Science.gov

Sample records for acidophilus lactobacillus rhamnosus

  1. Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products.

    PubMed

    Sohail, Asma; Turner, Mark S; Prabawati, Elisabeth Kartika; Coombes, Allan G A; Bhandari, Bhesh

    2012-07-01

    This study investigated the effect of microencapsulation on the survival of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM and their acidification in orange juice at 25°C for nine days and at 4°C over thirty five days of storage. Alginate micro beads (10-40 μm) containing the probiotics were produced by a novel dual aerosol method of alginate and CaCl(2) cross linking solution. Unencapsulated L. rhamnosus GG was found to have excellent survivability in orange juice at both temperatures. However unencapsulated L. acidophilus NCFM showed significant reduction in viability. Encapsulation of these two bacteria did not significantly enhance survivability but did reduce acidification at 25°C and 4°C. In agreement with this, encapsulation of L. rhamnosus GG also reduced acidification in pear and peach fruit-based foods at 25°C, however at 4°C difference in pH was insignificant between free and encapsulated cells. In conclusion, L. rhamnosus GG showed excellent survival in orange juice and microencapsulation has potential in reducing acidification and possible negative sensory effects of probiotics in orange juice and other fruit-based products. PMID:22633536

  2. In vivo gut transcriptome responses to Lactobacillus rhamnosus GG and Lactobacillus acidophilus in neonatal gnotobiotic piglets

    PubMed Central

    Kumar, Anand; Vlasova, Anastasia N; Liu, Zhe; Chattha, Kuldeep S; Kandasamy, Sukumar; Esseili, Malak; Zhang, Xiaoli; Rajashekara, Gireesh; Saif, Linda J

    2014-01-01

    Probiotics facilitate mucosal repair and maintain gut homeostasis. They are often used in adjunct with rehydration or antibiotic therapy in enteric infections. Lactobacillus spp have been tested in infants for the prevention or treatment of various enteric conditions. However, to aid in rational strain selection for specific treatments, comprehensive studies are required to delineate and compare the specific molecules and pathways involved in a less complex but biologically relevant model (gnotobiotic pigs). Here we elucidated Lactobacillus rhamnosus (LGG) and L. acidophilus (LA) specific effects on gut transcriptome responses in a neonatal gnotobiotic (Gn) pig model to simulate responses in newly colonized infants. Whole genome microarray, followed by biological pathway reconstruction, was used to investigate the host-microbe interactions in duodenum and ileum at early (day 1) and later stages (day 7) of colonization. Both LA and LGG modulated common responses related to host metabolism, gut integrity, and immunity, as well as responses unique to each strain in Gn pigs. Our data indicated that probiotic establishment and beneficial effects in the host are guided by: (1) down-regulation or upregulation of immune function-related genes in the early and later stages of colonization, respectively, and (2) alternations in metabolism of small molecules (vitamins and/or minerals) and macromolecules (carbohydrates, proteins, and lipids). Pathways related to immune modulation and carbohydrate metabolism were more affected by LGG, whereas energy and lipid metabolism-related transcriptome responses were prominently modulated by LA. These findings imply that identification of probiotic strain-specific gut responses could facilitate the rational design of probiotic-based interventions to moderate specific enteric conditions. PMID:24637605

  3. Probiotic cheese containing Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM® modifies subpopulations of fecal lactobacilli and Clostridium difficile in the elderly.

    PubMed

    Lahtinen, Sampo J; Forssten, Sofia; Aakko, Juhani; Granlund, Linda; Rautonen, Nina; Salminen, Seppo; Viitanen, Matti; Ouwehand, Arthur C

    2012-02-01

    Aging is associated with alterations in the intestinal microbiota and with immunosenescence. Probiotics have the potential to modify a selected part of the intestinal microbiota as well as improve immune functions and may, therefore, be particularly beneficial to elderly consumers. In this randomized, controlled cross-over clinical trial, we assessed the effects of a probiotic cheese containing Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM on the intestinal microbiota and fecal immune markers of 31 elderly volunteers and compared these effects with the administration of the same cheese without probiotics. The probiotic cheese was found to increase the number of L. rhamnosus and L. acidophilus NCFM in the feces, suggesting the survival of the strains during the gastrointestinal transit. Importantly, probiotic cheese administration was associated with a trend towards lower counts of Clostridium difficile in the elderly, as compared with the run-in period with the plain cheese. The effect was statistically significant in the subpopulation of the elderly who harbored C. difficile at the start of the study. The probiotic cheese was not found to significantly alter the levels of the major microbial groups, suggesting that the microbial changes conferred by the probiotic cheese were limited to specific bacterial groups. Despite that the administration of the probiotic cheese to the study population has earlier been shown to significantly improve the innate immunity of the elders, we did not observe measurable changes in the fecal immune IgA concentrations. No increase in fecal calprotectin and β-defensin concentrations suggests that the probiotic treatment did not affect intestinal inflammatory markers. In conclusion, the administration of probiotic cheese containing L. rhamnosus HN001 and L. acidophilus NCFM, was associated with specific changes in the intestinal microbiota, mainly affecting specific subpopulations of intestinal lactobacilli and C

  4. Lactobacillus

    MedlinePlus

    ... Lactis, L. Plantarum, L. Reuteri, L. Rhamnosus, L. Salivarius, L. Sporogenes, Lacto Bacillus, Lactobacille, Lactobacilli, Lactobacilli Acidophilus, ... GG, Lactobacillus rhamnosus, Lactobacillus sakei, Lactobacillus Salivarium, Lactobacillus ... Lactobacilo, Lactospores, LC-1, Probiotics, Probiotiques.

  5. Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+): Characterization, Manufacture, Mechanisms of Action, and Quality Control of a Specific Probiotic Combination for Primary Prevention of Clostridium difficile Infection.

    PubMed

    Auclair, Julie; Frappier, Martin; Millette, Mathieu

    2015-05-15

    A specific probiotic formulation composed of Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+) has been marketed in North America since 1996. The strains and the commercial products have been evaluated for safety, identity, gastrointestinal survival, and stability throughout shelf life. The capacity of both the fermented beverages and the capsules to reduce incidences of antibiotic-associated diarrhea and Clostridium difficile infection (CDI) has been demonstrated in human clinical trials. Individual strains and the finished products have shown antimicrobial activity against C. difficile and toxin A/B neutralization capacity in vitro. The use of this specific probiotic formulation as part of a bundle of preventive measures to control CDI in healthcare settings is discussed. PMID:25922399

  6. Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro.

    PubMed

    Zhou, J S; Gopal, P K; Gill, H S

    2001-01-22

    The mucus layer (mucin) coating the surface of the gastrointestinal tract (GIT) plays an important role in the mucosal barrier system. Any damage or disturbance of this mucin layer will compromise the host's mucosal defence function. In the present study, the ability of three potential probiotic lactic acid bacteria (LAB) strains (Lactobacillus rhamnosus HN001, Lactobacillus acidophilus HN017, Bifidobacterium lactis HN019) to degrade mucin in vitro was evaluated, in order to assess their potential pathogenicity and local toxicity. The LAB strains were incubated in medium containing hog gastric mucin (HGM, 0.3%) at 37 degrees C for 48 h, following which any decrease in carbohydrate and protein concentration in the ethanol-precipitated portion of the culture medium was determined, using phenol-sulphuric acid and bicinchonic acid (BCA) protein assays, respectively. The change in molecular weight of mucin glycoproteins, following incubation with the test strains, was monitored by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). In order to expose any ability of the test strains to degrade mucin visually and more directly, the test strains were also cultured on agarose containing 0.3% HGM and incubated anaerobically for 72 h at 37 degrees C. No significant change in the carbohydrate or protein concentration in mucin substrates was found following incubation with the test strains. No mucin fragments were derived from the mucin suspension incubated with test strains, and no mucinolysis zone was identified on agarose. These results demonstrate that the potential probiotic LAB strains tested here were unable to degrade gastrointestinal mucin in vitro, which suggests that these novel probiotic candidates are likely to be non-invasive and non-toxic at the mucosal interface. PMID:11205957

  7. Safety assessment of potential probiotic lactic acid bacterial strains Lactobacillus rhamnosus HN001, Lb. acidophilus HN017, and Bifidobacterium lactis HN019 in BALB/c mice.

    PubMed

    Zhou, J S; Shu, Q; Rutherfurd, K J; Prasad, J; Birtles, M J; Gopal, P K; Gill, H S

    2000-05-25

    The general safety of immune-enhancing lactic acid bacteria (LAB) strains Lactobacillus rhamnosus HN001 (DR20), Lb. acidophilus HN017, and Bifidobacterium lactis HN019 (DR10) was investigated in a feeding trial. Groups of BALB/c mice were orally administered test LAB strains or the commercial reference strain Lb. acidophilus LA-1 at 2.5 x 10(9), 5 x 10(10) or 2.5 x 10(12) colony forming units (CFU)/kg body weight/day for 4 weeks. Throughout this time, their feed intake, water intake, and live body weight were monitored. At the end of the 4 week observation period, samples of blood, liver, spleen, kidney, mesenteric lymph nodes, and gut tissues (ileum, caecum, and colon) were collected to determine: haematological parameters (red blood cell and platelet counts, haemoglobin concentration, mean corpuscular volume, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration); differential leukocyte counts; blood biochemistry (plasma total protein, albumin, cholesterol, and glucose); mucosal histology (epithelial cell height, mucosal thickness, and villus height); and bacterial translocation to extra-gut tissues (blood, liver, spleen, kidney and mesenteric lymph nodes). DNA finger printing techniques were used to identify any viable bacterial strains recovered from these tissues. The results demonstrated that 4 weeks consumption of these LAB strains had no adverse effects on animals' general health status, haematology, blood biochemistry, gut mucosal histology parameters, or the incidence of bacterial translocation. A few viable LAB cells were recovered from the tissues of animals in both control and test groups, but DNA fingerprinting did not identify any of these as the inoculated strains. The results obtained in this study suggest that the potentially probiotic LAB strains HN001, HN017, and HN019 are non-toxic for mice and are therefore likely to be safe for human use. PMID:10857928

  8. The effect of probiotics (Lactobacillus rhamnosus HN001, Lactobacillus paracasei LPC-37, and Lactobacillus acidophilus NCFM) on the availability of minerals from Dutch-type cheese.

    PubMed

    Aljewicz, Marek; Siemianowska, Ewa; Cichosz, Grażyna; Tońska, Elżbieta

    2014-01-01

    The use of probiotic cultures in the production of Dutch-type cheeses did not lead to significant changes in their chemical composition but it lowered their acidity. The availability of calcium and magnesium analyzed by in vitro enzymatic hydrolysis was 19 and 35%, respectively; the availability of phosphorus was significantly higher, at >90%. The use of probiotic cultures significantly increased the availability of calcium (~2.5%), phosphorus (~6%), and magnesium (~18%). The in vitro method supports accurate determination of the effect of the Lactobacillus spp. cultures on the availability of mineral compounds ingested with Dutch-type cheese. PMID:24913654

  9. Genome sequence of Lactobacillus rhamnosus ATCC 8530.

    PubMed

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R; Ziola, Barry

    2012-02-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences. PMID:22247527

  10. Antilisterial Bacteriocin from Lactobacillus rhamnosus CJNU 0519 Presenting a Narrow Antimicrobial Spectrum

    PubMed Central

    2015-01-01

    A lactic acid bacterium presenting antimicrobial activity against a Lactobacillus acidophilus strain used for eradication of acid inhibition was isolated from a natural cheese. The 16S rRNA gene sequence of the isolate best matched with a strain of L. rhamnosus and was designated L. rhamnosus CJNU 0519. The antimicrobial activity of the partially purified bacteriocin of CJNU 0519 was abolished when treated with a protease, indicating the protein nature of the bacteriocin. The partially purified bacteriocin (rhamnocin 519) displayed a narrow antimicrobial activity against L. acidophilus, Listeria monocytogenes, and Staphylococcus aureus among several tested bacterial and yeast strains. Rhamnocin 519 in particular showed strong bactericidal action against L. monocytogenes. PMID:26761811

  11. Genome Instability in Lactobacillus rhamnosus GG

    PubMed Central

    Molenaar, Douwe; van IJcken, Wilfred; Venema, Koen

    2013-01-01

    We describe here a comparative genome analysis of three dairy product isolates of Lactobacillus rhamnosus GG (LGG) and the ATCC 53103 reference strain to the published genome sequence of L. rhamnosus GG. The analysis showed that in two of three isolates, major DNA segments were missing from the genomic islands LGGISL1,2. The deleted DNA segments consist of 34 genes in one isolate and 84 genes in the other and are flanked by identical insertion elements. Among the missing genes are the spaCBA genes, which encode pilin subunits involved in adhesion to mucus and persistence of the strains in the human intestinal tract. Subsequent quantitative PCR analyses of six commercial probiotic products confirmed that two more products contain a heterogeneous population of L. rhamnosus GG variants, including genotypes with or without spaC. These results underline the relevance for quality assurance and control measures targeting genome stability in probiotic strains and justify research assessing the effect of genetic rearrangements in probiotics on the outcome of in vitro and in vivo efficacy studies. PMID:23354703

  12. Aglycone Isoflavones and Exopolysaccharides Produced by Lactobacillus acidophilus in Fermented Soybean Paste.

    PubMed

    Kim, Jin-Sun; Lee, Je-Hyuk; Surh, Jeonghee; Kang, Soon Ah; Jang, Ki-Hyo

    2016-06-01

    Bioconversion of aglycone-formed isoflavones from glycoside-formed isoflavones by commercial lactic acid bacteria in fermented soybean paste was evaluated. Enterococcus faecium KCTC 13410 showed the most resistant capacity and Lactobacillus acidophilus KCTC 3925 had a sensitive susceptibility at a high NaCl concentration (13.2%) in fermented soybean paste. Among the 5 strains tested, Lac. acidophilus KCTC 3925 showed the highest relative ratio of aglycone-formed isoflavones to total isoflavones in fermented soybean paste. Production of exopolysaccarides (EPS) by lactic acid bacteria was compared using de Man, Rogosa, and Sharpe medium containing 1% sucrose at 37°C for 48 h. Among the 5 lactic acid bacteria, Lac. acidophilus KCTC 3925 and Lactobacillus rhamnosus KCTC 3929 were investigated to produce EPS. Based on the results concerning growing susceptibility and conversion of aglycone-formed isoflavones/EPS production, it is anticipated that Lac. acidophilus KCTC 3925 may be used for preparation of Cheonggukjang, which contains relative low NaCl content. PMID:27390728

  13. Aglycone Isoflavones and Exopolysaccharides Produced by Lactobacillus acidophilus in Fermented Soybean Paste

    PubMed Central

    Kim, Jin-Sun; Lee, Je-Hyuk; Surh, Jeonghee; Kang, Soon Ah; Jang, Ki-Hyo

    2016-01-01

    Bioconversion of aglycone-formed isoflavones from glycoside-formed isoflavones by commercial lactic acid bacteria in fermented soybean paste was evaluated. Enterococcus faecium KCTC 13410 showed the most resistant capacity and Lactobacillus acidophilus KCTC 3925 had a sensitive susceptibility at a high NaCl concentration (13.2%) in fermented soybean paste. Among the 5 strains tested, Lac. acidophilus KCTC 3925 showed the highest relative ratio of aglycone-formed isoflavones to total isoflavones in fermented soybean paste. Production of exopolysaccarides (EPS) by lactic acid bacteria was compared using de Man, Rogosa, and Sharpe medium containing 1% sucrose at 37°C for 48 h. Among the 5 lactic acid bacteria, Lac. acidophilus KCTC 3925 and Lactobacillus rhamnosus KCTC 3929 were investigated to produce EPS. Based on the results concerning growing susceptibility and conversion of aglycone-formed isoflavones/EPS production, it is anticipated that Lac. acidophilus KCTC 3925 may be used for preparation of Cheonggukjang, which contains relative low NaCl content. PMID:27390728

  14. Complete Genome Sequence of Probiotic Strain Lactobacillus acidophilus La-14.

    PubMed

    Stahl, Buffy; Barrangou, Rodolphe

    2013-01-01

    We present the 1,991,830-bp complete genome sequence of Lactobacillus acidophilus strain La-14 (SD-5212). Comparative genomic analysis revealed 99.98% similarity overall to the L. acidophilus NCFM genome. Globally, 111 single nucleotide polymorphisms (SNPs) (95 SNPs, 16 indels) were observed throughout the genome. Also, a 416-bp deletion in the LA14_1146 sugar ABC transporter was identified. PMID:23788546

  15. The domestication of the probiotic bacterium Lactobacillus acidophilus

    PubMed Central

    Bull, Matthew J.; Jolley, Keith A.; Bray, James E.; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C. J.; Marchesi, Julian R.; Mahenthiralingam, Eshwar

    2014-01-01

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population. PMID:25425319

  16. Stability of Lactobacillus rhamnosus GG in prebiotic edible films.

    PubMed

    Soukoulis, Christos; Behboudi-Jobbehdar, Solmaz; Yonekura, Lina; Parmenter, Christopher; Fisk, Ian D

    2014-09-15

    The concept of prebiotic edible films as effective vehicles for encapsulating probiotic living cells is presented. Four soluble fibres (inulin, polydextrose, glucose-oligosaccharides and wheat dextrin) were selected as prebiotic co-components of gelatine based matrices plasticised with glycerol and used for the immobilisation of Lactobacillus rhamnosus GG. The addition of prebiotics was associated with a more compact and uniform film structure, with no detectable interspaces or micropores; probiotic inclusion did not significantly change the structure of the films. Glucose-oligosaccharides and polydextrose significantly enhanced L. rhamnosus GG viability during air drying (by 300% and 75%, respectively), whilst a 33% and 80% reduction in viable counts was observed for inulin and wheat dextrin. Contrarily, inulin was the most effective at controlling the sub-lethal effects on L. rhamnosus GG during storage. However, in all cases the supplementation of edible films with prebiotics ameliorated the storage stability of L. rhamnosus GG. PMID:24767059

