroscopy revealed higher metal contamination including uranium at the Edgemont than at the North Cave Hills mine site. Microarray data demonstrated extensive phylogenetic diversity in soils and confirmed nearly all clone-detected taxonomic levels. Additionally, the microarray exhibited greater diversity than clone libraries at each taxonomic level at both the mine sites. Interestingly, the PhyloChip detected the largest number of taxa in Proteobacteria phylum for both the mine sites. However, clone libraries detected Acidobacteria and Bacteroidetes as the most numerically abundant phyla in the Edgemont and North Cave Hills mine sites, respectively. Several 16S rDNA signatures found in both the microarrays and clone libraries displayed sequence similarities with yet-uncultured bacteria representing a hitherto unidentified diversity. Results from this study demonstrated that highly diverse microbial populations were present in these uranium mine sites. Diversity indices indicated that microbial communities at the North Cave Hills mine site were much more diverse than those at the Edgemont mine site.

  11. Bacteria in solitary confinement.

    PubMed

    Mullineaux, Conrad W

    2015-02-15

    Even in clonal bacterial cultures, individual bacteria can show substantial stochastic variation, leading to pitfalls in the interpretation of data derived from millions of cells in a culture. In this issue of the Journal of Bacteriology, as part of their study on osmoadaptation in a cyanobacterium, Nanatani et al. describe employing an ingenious microfluidic device that gently cages individual cells (J Bacteriol 197:676-687, 2015, http://dx.doi.org/10.1128/JB.02276-14). The device is a welcome addition to the toolkit available to probe the responses of individual cells to environmental cues.

  12. Surface layers of bacteria.

    PubMed Central

    Beveridge, T J; Graham, L L

    1991-01-01

    Since bacteria are so small, microscopy has traditionally been used to study them as individual cells. To this end, electron microscopy has been a most powerful tool for studying bacterial surfaces; the viewing of macromolecular arrangements of some surfaces is now possible. This review compares older conventional electron-microscopic methods with new cryotechniques currently available and the results each has produced. Emphasis is not placed on the methodology but, rather, on the importance of the results in terms of our perception of the makeup and function of bacterial surfaces and their interaction with the surrounding environment. Images PMID:1723487

  13. The influence of hydrogeological disturbance and mining on coal seam microbial communities.

    PubMed

    Raudsepp, M J; Gagen, E J; Evans, P; Tyson, G W; Golding, S D; Southam, G

    2016-03-01

    The microbial communities present in two underground coal mines in the Bowen Basin, Queensland, Australia, were investigated to deduce the effect of pumping and mining on subsurface methanogens and methanotrophs. The micro-organisms in pumped water from the actively mined areas, as well as, pre- and post-mining formation waters were analyzed using 16S rRNA gene amplicon sequencing. The methane stable isotope composition of Bowen Basin coal seam indicates that methanogenesis has occurred in the geological past. More recently at the mine site, changing groundwater flow dynamics and the introduction of oxygen in the subsurface has increased microbial biomass and diversity. Consistent with microbial communities found in other coal seam environments, pumped coal mine waters from the subsurface were dominated by bacteria belonging to the genera Pseudomonas and the family Rhodocyclaceae. These environments and bacterial communities supported a methanogen population, including Methanobacteriaceae, Methanococcaceae and Methanosaeta. However, one of the most ubiquitous micro-organisms in anoxic coal mine waters belonged to the family 'Candidatus Methanoperedenaceae'. As the Archaeal family 'Candidatus Methanoperedenaceae' has not been extensively defined, the one studied species in the family is capable of anaerobic methane oxidation coupled to nitrate reduction. This introduces the possibility that a methane cycle between archaeal methanogenesis and methanotrophy may exist in the anoxic waters of the coal seam after hydrogeological disturbance.

