Science.gov

Sample records for acidophilic mining bacteria

  1. Acidophilic, heterotrophic bacteria of acidic mine waters

    SciTech Connect

    Wichlacz, P.L.; Unz, R.F.

    1981-05-01

    Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and oxidase positive, strictly aerobic, and capable of growth on citric acid. The bacteria were cultivatable on solid nutrient media only if agarose was employed as the hardening agent. Bacterial densities in natural mine waters ranged from approximately 20 to 250 cells per ml, depending upon source and culture medium.

  2. Evaluation of a fluorescent lectin-based staining technique for some acidophilic mining bacteria

    SciTech Connect

    Fife, D.J.; Bruhn, D.F.; Miller, K.S.; Stoner, D.L.

    2000-05-01

    A fluorescence-labeled wheat germ agglutinin staining technique was modified and found to be effective for staining gram-positive, acidophilic mining bacteria. Bacteria identified by others as being gram positive through 16S rRNA sequence analyses, yet clustering near the divergence of that group, stained weakly. Gram-negative bacteria did not stain. Background staining of environmental samples was negligible, and pyrite and soil particles in the samples did not interfere with the staining procedure.

  3. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria.

    PubMed

    Nancucheo, Ivan; Johnson, D Barrie

    2012-01-01

    Two continuous-flow bench-scale bioreactor systems populated by mixed communities of acidophilic sulfate-reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic mine water containing a variety of soluble metals) was achieved by maintaining a bioreactor pH of ≈ 2.2-2.5. The second system was fed with acidic (pH 2.5) synthetic mine water containing 3 mM of both zinc and ferrous iron, and varying concentrations (0.5-30 mM) of aluminium. Selective precipitation of zinc sulfide was possible by operating the bioreactor at pH 4.0 and supplementing the synthetic mine water with 4 mM glycerol. Analysis of the microbial populations in the bioreactors showed that they changed with varying operational parameters, and novel acidophilic bacteria (including one sulfidogen) were isolated from the bioreactors. The acidophilic sulfidogenic bioreactors provided 'proof of principle' that segregation of metals present in mine waters is possible using simple online systems within which controlled pH conditions are maintained. The modular units are versatile and robust, and involve minimum engineering complexity.

  4. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria

    PubMed Central

    Ňancucheo, Ivan; Johnson, D. Barrie

    2012-01-01

    Summary Two continuous‐flow bench‐scale bioreactor systems populated by mixed communities of acidophilic sulfate‐reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic mine water containing a variety of soluble metals) was achieved by maintaining a bioreactor pH of ∼2.2–2.5. The second system was fed with acidic (pH 2.5) synthetic mine water containing 3 mM of both zinc and ferrous iron, and varying concentrations (0.5–30 mM) of aluminium. Selective precipitation of zinc sulfide was possible by operating the bioreactor at pH 4.0 and supplementing the synthetic mine water with 4 mM glycerol. Analysis of the microbial populations in the bioreactors showed that they changed with varying operational parameters, and novel acidophilic bacteria (including one sulfidogen) were isolated from the bioreactors. The acidophilic sulfidogenic bioreactors provided ‘proof of principle’ that segregation of metals present in mine waters is possible using simple online systems within which controlled pH conditions are maintained. The modular units are versatile and robust, and involve minimum engineering complexity. PMID:21895996

  5. Effect of adaptation and pulp density on bioleaching of mine waste using indigenous acidophilic bacteria

    NASA Astrophysics Data System (ADS)

    Cho, K.; Kim, B.; Lee, D.; Choi, N.; Park, C.

    2011-12-01

    Adaptation to environment is a natural phenomena that takes place in many animals, plants and microorganisms. These adapted organisms achieve stronger applicability than unadapted organisms after habitation in a specific environment for a long time. In the biohydrometallurgical industry, adaptation to special environment conditions by selective culturing is the most popular method for improving bioleaching activity of strains-although that is time consuming. This study investigated the influence of the bioleaching efficiency of mine waste under batch experimental conditions (adaptation and pulp density) using the indigenous acidophilic bacteria collected from acid mine drainage in Go-seong and Yeon-hwa, Korea. We conducted the batch experiments at the influences of parameters, such as the adaptation of bacteria and pulp density of the mine waste. In the adaptation case, the value of pH in 1'st adaptation bacteria sample exhibited lower than in 2'nd adaptation bacteria sample. And the content of both Cu and Zn at 1'st adaptation bacteria sample appeared lower than at 2'nd adaptation bacteria sample. In the SEM analysis, the rod-shaped bacteria with 1μm in length were observed on the filter paper (pore size - 0.45μm). The results of pulp density experiments revealed that the content of both Cu and Zn increased with increasing pulp density, since the increment of pulp density resulted in the enhancement of bioleaching capacity.

  6. Genetic manipulation of acidophilic bacteria

    SciTech Connect

    Ward, T.E.; Rowland, M.L.; Glenn, A.W.; Watkins, C.S.; Bruhn, D.F.; Bulmer, D.; Roberto, F.F.

    1989-01-01

    Thiobacillus ferrooxidans is important in leaching of metals from mineral ores and in the removal of pyritic sulfur from coal. It is also intimately involved in production of acid mine drainage. Other acidophilic bacteria, including members of the genus Acidiphilium, are usually present in the same environments as T. ferrooxidans, and there is evidence to suggest that these acidophilic heterotrophs may increase the rate of T. ferrooxidans' attack on inorganic sulfides. Our laboratory is studying the genetic characteristics of these acidophilic bacteria and developing techniques for introducing desirable genes into them. Several endogenous plasmids from Acidiphilium strains have been cloned into E. coli vectors. Some of the resulting plasmids are able to confer antibiotic resistance to Acidiphilium after transformation by electroporation. In addition, a broad-host range plasmid conferring resistance to tetracycline has been introduced into Acidiphilium strains by electroporation. This same plasmid, has also been transferred to Acidiphilium from E. coli directly by conjugation. A temperate bacteriophage which infects a number of Acidiphilium isolates has been discovered and partially characterized. It has a lambdoid morphology and a genome of approximately 97 kb, comprised of double-stranded DNA which is probably modified. 16 refs., 2 figs., 4 tabs.

  7. Genetic transfer in acidophilic bacteria

    SciTech Connect

    Roberto, F.F.; Glenn, A.W.; Bulmer, D.; Ward, T.E.

    1990-01-01

    There is increasing interest in the use of microorganisms to recover metals from ores, as well as to remove sulfur from coal. These so-called bioleaching processes are mediated by a number of bacteria. The best-studied of these organisms are acidophiles including Thiobacillus and Acidiphilium species. Our laboratory has focused on developing genetic strategies to allow the manipulation of acidophilic bacteria to improve and augment their utility in large scale operations. We have recently been successful in employing conjugation for interbacterial transfer of genetic information, as well as in directly transforming Acidiphilium by use of electroporation. We are now testing the properties of IncPl, IncW and IncQ plasmid vectors in Acidiphilium to determine their relative usefulness in routine manipulation of acidophiles and transfer between organisms. This study also allows us to determine the natural ability of these bacteria to transfer genetic material amongst themselves in their particular environment. 21 refs., 3 figs., 2 tabs.

  8. A new bacteriophage, which infects acidophilic, heterotrophic bacteria from acidic mining environments

    SciTech Connect

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.K.; Watkins, C.S.; Rowland, M.L.; Winston, V.

    1989-01-01

    The genetic characteristics of members of the genus Acidiphilium are poorly understood. As part of our study of the genetics of these bacteria, a search was made for an endogenous bacteriophage. Such a bacteriophage has been discovered. Several properties of the phage have been investigated. The phage has a lambdoid morphology and is somewhat larger than lambda. A variety of factors which affect phage stability have been investigated. The bacteriophage infects several of the strains that have been tested. Study of this bacteriophage should greatly increase our understanding of genetic mechanisms in Acidiphilium. 20 refs., 3 figs., 1 tab.

  9. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles.

    PubMed

    Nancucheo, Ivan; Barrie Johnson, D

    2012-01-01

    Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30°C, with a corresponding culture doubling time of 9 h. The isolates displayed similar tolerance (10-50 mM) to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC). Glycolic acid was identified as a significant component (12-14%) of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within 3 days). Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella), and mannitol and glucose (Euglena). These were rapidly metabolized by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp.) though only fructose was utilized by the more fastidious heterotroph "Acidocella aromatica." The significance of algae in promoting the growth of iron- (and sulfate-) reducing heterotrophic acidophiles that are important in remediating mine-impacted waters (MIWs) is discussed.

  10. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    PubMed Central

    Ňancucheo, Ivan; Barrie Johnson, D.

    2012-01-01

    Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30°C, with a corresponding culture doubling time of 9 h. The isolates displayed similar tolerance (10–50 mM) to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC). Glycolic acid was identified as a significant component (12–14%) of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within 3 days). Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella), and mannitol and glucose (Euglena). These were rapidly metabolized by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp.) though only fructose was utilized by the more fastidious heterotroph “Acidocella aromatica.” The significance of algae in promoting the growth of iron- (and sulfate-) reducing heterotrophic acidophiles that are important in remediating mine-impacted waters (MIWs) is discussed. PMID:22973267

  11. Genetics of acidophilic, heterotrophic bacteria

    SciTech Connect

    Ward, T.E.; Bruhn, D.F.; Watkins, C.S.; Rowland, M.L.; Bulmer, D.K.; Winston, V.

    1988-01-01

    The genetic characteristics of members of the genus Acidiphilium are poorly understood. As part of our study of the genetics of these bacteria, a search was made for an inducible, lysogenic bacteriophage. Such a bacteriophage has been discovered. Several properties of the phage have been investigated. The phage has a lambdoid morphology and is somewhat larger than lambda. A variety of factors which affect phage stability have been investigated. The bacteriophage infects several of the strains that have been tested. Study of this bacteriophage should greatly increase our understanding of genetic mechanisms in Acidiphilium. 23 refs., 3 figs., 1 tab.

  12. Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction

    SciTech Connect

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.

    1989-05-10

    A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.

  13. PCR-mediated detection of acidophilic, bioleaching-associated bacteria.

    PubMed Central

    De Wulf-Durand, P; Bryant, L J; Sly, L I

    1997-01-01

    The detection of acidophilic microorganisms from mining environments by culture methods is time consuming and unreliable. Several PCR approaches were developed to amplify small-subunit rRNA sequences from the DNA of six bacterial phylotypes associated with acidic mining environments, permitting the detection of the target DNA at concentrations as low as 10 fg. PMID:9212441

  14. Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria.

    PubMed

    Hedrich, Sabrina; Johnson, D Barrie

    2013-12-01

    While many prokaryotic species are known to use hydrogen as an electron donor to support their growth, this trait has only previously been reported for two acidophilic bacteria, Hydrogenobaculum acidophilum (in the presence of reduced sulfur) and Acidithiobacillus (At.) ferrooxidans. To test the hypothesis that hydrogen may be utilized more widely by acidophilic bacteria, 38 strains of acidophilic bacteria, including representatives of 20 designated and four proposed species, were screened for their abilities to grow via the dissimilatory oxidation of hydrogen. Growth was demonstrated in several species of acidophiles that also use other inorganic electron donors (ferrous iron and sulfur) but in none of the obligately heterotrophic species tested. Strains of At. ferrooxidans, At. ferridurans and At. caldus, grew chemolithotrophically on hydrogen, though those of At. thiooxidans and At. ferrivorans did not. Growth was also observed with Sulfobacillus acidophilus, Sb. benefaciens and Sb. thermosulfidooxidans, though not with other iron-oxidizing Firmicutes. Similarly, Acidimicrobium ferrooxidans grew on hydrogen, closely related acidophilic actinobacteria did not. Growth yields of At. ferrooxidans and At. ferridurans grown aerobically on hydrogen (c. 10(10)  cells mL(-1) ) were far greater than typically obtained using other electron donors. Several species also grew anaerobically by coupling hydrogen oxidation to the reduction of ferric iron.

  15. Enhanced bioleaching on attachment of indigenous acidophilic bacteria to pyrite surface

    NASA Astrophysics Data System (ADS)

    Wi, D. W.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    In recent years, bioleaching has been widely applied on an industrial scale due to the advantages of low cost and environment friendliness. The direct contact mechanism of bioleaching assumes the action of a metal sulfide-attached cell oxidizing the mineral by an enzyme system with oxygen to sulfate and metal cations. Fundamental surface properties of sulfide particles and leaching-bacteria in bioleaching play the key role in the efficiency of this process. The aim of this work is to investigate of direct contact bioleaching mechanism on pyrite through attachment properties between indigenous acidophilic bacteria and pyrite surfaces. The bacteria were obtained from sulfur hot springs, Hatchobaru thermal electricity plant in Japan. And pyrite was collected from mine waste from Gwang-yang abandoned gold mines, Korea. In XRD analyses of the pyrite, x-ray diffracted d-value belong to pyrite was observed. The indigenous acidophilic bacteria grew well in a solution and over the course of incubation pH decreased and Eh increased. In relation to a bacterial growth-curve, the lag phase was hardly shown while the exponential phase was very fast. Bioleaching experiment result was showed that twenty days after the indigenous acidophilic bacteria were inoculated to a pyrite-leaching medium, the bacterial sample had a greater concentration of Fe and Zn than within the control sample. In SEM-EDS analyses, rod-shaped bacteria and round-shaped microbes were well attached to the surface of pyrite. The size of the rod-shaped bacteria ranged from 1.05~1.10 ? to 4.01~5.38 ?. Round-shaped microbes were more than 3.0 ? in diameter. Paired cells of rod-shaped bacteria were attached to the surface of pyrite linearly.

  16. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.

    PubMed

    Navarro, Claudio A; von Bernath, Diego; Jerez, Carlos A

    2013-01-01

    Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI), which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each of these

  17. Diversity of acidophilic prokaryotes at two acid mine drainage sites in Turkey.

    PubMed

    Aytar, Pınar; Kay, Catherine Melanie; Mutlu, Mehmet Burçin; Çabuk, Ahmet; Johnson, David Barrie

    2015-04-01

    The biodiversity of acidophilic prokaryotes in two acidic (pH 2.8-3.05) mine drainage (AMD) sites (Balya and Çan) in Turkey was examined using a combined cultivation-based and cultivation-independent approach. The latter included analyzing microbial diversity using fluorescent in situ hybridization (FISH), terminal restriction enzyme fragment length polymorphism (`T-RFLP), and quantitative PCR (qPCR). Numbers of cultivatable heterotrophic acidophilic bacteria were over an order of magnitude greater than those of chemolithotrophic acidophiles in both AMD ponds examined. Isolates identified as strains of Acidithiobacillus ferrivorans, Acidiphilium organovorum, and Ferrimicrobium acidiphilum were isolated from the Balya AMD pond, and others identified as strains of Leptospirillum ferriphilum, Acidicapsa ligni, and Acidiphilium rubrum from Çan AMD. Other isolates were too distantly related (from analysis of their 16S rRNA genes) to be identified at the species level. Archaeal diversity in the two ponds appeared to be far more limited. T-RFLP and qPCR confirmed the presence of Ferroplasma-like prokaryotes, but no archaea were isolated from the two sites. qPCR generated semiquantitative data for genera of some of the iron-oxidizing acidophiles isolated and/or detected, suggesting the order of abundance was Leptospirillum > Ferroplasma > Acidithiobacillus (Balya AMD) and Ferroplasma > Leptospirillum > Acidithiobacillus (Çan AMD).

  18. Environment or kin: whence do bees obtain acidophilic bacteria?

    PubMed

    McFrederick, Quinn S; Wcislo, William T; Taylor, Douglas R; Ishak, Heather D; Dowd, Scot E; Mueller, Ulrich G

    2012-04-01

    As honey bee populations decline, interest in pathogenic and mutualistic relationships between bees and microorganisms has increased. Honey bees and bumble bees appear to have a simple intestinal bacterial fauna that includes acidophilic bacteria. Here, we explore the hypothesis that sweat bees can acquire acidophilic bacteria from the environment. To quantify bacterial communities associated with two species of North American and one species of Neotropical sweat bees, we conducted 16S rDNA amplicon 454 pyrosequencing of bacteria associated with the bees, their brood cells and their nests. Lactobacillus spp. were the most abundant bacteria in many, but not all, of the samples. To determine whether bee-associated lactobacilli can also be found in the environment, we reconstructed the phylogenetic relationships of the genus Lactobacillus. Previously described groups that associate with Bombus and Apis appeared relatively specific to these genera. Close relatives of several bacteria that have been isolated from flowers, however, were isolated from bees. Additionally, all three sweat bee species associated with lactobacilli related to flower-associated lactobacilli. These data suggest that there may be at least two different means by which bees acquire putative probiotics. Some lactobacilli appear specific to corbiculate apids, possibly because they are largely maternally inherited (vertically transmitted). Other lactobacilli, however, may be regularly acquired from environmental sources such as flowers. Sweat bee-associated lactobacilli were found to be abundant in the pollen and frass inside the nests of halictids, suggesting that they could play a role in suppressing the growth of moulds and other spoilage organisms.

  19. Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample.

    PubMed

    Marhual, N P; Pradhan, N; Kar, R N; Sukla, L B; Mishra, B K

    2008-11-01

    Three acidophilic enrichment consortium were developed from mine water sample of copper mine site at Khetri, India were compared for their copper leaching efficiency. Out of these one was mesophilic (35 degrees C) and two were moderately thermophilic (50 degrees C). Consortia were named as mesophilic acidophilic chemolithotrophic consortia (MACC), thermophilic acidophilic chemolithotrophic consortia (TACC), and Sulfobacillus acidophilic consortia (SAC). Copper extraction ability of both the thermophilic consortia (77-78% extraction) was almost double to that of mesophilic consortia (40% extraction) at 10% pulp density after 55 days. Both the thermophilic consortia were equally effective in leaching of other metals like Ni, Co, Zn, Mn. After 55 days, the percentage of extractions of copper by TACC was 76, 74, 67, 48 and 45 at 5%, 10%, 15%, 20% and 30% pulp density, respectively. Total number of bacteria was maximum at 5% pulp density which decreases with increase in pulp density. Sulfobacillus-like bacteria were seen in the Sulfobacillus enrichment cultures. Moderately thermophilic consortia proved to be better in leaching performance than the mesophilic counterpart.

  20. Effect of physical characteristics on bioleaching using indigenous acidophilic bacteria for recovering the valuable resources

    NASA Astrophysics Data System (ADS)

    Wi, D.; Kim, B.; Cho, K.; Choi, N.; Park, C.

    2011-12-01

    Bioleaching technology which is based on the ability of bacteria to transform solid compounds into soluble or extractable elements that can be recovered, has developed rapidly in recent decades for its advantages, such as mild reaction, low energy consumption, simple process, environmentally friendly and suitable for low-grade mine tailing and residues. This study investigated the bioleaching efficiency of copper matte under batch experimental conditions (various mineral particle size) using the indigenous acidophilic bacteria collected from acidic hot spring in Hatchnobaru, Japan. We conducted the batch experiments at three different mineral particle sizes: 0.06, 0.16 and 1.12mm. The results showed that the pH in the bacteria inoculating sample increased than initial condition, possibly due to buffer effects by phosphate ions in growth medium. After 22 days from incubation the leached accumulation content of Cu was 0.06 mm - 1,197 mg/L, 0.16 mm - 970 mg/L and 1.12 mm - 704 mg/L. Additionally, through SEM analysis we found of gypsum formed crystals which coated the copper matte surface 6 days after inoculation in 1.12mm case. This study informs basic knowledge when bacteria apply to eco-/economic resources utilization studies including the biomining and the recycling of mine waste system.

  1. Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications.

    PubMed

    Sharma, Archana; Kawarabayasi, Yutaka; Satyanarayana, T

    2012-01-01

    Acidophiles are ecologically and economically important group of microorganisms, which thrive in acidic natural (solfataric fields, sulfuric pools) as well as artificial man-made (areas associated with human activities such as mining of coal and metal ores) environments. They possess networked cellular adaptations to regulate pH inside the cell. Several extracellular enzymes from acidophiles are known to be functional at much lower pH than the cytoplasmic pH. Enzymes like amylases, proteases, ligases, cellulases, xylanases, α-glucosidases, endoglucanases, and esterases stable at low pH are known from various acidophilic microbes. The possibility of improving them by genetic engineering and directed evolution will further boost their industrial applications. Besides biocatalysts, other biomolecules such as plasmids, rusticynin, and maltose-binding protein have also been reported from acidophiles. Some strategies for circumventing the problems encountered in expressing genes encoding proteins from extreme acidophiles have been suggested. The investigations on the analysis of crystal structures of some acidophilic proteins have thrown light on their acid stability. Attempts are being made to use thermoacidophilic microbes for biofuel production from lignocellulosic biomass. The enzymes from acidophiles are mainly used in polymer degradation.

  2. Microbial population Diversity of indigenous acidophilic bacteria for recovering the valuable resources

    NASA Astrophysics Data System (ADS)

    Kim, B.; Cho, K.; Lee, D.; Choi, N.; Park, C.

    2011-12-01

    A taxon- or group-specific PCR primer serves as a valuable tool for studying the bioleaching mechanisms of a particular group of microorganisms. Especially for an uncultured (or very difficult to isolate from their environments) group of microorganisms, the group-specific PCR primer is essential for the investigation of distribution patterns and the estimation of genetic diversity of the target microorganisms. This study investigated the Biodiversity through molecular biology method using the three different indigenous acidophilic bacteria collected from acid mine drainage in Go-seong and Yeon-hwa, Korea and acidic hot spring in Hatchnobaru, Japan. We performed the optical analysis (phase-contrast microscope and SEM), base sequencing. In the phase-contrast microscope(X 4,000) and SEM analysis, the rod-shaped bacteria with 1μm in length were observed. The results of base sequencing using EzTaxon server data revealed Acidithiobacillus ferrooxidans (Go-seong - 97.79%, Yeon-hwa - 97.90% and Hatchnobaru - 97.97%)

  3. A method of genetically engineering acidophilic, heterotrophic, bacteria by electroporation and conjugation

    SciTech Connect

    Roberto, F.F.; Glenn, A.W.; Ward, T.E.

    1990-08-07

    A method of genetically manipulating an acidophilic bacteria is provided by two different procedures. Using electroporation, chimeric and broad-host range plasmids are introduced into Acidiphilium. Conjugation is also employed to introduce broad-host range plasmids into Acidiphilium at neutral pH.

  4. Extremely acidophilic sulfur-oxidizing bacteria applied in biotechnological processes for gas purification.

    PubMed

    Kraakman, Norbertus J R; Pol, Arjan; Smeulders, Marjan J; Jetten, Mike S M; Op Den Camp, Huub J M

    2012-01-01

    Extreme acidophilic (pH ~ 0.25) microorganisms have been studied and applied to treat volatile sulfur emissions like carbon disulfide. These microorganisms provide opportunities for biomass control and recycling of sulfuric acid using extremely low pH operating conditions as shown in 70 L bench-scale bioreactors. Applying the extreme acidophilic bacteria in full-scale bioreactors treating carbon disulfide in combination with hydrogen sulfide emissions from industrial processes like the viscose industry was shown to be effective with average total sulfur removal efficiency above 90%.

  5. Cell wall reactivity of acidophilic and alkaliphilic bacteria determined by potentiometric titrations and Cd adsorption experiments.

    PubMed

    Kenney, Janice P L; Fein, Jeremy B

    2011-05-15

    In this study, we used potentiometric titrations and Cd adsorption experiments to determine the binding capacities of two acidophilic (A. cryptum and A. acidophilum) and two alkaliphilic (B. pseudofirmus and B. circulans) bacterial species in order to determine if any consistent trends could be observed relating bacterial growth environment to proton and Cd binding properties and to compare those binding behaviors to those of neutrophilic bacteria. All of the bacterial species studied exhibited significant proton buffering over the pH range in this study, with the alkaliphiles exhibiting significantly higher acidity constants than the acidophiles as well as the neutrophilic bacterial consortia. The calculated average site concentrations for each of the bacteria in this study are within 2σ experimental error of each other, with the exception of A. cryptum, which has a significantly higher Site 2 concentration than the other species. Despite differing acidity constants between the acidophiles and alkaliphiles, all bacteria except A. cryptum exhibited remarkably similar Cd adsorption behavior to each other, and the observed extent of adsorption was also similar to that predicted from a generalized model derived using neutrophilic bacterial consortia. This study demonstrates that bacteria that grow under extreme conditions exhibit similar proton and metal adsorption behavior to that of previously studied neutrophilic species and that a single set of proton and metal binding constants can be used to model the behavior of bacterial adsorption under a wide range of environmental conditions.

  6. The effect of acidophilic heterotrophic bacteria on the leaching of cobalt by Thiobacillus ferrooxidans

    SciTech Connect

    Wichlacz, P.L.; Thompson, D.L.

    1987-01-01

    Experiments were conducted to determine if acidophilic heterotrophic bacteria influence the ability of T. ferrooxidans to solubilize cobalt. Short term (7 day) flask leaching studies were conducted wherein 28 strains of T. ferrooxidans were each incubated with one of three different cobalt sulfides (CoS, cobaltite flotation concentrate, or cobaltite ore), with and without ferrous iron and/or heterotrophic bacteria. Growth of T. ferrooxidans was determined by comparing cobalt solubilization and ferrous iron oxidation for inoculated and uninoculated control flasks. Under all conditions tested, except one, the addition of acidophilic heterotrophs was found to enhance the extent of cobalt leaching. Longer term (28 day) studies were conducted which included the addition of glucose as a controlled variable. The presence of heterotrophs enhanced the leaching of CoS by T. ferrooxidans under all conditions. Cobalt leaching from concentrate and high grade ore by T. ferrooxidans was enhanced by the addition of heterotrophs in all cases except when ferrous iron or glucose were absent from the leaching medium. The present studies indicate that cobalt solubilization is substrate and strain dependent and, in most cases, is increased when acidophilic heterotrophic bacteria are present. 13 refs., 3 tabs.

  7. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    SciTech Connect

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T.; Hiraishi, A.

    2014-02-20

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum 'TM7' as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L{sup −1} was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  8. Culture-independent detection of "TM7" bacteria in a streptomycin-resistant acidophilic nitrifying process

    NASA Astrophysics Data System (ADS)

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T.; Hiraishi, A.

    2014-02-01

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum "TM7" as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L-1 was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  9. Genetic manipulation of acidophilic bacteria which are potentially applicable in coal beneficiation

    SciTech Connect

    Roberto, F.F.; Glenn, A.W.; Bulmer, D.; Bruhn, D.F.; Ward, T.E.

    1991-01-01

    The economic and practical aspects of a biological coal desulfurization process are the subject of increasing study. Depyritization of coal by the bacterium Thiobacillus ferrooxidans has been known for some time and pilot scale experiments are underway. A number of limitations have already been recognized for this process, foremost of which is the speed with which the microorganisms grow and attack the pyritic sulfur. Metal toxicity and mass transfer dynamics also present formidable hurdles. Removal of organic sulfur substituents poses even more difficult problems at this time, not least of which is the leak of efficient candidate organisms. Potential candidates at this time resemble members of the Psedomonadaceae, common environmental bacteria. The various limitations in the microorganisms being examined for a viable desulfurization process have led us to initiate studies on the extension of molecular genetic techniques to acidophilic bacteria, with an ultimate goal of introducing desirable characteristics for desulfurization (enhanced growth rate, metal resistance, biochemical capacity to degrade organic sulfur) either directly into T. ferrooxidans, or, alternatively, into a heterotrophic acidophile which can coexist in the same environment as T. ferrooxidans. We are focusing on members of the genus Acidiphilium, one such acidophilic heterotroph. 22 refs., 1 fig., 2 tabs.

  10. [An Acidophilic Desulfosporosinus Isolated from the Oxidized Mining Wastes in the Transbaikal Area].

    PubMed

    Karnachuk, O V; Kurganskaya, I A; Avakyan, M R; Frank, Y A; Ikkert, O P; Filenko, R A; Danilovac, E V; Pimenov, N V

    2015-01-01

    Dissimilatory sulfate reduction plays an important role in removal of dissolved metals from acidic mine waters. Although this process was convincingly shown to occur in acidic waste of metal recovery, few isolates of acid-tolerant sulfate rducers are known. We isolated a new acidophilic sulfidogen, strain BG, from the oxidized acidic waste of the Bom-Gorkhon tungsten deposit, Transbaikalia, Russia. Phylogenetic analysis of its 16S rRNA gene sequence made it possible to identify it as a member of the genus Desulfosporosinus. Unlike other known acidophilic sulfate reducers of this genus, strain BG was tolerant to high copper concentrations (up to 5 g/L), could grow on organic acids at low ambient pH, and formed crystalline copper sulfides (covellite and chalcopyrite). Molecular analysis of the phenotypes predominating in oxidized waste and in enrichment cultures confirmed the presence of various Desulfosporosinus strains.

  11. [An Acidophilic Desulfosporosinus Isolated from the Oxidized Mining Wastes in the Transbaikal Area].

    PubMed

    Karnachuk, O V; Kurganskaya, I A; Avakyan, M R; Frank, Y A; Ikkert, O P; Filenko, R A; Danilovac, E V; Pimenov, N V

    2015-01-01

    Dissimilatory sulfate reduction plays an important role in removal of dissolved metals from acidic mine waters. Although this process was convincingly shown to occur in acidic waste of metal recovery, few isolates of acid-tolerant sulfate rducers are known. We isolated a new acidophilic sulfidogen, strain BG, from the oxidized acidic waste of the Bom-Gorkhon tungsten deposit, Transbaikalia, Russia. Phylogenetic analysis of its 16S rRNA gene sequence made it possible to identify it as a member of the genus Desulfosporosinus. Unlike other known acidophilic sulfate reducers of this genus, strain BG was tolerant to high copper concentrations (up to 5 g/L), could grow on organic acids at low ambient pH, and formed crystalline copper sulfides (covellite and chalcopyrite). Molecular analysis of the phenotypes predominating in oxidized waste and in enrichment cultures confirmed the presence of various Desulfosporosinus strains. PMID:27169248

  12. Isolation and identification of thermo-acidophilic bacteria from orchards in china.

    PubMed

    Wang, Ying; Yue, Tianli; Yuan, Yahong; Gao, Zhenpeng

    2010-02-01

    Eight strains of thermo-acidophilic bacteria have been isolated from apple orchards in Shaanxi Province, China. The isolated strains were identified at the species level by comparing 16S rRNA gene sequences. It was found that all strains could be assigned to two genera. The strain YL-5 belonged to Alicyclobacillus, and other isolates belonged to Bacillus. The enzymatic patterns by the API ZYM system showed very significant differences between 12 strains of Alicyclobacillus and 8 strains of Bacillus. The ability of guaiacol production varied among different strains.

  13. Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria.

    PubMed

    Ziegler, Sibylle; Dolch, Kerstin; Geiger, Katharina; Krause, Susanne; Asskamp, Maximilian; Eusterhues, Karin; Kriews, Michael; Wilhelms-Dick, Dorothee; Goettlicher, Joerg; Majzlan, Juraj; Gescher, Johannes

    2013-09-01

    Biofilms can provide a number of different ecological niches for microorganisms. Here, a multispecies biofilm was studied in which pyrite-oxidizing microbes are the primary producers. Its stability allowed not only detailed fluorescence in situ hybridization (FISH)-based characterization of the microbial population in different areas of the biofilm but also to integrate these results with oxygen and pH microsensor measurements conducted before. The O2 concentration declined rapidly from the outside to the inside of the biofilm. Hence, part of the population lives under microoxic or anoxic conditions. Leptospirillum ferrooxidans strains dominate the microbial population but are only located in the oxic periphery of the snottite structure. Interestingly, archaea were identified only in the anoxic parts of the biofilm. The archaeal community consists mainly of so far uncultured Thermoplasmatales as well as novel ARMAN (Archaeal Richmond Mine Acidophilic Nanoorganism) species. Inductively coupled plasma analysis and X-ray absorption near edge structure spectra provide further insight in the biofilm characteristics but revealed no other major factors than oxygen affecting the distribution of bacteria and archaea. In addition to catalyzed reporter deposition FISH and oxygen microsensor measurements, microautoradiographic FISH was used to identify areas in which active CO2 fixation takes place. Leptospirilla as well as acidithiobacilli were identified as primary producers. Fixation of gaseous CO2 seems to proceed only in the outer rim of the snottite. Archaea inhabiting the snottite core do not seem to contribute to the primary production. This work gives insight in the ecological niches of acidophilic microorganisms and their role in a consortium. The data provided the basis for the enrichment of uncultured archaea.

  14. Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria

    PubMed Central

    Ziegler, Sibylle; Dolch, Kerstin; Geiger, Katharina; Krause, Susanne; Asskamp, Maximilian; Eusterhues, Karin; Kriews, Michael; Wilhelms-Dick, Dorothee; Goettlicher, Joerg; Majzlan, Juraj; Gescher, Johannes

    2013-01-01

    Biofilms can provide a number of different ecological niches for microorganisms. Here, a multispecies biofilm was studied in which pyrite-oxidizing microbes are the primary producers. Its stability allowed not only detailed fluorescence in situ hybridization (FISH)-based characterization of the microbial population in different areas of the biofilm but also to integrate these results with oxygen and pH microsensor measurements conducted before. The O2 concentration declined rapidly from the outside to the inside of the biofilm. Hence, part of the population lives under microoxic or anoxic conditions. Leptospirillum ferrooxidans strains dominate the microbial population but are only located in the oxic periphery of the snottite structure. Interestingly, archaea were identified only in the anoxic parts of the biofilm. The archaeal community consists mainly of so far uncultured Thermoplasmatales as well as novel ARMAN (Archaeal Richmond Mine Acidophilic Nanoorganism) species. Inductively coupled plasma analysis and X-ray absorption near edge structure spectra provide further insight in the biofilm characteristics but revealed no other major factors than oxygen affecting the distribution of bacteria and archaea. In addition to catalyzed reporter deposition FISH and oxygen microsensor measurements, microautoradiographic FISH was used to identify areas in which active CO2 fixation takes place. Leptospirilla as well as acidithiobacilli were identified as primary producers. Fixation of gaseous CO2 seems to proceed only in the outer rim of the snottite. Archaea inhabiting the snottite core do not seem to contribute to the primary production. This work gives insight in the ecological niches of acidophilic microorganisms and their role in a consortium. The data provided the basis for the enrichment of uncultured archaea. PMID:23619304

  15. Electricity generation from an inorganic sulfur compound containing mining wastewater by acidophilic microorganisms.

    PubMed

    Ni, Gaofeng; Christel, Stephan; Roman, Pawel; Wong, Zhen Lim; Bijmans, Martijn F M; Dopson, Mark

    2016-09-01

    Sulfide mineral processing often produces large quantities of wastewaters containing acid-generating inorganic sulfur compounds. If released untreated, these wastewaters can cause catastrophic environmental damage. In this study, microbial fuel cells were inoculated with acidophilic microorganisms to investigate whether inorganic sulfur compound oxidation can generate an electrical current. Cyclic voltammetry suggested that acidophilic microorganisms mediated electron transfer to the anode, and that electricity generation was catalyzed by microorganisms. A cation exchange membrane microbial fuel cell, fed with artificial wastewater containing tetrathionate as electron donor, reached a maximum whole cell voltage of 72 ± 9 mV. Stepwise replacement of the artificial anolyte with real mining process wastewater had no adverse effect on bioelectrochemical performance and generated a maximum voltage of 105 ± 42 mV. 16S rRNA gene sequencing of the microbial consortia resulted in sequences that aligned within the genera Thermoplasma, Ferroplasma, Leptospirillum, Sulfobacillus and Acidithiobacillus. This study opens up possibilities to bioremediate mining wastewater using microbial fuel cell technology.

  16. Electricity generation from an inorganic sulfur compound containing mining wastewater by acidophilic microorganisms.

    PubMed

    Ni, Gaofeng; Christel, Stephan; Roman, Pawel; Wong, Zhen Lim; Bijmans, Martijn F M; Dopson, Mark

    2016-09-01

    Sulfide mineral processing often produces large quantities of wastewaters containing acid-generating inorganic sulfur compounds. If released untreated, these wastewaters can cause catastrophic environmental damage. In this study, microbial fuel cells were inoculated with acidophilic microorganisms to investigate whether inorganic sulfur compound oxidation can generate an electrical current. Cyclic voltammetry suggested that acidophilic microorganisms mediated electron transfer to the anode, and that electricity generation was catalyzed by microorganisms. A cation exchange membrane microbial fuel cell, fed with artificial wastewater containing tetrathionate as electron donor, reached a maximum whole cell voltage of 72 ± 9 mV. Stepwise replacement of the artificial anolyte with real mining process wastewater had no adverse effect on bioelectrochemical performance and generated a maximum voltage of 105 ± 42 mV. 16S rRNA gene sequencing of the microbial consortia resulted in sequences that aligned within the genera Thermoplasma, Ferroplasma, Leptospirillum, Sulfobacillus and Acidithiobacillus. This study opens up possibilities to bioremediate mining wastewater using microbial fuel cell technology. PMID:27155452

  17. Differentiation and identification of iron-oxidizing acidophilic bacteria using cultivation techniques and amplified ribosomal DNA restriction enzyme analysis.

    PubMed

    Johnson, D Barrie; Okibe, Naoko; Hallberg, Kevin B

    2005-03-01

    Acidophilic iron-oxidizing microorganisms are important both environmentally and in biotechnological applications. Although, as a group, they are readily detected by their ability to generate ferric iron (resulting in a distinctive color change in liquid media), these microbes highly diverse phylogenetically. Various other characteristics, such as optimum growth temperature, response to organic carbon sources, and cellular morphologies, facilitate, in some cases, identification of isolates to a genus or species level, although this approach has limitations and may give erroneous results. In this study, a combined approach of using physiological traits together with amplified ribosomal DNA restriction enzyme analysis (ARDREA) has been successful in identifying all known acidophilic iron-oxidizing bacteria to the species level. Computer-generated maps were used to identify restriction enzymes that allow the differentiation of the acidophiles, and these were confirmed experimentally using authentic bacterial strains. To test further the validity of this approach, six acidophilic moderately thermophilic iron-oxidizing bacteria isolated from Montserrat (West Indies) were analysed using the ARDREA protocol. Three of the isolates were identified as Sulfobacillus acidophilus-like, and one as Sulfobacillus thermosulfidooxidans-like bacteria. The fifth isolate gave DNA digest patterns that were distinct from all known strains of iron-oxidizing acidophiles. Subsequent sequencing of the 16S rRNA genes of these isolates confirmed the identity of the four Sulfobacillus isolates, and also that the fifth isolate was a novel species. Schematic diagrams showing how ARDREA may be used to rapidly identify all known acidophilic iron-oxidizing bacteria are presented.

  18. Growth rate characteristics of acidophilic heterotrophic organisms from mine waste rock piles

    NASA Astrophysics Data System (ADS)

    Yacob, T. W.; Silverstein, J.; Jenkins, J.; Andre, B. J.; Rajaram, H.

    2010-12-01

    Autotrophic iron oxidizing bacteria play a key role in pyrite oxidation and generation of acid mine drainage AMD. Scarcity of organic substrates in many disturbed sites insures that IOB have sufficient oxygen and other nutrients for growth. It is proposed that addition of organic carbon substrate to waste rock piles will result in enrichment of heterotrophic microorganisms limiting the role of IOB in AMD generation. Previous researchers have used the acidophilic heterotroph Acidiphilium cryptum as a model to study the effects of organic substrate addition on the pyrite oxidation/AMD cycle. In order to develop a quantitative model of effects such as competition for oxygen, it is necessary to use growth and substrate consumption rate expressions, and one approach is to choose a model strain such as A. cryptum for kinetic studies. However we have found that the growth rate characteristics of A. cryptum may not provide an accurate model of the remediation effects of organic addition to subsurface mined sites. Fluorescent in-situ hybridization (FISH) assays of extracts of mine waste rock enriched with glucose and yeast extract did not produce countable numbers of cells in the Acidiphilium genus, with a detection limit of3 x 104 cells/gram rock, despite evidence of the presence of well established heterotrophic organisms. However, an MPN enrichment produced heterotrophic population estimates of 1x107 and 1x109 cells/gram rock. Growth rate studies of A. cryptum showed that cultures took 120 hours to degrade 50% of an initial glucose concentration of 2,000 mg/L. However a mixed culture enriched from mine waste rock consumed 100% of the same amount of glucose in 24 hours. Substrate consumption data for the mixed culture were fit to a Monod growth model: {dS}/{dt} = μ_{max}S {( {X_0}/{Y} + S_0 -S )}/{(K_s +S)} Kinetic parameters were estimated utilizing a non linear regression method coupled with an ODE solver. The maximum specific growth rate of the mixed population with

  19. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage.

    PubMed

    Edwards, K J; Bond, P L; Gihring, T M; Banfield, J F

    2000-03-10

    A new species of Archaea grows at pH approximately 0.5 and approximately 40 degrees C in slime streamers and attached to pyrite surfaces at a sulfide ore body, Iron Mountain, California. This iron-oxidizing Archaeon is capable of growth at pH 0. This species represents a dominant prokaryote in the environment studied (slimes and sediments) and constituted up to 85% of the microbial community when solution concentrations were high (conductivity of 100 to 160 millisiemens per centimeter). The presence of this and other closely related Thermoplasmales suggests that these acidophiles are important contributors to acid mine drainage and may substantially impact iron and sulfur cycles. PMID:10710303

  20. Combined immunofluorescence-DNA-fluorescence staining technique for enumeration of Thiobacillus ferrooxidans in a population of acidophilic bacteria

    SciTech Connect

    Muyzer, G.; De Bruyn, A.; Schmedding, D.J.M.; Bos, P.; Westbroek, P.; Kuenen, G.J.

    1987-04-01

    An antiserum raised against whole cells of Thiobacillus ferroxidans was allowed to react with a variety of acidophilic and nonacidophilic bacteria in an enzyme-linked immunosorbent assay and an indirect immunofluorescence assay. Both experiments demonstrated that the antiserum was specific at the species level. This preparation was used to evaluate the role of T. ferroooxidans in the microbial desulfurization process. Leaching experiments were performed, and the numbers of T. ferrooxidans cells and other bacteria were estimated by using a combined immunofluorescence-DNA-fluorescence staining technique that was adapted for this purpose. Nonsterile coal samples inoculated with T. ferrooxidans yielded high concentrations of soluble iron after 16 days. After this period, however, T. ferrooxidans cells could no longer be detected by the immunofluorescence assay, whereas the DNA-fluorescence staining procedure demonstrated a large number of microorganisms on the coal particles. These results indicate that T. ferrooxidans is removed by competition with different acidophilic microorganisms that were originally present on the coal.

  1. Bacteria of the candidate phylum TM7 are prevalent in acidophilic nitrifying sequencing-batch reactors.

    PubMed

    Hanada, Akiko; Kurogi, Takashi; Giang, Nguyen Minh; Yamada, Takeshi; Kamimoto, Yuki; Kiso, Yoshiaki; Hiraishi, Akira

    2014-01-01

    Laboratory-scale acidophilic nitrifying sequencing-batch reactors (ANSBRs) were constructed by seeding with sewage-activated sludge and cultivating with ammonium-containing acidic mineral medium (pH 4.0) with or without a trace amount of yeast extract. In every batch cycle, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate. Attempts to detect nitrifying functional genes in the fully acclimated ANSBRs by PCR with previously designed primers mostly gave negative results. 16S rRNA gene-targeted PCR and a subsequent denaturating gradient gel electrophoresis analysis revealed that a marked change occurred in the bacterial community during the overall period of operation, in which members of the candidate phylum TM7 and the class Gammaproteobacteria became predominant at the fully acclimated stage. This result was fully supported by a 16S rRNA gene clone library analysis, as the major phylogenetic groups of clones detected (>5% of the total) were TM7 (33%), Gammaproteobacteria (37%), Actinobacteria (10%), and Alphaproteobacteria (8%). Fluorescence in situ hybridization with specific probes also demonstrated the prevalence of TM7 bacteria and Gammaproteobacteria. These results suggest that previously unknown nitrifying microorganisms may play a major role in ANSBRs; however, the ecophysiological significance of the TM7 bacteria predominating in this process remains unclear.

  2. Enrichment and isolation of acidophilic sulfate-reducing bacteria from Tinto River sediments.

    PubMed

    Sánchez-Andrea, Irene; Stams, Alfons J M; Amils, Ricardo; Sanz, José Luis

    2013-10-01

    Although some acidophilic and alkaliphilic species have been described recently, most of the known sulfate-reducing bacteria (SRB) grow optimally at neutral pH. In this study, sulfate reduction was studied with sediment samples from the extremely acidic Tinto River basin. Stable enrichments of SRB were obtained at pH 4 with glycerol, methanol and hydrogen; at pH 4.5 with lactate and at pH 5.5 with succinate as substrates. Inhibition of sulfate reduction by organic acids below their pKa was observed. Cloning and sequencing of 16S rRNA gene showed that fermentative bacteria (Paludibacter spp., Oscillibacter spp.) and SRB (Thermodesulfobium spp., Desulfosporosinus spp., Desulfitobacterium spp., Desulfotomaculum spp.) were co-enriched. By repeated serial dilutions and streaking on agar plates, four strains of SRB belonging to the Firmicutes phylum were obtained. Two of them show 96% 16S rRNA gene sequence similarity with Desulfosporosinus acidophilus, and a third one with Desulfosporosinus orientis. Another isolate has just 93% rRNA gene sequence similarity with the Desulfosporosinus/Desulfitobacterium cluster and might represent a novel species within a novel genus. One of the Desulfosporosinus strains was further investigated showing maximum growth at pH 5.5, and a pH-dependent inhibitory effect of organic acids and sulfide.

  3. Astrobiological Significance of Chemolithoautotrophic Acidophiles

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2003-01-01

    For more than a century (since Winogradsky discovered lithoautotrophic bacteria) a dilemma in microbiology has concerned life that first inhabited the Earth. Which types of life forms first appeared in the primordial oceans during the earliest geological period on Earth as the primary ancestors of modem biological diversity? How did a metabolism of ancestors evolve: from lithoautotrophic to lithohetherotrophic and organoheterotrophic or from organoheterotrophic to organoautotrophic and lithomixotrophic types? At the present time, it is known that chemolithoheterotrophic and chemolithoautotrophic metabolizing bacteria are wide spread in different ecosystems. On Earth the acidic ecosystems are associated with geysers, volcanic fumaroles, hot springs, deep sea hydrothermal vents, caves, acid mine drainage and other technogenic ecosystems. Bioleaching played a significant role on a global geological scale during the Earth's formation. This important feature of bacteria has been successfully applied in industry. The lithoautotrophs include Bacteria and Archaea belonging to diverse genera containing thermophilic and mesophilic species. In this paper we discuss the lithotrophic microbial acidophiles and present some data with a description of new acidophilic iron- and sulfur- oxidizing bacterium isolated from the Chena Hot Springs in Alaska. We also consider the possible relevance of microbial acidophiles to Venus, Io, and acidic inclusions in glaciers and icy moons.

  4. Astrobiological significance of chemolithoautotrophic acidophiles

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-02-01

    For more than a century (since Winogradsky discovered lithautotrophic bacteria) there has been a dilemma in microbiology about life that first inhabited the Earth. Which types of life forms first appeared in the primordial oceans during the earliest geological period on Earth as the primary ancestors of modern biological diversity? How did a metabolism of ancestors evolve: from lithoautotrophic to lithoheterotrophic and organoheterotrophic or from organoheterotrophic to organautotrophic and lithomixotrophic types? At the present time, it is known that chemolithoheterotrophic and chemolithoautotrophic metabolizing bacteria are wide spread in different ecosystems. On Earth the acidic ecosystems are associated with geysers, volcanic fumaroles, hot springs, deep sea hydrothermal vents, caves, acid mine drainage and other technogenic ecosystems. Bioleaching played a significant roel on a global geological scale during the Earth's formation. This important feature of bacteria has been successfully applied in industry. The lithoautotrophs include Bacteria and Archaea belonging to diverse genera containing thermophilic and mesophilic species. In this paper we discuss the lithotrophic microbial acidophiles and present some data with a description of new acidophilic iron- and sulfur-oxidizing bacterium isolated from the Chena Hot Springs in Alaska. We also consider the possible relevance of microbial acidophiles to Venus, Io, and acidic inclusions in glaciers and icy moons.

  5. Geochemical Niches of Iron-Oxidizing Acidophiles in Acidic Coal Mine Drainage

    PubMed Central

    Kohl, Courtney; Grettenberger, Christen; Larson, Lance N.; Burgos, William D.

    2014-01-01

    A legacy of coal mining in the Appalachians has provided a unique opportunity to study the ecological niches of iron-oxidizing microorganisms. Mine-impacted, anoxic groundwater with high dissolved-metal concentrations emerges at springs and seeps associated with iron oxide mounds and deposits. These deposits are colonized by iron-oxidizing microorganisms that in some cases efficiently remove most of the dissolved iron at low pH, making subsequent treatment of the polluted stream water less expensive. We used full-cycle rRNA methods to describe the composition of sediment communities at two geochemically similar acidic discharges, Upper and Lower Red Eyes in Somerset County, PA, USA. The dominant microorganisms at both discharges were acidophilic Gallionella-like organisms, “Ferrovum” spp., and Acidithiobacillus spp. Archaea and Leptospirillum spp. accounted for less than 2% of cells. The distribution of microorganisms at the two sites could be best explained by a combination of iron(II) concentration and pH. Populations of the Gallionella-like organisms were restricted to locations with pH >3 and iron(II) concentration of >4 mM, while Acidithiobacillus spp. were restricted to pH <3 and iron(II) concentration of <4 mM. Ferrovum spp. were present at low levels in most samples but dominated sediment communities at pH <3 and iron(II) concentration of >4 mM. Our findings offer a predictive framework that could prove useful for describing the distribution of microorganisms in acid mine drainage, based on readily accessible geochemical parameters. PMID:25501473

  6. Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities

    SciTech Connect

    Denef, Vincent; Kalnejals, Linda; Muller, R; Wilmes, P; Baker, Brett J.; Thomas, Brian; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2010-01-01

    Bacterial species concepts are controversial. More widely accepted is the need to understand how differences in gene content and sequence lead to ecological divergence. To address this relationship in ecosystem context, we investigated links between genotype and ecology of two genotypic groups of Leptospirillumgroup II bacteria in comprehensively characterized, natural acidophilic biofilm communities. These groups share 99.7% 16S rRNA gene sequence identity and 95% average amino acid identity between their orthologs. One genotypic group predominates during early colonization, and the other group typically proliferates in later successional stages, forming distinct patches tens to hundreds of micrometers in diameter. Among early colonizing populations, we observed dominance of five genotypes that differed from each other by the extent of recombination with the late colonizing type. Our analyses suggest that the specific recombinant variant within the early colonizing group is selected for by environmental parameters such as temperature, consistent with recombination as a mechanism for ecological fine tuning. Evolutionary signatures, and strain-resolved expression patterns measured via mass spectrometry based proteomics, indicate increased cobalamin biosynthesis, (de)methylation, and glycine cleavage in the late colonizer. This may suggest environmental changes within the biofilm during development, accompanied by redirection of compatible solutes from osmoprotectants toward metabolism. Across 27 communities, comparative proteogenomic analyses show that differential regulation of shared genes and expression of a small subset of the 15% of genes unique to each genotype are involved in niche partitioning. In summary, the results show how subtle genetic variations can lead to distinct ecological strategies.

  7. Sorption of ferrous and ferric iron by extracellular polymeric substances (EPS) from acidophilic bacteria.

    PubMed

    Tapia, Jaime M; Muñoz, Jesús; González, Felisa; Blázquez, Maria L; Ballester, Antonio

    2013-01-01

    The sorption of Fe(II) and Fe(III) by extracellular polymeric substances (EPS) of acidophilic bacteria Acidiphilium 3.2Sup(5) and Acidithiobacillus ferrooxidans, harvested from the ecosystem of the Tinto River (Huelva, Spain), was investigated. EPS from mixed cultures of both bacteria (EPS(mixed)) and pure cultures of A. 3.2Sup(5) (EPS(pure)) were extracted with ethylenediamine tetraacetic acid (EDTA) and were characterized by Fourier-transform infrared (FTIR), electron photoemission (XPS), x-ray diffraction (DRX), and energy dispersive x-ray (EDX) spectroscopy and scanning electron microscopy (SEM). EPS pure were loaded, in sorption tests, with Fe(II) and Fe(III). The results obtained indicate that the biochemical composition and structure of EPS(mixed) was very similar to that of EPS(pure). Besides, results indicate that EPS(mixed) adsorbed Fe(II) and Fe(III) by preferential interaction with the carboxyl group, which favored the formation of Fe(II)/Fe(III) oxalates. These species were also formed in EPS(pure) loaded with Fe(II)/Fe(III). All this behavior suggested that the sorption of iron by EPS(mixed) was similar to sorption of EPS(pure), which fitted the Freundlich model. Thus, the iron uptake of EPS(mixed) reached 516.7 ± 23.4 mg Fe/g-EPS at an initial concentration of 2.0 g/L of Fe(total) and Fe(II)/Fe(III) ratio of 1.0.

  8. Investigation of energy gene expressions and community structures of free and attached acidophilic bacteria in chalcopyrite bioleaching.

    PubMed

    Zhu, Jianyu; Jiao, Weifeng; Li, Qian; Liu, Xueduan; Qin, Wenqing; Qiu, Guanzhou; Hu, Yuehua; Chai, Liyuan

    2012-12-01

    In order to better understand the bioleaching mechanism, expression of genes involved in energy conservation and community structure of free and attached acidophilic bacteria in chalcopyrite bioleaching were investigated. Using quantitative real-time PCR, we studied the expression of genes involved in energy conservation in free and attached Acidithiobacillus ferrooxidans during bioleaching of chalcopyrite. Sulfur oxidation genes of attached A. ferrooxidans were up-regulated while ferrous iron oxidation genes were down-regulated compared with free A. ferrooxidans in the solution. The up-regulation may be induced by elemental sulfur on the mineral surface. This conclusion was supported by the results of HPLC analysis. Sulfur-oxidizing Acidithiobacillus thiooxidans and ferrous-oxidizing Leptospirillum ferrooxidans were the members of the mixed culture in chalcopyrite bioleaching. Study of the community structure of free and attached bacteria showed that A. thiooxidans dominated the attached bacteria while L. ferrooxidans dominated the free bacteria. With respect to available energy sources during bioleaching of chalcopyrite, sulfur-oxidizers tend to be on the mineral surfaces whereas ferrous iron-oxidizers tend to be suspended in the aqueous phase. Taken together, these results indicate that the main role of attached acidophilic bacteria was to oxidize elemental sulfur and dissolution of chalcopyrite involved chiefly an indirect bioleaching mechanism.

  9. Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures

    SciTech Connect

    Bacelar-Nicolau, P.; Johnson, D.B.

    1999-02-01

    Seven strains of heterotrophic iron-oxidizing acidophilic bacteria were examined to determine their abilities to promote oxidative dissolution of pyrite (FeS{sub 2}) when they were grown in pure cultures and in mixed cultures with sulfur-oxidizing Thiobacillus spp. Only one of the isolates (strain T-24) oxidized pyrite when it was grown in pyrite-basal salts medium. However, when pyrite-containing cultures were supplemented with 0.02% (wt/vol) yeast extract, most of the isolates oxidized pyrite, and one (strain T-24) promoted rates of mineral dissolution similar to the rates observed with the iron-oxidizing autotroph Thiobacillus ferroxidans. Pyrite oxidation by another isolate (strain T-21) occurred in cultures containing between 0.005 and 0.05% (wt/vol) yeast extract but was completely inhibited in cultures containing 0.5% yeast extract. Ferrous iron was also needed for mineral dissolution by the iron-oxidizing heterotrophs, indicating that these organisms oxidize pyrite via the indirect mechanism. Mixed cultures of three isolates (strains T-21, T-232, and T-24) and the sulfur-oxidizing autotroph Thiobacillus thiooxidans promoted pyrite dissolution; since neither strains T-21 and T-23 nor T. thiooxidans could oxidize this mineral in yeast extract-free media, this was a novel example of bacterial synergism. Mixed cultures of strains T-21 and T-23 and the sulfur-oxidizing mixotroph Thiobacillus acidophilus also oxidized pyrite but to a lesser extent than did mixed cultures containing T. thiooxidans. Pyrite leaching by strain T -23 grown in an organic compound-rich medium and incubated either shaken or unshaken was also assessed. The potential environmental significance of iron-oxidizing heterotrophs in accelerating pyrite oxidation is discussed.

  10. Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands.

    PubMed

    Dedysh, S N; Panikov, N S; Liesack, W; Grosskopf, R; Zhou, J; Tiedje, J M

    1998-10-01

    Acidic northern wetlands are an important source of methane, one of the gases that contributes to global warming. Methane oxidation in the surface of these acidic wetlands can reduce the methane flux to the atmosphere up to 90 percent. Here the isolation of three methanotrophic microorganisms from three boreal forest sites is reported. They are moderately acidophilic organisms and have a soluble methane monooxygenase. In contrast to the known groups of methanotrophs, 16S ribosomal DNA sequence analysis shows that they are affiliated with the acidophilic heterotrophic bacterium Beijerinckia indica subsp. indica.

  11. Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands.

    PubMed

    Dedysh, S N; Panikov, N S; Liesack, W; Grosskopf, R; Zhou, J; Tiedje, J M

    1998-10-01

    Acidic northern wetlands are an important source of methane, one of the gases that contributes to global warming. Methane oxidation in the surface of these acidic wetlands can reduce the methane flux to the atmosphere up to 90 percent. Here the isolation of three methanotrophic microorganisms from three boreal forest sites is reported. They are moderately acidophilic organisms and have a soluble methane monooxygenase. In contrast to the known groups of methanotrophs, 16S ribosomal DNA sequence analysis shows that they are affiliated with the acidophilic heterotrophic bacterium Beijerinckia indica subsp. indica. PMID:9765151

  12. Genetic diversity of hydrogen-producing bacteria in an acidophilic ethanol-H2-coproducing system, analyzed using the [Fe]-hydrogenase gene.

    PubMed

    Xing, Defeng; Ren, Nanqi; Rittmann, Bruce E

    2008-02-01

    Hydrogen gas (H2) produced by bacterial fermentation of biomass can be a sustainable energy source. The ability to produce H2 gas during anaerobic fermentation was previously thought to be restricted to a few species within the genera Clostridium and Enterobacter. This work reports genomic evidence for the presence of novel H2-producing bacteria (HPB) in acidophilic ethanol-H2-coproducing communities that were enriched using molasses wastewater. The majority of the enriched dominant populations in the acidophilic ethanol-H2-coproducing system were affiliated with low-G+C-content gram-positive bacteria, Bacteroidetes, and Actinobacteria, based on the 16S rRNA gene. However, PCR primers designed to specifically target bacterial hydA yielded 17 unique hydA sequences whose amino acid sequences differed from those of known HPB. The putative ethanol-H2-coproducing bacteria comprised 11 novel phylotypes closely related to Ethanoligenens harbinense, Clostridium thermocellum, and Clostridium saccharoperbutylacetonicum. Furthermore, analysis of the alcohol dehydrogenase isoenzyme also pointed to an E. harbinense-like organism, which is known to have a high conversion rate of carbohydrate to H2 and ethanol. We also found six novel HPB that were associated with lactate-, propionate-, and butyrate-oxidizing bacteria in the acidophilic H2-producing sludge. Thus, the microbial ecology of mesophilic and acidophilic H2 fermentation involves many other bacteria in addition to Clostridium and Enterobacter.

  13. Genetic Diversity of Hydrogen-Producing Bacteria in an Acidophilic Ethanol-H2-Coproducing System, Analyzed Using the [Fe]-Hydrogenase Gene▿ †

    PubMed Central

    Xing, Defeng; Ren, Nanqi; Rittmann, Bruce E.

    2008-01-01

    Hydrogen gas (H2) produced by bacterial fermentation of biomass can be a sustainable energy source. The ability to produce H2 gas during anaerobic fermentation was previously thought to be restricted to a few species within the genera Clostridium and Enterobacter. This work reports genomic evidence for the presence of novel H2-producing bacteria (HPB) in acidophilic ethanol-H2-coproducing communities that were enriched using molasses wastewater. The majority of the enriched dominant populations in the acidophilic ethanol-H2-coproducing system were affiliated with low-G+C-content gram-positive bacteria, Bacteroidetes, and Actinobacteria, based on the 16S rRNA gene. However, PCR primers designed to specifically target bacterial hydA yielded 17 unique hydA sequences whose amino acid sequences differed from those of known HPB. The putative ethanol-H2-coproducing bacteria comprised 11 novel phylotypes closely related to Ethanoligenens harbinense, Clostridium thermocellum, and Clostridium saccharoperbutylacetonicum. Furthermore, analysis of the alcohol dehydrogenase isoenzyme also pointed to an E. harbinense-like organism, which is known to have a high conversion rate of carbohydrate to H2 and ethanol. We also found six novel HPB that were associated with lactate-, propionate-, and butyrate-oxidizing bacteria in the acidophilic H2-producing sludge. Thus, the microbial ecology of mesophilic and acidophilic H2 fermentation involves many other bacteria in addition to Clostridium and Enterobacter. PMID:18156331

  14. Quantifying adhesion of acidophilic bioleaching bacteria to silica and pyrite by atomic force microscopy with a bacterial probe.

    PubMed

    Diao, Mengxue; Taran, Elena; Mahler, Stephen; Nguyen, Tuan A H; Nguyen, Anh V

    2014-03-01

    The adhesion of acidophilic bacteria to mineral surfaces is an important phenomenon in bioleaching processes. In this study, functionalized colloidal probes covered by bioleaching bacterial cells (Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans) were developed and used to sense specific adhesion forces to a silica surface and a pyrite surface in various solutions. Experimentally, recorded retraction curves of A. thiooxidans revealed sawtooth features that were in good agreement with the wormlike chain model, while that of L. ferrooxidans exhibited stair-step separation. The magnitudes of adhesion forces and snap-off distances were strongly influenced by the ionic strength and pH. Macroscopic surface properties including hydrophobicity and surface potential for bacterial cells and substrata were measured by a sessile drop method and microelectrophoresis. The ATR-FTIR spectra indicated the presence of different types of biopolymers on two strains of bacteria.

  15. Quantifying adhesion of acidophilic bioleaching bacteria to silica and pyrite by atomic force microscopy with a bacterial probe.

    PubMed

    Diao, Mengxue; Taran, Elena; Mahler, Stephen; Nguyen, Tuan A H; Nguyen, Anh V

    2014-03-01

    The adhesion of acidophilic bacteria to mineral surfaces is an important phenomenon in bioleaching processes. In this study, functionalized colloidal probes covered by bioleaching bacterial cells (Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans) were developed and used to sense specific adhesion forces to a silica surface and a pyrite surface in various solutions. Experimentally, recorded retraction curves of A. thiooxidans revealed sawtooth features that were in good agreement with the wormlike chain model, while that of L. ferrooxidans exhibited stair-step separation. The magnitudes of adhesion forces and snap-off distances were strongly influenced by the ionic strength and pH. Macroscopic surface properties including hydrophobicity and surface potential for bacterial cells and substrata were measured by a sessile drop method and microelectrophoresis. The ATR-FTIR spectra indicated the presence of different types of biopolymers on two strains of bacteria. PMID:24355385

  16. Extremely acidophilic protists from acid mine drainage host Rickettsiales-lineage endosymbionts that have intervening sequences in their 16S rRNA genes.

    PubMed

    Baker, Brett J; Hugenholtz, Philip; Dawson, Scott C; Banfield, Jillian F

    2003-09-01

    During a molecular phylogenetic survey of extremely acidic (pH < 1), metal-rich acid mine drainage habitats in the Richmond Mine at Iron Mountain, Calif., we detected 16S rRNA gene sequences of a novel bacterial group belonging to the order Rickettsiales in the Alphaproteobacteria. The closest known relatives of this group (92% 16S rRNA gene sequence identity) are endosymbionts of the protist Acanthamoeba. Oligonucleotide 16S rRNA probes were designed and used to observe members of this group within acidophilic protists. To improve visualization of eukaryotic populations in the acid mine drainage samples, broad-specificity probes for eukaryotes were redesigned and combined to highlight this component of the acid mine drainage community. Approximately 4% of protists in the acid mine drainage samples contained endosymbionts. Measurements of internal pH of the protists showed that their cytosol is close to neutral, indicating that the endosymbionts may be neutrophilic. The endosymbionts had a conserved 273-nucleotide intervening sequence (IVS) in variable region V1 of their 16S rRNA genes. The IVS does not match any sequence in current databases, but the predicted secondary structure forms well-defined stem loops. IVSs are uncommon in rRNA genes and appear to be confined to bacteria living in close association with eukaryotes. Based on the phylogenetic novelty of the endosymbiont sequences and initial culture-independent characterization, we propose the name "Candidatus Captivus acidiprotistae." To our knowledge, this is the first report of an endosymbiotic relationship in an extremely acidic habitat.

  17. Draft Genome Sequence of "Acidibacillus ferrooxidans" ITV01, a Novel Acidophilic Firmicute Isolated from a Chalcopyrite Mine Drainage Site in Brazil.

    PubMed

    Dall'Agnol, Hivana; Ñancucheo, Ivan; Johnson, D Barrie; Oliveira, Renato; Leite, Laura; Pylro, Victor S; Holanda, Roseanne; Grail, Barry; Carvalho, Nelson; Nunes, Gisele Lopes; Tzotzos, George; Fernandes, Gabriel Rocha; Dutra, Julliane; Orellana, Sara Cuadros; Oliveira, Guilherme

    2016-03-17

    Here, we report the draft genome sequence of "Acidibacillus ferrooxidans" strain ITV01, a ferrous iron- and sulfide-mineral-oxidizing, obligate heterotrophic, and acidophilic bacterium affiliated with the phylum Firmicutes. Strain ITV01 was isolated from neutral drainage from a low-grade chalcopyrite from a mine in northern Brazil.

  18. Draft Genome Sequence of “Acidibacillus ferrooxidans” ITV01, a Novel Acidophilic Firmicute Isolated from a Chalcopyrite Mine Drainage Site in Brazil

    PubMed Central

    Dall’Agnol, Hivana; Ñancucheo, Ivan; Johnson, D. Barrie; Oliveira, Renato; Leite, Laura; Holanda, Roseanne; Grail, Barry; Carvalho, Nelson; Nunes, Gisele Lopes; Tzotzos, George; Fernandes, Gabriel Rocha; Dutra, Julliane; Orellana, Sara Cuadros

    2016-01-01

    Here, we report the draft genome sequence of “Acidibacillus ferrooxidans” strain ITV01, a ferrous iron- and sulfide-mineral-oxidizing, obligate heterotrophic, and acidophilic bacterium affiliated with the phylum Firmicutes. Strain ITV01 was isolated from neutral drainage from a low-grade chalcopyrite from a mine in northern Brazil. PMID:26988062

  19. Novel Thermo-Acidophilic Bacteria Isolated from Geothermal Sites in Yellowstone National Park: Physiological and Phylogenetic Characteristics

    SciTech Connect

    D. B. Johnson; N. Okibe; F. F. Roberto

    2003-07-01

    Moderately thermophilic acidophilic bacteria were isolated from geothermal (30–83 °C) acidic (pH 2.7– 3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 °C, and pH 1.0–1.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria (Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstone strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the a-Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also a-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes (SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.

  20. Genomic insights into a new acidophilic, copper-resistant Desulfosporosinus isolate from the oxidized tailings area of an abandoned gold mine.