  17. Role of transporter proteins in bile tolerance of Lactobacillus acidophilus.

    PubMed

    Pfeiler, Erika A; Klaenhammer, Todd R

    2009-09-01

    Lactobacillus acidophilus NCFM derivatives containing deletion mutations in the transporter genes LBA0552, LBA1429, LBA1446, and LBA1679 exhibited increased sensitivity to bile. These strains showed unique patterns of sensitivity to a variety of inhibitory compounds, as well as differential accumulations of ciprofloxacin and taurocholate. PMID:19633113

  18. Genetic and functional aspects of linoleate isomerase in Lactobacillus acidophilus.

    PubMed

    Macouzet, Martin; Robert, Normand; Lee, Byong H

    2010-08-01

    While the remarkable health effects of conjugated linoleic acid (CLA) catalyzed from alpha-linoleic acid by the enzyme linoleate isomerase (LI, EC 5.2.1.5) are well recognized, how widely this biochemical activity is present and the mechanisms of its regulation in lactic acid bacteria are unknown. Although certain strains of Lactobacillus acidophilus can enrich CLA in fermented dairy products, it is unknown if other strains share this capacity. Due to its immense economic importance, this work aimed to investigate genetic aspects of CLA production in L. acidophilus for the first time. The genomic DNA from industrial and type strains of L. acidophilus were subjected to PCR and immunoblot analyses using the putative LI gene of L. reuteri ATCC 55739 as probe. The CLA production ability was estimated by gas chromatography of the biomass extracts. The presumptive LI gene from L. acidophilus ATCC 832 was isolated and sequenced. The resulting sequence shared 71% identity with that of L. reuteri and at least 99% with reported sequences from other L. acidophilus strains. All the strains accumulated detectable levels of CLA and tested positive by PCR and immunoblotting. However, no apparent correlation was observed between the yields and the hybridization patterns. The results suggest that LI activity might be common among L. acidophilus and related species and provide a new tool for screening potential CLA producers. PMID:20461509

  19. Comparative Genomic and Functional Analysis of Lactobacillus casei and Lactobacillus rhamnosus Strains Marketed as Probiotics

    PubMed Central

    Douillard, François P.; Ribbera, Angela; Järvinen, Hanna M.; Kant, Ravi; Pietilä, Taija E.; Randazzo, Cinzia; Paulin, Lars; Laine, Pia K.; Caggia, Cinzia; von Ossowski, Ingemar; Reunanen, Justus; Satokari, Reetta; Salminen, Seppo; Palva, Airi

    2013-01-01

    Four Lactobacillus strains were isolated from marketed probiotic products, including L. rhamnosus strains from Vifit (Friesland Campina) and Idoform (Ferrosan) and L. casei strains from Actimel (Danone) and Yakult (Yakult Honsa Co.). Their genomes and phenotypes were characterized and compared in detail with L. casei strain BL23 and L. rhamnosus strain GG. Phenotypic analysis of the new isolates indicated differences in carbohydrate utilization between L. casei and L. rhamnosus strains, which could be linked to their genotypes. The two isolated L. rhamnosus strains had genomes that were virtually identical to that of L. rhamnosus GG, testifying to their genomic stability and integrity in food products. The L. casei strains showed much greater genomic heterogeneity. Remarkably, all strains contained an intact spaCBA pilus gene cluster. However, only the L. rhamnosus strains produced mucus-binding SpaCBA pili under the conditions tested. Transcription initiation mapping demonstrated that the insertion of an iso-IS30 element upstream of the pilus gene cluster in L. rhamnosus strains but absent in L. casei strains had constituted a functional promoter driving pilus gene expression. All L. rhamnosus strains triggered an NF-κB response via Toll-like receptor 2 (TLR2) in a reporter cell line, whereas the L. casei strains did not or did so to a much lesser extent. This study demonstrates that the two L. rhamnosus strains isolated from probiotic products are virtually identical to L. rhamnosus GG and further highlights the differences between these and L. casei strains widely marketed as probiotics, in terms of genome content, mucus-binding and metabolic capacities, and host signaling capabilities. PMID:23315726

  20. Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics.

    PubMed

    Douillard, François P; Ribbera, Angela; Järvinen, Hanna M; Kant, Ravi; Pietilä, Taija E; Randazzo, Cinzia; Paulin, Lars; Laine, Pia K; Caggia, Cinzia; von Ossowski, Ingemar; Reunanen, Justus; Satokari, Reetta; Salminen, Seppo; Palva, Airi; de Vos, Willem M

    2013-03-01

    Four Lactobacillus strains were isolated from marketed probiotic products, including L. rhamnosus strains from Vifit (Friesland Campina) and Idoform (Ferrosan) and L. casei strains from Actimel (Danone) and Yakult (Yakult Honsa Co.). Their genomes and phenotypes were characterized and compared in detail with L. casei strain BL23 and L. rhamnosus strain GG. Phenotypic analysis of the new isolates indicated differences in carbohydrate utilization between L. casei and L. rhamnosus strains, which could be linked to their genotypes. The two isolated L. rhamnosus strains had genomes that were virtually identical to that of L. rhamnosus GG, testifying to their genomic stability and integrity in food products. The L. casei strains showed much greater genomic heterogeneity. Remarkably, all strains contained an intact spaCBA pilus gene cluster. However, only the L. rhamnosus strains produced mucus-binding SpaCBA pili under the conditions tested. Transcription initiation mapping demonstrated that the insertion of an iso-IS30 element upstream of the pilus gene cluster in L. rhamnosus strains but absent in L. casei strains had constituted a functional promoter driving pilus gene expression. All L. rhamnosus strains triggered an NF-κB response via Toll-like receptor 2 (TLR2) in a reporter cell line, whereas the L. casei strains did not or did so to a much lesser extent. This study demonstrates that the two L. rhamnosus strains isolated from probiotic products are virtually identical to L. rhamnosus GG and further highlights the differences between these and L. casei strains widely marketed as probiotics, in terms of genome content, mucus-binding and metabolic capacities, and host signaling capabilities. PMID:23315726

  1. Complete Genome Sequence of Lactobacillus acidophilus FSI4, Isolated from Yogurt

    PubMed Central

    Iartchouk, Oleg; Kozyavkin, Sergei; Karamychev, Valeri

    2015-01-01

    A new Lactobacillus acidophilus strain, FSI4, isolated from yogurt, was isolated and sequenced in our laboratory. Our data, although supportive of previous conclusions regarding the remarkable stability of L. acidophilus species, indicate accumulating mutations in commercial L. acidophilus strains that warrant further study of the effect of damaged genes on the competitiveness of these bacteria in gut microbiota. PMID:25858829

  2. Lactobacillus casei, Lactobacillus rhamnosus, and Lactobacillus zeae isolates identified by sequence signature and immunoblot phenotype.

    PubMed

    Dobson, C Melissa; Chaban, Bonnie; Deneer, Harry; Ziola, Barry

    2004-07-01

    Species taxonomy within the Lactobacillus casei group of bacteria has been unsettled. With the goal of helping clarify the taxonomy of these bacteria, we investigated the first 3 variable regions of the 16S rRNA gene, the 16S-23S rRNA interspacer region, and one third of the chaperonin 60 gene for Lactobacillus isolates originally designated as L. casei, L. paracasei, L. rhamnosus, and L. zeae. For each genetic region, a phylogenetic tree was created and signature sequence analysis was done. As well, phenotypic analysis of the various strains was performed by immunoblotting. Both sequence signature analysis and immunoblotting gave immediate identification of L. casei, L. rhamnosus, and L. zeae isolates. These results corroborate and extend previous findings concerning these lactobacilli; therefore, we strongly endorse recent proposals for revised nomenclature. Specifically, isolate ATCC 393 is appropriately rejected as the L. casei type strain because of grouping with isolates identified as L. zeae. As well, because all other L. casei isolates, including the proposed neotype isolate ATCC 334, grouped together with isolates designated L. paracasei, we support the use of the single species L. casei and rejection of the name L. paracasei. PMID:15381972

  3. Genome Sequence of the Probiotic Strain Lactobacillus rhamnosus (Formerly Lactobacillus casei) LOCK908

    PubMed Central

    Koryszewska-Bagińska, Anna; Bardowski, Jacek

    2014-01-01

    Lactobacillus rhamnosus LOCK908, a patented probiotic strain (Polish patent no. 209987), was isolated from the feces of a healthy 6-year-old girl. Here, we present the complete genome sequence of LOCK908 and identify genes likely to be involved in the biosynthesis of exopolysaccharides (EPSs). PMID:24558250

  4. Enteric coating of granules containing the probiotic Lactobacillus acidophilus.

    PubMed

    Pyar, Hassan; Peh, Kok-Khiang

    2014-06-01

    In the present study, a capsule formulation composed of enteric coated granules of Lactobacillus acidophilus ATCC 4962 was developed using Eudragit L30D-55 as enteric polymer. Optimization of the capsule formulation was achieved with a maximum viable cell count after 2 h of incubation in acid medium and disintegration time of 1 h in buffer pH 6.8. The amount of Eudragit L30D-55 in the capsules correlated with gastric juice resistance. The best protective qualities against artificial gastric juice were observed when capsules were prepared from granules composed of L. acidophilus, corn starch, lactose monohydrate, polyvinylpyrrolidone and coated with 12.5 % (m/V) of Eudragit L30D-55. Capsule formulation of L. acidophilus in edible broth medium suspension serves as a cheap alternative to the expensive freeze-drying procedure for preparing L. acidophilus. In addition, the enteric coating using Eudragit L30D-55 could protect probiotics from the acidic gastric environment and enhance the bioactivity of probiotics along with replacement of pathogenic microbes in human intestine. PMID:24914724

  5. Dominance of Lactobacillus acidophilus in the Facultative Jejunal Lactobacillus Microbiota of Fistulated Beagles

    PubMed Central

    Tang, Yurui; Manninen, Titta J. K.

    2012-01-01

    Lactobacilli were isolated from jejunal chyme from five fistulated beagles. Cultivable lactobacilli varied from 104 to 108 CFU/ml. Seventy-four isolates were identified by partial 16S rRNA gene sequencing and differentiated by repetitive element PCR (Rep-PCR), Lactobacillus acidophilus was dominant, and nearly 80% of 54 isolates shared the same DNA fingerprint pattern. PMID:22843523

  6. Lactobacillus rhamnosus as additive for maize and sorghum ensiling.

    PubMed

    Salimei, Elisabetta; Capilongo, Valeria; Simoni, Andrea; Peiretti, Pier Giorgio; Maglieri, Cristina; Romano, Cristina A; Mannina, Luisa; Coppola, Raffaele; Sorrentino, Elena

    2007-11-14

    The effects of Lactobacillus rhamnosus AT195, a potential probiotic microorganism cultured in buffalo "scotta" whey, on chemical and microbiological composition in maize and sorghum ensiling were evaluated. Both crops were harvested, chopped, and treated or not with the selected strain prior to ensiling in fiberglass vertical silos; 90 days after ensiling, silages were sensorially evaluated and sampled. Different chemical components were evaluated both on fresh crops and silages: in particular, the water-soluble carbohydrates content was investigated by high-field NMR spectroscopy and the carbohydrate fermentation profile was performed by GC. Besides phenotypic identification and typing, microbiological studies included Lb. rhamnosus genotype typing by RAPD-PCR. All silages, inoculated or not, were well preserved, as their chemical and microbiological data along with the fermentation profiles showed. The selected strain used as inoculum influenced the lactic acid population of silages and evidenced a good survival performance during the ensiling process of both maize and sorghum. Moreover, the use of Lb. rhamnosus strain efficiently improved the quality of the multifactorial ensiling process by significantly reducing the ammonia nitrogen content of both maize and sorghum silages. PMID:17929890

  7. Taxonomic and strain-specific identification of the probiotic strain Lactobacillus rhamnosus 35 within the Lactobacillus casei group.

    PubMed

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-05-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  8. Taxonomic and Strain-Specific Identification of the Probiotic Strain Lactobacillus rhamnosus 35 within the Lactobacillus casei Group▿

    PubMed Central

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-01-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  9. Characterization of the Lactobacillus casei group and the Lactobacillus acidophilus group by automated ribotyping.

    PubMed

    Ryu, C S; Czajka, J W; Sakamoto, M; Benno, Y

    2001-01-01

    A total of 91 type and reference strains of the Lactobacillus casei group and the L acidophilus group were characterized by the automated ribotyping device Riboprinter microbial characterization system. The L. casei group was divided into five (C1-C5) genotypes by ribotyping. Among them, the strain of L. casei ATCC 334 was clustered to the same genotype group as most of L. paracasei strains and L casei JCM 1134T generated a riboprint pattern that was different from the type strain of L. zeae. These results supported the designation of L. casei ATCC 334 as the neotype strain, but were not consistent with the reclassification of L. casei JCM 1134T as L. zeae. The L. acidophilus group was also divided into 14 (A1-A11, B1-B3) genotypes by ribotyping. L. acidophilus, L. amylovorus, L. crispatus and L. gallinarum generated ribotype patterns that were distinct from the patterns produced by L. gasseri and L. johnsonii. This result confirmed previous data that the L. acidophilus group divided to two major clusters. Five strains of L. acidophilus and two strains of L. gasseri were correctly reidentified by ribotyping. Most strains belonging to the L. casei group and the L. acidophilus group were discriminated at the species level by automated ribotyping. Thus this RiboPrinter system yields rapid, accurate and reproducible genetic information for the identification of many strains. PMID:11386416

  10. Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains.

    PubMed Central

    Pelletier, C; Bouley, C; Cayuela, C; Bouttier, S; Bourlioux, P; Bellon-Fontaine, M N

    1997-01-01

    Hydrophilic and electrostatic cell surface properties of eight Lactobacillus strains were characterized by using the microbial adhesion to solvents method and microelectrophoresis, respectively. All strains appeared relatively hydrophilic. The strong microbial adhesion to chloroform, an acidic solvent, in comparison with microbial adhesion to hexadecane, an apolar n-alkane, demonstrated the particularity of lactobacilli to have an important electron donor and basic character and consequently their potential ability to generate Lewis acid-base interactions with a support. Regardless of their electrophoretic mobility (EM), strains were in general slightly negatively charged at alkaline pH. A pH-dependent behavior concerning cell surface charges was observed. The EM decreased progressively with more acidic pHs for the L. casei subsp. casei and L. paracasei subsp. paracasei strains until the isoelectric point (IEP), i.e., the pH value for which the EM is zero. On the other hand, the EM for the L. rhamnosus strains was stable from pH 8 to pH 3 to 4, at which point there was a shift near the IEP. Both L. casei subsp. casei and L. paracasei subsp. paracasei strains were characterized by an IEP of around 4, whereas L. rhamnosus strains possessed a markedly lower IEP of 2. The present study showed that the cell surface physicochemical properties of lactobacilli seem to be, at least in part and under certain experimental conditions, particular to the bacterial species. Such differences detected between species are likely to be accompanied by some particular changes in cell wall chemical composition. PMID:9143109

  11. Draft Genome Sequence of the Probiotic Strain Lactobacillus acidophilus ATCC 4356

    PubMed Central

    Palomino, Maria Mercedes; Allievi, Mariana C.; Fina Martin, Joaquina; Waehner, Pablo M.; Prado Acosta, Mariano; Sanchez Rivas, Carmen

    2015-01-01

    We present the 1,956,699-bp draft genome sequence of Lactobacillus acidophilus strain ATCC 4356. Comparative genomic analysis revealed 99.96% similarity with L. acidophilus NCFM NC_006814.3 and 99.97% with La-14 NC_021181.2 genomes. PMID:25593259

  12. Complete Genome Sequence of Lactobacillus acidophilus MN-BM-F01

    PubMed Central

    Yang, Lan; Li, Zhiwei; Shi, Yudong; Li, Zhouyong; Zhao, Xiaohui

    2016-01-01

    Lactobacillus acidophilus MN-BM-F01 was originally isolated from a traditional fermented dairy product in China. The characteristics of this bacterium are its low post-acidification ability and high acid-producing rate. Here, we report the main genome features of L. acidophilus MN-BM-F01. PMID:26868391

  13. Draft Genome Sequence of the Probiotic Strain Lactobacillus acidophilus ATCC 4356.

    PubMed

    Palomino, Maria Mercedes; Allievi, Mariana C; Fina Martin, Joaquina; Waehner, Pablo M; Prado Acosta, Mariano; Sanchez Rivas, Carmen; Ruzal, Sandra M

    2015-01-01

    We present the 1,956,699-bp draft genome sequence of Lactobacillus acidophilus strain ATCC 4356. Comparative genomic analysis revealed 99.96% similarity with L. acidophilus NCFM NC_006814.3 and 99.97% with La-14 NC_021181.2 genomes. PMID:25593259

  14. Lipoteichoic acid-deficient Lactobacillus acidophilus regulates downstream signals.

    PubMed

    Saber, Rana; Zadeh, Mojgan; Pakanati, Krishna C; Bere, Praveen; Klaenhammer, Todd; Mohamadzadeh, Mansour

    2011-03-01

    The trillions of microbes residing within the intestine induce critical signals that either regulate or stimulate host immunity via their bacterial products. To better understand the immune regulation elicited by lipoteichoic acid (LTA)-deficient Lactobacillus acidophilus NCFM in steady state and induced inflammation, we deleted phosphoglycerol transferase gene, which synthesizes LTA in L. acidophilus NCFM. In vitro and in vivo experiments were conducted in order to compare the immune regulatory properties of the L. acidophilus strain deficient in LTA (NCK2025) with its wild-type parent (NCK56) in C57BL/6, C57BL/6 recombination-activation gene 1-deficient (Rag1 (-/-)) and C57BL/6 Rag1(-/-)IL-10(-/-) mice. We demonstrate that NCK2025 significantly activates the phosphorylation of Erk1/2 but downregulates the phosphorylation of Akt1, cytosolic group IV PLA2 and p38 in mouse dendritic cells. Similarly, mice treated orally with NCK2025 exhibit decreased phosphorylation of inflammatory signals (Akt1, cytosolic group IV PLA2 or P38) but upregulate Erk1/2-phosphorylation in colonic epithelial cells in comparison with mice treated with NCK56. In addition, regulation of pathogenic CD4+ T cell induced colitis by NCK2025 was observed in Rag1 (-/-) but not Rag1(-/-)IL-10 (-/-) mice suggests a critical role of IL-10 that may be tightly regulated by Erk1/2 signaling. These data highlight the immunosuppressive properties of NCK2025 to deliver regulatory signals in innate cells, which results in the mitigation of T-cell-induced colitis in vivo. PMID:21395377

  15. Bacterial Endocarditis Caused by Lactobacillus acidophilus Leading to Rupture of Sinus of Valsalva Aneurysm

    PubMed Central

    Loranger, Austin Mitchell; Bharatkumar, A.G.; Almassi, G. Hossein

    2016-01-01

    Lactobacillus acidophilus rarely causes bacterial endocarditis, because it usually resides in the mucosa of the vagina, gastrointestinal tract, and oropharynx. Moreover, sinus of Valsalva aneurysms are rare cardiac anomalies, either acquired or congenital. We present the case of a middle-aged man whose bacterial endocarditis, caused by Lactobacillus acidophilus, led to an aneurysmal rupture of the sinus of Valsalva into the right ventricular outflow tract. The patient underwent successful surgical repair, despite numerous complications and sequelae. PMID:27127435

  16. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB.