  14. Cell dualism: presence of cells with alternative membrane potentials in growing populations of bacteria and yeasts.

    PubMed

    Ivanov, Volodymyr; Rezaeinejad, Saeid; Chu, Jian

    2013-10-01

    It is considered that all growing cells, for exception of acidophilic bacteria, have negatively charged inside cytoplasmic membrane (Δψ⁻-cells). Here we show that growing populations of microbial cells contain a small portion of cells with positively charged inside cytoplasmic membrane (Δψ⁺-cells). These cells were detected after simultaneous application of the fluorescent probes for positive membrane potential (anionic dye DIBAC⁻) and membrane integrity (propidium iodide, PI). We found in exponentially growing cell populations of Escherichia coli and Saccharomyces cerevisiae that the content of live Δψ⁻-cells was 93.6 ± 1.8 % for bacteria and 90.4 ± 4.0 % for yeasts and the content of live Δψ⁺-cells was 0.9 ± 0.3 % for bacteria and 2.4 ± 0.7 % for yeasts. Hypothetically, existence of Δψ⁺-cells could be due to short-term, about 1 min for bacteria and 5 min for yeasts, change of membrane potential from negative to positive value during the cell cycle. This change has been shown by the reversions of K⁺, Na⁺, and Ca²⁺ ions fluxes across the cell membrane during synchronous yeast culture. The transformation of Δψ(⁻-cells to Δψ⁺-cells can be explained by slow influx of K⁺ ions into Δψ⁻-cell to the trigger level of K⁺ concentration ("compression of potassium spring"), which is forming "alternative" Δψ⁺-cell for a short period, following with fast efflux of K⁺ ions out of Δψ⁺-cell ("release of potassium spring") returning cell to normal Δψ⁻ state. We anticipate our results to be a starting point to reveal the biological role of cell dualism in form of Δψ⁻- and Δψ⁺- cells.

  15. Predicting taxonomic and functional structure of microbial communities in acid mine drainage

    PubMed Central

    Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng

    2016-01-01

    Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray–Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural

  16. [Bacteria of the genus Burkholderia as a typical component of the microbial community of sphagnum peat bogs].

    PubMed

    Belova, S E; Pankratov, T A; Dedysh, S N

    2006-01-01

    Bacteria of the genus Burkholderia are a typical component of the microbial complex of sphagnum peat bogs and constitute a substantial portion of the aerobic chemoorganotrophic isolates which are routinely obtained from these environments on acidic nutrient media. The ecophysiological characteristics of the 27 strains of such organisms, which were isolated from the peat of acidic sphagnum bogs of the boreal and tundra zones of Russia, Canada, and Estonia, were investigated in the present paper. The overwhelming majority of the Burkholderia strains isolated from these bogs were phylogenetically close to the species B. glathei, B. phenazinium, B. fungorum, and B. caryophylli, the typical inhabitants of soil and plant rhizosphere. The bog isolates utilized a broad range of substrates as carbon and energy sources, including organic acids, sugars, polyalcohols, and certain aromatic compounds. All the strains studied were capable of growth on nitrogen-free media. They developed in the pH ranges of 3.5 to 7.4 and from 3 to 37 degrees C, with the optima at pH 5-7 and 11-23 degrees C, respectively. They were therefore moderately acidophilic, psychroactive, dinitrogen-fixing microorganisms well adapted to the conditions of acidic northern sphagnum bogs.

  17. Sulfur Oxygenase Reductase (Sor) in the Moderately Thermoacidophilic Leaching Bacteria: Studies in Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus

    PubMed Central

    Janosch, Claudia; Remonsellez, Francisco; Sand, Wolfgang; Vera, Mario

    2015-01-01

    The sulfur oxygenase reductase (Sor) catalyzes the oxygen dependent disproportionation of elemental sulfur, producing sulfite, thiosulfate and sulfide. Being considered an “archaeal like” enzyme, it is also encoded in the genomes of some acidophilic leaching bacteria such as Acidithiobacillus caldus, Acidithiobacillus thiooxidans, Acidithiobacillus ferrivorans and Sulfobacillus thermosulfidooxidans, among others. We measured Sor activity in crude extracts from Sb. thermosulfidooxidans DSM 9293T. The optimum temperature for its oxygenase activity was achieved at 75 °C, confirming the “thermophilic” nature of this enzyme. Additionally, a search for genes probably involved in sulfur metabolism in the genome sequence of Sb. thermosulfidooxidans DSM 9293T was done. Interestingly, no sox genes were found. Two sor genes, a complete heterodisulfidereductase (hdr) gene cluster, three tetrathionate hydrolase (tth) genes, three sulfide quinonereductase (sqr), as well as the doxD component of a thiosulfate quinonereductase (tqo) were found. Seven At. caldus strains were tested for Sor activity, which was not detected in any of them. We provide evidence that an earlier reported Sor activity from At. caldus S1 and S2 strains most likely was due to the presence of a Sulfobacillus contaminant. PMID:27682113

  18. Sulfur Oxygenase Reductase (Sor) in the Moderately Thermoacidophilic Leaching Bacteria: Studies in Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus.

    PubMed

    Janosch, Claudia; Remonsellez, Francisco; Sand, Wolfgang; Vera, Mario

    2015-10-21

    The sulfur oxygenase reductase (Sor) catalyzes the oxygen dependent disproportionation of elemental sulfur, producing sulfite, thiosulfate and sulfide. Being considered an "archaeal like" enzyme, it is also encoded in the genomes of some acidophilic leaching bacteria such as Acidithiobacillus caldus, Acidithiobacillus thiooxidans, Acidithiobacillus ferrivorans and Sulfobacillus thermosulfidooxidans, among others. We measured Sor activity in crude extracts from Sb. thermosulfidooxidans DSM 9293(T). The optimum temperature for its oxygenase activity was achieved at 75 °C, confirming the "thermophilic" nature of this enzyme. Additionally, a search for genes probably involved in sulfur metabolism in the genome sequence of Sb. thermosulfidooxidans DSM 9293(T) was done. Interestingly, no sox genes were found. Two sor genes, a complete heterodisulfidereductase (hdr) gene cluster, three tetrathionate hydrolase (tth) genes, three sulfide quinonereductase (sqr), as well as the doxD component of a thiosulfate quinonereductase (tqo) were found. Seven At. caldus strains were tested for Sor activity, which was not detected in any of them. We provide evidence that an earlier reported Sor activity from At. caldus S1 and S2 strains most likely was due to the presence of a Sulfobacillus contaminant.

  19. Chemical communication in bacteria

    NASA Astrophysics Data System (ADS)

    Suravajhala, Srinivasa Sandeep; Saini, Deepak; Nott, Prabhu

    Luminescence in Vibrio fischeri is a model for quorum-sensing-gene-regulation in bacteria. We study luminescence response of V. fischeri to both internal and external cues at the single cell and population level. Experiments with ES114, a wild-type strain, and ainS mutant show that luminescence induction in cultures is not always proportional to cell-density and there is always a basal level of luminescence. At any given concentration of the exogenously added signals, C6-HSL and C8-HSL, luminescence per cell reaches a maximum during the exponential phase and decreases thereafter. We hypothesize that (1) C6-HSL production and LuxR activity are not proportional to cell-density, and (2) there is a shift in equilibrium from C6-HSL to C8-HSL during the later stages of growth of the culture. RT-PCR analysis of luxI and luxR shows that the expression of these genes is maximum corresponding to the highest level of luminescence. The shift in equilibrium is shown by studying competitive binding of C6-HSL and C8-HSL to LuxR. We argue that luminescence is a unicellular behaviour, and an intensive property like per cell luminescence is more important than gross luminescence of the population in understanding response of bacteria to chemical signalling. Funding from the Department of Science and Technology, India is acknowledged.