    PubMed

    Mardanov, Andrey V; Panova, Inna A; Beletsky, Alexey V; Avakyan, Marat R; Kadnikov, Vitaly V; Antsiferov, Dmitry V; Banks, David; Frank, Yulia A; Pimenov, Nikolay V; Ravin, Nikolai V; Karnachuk, Olga V

    2016-08-01

    Microbial sulfate reduction in acid mine drainage is still considered to be confined to anoxic conditions, although several reports have shown that sulfate-reducing bacteria occur under microaerophilic or aerobic conditions. We have measured sulfate reduction rates of up to 60 nmol S cm(-3) day(-1) in oxidized layers of gold mine tailings in Kuzbass (SW Siberia). A novel, acidophilic, copper-tolerant Desulfosporosinus sp. I2 was isolated from the same sample and its genome was sequenced. The genomic analysis and physiological data indicate the involvement of transporters and additional mechanisms to tolerate metals, such as sequestration by polyphosphates. Desulfosporinus sp. I2 encodes systems for a metabolically versatile life style. The genome possessed a complete Embden-Meyerhof pathway for glycolysis and gluconeogenesis. Complete oxidation of organic substrates could be enabled by the complete TCA cycle. Genomic analysis found all major components of the electron transfer chain necessary for energy generation via oxidative phosphorylation. Autotrophic CO2 fixation could be performed through the Wood-Ljungdahl pathway. Multiple oxygen detoxification systems were identified in the genome. Taking into account the metabolic activity and genomic analysis, the traits of the novel isolate broaden our understanding of active sulfate reduction and associated metabolism beyond strictly anaerobic niches.

  1. Genomic insights into a new acidophilic, copper-resistant Desulfosporosinus isolate from the oxidized tailings area of an abandoned gold mine.

    PubMed

    Mardanov, Andrey V; Panova, Inna A; Beletsky, Alexey V; Avakyan, Marat R; Kadnikov, Vitaly V; Antsiferov, Dmitry V; Banks, David; Frank, Yulia A; Pimenov, Nikolay V; Ravin, Nikolai V; Karnachuk, Olga V

    2016-08-01

    Microbial sulfate reduction in acid mine drainage is still considered to be confined to anoxic conditions, although several reports have shown that sulfate-reducing bacteria occur under microaerophilic or aerobic conditions. We have measured sulfate reduction rates of up to 60 nmol S cm(-3) day(-1) in oxidized layers of gold mine tailings in Kuzbass (SW Siberia). A novel, acidophilic, copper-tolerant Desulfosporosinus sp. I2 was isolated from the same sample and its genome was sequenced. The genomic analysis and physiological data indicate the involvement of transporters and additional mechanisms to tolerate metals, such as sequestration by polyphosphates. Desulfosporinus sp. I2 encodes systems for a metabolically versatile life style. The genome possessed a complete Embden-Meyerhof pathway for glycolysis and gluconeogenesis. Complete oxidation of organic substrates could be enabled by the complete TCA cycle. Genomic analysis found all major components of the electron transfer chain necessary for energy generation via oxidative phosphorylation. Autotrophic CO2 fixation could be performed through the Wood-Ljungdahl pathway. Multiple oxygen detoxification systems were identified in the genome. Taking into account the metabolic activity and genomic analysis, the traits of the novel isolate broaden our understanding of active sulfate reduction and associated metabolism beyond strictly anaerobic niches. PMID:27222219

  2. Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria.

    PubMed

    Ňancucheo, Ivan; Rowe, Owen F; Hedrich, Sabrina; Johnson, D Barrie

    2016-05-01

    Growth media have been developed to facilitate the enrichment and isolation of acidophilic and acid-tolerant sulfate-reducing bacteria (aSRB) from environmental and industrial samples, and to allow their cultivation in vitro The main features of the 'standard' solid and liquid devised media are as follows: (i) use of glycerol rather than an aliphatic acid as electron donor; (ii) inclusion of stoichiometric concentrations of zinc ions to both buffer pH and to convert potentially harmful hydrogen sulphide produced by the aSRB to insoluble zinc sulphide; (iii) inclusion of Acidocella aromatica (an heterotrophic acidophile that does not metabolize glycerol or yeast extract) in the gel underlayer of double layered (overlay) solid media, to remove acetic acid produced by aSRB that incompletely oxidize glycerol and also aliphatic acids (mostly pyruvic) released by acid hydrolysis of the gelling agent used (agarose). Colonies of aSRB are readily distinguished from those of other anaerobes due to their deposition and accumulation of metal sulphide precipitates. Data presented illustrate the effectiveness of the overlay solid media described for isolating aSRB from acidic anaerobic sediments and low pH sulfidogenic bioreactors.

  3. Sulfidogenesis in low pH (3.8-4.2) media by a mixed population of acidophilic bacteria.

    PubMed

    Kimura, Sakurako; Hallberg, Kevin B; Johnson, D Barrie

    2006-03-01

    A defined mixed bacterial culture was established which catalyzed dissimilatory sulfate reduction, using glycerol as electron donor, at pH 3.8-4.2. The bacterial consortium comprised a endospore-forming sulfate reducing bacterium (isolate M1) that had been isolated from acidic sediment in a geothermal area of Montserrat (West Indies) and which had 94% sequence identity (of its 16S rRNA gene) to the Gram-positive neutrophile Desulfosporosinus orientis, and a Gram-negative (non sulfate-reducing) acidophile (isolate PFBC) that shared 99% gene identity with Acidocella aromatica. Whilst M1 was an obligate anaerobe, isolate PFBC, as other Acidocella spp., only grew in pure culture in aerobic media. Analysis of microbial communities, using a combination of total bacterial counts and fluorescent in situ hybridization, confirmed that concurrent growth of both bacteria occurred during sulfidogenesis under strictly anoxic conditions in a pH-controlled fermenter. In pure culture, M1 oxidized glycerol incompletely, producing stoichiometric amounts of acetic acid. In mixed culture with PFBC, however, acetic acid was present only in small concentrations and its occurrence was transient. Since M1 did not oxidize acetic acid, it was inferred that this metabolite was catabolized by Acidocella PFBC which, unlike glycerol, was shown to support the growth of this acidophile under aerobic conditions. In fermenter cultures maintained at pH 3.8-4.2, sulfidogenesis resulted in the removal of soluble zinc (as solid phase ZnS) whilst ferrous iron remained in solution. Potential syntrophic interactions, involving hydrogen transfer between M1 and PFBC, are discussed, as is the potential of sulfidogenesis in acidic liquors for the selective recovery of heavy metals from wastewaters. PMID:16456614

  4. Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria

    SciTech Connect

    Lo, I; Denef, Vincent; Verberkmoes, Nathan C; Shah, Manesh B; Goltsman, Daniela; DiBartolo, Genevieve; Tyson, Gene W.; Allen, Eric E.; Ram, Rachna J.; Detter, J. Chris; Richardson, Paul; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2007-01-01

    Microbes comprise the majority of extant organisms, yet much remains to be learned about the nature and driving forces of microbial diversification. Our understanding of how microorganisms adapt and evolve can be advanced by genome-wide documentation of the patterns of genetic exchange, particularly if analyses target coexisting members of natural communities. Here we use community genomic data sets to identify, with strain specificity, expressed proteins from the dominant member of a genomically uncharacterized, natural, acidophilic biofilm. Proteomics results reveal a genome shaped by recombination involving chromosomal regions of tens to hundreds of kilobases long that are derived from two closely related bacterial populations. Inter-population genetic exchange was confirmed by multilocus sequence typing of isolates and of uncultivated natural consortia. The findings suggest that exchange of large blocks of gene variants is crucial for the adaptation to specific ecological niches within the very acidic, metalrich environment. Mass-spectrometry-based discrimination of expressed protein products that differ by as little as a single amino acid enables us to distinguish the behaviour of closely related coexisting organisms. This is important, given that microorganisms grouped together as a single species may have quite distinct roles in natural systems1-3 and their interactions might be key to ecosystem optimization. Because proteomic data simultaneously convey information about genome type and activity, strainresolved community proteomics is an important complement to cultivation-independent genomic (metagenomic) analysis4-6 of microorganisms in the natural environment.

  5. Genome Sequence of the Acidophilic Iron Oxidizer Ferrimicrobium acidiphilum Strain T23T.

    PubMed

    Eisen, Sebastian; Poehlein, Anja; Johnson, D Barrie; Daniel, Rolf; Schlömann, Michael; Mühling, Martin

    2015-04-30

    Extremely acidophilic iron-oxidizing bacteria have largely been characterized for the phyla Proteobacteria and Nitrospira. Here, we report the draft genome of an iron-oxidizing and -reducing heterotrophic mesophile of the Actinobacteria, Ferrimicrobium acidiphilum, which was isolated from an abandoned pyrite mine. The genome sequence comprises 3.08 Mb.

  6. Genome Sequence of the Acidophilic Iron Oxidizer Ferrimicrobium acidiphilum Strain T23T

    PubMed Central

    Eisen, Sebastian; Poehlein, Anja; Johnson, D. Barrie; Daniel, Rolf; Schlömann, Michael

    2015-01-01

    Extremely acidophilic iron-oxidizing bacteria have largely been characterized for the phyla Proteobacteria and Nitrospira. Here, we report the draft genome of an iron-oxidizing and -reducing heterotrophic mesophile of the Actinobacteria, Ferrimicrobium acidiphilum, which was isolated from an abandoned pyrite mine. The genome sequence comprises 3.08 Mb. PMID:25931604

  7. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia.

    PubMed

    Nancucheo, Ivan; Johnson, D Barrie

    2010-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacillus spp. Rapid acidification (to pH 1.0) of the culture medium of At. caldus resulted in a large increase in the level of DOC, although the concentration of glycolic acid did not change in proportion. The archaeon Ferroplasma acidiphilum grew in the cell-free spent medium of At. caldus; glycolic acid was not metabolized, although other unidentified compounds in the DOC pool were metabolized. Glycolic acid exhibited levels of toxicity with 21 strains of acidophiles screened similar to those of acetic acid. The most sensitive species were chemolithotrophs (L. ferriphilum and At. ferrivorans), while the most tolerant species were chemoorganotrophs (Acidocella, Acidobacterium, and Ferroplasma species), and the ability to metabolize glycolic acid appeared to be restricted (among acidophiles) to Firmicutes (chiefly Sulfobacillus spp.). Results of this study help explain why Sulfobacillus spp. rather than other acidophiles are the main organic carbon-degrading bacteria in continuously fed stirred tanks used to bioprocess sulfide mineral concentrates and also why temporary cessation of pH control in these systems, resulting in rapid acidification, often results in a plume of the archaeon Ferroplasma.

  8. Use of an acidophilic yeast strain to enable the growth of leaching bacteria on solid media.

    PubMed

    Ngom, Baba; Liang, Yili; Liu, Yi; Yin, Huaqun; Liu, Xueduan

    2015-03-01

    In this study, a Candida digboiensis strain was isolated from a heap leaching plant in Zambia and used in double-layer agar plate to efficiently isolate and purify leaching bacteria. Unlike Acidiphilium sp., the yeast strain was tetrathionate tolerant and could metabolize a great range of organic compounds including organic acids. These properties allowed the yeast strain to enable and fasten the growth of iron and sulfur oxidizers on double-layer agar plate. The isolates were identified as Acidithiobacillus ferrooxidans FOX1, Leptospirillun ferriphilum BN, and Acidithiobacillus thiooxidans ZMB. These three leaching bacteria were inhibited by organic acids such as acetic and propionic acids; however, their activities were enhanced by Candida digboiensis NB under dissolved organic matter stress.

  9. Metal recovery from mine tailings using bacteria

    SciTech Connect

    Kang, S.H.

    1994-12-31

    Zinc metal and zinc sulfide were recovered by oxidative dissolution using Thiobacillus ferrooxidans, which is aerobic, autotrophic, and acidophilic bacteria. Thiobacillus ferrooxidans derive energy from oxidation of ferrous iron and elemental sulfur using molecular oxygen as an electron acceptor. From the 10,000 mg/L of initial zinc concentration, 97% solubilization of zinc metal was obtained from coarse FeS{sub 2} due to microbial action. Also, about 70% metal solubilization occurred with fine sized materials in 58 days. The general trend observed for the ZnS systems was a decrease in pH with time. The pH drop is an indication that microorganisms are acclimating and producing acidic by-products. The iron oxidation state changes due to substrate containing coarse particle size FeS{sub 2} was shown. The sharp drop of ratio of Fe(II)/Fe(Total) and sharp increase of ratio of Fe(III)/Fe(Total) was observed in 20 days after inoculation. Thus, microbial activity began more rapidly for the coarse particle size substrate than for the fine FeS{sub 2}.

  10. Leaching of marine manganese nodules by acidophilic bacteria growing on elemental sulfur

    NASA Astrophysics Data System (ADS)

    Konishi, Yasuhiro; Asai, Satoru; Sawada, Yuichi

    1997-02-01

    This article describes the bioleaching of manganese nodules by thermophilic and mesophilic sulfuroxidizing bacteria, in which oxidized sulfur compounds are biologically produced from elemental sulfur added to liquid medium and are simultaneously used to leach nodules. The thermophile Acidianus brierleyi solubilized the manganese nodules faster at 65 °C than did the mesophiles Thiobacillus ferrooxidans and Thiobacillus thiooxidans at 30 °C. Leaching experiments with A. brierleyi growing on elemental sulfur were used to optimize various process parameters, such as medium pH, initial sulfur-liquid loading ratio, and initial cell concentration. The observed dependencies of the leaching rates at a pH optimum on the initial amounts of elemental sulfur and A. brierleyi cells were qualitatively consistent with model simulations for microbial sulfur oxidation. Under the conditions determined as optimum, the leaching of nodule particles (-330+500 mesh) by A. brierleyi yielded 100 pct extraction of both copper and zinc within 4 days and high extractions of nickel (85 pct), cobalt (70 pct), and manganese (55 pct) for 10 days. However, the iron leaching was practically negligible.

  11. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments.

    PubMed

    Jeremic, Sanja; Beškoski, Vladimir P; Djokic, Lidija; Vasiljevic, Branka; Vrvić, Miroslav M; Avdalović, Jelena; Gojgić Cvijović, Gordana; Beškoski, Latinka Slavković; Nikodinovic-Runic, Jasmina

    2016-05-01

    Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu(2+), Cd(2+) and Cr(6+) and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria- Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions. PMID:26942859

  12. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments.

    PubMed

    Jeremic, Sanja; Beškoski, Vladimir P; Djokic, Lidija; Vasiljevic, Branka; Vrvić, Miroslav M; Avdalović, Jelena; Gojgić Cvijović, Gordana; Beškoski, Latinka Slavković; Nikodinovic-Runic, Jasmina

    2016-05-01

    Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu(2+), Cd(2+) and Cr(6+) and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria- Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions.

  13. Bioprospecting for acidophilic lipid-rich green microalgae isolated from abandoned mine site water bodies

    PubMed Central

    2014-01-01

    With fossil fuel sources in limited supply, microalgae show tremendous promise as a carbon neutral source of biofuel. Current microalgae biofuel strategies typically rely on growing high-lipid producing laboratory strains of microalgae in open raceways or closed system photobioreactors. Unfortunately, these microalgae species are found to be sensitive to environmental stresses or competition by regional strains. Contamination by invasive species can diminish productivity of commercial algal processes. A potential improvement to current strategies is to identify high-lipid producing microalgae, which thrive in selected culture conditions that reduce the risk of contamination, such as low pH. Here we report the identification of a novel high-lipid producing microalgae which can tolerate low pH growth conditions. Lig 290 is a Scenedesmus spp. isolated from a low pH waterbody (pH = 4.5) in proximity to an abandoned lignite mine in Northern Ontario, Canada. Compared to a laboratory strain of Scendesmus dimorphus, Lig 290 demonstrated robust growth rates, a strong growth profile, and high lipid production. As a consequence, Lig 290 may have potential application as a robust microalgal species for use in biofuel production. PMID:24670060

  14. Floating filters, a novel technique for isolation and enumeration of fastidious, acidophilic, iron-oxidizing, autotrophic bacteria. [Thiobacillus ferrooxidans

    SciTech Connect

    De Bruyn, J.C.; Boogerd, F.C.; Bos, P.; Kuenen, J.G. )

    1990-09-01

    Nuclepore polycarbonate filters floating on a liquid, FeSO{sub 4}-containing medium (pH 1.6) were used to isolate a moderately thermophilic bacterium from a pyrite-oxidizing enrichment culture. The isolate failed to grow on any of the conventional solid media tried. To test the general applicability of the method, the enumeration of a fastidious acidophilic organism, Thiobacillus ferrooxidans, was carried out and the results compared with those obtained with other filters, solid media, and the most probable number technique. T. ferrooxidans showed better viability on the floating polycarbonate filters and grew in a much shorter time (4 to 5 days) than with the other techniques.

  15. Genome Sequence of the Acidophilic Ferrous Iron-Oxidizing Isolate Acidithrix ferrooxidans Strain Py-F3, the Proposed Type Strain of the Novel Actinobacterial Genus Acidithrix.

    PubMed

    Eisen, Sebastian; Poehlein, Anja; Johnson, D Barrie; Daniel, Rolf; Schlömann, Michael; Mühling, Martin

    2015-04-30

    Extremely acidophilic iron-oxidizing Gram-positive bacteria comprise species within the phyla Firmicutes and Actinobacteria. Here, we report the 4.02-Mb draft genome of Acidithrix ferrooxidans Py-F3, which was isolated from a stream draining an abandoned copper mine and proposed as the type species of a new genus of Actinobacteria.

  16. Genome Sequence of the Acidophilic Ferrous Iron-Oxidizing Isolate Acidithrix ferrooxidans Strain Py-F3, the Proposed Type Strain of the Novel Actinobacterial Genus Acidithrix

    PubMed Central

    Eisen, Sebastian; Poehlein, Anja; Johnson, D. Barrie; Daniel, Rolf; Schlömann, Michael

    2015-01-01

    Extremely acidophilic iron-oxidizing Gram-positive bacteria comprise species within the phyla Firmicutes and Actinobacteria. Here, we report the 4.02-Mb draft genome of Acidithrix ferrooxidans Py-F3, which was isolated from a stream draining an abandoned copper mine and proposed as the type species of a new genus of Actinobacteria. PMID:25931603

  17. Effect of citric acid and bacteria on metal uptake in reeds grown in a synthetic acid mine drainage solution.

    PubMed

    Guo, Lin; Cutright, Teresa J

    2015-03-01

    The effect of citric acid (CA), rhizosphere acidophilic heterotrophs and/or Fe(II) oxidizing bacteria (Fe(II)OB) on plaque formation and metal accumulation in Phragmites australis L. (common reed) from acid mine drainage (AMD) solution were investigated. Reeds were grown in different hydroponic solutions that contained AMD, CA and/or rhizosphere bacteria for three months. Triplicate experiments were conducted for each experimental condition. Fe(II)OB enhanced the formation of Fe plaque which decreased Fe and Mn uptake in reeds, while it had no significant influence on Al accumulation. CA inhibited the growth of Fe(II)OB, decreased the formation of metal plaque and increased Fe and Mn accumulation in reeds. Acidophilic heterotrophs consumed CA and made the environment more suitable for the growth of Fe(II)OB. Reeds are a good candidate for phytoextraction while CA is a useful chelator to enhance metal uptake in plants. More research may be needed to investigate the influence of CA on microbial community. Further investigations are required to study the effect of CA on phytoremediation of AMD contaminated fields.

  18. Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage.

    PubMed

    Sun, Weimin; Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Chen, Haiyan; Xiao, Qingxiang

    2016-10-01

    A small watershed heavily contaminated by long-term acid mine drainage (AMD) from an upstream abandoned coal mine was selected to study the microbial community developed in such extreme system. The watershed consists of AMD-contaminated creek, adjacent contaminated soils, and a small cascade aeration unit constructed downstream, which provide an excellent contaminated site to study the microbial response in diverse extreme AMD-polluted environments. The results showed that the innate microbial communities were dominated by acidophilic bacteria, especially acidophilic Fe-metabolizing bacteria, suggesting that Fe and pH are the primary environmental factors in governing the indigenous microbial communities. The distribution of Fe-metabolizing bacteria showed distinct site-specific patterns. A pronounced shift from diverse communities in the upstream to Proteobacteria-dominated communities in the downstream was observed in the ecosystem. This location-specific trend was more apparent at genus level. In the upstream samples (sampling sites just below the coal mining adit), a number of Fe(II)-oxidizing bacteria such as Alicyclobacillus spp., Metallibacterium spp., and Acidithrix spp. were dominant, while Halomonas spp. were the major Fe(II)-oxidizing bacteria observed in downstream samples. Additionally, Acidiphilium, an Fe(III)-reducing bacterium, was enriched in the upstream samples, while Shewanella spp. were the dominant Fe(III)-reducing bacteria in downstream samples. Further investigation using linear discriminant analysis (LDA) effect size (LEfSe), principal coordinate analysis (PCoA), and unweighted pair group method with arithmetic mean (UPGMA) clustering confirmed the difference of microbial communities between upstream and downstream samples. Canonical correspondence analysis (CCA) and Spearman's rank correlation indicate that total organic carbon (TOC) content is the primary environmental parameter in structuring the indigenous microbial communities

  19. Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage.

    PubMed

    Sun, Weimin; Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Chen, Haiyan; Xiao, Qingxiang

    2016-10-01

    A small watershed heavily contaminated by long-term acid mine drainage (AMD) from an upstream abandoned coal mine was selected to study the microbial community developed in such extreme system. The watershed consists of AMD-contaminated creek, adjacent contaminated soils, and a small cascade aeration unit constructed downstream, which provide an excellent contaminated site to study the microbial response in diverse extreme AMD-polluted environments. The results showed that the innate microbial communities were dominated by acidophilic bacteria, especially acidophilic Fe-metabolizing bacteria, suggesting that Fe and pH are the primary environmental factors in governing the indigenous microbial communities. The distribution of Fe-metabolizing bacteria showed distinct site-specific patterns. A pronounced shift from diverse communities in the upstream to Proteobacteria-dominated communities in the downstream was observed in the ecosystem. This location-specific trend was more apparent at genus level. In the upstream samples (sampling sites just below the coal mining adit), a number of Fe(II)-oxidizing bacteria such as Alicyclobacillus spp., Metallibacterium spp., and Acidithrix spp. were dominant, while Halomonas spp. were the major Fe(II)-oxidizing bacteria observed in downstream samples. Additionally, Acidiphilium, an Fe(III)-reducing bacterium, was enriched in the upstream samples, while Shewanella spp. were the dominant Fe(III)-reducing bacteria in downstream samples. Further investigation using linear discriminant analysis (LDA) effect size (LEfSe), principal coordinate analysis (PCoA), and unweighted pair group method with arithmetic mean (UPGMA) clustering confirmed the difference of microbial communities between upstream and downstream samples. Canonical correspondence analysis (CCA) and Spearman's rank correlation indicate that total organic carbon (TOC) content is the primary environmental parameter in structuring the indigenous microbial communities

  20. Visualizing acidophilic microorganisms in biofilm communities using acid stable fluorescence dyes.

    PubMed

    Brockmann, Sina; Arnold, Thuro; Schweder, Bernd; Bernhard, Gert

    2010-07-01

    Bacteria in acidophilic biofilm communities, i.e. acid streamers and snottites, obtained from a subsurface mine in Königstein were visualized by fluorescence microscopy using four new fluorescent dyes (DY-601XL, V07-04118, V07-04146, DY-613). The pH of the bulk solution in which these bacteria thrive was pH 2.6 to 2.9. The new fluorescent dyes were all able to clearly stain and microscopically visualize in-situ the bacteria within the biofilm community without changing pH or background ion concentration. The commonly used fluorescent dyes DAPI and SYTO 59 were also applied for comparison. Both dyes, however, were not able to visualize any bacteria in-situ, since they were not stable under the very acid conditions. In addition, dye V07-04118 and dye DY-613 also possess the ability to stain larger cells which were presumably eukaryotic origin and may be attributed to yeast cells or amoeba-like cells. PCR analyses have shown that the dominant bacterial species in these acidophilic biofilm communities was a gram negative bacterium of the species Ferrovum myxofaciens. The presented four new dyes are ideal for in-situ investigations of microorganisms occurring in very acid conditions, e.g. in acidophilic biofilm communities when in parallel information on pH sensitive incorporated fluorescent heavy metals should be acquired.

  1. Simultaneous sulfate and zinc removal from acid wastewater using an acidophilic and autotrophic biocathode.

    PubMed

    Teng, Wenkai; Liu, Guangli; Luo, Haiping; Zhang, Renduo; Xiang, Yinbo

    2016-03-01

    The aim of this study was to develop microbial electrolysis cell (MEC) with a novel acidophilic and autotrophic biocathode for treatment of acid wastewater. A biocathode was developed using acidophilic sulfate-reducing bacteria as the catalyst. Artificial wastewater with 200mgL(-1) sulfate and different Zn concentrations (0, 15, 25, and 40 mg L(-1)) was used as the MEC catholyte. The acidophilic biocathode dominated by Desulfovibrio sp. with an abundance of 66% (with 82% of Desulfovibrio sequences similar to Desulfovibrio simplex) and achieved a considerable sulfate reductive rate of 32 gm(-3)d(-1). With 15 mg L(-1) Zn added, the sulfate reductive rate of MEC improved by 16%. The formation of ZnS alleviated the inhibition from sulfide and sped the sulfate reduction. With 15 and 25 mgL(-1) Zn added, more than 99% of Zn was removed from the wastewater. Dissolved Zn ions in the catholyte were converted into insoluble Zn compounds, such as zinc sulfide and zinc hydroxide, due to the sulfide and elevated pH produced by sulfate reduction. The MEC with acidophilic and autotrophic biocathode can be used as an alternative to simultaneously remove sulfate and metals from acid wastewaters, such as acid mine drainage.

  2. Simultaneous sulfate and zinc removal from acid wastewater using an acidophilic and autotrophic biocathode.

    PubMed

    Teng, Wenkai; Liu, Guangli; Luo, Haiping; Zhang, Renduo; Xiang, Yinbo

    2016-03-01

    The aim of this study was to develop microbial electrolysis cell (MEC) with a novel acidophilic and autotrophic biocathode for treatment of acid wastewater. A biocathode was developed using acidophilic sulfate-reducing bacteria as the catalyst. Artificial wastewater with 200mgL(-1) sulfate and different Zn concentrations (0, 15, 25, and 40 mg L(-1)) was used as the MEC catholyte. The acidophilic biocathode dominated by Desulfovibrio sp. with an abundance of 66% (with 82% of Desulfovibrio sequences similar to Desulfovibrio simplex) and achieved a considerable sulfate reductive rate of 32 gm(-3)d(-1). With 15 mg L(-1) Zn added, the sulfate reductive rate of MEC improved by 16%. The formation of ZnS alleviated the inhibition from sulfide and sped the sulfate reduction. With 15 and 25 mgL(-1) Zn added, more than 99% of Zn was removed from the wastewater. Dissolved Zn ions in the catholyte were converted into insoluble Zn compounds, such as zinc sulfide and zinc hydroxide, due to the sulfide and elevated pH produced by sulfate reduction. The MEC with acidophilic and autotrophic biocathode can be used as an alternative to simultaneously remove sulfate and metals from acid wastewaters, such as acid mine drainage. PMID:26561748

  3. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    ERIC Educational Resources Information Center

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  4. Remediation of acid mine drainage with sulfate reducing bacteria

    SciTech Connect

    Hauri, J.F.; Schaider, L.A.

    2009-02-15

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed changes in dissolved metal concentrations and pH. Using synthetic acid mine drainage and combinations of inputs, students monitor their bioreactors for decreases in dissolved copper and iron concentrations.

  5. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    PubMed

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  6. Genome Sequence of the Moderately Acidophilic Sulfate-Reducing Firmicute Desulfosporosinus acididurans (Strain M1T).

    PubMed

    Petzsch, Patrick; Poehlein, Anja; Johnson, D Barrie; Daniel, Rolf; Schlömann, Michael; Mühling, Martin

    2015-08-06

    Microbial dissimilatory sulfate reduction is commonplace in many anaerobic environments, though few acidophilic bacteria are known to mediate this process. We report the 4.64-Mb draft genome of the type strain of the moderate acidophile Desulfosporosinus acididurans, which was isolated from acidic sediment in a river draining the Soufrière volcano, Montserrat.

  7. Genome Sequence of the Moderately Acidophilic Sulfate-Reducing Firmicute Desulfosporosinus acididurans (Strain M1T)

    PubMed Central

    Petzsch, Patrick; Poehlein, Anja; Johnson, D. Barrie; Daniel, Rolf; Schlömann, Michael

    2015-01-01

    Microbial dissimilatory sulfate reduction is commonplace in many anaerobic environments, though few acidophilic bacteria are known to mediate this process. We report the 4.64-Mb draft genome of the type strain of the moderate acidophile Desulfosporosinus acididurans, which was isolated from acidic sediment in a river draining the Soufrière volcano, Montserrat. PMID:26251501

  8. Use of sulfate reducing bacteria in acid mine drainage treatment

    SciTech Connect

    Powers, T.J.

    1995-10-01

    The environmental impacts caused by Acid Mine Drainage (AMD) were first recorded in 1556 by Georgius Agricola. In the United States 10,000 miles of streams and 29,000 surface acres of impoundments are estimated to be seriously affected by AMD. Abandoned surface mines are estimated to contribute about 15% of the drainage, while active mines (40%) and shaft and drift mines (45%) contribute the remainder. AMD results when metal sulfide minerals, particularly pyrite (FeS{sub 2}), come in contact with oxygen and water. Acid generation occurs when metal sulfide minerals are oxidized according to the Initiator Reaction: FeS{sub 2}(pyrite) + 3 1/2O{sub 2} + H{sub 2}O {yields} Fe{sup 2+} + 2SO{sub 4}{sup 2-} + 2H{sup +}. This reaction is one of many that results in increased metal mobility and increased acidity (lowered pH) of the mine water. The oxidation of ferrous sulfate is accelerated by bacterial action of Thiobacillus ferrooxidans, a naturally occurring bacterium that at pH 3.5 or less, can rapidly accelerate the conversion of dissolved Fe{sup 2+} (ferrous iron) to Fe{sup 3+} (ferric iron), and can act as an oxidant for the oxidation of pyrite. Ferric ions, as well as other metal ions, and the sulfuric acid have a deleterious influence on the biota of streams receiving AMD. The Lilly/Orphan Boy Mine, located in the Elliston Mining District of Powell County, Montana, was selected as the Sulfate Reducing Bacteria (SRB) technology demonstration site. The mine is situated on a patented claim on Deerlodge National Forest Land about 11 miles south of Elliston, Montana. This abandoned mining operation consists of a 250-foot shaft, four horizontal workings, and some stopping. The shaft is flooded with AMD to the 74-foot level and is discharging about 3 gallons per minute (gpm) at a pH of 3.0 from the adit associated with this level.

  9. Enhancement of anaerobic acidogenesis by integrating an electrochemical system into an acidogenic reactor: effect of hydraulic retention times (HRT) and role of bacteria and acidophilic methanogenic Archaea.

    PubMed

    Zhang, Jingxin; Zhang, Yaobin; Quan, Xie; Chen, Shuo

    2015-03-01

    In this study, an acidogenic reactor packed with a pair of Fe-carbon electrodes (R1) was developed to enhance anaerobic acidogenesis of organic wastewater at short hydraulic retention times. The results indicated that the acidogenic efficiency was improved by settling a bio-electrochemical system. When hydraulic retention times decreased from 12 to 3h, R1 showed 18.9% more chemical oxygen demand removal and 13.8% more acidification efficiency. After cutting off the voltage of R1, the COD removal decreased by about 5%. Coupling of Fe(2+) leaching and electric field accelerated the hydrolysis of polysaccharide, relieving its accumulation in the sludge phase. Several acidophilic methanogenic Archaea such as Methanosarcina sp. were enriched in R1, which was favorable for consuming organic acids and preventing excessive pH decline. Thus, the developed acidogenic reactor with Fe-carbon electrodes is expected to be potentially effective and useful for wastewater treatment.

  10. Plant Growth-Promoting Bacteria for Phytostabilization of Mine Tailings

    SciTech Connect

    Grandlic, C.J.; Mendez, M.O.; Chorover, J.; Machado, B.; Maier, R.M.

    2009-05-19

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal content tailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.

  11. Plant growth-promoting bacteria for phytostabilization of mine tailings.

    PubMed

    Grandlic, Christopher J; Mendez, Monica O; Chorover, Jon; Machado, Blenda; Maier, Raina M

    2008-03-15

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal contenttailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.

  12. Cultivation and quantitative proteomic analyses of acidophilic microbial communities

    SciTech Connect

    Belnap, Christopher P.; Pan, Chongle; Verberkmoes, Nathan C; Power, Mary E.; Samatova, Nagiza F; Carver, Rudolf L.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2010-01-01

    Acid mine drainage (AMD), an extreme environment characterized by low pH and high metal concentrations, can support dense acidophilic microbial biofilm communities that rely on chemoautotrophic production based on iron oxidation. Field determined production rates indicate that, despite the extreme conditions, these communities are sufficiently well adapted to their habitats to achieve primary production rates comparable to those of microbial communities occurring in some non-extreme environments. To enable laboratory studies of growth, production and ecology of AMD microbial communities, a culturing system was designed to reproduce natural biofilms, including organisms recalcitrant to cultivation. A comprehensive metabolic labeling-based quantitative proteomic analysis was used to verify that natural and laboratory communities were comparable at the functional level. Results confirmed that the composition and core metabolic activities of laboratory-grown communities were similar to a natural community, including the presence of active, low abundance bacteria and archaea that have not yet been isolated. However, laboratory growth rates were slow compared with natural communities, and this correlated with increased abundance of stress response proteins for the dominant bacteria in laboratory communities. Modification of cultivation conditions reduced the abundance of stress response proteins and increased laboratory community growth rates. The research presented here represents the first description of the application of a metabolic labeling-based quantitative proteomic analysis at the community level and resulted in a model microbial community system ideal for testing physiological and ecological hypotheses.

  13. Metal resistance in acidophilic microorganisms and its significance for biotechnologies.

    PubMed

    Dopson, Mark; Holmes, David S

    2014-10-01

    Extremely acidophilic microorganisms have an optimal pH of <3 and are found in all three domains of life. As metals are more soluble at acid pH, acidophiles are often challenged by very high metal concentrations. Acidophiles are metal-tolerant by both intrinsic, passive mechanisms as well as active systems. Passive mechanisms include an internal positive membrane potential that creates a chemiosmotic gradient against which metal cations must move, as well as the formation of metal sulfate complexes reducing the concentration of the free metal ion. Active systems include efflux proteins that pump metals out of the cytoplasm and conversion of the metal to a less toxic form. Acidophiles are exploited in a number of biotechnologies including biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications.

  14. Significance of Microbial Communities and Interactions in Safeguarding Reactive Mine Tailings by Ecological Engineering▿†

    PubMed Central

    N̆ancucheo, Ivan; Johnson, D. Barrie

    2011-01-01

    Pyritic mine tailings (mineral waste generated by metal mining) pose significant risk to the environment as point sources of acidic, metal-rich effluents (acid mine drainage [AMD]). While the accelerated oxidative dissolution of pyrite and other sulfide minerals in tailings by acidophilic chemolithotrophic prokaryotes has been widely reported, other acidophiles (heterotrophic bacteria that catalyze the dissimilatory reduction of iron and sulfur) can reverse the reactions involved in AMD genesis, and these have been implicated in the “natural attenuation” of mine waters. We have investigated whether by manipulating microbial communities in tailings (inoculating with iron- and sulfur-reducing acidophilic bacteria and phototrophic acidophilic microalgae) it is possible to mitigate the impact of the acid-generating and metal-mobilizing chemolithotrophic prokaryotes that are indigenous to tailing deposits. Sixty tailings mesocosms were set up, using five different microbial inoculation variants, and analyzed at regular intervals for changes in physicochemical and microbiological parameters for up to 1 year. Differences between treatment protocols were most apparent between tailings that had been inoculated with acidophilic algae in addition to aerobic and anaerobic heterotrophic bacteria and those that had been inoculated with only pyrite-oxidizing chemolithotrophs; these differences included higher pH values, lower redox potentials, and smaller concentrations of soluble copper and zinc. The results suggest that empirical ecological engineering of tailing lagoons to promote the growth and activities of iron- and sulfate-reducing bacteria could minimize their risk of AMD production and that the heterotrophic populations could be sustained by facilitating the growth of microalgae to provide continuous inputs of organic carbon. PMID:21965397

  15. Community Genomic and Proteomic Analyses of Chemoautotrophic Iron-Oxidizing "Leptospirillum rubarum" (Group II) and "Leptospirillum ferrodiazotrophum" (Group III) Bacteria in Acid Mine Drainage Biofilms

    SciTech Connect

    Goltsman, Daniela; Denef, Vincent; Singer, Steven; Verberkmoes, Nathan C; Lefsrud, Mark G; Mueller, Ryan; Dick, Gregory J.; Sun, Christine; Wheeler, Korin; Zelma, Adam; Baker, Brett J.; Hauser, Loren John; Land, Miriam L; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2009-01-01

    We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum group II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, Iron Mountain, CA, acid mine drainage biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum groups II and III, respectively, and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and >60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid carries conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacterial groups have genes for community-essential functions, including carbon fixation and biosynthesis of vitamins, fatty acids, and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum group II uses a methyl-dependent and Leptospirillum group III a methyl-independent response pathway. Although only Leptospirillum group III can fix nitrogen, these proteins were not identified by proteomics. The abundances of core proteins are similar in all communities, but the abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum groups II and III.

  16. Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses.

    PubMed

    Kip, Nardy; Ouyang, Wenjing; van Winden, Julia; Raghoebarsing, Ashna; van Niftrik, Laura; Pol, Arjan; Pan, Yao; Bodrossy, Levente; van Donselaar, Elly G; Reichart, Gert-Jan; Jetten, Mike S M; Damsté, Jaap S Sinninghe; Op den Camp, Huub J M

    2011-08-15

    Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphaproteobacterial methanotrophs was found. With Sphagnum mosses as the inoculum, alpha- and gammaproteobacterial acidophilic methanotrophs were isolated using established and newly designed media. The 16S rRNA, pmoA, pxmA, and mmoX gene sequences showed that the alphaproteobacterial isolates belonged to the Methylocystis and Methylosinus genera. The Methylosinus species isolated are the first acid-tolerant members of this genus. Of the acidophilic gammaproteobacterial strains isolated, strain M5 was affiliated with the Methylomonas genus, and the other strain, M200, may represent a novel genus, most closely related to the genera Methylosoma and Methylovulum. So far, no acidophilic or acid-tolerant methanotrophs in the Gammaproteobacteria class are known. All strains showed the typical features of either type I or II methanotrophs and are, to the best of our knowledge, the first isolated (acidophilic or acid-tolerant) methanotrophs from Sphagnum mosses.

  17. MINE WASTE TECHNOLOGY PROGRAM - SULFATE REDUCING BACTERIA REACTIVE WALL DEMO

    EPA Science Inventory


    Efforts reported in this document focused on the demonstration of a passive technology that could be used for remediation of
    thousands of abandoned mines existing in the Western United States that emanate acid mine drainage (AMD). This passive remedial technology takes ad...

  18. Microorganisms in subterranean acidic waters within Europe's deepest metal mine.

    PubMed

    Kay, Catherine M; Haanela, Anu; Johnson, D Barrie

    2014-11-01

    The Pyhäsalmi mine, central Finland, has operated as a deep metal mine since 1967. It currently reaches a depth of almost 1500 m, making it the deepest mining operation in Europe. Around 900,000 m(3) of metal-rich, extremely acidic water are pumped out of the mine each year. The near constant air temperature of ∼ 24 °C together with exposure of sulfidic rock surfaces to air and water, have created an environment that is highly suitable for colonization by acidophilic mineral-oxidizing microorganisms. Using a combined cultivation-dependent and molecular approach, indigenous bacteria in waters at two depths within the mine, and of an acid streamer sample were identified and isolated. Iron-oxidizing chemolithotrophs (Acidithiobacillus and Leptospirillum spp., and "Ferrovum myxofaciens" were the most abundant bacteria in mine water samples, whereas the acid streamer community contained a greater proportion of heterotrophic acidophiles (Ferrimicrobium acidiphilum and a gammaproteobacterium related to Metallibacterium scheffleri). The most abundant isolates obtained from both water and streamer samples were all strains of Acidithiobacillus Group IV, a proposed separate species of iron-oxidizing acidithiobacilli that has not yet been classified as such. Archaea were also detected in water and streamer samples using molecular methods, but most were not identified and no isolates were obtained.

  19. Mine Waste Technology Program. In Situ Source Control Of Acid Generation Using Sulfate-Reducing Bacteria

    EPA Science Inventory

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 3, In Situ Source Control of Acid Generation Using Sulfate-Reducing Bacteria, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S....

  20. Genome Sequence of the Acidophilic Sulfate-Reducing Peptococcaceae Strain CEB3.

    PubMed

    Petzsch, Patrick; Poehlein, Anja; Johnson, D Barrie; Daniel, Rolf; Schlömann, Michael; Mühling, Martin

    2015-08-06

    We report the draft genome of the Peptococcaceae strain CEB3 that originated from an acidic (pH 2.5) stream draining an abandoned copper mine. Strain CEB3 is one of the very few reported acidophilic sulfate-reducing isolates. The 5.04-Mb draft genome harbors 5,069 predicted protein-encoding and 66 RNA genes.

  1. Genome Sequence of the Acidophilic Sulfate-Reducing Peptococcaceae Strain CEB3

    PubMed Central

    Petzsch, Patrick; Poehlein, Anja; Johnson, D. Barrie; Daniel, Rolf; Schlömann, Michael

    2015-01-01

    We report the draft genome of the Peptococcaceae strain CEB3 that originated from an acidic (pH 2.5) stream draining an abandoned copper mine. Strain CEB3 is one of the very few reported acidophilic sulfate-reducing isolates. The 5.04-Mb draft genome harbors 5,069 predicted protein-encoding and 66 RNA genes. PMID:26251503

  2. Quantitative proteomic analyses of the response of acidophilic microbial communities to different pH conditions

    SciTech Connect

    Belnap, Christopher P.; Pan, Chongle; Denef, Vincent; Samatova, Nagiza F; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2011-01-01

    Extensive genomic characterization of multi-species acid mine drainage microbial consortia combined with laboratory cultivation has enabled the application of quantitative proteomic analyses at the community level. In this study, quantitative proteomic comparisons were used to functionally characterize laboratory-cultivated acidophilic communities sustained in pH 1.45 or 0.85 conditions. The distributions of all proteins identified for individual organisms indicated biases for either high or low pH, and suggests pH-specific niche partitioning for low abundance bacteria and archaea. Although the proteome of the dominant bacterium, Leptospirillum group II, was largely unaffected by pH treatments, analysis of functional categories indicated proteins involved in amino acid and nucleotide metabolism, as well as cell membrane/envelope biogenesis were overrepresented at high pH. Comparison of specific protein abundances indicates higher pH conditions favor Leptospirillum group III, whereas low pH conditions promote the growth of certain archaea. Thus, quantitative proteomic comparisons revealed distinct differences in community composition and metabolic function of individual organisms during different pH treatments. Proteomic analysis revealed other aspects of community function. Different numbers of phage proteins were identified across biological replicates, indicating stochastic spatial heterogeneity of phage outbreaks. Additionally, proteomic data were used to identify a previously unknown genotypic variant of Leptospirillum group II, an indication of selection for a specific Leptospirillum group II population in laboratory communities. Our results confirm the importance of pH and related geochemical factors in fine-tuning acidophilic microbial community structure and function at the species and strain level, and demonstrate the broad utility of proteomics in laboratory community studies.

  3. Acidophilic sulfur disproportionation

    NASA Astrophysics Data System (ADS)

    Hardisty, Dalton S.; Olyphant, Greg A.; Bell, Jonathan B.; Johnson, Adam P.; Pratt, Lisa M.

    2013-07-01

    Bacterial disproportionation of elemental sulfur (S0) is a well-studied metabolism and is not previously reported to occur at pH values less than 4.5. In this study, a sediment core from an abandoned-coal-mine-waste deposit in Southwest Indiana revealed sulfur isotope fractionations between S0 and pyrite (Δ34Ses-py) of up to -35‰, inferred to indicate intense recycling of S0 via bacterial disproportionation and sulfide oxidation. Additionally, the chemistry of seasonally collected pore-water profiles were found to vary, with pore-water pH ranging from 2.2 to 3.8 and observed seasonal redox shifts expressed as abrupt transitions from Fe(III) to Fe(II) dominated conditions, often controlled by fluctuating water table depths. S0 is a common product during the oxidation of pyrite, a process known to generate acidic waters during weathering and production of acid mine drainage. The H2S product of S0 disproportionation, fractionated by up to -8.6‰, is rapidly oxidized to S0 near redox gradients via reaction with Fe(III) allowing for the accumulation of isotopically light S0 that can then become subject to further sulfur disproportionation. A mass-balance model for S0 incorporating pyrite oxidation, S0 disproportionation, and S0 oxidation readily explains the range of observed Δ34Ses-py and emphasizes the necessity of seasonally varying pyrite weathering and metabolic rates, as indicated by the pore water chemistry. The findings of this research suggest that S0 disproportionation is potentially a common microbial process at a pH < 4.5 and can create large sulfur isotope fractionations, even in the absence of sulfate reduction.

  4. Draft Genome Sequence of a Novel Acidophilic Iron-Oxidizing Firmicutes Species, "Acidibacillus ferrooxidans" (SLC66T).

    PubMed

    Ñancucheo, Ivan; Oliveira, Renato; Dall'Agnol, Hivana; Johnson, D Barrie; Grail, Barry; Holanda, Roseanne; Nunes, Gisele Lopes; Cuadros-Orellana, Sara; Oliveira, Guilherme

    2016-05-19

    Here, we present the draft genome sequence of the type strain of "Acidibacillus ferrooxidans," a mesophilic, heterotrophic, and acidophilic bacterium that was isolated from mine spoilage subjected to accelerated weathering in humidity cell tests carried out by the former U.S. Bureau of Mines in Salt Lake City, UT.

  5. Draft Genome Sequence of a Novel Acidophilic Iron-Oxidizing Firmicutes Species, “Acidibacillus ferrooxidans” (SLC66T)

    PubMed Central

    Ñancucheo, Ivan; Oliveira, Renato; Dall’Agnol, Hivana; Johnson, D. Barrie; Grail, Barry; Holanda, Roseanne; Nunes, Gisele Lopes; Cuadros-Orellana, Sara

    2016-01-01

    Here, we present the draft genome sequence of the type strain of “Acidibacillus ferrooxidans,” a mesophilic, heterotrophic, and acidophilic bacterium that was isolated from mine spoilage subjected to accelerated weathering in humidity cell tests carried out by the former U.S. Bureau of Mines in Salt Lake City, UT. PMID:27198020

  6. Draft Genome Sequence of a Novel Acidophilic Iron-Oxidizing Firmicutes Species, "Acidibacillus ferrooxidans" (SLC66T).

    PubMed

    Ñancucheo, Ivan; Oliveira, Renato; Dall'Agnol, Hivana; Johnson, D Barrie; Grail, Barry; Holanda, Roseanne; Nunes, Gisele Lopes; Cuadros-Orellana, Sara; Oliveira, Guilherme

    2016-01-01

    Here, we present the draft genome sequence of the type strain of "Acidibacillus ferrooxidans," a mesophilic, heterotrophic, and acidophilic bacterium that was isolated from mine spoilage subjected to accelerated weathering in humidity cell tests carried out by the former U.S. Bureau of Mines in Salt Lake City, UT. PMID:27198020

  7. Structure and chemistry of bacterially populated acidic microenvironments found on naturally colonized and weathered circumneutral pH unsaturated waste rock from the Antamina Mine, Peru

    NASA Astrophysics Data System (ADS)

    Dockrey, J. W.; Mayer, K. U.; Beckie, R. D.; Southam, G.

    2009-12-01

    The microbial community present in geochemically well characterized field cells and experimental waste rock piles at the Antamina Mine, were examined using electron microscopy, culture dependent, and culture independent techniques. Relatively large populations of up to 10^8 bacteria per gram were found, despite the young age of the waste rock (1.5 years). Most samples were at alkaline pH and dominated by bacteria capable of neutral pH thiosulfate oxidation. One sample from a field cell producing drainage at a pH of 6.5 was dominated by acidophilic bacteria capable of Fe^2+ and S^0 oxidation. A weathered massive sulfide from this sample was thoroughly examined using a field emission gun scanning electron microscope equipped with a focused ion beam (FE-SEM-FIB). Bacteria were abundant as monolayer and agglomerate biofilms upon and within a porous schwertmannite precipitate, while no bacteria were found directly attached to clean sulfide surfaces. Pitting of pyrrhotite was observed beneath the microbially inhabited schwertmannite, while no pitting was observed in adjacent clean pyrrhotite surfaces indicating greater oxidation of the pyrrhotite surface beneath the schwertmannite. Some waste rock that has been exposed to natural surface weathering conditions for more than twice the amount of time, possessed larger total populations of bacteria, but did not support significant populations of acidophiles, suggesting a succession from neutrophiles to acidophiles takes place prior to the development of acid mine drainage. The development of the porous iron oxide film may be prerequisite for acidophilic bacteria to flourish, creating acidic microenvironments within a neutral bulk, ambient pH mine waste.

  8. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.

    PubMed

    Li, Yongchao; Hu, Xiaoxian; Ren, Bozhi

    2016-01-01

    The present article summarizes antimony mine distribution, antimony mine drainage generation and environmental impacts, and critically analyses the remediation approach with special emphasis on iron oxidizing bacteria and sulfate reducing bacteria. Most recent research focuses on readily available low-cost adsorbents, such as minerals, wastes, and biosorbents. It is found that iron oxides prepared by chemical methods present superior adsorption ability for Sb(III) and Sb(V). However, this process is more costly and iron oxide activity can be inhibited by plenty of sulfate in antimony mine drainage. In the presence of sulfate reducing bacteria, sulfate can be reduced to sulfide and form Sb(2)S(3) precipitates. However, dissolved oxygen and lack of nutrient source in antimony mine drainage inhibit sulfate reducing bacteria activity. Biogenetic iron oxide minerals from iron corrosion by iron-oxidizing bacteria may prove promising for antimony adsorption, while the micro-environment generated from iron corrosion by iron oxidizing bacteria may provide better growth conditions for symbiotic sulfate reducing bacteria. Finally, based on biogenetic iron oxide adsorption and sulfate reducing bacteria followed by precipitation, the paper suggests an alternative treatment for antimony mine drainage that deserves exploration. PMID:27148704

  9. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.

    PubMed

    Li, Yongchao; Hu, Xiaoxian; Ren, Bozhi

    2016-01-01

    The present article summarizes antimony mine distribution, antimony mine drainage generation and environmental impacts, and critically analyses the remediation approach with special emphasis on iron oxidizing bacteria and sulfate reducing bacteria. Most recent research focuses on readily available low-cost adsorbents, such as minerals, wastes, and biosorbents. It is found that iron oxides prepared by chemical methods present superior adsorption ability for Sb(III) and Sb(V). However, this process is more costly and iron oxide activity can be inhibited by plenty of sulfate in antimony mine drainage. In the presence of sulfate reducing bacteria, sulfate can be reduced to sulfide and form Sb(2)S(3) precipitates. However, dissolved oxygen and lack of nutrient source in antimony mine drainage inhibit sulfate reducing bacteria activity. Biogenetic iron oxide minerals from iron corrosion by iron-oxidizing bacteria may prove promising for antimony adsorption, while the micro-environment generated from iron corrosion by iron oxidizing bacteria may provide better growth conditions for symbiotic sulfate reducing bacteria. Finally, based on biogenetic iron oxide adsorption and sulfate reducing bacteria followed by precipitation, the paper suggests an alternative treatment for antimony mine drainage that deserves exploration.

  10. Application Of Immobilized Sulfate Reducing Bacteria For Permeable Reactive Barriers In Abandoned Coal Mines

    NASA Astrophysics Data System (ADS)

    Kim, K.; Hur, W.; Choi, S.; Min, K.; Baek, H.

    2006-05-01

    The decline of the Korean coal industry has been drastic in production and consumption. This has been resulted mainly from the environmental concern and the collapse of commercial viability, which has eventually necessitated the government to implement the coal industry rationalization policies to reduce coal production and close down uneconomical mines. The overall drainage rates from abandoned coal mines reaches up to 80,000 ton/day. As a measure of controlling the acid mine drainage from abandoned coal mines, reactive materials in the pathways of drainage, designed to intercept and to transform the contaminants into environmentally acceptable forms can be applied at mines with small drainage rates. The main objective of this study is to design a permeable reactive barrier(PRB) to treat low flow and/or low contaminant loads of acid mine drainage. The PRB is comprised of immobilized sulfate reducing bacteria in hard beads and limestone to remove heavy metals and to raise the pH of AMD. A laboratory reactor was used to prepare a mixed culture of sulfate reducing bacteria. The microbes were separated and mixed with biodegradable matrix to form spherical beads. In order to maintain the viability of micro-organisms for a prolonged period, substrates such as saw dust, polysaccharide or glycerol was supplemented for the beads preparation. The strength of beads fortified by powered limestone to control the permeability of PRB. Different mixtures of limestone and the immobilized beads were tested to determine hydraulic conductivity and AMD treatment capacities. The characteristics of the spherical beads at various pH of AMD was investigated.

  11. Metal adsorption capabilities of clinoptilolite and selected strains of bacteria from mine water

    NASA Astrophysics Data System (ADS)

    Mamba, B. B.; Dlamini, N. P.; Nyembe, D. W.; Mulaba-Bafubiandi, A. F.

    Small-scale mining has socio-economic advantages such as the reduction of unemployment and the general improvement of the economy. However, these operations if not properly managed or controlled have a potential to cause environmental damage, particularly with respect to the contamination of groundwater and water supplies that are not distant from where these mining activities take place. This paper focuses on metal removal from water contaminated by heavy metals emanating from small-scale mining operations using clinoptilolite and bacteria. Removal of As, Ni, Mn, Au, Co, Cu and Fe was carried out on mine water samples using original and HCl-activated (in 0.02 M and 0.04 M) natural clinoptilolite and bacterial strains (a mixed consortia of Bacillus strains ( Bacillus subtilis, Bacillus cereus, Bacillus firmus, Bacillus fusiformis, Bacillus macroides and Bacillus licheniformis), Pseudomonas spp., Shewanella spp. and a mixed consortia of Acidithiobcillus caldus, Leptospirillum spp., Ferroplasma spp. and Sulphobacillus spp.). The purpose of the study was to compare the removal efficiencies of the bacterial strains versus natural clinoptilolite adsorbents for metal cations. The Bacillus consortia removed most of the metals up to 98% metal removal efficiency with the exception of nickel where clinoptilolite showed good removal efficiency. The 0.02 M HCl-activated clinoptilolite also demonstrated excellent removal capabilities with Cu, Co and Fe removal efficiency of up to 98%. Both clinoptilolite and bacteria demonstrated capabilities of removing Cu 2+, Co 2+, Fe 2+, Mn 2+, As 3+ and Au from solution which augurs well for metal recovery from mining and mineral processing solutions, as well as in water decontamination.

  12. Evolution of Microbial “Streamer” Growths in an Acidic, Metal-Contaminated Stream Draining an Abandoned Underground Copper Mine

    PubMed Central

    Kay, Catherine M.; Rowe, Owen F.; Rocchetti, Laura; Coupland, Kris; Hallberg, Kevin B.; Johnson, D. Barrie

    2013-01-01

    A nine year study was carried out on the evolution of macroscopic “acid streamer” growths in acidic, metal-rich mine water from the point of construction of a new channel to drain an abandoned underground copper mine. The new channel became rapidly colonized by acidophilic bacteria: two species of autotrophic iron-oxidizers (Acidithiobacillus ferrivorans and “Ferrovum myxofaciens”) and a heterotrophic iron-oxidizer (a novel genus/species with the proposed name “Acidithrix ferrooxidans”). The same bacteria dominated the acid streamer communities for the entire nine year period, with the autotrophic species accounting for ~80% of the micro-organisms in the streamer growths (as determined by terminal restriction enzyme fragment length polymorphism (T-RFLP) analysis). Biodiversity of the acid streamers became somewhat greater in time, and included species of heterotrophic acidophiles that reduce ferric iron (Acidiphilium, Acidobacterium, Acidocella and gammaproteobacterium WJ2) and other autotrophic iron-oxidizers (Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans). The diversity of archaea in the acid streamers was far more limited; relatively few clones were obtained, all of which were very distantly related to known species of euryarchaeotes. Some differences were apparent between the acid streamer community and planktonic-phase bacteria. This study has provided unique insights into the evolution of an extremophilic microbial community, and identified several novel species of acidophilic prokaryotes. PMID:25371339

  13. Acidocella aromatica sp. nov.: an acidophilic heterotrophic alphaproteobacterium with unusual phenotypic traits.

    PubMed

    Jones, Rose M; Hedrich, Sabrina; Johnson, D Barrie

    2013-09-01

    Three obligately heterotrophic bacterial isolates were identified as strains of a proposed novel species of extremely acidophilic, mesophilic Alphaproteobacteria, Acidocella aromatica. They utilized a restricted range of organic substrates, which included fructose (but none of the other monosaccharides tested), acetate and several aromatic compounds (benzoate, benzyl alcohol and phenol). No growth was obtained on complex organic substrates, such as yeast extract and tryptone. Tolerance of the proposed type strain of the species (PFBC) to acetic acid was much greater than that typically reported for acidophiles. The bacteria grew aerobically, and catalyzed the dissimilatory reductive dissolution of the ferric iron mineral schwertmannite under both micro-aerobic and anaerobic conditions. Strain PFBC did not grow anaerobically via ferric iron respiration, though it has been reported to grow in co-culture with acid-tolerant sulfidogenic bacteria under strictly anoxic conditions. Tolerance of strains of Acidocella aromatica to nickel were about two orders of magnitude greater than those of other Acidocella spp., though similar levels of tolerance to other metals tested was observed. The use of this novel acidophile in solid media designed to promote the isolation and growth of other (aerobic and anaerobic) acidophilic heterotrophs is discussed.

  14. Biosequestration of copper by bacteria isolated from an abandoned mine by using microbially induced calcite precipitation.

    PubMed

    Kang, Chang-Ho; Shin, YuJin; Anbu, Periasamy; Nam, In-Hyun; So, Jae-Seong

    2016-09-12

    Abandoned mine sites are frequently polluted with high concentrations of heavy metals. In this study, 25 calcite-forming bacteria were newly isolated from the soil of an abandoned metal mine in Korea. Based on their urease activity, calcite production, and resistance to copper toxicity, four isolates were selected and further identified by 16S rRNA gene sequencing. Among the isolates, Sporosarcina soli B-22 was selected for subsequent copper biosequestration studies, using the sand impermeability test by production of calcite and extracellular polymeric substance. High removal rates (61.8%) of copper were obtained when the sand samples were analyzed using an inductively coupled plasma-optical emission spectrometer following 72 h of incubation. Scanning electron microscopy showed that the copper carbonate precipitates had a diameter of approximately 5-10 μm. X-ray diffraction further confirmed the presence of copper carbonate and calcium carbonate crystals. PMID:27488956

  15. Iron Meteorites Can Support the Growth of Acidophilic Chemolithoautotrophic Microorganisms

    NASA Astrophysics Data System (ADS)

    González-Toril, Elena; Martínez-Frías, Jesús; Gómez, José María; Rull, Fernando; Amils, Ricardo

    2005-06-01

    Chemolithoautotrophy based on reduced inorganic minerals is considered a primitive energy transduction system. Evidence that a high number of meteorites crashed into the planet during the early period of Earth history led us to test the ability of iron-oxidizing bacteria to grow using iron meteorites as their source of energy. Here we report the growth of two acidophilic iron-oxidizing bacteria, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans, on a piece of the Toluca meteorite as the only source of energy. The alteration of the surface of the exposed piece of meteorite, the solubilization of its oxidized metal constituents, mainly ferric iron, and the formation of goethite precipitates all clearly indicate that iron-meteoritebased chemolithotrophic metabolism is viable.

  16. Practical applications of sulfate-reducing bacteria to control acid mine drainage at the Lilly/Orphan Boy Mine near Elliston, Montana

    SciTech Connect

    Canty, M.

    1994-12-31

    The overall purpose of this document is to provide a detailed technical description of a technology, biological sulfate reduction, which is being demonstrated under the Mine Waste Technology Pilot Program, and provide the technology evaluation process undertaken to select this technology for demonstration. In addition, this document will link the use of the selected technology to an application at a specific site. The purpose of this project is to develop technical information on the ability of biological sulfate reduction to slow the process of acid generation and, thus, improve water quality at a remote mine site. Several technologies are screened for their potential to treat acid mine water and to function as a source control for a specific acid-generating situation: a mine shaft and associated underground workings flooded with acid mine water and discharging a small flow from a mine opening. The preferred technology is the use of biological sulfate reduction. Sulfate-reducing bacteria are capable of reducing sulfate to sulfide, as well as increasing the pH and alkalinity of water affected by acid generation. Soluble sulfide reacts with the soluble metals in solution to form insoluble metal sulfides. The environment needed for efficient sulfate-reducing bacteria growth decreases acid production by reducing the dissolved oxygen in water and increasing pH. A detailed technical description of the sulfate-reducing bacteria technology, based on an extensive review of the technical literature, is presented. The field demonstration of this technology to be performed at the Lilly/Orphan Boy Mine is also described. Finally, additional in situ applications of biological sulfate reduction are presented.

  17. Enhanced productivity of a lutein-enriched novel acidophile microalga grown on urea.

    PubMed

    Casal, Carlos; Cuaresma, Maria; Vega, Jose Maria; Vilchez, Carlos

    2011-01-01

    Coccomyxa acidophila is an extremophile eukaryotic microalga isolated from the Tinto River mining area in Huelva, Spain. Coccomyxa acidophila accumulates relevant amounts of β-carotene and lutein, well-known carotenoids with many biotechnological applications, especially in food and health-related industries. The acidic culture medium (pH < 2.5) that prevents outdoor cultivation from non-desired microorganism growth is one of the main advantages of acidophile microalgae production. Conversely, acidophile microalgae growth rates are usually very low compared to common microalgae growth rates. In this work, we show that mixotrophic cultivation on urea efficiently enhances growth and productivity of an acidophile microalga up to typical values for common microalgae, therefore approaching acidophile algal production towards suitable conditions for feasible outdoor production. Algal productivity and potential for carotenoid accumulation were analyzed as a function of the nitrogen source supplied. Several nitrogen conditions were assayed: nitrogen starvation, nitrate and/or nitrite, ammonia and urea. Among them, urea clearly led to the best cell growth (~4 × 10(8) cells/mL at the end of log phase). Ammonium led to the maximum chlorophyll and carotenoid content per volume unit (220 μg·mL(·1) and 35 μg·mL(·1), respectively). Interestingly, no significant differences in growth rates were found in cultures grown on urea as C and N source, with respect to those cultures grown on nitrate and CO(2) as nitrogen and carbon sources (control cultures). Lutein accumulated up to 3.55 mg·g(·1) in the mixotrophic cultures grown on urea. In addition, algal growth in a shaded culture revealed the first evidence for an active xanthophylls cycle operative in acidophile microalgae. PMID:21339944

  18. Enhanced Productivity of a Lutein-Enriched Novel Acidophile Microalga Grown on Urea

    PubMed Central

    Casal, Carlos; Cuaresma, Maria; Vega, Jose Maria; Vilchez, Carlos

    2011-01-01

    Coccomyxa acidophila is an extremophile eukaryotic microalga isolated from the Tinto River mining area in Huelva, Spain. Coccomyxa acidophila accumulates relevant amounts of β-carotene and lutein, well-known carotenoids with many biotechnological applications, especially in food and health-related industries. The acidic culture medium (pH < 2.5) that prevents outdoor cultivation from non-desired microorganism growth is one of the main advantages of acidophile microalgae production. Conversely, acidophile microalgae growth rates are usually very low compared to common microalgae growth rates. In this work, we show that mixotrophic cultivation on urea efficiently enhances growth and productivity of an acidophile microalga up to typical values for common microalgae, therefore approaching acidophile algal production towards suitable conditions for feasible outdoor production. Algal productivity and potential for carotenoid accumulation were analyzed as a function of the nitrogen source supplied. Several nitrogen conditions were assayed: nitrogen starvation, nitrate and/or nitrite, ammonia and urea. Among them, urea clearly led to the best cell growth (~4 × 108 cells/mL at the end of log phase). Ammonium led to the maximum chlorophyll and carotenoid content per volume unit (220 μg·mL·1 and 35 μg·mL·1, respectively). Interestingly, no significant differences in growth rates were found in cultures grown on urea as C and N source, with respect to those cultures grown on nitrate and CO2 as nitrogen and carbon sources (control cultures). Lutein accumulated up to 3.55 mg·g·1 in the mixotrophic cultures grown on urea. In addition, algal growth in a shaded culture revealed the first evidence for an active xanthophylls cycle operative in acidophile microalgae. PMID:21339944

  19. Modeling Analysis for Characterizing Sulfate Reduction at an Acid Mine Drainage Site

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Ahlfeld, D. P.

    2004-05-01

    A field site has been established at Davis Mine, an abandoned pyrite mine in rural Rowe, Massachusetts in the United States. At the site, attenuation restricts the extent of AMD in both the groundwater and surface water of the area. Current research is examining the Fe(III) and sulfate reduction along with a complex community of acidophilic and acid-tolerant anaerobic microorganisms. In an effort to interlink the geochemical reduction with the microbial community existing in the site, the role of the Fe(III) and sulfate reducing bacteria is being investigated. Initial experimental data and column studies have shown the presence of sulfate reducing bacteria at the site. A detailed groundwater flow model for the affected site has been developed. A model is currently being developed of the various geochemical and biological processes at Davis Mine for use in distinguishing between sulfate reduction and dilution as they affect observed sulfate attenuation.

  20. Arsenite oxidizing Thiomonas strains isolated from different mining sites

    NASA Astrophysics Data System (ADS)

    Battaglia-Brunet, F.; Duquesne, K.; Dictor, M. C.; Garrido, F.; Bonnefoy, V.; Baranger, P.; Morin, D.

    2003-04-01

    Arsenic is commonly found in sulfide rocks and ores. This toxic metalloid is transferred to the water phase through acidophilic bio-oxidation of sulfides in mining galleries and waste dumps. Inorganic arsenic As(III) and As(V) are both soluble anions, however As(III) is more mobile and toxic than As(V). Bacteria can participate to the biogeochemical arsenic cycling through As(III) oxidation or As(V) reduction. Mineral selective media, containing As(III) as sole energy source, were used to isolate As(III)-oxidizing bacteria from two disused mining sites. Cheni site (Haute Vienne) was a gold mine, and Carnoules (Gard) was lead-zinc mine. Both sites are highly contaminated with arsenic. Samples of sediments and water from Cheni (pH 6) and Carnoules (pH 3) were used to inoculate mineral selective media whose pH were adjusted to those of the sampling environments. In both cases, organisms belonging to the genus Thiomonas were selected, then isolated. These bacteria oxidize arsenite during their exponential growth phase. The Both bacteria are able to grow, as a pure strains, in autotrophic conditions. The As(III)-oxidase activity of the Carnoules strain was exclusively found in cells cultivated with arsenite, and was associated to the membrane. If they can use As(III) as energetic substrate, Thiomonas-related organisms may play an important role in the biogeochemical cycling of arsenic within mining ecosystems.