    PubMed Central

    Coconnier, M H; Liévin, V; Bernet-Camard, M F; Hudault, S; Servin, A L

    1997-01-01

    The spent culture supernatant of the human Lactobacillus acidophilus strain LB produces an antibacterial activity against a wide range of gram-negative and gram-positive pathogens. It decreased the in vitro viability of Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, Shigella flexneri, Escherichia coli, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, and Enterobacter spp. In contrast, it did not inhibit lactobacilli and bifidobacteria. The activity was heat stable and relatively sensitive to enzymatic treatments and developed under acidic conditions. The antimicrobial activity was independent of lactic acid production. Activity against S. typhimurium SL1344 infecting human cultured intestinal Caco-2 cells was observed as it was in the conventional C3H/He/oujco mouse model with S. typhimurium C5 infection and oral treatment with the LB spent culture supernatant. PMID:9145867

  17. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB.

    PubMed

    Coconnier, M H; Liévin, V; Bernet-Camard, M F; Hudault, S; Servin, A L

    1997-05-01

    The spent culture supernatant of the human Lactobacillus acidophilus strain LB produces an antibacterial activity against a wide range of gram-negative and gram-positive pathogens. It decreased the in vitro viability of Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, Shigella flexneri, Escherichia coli, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, and Enterobacter spp. In contrast, it did not inhibit lactobacilli and bifidobacteria. The activity was heat stable and relatively sensitive to enzymatic treatments and developed under acidic conditions. The antimicrobial activity was independent of lactic acid production. Activity against S. typhimurium SL1344 infecting human cultured intestinal Caco-2 cells was observed as it was in the conventional C3H/He/oujco mouse model with S. typhimurium C5 infection and oral treatment with the LB spent culture supernatant. PMID:9145867

  18. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM.

    PubMed

    Buck, B Logan; Altermann, Eric; Svingerud, Tina; Klaenhammer, Todd R

    2005-12-01

    Lactobacilli are major inhabitants of the normal microflora of the gastrointestinal tract, and some select species have been used extensively as probiotic cultures. One potentially important property of these organisms is their ability to interact with epithelial cells in the intestinal tract, which may promote retention and host-bacterial communication. However, the mechanisms by which they attach to intestinal epithelial cells are unknown. The objective of this study was to investigate cell surface proteins in Lactobacillus acidophilus that may promote attachment to intestinal tissues. Using genome sequence data, predicted open reading frames were searched against known protein and protein motif databases to identify four proteins potentially involved in adhesion to epithelial cells. Homologous recombination was used to construct isogenic mutations in genes encoding a mucin-binding protein, a fibronectin-binding protein, a surface layer protein, and two streptococcal R28 homologs. The abilities of the mutants to adhere to intestinal epithelial cells were then evaluated in vitro. Each strain was screened on Caco-2 cells, which differentiate and express markers characteristic of normal small-intestine cells. A significant decrease in adhesion was observed in the fibronectin-binding protein mutant (76%) and the mucin-binding protein mutant (65%). A surface layer protein mutant also showed reduction in adhesion ability (84%), but the effect of this mutation is likely due to the loss of multiple surface proteins that may be embedded in the S-layer. This study demonstrated that multiple cell surface proteins in L. acidophilus NCFM can individually contribute to the organism's ability to attach to intestinal cells in vitro. PMID:16332821

  19. Towards a better understanding of Lactobacillus rhamnosus GG - host interactions

    PubMed Central

    2014-01-01

    Lactobacillus rhamnosus GG (LGG) is one of the most widely used probiotic strains. Various health effects are well documented including the prevention and treatment of gastro-intestinal infections and diarrhea, and stimulation of immune responses that promote vaccination or even prevent certain allergic symptoms. However, not all intervention studies could show a clinical benefit and even for the same conditions, the results are not univocal. Clearly, the host phenotype governed by age, genetics and environmental factors such as the endogenous microbiota, plays a role in whether individuals are responders or non-responders. However, we believe that a detailed knowledge of the bacterial physiology and the LGG molecules that play a key role in its host-interaction capacity is crucial for a better understanding of its potential health benefits. Molecules that were yet identified as important factors governing host interactions include its adhesive pili or fimbriae, its lipoteichoic acid molecules, its major secreted proteins and its galactose-rich exopolysaccharides, as well as specific DNA motifs. Nevertheless, future studies are needed to correlate specific health effects to these molecular effectors in LGG, and also in other probiotic strains. PMID:25186587

  20. Lactobacillus acidophilus binds to MUC3 component of cultured intestinal epithelial cells with highest affinity.

    PubMed

    Das, Jugal Kishore; Mahapatra, Rajani Kanta; Patro, Shubhransu; Goswami, Chandan; Suar, Mrutyunjay

    2016-04-01

    Lactobacillus strains have been shown to adhere to the mucosal components of intestinal epithelial cells. However, established in vitro adhesion assays have several drawbacks in assessing the adhesion of new Lactobacillus strains. The present study aimed to compare the adhesion of four different Lactobacillus strains and select the most adherent microbe, based on in silico approach supported by in vitro results. The mucus-binding proteins in Lactobacillus acidophilus, L. plantarum, L. brevis and L. fermentum were identified and their capacities to interact with intestinal mucin were compared by molecular docking analysis. Lactobacillus acidophilus had the maximal affinity of binding to mucin with predicted free energy of -6.066 kcal mol(-1) Further, in vitro experimental assay of adhesion was performed to validate the in silico results. The adhesion of L. acidophilus to mucous secreting colon epithelial HT-29 MTX cells was highest at 12%, and it formed biofilm with maximum depth (Z = 84 μm). Lactobacillus acidophilus was determined to be the most adherent strain in the study. All the Lactobacillus strains tested in this study, displayed maximum affinity of binding to MUC3 component of mucus as compared to other gastrointestinal mucins. These findings may have importance in the design of probiotics and health care management. PMID:26946538

  1. Lactobacillus acidophilus upregulates intestinal NHE3 expression and function

    PubMed Central

    Singh, Varsha; Raheja, Geetu; Borthakur, Alip; Kumar, Anoop; Gill, Ravinder K.; Alakkam, Anas; Malakooti, Jaleh

    2012-01-01

    A major mechanism of electroneutral NaCl absorption in the human ileum and colon involves coupling of Na+/H+ and Cl−/HCO3− exchangers. Disturbances in these mechanisms have been implicated in diarrheal conditions. Probiotics such as Lactobacillus have been indicated to be beneficial in the management of gastrointestinal disorders, including diarrhea. However, the molecular mechanisms underlying antidiarrheal effects of probiotics have not been fully understood. We have previously demonstrated Lactobacillus acidophilus (LA) to stimulate Cl−/HCO3− exchange activity via an increase in the surface levels and expression of the Cl−/HCO3− exchanger DRA in vitro and in vivo. However, the effects of LA on NHE3, the Na+/H+ exchanger involved in the coupled electroneutral NaCl absorption, are not known. Current studies were, therefore, undertaken to investigate the effects of LA on the function and expression of NHE3 and to determine the mechanisms involved. Treatment of Caco2 cells with LA or its conditioned culture supernatant (CS) for 8–24 h resulted in a significant increase in Na+/H+ exchange activity, mRNA, and protein levels of NHE3. LA-CS upregulation of NHE3 function and expression was also observed in SK-CO15 cells, a human colonic adenocarcinoma cell line. Additionally, LA treatment increased NHE3 promoter activity, suggesting involvement of transcriptional mechanisms. In vivo, mice gavaged with live LA showed significant increase in NHE3 mRNA and protein expression in the ileum and colonic regions. In conclusion, LA-induced increase in NHE3 expression may contribute to the upregulation of intestinal electrolyte absorption and might underlie the potential antidiarrheal effects of probiotics. PMID:23086913

  2. Flow Cytometric Testing of Green Fluorescent Protein-Tagged Lactobacillus rhamnosus GG for Response to Defensins

    PubMed Central

    De Keersmaecker, Sigrid C. J.; Braeken, Kristien; Verhoeven, Tine L. A.; Perea Vélez, Mónica; Lebeer, Sarah; Vanderleyden, Jos; Hols, Pascal

    2006-01-01

    Lactobacillus rhamnosus GG is of general interest as a probiotic. Although L. rhamnosus GG is often used in clinical trials, there are few genetic tools to further determine its mode of action or to develop it as a vehicle for heterologous gene expression in therapy. Therefore, we developed a reproducible, efficient electroporation procedure for L. rhamnosus GG. The best transformation efficiency obtained was 104 transformants per μg of DNA. We validated this protocol by tagging L. rhamnosus GG with green fluorescent protein (GFP) using the nisin-controlled expression (NICE) system. Parameters for overexpression were optimized, which allowed expression of gfp in L. rhamnosus GG upon induction with nisin. The GFP+ strain can be used to monitor the survival and behavior of L. rhamnosus GG in vivo. Moreover, implementation of the NICE system as a gene expression switch in L. rhamnosus GG opens up possibilities for improving and expanding the performance of this strain. The GFP-labeled strain was used to demonstrate that L. rhamnosus GG is sensitive to human beta-defensin-2 but not to human beta-defensin-1. PMID:16820489

  3. Osmotically regulated transport of proline by Lactobacillus acidophilus IFO 3532.

    PubMed

    Jewell, J B; Kashket, E R

    1991-10-01

    We reported previously that, when exposed to high osmotic pressure, Lactobacillus acidophilus IFO 3532 cells accumulated N,N,N-trimethylglycine (glycine betaine), which serves as a compatible intracellular solute. When grown in medium with high osmotic pressure, these cells also accumulated one amino acid, proline. The uptake of [3H]proline by resting, glucose-energized cells was stimulated by increasing the osmotic pressure of the assay medium with 0.5 to 1.0 M KCl, 1.0 M NaCl, or 0.5 M sucrose. The accumulated [3H]proline was not metabolized further. In contrast, there was no osmotic stimulation of [3H]leucine uptake. The uptake of proline was activated rather than induced by exposure of the cells to high osmotic pressure. Only one proline transport system could be discerned from kinetics plots. The affinity of the carrier for proline remained constant over a range of osmotic pressures from 650 to 1,910 mosM (Kt, 7.8 to 15.5 mM). The Vmax, however, increased from 15 nmol/min/mg of dry weight in 0.5 M sucrose to 27 and 40 nmol/min/mg of dry weight in 0.5 M KCl and in 1.0 M KCl or NaCl, respectively. The efflux of proline from preloaded cells occurred rapidly when the osmotic pressure of the suspending buffer was lowered. PMID:1786048

  4. ESR spin trapping for characterization of radical formation in Lactobacillus acidophilus NCFM and Listeria innocua.

    PubMed

    Hougaard, Anni B; Arneborg, Nils; Andersen, Mogens L; Skibsted, Leif H

    2013-09-01

    In this study, radicals in pure cultures of Lactobacillus acidophilus NCFM and Listeria innocua were detected in a quantitative way by electron spin resonance spectroscopy using spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) or N-tert-butyl-α-phenylnitrone (PBN). No adverse effect of spin trap addition on viability was observed for any of the bacterial strains. L. acidophilus NCFM had a higher production of radicals than L. innocua when incubated in a growth medium. Furthermore, by using DMPO in a buffer system, the radicals produced by L. acidophilus NCFM could be identified as hydroxyl radicals. The presence of polyethylene glycol, impermeable for bacterial cells, decreased the signal intensity of the ESR spectrum of the DMPO-OH adduct in cultures of L. acidophilus NCFM and indicated quenching of hydroxyl radicals outside the bacteria. This suggests that radical production is an extracellular event for L. acidophilus NCFM. PMID:23811362

  5. Lactobacillus rhamnosus strain GG is a potential probiotic for calves

    PubMed Central

    2004-01-01

    Abstract Diarrhea is a common occurrence in neonatal calves. Several veterinary probiotics claiming to prevent or treat calf diarrhea are available, but have not been well studied. This study assessed the capability of Lactobacillus rhamnosus strain GG (LGG) to maintain viability in the gastrointestinal tract of calves. We also determined whether LGG can be administered in an oral rehydration solution (ORS) without compromising the efficacy of the ORS or the viability of LGG, and whether LGG produces D-lactate or not. To investigate the intestinal survival of LGG, 15 calves were randomized into 3 groups and LGG was administered orally with their morning milk feeding on 3 consecutive days at a low (LD), medium (MD), or high (HD) dosage. Fecal samples were collected on days 0 (control), 1, 2, 3, 5, and 7 and incubated for 72 h on deMan, Rogosa, Sharpe agar. Twenty-four hours after the 1st feeding, LGG was recovered from 1 out of 5 calves in the LD group, 4 out of 5 calves in the MD group, and 5 out of 5 calves in the HD group. To determine if LGG caused the glucose levels in the ORS to drop below effective levels, 1.5 L of the ORS was incubated with LGG for 2 h at 37°C and the glucose concentration was measured every 20 min using a glucose meter. This ORS was then further incubated for 10 h and aliquots analyzed by high performance liquid chromatography to determine if D-lactate was produced by LGG. Glucose concentrations did not change over the 2 h of incubation, and no D-lactate was produced after 48 h. The LGG maintained viability in ORS. Therefore, this study demonstrated that LGG survives intestinal transit in the young calf, produces no D-lactate, and can be administered in an ORS. PMID:15581218

  6. Synbiotic effects of lactitol and Lactobacillus acidophilus NCFM™ in a semi-continuous colon fermentation model.

    PubMed

    Mäkivuokko, H; Forssten, S; Saarinen, M; Ouwehand, A; Rautonen, N

    2010-06-01

    The effects of Lactobacillus acidophilus NCFM™, lactitol, and the combination of lactitol and L. acidophilus NCFM™ were studied with a semi-continuous colon fermentation simulation; consisting of compartments mimicking, ascending, transverse, descending and sigmoid colon and their conditions with faecal inoculation. L. acidophilus NCFM™ was detected throughout the colon simulator. Lactitol was utilised early on by the microbes in the proximal part of the simulator. Lactitol increased the total numbers of microbes and bifidobacteria, and decreased clostridia cluster IV, while L. acidophilus NCFM™ alone decreased the numbers of clostridia cluster XIV. Combination treatment increased the numbers of bifidobacteria. Furthermore, concentrations of acetic acid, butyric acid and the sum of total short-chain fatty acids were increased by both lactitol-including treatments. The treatment with L. acidophilus NCFM™ alone increased the concentration of propionic acid and butyric acid. L. acidophilus NCFM™ tended to increase the total concentrations of biogenic amines, while lactitol suppressed production of biogenic amines also in the presence of L. acidophilus NCFM™. True synergistic effects are suggested in stimulation of the production of butyrate, an important microbial metabolite for colon health. In conclusion, lactitol as well as the combination of lactitol and L. acidophilus NCFM™ were found to exhibit complementary beneficial effects on the colon microbial composition and activity. PMID:21840801

  7. Adhesion properties of Lactobacillus rhamnosus mucus-binding factor to mucin and extracellular matrix proteins.

    PubMed

    Nishiyama, Keita; Nakamata, Koichi; Ueno, Shintaro; Terao, Akari; Aryantini, Ni Putu Desy; Sujaya, I Nengah; Fukuda, Kenji; Urashima, Tadasu; Yamamoto, Yuji; Mukai, Takao

    2015-01-01

    We previously described potential probiotic Lactobacillus rhamnosus strains, isolated from fermented mare milk produced in Sumbawa Island, Indonesia, which showed high adhesion to porcine colonic mucin (PCM) and extracellular matrix (ECM) proteins. Recently, mucus-binding factor (MBF) was found in the GG strain of L. rhamnosus as a mucin-binding protein. In this study, we assessed the ability of recombinant MBF protein from the FSMM22 strain, one of the isolates of L. rhamnosus from fermented Sumbawa mare milk, to adhere to PCM and ECM proteins by overlay dot blot and Biacore assays. MBF bound to PCM, laminin, collagen IV, and fibronectin with submicromolar dissociation constants. Adhesion of the FSMM22 mbf mutant strain to PCM and ECM proteins was significantly less than that of the wild-type strain. Collectively, these results suggested that MBF contribute to L. rhamnosus host colonization via mucin and ECM protein binding. PMID:25351253

  8. Colon-specific delivery of lactobacillus rhamnosus GG using pectin hydrogel beads

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The probiotic bacteria, Lactobacillus rhamnosus GG (LGG), has shown beneficial effects on human health, and is accepted by increasing populations for the prevention and treatment of irritable bowel diseases. To increase the bioavailability and efficacy of LGG, the probiotic was encapsulated in hydro...