  20. Functional amyloids in bacteria.

    PubMed

    Romero, Diego; Kolter, Roberto

    2014-06-01

    The term amyloidosis is used to refer to a family of pathologies altering the homeostasis of human organs. Despite having a name that alludes to starch content, the amyloid accumulations are made up of proteins that polymerize as long and rigid fibers. Amyloid proteins vary widely with respect to their amino acid sequences but they share similarities in their quaternary structure; the amyloid fibers are enriched in β-sheets arranged perpendicular to the axis of the fiber. This structural feature provides great robustness, remarkable stability, and insolubility. In addition, amyloid proteins specifically stain with certain dyes such as Congo red and thioflavin-T. The aggregation into amyloid fibers, however, it is not restricted to pathogenic processes, rather it seems to be widely distributed among proteins and polypeptides. Amyloid fibers are present in insects, fungi and bacteria, and they are important in maintaining the homeostasis of the organism. Such findings have motivated the use of the term "functional amyloid" to differentiate these amyloid proteins from their toxic siblings. This review focuses on systems that have evolved in bacteria that control the expression and assembly of amyloid proteins on cell surfaces, such that the robustness of amyloid proteins are used towards a beneficial end.

  1. Advancing apparatus for coal-mining machine in underground mine

    SciTech Connect

    Schupphaus, H.

    1984-05-29

    A coal-mining machine is advanced along a face conveyor by providing a rack extending along the conveyor and a plurality of advancing units. Each advancing unit includes a hydraulic motor to rotate a drive wheel while meshing with the teeth of the gear rack. The advancing units arranged side-by-side along the mining machine have curved end faces to abut against one another. Runners are provided on the advancing units at the opposite ends of the mining machine which extend partially around the rack for guiding and maintaining the drive wheel engaged with the teeth of the rack.

  2. Transformation of heavy metals and the formation of secondary iron minerals during pig manure bioleaching by the co-inoculation acidophilic thiobacillus.

    PubMed

    Zhou, Jun; Zhou, Lixiang; Liu, Fenwu; Zheng, Chaocheng; Deng, Wenjing

    2012-12-01

    Bioleaching of heavy metals from pig manure using a mixture of harmless iron- and sulfur-oxidizing bacteria in an air-lift reactor was conducted. The transformation of heavy metals and the formation of secondary Fe minerals during bioleaching were also investigated in the present study. The removal efficiencies of Zn, Cu, and Mn from pig manure were 95.1%, 80.9%, and 87.5%, respectively. Zn mainly existed in the form of Fe-Mn oxides in fresh pig manure; most of the pig manure-borne Cu was in organic matter form; Mn existed mainly in Fe-Mn oxides, carbonates, and residual forms. The pig manure can be applied to land more safely after bioleaching because the heavy metals mainly existed in stable forms. The removal efficiencies Zn, Cu, and Mn had good relationships with pH and oxidation reduction potential during bioleaching. A mixture ofjarosite and schwertmannite was found in the bioleached pig manure, which might have an adverse effect on the solubilization efficiency of toxic metals from pig manure. The bioleaching process using a mixture of harmless iron- and sulfur-oxidizing bacteria was shown to be a very feasible technology for the removal of heavy metals from pig manure.

  3. Radioecological impacts of tin mining.

    PubMed

    Aliyu, Abubakar Sadiq; Mousseau, Timothy Alexander; Ramli, Ahmad Termizi; Bununu, Yakubu Aliyu