  1. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption

    PubMed Central

    Andreazza, R.; Pieniz, S.; Okeke, B.C.; Camargo, F.A.O

    2011-01-01

    Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol) were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) experimental station, Bento Gonçalves, RS, Brazil (29°09′53.92″S and 51°31′39.40″W) and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30°29′43.48″S and 53′32′37.87W). Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L−1 in 24 h. Contrarily isolate N11 (Bacillus pumilus) displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h). GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration. PMID:24031606

  2. Effect of uranium (VI) on two sulphate-reducing bacteria cultures from a uranium mine site.

    PubMed

    Martins, Mónica; Faleiro, Maria Leonor; Chaves, Sandra; Tenreiro, Rogério; Costa, Maria Clara

    2010-05-15

    This work was conducted to assess the impact of uranium (VI) on sulphate-reducing bacteria (SRB) communities obtained from environmental samples collected on the Portuguese uranium mining area of Urgeiriça. Culture U was obtained from a sediment, while culture W was obtained from sludge from the wetland of that mine. Temperature gradient gel electrophoresis (TGGE) was used to monitor community changes under uranium stress conditions. TGGE profiles of dsrB gene fragment demonstrated that the initial cultures were composed of SRB species affiliated with Desulfovibrio desulfuricans, Desulfovibrio vulgaris and Desulfomicrobium spp. (sample U), and by species related to D. desulfuricans (sample W). A drastic change in SRB communities was observed as a result of uranium (VI) exposure. Surprisingly, SRB were not detected in the uranium removal communities. Such findings emphasize the need of monitoring the dominant populations during bio-removal studies. TGGE and phylogenetic analysis of the 16S rRNA gene fragment revealed that the uranium removal consortia are composed by strains affiliated to Clostridium genus, Caulobacteraceae and Rhodocyclaceae families. Therefore, these communities can be attractive candidates for environmental biotechnological applications associated to uranium removal. PMID:20334901

  3. Metal binding by bacteria from uranium mining waste piles and its technological applications.

    PubMed

    Pollmann, K; Raff, J; Merroun, M; Fahmy, K; Selenska-Pobell, S

    2006-01-01

    Uranium mining waste piles, heavily polluted with radionuclides and other toxic metals, are a reservoir for bacteria that have evolved special strategies to survive in these extreme environments. Understanding the mechanisms of bacterial adaptation may enable the development of novel bioremediation strategies and other technological applications. Cell isolates of Bacillus sphaericus JG-A12 from a uranium mining waste pile in Germany are able to accumulate high amounts of toxic metals such as U, Cu, Pb, Al, and Cd as well as precious metals. Some of these metals, i.e. U, Cu, Pd(II), Pt(II) and Au(III), are also bound by the highly orderd paracrystalline proteinaceous surface layer (S-layer) that envelopes the cells of this strain. These special capabilities of the cells and the S-layer proteins of B. sphaericus JG-A12 are highly interesting for the clean-up of uranium contaminated waste waters, for the recovery of precious metals from electronic wastes, and for the production of metal nanoclusters. The fabricated nanoparticles are promising for the development of novel catalysts. This work reviews the molecular biology of the S-layer of the strain JG-A12 and the S-layer dependent interactions of the bacterial cells with metals. It presents future perspectives for their application in bioremediation and nanotechnology.

  4. The genetic diversity of soil bacteria affected by phytoremediation in a typical barren rare earth mined site of South China.

    PubMed

    Liu, Shenghong; Liu, Wen; Yang, Miaoxian; Zhou, Lingyan; Liang, Hong

    2016-01-01

    The soil bacterial diversity is one of the most important indicators to evaluate the effect of phytoremediation. In this study, the technologies of Sequence-Related Amplified Polymorphism (SRAP) and 16S rRNA gene sequence analysis were used to evaluate the soil bacterial diversity after phytoremediation in a barren rare earth mined area. The results showed that the plant density was remarkably increased after the phytoremediation. The SRAP analysis suggested that the soil bacterial diversity declined dramatically after mining, while increased significantly in second and third year of the phytoremediation. A total of eight bacterial genera were identified by using 16S rRNA gene sequence analysis, with Arthrobacter and Bacillus as the dominant species before the mining, and Brevibacillus as the dominant species after the mining and during the first year of the phytoremediation. The Bacillus, which was a dominant type of bacteria before the mining, disappeared after mining and appeared again in the second and third years of the phytoremediation, other bacterial genera present. Principal component analysis and 16S rRNA gene analysis revealed a new bacterial type after phytoremediation that was not existed in the original mined area. The results of the present study indicated that the soil bacterial richness and genetic diversity significantly increased after the phytoremediation in the mined site. PMID:27478748

  5. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    PubMed

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction.

  6. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    PubMed

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. PMID:27058913

  7. Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community

    SciTech Connect

    Verberkmoes, Nathan C; Singer, Steven; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2008-01-01

    We have discovered and characterized a novel membrane cytochrome of an iron oxidizing microbial biofilm obtained from the surface of extremely acidic mine water. This protein was initially identified through proteogenomic analysis as one of many novel gene products of Leptospirillum group II, the dominant bacterium of this community (Ram et al, 2005, Science 308, 1915-20). Extraction of proteins directly from environmental biofilm samples followed by membrane fractionation, detergent solubilization and gel filtration chromatography resulted in the purification of an abundant yellow-red protein. Covalently bound to heme, the purified cytochrome has a unique spectral signature at 572 nm and is thus called Cyt572. It readily oxidizes Fe2+ even in the presence of Fe3+ over a pH range from 0.95 to 3.4. Independent experiments involving 2D blue-native polyacrylamide gel electrophoresis and chemical crosslinking establish a homotetrameric structure for Cyt572. Also, circular dichroism spectroscopy indicates that the protein is largely beta-stranded, consistent with an outer membrane location. Although no significant sequence homology to the full-length cytochrome is detected in protein databases, environmental DNA sequences from both Leptospirillum groups II and III reveal at least 17 strain variants of Cyt572. Due to its abundance, cellular location and Fe2+ oxidation activity, we propose Cyt572 is the iron oxidase of the Leptospirillum bacteria, providing a critical function for fitness within the ecological niche of this acidophilic microbial community.

  8. Metabolites Associated with Adaptation of Microorganisms to an Acidophilic, Metal-Rich Environment Identified by Stable-Isotope-Enabled Metabolomics

    PubMed Central

    Mosier, Annika C.; Justice, Nicholas B.; Bowen, Benjamin P.; Baran, Richard; Thomas, Brian C.; Northen, Trent R.; Banfield, Jillian F.

    2013-01-01

    ABSTRACT Microorganisms grow under a remarkable range of extreme conditions. Environmental transcriptomic and proteomic studies have highlighted metabolic pathways active in extremophilic communities. However, metabolites directly linked to their physiology are less well defined because metabolomics methods lag behind other omics technologies due to a wide range of experimental complexities often associated with the environmental matrix. We identified key metabolites associated with acidophilic and metal-tolerant microorganisms using stable isotope labeling coupled with untargeted, high-resolution mass spectrometry. We observed >3,500 metabolic features in biofilms growing in pH ~0.9 acid mine drainage solutions containing millimolar concentrations of iron, sulfate, zinc, copper, and arsenic. Stable isotope labeling improved chemical formula prediction by >50% for larger metabolites (>250 atomic mass units), many of which were unrepresented in metabolic databases and may represent novel compounds. Taurine and hydroxyectoine were identified and likely provide protection from osmotic stress in the biofilms. Community genomic, transcriptomic, and proteomic data implicate fungi in taurine metabolism. Leptospirillum group II bacteria decrease production of ectoine and hydroxyectoine as biofilms mature, suggesting that biofilm structure provides some resistance to high metal and proton concentrations. The combination of taurine, ectoine, and hydroxyectoine may also constitute a sulfur, nitrogen, and carbon currency in the communities. PMID:23481603

  9. Optimization of Plant Growth-Promoting Bacteria-Assisted Phytostabilization of Mine Tailings

    PubMed Central

    Grandlic, Christopher J.; Palmer, Michael W.; Maier, Raina M.

    2009-01-01

    Recent studies have indicated that plant growth-promoting bacteria (PGPB) can improve revegetation of arid mine tailings as measured by increased biomass production. The goals of the present study were first to evaluate how mode of application of known PGPB affects plant growth, and second to evaluate the effect of this inoculation on rhizosphere microbial community structure. PGPB application strategies investigated include preliminary surface sterilization of seeds (a common practice in phytoremediation trials) followed by a comparison of two application methods; immersion and alginate encapsulation. Results with two native desert plant species, Atriplex lentiformis and Buchloe dactyloides, suggest that seed surface sterilization prior to inoculation is not necessary to achieve beneficial effects of introduced PGPB. Both PGPB application techniques generally enhanced plant growth although results were both plant and PGPB specific. These results demonstrate that alginate encapsulation, which allows for long-term storage and easier application to seeds, is an effective way to inoculate PGPB. In addition, the influence of PGPB application on B. dactyloides rhizosphere community structure was evaluated using PCR-DGGE (denaturing gradient gel electrophoresis) analysis of bacterial DNA extracted from rhizosphere samples collected 75 d following planting. A comparative analysis of DGGE profiles was performed using canonical correspondence analysis (CCA). DGGE-CCA showed that rhizosphere community profiles from PGPB-inoculated treatments are significantly different from both uninoculated tailings rhizosphere profiles and profiles from the compost used to amend the tailings. Further, community profiles from B. dactyloides inoculated with the best performing PGPB (Arthro mix) were significantly different from two other PGPB tested. These results suggest that introduced PGPB have the potential to influence the development of the rhizosphere community structure found in

  10. Optimization of Plant Growth-Promoting Bacteria-Assisted Phytostabilization of Mine Tailings.

    PubMed

    Grandlic, Christopher J; Palmer, Michael W; Maier, Raina M

    2009-08-01

    Recent studies have indicated that plant growth-promoting bacteria (PGPB) can improve revegetation of arid mine tailings as measured by increased biomass production. The goals of the present study were first to evaluate how mode of application of known PGPB affects plant growth, and second to evaluate the effect of this inoculation on rhizosphere microbial community structure. PGPB application strategies investigated include preliminary surface sterilization of seeds (a common practice in phytoremediation trials) followed by a comparison of two application methods; immersion and alginate encapsulation. Results with two native desert plant species, Atriplex lentiformis and Buchloe dactyloides, suggest that seed surface sterilization prior to inoculation is not necessary to achieve beneficial effects of introduced PGPB. Both PGPB application techniques generally enhanced plant growth although results were both plant and PGPB specific. These results demonstrate that alginate encapsulation, which allows for long-term storage and easier application to seeds, is an effective way to inoculate PGPB. In addition, the influence of PGPB application on B. dactyloides rhizosphere community structure was evaluated using PCR-DGGE (denaturing gradient gel electrophoresis) analysis of bacterial DNA extracted from rhizosphere samples collected 75 d following planting. A comparative analysis of DGGE profiles was performed using canonical correspondence analysis (CCA). DGGE-CCA showed that rhizosphere community profiles from PGPB-inoculated treatments are significantly different from both uninoculated tailings rhizosphere profiles and profiles from the compost used to amend the tailings. Further, community profiles from B. dactyloides inoculated with the best performing PGPB (Arthro mix) were significantly different from two other PGPB tested. These results suggest that introduced PGPB have the potential to influence the development of the rhizosphere community structure found in

  11. Remediation of acid mine drainage (AMD)-contaminated soil by Phragmites australis and rhizosphere bacteria.

    PubMed

    Guo, Lin; Cutright, Teresa J

    2014-06-01

    Experiments were conducted to assess the impact of citric acid (CA) and rhizosphere bacteria on metal uptake in Phragmites australis cultured in a spiked acid mine drainage (AMD) soil. Rhizosphere iron-oxidizing bacteria (Fe(II)OB) enhanced the formation of Fe plaque on roots, which decreased the uptake of Fe and Mn. CA inhibited the growth of Fe(II)OB, decreased the formation of metal plaque, raised the metal mobility in soil, and increased the accumulation of metals in all tissues of the reeds. The higher the CA dosage, the more metals accumulated into reeds. The total amount of metals in reeds increased from 7.8 ± 0.5 × 10(-6) mol plant(-1) (Mn), 1.4 ± 0.1 × 10(-3) mol plant(-1) (Fe), and 1.0 ± 0.1 × 10(-4) mol plant(-1) (Al) in spiked soil without CA to 22.2 ± 0.5 × 10(-6) mol plant(-1) (Mn), 3.5 ± 0.06 × 10(-3) mol plant(-1) (Fe), and 5.0 ± 0.2 × 10(-4) mol plant(-1) (Al) in soil added with 33.616 g C6H8O7·H2O for per kilogram soil. CA could be effective at enhancing the phytoremediation of metals from AMD-contaminated soil.

  12. Acidibacter ferrireducens gen. nov., sp. nov.: an acidophilic ferric iron-reducing gammaproteobacterium.

    PubMed

    Falagán, Carmen; Johnson, D Barrie

    2014-11-01

    An acidophilic gammaproteobacterium, isolated from a pit lake at an abandoned metal mine in south-west Spain, was shown to be distantly related to all characterized prokaryotes, and to be the first representative of a novel genus and species. Isolate MCF85 is a Gram-negative, non-motile, rod-shaped mesophilic bacterium with a temperature growth optimum of 32-35 °C (range 8-45 °C). It was categorized as a moderate acidophile, growing optimally at pH 3.5-4.0 and between pH 2.5 and 4.5. Under optimum conditions its culture doubling time was around 75 min. Only organic electron donors were used by MCF85, and the isolate was confirmed to be an obligate heterotroph. It grew on a limited range of sugars (hexoses and disaccharides, though not pentoses) and some other small molecular weight organic compounds, and growth was partially or completely inhibited by small concentrations of some aliphatic acids. The acidophile grew in the presence of >100 mM ferrous iron or aluminium, but was more sensitive to some other metals, such as copper. It was also much more tolerant of arsenic (V) than arsenic (III). Isolate MCF85 catalysed the reductive dissolution of the ferric iron mineral schwertmannite when incubated under micro-aerobic or anaerobic conditions, causing the culture media pH to increase. There was no evidence, however, that the acidophile could grow by ferric iron respiration under strictly anoxic conditions. Isolate MCF85 is the designated type strain of the novel species Acidibacter ferrireducens (=DSM 27237(T) = NCCB 100460(T)).

  13. Deep subsurface mine stalactites trap endemic fissure fluid Archaea, Bacteria, and Nematoda possibly originating from ancient seas

    PubMed Central

    Borgonie, Gaëtan; Linage-Alvarez, Borja; Ojo, Abidemi; Shivambu, Steven; Kuloyo, Olukayode; Cason, Errol D.; Maphanga, Sihle; Vermeulen, Jan-G; Litthauer, Derek; Ralston, Colin D.; Onstott, Tullis C.; Sherwood-Lollar, Barbara; Van Heerden, Esta

    2015-01-01

    Stalactites (CaCO3 and salt) from water seeps are frequently encountered in ceilings of mine tunnels whenever they intersect water-bearing faults or fractures. To determine whether stalactites could be mineralized traps for indigenous fracture water microorganisms, we analyzed stalactites collected from three different mines ranging in depth from 1.3 to 3.1 km. During sampling in Beatrix gold mine (1.4 km beneath the surface), central South Africa, CaCO3 stalactites growing on the mine tunnel ceiling were collected and observed, in two cases, to contain a living obligate brackish water/marine nematode species, Monhystrella parvella. After sterilization of the outer surface, mineral layers were physically removed from the outside to the interior, and DNA extracted. Based upon 16S and 18S rRNA gene sequencing, Archaea, Bacteria, and Eukarya in different combinations were detected for each layer. Using CT scan and electron microscopy the inner structure of CaCO3 and salt stalactites were analyzed. CaCO3 stalactites show a complex pattern of lamellae carrying bacterially precipitated mineral structures. Nematoda were clearly identified between these layers confirming that bacteria and nematodes live inside the stalactites and not only in the central straw. Salt stalactites exhibit a more uniform internal structure. Surprisingly, several Bacteria showing highest sequence identities to marine species were identified. This, together with the observation that the nematode M. parvella recovered from Beatrix gold mine stalactite can only survive in a salty environment makes the origin of the deep subsurface colonization enigmatic. The possibility of a Permian origin of fracture fluids is discussed. Our results indicate stalactites are suitable for biodiversity recovery and act as natural traps for microorganisms in the fissure water long after the water that formed the stalactite stopped flowing. PMID:26441844

  14. Deep subsurface mine stalactites trap endemic fissure fluid Archaea, Bacteria, and Nematoda possibly originating from ancient seas.

    PubMed

    Borgonie, Gaëtan; Linage-Alvarez, Borja; Ojo, Abidemi; Shivambu, Steven; Kuloyo, Olukayode; Cason, Errol D; Maphanga, Sihle; Vermeulen, Jan-G; Litthauer, Derek; Ralston, Colin D; Onstott, Tullis C; Sherwood-Lollar, Barbara; Van Heerden, Esta

    2015-01-01

    Stalactites (CaCO3 and salt) from water seeps are frequently encountered in ceilings of mine tunnels whenever they intersect water-bearing faults or fractures. To determine whether stalactites could be mineralized traps for indigenous fracture water microorganisms, we analyzed stalactites collected from three different mines ranging in depth from 1.3 to 3.1 km. During sampling in Beatrix gold mine (1.4 km beneath the surface), central South Africa, CaCO3 stalactites growing on the mine tunnel ceiling were collected and observed, in two cases, to contain a living obligate brackish water/marine nematode species, Monhystrella parvella. After sterilization of the outer surface, mineral layers were physically removed from the outside to the interior, and DNA extracted. Based upon 16S and 18S rRNA gene sequencing, Archaea, Bacteria, and Eukarya in different combinations were detected for each layer. Using CT scan and electron microscopy the inner structure of CaCO3 and salt stalactites were analyzed. CaCO3 stalactites show a complex pattern of lamellae carrying bacterially precipitated mineral structures. Nematoda were clearly identified between these layers confirming that bacteria and nematodes live inside the stalactites and not only in the central straw. Salt stalactites exhibit a more uniform internal structure. Surprisingly, several Bacteria showing highest sequence identities to marine species were identified. This, together with the observation that the nematode M. parvella recovered from Beatrix gold mine stalactite can only survive in a salty environment makes the origin of the deep subsurface colonization enigmatic. The possibility of a Permian origin of fracture fluids is discussed. Our results indicate stalactites are suitable for biodiversity recovery and act as natural traps for microorganisms in the fissure water long after the water that formed the stalactite stopped flowing. PMID:26441844

  15. Deep subsurface mine stalactites trap endemic fissure fluid Archaea, Bacteria, and Nematoda possibly originating from ancient seas.

    PubMed

    Borgonie, Gaëtan; Linage-Alvarez, Borja; Ojo, Abidemi; Shivambu, Steven; Kuloyo, Olukayode; Cason, Errol D; Maphanga, Sihle; Vermeulen, Jan-G; Litthauer, Derek; Ralston, Colin D; Onstott, Tullis C; Sherwood-Lollar, Barbara; Van Heerden, Esta

    2015-01-01

    Stalactites (CaCO3 and salt) from water seeps are frequently encountered in ceilings of mine tunnels whenever they intersect water-bearing faults or fractures. To determine whether stalactites could be mineralized traps for indigenous fracture water microorganisms, we analyzed stalactites collected from three different mines ranging in depth from 1.3 to 3.1 km. During sampling in Beatrix gold mine (1.4 km beneath the surface), central South Africa, CaCO3 stalactites growing on the mine tunnel ceiling were collected and observed, in two cases, to contain a living obligate brackish water/marine nematode species, Monhystrella parvella. After sterilization of the outer surface, mineral layers were physically removed from the outside to the interior, and DNA extracted. Based upon 16S and 18S rRNA gene sequencing, Archaea, Bacteria, and Eukarya in different combinations were detected for each layer. Using CT scan and electron microscopy the inner structure of CaCO3 and salt stalactites were analyzed. CaCO3 stalactites show a complex pattern of lamellae carrying bacterially precipitated mineral structures. Nematoda were clearly identified between these layers confirming that bacteria and nematodes live inside the stalactites and not only in the central straw. Salt stalactites exhibit a more uniform internal structure. Surprisingly, several Bacteria showing highest sequence identities to marine species were identified. This, together with the observation that the nematode M. parvella recovered from Beatrix gold mine stalactite can only survive in a salty environment makes the origin of the deep subsurface colonization enigmatic. The possibility of a Permian origin of fracture fluids is discussed. Our results indicate stalactites are suitable for biodiversity recovery and act as natural traps for microorganisms in the fissure water long after the water that formed the stalactite stopped flowing.

  16. Genome Analysis of the Biotechnologically Relevant Acidophilic Iron Oxidising Strain JA12 Indicates Phylogenetic and Metabolic Diversity within the Novel Genus “Ferrovum”

    PubMed Central

    Ullrich, Sophie R.; Poehlein, Anja; Tischler, Judith S.; González, Carolina; Ossandon, Francisco J.; Daniel, Rolf; Holmes, David S.; Schlömann, Michael; Mühling, Martin

    2016-01-01

    Background Members of the genus “Ferrovum” are ubiquitously distributed in acid mine drainage (AMD) waters which are characterised by their high metal and sulfate loads. So far isolation and microbiological characterisation have only been successful for the designated type strain “Ferrovum myxofaciens” P3G. Thus, knowledge about physiological characteristics and the phylogeny of the genus “Ferrovum” is extremely scarce. Objective In order to access the wider genetic pool of the genus “Ferrovum” we sequenced the genome of a “Ferrovum”-containing mixed culture and successfully assembled the almost complete genome sequence of the novel “Ferrovum” strain JA12. Phylogeny and Lifestyle The genome-based phylogenetic analysis indicates that strain JA12 and the type strain represent two distinct “Ferrovum” species. “Ferrovum” strain JA12 is characterised by an unusually small genome in comparison to the type strain and other iron oxidising bacteria. The prediction of nutrient assimilation pathways suggests that “Ferrovum” strain JA12 maintains a chemolithoautotrophic lifestyle utilising carbon dioxide and bicarbonate, ammonium and urea, sulfate, phosphate and ferrous iron as carbon, nitrogen, sulfur, phosphorous and energy sources, respectively. Unique Metabolic Features The potential utilisation of urea by “Ferrovum” strain JA12 is moreover remarkable since it may furthermore represent a strategy among extreme acidophiles to cope with the acidic environment. Unlike other acidophilic chemolithoautotrophs “Ferrovum” strain JA12 exhibits a complete tricarboxylic acid cycle, a metabolic feature shared with the closer related neutrophilic iron oxidisers among the Betaproteobacteria including Sideroxydans lithotrophicus and Thiobacillus denitrificans. Furthermore, the absence of characteristic redox proteins involved in iron oxidation in the well-studied acidophiles Acidithiobacillus ferrooxidans (rusticyanin) and Acidithiobacillus

  17. Results from field applications of controlled release bactericides on toxic mine waste

    SciTech Connect

    Shellhorn, M.A.; Sobek, A.A.; Rastogi, V.

    1985-12-09

    Controlled release system employing batericides inhibitory to iron oxidizing bacteria (acidophilic Thiobacillus) can reduce acid generation in toxic mine waste for prolonged period of time. Designing systems to remain active for a number of years can allow the development of beneficial heterotrophic bacteria, enzymes, and mycorrhizae to establish a natural cycle mitigating acid generation. Field sites have been installed in Ohio and West Virginia using controlled release systems as part of reclamation. Refuse water quality, bacterial enumerations, and vegetation have been continuously monitored to establish time spans necessary for a natural cycle to take over. Described are the methods used and results obtained so far on the two oldest sites. Comparisons of various bactericides and their site-specific character are presented for use in reclamation projects and active mining operations. 7 references, 3 figures, 3 tables.

  18. Genomic Analysis Unravels Reduced Inorganic Sulfur Compound Oxidation of Heterotrophic Acidophilic Acidicaldus sp. Strain DX-1

    PubMed Central

    Liu, Yuanyuan; Yang, Hongying; Zhang, Xian; Xiao, Yunhua; Guo, Xue; Liu, Xueduan

    2016-01-01

    Although reduced inorganic sulfur compound (RISC) oxidation in many chemolithoautotrophic sulfur oxidizers has been investigated in recent years, there is little information about RISC oxidation in heterotrophic acidophiles. In this study, Acidicaldus sp. strain DX-1, a heterotrophic sulfur-oxidizing acidophile, was isolated. Its genome was sequenced and then used for comparative genomics. Furthermore, real-time quantitative PCR was performed to identify the expression of genes involved in the RISC oxidation. Gene encoding thiosulfate: quinone oxidoreductase was present in Acidicaldus sp. strain DX-1, while no candidate genes with significant similarity to tetrathionate hydrolase were found. Additionally, there were genes encoding heterodisulfide reductase complex, which was proposed to play a crucial role in oxidizing cytoplasmic sulfur. Like many heterotrophic sulfur oxidizers, Acidicaldus sp. strain DX-1 had no genes encoding enzymes essential for the direct oxidation of sulfite. An indirect oxidation of sulfite via adenosine-5′-phosphosulfate was proposed in Acidicaldus strain DX-1. However, compared to other closely related bacteria Acidiphilium cryptum and Acidiphilium multivorum, which harbored the genes encoding Sox system, almost all of these genes were not detected in Acidicaldus sp. strain DX-1. This study might provide some references for the future study of RISC oxidation in heterotrophic sulfur-oxidizing acidophiles. PMID:27239474

  19. Genomic Analysis Unravels Reduced Inorganic Sulfur Compound Oxidation of Heterotrophic Acidophilic Acidicaldus sp. Strain DX-1.

    PubMed

    Liu, Yuanyuan; Yang, Hongying; Zhang, Xian; Xiao, Yunhua; Guo, Xue; Liu, Xueduan

    2016-01-01

    Although reduced inorganic sulfur compound (RISC) oxidation in many chemolithoautotrophic sulfur oxidizers has been investigated in recent years, there is little information about RISC oxidation in heterotrophic acidophiles. In this study, Acidicaldus sp. strain DX-1, a heterotrophic sulfur-oxidizing acidophile, was isolated. Its genome was sequenced and then used for comparative genomics. Furthermore, real-time quantitative PCR was performed to identify the expression of genes involved in the RISC oxidation. Gene encoding thiosulfate: quinone oxidoreductase was present in Acidicaldus sp. strain DX-1, while no candidate genes with significant similarity to tetrathionate hydrolase were found. Additionally, there were genes encoding heterodisulfide reductase complex, which was proposed to play a crucial role in oxidizing cytoplasmic sulfur. Like many heterotrophic sulfur oxidizers, Acidicaldus sp. strain DX-1 had no genes encoding enzymes essential for the direct oxidation of sulfite. An indirect oxidation of sulfite via adenosine-5'-phosphosulfate was proposed in Acidicaldus strain DX-1. However, compared to other closely related bacteria Acidiphilium cryptum and Acidiphilium multivorum, which harbored the genes encoding Sox system, almost all of these genes were not detected in Acidicaldus sp. strain DX-1. This study might provide some references for the future study of RISC oxidation in heterotrophic sulfur-oxidizing acidophiles. PMID:27239474

  20. Linking Mn(II)-oxidizing bacteria to natural attenuation at a former U mining site

    NASA Astrophysics Data System (ADS)

    Akob, D.; Bohu, T.; Beyer, A.; Schäffner, F.; Händel, M.; Johnson, C.; Merten, D.; Büchel, G.; Totsche, K.; Küsel, K.

    2012-04-01

    Uranium mining near Ronneburg, Germany resulted in widespread environmental contamination with acid mine drainage (AMD) and high concentrations of heavy metals and radionuclides. Despite physical remediation of the area, groundwater is still a source of heavy metal contaminants, e.g., Cd, Ni, Co, Cu and Zn, to nearby ecosystems. However, natural attenuation of heavy metals is occurring in Mn oxide rich soils and sediments ranging in pH from 5 to 7. While microorganisms readily oxidize Mn(II) and precipitate Mn oxides at pH ~7 under oxic conditions, few studies describe Mn(II)-oxidizing bacteria (MOB) at pH ~5 and/or in the presence of heavy metals. In this study we (1) isolated MOB from the contaminated Ronneburg area at pH 5.5 and 7 and (2) evaluated the biological formation of Mn oxides. We isolated nine MOB strains at pH 7 (members of the Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla) and a single isolate at pH 5.5 (Oxalobacteraceae isolate AB_14, within the β-Proteobacteria). LA-ICP-MS showed that all isolates accumulated Mn and Fe in their biomass. However, the Oxalobacteraceae isolate AB_14 oxidizes more Mn without additional Fe in the medium. Preliminary FTIR analysis indicated that all isolates formed precipitates, which showed absorption bands that were characteristic for birnessite. High resolution TEM showed variable morphology of precipitates and EDS confirmed the presence of Mn oxides. Isolate AB_14 was not surrounded with precipitates whereas our Actinobacteria isolate AB_18 was encrusted with Mn oxides. Electron diffraction is currently being used to confirm the presence of birnessite and other Mn oxide phases. This, the first known report of any organism capable of Mn oxidation at low pH, demonstrated that MOB can be involved in the natural attenuation of both moderately acidic and neutral pH soils and sediments via the formation of biogenic Mn oxides. Future work will fully evaluate the minerals formed in this process as well

  1. Molecular diversity of the ammonia-oxidizing bacteria community in disused tin-mining ponds located within Kampar, Perak, Malaysia.

    PubMed

    Sow, S L S; Khoo, G; Chong, L K; Smith, T J; Harrison, P L; Ong, H K A

    2014-02-01

    Disused tin-mining ponds make up a significant amount of water bodies in Malaysia particularly at the Kinta Valley in the state of Perak where tin-mining activities were the most extensive, and these abundantly available water sources are widely used in the field of aquaculture and agriculture. However, the natural ecology and physicochemical conditions of these ponds, many of which have been altered due to secondary post-mining activities, remains to be explored. As ammonia-oxidizing bacteria (AOB) are directly related to the nutrient cycles of aquatic environments and are useful bioindicators of environmental variations, the focus of this study was to identify AOBs associated with disused tin-mining ponds that have a history of different secondary activities in comparison to ponds which were left untouched and remained as part of the landscape. The 16S rDNA gene was used to detect AOBs in the sediment and water sampled from the three types of disused mining ponds, namely ponds without secondary activity, ponds that were used for lotus cultivation and post-aquaculture ponds. When the varying pond types were compared with the sequence and phylogenetic analysis of the AOB clone libraries, both Nitrosomonas and Nitrosospira-like AOB were detected though Nitrosospira spp. was seen to be the most ubiquitous AOB as it was present in all ponds types. However, AOBs were not detected in the sediments of idle ponds. Based on rarefaction analysis and diversity indices, the disused mining pond with lotus culture indicated the highest richness of AOBs. Canonical correspondence analysis indicated that among the physicochemical properties of the pond sites, TAN and nitrite were shown to be the main factors that influenced the community structure of AOBs in these disused tin-mining ponds.

  2. The role of anaerobic bacteria in the neutralization of acid mine drainage. [Desulfovibrio

    SciTech Connect

    Bell, P.E.

    1988-01-01

    In contrast to the acidic water column, the sediments underlying Lake Anna, which receives acid mine drainage, are circumneutral and contain 1-4 meq alkalinity/L. Indirect fluorescent antibody counts of a methanogen (strain CA) and a sulfate reducer (Desulfovibrio strain SM) demonstrated that these organisms were present in the sediments at numbers of approximately 10{sup 6} bacteria/mL sediment. Anaerobic heterotrophs in the sediments underlying the acidified arm of the lake outnumbered anaerobic heterotrophs in a non-acidified arm of the lake. A major storm event resulted in the deposition of 11 cm of oxidized, acidic new sediment material over the older circumneutral sediments. The Eh in the new sediments decreased by 200 mV within one week after the storm event. The pH and alkalinity increased even in the 1-cm layer by two weeks after the storm and products of sulfate reduction (acid volatile sulfide) increased at three weeks after the storm. This suggests that biological processes other than sulfate reduction were responsible for the initial buffering of these sediments. Laboratory experiments using the sulfate reducer and two anaerobes (also isolated from the sediments) suggested that alkalinity production during sulfate reduction decreases with decreasing carbon concentration. Generation of alkalinity was found not to be a simple function of sulfate reduction or of iron reduction. The generation of alkalinity was found to be a function of the carbon source, and concentration, organisms present, and mineral phase formed. Iron reduction rates in the sediments of Contrary Creek ranged from 4.9-27.8 mM/m{sup 2}-sediment-day. Alkalinity was produced in the floc layer in the absence of sulfate reduction. Iron reduction could be responsible for the mineralization of 15-90% of the carbon input to this system.

  3. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage].

    PubMed

    Su, Yu; Wang, Jin; Peng, Shu-chuan; Yue, Zheng-bo; Chen, Tian-hu; Jin, Jie

    2010-08-01

    The performance of three organic carbon sources was assessed in terms of sulfate reduction and main metal removal, by using sewage sludge as the source of sulfate-reducing bacteria (SRB) and adding rice straw and ethanol with equal quantity. Results indicated that sewage sludge which contained certain amount of alkaline material could neutralize acidity of acid mine drainage(AMD) on the first day of experiment, elevating pH value from the initial 2.5 to around 5.4-6.3 and achieving suitable pH condition for SRB growth. Sewage sludge contained fewer biodegradable organic substance, reactive mixture with single sewage sludge showed the lowest sulfate reduction (65.9%). When the single sewage sludge was supplemented with rice straw, SRB reducing sulfate was enhanced (79.2%), because the degradation rate of rice straw was accelerated by the specific bacteria in sewage sludge, providing relatively abundant carbon source for SRB. Control experiment with ethanol was most effective in promoting sulfate reduction (97.9%). Metal removal efficiency in all three reactors was as high as 99% for copper, early copper removal was mainly attributed to the adsorption capacity of sewage sludge prior to SRB acclimation. It is feasible for using rice straw and sewage sludge as carbon sources for SRB treating acid mine drainage at a low cost, this may have significant implication for in situ bioremediation of mine environment.

  4. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage].

    PubMed

    Su, Yu; Wang, Jin; Peng, Shu-chuan; Yue, Zheng-bo; Chen, Tian-hu; Jin, Jie

    2010-08-01

    The performance of three organic carbon sources was assessed in terms of sulfate reduction and main metal removal, by using sewage sludge as the source of sulfate-reducing bacteria (SRB) and adding rice straw and ethanol with equal quantity. Results indicated that sewage sludge which contained certain amount of alkaline material could neutralize acidity of acid mine drainage(AMD) on the first day of experiment, elevating pH value from the initial 2.5 to around 5.4-6.3 and achieving suitable pH condition for SRB growth. Sewage sludge contained fewer biodegradable organic substance, reactive mixture with single sewage sludge showed the lowest sulfate reduction (65.9%). When the single sewage sludge was supplemented with rice straw, SRB reducing sulfate was enhanced (79.2%), because the degradation rate of rice straw was accelerated by the specific bacteria in sewage sludge, providing relatively abundant carbon source for SRB. Control experiment with ethanol was most effective in promoting sulfate reduction (97.9%). Metal removal efficiency in all three reactors was as high as 99% for copper, early copper removal was mainly attributed to the adsorption capacity of sewage sludge prior to SRB acclimation. It is feasible for using rice straw and sewage sludge as carbon sources for SRB treating acid mine drainage at a low cost, this may have significant implication for in situ bioremediation of mine environment. PMID:21090305

  5. Molecular diversity of the methanotrophic bacteria communities associated with disused tin-mining ponds in Kampar, Perak, Malaysia.

    PubMed

    Sow, S L S; Khoo, G; Chong, L K; Smith, T J; Harrison, P L; Ong, H K A

    2014-10-01

    In a previous study, notable differences of several physicochemical properties, as well as the community structure of ammonia oxidizing bacteria as judged by 16S rRNA gene analysis, were observed among several disused tin-mining ponds located in the town of Kampar, Malaysia. These variations were associated with the presence of aquatic vegetation as well as past secondary activities that occurred at the ponds. Here, methane oxidizing bacteria (MOB), which are direct participants in the nutrient cycles of aquatic environments and biological indicators of environmental variations, have been characterised via analysis of pmoA functional genes in the same environments. The MOB communities associated with disused tin-mining ponds that were exposed to varying secondary activities were examined in comparison to those in ponds that were left to nature. Comparing the sequence and phylogenetic analysis of the pmoA clone libraries at the different ponds (idle, lotus-cultivated and post-aquaculture), we found pmoA genes indicating the presence of type I and type II MOB at all study sites, but type Ib sequences affiliated with the Methylococcus/Methylocaldum lineage were most ubiquitous (46.7 % of clones). Based on rarefaction analysis and diversity indices, the disused mining pond with lotus culture was observed to harbor the highest richness of MOB. However, varying secondary activity or sample type did not show a strong variation in community patterns as compared to the ammonia oxidizers in our previous study.

  6. INNOVATIVE, IN SITU TREATMENT OF ACID MINE DRAINAGE USING SULFATE REDUCING BACTERIA

    EPA Science Inventory

    Acid generation in abandoned mines is a widespread problem. There are a numberous quantity of abandoned mines in the west which have no power source, have limited physical accessibility and have limited remediation funds available. Acid is produced chemically, through pyritic min...

  7. [Regulation of hydrogen sulfide level by acidophobic bacteria of Thiobacillus genus in technogenic reservoirs of sulfur mining regions].

    PubMed

    Moroz, O M

    2010-01-01

    An increase of acidophobic thione bacteria quantity in Rozdil and Yavoriv reservoirs of sulfur mining regions during 2005-2009 years, which correlates with a decrease of hydrogen sulfide content in water surface layers, was shown. The ability of acidophobic bacteria of Thiobacillus genus, isolated from "Yavorivske" lake, to oxidize effectively hydrogen sulfide added into Beijerinck medium instead of thiosulfate, was discovered. It was established, that hydrogen sulfide oxidizing efficiency by Thiobacillus sp. Yav-8, Yav-11 and Yav-14 strains is the highest (78.48-84.56%) when its content in cultivation medium was increased twice: to 2584 mg/l. An increase of sulfur quantity in sodium sulfide form from to six times as compared with its standard content in sodium thiosulfate form in the Beijerinck medium does not lead to the increase of hydrogen sulfide oxidizing efficiency by cells.

  8. Occurrence and activity of iron and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils

    SciTech Connect

    Olson, G.J.; McFeters, G.A.; Temple, K.L.

    1980-03-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron- and sulfur-oxidizing bacteria. Spoils examined were of three types: (1) acidic pyrite-rich waste coal, (2) oxidation halo material, and (3) alkaline, which was the most widespread type. Bacterial numbers, sulfur oxidation, and /sup 14/CO/sub 2/ uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulfur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH indicating that bacterial pyrite oxidation occurred in localized areas where groundwaters contacted either replaced spoils or coal which contained either pyrite or other metal sulfides. Bacterial activity may contribute to trace metal and sulfate leaching which occur in the area.

  9. Occurrence and activity of iron- and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils

    SciTech Connect

    Olson, G.J.; McFeters, G.A.; Temple, K.L.

    1981-01-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron-and sulphur-oxidizing bacteria. Spoils examined were of three types: (a) acidic pyrite-rich waste coal; (b) oxidation halo material; and (c) alkaline material, which was the most widespread type. Bacterial numbers, sulphur oxidation and /SUP/1/SUP/4CO/SUB/2 uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulphur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH, indicating that bacterial pyrite oxidation occurred where groundwaters contacted either replaced spoils of coal that contained pyrite or other metal sulphides. Bacterial activity may contribute to trace metal and sulphate leaching in the area. (27 refs.)

  10. Occurrence and activity of iron- and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils.

    PubMed

    Olson, G J; McFeters, G A; Temple, K L

    1981-03-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron- and sulfur-oxidizing bacteria. Spoils examined were of three types: (a) acidic pyrite-rich waste coal, (b) oxidation halo material, and (c) alkaline material, which was the most widespread type. Bacterial numbers, sulfur oxidation, and(14)CO2 uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulfur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH, indicating that bacterial pyrite oxidation occurred where groundwaters contacted either replaced spoils or coal that contained pyrite or other metal sulfides. Bacterial activity may contribute to trace metal and sulfate leaching in the area.

  11. [Acidophilic methanogens and their applications in anaerobic digestion].

    PubMed

    Guo, Xiao-Hui; Wu, Wei-Xiang; Han, Zhi-Ying; Shi, De-Zhi

    2011-02-01

    Methanogens play an important role in global carbon cycle. There exists a range of unknown methanogenic archaea in acidic peat lands, among which, acidophilic methanogens have attracted increasing research interests because of their special metabolic characteristics. To introduce acidophilic methanogens in the anaerobic digestion process of high concentration organic wastes or waste water could essentially overcome the inhibition of acid accumulation on the methanogens and help reduce the operation cost, broadening the industrial application of anaerobic bio-treatment technology. In this paper, we reviewed the recent researches on acidophilic methanogens, with the focus on enrichment and isolation methods, physiological and biochemical characters, metabolic characteristics, and application of molecular biology. The potential applications of acidophilic methanogens in anaerobic digestion process were analyzed and proposed, and the directions for further researches were suggested.

  12. Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium.

    PubMed

    Qiu, Guanzhou; Li, Qian; Yu, Runlan; Sun, Zhanxue; Liu, Yajie; Chen, Miao; Yin, Huaqun; Zhang, Yage; Liang, Yili; Xu, Lingling; Sun, Limin; Liu, Xueduan

    2011-04-01

    A mesophilic acidophilic consortium was enriched from acid mine drainage samples collected from several uranium mines in China. The performance of the consortium in column bioleaching of low-grade uranium embedded in granite porphyry was investigated. The influences of several chemical parameters on uranium extraction in column reactor were also investigated. A uranium recovery of 96.82% was achieved in 97 days column leaching process including 33 days acid pre-leaching stage and 64 days bioleaching stage. It was reflected that indirect leaching mechanism took precedence over direct. Furthermore, the bacterial community structure was analyzed by using Amplified Ribosomal DNA Restriction Analysis. The results showed that microorganisms on the residual surface were more diverse than that in the solution. Acidithiobacillus ferrooxidans was the dominant species in the solution and Leptospirillum ferriphilum on the residual surface.

  13. Gene Loss and Horizontal Gene Transfer Contributed to the Genome Evolution of the Extreme Acidophile "Ferrovum".

    PubMed

    Ullrich, Sophie R; González, Carolina; Poehlein, Anja; Tischler, Judith S; Daniel, Rolf; Schlömann, Michael; Holmes, David S; Mühling, Martin

    2016-01-01

    Acid mine drainage (AMD), associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus "Ferrovum" are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of "Ferrovum" has proven to be extremely difficult and has so far only been successful for the designated type strain "Ferrovum myxofaciens" P3G. In this study, the genomes of two novel strains of "Ferrovum" (PN-J185 and Z-31) derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of "Ferrovum" sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G). Phylogenomic scrutiny suggests that the four strains represent three "Ferrovum" species that cluster in two groups (1 and 2). Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the "F. myxofaciens" strains (group 1) appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed

  14. Uncovering a microbial enigma: isolation and characterization of the streamer-generating, iron-oxidizing, acidophilic bacterium "Ferrovum myxofaciens".

    PubMed

    Johnson, D Barrie; Hallberg, Kevin B; Hedrich, Sabrina

    2014-01-01

    A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of "acid streamer" growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified "overlay" solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolate from an abandoned copper mine ("Ferrovum myxofaciens" strain P3G) have been elucidated. "F. myxofaciens" is an extremely acidophilic, psychrotolerant obligate autotroph that appears to use only ferrous iron as an electron donor and oxygen as an electron acceptor. It appears to use the Calvin-Benson-Bassham pathway to fix CO2 and is diazotrophic. It also produces copious amounts of extracellular polymeric materials that cause cells to attach to each other (and to form small streamer-like growth in vitro) and to different solid surfaces. "F. myxofaciens" can catalyze the oxidative dissolution of pyrite and, like many other acidophiles, is tolerant of many (cationic) transition metals. "F. myxofaciens" and related clone sequences form a monophyletic group within the Betaproteobacteria distantly related to classified orders, with genera of the family Nitrosomonadaceae (lithoautotrophic, ammonium-oxidizing neutrophiles) as the closest relatives. On the basis of the phylogenetic and phenotypic differences of "F. myxofaciens" and other Betaproteobacteria, a new family, "Ferrovaceae," and order, "Ferrovales," within the class Betaproteobacteria are proposed. "F. myxofaciens" is the first extreme acidophile to be described in the class Betaproteobacteria.

  15. Genomics of the thermo-acidophilic red alga Galdieria sulphuraria

    NASA Astrophysics Data System (ADS)

    Barbier, Guillaume G.; Zimmermann, Marc; Weber, Andreas P. M.

    2005-09-01

    Extremophilic organisms dwell in environments that are characterized by high or low temperatures (thermophiles or psychrophiles), very low or high pH-values (acidophiles or alkalophiles), high salt concentrations (halophiles), high pressure (barophiles), or extreme drought (xerophiles). Many extremophiles are microbes, and many also belong to the prokaryota. Galdieria sulphuraria, however, is a member of a group of extremophilic eukaryotes that are named Cyanidiales. Cyanidiales are unicellular red micro-algae that occur worldwide in hot acidic waters, volcanic calderas, and in human-made acidic environments such as acidic mine drainage. G. sulphuraria has a unique position within the Cyanidiales because, in contrast to the other obligate photoautotrophic members of this group, it is able to grow photoautotrophically, mixotrophically, and heterotrophically. It is not only resistant to acid (pH 0) and heat (56oC), but also to high salt (1.5 M NaCl), toxic metals, and many other abiotic stressors. This unusual combination of features such as thermophily, acidophily, resistance to a wide array of abiotic stressors, and an extraordinary metabolic plasticity make G. sulphuraria highly interesting model organism to study adaptation to extreme environments. We have started a genomics approach to gain insight into the biology of G. sulphuraria and to identify genes and gene products critical for survival under extreme conditions. To this end, we pursue a whole-genome, shotgun sequencing approach towards unraveling the genome sequence of G. sulphuraria. We report here on the status quo of the genome-sequencing project and we summarize what we have learned to date from the genome sequence about the biology of this truly unique extremophile.

  16. Bioaccumulation and biosorption of Cd(2+) and Zn(2+) by bacteria isolated from a zinc mine in Thailand.

    PubMed

    Limcharoensuk, Tossapol; Sooksawat, Najjapak; Sumarnrote, Anchana; Awutpet, Thiranun; Kruatrachue, Maleeya; Pokethitiyook, Prayad; Auesukaree, Choowong

    2015-12-01

    The three bacteria, Tsukamurella paurometabola A155, Pseudomonas aeruginosa B237, and Cupriavidus taiwanensis E324, were isolated from soils collected from a zinc mine in Tak Province, Thailand. Among these bacteria, P. aeruginosa B237 and C. taiwanensis E324 were tolerant of both cadmium and zinc, while T. paurometabola A155 was highly tolerant of zinc only. Bioaccumulation experiment revealed that Cd(2+) and Zn(2+) were mainly adsorbed on the cell walls of these bacteria rather than accumulated inside the cells. During Cd(2+) and Zn(2+) biosorption, P. aeruginosa B237 and T. paurometabola A155 showed the highest removal efficiencies for Cd(2+) and Zn(2+), respectively. The maximum biosorption capacities of P. aeruginosa B237 and T. paurometabola A155 biomasses for Cd(2+) and Zn(2+) biosorptions were 16.89 and 16.75 mg g(-1), respectively, under optimal conditions. The experimental data of Cd(2+) and Zn(2+) biosorptions fitted well with Langmuir isotherm model, suggesting that Cd(2+) and Zn(2+) adsorptions occurred in a monolayer pattern on a homogeneous surface. Furthermore, the pseudo-second order and pseudo-first order kinetic models best described the biosorption kinetics of Cd(2+) and Zn(2+) adsorptions, respectively, suggesting that the Cd(2+) and Zn(2+) adsorptions took place mainly by chemisorption (Cd(2+)) and physisorption (Zn(2+)). PMID:26300116

  17. Bioaccumulation and biosorption of Cd(2+) and Zn(2+) by bacteria isolated from a zinc mine in Thailand.

    PubMed

    Limcharoensuk, Tossapol; Sooksawat, Najjapak; Sumarnrote, Anchana; Awutpet, Thiranun; Kruatrachue, Maleeya; Pokethitiyook, Prayad; Auesukaree, Choowong

    2015-12-01

    The three bacteria, Tsukamurella paurometabola A155, Pseudomonas aeruginosa B237, and Cupriavidus taiwanensis E324, were isolated from soils collected from a zinc mine in Tak Province, Thailand. Among these bacteria, P. aeruginosa B237 and C. taiwanensis E324 were tolerant of both cadmium and zinc, while T. paurometabola A155 was highly tolerant of zinc only. Bioaccumulation experiment revealed that Cd(2+) and Zn(2+) were mainly adsorbed on the cell walls of these bacteria rather than accumulated inside the cells. During Cd(2+) and Zn(2+) biosorption, P. aeruginosa B237 and T. paurometabola A155 showed the highest removal efficiencies for Cd(2+) and Zn(2+), respectively. The maximum biosorption capacities of P. aeruginosa B237 and T. paurometabola A155 biomasses for Cd(2+) and Zn(2+) biosorptions were 16.89 and 16.75 mg g(-1), respectively, under optimal conditions. The experimental data of Cd(2+) and Zn(2+) biosorptions fitted well with Langmuir isotherm model, suggesting that Cd(2+) and Zn(2+) adsorptions occurred in a monolayer pattern on a homogeneous surface. Furthermore, the pseudo-second order and pseudo-first order kinetic models best described the biosorption kinetics of Cd(2+) and Zn(2+) adsorptions, respectively, suggesting that the Cd(2+) and Zn(2+) adsorptions took place mainly by chemisorption (Cd(2+)) and physisorption (Zn(2+)).

  18. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: A membrane-bound complex oxidizing ferrous iron.

    PubMed

    Castelle, Cindy J; Roger, Magali; Bauzan, Marielle; Brugna, Myriam; Lignon, Sabrina; Nimtz, Manfred; Golyshina, Olga V; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2015-08-01

    The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far. At present, little is known about the nature or the structural and functional organization of the proteins in F. acidiphilum that impact the iron biogeochemical cycle. We combine here biochemical and biophysical techniques such as enzyme purification, activity measurements, proteomics and spectroscopy to characterize the iron oxidation pathway(s) in F. acidiphilum. We isolated two respiratory membrane protein complexes: a 850 kDa complex containing an aa3-type cytochrome oxidase and a blue copper protein, which directly oxidizes ferrous iron and reduces molecular oxygen, and a 150 kDa cytochrome ba complex likely composed of a di-heme cytochrome and a Rieske protein. We tentatively propose that both of these complexes are involved in iron oxidation respiratory chains, functioning in the so-called uphill and downhill electron flow pathways, consistent with autotrophic life. The cytochrome ba complex could possibly play a role in regenerating reducing equivalents by a reverse ('uphill') electron flow. This study constitutes the first detailed biochemical investigation of the metalloproteins that are potentially directly involved in iron-mediated energy conservation in a member of the acidophilic archaea of the genus Ferroplasma.

  19. Extreme arsenic resistance by the acidophilic archaeon 'Ferroplasma acidarmanus' Fer1

    SciTech Connect

    Baker-Austin, C., M. Dopson, M. Wexler, R. G. Sawers, A. Stemmler, B.P. Rosen and P.L. Bond

    2007-01-01

    'Ferroplasma acidarmanus' Fer1 is an arsenic-hypertolerant acidophilic archaeon isolated from the Iron Mountain mine, California; a site characterized by heavy metals contamination. The presence of up to 10 g arsenate per litre [As(V); 133 mM] did not significantly reduce growth yields, whereas between 5 and 10 g arsenite per litre [As(III); 67-133 mM] significantly reduced the yield. Previous bioinformatic analysis indicates that 'F. acidarmanus' Fer1 has only two predicted genes involved in arsenic resistance and lacks a recognizable gene for an arsenate reductase. Biochemical analysis suggests that 'F. acidarmanus' Fer1 does not reduce arsenate indicating that 'F. acidarmanus' Fer1 has an alternative resistance mechanism to arsenate other than reduction to arsenite and efflux. Primer extension analysis of the putative ars transcriptional regulator (arsR) and efflux pump (arsB) demonstrated that these genes are co-transcribed, and expressed in response to arsenite, but not arsenate. Two-dimensional polyacrylamide gel electrophoresis analysis of 'F. acidarmanus' Fer1 cells exposed to arsenite revealed enhanced expression of proteins associated with protein refolding, including the thermosome Group II HSP60 family chaperonin and HSP70 DnaK type heat shock proteins. This report represents the first molecular and proteomic study of arsenic resistance in an acidophilic archaeon.

  20. Isolation of an extremely acidophilic and highly efficient strain Acidithiobacillus sp. for chalcopyrite bioleaching.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Xin, Yu; Zhang, Ling; Kang, Wenliang; Wang, Wu

    2012-11-01

    An extremely acidophilic sulfur-oxidizing bacterium was isolated from an industrial-scale bioheap of the Zijinshan copper mine and was named ZJJN. A tuft of flagella and a layer of thick capsule outside the cell envelope were clearly observed under transmission electron microscopy (TEM), which might be closely related to the extremely acid-proof capacity of ZJJN cells in the bioleaching system; 16S ribosomal RNA (rRNA) phylogeny showed that the isolated strain was highly homologous to the genera of Acidithiobacillus. The optimum temperature of ZJJN was determined at 30 °C and pH at 1.0. It was capable of growth at even pH 0. Strain ZJJN can utilize reduced sulfur as an energy source but not with organics or ferrous ion. Strain ZJJN was sensitive to all antibiotics with different concentrations; when it showed a certain resistance to different concentrations of Cu(2+). In the mixed strains of ZJJN and A. ferrooxidans system (initial pH 1.0), the copper-leaching efficiency was up to 60.1 %, which was far higher than other systems. Scanning electron microscopy (SEM) analysis showed that less jarosite precipitation was produced in the most efficient system. The extremely acidophilic strain ZJJN would be of great potential in the application of chalcopyrite bioleaching.

  1. Transfer of IncP plasmids to extremely acidophilic Thiobacillus thiooxidans

    SciTech Connect

    Jin, S.M.; Yan, W.M.; Wang, Z.N. )

    1992-01-01

    Thiobacillus thiooxidans is an acidophilic, obligately autotrophic bacterium which derives its energy by oxidizing reduced or partially reduced sulfur compounds and obtains its carbon by fixing carbon dioxide from the atmosphere. The strain is able to live in inorganic, acidic environments and is present in large numbers in coal mine drainage and in mineral ores. T. thiooxidans has been used industrially in metal leaching from mineral ores and in the microbial desulfurization of coal in combination with Thiobacillus ferrooxidans. Although T. thiooxidans has been well studied physiologically, very little is known about it genetics. The broad-host-range IncP plasmids RP4, R68.45, RP1::Tn501, and pUB307 were transferred directly to extremely acidophilic Thiobacillus thiooxidans from Escherichia coli by conjugation at frequencies of 10{sup {minus}5} to 10{sup {minus}7} per recipient. The ability of T. thiooxidans to receive and express the antibiotic resistance markers was examined. The plasmid RP4 was transferred back to E. coli from T. thiooxidans at a frequency of 1.0 {times} 10{sup {minus}3} per recipient.

  2. The hydroxyectoine gene cluster of the non-halophilic acidophile Acidiphilium cryptum.

    PubMed

    Moritz, Katharina D; Amendt, Birgit; Witt, Elisabeth M H J; Galinski, Erwin A

    2015-01-01

    Acidiphilium cryptum is an acidophilic, heterotrophic α-Proteobacterium which thrives in acidic, metal-rich environments (e.g. acid mine drainage). Recently, an ectABCDask gene cluster for biosynthesis of the compatible solutes ectoine and hydroxyectoine was detected in the genome sequence of A. cryptum JF-5. We were able to demonstrate that the type strain A. cryptum DSM 2389(T) is capable of synthesizing the compatible solute hydroxyectoine in response to moderate osmotic stress caused by sodium chloride and aluminium sulphate, respectively. Furthermore, we used the A. cryptum JF-5 sequence to amplify the ectABCDask gene cluster from strain DSM 2389(T) and achieved heterologous expression of the gene cluster in Escherichia coli. Hence, we could for the first time prove metabolic functionality of the genes responsible for hydroxyectoine biosynthesis in the acidophile A. cryptum. In addition, we present information on specific enzyme activity of A. cryptum DSM 2389(T) ectoine synthase (EctC) in vitro. In contrast to EctCs from halophilic microorganisms, the A. cryptum enzyme exhibits a higher isoelectric point, thus a lower acidity, and has maximum specific activity in the absence of sodium chloride.

  3. Simulation of acid mine drainage generation around Küre VMS Deposits, Northern Turkey

    NASA Astrophysics Data System (ADS)

    Demirel, Cansu; Kurt, Mehmet Ali; Çelik Balci, Nurgül

    2015-04-01

    This study investigated comparative leaching characteristics of acidophilic bacterial strains under shifting environmental conditions at proposed two stages as formation stage or post acidic mine drainage (AMD) generation. At the first stage, initial reactions associated with AMD generation was simulated in shaking flasks containing massive pyritic chalcopyrite ore by using a pure strain Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus sp. mostly dominated by A. ferrooxidans and A. thiooxidans at 26oC. At the second stage, long term bioleaching experiments were carried out with the same strains at 26oC and 40oC to investigate the leaching characteristics of pyritic chalcopyrite ore under elevated heavy metal and temperature conditions. During the experiments, physicochemical characteristics (e.i. Eh, pH, EC) metal (Fe, Co, Cu, Zn) and sulfate concentration of the experimental solution were monitored during 180 days. Significant acid generation and sulfate release were determined during bioleaching of the ore by mixed acidophilic cultures containing both iron and sulfur oxidizers. In the early stage of the experiments, heavy metal release from the ore was caused by generation of acid due to accelerated bacterial oxidation of the ore. Generally high concentrations of Co and Cu were released into the solution from the experiments conducted by pure cultures of Acidithiobacillus ferrooxidans whereas high Zn and Fe was released into the solution from the mixed culture experiments. In the later stage of AMD generation and post AMD, chemical oxidation is accelerated causing excessive amounts of contamination, even exceeding the amounts resulted from bacterial oxidation by mixed cultures. Acidithibacillus ferrooxidans was found to be more effective in leaching Cu, Fe and Co at higher temperatures in contrary to mixed acidophiles that are more prone to operate at optimal moderate conditions. Moreover, decreasing Fe values are noted in bioleaching

  4. Biologically-induced precipitation of sphalerite-wurtzite nanoparticles by sulfate-reducing bacteria: implications for acid mine drainage treatment.

    PubMed

    Castillo, Julio; Pérez-López, Rafael; Caraballo, Manuel A; Nieto, José M; Martins, Mónica; Costa, M Clara; Olías, Manuel; Cerón, Juan C; Tucoulou, Rémi

    2012-04-15

    Several experiments were conducted to evaluate zinc-tolerance of sulfate-reducing bacteria (SRB) obtained from three environmental samples, two inocula from sulfide-mining districts and another inoculum from a wastewater treatment plant. The populations of SRB resisted zinc concentrations of 260 mg/L for 42 days in a sulfate-rich medium. During the experiments, sulfate was reduced to sulfide and concentrations in solution decreased. Zinc concentrations also decreased from 260 mg/L to values below detection limit. Both decreases were consistent with the precipitation of newly-formed sphalerite and wurtzite, two polymorphs of ZnS, forming <2.5-μm-diameter spherical aggregates identified by microscopy and synchrotron-μ-XRD. Sulfate and zinc are present in high concentrations in acid mine drainage (AMD) even after passive treatments based on limestone dissolution. The implementation of a SRB-based zinc removal step in these systems could completely reduce the mobility of all metals, which would improve the quality of stream sediments, water and soils in AMD-affected landscapes.

  5. Biodiversity and phylogenetic analysis of culturable bacteria indigenous to Khewra salt mine of pakistan and their industrial importance

    PubMed Central

    Akhtar, Nasrin; Ghauri, Muhammad A.; Iqbal, Aamira; Anwar, Munir A.; Akhtar, Kalsoom

    2008-01-01

    Culturable bacterial biodiversity and industrial importance of the isolates indigenous to Khewra salt mine, Pakistan was assessed. PCR Amplification of 16S rDNA of isolates was carried out by using universal primers FD1 and rP1and products were sequenced commercially. These gene sequences were compared with other gene sequences in the GenBank databases to find the closely related sequences. The alignment of these sequences with sequences available from GenBank database was carried out to construct a phylogenetic tree for these bacteria. These genes were deposited to GenBank and accession numbers were obtained. Most of the isolates belonged to different species of genus Bacillus, sharing 92-99% 16S rDNA identity with the respective type strain. Other isolates had close similarities with Escherichia coli, Staphylococcus arlettae and Staphylococcus gallinarum with 97%, 98% and 99% 16S rDNA similarity respectively. The abilities of isolates to produce industrial enzymes (amylase, carboxymethylcellulase, xylanase, cellulase and protease) were checked. All isolates were tested against starch, carboxymethylcellulose (CMC), xylane, cellulose, and casein degradation in plate assays. BPT-5, 11,18,19 and 25 indicated the production of copious amounts of carbohydrates and protein degrading enzymes. Based on this study it can be concluded that Khewra salt mine is populated with diverse bacterial groups, which are potential source of industrial enzymes for commercial applications. PMID:24031194

  6. Biodiversity and phylogenetic analysis of culturable bacteria indigenous to Khewra salt mine of pakistan and their industrial importance.

    PubMed

    Akhtar, Nasrin; Ghauri, Muhammad A; Iqbal, Aamira; Anwar, Munir A; Akhtar, Kalsoom

    2008-01-01

    Culturable bacterial biodiversity and industrial importance of the isolates indigenous to Khewra salt mine, Pakistan was assessed. PCR Amplification of 16S rDNA of isolates was carried out by using universal primers FD1 and rP1and products were sequenced commercially. These gene sequences were compared with other gene sequences in the GenBank databases to find the closely related sequences. The alignment of these sequences with sequences available from GenBank database was carried out to construct a phylogenetic tree for these bacteria. These genes were deposited to GenBank and accession numbers were obtained. Most of the isolates belonged to different species of genus Bacillus, sharing 92-99% 16S rDNA identity with the respective type strain. Other isolates had close similarities with Escherichia coli, Staphylococcus arlettae and Staphylococcus gallinarum with 97%, 98% and 99% 16S rDNA similarity respectively. The abilities of isolates to produce industrial enzymes (amylase, carboxymethylcellulase, xylanase, cellulase and protease) were checked. All isolates were tested against starch, carboxymethylcellulose (CMC), xylane, cellulose, and casein degradation in plate assays. BPT-5, 11,18,19 and 25 indicated the production of copious amounts of carbohydrates and protein degrading enzymes. Based on this study it can be concluded that Khewra salt mine is populated with diverse bacterial groups, which are potential source of industrial enzymes for commercial applications.

  7. Identification of Mn(II)-Oxidizing Bacteria from a Low-pH Contaminated Former Uranium Mine

    PubMed Central

    Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-01-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments. PMID:24928873

  8. Biologically-induced precipitation of sphalerite-wurtzite nanoparticles by sulfate-reducing bacteria: implications for acid mine drainage treatment.

    PubMed

    Castillo, Julio; Pérez-López, Rafael; Caraballo, Manuel A; Nieto, José M; Martins, Mónica; Costa, M Clara; Olías, Manuel; Cerón, Juan C; Tucoulou, Rémi

    2012-04-15

    Several experiments were conducted to evaluate zinc-tolerance of sulfate-reducing bacteria (SRB) obtained from three environmental samples, two inocula from sulfide-mining districts and another inoculum from a wastewater treatment plant. The populations of SRB resisted zinc concentrations of 260 mg/L for 42 days in a sulfate-rich medium. During the experiments, sulfate was reduced to sulfide and concentrations in solution decreased. Zinc concentrations also decreased from 260 mg/L to values below detection limit. Both decreases were consistent with the precipitation of newly-formed sphalerite and wurtzite, two polymorphs of ZnS, forming <2.5-μm-diameter spherical aggregates identified by microscopy and synchrotron-μ-XRD. Sulfate and zinc are present in high concentrations in acid mine drainage (AMD) even after passive treatments based on limestone dissolution. The implementation of a SRB-based zinc removal step in these systems could completely reduce the mobility of all metals, which would improve the quality of stream sediments, water and soils in AMD-affected landscapes. PMID:22414495

  9. Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine

    USGS Publications Warehouse

    Akob, Denise M.; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-01-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments.

  10. Phylogeny and photoheterotrophy in the acidophilic phototrophic purple bacterium Rhodoblastus acidophilus.

    PubMed

    Kempher, Megan L; Madigan, Michael T

    2012-07-01

    Norbert Pfennig isolated the first acidophilic purple bacterium over 40 years ago and named the organism Rhodopseudomonas acidophila (now Rhodoblastusacidophilus). Since the original work of Pfennig, no systematic study has been conducted on the phylogeny and carbon nutrition of a collection of strains of Rbl. acidophilus. We have isolated six new strains of Rbl. acidophilus from a Canadian peat bog. These strains, three of the original Pfennig strains and two additional putative R. acidophilus strains isolated several years ago in this laboratory,were characterized as to their pigments, phylogeny, and carbon sources supporting photoheterotrophic growth. Phototrophic cultures were either purple or orange in color,and the color of a particular strain was linked to phylogeny. As for the Pfennig strains of Rbl. acidophilus, all new strains grew photoheterotrophically at pH 5 on a variety of organic and fatty acids. However, in addition to methanol and ethanol, the new strains as well as the Pfennig strains grew on several other primary alcohols, results not reported in the original species description. Our work shows that some phylogenetic and physiological diversity exists within the species Rbl. acidophilus and supports the observation that few species of acidophilic purple bacteria appear to exist in nature.

  11. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage

    SciTech Connect

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H.

    2006-07-15

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant.

  12. [Phylogenetic diversity of culturable bacteria in the ancient salt deposits of the Yipinglang Salt Mine, P. R. China].

    PubMed

    Chen, Yi-guang; Li, Hui-ming; Li, Qin-yuan; Chen, Wei; Cui, Xiao-long

    2007-08-01

    The microbial diversity of cultivable bacteria, isolated from the ancient salt deposits from the Yipinglang Salt Mine (YPL) in the Yunnan Province, P. R. China,was investigated by using conventional culture-dependent method and phylogenetic analyses based on 16S rRNA gene sequence comparisons. 38 bacteria strains were isolated from the brine, halite and saline soil samples on MBA (marine broth agar 2216, Difco) and ISP 2 (International Streotomyces Project medium 2) media supplemented with 0.5-3.5 mol/L NaCl. The genomic DNAs of the isolates were extracted and their 16S rRNA genes were amplified by PCR using bacterial universal primers. The resulting 16S rRNA gene sequences were compared with sequences obtained from public databases to find the most closely related species. Phylogenetic analyses were performed using the software packages MEGA after multiple alignment of sequence data by CLUSTAL X. The evolutional instances (corrected by Kimura's 2-parameter model) were calculated and clustering was performed with the neighbor-joining method. The results showed that the isolates are members of twenty-four genera (Acinetobacter, Agromyces, Arthrobacter, Bacillus, Brevundimonas, Chromohalobacter, Dietzia, Erythrobacter, Exiguobacterium, Halomonas, Idiomarina, Kocuria, Marinobacter, Micrococcus, Paracoccus, Planomicrbium, Porphyrobacter, Pseudomonas, Psychrobacter, Roseivivax, Saccharospirillum, Salegentibactor, Salinicoccus, Streptomyces) of seventeen families (Alteromonadaceae, Bacillaceae, Caulobacteraceae, Flavobacteriaceae, Halomonadaceae, Idiomarinaceae, Microbacteriaceae, Micrococcaceae, Moraxellaceae, Planococcaceae, Pseudomonadaceae, Rhodobacteraceae, Dietziaceae, Saccharospirillaceae, Sphingomonadaceae, Staphylococcaceae, Streptomycetaceae) in four major phylogenetic groups (Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria). The most abundant and diverse isolates were within the phyla of Proteobacteria (47.3%; Gamma-Proteobacteria, 31.5%; Alpha

  13. Isosulfazecin, a new beta-lactam antibiotic, produced by an acidophilic pseudomonad. Fermentation, isolation and characterization.