  9. Genetic expression profile analysis of the temporal inhibition of quercetin and naringenin on Lactobacillus rhamnosus GG

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant polyphenols, quercetin and naringenin, are considered healthy dietary compounds; however, little is known of their effects on the probiotic Lactobacillus rhamnosus GG (LGG). In this study, it was discovered that both quercetin and naringenin produced temporary inhibition of LGG growth, par...

  10. Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Probiotics have shown beneficial effects on human health. To increase the efficacy of probiotic applications, we used Lactobacillus rhamnosus GG (LGG) as a probiotic model to investigate approaches to enhance the bioavailability of probiotics. LGG was encapsulated in hydrogel beads containing pectin...

  11. Genotyping by randomly amplified polymorphic DNA of bacteriocin producing Lactobacillus acidophilus strains from Nigeria.

    PubMed

    Alli, John Adeolu; Iwalokun, Bamidele A; Oluwadun, Afolabi; Okonko, Iheanyi Omezuruike

    2015-01-01

    Yogurt and starter culture producers are still searching strains of Lactobacillus acidophilus to produce healthier yogurt with a longer shelf life and better texture, taste, and quality. This study determined the genotyping of bacteriocin producing Lactobacillus acidophilus strains recovered from Nigerian yogurts. Yogurt samples were collected from four different states of South West regions of Nigeria. Isolates were obtained from MRS Medium and biochemically characterized. This was further confirmed by API50CH. The bacteriocin positivity and activity was determined. Genomic characterization of our Lactobacillus acidophilus strains was done with randomly amplified polymorphic DNA-PCR. All yogurt samples containing Lactobacillus acidophilus strains meet the probiotic requirement of ≥10(6) cfu/mL. The gel picture revealed 6 RAPD clonal types of Lactobacillus acidophilus strains with RAPD type C observed to be more common. Significant differences existed in the mean growth inhibition zone (t = -7.32, P < 0.05 for E. coli ATCC; t = -6.19, P < 0.05 for E. coli clinical isolates; t = -6.16, P < 0.05 for Enterobacter sp; t = -11.92, P < 0.05 for Salmonella typhi, t = -1.10, P > 0.05 Staphylococcus aureus). No correlation between the bacteriocin production, activity, and their RAPD clonal division (X(2) = 7.49, P = 0.1610, df = 5). In conclusion, L. acidophilus isolated in Nigeria samples met the probiotic requirements of ≥10(6) cfu/mL and produce bacteriocins with good spectrum of activity. PMID:25153762

  12. Biofilms of vaginal Lactobacillus reuteri CRL 1324 and Lactobacillus rhamnosus CRL 1332: kinetics of formation and matrix characterization.

    PubMed

    Leccese Terraf, María Cecilia; Juárez Tomás, María Silvina; Rault, Lucie; Le Loir, Yves; Even, Sergine; Nader-Macías, María Elena Fátima

    2016-09-01

    Adhesion and biofilm formation are strain properties that reportedly contribute to the permanence of lactobacilli in the human vagina. The kinetics of biofilm formation and the chemical nature of the biofilm matrix formed by Lactobacillus reuteri CRL (Centro de Referencia para Lactobacilos Culture Collection) 1324 and Lactobacillus rhamnosus CRL 1332, vaginal beneficial strains, were evaluated in this work. Crystal violet-stained microplate assay and techniques of epifluorescence, electron and confocal microscopy were applied. The highest density and complexity of biofilms of both vaginal lactobacilli were observed at 72 h of incubation. Protease, proteinase K, α-chymotrypsin and trypsin treatments efficiently detached L. reuteri CRL 1324 biofilm that was also partially affected by α-amylase. However, L. rhamnosus CRL 1332 biofilm was slightly affected by protease, proteinase K and α-amylase. Confocal microscopy revealed greater amount of polysaccharides in L. rhamnosus CRL 1332 biofilm matrix than in L. reuteri CRL 1324 biofilm matrix. The results indicate that proteins are one of the main components of the L. reuteri CRL 1324 biofilm, while the biofilm matrix of L. rhamnosus CRL 1332 is composed of carbohydrates and proteins. The results obtained support the knowledge, understanding and characterization of two biofilm-forming vaginal Lactobacillus strains. PMID:27146055

  13. Comparison of fecundity and offspring immunity in zebrafish fed Lactobacillus rhamnosus CICC 6141 and Lactobacillus casei BL23.

    PubMed

    Qin, Chubin; Xu, Li; Yang, Yalin; He, Suxu; Dai, Yingying; Zhao, Huiying; Zhou, Zhigang

    2014-01-01

    To increase the knowledge of probiotic effects on zebrafish (Danio rerio), we compare the effects of two probiotic strains, Lactobacillus rhamnosus CICC 6141 (a highly adhesive strain) and Lactobacillus casei BL23 (a weakly adhesive strain), on zebrafish reproduction and their offsprings' innate level of immunity to water-borne pathogens. During probiotics treatments from 7 to 28 days, both the Lactobacillus strains, and especially L. casei BL23, significantly increased fecundity in zebrafish: higher rates of egg ovulation, fertilization, and hatching were observed. Increased densities of both small and large vitellogenic follicles, seen in specimens fed either Lactobacillus strain, demonstrated accelerated oocyte maturation. Feeding either strain of Lactobacillus upregulated gene expression of leptin, kiss2, gnrh3, fsh, lh, lhcgr, and paqr8, which were regarded to enhance fecundity and encourage oocyte maturation. Concomitantly, the gene expression of bmp15 and tgfb1 was inhibited, which code for local factors that prevent oocyte maturation. The beneficial effects of the Lactobacillus strains on fecundity diminished after feeding of the probiotics was discontinued, even for the highly adhesive gut Lactobacillus strain. Administering L. rhamnosus CICC 6141 for 28 days was found to affect the innate immunity of offspring derived from their parents, as evinced by a lower level of alkaline phosphatase activity in early larval stages. This study highlights the effects of probiotics both upon the reproductive process and upon the offsprings' immunity during early developmental stages. PMID:24129154

  14. Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Karska-Wysocki, Barbara; Bazo, Mari; Smoragiewicz, Wanda

    2010-10-20

    Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant microorganism and the principal nosocomial pathogen worldwide. The antibacterial activity of lactic acid bacteria against MRSA from ten human clinical isolates as well as MRSA standard strain ATCC 43300 was tested in vitro. The Lactobacillus (Lb.) strains (Lb. acidophilus CL1285(®) and Lb. casei LBC80R) as pure cultures, which came from commercial food products were employed. The growth inhibitory effect produced by the antimicrobial activity of the lactic acid bacteria on the MRSA strains was tested on solid medium using agar diffusion methods as well as a using a liquid medium procedure that contained a mixture of MRSA and lactic acid bacteria cultures. In the latter instance, we were able to demonstrate that the direct interaction of lactic acid bacteria and MRSA in such a mixture led to the elimination of 99% of the MRSA cells after 24 h of their incubation at 37°C. PMID:20116228

  15. Lactobacillus rhamnosus GG Lysate Increases Re-Epithelialization of Keratinocyte Scratch Assays by Promoting Migration

    PubMed Central

    Mohammedsaeed, Walaa; Cruickshank, Sheena; McBain, Andrew J.; O’Neill, Catherine A.

    2015-01-01

    A limited number of studies have investigated the potential of probiotics to promote wound healing in the digestive tract. The aim of the current investigation was to determine whether probiotic bacteria or their extracts could be beneficial in cutaneous wound healing. A keratinocyte monolayer scratch assay was used to assess re-epithelialization; which comprises keratinocyte proliferation and migration. Primary human keratinocyte monolayers were scratched then exposed to lysates of Lactobacillus (L) rhamnosus GG, L. reuteri, L. plantarum or L. fermentum. Re-epithelialization of treated monolayers was compared to that of untreated controls. Lysates of L. rhamnosus GG and L. reuteri significantly increased the rate of re-epithelialization, with L. rhamnosus GG being the most efficacious. L. reuteri increased keratinocyte proliferation while L. rhamnosus GG lysate significantly increased proliferation and migration. Microarray analysis of L. rhamnosus GG treated scratches showed increased expression of multiple genes including the chemokine CXCL2 and its receptor CXCR2. These are involved in normal wound healing where they stimulate keratinocyte proliferation and/or migration. Increased protein expression of both CXCL2 and CXCR2 were confirmed by ELISA and immunoblotting. These data demonstrate that L. rhamnosus GG lysate accelerates re-epithelialization of keratinocyte scratch assays, potentially via chemokine receptor pairs that induce keratinocyte migration. PMID:26537246

  16. Lactobacillus rhamnosus GG Lysate Increases Re-Epithelialization of Keratinocyte Scratch Assays by Promoting Migration.

    PubMed

    Mohammedsaeed, Walaa; Cruickshank, Sheena; McBain, Andrew J; O'Neill, Catherine A

    2015-01-01

    A limited number of studies have investigated the potential of probiotics to promote wound healing in the digestive tract. The aim of the current investigation was to determine whether probiotic bacteria or their extracts could be beneficial in cutaneous wound healing. A keratinocyte monolayer scratch assay was used to assess re-epithelialization; which comprises keratinocyte proliferation and migration. Primary human keratinocyte monolayers were scratched then exposed to lysates of Lactobacillus (L) rhamnosus GG, L. reuteri, L. plantarum or L. fermentum. Re-epithelialization of treated monolayers was compared to that of untreated controls. Lysates of L. rhamnosus GG and L. reuteri significantly increased the rate of re-epithelialization, with L. rhamnosus GG being the most efficacious. L. reuteri increased keratinocyte proliferation while L. rhamnosus GG lysate significantly increased proliferation and migration. Microarray analysis of L. rhamnosus GG treated scratches showed increased expression of multiple genes including the chemokine CXCL2 and its receptor CXCR2. These are involved in normal wound healing where they stimulate keratinocyte proliferation and/or migration. Increased protein expression of both CXCL2 and CXCR2 were confirmed by ELISA and immunoblotting. These data demonstrate that L. rhamnosus GG lysate accelerates re-epithelialization of keratinocyte scratch assays, potentially via chemokine receptor pairs that induce keratinocyte migration. PMID:26537246

  17. Lactobacillus rhamnosus could inhibit Porphyromonas gingivalis derived CXCL8 attenuation

    PubMed Central

    Mendi, Ayşegül; Köse, Sevil; Uçkan, Duygu; Akca, Gülçin; Yilmaz, Derviş; Aral, Levent; Gültekin, Sibel Elif; Eroğlu, Tamer; Kiliç, Emine; Uçkan, Sina

    2016-01-01

    ABSTRACT An increasing body of evidence suggests that the use of probiotic bacteria is a promising intervention approach for the treatment of inflammatory diseases with a polymicrobial etiology. P. gingivalis has been noted to have a different way of interacting with the innate immune response of the host compared to other pathogenic bacteria, which is a recognized feature that inhibits CXCL8 expression. Objective The aim of the study was to determine if P. gingivalis infection modulates the inflammatory response of gingival stromal stem cells (G-MSSCs), including the release of CXCL8, and the expression of TLRs and if immunomodulatory L. rhamnosus ATCC9595 could prevent CXCL8 inhibition in experimental inflammation. Material and Methods G-MSSCs were pretreated with L. rhamnosus ATCC9595 and then stimulated with P. gingivalis ATCC33277. CXCL8 and IL-10 levels were investigated with ELISA and the TLR-4 and 2 were determined through flow cytometer analysis. Results CXCL8 was suppressed by P. gingivalis and L. rhamnosus ATCC9595, whereas incubation with both strains did not abolish CXCL8. L. rhamnosus ATCC9595 scaled down the expression of TLR4 and induced TLR2 expression when exposed to P. gingivalis stimulation (p<0.01). Conclusions These findings provide evidence that L. rhamnosus ATCC9595 can modulate the inflammatory signals and could introduce P. gingivalis to immune systems by inducing CXCL8 secretion. PMID:27008259

  18. Survival of Lactobacillus rhamnosus GG as influenced by storage conditions and product matrixes.

    PubMed

    Klu, Yaa Asantewaa Kafui; Williams, Jonathan H; Phillips, Robert D; Chen, Jinru

    2012-12-01

    Mortality resulting from diarrhea especially that occurs in children younger than 5 y of age ranks 3rd among all deaths caused by infectious diseases worldwide. Probiotics such as Lactobacillus rhamnosus GG are clinically shown to effectively reduce the incidence of diarrhea in children. A food substrate is one of the major factors regulating the colonization of microorganisms in human gastrointestinal tracts. Peanut butter is a nutritious, low-moisture food that could be a carrier for probiotics. In this study, we observed the influence of storage conditions and product matrixes on the survival of L. rhamnosus GG. Cells of L. rhamnosus GG were inoculated into full fat or reduced fat peanut butter at 10(7) CFU/g. Inoculated peanut butter was stored at 4, 25, or 37 °C for 48 wk. Samples were drawn periodically to determine the populations of L. rhamnosus GG. Results showed that there was no significant decrease in the viable counts of L. rhamnosus GG in products stored 4 °C. The survivability of L. rhamnosus GG decreased with increasing storage temperature and time. Product matrixes did not significantly affect the survival of L. rhamnosus GG except at 37 °C. Populations of L. rhamnosus GG were preserved at >6 logs in products stored at 4 °C for 48 wk and at 25 °C for 23 to 27 wk. At 37 °C, the 6-log level could not be maintained for even 6 wk. The results suggest that peanut butter stored at 4 and 25 °C could serve as vehicles to deliver probiotics. PMID:23106385

  19. Stability of Lactobacillus rhamnosus GG in prebiotic edible films

    PubMed Central

    Soukoulis, Christos; Behboudi-Jobbehdar, Solmaz; Yonekura, Lina; Parmenter, Christopher; Fisk, Ian D.

    2014-01-01

    The concept of prebiotic edible films as effective vehicles for encapsulating probiotic living cells is presented. Four soluble fibres (inulin, polydextrose, glucose-oligosaccharides and wheat dextrin) were selected as prebiotic co-components of gelatine based matrices plasticised with glycerol and used for the immobilisation of Lactobacillusrhamnosus GG. The addition of prebiotics was associated with a more compact and uniform film structure, with no detectable interspaces or micropores; probiotic inclusion did not significantly change the structure of the films. Glucose-oligosaccharides and polydextrose significantly enhanced L. rhamnosus GG viability during air drying (by 300% and 75%, respectively), whilst a 33% and 80% reduction in viable counts was observed for inulin and wheat dextrin. Contrarily, inulin was the most effective at controlling the sub-lethal effects on L. rhamnosus GG during storage. However, in all cases the supplementation of edible films with prebiotics ameliorated the storage stability of L. rhamnosus GG. PMID:24767059

  20. Lactobacillus acidophilus maintained oxidative stress from reproductive organs in collagen-induced arthritic rats

    PubMed Central

    Amdekar, Sarika; Singh, Vinod

    2016-01-01

    CONTEXTS: Nonsteroidal anti-inflammatory drugs (NSAIDs) induced organ damage is a well-known fact. Previous studies suggest that Lactobacillus scavenge the free radicals from liver and kidney and also protect animals from arthritis. AIMS: Comparing protective properties of Lactobacillus acidophilus in reducing oxidative stress from reproductive organs developed during collagen-induced arthritis in animal model. METHODS: Arthritis was induced in Wistar rats. Oral administration of L. acidophilus, indomethacin, and distilled water were all started on the same day. Arthritis scores were calculated for each group. Oxidative stress parameters were estimated in testis and ovary homogenates. Histopathology of ovary and testis was also performed. RESULTS AND CONCLUSION: L. acidophilus decreased arthritis score (P < 0.001) as well as maintained normal histology of reproductive organs. L. acidophilus maintained oxidative stress parameters from ovaries and testis (P < 0.001). These results provide strong evidence that NSAIDs increase oxidative stress in reproductive organs while L. acidophilus not only scavenges free radicals from reproductive organs but also protects rats from arthritis symptoms. PMID:27110077

  1. Antagonistic activity of Lactobacillus acidophilus LA10 against Salmonella enterica serovar Enteritidis SE86 in mice

    PubMed Central

    Scapin, Diane; Grando, Williani Fabiola; Rossi, Eliandra Mirlei; Perez, Karla Joseane; Malheiros, Patrícia da Silva; Tondo, Eduardo Cesar

    2013-01-01

    Salmonella enterica serovar Enteritidis is one of the main pathogens responsible for foodborne illness in Brazil. Probiotic bacteria can play a role in defense and recovery from enteropathogenic infections. In this study, the ability of Lactobacillus acidophilus LA10 to colonise and exert antagonistic effects in the gastrointestinal tract was tested before and during experimental infection in conventional mice contaminated with S. Enteritidis (SE86). A dose of 0.1 mL containing 108 viable cells of SE86 and L. acidophilus LA10 was orally administered by gavage to mice. The experiment was divided into groups. As a negative control, Group 1 was administered only sterile saline solution. As a positive control, Group 2 was administered only SE86. Group 3 was first administered SE86, and after 10 days, treated with L. acidophilus LA10. Group 4 was first administered L. acidophilus LA10, and after 10 days, challenged with SE86. The results demonstrated that a significant number of SE86 cells were able to colonize the gastrointestinal tract of mice, specifically in the colon and ileum. L. acidophilus LA10 demonstrated an antagonistic effect against SE86, with better results observed for Group 3 over Group 4. Thus, L. acidophilus LA10 shows potential antagonistic effects against S. Enteritidis SE86, especially if administered after infection. PMID:24159284

  2. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects.