    2015-12-01

    The tin mining activities in the suburbs of Jos, Plateau State, Nigeria, have resulted in technical enhancement of the natural background radiation as well as higher activity concentrations of primordial radionuclides in the topsoil of mining sites and their environs. Several studies have considered the radiological human health risks of the mining activity; however, to our knowledge no documented study has investigated the radiological impacts on biota. Hence, an attempt is made to assess potential hazards using published data from the literature and the ERICA Tool. This paper considers the effects of mining and milling on terrestrial organisms like shrubs, large mammals, small burrowing mammals, birds (duck), arthropods (earth worm), grasses, and herbs. The dose rates and risk quotients to these organisms are computed using conservative values for activity concentrations of natural radionuclides reported in Bitsichi and Bukuru mining areas. The results suggest that grasses, herbs, lichens, bryophytes and shrubs receive total dose rates that are of potential concern. The effects of dose rates to specific indicator species of interest are highlighted and discussed. We conclude that further investigation and proper regulations should be set in place in order to reduce the risk posed by the tin mining activity on biota. This paper also presents a brief overview of the impact of mineral mining on biota based on documented literature for other countries.

  4. [Introduction to medical data mining].

    PubMed

    Zhu, Lingyun; Wu, Baoming; Cao, Changxiu

    2003-09-01

    Modern medicine generates a great deal of information stored in the medical database. Extracting useful knowledge and providing scientific decision-making for the diagnosis and treatment of disease from the database increasingly becomes necessary. Data mining in medicine can deal with this problem. It can also improve the management level of hospital information and promote the development of telemedicine and community medicine. Because the medical information is characteristic of redundancy, multi-attribution, incompletion and closely related with time, medical data mining differs from other one. In this paper we have discussed the key techniques of medical data mining involving pretreatment of medical data, fusion of different pattern and resource, fast and robust mining algorithms and reliability of mining results. The methods and applications of medical data mining based on computation intelligence such as artificial neural network, fuzzy system, evolutionary algorithms, rough set, and support vector machine have been introduced. The features and problems in data mining are summarized in the last section.

  5. Mining landfills for recyclables

    SciTech Connect

    Spencer, R.

    1991-02-01

    The New York State Energy Research and Development Authority (NYSERDA) and the Department of Environmental Conservation (DEC) began a landfill reclamation experiment in Edinburgh, NY, a rural community in the Adirondack Park. According to NYSERDA's Fact Sheet about the project, landfill reclamation is a process of excavating a landfill using conventional surface mining technology to recover metals, glass, plastics and combustibles, soils, and the land resource itself. The recovered site can then be either upgraded into a state-of-the-art landfill, if appropriate, closed or redeveloped for some other suitable purpose. As an energy-related public benefit corporation, NYSERDA is particularly interested in the potential energy value of combustible material reclaimed from landfills. With an energy content of over 11 million BTUs per ton, this translates to the energy equivalent of 275 million barrels of oil.

  6. Mining human antibody repertoires

    PubMed Central

    2010-01-01

    Human monoclonal antibodies (mAbs) have become drugs of choice for the management of an increasing number of human diseases. Human antibody repertoires provide a rich source for human mAbs. Here we review the characteristics of natural and non-natural human antibody repertoires and their mining with non-combinatorial and combinatorial strategies. In particular, we discuss the selection of human mAbs from naïve, immune, transgenic and synthetic human antibody repertoires using methods based on hybridoma technology, clonal expansion of peripheral B cells, single-cell PCR, phage display, yeast display and mammalian cell display. Our reliance on different strategies is shifting as we gain experience and refine methods to the efficient generation of human mAbs with superior pharmacokinetic and pharmacodynamic properties. PMID:20505349

  7. Data Mining SIAM Presentation

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok; McIntosh, Dawn; Castle, Pat; Pontikakis, Manos; Diev, Vesselin; Zane-Ulman, Brett; Turkov, Eugene; Akella, Ram; Xu, Zuobing; Kumaresan, Sakthi Preethi

    2006-01-01

    This viewgraph document describes the data mining system developed at NASA Ames. Many NASA programs have large numbers (and types) of problem reports.These free text reports are written by a number of different people, thus the emphasis and wording vary considerably With so much data to sift through, analysts (subject experts) need help identifying any possible safety issues or concerns and help them confirm that they haven't missed important problems. Unsupervised clustering is the initial step to accomplish this; We think we can go much farther, specifically, identify possible recurring anomalies. Recurring anomalies may be indicators of larger systemic problems. The requirement to identify these anomalies has led to the development of Recurring Anomaly Discovery System (ReADS).