    PubMed

    Kintaka, K; Haibara, K; Asai, M; Imada, A

    1981-09-01

    A novel beta-lactam antibiotic, isosulfazecin (iSZ), was found to be produced by an acidophilic pseudomonad, Pseudomonas mesoacidophila sp. nov. iSZ was produced in parallel with bacterial growth in nutrient broth containing glycerol and sodium thiosulfate under aerated conditions. iSZ was isolated by chromatography on activated charcoal and anion-exchangers and crystallized from 70% aqueous methanol. The molecular formula was determined to be C12H20N4O9S from physiochemical data. The IR and NMR spectra suggested that iSZ has a beta-lactam ring, methoxyl and sulfonate groups. On acid hydrolysis, it gave L-alanine and D-glutamic acid. iSZ is an epimeric isomer of sulfazecin. iSZ was weakly active against Gram-positive and -negative bacteria, and was strongly active against mutants hypersensitive to beta-lactam antibiotics. PMID:7328050

  14. Growth of the acidophilic iron-sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions

    NASA Astrophysics Data System (ADS)

    Bauermeister, Anja; Rettberg, Petra; Flemming, Hans-Curt

    2014-08-01

    The question of life on Mars has been in focus of astrobiological research for several decades, and recent missions in orbit or on the surface of the planet are constantly expanding our knowledge on Martian geochemistry. For example, massive stratified deposits have been identified on Mars containing sulfate minerals and iron oxides, which suggest the existence of acidic aqueous conditions in the past, similar to acidic iron- and sulfur-rich environments on Earth. Acidophilic organisms thriving in such habitats could have been an integral part of a possibly widely extinct Martian ecosystem, but remains might possibly even exist today in protected subsurface niches. The chemolithoautotrophic strain Acidithiobacillus ferrooxidans was selected as a model organism to study the metabolic capacities of acidophilic iron-sulfur bacteria, especially regarding their ability to grow with in situ resources that could be expected on Mars. The experiments were not designed to accurately simulate Martian physical conditions (except when certain single parameters such as oxygen partial pressure were considered), but rather the geochemical environment that can be found on Mars. A. ferrooxidans could grow solely on the minerals contained in synthetic Mars regolith mixtures with no added nutrients, using either O2 as an external electron acceptor for iron oxidation, or H2 as an external electron donor for iron reduction, and thus might play important roles in the redox cycling of iron on Mars. Though the oxygen partial pressure of the Martian atmosphere at the surface was not sufficient for detectable iron oxidation and growth of A. ferrooxidans during short-term incubation (7 days), alternative chemical O2-generating processes in the subsurface might yield microhabitats enriched in oxygen, which principally are possible under such conditions. The bacteria might also contribute to the reductive dissolution of Fe3+-containing minerals like goethite and hematite, which are

  15. Impact and recovery of freshwater algae and bacteria to mine stress in Iron Creek, Idaho

    SciTech Connect

    Genter, R.; Lehman, R.M.; O`Connell, S.P.

    1995-12-31

    Benthic algal population abundances and the metabolic diversity of the benthic and suspended (seston) microbial heterotrophic communities were used to assess the impact and trends in recovery downstream from a point source flowing from an abandoned mine. Benthic algae and microbes were sampled by brushing a confined area on naturally-colonized rocks in Iron Creek, Idaho, and whole-water samples were collected for seston. Algae were counted microscopically. Microbial community metabolic diversity was determined by simultaneously measuring short-term heterotrophic utilization of 94 different carbon sources. Benthic algal populations shifted from a community dominated by diatoms and filamentous blue-green algae in the two upstream references sites to a community dominated by the unicellular blue-green alga Entophysalis rivals (Chamaesiphon) on rocks below the point source. Community composition of benthic algae in the furthest downstream sites increased in similarity to reference sites, but complete recovery was not observed. Microbial community metabolic diversity of the seston and benthic communities along the stream transect followed a similar pattern; the seston metabolic diversity nearly recovered and the benthic metabolic diversity did not recover when compared to the reference sites. The results suggest that benthic algae and microbial metabolic diversity are useful as structural and functional measures of environmental stress and recovery.

  16. Bacteria diversity and arsenic mobilization in rock biofilm from an ancient gold and arsenic mine.

    PubMed

    Tomczyk-Żak, Karolina; Kaczanowski, Szymon; Drewniak, Łukasz; Dmoch, Łukasz; Sklodowska, Aleksandra; Zielenkiewicz, Urszula

    2013-09-01

    In this paper we characterize the biofilm community from an ancient Złoty Stok gold and arsenic mine. Bacterial diversity was examined using a culture-independent technique based on 16S rRNA gene amplification, cloning and sequencing. We show that unexpectedly the microbial diversity of this community was extremely high (more than 190 OTUs detected), with the most numerous members from Rhizobiales (α-Proteobacteria). Although the level of rock biofilm diversity was similar to the microbial mat community we have previously characterized in the same adit, its taxonomic composition was completely different. Detailed analysis of functional arrA and aioA genes, chemical properties of siderophores found in pore water as well as the biofilm chemical composition suggest that the biofilm community contributes to arsenic pollution of surrounding water in a biogeochemical cycle similar to the one observed in bacterial mats. To interpret our results concerning the biological arsenic cycle, we applied the theory of ecological pyramids of Charles Elton.

  17. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China.

    PubMed

    Xie, Pin; Hao, Xiuli; Herzberg, Martin; Luo, Yantao; Nies, Dietrich H; Wei, Gehong

    2015-01-01

    To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China.

  18. Analysis of Biogeochemistry of Acid-Mine Drainage at Rowe, Massachusetts

    NASA Astrophysics Data System (ADS)

    Ahlfeld, D. P.; Yuretich, R.; Ergas, S.; Nusslein, K.; Feldman, A.

    2003-12-01

    Acid waters rich in iron and sulfate can support a wide variety of microorganisms that catalyze the oxidation-reduction reactions of these bioactive elements, exemplified by acid-mine drainage (AMD). In order to study the biogeochemistry of natural attenuation a field site has been established at Davis Mine, an abandoned pyrite mine in rural Rowe Massachusetts. This site is of particular interest because of the apparent dynamic equilibrium that has restricted the extent of the AMD in this area since the mine was closed nearly 100 years ago. Initial evidence suggests that sulfate reduction is occurring at the fringes of the site. Multi-level monitoring wells and surface water sampling points have been installed. Soil samples collected from the drilled wells are being used to provide inoculums for cultivating bacteria and identifying DNA. Preliminary data indicate a restricted lens of impacted groundwater that moves rapidly through the mine tailings and shallow bedrock fractures, but is contained by ambient groundwater from uncontaminated recharge areas. Sulfate reduction has been documented at the margins of the acid-generating area, and this has been reproduced in laboratory experiments. Current research is now examining the processes of Fe(III) and SO4 reduction and the roles of acidophilic and acid-tolerant anaerobic microorganisms. K12 teachers are part of the research teams and the effects of research experiences on their higher-level understanding of science are being evaluated.

  19. Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system.

    PubMed

    Labrenz, M; Banfield, J F

    2004-04-01

    The microbial diversity of ZnS-forming biofilms in 8 degrees C, circumneutral-pH groundwater in tunnels within the abandoned Piquette Zn, Pb mine (Tennyson, Wisconsin, USA) has been investigated by molecular methods, fluorescence in situ hybridization (FISH), and cultivation techniques. These biofilms are growing on old mine timbers that generate locally anaerobic zones within the mine drainage system. Sulfate-reducing bacteria (SRB) exclusively of the family Desulfobacteriaceae comprise a significant fraction of the active microbiota. Desulfosporosinus strains were isolated, but could not be detected by molecular methods. Other important microbial clusters belonged to the beta-, gamma-, and epsilon-Proteobacteria, the Cytophaga/Flexibacter/Bacteroides-group (CFB), Planctomycetales, Spirochaetales, Clostridia, and green nonsulfur bacteria. Our investigations indicated a growth dependence of SRB on fermentative, cellulolytic, and organic acid-producing Clostridia. A few clones related to sulfur-oxidizing bacteria were detected, suggesting a sulfur cycle related to redox gradients within the biofilm. Sulfur oxidation prevents sulfide accumulation that would lead to precipitation of other sulfide phases. FISH analyses indicated that Desulfobacteriaceae populations were not early colonizers in freshly grown and ZnS-poor biofilms, whereas they were abundant in older, naturally established, and ZnS-rich biofilms. Gram-negative SRB have been detected in situ over a period of 6 months, supporting the important role of these organisms in selective ZnS precipitation in Tennyson mine. Results demonstrate the complex nature of biofilms responsible for in situ bioremediation of toxic metals in a subsurface mine drainage system. PMID:14994175

  20. Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines.

    PubMed

    García G, Mariandrea; Márquez G, Marco Antonio; Moreno H, Claudia Ximena

    2016-01-01

    Bacterial carbonate precipitation has implications in geological processes and important biotechnological applications. Bacteria capable of precipitating carbonates have been isolated from different calcium carbonate deposits (speleothems) in caves, soil, freshwater and seawater around the world. However, the diversity of bacteria from calcareous deposits in Colombia, and their ability to precipitate carbonates, remains unknown. In this study, conventional microbiological methods and molecular tools, such as temporal temperature gradient electrophoresis (TTGE), were used to assess the composition of bacterial communities associated with carbonate deposits and drip-waters from two Colombian mines. A genetic analysis of these bacterial communities revealed a similar level of diversity, based on the number of bands detected using TTGE. The dominant phylogenetic affiliations of the bacteria, determined using 16S rRNA gene sequencing, were grouped into two phyla: Proteobacteria and Firmicutes. Within these phyla, seven genera were capable of precipitating calcium carbonates: Lysinibacillus, Bacillus, Strenotophomonas, Brevibacillus, Methylobacterium, Aeromicrobium and Acinetobacter. FTIR and SEM/EDX were used to analyze calcium carbonate crystals produced by isolated Acinetobacter gyllenbergii. The results showed that rhombohedral and angular calcite crystals with sizes of 90μm were precipitated. This research provides information regarding the presence of complex bacterial communities in secondary carbonate deposits from mines and their ability to precipitate calcium carbonate from calcareous deposits of Colombian mines.

  1. Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines.

    PubMed

    García G, Mariandrea; Márquez G, Marco Antonio; Moreno H, Claudia Ximena

    2016-01-01

    Bacterial carbonate precipitation has implications in geological processes and important biotechnological applications. Bacteria capable of precipitating carbonates have been isolated from different calcium carbonate deposits (speleothems) in caves, soil, freshwater and seawater around the world. However, the diversity of bacteria from calcareous deposits in Colombia, and their ability to precipitate carbonates, remains unknown. In this study, conventional microbiological methods and molecular tools, such as temporal temperature gradient electrophoresis (TTGE), were used to assess the composition of bacterial communities associated with carbonate deposits and drip-waters from two Colombian mines. A genetic analysis of these bacterial communities revealed a similar level of diversity, based on the number of bands detected using TTGE. The dominant phylogenetic affiliations of the bacteria, determined using 16S rRNA gene sequencing, were grouped into two phyla: Proteobacteria and Firmicutes. Within these phyla, seven genera were capable of precipitating calcium carbonates: Lysinibacillus, Bacillus, Strenotophomonas, Brevibacillus, Methylobacterium, Aeromicrobium and Acinetobacter. FTIR and SEM/EDX were used to analyze calcium carbonate crystals produced by isolated Acinetobacter gyllenbergii. The results showed that rhombohedral and angular calcite crystals with sizes of 90μm were precipitated. This research provides information regarding the presence of complex bacterial communities in secondary carbonate deposits from mines and their ability to precipitate calcium carbonate from calcareous deposits of Colombian mines. PMID:26686610

  2. Gene Loss and Horizontal Gene Transfer Contributed to the Genome Evolution of the Extreme Acidophile “Ferrovum”

    PubMed Central

    Ullrich, Sophie R.; González, Carolina; Poehlein, Anja; Tischler, Judith S.; Daniel, Rolf; Schlömann, Michael; Holmes, David S.; Mühling, Martin

    2016-01-01

    Acid mine drainage (AMD), associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus “Ferrovum” are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of “Ferrovum” has proven to be extremely difficult and has so far only been successful for the designated type strain “Ferrovum myxofaciens” P3G. In this study, the genomes of two novel strains of “Ferrovum” (PN-J185 and Z-31) derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of “Ferrovum” sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G). Phylogenomic scrutiny suggests that the four strains represent three “Ferrovum” species that cluster in two groups (1 and 2). Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the “F. myxofaciens” strains (group 1) appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features

  3. Sulfate contamination in groundwater near an abandoned mine: hydrogeochemical modeling, microbiology, and isotope geochemistry

    SciTech Connect

    Toran, L.E.

    1986-01-01

    Sulfide oxidation in a carbonate environment produces a groundwater problem similar to acid mine drainage, except the contaminant is sulfate. An example of this little-studied phenomenon occurred around the zinc-lead mines near Shullsburg, Wisconsin. Sulfate concentrations as high as 40 mmol/l (16 times the safe drinking water level) were found after the mines closed in 1979 and 11 wells were abandoned. The 1983 groundwater flow pattern showed groundwater flowing toward the mines to fill the cone of depression created by dewatering of the mines, thus localizing contamination. A three-dimensional groundwater flow model was constructed which predicts groundwater will begin flowing away from the mines between 1989 and 1994. However, sulfate levels should remain low in areas distant from the mines because of dilution of sulfate. Geochemical modeling of chemical reactions and isotope effects using the USGS computer program PHREEQE showed the importance of dolomite, calcite, CO/sub 2/, and iron hydroxides in controlling the water chemistry. Microbiological sampling and sulfur isotopes indicated that Thiobacillus bacteria that thrive under neutral pH conditions may be involved in the oxidation process. Acidophilic bacteria such as T. ferrooxidans were also found. The role of biological factors in oxidation was further investigated by oxidizing a variety of sulfide minerals in the presence of carbonate buffer. The oxygen isotope ratios from both inoculated and sterile experiments indicated a large portion of sulfate oxygen comes from water rather than atmospheric oxygen. The possibility of multiple reaction pathways makes it difficult to use oxygen isotopes to distinguish mechanisms of oxidation.

  4. Culturable Heavy Metal-Resistant and Plant Growth Promoting Bacteria in V-Ti Magnetite Mine Tailing Soil from Panzhihua, China

    PubMed Central

    Zhang, Chu; Liu, Huiying; Liu, Jin; Zheng, Wenwen; Kang, Xia; Leng, Xuejun; Zhao, Ke; Gu, Yunfu; Zhang, Xiaoping; Xiang, Quanju; Chen, Qiang

    2014-01-01

    To provide a basis for using indigenous bacteria for bioremediation of heavy metal contaminated soil, the heavy metal resistance and plant growth-promoting activity of 136 isolates from V-Ti magnetite mine tailing soil were systematically analyzed. Among the 13 identified bacterial genera, the most abundant genus was Bacillus (79 isolates) out of which 32 represented B. subtilis and 14 B. pumilus, followed by Rhizobium sp. (29 isolates) and Ochrobactrum intermedium (13 isolates). Altogether 93 isolates tolerated the highest concentration (1000 mg kg−1) of at least one of the six tested heavy metals. Five strains were tolerant against all the tested heavy metals, 71 strains tolerated 1,000 mg kg−1 cadmium whereas only one strain tolerated 1,000 mg kg−1 cobalt. Altogether 67% of the bacteria produced indoleacetic acid (IAA), a plant growth-promoting phytohormone. The concentration of IAA produced by 53 isolates was higher than 20 µg ml−1. In total 21% of the bacteria produced siderophore (5.50–167.67 µg ml−1) with two Bacillus sp. producing more than 100 µg ml−1. Eighteen isolates produced both IAA and siderophore. The results suggested that the indigenous bacteria in the soil have beneficial characteristics for remediating the contaminated mine tailing soil. PMID:25188470

  5. Use of an intelligent control system to evaluate multiparametric effects on iron oxidation by thermophilic bacteria

    SciTech Connect

    Stoner, D.L.; Miller, K.S.; Fife, D.J.; Larsen, E.D.; Tolle, C.R.; Johnson, J.A.

    1998-11-01

    A learning-based intelligent control system, the BioExpert, was developed and applied to the evaluation of multiparametric effects on iron oxidation by enrichment cultures of moderately thermophilic, acidophilic mining bacteria. The control system acquired and analyzed the data and then selected and maintained the sets of conditions that were evaluated. Through multiple iterations, the BioExpert suggested that temperature and pH were coupled, or interactive, parameters. Elevated temperatures (51.5 C) in combination with a moderately high pH (pH 1.84) impaired the growth of and iron oxidation by the enrichment culture. Moderate-to-high oxidation rates were achieved with a relatively high pH in combination with a relatively low temperature or, conversely, with a relatively low pH in combination with a relatively high temperature. The interactive effect of pH and temperature was not apparent from the results obtained in an experiment in which temperature was the only parameter that was varied. When the BioExpert was applied to a mixed culture containing mesophilic and thermophilic bacteria, the computer learned that pH 1.8, 45 C, and an inlet iron concentration from 30 to 35 mM were most favorable for iron oxidation. In conclusion, this study demonstrated that the learning-based intelligent control system BioExpert was an effective experimental tool that can be used to examine multiparametric effects on the growth and metabolic activity of mining bacteria.

  6. Uncovering a Microbial Enigma: Isolation and Characterization of the Streamer-Generating, Iron-Oxidizing, Acidophilic Bacterium “Ferrovum myxofaciens”

    PubMed Central

    Hallberg, Kevin B.; Hedrich, Sabrina

    2014-01-01

    A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of “acid streamer” growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified “overlay” solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolate from an abandoned copper mine (“Ferrovum myxofaciens” strain P3G) have been elucidated. “F. myxofaciens” is an extremely acidophilic, psychrotolerant obligate autotroph that appears to use only ferrous iron as an electron donor and oxygen as an electron acceptor. It appears to use the Calvin-Benson-Bassham pathway to fix CO2 and is diazotrophic. It also produces copious amounts of extracellular polymeric materials that cause cells to attach to each other (and to form small streamer-like growth in vitro) and to different solid surfaces. “F. myxofaciens” can catalyze the oxidative dissolution of pyrite and, like many other acidophiles, is tolerant of many (cationic) transition metals. “F. myxofaciens” and related clone sequences form a monophyletic group within the Betaproteobacteria distantly related to classified orders, with genera of the family Nitrosomonadaceae (lithoautotrophic, ammonium-oxidizing neutrophiles) as the closest relatives. On the basis of the phylogenetic and phenotypic differences of “F. myxofaciens” and other Betaproteobacteria, a new family, “Ferrovaceae,” and order, “Ferrovales,” within the class Betaproteobacteria are proposed. “F. myxofaciens” is the first extreme acidophile to be described in the class Betaproteobacteria. PMID:24242243

  7. Microbiological oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments.

    PubMed

    Terry, Lee R; Kulp, Thomas R; Wiatrowski, Heather; Miller, Laurence G; Oremland, Ronald S

    2015-12-01

    Bacterial oxidation of arsenite [As(III)] is a well-studied and important biogeochemical pathway that directly influences the mobility and toxicity of arsenic in the environment. In contrast, little is known about microbiological oxidation of the chemically similar anion antimonite [Sb(III)]. In this study, two bacterial strains, designated IDSBO-1 and IDSBO-4, which grow on tartrate compounds and oxidize Sb(III) using either oxygen or nitrate, respectively, as a terminal electron acceptor, were isolated from contaminated mine sediments. Both isolates belonged to the Comamonadaceae family and were 99% similar to previously described species. We identify these novel strains as Hydrogenophaga taeniospiralis strain IDSBO-1 and Variovorax paradoxus strain IDSBO-4. Both strains possess a gene with homology to the aioA gene, which encodes an As(III)-oxidase, and both oxidize As(III) aerobically, but only IDSBO-4 oxidized Sb(III) in the presence of air, while strain IDSBO-1 could achieve this via nitrate respiration. Our results suggest that expression of aioA is not induced by Sb(III) but may be involved in Sb(III) oxidation along with an Sb(III)-specific pathway. Phylogenetic analysis of proteins encoded by the aioA genes revealed a close sequence similarity (90%) among the two isolates and other known As(III)-oxidizing bacteria, particularly Acidovorax sp. strain NO1. Both isolates were capable of chemolithoautotrophic growth using As(III) as a primary electron donor, and strain IDSBO-4 exhibited incorporation of radiolabeled [(14)C]bicarbonate while oxidizing Sb(III) from Sb(III)-tartrate, suggesting possible Sb(III)-dependent autotrophy. Enrichment cultures produced the Sb(V) oxide mineral mopungite and lesser amounts of Sb(III)-bearing senarmontite as precipitates.

  8. Microbiological Oxidation of Antimony(III) with Oxygen or Nitrate by Bacteria Isolated from Contaminated Mine Sediments

    PubMed Central

    Terry, Lee R.; Wiatrowski, Heather; Miller, Laurence G.; Oremland, Ronald S.

    2015-01-01

    Bacterial oxidation of arsenite [As(III)] is a well-studied and important biogeochemical pathway that directly influences the mobility and toxicity of arsenic in the environment. In contrast, little is known about microbiological oxidation of the chemically similar anion antimonite [Sb(III)]. In this study, two bacterial strains, designated IDSBO-1 and IDSBO-4, which grow on tartrate compounds and oxidize Sb(III) using either oxygen or nitrate, respectively, as a terminal electron acceptor, were isolated from contaminated mine sediments. Both isolates belonged to the Comamonadaceae family and were 99% similar to previously described species. We identify these novel strains as Hydrogenophaga taeniospiralis strain IDSBO-1 and Variovorax paradoxus strain IDSBO-4. Both strains possess a gene with homology to the aioA gene, which encodes an As(III)-oxidase, and both oxidize As(III) aerobically, but only IDSBO-4 oxidized Sb(III) in the presence of air, while strain IDSBO-1 could achieve this via nitrate respiration. Our results suggest that expression of aioA is not induced by Sb(III) but may be involved in Sb(III) oxidation along with an Sb(III)-specific pathway. Phylogenetic analysis of proteins encoded by the aioA genes revealed a close sequence similarity (90%) among the two isolates and other known As(III)-oxidizing bacteria, particularly Acidovorax sp. strain NO1. Both isolates were capable of chemolithoautotrophic growth using As(III) as a primary electron donor, and strain IDSBO-4 exhibited incorporation of radiolabeled [14C]bicarbonate while oxidizing Sb(III) from Sb(III)-tartrate, suggesting possible Sb(III)-dependent autotrophy. Enrichment cultures produced the Sb(V) oxide mineral mopungite and lesser amounts of Sb(III)-bearing senarmontite as precipitates. PMID:26431974

  9. Microbiological oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments

    USGS Publications Warehouse

    Terry, Lee R.; Kulp, Thomas R.; Wiatrowski, Heather A.; Miller, Laurence G.; Oremland, Ronald S.

    2015-01-01

    Bacterial oxidation of arsenite [As(III)] is a well-studied and important biogeochemical pathway that directly influences the mobility and toxicity of arsenic in the environment. In contrast, little is known about microbiological oxidation of the chemically similar anion antimonite [Sb(III)]. In this study, two bacterial strains, designated IDSBO-1 and IDSBO-4, which grow on tartrate compounds and oxidize Sb(III) using either oxygen or nitrate, respectively, as a terminal electron acceptor, were isolated from contaminated mine sediments. Both isolates belonged to the Comamonadaceae family and were 99% similar to previously described species. We identify these novel strains as Hydrogenophagataeniospiralis strain IDSBO-1 and Variovorax paradoxus strain IDSBO-4. Both strains possess a gene with homology to the aioA gene, which encodes an As(III)-oxidase, and both oxidize As(III) aerobically, but only IDSBO-4 oxidized Sb(III) in the presence of air, while strain IDSBO-1 could achieve this via nitrate respiration. Our results suggest that expression of aioA is not induced by Sb(III) but may be involved in Sb(III) oxidation along with an Sb(III)-specific pathway. Phylogenetic analysis of proteins encoded by the aioA genes revealed a close sequence similarity (90%) among the two isolates and other known As(III)-oxidizing bacteria, particularly Acidovorax sp. strain NO1. Both isolates were capable of chemolithoautotrophic growth using As(III) as a primary electron donor, and strain IDSBO-4 exhibited incorporation of radiolabeled [14C]bicarbonate while oxidizing Sb(III) from Sb(III)-tartrate, suggesting possible Sb(III)-dependent autotrophy. Enrichment cultures produced the Sb(V) oxide mineral mopungite and lesser amounts of Sb(III)-bearing senarmontite as precipitates.

  10. Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments.

    PubMed

    Sánchez-Andrea, Irene; Stams, Alfons J M; Hedrich, Sabrina; Ňancucheo, Ivan; Johnson, D Barrie

    2015-01-01

    Three strains of sulfate-reducing bacteria (M1(T), D, and E) were isolated from acidic sediments (White river and Tinto river) and characterized phylogenetically and physiologically. All three strains were obligately anaerobic, mesophilic, spore-forming straight rods, stained Gram-negative and displayed variable motility during active growth. The pH range for growth was 3.8-7.0, with an optimum at pH 5.5. The temperature range for growth was 15-40 °C, with an optimum at 30 °C. Strains M1(T), D, and E used a wide range of electron donors and acceptors, with certain variability within the different strains. The nominated type strain (M1(T)) used ferric iron, nitrate, sulfate, elemental sulfur, and thiosulfate (but not arsenate, sulfite, or fumarate) as electron acceptors, and organic acids (formate, lactate, butyrate, fumarate, malate, and pyruvate), alcohols (glycerol, methanol, and ethanol), yeast extract, and sugars (xylose, glucose, and fructose) as electron donors. It also fermented some substrates such as pyruvate and formate. Strain M1(T) tolerated up to 50 mM ferrous iron and 10 mM aluminum, but was inhibited by 1 mM copper. On the basis of phenotypic, phylogenetic, and genetic characteristics, strains M1(T), D, and E represent a novel species within the genus Desulfosporosinus, for which the name Desulfosporosinus acididurans sp. nov. is proposed. The type strain is M1(T) (=DSM 27692(T) = JCM 19471(T)). Strain M1(T) was the first acidophilic SRB isolated, and it is the third described species of acidophilic SRB besides Desulfosporosinus acidiphilus and Thermodesulfobium narugense.

  11. Architecture and Gene Repertoire of the Flexible Genome of the Extreme Acidophile Acidithiobacillus caldus

    PubMed Central

    Acuña, Lillian G.; Cárdenas, Juan Pablo; Covarrubias, Paulo C.; Haristoy, Juan José; Flores, Rodrigo; Nuñez, Harold; Riadi, Gonzalo; Shmaryahu, Amir; Valdés, Jorge; Dopson, Mark; Rawlings, Douglas E.; Banfield, Jillian F.; Holmes, David S.; Quatrini, Raquel

    2013-01-01

    Background Acidithiobacillus caldus is a sulfur oxidizing extreme acidophile and the only known mesothermophile within the Acidithiobacillales. As such, it is one of the preferred microbes for mineral bioprocessing at moderately high temperatures. In this study, we explore the genomic diversity of A. caldus strains using a combination of bioinformatic and experimental techniques, thus contributing first insights into the elucidation of the species pangenome. Principal Findings Comparative sequence analysis of A. caldus ATCC 51756 and SM-1 indicate that, despite sharing a conserved and highly syntenic genomic core, both strains have unique gene complements encompassing nearly 20% of their respective genomes. The differential gene complement of each strain is distributed between the chromosomal compartment, one megaplasmid and a variable number of smaller plasmids, and is directly associated to a diverse pool of mobile genetic elements (MGE). These include integrative conjugative and mobilizable elements, genomic islands and insertion sequences. Some of the accessory functions associated to these MGEs have been linked previously to the flexible gene pool in microorganisms inhabiting completely different econiches. Yet, others had not been unambiguously mapped to the flexible gene pool prior to this report and clearly reflect strain-specific adaption to local environmental conditions. Significance For many years, and because of DNA instability at low pH and recurrent failure to genetically transform acidophilic bacteria, gene transfer in acidic environments was considered negligible. Findings presented herein imply that a more or less conserved pool of actively excising MGEs occurs in the A. caldus population and point to a greater frequency of gene exchange in this econiche than previously recognized. Also, the data suggest that these elements endow the species with capacities to withstand the diverse abiotic and biotic stresses of natural environments, in particular

  12. Genomics and Metagenomics of Extreme Acidophiles in Biomining Environments

    NASA Astrophysics Data System (ADS)

    Holmes, D. S.

    2015-12-01

    Over 160 draft or complete genomes of extreme acidophiles (pH < 3) have been published, many of which are from bioleaching and other biomining environments, or are closely related to such microorganisms. In addition, there are over 20 metagenomic studies of such environments. This provides a rich source of latent data that can be exploited for understanding the biology of biomining environments and for advancing biotechnological applications. Genomic and metagenomic data are already yielding valuable insights into cellular processes, including carbon and nitrogen management, heavy metal and acid resistance, iron and sulfur oxido-reduction, linking biogeochemical processes to organismal physiology. The data also allow the construction of useful models of the ecophysiology of biomining environments and provide insight into the gene and genome evolution of extreme acidophiles. Additionally, since most of these acidophiles are also chemoautolithotrophs that use minerals as energy sources or electron sinks, their genomes can be plundered for clues about the evolution of cellular metabolism and bioenergetic pathways during the Archaean abiotic/biotic transition on early Earth. Acknowledgements: Fondecyt 1130683.

  13. Isolation and characterisation of mineral-oxidising "Acidibacillus" spp. from mine sites and geothermal environments in different global locations.

    PubMed

    Holanda, Roseanne; Hedrich, Sabrina; Ňancucheo, Ivan; Oliveira, Guilherme; Grail, Barry M; Johnson, D Barrie

    2016-09-01

    Eight strains of acidophilic bacteria, isolated from mine-impacted and geothermal sites from different parts of the world, were shown to form a distinct clade (proposed genus "Acidibacillus") within the phylum Firmicutes, well separated from the acidophilic genera Sulfobacillus and Alicyclobacillus. Two of the strains (both isolated from sites in Yellowstone National Park, USA) were moderate thermophiles that oxidised both ferrous iron and elemental sulphur, while the other six were mesophiles that also oxidised ferrous iron, but not sulphur. All eight isolates reduced ferric iron to varying degrees. The two groups shared <95% similarity of their 16S rRNA genes and were therefore considered to be distinct species: "Acidibacillus sulfuroxidans" (moderately thermophilic isolates) and "Acidibacillus ferrooxidans" (mesophilic isolates). Both species were obligate heterotrophs; none of the eight strains grew in the absence of organic carbon. "Acidibacillus" spp. were generally highly tolerant of elevated concentrations of cationic transition metals, though "A. sulfuroxidans" strains were more sensitive to some (e.g. nickel and zinc) than those of "A. ferrooxidans". Initial annotation of the genomes of two strains of "A. ferrooxidans" revealed the presence of genes (cbbL) involved in the RuBisCO pathway for CO2 assimilation and iron oxidation (rus), though with relatively low sequence identities. PMID:27154030

  14. Isolation and characterisation of mineral-oxidising "Acidibacillus" spp. from mine sites and geothermal environments in different global locations.

    PubMed

    Holanda, Roseanne; Hedrich, Sabrina; Ňancucheo, Ivan; Oliveira, Guilherme; Grail, Barry M; Johnson, D Barrie

    2016-09-01

    Eight strains of acidophilic bacteria, isolated from mine-impacted and geothermal sites from different parts of the world, were shown to form a distinct clade (proposed genus "Acidibacillus") within the phylum Firmicutes, well separated from the acidophilic genera Sulfobacillus and Alicyclobacillus. Two of the strains (both isolated from sites in Yellowstone National Park, USA) were moderate thermophiles that oxidised both ferrous iron and elemental sulphur, while the other six were mesophiles that also oxidised ferrous iron, but not sulphur. All eight isolates reduced ferric iron to varying degrees. The two groups shared <95% similarity of their 16S rRNA genes and were therefore considered to be distinct species: "Acidibacillus sulfuroxidans" (moderately thermophilic isolates) and "Acidibacillus ferrooxidans" (mesophilic isolates). Both species were obligate heterotrophs; none of the eight strains grew in the absence of organic carbon. "Acidibacillus" spp. were generally highly tolerant of elevated concentrations of cationic transition metals, though "A. sulfuroxidans" strains were more sensitive to some (e.g. nickel and zinc) than those of "A. ferrooxidans". Initial annotation of the genomes of two strains of "A. ferrooxidans" revealed the presence of genes (cbbL) involved in the RuBisCO pathway for CO2 assimilation and iron oxidation (rus), though with relatively low sequence identities.

  15. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals

    PubMed Central

    Dziewit, Lukasz; Pyzik, Adam; Szuplewska, Magdalena; Matlakowska, Renata; Mielnicki, Sebastian; Wibberg, Daniel; Schlüter, Andreas; Pühler, Alfred; Bartosik, Dariusz

    2015-01-01

    The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland). It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m) Lubin mine were taken and 20 bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e., they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface. PMID:26074880

  16. Stimulation of sulfate-reducing bacteria in lake water from a former open-pit mine through addition of organic wastes

    SciTech Connect

    Castro, J.M.; Wielinga, B.W.; Gannon, J.E.; Moore, J.N.

    1999-03-01

    A method to improve water quality in a lake occupying a former open-pit mine was evaluated in a laboratory-scale study. Untreated pit lake water contained high levels of sulfate, iron, and arsenic and was mildly acidic ({approximately} pH 6). Varying amounts of two locally available organic waste products were added to pit water and maintained in microcosms under anoxic conditions. In selected microcosms, populations of sulfate-reducing bacteria increased with time; sulfide was generated by sulfate reduction; sulfate, iron, and arsenic concentrations approached zero; and pH approached neutrality. Best results were obtained with intermediate amounts of waste potato skin.

  17. Development of an enzyme-linked immunosorbent assay to determine the numbers of chemolithotrophic bacteria at acid-mine-drainage sites. Technical report (Final)

    SciTech Connect

    Blake, R.C.; Revis, N.W.; Holdsworth, G.

    1990-09-01

    Thiobacillus ferrooxidans is a prominent member of a group of chemo-lithotrophic bacteria that bear principal responsibility for the formation of acid mine drainage. A prototype enzyme-linked immunosorbent assay (ELISA) for enumerating and qualifying T. ferrooxidans was assembled and characterized. The immunoassay protocol consisted of sequential incubations of the sample with (i) the primary antibody, (ii) the enzyme-labeled secondary antibody, and (iii) a chromogenic substrate specific for the enzyme lable. The necessary reagents comprised primary polyclonal rabbit antibodies directed against T. ferrooxidans ATCC 23270, alkaline phosphatase-copled goat anti-rabbit polyclonal antibodies, and phenolphrhalein monophosphate. The ELISA developed herein correctly identified whether iron-oxidizing bacteria were present in each of 4 samples supplied and analyzed by an independent laboratory. Sufficient preliminary data was obtained to warrant further research and development activities.

  18. Microbial Biomass and Community Structure of a Stromatolite from an Acid Mine Drainage System in Western Indiana

    NASA Astrophysics Data System (ADS)

    Fang, J.; Hasiotis, S. T.; Das Gupta, S.; Brake, S. S.; Bazylinski, D. A.

    2007-12-01

    Lipids extracted to determine the microbial biomass and community structure of an Fe-rich stromatolite from acid mine drainage (AMD) at the Green Valley coal mine site (GVS) in western Indiana correlate well with layers in the laminated stromatolite. The biomass of the top layer of the stromatolite was dominated by phototrophic organisms constituting 83% of the total biomass. Biomass of the lower layers was dominated by prokaryotic microorganisms. The presence of terminal methyl-branched fatty acids and mid methyl-branched fatty acids suggests the presence of Gram-positive and sulfate-reducing bacteria, respectively. Fungi appear to also be an important part of the AMD microbial communities as suggested by sterol profiles and the presence of polyunsaturated fatty acids. Hydroxy fatty acids and C19 cyclopropane fatty acids were also detected and likely originated from acid-producing, acidophilic bacteria. The presence of Archaea is indicated by abundant phospholipid ether-linked isoprenoid hydrocarbons (phytane and phytadienes). The AMD Fe-rich stromatolites at GVS, thus, appear to be formed by interactions of microbial communities composed of all three domains of life; Archaea, Bacteria, and Eukarya. Identification of microeukaryote-dominated stromatolites verifies the prominent role these organisms play in the formation and preservation of these structures. In addition, the production of oxygen through photosynthesis by these organisms in AMD systems may be important for retrodicting the interaction of microbial communities in Precambrian environments in the production of microbially mediated sedimentary structures and oxygenation of Earth's early atmosphere.

  19. [Microbial diversity and ammonia-oxidizing microorganism of a soil sample near an acid mine drainage lake].

    PubMed

    Liu, Ying; Wang, Li-Hua; Hao, Chun-Bo; Li, Lu; Li, Si-Yuan; Feng, Chuan-Ping

    2014-06-01

    The main physicochemical parameters of the soil sample which was collected near an acid mine drainage reservoir in Anhui province was analyzed. The microbial diversity and community structure was studied through the construction of bacteria and archaea 16S rRNA gene clone libraries and ammonia monooxygenase gene clone library of archaea. The functional groups which were responsible for the process of ammonia oxidation were also discussed. The results indicated that the soil sample had extreme low pH value (pH < 3) and high ions concentration, which was influenced by the acid mine drainage (AMD). All the 16S rRNA gene sequences of bacteria clone library fell into 11 phyla, and Acidobacteria played the most significant role in the ecosystem followed by Verrucomicrobia. A great number of acidophilic bacteria existed in the soil sample, such as Candidatus Koribacter versatilis and Holophaga sp.. The archaea clone library consisted of 2 phyla (Thaumarchaeota and Euryarchaeota). The abundance of Thaumarchaeota was remarkably higher than Euryarchaeota. The ammonia oxidation in the soil environment was probably driven by ammonia-oxidizing archaea, and new species of ammonia-oxidizing archaea existed in the soil sample.

  20. Toxicity of select organic acids to the slightly thermophilic acidophile Acidithiobacillus caldus.

    PubMed

    Aston, John E; Apel, William A; Lee, Brady D; Peyton, Brent M

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 microM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 microM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  1. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    SciTech Connect

    John E Aston; William A Apel; Brady D Lee; Brent M Peyton

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  2. Microbial Communities in Biofilms of an Acid Mine Drainage Site Determined by Phospholipid Analysis

    NASA Astrophysics Data System (ADS)

    Das Gupta, S.; Fang, J.

    2008-12-01

    Phospholipids were extracted to determine the microbial biomass and community structure of biofims from an acid mine drainage (AMD) at the Green Valley coal mine site (GVS) in western Indiana. The distribution of specific biomarkers indicated the presence of a variety of microorganisms. Phototrophic microeukaryotes, which include Euglena mutabilis, algae, and cyanobacteria were the most dominant organisms, as indicated by the presence of polyunsaturated fatty acids. The presence of terminally methyl branched fatty acids suggests the presence of Gram-positive bacteria, and the mid-methyl branched fatty acids indicates the presence of sulfate-reducing bacteria. Fungi appear to also be an important part of the AMD microbial communities as suggested by the presence of 18:2 fatty acid. The acidophilic microeukaryotes Euglena dominated the biofilm microbial communities. These microorganisms appear to play a prominent role in the formation and preservation of stromatolites and in releasing oxygen to the atmosphere by oxygenic photosynthesis. Thus, the AMD environment comprises a host of microorganisms spreading out within the phylogenetic tree of life. Novel insights on the roles of microbial consortia in the formation and preservation of stromatolites and the production of oxygen through photosynthesis in AMD systems may have significance in the understanding of the interaction of Precambrian microbial communities in environments that produced microbially-mediated sedimentary structures and that caused oxygenation of Earth's atmosphere.

  3. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site.

    PubMed

    Mendez, Monica O; Neilson, Julia W; Maier, Raina M

    2008-06-01

    Bacterial diversity in mine tailing microbial communities has not been thoroughly investigated despite the correlations that have been observed between the relative microbial diversity and the success of revegetation efforts at tailing sites. This study employed phylogenetic analyses of 16S rRNA genes to compare the bacterial communities present in highly disturbed, extremely (pH 2.7) and moderately (pH 5.7) acidic lead-zinc mine tailing samples from a semiarid environment with those from a vegetated off-site (OS) control sample (pH 8). Phylotype richness in these communities decreased from 42 in the OS control to 24 in the moderately acidic samples and 8 in the extremely acidic tailing samples. The clones in the extremely acidic tailing sample were most closely related to acidophiles, none of which were detected in the OS control sample. The comparison generated by this study between the bacteria present in extremely acidic tailing and that in moderately acidic tailing communities with those in an OS control soil provides a reference point from which to evaluate the successful restoration of mine tailing disposal sites by phytostabilization.

  4. Examining microbial community response to a strong chemical gradient: the effects of surface coal mining on stream bacteria

    NASA Astrophysics Data System (ADS)

    Bier, R.; Lindberg, T. T.; Wang, S.; Ellis, J. C.; Di Giulio, R. T.; Bernhardt, E. S.

    2012-12-01

    Surface coal mining is the dominant form of land cover change in northern and central Appalachia. In this process, shallow coal seams are exposed by removing overlying rock with explosives. The resulting fragmented carbonate rock and coal residues are disposed of in stream valleys. These valley fills generate alkaline mine drainage (AlkMD), dramatically increasing alkalinity, ionic strength, substrate supply (esp. SO42-), and trace element (Mn, Li, Se, U) concentrations in downstream rivers as well as significant losses of sensitive fish and macroinvertebrate species. In prior work within the Mud River, which drains the largest surface mine complex in Appalachia, we found that concentrations of AlkMD increase proportionally with the extent of upstream mining. Here we ask "How do stream microbial communities change along this strong chemical gradient?" We collected surface water and benthic biofilms from 25 stream reaches throughout the Mud River spanning the full range of surface mining impacts, with 0-96% of the contributing watershed area converted to surface coal mines. Microbial communities were collected from biofilms grown on a common substrate (red maple veneers) that were incubated in each stream reach for four months prior to collection in April, 2011. 16S rRNA genes from microbial communities at each study site were examined using 454 sequencing and compared with a generalized UniFrac distance matrix (674 sequence eveness) that was used in statistical analyses. Water chemistry at the sites was sampled monthly from July 2010 to December 2010 and again in April 2011. In April, surface water concentrations of SO42-, Ca2+, Mg2+, and Se2- increased linearly with the extent of upstream mining (all regressions R2 >0.43; p<0.004), with the resulting gradient in ionic strength extending from low conductivity (average 83 μS cm-1 S.E. 27.4) in unmined streams (n=6) to as high as 899 μS cm-1 in the mainstem and 1889 μS cm-1 immediately below the Connelly Branch

  5. Effect of citric acid and rhizosphere bacteria on metal plaque formation and metal accumulation in reeds in synthetic acid mine drainage solution.

    PubMed

    Guo, Lin; Cutright, Teresa J

    2014-06-01

    Many of regions in the world have been affected by acid mine drainage (AMD). The study assessed the effect of rhizosphere bacteria and citric acid (CA) on the metal plaque formation and heavy metal uptake in Phragmites australis cultured in synthetic AMD solution. Mn and Al plaque were not formed, but Fe plaque which was mediated by rhizosphere iron oxidizing bacteria (Fe(II)OB) was observed on the root system of reeds. Fe plaque did not significantly influence the uptake of Fe, Al and Mn into tissues of reeds. CA significantly (p<0.01) inhibited the growth of Fe(II)OB and decreased the formation of Fe plaque. CA also significantly improved (p<0.05) the accumulation of Fe, Mn and Al in all the tissues of reeds. Roots and rhizomes were the main organs to store metals. The roots contained 0.08±0.01mg/g Mn, 2.39±0.26mg/g Fe and 0.19±0.02mg/g Al, while the shoots accumulated 0.04±0.00mg/g Mn, 0.20±0.01mg/g Fe, 0.11±0.00mg/g Al in reeds cultured in solution amended with 2.101g/l CA and without inoculation of rhizosphere bacteria.

  6. Characterization of boron resistant and accumulating bacteria Lysinibacillus fusiformis M1, Bacillus cereus M2, Bacillus cereus M3, Bacillus pumilus M4 isolated from former mining site, Hokkaido, Japan.

    PubMed

    Raja, Chellaiah Edward; Omine, Kiyoshi

    2012-01-01

    Boron is known to be widespread environmental contaminant that is relatively mobile in soil when compared to other metal contaminants. The present study made an attempt to isolate and characterize the boron resistant and accumulating bacteria from former mining site at Hokkaido, Japan. Four potential strains M1, M2, M3 and M4 were selected based on high degree of boron and heavy metal resistances. The morphological, biochemical and 16S rDNA sequencing analysis of mining bacteria revealed that the isolates were highly homology to Lysinibacillus fusiformis M1 (99 %), Bacillus cereus M2 (99 %), Bacillus cereus M3 (99 %) and Bacillus pumilus M4 (99 %) respectively. The strains M1, M2, M3 and M4 showed resistance to several heavy metals such as As (III), As (V) and Cr (VI), Cu, Ni, Pb and Zn. The selected strains were found to be arsenic oxidizing bacteria confirmed by Silver nitrate test. The resting and growing cells of mining bacteria were used for boron accumulation analysis. Selected strains were found to be efficiently accumulating boron concentration ranging from 0.1-2.3 mg L (-1) and 1.5-4.7 mg L (-1) at 24 h and 168 h, respectively. The following results conclude that the mining bacteria act as potent bioaccumulator of boron and its resistant, removal characteristic can be valuable in boron bioremediation. PMID:22571522

  7. Characterization of boron resistant and accumulating bacteria Lysinibacillus fusiformis M1, Bacillus cereus M2, Bacillus cereus M3, Bacillus pumilus M4 isolated from former mining site, Hokkaido, Japan.

    PubMed

    Raja, Chellaiah Edward; Omine, Kiyoshi

    2012-01-01

    Boron is known to be widespread environmental contaminant that is relatively mobile in soil when compared to other metal contaminants. The present study made an attempt to isolate and characterize the boron resistant and accumulating bacteria from former mining site at Hokkaido, Japan. Four potential strains M1, M2, M3 and M4 were selected based on high degree of boron and heavy metal resistances. The morphological, biochemical and 16S rDNA sequencing analysis of mining bacteria revealed that the isolates were highly homology to Lysinibacillus fusiformis M1 (99 %), Bacillus cereus M2 (99 %), Bacillus cereus M3 (99 %) and Bacillus pumilus M4 (99 %) respectively. The strains M1, M2, M3 and M4 showed resistance to several heavy metals such as As (III), As (V) and Cr (VI), Cu, Ni, Pb and Zn. The selected strains were found to be arsenic oxidizing bacteria confirmed by Silver nitrate test. The resting and growing cells of mining bacteria were used for boron accumulation analysis. Selected strains were found to be efficiently accumulating boron concentration ranging from 0.1-2.3 mg L (-1) and 1.5-4.7 mg L (-1) at 24 h and 168 h, respectively. The following results conclude that the mining bacteria act as potent bioaccumulator of boron and its resistant, removal characteristic can be valuable in boron bioremediation.

  8. Presence of glucose, xylose, and glycerol fermenting bacteria in the deep biosphere of the former Homestake gold mine, South Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eight fermentative bacterial strains were isolated from mixed enrichment cultures of a composite soil sample collected at 1.34 km depth from the former Homestake gold mine in Lead, SD, USA. Phylogenetic analysis of their 16S rRNA gene sequences revealed that these isolates were affiliated with the p...

  9. Production of sulfuric acid using thermo-acidophilic microorganisms for use in scale prevention

    SciTech Connect

    Hirowatari, K.; Kusaba, S.; Takeuchi, K.; Fujioka, Y.

    1997-12-31

    Silica scale deposition often causes serious problems in geothermal power stations. It has already been known that silica scale deposition is prevented by keeping the pH of the brine acidic. On the other hand, several countries make regulation for mitigation of H{sub 2}S emission from geothermal power stations. From these backgrounds, the H{sub 2}SO{sub 4} production process using the H{sub 2}S in the gas exhausted from geothermal power station are proposed. Therefore, applicability of the thermo-acidophilic bacteria (Sulfolobus sp. Strain 7) for the H{sub 2}SO{sub 4} production process for scale prevention are investigated. From the bench scale and pilot scale experiment results, it is confirmed that bioreactor, in which Sulfolobus sp. Strain 7 are cultured, can produce the acidic solution containing the H{sub 2}SO{sub 4} continuously and the H{sub 2}SO{sub 4} production rate of the bioreactor is 0.06 kg/m{sup 3}/h. In the case of the application for Otake geothermal power station that discharges 350 in 3/h of the total waste geothermal brine and 290 Nm{sup 3}/h of the total exhausted gas, it is clarified to be needed the 36 m{sup 3} of the bioreactor and the 146 m{sup 3}/h of the exhausted gas to be keeping the pH of the waste brine acidic.

  10. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds.

    PubMed

    Lehtovirta-Morley, Laura E; Ge, Chaorong; Ross, Jenna; Yao, Huaiying; Nicol, Graeme W; Prosser, James I

    2014-09-01

    Autotrophic ammonia oxidation is performed by two distinct groups of microorganisms: ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB). AOA outnumber their bacterial counterparts in many soils, at times by several orders of magnitude, but relatively little is known of their physiology due to the lack of cultivated isolates. Although a number of AOA have been cultivated from soil, Nitrososphaera viennensis was the sole terrestrial AOA in pure culture and requires pyruvate for growth in the laboratory. Here, we describe isolation in pure culture and characterisation of two acidophilic terrestrial AOA representing the Candidatus genus Nitrosotalea and their responses to organic acids. Interestingly, despite their close phylogenetic relatedness, the two Nitrosotalea strains exhibited differences in physiological features, including specific growth rate, temperature preference and to an extent, response to organic compounds. In contrast to N. viennensis, both Nitrosotalea isolates were inhibited by pyruvate but their growth yield increased in the presence of oxaloacetate. This study demonstrates physiological diversity within AOA species and between different AOA genera. Different preferences for organic compounds potentially influence the favoured localisation of ammonia oxidisers within the soil and the structure of ammonia-oxidising communities in terrestrial ecosystems.

  11. [Effects of sex hormone on the dilatation of urinary tubule and acidophil body in NON mice].

    PubMed

    Sahata, H; Suzuki, S; Ago, A; Mifune, H; Sakamoto, H

    1994-10-01

    The influences of sex hormones on the dilatation of the urinary tubules and acidophil bodies were histologically investigated in NON (Non-Obese Non-diabetic) mice. Although the dilatation of the proximal tubules and acidophil bodies in NON mice were observed only in female but not in male, a slight dilatation and a few bodies were also observed in castrated male NON mice. Moreover, in ovariectomized female NON mice the dilatation and bodies were less compared with intact female NON mice. Estradiol administration induced prominent dilatation and numerous acidophil bodies, while the administration of testosterone showed a complete preventive effect. Therefore, it is suggested that the dilatation of the tubules and the acidophil bodies can be profoundly influenced by sex hormones. PMID:7805803

  12. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage.

    PubMed

    Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard R; Richter, Michael; Diez, María Suárez; Solano, Jennifer; Bargiela, Rafael; Golyshina, Olga V; Manteca, Ángel; Ramos, Juan Luis; Gallego, José R; Llorente, Irene; Martins dos Santos, Vitor A P; Jensen, Ole N; Peláez, Ana I; Sánchez, Jesús; Ferrer, Manuel

    2014-06-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH ∼2) in three distinct compartments: two from a stratified streamer (uppermost oxic and lowermost anoxic sediment-attached strata) and one from a submerged anoxic non-stratified mat biofilm. The communities colonising pyrite and those in the mature formations appear to be populated by the greatest diversity of bacteria and archaea (including 'ARMAN' (archaeal Richmond Mine acidophilic nano-organisms)-related), as compared with the known AMD, with ∼44.9% unclassified sequences. We propose that the thick polymeric matrix may provide a safety shield against the prevailing extreme condition and also a massive carbon source, enabling non-typical acidophiles to develop more easily. Only 1 of 39 species were shared, suggesting a high metabolic heterogeneity in local microenvironments, defined by the O2 concentration, spatial location and biofilm architecture. The suboxic mats, compositionally most similar to each other, are more diverse and active for S, CO2, CH4, fatty acid and lipopolysaccharide metabolism. The oxic stratum of the streamer, displaying a higher diversity of the so-called 'ARMAN'-related Euryarchaeota, shows a higher expression level of proteins involved in signal transduction, cell growth and N, H2, Fe, aromatic amino acids, sphingolipid and peptidoglycan metabolism. Our study is the first to highlight profound taxonomic and functional shifts in single AMD formations, as well as new microbial species and the importance of H2 in acidic suboxic macroscopic growths. PMID:24430486

  13. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage

    PubMed Central

    Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard R; Richter, Michael; Diez, María Suárez; Solano, Jennifer; Bargiela, Rafael; Golyshina, Olga V; Manteca, Ángel; Ramos, Juan Luis; Gallego, José R; Llorente, Irene; Martins dos Santos, Vitor AP; Jensen, Ole N; Peláez, Ana I; Sánchez, Jesús; Ferrer, Manuel

    2014-01-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH ∼2) in three distinct compartments: two from a stratified streamer (uppermost oxic and lowermost anoxic sediment-attached strata) and one from a submerged anoxic non-stratified mat biofilm. The communities colonising pyrite and those in the mature formations appear to be populated by the greatest diversity of bacteria and archaea (including ‘ARMAN' (archaeal Richmond Mine acidophilic nano-organisms)-related), as compared with the known AMD, with ∼44.9% unclassified sequences. We propose that the thick polymeric matrix may provide a safety shield against the prevailing extreme condition and also a massive carbon source, enabling non-typical acidophiles to develop more easily. Only 1 of 39 species were shared, suggesting a high metabolic heterogeneity in local microenvironments, defined by the O2 concentration, spatial location and biofilm architecture. The suboxic mats, compositionally most similar to each other, are more diverse and active for S, CO2, CH4, fatty acid and lipopolysaccharide metabolism. The oxic stratum of the streamer, displaying a higher diversity of the so-called ‘ARMAN'-related Euryarchaeota, shows a higher expression level of proteins involved in signal transduction, cell growth and N, H2, Fe, aromatic amino acids, sphingolipid and peptidoglycan metabolism. Our study is the first to highlight profound taxonomic and functional shifts in single AMD formations, as well as new microbial species and the importance of H2 in acidic suboxic macroscopic growths. PMID:24430486

  14. Quantifying heavy metals sequestration by sulfate-reducing bacteria in an Acid mine drainage-contaminated natural wetland.

    PubMed

    Moreau, John W; Fournelle, John H; Banfield, Jillian F

    2013-01-01

    Bioremediation strategies that depend on bacterial sulfate reduction for heavy metals remediation harness the reactivity of these metals with biogenic aqueous sulfide. Quantitative knowledge of the degree to which specific toxic metals are partitioned into various sulfide, oxide, or other phases is important for predicting the long-term mobility of these metals under environmental conditions. Here we report the quantitative partitioning into sedimentary biogenic sulfides of a suite of metals and metalloids associated with acid mine drainage contamination of a natural estuarine wetland for over a century.

  15. Quantifying Heavy Metals Sequestration by Sulfate-Reducing Bacteria in an Acid Mine Drainage-Contaminated Natural Wetland

    PubMed Central

    Moreau, John W.; Fournelle, John H.; Banfield, Jillian F.

    2013-01-01

    Bioremediation strategies that depend on bacterial sulfate reduction for heavy metals remediation harness the reactivity of these metals with biogenic aqueous sulfide. Quantitative knowledge of the degree to which specific toxic metals are partitioned into various sulfide, oxide, or other phases is important for predicting the long-term mobility of these metals under environmental conditions. Here we report the quantitative partitioning into sedimentary biogenic sulfides of a suite of metals and metalloids associated with acid mine drainage contamination of a natural estuarine wetland for over a century. PMID:23487496

  16. Diversity and community structure of culturable arsenic-resistant bacteria across a soil arsenic gradient at an abandoned tungsten-tin mining area.

    PubMed

    Valverde, Angel; González-Tirante, María; Medina-Sierra, Marisol; Santa-Regina, Ignacio; García-Sánchez, Antonio; Igual, José M

    2011-09-01

    We studied the bacterial diversity at a single location (the Terrubias mine; Salamanca province, Spain) with a gradient of soil As contamination to test if increasing levels of As would (1) change the preponderant groups of arsenic-resistant bacteria and (2) increase the tolerance thresholds to arsenite [As(III)] and arsenate [As(V)] of such bacteria. We studied the genetic and taxonomic diversity of culturable arsenic-resistant bacteria by PCR fingerprinting techniques and 16S rRNA gene sequencing. Then, the tolerance thresholds to As(III) and As(V) were determined for representative strains and mathematically analyzed to determine relationships between tolerances to As(III) and As(V), as well as these tolerances with the soil contamination level. The diversity of the bacterial community was, as expected, inversely related to the soil As content. The overall preponderant arsenic-resistant bacteria were Firmicutes (mainly Bacillus spp.) followed by γ-Proteobacteria (mainly Pseudomonas spp.), with increasing relative frequencies of the former as the soil arsenic concentration increased. Moreover, a strain of the species Rahnella aquatilis (γ-Proteobacteria class) exhibited strong endurance to arsenic, being described for the first time in literature such a phenotype within this bacterial species. Tolerances of the isolates to As(III) and As(V) were correlated but not with their origin (soil contamination level). Most of the strains (64%) showed relatively low tolerances to As(III) and As(V), but the second most numerous group of isolates (19%) showed increased tolerance to As(III) rather than to As(V), even though the As(V) anion is the prevalent arsenic species in soil solution at this location. To our knowledge, this is the first study to report a shift towards preponderance of Gram-positive bacteria (Firmicutes) related to high concentrations of soil arsenic. It was also shown that, under aerobic conditions, strains with relatively enhanced tolerance to As

  17. Presence of glucose, xylose, and glycerol fermenting bacteria in the deep biosphere of the former Homestake gold mine, South Dakota

    PubMed Central

    Rastogi, Gurdeep; Gurram, Raghu N.; Bhalla, Aditya; Gonzalez, Ramon; Bischoff, Kenneth M.; Hughes, Stephen R.; Kumar, Sudhir; Sani, Rajesh K.

    2012-01-01

    Eight fermentative bacterial strains were isolated from mixed enrichment cultures of a composite soil sample collected at 1.34 km depth from the former Homestake gold mine in Lead, SD, USA. Phylogenetic analysis of their 16S rRNA gene sequences revealed that these isolates were affiliated with the phylum Firmicutes belonging to genera Bacillus and Clostridium. Batch fermentation studies demonstrated that isolates had the ability to ferment glucose, xylose, or glycerol to industrially valuable products such as ethanol and 1,3-propanediol (PDO). Ethanol was detected as the major fermentation end product in glucose-fermenting cultures at pH 10 with yields of 0.205–0.304 g of ethanol/g of glucose. While a xylose-fermenting strain yielded 0.189 g of ethanol/g of xylose and 0.585 g of acetic acid/g of xylose at the end of fermentation. At pH 7, glycerol-fermenting isolates produced PDO (0.323–0.458 g of PDO/g of glycerol) and ethanol (0.284–0.350 g of ethanol/g of glycerol) as major end products while acetic acid and succinic acid were identified as minor by-products in fermentation broths. These results suggest that the deep biosphere of the former Homestake gold mine harbors bacterial strains which could be used in bio-based production of ethanol and PDO. PMID:23919089

  18. Effect of Phospholipid on Pyrite Oxidation and Microbial Communities under Simulated Acid Mine Drainage (AMD) Conditions.

    PubMed

    Pierre Louis, Andro-Marc; Yu, Hui; Shumlas, Samantha L; Van Aken, Benoit; Schoonen, Martin A A; Strongin, Daniel R

    2015-07-01

    The effect of phospholipid on the biogeochemistry of pyrite oxidation, which leads to acid mine drainage (AMD) chemistry in the environment, was investigated. Metagenomic analyses were carried out to understand how the microbial community structure, which developed during the oxidation of pyrite-containing coal mining overburden/waste rock (OWR), was affected by the presence of adsorbed phospholipid. Using columns packed with OWR (with and without lipid adsorption), the release of sulfate (SO4(2-)) and soluble iron (FeTot) was investigated. Exposure of lipid-free OWR to flowing pH-neutral water resulted in an acidic effluent with a pH range of 2-4.5 over a 3-year period. The average concentration of FeTot and SO4(2-) in the effluent was ≥20 and ≥30 mg/L, respectively. In contrast, in packed-column experiments where OWR was first treated with phospholipid, the effluent pH remained at ∼6.5 and the average concentrations of FeTot and SO4(2-) were ≤2 and l.6 mg/L, respectively. 16S rDNA metagenomic pyrosequencing analysis of the microbial communities associated with OWR samples revealed the development of AMD-like communities dominated by acidophilic sulfide-oxidizing bacteria on untreated OWR samples, but not on refuse pretreated with phospholipid. PMID:26018867

  19. Insights into the diversity of eukaryotes in acid mine drainage biofilm communities.

    PubMed

    Baker, Brett J; Tyson, Gene W; Goosherst, Lindsey; Banfield, Jillian F

    2009-04-01

    Microscopic eukaryotes are known to have important ecosystem functions, but their diversity in most environments remains vastly unexplored. Here we analyzed an 18S rRNA gene library from a subsurface iron- and sulfur-oxidizing microbial community growing in highly acidic (pH < 0.9) runoff within the Richmond Mine at Iron Mountain (northern California). Phylogenetic analysis revealed that the majority (68%) of the sequences belonged to fungi. Protists falling into the deeply branching lineage named the acidophilic protist clade (APC) and the class Heterolobosea were also present. The APC group represents kingdom-level novelty, with <76% sequence similarity to 18S rRNA gene sequences of organisms from other environments. Fluorescently labeled oligonucleotide rRNA probes were designed to target each of these groups in biofilm samples, enabling abundance and morphological characterization. Results revealed that the populations vary significantly with the habitat and no group is ubiquitous. Surprisingly, many of the eukaryotic lineages (with the exception of the APC) are closely related to neutrophiles, suggesting that they recently adapted to this extreme environment. Molecular analyses presented here confirm that the number of eukaryotic species associated with the acid mine drainage (AMD) communities is low. This finding is consistent with previous results showing a limited diversity of archaea, bacteria, and viruses in AMD environments and suggests that the environmental pressures and interplay between the members of these communities limit species diversity at all trophic levels.

  20. Acidithrix ferrooxidans gen. nov., sp. nov.; a filamentous and obligately heterotrophic, acidophilic member of the Actinobacteria that catalyzes dissimilatory oxido-reduction of iron.

    PubMed

    Jones, Rose M; Johnson, D Barrie

    2015-01-01

    A novel acidophilic member of the phylum Actinobacteria was isolated from an acidic stream draining an abandoned copper mine in north Wales. The isolate (PY-F3) was demonstrated to be a heterotroph that catalyzed the oxidation of ferrous iron (but not of sulfur or hydrogen) under aerobic conditions, and the reduction of ferric iron under micro-aerobic and anaerobic conditions. PY-F3 formed long entangled filaments of cells (>50 μm long) during active growth phases, though these degenerated into smaller fragments and single cells in late stationary phase. Although isolate PY-F3 was not observed to grow below pH 2.0 and 10 °C, harvested biomass was found to oxidize ferrous iron at relatively fast rates at pH 1.5 and 5 °C. Phylogenetic analysis, based on comparisons of 16S rRNA gene sequences, showed that isolate PY-F3 has 91-93% gene similarity to those of the four classified genera and species of acidophilic Actinobacteria, and therefore is a representative of a novel genus. The binomial Acidithrix ferrooxidans is proposed for this new species, with PY-F3 as the designated type strain (=DSM 28176(T), =JCM 19728(T)).

  1. Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH.

    PubMed

    Hirooka, Shunsuke; Higuchi, Sumio; Uzuka, Akihiro; Nozaki, Hisayoshi; Miyagishima, Shin-ya

    2014-01-01

    Microalgal storage lipids are considered to be a promising source for next-generation biofuel feedstock. However, microalgal biodiesel is not yet economically feasible due to the high cost of production. One of the reasons for this is that the use of a low-cost open pond system is currently limited because of the unavoidable contamination with undesirable organisms. Extremophiles have an advantage in culturing in an open pond system because they grow in extreme environments toxic to other organisms. In this study, we isolated the acidophilic green alga Pseudochlorella sp. YKT1 from sulfuric acid mine drainage in Nagano Prefecture, Japan. The vegetative cells of YKT1 display the morphological characteristics of Trebouxiophyceae and molecular phylogenetic analyses indicated it to be most closely related to Pseudochlorella pringsheimii. The optimal pH and temperature for the growth of YKT1 are pH 3.0-5.0 and a temperature 20-25°C, respectively. Further, YKT1 is able to grow at pH 2.0 and at 32°C, which corresponds to the usual water temperature in the outdoors in summer in many countries. YKT1 accumulates a large amount of storage lipids (∼30% of dry weigh) under a nitrogen-depleted condition at low-pH (pH 3.0). These results show that acidophilic green algae will be useful for industrial applications by acidic open culture systems.

  2. Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH.

    PubMed

    Hirooka, Shunsuke; Higuchi, Sumio; Uzuka, Akihiro; Nozaki, Hisayoshi; Miyagishima, Shin-ya

    2014-01-01

    Microalgal storage lipids are considered to be a promising source for next-generation biofuel feedstock. However, microalgal biodiesel is not yet economically feasible due to the high cost of production. One of the reasons for this is that the use of a low-cost open pond system is currently limited because of the unavoidable contamination with undesirable organisms. Extremophiles have an advantage in culturing in an open pond system because they grow in extreme environments toxic to other organisms. In this study, we isolated the acidophilic green alga Pseudochlorella sp. YKT1 from sulfuric acid mine drainage in Nagano Prefecture, Japan. The vegetative cells of YKT1 display the morphological characteristics of Trebouxiophyceae and molecular phylogenetic analyses indicated it to be most closely related to Pseudochlorella pringsheimii. The optimal pH and temperature for the growth of YKT1 are pH 3.0-5.0 and a temperature 20-25°C, respectively. Further, YKT1 is able to grow at pH 2.0 and at 32°C, which corresponds to the usual water temperature in the outdoors in summer in many countries. YKT1 accumulates a large amount of storage lipids (∼30% of dry weigh) under a nitrogen-depleted condition at low-pH (pH 3.0). These results show that acidophilic green algae will be useful for industrial applications by acidic open culture systems. PMID:25221913

  3. Second Acyl Homoserine Lactone Production System in the Extreme Acidophile Acidithiobacillus ferrooxidans▿

    PubMed Central

    Rivas, Mariella; Seeger, Michael; Jedlicki, Eugenia; Holmes, David S.