    PubMed

    Andreasen, Anne Sofie; Larsen, Nadja; Pedersen-Skovsgaard, Theis; Berg, Ronan M G; Møller, Kirsten; Svendsen, Kira Dynnes; Jakobsen, Mogens; Pedersen, Bente Klarlund

    2010-12-01

    According to animal studies, intake of probiotic bacteria may improve glucose homeostasis. We hypothesised that probiotic bacteria improve insulin sensitivity by attenuating systemic inflammation. Therefore, the effects of oral supplementation with the probiotic bacterium Lactobacillus acidophilus NCFM on insulin sensitivity and the inflammatory response were investigated in subjects with normal or impaired insulin sensitivity. In a double-blinded, randomised fashion, forty-five males with type 2 diabetes, impaired or normal glucose tolerance were enrolled and allocated to a 4-week treatment course with either L. acidophilus NCFM or placebo. L. acidophilus was detected in stool samples by denaturating gradient gel electrophoresis and real-time PCR. Separated by the 4-week intervention period, two hyperinsulinaemic-euglycaemic clamps were performed to estimate insulin sensitivity. Furthermore, the systemic inflammatory response was evaluated by subjecting the participants to Escherichia coli lipopolysaccharide injection (0·3 ng/kg) before and after the treatment course. L. acidophilus NCFM was detected in 75 % of the faecal samples after treatment with the probiotic bacterium. Insulin sensitivity was preserved among volunteers in the L. acidophilus NCFM group, whereas it decreased in the placebo group. Both baseline inflammatory markers and the systemic inflammatory response were, however, unaffected by the intervention. In conclusion, intake of L. acidophilus NCFM for 4 weeks preserved insulin sensitivity compared with placebo, but did not affect the systemic inflammatory response. PMID:20815975

  3. The influence of Lactobacillus acidophilus and bacitracin on layer performance of chickens and cholesterol content of plasma and egg yolk.

    PubMed

    Abdulrahim, S M; Haddadin, S Y; Hashlamoun, E A; Robinson, R K

    1996-05-01

    1. The influence of Lactobacillus acidophilus alone or in combination with zinc bacitracin on the performance of laying hens was monitored over a period of 4 months. 2. Lactobacillus acidophilus improved egg production, food conversion and reduced the cholesterol concentration in the eggs, but zinc bacitracin had no effect when administered alone. 3. In combination, bacitracin had an adverse effect on the otherwise beneficial activity of the culture. PMID:8773843

  4. Systemic augmentation of the immune response in mice by feeding fermented milks with Lactobacillus casei and Lactobacillus acidophilus.

    PubMed Central

    Perdigón, G; de Macias, M E; Alvarez, S; Oliver, G; de Ruiz Holgado, A P

    1988-01-01

    This study investigates the effect of feeding fermented milks with Lactobacillus casei, Lactobacillus acidophilus and a mixture of both micro-organisms on the specific and non-specific host defence mechanisms in Swiss mice. Animals fed with fermented milk for 8 days (100 micrograms/day) showed an increase in both phagocytic and lymphocytic activity. This activation of the immune system began on the 3rd day, reached a maximum on the 5th, and decreased slightly on the 8th day of feeding. In the 8-day treated mice, boosted with a single dose (100 micrograms) on the 11th day, the immune response increased further. The feeding with fermented milk produced neither hepatomegaly nor splenomegaly. These results suggest that L. casei and L. acidophilus, associated with intestinal mucosae, can influence the level of activation of the immune system. The possible clinical application of fermented milks as immunopotentiators is also discussed. PMID:3123370

  5. Increased Enterocyte Production in Gnotobiotic Rats Mono-Associated with Lactobacillus rhamnosus GG

    PubMed Central

    Banasaz, M.; Norin, E.; Holma, R.; Midtvedt, T.

    2002-01-01

    There is increasing scientific and commercial interest in using beneficial microorganisms (i.e., probiotics) to enhance intestinal health. Of the numerous microbial strains examined, Lactobacillus rhamnosus GG has been most extensively studied. Daily intake of L. rhamnosus GG shortens the course of rotavirus infection by mechanisms that have not been fully elucidated. Comparative studies with germfree and conventional rats have shown that the microbial status of an animal influences the intestinal cell kinetics and morphology. The present study was undertaken to study whether establishment of L. rhamnosus GG as a mono-associate in germfree rats influences intestinal cell kinetics and morphology. L. rhamnosus GG was easily established in germfree rats. After 3 days of mono-association, the rate of mitoses in the upper part of the small intestine (jejunum 1) increased as much as 14 and 22% compared to the rates in germfree and conventional counterparts, respectively. The most striking alteration in morphology was an increase in the number of cells in the villi. We hypothesis that the compartmentalized effects of L. rhamnosus GG may represent a reparative event for the mucosa. PMID:12039764

  6. In vitro evaluation of antibacterial activity of an herbal dentifrice against Streptococcus mutans and Lactobacillus acidophilus.

    PubMed

    Vyas, Yogesh Kumar; Bhatnagar, Maheep; Sharma, Kanika

    2008-01-01

    Antibacterial activity of a herbal dentifrice Arodent against Streptococcus mutans and Lactobacillus acidophilus was evaluated using Colgate as standard. Both bacterial strains were isolated from the oral cavity on selective media and identified by standard methods. The antibacterial activity was assayed by cup-well method. The bacterial lawn of facultative anaerobe S. mutans was established between two layers of agar under microaerophilic conditions. Five and a half millimeters and 10 mm zones of inhibition were produced by Arodent against S. mutans and L. acidophilus , respectively, under microaerophilic conditions. On the other hand, the standard dentifrice Colgate produced 5.83 mm and 10.17 mm zones of inhibition against S. mutans and L. acidophilus , respectively, under microaerophilic condition. The results suggest that Arodent is an effective antibacterial herbal dentifrice. PMID:18245920

  7. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella

    PubMed Central

    Vilela, Simone FG; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia CA; Anbinder, Ana Lia; Jorge, Antonio OC; Junqueira, Juliana C

    2015-01-01

    Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo. PMID:25654408

  8. The inhibitory effect of a Lactobacillus acidophilus derived biosurfactant on biofilm producer Serratia marcescens

    PubMed Central

    Shokouhfard, Maliheh; Kermanshahi, Rouha Kasra; Shahandashti, Roya Vahedi; Feizabadi, Mohammad Mehdi; Teimourian, Shahram

    2015-01-01

    Objective(s): Serratia marcescens is one of the nosocomial pathogen with the ability to form biofilm which is an important feature in the pathogenesis of S. marcescens. The aim of this study was to determine the anti-adhesive properties of a biosurfactant isolated from Lactobacillus acidophilus ATCC 4356, on S. marcescens strains. Materials and Methods: Lactobacillus acidophilus ATCC 4356 was selected as a probiotic strain for biosurfactant production. Anti-adhesive activities was determined by pre-coating and co- incubating methods in 96-well culture plates. Results: The FTIR analysis of derived biosurfactant revealed the composition as protein component. Due to the release of such biosurfactants, L. acidophilus was able to interfere with the adhesion and biofilm formation of the S. marcescens strains. In co-incubation method, this biosurfactant in 2.5 mg/ml concentration showed anti-adhesive activity against all tested strains of S. marcescens (P<0.05). Conclusion: Our results show that the anti-adhesive properties of L. acidophilus biosurfactant has the potential to be used against microorganisms responsible for infections in the urinary, vaginal and gastrointestinal tracts, as well as skin, making it a suitable alternative to conventional antibiotics. PMID:26730335

  9. The protective effect of recombinant FomA-expressing Lactobacillus acidophilus against periodontal infection.

    PubMed

    Ma, Li; Ding, Qinfeng; Feng, Xiping; Li, Fei

    2013-10-01

    A number of studies have shown that the outer membrane protein FomA found in Fusobacterium nucleatum demonstrates great potential as an immune target for combating periodontitis. Lactobacillus acidophilus is a useful antigen delivery vehicle for mucosal immunisation, and previous studies by our group have shown that L. acidophilus acts as a protective factor in periodontal health. In this study, making use of the immunogenicity of FomA and the probiotic properties of L. acidophilus, we constructed a recombinant form of L. acidophilus expressing the FomA protein and detected the FomA-specific IgG in the serum and sIgA in the saliva of mice through oral administration with the recombinant strains. When serum containing FomA-specific antibodies was incubated with the F. nucleatum in vitro, the number of Porphyromonas gingivalis cells that coaggregated with the F. nucleatum cells was significantly reduced. Furthermore, a mouse gum abscess model was successfully generated, and the range of gingival abscesses in the immune mice was relatively limited compared with the control group. The level of IL-1β in the serum and local gum tissues of the immune mice was consistently lower than in the control group. Our findings indicated that oral administration of the recombinant L. acidophilus reduced the risk of periodontal infection with P. gingivalis and F. nucleatum. PMID:23644821

  10. Correlation of Lactobacillus rhamnosus Genotypes and Carbohydrate Utilization Signatures Determined by Phenotype Profiling.

    PubMed

    Ceapa, Corina; Lambert, Jolanda; van Limpt, Kees; Wels, Michiel; Smokvina, Tamara; Knol, Jan; Kleerebezem, Michiel

    2015-08-15

    Lactobacillus rhamnosus is a bacterial species commonly colonizing the gastrointestinal (GI) tract of humans and also frequently used in food products. While some strains have been studied extensively, physiological variability among isolates of the species found in healthy humans or their diet is largely unexplored. The aim of this study was to characterize the diversity of carbohydrate utilization capabilities of human isolates and food-derived strains of L. rhamnosus in relation to their niche of isolation and genotype. We investigated the genotypic and phenotypic diversity of 25 out of 65 L. rhamnosus strains from various niches, mainly human feces and fermented dairy products. Genetic fingerprinting of the strains by amplified fragment length polymorphism (AFLP) identified 11 distinct subgroups at 70% similarity and suggested niche enrichment within particular genetic clades. High-resolution carbohydrate utilization profiling (OmniLog) identified 14 carbon sources that could be used by all of the strains tested for growth, while the utilization of 58 carbon sources differed significantly between strains, enabling the stratification of L. rhamnosus strains into three metabolic clusters that partially correlate with the genotypic clades but appear uncorrelated with the strain's origin of isolation. Draft genome sequences of 8 strains were generated and employed in a gene-trait matching (GTM) analysis together with the publicly available genomes of L. rhamnosus GG (ATCC 53103) and HN001 for several carbohydrates that were distinct for the different metabolic clusters: l-rhamnose, cellobiose, l-sorbose, and α-methyl-d-glucoside. From the analysis, candidate genes were identified that correlate with l-sorbose and α-methyl-d-glucoside utilization, and the proposed function of these genes could be confirmed by heterologous expression in a strain lacking the genes. This study expands our insight into the phenotypic and genotypic diversity of the species L. rhamnosus

  11. Correlation of Lactobacillus rhamnosus Genotypes and Carbohydrate Utilization Signatures Determined by Phenotype Profiling

    PubMed Central

    Lambert, Jolanda; van Limpt, Kees; Wels, Michiel; Smokvina, Tamara; Knol, Jan; Kleerebezem, Michiel

    2015-01-01

    Lactobacillus rhamnosus is a bacterial species commonly colonizing the gastrointestinal (GI) tract of humans and also frequently used in food products. While some strains have been studied extensively, physiological variability among isolates of the species found in healthy humans or their diet is largely unexplored. The aim of this study was to characterize the diversity of carbohydrate utilization capabilities of human isolates and food-derived strains of L. rhamnosus in relation to their niche of isolation and genotype. We investigated the genotypic and phenotypic diversity of 25 out of 65 L. rhamnosus strains from various niches, mainly human feces and fermented dairy products. Genetic fingerprinting of the strains by amplified fragment length polymorphism (AFLP) identified 11 distinct subgroups at 70% similarity and suggested niche enrichment within particular genetic clades. High-resolution carbohydrate utilization profiling (OmniLog) identified 14 carbon sources that could be used by all of the strains tested for growth, while the utilization of 58 carbon sources differed significantly between strains, enabling the stratification of L. rhamnosus strains into three metabolic clusters that partially correlate with the genotypic clades but appear uncorrelated with the strain's origin of isolation. Draft genome sequences of 8 strains were generated and employed in a gene-trait matching (GTM) analysis together with the publicly available genomes of L. rhamnosus GG (ATCC 53103) and HN001 for several carbohydrates that were distinct for the different metabolic clusters: l-rhamnose, cellobiose, l-sorbose, and α-methyl-d-glucoside. From the analysis, candidate genes were identified that correlate with l-sorbose and α-methyl-d-glucoside utilization, and the proposed function of these genes could be confirmed by heterologous expression in a strain lacking the genes. This study expands our insight into the phenotypic and genotypic diversity of the species L. rhamnosus

  12. Strain-Specific Identification of Probiotic Lactobacillus rhamnosus with Randomly Amplified Polymorphic DNA-Derived PCR Primers

    PubMed Central

    Tilsala-Timisjärvi, Anu; Alatossava, Tapani

    1998-01-01

    In the present work, strain-specific PCR primers for Lactobacillus rhamnosus Lc 1/3 are described. The randomly amplified polymorphic DNA (RAPD) technique was used to produce potential strain-specific markers. They were screened for specificity by hybridization with DNA from 11 L. rhamnosus strains. A 613-bp RAPD marker found to be strain-specific was sequenced, and a primer pair specific to L. rhamnosus Lc 1/3 was constructed based on the sequence. The primer pair was tested with 11 Lactobacillus species and 11 L. rhamnosus strains and was found to be strain specific. The nucleotide sequence of the specific RAPD marker was found to contain part of a protein encoding region which showed significant similarity to several transposases for insertion sequence elements of various bacteria, including other lactic acid bacterium species. PMID:9835567

  13. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt.

    PubMed

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage. PMID:25650127

  14. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt

    PubMed Central

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage. PMID:25650127

  15. Whole-Cell Biocatalysis for Producing Ginsenoside Rd from Rb1 Using Lactobacillus rhamnosus GG.

    PubMed

    Ku, Seockmo; You, Hyun Ju; Park, Myeong Soo; Ji, Geun Eog

    2016-07-28

    Ginsenosides are the major active ingredients in ginseng used for human therapeutic plant medicines. One of the most well-known probiotic bacteria among the various strains on the functional food market is Lactobacillus rhamnosus GG. Biocatalytic methods using probiotic enzymes for producing deglycosylated ginsenosides such as Rd have a growing significance in the functional food industry. The addition of 2% cellobiose (w/v) to glucose-free de Man-Rogosa-Sharpe broths notably induced β-glucosidase production from L. rhamnosus GG. Enzyme production and activity were optimized at a pH, temperature, and cellobiose concentration of 6.0, 40°C, and 2% (w/v), respectively. Under these controlled conditions, β-glucosidase production in L. rhamnosus GG was enhanced by 25-fold. Additionally, whole-cell homogenates showed the highest β-glucosidase activity when compared with disrupted cell suspensions; the cell disruption step significantly decreased the β-glucosidase activity. Based on the optimized enzyme conditions, whole-cell L. rhamnosus GG was successfully used to convert ginsenoside Rb1 into Rd. PMID:27012233

  16. Bifidobacterium bifidum actively changes the gene expression profile induced by Lactobacillus acidophilus in murine dendritic cells.