  8. Ensemble Data Mining Methods

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.

    2004-01-01

    Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, Le., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.

  9. Mineral mining installations

    SciTech Connect

    Werner, G.; Wisniewski, P.

    1983-12-15

    A mineral mining installation serves to win mineral by explosive blasting. The installation employs a shuttle conveyor arranged alongside a mineral face. Roof supports stand side-by-side at the side of the conveyor remote from the conveyor. The roof supports are connected to the conveyor through shifting rams and have roof-engageable caps or the like supported on hydraulic props. The pans of the conveyor have upstanding walls at the rear side nearest the roof supports which carry rails at their upper ends. The roof caps have wall components pivoted thereto and hydraulic piston and cylinder units serve to swing the wall components up and down. When explosive blasting takes place the wall components are swung down to engage on the walls of the conveyor pans to form a screen between the winning region and the access region of the working.

  10. 30 CFR 77.1200 - Mine map.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... elevation of any body of water dammed or held back in any portion of the mine: Provided, however, Such bodies of water may be shown on overlays or tracings attached to the mine maps; (g) All prospect drill holes that penetrate the coalbed or coalbeds being mined on the mine property; (h) All auger and...

  11. 30 CFR 77.1200 - Mine map.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... elevation of any body of water dammed or held back in any portion of the mine: Provided, however, Such bodies of water may be shown on overlays or tracings attached to the mine maps; (g) All prospect drill holes that penetrate the coalbed or coalbeds being mined on the mine property; (h) All auger and...

  12. 30 CFR 75.1200 - Mine map.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mine map. 75.1200 Section 75.1200 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Maps § 75.1200 Mine map. The operator of a coal mine shall have... to minimize the danger of destruction by fire or other hazard, an accurate and up-to-date map of...

  13. 30 CFR 75.1200 - Mine map.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mine map. 75.1200 Section 75.1200 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Maps § 75.1200 Mine map. The operator of a coal mine shall have... to minimize the danger of destruction by fire or other hazard, an accurate and up-to-date map of...

  14. 30 CFR 75.1200 - Mine map.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mine map. 75.1200 Section 75.1200 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Maps § 75.1200 Mine map. The operator of a coal mine shall have... to minimize the danger of destruction by fire or other hazard, an accurate and up-to-date map of...

  15. 30 CFR 75.1200 - Mine map.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Mine map. 75.1200 Section 75.1200 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Maps § 75.1200 Mine map. The operator of a coal mine shall have... to minimize the danger of destruction by fire or other hazard, an accurate and up-to-date map of...

  16. 36 CFR 6.7 - Mining wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.7 Mining wastes. (a) Solid waste from mining... garbage, refuse or sludge associated with mining and mineral operations. (b) A person conducting mining or... operate a solid waste disposal site within the boundaries of a unit only after complying with § 6.5...

  17. 36 CFR 6.7 - Mining wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.7 Mining wastes. (a) Solid waste from mining... garbage, refuse or sludge associated with mining and mineral operations. (b) A person conducting mining or... operate a solid waste disposal site within the boundaries of a unit only after complying with § 6.5...

  18. 36 CFR 6.7 - Mining wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.7 Mining wastes. (a) Solid waste from mining... garbage, refuse or sludge associated with mining and mineral operations. (b) A person conducting mining or... operate a solid waste disposal site within the boundaries of a unit only after complying with § 6.5...

  19. 36 CFR 6.7 - Mining wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.7 Mining wastes. (a) Solid waste from mining... garbage, refuse or sludge associated with mining and mineral operations. (b) A person conducting mining or... operate a solid waste disposal site within the boundaries of a unit only after complying with § 6.5...