    2007-01-01

    The acidophilic proteobacterium Acidithiobacillus ferrooxidans is involved in the industrial biorecovery of copper. It is found in acidic environments in biofilms and is important in the biogeochemical cycling of metals and nutrients. Its genome contains a cluster of four genes, glyQ, glysS, gph, and act, that are predicted to encode the α and β subunits of glycine tRNA synthetase, a phosphatase, and an acyltransferase, respectively (GenBank accession no. DQ149607). act, cloned and expressed in Escherichia coli, produces acyl homoserine lactones (AHLs) principally of chain length C14 according to gas chromatography and mass spectrometry measurements. The AHLs have biological activity as shown by in vivo studies using the reporter strain Sinorhizobium meliloti Rm41 SinI−. Reverse transcription-PCR (RT-PCR) experiments indicate that the four genes are expressed as a single transcript, demonstrating that they constitute an operon. According to semiquantitative RT-PCR results, act is expressed more highly when A. ferrooxidans is grown in medium containing iron than when it is grown in medium containing sulfur. Since AHLs are important intercellular signaling molecules used by many bacteria to monitor their population density in quorum-sensing control of gene expression, this result suggests that A. ferrooxidans has two quorum-sensing systems, one based on Act, as described herein, and the other based on a Lux-like quorum-sensing system, reported previously. The latter system was shown to be upregulated in A. ferrooxidans grown in sulfur medium, suggesting that the two quorum-sensing systems respond to different environmental signals that may be related to their abilities to colonize and use different solid sulfur- and iron-containing minerals. PMID:17351095

  4. A purple acidophilic di-ferric DNA ligase from Ferroplasma.

    PubMed

    Ferrer, Manuel; Golyshina, Olga V; Beloqui, Ana; Böttger, Lars H; Andreu, José M; Polaina, Julio; De Lacey, Antonio L; Trautwein, Alfred X; Timmis, Kenneth N; Golyshin, Peter N

    2008-07-01

    We describe here an extraordinary purple-colored DNA ligase, LigFa, from the acidophilic ferrous iron-oxidizing archaeon Ferroplasma acidiphilum, a di-ferric enzyme with an extremely low pH activity optimum. Unlike any other DNA ligase studied to date, LigFa contains two Fe(3+)-tyrosinate centers and lacks any requirement for either Mg(2+) or K(+) for activity. DNA ligases from closest phylogenetic and ecophysiological relatives have normal pH optima (6.0-7.5), lack iron, and require Mg(2+)/K(+) for activity. Ferric iron retention is pH-dependent, with release resulting in partial protein unfolding and loss of activity. Reduction of the Fe(3+) to Fe(2+) results in an 80% decrease in DNA substrate binding and an increase in the pH activity optimum to 5.0. DNA binding induces significant conformational change around the iron site(s), suggesting that the ferric irons of LigFa act both as structure organizing and stabilizing elements and as Lewis acids facilitating DNA binding at low pH.

  5. Generation of polluted waters from mining wastes in a uranium deposit.

    PubMed

    Groudev, Stoyan N; Spasova, Irena I; Nicolova, Marina V; Georgiev, Plamen S

    2005-01-01

    Dump consisting of 9500 tons of rich-in-pyrite mining wastes located in the uranium deposit Curilo, Western Bulgaria, was, after rainfall, an intensive source of acid drainage waters. These waters had a pH in the range of about 1.7-4.5 and contained radionuclides (uranium, radium), heavy metals (copper, zinc, cadmium, lead, nickel, cobalt, iron, and manganese), arsenic and sulphates in concentrations usually much higher than the relevant permissible levels for waters intended for use in the agriculture and/or industry. The generation of these polluted waters was studied under real field conditions for a period of about seven years during different climatic seasons. It was found that the dump was inhabited by a diverse microflora in which some acidophilic chemolithotrophic bacteria were the prevalent microorganisms. The solubilization of the above-mentioned pollutants from the dump material was connected mainly with the oxidation of pyrite and other sulphide minerals by these bacteria. Their activity depended on some essential environmental factors such as temperature, pH, and water, oxygen and nutrient contents in the dump.

  6. Generation of polluted waters from mining wastes in a uranium deposit.

    PubMed

    Groudev, Stoyan N; Spasova, Irena I; Nicolova, Marina V; Georgiev, Plamen S

    2005-01-01

    Dump consisting of 9500 tons of rich-in-pyrite mining wastes located in the uranium deposit Curilo, Western Bulgaria, was, after rainfall, an intensive source of acid drainage waters. These waters had a pH in the range of about 1.7-4.5 and contained radionuclides (uranium, radium), heavy metals (copper, zinc, cadmium, lead, nickel, cobalt, iron, and manganese), arsenic and sulphates in concentrations usually much higher than the relevant permissible levels for waters intended for use in the agriculture and/or industry. The generation of these polluted waters was studied under real field conditions for a period of about seven years during different climatic seasons. It was found that the dump was inhabited by a diverse microflora in which some acidophilic chemolithotrophic bacteria were the prevalent microorganisms. The solubilization of the above-mentioned pollutants from the dump material was connected mainly with the oxidation of pyrite and other sulphide minerals by these bacteria. Their activity depended on some essential environmental factors such as temperature, pH, and water, oxygen and nutrient contents in the dump. PMID:16457374

  7. Biochemistry and Ecology of Novel Cytochromes Catalyzing Fe(II) Oxidation by an Acidophilic Microbial Community

    NASA Astrophysics Data System (ADS)

    Singer, S. W.; Jeans, C. J.; Thelen, M. P.; Verberkmoes, N. C.; Hettich, R. C.; Chan, C. S.; Banfield, J. F.

    2007-12-01

    An acidophilic microbial community found in the Richmond Mine at Iron Mountain, CA forms abundant biofilms in extremely acidic (pH<1) and toxic metal conditions. In this ecosystem, biological Fe(II) oxidation is critical to the metabolic functioning of the community, and in turn this process generates acid mine drainage, causing an environmental catastrophe. Two conspicuous novel proteins isolated from these biofilms were identified as gene products of Leptospirillum group II and were characterized as cytochromes with unique properties. Sulfuric acid extraction of biofilm samples liberated one of these proteins, a 16 kDa cytochrome with an unusual alpha-band absorption at 579 (Cyt579). Genomic sequencing of multiple biofilms indicated that several variants of Cyt579 were present in Leptospirillum strains. Intact protein MS analysis identified the dominant variants in each biofilm and documented multiple N-terminal cleavage sites for Cyt579. By combining biochemical, geochemical and microbiological data, we established that the sequence variation and N-terminal processing of Cyt579 are selected by ecological conditions. In addition to the soluble Cyt579, the second cytochrome appears as a much larger protein complex of ~210 kDa predominant in the biofilm membrane fraction, and has an alpha-band absorption at 572 nm. The 60 kDa cytochrome subunit, Cyt572, resides in the outer membrane of LeptoII, and readily oxidizes Fe(II) at low pH (0.95 - 3.0). Several genes encoding Cyt572 were localized within a recombination hotspot between two strains of LeptoII, causing a large range of variation in the sequences. Genomic sequencing and MS proteomic studies established that the variants were also selected by ecological conditions. A general mechanistic model for Fe(II) oxidation has been developed from these studies. Initial Fe(II) oxidation by Cyt572 occurs at the outer membrane. Cyt572 then transfers electrons to Cyt579, perhaps representing an initial step in energy flow

  8. Draft Genome Sequence of the Iron-Oxidizing, Acidophilic, and Halotolerant "Thiobacillus prosperus" Type Strain DSM 5130.

    PubMed

    Ossandon, Francisco J; Cárdenas, Juan Pablo; Corbett, Melissa; Quatrini, Raquel; Holmes, David S; Watkin, Elizabeth

    2014-10-23

    "Thiobacillus prosperus" is a halotolerant mesophilic acidophile that gains energy through iron and sulfur oxidation. Its physiology is poorly understood. Here, we describe the principal genomic features of the type strain of T. prosperus, DSM 5130. This is the first public genome sequence of an acidophilic halotolerant bacterium.

  9. Draft Genome Sequence of the Iron-Oxidizing, Acidophilic, and Halotolerant “Thiobacillus prosperus” Type Strain DSM 5130

    PubMed Central

    Ossandon, Francisco J.; Cárdenas, Juan Pablo; Corbett, Melissa; Quatrini, Raquel; Holmes, David S.

    2014-01-01

    “Thiobacillus prosperus” is a halotolerant mesophilic acidophile that gains energy through iron and sulfur oxidation. Its physiology is poorly understood. Here, we describe the principal genomic features of the type strain of T. prosperus, DSM 5130. This is the first public genome sequence of an acidophilic halotolerant bacterium. PMID:25342676

  10. Acidophilic and acid-tolerant fungi and yeasts

    USGS Publications Warehouse

    Gross, S.; Robbins, E.I.

    2000-01-01

    Fungi have not been systematically studied from mines and mine drainage waters, even though they are often encountered there. This paper provides a key from literature sources and lists morphological characteristics and habitat information for the 81 fungal species that have been collected or identified in pH <4 environments.

  11. Three-year survey of sulfate-reducing bacteria community structure in Carnoulès acid mine drainage (France), highly contaminated by arsenic.

    PubMed

    Giloteaux, Ludovic; Duran, Robert; Casiot, Corinne; Bruneel, Odile; Elbaz-Poulichet, Françoise; Goñi-Urriza, Marisol

    2013-03-01

    A 3-year survey on sulfate-reducing bacteria (SRB) was conducted in the waters of the arsenic-rich acid mine drainage (AMD) located at Carnoulès (France) to determine the influence of environmental parameters on their community structure. The source (S5 station) exhibited most extreme conditions with pH lowering to ~1.2; iron, sulfate, and arsenic concentrations reaching 6843, 29 593, and 638 mg L(-1), respectively. The conditions were less extreme at the downstream stations S1 (pH ~3.7; iron, sulfate, and arsenic concentrations of 1114, 4207, and 167 mg L(-1), respectively) and COWG (pH ~3.4; iron, sulfate, and arsenic concentrations of 854, 3134, and 110 mg L(-1), respectively). SRB community structures were characterized by terminal restriction fragment length polymorphism and library analyses based on dsrAB genes. The predominant dsrAB sequences detected were most similar to the family Desulfobulbaceae. Additionally, certain phylotypes could be related to spatio-temporal fluctuations of pH, iron, and arsenic species. For example, Desulfohalobiaceae-related sequences were detected at the most acidic sample (pH 1.4) with high iron and arsenic concentrations (6379 and 524 mg L(-1), respectively). New dsrAB sequences, with no isolated representatives, were found exclusively in COWG. This study gives new insights on SRB community dynamics in AMD systems.

  12. Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community

    PubMed Central

    2010-01-01

    Background Extreme acidic environments are characterized by their high metal content and lack of nutrients (oligotrophy). Macroscopic biofilms and filaments usually grow on the water-air interface or under the stream attached to solid substrates (streamers). In the Río Tinto (Spain), brown filaments develop under the water stream where the Gram-negative iron-oxidizing bacteria Leptospirillum spp. (L. ferrooxidans and L. ferriphilum) and Acidithiobacillus ferrooxidans are abundant. These microorganisms play a critical role in bioleaching processes for industrial (biominery) and environmental applications (acid mine drainage, bioremediation). The aim of this study was to investigate the physiological differences between the free living (planktonic) and the sessile (biofilm associated) lifestyles of Leptospirillum spp. as part of its natural extremely acidophilic community. Results Total RNA extracted from environmental samples was used to determine the composition of the metabolically active members of the microbial community and then to compare the biofilm and planktonic environmental transcriptomes by hybridizing to a genomic microarray of L. ferrooxidans. Genes up-regulated in the filamentous biofilm are involved in cellular functions related to biofilm formation and maintenance, such as: motility and quorum sensing (mqsR, cheAY, fliA, motAB), synthesis of cell wall structures (lnt, murA, murB), specific proteases (clpX/clpP), stress response chaperons (clpB, clpC, grpE-dnaKJ, groESL), etc. Additionally, genes involved in mixed acid fermentation (poxB, ackA) were up-regulated in the biofilm. This result, together with the presence of small organic acids like acetate and formate (1.36 mM and 0.06 mM respectively) in the acidic (pH 1.8) water stream, suggests that either L. ferrooxidans or other member of the microbial community are producing acetate in the acidophilic biofilm under microaerophilic conditions. Conclusions Our results indicate that the acidophilic

  13. Tools to discriminate between targets of CK2 vs PLK2/PLK3 acidophilic kinases.

    PubMed

    Salvi, M; Trashi, E; Cozza, G; Negro, A; Hanson, P I; Pinna, L A

    2012-07-01

    While the great majority of Ser/Thr protein kinases are basophilic or proline directed, a tiny minority is acidophilic. The most striking example of such "acidophilic" kinases is CK2, whose sites are specified by numerous acidic residues surrounding the target one. However PLK2 and PLK3 kinases recognize an acidic consensus similar to CK2 when tested on peptide libraries. Here we describe optimal buffer conditions for PLK2 and 3 kinase activity assays and tools such as using GTP as a phosphate donor and the specific inhibitors CX-4945 and BI 2536, useful to discriminate between acidic phosphosites generated either by CK2 or by PLK2/PLK3.

  14. Biofilm formation and interspecies interactions in mixed cultures of thermo-acidophilic archaea Acidianus spp. and Sulfolobus metallicus.

    PubMed

    Castro, Camila; Zhang, Ruiyong; Liu, Jing; Bellenberg, Sören; Neu, Thomas R; Donati, Edgardo; Sand, Wolfgang; Vera, Mario

    2016-09-01

    The understanding of biofilm formation by bioleaching microorganisms is of great importance for influencing mineral dissolution rates and to prevent acid mine drainage (AMD). Thermo-acidophilic archaea such as Acidianus, Sulfolobus and Metallosphaera are of special interest due to their ability to perform leaching at high temperatures, thereby enhancing leaching rates. In this work, leaching experiments and visualization by microscopy of cell attachment and biofilm formation patterns of the crenarchaeotes Sulfolobus metallicus DSM 6482(T) and the Acidianus isolates DSM 29038 and DSM 29099 in pure and mixed cultures on sulfur or pyrite were studied. Confocal laser scanning microscopy (CLSM) combined with fluorescent dyes as well as fluorescently labeled lectins were used to visualize different components (e.g. DNA, proteins or glycoconjugates) of the aforementioned species. The data indicate that cell attachment and the subsequently formed biofilms were species- and substrate-dependent. Pyrite leaching experiments coupled with pre-colonization and further inoculation with a second species suggest that both species may negatively influence each other during pyrite leaching with respect to initial attachment and pyrite dissolution rates. In addition, the investigation of binary biofilms on pyrite showed that both species were heterogeneously distributed on pyrite surfaces in the form of individual cells or microcolonies. Physical contact between the two species seems to occur, as revealed by specific lectins able to specifically bind single species within mixed cultures.

  15. Biofilm formation and interspecies interactions in mixed cultures of thermo-acidophilic archaea Acidianus spp. and Sulfolobus metallicus.

    PubMed

    Castro, Camila; Zhang, Ruiyong; Liu, Jing; Bellenberg, Sören; Neu, Thomas R; Donati, Edgardo; Sand, Wolfgang; Vera, Mario

    2016-09-01

    The understanding of biofilm formation by bioleaching microorganisms is of great importance for influencing mineral dissolution rates and to prevent acid mine drainage (AMD). Thermo-acidophilic archaea such as Acidianus, Sulfolobus and Metallosphaera are of special interest due to their ability to perform leaching at high temperatures, thereby enhancing leaching rates. In this work, leaching experiments and visualization by microscopy of cell attachment and biofilm formation patterns of the crenarchaeotes Sulfolobus metallicus DSM 6482(T) and the Acidianus isolates DSM 29038 and DSM 29099 in pure and mixed cultures on sulfur or pyrite were studied. Confocal laser scanning microscopy (CLSM) combined with fluorescent dyes as well as fluorescently labeled lectins were used to visualize different components (e.g. DNA, proteins or glycoconjugates) of the aforementioned species. The data indicate that cell attachment and the subsequently formed biofilms were species- and substrate-dependent. Pyrite leaching experiments coupled with pre-colonization and further inoculation with a second species suggest that both species may negatively influence each other during pyrite leaching with respect to initial attachment and pyrite dissolution rates. In addition, the investigation of binary biofilms on pyrite showed that both species were heterogeneously distributed on pyrite surfaces in the form of individual cells or microcolonies. Physical contact between the two species seems to occur, as revealed by specific lectins able to specifically bind single species within mixed cultures. PMID:27388200

  16. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site.

    PubMed

    Bond, P L; Smriga, S P; Banfield, J F

    2000-09-01

    An unusually thick ( approximately 1 cm) slime developed on a slump of finely disseminated pyrite ore within an extreme acid mine drainage site at Iron Mountain, near Redding, Calif. The slime was studied over the period of 1 year. The subaerial form of the slime distinguished it from more typical submerged streamers. Phylogenetic analysis of 16S rRNA genes revealed a diversity of sequences that were mostly novel. Nearest relatives to the majority of sequences came from iron-oxidizing acidophiles, and it appears that iron oxidation is the predominant metabolic characteristic of the organisms in the slime. The most abundant of the 16S rRNA genes detected were from organisms related to Leptospirillum species. The dominant sequence (71% of clones) may represent a new genus. Sequences within the Archaea of the Thermoplasmales lineage were detected. Most of these were only distantly related to known microorganisms. Also, sequences affiliating with Acidimicrobium were detected. Some of these were closely related to "Ferromicrobium acidophilus," and others were affiliated with a lineage only represented by environmental clones. Unexpectedly, sequences that affiliated within the delta subdivision of the Proteobacteria were detected. The predominant metabolic feature of bacteria of this subdivision is anaerobic sulfate or metal reduction. Thus, microenvironments of low redox potential possibly exist in the predominantly oxidizing environments of the slime. These results expand our knowledge of the biodiversity of acid mine drainage environments and extend our understanding of the ecology of extremely acidic systems. PMID:10966399

  17. Draft Genome Sequence of Streptacidiphilus oryzae TH49T, an Acidophilic Actinobacterium Isolated from Soil.

    PubMed

    Kim, Yu Ri; Park, Sewook; Kim, Tae-Su; Kim, Min-Kyeong; Han, Ji-Hye; Joung, Yochan; Kim, Seung Bum

    2015-06-25

    The draft genome sequence of Streptacidiphilus oryzae strain TH49(T), an acidophilic actinobacterium, was obtained. The draft is composed of six scaffolds totaling 7.8 Mbp, and it contains 6,829 protein-coding genes and 91 RNA genes. Genes related to respiratory nitrate reduction, siderophore production, and biosynthesis of other secondary metabolites were identified.

  18. A Description of an Acidophilic, Iron Reducer, Geobacter sp. FeAm09 Isolated from Tropical Soils

    NASA Astrophysics Data System (ADS)

    Healy, O.; Souchek, J.; Heithoff, A.; LaMere, B.; Pan, D.; Hollis, G.; Yang, W. H.; Silver, W. L.; Weber, K. A.

    2014-12-01

    Iron (Fe) is the fourth most abundant element in the Earth's crust and plays a significant role controlling the geochemistry in soils, sediments, and aquatic systems. As part of a study to understand microbially-catalysed iron biogeochemical cycling in tropical soils, an iron reducing isolate, strain FeAm09, was obtained. Strain FeAm09 was isolated from acidic, Fe-rich soils collected from a tropical forest (Luquillo Experimental Forest, Puerto Rico). Strain FeAm09 is a rod-shaped, motile, Gram-negative bacterium. Taxonomic analysis of the near complete 16S rRNA gene sequence revealed that strain FeAm09 is 94.7% similar to Geobacter lovleyi, placing it in the genus Geobacter within the Family Geobacteraceae in the Deltaproteobacteria. Characterization of the optimal growth conditions revealed that strain FeAm09 is a moderate acidophile with an optimal growth pH of 5.0. The optimal growth temperature was 37°C. Growth of FeAm09 was coupled to the reduction of soluble Fe(III), Fe(III)-NTA, with H2, fumarate, ethanol, and various organic acids and sugars serving as the electron donor. Insoluble Fe(III), in the form of synthetic ferrihydrite, was reduced by strain FeAm09 using acetate or H2 as the electron donor. The use of H2 as an electron donor in the presence of CO2 and absence of organic carbon and assimilation of 14C-labelled CO2 into biomass indicate that strain FeAm09 is an autotrophic Fe(III)-reducing bacterium. Together, these data describe the first acidophilic, autotrophic Geobacter species. Iron reducing bacteria were previously shown to be as abundant in tropical soils as in saturated sediments (lake-bottoms) and saturated soils (wetlands) where Fe(III) reduction is more commonly recognized as a dominant mode of microbial respiration. Furthermore, Fe(III) reduction was identified as a primary driver of carbon mineralization in these tropical soils (Dubinsky et al. 2010). In addition to mineralizing organic carbon, Geobacter sp. FeAm09 is likely to also

  19. Bacterial control on the structure of As-Fe oxy-hydroxides in acid mine drainage.

    NASA Astrophysics Data System (ADS)

    Morin, G.; Lebrun, S.; Juillot, F.; Casiot, C.; Bruneel, O.; Belin, S.; Proux, O.; Brown, G. E.; Guyot, F.; Calas, G.

    2004-12-01

    Nano-crystalline or amorphous iron oxy-hydroxides are kinetically favored with respect to stable crystalline phases in low temperature environments. Therefore, they frequently occur as transient phases in Earth's surface environments. They exhibit very-high surface areas (few 100 cm2/g) and thus play a key role in the geochemical cycles of minor and trace elements, including toxic elements as arsenic. Natural low-temperature iron oxides also potentially host biological signatures since they can form through various biologically driven reactions. In the present communication, we compare the mineralogy and crystal chemistry of biogenic As-rich iron precipitates synthesized using various acidophilic bacterial strain isolated from an exceptionally arsenic-rich acid mine drainage [1]. XAS, XRD, SEM and TEM investigation of these highly reactive nano-minerals obtained in controlled conditions allows to better constrain their mechanisms of formation. Our data show that the enzymatic oxidation of Fe(II) and/or As(III) play a key role in controlling the nature of the mineral species precipitating in acid mine drainage. We show that the nature of mineral species forming from solutions can be directly determined by the metabolic activity of specific bacterial strains. This influence is thought to be primarily indirect, bacteria controlling the rate of Fe(II) and As(III) oxidation reactions, which in turn leads to various Fe(III) and As(V) super-saturation conditions. These latter parameters are crucial in controlling the structure of nano-crystalline As-Fe low temperature minerals. 1- Morin et al. (2003) Bacterial formation of tooeleite and mixed As(III)/(V)-Fe(III) gels in the Carnoulès acid mine drainage, France. A XANES, XRD and SEM study. Environ. Sci. and Technol. 37,1705-1712.

  20. Denitrifying bacteria from the terrestrial subsurface exposed to mixed waste contamination

    SciTech Connect

    Green, Stefan; Prakash, Om; Gihring, Thomas; Akob, Denise M.; Jasrotia, Puja; Jardine, Philip M; Watson, David B; Brown, Steven D; Palumbo, Anthony Vito; Kostka, Joel

    2010-01-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available with which to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy s Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria) and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were confirmed as complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. Ribosomal RNA gene analyses reveal that bacteria from the genus Rhodanobacter comprise a diverse population of circumneutral to moderately acidophilic denitrifiers at the ORIFRC site, with a high relative abundance in areas of the acidic source zone. Rhodanobacter species do not contain a periplasmic nitrite reductase and have not been previously detected in functional gene surveys of denitrifying bacteria at the OR-IFRC site. Sequences of nitrite and nitrous oxide reductase genes were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation, genomic and metagenomic data are essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifying microorganisms. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

  1. Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination.

    PubMed

    Green, Stefan J; Prakash, Om; Gihring, Thomas M; Akob, Denise M; Jasrotia, Puja; Jardine, Philip M; Watson, David B; Brown, Steven D; Palumbo, Anthony V; Kostka, Joel E

    2010-05-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria), and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. rRNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter are a diverse population of denitrifiers that are circumneutral to moderately acidophilic, with a high relative abundance in areas of the acidic source zone at the OR-IFRC site. Based on genome analysis, Rhodanobacter species contain two nitrite reductase genes and have not been detected in functional-gene surveys of denitrifying bacteria at the OR-IFRC site. Nitrite and nitrous oxide reductase gene sequences were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation and genomic and metagenomic data is essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifiers. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface. PMID:20305024

  2. Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination.

    PubMed

    Green, Stefan J; Prakash, Om; Gihring, Thomas M; Akob, Denise M; Jasrotia, Puja; Jardine, Philip M; Watson, David B; Brown, Steven D; Palumbo, Anthony V; Kostka, Joel E

    2010-05-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria), and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. rRNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter are a diverse population of denitrifiers that are circumneutral to moderately acidophilic, with a high relative abundance in areas of the acidic source zone at the OR-IFRC site. Based on genome analysis, Rhodanobacter species contain two nitrite reductase genes and have not been detected in functional-gene surveys of denitrifying bacteria at the OR-IFRC site. Nitrite and nitrous oxide reductase gene sequences were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation and genomic and metagenomic data is essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifiers. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

  3. Denitrifying Bacteria Isolated from Terrestrial Subsurface Sediments Exposed to Mixed-Waste Contamination▿ †

    PubMed Central

    Green, Stefan J.; Prakash, Om; Gihring, Thomas M.; Akob, Denise M.; Jasrotia, Puja; Jardine, Philip M.; Watson, David B.; Brown, Steven D.; Palumbo, Anthony V.; Kostka, Joel E.

    2010-01-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria), and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. rRNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter are a diverse population of denitrifiers that are circumneutral to moderately acidophilic, with a high relative abundance in areas of the acidic source zone at the OR-IFRC site. Based on genome analysis, Rhodanobacter species contain two nitrite reductase genes and have not been detected in functional-gene surveys of denitrifying bacteria at the OR-IFRC site. Nitrite and nitrous oxide reductase gene sequences were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation and genomic and metagenomic data is essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifiers. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface. PMID:20305024

  4. Effects of Long-Term Acid-Mine Drainage Contamination on Diversity and Activity of Sulfate-Reducing Bacteria in a Natural Salt Marsh.

    NASA Astrophysics Data System (ADS)

    Moreau, J. W.; Banfield, J. F.

    2003-12-01

    Constructed wetlands have been studied as sites or analogs for in situ bioremediation of metal contaminants from acid mine drainage (AMD) or industrial sources (e.g. Webb et al. 1998). Wetlands bioremediation necessarily invokes the ubiquity and robustness of sulfate-reducing bacteria (SRB) to sequester dissolved metals into various poorly soluble metal-sulfides (e.g. PbS, CdS). However, few studies of natural wetlands under long-term ecological forcing by AMD or other contaminant sources are available for context. We are investigating the microbial diversity, mineralogy and geochemistry of a highly contaminated salt marsh along the East Central San Francisco Bay. For nearly a half-century, areas within this marsh have received acidic and/or metal-rich groundwaters from near-surface pyrite tailings (transported there from Iron Mountain Mine, near Redding, CA) and local industrial sources (e.g. paint and explosives manufacturers). Sediment cores (30-40 cm long) were taken from six contaminated sites in the marsh with pH range of ˜2 to ˜8. Previous analyses (URS Corp. 2001) reported As, Cd, Cu, Se, Zn, and Pb present in sediments at extremely high concentrations (100s of ppm), yet our ICP-AES analyses of pore waters showed only As present at concentrations of 10-50 ppb. We infer, from high-resolution transmission electron microscope (HRTEM) studies of biogenic (SRB biofilm) ZnS (Moreau et al. 2003, in review) and marsh sediments, that contaminant metals have been sequestered into aggregates of nanocrystalline metal-sulfides. Continuous-flow isotope ratio mass spectrometer (CF-IRMS) analyses of pore-water sulfate and sedimentary sulfides allow resolution of contributions to dissolved sulfate and sulfide from tailings oxidation and dissimilatory sulfate reduction. Sulfate analyses from subsections of three cores (pH 2-3, 6-7, 7-8, respectively) all yield δ 34S values consistent with bacterial sulfate reduction. We note that all three cores also contain very fine

  5. Draft Genome Sequence of the Sulfobacillus thermosulfidooxidans Cutipay Strain, an Indigenous Bacterium Isolated from a Naturally Extreme Mining Environment in Northern Chile

    PubMed Central

    Travisany, Dante; Di Genova, Alex; Sepúlveda, Andrea; Bobadilla-Fazzini, Roberto A.; Parada, Pilar

    2012-01-01

    Sulfobacillus thermosulfidooxidans strain Cutipay is a mixotrophic, acidophilic, moderately thermophilic bacterium isolated from mining environments of the north of Chile, making it an interesting subject for studying the bioleaching of copper. We introduce the draft genome sequence and annotation of this strain, which provide insights into its mechanisms for heavy metal resistance. PMID:23105067

  6. Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment

    USGS Publications Warehouse

    Baesman, Shaun; Miller, Laurence G.; Wei, Jeremy H.; Cho, Yirang; Matys, Emily D.; Summons, Roger E.; Welander, Paula V.; Oremland, Ronald S.

    2015-01-01

    The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation.

  7. Methane Oxidation and Molecular Characterization of Methanotrophs from a Former Mercury Mine Impoundment

    PubMed Central

    Baesman, Shaun M.; Miller, Laurence G.; Wei, Jeremy H.; Cho, Yirang; Matys, Emily D.; Summons, Roger E.; Welander, Paula V.; Oremland, Ronald S.

    2015-01-01

    The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation.

  8. Methane Oxidation and Molecular Characterization of Methanotrophs from a Former Mercury Mine Impoundment

    PubMed Central

    Baesman, Shaun M.; Miller, Laurence G.; Wei, Jeremy H.; Cho, Yirang; Matys, Emily D.; Summons, Roger E.; Welander, Paula V.; Oremland, Ronald S.

    2015-01-01

    The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation. PMID:27682090

  9. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities.

    PubMed

    Golińska, Patrycja; Wypij, Magdalena; Rathod, Dnyaneshwar; Tikar, Sagar; Dahm, Hanna; Rai, Mahendra

    2016-05-01

    Biosynthesis of silver nanoparticles (AgNPs) is an eco-friendly approach by using different biological sources; for example, plants and microorganisms such as bacteria, fungi, and actinobacteria. In this report, we present the biological synthesis of silver nanoparticles (AgNPs) by acidophilic actinomycetes SL19 and SL24 strains isolated from pine forest soil (pH < 4.0). The isolates based on 16S rRNA gene sequence were identified as Pilimelia columellifera subsp. pallida. The synthesized AgNPs were characterized by visual observations of colour change from light-yellow to dark-brown. The UV-vis spectra of AgNPs were recorded at 425 and 430 nm. The AgNPs were further characterized by Nanoparticle tracking analysis (NTA), Zeta potential, Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM). FTIR analysis revealed the presence of proteins as a capping agent. TEM analysis confirmed the formation of spherical and polydispersed NPs of 12.7 and 15.9 nm sizes. The in vitro antibacterial activity of AgNPs alone and in combination with antibiotics was evaluated against clinical bacteria viz., Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and uropathogens such as Enterobacter, S. aureus, P. aeruginosa, K. pneumoniae, and E. coli. The lowest MIC (40 μg ml(-1) ) was demonstrated by AgNPs synthesized from SL24 against E. coli. However, the AgNPs of SL19 showed lowest MIC (70 μg ml(-1) ) against S. aureus. The activity of antibiotic was enhanced, when tested in combination with silver nanoparticles synthesized from both actinobacterial strains.

  10. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities.

    PubMed

    Golińska, Patrycja; Wypij, Magdalena; Rathod, Dnyaneshwar; Tikar, Sagar; Dahm, Hanna; Rai, Mahendra

    2016-05-01

    Biosynthesis of silver nanoparticles (AgNPs) is an eco-friendly approach by using different biological sources; for example, plants and microorganisms such as bacteria, fungi, and actinobacteria. In this report, we present the biological synthesis of silver nanoparticles (AgNPs) by acidophilic actinomycetes SL19 and SL24 strains isolated from pine forest soil (pH < 4.0). The isolates based on 16S rRNA gene sequence were identified as Pilimelia columellifera subsp. pallida. The synthesized AgNPs were characterized by visual observations of colour change from light-yellow to dark-brown. The UV-vis spectra of AgNPs were recorded at 425 and 430 nm. The AgNPs were further characterized by Nanoparticle tracking analysis (NTA), Zeta potential, Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM). FTIR analysis revealed the presence of proteins as a capping agent. TEM analysis confirmed the formation of spherical and polydispersed NPs of 12.7 and 15.9 nm sizes. The in vitro antibacterial activity of AgNPs alone and in combination with antibiotics was evaluated against clinical bacteria viz., Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and uropathogens such as Enterobacter, S. aureus, P. aeruginosa, K. pneumoniae, and E. coli. The lowest MIC (40 μg ml(-1) ) was demonstrated by AgNPs synthesized from SL24 against E. coli. However, the AgNPs of SL19 showed lowest MIC (70 μg ml(-1) ) against S. aureus. The activity of antibiotic was enhanced, when tested in combination with silver nanoparticles synthesized from both actinobacterial strains. PMID:27151174

  11. Mitochondrial inclusion bodies (intracytoplasmic acidophilic droplets) in neurons of chicken spinal cords increase with age.

    PubMed

    Watanabe, O; Maruo, Y

    2012-03-01

    We studied the pathologic features of neurons that contain intracytoplasmic acidophilic droplets (IADs) in chicken spinal cords. The IADs were lustrous spheroid bodies scattered in the cytoplasm of neurons, variable in size, and protein-rich bodies stained eosinophilic with hematoxylin-eosin, acidophilic with Azan, blue indigo with phosphotungstic acid hematoxylin, and yellow-green with Elastica van Gieson stain histopathologically. Ultrastructurally, almost all IADs were observed as homogeneous highly electron-dense spheroid bodies enclosed by double-limited membranes. Small IADs were observed in mitochondria. Anatomically, IAD-CNs were observed only in the ventral horn of the spinal cord between the fourth sacral and third lumbal vertebrae, and they were particularly frequent in the third sacral vertebrae. Their appearance and accumulative amount were likely to increase with age, while the clinical and pathologic significances of IAD-CNs remain unclear.

  12. Investigations on the "Extreme" Microbial Methane Cycle within the Sediments of an Acidic Impoundment of the Inactive Sulfur Bank Mercury Mine: Herman Pit, Clear Lake, California.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.; Wei, J. H. C.; Welander, P. V.

    2014-12-01

    The inactive Sulfur Bank Mercury Mine is located in a volcanic region having geothermal flow and gas inputs into the Herman Pit impoundment. The acidic (pH 2 - 4) waters of the Herman Pit are permeated by hundreds of continuous flow gas seeps that contain CO2, H2S and CH4. We sampled one seep and found it to be composed of 95 % CO2 and 5 % CH4, in agreement with earlier measurements. Only a trace of ethane (10 - 20 ppm) was found and propane was below detection, resulting in a high CH4/C2H6 + C3H8 ratio of > 5,000, while the δ13CH4 and the δ13CO2 were respectively - 24 and - 11 per mil. Collectively, these results suggested a complex origin for the methane, being made up of a thermogenic component resulting from pyrolysis of buried organics, along with an active methanogenic portion. The relatively 12C-enriched value for the CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. We found that dissolved methane in the collected water from 2-4 m depth was high (~ 400 µM), which would support methanotrophy in the lake's aerobic biomes. We therefore tested the ability of bottom sediments to consume methane by conducting aerobic incubations of slurried bottom sediments. Methane was removed from the headspace of live slurries, and subsequent additions of methane to the headspace over the course of 2-3 months resulted in faster removal rates suggesting a buildup of the population of methanotrophs. This activity could be transferred to an artificial medium originally devised for the cultivation of acidophilic iron oxidizing bacteria (Silverman and Lundgren, 1959; J. Bacteriol. 77: 642 - 647), suggesting the possibility of future cultivation of acidophilic methanotrophs. A successful extraction of some hopanoid compounds from the sediments was achieved, although the results were too preliminary at the time of this writing to identify any hopanoids specifically linked to methanotrophic bacteria. Further efforts to amplify functional genes for

  13. Experimental correction of metabolic changes in mouth at long-term hypoacidity by multiprobiotic "Symbiter acidophilic".

    PubMed

    Manko, A M; Neporada, K S; Sukhomlyn, A A; Ghasemzadeh, J; Beregova, T V; Yankovskiy, D S

    2014-01-01

    It is known, that long decrease in gastric secretion leads to the development of hypergastrinemia, dysbiosis and to pathological changes in digestive organs. Very important there is a search of ways to correction of these undesirable consequences. Long-term usage of omeprazole leads to metabolic disorders in periodontium tissues and salivary glands, such as development of NO-ergic system disbalance and activation of free-radical oxidation, that are positively corrected by multiprobiotic of new generation "Symbiter acidophilic".

  14. Acidophilic adaptation of family 11 endo-β-1,4-xylanases: Modeling and mutational analysis

    PubMed Central

    de Lemos Esteves, Frédéric; Ruelle, Virginie; Lamotte-Brasseur, Josette; Quinting, Birgit; Frère, Jean-Marie

    2004-01-01

    Xyl1 from Streptomyces sp. S38 belongs to the low molecular mass family 11 of endo-β-1,4-xylanases. Its three-dimensional structure has been solved at 2.0 Å and its optimum temperature and pH for enzymatic activity are 60°C and 6.0, respectively. Aspergillus kawachii xylanase XynC belongs to the same family but is an acidophilic enzyme with an optimum pH of 2.0. Structural comparison of Xyl1 and XynC showed differences in residues surrounding the two glutamic acid side chains involved in the catalysis that could be responsible for the acidophilic adaptation of XynC. Mutations W20Y, N48D, A134E, and Y193W were introduced by site-directed mutagenesis and combined in multiple mutants. Trp 20 and Tyr 193 are involved in substrate binding. The Y193W mutation inactivated Xyl1 whereas W20Y decreased the optimum pH of Xyl1 to 5.0 and slightly increased its specific activity. The N48D mutation also decreased the optimum pH of Xyl1 by one unit. The A134E substitution did not induce any change, but when combined with N48D, a synergistic effect was observed with a 1.4 unit decrease in the optimum pH. Modeling showed that the orientations of residue 193 and of the fully conserved Arg 131 are different in acidophilic and “alkaline” xylanases whereas the introduced Tyr 20 probably modifies the pKa of the acid–base catalyst via residue Asn 48. Docking of a substrate analog in the catalytic site highlighted striking differences between Xyl1 and XynC in substrate binding. Hydrophobicity calculations showed a correlation between acidophilic adaptation and a decreased hydrophobicity around the two glutamic acid side chains involved in catalysis. PMID:15096627

  15. Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community.

    PubMed

    Jeans, Chris; Singer, Steven W; Chan, Clara S; Verberkmoes, Nathan C; Shah, Manesh; Hettich, Robert L; Banfield, Jillian F; Thelen, Michael P

    2008-05-01

    Recently, there has been intense interest in the role of electron transfer by microbial communities in biogeochemical systems. We examined the process of iron oxidation by microbial biofilms in one of the most extreme environments on earth, where the inhabited water is pH 0.5-1.2 and laden with toxic metals. To approach the mechanism of Fe(II) oxidation as a means of cellular energy acquisition, we isolated proteins from natural samples and found a conspicuous and novel cytochrome, Cyt(572), which is unlike any known cytochrome. Both the character of its covalently bound prosthetic heme group and protein sequence are unusual. Extraction of proteins directly from environmental biofilm samples followed by membrane fractionation, detergent solubilization and gel filtration chromatography resulted in the purification of an abundant yellow-red protein. The purified protein has a cytochrome c-type heme binding motif, CxxCH, but a unique spectral signature at 572 nm, and thus is called Cyt(572). It readily oxidizes Fe(2+) in the physiologically relevant acidic regime, from pH 0.95-3.4. Other physical characteristics are indicative of a membrane-bound multimeric protein. Circular dichroism spectroscopy indicates that the protein is largely beta-stranded, and 2D Blue-Native polyacrylamide gel electrophoresis and chemical crosslinking independently point to a multi-subunit structure for Cyt(572). By analyzing environmental genomic information from biofilms in several distinctly different mine locations, we found multiple genetic variants of Cyt(572). MS proteomics of extracts from these biofilms substantiated the prevalence of these variants in the ecosystem. Due to its abundance, cellular location and Fe(2+) oxidation activity at very low pH, we propose that Cyt(572) provides a critical function for fitness within the ecological niche of these acidophilic microbial communities.

  16. Extreme zinc tolerance in acidophilic microorganisms from the bacterial and archaeal domains.

    PubMed

    Mangold, Stefanie; Potrykus, Joanna; Björn, Erik; Lövgren, Lars; Dopson, Mark

    2013-01-01

    Zinc can occur in extremely high concentrations in acidic, heavy metal polluted environments inhabited by acidophilic prokaryotes. Although these organisms are able to thrive in such severely contaminated ecosystems their resistance mechanisms have not been well studied. Bioinformatic analysis of a range of acidophilic bacterial and archaeal genomes identified homologues of several known zinc homeostasis systems. These included primary and secondary transporters, such as the primary heavy metal exporter ZntA and Nramp super-family secondary importer MntH. Three acidophilic model microorganisms, the archaeon 'Ferroplasma acidarmanus', the Gram negative bacterium Acidithiobacillus caldus, and the Gram positive bacterium Acidimicrobium ferrooxidans, were selected for detailed analyses. Zinc speciation modeling of the growth media demonstrated that a large fraction of the free metal ion is complexed, potentially affecting its toxicity. Indeed, many of the putative zinc homeostasis genes were constitutively expressed and with the exception of 'F. acidarmanus' ZntA, they were not up-regulated in the presence of excess zinc. Proteomic analysis revealed that zinc played a role in oxidative stress in At. caldus and Am. ferrooxidans. Furthermore, 'F. acidarmanus' kept a constant level of intracellular zinc over all conditions tested whereas the intracellular levels increased with increasing zinc exposure in the remaining organisms.

  17. α-fur, an antisense RNA gene to fur in the extreme acidophile Acidithiobacillus ferrooxidans.

    PubMed

    Lefimil, C; Jedlicki, E; Holmes, D S

    2014-03-01

    A large non-coding RNA, termed α-Fur, of ~1000 nt has been detected in the extreme acidophile Acidithiobacillus ferrooxidans encoded on the antisense strand to the iron-responsive master regulator fur (ferric uptake regulator) gene. A promoter for α-fur was predicted bioinformatically and validated using gene fusion experiments. The promoter is situated within the coding region and in the same sense as proB, potentially encoding a glutamate 5-kinase. The 3' termination site of the α-fur transcript was determined by 3' rapid amplification of cDNA ends to lie 7 nt downstream of the start of transcription of fur. Thus, α-fur is antisense to the complete coding region of fur, including its predicted ribosome-binding site. The genetic context of α-fur is conserved in several members of the genus Acidithiobacillus but not in all acidophiles, indicating that it is monophyletic but not niche specific. It is hypothesized that α-Fur regulates the cellular level of Fur. This is the fourth example of an antisense RNA to fur, although it is the first in an extreme acidophile, and underscores the growing importance of cis-encoded non-coding RNAs as potential regulators involved in the microbial iron-responsive stimulon.

  18. Community genomic and proteomic analysis of chemoautotrophic, iron-oxidizing "Leptospirillum rubarum" (Group II) and Leptospirillum ferrodiazotrophum (Group III) in acid mine drainage biofilms

    SciTech Connect

    Goltsman, Daniela; Denef, Vincent; Singer, Steven; Verberkmoes, Nathan C; Lefsrud, Mark G; Mueller, Ryan; Dick, Gregory J.; Sun, Christine; Wheeler, Korin; Zelma, Adam; Baker, Brett J.; Hauser, Loren John; Land, Miriam L; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2009-01-01

    We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum Groups II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, CA acid mine drainage (AMD) biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum Groups II and III, respectively and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and > 60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid encodes conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacteria have genes for community-essential functions, including carbon fixation, biosynthesis of vitamins, fatty acids and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum Group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum Group II uses a methyl-dependent and Leptospirillum Group III a methyl-independent response pathway. Although only Leptospirillum Group III can fix nitrogen, these proteins were not identified by proteomics. Abundances of core proteins are similar in all communities, but abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum Groups II and III.

  19. Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low‐grade copper sulfide ore monitored by real‐time PCR and oligonucleotide prokaryotic acidophile microarray

    PubMed Central

    Remonsellez, Francisco; Galleguillos, Felipe; Moreno‐Paz, Mercedes; Parro, Víctor; Acosta, Mauricio; Demergasso, Cecilia

    2009-01-01

    Summary The bioleaching of metal sulfide has developed into a very important industrial process and understanding the microbial dynamic is key to advancing commercial bioleaching operations. Here we report the first quantitative description of the dynamic of active communities in an industrial bioleaching heap. Acidithiobacillus ferrooxidans was the most abundant during the first part of the leaching cycle, while the abundance of Leptospirillum ferriphilum and Ferroplasma acidiphilum increased with age of the heap. Acidithiobacillus thiooxidans kept constant throughout the leaching cycle, and Firmicutes group showed a low and a patchy distribution in the heap. The Acidiphilium‐like bacteria reached their highest abundance corresponding to the amount of autotrophs. The active microorganisms in the leaching system were determined using two RNA‐based sensitive techniques. In most cases, the 16S rRNA copy numbers of At. ferrooxidans, L. ferriphilum, At. thiooxidans and F. acidiphilum, was concomitant with the DNA copy numbers, whereas Acidiphilium‐like bacteria and some Firmicutes members did not show a clear correlation between 16S rRNA accumulation and DNA copy numbers. However, the prokaryotic acidophile microarray (PAM) analysis showed active members of Alphaproteobacteria in all samples and of Sulfobacillus genus in older ones. Also, new active groups such as Actinobacteria and Acidobacterium genus were detected by PAM. The results suggest that changes during the leaching cycle in chemical and physical conditions, such as pH and Fe3+/Fe2+ ion rate, are primary factors shaping the microbial dynamic in the heap. PMID:21255296

  20. Missing Iron-Oxidizing Acidophiles Highly Sensitive to Organic Compounds

    PubMed Central

    Ueoka, Nagayoshi; Kouzuma, Atsushi; Watanabe, Kazuya

    2016-01-01

    The genus Acidithiobacillus includes iron-oxidizing lithoautotrophs that thrive in acidic mine environments. Acidithiobacillus ferrooxidans is a representative species and has been extensively studied for its application to the bioleaching of precious metals. In our attempts to cultivate the type strain of A. ferrooxidans (ATCC 23270T), repeated transfers to fresh inorganic media resulted in the emergence of cultures with improved growth traits. Strains were isolated from the resultant culture by forming colonies on inorganic silica-gel plates. A representative isolate (strain NU-1) was unable to form colonies on agarose plates and was more sensitive to organics, such as glucose, than the type strain of A. ferrooxidans. Strain NU-1 exhibited superior growth traits in inorganic iron media to those of other iron-oxidizing acidithiobacilli, suggesting its potential for industrial applications. A draft genome of NU-1 uncovered unique features in catabolic enzymes, indicating that this strain is not a mutant of the A. ferrooxidans type strain. Our results indicate that the use of inorganic silica-gel plates facilitates the isolation of as-yet-unexamined iron-oxidizing acidithiobacilli from environmental samples and enrichment cultures. PMID:27356527

  1. Electricity generation from tetrathionate in microbial fuel cells by acidophiles.

    PubMed

    Sulonen, Mira L K; Kokko, Marika E; Lakaniemi, Aino-Maija; Puhakka, Jaakko A

    2015-03-01

    Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m(-2) and 13.9 mW m(-2) and 433 mA m(-2) and 17.6 mW m(-2), respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2-2.5.

  2. Corrosion by bacteria of concrete in sewerage systems and inhibitory effects of formates on their growth.

    PubMed

    Yamanaka, Tateo; Aso, Iwao; Togashi, Shunsuke; Tanigawa, Minoru; Shoji, Kazuo; Watanabe, Tsugumichi; Watanabe, Naoki; Maki, Kazuo; Suzuki, Hiroshi

    2002-05-01

    Not only sulfur-oxidizing bacteria but also an acidophilic iron-oxidizing bacterium (or bacteria) were found in the corroded concrete from several sewerage systems in Japan. The surface pH of concrete test piece exposed to an atmosphere containing hydrogen sulfide of the concentrations more than 600 ppm in the systems was usually below 2 after a month. This was attributable to ability of the sulfur-oxidizing bacteria to grow in the thin water layer which contained hydrogen sulfide and covered the piece even when the surface pH of concrete was 12-13. When the sulfuroxidizing bacteria grew in the surface of concrete and produced sulfuric acid, the pH of the inner parts of concrete was lowered where the bacteria were hardly found. Probably, sulfuric acid formed by the bacteria in the surface parts penetrated into the inner parts. The different species of sulfur-oxidizing bacteria were found in different sewerage systems. The growth of the sulfur-oxidizing and acidophilic iron-oxidizing bacteria was completely inhibited by formates, especially by calcium formate of concentrations more than 50 mM. Calcium formate can protect concrete in sewerage systems from bacterial corrosion.

  3. Corrosion by bacteria of concrete in sewerage systems and inhibitory effects of formates on their growth.

    PubMed

    Yamanaka, Tateo; Aso, Iwao; Togashi, Shunsuke; Tanigawa, Minoru; Shoji, Kazuo; Watanabe, Tsugumichi; Watanabe, Naoki; Maki, Kazuo; Suzuki, Hiroshi

    2002-05-01

    Not only sulfur-oxidizing bacteria but also an acidophilic iron-oxidizing bacterium (or bacteria) were found in the corroded concrete from several sewerage systems in Japan. The surface pH of concrete test piece exposed to an atmosphere containing hydrogen sulfide of the concentrations more than 600 ppm in the systems was usually below 2 after a month. This was attributable to ability of the sulfur-oxidizing bacteria to grow in the thin water layer which contained hydrogen sulfide and covered the piece even when the surface pH of concrete was 12-13. When the sulfuroxidizing bacteria grew in the surface of concrete and produced sulfuric acid, the pH of the inner parts of concrete was lowered where the bacteria were hardly found. Probably, sulfuric acid formed by the bacteria in the surface parts penetrated into the inner parts. The different species of sulfur-oxidizing bacteria were found in different sewerage systems. The growth of the sulfur-oxidizing and acidophilic iron-oxidizing bacteria was completely inhibited by formates, especially by calcium formate of concentrations more than 50 mM. Calcium formate can protect concrete in sewerage systems from bacterial corrosion. PMID:12153031

  4. Acidophilic actinomycetes from rhizosphere soil: diversity and properties beneficial to plants.

    PubMed

    Poomthongdee, Nalin; Duangmal, Kannika; Pathom-aree, Wasu

    2015-02-01

    Three hundred and fifty-one isolates of actinomycetes were recovered from 21 rhizospheric soil samples using acidified media of pH 5.5. They were evaluated for their antifungal, siderophore production and phosphate solubilization activities. The total count of actinomycetes growing on acidified starch casein agar and Gause no. 1 agar were below 2.48 × 10(4) CFU g(-1) soil. Two hundred and twelve isolates were assigned to acidophiles and the remaining 139 isolates were neutrophiles. Of these actinomycetes, 57.8, 32.5 and 50.4%, showed antagonistic activity against three rice pathogenic fungi; Fusarium moniliforme, Helminthosporium oryzae and Rhizoctonia solani, respectively. More than half of the isolates (68.1%) inhibited at least one tested pathogenic fungus, whereas 25.9% exhibited antifungal activities against all tested fungi. Three hundred and thirty-eight isolates (96.3%) produced siderophore and 266 isolates (75.8%) solubilized phosphate. A greater proportion of the acidophilic actinomycetes exhibited antifungal, siderophore production and phosphate solubilization activity compared with the neutrophiles. Three hundred and twenty-five isolates (92.6%) were classified as streptomycetes based on their morphological characteristics and the presence of the LL-isomeric form of diaminopimelic acid in whole-cell hydrolysates. The 16S ribosomal RNA (rRNA) gene analysis of representative non-streptomycete strains showed that the isolates belonged to seven genera, that is, Allokutzneria, Amycolatopsis, Mycobacterium, Nocardia, Nonomuraea, Saccharopolyspora and Verrucosispora. The potential antifungal acidophilic isolates, R9-4, R14-1, R14-5 and R20-5, showed close similarity to Streptomyces misionensis NBRC 13063(T) (AB184285) in terms of morphological characteristics and 16S rRNA gene sequences.

  5. Mining biomass-degrading genes through Illumina-based de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam.

    PubMed

    Do, Thi Huyen; Nguyen, Thi Thao; Nguyen, Thanh Ngoc; Le, Quynh Giang; Nguyen, Cuong; Kimura, Keitarou; Truong, Nam Hai

    2014-12-01

    The 5.6 Gb metagenome of free-living microbial flora in the gut of the lower termite Coptotermes gestroi, harvested in Vietnam, was sequenced using Illumina technology. Genes related to biomass degradation were mined for a better understanding of biomass digestion in the termite gut and to identify lignocellulolytic enzymes applicable to biofuel production. The sequencing generated 5.4 Gb of useful reads, containing 125,431 ORFs spanning 78,271,365 bp, 80% of which was derived from bacteria. The 12 most abundant bacterial orders were Spirochaetales, Lactobacillales, Bacteroidales, Clostridiales, Enterobacteriales, Pseudomonades, Synergistales, Desulfovibrionales, Xanthomonadales, Burkholderiales, Bacillales, and Actinomycetales, and 1460 species were estimated. Of more than 12,000 ORFs with predicted functions related to carbohydrate metabolism, 587 encoding hydrolytic enzymes for cellulose, hemicellulose, and pectin were identified. Among them, 316 ORFs were related to cellulose degradation, and included β-glucosidases, 6-phospho-β-glucosidases, licheninases, glucan endo-1,3-β-D-glucosidases, endoglucanases, cellulose 1,4-β-cellobiosidases, glucan 1,3-β-glucosidases, and cellobiose phosphorylases. In addition, 259 ORFs were related to hemicellulose degradation, encoding endo-1,4-β-xylanases, α-galactosidases, α-N-arabinofuranosidases, xylan 1,4-β-xylosidases, arabinan endo-1,5-α-L-arabinosidases, endo-1,4-β-mannanases, and α-glucuronidases. Twelve ORFs encoding pectinesterases and pectate lyases were also obtained. To our knowledge, this is the first successful application of Illumina-based de novo sequencing for the analysis of a free-living bacterial community in the gut of a lower termite C. gestroi and for mining genes related to lignocellulose degradation from the gut bacteria.

  6. [Leaching of Rare Earth Elements from Coal Ashes Using Acidophilic Chemolithotrophic Microbial Communities].

    PubMed

    Muravyov, M I; Bulaev, A G; Melamud, V S; Kondrat'eva, T F

    2015-01-01

    A method for leaching rare earth elements from coal ash in the presence of elemental sulfur using communities of acidophilic chemolithotrophic microorganisms was proposed. The optimal parameters determined for rare element leaching in reactors were as follows: temperature, 45 degrees C; initial pH, 2.0; pulp density, 10%; and the coal ash to elemental sulfur ratio, 10 : 1. After ten days of leaching, 52.0, 52.6, and 59.5% of scandium, yttrium, and lanthanum, respectively, were recovered.

  7. [Preparation of Copper and Nickel from Metallurgical Waste Products with the Use of Acidophilic Chemolithotrophic Microorganisms].

    PubMed

    Fomchenko, N V; Murav'ev, M I

    2015-01-01

    The study concerns the leaching of copper, nickel, and cobalt from metallurgical production slag with trivalent iron sulphates prepared in the process of oxidation of bivalent iron ions with the use of associations of acidophilic chemolithotrophic microorganisms. At the same time, copper extraction in the solution reached 91.2%, nickel reached 74.9%, and cobalt reached 90.1%. Copper was extracted by cementation, and nickel as sulphate was extracted by electrolysis. Associations of microorganisms can then completely bioregenerate the solution obtained after leaching.

  8. [Leaching of Rare Earth Elements from Coal Ashes Using Acidophilic Chemolithotrophic Microbial Communities].

    PubMed

    Muravyov, M I; Bulaev, A G; Melamud, V S; Kondrat'eva, T F

    2015-01-01

    A method for leaching rare earth elements from coal ash in the presence of elemental sulfur using communities of acidophilic chemolithotrophic microorganisms was proposed. The optimal parameters determined for rare element leaching in reactors were as follows: temperature, 45 degrees C; initial pH, 2.0; pulp density, 10%; and the coal ash to elemental sulfur ratio, 10 : 1. After ten days of leaching, 52.0, 52.6, and 59.5% of scandium, yttrium, and lanthanum, respectively, were recovered. PMID:26263628

  9. Transfer of IncP Plasmids to Extremely Acidophilic Thiobacillus thiooxidans.

    PubMed

    Jin, S M; Yan, W M; Wang, Z N

    1992-01-01

    The broad-host-range IncP plasmids RP4, R68.45, RP1::Tn501, and and pUB307 were transferred directly to extremely acidophilic Thiobacillus thiooxidans from Escherichia coli by conjugation at frequencies of 10 to 10 per recipient. The ability of T. thiooxidans to receive and express the antibiotic resistance markers was examined. The plasmid RP4 was transferred back to E. coli from T. thiooxidans at a frequency of 1.0 x 10 per recipient.

  10. [Preparation of Copper and Nickel from Metallurgical Waste Products with the Use of Acidophilic Chemolithotrophic Microorganisms].

    PubMed

    Fomchenko, N V; Murav'ev, M I

    2015-01-01

    The study concerns the leaching of copper, nickel, and cobalt from metallurgical production slag with trivalent iron sulphates prepared in the process of oxidation of bivalent iron ions with the use of associations of acidophilic chemolithotrophic microorganisms. At the same time, copper extraction in the solution reached 91.2%, nickel reached 74.9%, and cobalt reached 90.1%. Copper was extracted by cementation, and nickel as sulphate was extracted by electrolysis. Associations of microorganisms can then completely bioregenerate the solution obtained after leaching. PMID:26353401

  11. Flagella and pili of iron-oxidizing thiobacilli isolated from a uranium mine in northern Ontario, Canada

    SciTech Connect

    DiSpirito, A.A.; Silver, M.; Voss, L.; Tuovinen, O.H.

    1982-05-01

    Five strains of Thiobacillus ferrooxidans, which included three recent isolates from a uranium mine, possessed flagella. Three of the strains had several pili per cell. The dimensions, fine structure, and orientation of the flagella were different. Both polar and peritrichous flagella were observed, indicating strain-dependent ultrastructural variation in acidophilic thiobacilli. Neither flagella nor pili were detected in eight other strains of T. ferrooxidans and two strains of Thiobacillus acidophilus by electron microscopy, although all of the cultures contained motile cells.

  12. Bioweathering of Kupferschiefer black shale (Fore-Sudetic Monocline, SW Poland) by indigenous bacteria: implication for dissolution and precipitation of minerals in deep underground mine.

    PubMed

    Matlakowska, Renata; Skłodowska, Aleksandra; Nejbert, Krzysztof

    2012-07-01

    The Upper Permian polymetallic, organic-rich Kupferschiefer black shale in the Fore-Sudetic Monocline is acknowledged to be one of the largest Cu-Ag deposits in the world. Here we report the results of the first study of bioweathering of this sedimentary rock by indigenous heterotrophic bacteria. Experiments were performed under laboratory conditions, employing both petrological and microbiological methods, which permitted the monitoring and visualization of geomicrobiological processes. The results demonstrate that bacteria play a prominent role in the weathering of black shale and in the biogeochemical cycles of elements occurring in this rock. It was shown that bacteria directly interact with black shale organic matter to produce a widespread biofilm on the Kupferschiefer shale surface. As a result of bacterial activity, the formation of pits, bioweathering of ore and rock-forming minerals, the mobilization of elements and secondary mineral precipitation were observed. The chemistry of the secondary minerals unequivocally demonstrates the mobilization of elements from minerals comprising Kupferschiefer. The redistribution of P, Al, Si, Ca, Mg, K, Fe, S, Cu and Pb was confirmed. The presence of bacterial outer membrane vesicles on the surface of black shale was observed for the first time. Biomineralization reactions occurred in both the membrane vesicles and the bacterial cells.

  13. Production and characterization of acidophilic xylanolytic enzymes from Penicillium oxalicum GZ-2.

    PubMed

    Liao, Hanpeng; Xu, Chunmiao; Tan, Shiyong; Wei, Zhong; Ling, Ning; Yu, Guanghui; Raza, Waseem; Zhang, Ruifu; Shen, Qirong; Xu, Yangchun

    2012-11-01

    Multiple acidophilic xylanolytic enzymes were produced by Penicillium oxalicum GZ-2 during growth on wheat straw, rice straw, corn stover, and wheat bran. The expression of xylanase isoforms was dependent on substrate type and nitrogen source. The zymograms produced by the SDS-PAGE resolution of the crude enzymes indicated that wheat straw was the best inducer, resulting in the highest xylanase (115.2U/mL) and β-xylosidase (89mU/mL) activities during submerged fermentation. The optimum temperature and pH for xylanase activity were 50°C and 4.0, respectively; however, the crude xylanase enzymes exhibited remarkable stability over a broad pH range and showed more than 90% activity at 50°C for 30min at pH 4.0-8.0. The results revealed that P. oxalicum GZ-2 is a promising acidophilic xylanase-producing microorganism that has great potential to be used in biofuels, animal feed, and food industry applications.

  14. A proton shelter inspired by the sugar coating of acidophilic archaea

    PubMed Central

    Wang, Xiumei; Lv, Bei'er; Cai, Guixin; Fu, Long; Wu, Yuanzi; Wang, Xiang; Ren, Bin; Ma, Hongwei

    2012-01-01

    The acidophilic archaeons are a group of single-celled microorganisms that flourish in hot acid springs (usually pH < 3) but maintain their internal pH near neutral. Although there is a lack of direct evidence, the abundance of sugar modifications on the cell surface has been suggested to provide the acidophiles with protection against proton invasion. In this study, a hydroxyl (OH)-rich polymer brush layer was prepared to mimic the OH-rich sugar coating. Using a novel pH-sensitive dithioacetal molecule as a probe, we studied the proton-resisting property and found that a 10-nm-thick polymer layer was able to raise the pH from 1.0 to > 5.0, indicating that the densely packed OH-rich layer is a proton shelter. As strong evidence for the role of sugar coatings as proton barriers, this biomimetic study provides insight into evolutionary biology, and the results also could be expanded for the development of biocompatible anti-acid materials. PMID:23189241

  15. Large-Scale Cultivation of Acidophilic Hyperthermophiles for Recovery of Secreted Proteins

    PubMed Central

    Worthington, Penny; Blum, Paul; Perez-Pomares, Francisco; Elthon, Tom

    2003-01-01

    An electric water heater was modified for large-scale cultivation of aerobic acidophilic hyperthermophiles to enable recovery of secreted proteins. Critical changes included thermostat replacement, redesign of the temperature control circuit, and removal of the cathodic anticorrosion system. These alterations provided accurate temperature and pH control. The bioreactor was used to cultivate selected strains of the archaeon Sulfolobus solfataricus and other species within this genus. Reformulation of a basal salts medium facilitated preparation of large culture volumes and eliminated sterilization-induced precipitation of medium components. Substrate induction of synthesis of the S. solfataricus-secreted alpha-amylase during growth in a defined medium supported the utility of the bioreactor for studies of physiologically regulated processes. An improved purification strategy was developed by using strong cation-exchange chromatography for recovery of the alpha-amylase and the processing of large sample volumes of acidic culture supernatant. These findings should simplify efforts to study acidophilic hyperthermophilic microbes and their secreted proteins. PMID:12514002

  16. Dense fouling in acid transfer pipelines by an acidophilic rubber degrading fungus.

    PubMed

    Joshi, M Hiren; Balamurugan, P; Venugopalan, V P; Rao, T S

    2011-07-01

    An unique case of dense fouling by an acidophilic, hard rubber (polymerized rubber) degrading fungus in the acid transfer pipelines of a boron enrichment plant located at Kalpakkam, India is reported. In spite of a highly adverse environment for survival (pH 1.5, no dissolved nutrients), the fungus thrived and clogged the pipeline used for transferring 0.1N hydrochloric acid (HCl). Detailed investigations were carried out to isolate and identify the fungus and examine the nutrient source for such profuse growth inside the system. Microscopic observation showed the presence of a thick filamentous fungal biomass. Molecular characterization by 18S rRNA gene sequencing showed 98% similarity of the isolate with the acidophilic fungus Bispora sp. In laboratory studies the fungus showed luxuriant growth (specific growth rate of 13 mg day⁻¹) when scrapings of the hard rubber were used as the sole source of carbon. Scanning electron microscopy revealed extensive incursion of the fungus into the hard rubber matrix. In the laboratory, fungal growth was completely inhibited by the antifungal agent sodium omadine. The study illustrates an interesting example of biofouling under extreme conditions and demonstrates that organisms can physiologically adapt to grow under unfavourable conditions, provided that a nutrient source is available and competition is low. The use of this fungal strain in biodegradation and in development of environmentally compatible processes for disposal of rubber wastes is envisaged. PMID:21722066

  17. Taxonomic study of neutrotolerant acidophilic actinomycetes isolated from soil and description of Streptomyces yeochonensis sp. nov.

    PubMed

    Kim, Seung Bum; Seong, Chi Nam; Jeon, Soo Jin; Bae, Kyung Sook; Goodfellow, Michael

    2004-01-01

    Acidophilic actinomycete strains that represent the two major neutrotolerant clusters defined by numerical taxonomy (Seong, 1992) were the subject of a polyphasic taxonomic study. The centrotypes of each cluster, designated as strain JL164 (=KCTC 9924) of cluster 21 and strain CN732T (=KCTC 9926T=IMSNU 50114T=NRRL B-24245T) of cluster 13, were assigned initially to the genus Streptomyces on the basis of morphological and chemotaxonomic characteristics; this assignation was confirmed by 16S rRNA gene sequence data. Strain CN732T formed a distinct phyletic line within the Streptomyces tree, whereas strain JL164 was related closely to the type strain of Streptomyces mirabilis. It is evident from the present and previous studies that neutrotolerant acidophilic actinomycetes comprise taxonomically diverse groups within the variation encompassed by the genus Streptomyces. It is also apparent that strain CN732T and other members of cluster 13 merit recognition as a novel species, for which the name Streptomyces yeochonensis sp. nov. is proposed.

  18. A proton shelter inspired by the sugar coating of acidophilic archaea

    NASA Astrophysics Data System (ADS)

    Wang, Xiumei; Lv, Bei'er; Cai, Guixin; Fu, Long; Wu, Yuanzi; Wang, Xiang; Ren, Bin; Ma, Hongwei

    2012-11-01

    The acidophilic archaeons are a group of single-celled microorganisms that flourish in hot acid springs (usually pH < 3) but maintain their internal pH near neutral. Although there is a lack of direct evidence, the abundance of sugar modifications on the cell surface has been suggested to provide the acidophiles with protection against proton invasion. In this study, a hydroxyl (OH)-rich polymer brush layer was prepared to mimic the OH-rich sugar coating. Using a novel pH-sensitive dithioacetal molecule as a probe, we studied the proton-resisting property and found that a 10-nm-thick polymer layer was able to raise the pH from 1.0 to > 5.0, indicating that the densely packed OH-rich layer is a proton shelter. As strong evidence for the role of sugar coatings as proton barriers, this biomimetic study provides insight into evolutionary biology, and the results also could be expanded for the development of biocompatible anti-acid materials.