    PubMed

    Weiss, Gudrun; Rasmussen, Simon; Nielsen Fink, Lisbeth; Jarmer, Hanne; Nøhr Nielsen, Birgit; Frøkiaer, Hanne

    2010-01-01

    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium bifidum Z9. L. acidophilus NCFM strongly induced expression of interferon (IFN)-beta, other virus defence genes, and cytokine and chemokine genes related to the innate and the adaptive immune response. By contrast, B. bifidum Z9 up-regulated genes encoding cytokines and chemokines related to the innate immune response. Moreover, B. bifidum Z9 inhibited the expression of the Th1-promoting genes induced by L. acidophilus NCFM and had an additive effect on genes of the innate immune response and Th2 skewing genes. The gene encoding Jun dimerization protein 2 (JDP2), a transcription factor regulating the activation of JNK, was one of the few genes only induced by B. bifidum Z9. Neutralization of IFN-beta abrogated L. acidophilus NCFM-induced expression of Th1-skewing genes, and blocking of the JNK pathway completely inhibited the expression of IFN-beta. Our results indicate that B. bifidum Z9 actively inhibits the expression of genes related to the adaptive immune system in murine dendritic cells and that JPD2 via blocking of IFN-beta plays a central role in this regulatory mechanism. PMID:20548777

  17. Transcriptomic clues to understand the growth of Lactobacillus rhamnosus in cheese

    PubMed Central

    2014-01-01

    Background Lactobacillus rhamnosus is a non-starter lactic acid bacterium that plays a significant role during cheese ripening, leading to the formation of flavor. In long-ripened cheeses it persists throughout the whole time of ripening due to its capacity to adapt to changing environmental conditions. The versatile adaptability of L. rhamnosus to different ecosystems has been associated with the capacity to use non-conventional energy sources, regulating different metabolic pathways. However, the molecular mechanisms allowing the growth of L. rhamnosus in the cheese dairy environment are still poorly understood. The aim of the present study was to identify genes potentially contributing to the growth ability of L. rhamnosus PR1019 in cheese-like medium (CB) using a transcriptomic approach, based on cDNA-amplified fragment length polymorphism (cDNA-AFLP) and quantitative real-time reverse transcription-PCR (qPCR). Results Using three primer combinations, a total of 89 and 98 transcript-derived fragments were obtained for L. rhamnosus PR1019 grown in commercial MRS medium and CB, respectively. The cDNA-AFLP results were validated on selected regulated genes by qPCR. In order to investigate the main adaptations to growth in a cheese-mimicking system, we focused on 20 transcripts over-expressed in CB with respect to MRS. It is worth noting the presence of transcripts involved in the degradation of pyruvate and ribose. Pyruvate is a intracellular metabolite that can be produced through different metabolic routes starting from the carbon sources present in cheese, and can be released in the cheese matrix with the starter lysis. Similarly the ribonucleosides released with starter lysis could deliver ribose that represents a fermentable carbohydrate in environments, such as cheese, where free carbohydrates are lacking. Both pyruvate degradation and ribose catabolism induce a metabolite flux toward acetate, coupled with ATP production via acetate kinase. Taking into

  18. Effects of yogurt starter cultures on the survival of Lactobacillus acidophilus.

    PubMed

    Ng, Elizabeth W; Yeung, Marie; Tong, Phillip S

    2011-01-31

    Recognized to confer health benefits to consumers, probiotics such as Lactobacillus acidophilus are commonly incorporated into fermented dairy products worldwide; among which yogurt is a popular delivery vehicle. To materialize most of the putative health benefits associated with probiotics, an adequate amount of viable cells must be delivered at the time of consumption. However, the loss in their viabilities during refrigerated storage has been demonstrated previously. This study focused on the effects of yogurt starter cultures on the survival of five strains of L. acidophilus, with emphases on low pH and acid production. Differential survival behavior between L. acidophilus strains was further analyzed. To this end, viable cell counts of L. acidophilus were determined weekly during 4°C storage in various types of yogurts made with Streptococcus thermophilus alone, L. delbrueckii ssp. bulgaricus alone, both species of the starter cultures, or glucono-delta-lactone (GDL). All yogurt types, except for pasteurized yogurts, were co-fermented with L. acidophilus. Yogurt filtrate was analyzed for the presence of any inhibitory substance and for the amount of hydrogen peroxide. Multiplication of L. acidophilus was not affected by the starter cultures as all strains reached high level on day 0 of the storage period. Throughout the 28-day storage period, cell counts of L. acidophilus PIM703 and SBT2062 remained steady (~6 × 10(7)CFU/g) in yogurts made with both starter cultures, whereas those of ATCC 700396 and NCFM were reduced by a maximum of 3 and 4.6 logs, respectively. When starter cultures were replaced by GDL, all strains survived well, suggesting that a low pH was not a critical factor dictating their survival. In addition, the filtrate collected from yogurts made with starter cultures appeared to have higher inhibitory activities against L. acidophilus than that made with GDL. The presence of viable starter cultures was necessary to adversely affect the

  19. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions.

    PubMed

    Konstantinov, Sergey R; Smidt, Hauke; de Vos, Willem M; Bruijns, Sven C M; Singh, Satwinder Kaur; Valence, Florence; Molle, Daniel; Lortal, Sylvie; Altermann, Eric; Klaenhammer, Todd R; van Kooyk, Yvette

    2008-12-01

    Dendritic cells (DCs) are antigen-presenting cells that play an essential role in mucosal tolerance. They regularly encounter beneficial intestinal bacteria, but the nature of these cellular contacts and the immune responses elicited by the bacteria are not entirely elucidated. Here, we examined the interactions of Lactobacillus acidophilus NCFM and its cell surface compounds with DCs. L. acidophilus NCFM attached to DCs and induced a concentration-dependent production of IL-10, and low IL-12p70. We further demonstrated that the bacterium binds to DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), a DC- specific receptor. To identify the DC-SIGN ligand present on the bacterium, we took advantage of a generated array of L. acidophilus NCFM mutants. A knockout mutant of L. acidophilus NCFM lacking the surface (S) layer A protein (SlpA) was significantly reduced in binding to DC-SIGN. This mutant incurred a chromosomal inversion leading to dominant expression of a second S layer protein, SlpB. In the SlpB-dominant strain, the nature of the interaction of this bacterium with DCs changed dramatically. Higher concentrations of proinflammatory cytokines such as IL-12p70, TNFalpha, and IL-1beta were produced by DCs interacting with the SlpB-dominant strain compared with the parent NCFM strain. Unlike the SlpA-knockout mutant, T cells primed with L. acidophilus NCFM stimulated DCs produced more IL-4. The SlpA-DC-SIGN interaction was further confirmed as purified SlpA protein ligated directly to the DC-SIGN. In conclusion, the major S layer protein, SlpA, of L. acidophilus NCFM is the first probiotic bacterial DC-SIGN ligand identified that is functionally involved in the modulation of DCs and T cells functions. PMID:19047644

  20. Functional Characterization of a Mucus-Specific LPXTG Surface Adhesin from Probiotic Lactobacillus rhamnosus GG ▿

    PubMed Central

    von Ossowski, Ingemar; Satokari, Reetta; Reunanen, Justus; Lebeer, Sarah; De Keersmaecker, Sigrid C. J.; Vanderleyden, Jos; de Vos, Willem M.; Palva, Airi

    2011-01-01

    In spite of the wealth of clinical evidence supporting the health benefits of Lactobacillus rhamnosus GG in humans, there is still a lack of understanding of the molecular mechanisms behind its probiosis. Current knowledge suggests that the health-promoting effects of this probiotic strain might be partly dependent on its persistence in the intestine and adhesion to mucosal surfaces. Moreover, L. rhamnosus GG contains mucus-binding pili that might also explain the occupation of its ecological niche as a comparatively less stringent allochthonous intestine-dwelling bacterium. To uncover additional surface proteins involved in mucosal adhesion, we investigated the adherence properties of the only predicted protein (LGG_02337) in L. rhamnosus GG that exhibits homology with a known mucus-binding domain. We cloned a recombinant form of the gene for this putative mucus adhesin and established that the purified protein readily adheres to human intestinal mucus. We also showed that this mucus adhesin is visibly distributed throughout the cell surface and participates in the adhesive interaction between L. rhamnosus GG and mucus, although less prominently than the mucus-binding pili in this strain. Based on primary structural comparisons, we concluded that the current annotation of the LGG_02337 protein likely does not accurately reflect its predicted properties, and we propose that this mucus-specific adhesin be called the mucus-binding factor (MBF). Finally, we interpret our results to mean that L. rhamnosus GG MBF, as an active mucus-specific surface adhesin with a presumed ancillary involvement in pilus-mediated mucosal adhesion, plays a part in the adherent mechanisms during intestinal colonization by this probiotic. PMID:21602388

  1. Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG.

    PubMed

    von Ossowski, Ingemar; Satokari, Reetta; Reunanen, Justus; Lebeer, Sarah; De Keersmaecker, Sigrid C J; Vanderleyden, Jos; de Vos, Willem M; Palva, Airi

    2011-07-01

    In spite of the wealth of clinical evidence supporting the health benefits of Lactobacillus rhamnosus GG in humans, there is still a lack of understanding of the molecular mechanisms behind its probiosis. Current knowledge suggests that the health-promoting effects of this probiotic strain might be partly dependent on its persistence in the intestine and adhesion to mucosal surfaces. Moreover, L. rhamnosus GG contains mucus-binding pili that might also explain the occupation of its ecological niche as a comparatively less stringent allochthonous intestine-dwelling bacterium. To uncover additional surface proteins involved in mucosal adhesion, we investigated the adherence properties of the only predicted protein (LGG_02337) in L. rhamnosus GG that exhibits homology with a known mucus-binding domain. We cloned a recombinant form of the gene for this putative mucus adhesin and established that the purified protein readily adheres to human intestinal mucus. We also showed that this mucus adhesin is visibly distributed throughout the cell surface and participates in the adhesive interaction between L. rhamnosus GG and mucus, although less prominently than the mucus-binding pili in this strain. Based on primary structural comparisons, we concluded that the current annotation of the LGG_02337 protein likely does not accurately reflect its predicted properties, and we propose that this mucus-specific adhesin be called the mucus-binding factor (MBF). Finally, we interpret our results to mean that L. rhamnosus GG MBF, as an active mucus-specific surface adhesin with a presumed ancillary involvement in pilus-mediated mucosal adhesion, plays a part in the adherent mechanisms during intestinal colonization by this probiotic. PMID:21602388

  2. Adhesion of human Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells.

    PubMed

    Chauvière, G; Coconnier, M H; Kernéis, S; Fourniat, J; Servin, A L

    1992-08-01

    Twenty-five strains of lactobacilli were tested for their ability to adhere to human enterocyte-like Caco-2 cells in culture. Seven Lactobacillus strains adhered well to the Caco-2 cells, of which three possessed calcium-independent adhesion properties. A high level of calcium-independent adhesion was observed with the human stool isolate Lactobacillus acidophilus strain LB. Scanning electron microscopy revealed that this strain adhered to the apical brush border of the cells. Adhesion increased in parallel with the morphological and functional differentiation of the Caco-2 cells. Two Lactobacillus components were involved in this adhesion. One was protease-resistant and bacterial-surface-associated; the other was heat-stable, extracellular and protease-sensitive. PMID:1527509

  3. Effect of Bile Salt Hydrolase Inhibitors on a Bile Salt Hydrolase from Lactobacillus acidophilus.

    PubMed

    Lin, Jun; Negga, Rekek; Zeng, Ximin; Smith, Katie

    2014-01-01

    Bile salt hydrolase (BSH), a widely distributed function of the gut microbiota, has a profound impact on host lipid metabolism and energy harvest. Recent studies suggest that BSH inhibitors are promising alternatives to antibiotic growth promoters (AGP) for enhanced animal growth performance and food safety. Using a high-purity BSH from Lactobacillus salivarius strain, we have identified a panel of BSH inhibitors. However, it is still unknown if these inhibitors also effectively inhibit the function of the BSH enzymes from other bacterial species with different sequence and substrate spectrum. In this study, we performed bioinformatics analysis and determined the inhibitory effect of identified BSH inhibitors on a BSH from L. acidophilus. Although the L. acidophilus BSH is phylogenetically distant from the L. salivarius BSH, sequence analysis and structure modeling indicated the two BSH enzymes contain conserved, catalytically important amino residues and domain. His-tagged recombinant BSH from L. acidophilus was further purified and used to determine inhibitory effect of specific compounds. Previously identified BSH inhibitors also exhibited potent inhibitory effects on the L. acidophilus BSH. In conclusion, this study demonstrated that the BSH from L. salivarius is an ideal candidate for screening BSH inhibitors, the promising alternatives to AGP for enhanced feed efficiency, growth performance and profitability of food animals. PMID:25526498

  4. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM

    PubMed Central

    Hymes, Jeffrey P.; Johnson, Brant R.; Barrangou, Rodolphe

    2016-01-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified in Lactobacillus acidophilus NCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on the in silico detection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) in L. acidophilus NCFM, an fbpB-deficient strain was constructed. The L. acidophilus mutant with a deletion of fbpB lost the ability to adhere to mucin and fibronectin in vitro. Homologues of fbpB were identified in five additional putative S-layer-forming species, but no homologues were detected in species outside the L. acidophilus homology group. PMID:26921419

  5. Combined effect of Lactobacillus acidophilus and β-cyclodextrin on serum cholesterol in pigs.

    PubMed

    Alonso, L; Fontecha, J; Cuesta, P

    2016-01-14

    A total of twenty-four Yorkshire gilt pigs of 6-7 weeks of age were used in a 2×2 factorial experiment to determine the individual and combined effects of the inclusion of two dietary factors (cholesterol rich, 3% β-cyclodextrin (BCD) and Lactobacillus acidophilus cultures) on total cholesterol and LDL-cholesterol levels in blood serum. Pigs were assigned randomly to treatment groups (n 6). Total serum cholesterol concentrations decreased after 3 weeks in all the experimental treatment groups, including diets with BCD, L. acidophilus or both. Similar trends were observed for serum LDL-cholesterol concentrations among the experimental treatments. No statistically significant differences from the control group were observed in either total serum cholesterol or LDL-cholesterol concentrations (P<0·05) for each of the individual treatment groups: BCD or L. acidophilus. However, significant differences in total serum cholesterol concentrations were observed when comparing the combined treatment group (BCD and L. acidophilus) with the control group, which consisted of a basal diet and sterile milk. The combined treatment group exhibited 17·9% lower total serum cholesterol concentration after 3 weeks. Similar significant differences were observed when comparing the combined effect experimental group with the control group after 3 weeks. The combined treatment group exhibited 27·9% lower serum LDL-cholesterol concentrations. PMID:26467089

  6. Orthogonal array deciphering MRS medium requirements for isolated Lactobacillus rhamnosus ZY with cell properties characterization.

    PubMed

    Zhang, Yu; Ng, I-Son; Yao, Chuanyi; Lu, Yinghua

    2014-09-01

    Lactobacillus rhamnosus is a well-known lactic acid bacterium (LAB), but a new ZY strain was isolated for the first time from commercial probiotic powder recently. Although many studies have focused on developing cost-effective media for the production of LAB, the de Man, Rogosa and Sharpe (MRS) medium is still the most common medium for bioprocesses. The aim of the current study is to decipher the composition of MRS based on a statistical approach, which will allow a higher biomass of Lactobacillus to be obtained. In Taguchi's approach, an L27 orthogonal array was adopted to evaluate the significance of 10 ingredients in MRS, in which the effects of the components were ranked according to their effect on biomass at OD600 as dextrose > MnSO4·H2O > beef extract > CH3COONa > MgSO4 > yeast extract > proteose peptone > K2HPO4 > ammonium citrate > Tween 80. Although the individual trace elements of ammonium citrate, K2HPO4, CH3COONa and MgSO4 in MRS had an insignificant influence on the biomass after statistical analysis, the total elimination of trace elements would predominantly affect the cell growth of Lactobacillus. Further characterization of the cell properties through attenuated total reflectance of Fourier transform infrared (ATR-FTIR) spectroscopy and protein identification via SDS-PAGE coupled with tandem mass spectrometry implied that dextrose as major carbon source in MRS played the most crucial role for L. rhamnosus production. PMID:24721122

  7. L-Lactic Acid Production by Lactobacillus rhamnosus ATCC 10863

    PubMed Central

    Senedese, Ana Lívia Chemeli; Maciel Filho, Rubens; Maciel, Maria Regina Wolf

    2015-01-01

    Lactic acid has been shown to have the most promising application in biomaterials as poly(lactic acid). L. rhamnosus ATCC 10863 that produces L-lactic acid was used to perform the fermentation and molasses was used as substrate. A solution containing 27.6 g/L of sucrose (main composition of molasses) and 3.0 g/L of yeast extract was prepared, considering the final volume of 3,571 mL (14.0% (v/v) inoculum). Batch and fed batch fermentations were performed with temperature of 43.4°C and pH of 5.0. At the fed batch, three molasses feed were applied at 12, 24, and 36 hours. Samples were taken every two hours and the amounts of lactic acid, sucrose, glucose, and fructose were determined by HPLC. The sucrose was barely consumed at both processes; otherwise the glucose and fructose were almost entirely consumed. 16.5 g/L of lactic acid was produced at batch and 22.0 g/L at fed batch. Considering that lactic acid was produced due to the low concentration of the well consumed sugars, the final amount was considerable. The cell growth was checked and no substrate inhibition was observed. A sucrose molasses hydrolysis is suggested to better avail the molasses fermentation with this strain, surely increasing the L-lactic acid. PMID:25922852

  8. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice.

    PubMed

    Huang, Ying; Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-12-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE(-/-)) mice. Eight-week-old ApoE(-/-) mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE(-/-) mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P < 0.05) higher in the L. acidophilus ATCC 4356 treatment groups than in the control groups. Furthermore, L. acidophilus ATCC 4356 was detected in the rat small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis. PMID:25261526

  9. Lactobacillus acidophilus ATCC 4356 Prevents Atherosclerosis via Inhibition of Intestinal Cholesterol Absorption in Apolipoprotein E-Knockout Mice

    PubMed Central

    Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-01-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE−/−) mice. Eight-week-old ApoE−/− mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE−/− mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P < 0.05) higher in the L. acidophilus ATCC 4356 treatment groups than in the control groups. Furthermore, L. acidophilus ATCC 4356 was detected in the rat small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis. PMID:25261526

  10. Development of a Tiered Multilocus Sequence Typing Scheme for Members of the Lactobacillus acidophilus Complex

    PubMed Central

    Ramachandran, Padmini; Lacher, David W.; Pfeiler, Erika A.