  20. 36 CFR 6.7 - Mining wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.7 Mining wastes. (a) Solid waste from mining... garbage, refuse or sludge associated with mining and mineral operations. (b) A person conducting mining or... operate a solid waste disposal site within the boundaries of a unit only after complying with § 6.5...

  1. A Collaborative Educational Association Rule Mining Tool

    ERIC Educational Resources Information Center

    Garcia, Enrique; Romero, Cristobal; Ventura, Sebastian; de Castro, Carlos

    2011-01-01

    This paper describes a collaborative educational data mining tool based on association rule mining for the ongoing improvement of e-learning courses and allowing teachers with similar course profiles to share and score the discovered information. The mining tool is oriented to be used by non-expert instructors in data mining so its internal…

  2. Collaborative Data Mining Tool for Education

    ERIC Educational Resources Information Center

    Garcia, Enrique; Romero, Cristobal; Ventura, Sebastian; Gea, Miguel; de Castro, Carlos

    2009-01-01

    This paper describes a collaborative educational data mining tool based on association rule mining for the continuous improvement of e-learning courses allowing teachers with similar course's profile sharing and scoring the discovered information. This mining tool is oriented to be used by instructors non experts in data mining such that, its…

  3. 30 CFR 282.24 - Mining Plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Mining Plan. 282.24 Section 282.24 Mineral... § 282.24 Mining Plan. All OCS mineral development and production activities shall be conducted in accordance with a Mining Plan submitted by the lessee and approved by the Director. A Mining Plan...

  4. Resource Recovery of Flooded Underground Mine Workings

    EPA Science Inventory

    Butte, Montana has been the site of hard rock mining activities for over a century. Over 400 hundred underground mines were developed and over 10,000 miles of underground mine workings were created. During active mining, groundwater was removed from the workings by large-scale pu...

  5. Resource Recovery from Flooded Underground Mines

    EPA Science Inventory

    Butte, Montana has been the site of hard rock mining activities for over a century. Over 400 hundred underground mines were developed and over 10,000 miles of underground mine workings were created. During active mining, groundwater was removed from the workings by large-scale pu...

  6. MINE WASTE TECHNOLOGY PROGRAM: A SUCCESS STORY

    EPA Science Inventory

    Mining Waste generated by active and inactive mining operations is a growing problem for the mining industry, local governments, and Native American communities because of its impact on human health and the environment. In the US, the reported volume of mine waste is immense: 2 b...

  7. Image Information Mining Utilizing Hierarchical Segmentation

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Marchisio, Giovanni; Koperski, Krzysztof; Datcu, Mihai

    2002-01-01

    The Hierarchical Segmentation (HSEG) algorithm is an approach for producing high quality, hierarchically related image segmentations. The VisiMine image information mining system utilizes clustering and segmentation algorithms for reducing visual information in multispectral images to a manageable size. The project discussed herein seeks to enhance the VisiMine system through incorporating hierarchical segmentations from HSEG into the VisiMine system.

  8. POST-MINING DEVELOPMENT USING RESOURCES FROM FLOODED UNDERGROUND MINE WORKINGS

    EPA Science Inventory

    Post-mining issues of land and surface utilization now serve to accentuate how important it is to incorporate sustainable development aspects into hard rock mining. In an effort to revitalize lands degraded by historic mining, 10 acres of mine tailings near the Belmont Mine have...

  9. 30 CFR 49.3 - Alternative mine rescue capability for small and remote mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Alternative mine rescue capability for small and remote mines. 49.3 Section 49.3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS § 49.3 Alternative mine rescue capability...

  10. 30 CFR 49.3 - Alternative mine rescue capability for small and remote mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Alternative mine rescue capability for small and remote mines. 49.3 Section 49.3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS § 49.3 Alternative mine rescue capability...

  11. 30 CFR 49.13 - Alternative mine rescue capability for small and remote mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Alternative mine rescue capability for small and remote mines. 49.13 Section 49.13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal...