  19. Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans

    PubMed Central

    Quatrini, Raquel; Lefimil, Claudia; Veloso, Felipe A.; Pedroso, Inti; Holmes, David S.; Jedlicki, Eugenia

    2007-01-01

    The γ-proteobacterium Acidithiobacillus ferrooxidans lives in extremely acidic conditions (pH 2) and, unlike most organisms, is confronted with an abundant supply of soluble iron. It is also unusual in that it oxidizes iron as an energy source. Consequently, it faces the challenging dual problems of (i) maintaining intracellular iron homeostasis when confronted with extremely high environmental loads of iron and (ii) of regulating the use of iron both as an energy source and as a metabolic micronutrient. A combined bioinformatic and experimental approach was undertaken to identify Fur regulatory sites in the genome of A. ferrooxidans and to gain insight into the constitution of its Fur regulon. Fur regulatory targets associated with a variety of cellular functions including metal trafficking (e.g. feoPABC, tdr, tonBexbBD, copB, cdf), utilization (e.g. fdx, nif), transcriptional regulation (e.g. phoB, irr, iscR) and redox balance (grx, trx, gst) were identified. Selected predicted Fur regulatory sites were confirmed by FURTA, EMSA and in vitro transcription analyses. This study provides the first model for a Fur-binding site consensus sequence in an acidophilic iron-oxidizing microorganism and lays the foundation for future studies aimed at deepening our understanding of the regulatory networks that control iron uptake, homeostasis and oxidation in extreme acidophiles. PMID:17355989

  20. In situ phytostabilisation capacity of three legumes and their associated Plant Growth Promoting Bacteria (PGPBs) in mine tailings of northern Tunisia.

    PubMed

    Saadani, Omar; Fatnassi, Imen Challougui; Chiboub, Manel; Abdelkrim, Souhir; Barhoumi, Fathi; Jebara, Moez; Jebara, Salwa Harzalli

    2016-08-01

    PGPBs-legumes associations represent an alternative procedure for phytostabilisation of heavy metals polluted soils mainly generated by industrial and agricultural practices. In this study we evaluated the capacity of Vicia faba, Lens culinaris and Sulla coronaria, inoculated in situ by specific heavy metals resistant inocula, for the phytostabilisation of copper, lead and cadmium respectively. The experimentation was performed in mine tailings of northern Tunisia. Results proved that inoculation enhanced roots and shoots biomass production of faba bean by 14% and 12%, respectively, and significantly improved pods yield by 91%. In lentil, the inoculation ameliorated shoot biomass up to 27%. The highest nitrogen fixation was recorded by Sulla coronaria. The three symbioses accumulated heavy metals essentially in roots, and poorly in shoots. In addition, cadmium accumulation in roots of inoculated sulla was enhanced by 39%. Furthermore, inoculations decreased heavy metals availability in the soil up to -10% of Cu and -47% of Pb respectively in roots of faba bean and lentil. Our results suggested a positive effect of co-inoculation of legumes by appropriate heavy metals resistant PGPBs for the phytostabilisation of mine tailings. Elsewhere, the enhancement in the antioxidant enzymes activities demonstrated the role of the three inocula to alleviate the heavy metals induced stress. PMID:27151677

  1. Depth-dependent geochemical and microbiological gradients in Fe(III) deposits resulting from coal mine-derived acid mine drainage

    PubMed Central

    Brantner, Justin S.; Haake, Zachary J.; Burwick, John E.; Menge, Christopher M.; Hotchkiss, Shane T.; Senko, John M.

    2014-01-01

    We evaluated the depth-dependent geochemistry and microbiology of sediments that have developed via the microbially-mediated oxidation of Fe(II) dissolved in acid mine drainage (AMD), giving rise to a 8–10 cm deep “iron mound” that is composed primarily of Fe(III) (hydr)oxide phases. Chemical analyses of iron mound sediments indicated a zone of maximal Fe(III) reducing bacterial activity at a depth of approximately 2.5 cm despite the availability of dissolved O2 at this depth. Subsequently, Fe(II) was depleted at depths within the iron mound sediments that did not contain abundant O2. Evaluations of microbial communities at 1 cm depth intervals within the iron mound sediments using “next generation” nucleic acid sequencing approaches revealed an abundance of phylotypes attributable to acidophilic Fe(II) oxidizing Betaproteobacteria and the chloroplasts of photosynthetic microeukaryotic organisms in the upper 4 cm of the iron mound sediments. While we observed a depth-dependent transition in microbial community structure within the iron mound sediments, phylotypes attributable to Gammaproteobacterial lineages capable of both Fe(II) oxidation and Fe(III) reduction were abundant in sequence libraries (comprising ≥20% of sequences) from all depths. Similarly, abundances of total cells and culturable Fe(II) oxidizing bacteria were uniform throughout the iron mound sediments. Our results indicate that O2 and Fe(III) reduction co-occur in AMD-induced iron mound sediments, but that Fe(II)-oxidizing activity may be sustained in regions of the sediments that are depleted in O2. PMID:24860562

  2. Quantification of Tinto River sediment microbial communities: importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage.

    PubMed

    Sánchez-Andrea, Irene; Knittel, Katrin; Amann, Rudolf; Amils, Ricardo; Sanz, José Luis

    2012-07-01

    Tinto River (Huelva, Spain) is a natural acidic rock drainage (ARD) environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. This study quantified the abundance of diverse microbial populations inhabiting ARD-related sediments from two physicochemically contrasting sampling sites (SN and JL dams). Depth profiles of total cell numbers differed greatly between the two sites yet were consistent in decreasing sharply at greater depths. Although catalyzed reporter deposition fluorescence in situ hybridization with domain-specific probes showed that Bacteria (>98%) dominated over Archaea (<2%) at both sites, important differences were detected at the class and genus levels, reflecting differences in pH, redox potential, and heavy metal concentrations. At SN, where the pH and redox potential are similar to that of the water column (pH 2.5 and +400 mV), the most abundant organisms were identified as iron-reducing bacteria: Acidithiobacillus spp. and Acidiphilium spp., probably related to the higher iron solubility at low pH. At the JL dam, characterized by a banded sediment with higher pH (4.2 to 6.2), more reducing redox potential (-210 mV to 50 mV), and a lower solubility of iron, members of sulfate-reducing genera Syntrophobacter, Desulfosporosinus, and Desulfurella were dominant. The latter was quantified with a newly designed CARD-FISH probe. In layers where sulfate-reducing bacteria were abundant, pH was higher and redox potential and levels of dissolved metals and iron were lower. These results suggest that the attenuation of ARD characteristics is biologically driven by sulfate reducers and the consequent precipitation of metals and iron as sulfides.

  3. Quantification of Tinto River Sediment Microbial Communities: Importance of Sulfate-Reducing Bacteria and Their Role in Attenuating Acid Mine Drainage

    PubMed Central

    Sánchez-Andrea, Irene; Knittel, Katrin; Amann, Rudolf; Amils, Ricardo

    2012-01-01

    Tinto River (Huelva, Spain) is a natural acidic rock drainage (ARD) environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. This study quantified the abundance of diverse microbial populations inhabiting ARD-related sediments from two physicochemically contrasting sampling sites (SN and JL dams). Depth profiles of total cell numbers differed greatly between the two sites yet were consistent in decreasing sharply at greater depths. Although catalyzed reporter deposition fluorescence in situ hybridization with domain-specific probes showed that Bacteria (>98%) dominated over Archaea (<2%) at both sites, important differences were detected at the class and genus levels, reflecting differences in pH, redox potential, and heavy metal concentrations. At SN, where the pH and redox potential are similar to that of the water column (pH 2.5 and +400 mV), the most abundant organisms were identified as iron-reducing bacteria: Acidithiobacillus spp. and Acidiphilium spp., probably related to the higher iron solubility at low pH. At the JL dam, characterized by a banded sediment with higher pH (4.2 to 6.2), more reducing redox potential (−210 mV to 50 mV), and a lower solubility of iron, members of sulfate-reducing genera Syntrophobacter, Desulfosporosinus, and Desulfurella were dominant. The latter was quantified with a newly designed CARD-FISH probe. In layers where sulfate-reducing bacteria were abundant, pH was higher and redox potential and levels of dissolved metals and iron were lower. These results suggest that the attenuation of ARD characteristics is biologically driven by sulfate reducers and the consequent precipitation of metals and iron as sulfides. PMID:22544246

  4. Thermoanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium

    SciTech Connect

    Shu-Ying Liu; Wiegel, J.; Rainey, F.A.

    1996-04-01

    Six moderately acidophilic, thermophilic bacterial strains with similar properties were isolated from geothermally heated water and sediment samples collected in New Zealand. These Gram stain-negative but Gram type-positive, rod-shaped bacteria formed oval terminal endospores. The cells were peritrichously flagellated and exhibited tumbling motility. At 60{degrees}C the pH range for growth was 3.8 to 6.8, and the optimum pH was 5.2 when the organisms were grown with xylose. At pH 5.2 the temperature range for growth was 35 to 66{degrees}C, and the optimum temperature was 60 to 63{degrees}C. The fermentation products from flucose or xylose were ethanol, acetate, lactate, CO{sub 2}, and H{sub 2}. The DNA G+C content was 34.5 to 35 mol%. On the basis of properties such as formation of elemental sulfur from thiosulfate, growth at acidic pH values at elevated temperatures, and the results of a 16S rRNA sequence comparison performed with previously validly published species belonging to the genus Thermoanaerobacterium, we propose that strain JW/SL-NZ613{sup T} (T = type strain) and five similar strains isolated from samples collected in New Zealand represent a new species, Thermoanaerobacterium aotearoense. Strain JW/SL-NZ613{sup T} (= DSM 10170) is the type strain of this species.

  5. Impact of Acid Mine Drainage on the hydrogeological system at Sia, Cyprus

    NASA Astrophysics Data System (ADS)

    Ng, Stephen; Malpas, John

    2013-04-01

    Discontinued mining of the volcanogenic massive sulphide ore bodies of Cyprus has left significant environmental concerns including Acid Mine Drainage. Remnant sulphide ore and tailings in waste dumps react with oxygenated rainwater to produce sulphuric acid, a process which is multiplied when metal-loving acidophilic bacteria are present. Given that Cyprus has a Mediterranean climate, characterized by its warm and dry summers and cool and wet winters, the low pH effluent with high levels of trace elements, particularly metals, is leached out of the waste tips particularly during the wet season. The Sia site includes an open mine-pit lake, waste rock and tailings dumps, a river leading to a downstream dam-lake, and a localised groundwater system. The study intends to: identify the point source and nature of contamination; analyze the mechanism and results of local acid generation; and understand how the hydrogeological system responds to seasonal variations. During two sampling campaigns, in the wet and dry seasons of 2011, water samples were collected from the mine pit lake, from upstream of the adjacent river down to the dam catchment, and from various boreholes close to the sulphide mine. The concentration of ions in waters varies between wet and dry seasons but, in both, relative amounts are directly related to pH. In the mine-pit lake, Fe, Mn, Mg, Cu, Pb, Zn, Ni, Co and Cd are found in higher concentrations in the dry season, as a result of substantial evaporation of water. The Sia River runs continuously in the wet season, and waters collected close to the waste tips have pH as low as 2.5 and higher concentrations of Al, Cu, Fe and Zn. Further downstream there is a significant decrease in trace metal contents with a concomitant rise of pH. Al and Fe dominate total cation content when pH is lower than 4. Al is derived from the weathering of clay minerals, especially during the wet season. Fe is derived from the oxidation of pyrite. Once pH's exceed 4, a white

  6. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's ...

  7. Isolation and Identification of Concrete Environment Bacteria

    NASA Astrophysics Data System (ADS)

    Irwan, J. M.; Anneza, L. H.; Othman, N.; Husnul, T.; Alshalif, A. F.

    2016-07-01

    This paper presents the isolation and molecular method for bacteria identification through PCR and DNA sequencing. Identification of the bacteria species is required in order to fully utilize the bacterium capability for precipitation of calcium carbonate in concrete. This process is to enable the addition of suitable catalyst according to the bacterium enzymatic pathway that is known through the bacteria species used. The objective of this study is to isolate, enriched and identify the bacteria species. The bacteria in this study was isolated from fresh urine and acid mine drainage water, Kota Tinggi, Johor. Enrichment of the isolated bacteria was conducted to ensure the bacteria survivability in concrete. The identification of bacteria species was done through polymerase chain reaction (PCR) and rRDNA sequencing. The isolation and enrichment of the bacteria was done successfully. Whereas, the results for bacteria identification showed that the isolated bacteria strains are Bacillus sp and Enterococus faecalis.

  8. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile.

    PubMed

    Messerli, Mark A; Amaral-Zettler, Linda A; Zettler, Erik; Jung, Sung-Kwon; Smith, Peter J S; Sogin, Mitchell L

    2005-07-01

    Organisms growing in acidic environments, pH<3, would be expected to possess fundamentally different molecular structures and physiological controls in comparison with similar species restricted to neutral pH. We begin to investigate this premise by determining the magnitude of the transmembrane electrochemical H+ gradient in an acidophilic Chlamydomonas sp. (ATCC PRA-125) isolated from the Rio Tinto, a heavy metal laden, acidic river (pH 1.7-2.5). This acidophile grows most rapidly at pH 2 but is capable of growth over a wide pH range (1.5-7.0), while Chlamydomonas reinhardtii is restricted to growth at pH>or=3 with optimal growth between pH 5.5 and 8.5. With the fluorescent H+ indicator, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), we show that the acidophilic Chlamydomonas maintains an average cytosolic pH of 6.6 in culture medium at both pH 2 and pH 7 while Chlamydomonas reinhardtii maintains an average cytosolic pH of 7.1 in pH 7 culture medium. The transmembrane electric potential difference of Chlamydomonas sp., measured using intracellular electrodes at both pH 2 and 7, is close to 0 mV, a rare value for plants, animals and protists. The 40,000-fold difference in [H+] could be the result of either active or passive mechanisms. Evidence for active maintenance was detected by monitoring the rate of ATP consumption. At the peak, cells consume about 7% more ATP per second in medium at pH 2 than at pH 7. This increased rate of consumption is sufficient to account for removal of H+ entering the cytosol across a membrane with relatively high permeability to H+ (7x10(-8) cm s-1). Our results indicate that the small increase in the rate of ATP consumption can account for maintenance of the transmembrane H+ gradient without the imposition of cell surface H+ barriers.

  9. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile.

    PubMed

    Messerli, Mark A; Amaral-Zettler, Linda A; Zettler, Erik; Jung, Sung-Kwon; Smith, Peter J S; Sogin, Mitchell L

    2005-07-01

    Organisms growing in acidic environments, pH<3, would be expected to possess fundamentally different molecular structures and physiological controls in comparison with similar species restricted to neutral pH. We begin to investigate this premise by determining the magnitude of the transmembrane electrochemical H+ gradient in an acidophilic Chlamydomonas sp. (ATCC PRA-125) isolated from the Rio Tinto, a heavy metal laden, acidic river (pH 1.7-2.5). This acidophile grows most rapidly at pH 2 but is capable of growth over a wide pH range (1.5-7.0), while Chlamydomonas reinhardtii is restricted to growth at pH>or=3 with optimal growth between pH 5.5 and 8.5. With the fluorescent H+ indicator, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), we show that the acidophilic Chlamydomonas maintains an average cytosolic pH of 6.6 in culture medium at both pH 2 and pH 7 while Chlamydomonas reinhardtii maintains an average cytosolic pH of 7.1 in pH 7 culture medium. The transmembrane electric potential difference of Chlamydomonas sp., measured using intracellular electrodes at both pH 2 and 7, is close to 0 mV, a rare value for plants, animals and protists. The 40,000-fold difference in [H+] could be the result of either active or passive mechanisms. Evidence for active maintenance was detected by monitoring the rate of ATP consumption. At the peak, cells consume about 7% more ATP per second in medium at pH 2 than at pH 7. This increased rate of consumption is sufficient to account for removal of H+ entering the cytosol across a membrane with relatively high permeability to H+ (7x10(-8) cm s-1). Our results indicate that the small increase in the rate of ATP consumption can account for maintenance of the transmembrane H+ gradient without the imposition of cell surface H+ barriers. PMID:15961743

  10. Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant-microorganism-rhizosphere soil system and isolation of metal-tolerant bacteria.

    PubMed

    Becerra-Castro, C; Monterroso, C; Prieto-Fernández, A; Rodríguez-Lamas, L; Loureiro-Viñas, M; Acea, M J; Kidd, P S

    2012-05-30

    The plant-microorganism-soil system of three pseudometallophytes (Betula celtiberica, Cytisus scoparius and Festuca rubra) growing in a Pb/Zn mine was characterised. Plant metal accumulation, soil metal fractions (rhizosphere and non-vegetated) and bacterial densities were determined. Total Cd, Pb and Zn in non-vegetated soils was up to 50, 3000 and 20,000 mg kg(-1) dry weight, respectively. The residual fraction dominated non-vegetated soils, whereas plant-available fractions became important in rhizosphere soils. All plant species effectively excluded metals from the shoot. F. rubra presented a shoot:root transport factor of ≤0.2 and this population could be useful in future phytostabilisation trials. Culturable bacterial densities and diversity were low (predominantly Actinobacteria). Rhizosphere soils hosted higher total and metal-tolerant bacterial densities. Seventy-four metal-tolerant rhizobacteria were isolated, and characterised genotypically (BOX-PCR, 16S rDNA) and phenotypically [Cd/Zn tolerance, biosurfactant production and plant growth promoting (PGP) traits]. Several isolates resisted high concentrations of Cd and Zn, and only a few presented PGP traits. Fourteen isolates were evaluated for promoting plant growth of two species (Salix viminalis and Festuca pratensis). Thirteen inoculants enhanced growth of F. pratensis, while only three enhanced growth of S. viminalis. Growth enhancement could not always be related to isolate PGP traits. In conclusion, some isolates show potential application in phytostabilisation or phytoextraction techniques. PMID:22483595

  11. Genome Data Mining and Soil Survey for the Novel Group 5 [NiFe]-Hydrogenase To Explore the Diversity and Ecological Importance of Presumptive High-Affinity H2-Oxidizing Bacteria ▿†

    PubMed Central

    Constant, Philippe; Chowdhury, Soumitra Paul; Hesse, Laura; Pratscher, Jennifer; Conrad, Ralf

    2011-01-01

    Streptomyces soil isolates exhibiting the unique ability to oxidize atmospheric H2 possess genes specifying a putative high-affinity [NiFe]-hydrogenase. This study was undertaken to explore the taxonomic diversity and the ecological importance of this novel functional group. We propose to designate the genes encoding the small and large subunits of the putative high-affinity hydrogenase hhyS and hhyL, respectively. Genome data mining revealed that the hhyL gene is unevenly distributed in the phyla Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria. The hhyL gene sequences comprised a phylogenetically distinct group, namely, the group 5 [NiFe]-hydrogenase genes. The presumptive high-affinity H2-oxidizing bacteria constituting group 5 were shown to possess a hydrogenase gene cluster, including the genes encoding auxiliary and structural components of the enzyme and four additional open reading frames (ORFs) of unknown function. A soil survey confirmed that both high-affinity H2 oxidation activity and the hhyL gene are ubiquitous. A quantitative PCR assay revealed that soil contained 106 to 108 hhyL gene copies g (dry weight)−1. Assuming one hhyL gene copy per genome, the abundance of presumptive high-affinity H2-oxidizing bacteria was higher than the maximal population size for which maintenance energy requirements would be fully supplied through the H2 oxidation activity measured in soil. Our data indicate that the abundance of the hhyL gene should not be taken as a reliable proxy for the uptake of atmospheric H2 by soil, because high-affinity H2 oxidation is a facultatively mixotrophic metabolism, and microorganisms harboring a nonfunctional group 5 [NiFe]-hydrogenase may occur. PMID:21742924

  12. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.

    PubMed

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-08-19

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60-80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h(-1)). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions.

  13. Evaluation of a thermo-tolerant acidophilic alga, Galdieria sulphuraria, for nutrient removal from urban wastewaters.

    PubMed

    Selvaratnam, T; Pegallapati, A K; Montelya, F; Rodriguez, G; Nirmalakhandan, N; Van Voorhies, W; Lammers, P J

    2014-03-01

    Nutrient removal from primary wastewater effluent was tested using Galdieria sulphuraria, an acidophilic and moderately thermophilic alga. Biomass yield recorded in this study (27.42g biomass per g nitrogen removed) is higher than the average reported in the literature (25.75g g(-1)) while, the theoretical yield estimated from the empirical molecular formula of algal biomass is 15.8g g(-1). Seven-day removal efficiencies were 88.3% for ammoniacal-nitrogen and 95.5% for phosphates; corresponding removal rates were 4.85 and 1.21mg L(-1)d(-1). Although these rates are lower than the average literature values for other strains (6.36 and 1.34mg L(-1)d(-1), respectively), potential advantages of G. sulphuraria for accomplishing energy-positive nutrient removal are highlighted. Feasibility of growing G. sulphuraria outdoors at densities higher than in high-rate oxidation ponds is also demonstrated.

  14. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    SciTech Connect

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  15. Evaluation of a thermo-tolerant acidophilic alga, Galdieria sulphuraria, for nutrient removal from urban wastewaters.

    PubMed

    Selvaratnam, T; Pegallapati, A K; Montelya, F; Rodriguez, G; Nirmalakhandan, N; Van Voorhies, W; Lammers, P J

    2014-03-01

    Nutrient removal from primary wastewater effluent was tested using Galdieria sulphuraria, an acidophilic and moderately thermophilic alga. Biomass yield recorded in this study (27.42g biomass per g nitrogen removed) is higher than the average reported in the literature (25.75g g(-1)) while, the theoretical yield estimated from the empirical molecular formula of algal biomass is 15.8g g(-1). Seven-day removal efficiencies were 88.3% for ammoniacal-nitrogen and 95.5% for phosphates; corresponding removal rates were 4.85 and 1.21mg L(-1)d(-1). Although these rates are lower than the average literature values for other strains (6.36 and 1.34mg L(-1)d(-1), respectively), potential advantages of G. sulphuraria for accomplishing energy-positive nutrient removal are highlighted. Feasibility of growing G. sulphuraria outdoors at densities higher than in high-rate oxidation ponds is also demonstrated. PMID:24582952

  16. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.

    PubMed

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-01-01

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60-80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h(-1)). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions. PMID:26295411

  17. [Leaching of nonferrous metals from copper-smelting slag with acidophilic microorganisms].

    PubMed

    2013-01-01

    The leaching process of copper and zinc from copper converter slag with sulphuric solutions of trivalent iron sulphate obtained using the association of acidophilic chemolithotrophic microorganisms was investigated. The best parameters of chemical leaching (temperature 70 degrees C, an initial concentration of trivalent iron in the leaching solution of 10.1 g/L, and a solid-phase content in the suspension of 10%) were selected. Carrying out the process under these parameters resulted in the recovery of 89.4% of copper and 39.3% of zinc in the solution. The possibility of the bioregeneration of trivalent iron in the solution obtained after the chemical leaching of slag by iron-oxidizingacidophilic chemolithotrophic microorganisms without inhibiting their activity was demonstrated.

  18. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis

    PubMed Central

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-01-01

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60–80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h−1). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions. PMID:26295411

  19. Biodiversity of acidophilic moderate thermophiles isolated from two sites in Yellowstone National Park and their roles in the dissimilatory oxido-reduction of iron

    SciTech Connect

    D. B. Johnson; D.A. Body; T. A. M. Bridge; D. F. Bruhn; F. F. Roberto

    2001-07-01

    Some of the thermal sites within Yellowstone National Park are extremely acidic and are therefore potential sites for isolating novel strains of acidophilic thermophiles, including those that are involved in the biogeochemical cycling of iron. This paper describes the isolation and characterization of thermotolerant, acidophilic “iron bacteria” isolated from two such sites in Yellowstone National Park, and reports the biodiversity of isolates in terms of their physiological traits and their phylogenetic make-up.

  20. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings.

    PubMed

    Zhang, Wen-hui; Huang, Zhi; He, Lin-yan; Sheng, Xia-fang

    2012-06-01

    Bacterial communities in the rhizosphere soils of metal tolerant and accumulating Chenopodium ambrosioides grown in highly and moderately lead-zinc mine tailings contaminated-soils as well as the adjacent soils with low metal contamination were characterized by using cultivation-independent and cultivation techniques. A total of 69, 73, and 83 bacterial operational taxonomic units (OTUs) having 84.8-100% similarity with the closest match in the database were detected among high, moderate, and low-contamination soil clone libraries, respectively. These OTUs had a Shannon diversity index value in the range of 4.06-4.30. There were 9, 10, and 14 bacterial genera specific to high, moderate, and low metal-contaminated soil clone libraries, respectively. Phylogenetic analysis showed that the Pb-resistant isolates belonged to 8 genera. Pseudomonas and Arthrobacter were predominant among the isolates. Most of the isolates (82-86%) produced indole acetic acid and siderophores. More strains from the highly metal-contaminated soil produced 1-aminocyclopropane-1-carboxylate deaminase than the strains from the moderately and lowly metal-contaminated soils. In experiments involving canola grown in quartz sand containing 200 mg kg(-1) of Pb, inoculation with the isolated Paenibacillus jamilae HTb8 and Pseudomonas sp. GTa5 was found to significantly increase the above-ground tissues dry weight (ranging from 19% to 36%) and Pb uptake (ranging from 30% to 40%) compared to the uninoculated control. These results show that C. ambrosioides harbor different metal-resistant bacterial communities in their rhizosphere soils and the isolates expressing plant growth promoting traits may be exploited for improving the phytoextraction efficiency of Pb-polluted environment.

  1. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings.

    PubMed

    Zhang, Wen-hui; Huang, Zhi; He, Lin-yan; Sheng, Xia-fang

    2012-06-01

    Bacterial communities in the rhizosphere soils of metal tolerant and accumulating Chenopodium ambrosioides grown in highly and moderately lead-zinc mine tailings contaminated-soils as well as the adjacent soils with low metal contamination were characterized by using cultivation-independent and cultivation techniques. A total of 69, 73, and 83 bacterial operational taxonomic units (OTUs) having 84.8-100% similarity with the closest match in the database were detected among high, moderate, and low-contamination soil clone libraries, respectively. These OTUs had a Shannon diversity index value in the range of 4.06-4.30. There were 9, 10, and 14 bacterial genera specific to high, moderate, and low metal-contaminated soil clone libraries, respectively. Phylogenetic analysis showed that the Pb-resistant isolates belonged to 8 genera. Pseudomonas and Arthrobacter were predominant among the isolates. Most of the isolates (82-86%) produced indole acetic acid and siderophores. More strains from the highly metal-contaminated soil produced 1-aminocyclopropane-1-carboxylate deaminase than the strains from the moderately and lowly metal-contaminated soils. In experiments involving canola grown in quartz sand containing 200 mg kg(-1) of Pb, inoculation with the isolated Paenibacillus jamilae HTb8 and Pseudomonas sp. GTa5 was found to significantly increase the above-ground tissues dry weight (ranging from 19% to 36%) and Pb uptake (ranging from 30% to 40%) compared to the uninoculated control. These results show that C. ambrosioides harbor different metal-resistant bacterial communities in their rhizosphere soils and the isolates expressing plant growth promoting traits may be exploited for improving the phytoextraction efficiency of Pb-polluted environment. PMID:22397839

  2. LIBP-Pred: web server for lipid binding proteins using structural network parameters; PDB mining of human cancer biomarkers and drug targets in parasites and bacteria.

    PubMed

    González-Díaz, Humberto; Munteanu, Cristian R; Postelnicu, Lucian; Prado-Prado, Francisco; Gestal, Marcos; Pazos, Alejandro

    2012-03-01

    Lipid-Binding Proteins (LIBPs) or Fatty Acid-Binding Proteins (FABPs) play an important role in many diseases such as different types of cancer, kidney injury, atherosclerosis, diabetes, intestinal ischemia and parasitic infections. Thus, the computational methods that can predict LIBPs based on 3D structure parameters became a goal of major importance for drug-target discovery, vaccine design and biomarker selection. In addition, the Protein Data Bank (PDB) contains 3000+ protein 3D structures with unknown function. This list, as well as new experimental outcomes in proteomics research, is a very interesting source to discover relevant proteins, including LIBPs. However, to the best of our knowledge, there are no general models to predict new LIBPs based on 3D structures. We developed new Quantitative Structure-Activity Relationship (QSAR) models based on 3D electrostatic parameters of 1801 different proteins, including 801 LIBPs. We calculated these electrostatic parameters with the MARCH-INSIDE software and they correspond to the entire protein or to specific protein regions named core, inner, middle, and surface. We used these parameters as inputs to develop a simple Linear Discriminant Analysis (LDA) classifier to discriminate 3D structure of LIBPs from other proteins. We implemented this predictor in the web server named LIBP-Pred, freely available at , along with other important web servers of the Bio-AIMS portal. The users can carry out an automatic retrieval of protein structures from PDB or upload their custom protein structural models from their disk created with LOMETS server. We demonstrated the PDB mining option performing a predictive study of 2000+ proteins with unknown function. Interesting results regarding the discovery of new Cancer Biomarkers in humans or drug targets in parasites have been discussed here in this sense.

  3. Longwall mining

    SciTech Connect

    1995-03-14

    As part of EIA`s program to provide information on coal, this report, Longwall-Mining, describes longwall mining and compares it with other underground mining methods. Using data from EIA and private sector surveys, the report describes major changes in the geologic, technological, and operating characteristics of longwall mining over the past decade. Most important, the report shows how these changes led to dramatic improvements in longwall mining productivity. For readers interested in the history of longwall mining and greater detail on recent developments affecting longwall mining, the report includes a bibliography.

  4. Two step meso-acidophilic bioleaching of chalcopyrite containing ball mill spillage and removal of the surface passivation layer.

    PubMed

    Panda, S; Parhi, P K; Nayak, B D; Pradhan, N; Mohapatra, U B; Sukla, L B

    2013-02-01

    Meso-acidophilic bacterial leaching of ball mill spillage (containing chalcopyrite >80%) was carried out in an innovative two-step bioleaching method. The major drawback of meso-acidophilic bioleaching limiting industrial application is the passivation phenomenon over the ore surfaces in iron-sulfur rich environments. In the present study, we present a novel wash solution that efficiently removed the passivation layer. FTIR characterization of the bioleached sample indicated that the residues could be further leached to recover extra copper after wash solution application. XRD study indicated accumulation of sulfates (SO(4)(-)) of Na, K, Fe and oxy hydroxides of iron [FeO(OH)] in the form of jarosite outlining the passivation layer. SEM, FESEM-EDS studies indicated severe corrosion effects of the wash solution on the passivation layer. Two step bioleaching of the ore sample yielded 32.6% copper in 68days in the first interlude and post wash solution application yielded 10.8% additional copper.

  5. Effect of VOCs and methane in the biological oxidation of the ferrous ion by an acidophilic consortium.

    PubMed

    Almenglo, F; Ramírez, M; Gómez, J M; Cantero, D; Revah, S; González-Sánchez, A

    2012-01-01

    During the elimination of H2S from biogas in an aqueous ferric sulphate solution, volatile organic compounds (VOCs) and methane are absorbed and may have an effect on the subsequent biological regeneration of ferric ion. This study was conducted to investigate the effect of maximum concentrations of methane and some VOCs found in biogas on the ferrous oxidation of an acidophilic microbial consortium (FO consortium). The presence and impact of heterotrophic microorganisms on the activity of the acidophilic consortium was also evaluated. No effect on the ferrous oxidation rate was found with gas concentrations of 1500 mg toluene m(-3), 1400 mg 2-butanol m(-3) or 1250 mg 1,2-dichloroethane m(-3), nor with methane at gas concentrations ranging from 15-25% (v/v). A tenfold increase in VOCs concentrations totally inhibited the microbial activity of the FO consortium and the heterotrophs. The presence of a heterotrophic fungus may promote the autotrophic growth of the FO consortium.

  6. Study of Lateral Gene Transfer in an Acid Mine Drainage Community Enabled by Comparative Genomics

    NASA Astrophysics Data System (ADS)

    Hugenholtz, P.; Croft, L.; Tyson, G. W.; Baker, B. J.; Detter, C.; Richardson, P. M.; Banfield, J. F.

    2002-12-01

    Lateral gene transfer (LGT) is thought to play a crucial role in the ecology and evolution of prokaryotes. We are investigating the role of LGT in an acid mine drainage community hosted in a pyrite-dominated metal sulfide deposit at the Richmond mine at Iron Mountain, CA. Due to biologically-mediated pyrite dissolution, the prevailing conditions within the mine are extremely low pH (< 1.0), very high ionic concentrations (molar concentrations of iron sulfate and mM concentrations of arsenic, copper and zinc), and moderate to high temperatures (30 to >50 C). These conditions are thought to largely isolate the community from potential external gene donors since naked DNA, phage and prokaryotes native to neutral pH habitats do not persist at pH <1.0 precluding an external influx of genes by transformation, transduction and conjugation, respectively. Microbial communities exist in several distinct habitats within Richmond mine including biofilms (subaqueous slime streamers and subaerial slimes) and cells attached directly to pyrite granules. This, however, belies an unusual simplicity in community composition. All communities investigated to date comprise only a handful of phylogenetically distinct organisms, typically dominated by the iron-oxidizing genera Leptospirillum and Ferroplasma. We have undertaken a community genomics analysis of a subaerial biofilm dominated by a Leptospirillum population to facilitate the study of LGT in this type of environment. The genome of Ferroplasma acidarmanus fer1, a minor component of the target community (but a major component of other Richmond mine communities), has been sequenced. Comparative genome analyses indicate that F. acidarmanus and the ancestor of two acidophilic Thermoplasma species belonging to the Euryarchaeota have traded many genes with phylogenetically remote acidophilic Sulfolobus species (Crenarchaeota). The putatively transferred sets of Sulfolobus genes in Ferroplasma and the Thermoplasma ancestor are distinct

  7. Comparison and evaluation of immobilization methods for preparing bacterial probes using acidophilic bioleaching bacteria Acidithiobacillus thiooxidans for AFM studies.

    PubMed

    Diao, Mengxue; Taran, Elena; Mahler, Stephen M; Nguyen, Anh V

    2014-07-01

    We evaluated different strategies for constructing bacterial probes for atomic force microscopy studies of bioleaching Acidithiobacillus thiooxidans interacting with pyrite mineral surfaces. Of three available techniques, the bacterial colloidal probe technique is the most reliable and provides a versatile platform for quantifying true interactive forces between bioleaching microorganisms and mineral surfaces.

  8. Organic matter in sediments of an acidic mining lake as assessed by lipid analysis. Part I: fatty acids.

    PubMed

    Poerschmann, Juergen; Koschorreck, Matthias; Górecki, Tadeusz

    2012-01-01

    Fatty acid (FA) patterns of sediments collected from the bottom of an acidic mine pit lake (AML) at different depths (surface sediment: 0 to 1cm; deep sediment: 4 to 5 cm) were studied to characterize microbial communities and the sources of sedimentary organic matter (SOM). Studies were performed on the molecular level utilizing source-specific, diagnostic FA biomarkers. The biomarker-based approach has been used widely in marine sediment studies, but has not been applied for sediments from AMLs so far. Combined FA concentrations in the surface sediment were higher compared to those in the deep sediment (497 vs. 127 μg g(-1)d.w., respectively). This was related to deposition of autochthonous biomass and higher terrestrial plants onto the surface sediment, as well as--to lesser extent--with higher bacterial activity on the sediment-water interface. The FA distribution in both sediments was characterized by a strong even-over-odd preference and was bimodal in nature: there was a cluster at nC(14)-nC(18) characteristic of chiefly autochthonous (algal and bacterial) SOM production, and another cluster at nC(22-28) related to input from higher plants. The FA distribution in the surface sediment pointed to higher terrestrial input compared to autochthonous contribution to SOM (67%:33%) as an estimate. Fingerprinting of viable bacteria was accomplished through signature FA markers including branched C(15) and C(17) surrogates, cyclopropanoic acids, 3-hydroxy (OH) acids and monounsaturated surrogates with unusual double bond localization. The abundance of Gram-negative bacteria was higher in the surface sediment as evidenced by total diagnostic 3-OH-fatty acids (37 μg g(-1) versus 25 μg g(-1)). Potential source taxa in both sediment layers included acidophilic iron- and sulfur-oxidizing bacteria including Acidithiobacillus ferrooxidans. High abundances of terminally branched C(15) and C(17) surrogates in both sediments pointed to sulfate- and iron-reducing bacteria

  9. Draft genome sequence of extremely acidophilic bacterium Acidithiobacillus ferrooxidans DLC-5 isolated from acid mine drainage in Northeast China.

    PubMed

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Xu, Ruixiang; Li, Suyue; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2015-12-01

    Acidithiobacillus ferrooxidans type strain DLC-5, isolated from Wudalianchi in Heihe of Heilongjiang Province, China. Here, we present the draft genome of strain DLC-5 which contains 4,232,149 bp in 2745 contigs with 57.628% GC content and includes 32,719 protein-coding genes and 64 tRNA-encoding genes. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. JNNH00000000.1.

  10. Data Mining.

    ERIC Educational Resources Information Center

    Benoit, Gerald

    2002-01-01

    Discusses data mining (DM) and knowledge discovery in databases (KDD), taking the view that KDD is the larger view of the entire process, with DM emphasizing the cleaning, warehousing, mining, and visualization of knowledge discovery in databases. Highlights include algorithms; users; the Internet; text mining; and information extraction.…

  11. Text Mining.

    ERIC Educational Resources Information Center

    Trybula, Walter J.

    1999-01-01

    Reviews the state of research in text mining, focusing on newer developments. The intent is to describe the disparate investigations currently included under the term text mining and provide a cohesive structure for these efforts. A summary of research identifies key organizations responsible for pushing the development of text mining. A section…

  12. Controlled release bactericide: An innovative system to control acid mine drainage

    SciTech Connect

    Sobek, A.A.; Rastogi, V.

    1986-01-01

    Controlled release systems delivering the required concentration of an effective bactericide over an extended time period have been developed by the BF Goodrich Company's ProMac Systems group. The ProMac system is site-specific and includes a four-step approach to controlling acid mine drainage (AMD): (1) Diagnosing the problem, (2) Prescribing the treatment, (3) Supervising the application of controlled release bactericides, and (4) Monitoring the success of applied treatment. The success of the ProMac system is evidenced by improved water quality, healthy vegetation, a reduction in levels of acidophilic thiobacillus, and a corresponding increase in population of beneficial microorganisms.

  13. BIORECOVERY OF METALS FROM ACID MINE DRAINAGE

    EPA Science Inventory

    Acid mine water is an acidic, metal-bearing wastewater generated by the oxidation of metallic sulfides by certain bacteria in both active and abandoned mining operations. The wastewaters contain substantial quantities of dissolved solids with the particular pollutants dependant u...

  14. Newly Isolated Penicillium ramulosum N1 Is Excellent for Producing Protease-Resistant Acidophilic Xylanase.

    PubMed

    Lin, Chaoyang; Shen, Zhicheng; Zhu, Tingheng; Qin, Wensheng

    2015-01-01

    Penicillium ramulosum N1 was isolated from decaying wood. This strain produces extracellular xylanases and cellulases. The highest activities of xylanases (250 U/ml) and carboxymethyl cellulose (CMCase; 6.5 U/ml) were produced when 1% barley straw was added as a carbon source. The optimum temperature and pH for xylanase activity was 55 and 3.0 °C, respectively. The xylanases exhibited strong protease resistance. CMCase revealed maximum activities at pH 3.0 and in the range of 60-70 °C. Filter paper activity was optimally active at pH 5.0 and 55 °C. The zymograms produced by the SDS-PAGE resolution of the crude enzymes indicated that there are four bands of protein with xylanase activity and three bands of proteins with endoglucanase. The results revealed that P. ramulosum N1 is a promising acidophilic and protease-resistant xylanase-producing microorganism that has great potential to be used in animal feed and food industry applications.

  15. A microbial fuel cell operating at low pH using an acidophile, Acidiphilium cryptum.

    SciTech Connect

    Borole, Abhijeet P; Cesar, Scott A; O'Neill, Hugh Michael; Tsouris, Costas

    2008-01-01

    A microbial fuel cell using an acidophilic microorganism, Acidiphilium cryptum, as the anode biocatalyst was investigated. The mode of electron transfer by this organism to the electrode was studied. Electricity production in the presence of a mediator was demonstrated using its natural electron acceptor, iron, as well as phenosafranin as the electron mediating agent. Production of Fe(II), as a result of iron reduction, at a pH of 4.0 or below was found to support electricity production. Accumulation of the oxidized iron, Fe(III) as a result of electron donation to the electrode, however, restricted higher current output. Addition of nitrilotriacetic acid helped resolve the problem by redissolution of deposited Fe(III). Further, use of phenosafranin as a secondary mediator resulted in improvement in power output. At a cell loading equivalent to OD600 of 1.0, a power output of 12.7 mW/m2 was obtained in a two-chamber air-sparged fuel cell. Potential for direct electron transfer was also investigated but not detected under the conditions studied.

  16. Vulcanisaeta thermophila sp. nov., a hyperthermophilic and acidophilic crenarchaeon isolated from solfataric soil.

    PubMed

    Yim, Kyung June; Cha, In-Tae; Rhee, Jin-Kyu; Song, Hye Seon; Hyun, Dong-Wook; Lee, Hae-Won; Kim, Daekyung; Kim, Kil-Nam; Nam, Young-Do; Seo, Myung-Ji; Bae, Jin-Woo; Roh, Seong Woon

    2015-01-01

    An anaerobic, rod-shaped, hyperthermophilic and acidophilic crenarchaeon, designated strain CBA1501(T), was isolated from solfataric soil of the Mayon volcano in the Republic of the Philippines. Phylogenetic analysis showed that strain CBA1501(T) is affiliated with the genus Vulcanisaeta in the phylum Crenarchaeota. DNA sequence similarities between the 16S rRNA gene of strain CBA1501(T) and those of Vulcanisaeta distributa IC-017(T) and Vulcanisaeta souniana IC-059(T) were 98.5 and 97.4 %, respectively. Strain CBA1501(T) grew between 75-90 °C, over a pH range of 4.0-6.0 and in the presence of 0-1.0 % (w/v) NaCl, with optimal growth occurring at 85 °C, pH 5.0, and with 0 % (w/v) NaCl. Fumarate, malate, oxidized glutathione, sulfur and thiosulfate were used as final electron acceptors, but FeCl3, nitrate and sulfate were not. The DNA G+C content of strain CBA1501(T) was 43.1 mol%. On the basis of polyphasic taxonomic analysis, strain CBA1501(T) represents a novel species of the genus Vulcanisaeta in the phylum Crenarchaeota, for which we propose the name Vulcanisaeta thermophila sp. nov. The type strain is CBA1501(T) ( = ATCC BAA-2415(T) = JCM 17228(T)).

  17. Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms.

    PubMed

    Zhang, R Y; Neu, T R; Bellenberg, S; Kuhlicke, U; Sand, W; Vera, M

    2015-05-01

    Biofilm formation and the production of extracellular polymeric substances (EPS) by meso- and thermoacidophilic metal-oxidizing archaea on relevant substrates have been studied to a limited extent. In order to investigate glycoconjugates, a major part of the EPS, during biofilm formation/bioleaching by archaea on pyrite, a screening with 75 commercially available lectins by fluorescence lectin-binding analysis (FLBA) has been performed. Three representative archaeal species, Ferroplasma acidiphilum DSM 28986, Sulfolobus metallicus DSM 6482(T) and a novel isolate Acidianus sp. DSM 29099 were used. In addition, Acidianus sp. DSM 29099 biofilms on elemental sulfur were studied. The results of FLBA indicate (i) 22 lectins bound to archaeal biofilms on pyrite and 21 lectins were binding to Acidianus sp. DSM 29099 biofilms on elemental sulfur; (ii) major binding patterns, e.g. tightly bound EPS and loosely bound EPS, were detected on both substrates; (iii) the three archaeal species produced various EPS glycoconjugates on pyrite surfaces. Additionally, the substratum induced different EPS glycoconjugates and biofilm structures of cells of Acidianus sp. DSM 29099. Our data provide new insights into interactions between acidophilic archaea on relevant surfaces and also indicate that FLBA is a valuable tool for in situ investigations on archaeal biofilms.

  18. Solar Radiation Stress in Natural Acidophilic Biofilms of Euglena mutabilis Revealed by Metatranscriptomics and PAM Fluorometry.

    PubMed

    Puente-Sánchez, Fernando; Olsson, Sanna; Gómez-Rodriguez, Manuel; Souza-Egipsy, Virginia; Altamirano-Jeschke, Maria; Amils, Ricardo; Parro, Victor; Aguilera, Angeles

    2016-02-01

    The daily photosynthetic performance of a natural biofilm of the extreme acidophilic Euglena mutabilis from Río Tinto (SW, Spain) under full solar radiation was analyzed by means of pulse amplitude-modulated (PAM) fluorescence measurements and metatrascriptomic analysis. Natural E. mutabilis biofilms undergo large-scale transcriptomic reprogramming during midday due to a dynamic photoinhibition and solar radiation stress. Photoinhibition is due to UV radiation and not to light intensity, as revealed by PAM fluorometry analysis. In order to minimize the negative effects of solar radiation, our data supports the presence of a circadian rhythm in this euglenophyte that increases their opportunity to survive. Differential gene expression throughout the day (at 12:00, 20:00 and night) was monitored by massive Illumina parallel sequencing of metatranscriptomic libraries. The transcription pattern was altered in genes involved in Photosystem II stability and repair, UV damaged DNA repair, non-photochemical quenching and oxidative stress, supporting the photoinhibition detected by PAM fluorometry at midday.

  19. Evidence of cell surface iron speciation of acidophilic iron-oxidizing microorganisms in indirect bioleaching process.

    PubMed

    Nie, Zhen-yuan; Liu, Hong-chang; Xia, Jin-lan; Yang, Yi; Zhen, Xiang-jun; Zhang, Li-Juan; Qiu, Guan-zhou

    2016-02-01

    While indirect model has been widely accepted in bioleaching, but the evidence of cell surface iron speciation has not been reported. In the present work the iron speciation on the cell surfaces of four typically acidophilic iron-oxidizing microorganism (mesophilic Acidithiobacillus ferrooxidans ATCC 23270, moderately thermophilic Leptospirillum ferriphilum YSK and Sulfobacillus thermosulfidooxidans St, and extremely thermophilic Acidianus manzaensis YN25) grown on different energy substrates (chalcopyrite, pyrite, ferrous sulfate and elemental sulfur (S(0))) were studied in situ firstly by using synchrotron-based micro- X-ray fluorescence analysis and X-ray absorption near-edge structure spectroscopy. Results showed that the cells grown on iron-containing substrates had apparently higher surface iron content than the cells grown on S(0). Both ferrous iron and ferric iron were detected on the cell surface of all tested AIOMs, and the Fe(II)/Fe(III) ratios of the same microorganism were affected by different energy substrates. The iron distribution and bonding state of single cell of A. manzaensis were then studied in situ by scanning transmission soft X-ray microscopy based on dual-energy contrast analysis and stack analysis. Results showed that the iron species distributed evenly on the cell surface and bonded with amino, carboxyl and hydroxyl groups.

  20. Characterization of new β-galactosidase from acidophilic fungus, Teratosphaeria acidotherma AIU BGA-1.

    PubMed

    Isobe, Kimiyasu; Yamashita, Miho; Chiba, Serina; Takahashi, Naomi; Koyama, Takahumi

    2013-09-01

    The β-galactosidase exhibiting high activity from an extremely acidic pH region to neutral pH region was efficiently purified from an acidophilic fungus, Teratosphaeria acidotherma AIU BGA-1, using affinity chromatography with Toyopearl resins immobilized 4-aminophenyl-β-d-galactopyranoside. The enzyme was stable in the pH range from 1.5 to 7.0, and exhibited optimal activity at pH 2.5-4.0 and 70°C. 2-Nitrophenyl-β-d-galactopyranoside, 4-nitrophenyl-β-d-galactopyranoside and lactose were rapidly hydrolyzed, and the apparent Km values were estimated to be 0.19 mM, 1.2 mM and 170 mM, respectively. Thus, the enzyme can be used in the wide pH range for hydrolysis of lactose. The molecular mass of the enzyme was estimated to be 140 kDa with two hetero subunits of 86 kDa and 50 kDa. The N-terminal amino acid sequence of the small subunit was found to be NTRMIIFNDK. These enzymatic and physicochemical characteristics are remarkably different from those of the previously known β-galactosidases.

  1. Crystal structure of truncated haemoglobin from an extremely thermophilic and acidophilic bacterium.

    PubMed

    Jamil, Farrukh; Teh, Aik-Hong; Schadich, Ermin; Saito, Jennifer A; Najimudin, Nazalan; Alam, Maqsudul

    2014-08-01

    A truncated haemoglobin (tHb) has been identified in an acidophilic and thermophilic methanotroph Methylacidiphilium infernorum. Hell's Gate Globin IV (HGbIV) and its related tHbs differ from all other bacterial tHbs due to their distinctively large sequence and polar distal haem pocket residues. Here we report the crystal structure of HGbIV determined at 1.96 Å resolution. The HGbIV structure has the distinctive 2/2 α-helical structure with extensions at both termini. It has a large distal site cavity in the haem pocket surrounded by four polar residues: His70(B9), His71(B10), Ser97(E11) and Trp137(G8). This cavity can bind bulky ligands such as a phosphate ion. Conformational shifts of His71(B10), Leu90(E4) and Leu93(E7) can also provide more space to accommodate larger ligands than the phosphate ion. The entrance/exit of such bulky ligands might be facilitated by positional flexibility in the CD1 loop, E helix and haem-propionate A. Therefore, the large cavity in HGbIV with polar His70(B9) and His71(B10), in contrast to the distal sites of other bacterial tHbs surrounded by non-polar residues, suggests its distinct physiological functions.

  2. Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms

    PubMed Central

    Zhang, R Y; Neu, T R; Bellenberg, S; Kuhlicke, U; Sand, W; Vera, M

    2015-01-01

    Biofilm formation and the production of extracellular polymeric substances (EPS) by meso- and thermoacidophilic metal-oxidizing archaea on relevant substrates have been studied to a limited extent. In order to investigate glycoconjugates, a major part of the EPS, during biofilm formation/bioleaching by archaea on pyrite, a screening with 75 commercially available lectins by fluorescence lectin-binding analysis (FLBA) has been performed. Three representative archaeal species, Ferroplasma acidiphilum DSM 28986, Sulfolobus metallicus DSM 6482T and a novel isolate Acidianus sp. DSM 29099 were used. In addition, Acidianus sp. DSM 29099 biofilms on elemental sulfur were studied. The results of FLBA indicate (i) 22 lectins bound to archaeal biofilms on pyrite and 21 lectins were binding to Acidianus sp. DSM 29099 biofilms on elemental sulfur; (ii) major binding patterns, e.g. tightly bound EPS and loosely bound EPS, were detected on both substrates; (iii) the three archaeal species produced various EPS glycoconjugates on pyrite surfaces. Additionally, the substratum induced different EPS glycoconjugates and biofilm structures of cells of Acidianus sp. DSM 29099. Our data provide new insights into interactions between acidophilic archaea on relevant surfaces and also indicate that FLBA is a valuable tool for in situ investigations on archaeal biofilms. PMID:25488256

  3. RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans.

    PubMed

    Christel, Stephan; Fridlund, Jimmy; Buetti-Dinh, Antoine; Buck, Moritz; Watkin, Elizabeth L; Dopson, Mark

    2016-04-01

    Acidithiobacillus ferrivorans is an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals. Acidithiobacillus ferrivorans obtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing of At. ferrivorans RNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by the tetH1 gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase (doxDAgenes). However, a lack of heme-binding sites in soxX suggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase (hdrgenes) rather than sulfur oxygenase reductase (sor). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving the sat gene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknown At. ferrivorans tetrathionate metabolic pathway that is important in biomining.

  4. Newly Isolated Penicillium ramulosum N1 Is Excellent for Producing Protease-Resistant Acidophilic Xylanase.

    PubMed

    Lin, Chaoyang; Shen, Zhicheng; Zhu, Tingheng; Qin, Wensheng

    2015-01-01

    Penicillium ramulosum N1 was isolated from decaying wood. This strain produces extracellular xylanases and cellulases. The highest activities of xylanases (250 U/ml) and carboxymethyl cellulose (CMCase; 6.5 U/ml) were produced when 1% barley straw was added as a carbon source. The optimum temperature and pH for xylanase activity was 55 and 3.0 °C, respectively. The xylanases exhibited strong protease resistance. CMCase revealed maximum activities at pH 3.0 and in the range of 60-70 °C. Filter paper activity was optimally active at pH 5.0 and 55 °C. The zymograms produced by the SDS-PAGE resolution of the crude enzymes indicated that there are four bands of protein with xylanase activity and three bands of proteins with endoglucanase. The results revealed that P. ramulosum N1 is a promising acidophilic and protease-resistant xylanase-producing microorganism that has great potential to be used in animal feed and food industry applications. PMID:26431535

  5. An Atypical Acidophil Cell Line Tumor Showing Focal Differentiation Toward Both Growth Hormone and Prolactin Cells.

    PubMed

    Naritaka, Heiji; Kameya, Toru; Sato, Yuichi; Furuhata, Shigeru; Okui, Junichi; Kamiguchi, Yuji; Otani, Mitsuhiro; Toya, Shigeo

    1995-01-01

    We report a case of giant pituitary adenoma in a child. Computerized tomography (CT) scan revealed a suprasellar extension tumor mass with hydrocephalus. There was no clinical evidence of acromegaly, gigantism, and other hormonal symptoms. Endocrinologic studies showed within normal value of serum growth hormone (GH: 4.2 ng/mL) and slightly increased levels of prolactin (PRL: 78 ng/mL) and other pituitary hormone values were within normal range. On suppression test by bromocryptin, both GH and PRL levels were reduced. Histopathological findings revealed that the tumor consisted of predominantly chromophobic and partly eosinophilic adenoma cells. Immunohistochemical staining detected GH and PRL in a small number of distinctly different adenoma cells, respectively. Nonradioactive in situ hybridization (ISH) also showed GH and PRL mRNA expression in identical immunopositive cells. Electron microscopy (EM) demonstrated adenoma cells with moderate or small numbers of two types of dense granules and without fibrous body which are characteristic of sparsely granulated GH-cell adenomas. The adenoma does not fit into any classification but may be an atypical acidophil cell line tumor showing focal differentiation toward both GH and PRL cells. PMID:12114745

  6. Microbial Communities and a Novel Symbiotic Interaction in Extremely Acidic Mine Drainage at Iron Mountain, California

    NASA Astrophysics Data System (ADS)

    Baker, B. J.; Banfield, J. F.

    2002-12-01

    Culture-independent studies of microbial communities in the acid mine drainage (AMD) system associated with the Richmond ore body at Iron Mountain, CA, demonstrated that the total number of prokaryote lineages is small compared to other environments. Phylogenetic analyses of 232 small subunit ribosomal RNA (rRNA) genes from six clone libraries revealed some novel lines of descent. Many of the novel clones were from libraries constructed from subaerial biofilms associated with fine grained pyrite. The clones form several distinct groups within the order Thermoplasmatales and are most closely related to Ferroplasma spp. and Thermoplasma spp. Another novel group detected in a pH 1.4 pool and a pH 0.8 biofilm falls within the Rickettsiales (alpha-proteobacteria and related to mitochondria) and is most closely related to a-proteobacterial endosymbionts of Acanthamoeba spp. An oligonucleotide rRNA probe designed to target alpha-proteobacteria revealed that these are protist endosymbionts, and that they are associated with a small percentage (2%) of the total eukaryotes in samples from the Richmond mine. Measurements of the internal pH of these protists show that their cytosol is close to neutral. Thus, protists provide a habitat within the AMD system that is at least 5 pH units less acidic than the surroundings. The uncultured AMD endosymbionts have a conserved 273 nucleotide intervening sequence (IVS) in the variable V1 region of their 16S rRNA gene. The IVS does not match any sequence in current databases, but predicted secondary structure form well defined stem loops. The discovery of inserts within a highly conserved gene is extremely rare. At present we have not identified the protist host. However, it is interesting to note that protists previously shown to have a-proteobacterial endosymbionts possess 18S rRNA genes that contain both IVSs and group I introns. The possibility that the IVS in the AMD bacteria is a result of extensive genetic exchange between a

  7. [Methanotrophic bacteria of acid sphagnum bogs].

    PubMed

    Dedysh, S N

    2002-01-01

    Acid sphagnum bogs cover a considerable part of the territory of Russia and are an important natural source of biogenic methane, which is formed in their anaerobic layers. A considerable portion of this methane is consumed in the aerobic part of the bog profile by acidophilic methanotrophic bacteria, which comprise the methane filter of sphagnum bogs and decrease CH4 emission to the atmosphere. For a long time, these bacteria escaped isolation, which became possible only after the elucidation of the optimal conditions of their functioning in situ: pH 4.5 to 5.5; temperature, from 15 to 20 degrees C; and low salt concentration in the solution. Reproduction of these conditions and rejection of earlier used media with a high content of biogenic elements allowed methanotrophic bacteria of two new genera and species--Methylocella palustris and Methylocapsa acidophila--to be isolated from the peat of sphagnum bogs of the northern part of European Russia and West Siberia. These bacteria are well adapted to the conditions in cold, acid, oligotrophic sphagnum bogs. They grow in a pH range of 4.2-7.5 with an optimum at 5.0-5.5, prefer moderate temperatures (15-25 degrees C) and media with a low content of mineral salts (200-500 mg/l), and are capable of active nitrogen fixation. Design of fluorescently labeled 16S rRNA-targeted oligonucleotide probes for the detection of Methylocella palustris and Methylocapsa acidophila and their application to the analysis of sphagnum peat samples showed that these bacteria represent dominant populations of methanotrophs with a density of 10(5)-10(6) cells/g peat. In addition to Methylocella and Methylocapsa populations, one more abundant population of methanotrophs was revealed (10(6) cells/g peat), which were phylogenetically close to the genus Methylocystis. PMID:12526194

  8. Structural insights into the acidophilic pH adaptation of a novel endo-1,4-β-xylanase from Scytalidium acidophilum.

    PubMed

    Michaux, Catherine; Pouyez, Jenny; Mayard, Aurélie; Vandurm, Pierre; Housen, Isabelle; Wouters, Johan

    2010-10-01

    In this study, the crystal structure of a novel endo-1,4-β-xylanase from Scytalidium acidophilum, XYL1, was solved at 1.9Å resolution. This is one of the few solved crystal structures of acidophilic proteins. The enzyme has the overall fold typical to family 11 xylanases. Comparison of this structure with other homologous acidophilic, neutrophilic and alkalophilic xylanases provides additional insights into the general features involved in low pH adaptation (stability and activity). Several sequence and structure modifications appeared to be responsible for the acidophilic characteristic: (a) the presence of an aspartic acid H bonded to the acid/base catalyst (b) the nature of specifically conserved residues in the active site (c) the negative potential at the surface (d) the decreased number of salt bridges and H bonds in comparison with highly alkaline enzymes.

  9. Propyl gallate synthesis using acidophilic tannase and simultaneous production of tannase and gallic acid by marine Aspergillus awamori BTMFW032.

    PubMed

    Beena, P S; Basheer, Soorej M; Bhat, Sarita G; Bahkali, Ali H; Chandrasekaran, M

    2011-07-01

    Marine Aspergillus awamori BTMFW032, recently reported by us, produce acidophilic tannase as extracellular enzyme. Here, we report the application of this enzyme for synthesis of propyl gallate by direct transesterification of tannic acid and in tea cream solubilisation besides the simultaneous production of gallic acid along with tannase under submerged fermentation by this fungus. This acidophilic tannase enabled synthesis of propyl gallate by direct transesterification of tannic acid using propanol as organic reaction media under low water conditions. The identity of the product was confirmed with thin layer chromatography and Fourier transform infrared spectroscopy. It was noted that 699 U/ml of enzyme could give 60% solubilisation of tea cream within 1 h. Enzyme production medium was optimized adopting Box-Behnken design for simultaneous synthesis of tannase and gallic acid. Process variables including tannic acid, sodium chloride, ferrous sulphate, dipotassium hydrogen phosphate, incubation period and agitation were recognized as the critical factors that influenced tannase and gallic acid production. The model obtained predicted 4,824.61 U/ml of tannase and 136.206 μg/ml gallic acid after 48 h of incubation, whereas optimized medium supported 5,085 U/ml tannase and 372.6 μg/ml of gallic acid production after 36 and 84 h of incubation, respectively, with a 15-fold increase in both enzyme and gallic acid production. Results indicated scope for utilization of this acidophilic tannase for transesterification of tannic acid into propyl gallate, tea cream solubilisation and simultaneous production of gallic acid along with tannase.

  10. Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans.

    PubMed Central

    Amaro, A M; Chamorro, D; Seeger, M; Arredondo, R; Peirano, I; Jerez, C A

    1991-01-01

    The response of the obligate acidophilic bacterium Thiobacillus ferrooxidans to external pH changes is reported. When T. ferrooxidans cells grown at pH 1.5 were shifted to pH 3.5, there were several changes in the general protein synthesis pattern, including a large stimulation of the synthesis of a 36-kDa protein (p36). The apparent low isoelectric point of p36, its location in the membrane fraction, and its cross-reaction with anti-OmpC from Salmonella typhi suggested that it may be a porin whose expression is regulated by extracellular pH. Images PMID:1987171

  11. Acidophilic actinobacteria synthesised silver nanoparticles showed remarkable activity against fungi-causing superficial mycoses in humans.

    PubMed

    Anasane, N; Golińska, P; Wypij, M; Rathod, D; Dahm, H; Rai, M

    2016-03-01

    Superficial mycoses are limited to the most external part of the skin and hair and caused by Malassezia sp., Trichophyton sp. and Candida sp. We report extracellular biosynthesis of silver nanoparticles (AgNPs) by acidophilic actinobacteria (SF23, C9) and its in vitro antifungal activity against fungi-causing superficial mycoses. The phylogenetic analysis based on the 16S rRNA gene sequence of strains SF23 and C9 showed that they are most closely related to Pilimelia columellifera subsp. pallida GU269552(T). The detection of AgNPs was confirmed by visual observation of colour changes from colourless to brown, and UV-vis spectrophotometer analysis, which showed peaks at 432 and 427 nm, respectively. These AgNPs were further characterised by nanoparticle tracking analysis (NTA), Zeta potential, Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The FTIR analysis exhibited the presence of proteins as capping agents. The TEM analysis revealed the formation of spherical and polydispersed nanoparticles in the size range of 4-36 nm and 8-60 nm, respectively. The biosynthesised AgNPs were screened against fungi-causing superficial mycoses viz., Malassezia furfur, Trichophyton rubrum, Candida albicans and C. tropicalis. The highest antifungal activity of AgNPs from SF23 and C9 against T. rubrum and the least against M. furfur and C. albicans was observed as compared to other tested fungi. The biosynthesised AgNPs were found to be potential anti-antifungal agent against fungi-causing superficial mycoses.

  12. Streptomyces rubrisoli sp. nov., neutrotolerant acidophilic actinomycetes isolated from red soil.

    PubMed

    Guo, Xiaoxuan; Zhang, Limin; Li, Xiaomin; Gao, Yongsheng; Ruan, Jisheng; Huang, Ying

    2015-09-01

    Three neutrotolerant, acidophilic actinomycete strains, designated FXJ1.526, FXJ1.725(T) and FXJ1.726, were isolated from red soil collected from Liujiazhan, Jiangxi Province, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the three strains clustered together and their closest relative was Streptomyces ferralitis CGMCC 4.1985(T) (98.9-99.0% similarity). Multilocus sequence analysis confirmed their relationship to S. ferralitis and separated these strains as representing a novel species. Mean DNA-DNA hybridization values among strains FXJ1.526, FXJ1.725(T) and FXJ1.726 were 81.6 ± 3.5-87.2 ± 3.8%, and the values between the three strains and S. ferralitis CGMCC 4.1985(T) were well below 70%. The three strains also shared several phenotypic characteristics that were distinct from the closely related species. They grew at 21-50 °C, at pH 4.0-9.0 (with an optimal pH of 5.0) and with 0-3% (w/v) NaCl, and the major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0. On the basis of data from this polyphasic taxonomic study, it is proposed that strains FXJ1.526, FXJ1.725(T) and FXJ1.726 be classified as representatives of a novel species of the genus Streptomyces, with the name Streptomyces rubrisoli sp. nov. The type strain is FXJ1.725(T) ( = CGMCC 4.7025(T)= DSM 42083(T)).

  13. Alicyclobacillus tengchongensis sp. nov., a thermo-acidophilic bacterium isolated from hot spring soil.

    PubMed

    Kim, Min Goo; Lee, Jae-Chan; Park, Dong-Jin; Li, Wen-Jun; Kim, Chang-Jin

    2014-10-01

    A thermo-acidophilic bacterium, designated strain ACK006(T), was isolated from the soil of a hot spring at Tengchong in China. Cells were Gram-staining-positive, motile, catalase-positive and oxidase-negative, spore-forming rods. The isolate grew aerobically at 30-50°C (optimum at 45°C), pH 2.0-6.0 (optimum pH 3.2) and 0-5.0% (w/v) NaCl (optimum 1% NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain ACK006(T) belongs to the genus Alicyclobacillus with the sequence similarity of 92.3, 92.4, 92.5, and 92.8% to Alicyclobacillus cycloheptanicus SCH(T), Alicyclobacillus ferrooxydans TC-34(T), Alicyclobacillus contaminans 3-A191(T) and Alicyclobacillus disulfidooxidans SD-11(T), respectively. Similarity to other species of the genus Alicyclobacillus was 90.3-92.8% and similarity to species of the genus Tumebacillus was 85.9-87.8%. The genomic DNA G+C content was 53.7 mol%. The predominant menaquinone was MK-7. Major fatty acids were ω-cycloheptane C18:0, iso-C17:0 and anteiso-C17:0. The cell-wall peptidoglycan was the A1γ type; containing meso-diaminopimelic acid as the diagnostic diamino acid. On the basis of polyphasic analysis from this study, strain ACK006(T) represents a novel species of the genus Alicyclobacillus for which the name Alicyclobacillus tengchongensis sp. nov. is proposed. The type strain is ACK006(T) (=KCTC 33022(T) =DSM 25924(T)).

  14. Photochemical Performance of the Acidophilic Red Alga Cyanidium sp. in a pH Gradient

    NASA Astrophysics Data System (ADS)

    Kvíderová, Jana

    2012-06-01

    The acidophilic red alga Cyanidium sp. is one of the dominant mat-forming species in the highly acidic waters of Río Tinto, Spain. The culture of Cyanidium sp., isolated from a microbial mat sample collected at Río Tinto, was exposed to 9 different pH conditions in a gradient from 0.5 to 5 for 24 h and its physiological status evaluated by variable chlorophyll a fluorescence kinetics measurements. Maximum quantum yield was determined after 30 min, 1 h, 2 h, 4 h, 6 h and 24 h of exposure after 15 min dark adaptation. The effect of pH on photochemical activity of Cyanidium sp. was observable as early as 30 min after exposure and the pattern remained stable or with only minor modifications for 24 h. The optimum pH ranged from 1.5 to 2.5. A steep decrease of the photochemical activity was observed at pH below 1 even after 30 min of exposure. Although the alga had tolerated the exposure to pH = 1 for at least 6 h, longer (24 h) exposure resulted in reduction of the photochemical activity. At pH above 2.5, the decline was more moderate and its negative effect on photochemistry was less severe. According to the fluorescence measurements, the red alga Cyanidium sp. is well-adapted to prevailing pH at its original locality at Río Tinto, i.e. pH of 1 to 3. The short-term survival in pH < 1.5 may be adaptation to rare exposures to such low pH in the field. The tolerance of pH above 3 could be caused by adaptation to the microenvironment of the inner parts of microbial mats in which Cyanidium sp. usually dominates and where higher pH could occur due to photosynthetic oxygen production.