    2013-01-01

    Members of the Lactobacillus acidophilus complex are associated with functional foods and dietary supplements because of purported health benefits they impart to the consumer. Many characteristics of these microorganisms are reported to be strain specific. Therefore, proper strain typing is essential for safety assessment and product labeling, and also for monitoring strain integrity for industrial production purposes. Fifty-two strains of the L. acidophilus complex (L. acidophilus, L. amylovorus, L. crispatus, L. gallinarum, L. gasseri, and L. johnsonii) were genotyped using two established methods and compared to a novel multilocus sequence typing (MLST) scheme. PCR restriction fragment length polymorphism (PCR-RFLP) analysis of the hsp60 gene with AluI and TaqI successfully clustered 51 of the 52 strains into the six species examined, but it lacked strain-level discrimination. Random amplified polymorphic DNA PCR (RAPD-PCR) targeting the M13 sequence resulted in highly discriminatory profiles but lacked reproducibility. In this study, an MLST scheme was developed using the conserved housekeeping genes fusA, gpmA, gyrA, gyrB, lepA, pyrG, and recA, which identified 40 sequence types that successfully clustered all of the strains into the six species. Analysis of the observed alleles suggests that nucleotide substitutions within five of the seven MLST loci have reached saturation, a finding that emphasizes the highly diverse nature of the L. acidophilus complex and our unconventional application of a typically intraspecies molecular typing tool. Our MLST results indicate that this method could be useful for characterization and strain discrimination of a multispecies complex, with the potential for taxonomic expansion to a broader collection of Lactobacillus species. PMID:24038697

  11. Development of a tiered multilocus sequence typing scheme for members of the Lactobacillus acidophilus complex.

    PubMed

    Ramachandran, Padmini; Lacher, David W; Pfeiler, Erika A; Elkins, Christopher A

    2013-12-01

    Members of the Lactobacillus acidophilus complex are associated with functional foods and dietary supplements because of purported health benefits they impart to the consumer. Many characteristics of these microorganisms are reported to be strain specific. Therefore, proper strain typing is essential for safety assessment and product labeling, and also for monitoring strain integrity for industrial production purposes. Fifty-two strains of the L. acidophilus complex (L. acidophilus, L. amylovorus, L. crispatus, L. gallinarum, L. gasseri, and L. johnsonii) were genotyped using two established methods and compared to a novel multilocus sequence typing (MLST) scheme. PCR restriction fragment length polymorphism (PCR-RFLP) analysis of the hsp60 gene with AluI and TaqI successfully clustered 51 of the 52 strains into the six species examined, but it lacked strain-level discrimination. Random amplified polymorphic DNA PCR (RAPD-PCR) targeting the M13 sequence resulted in highly discriminatory profiles but lacked reproducibility. In this study, an MLST scheme was developed using the conserved housekeeping genes fusA, gpmA, gyrA, gyrB, lepA, pyrG, and recA, which identified 40 sequence types that successfully clustered all of the strains into the six species. Analysis of the observed alleles suggests that nucleotide substitutions within five of the seven MLST loci have reached saturation, a finding that emphasizes the highly diverse nature of the L. acidophilus complex and our unconventional application of a typically intraspecies molecular typing tool. Our MLST results indicate that this method could be useful for characterization and strain discrimination of a multispecies complex, with the potential for taxonomic expansion to a broader collection of Lactobacillus species. PMID:24038697

  12. Lectin-Like Molecules of Lactobacillus rhamnosus GG Inhibit Pathogenic Escherichia coli and Salmonella Biofilm Formation

    PubMed Central

    Petrova, Mariya I.; Imholz, Nicole C. E.; Verhoeven, Tine L. A.; Balzarini, Jan; Van Damme, Els J. M.; Schols, Dominique; Vanderleyden, Jos; Lebeer, Sarah

    2016-01-01

    Objectives Increased antibiotic resistance has catalyzed the research on new antibacterial molecules and alternative strategies, such as the application of beneficial bacteria. Since lectin molecules have unique sugar-recognizing capacities, and pathogens are often decorated with sugars that affect their survival and infectivity, we explored whether lectins from the probiotic strain Lactobacillus rhamnosus GG have antipathogenic properties. Methods The genome sequence of L. rhamnosus GG was screened for the presence of lectin-like proteins. Two genes, LGG_RS02780 and LGG_RS02750, encoding for polypeptides with an N-terminal conserved L-type lectin domain were detected and designated Llp1 (lectin-like protein 1) and Llp2. The capacity of Llp1 and Llp2 to inhibit biofilm formation of various pathogens was investigated. Sugar specificity was determined by Sepharose beads assays and glycan array screening. Results The isolated lectin domains of Llp1 and Llp2 possess pronounced inhibitory activity against biofilm formation by various pathogens, including clinical Salmonella species and uropathogenic E. coli, with Llp2 being more active than Llp1. In addition, sugar binding assays with Llp1 and Llp2 indicate specificity for complex glycans. Both proteins are also involved in the adhesion capacity of L. rhamnosus GG to gastrointestinal and vaginal epithelial cells. Conclusions Lectins isolated from or expressed by beneficial lactobacilli could be considered promising bio-active ingredients for improved prophylaxis of urogenital and gastrointestinal infections. PMID:27537843

  13. Unique secreted–surface protein complex of Lactobacillus rhamnosus, identified by phage display

    PubMed Central

    Gagic, Dragana; Wen, Wesley; Collett, Michael A; Rakonjac, Jasna

    2013-01-01

    Proteins are the most diverse structures on bacterial surfaces; hence, they are candidates for species- and strain-specific interactions of bacteria with the host, environment, and other microorganisms. Genomics has decoded thousands of bacterial surface and secreted proteins, yet the function of most cannot be predicted because of the enormous variability and a lack of experimental data that would allow deduction of function through homology. Here, we used phage display to identify a pair of interacting extracellular proteins in the probiotic bacterium Lactobacillus rhamnosus HN001. A secreted protein, SpcA, containing two bacterial immunoglobulin-like domains type 3 (Big-3) and a domain distantly related to plant pathogen response domain 1 (PR-1-like) was identified by screening of an L. rhamnosus HN001 library using HN001 cells as bait. The SpcA-“docking” protein, SpcB, was in turn detected by another phage display library screening, using purified SpcA as bait. SpcB is a 3275-residue cell-surface protein that contains general features of large glycosylated Serine-rich adhesins/fibrils from gram-positive bacteria, including the hallmark signal sequence motif KxYKxGKxW. Both proteins are encoded by genes within a L. rhamnosus-unique gene cluster that distinguishes this species from other lactobacilli. To our knowledge, this is the first example of a secreted-docking protein pair identified in lactobacilli. PMID:23233310

  14. Effect of Lactobacillus acidophilus KFRI342 on the development of chemically induced precancerous growths in the rat colon.

    PubMed

    Chang, Jin-Hee; Shim, Youn Young; Cha, Seong-Kwan; Reaney, Martin J T; Chee, Kew Mahn

    2012-03-01

    Lactobacillus acidophilus KFRI342, isolated from the Korean traditional food kimchi, was investigated for its suitability as a dietary probiotic. The effects of L. acidophilus KFRI342 on the development of chemically induced (1,2-dimethylhydrazine; DMH) precancerous cytological changes of the colon were investigated in rats. Forty-five male F344 rats were randomly divided into three dietary groups. The control group received a high-fat diet (HF), a second group received a high-fat diet containing the carcinogen (HFC), and a final group received a high-fat diet containing the carcinogen and L. acidophilus KFRI342 (HFCL). L. acidophilus KFRI342 was administered orally three times per week at 2×10(9) c.f.u. ml(-1). L. acidophilus KFRI342 treatments decreased the number of Escherichia coli in faecal samples, the enzyme activities of β-glucuronidase and β-glucosidase, and plasma triglyceride concentration compared to the HF and HFC treatments (P<0.05). L. acidophilus KFRI342 consumption also decreased the ratio of aberrant crypts to aberrant crypt foci incidence and the number of aberrant crypts in HFCL rats. Therefore, L. acidophilus showed potential probiotic activity as an inhibitor of DMH-induced symptoms in live rats. Our in vivo studies indicate that L. acidophilus from kimchi may be suitable as a probiotic for human use. PMID:22034161

  15. Prebiotic Effects of Agave salmiana Fructans in Lactobacillus acidophilus and Bifidobacterium lactis Cultures.

    PubMed

    Castro-Zavala, Adriana; Juárez-Flores, Bertha I; Pinos-Rodríguez, Juan M; Delgado-Portales, Rosa E; Aguirre-Rivera, Juan R; Alcocer-Gouyonnet, Francisco

    2015-11-01

    Agave salmiana is a fructan rich species that is widely distributed in Mexico. The aim of this investigation was to extract the fructans of A. salmiana and evaluate their prebiotic effect in 48 hours in vitro cultures of Bifidobacterium lactis and Lactobacillus acidophilus and to compare this effect with other available fructan sources. A significant difference in pH, optical density and biomass was found in the cultures depending on the source of fructans and the type of bacteria. It was possible to determine a dose-response effect of the A. salmiana fructans and the growth of the studied strains. PMID:26749843

  16. The growth of Gardnerella vaginalis and Lactobacillus acidophilus in Sorbarod biofilms.

    PubMed

    Muli, F W; Struthers, J K

    1998-05-01

    Sorbarod biofilms were investigated for their suitability in establishing continuous culture biofilms for the study of bacterial vaginosis. Two important organisms in the condition, Gardnerella vaginalis and Lactobacillus acidophilus, were studied. In contrast to growth in broth culture, both organisms were maintained for at least 96 h in a steady state on the biofilms. With G. vaginalis, the haemolytic activity was consistently maintained in the biofilms in contrast to short-term activity in broth culture which matched the bacterial titre. The simple Sorbarod system appears to be suitable for studying the growth conditions of bacteria in continuous culture and has potential for investigating interactions between micro-organisms. PMID:9879940

  17. Analysis of the human intestinal epithelial cell transcriptional response to Lactobacillus acidophilus, Lactobacillus salivarius, Bifidobacterium lactis and Escherichia coli.

    PubMed

    Putaala, H; Barrangou, R; Leyer, G J; Ouwehand, A C; Hansen, E Bech; Romero, D A; Rautonen, N

    2010-09-01

    The complex microbial population residing in the human gastrointestinal tract consists of commensal, potential pathogenic and beneficial species, which are probably perceived differently by the host and consequently could be expected to trigger specific transcriptional responses. Here, we provide a comparative analysis of the global in vitro transcriptional response of human intestinal epithelial cells to Lactobacillus acidophilus NCFM™, Lactobacillus salivarius Ls-33, Bifidobacterium animalis subsp. lactis 420, and enterohaemorrhagic Escherichia coli O157:H7 (EHEC). Interestingly, L. salivarius Ls-33 DCE-induced changes were overall more similar to those of B. lactis 420 than to L. acidophilus NCFM™, which is consistent with previously observed in vivo immunomodulation properties. In the gene ontology and pathway analyses both specific and unspecific changes were observed. Common to all was the regulation of apoptosis and adipogenesis, and lipid-metabolism related regulation by the probiotics. Specific changes such as regulation of cell-cell adhesion by B. lactis 420, superoxide metabolism by L. salivarius Ls-33, and regulation of MAPK pathway by L. acidophilus NCFM™ were noted. Furthermore, fundamental differences were observed between the pathogenic and probiotic treatments in the Toll-like receptor pathway, especially for adapter molecules with a lowered level of transcriptional activation of MyD88, TRIF, IRAK1 and TRAF6 by probiotics compared to EHEC. The results in this study provide insights into the relationship between probiotics and human intestinal epithelial cells, notably with regard to strain-specific responses, and highlight the differences between transcriptional responses to pathogenic and probiotic bacteria. PMID:21831765

  18. Lactobacillus rhamnosus CCFM1107 treatment ameliorates alcohol-induced liver injury in a mouse model of chronic alcohol feeding.

    PubMed

    Tian, Fengwei; Chi, Feifei; Wang, Gang; Liu, Xiaoming; Zhang, Qiuxiang; Chen, Yongquan; Zhang, Hao; Chen, Wei

    2015-12-01

    Lactobacillus rhamnosus CCFM1107 was screened for high antioxidative activity from 55 lactobacilli. The present study attempted to explore the protective properties of L. rhamnosus CCFM1107 in alcoholic liver injury. A mouse model was induced by orally feeding alcohol when simultaneously treated with L. rhamnosus CCFM1107, the drug Hu-Gan- Pian (HGP), L. rhamnosus GG (LGG), and L. plantarum CCFM1112 for 3 months. Biochemical analysis was performed for both serum and liver homogenate. Detailed intestinal flora and histological analyses were also carried out. Our results indicated that the administration of L. rhamnosus CCFM1107 significantly inhibited the increase in the levels of serum aminotransferase and endotoxin, as well as the levels of triglyceride (TG) and cholesterol (CHO) in the serum and in the liver. Glutathione (GSH), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were elevated while the levels of malondialdehyde (MDA) were decreased. The enteric dysbiosis caused by alcohol was restored by increasing the numbers of both lactobacilli and bifidobacteria and decreasing the numbers of both enterococci and enterobacter. Histological analysis confirmed the protective effect of L. rhamnosus CCFM1107. Compared with the other lactobacilli and to the drug Hu-Gan-Pian, there is a high chance that L. rhamnosus CCFM1107 provides protective effects on alcoholic liver injury by reducing oxidative stress and restoring the intestinal flora. PMID:26626356

  19. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein

    PubMed Central

    Kankainen, Matti; Paulin, Lars; Tynkkynen, Soile; von Ossowski, Ingemar; Reunanen, Justus; Partanen, Pasi; Satokari, Reetta; Vesterlund, Satu; Hendrickx, Antoni P. A.; Lebeer, Sarah; De Keersmaecker, Sigrid C. J.; Vanderleyden, Jos; Hämäläinen, Tuula; Laukkanen, Suvi; Salovuori, Noora; Ritari, Jarmo; Alatalo, Edward; Korpela, Riitta; Mattila-Sandholm, Tiina; Lassig, Anna; Hatakka, Katja; Kinnunen, Katri T.; Karjalainen, Heli; Saxelin, Maija; Laakso, Kati; Surakka, Anu; Palva, Airi; Salusjärvi, Tuomas; Auvinen, Petri; de Vos, Willem M.

    2009-01-01

    To unravel the biological function of the widely used probiotic bacterium Lactobacillus rhamnosus GG, we compared its 3.0-Mbp genome sequence with the similarly sized genome of L. rhamnosus LC705, an adjunct starter culture exhibiting reduced binding to mucus. Both genomes demonstrated high sequence identity and synteny. However, for both strains, genomic islands, 5 in GG and 4 in LC705, punctuated the colinearity. A significant number of strain-specific genes were predicted in these islands (80 in GG and 72 in LC705). The GG-specific islands included genes coding for bacteriophage components, sugar metabolism and transport, and exopolysaccharide biosynthesis. One island only found in L. rhamnosus GG contained genes for 3 secreted LPXTG-like pilins (spaCBA) and a pilin-dedicated sortase. Using anti-SpaC antibodies, the physical presence of cell wall-bound pili was confirmed by immunoblotting. Immunogold electron microscopy showed that the SpaC pilin is located at the pilus tip but also sporadically throughout the structure. Moreover, the adherence of strain GG to human intestinal mucus was blocked by SpaC antiserum and abolished in a mutant carrying an inactivated spaC gene. Similarly, binding to mucus was demonstrated for the purified SpaC protein. We conclude that the presence of SpaC is essential for the mucus interaction of L. rhamnosus GG and likely explains its ability to persist in the human intestinal tract longer than LC705 during an intervention trial. The presence of mucus-binding pili on the surface of a nonpathogenic Gram-positive bacterial strain reveals a previously undescribed mechanism for the interaction of selected probiotic lactobacilli with host tissues. PMID:19805152

  20. Development of antioxidant rich fruit supplemented probiotic yogurts using free and microencapsulated Lactobacillus rhamnosus culture.

    PubMed

    Kumar, Ashwani; Kumar, Dinesh

    2016-01-01

    The present study reports the preparation of probiotic yogurt using Lactobacillus rhamnosus. The standard starter cultures used for yogurt fermentation were Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus and obtained from NDRI, Karnal, India. The prepared yogurt was supplemented with fruit pulp (10 % w/v) of apricot, raspberries, plum and jamun. These fruits were rich in antioxidant property as observed by DPPH, nitric oxide radical scavenging and ferric reducing antioxidant power assay methods. The probiotic yogurt products were prepared using free, alginate (2 %) and carrageenan (2 %) encapsulated probiotic L. rhamnosus culture. The microencapsulated beads were characterized by FTIR and alginate beads with bacteria showed characteristic wavelength major at 1424 and 1033 nm. The acidity increased (0.40 ± 0-0.76 ± 0.01 %) and pH of yogurts decreased (4.63 ± 0.06 - 2.83 ± 0.03) during storage. Probiotic L. rhamnosus count decreased during storage and alginate microencapsulated probiotic culture was more stable (8.85 ± 0.01 - 4.35 ± 0.03 log CFU/g) as compared with carrageenan encapsulated (8.79 ± 0.01 -2.56 ± 0.04 log CFU/g) and free culture (8.90 ± 0.01 - 2.26 ± 0.03 log CFU/g). The antioxidant power of fruits supplemented probiotic yogurts decreased successively during storage up to 15 days. PMID:26787986

  1. Complete Genome Sequence of Lactobacillus rhamnosus Strain BPL5 (CECT 8800), a Probiotic for Treatment of Bacterial Vaginosis.