  12. 30 CFR 49.13 - Alternative mine rescue capability for small and remote mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Alternative mine rescue capability for small and remote mines. 49.13 Section 49.13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal...

  13. 30 CFR 49.4 - Alternative mine rescue capability for special mining conditions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Alternative mine rescue capability for special mining conditions. 49.4 Section 49.4 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS § 49.4 Alternative mine rescue capability...

  14. 76 FR 63238 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Part 75 RIN 1219-AB65 Proximity Detection Systems for Continuous Mining Machines in Underground Coal... Detection Systems for Continuous Mining Machines in Underground Coal Mines, published on August 31, 2011... Mining Machines in Underground Coal Mines. Due to requests from the public and to provide...

  15. 30 CFR 49.4 - Alternative mine rescue capability for special mining conditions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Metal and... conditions are present: (1) The mine has multiple adits or entries; (2) The mined substance is noncombustible...; (5) The mine shall not have a history of flammable-gas emission or accumulation, and the...

  16. 30 CFR 49.4 - Alternative mine rescue capability for special mining conditions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Metal and... conditions are present: (1) The mine has multiple adits or entries; (2) The mined substance is noncombustible...; (5) The mine shall not have a history of flammable-gas emission or accumulation, and the...

  17. 30 CFR 49.4 - Alternative mine rescue capability for special mining conditions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Metal and... conditions are present: (1) The mine has multiple adits or entries; (2) The mined substance is noncombustible...; (5) The mine shall not have a history of flammable-gas emission or accumulation, and the...

  18. Biotechnology of Anoxygenic Phototrophic Bacteria.

    PubMed

    Frigaard, Niels-Ulrik

    Anoxygenic phototrophic bacteria are a diverse collection of organisms that are defined by their ability to grow using energy from light without evolving oxygen. The dominant groups are purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, and green and red filamentous anoxygenic phototrophic bacteria. They represent several bacterial phyla but they all have bacteriochlorophylls and carotenoids and photochemical reaction centers which generate ATP and cellular reductants used for CO2 fixation. They typically have an anaerobic lifestyle in the light, although some grow aerobically in the dark. Some of them oxidize inorganic sulfur compounds for light-dependent CO2 fixation; this ability can be exploited for photobiological removal of hydrogen sulfide from wastewater and biogas. The anoxygenic phototrophic bacteria also perform bioremediation of recalcitrant dyes, pesticides, and heavy metals under anaerobic conditions. Finally, these organisms may be useful for overexpression of membrane proteins and photobiological production of H2 and other valuable compounds.

  19. Domestic uranium mining and milling

    SciTech Connect

    Not Available

    1983-01-01

    A field hearing was held in Riverton, Wyoming on the erosion of the state's uranium industry as production and capital investment have declined and inventories have continued to rise because of a shift to foreign suppliers. The result has been serious unemployment in Wyoming and a decline in uranium mines from 5400 in 1980 to the present 1200. The seven witnesses spoke for the mining industry and state and federal government. Among the issues raised were mining regulations and the cancellation of nuclear rejects which have impacted the health of the industry. Additional statements and a report supplied for the record follow their testimony. (DCK)

  20. Mining and Reclamation Technology Symposium

    SciTech Connect

    None Available

    1999-06-24

    The Mining and Reclamation Technology Symposium was commissioned by the Mountaintop Removal Mining/Valley Fill Environmental Impact Statement (EIS) Interagency Steering Committee as an educational forum for the members of the regulatory community who will participate in the development of the EIS. The Steering Committee sought a balanced audience to ensure the input to the regulatory community reflected the range of perspectives on this complicated and emotional issue. The focus of this symposium is on mining and reclamation technology alternatives, which is one of eleven topics scheduled for review to support development of the EIS. Others include hydrologic, environmental, ecological, and socio-economic issues.