  15. Biochemical and structural studies of N5-carboxyaminoimidazole ribonucleotide mutase from the acidophilic bacterium Acetobacter aceti.

    PubMed

    Constantine, Charles Z; Starks, Courtney M; Mill, Christopher P; Ransome, Aaron E; Karpowicz, Steven J; Francois, Julie A; Goodman, Rena A; Kappock, T Joseph

    2006-07-11

    N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) mutase (PurE) catalyzes the reversible interconversion of acid-labile compounds N5-CAIR and 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). We have examined PurE from the acidophilic bacterium Acetobacter aceti (AaPurE), focusing on its adaptation to acid pH and the roles of conserved residues His59 and His89. Both AaPurE and Escherichia coli PurE showed quasi-reversible acid-mediated inactivation, but wt AaPurE was much more stable at pH 3.5, with a > or = 20 degrees C higher thermal unfolding temperature at all pHs. His89 is not essential and does not function as part of a proton relay system. The kcat pH-rate profile was consistent with the assignment of pK1 to unproductive protonation of bound nucleotide and pK2 to deprotonation of His59. A 1.85 A resolution crystal structure of the inactive mutant H59N-AaPurE soaked in CAIR showed that protonation of CAIR C4 can occur in the absence of His59. The resulting species, modeled as isoCAIR [4(R)-carboxy-5-iminoimidazoline ribonucleotide], is strongly stabilized by extensive interactions with the enzyme and a water molecule. The carboxylate moiety is positioned in a small pocket proposed to facilitate nucleotide decarboxylation in the forward direction (N5-CAIR --> CAIR) [Meyer, E., Kappock, T. J., Osuji, C., and Stubbe, J. (1999) Biochemistry 38, 3012-3018]. Comparisons with model studies suggest that in the reverse (nonbiosynthetic) direction PurE favors protonation of CAIR C4. We suggest that the essential role of protonated His59 is to lower the barrier to decarboxylation by stabilizing a CO2-azaenolate intermediate.

  16. Diversity and Ecophysiology of New Isolates of Extremely Acidophilic CS2-Converting Acidithiobacillus Strains

    PubMed Central

    Smeulders, Marjan J.; Pol, Arjan; Zandvoort, Marcel H.; Jetten, Mike S. M.

    2013-01-01

    Biofiltration of industrial carbon disulfide (CS2)-contaminated waste air streams results in the acidification of biofilters and therefore reduced performance, high water use, and increased costs. To address these issues, we isolated 16 extremely acidophilic CS2-converting Acidithiobacillus thiooxidans strains that tolerated up to 6% (vol/vol) sulfuric acid. The ecophysiological properties of five selected strains (2Bp, Sts 4-3, S1p, G8, and BBW1) were compared. These five strains had pH optima between 1 (2Bp) and 2 (S1p). Their affinities for CS2 ranged between 80 (G8) and 130 (2Bp) μM. Strains S1p, G8, and BBW1 had more hydrophobic cell surfaces and produced less extracellular polymeric substance than did strains 2Bp and Sts 4-3. All five strains converted about 80% of the S added as CS2 to S0 when CS2 was supplied in excess. The rate of S0 consumption varied between 7 (Sts 4-3) and 63 (S1p) nmol O2 min−1 ml culture−1. Low S0 consumption rates correlated partly with low levels of cell attachment to externally produced S0 globules. During chemostat growth, the relative amount of CS2 hydrolase in the cell increased with decreasing growth rates. This resulted in more S0 accumulation during CS2 overloads at low growth rates. Intermittent interruptions of the CS2 supply affected all five strains. Strains S1p, G8, and BBW1 recovered from 24 h of starvation within 4 h, and strains 2Bp and Sts 4-3 recovered within 24 h after CS2 was resupplied. We recommend the use of mixtures of Acidithiobacillus strains in industrial biofilters. PMID:23995926

  17. Comparative biochemistry and physiology of iron-respiring bacteria from acidic and neutral-pH environments: Final Technical Report

    SciTech Connect

    Magnuson, T S

    2009-04-07

    Acidophilic dissimilatory iron-reducing bacteria (DIRB) are now being detected in a variety of ‘extreme’ low-pH, radionuclide- and heavy-metal contaminated habitats where Fe(III) reduction is taking place, and may represent a significant proportion of metal-transforming organisms in these environments. Acidiphilium cryptum is our model organism, a facultative iron-respiring Alphaproteobacterium. Major findings of this project have been 1) Discovery of novel outer-membrane and periplasmic cytochromes c in acidophiles that are reactive with Fe and Cr, 2) Discovery of Cr(VI) reduction mechanisms in acidophiles, mediated by c-type cytochromes and other reductase activity, 3) Development of enzyme detection methods specific for Cr-reducing enzymes, 4) Characterization of biofilm formation in A. cryptum, and 5) Annotation of the Acidiphilium cryptum genome (Magnuson, Kusel, and Cummings, DOE-JGI 2005-2006). Two manuscripts and one book chapter have been published, and several more mauscripts are prepared for submission.

  18. Microbial diversity at the moderate acidic stage in three different sulfidic mine tailings dumps generating acid mine drainage.

    PubMed

    Korehi, Hananeh; Blöthe, Marco; Schippers, Axel

    2014-11-01

    In freshly deposited sulfidic mine tailings the pH is alkaline or circumneutral. Due to pyrite or pyrrhotite oxidation the pH is dropping over time to pH values <3 at which acidophilic iron- and sulfur-oxidizing prokaryotes prevail and accelerate the oxidation processes, well described for several mine waste sites. The microbial communities at the moderate acidic stage in mine tailings are only scarcely studied. Here we investigated the microbial diversity via 16S rRNA gene sequence analysis in eight samples (pH range 3.2-6.5) from three different sulfidic mine tailings dumps in Botswana, Germany and Sweden. In total 701 partial 16S rRNA gene sequences revealed a divergent microbial community between the three sites and at different tailings depths. Proteobacteria and Firmicutes were overall the most abundant phyla in the clone libraries. Acidobacteria, Actinobacteria, Bacteroidetes, and Nitrospira occurred less frequently. The found microbial communities were completely different to microbial communities in tailings at

  19. The lowering of external pH in confined environments by thermo-acidophilic algae (class: Cyanidiophyceae).

    PubMed

    Lowell, Christina; Castenholz, Richard W

    2013-10-01

    The unicellular, asexual thermo-acidophilic algae of the class Cyanidiophyceae, order Cyanidiales (the 'cyanidia') include only three genera, walled Cyanidium and Galdieria, and 'naked' Cyanidioschyzon, names based on morphological and cytological characters. Most species and strains of this class live in acid hot springs or acid soils or steam vents associated with these springs at pH 0.5 to ~ 4.0 at temperatures of ~ 38-56 °C. No other phototrophs live in this combination of factors in these habitats, except for a small overlap with other acidophilic algae at the highest pH and the lowest temperature. The optimum pH for growth of the 'cyanidia' in this study was ~ 2.3. Galdieria-like walled cells of Cyanidioschyzon and naked Cyanidioschyzon cells were exposed in culture to higher pH conditions of 6.0, 5.5 and 5.0 in confined, illuminated environments (cotton plugged flasks). The subsequent acidification of the medium towards or to 2.3 occurred as growth and biomass increased. There was a direct correlation with final biomass (Chl a) and lower pH. All eight strains isolated from Yellowstone acidic conditions were able to lower the supra-optimal pH of their medium, while only two from other continents and none of the three from Japan were competent. It is probable that the ability to lower pH to an optimal level has survival value in some niches in natural habitats.

  20. African mining

    SciTech Connect

    Not Available

    1987-01-01

    This book contains papers presented at a conference addressing the development of the minerals industry in Africa. Topics covered include: A review - past, present and future - of Zimbabwe's mining industry; Geomorphological processes and related mineralization in Tanzania; and Rock mechanics investigations at Mufulira mine, Zambia.

  1. Extending mine life

    SciTech Connect

    Not Available

    1984-06-01

    Mine layouts, new machines and techniques, research into problem areas of ground control and so on, are highlighted in this report on extending mine life. The main resources taken into account are coal mining, uranium mining, molybdenum and gold mining.

  2. Magnetic Bacteria.

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  3. Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus.

    PubMed

    Valdes, Jorge; Ossandon, Francisco; Quatrini, Raquel; Dopson, Mark; Holmes, David S

    2011-12-01

    Acidithiobacillus thiooxidans is a mesophilic, extremely acidophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and inorganic sulfur compounds. Here we present the draft genome sequence of A. thiooxidans ATCC 19377, which has allowed the identification of genes for survival and colonization of extremely acidic environments.

  4. Microbial mine detection system (MMDS)

    NASA Astrophysics Data System (ADS)

    Fliermans, Carl B.; Lopez-de-Victoria, Geralyne

    1998-09-01

    The Savannah River Technology Center (SRTC) is developing the Microbial Mine Detection System (MMDS), a cost-effective, safe and reliable method to detect land mines using microorganisms as the primary biosensor detector. SRTC research has shown that various naturally occurring microbial species are stimulated by nitrogen, trinitrotoluene (TNT), dinitrotoluene (DNT), nitrates, nitrites, nitrous oxide, and the chemical components found in explosive materials. Several of the 10,000 indigenous bacteria already existing in the SRTC Subsurface Microbiology Culture Collection (SMCC) possess characteristics that would support discrete detection of land mines during metabolic activity or growth. SRTC scientists are screening and identifying bacteria residing in the SMCC, and other collections associated with specific land mines, for their attraction to explosive off-gasses. After contacting explosives or off-gasses, the micro-organisms will activate via bioluminescence and identify the location of the land mines. Once identified, down selected and mesocosmly defined, the micro-organisms can then be prepared for field deployment. This deployment process requires minimal user training and is envisioned to be administered in hand-held, vehicular mounted and airborne platforms. Microbial detection systems are a renewable resource, easy to preserve, inexpensive to maintain under field conditions, and provide a high-probability response recognition technology.

  5. Mining drill

    SciTech Connect

    Sarin, V.K.

    1983-08-16

    In a mine tool of the type having a drive body holding a bit, the drive body includes a pair of forwardly projecting flanges forming air passages in proximity to the cutting edges for the convey of detritus.

  6. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  7. [Bioregeneration of the solutions obtained during the leaching of nonferrous metals from waste slag by acidophilic microorganisms].

    PubMed

    Fomchenko, N V; Murav'ev, M I; Kondrat'eva, T F

    2014-01-01

    The bioregeneration of the solutions obtained after the leaching of copper and zinc from waste slag by sulfuric solutions of ferric sulfate is examined. For bioregeneration, associations of mesophilic and moderately thermqophilic acidophilic chemolithotrophic microorganisms were made. It has been shown that the complete oxidation of iron ions in solutions obtained after the leaching of nonferrous metals from waste slag is possible at a dilution of the pregnant solution with a nutrient medium. It has been found that the maximal rate of oxidation of iron ions is observed at the use of a mesophilic association of microorganisms at a threefold dilution of the pregnant solution with a nutrient medium. The application ofbioregeneration during the production of nonferrous metals from both waste and converter slags would make it possible to approach the technology of their processing using the closed cycle of workflows.

  8. Acidophilic denitrifiers dominate the N2O production in a 100-year-old tea orchard soil.

    PubMed

    Huang, Ying; Long, Xi-En; Chapman, Stephen J; Yao, Huaiying

    2015-03-01

    Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N2O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg(-1) of NO3 (-)-N) addition. Results showed the highest N2O emission (10.1 mg kg(-1) over 21 days) from the soil at pH 3.71 with 1000 mg kg(-1) NO3 (-) addition. The N2O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N2O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N2O emission in this highly acidic tea soil.

  9. Laboratory experiments on the weathering of iron meteorites and carbonaceous chondrites by iron-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Gronstal, A.; Pearson, V.; Kappler, A.; Dooris, C.; Anand, M.; Poitrasson, F.; Kee, T. P.; Cockell, C. S.

    2009-03-01

    Batch culture experiments were performed to investigate the weathering of meteoritic material by iron-oxidizing bacteria. The aerobic, acidophilic iron oxidizer (A. ferrooxidans) was capable of oxidizing iron from both carbonaceous chondrites (Murchison and Cold Bokkeveld) and iron meteorites (York and Casas Grandes). Preliminary iron isotope results clearly show contrasted iron pathways during oxidation with and without bacteria suggesting that a biological role in meteorite weathering could be distinguished isotopically. Anaerobic iron-oxidizers growing under pH-neutral conditions oxidized iron from iron meteorites. These results show that rapid biologicallymediated alteration of extraterrestrial materials can occur in both aerobic and anaerobic environments. These results also demonstrate that iron can act as a source of energy for microorganisms from both iron and carbonaceous chondrites in aerobic and anaerobic conditions with implications for life on the early Earth and the possible use of microorganisms to extract minerals from asteroidal material.

  10. Novel mineral-oxidizing bacteria from Montserrat (W.I.): physiological and phylogenetic characteristics

    SciTech Connect

    A. Yahya; F. F. Roberto; D. B. Johnson

    1999-06-01

    Four mesophilic acidophilic bacteria isolated from the Caribbean island of Montserrat have been studied to establish their taxonomic relationship to other metal-metabolizing bacteria and to analyze their potential role in mineral processing. Two of the isolates have some physiological and morphological traits in common with Thiobacillus ferrooxidans (Gram negative, iron-oxidizing mesophilic rods) but differed from T. ferrooxidans in displaying chemolitho-heterotrophic growth in ferrous iron/yeast extract medium and greater sensitivity to some metals. Isolates RIV-14 and L-15 were, in contrast, Gram positive, spore-forming rods that displayed considerable metabolic flexibility, and resembled moderately thermophilic Sulfobacillus spp. All the Montserrat isolates were able to oxidize pyrite in pure culture.

  11. Coastal mining

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The Exclusive Economic Zone (EEZ) declared by President Reagan in March 1983 has met with a mixed response from those who would benefit from a guaranteed, 200-nautical-mile (370-km) protected underwater mining zone off the coasts of the United States and its possessions. On the one hand, the U.S. Department of the Interior is looking ahead and has been very successful in safeguarding important natural resources that will be needed in the coming decades. On the other hand, the mining industry is faced with a depressed metals and mining market.A report of the Exclusive Economic Zone Symposium held in November 1983 by the U.S. Geological Survey, the Mineral Management Service, and the Bureau of Mines described the mixed response as: “ … The Department of Interior … raring to go into promotion of deep-seal mining but industrial consortia being very pessimistic about the program, at least for the next 30 or so years.” (Chemical & Engineering News, February 5, 1983).

  12. Mining with backfill

    SciTech Connect

    Granholm, S.

    1983-01-01

    This book reviews the fill mining practice in Sweden and other countries. Research results and technological innovations are presented on mining methods, mining operations, mining machinery and geomechanics. Other topics discussed are fill properties, technology, geomechanics, and new development.

  13. Bacteria Counter

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.

  14. Asteroid mining

    NASA Technical Reports Server (NTRS)

    Gertsch, Richard E.

    1992-01-01

    The earliest studies of asteroid mining proposed retrieving a main belt asteroid. Because of the very long travel times to the main asteroid belt, attention has shifted to the asteroids whose orbits bring them fairly close to the Earth. In these schemes, the asteroids would be bagged and then processed during the return trip, with the asteroid itself providing the reaction mass to propel the mission homeward. A mission to one of these near-Earth asteroids would be shorter, involve less weight, and require a somewhat lower change in velocity. Since these asteroids apparently contain a wide range of potentially useful materials, our study group considered only them. The topics covered include asteroid materials and properties, asteroid mission selection, manned versus automated missions, mining in zero gravity, and a conceptual mining method.

  15. Biochemical characterization of an acidophilic β-mannanase from Gloeophyllum trabeum CBS900.73 with significant transglycosylation activity and feed digesting ability.

    PubMed

    Wang, Caihong; Zhang, Jiankang; Wang, Yuan; Niu, Canfang; Ma, Rui; Wang, Yaru; Bai, Yingguo; Luo, Huiying; Yao, Bin

    2016-04-15

    Acidophilic β-mannanases have been attracting much attention due to their excellent activity under extreme acidic conditions and significant industrial applications. In this study, a β-mannanase gene of glycoside hydrolase family 5, man5A, was cloned from Gloeophyllum trabeum CBS900.73, and successfully expressed in Pichia pastoris. Purified recombinant Man5A was acidophilic with a pH optimum of 2.5 and exhibited great pH adaptability and stability (>80% activity over pH 2.0-6.0 and pH 2.0-10.0, respectively). It had a high specific activity (1356 U/mg) against locust bean gum, was able to degrade galactomannan and glucomannan in a classical four-site binding mode, and catalyzed the transglycosylation of mannotetrose to mannooligosaccharides with higher degree of polymerization. Besides, it had great resistance to pepsin and trypsin and digested corn-soybean meal based diet in a comparable way with a commercial β-mannanase under the simulated gastrointestinal conditions of pigs. This acidophilic β-mannanase represents a valuable candidate for wide use in various industries, especially in the feed.

  16. Biochemical characterization of an acidophilic β-mannanase from Gloeophyllum trabeum CBS900.73 with significant transglycosylation activity and feed digesting ability.

    PubMed

    Wang, Caihong; Zhang, Jiankang; Wang, Yuan; Niu, Canfang; Ma, Rui; Wang, Yaru; Bai, Yingguo; Luo, Huiying; Yao, Bin

    2016-04-15

    Acidophilic β-mannanases have been attracting much attention due to their excellent activity under extreme acidic conditions and significant industrial applications. In this study, a β-mannanase gene of glycoside hydrolase family 5, man5A, was cloned from Gloeophyllum trabeum CBS900.73, and successfully expressed in Pichia pastoris. Purified recombinant Man5A was acidophilic with a pH optimum of 2.5 and exhibited great pH adaptability and stability (>80% activity over pH 2.0-6.0 and pH 2.0-10.0, respectively). It had a high specific activity (1356 U/mg) against locust bean gum, was able to degrade galactomannan and glucomannan in a classical four-site binding mode, and catalyzed the transglycosylation of mannotetrose to mannooligosaccharides with higher degree of polymerization. Besides, it had great resistance to pepsin and trypsin and digested corn-soybean meal based diet in a comparable way with a commercial β-mannanase under the simulated gastrointestinal conditions of pigs. This acidophilic β-mannanase represents a valuable candidate for wide use in various industries, especially in the feed. PMID:26616977

  17. MICROBIAL SULFATE REDUCTION AND METAL ATTENUATION IN PH 4 ACID MINE WATER

    EPA Science Inventory

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing...

  18. Data mining

    SciTech Connect

    Lee, K.; Kargupta, H.; Stafford, B.G.; Buescher, K.L.; Ravindran, B.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop and implement data mining technology suited to the analysis of large collections of unstructured data. This has taken the form of a software tool, PADMA (Parallel Data Mining Agents), which incorporates parallel data accessing, parallel scalable hierarchical clustering algorithms, and a web-based user interface for submitting Structured Query Language (SQL) queries and interactive data visualization. The authors have demonstrated the viability and scalability of PADMA by applying it to an unstructured text database of 25,000 documents running on an IBM SP2 at Argonne National Laboratory. The utility of PADMA for discovering patterns in data has also been demonstrated by applying it to laboratory test data for Hepatitis C patients and autopsy reports in collaboration with the University of New Mexico School of Medicine.

  19. Inhibition of bacterial activity in acid mine drainage

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Bhatnagar, Miss Mridula

    1988-12-01

    Acid mine drainage water give rise to rapid growth and activity of an iron- and sulphur- oxidizing bacterium Thiobacillus ferrooxidians which greatly accelerate acid producing reactions by oxidation of pyrite material associated with coal and adjoining strata. The role of this bacterium in production of acid mine drainage is described. This study presents the data which demonstrate the inhibitory effect of certain organic acids, sodium benzoate, sodium lauryl sulphate, quarternary ammonium compounds on the growth of the acidophilic aerobic autotroph Thiobacillus ferrooxidians. In each experiment, 10 milli-litres of laboratory developed culture of Thiobacillus ferrooxidians was added to 250 milli-litres Erlenmeyer flask containing 90 milli-litres of 9-k media supplemented with FeSO4 7H2O and organic compounds at various concentrations. Control experiments were also carried out. The treated and untreated (control) samples analysed at various time intervals for Ferrous Iron and pH levels. Results from this investigation showed that some organic acids, sodium benzoate, sodium lauryl sulphate and quarternary ammonium compounds at low concentration (10-2 M, 10-50 ppm concentration levels) are effective bactericides and able to inhibit and reduce the Ferrous Iron oxidation and acidity formation by inhibiting the growth of Thiobacillus ferrooxidians is also discussed and presented

  20. The Mechanization of Mining.

    ERIC Educational Resources Information Center

    Marovelli, Robert L.; Karhnak, John M.

    1982-01-01

    Mechanization of mining is explained in terms of its effect on the mining of coal, focusing on, among others, types of mining, productivity, machinery, benefits to retired miners, fatality rate in underground coal mines, and output of U.S. mining industry. (Author/JN)

  1. Growth Kinetics of Attached Iron-Oxidizing Bacteria

    PubMed Central

    Wichlacz, Paul L.; Unz, Richard F.

    1985-01-01

    A model of growth and substrate utilization for ferrous-iron-oxidizing bacteria attached to the disks of a rotating biological contactor was developed and tested. The model describes attached bacterial growth as a saturation function in which the rate of substrate utilization is determined by a maximum substrate oxidation rate constant (P), a half-saturation constant (Ks), and the concentration of substrate within the rotating biological contactor (S1). The maximum oxidation rate constant was proportional to flow rate, and the substrate concentration in the reactor varied with influent substrate concentration (S0). The model allowed the prediction of metabolic constants and included terms for both constant and growth-rate-dependent maintenance energies. Estimates for metabolic constants of the attached population of acidophilic, chemolithotrophic, iron-oxidizing bacteria limited by ferrous iron were: maximum specific growth rate (μmax), 1.14 h−1; half-saturation constant (Ks) for ferrous iron, 54.9 mg/liter; constant maintenance energy coefficient (m1), 0.154 h−1; growth-rate-dependent maintenance energy coefficient (m′), 0.07 h−1; maximum yield (Yg), 0.063 mg of organic nitrogen per mg of Fe(II) oxidized. PMID:16346863

  2. Characterization of a novel thiosulfate dehydrogenase from a marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH.

    PubMed

    Sharmin, Sultana; Yoshino, Eriko; Kanao, Tadayoshi; Kamimura, Kazuo

    2016-01-01

    A marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH, was isolated to develop a bioleaching process for NaCl-containing sulfide minerals. Because the sulfur moiety of sulfide minerals is metabolized to sulfate via thiosulfate as an intermediate, we purified and characterized the thiosulfate dehydrogenase (TSD) from strain SH. The enzyme had an apparent molecular mass of 44 kDa and was purified 71-fold from the solubilized membrane fraction. Tetrathionate was the product of the TSD-oxidized thiosulfate and ferricyanide or ubiquinone was the electron acceptor. Maximum enzyme activity was observed at pH 4.0, 40 °C, and 200 mM NaCl. To our knowledge, this is the first report of NaCl-stimulated TSD activity. TSD was structurally different from the previously reported thiosulfate-oxidizing enzymes. In addition, TSD activity was strongly inhibited by 2-heptyl-4-hydroxy-quinoline N-oxide, suggesting that the TSD is a novel thiosulfate:quinone reductase.

  3. An alpha-galactosidase from an acidophilic Bispora sp. MEY-1 strain acts synergistically with beta-mannanase.

    PubMed

    Wang, Hui; Luo, Huiying; Li, Jiang; Bai, Yingguo; Huang, Huoqing; Shi, Pengjun; Fan, Yunliu; Yao, Bin

    2010-11-01

    An alpha-galactosidase gene (AgalB) was cloned from the acidophilic fungus Bispora sp. MEY-1 and expressed in Pichia pastoris. The deduced amino acid sequence showed highest identity (35%) to the alpha-galactosidase from Penicillium simplicissimum, belonging to the glycosyl hydrolase family 27. The purified recombinant alpha-galactosidase (r-AgalB) exhibited optimal activity at pH 3.5 and 55 degrees C, was stable at pH 2.2-8.0, and showed higher hydrolytic activity towards galactomannan polysaccharides (guar gum and locust bean gum) than toward small galacto-oligosaccharides (melibiose, raffinose and stachyose). A synergistic (3-fold) increase in guar gum hydrolysis was observed when beta-mannanase Man5A from Bispora sp. MEY-1 and r-AgalB were combined. Further, an increase in the reaction time from 5h to 12h or increase of the temperature from 37 degrees C to 55 degrees C enhanced guar gum degradation by the enzyme combination. These properties make r-AgalB a good candidate for extensive application in the pulp/paper, food, and feed industries.

  4. Exploration and Mining Roadmap

    SciTech Connect

    none,

    2002-09-01

    This Exploration and Mining Technology Roadmap represents the third roadmap for the Mining Industry of the Future. It is based upon the results of the Exploration and Mining Roadmap Workshop held May 10 ñ 11, 2001.

  5. Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking.

    PubMed

    Bharadwaj, Abhilasha; Ting, Yen-Peng

    2013-02-01

    Bioleaching of spent hydrotreating catalyst by thermophillic archae Acidianus brierleyi was investigated. The spent catalyst (containing Al, Fe, Ni and Mo as major elements) was characterized, and the effect of pretreatment (decoking) on two-step and spent medium leaching was examined at 1% w/v pulp density. Decoking resulted in removal of carbonaceous deposits and volatile impurities, and affected the solubility of metal compounds through oxidization of the metal sulfides. Nearly 100% extraction was achieved using spent medium leaching for Fe, Ni and Mo, and 67% for Al. Bioleaching reduced nickel concentration in the leachate below the regulated levels for safe waste disposal. Chemical (i.e. abiotic) leaching using equimolar concentration of sulfuric acid produced by the bacteria during two-step process achieved a lower leaching efficiency (by up to 30%). Results indicated that A. brierleyi successfully leached heavy metals from spent catalyst. PMID:23334026

  6. Construction of small plasmid vectors for use in genetic improvement of the extremely acidophilic Acidithiobacillus caldus.

    PubMed

    Meng, Jianzhou; Wang, Huiyan; Liu, Xiangmei; Lin, Jianqun; Pang, Xin; Lin, Jianqiang

    2013-10-01

    The genetic improvement of biomining bacteria including Acidithiobacillus caldus could facilitate the bioleaching process of sulfur-containing minerals. However, the available vectors for use in A. caldus are very scanty and limited to relatively large broad-host-range IncQ plasmids. In this study, a set of small, mobilizable plasmid vectors (pBBR1MCS-6, pMSD1 and pMSD2) were constructed based on plasmid pBBR1MCS-2, which does not belong to the IncQ, IncW, or IncP groups. The function of the tac promoter on 5.8-kb pMSD2 was determined by inserting a kanamycin-resistant reporter gene. The resulting recombinant pMSD2-Km was successfully transferred by conjugation into A. caldus MTH-04 with transfer frequency of 1.38±0.64×10(-5). The stability and plasmid copy number of pMSD2-Km in A. caldus MTH-04 were 75±2.7% and 5-6 copies per cell, respectively. By inserting an arsABC operon into pMSD2, an arsenic-resistant recombinant pMSD2-As was constructed and transferred into A. caldus MTH-04 by conjugation. The arsenic tolerance of A. caldus MTH-04 containing pMSD2-As was obviously increased up to 45mM of NaAsO2. These vectors could be applied in genetic improvement of A. caldus as well as other bioleaching bacteria.

  7. Surface mining

    SciTech Connect

    Not Available

    1989-06-01

    This paper reports on a GAO study of attorney and expert witness fees awarded as a result of litigation brought under the Surface Mining Control and Reclamation Act. As of March 24, 1989, a total of about $1.4 million had been awarded in attorney fees and expenses - about $1.3 subject to the provisions of the Employee Retirement Income Security Act, a comparison of its features with provisions of ERISA showed that the plan differed from ERISA provisions in areas such as eligibility, funding, and contribution limits.

  8. Mining review

    USGS Publications Warehouse

    McCartan, L.; Morse, D.E.; Plunkert, P.A.; Sibley, S.F.

    2004-01-01

    The average annual growth rate of real gross domestic product (GDP) from the third quarter of 2001 through the second quarter of 2003 in the United States was about 2.6 percent. GDP growth rates in the third and fourth quarters of 2003 were about 8 percent and 4 percent, respectively. The upward trends in many sectors of the U.S. economy in 2003, however, were shared by few of the mineral materials industries. Annual output declined in most nonfuel mining and mineral processing industries, although there was an upward turn toward yearend as prices began to increase.

  9. Wikipedia Mining

    NASA Astrophysics Data System (ADS)

    Nakayama, Kotaro; Ito, Masahiro; Erdmann, Maike; Shirakawa, Masumi; Michishita, Tomoyuki; Hara, Takahiro; Nishio, Shojiro

    Wikipedia, a collaborative Wiki-based encyclopedia, has become a huge phenomenon among Internet users. It covers a huge number of concepts of various fields such as arts, geography, history, science, sports and games. As a corpus for knowledge extraction, Wikipedia's impressive characteristics are not limited to the scale, but also include the dense link structure, URL based word sense disambiguation, and brief anchor texts. Because of these characteristics, Wikipedia has become a promising corpus and a new frontier for research. In the past few years, a considerable number of researches have been conducted in various areas such as semantic relatedness measurement, bilingual dictionary construction, and ontology construction. Extracting machine understandable knowledge from Wikipedia to enhance the intelligence on computational systems is the main goal of "Wikipedia Mining," a project on CREP (Challenge for Realizing Early Profits) in JSAI. In this paper, we take a comprehensive, panoramic view of Wikipedia Mining research and the current status of our challenge. After that, we will discuss about the future vision of this challenge.

  10. Bioreactor for acid mine drainage control

    DOEpatents

    Zaluski, Marek H.; Manchester, Kenneth R.

    2001-01-01

    A bioreactor for reacting an aqueous heavy metal and sulfate containing mine drainage solution with sulfate reducing bacteria to produce heavy metal sulfides and reduce the sulfuric acid content of the solution. The reactor is an elongated, horizontal trough defining an inlet section and a reaction section. An inlet manifold adjacent the inlet section distributes aqueous mine drainage solution into the inlet section for flow through the inlet section and reaction section. A sulfate reducing bacteria and bacteria nutrient composition in the inlet section provides sulfate reducing bacteria that with the sulfuric acid and heavy metals in the solution to form solid metal sulfides. The sulfate reducing bacteria and bacteria nutrient composition is retained in the cells of a honeycomb structure formed of cellular honeycomb panels mounted in the reactor inlet section. The honeycomb panels extend upwardly in the inlet section at an acute angle with respect to the horizontal. The cells defined in each panel are thereby offset with respect to the honeycomb cells in each adjacent panel in order to define a tortuous path for the flow of the aqueous solution.

  11. Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms.

    PubMed

    Dopson, Mark; Halinen, Anna-Kaisa; Rahunen, Nelli; Ozkaya, Bestamin; Sahinkaya, Erkan; Kaksonen, Anna H; Lindström, E Börje; Puhakka, Jaakko A

    2007-08-01

    An enrichment culture from a boreal sulfide mine environment containing a low-grade polymetallic ore was tested in column bioreactors for simulation of low temperature heap leaching. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing revealed the enrichment culture contained an Acidithiobacillus ferrooxidans strain with high 16S rRNA gene similarity to the psychrotolerant strain SS3 and a mesophilic Leptospirillum ferrooxidans strain. As the mixed culture contained a strain that was within a clade with SS3, we used the SS3 pure culture to compare leaching rates with the At. ferrooxidans type strain in stirred tank reactors for mineral sulfide dissolution at various temperatures. The psychrotolerant strain SS3 catalyzed pyrite, pyrite/arsenopyrite, and chalcopyrite concentrate leaching. The rates were lower at 5 degrees C than at 30 degrees C, despite that all the available iron was in the oxidized form in the presence of At. ferrooxidans SS3. This suggests that although efficient At. ferrooxidans SS3 mediated biological oxidation of ferrous iron occurred, chemical oxidation of the sulfide minerals by ferric iron was rate limiting. In the column reactors, the leaching rates were much less affected by low temperatures than in the stirred tank reactors. A factor for the relatively high rates of mineral oxidation at 7 degrees C is that ferric iron remained in the soluble phase whereas, at 21 degrees C the ferric iron precipitated. Temperature gradient analysis of ferrous iron oxidation by this enrichment culture demonstrated two temperature optima for ferrous iron oxidation and that the mixed culture was capable of ferrous iron oxidation at 5 degrees C.

  12. From Río Tinto to Mars: the terrestrial and extraterrestrial ecology of acidophiles.

    PubMed

    Amils, R; González-Toril, E; Aguilera, A; Rodríguez, N; Fernández-Remolar, D; Gómez, F; García-Moyano, A; Malki, M; Oggerin, M; Sánchez-Andrea, I; Sanz, J L

    2011-01-01

    The recent geomicrobiological characterization of Río Tinto, Iberian Pyrite Belt (IPB), has proven the importance of the iron cycle, not only in generating the extreme conditions of the habitat (low pH, high concentration of toxic heavy metals) but also in maintaining the high level of microbial diversity, both prokaryotic and eukaryotic, detected in the water column and the sediments. The extreme conditions of the Tinto basin are not the product of industrial contamination but the consequence of the presence of an underground bioreactor that obtains its energy from the massive sulfide minerals of the IPB. To test this hypothesis, a drilling project was carried out to intersect ground waters that interact with the mineral ore in order to provide evidence of subsurface microbial activities and the potential resources to support these activities. The oxidants that drive the system appear to come from the rock matrix, contradicting conventional acid mine drainage models. These resources need only groundwater to launch microbial metabolism. There are several similarities between the vast deposits of sulfates and iron oxides on Mars and the main sulfide-containing iron bioleaching products found in the Tinto. Firstly, the short-lived methane detected both in Mars' atmosphere and in the sediments and subsurface of the IPB and secondly, the abundance of iron, common to both. The physicochemical properties of iron make it a source of energy, a shield against radiation and oxidative stress as well as a natural pH controller. These similarities have led to Río Tinto's status as a Mars terrestrial analogue.

  13. Characterization of Extracellular Polymeric Substances from Acidophilic Microbial Biofilms ▿ †

    PubMed Central

    Jiao, Yongqin; Cody, George D.; Harding, Anna K.; Wilmes, Paul; Schrenk, Matthew; Wheeler, Korin E.; Banfield, Jillian F.; Thelen, Michael P.

    2010-01-01

    We examined the chemical composition of extracellular polymeric substances (EPS) extracted from two natural microbial pellicle biofilms growing on acid mine drainage (AMD) solutions. The EPS obtained from a mid-developmental-stage biofilm (DS1) and a mature biofilm (DS2) were qualitatively and quantitatively compared. More than twice as much EPS was derived from DS2 as from DS1 (approximately 340 and 150 mg of EPS per g [dry weight] for DS2 and DS1, respectively). Composition analyses indicated the presence of carbohydrates, metals, proteins, and minor quantities of DNA and lipids, although the relative concentrations of these components were different for the two EPS samples. EPS from DS2 contained higher concentrations of metals and carbohydrates than EPS from DS1. Fe was the most abundant metal in both samples, accounting for about 73% of the total metal content, followed by Al, Mg, and Zn. The relative concentration profile for these metals resembled that for the AMD solution in which the biofilms grew, except for Si, Mn, and Co. Glycosyl composition analysis indicated that both EPS samples were composed primarily of galactose, glucose, heptose, rhamnose, and mannose, while the relative amounts of individual sugars were substantially different in DS1 and DS2. Additionally, carbohydrate linkage analysis revealed multiply linked heptose, galactose, glucose, mannose, and rhamnose, with some of the glucose in a 4-linked form. These results indicate that the biochemical composition of the EPS from these acidic biofilms is dependent on maturity and is controlled by the microbial communities, as well as the local geochemical environment. PMID:20228116

  14. Mine seepage problems in drift mine operations

    SciTech Connect

    DeRossett, C.; Johnson, D.E.; Bradshaw, D.B.

    1996-12-31

    Extensive mining in the Eastern Kentucky Coal Region has occurred in coal deposits located above valley floors. Underground mines present unique stability problems resulting from the creation of mine pools in abandoned works. {open_quotes}Blowouts{close_quotes} occur when hydrostatic pressures result in the cataclysmic failure of an outcrop-barrier. Additionally, seepage from flooded works results in saturation of colluvium, which may ultimately mobilize as landslides. Several case studies of both landslides and blowouts illustrate that considerations should be taken into account to control or prevent these problems. Underground mine maps and seepage conditions at the individual sites were examined to determine the mine layouts, outcrop-barrier widths, and structure of the mine floors. Discharge monitoring points were established in and near the landslides. These studies depict how mine layout, operation, and geology influence drainage conditions. The authors suggest that mine designs should incorporate drainage control to insure long-term stability and limit liability. The goal of the post-mining drainage plan is control of the mine drainage, which will reduce the size of mine pools and lower the hydrostatic pressure. Recommendations are made as to several methods that may be useful in controlling mine drainage.

  15. Magnetic bacteria against MIC

    SciTech Connect

    Javaherdashti, R.

    1997-12-01

    In this article, it is suggested to use the sensitivity of magnetotactic bacteria to changes of magnetic field direction and the natural ability of this bacteria in rapid growth during relatively short time intervals against corrosion-enhancing bacteria and especially sulfate-reducing bacteria. If colonies of sulfate-reducing bacteria could be packed among magnetotactic bacteria, then, by applying sufficiently powerful magnetic field (about 0.5 gauss), all of these bacteria (magnetic and non-magnetic) will be oriented towards an Anti-bacteria agent (oxygen or biocide). So, Microbiologically-Influenced Corrosion in the system would be controlled to a large extent.

  16. Back To Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  17. Bioleaching of ilmenite and basalt in the presence of iron-oxidizing and iron-scavenging bacteria

    NASA Astrophysics Data System (ADS)

    Navarrete, Jesica U.; Cappelle, Ian J.; Schnittker, Kimberlin; Borrok, David M.

    2013-04-01

    Bioleaching has been suggested as an alternative to traditional mining techniques in extraterrestrial environments because it does not require extensive infrastructure and bulky hardware. In situ bioleaching of silicate minerals, such as those found on the moon or Mars, has been proposed as a feasible alternative to traditional extraction techniques that require either extreme heat and/or substantial chemical treatment. In this study, we investigated the biotic and abiotic leaching of basaltic rocks (analogues to those found on the moon and Mars) and the mineral ilmenite (FeTiO3) in aqueous environments under acidic (pH ˜ 2.5) and circumneutral pH conditions. The biological leaching experiments were conducted using Acidithiobacillus ferrooxidans, an iron (Fe)-oxidizing bacteria, and Pseudomonas mendocina, an Fe-scavenging bacteria. We found that both strains were able to grow using the Fe(II) derived from the tested basaltic rocks and ilmenite. Although silica leaching rates were the same or slightly less in the bacterial systems with A. ferrooxidans than in the abiotic control systems, the extent of Fe, Al and Ti released (and re-precipitated in new solid phases) was actually greater in the biotic systems. This is likely because the Fe(II) leached from the basalt was immediately oxidized by A. ferrooxidans, and precipitated into Fe(III) phases which causes a change in the equilibrium of the system, i.e. Le Chatelier's principle. Iron(II) in the abiotic experiment was allowed to build up in solution which led to a decrease in its overall release rate. For example, the percentage of Fe, Al and Ti leached (dissolved + reactive mineral precipitates) from the Mars simulant in the A. ferrooxidans experimental system was 34, 41 and 13% of the total Fe, Al and Ti in the basalt, respectively, while the abiotic experimental system released totals of only 11, 25 and 2%. There was, however, no measurable difference in the amounts of Fe and Ti released from ilmenite in the

  18. [The use of real-time PCR technology to assess the effectiveness of methods of DNA extraction from cultures of acidophilic chemolithotrophic microorganisms].

    PubMed

    Rogatykh, S V; Dokshukina, A A; Khaĭnasova, T S; Muradov, S V; Kofiadi, I A

    2011-01-01

    Comparative evaluation of efficiency of several methods of DNA extraction from storage cultures of acidophilic chemolithotrophic microorganism communities isolated from sulfide ores of Shanuch ore deposit (Kamchatka peninsula) was conducted. DNA extraction methods in various combinations of physical (heating to 65-98 degrees C, grinding with SiO2 particles), enzymatic (treatment with lysozyme and proteinase K), and chemical (GuSCN, CTAB and KOH) treatments were tested. The evaluation of efficiency was performed using Real-time PCR. The best result was obtained for the combined method based on GuSCN lysis activity (lysis at 65 degrees C) followed by purification with phenol and chloroform.

  19. Prevention of Acid Mine Drainage Through Complexation of Ferric Iron by Soluble Microbial Growth Products

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Yacob, T. W.; Silverstein, J.; Rajaram, H.; Minchow, K.; Basta, J.

    2011-12-01

    Acid mine drainage (AMD) is a widespread environmental problem with deleterious impacts on water quality in streams and watersheds. AMD is generated largely by the oxidation of metal sulfides (i.e. pyrite) by ferric iron. This abiotic reaction is catalyzed by conversion of ferrous to ferric iron by iron and sulfur oxidizing microorganisms. Biostimulation is currently being investigated as an attempt to inhibit the oxidation of pyrite and growth of iron oxidizing bacteria through addition of organic carbon. This may stimulate growth of indigenous communities of acidophilic heterotrophic bacteria to compete for oxygen. The goal of this research is to investigate a secondary mechanism associated with carbon addition: complexation of free Fe(III) by soluble microbial growth products (SMPs) produced by microorganisms growing in waste rock. Exploratory research at the laboratory scale examined the effect of soluble microbial products (SMPs) on the kinetics of oxidation of pure pyrite during shaker flask experiments. The results confirmed a decrease in the rate of pyrite oxidation that was dependent upon the concentration of SMPs in solution. We are using these data to verify results from a pyrite oxidation model that accounts for SMPs. This reactor model involves differential-algebraic equations incorporating total component mass balances and mass action laws for equilibrium reactions. Species concentrations determined in each time step are applied to abiotic pyrite oxidation rate expressions from the literature to determine the evolution of total component concentrations. The model was embedded in a parameter estimation algorithm to determine the reactive surface area of pyrite in an abiotic control experiment, yielding an optimized value of 0.0037 m2. The optimized model exhibited similar behavior to the experiment for this case; the root mean squared of residuals for Fe(III) was calculated to be 7.58 x 10-4 M, which is several orders of magnitude less than the actual

  20. An alternative allosteric regulation mechanism of an acidophilic l-lactate dehydrogenase from Enterococcus mundtii 15-1A.

    PubMed

    Matoba, Yasuyuki; Miyasako, Masashi; Matsuo, Koichi; Oda, Kosuke; Noda, Masafumi; Higashikawa, Fumiko; Kumagai, Takanori; Sugiyama, Masanori

    2014-01-01

    A plant-derived Enterococcus mundtii 15-1A, that has been previously isolated from Brassica rapa L. subsp. nipposinica (L.H. Bailey) Hanelt var. linearifolia by our group, possesses two kinds of l-lactate dehydrogenase (l-LDH): LDH-1 and LDH-2. LDH-1 was activated under low concentration of fluctose-1,6-bisphosphate (FBP) at both pH 5.5 and 7.5. Although LDH-2 was also activated under the low concentration of FBP at pH 5.5, a high concentration of FBP is necessary to activate it at pH 7.5. The present study shows the crystal structures of the acidophilic LDH-2 in a complex with and without FBP and NADH. Although the tertiary structure of the ligands-bound LDH-2 is similar to that of the active form of other bacterial l-LDHs, the structure without the ligands is different from that of any other previously determined l-LDHs. Major structural alterations between the two structures of LDH-2 were observed at two regions in one subunit. At the N-terminal parts of the two regions, the ligands-bound form takes an α-helical structure, while the form without ligands displays more disordered and extended structures. A vacuum-ultraviolet circular dichroism analysis showed that the α-helix content of LDH-2 in solution is approximately 30% at pH 7.5, which is close to that in the crystal structure of the form without ligands. A D241N mutant of LDH-2, which was created by us to easily form an α-helix at one of the two parts, exhibited catalytic activity even in the absence of FBP at both pH 5.5 and 7.5.

  1. Multisite-specific archaeosine tRNA-guanine transglycosylase (ArcTGT) from Thermoplasma acidophilum, a thermo-acidophilic archaeon.

    PubMed

    Kawamura, Takuya; Hirata, Akira; Ohno, Satoshi; Nomura, Yuichiro; Nagano, Tomoko; Nameki, Nobukazu; Yokogawa, Takashi; Hori, Hiroyuki

    2016-02-29

    Archaeosine (G(+)), which is found only at position 15 in many archaeal tRNA, is formed by two steps, the replacement of the guanine base with preQ0 by archaeosine tRNA-guanine transglycosylase (ArcTGT) and the subsequent modification of preQ0 to G(+) by archaeosine synthase. However, tRNA(Leu) from Thermoplasma acidophilum, a thermo-acidophilic archaeon, exceptionally has two G(+)13 and G(+)15 modifications. In this study, we focused on the biosynthesis mechanism of G(+)13 and G(+)15 modifications in this tRNA(Leu). Purified ArcTGT from Pyrococcus horikoshii, for which the tRNA recognition mechanism and structure were previously characterized, exchanged only the G15 base in a tRNA(Leu) transcript with (14)C-guanine. In contrast, T. acidophilum cell extract exchanged both G13 and G15 bases. Because T. acidophilum ArcTGT could not be expressed as a soluble protein in Escherichia coli, we employed an expression system using another thermophilic archaeon, Thermococcus kodakarensis. The arcTGT gene in T. kodakarensis was disrupted, complemented with the T. acidophilum arcTGT gene, and tRNA(Leu) variants were expressed. Mass spectrometry analysis of purified tRNA(Leu) variants revealed the modifications of G(+)13 and G(+)15 in the wild-type tRNA(Leu). Thus, T. acidophilum ArcTGT has a multisite specificity and is responsible for the formation of both G(+)13 and G(+)15 modifications.

  2. Alicyclobacillus dauci sp. nov., a slightly thermophilic, acidophilic bacterium isolated from a spoiled mixed vegetable and fruit juice product.

    PubMed

    Nakano, Chisa; Takahashi, Naoto; Tanaka, Naoto; Okada, Sanae

    2015-02-01

    A novel, moderately thermophilic, acidophilic, Gram-variable, rod-shaped, endospore-forming bacterium was isolated from a spoiled mixed vegetable and fruit juice product that had the off-flavour of guaiacol. The bacterium, strain 4F(T), grew aerobically at 20-50 °C (optimum 40 °C) and pH 3.0-6.0 (optimum pH 4.0) and produced acid from glycerol, d-galactose and d-glucose. It contained menaquinone-7 (MK-7) as the major isoprenoid quinone and the DNA G+C content was 49.6 mol%. The predominant cellular fatty acids of strain 4F(T) were ω-alicyclic (ω-cyclohexane fatty acids), which are characteristic of the genus Alicyclobacillus. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain belongs to the Alicyclobacillus cluster, and is related most closely to the type strains of Alicyclobacillus acidoterrestris (97.4 % similarity) and Alicyclobacillus fastidiosus (97.3 %). Strain 4F(T) produced guaiacol from vanillic acid. It can be distinguished from related species by its acid production type and guaiacol production. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness values, it can be concluded that the strain represents a novel species of the genus Alicyclobacillus, for which the name Alicyclobacillus dauci sp. nov. is proposed; the type strain is 4F(T) ( = DSM 28700(T) = NBRC 108949(T) = NRIC 0938(T)).

  3. Bioreduction and immobilization of hexavalent chromium by the extremely acidophilic Fe(III)-reducing bacterium Acidocella aromatica strain PFBC.

    PubMed

    Masaki, Yusei; Hirajima, Tsuyoshi; Sasaki, Keiko; Okibe, Naoko

    2015-03-01

    The extremely acidophilic, Fe(III)-reducing heterotrophic bacterium Acidocella aromatica strain PFBC was tested for its potential utility in bioreduction of highly toxic heavy metal, hexavalent chromium, Cr(VI). During its aerobic growth on fructose at pH 2.5, 20 µM Cr(VI) was readily reduced to Cr(III), achieving the final Cr(VI) concentration of 0.4 µM (0.02 mg/L), meeting the WHO drinking water guideline of 0.05 mg/L. Despite of the highly inhibitory effect of Cr(VI) on cell growth at higher concentrations, especially at low pH, Cr(VI) reduction activity was readily observed in growth-decoupled cell suspensions under micro-aerobic and anaerobic conditions. Strain PFBC was not capable of anaerobic growth via dissimilatory reduction of Cr(VI), such as reported for Fe(III). In the presence of both Cr(VI) and Fe(III) under micro-aerobic condition, microbial Fe(III) reduction occurred only upon complete disappearance of Cr(VI) by its reduction to Cr(III). Following Cr(VI) reduction, the resultant Cr(III), supposedly present in the form of cationic Cr (III) (OH2) 6 (3+) , was partially immobilized on the negatively charged cell surface through biosorption. When Cr(III) was externally provided, rather than microbially produced, it was poorly immobilized on the cell surface. Cr(VI) reducing ability was reported for the first time in Acidocella sp. in this study, and its potential role in biogeochemical cycling of Cr, as well as its possible utility in Cr(VI) bioremediation, in highly acidic environments/solutions, were discussed.

  4. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 1. METAL PRECIPITATION FOR RECOVERY AND RECYCLE

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both active and abandoned mining operations. The wastewater...

  5. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 2. MEMBRANE BIOREACTOR SYSTEM FOR SULFATE REDUCTION

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both the active and abandoned mining operations. The wastew...

  6. Mining machine

    SciTech Connect

    Becker, H.R.

    1984-12-04

    A mining machine is disclosed comprising a mobile base and a cutting head assembly at a forward end of the mobile base having a cutter drum rotatable about an output shaft disposed along the longitudinal axis of the cutter drum. A drive system for the cutting head assembly comprises at least one motor for driving at least one toothed motor pinion and a generally cylindrical combination gear having generally circular end surfaces. A bevel or face gear is formed in at least one of the end surfaces, having teeth adapted to mate with and be driven by the toothed motor pinion. The combination gear has a worm gear formed in the outside cylindrical surface, which is disposed in driving engagement with the teeth of an output gear integrally and coaxially connected to the output shaft of the cutter drum.

  7. [Hydrocarbon-Oxidizing potential and the genes for n-alkane biodegradation in a new acidophilic mycobacterial association from sulfur blocks].

    PubMed

    Ivanova, I E; Sukhacheva, M V; Kanat'eva, A Yu; Kravchenko, I K; Kurganov, A A

    2014-01-01

    Capacity of AG(S10), a new aerobic acidophilic (growing within the pH range from 1.3 to 4.5 with the optimum at 2.0-2.5) bacterial association from sulfur blocks of the Astrakhan gas-processing complex (AGC), for oxidation of hydrocarbons of various chemical structure was investigated. A broad spectrum of normal (C10-C21) and iso-alkanes, toluene, naphthalene, andphenanthrene, as well as isoprenoids resistant to microbial degradation, pristane and phytane (components of paraffin oil), and 2,2,4,4,6,8,8,-heptamethylnonane, a branched hydrocarbon, were biodegraded under acidic conditions. Microbiological investigation revealed the dominance of mycobacteria in the AGS10 association, which was confirmed by analysis of the 16S rRNA gene clone library. In the phylogenetic tree, the 16S rRNA sequences formed a branch within the cluster of slow-growing mycobacteria, with 98% homology to the closest species Mycobacterium florentinum. Genomic DNA of AG(S10) culture grown on C14-C17 n-alkanes at pH 2.5 was found to contain the genes of two hydroxylase families, alkB and Cyp 153, indicating their combined involvement in hydrocarbon biodegradation. The high hydrocarbon-oxidizing potential of the AGS10 bacterial association, indicated that further search for the genes responsible for degradation of various hydrocarbons in acidophilic mycobacteria could be promising.

  8. The response of an acidophilic and circumneutral clone of the planktonic diatom Asterionella to aluminum: The importance of pH and trace metal interactions

    SciTech Connect

    Riseng, C.M.; Gensemer, R.W. )

    1987-06-01

    The growth rates of an acidophilic and a circumneutral clone of Asterionella were assessed over a range of total aluminum concentrations from 0 to 800 {mu}g/L, and a pH range from 5 to 7. Increasing Al levels stimulated the growth of both clones in the growth medium FRAQUIL, and the growth optima for these effects were pH dependent. Maximum growth stimulation for the circumneutral clone occurred from 200 to 400 {mu}g/L total Al at pH 6, whereas at pH 7, increasing Al levels corresponded to increasing growth rates up to the maximum treatment concentration of 80 {mu}g/L total Al. Similar qualitative responses were observed for the acidophilic clone, but at one pH unit lower than the circumneutral clone. This growth stimulation probably results from Al ions replacing apparently growth limiting trace elements from the media chelator EDTA. The same growth responses can be achieved by manipulating trace mental ion activities by altering total EDTA levels.

  9. [Effect of temperature on the rate of oxidation of pyrrhotite-rich sulfide ore flotation concentrate and the structure of the acidophilic chemolithoautotrophic microbial community].

    PubMed

    Moshchanetskii, P V; Pivovarova, T A; Belyi, A V; Kondrat'eva, T F

    2014-01-01

    Oxidation of flotation concentrate of a pyrrhotite-rich sulfide ore by acidophilic chemolithoautotrophic microbial communities at 35, 40, and 45 degrees C was investigated. According to the physicochemical parameters of the liquid phase of the pulp, as well as the results of analysis of the solid residue after biooxidation and cyanidation, the community developed at 40 degrees C exhibited the highest rate of oxidation. The degree of gold recovery at 35, 40, and 45 degrees C was 89.34, 94.59, and 83.25%, respectively. At 40 degrees C, the highest number of microbial cells (6.01 x 10(9) cells/mL) was observed. While temperature had very little effect on the species composition of microbial communities, except for the absence of Leptospirillum ferriphilum at 35 degrees C, the shares of individual species in the communities varied with temperature. Relatively high numbers of Sulfobacillus thermosulfidooxidans, the organism oxidizing iron and elemental sulfur at higher rates than other acidophilic chemolithotrophic species, were observed at 40 degrees C.

  10. A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans.

    PubMed

    Castelle, Cindy; Guiral, Marianne; Malarte, Guillaume; Ledgham, Fouzia; Leroy, Gisèle; Brugna, Myriam; Giudici-Orticoni, Marie-Thérèse

    2008-09-19

    The iron respiratory chain of the acidophilic bacterium Acidithiobacillus ferrooxidans involves various metalloenzymes. Here we demonstrate that the oxygen reduction pathway from ferrous iron (named downhill pathway) is organized as a supercomplex constituted of proteins located in the outer and inner membranes as well as in the periplasm. For the first time, the outer membrane-bound cytochrome c Cyc2 was purified, and we showed that it is responsible for iron oxidation and determined that its redox potential is the highest measured to date for a cytochrome c. The organization of metalloproteins inside the supramolecular structure was specified by protein-protein interaction experiments. The isolated complex spanning the two membranes had iron oxidase as well as oxygen reductase activities, indicating functional electron transfer between the first iron electron acceptor, Cyc2, and the Cu(A) center of cytochrome c oxidase aa(3). This is the first characterization of a respirasome from an acidophilic bacterium. In Acidithiobacillus ferrooxidans,O(2) reduction from ferrous iron must be coupled to the energy-consuming reduction of NAD(+)(P) from ferrous iron (uphill pathway) required for CO(2) fixation and other anabolic processes. Besides the proteins involved in the O(2) reduction, there were additional proteins in the supercomplex, involved in uphill pathway (bc complex and cytochrome Cyc(42)), suggesting a possible physical link between these two pathways.

  11. German mining equipment

    SciTech Connect

    Not Available

    1993-10-01

    The German mining equipment industry developed to supply machines and services to the local mining industry, i.e., coal, lignite, salt, potash, ore mining, industrial minerals, and quarrying. The sophistication and reliability of its technology also won it worldwide export markets -- which is just as well since former major domestic mining sectors such as coal and potash have declined precipitously, and others such as ore mining have all but disappeared. Today, German mining equipment suppliers focus strongly on export sales, and formerly unique German mining technologies such as continuous mining with bucket wheel excavators and conveyors for open pits, or plowing of underground coal longwalls are widely used abroad. The status of the German mining equipment industry is reviewed.

  12. Bacteriohopanepolyol signatures as markers for methanotrophic bacteria in peat moss

    NASA Astrophysics Data System (ADS)

    van Winden, Julia F.; Talbot, Helen M.; Kip, Nardy; Reichart, Gert-Jan; Pol, Arjan; McNamara, Niall P.; Jetten, Mike S. M.; Op den Camp, Huub J. M.; Sinninghe Damsté, Jaap S.

    2012-01-01

    Bacteriohopanepolyols (BHPs) are bacterial biomarkers with a likely potential to identify present and past methanotrophic communities. To unravel the methanotrophic community in peat bogs, we report the BHP signatures of type I and type II methanotrophs isolated from Sphagnum mosses and of an extreme acidophilic verrucomicrobial methanotroph. A type I Methylovulum-like strain (M200) contains a remarkable combination of BHPs, including a complete suite of mono-unsaturated aminobacteriohopanepentol, -tetrol and -triol. The Methylomonas-like strain (M5) mainly produces aminobacteriohopanepentol, characteristic for type I methanotrophs, and the Methylosinus-like strain (29) contains both aminobacteriohopanetetrol and aminobacteriohopanetriol, typical for a type II methanotroph. The type II methanotroph Methylocella palustris and the verrucomicrobial Methylacidiphilum fumariolicum strain SolV primarily produce aminotriol, which is also produced by many other bacteria. In Sphagnum mosses and underlying peat from a peat bog from Moorhouse, UK, the only detectable BHPs indicative of methanotrophs are aminobacteriohopanepentol (aminopentol) and aminobacteriohopanetetrol (aminotetrol), although both are relatively low in abundance compared to other BHPs. Aminopentol serves as a marker for type I methanotrophs, while aminotetrol may reflect the presence of both type I and type II methanotrophs. The similar quantities of aminotetrol and aminopentol indicate that the methanotrophic community in Sphagnum peat probably consist of a combination of both type I and type II methanotrophs, which is in line with previously published pmoA-based micro-array results.

  13. Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions

    NASA Astrophysics Data System (ADS)

    Gómez, Felipe; Mateo-Martí, Eva; Prieto-Ballesteros, Olga; Martín-Gago, Jose; Amils, Ricardo

    2010-10-01

    Current surface conditions (strong oxidative atmosphere, UV radiation, low temperatures and xeric conditions) on Mars are considered extremely challenging for life. The question is whether there are any features on Mars that could exert a protective effect against the sterilizing conditions detected on its surface. Potential habitability in the subsurface would increase if the overlaying material played a protective role. With the aim of evaluating this possibility we studied the viability of two microorganisms under different conditions in a Mars simulation chamber. An acidophilic chemolithotroph isolated from Río Tinto belonging to the Acidithiobacillus genus and Deinococcus radiodurans, a radiation resistant microorganism, were exposed to simulated Mars conditions under the protection of a layer of ferric oxides and hydroxides, a Mars regolith analogue. Samples of these microorganisms were exposed to UV radiation in Mars atmospheric conditions at different time intervals under the protection of 2 and 5 mm layers of oxidized iron minerals. Viability was evaluated by inoculation on fresh media and characterization of their growth cultures. Here we report the survival capability of both bacteria to simulated Mars environmental conditions.

  14. 4. OVERALL VIEW OF MINE SITE, SHOWING MINE CAR TRACKS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. OVERALL VIEW OF MINE SITE, SHOWING MINE CAR TRACKS, SNOWSHEDS AND TIPPLE (LEFT BACKGROUND). VIEW TO EAST. - Park Utah Mining Company: Keetley Mine Complex, 1 mile East of U.S. 40 at Keetley, Heber City, Wasatch County, UT

  15. 1. OVERALL VIEW OF MINE SITE FROM KEETLEY MINE ROAD, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF MINE SITE FROM KEETLEY MINE ROAD, SHOWING TAILING DUMP. VIEW TO WEST. - Park Utah Mining Company: Keetley Mine Complex, 1 mile East of U.S. 40 at Keetley, Heber City, Wasatch County, UT

  16. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  17. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  18. Acid mine water treatment using engineered wetlands

    NASA Astrophysics Data System (ADS)

    Kleinmann, Robert L. P.

    1990-03-01

    During the last two decades, the United States mining industry has greatly increased the amount it spends on pollution control. The application of biotechnology to mine water can reduce the industry's water treatment costs (estimated at over a million dollars a day) and improve water quality in streams and rivers adversely affected by acidic mine water draining from abandoned mines. Biological treatment of mine waste water is typically conducted in a series of small excavated ponds that resemble, in a superficial way, a small marsh area. The ponds are engineered to first facilitate bacterial oxidation of iron; ideally, the water then flows through a composted organic substrate that supports a population of sulfate-reducing bacteria. The latter process raises the pH. During the past four years, over 400 wetland water treatment systems have been built on mined lands as a result of research by the U.S. Bureau of Mines. In general, mine operators find that the wetlands reduce chemical treatment costs enough to repay the cost of wetland construction in less than a year. Actual rates of iron removal at field sites have been used to develop empirical sizing criteria based on iron loading and pH. If the pH is 6 or above, the wetland area (m2) required is equivalent to the iron load (grams/day) divided by 10. Theis requirement doubles at a pH of 4 to 5. At a pH below 4, the iron load (grams/day) should be divided by 2 to estimate the area required (m2).

  19. ACUTE TOXICITY OF HEAVY METALS TO ACETATE-UTILIZING MIXED CULTURES OF SULFATE-REDUCING BACTERIA: EC100 AND EC50

    EPA Science Inventory

    Acid mine drainage (AMD) from abandoned mines and acid mine pitlakes is an important environmental contaminant concern and usually contains appreciable concentrations of heavy metals. Since sulfate-reducing bacteria (SRB) are involved in the treatment of AMD, knowledge of acute m...

  20. Mine drainage and surface mine reclamation. Volume II. Mine reclamation, abandoned mine lands and policy issues

    SciTech Connect

    Not Available

    1988-01-01

    Mine waste and mine reclamation are topics of major interest to the mining industry, the government and the general public. This publication and its companion volume are the proceedings of a conference held in Pittsburgh, April 19-21, 1988. There were nine sessions (50 papers) that dealt with the geochemistry, hydrology and problems of mine waste and mine water, especially acid mine drainage. These comprise Volume 1. The nine sessions (43 papers) that dealt with reclamation and restoration of disturbed lands, as well as related policy issues, are included in volume 2. Volume 2 also contains the ten papers that pertained to control of subsidence and mine fires at abandoned mines. Poster session presentations are, in general, represented by abstracts; these have been placed in the back of both volumes.

  1. Mine drainage and surface mine reclamation. Volume I. Mine water and mine waste

    SciTech Connect

    Not Available

    1988-01-01

    Mine waste and mine reclamation are topics of major interest to the mining industry, the government and the general public. This publication and its companion volume are the proceedings of a conference held in Pittsburgh, April 19-21, 1988. There were nine sessions (50 papers) that dealt with the geochemistry, hydrology and problems of mine waste and mine water, especially acid mine drainage. These comprise Volume 1. The nine sessions (43 papers) that dealt with reclamation and restoration of disturbed lands, as well as related policy issues, are included in volume 2. Volume 2 also contains the ten papers that pertained to control of subsidence and mine fires at abandoned mines. Poster session presentations are, in general, represented by abstracts; these have been placed in the back of both volumes.

  2. Data Mining for CRM

    NASA Astrophysics Data System (ADS)

    Thearling, Kurt

    Data Mining technology allows marketing organizations to better understand their customers and respond to their needs. This chapter describes how Data Mining can be combined with customer relationship management to help drive improved interactions with customers. An example showing how to use Data Mining to drive customer acquisition activities is presented.

  3. Historical overview and future directions of the microbial role in the acidic coal mine drainage system

    SciTech Connect

    Robbins, E.I.

    1998-12-31

    Bacteria have been implicated and analyzed at every step in the production of acidic coal mine drainage (AMD). This review paper provides detailed information about microbial studies in mines, laboratory settings, waste piles, ground water, receiving streams, and downstream rivers and lakes. Research on AMD treatment, beneficial uses, and seasonal variability is also reviewed. 102 refs.

  4. The effect of species diversity on metal adsorption onto bacteria

    NASA Astrophysics Data System (ADS)

    Ginn, Brian R.; Fein, Jeremy B.

    2008-08-01

    In this study, we measure proton, Pb, and Cd adsorption onto the bacteria Deinococcus radiodurans, Thermus thermophilus, Acidiphlium angustum, Flavobacterium aquatile, and Flavobacterium hibernum, and we calculate the thermodynamic stability constants for the important surface complexes. These bacterial species represent a wide genetic diversity of bacteria, and they occupy a wide range of habitats. All of the species, except for A. angustum, exhibit similar proton and metal uptake. The only species tested that exhibits significantly different protonation behavior is A. angustum, an acidophile that grows at significantly lower pH than the other species of this study. We demonstrate that a single, metal-specific, surface complexation model can be used to reasonably account for the acid/base and metal adsorption behaviors of each species. We use a four discrete site non-electrostatic model to describe the protonation of the bacterial functional groups, with averaged p Ka values of 3.1 ± 0.3, 4.8 ± 0.2, 6.7 ± 0.1, and 9.2 ± 0.3, and site concentrations of (1.0 ± 0.17) × 10 -4, (9.0 ± 3.0) × 10 -5, (4.6 ± 1.8) × 10 -5, and (6.1 ± 2.3) × 10 -5 mol of sites per gram wet mass of bacteria, respectively. Adsorption of Cd and Pb onto the bacteria can be accounted for by the formation of complexes with each of the bacterial surface sites. The average log stability constants for Cd complexes with Sites 1-4 are 2.4 ± 0.4, 3.2 ± 0.1, 4.4 ± 0.1, and 5.3 ± 0.1, respectively. The average log stability constants for Pb complexes with Sites 1-4 are 3.3 ± 0.2, 4.5 ± 0.3, 6.5 ± 0.1, and 7.9 ± 0.5, respectively. This study demonstrates that a wide range of bacteria exhibit similar proton and metal adsorption behaviors, and that a single set of averaged acidity constants, site concentrations, and stability constants for metal-bacterial surface complexes yields a reasonable model for the adsorption behavior of many of these species. The differences in adsorption

  5. Intracellular Bacteria in Protozoa

    NASA Astrophysics Data System (ADS)

    Görtz, Hans-Dieter; Brigge, Theo

    Intracellular bacteria in humans are typically detrimental, and such infections are regarded by the patients as accidental and abnormal. In protozoa it seems obvious that many bacteria have coevolved with their hosts and are well adapted to the intracellular way of life. Manifold interactions between hosts and intracellular bacteria are found, and examples of antibacterial resistance of unknown mechanisms are observed. The wide diversity of intracellular bacteria in protozoa has become particularly obvious since they have begun to be classified by molecular techniques. Some of the bacteria are closely related to pathogens; others are responsible for the production of toxins.

  6. Commercial Data Mining Software

    NASA Astrophysics Data System (ADS)

    Zhang, Qingyu; Segall, Richard S.

    This chapter discusses selected commercial software for data mining, supercomputing data mining, text mining, and web mining. The selected software are compared with their features and also applied to available data sets. The software for data mining are SAS Enterprise Miner, Megaputer PolyAnalyst 5.0, PASW (formerly SPSS Clementine), IBM Intelligent Miner, and BioDiscovery GeneSight. The software for supercomputing are Avizo by Visualization Science Group and JMP Genomics from SAS Institute. The software for text mining are SAS Text Miner and Megaputer PolyAnalyst 5.0. The software for web mining are Megaputer PolyAnalyst and SPSS Clementine . Background on related literature and software are presented. Screen shots of each of the selected software are presented, as are conclusions and future directions.

  7. Data mining in radiology.

    PubMed

    Kharat, Amit T; Singh, Amarjit; Kulkarni, Vilas M; Shah, Digish

    2014-04-01

    Data mining facilitates the study of radiology data in various dimensions. It converts large patient image and text datasets into useful information that helps in improving patient care and provides informative reports. Data mining technology analyzes data within the Radiology Information System and Hospital Information System using specialized software which assesses relationships and agreement in available information. By using similar data analysis tools, radiologists can make informed decisions and predict the future outcome of a particular imaging finding. Data, information and knowledge are the components of data mining. Classes, Clusters, Associations, Sequential patterns, Classification, Prediction and Decision tree are the various types of data mining. Data mining has the potential to make delivery of health care affordable and ensure that the best imaging practices are followed. It is a tool for academic research. Data mining is considered to be ethically neutral, however concerns regarding privacy and legality exists which need to be addressed to ensure success of data mining. PMID:25024513

  8. Data mining in radiology

    PubMed Central

    Kharat, Amit T; Singh, Amarjit; Kulkarni, Vilas M; Shah, Digish

    2014-01-01

    Data mining facilitates the study of radiology data in various dimensions. It converts large patient image and text datasets into useful information that helps in improving patient care and provides informative reports. Data mining technology analyzes data within the Radiology Information System and Hospital Information System using specialized software which assesses relationships and agreement in available information. By using similar data analysis tools, radiologists can make informed decisions and predict the future outcome of a particular imaging finding. Data, information and knowledge are the components of data mining. Classes, Clusters, Associations, Sequential patterns, Classification, Prediction and Decision tree are the various types of data mining. Data mining has the potential to make delivery of health care affordable and ensure that the best imaging practices are followed. It is a tool for academic research. Data mining is considered to be ethically neutral, however concerns regarding privacy and legality exists which need to be addressed to ensure success of data mining. PMID:25024513

  9. Data mining in radiology.

    PubMed

    Kharat, Amit T; Singh, Amarjit; Kulkarni, Vilas M; Shah, Digish

    2014-04-01

    Data mining facilitates the study of radiology data in various dimensions. It converts large patient image and text datasets into useful information that helps in improving patient care and provides informative reports. Data mining technology analyzes data within the Radiology Information System and Hospital Information System using specialized software which assesses relationships and agreement in available information. By using similar data analysis tools, radiologists can make informed decisions and predict the future outcome of a particular imaging finding. Data, information and knowledge are the components of data mining. Classes, Clusters, Associations, Sequential patterns, Classification, Prediction and Decision tree are the various types of data mining. Data mining has the potential to make delivery of health care affordable and ensure that the best imaging practices are followed. It is a tool for academic research. Data mining is considered to be ethically neutral, however concerns regarding privacy and legality exists which need to be addressed to ensure success of data mining.

  10. DEVELOPMENT OF SRB TREATMENT SYSTEMS FOR ACID MINE DRAINAGE

    EPA Science Inventory

    Over the past decade, significant advances have been made in the development of sulfate- reducing bacteria (SRB) technology to treat acid mine drainage (AMD), Bench-scale testing, field demonstrations, and engineered applications of SRBs for the treatment of AMD will be presented...

  11. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage

    PubMed Central

    Chen, Lin-xing; Hu, Min; Huang, Li-nan; Hua, Zheng-shuang; Kuang, Jia-liang; Li, Sheng-jin; Shu, Wen-sheng

    2015-01-01

    The microbial communities in acid mine drainage have been extensively studied to reveal their roles in acid generation and adaption to this environment. Lacking, however, are integrated community- and organism-wide comparative gene transcriptional analyses that could reveal the response and adaptation mechanisms of these extraordinary microorganisms to different environmental conditions. In this study, comparative metagenomics and metatranscriptomics were performed on microbial assemblages collected from four geochemically distinct acid mine drainage (AMD) sites. Taxonomic analysis uncovered unexpectedly high microbial biodiversity of these extremely acidophilic communities, and the abundant taxa of Acidithiobacillus, Leptospirillum and Acidiphilium exhibited high transcriptional activities. Community-wide comparative analyses clearly showed that the AMD microorganisms adapted to the different environmental conditions via regulating the expression of genes involved in multiple in situ functional activities, including low-pH adaptation, carbon, nitrogen and phosphate assimilation, energy generation, environmental stress resistance, and other functions. Organism-wide comparative analyses of the active taxa revealed environment-dependent gene transcriptional profiles, especially the distinct strategies used by Acidithiobacillus ferrivorans and Leptospirillum ferrodiazotrophum in nutrients assimilation and energy generation for survival under different conditions. Overall, these findings demonstrate that the gene transcriptional profiles of AMD microorganisms are closely related to the site physiochemical characteristics, providing clues into the microbial response and adaptation mechanisms in the oligotrophic, extremely acidic environments. PMID:25535937

  12. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    PubMed

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  13. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    PubMed Central

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  14. Genomics of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  15. Implementation of paste backfill mining technology in Chinese coal mines.

    PubMed

    Chang, Qingliang; Chen, Jianhang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  16. Implementation of paste backfill mining technology in Chinese coal mines.

    PubMed

    Chang, Qingliang; Chen, Jianhang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application.

  17. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    PubMed Central

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  18. A baseline lunar mine

    NASA Technical Reports Server (NTRS)

    Gertsch, Richard E.

    1992-01-01

    A models lunar mining method is proposed that illustrates the problems to be expected in lunar mining and how they might be solved. While the method is quite feasible, it is, more importantly, a useful baseline system against which to test other, possible better, methods. Our study group proposed the slusher to stimulate discussion of how a lunar mining operation might be successfully accomplished. Critics of the slusher system were invited to propose better methods. The group noted that while nonterrestrial mining has been a vital part of past space manufacturing proposals, no one has proposed a lunar mining system in any real detail. The group considered it essential that the design of actual, workable, and specific lunar mining methods begin immediately. Based on an earlier proposal, the method is a three-drum slusher, also known as a cable-operated drag scraper. Its terrestrial application is quite limited, as it is relatively inefficient and inflexible. The method usually finds use in underwater mining from the shore and in moving small amounts of ore underground. When lunar mining scales up, the lunarized slusher will be replaced by more efficient, high-volume methods. Other aspects of lunar mining are discussed.

  19. Bleach vs. Bacteria

    MedlinePlus

    ... Inside Life Science > Bleach vs. Bacteria Inside Life Science View All Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds ... For Proteins, Form Shapes Function This Inside Life Science article also appears on LiveScience . Learn about related ...

  20. Bacteria turn tiny gears

    SciTech Connect

    2009-01-01

    Swarms of bacteria turn two 380-micron long gears, opening the possibility of building hybrid biological machines at the microscopic scale. Read more at Wired: http://www.wired.com/wiredscience/2009/12/bacterial-micro-machine/#more-15684 or Scientific American: http://www.scientificamerican.com/article.cfm?id=brownian-motion-bacteria

  1. Some Bacteria Are Beneficial!

    USGS Publications Warehouse

    McMahon, Peter B.

    1995-01-01

    Most people would agree that bacteria usually spell trouble where the quality of drinking water is con cerned. However, recent studies conducted by the U.S. Geological Survey (USGS) under the National Water-Quality Assessment (NAWQA) program have shown that some bacteria can improve the quality of water.

  2. Mercury mine drainage and processes that control its environmental impact

    USGS Publications Warehouse

    Rytuba, J.J.

    2000-01-01

    Mine drainage from mercury mines in the California Coast Range mercury mineral belt is an environmental concern because of its acidity and high sulfate, mercury, and methylmercury concentrations. Two types of mercury deposits are present in the mineral belt, silica-carbonate and hot-spring type. Mine drainage is associated with both deposit types but more commonly with the silica-carbonate type because of the extensive underground workings present at these mines. Mercury ores consisting primarily of cinnabar were processed in rotary furnaces and retorts and elemental mercury recovered from condensing systems. During the roasting process mercury phases more soluble than cinnabar are formed and concentrated in the mine tailings, commonly termed calcines. Differences in mineralogy and trace metal geochemistry between the two deposit types are reflected in mine drainage composition. Silica-carbonate type deposits have higher iron sulfide content than hot- spring type deposits and mine drainage from these deposits may have extreme acidity and very high concentrations of iron and sulfate. Mercury and methylmercury concentrations in mine drainage are relatively low at the point of discharge from mine workings. The concentration of both mercury species increases significantly in mine drainage that flows through and reacts with calcines. The soluble mercury phases in the calcines are dissolved and sulfate is added such that methylation of mercury by sulfate reducing bacteria is enhanced in calcines that are saturated with mine drainage. Where mercury mine drainage enters and first mixes with stream water, the addition of high concentrations of mercury and sulfate generates a favorable environment for methylation of mercury. Mixing of oxygenated stream water with mine drainage causes oxidation of dissolved iron(II) and precipitation of iron oxyhydroxide that accumulates in the streambed. Both mercury and methylmercury are strongly adsorbed onto iron oxyhydroxide over the p

  3. Biotreatment of mine drainage

    SciTech Connect

    Bender, J.; Phillips, R.

    1996-12-31

    Several experiments and field tests of microbial mats are described. One study determined the removal rate of Uranium 238 and metals from groundwater by microbial mats. Free floating mats, immobilized mats, excised mats, and pond treatment were examined. Field tests of acid coal mine drainage and precious metal mine drainage are also summarized. The mechanisms of metal removal are briefly described.

  4. Continuous mining machine

    SciTech Connect

    Kiefer, H.E.

    1992-02-11

    This patent describes a continuous mining machine for excavating a longitudinal shaft or tunnel underneath the surface of the earth, the mining machine. It comprises: transport means for moving the machine over a floor of the shaft or tunnel that is being excavated; a working platform having forward and trailing ends.

  5. PRB mines mature

    SciTech Connect

    Buchsbaum, L.

    2007-08-15

    Already seeing the results of reclamation efforts, America's largest surface mines advance as engineers prepare for the future. 30 years after the signing of the Surface Mining Control and Reclamation Act by Jimmy Carter, western strip mines in the USA, especially in the Powder River Basin, are producing more coal than ever. The article describes the construction and installation of a $38.5 million near-pit crusher and overland belt conveyor system at Foundation Coal West's (FCW) Belle Ayr surface mine in Wyoming, one of the earliest PRB mines. It goes on to describe the development by Rio Tinto of an elk conservatory, the Rochelle Hill Conservation Easement, on reclaimed land at Jacobs Ranch, adjacent to the Rochelle Hills. 4 photos.

  6. Antibiotics from predatory bacteria

    PubMed Central

    Korp, Juliane; Vela Gurovic, María S

    2016-01-01

    Summary Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism. PMID:27340451

  7. Antibiotics from predatory bacteria.

    PubMed

    Korp, Juliane; Vela Gurovic, María S; Nett, Markus

    2016-01-01

    Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism. PMID:27340451

  8. 1. VIEW OF PHILLIPS MINE. CAMERA POINTED SOUTHEAST. SULLIVAN MINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF PHILLIPS MINE. CAMERA POINTED SOUTHEAST. SULLIVAN MINE IS LOCATED ROUGHLY 75 YARDS BEYOND AND ROUGHLY IN LINE WITH THE SNOW ON THE RIGHT SIDE OF THE IMAGE. - Florida Mountain Mining Sites, Phillips Mine, East side of Florida Mountain, Silver City, Owyhee County, ID

  9. 2. EMPIRE STATE MINE. VIEW OF COLLAPSED BUILDINGS AT MINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EMPIRE STATE MINE. VIEW OF COLLAPSED BUILDINGS AT MINE WITH TAILINGS ON RIGHT. CAMERA POINTED SOUTHWEST. COLLAPSED ADIT APPROXIMATELY 25 YARDS UPHILL TO THE LEFT OF FAR BUILDING. TIP TOP AND ONTARIO ARE LOCATED OUT OF THE PICTURE TO THE RIGHT. - Florida Mountain Mining Sites, Empire State Mine, West side of Florida Mountain, Silver City, Owyhee County, ID

  10. 1. VIEW OF SULLIVAN MINE ON RIGHT WITH PHILLIPS MINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF SULLIVAN MINE ON RIGHT WITH PHILLIPS MINE LOCATED APPROXIMATELY 200 YARDS THROUGH TREES IN THE DIRECTION OF THE MOUND ON THE LEFT SIDE OF ROAD. CAMERA POINTING NORTH-NORTHEAST. - Florida Mountain Mining Sites, Sullivan Mine, East side of Florida Mountain, Silver City, Owyhee County, ID

  11. [Darwin and bacteria].

    PubMed

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution. PMID:19350162

  12. Bacteria subsisting on antibiotics.

    PubMed

    Dantas, Gautam; Sommer, Morten O A; Oluwasegun, Rantimi D; Church, George M

    2008-04-01

    Antibiotics are a crucial line of defense against bacterial infections. Nevertheless, several antibiotics are natural products of microorganisms that have as yet poorly appreciated ecological roles in the wider environment. We isolated hundreds of soil bacteria with the capacity to grow on antibiotics as a sole carbon source. Of 18 antibiotics tested, representing eight major classes of natural and synthetic origin, 13 to 17 supported the growth of clonal bacteria from each of 11 diverse soils. Bacteria subsisting on antibiotics are surprisingly phylogenetically diverse, and many are closely related to human pathogens. Furthermore, each antibiotic-consuming isolate was resistant to multiple antibiotics at clinically relevant concentrations. This phenomenon suggests that this unappreciated reservoir of antibiotic-resistance determinants can contribute to the increasing levels of multiple antibiotic resistance in pathogenic bacteria. PMID:18388292

  13. Indicator For Pseudomonas Bacteria

    NASA Technical Reports Server (NTRS)

    Margalit, Ruth

    1990-01-01

    Characteristic protein extracted and detected. Natural protein marker found in Pseudomonas bacteria. Azurin, protein containing copper readily extracted, purified, and used to prepare antibodies. Possible to develop simple, fast, and accurate test for marker carried out in doctor's office.

  14. [Darwin and bacteria].

    PubMed

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  15. Relationships between microbial communities and environmental parameters at sites impacted by mining of volcanogenic massive sulfide deposits, Prince William Sound, Alaska

    USGS Publications Warehouse

    Foster, A.L.; Munk, L.; Koski, R.A.; Shanks, Wayne C.; Stillings, L.L.

    2008-01-01

    The relations among geochemical parameters and sediment microbial communities were examined at three shoreline sites in the Prince William Sound, Alaska, which display varying degrees of impact by acid-rock drainage (ARD) associated with historic mining of volcanogenic massive sulfide deposits. Microbial communities were examined using total fatty acid methyl esters (FAMEs), a class of compounds derived from lipids produced by eukaryotes and prokaryotes (bacteria and Archaea); standard extraction techniques detect FAMEs from both living (viable) and dead (non-viable) biomass, but do not detect Archaeal FAMEs. Biomass and diversity (as estimated by FAMEs) varied strongly as a function of position in the tidal zone, not by study site; subtidal muds, Fe oxyhydroxide undergoing biogenic reductive dissolution, and peat-rich intertidal sediment had the highest values. These estimates were lowest in acid-generating, intertidal zone sediment; if valid, the estimates suggest that only one or two bacterial species predominate in these communities, and/or that Archeal species are important members of the microbial community in this sediment. All samples were dominated by bacterial FAMEs (median value >90%). Samples with the highest absolute abundance of eukaryotic FAMEs were biogenic Fe oxyhydroxides from shallow freshwater pools (fungi) and subtidal muds (diatoms). Eukaryotic FAMEs were practically absent from low-pH, sulfide-rich intertidal zone sediments. The relative abundance of general microbial functional groups such as aerobes/anaerobes and gram(+)/gram(-) was not estimated due to severe inconsistency among the results obtained using several metrics reported in the literature. Principal component analyses (PCAs) were performed to investigate the relationship among samples as separate functions of water, sediment, and FAMEs data. PCAs based on water chemistry and FAMEs data resulted in similar relations among samples, whereas the PCA based on sediment chemistry

  16. Land Mines Removal

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The same rocket fuel that helps power the Space Shuttle as it thunders into orbit will now be taking on a new role, with the potential to benefit millions of people worldwide. Leftover rocket fuel from NASA is being used to make a flare that destroys land mines where they were buried, without using explosives. The flare is safe to handle and easy to use. People working to deactivate the mines simply place the flare next to the uncovered land mine and ignite it from a safe distance using a battery-triggered electric match. The flare burns a hole in the land mine's case and ignites its explosive contents. The explosive burns away, disabling the mine and rendering it harmless. Using leftover rocket fuel to help destroy land mines incurs no additional costs to taxpayers. To ensure enough propellant is available for each Shuttle mission, NASA allows for a small percentage of extra propellant in each batch. Once mixed, surplus fuel solidifies and carnot be saved for use in another launch. In its solid form, it is an ideal ingredient for the new flare. The flare was developed by Thiokol Propulsion in Brigham City, Utah, the NASA contractor that designs and builds rocket motors for the Solid Rocket Booster Space Shuttle. An estimated 80 million or more active land mines are scattered around the world in at least 70 countries, and kill or maim 26,000 people a year. Worldwide, there is one casualty every 22 minutes

  17. Land Mines Removal

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The same rocket fuel that helps power the Space Shuttle as it thunders into orbit will now be taking on a new role, with the potential to benefit millions of people worldwide. Leftover rocket fuel from NASA is being used to make a flare that destroys land mines where they were buried, without using explosives. The flare is safe to handle and easy to use. People working to deactivate the mines simply place the flare next to the uncovered land mine and ignite it from a safe distance using a battery-triggered electric match. The flare burns a hole in the land mine's case and ignites its explosive contents. The explosive burns away, disabling the mine and rendering it harmless. Using leftover rocket fuel to help destroy land mines incurs no additional costs to taxpayers. To ensure enough propellant is available for each Shuttle mission, NASA allows for a small percentage of extra propellant in each batch. Once mixed, surplus fuel solidifies and carnot be saved for use in another launch. In its solid form, it is an ideal ingredient for new the flare. The flare was developed by Thiokol Propulsion in Brigham City, Utah, the NASA contractor that designs and builds rocket motors for the Solid Rocket Booster Space Shuttle. An estimated 80 million or more active land mines are scattered around the world in at least 70 countries, and kill or maim 26,000 people a year. Worldwide, there is one casualty every 22 minutes.

  18. Gut bacteria and cancer

    PubMed Central

    Erdman, Susan E.; Poutahidis, Theofilos

    2015-01-01

    Microbiota on the mucosal surfaces of the gastrointestinal (GI) tract greatly outnumber the cells in the human body. Effects of antibiotics indicate that GI tract bacteria may be determining the fate of distal cancers. Recent data implicate dysregulated host responses to enteric bacteria leading to cancers in extra-intestinal sites. Together these findings point to novel anti-cancer strategies aimed at promoting GI tract homeostasis. PMID:26050963

  19. [Application of immunologic methods to the analysis of bio-leaching bacteria].

    PubMed

    Coto, O; Fernández, A I; León, T; Rodríguez, D

    1994-09-01

    Pure cultures of Thiobacillus ferrooxidans and mixed cultures of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans isolated from the Matahambre mine (Cuba) were used to fit immunodiffusion and immunoelectron microscopy to the study of iron oxidizing bacteria. The possibilities, advantages and limits of those techniques have been studied from both the identification and the serological characterization points of view. Finally, the efficiency of these methods was tested by applying them to the identification of microorganisms from acidic waters from the mine.

  20. The All Taxa Biodiversity Inventory of Algae in the Great Smoky Mountains National Park, with a Focus on the Acidophilic Diatom, Eunotia Ehrenberg

    NASA Astrophysics Data System (ADS)

    Furey, P. C.; Lowe, R.; Johansen, J. R.

    2005-05-01

    Since the late 1990's, the National Park Service and Discover Life In America have taken on the ambitious task of completing an All Taxa Biodiversity Inventory in the Great Smoky Mountains National Park (GSMNP). As one of the most species-rich areas in the temperate zone, GSMNP is considered a hot spot of biological diversity and has been designated as an International Biosphere Reserve. Previous research has suggested that the algal diversity is high in the GSMNP and many species are new, endemic, or restricted in range. To date, 67 species new to science and 163 taxa new to the park have been reported. An update of new species and new park findings will be presented. In particular, the GSMNP supports a diverse community of the acidophilic diatom Eunotia Ehr., both in terms of number of species and geographical distribution. Eunotia species can flourish in the park because of aquatic and aerial habitats that are 5-10X more acidic than normal, in combination with the presence of a complex geology and range of altitudes. An image-rich documentation of the Eunotia will be presented, including both light microscope and scanning electron micrographs that show the diversity, distribution and the variability in morphology.

  1. Structure and Properties of a Non-processive, Salt-requiring, and Acidophilic Pectin Methylesterase from Aspergillus niger Provide Insights into the Key Determinants of Processivity Control.

    PubMed

    Kent, Lisa M; Loo, Trevor S; Melton, Laurence D; Mercadante, Davide; Williams, Martin A K; Jameson, Geoffrey B

    2016-01-15

    Many pectin methylesterases (PMEs) are expressed in plants to modify plant cell-wall pectins for various physiological roles. These pectins are also attacked by PMEs from phytopathogens and phytophagous insects. The de-methylesterification by PMEs of the O6-methyl ester groups of the homogalacturonan component of pectin, exposing galacturonic acids, can occur processively or non-processively, respectively, describing sequential versus single de-methylesterification events occurring before enzyme-substrate dissociation. The high resolution x-ray structures of a PME from Aspergillus niger in deglycosylated and Asn-linked N-acetylglucosamine-stub forms reveal a 10⅔-turn parallel β-helix (similar to but with less extensive loops than bacterial, plant, and insect PMEs). Capillary electrophoresis shows that this PME is non-processive, halophilic, and acidophilic. Molecular dynamics simulations and electrostatic potential calculations reveal very different behavior and properties compared with processive PMEs. Specifically, uncorrelated rotations are observed about the glycosidic bonds of a partially de-methyl-esterified decasaccharide model substrate, in sharp contrast to the correlated rotations of processive PMEs, and the substrate-binding groove is negatively not positively charged.

  2. Formyl-coenzyme A (CoA):oxalate CoA-transferase from the acidophile Acetobacter aceti has a distinctive electrostatic surface and inherent acid stability

    PubMed Central

    Mullins, Elwood A; Starks, Courtney M; Francois, Julie A; Sael, Lee; Kihara, Daisuke; Kappock, T Joseph

    2012-01-01

    Bacterial formyl-CoA:oxalate CoA-transferase (FCOCT) and oxalyl-CoA decarboxylase work in tandem to perform a proton-consuming decarboxylation that has been suggested to have a role in generalized acid resistance. FCOCT is the product of uctB in the acidophilic acetic acid bacterium Acetobacter aceti. As expected for an acid-resistance factor, UctB remains folded at the low pH values encountered in the A. aceti cytoplasm. A comparison of crystal structures of FCOCTs and related proteins revealed few features in UctB that would distinguish it from nonacidophilic proteins and thereby account for its acid stability properties, other than a strikingly featureless electrostatic surface. The apparently neutral surface is a result of a “speckled” charge decoration, in which charged surface residues are surrounded by compensating charges but do not form salt bridges. A quantitative comparison among orthologs identified a pattern of residue substitution in UctB that may be a consequence of selection for protein stability by constant exposure to acetic acid. We suggest that this surface charge pattern, which is a distinctive feature of A. aceti proteins, creates a stabilizing electrostatic network without stiffening the protein or compromising protein–solvent interactions. PMID:22374910

  3. Formyl-coenzyme A (CoA):oxalate CoA-transferase from the acidophile Acetobacter aceti has a distinctive electrostatic surface and inherent acid stability.

    PubMed

    Mullins, Elwood A; Starks, Courtney M; Francois, Julie A; Sael, Lee; Kihara, Daisuke; Kappock, T Joseph

    2012-05-01

    Bacterial formyl-CoA:oxalate CoA-transferase (FCOCT) and oxalyl-CoA decarboxylase work in tandem to perform a proton-consuming decarboxylation that has been suggested to have a role in generalized acid resistance. FCOCT is the product of uctB in the acidophilic acetic acid bacterium Acetobacter aceti. As expected for an acid-resistance factor, UctB remains folded at the low pH values encountered in the A. aceti cytoplasm. A comparison of crystal structures of FCOCTs and related proteins revealed few features in UctB that would distinguish it from nonacidophilic proteins and thereby account for its acid stability properties, other than a strikingly featureless electrostatic surface. The apparently neutral surface is a result of a "speckled" charge decoration, in which charged surface residues are surrounded by compensating charges but do not form salt bridges. A quantitative comparison among orthologs identified a pattern of residue substitution in UctB that may be a consequence of selection for protein stability by constant exposure to acetic acid. We suggest that this surface charge pattern, which is a distinctive feature of A. aceti proteins, creates a stabilizing electrostatic network without stiffening the protein or compromising protein-solvent interactions.

  4. A novel thermostable, acidophilic alpha-amylase from a new thermophilic "Bacillus sp. Ferdowsicous" isolated from Ferdows hot mineral spring in Iran: Purification and biochemical characterization.

    PubMed

    Asoodeh, Ahmad; Chamani, JamshidKhan; Lagzian, Milad

    2010-04-01

    This paper describes the purification and characterization of a novel acidophile alpha-amylase from newly isolated Bacillus sp. Ferdowsicous. The enzyme displayed a molecular weight of 53 kDa and it was stable over a range of pH from 3.5 to 7 with an optimum around 4.5. The optimum temperature for activity was found to be around 70 degrees C and the enzyme remained active to more than 75% up to 75 degrees C for 45 min. The enzyme activity was decreased by Zn(2+)and EDTA but inhibited by Hg(2+), whereas the activity was increased by approximately 15% by Ba(2+) and Fe(2+). Na(+), Mg(2+), K(+), Ca(2+), PMSF, Triton X-100 and beta-mercaptoethanol had any considerable effect on its activity. The enzyme activity on the amylose as substrate was 1.98 times greater than amylopectin. Partial N-terminal sequencing demonstrated no significant similarity with other known alpha-amylases, indicating that the presented enzyme was new. Considering its promising properties, this enzyme can find potential applications in the food industry as well as in laundry detergents.

  5. Adaptation of a mixed culture of acidophiles for a tank biooxidation of refractory gold concentrates containing a high concentration of arsenic.

    PubMed

    Hong, Jeongsik; Silva, Rene A; Park, Jeonghyun; Lee, Eunseong; Park, Jayhyun; Kim, Hyunjung

    2016-05-01

    We adapted a mixed culture of acidophiles to high arsenic concentrations to confirm the possibility of achieving more than 70% biooxidation of refractory gold concentrates containing high arsenic (As) concentration. The biooxidation process was applied to refractory gold concentrates containing approximately 139.67 g/kg of total As in a stirred tank reactor using an adapted mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The percentage of the biooxidation process was analyzed based on the total As removal efficiency. The As removal was monitored by inductively coupled plasma (ICP) analysis, conducted every 24 h. The results obtained with the adapted culture were compared with the percentage of biooxidation obtained with a non-adapted mixed culture of A. ferrooxidans and A. thiooxidans, and with their respective pure cultures. The percentages of biooxidation obtained during 358 h of reaction were 72.20%, 38.20%, 27.70%, and 11.45% for adapted culture, non-adapted culture, and pure cultures of A. thiooxidans and A. ferrooxidans, respectively. The adapted culture showed a peak maximum percentage of biooxidation of 77% at 120 h of reaction, confirming that it is possible to obtain biooxidation percentages over 70% in gold concentrates containing high As concentrations.

  6. Adaptation of a mixed culture of acidophiles for a tank biooxidation of refractory gold concentrates containing a high concentration of arsenic.

    PubMed

    Hong, Jeongsik; Silva, Rene A; Park, Jeonghyun; Lee, Eunseong; Park, Jayhyun; Kim, Hyunjung

    2016-05-01

    We adapted a mixed culture of acidophiles to high arsenic concentrations to confirm the possibility of achieving more than 70% biooxidation of refractory gold concentrates containing high arsenic (As) concentration. The biooxidation process was applied to refractory gold concentrates containing approximately 139.67 g/kg of total As in a stirred tank reactor using an adapted mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The percentage of the biooxidation process was analyzed based on the total As removal efficiency. The As removal was monitored by inductively coupled plasma (ICP) analysis, conducted every 24 h. The results obtained with the adapted culture were compared with the percentage of biooxidation obtained with a non-adapted mixed culture of A. ferrooxidans and A. thiooxidans, and with their respective pure cultures. The percentages of biooxidation obtained during 358 h of reaction were 72.20%, 38.20%, 27.70%, and 11.45% for adapted culture, non-adapted culture, and pure cultures of A. thiooxidans and A. ferrooxidans, respectively. The adapted culture showed a peak maximum percentage of biooxidation of 77% at 120 h of reaction, confirming that it is possible to obtain biooxidation percentages over 70% in gold concentrates containing high As concentrations. PMID:26481159

  7. Land reclamation beautifies coal mines

    SciTech Connect

    Coblentz, B.

    2009-07-15

    The article explains how the Mississippi Agricultural and Forestry Experiments station, MAFES, has helped prepare land exploited by strip mining at North American Coal Corporation's Red Hills Mine. The 5,800 acre lignite mine is over 200 ft deep and uncovers six layers of coal. About 100 acres of land a year is mined and reclaimed, mostly as pine plantations. 5 photos.

  8. Microbial Sulfur Geochemistry in Mine Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Warren, L. A.; Norlund, K. L.; Hitchcock, A.

    2010-12-01

    Acid mine drainage (AMD), metal laden, acidic water, is the most pressing mining environmental issue on a global scale. While it is well recognized that the activity of autotrophic Fe and S bacteria amplify the oxidation of the sulfidic wastes, thereby generating acidity and leaching metals; the underlying microbial geochemistry is not well described. This talk will highlight results revealing the importance of microbial cooperation associated with a novel sulfur-metabolizing consortium enriched from mine waters. Results generated by an integrated approach, combining field characterization, geochemical experimentation, scanning transmission X-ray microscopy (STXM), and fluorescence in situ hybridization (FISH) [1]describing the underlying ecological drivers, the functionally relevant biogeochemical architecture of the consortial macrostructure as well as the identities of this environmental sulphur redox cycling consortium will be presented. The two common mine bacterial strains involved in this consortium, Acidithiobacillus ferroxidans and Acidiphilium sp., are specifically spatially segregated within a macrostructure (pod) of extracellular polymeric substance (EPS) that enables coupled sulphur oxidation and reduction reactions despite bulk, oxygenated conditions. Identical pod formation by type culture strains was induced and linked to ecological conditions. The proposed sulphur geochemistry associated with this bacterial consortium produces 40-90% less acid than expected based on abiotic AMD models, with implications for both AMD mitigation and AMD carbon flux modeling. We are currently investigating the implications of these sulphur-processing pods for metal dynamics in mine systems. These results demonstrate how microbes can orchestrate their geochemical environment to facilitate metabolism, and underscore the need to consider microbial interactions and ecology in constraining their geochemical impacts. [1] Norlund, Southam, Tyliszcczak, Hu, Karunakaran, Obst

  9. Indigenous and Contaminant Microbes in Ultradeep Mines

    NASA Technical Reports Server (NTRS)

    Onstott, T. C.; Moser, D. P.; Pfiffner, S. M.; Fredrickson, J. F.; Brockman, F. J.; Phelps, T. J.; White, D. C.; Peacock, A.; Balkwill, D.; Hoover, R.; Krumholz, L. R.; Borscik, M.; Kieft, T. L.; Wilson, R.

    2003-01-01

    Rock, air and service water samples were collected for microbial analyses from 3.2 kilometers depth in a working Au mine in the Witwatersrand basin, South Africa. The approx. 1 meter wide mined zone was comprised of a carbonaceous, quartz, sulfide, uraninite and Au bearing layer, called the Carbon Leader, sandwiched by quartzite and conglomerates. The microbial community in the service water was dominated by mesophilic aerobic and anaerobic, alpha, beta and gamma-Proteobacteria with a total biomass concentration approx. l0(exp 4) cells/ ml, whereas, that of the mine air was dominated by members of the Chlorobi and Bacteroidetes groups and a fungal component. The microorganisms in the Carbon Leader were predominantly mesophilic, aerobic heterotrophic, nitrate reducing and methylotrophic, beta and gamma - Proteobacteria that were more closely related to service water microorganisms rather than air microbes. Rhodamine WT dye and fluorescent microspheres employed as contaminant tracers, however, indicated that service water contamination of most of the rock samples was less that 0.01% during acquisition. The microbial contaminants most likely originated from the service water, infiltrated the low permeability rock through and accumulated within mining-induced fractures where they survived for several days prior to being mined. Combined PLFA and terminal restriction fragment length profile (T-RFLP) analyses suggest that the maximum concentration of indigenous microorganisms in the Carbon Leader was less than lo(exp 2) cells/ g. PLFA, S-35 autoradiography and enrichments suggest that the adjacent quartzite was less contaminated and contained -10(exp 3) cells/gram of a thermophilic, sulfate reducing bacteria, SRB, some of who are delta Proteobacteria. Pore water and rock geochemical analyses suggest that these SRB's may have been sustained by sulfate diffusing from the adjacent U-rich, Carbon Leader where it was formed by radiolysis of sulfide.

  10. Indigenous and Contaminant Microbes in Ultradeep Mines

    NASA Technical Reports Server (NTRS)

    Onstott, T. C.; Moser, D. P.; Pfiffner, S. M.; Fredrickson, J. K.; Brockman, F. J.; Phelps, T. J.; White, D. C.; Peacock, A.; Balkwill, D.; Hoover, R. B.; Krumholz, L. R.; Borscik, M.; Kieft, T. L.; Wilson, R.

    2003-01-01

    Rock, air and service water samples were collected for microbial analyses from 3.2 kilometers depth in a working Au mine in the Witwatersrand basin, South Africa. The approx. 1 meter wide mined zone was comprised of a carbonaceous, quartz, sulfide, uraninite and Au bearing layer, called the Carbon Leader, sandwiched by quartzite and conglomerates. The microbial community in the service water was dominated by mesophilic aerobic and anaerobic, alpha, beta, and gamma-Proteobacteria with a total biomass concentration approx. 10(exp 4) cells/ml, whereas, that of the mine air was dominated by members of the Chlorobi and Bacteroidetes groups and a fungal component. The microorganisms in the Carbon Leader were predominantly mesophilic, aerobic heterotrophic, nitrate reducing and methylotrophic, beta and gamma-Proteobacteria that were more closely related to service water microorganisms rather than air microbes. Rhodamine WT dye and fluorescent microspheres employed as contaminant tracers, however, indicated that service water contamination of most of the rock samples was < 0.01% during acquisition. The microbial contaminants most likely originated from the service water, infiltrated the low permeability rock through and accumulated within mining-induced fractures where they survived for several days prior to being mined. Combined PLFA and terminal restriction fragment length profile (T-RFLP) analyses suggest that the maximum concentration of indigenous microorganisms in the Carbon Leader was < 10(exp 2) cells/g. PLFA, (35)S autoradiography and enrichments suggest that the adjacent quartzite was less contaminated and contained approx. 10(exp 3) cells/gram of a thermophilic, sulfate reducing bacteria, SRB, some of whom are delta Proteobacteria. Pore water and rock geochemical analyses suggest that these SRB's may have been sustained by sulfate diffusing from the adjacent U-rich, Carbon Leader where it was formed by radiolysis of sulfide.

  11. The role of algae in mine drainage bioremediation

    SciTech Connect

    Davison, J. )

    1990-06-01

    The effect of mine drainage effluent on aquatic ecosystems has been abundantly documented and remediation efforts to data have always been costly and temporary at best. Bioremediation, using natural environmental microbes, to treat acid mine drainage has shown great promise as an affordable, permanent treatment. At Lambda, we used mixatrophic cultures of bacteria, algae, protozoans and fungal groups on four different jobs and it has proven effective. The role of two particular algal groups, the Euglena mutabilis and the Ochramonas sp. are particularly of phycological interest.

  12. Closedure - Mine Closure Technologies Resource

    NASA Astrophysics Data System (ADS)

    Kauppila, Päivi; Kauppila, Tommi; Pasanen, Antti; Backnäs, Soile; Liisa Räisänen, Marja; Turunen, Kaisa; Karlsson, Teemu; Solismaa, Lauri; Hentinen, Kimmo

    2015-04-01

    Closure of mining operations is an essential part of the development of eco-efficient mining and the Green Mining concept in Finland to reduce the environmental footprint of mining. Closedure is a 2-year joint research project between Geological Survey of Finland and Technical Research Centre of Finland that aims at developing accessible tools and resources for planning, executing and monitoring mine closure. The main outcome of the Closedure project is an updatable wiki technology-based internet platform (http://mineclosure.gtk.fi) in which comprehensive guidance on the mine closure is provided and main methods and technologies related to mine closure are evaluated. Closedure also provides new data on the key issues of mine closure, such as performance of passive water treatment in Finland, applicability of test methods for evaluating cover structures for mining wastes, prediction of water effluents from mine wastes, and isotopic and geophysical methods to recognize contaminant transport paths in crystalline bedrock.

  13. Preferential Use of an Anode as an Electron Acceptor by an Acidophilic Bacterium in the Presence of Oxygen▿

    PubMed Central

    Malki, Moustafa; De Lacey, Antonio L.; Rodríguez, Nuria; Amils, Ricardo; Fernandez, Victor M.

    2008-01-01

    Several anaerobic metal-reducing bacteria have been shown to be able to donate electrons directly to an electrode. This property is of great interest for microbial fuel cell development. To date, microbial fuel cell design requires avoiding O2 diffusion from the cathodic compartment to the sensitive anodic compartment. Here, we show that Acidiphilium sp. strain 3.2 Sup 5 cells that were isolated from an extreme acidic environment are able to colonize graphite felt electrodes. These bacterial electrodes were able to produce high-density electrocatalytic currents, up to 3 A/m2 at a poised potential of +0.15 V (compared to the value for the reference standard calomel electrode) in the absence of redox mediators, by oxidizing glucose even at saturating air concentrations and very low pHs. PMID:18487393

  14. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    PubMed Central

    Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615

  15. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    USGS Publications Warehouse

    Church, C.D.; Wilkin, R.T.; Alpers, C.N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  16. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  17. Indonesian coal mining

    SciTech Connect

    2008-11-15

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  18. Mining Specifications: A Roadmap

    NASA Astrophysics Data System (ADS)

    Zeller, Andreas

    Recent advances in software validation and verification make it possible to widely automate whether a specification is satisfied. This progress is hampered, though, by the persistent difficulty of writing specifications. Are we facing a “specification crisis”? In this paper, I show how to alleviate the burden of writing specifications by reusing and extending specifications as mined from existing software and give an overview on the state of the art in specification mining, its origins, and its potential.

  19. "easyMine" - realistic and systematic mine detection simulation tooltion

    NASA Astrophysics Data System (ADS)

    Böttger, U.; Beier, K.; Biering, B.; Müller, C.; Peichl, M.; Spyra, W.

    2004-05-01

    Mine detection is to date mainly performed with metal detectors, although new methods for UXO detection are explored worldwide. The main problem for the mine detection to date is, that there exist some ideas of which sensor combinations could yield a high score, but until now there is no systematic analysis of mine detection methods together with realistic environmental conditions to conclude on a physically and technically optimized sensor combination. This gap will be removed by a project "easyMine" (Realistic and systematic Mine Detection Simulation Tool) which will result in a simulation tool for optimizing land mine detection in a realistic mine field. The project idea for this software tool is presented, that will simulate the closed chain of mine detection, including the mine in its natural environment, the sensor, the evaluation and application of the measurements by an user. The tool will be modularly designed. Each chain link will be an independent, exchangeable sub- module and will describe a stand alone part of the whole mine detection procedure. The advantage of the tool will be the evaluation of very different kinds of sensor combinations in relation of their real potential for mine detection. Three detection methods (metal detector, GPR and imaging IR-radiometry) will be explained to be introduced into the easyMine software tool in a first step. An actual example for land mine detection problem will be presented and approaches for solutions with easyMine will be shown.

  20. Morenci Mine, AZ

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Morenci open-pit copper mine in southeast Arizona is North America's leading producer of copper. In the 1860s, prospectors arrived looking for gold; instead they found copper. Underground mining began in the 1870s, and the first pit was opened in 1939. Phelps Dodge employs over 200 people in the mining and refining operations. Around-the-clock removal of 700,000 tons of rock per day results in production of 382 thousand tons of copper per year. Phelps Dodge is now developing the Safford Mine, about 12 km southwest of Morenci. It will be the first new copper mine in the US in more than 30 years. When production starts in 2008, the Safford Mine will produce 109 thousand tons of copper. This ASTER image uses shortwavelength infrared bands to highlight in bright pink the altered rocks in the Morenci pit associated with copper mineralization.

    The image covers an area of 21 x 16.9 km, was acquired on July 14, 2007, and is centered near 33.1 degrees north latitude, 109.5 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  1. Characterization of the core microbiota of the drainage and surrounding soil of a Brazilian copper mine

    PubMed Central

    Pereira, Letícia Bianca; Vicentini, Renato; Ottoboni, Laura M.M.

    2015-01-01

    Abstract The core microbiota of a neutral mine drainage and the surrounding high heavy metal content soil at a Brazilian copper mine were characterized by 16S rDNA pyrosequencing. The core microbiota of the drainage was dominated by the generalist genus Meiothermus. The soil samples contained a more heterogeneous bacterial community, with the presence of both generalist and specialist bacteria. Both environments supported mainly heterotrophic bacteria, including organisms resistant to heavy metals, although many of the bacterial groups identified remain poorly characterized. The results contribute to the understanding of bacterial communities in soils impacted by neutral mine drainage, for which information is scarce, and demonstrate that heavy metals can play an important role in shaping the microbial communities in mine environments. PMID:26537607

  2. Archaea, Bacteria, and Sulfur-Cycling in a Shallow-Sea Hydrothermal Ecosystem

    NASA Astrophysics Data System (ADS)

    Amend, J. P.; Huang, C.; Amann, R.; Bach, W.; Meyerdierks, A.; Price, R. E.; Schubotz, F.; Summons, R. E.; Wenzhoefer, F.

    2009-12-01

    Deep-sea hydrothermal systems are windows to the marine subsurface biosphere. It often is overlooked, however, that their far more accessible shallow-sea counterparts can serve the same purpose. To characterize the extent, diversity, and activity of the subsurface microbial community in the shallow vent ecosystem near Panarea Island (Italy), sediment cores were analyzed with a broad array of analytical techniques. Vent fluid and sediment temperatures reached up to 135 °C, with pHs in porewaters generally measuring 5-6. Microsensor profiles marked a very sharp oxic-anoxic transition, and when coupled to pH and H2S profiles, pointed to aerobic sulfide oxidation. With increasing depth from the sediment-water interface, porewater analyses showed a decrease in sulfate levels from ~30 mM to <10 mM, and an increase in sulfide levels from <50 μM to ~1000 μM. While laboratory sulfate reduction rate measurements were inconclusive, thermodynamic models revealed sulfate reduction to be exergonic in most subsurface samples investigated. This is consistent with commonly observed framboidal pyrite and mineral precipitation calculations. Intact polar membrane lipids (IPLs) were used as biomarkers for living organisms and for major contributors of microbial biomass. At one site (Hot Lake), diether and ornithine IPLs dominated, indicating active thermophilic sulfate reducing and acidophilic sulfide oxidizing bacteria. Results from several sites also showed that with increasing depth and temperature, biomass abundance of archaea generally increased relative to that of bacteria. Lastly, DGGE fingerprinting and 16S rRNA clone libraries from several depths at Hot Lake revealed a moderate diversity of bacteria, dominated by Epsilonproteobacteria; this class is known to catalyze both sulfur reduction and oxidation reactions, and to mediate the formation of iron-sulfides, including framboidal pyrite. Archaeal sequences at Hot Lake are dominated by uncultured Thermoplasmatales, plus

  3. Anaerobic bacteria in otitis media.

    PubMed

    Fulghum, R S; Daniel, H J; Yarborough, J G

    1977-01-01

    Anaerobic bacteria, Peptostrepotococcus intermedius and Propionibacterium acnes, were found in mixed culture specimens from four to ten tested cases of chronic secretory otitis media. These anaerobic bacteria were in a mixed infection flora with aerobic bacteria most often Staphylococcus epidermidis and Cornybacterium sp. which do not fit any established species. The findings of anaerobic bacteria in otitis media is consistent with the sporadic report of the involvement of anaerobic bacteria in otitis media in the literature since 1898.

  4. Fungi outcompete bacteria under increased uranium concentration in culture media.

    PubMed

    Mumtaz, Saqib; Streten-Joyce, Claire; Parry, David L; McGuinness, Keith A; Lu, Ping; Gibb, Karen S

    2013-06-01

    As a key part of water management at the Ranger Uranium Mine (Northern Territory, Australia), stockpile (ore and waste) runoff water was applied to natural woodland on the mine lease in accordance with regulatory requirements. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium concentrations. Soil samples were collected from LAAs with different concentrations of uranium and extracts were plated onto LB media containing no (0 ppm), low (3 ppm), medium (250 ppm), high (600 ppm) and very high (1500 ppm) uranium concentrations. These concentrations were similar to the range of measured uranium concentrations in the LAAs soils. Bacteria grew on all plates except for the very high uranium concentrations, where only fungi were recovered. Identifications based on bacterial 16S rRNA sequence analysis showed that the dominant cultivable bacteria belonged to the genus Bacillus. Members of the genera Paenibacillus, Lysinibacillus, Klebsiella, Microbacterium and Chryseobacterium were also isolated from the LAAs soil samples. Fungi were identified by sequence analysis of the intergenic spacer region, and members of the genera Aspergillus, Cryptococcus, Penicillium and Curvularia were dominant on plates with very high uranium concentrations. Members of the Paecilomyces and Alternaria were also present but in lower numbers. These findings indicate that fungi can tolerate very high concentrations of uranium and are more resistant than bacteria. Bacteria and fungi isolated at the Ranger LAAs from soils with high concentrations of uranium may have uranium binding capability and hence the potential for uranium bioremediation. PMID:23416228

  5. Fungi outcompete bacteria under increased uranium concentration in culture media.

    PubMed

    Mumtaz, Saqib; Streten-Joyce, Claire; Parry, David L; McGuinness, Keith A; Lu, Ping; Gibb, Karen S

    2013-06-01

    As a key part of water management at the Ranger Uranium Mine (Northern Territory, Australia), stockpile (ore and waste) runoff water was applied to natural woodland on the mine lease in accordance with regulatory requirements. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium concentrations. Soil samples were collected from LAAs with different concentrations of uranium and extracts were plated onto LB media containing no (0 ppm), low (3 ppm), medium (250 ppm), high (600 ppm) and very high (1500 ppm) uranium concentrations. These concentrations were similar to the range of measured uranium concentrations in the LAAs soils. Bacteria grew on all plates except for the very high uranium concentrations, where only fungi were recovered. Identifications based on bacterial 16S rRNA sequence analysis showed that the dominant cultivable bacteria belonged to the genus Bacillus. Members of the genera Paenibacillus, Lysinibacillus, Klebsiella, Microbacterium and Chryseobacterium were also isolated from the LAAs soil samples. Fungi were identified by sequence analysis of the intergenic spacer region, and members of the genera Aspergillus, Cryptococcus, Penicillium and Curvularia were dominant on plates with very high uranium concentrations. Members of the Paecilomyces and Alternaria were also present but in lower numbers. These findings indicate that fungi can tolerate very high concentrations of uranium and are more resistant than bacteria. Bacteria and fungi isolated at the Ranger LAAs from soils with high concentrations of uranium may have uranium binding capability and hence the potential for uranium bioremediation.

  6. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1.

    PubMed

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective.

  7. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1

    PubMed Central

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective. PMID:27242761

  8. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1.

    PubMed

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective. PMID:27242761

  9. CAERs's mine mapping program and Kentucky's mine mapping initiative

    SciTech Connect

    Hiett, J.

    2007-07-01

    Since 1884 the Kentucky Department of Mines and Minerals (KDMM now OMSL) has had a mine mapping function as it relates to mine safety. The CAER's Mine Mapping Program has provided this service to that agency since 1972. The program has been in continuous operation under the current staff and management over that period. Functions include operating the Mine Map Repository/Mine Map Information Center of the OMSL; and receiving and processing all annual coal mine license maps, old maps, and related data. The Kentucky Mine Mapping Initiative's goal is to ensure that every underground and surface mine map in Kentucky is located, digitized and online. The Kentucky mine mapping website plays a vital role in the safety of Kentuckians. The purpose of the web service is to make available electronic maps of mined out areas and approximately 32,000 engineering drawings of operating or closed mines that are located in the state. Future phases of the project will include the archival scanning of all submitted mine maps; the recovery from outside sources of maps that were destroyed in a 1948 fire; and the development of further technology to process maps and related data. 7 photos.

  10. Phytoassessment of acid mine drainage: Lemna gibba bioassay and diatom community structure.

    PubMed

    Gerhardt, A; de Bisthoven, L Janssens; Guhr, K; Soares, A M V M; Pereira, M J

    2008-01-01

    An integrated multilevel phytoassessment of an acid mine drainage (AMD, pH range 3.3-6.8) in southern Portugal was performed. A 7-day phytotoxicity bioassay with the duckweed Lemna gibba (chlorosis, necrosis, growth) was carried out, both in the laboratory and in situ, combined with an analysis of the resident epilithic diatom community. The toxicity test was performed with water from the AMD gradient, an unpolluted river control and acidified control water, in order to discriminate potential pH-effects from combined pH- and metal-effects. Diatom communities discriminated well among the sites (alkalophilic species versus halobiontic, acidobiontic and acidophilic species), showing inter-site differences to be larger than intra-site seasonal variations. In L. gibba exposed to AMD, necrosis and growth inhibition were higher in situ compared to the laboratory experiments. L. gibba was more sensitive to AMD than to acidified water. Already after 4 days, growth rate inhibition in L. gibba proved to be a reliable indicator of AMD-stress. Ecotoxicological thresholds obtained with L. gibba corresponded with those obtained previously with animals of intermediate tolerance to AMD. The results were summarised in a multimetric index. PMID:17952593

  11. The environmental impact of mine wastes — Roles of microorganisms and their significance in treatment of mine wastes

    NASA Astrophysics Data System (ADS)

    Ledin, M.; Pedersen, K.

    1996-10-01

    Mine wastes have been generated for several centuries, and mining activity has accelerated significantly during the 20th century. The mine wastes constitute a potential source of contamination to the environment, as heavy metals and acid are released in large amounts. A great variety of microorganisms has been found in mine wastes and microbiological processes are usually responsible for the environmental hazard created by mine wastes. However, microorganisms can also be used to retard the adverse impact of mine wastes on the environment. Conventionally, the mine drainage as well as the waste itself can be treated with alkali to increase pH and precipitate metals. The main drawback of this method is that it has to be continuously repeated to be fully effective. There may also be negative effects on beneficial microorganisms. Several other treatment methods have been developed to stop weathering processes thereby reducing the environmental impact of mine wastes. One approach has been to influence the waste deposit itself by reducing the transfer of oxygen and water to the waste. This can be achieved by covering the waste or by placing it under water. Vegetating the cover will probably also decrease the transfer of oxygen and water, and will give the deposit area a more aesthetical appearance. The other main approach to reduce the environmental impact of mine wastes is to treat the drainage water. Various methods aim at using microorganisms for this in natural or engineered systems. Sulfate-reducing bacteria, metal-transforming bacteria and metal accumulating microorganisms are some examples. Often, some kind of reactor design is needed to effectively control these processes. Recently, much interest has been focused on the use of natural or artificial wetlands for treatment since this generally is a low-cost and low-maintenance method. Bacterial sulfate-reduction and microbial metal accumulation are processes wanted in such systems. Few studies have dealt with long

  12. Underground mine communications: a survey

    SciTech Connect

    Yarkan, S.; Guzelgoz, S.; Arslan, H.; Murphy, R.R.

    2009-07-01

    After a recent series of unfortunate underground mining disasters, the vital importance of communications for underground mining is underlined one more time. Establishing reliable communication is a very difficult task for underground mining due to the extreme environmental conditions. Until now, no single communication system exists which can solve all of the problems and difficulties encountered in underground mine communications. However, combining research with previous experiences might help existing systems improve, if not completely solve all of the problems. In this survey, underground mine communication is investigated. Major issues which underground mine communication systems must take into account are discussed. Communication types, methods, and their significance are presented.

  13. A new acidophilic endo-β-1,4-xylanase from Penicillium oxalicum: cloning, purification, and insights into the influence of metal ions on xylanase activity.

    PubMed

    Liao, Hanpeng; Sun, Shaowei; Wang, Pan; Bi, Wenli; Tan, Shiyong; Wei, Zhong; Mei, Xinlan; Liu, Dongyang; Raza, Waseem; Shen, Qirong; Xu, Yangchun

    2014-07-01

    A new acidophilic xylanase (XYN11A) from Penicillium oxalicum GZ-2 has been purified, identified and characterized. Synchronized fluorescence spectroscopy was used for the first time to evaluate the influence of metal ions on xylanase activity. The purified enzyme was identified by MALDI TOF/TOF mass spectrometry, and its gene (xyn11A) was identified as an open reading frame of 706 bp with a 68 bp intron. This gene encodes a mature protein of 196 residues with a predicted molecular weight of 21.3 kDa that has the 100 % identity with the putative xylanase from the P. oxalicum 114-2. The enzyme shows a structure comprising a catalytic module family 10 (GH10) and no carbohydrate-binding module family. The specific activities were 150.2, 60.2, and 72.6 U/mg for beechwood xylan, birchwood xylan, and oat spelt xylan, respectively. XYN11A exhibited optimal activity at pH 4.0 and remarkable pH stability under extremely acidic condition (pH 3). The specific activity, K m and V max values were 150.2 U/mg, 30.7 mg/mL, and 403.9 μmol/min/mg for beechwood xylan, respectively. XYN11A is a endo-β-1,4-xylanase since it release xylobiose and xylotriose as the main products by hydrolyzing xylans. The activity of XYN11A was enhanced 155 % by 1 mM Fe(2+) ions, but was inhibited strongly by Fe(3+). The reason of enhancing the xylanase activity of XYN11A with 1 mM Fe(2+) treatment may be responsible for the change of microenvironment of tryptophan residues studied by synchronous fluorescence spectrophotometry. Inhibition of the xylanase activity by Fe(3+) was first time demonstrated to associate tryptophan fluorescence quenching.

  14. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog.

    PubMed

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270(T) and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidans (T), the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidans (T) cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270(T) genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis.

  15. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog.

    PubMed

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270(T) and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidans (T), the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidans (T) cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270(T) genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis. PMID:27683573

  16. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog

    PubMed Central

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270T and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidansT, the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidansT cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270T genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis. PMID:27683573

  17. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog

    PubMed Central

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270T and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidansT, the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidansT cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270T genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis.

  18. Bacteria-surface interactions

    PubMed Central

    Tuson, Hannah H.; Weibel, Douglas B.

    2013-01-01

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field. PMID:23930134

  19. Communication among Oral Bacteria

    PubMed Central

    Kolenbrander, Paul E.; Andersen, Roxanna N.; Blehert, David S.; Egland, Paul G.; Foster, Jamie S.; Palmer, Robert J.

    2002-01-01

    Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities. PMID:12209001

  20. PATHOGENICITY OF BIOFILM BACTERIA

    EPA Science Inventory

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  1. Antibiotic-Resistant Bacteria.

    ERIC Educational Resources Information Center

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  2. String Mining in Bioinformatics

    NASA Astrophysics Data System (ADS)

    Abouelhoda, Mohamed; Ghanem, Moustafa

    Sequence analysis is a major area in bioinformatics encompassing the methods and techniques for studying the biological sequences, DNA, RNA, and proteins, on the linear structure level. The focus of this area is generally on the identification of intra- and inter-molecular similarities. Identifying intra-molecular similarities boils down to detecting repeated segments within a given sequence, while identifying inter-molecular similarities amounts to spotting common segments among two or multiple sequences. From a data mining point of view, sequence analysis is nothing but string- or pattern mining specific to biological strings. For a long time, this point of view, however, has not been explicitly embraced neither in the data mining nor in the sequence analysis text books, which may be attributed to the co-evolution of the two apparently independent fields. In other words, although the word "data-mining" is almost missing in the sequence analysis literature, its basic concepts have been implicitly applied. Interestingly, recent research in biological sequence analysis introduced efficient solutions to many problems in data mining, such as querying and analyzing time series [49,53], extracting information from web pages [20], fighting spam mails [50], detecting plagiarism [22], and spotting duplications in software systems [14].

  3. Mining the earth

    SciTech Connect

    Young, J.E.

    1992-01-01

    Substances extracted from the earth - stone, iron, bronze - have been so critical to human development that historians name the ages of our past after them. But while scholars have carefully tracked human use of minerals, they have never accounted for the vast environmental damage incurred in mineral production. Few people would guess that a copper mining operation has removed a piece of Utah seven times the weight of all the material dug for the Panama Canal. Few would dream that mines and smelters take up to a tenth of all the energy used each year, or that the waste left by mining measures in the billions of tons - dwarfing the world's total accumulation of more familiar kinds of waste, such as municipal garbage. Indeed, more material is now stripped from the earth by mining than by all the natural erosion of the earth's rivers. The effects of mining operations on the environment are discussed under the following topics: minerals in the global economy, laying waste, at what cost cleaning up, and dipping out. It is concluded that in the long run, the most effective strategy for minimizing new damage is not merely to make mineral extraction cleaner, but to reduce the rich nations needs for virgin (non-recycled) minerals.

  4. An appraisal of biological responses and network of environmental interactions in non-mining and mining impacted coastal waters.

    PubMed

    Fernandes, Christabelle E G; Malik, Ashish; Jineesh, V K; Fernandes, Sheryl O; Das, Anindita; Pandey, Sunita S; Kanolkar, Geeta; Sujith, P P; Velip, Dhillan M; Shaikh, Shagufta; Helekar, Samita; Gonsalves, Maria Judith; Nair, Shanta; LokaBharathi, P A

    2015-08-01

    The coastal waters of Goa and Ratnagiri lying on the West coast of India are influenced by terrestrial influx. However, Goa is influenced anthropogenically by iron-ore mining, while Ratnagiri is influenced by deposition of heavy minerals containing iron brought from the hinterlands. We hypothesize that there could be a shift in biological response along with changes in network of interactions between environmental and biological variables in these mining and non-mining impacted regions, lying 160 nmi apart. Biological and environmental parameters were analyzed during pre-monsoon season. Except silicates, the measured parameters were higher at Goa and related significantly, suggesting bacteria centric, detritus-driven region. At Ratnagiri, phytoplankton biomass related positively with silicate suggesting a region dominated by primary producers. This dominance perhaps got reflected as a higher tertiary yield. Thus, even though the regions are geographically proximate, the different biological response could be attributed to the differences in the web of interactions between the measured variables.

  5. Minerals and mine drainage

    SciTech Connect

    Liang, H.C.; Thomson, B.M.

    2009-09-15

    A review of literature published in 2008 and early 2009 on research related to the production of acid mine drainage and/or in the dissolution of minerals as a result of mining, with special emphasis on the effects of these phenomena on the water quality in the surrounding environment, is presented. This review is divided into six sections: 1) Site Characterization and Assessment, 2) Protection, Prevention, and Restoration, 3) Toxicity Assessment, 4) Environmental Fate and Transport, 5) Biological Characterization, and 6) Treatment Technologies. Because there is much overlap in research areas associated with minerals and mine drainage, many papers presented in this review can be classified into more than one category, and the six sections should not be regarded as being mutually-exclusive, nor should they be thought of as being all-inclusive.

  6. Mine drainage and surface-mine reclamation. Volume 2. Mine reclamation, abandoned mine lands, and policy issues. Information Circular/1988

    SciTech Connect

    Not Available

    1988-01-01

    Mine waste and mine reclamation are topics of major interest to the mining industry, the government and the general public. The publication and its companion volume are the proceedings of a conference held in Pittsburgh, April 19-21, 1988. There were nine sessions (50 papers) that dealt with the geochemistry, hydrology and problems of mine waste and mine water, especially acid mine drainage. The nine sessions (43 papers) that dealt with reclamation and restoration of disturbed lands, as well as related policy issues, are included in volume 2. Volume 2 also contains the ten papers that pertained to control of subsidence and mine fires at abandoned mines. Poster session presentations are, in general, represented by abstracts.

  7. Gravity in a Mine Shaft.

    ERIC Educational Resources Information Center

    Hall, Peter M.; Hall, David J.

    1995-01-01

    Discusses the effects of gravity, local density compared to the density of the earth, the mine shaft, centrifugal force, and air buoyancy on the weight of an object at the top and at the bottom of a mine shaft. (JRH)

  8. Generation of acid mine drainage around the Karaerik copper mine (Espiye, Giresun, NE Turkey): implications from the bacterial population in the Acısu effluent.

    PubMed

    Sağlam, Emine Selva; Akçay, Miğraç; Çolak, Dilşat Nigar; İnan Bektaş, Kadriye; Beldüz, Ali Osman

    2016-09-01

    The Karaerik Cu mine is a worked-out deposit with large volumes of tailings and slags which were left around the mine site without any protection. Natural feeding of these material and run-off water from the mineralised zones into the Acısu effluent causes a serious environmental degradation and creation of acid mine drainage (AMD) along its entire length. This research aims at modelling the formation of AMD with a specific attempt on the characterisation of the bacterial population in association with AMD and their role on its occurrence. Based on 16SrRNA analyses of the clones obtained from a composite water sample, the bacterial community was determined to consist of Acidithiobacillus ferrivorans, Ferrovum myxofaciens, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans as iron-oxidising bacteria, Acidocella facilis, Acidocella aluminiidurans, Acidiphilium cryptum and Acidiphilium multivorum as iron-reducing bacteria, and Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidiphilium cryptum as sulphur-oxidising bacteria. This association of bacteria with varying roles was interpreted as evidence of a concomitant occurrence of sulphur and iron cycles during the generation of AMD along the Acısu effluent draining the Karaerik mine. PMID:27338270

  9. Pneumatic stowing seals mines

    SciTech Connect

    Brezovec, D.

    1983-11-01

    A mechanized technique to seal abandoned mines has been used successfully to close 13 openings at Duquesne Light Co.'s mined-out Warwick No. 2 mine, near Greensboro, Pa. The mechanized system, which uses a pneumatic stower and crushed limestone, closed the entries more economically and in less time than it would have taken to install traditional concrete block stopping and clay plug seals, according to John C. Draper. Draper, a mining engineer with Duquesne Light's coal department, was in charge of installing the Warwick seals in a Bureau of Mines-sponsored field test on the pneumatic sealing technique. The lowest estimated cost for installing conventional stopping and plug closures for the 13 Warwick openings was $225,000, says Draper, while the openings were closed using the mechanized system for $245,000. Draper says the newer stopping cost more in the instance because work was stopped often to gather information for the experiment. The experimental closures were installed in 38 days. The job would have taken at least 149 days if traditional closures were being installed, Draper say. To install a traditional concrete block/clay plug closure, the mine opening must be cleaned thoroughly and the roof must be supported for some 3 ft from the outside. Then a solid wall or stopping must be built 25 ft from the surface and the entry must be packed with clay to the surface. Much of this job requires workers to remain underground. In pneumatic stowing, 1 1/2-in. crushed limestone with fines is conveyed through a pipeline and into the mine opening under low air pressure. Watertight seals can be installed by blowing about 10 ft of rock into the opening against the top to act as roof support. Safety posts are installed and about 10 or 15 ft of mine entry is cleaned. About 2 in. of raw cement or bentonite is placed on the floor and limestone mixed with dry cement or bentonite is blown into the opening.

  10. Reclamation of abandoned mines in West Virginia

    SciTech Connect

    Dove, J.L.

    1983-01-01

    Reclamation of abandoned mine lands in West Virginia involves disturbed areas from both surface and deep mining activities. Reclamation of deep mine lands deal with mine waste piles and mine openings. Reclamation of surface mine lands involves shaping and grading material to obtain a stable slope and installing water management practices.

  11. 30 CFR 77.1200 - Mine map.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Maps § 77.1200 Mine...) The location of railroad tracks and public highways leading to the mine, and mine buildings of a permanent nature with identifying names shown; (k) Underground mine workings underlying and within...

  12. 30 CFR 75.373 - Reopening mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Reopening mines. 75.373 Section 75.373 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.373 Reopening mines. After a mine is...

  13. 30 CFR 75.373 - Reopening mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Reopening mines. 75.373 Section 75.373 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.373 Reopening mines. After a mine is...

  14. 30 CFR 75.373 - Reopening mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Reopening mines. 75.373 Section 75.373 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.373 Reopening mines. After a mine is...

  15. 30 CFR 75.373 - Reopening mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Reopening mines. 75.373 Section 75.373 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.373 Reopening mines. After a mine is...

  16. 30 CFR 75.373 - Reopening mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Reopening mines. 75.373 Section 75.373 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.373 Reopening mines. After a mine is...

  17. COMPUTER SIMULATOR (BEST) FOR DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS

    EPA Science Inventory

    BEST (bioreactor economics, size and time of operation) is a spreadsheet-based model that is used in conjunction with public domain software, PhreeqcI. BEST is used in the design process of sulfate-reducing bacteria (SRB) field bioreactors to passively treat acid mine drainage (A...

  18. Mine-Mouth Geyser Problem.

    ERIC Educational Resources Information Center

    de Nevers, Noel

    1982-01-01

    An oilwell drilling rig accidentally drilled into an underground salt mine, draining a lake and filling the mine, with water jetting out of the mine 400 feet into the air. An explanation of the jetting phenomenon is offered in terms of the laws of fluid dynamics, with supporting diagrams and calculations. (Author/JN)

  19. Review of South American mines

    SciTech Connect

    Not Available

    1984-07-01

    A general overview is presented of the mining activity and plans for South America. The countries which are presented are Columbia, Argentina, Brazil, Venezuela, Chile, Peru, and Bolivia. The products of the mines include coal, bauxite, gold, iron, uranium, copper and numerous other minor materials. A discussion of current production, support and processing facilities, and mining strategies is also given.

  20. REMOTE SENSING AND MOUNTAINTOP MINING

    EPA Science Inventory

    Coal mining is Appalachia has undergone dramatic changes in the past decade. Modem mining practices know as Mountaintop Mining (MTM) and Valley Fills (VF) are at the center of an environmental and legal controversy that has spawned lawsuits and major environmental investigations....