    PubMed

    Chenoll, Empar; Codoñer, Francisco M; Martinez-Blanch, Juan F; Ramón, Daniel; Genovés, Salvador; Menabrito, Marco

    2016-01-01

    ITALIC! Lactobacillus rhamnosusBPL5 (CECT 8800), is a probiotic strain suitable for the treatment of bacterial vaginosis. Here, we report its complete genome sequence deciphered by PacBio single-molecule real-time (SMRT) technology. Analysis of the sequence may provide insight into its functional activity. PMID:27103719

  2. Complete Genome Sequence of Lactobacillus rhamnosus Strain BPL5 (CECT 8800), a Probiotic for Treatment of Bacterial Vaginosis

    PubMed Central

    Codoñer, Francisco M.; Martinez-Blanch, Juan F.; Ramón, Daniel; Menabrito, Marco

    2016-01-01

    Lactobacillus rhamnosus BPL5 (CECT 8800), is a probiotic strain suitable for the treatment of bacterial vaginosis. Here, we report its complete genome sequence deciphered by PacBio single-molecule real-time (SMRT) technology. Analysis of the sequence may provide insight into its functional activity. PMID:27103719

  3. Whole-cell detection of live lactobacillus acidophilus on aptamer-decorated porous silicon biosensors.

    PubMed

    Urmann, K; Arshavsky-Graham, S; Walter, J G; Scheper, T; Segal, E

    2016-09-21

    This work describes the design of optical aptamer-based porous silicon (PSi) biosensors for the direct capture of Lactobacillus acidophilus. Aptamers are oligonucleotides (single-stranded DNA or RNA) that can bind their targets with high affinity and specificity, making them excellent recognition elements for biosensing applications. Herein, aptamer Hemag1P, which specifically targets the important probiotic L. acidophilus, was utilized for direct bacteria capture onto oxidized PSi Fabry-Pérot thin films. Monitoring changes in the reflectivity spectrum (using reflective interferometric Fourier transform spectroscopy) allows for bacteria detection in a label-free, simple and rapid manner. The performance of the biosensor was optimized by tuning the PSi nanostructure, its optical properties, as well as the immobilization density of the aptamer. We demonstrate the high selectivity and specificity of this simple "direct-capture" biosensing scheme and show its ability to distinguish between live and dead bacteria. The resulting biosensor presents a robust and rapid method for the specific detection of live L. acidophilus at concentrations relevant for probiotic products and as low as 10(6) cells per mL. Rapid monitoring of probiotic bacteria is crucial for quality, purity and safety control as the use of probiotics in functional foods and pharmaceuticals is becoming increasingly popular. PMID:27381045

  4. S-layer production by Lactobacillus acidophilus IBB 801 under environmental stress conditions.

    PubMed

    Grosu-Tudor, Silvia-Simona; Brown, Lucia; Hebert, Elvira M; Brezeanu, Aurelia; Brinzan, Alexandru; Fadda, Silvina; Mozzi, Fernanda; Zamfir, Medana

    2016-05-01

    The ability of microorganisms to synthesize S-layer, the outermost structure of the microbial cell envelope composed of non-covalently bound proteins, has been ascribed to help microorganisms to exert their probiotic properties in the host. In this work, formation of S-layer by the potentially probiotic strain Lactobacillus acidophilus IBB 801 under different stress culture conditions (high incubation temperatures, presence of bile salts or NaCl, and acidic pH) was assayed. A marked S-layer synthesis by L. acidophilus IBB 801 was detected when the strain was grown at 42 °C and in the presence of 0.05 % bile salts or 2.0 % NaCl. The presence of S-layer proteins was further confirmed by transmission electron microscopy and protein identification by MS/MS. The differential expression of the proteome of this strain at 42 °C, when a marked formation of S-layer was detected, revealed the overexpression of six proteins mainly related to general stress and protein biosynthesis and translation, while four proteins detected in lower amounts were involved in DNA repair and energy metabolism. As L. acidophilus IBB 801 produces both a bacteriocin and S-layer proteins, the strain could be of interest to be used in the formulation of functional food products with specific properties. PMID:26910041

  5. Immunoregulatory effects on Caco-2 cells and mice of exopolysaccharides isolated from Lactobacillus acidophilus NCFM.

    PubMed

    Li, Li; Jiang, Yu-Jun; Yang, Xiang-Yi; Liu, Ying; Wang, Jin-Yu; Man, Chao-Xin

    2014-12-01

    On the basis of our previous results on potential immunoregulation of Lactobacillus acidophilus NCFM, the immunoregulatory effects of exopolysaccharides (EPS) isolated from L. acidophilus NCFM and their regulating mechanisms are further investigated in the current research. Stimulated by EPS preparations, four immune-related genes in the human colorectal adenocarcinoma cell line Caco-2 cells, namely, interleukin-1α (IL-1α), chemokine C-C motif 2 (CCL2), tumor necrosis factor α (TNF-α), and pentraxin 3 (PTX3), first showed an increase at 2-4 h, peaked at 4 h, and then decreased at 4-12 h. Similar trends were observed in vivo: four genes showed transient expression (highest on the 4th day) in the cecum and colon of mice. Meanwhile, the organ coefficient, clearance index and phagocytic index all significantly increased with time extension and dose increase of EPS stimulation. EPS triggered NF-κB and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways in Caco-2 cells, and the activated pathways initiated the genes expression. EPS compounds from L. acidophilus NCFM may play an important role in host immunoregulation and might be applied as a new type of immunoregulatory agent in functional foods. PMID:25340590

  6. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid.

    PubMed

    Mohamadzadeh, Mansour; Pfeiler, Erika A; Brown, Jeffrey B; Zadeh, Mojgan; Gramarossa, Matthew; Managlia, Elizabeth; Bere, Praveen; Sarraj, Bara; Khan, Mohammad W; Pakanati, Krishna Chaitanya; Ansari, M Javeed; O'Flaherty, Sarah; Barrett, Terrence; Klaenhammer, Todd R

    2011-03-15

    Imbalance in the regulatory immune mechanisms that control intestinal cellular and bacterial homeostasis may lead to induction of the detrimental inflammatory signals characterized in humans as inflammatory bowel disease. Induction of proinflammatory cytokines (i.e., IL-12) induced by dendritic cells (DCs) expressing pattern recognition receptors may skew naive T cells to T helper 1 polarization, which is strongly implicated in mucosal autoimmunity. Recent studies show the ability of probiotic microbes to treat and prevent numerous intestinal disorders, including Clostridium difficile-induced colitis. To study the molecular mechanisms involved in the induction and repression of intestinal inflammation, the phosphoglycerol transferase gene that plays a key role in lipoteichoic acid (LTA) biosynthesis in Lactobacillus acidophilus NCFM (NCK56) was deleted. The data show that the L. acidophilus LTA-negative in LTA (NCK2025) not only down-regulated IL-12 and TNFα but also significantly enhanced IL-10 in DCs and controlled the regulation of costimulatory DC functions, resulting in their inability to induce CD4(+) T-cell activation. Moreover, treatment of mice with NCK2025 compared with NCK56 significantly mitigated dextran sulfate sodium and CD4(+)CD45RB(high)T cell-induced colitis and effectively ameliorated dextran sulfate sodium-established colitis through a mechanism that involves IL-10 and CD4(+)FoxP3(+) T regulatory cells to dampen exaggerated mucosal inflammation. Directed alteration of cell surface components of L. acidophilus NCFM establishes a potential strategy for the treatment of inflammatory intestinal disorders. PMID:21282652

  7. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability. PMID:22676388

  8. Screening of Lactobacilli derived from chicken feces and partial characterization of Lactobacillus acidophilus A12 as an animal probiotics.

    PubMed

    Lee, Na-Kyoung; Yun, Cheol-Won; Kim, Seung Wook; Chang, Hyo-Ihl; Kang, Chang-Won; Paik, Hyun-Dong

    2008-02-01

    This study was performed to screen and select Lactobacillus strains from chicken feces for probiotic use in animals. Of these strains, strain A12 had the highest immunostimulatory effect. Therefore, strain A12 was characterized as a potential probiotic. Strain A12 was tentatively identified as Lactobacillus acidophilus A12, using the API 50 CHL kit based on a 99.9% homology. L. acidophilus A12 was highly resistant to artificial gastric juice (pH 2.5) and bile acid (oxgall). Based on results from the API ZYM kit, leucine arylamidase, crystine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase, alpha-galactosidase, beta- galactosidase, alpha-glucosidase, beta-glucosidase, and N-acetyl-beta- glucosamidase were produced by strain A12. L. acidophilus A12 showed resistance to several antibiotics (nisin, gentamycin, and erythromycin). The amount of interleukin (IL)-1alpha in 20x concentrated supernatant from L. acidophilus A12 was approximately 156 pg/ml. With regard to antioxidant activity, L. acidophilus A12 supernatant showed 60.6% DPPH radical scavenging activity. These results demonstrate the potential use of L. acidophilus A12 as a health-promoting probiotics. PMID:18309281

  9. Physicochemical and hygienic effects of Lactobacillus acidophilus in Iranian white cheese

    PubMed Central

    Mahmoudi, Razzaqh; Tajik, Hossein; Ehsani, Ali; Zare, Payman

    2012-01-01

    Increasing incidence of food-borne disease along with its social and economic consequences have led to conducting extensive research in order to produce safer food and develop new antimicrobial agents; among them, extensive use of probiotics and bacteriocins as biological additives is of significant importance. The aim of the present study was to evaluate the interactions (growth behavior and survival) of Listeria monocytogenes and Lactobacillus acidophilus in various stages of production, ripening and storage of Iranian white cheese. Changes in pH values at different stages of cheese ripening, along with changes in organoleptic properties of cheese were also assessed. Compared to other treatments, in the treatment of cheese with probiotic agent without starter, the most significant decrease in Listeria monocytogenes count at the end of ripening stage was observed (3.16 Log per gram cheese compared with the control group) (p < 0.05). Survival of probiotic bacteria in control samples of cheese were significantly higher when compared to cheese sample contaminated with Listeria (p < 0.05). White probiotic cheese with starter had the highest of sensory acceptability (p < 0.05). Listeria Monocytogenes count decreased during ripening period of probiotic white cheese but the bacteria survived in probiotic white cheese. Lactobacillus acidophilus count decreased during ripening period of white cheese but it did not lower to less than 106 CFU per g at the end of ripening and storage periods. PMID:25610568

  10. Impact of oral Lactobacillus acidophilus gavage on rooster seminal and cloacal Lactobacilli concentrations.

    PubMed

    Kiess, A S; Hirai, J H; Triplett, M D; Parker, H M; McDaniel, C D

    2016-08-01

    The use of antibiotics in poultry is being heavily scrutinized, therefore alternatives such as probiotics are being investigated. Lactobacilli spp. are a commonly used bacteria in formulating probiotics, and the addition of Lactobacilli to broiler diets has demonstrated increased growth rates, stimulated immune systems, and reduced pathogen loads in the gastro-intestinal tract ( GI: ) tract. However, previous research has shown that when rooster semen is directly exposed to Lactobacillus acidophilus (L. acidophilus) sperm quality is reduced. Therefore, the objective of the current study was to determine if oral administration of L. acidophilus increases the concentration of Lactobacilli in semen as well as the cloaca. A total of 30 roosters were used: 15 roosters were gavaged with 1X PBS (Control) and 15 roosters were gavaged with 10(7) cfu/mL of L. acidophilus (Treated). All roosters were gavaged for 14 consecutive days. Semen was collected on a 3 d interval, and cloacal swabs were collected on a 2 d interval, beginning on the first day prior to oral administration. Semen and cloacal swabs were serial diluted, and 100 μL of each dilution was then plated on Man, Rogosa, Sharpe ( MRS: ) agar plates. All plates were incubated for 48 h at 37°C under anaerobic conditions and counted. All Lactobacilli counts were first log transformed, then log transformed (day 0) pre-counts were subtracted from the log transformed day counts providing log differences for the analysis. Seminal Lactobacilli counts were not altered by treatments. However, the main effect of treatment (P = 0.026) for cloacal counts indicated that roosters gavaged with Lactobacilli yielded higher counts than the controls. Additionally, cloaca samples also demonstrated a treatment by day interaction trend (P = 0.082), where Lactobacilli was higher in the L. acidophilus gavaged roosters than the controls only on days 3, 5, 13, and 15. In conclusion, the addition of L. acidophilus to the male breeder diet

  11. Lactobacillus acidophilus CRL 1014 improved “gut health” in the SHIME® reactor

    PubMed Central

    2013-01-01

    Background How to maintain “gut health” is a goal for scientists throughout the world. Therefore, microbiota management models for testing probiotics, prebiotics, and synbiotics have been developed. Methods The SHIME® model was used to study the effect of Lactobacillus acidophilus 1014 on the fermentation pattern of the colon microbiota. Initially, an inoculum prepared from human feces was introduced into the reactor vessels and stabilized over 2-wk using a culture medium. This stabilization period was followed by a 2-wk control period during which the microbiota was monitored. The microbiota was then subjected to a 4-wk treatment period by adding 5 mL of sterile peptone water with L. acidophilus CRL1014 at the concentration of 108 CFU/mL to vessel one (the stomach compartment). Plate counts, Denaturing Gradient Gel Electrophoresis (DGGE), short-chain fatty acid (SCFA) and ammonium analyses were carried out for monitoring of the microbial community from the colon compartments. Results A significant increase (p < 0.01) in the Lactobacillus spp. and Bifidobacterium spp. populations was observed during the treatment period. The DGGE obtained showed changes in the lactobacilli community from the colon compartments of the SHIME® reactor. The (SCFA) concentration increased (p < 0.01) during the treatment period, due mainly to significant increased levels of acetic, butyric, and propionic acids. However, ammonium concentrations decreased during the same period (p < 0.01). Conclusions This study showed the beneficial influence of L. acidophilus CRL 1014 on microbial metabolism and lactobacilli community composition for improving human health. PMID:23758634

  12. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology

    PubMed Central

    Pedroso, D.L.; Dogenski, M.; Thomazini, M.; Heinemann, R.J.B.; Favaro-Trindade, C.S.

    2013-01-01

    In the present study, the cells of Bifidobacterium animalis subsp. lactis (BI-01) and Lactobacillus acidophilus (LAC-04) were encapsulated in cocoa butter using spray-chilling technology. Survival assays were conducted to evaluate the resistance of the probiotics to the spray-chilling process, their resistance to the simulated gastric and intestinal fluids (SGF and SIF), and their stability during 90 days of storage. The viability of the cells was not affected by microencapsulation. The free and encapsulated cells of B. animalis subsp. lactis were resistant to both SGF and SIF. The micro-encapsulated cells of L. acidophilus were more resistant to SGF and SIF than the free cells; the viability of the encapsulated cells was enhanced by 67%, while the free cells reached the detection limit of the method (103 CFU/g). The encapsulated probiotics were unstable when they were stored at 20 °C. The population of encapsulated L. acidophilus decreased drastically when they were stored at 7 °C; only 20% of cells were viable after 90 days of storage. The percentage of viable cells of the encapsulated B. animalis subsp.lactis, however, was 72% after the same period of storage. Promising results were obtained when the microparticles were stored at −18 °C; the freeze granted 90 days of shelf life to the encapsulated cells. These results suggest that the spray-chilling process using cocoa butter as carrier protects L. acidophilus from gastrointestinal fluids. However, the viability of the cells during storage must be improved. PMID:24516445

  13. [Particular behavior of different Lactobacillus acidophilus strains in petit-suisse cheese].

    PubMed

    Ribeiro, Keila Marques; Pereira, Lucas Campana; Souza, Cínthia Hoch Batista de; Saad, Susana Marta Isay

    2012-12-01

    The objective of this study was to evaluate the physico-chemical and microbiological characteristics of petit-suisse cheeses manufactured with the addition of two Lactobacillus acidophilus strains: LA-14 (potentially probiotic) and La-5 (probiotic culture), using Streptococcus thermophilus TA040 as starter culture. Three cheese-making trials were prepared: Q1 (control: with TA040), Q2 (with TA040 + LA-14), and Q3 (with TA040 + La-5). Parameters analyzed included microbial counts of probiotic, potentially probiotic and starter microorganisms, and physico-chemical parameters (pH and moisture) after 1, 7, 14, 21, and 28 days of storage of the product at 4 +/- 1 degree C. Viable counts of L. acidophilus remained between 7.46 and 7.62 log CFU g(-1) for La-5, and between 6.39 and 6.83 log CFU g(-1) for LA-14. As for the starter, higher populations were observed for Q2 (9.58-9.68 log CFU g(-1)) and Q3 (9.42-9.79 log CFU g(-1)), when compared to Q1, which suggests synergism between L. acidophilus and the starter culture. Moisture and pH values remained stable for cheeses Q1, Q2, and Q3, and no significant differences were detected between cheeses after the first day of storage (p > 0.05). Particular features of both L. acidophilus strains determined different behavior in petit-suisse cheese, and the better adaptation of the La-5 to the product environment was perceptible, since higher populations were observed when compared to LA-14. PMID:24020254

  14. Evaluation of Helicobacter pylori eradication by triple therapy plus Lactobacillus acidophilus compared to triple therapy alone.

    PubMed

    Medeiros, J A da Silva; Gonçalves, T M F O; Boyanova, L; Pereira, M I de Correia; de Carvalho, J N da Silva Paiva; Pereira, A M de Sousa; Cabrita, A M Silvério

    2011-04-01

    The purpose of this study was to evaluate the influence of adding Lactobacillus acidophilus to a triple regimen for Helicobacter pylori eradication in untreated patients with peptic ulcers or ulcer-scars. This was a pre-randomized, single-blind, interventional, treatment-efficacy study with active controls and parallel-assignment, set in Coimbra, Portugal, on 62 consecutive H. pylori-positive untreated adults with peptic ulcers or ulcer-scars, diagnosed by gastroduodenoscopy, with pre-treatment direct Gram-staining and culture of gastric biopsies. The first 31 patients received esomeprazole 20 mg, amoxicillin 1000 mg and clarithromycin 500 mg (EAC), all b.i.d., for 8 days. The remaining 31 added L. acidophilus, 5 × 10(9) organisms per capsule, 3 + 2 i.d. for 8 days (EACL). The main outcome measure was (13)C urea breath test (UBT), ≥6 weeks after completion of therapy. Successful eradication (UBT-negativity after treatment), was similar in both groups (EAC = 80.6%; EACL = 83.9%, p = 0.740) by both intention-to-treat and per-protocol analysis. The non-eradicated strains were susceptible in vitro to both antibiotics. Adding L. acidophilus to EAC triple therapy did not increase H. pylori eradication rates. Considering the cost and the burden of ingesting five extra capsules daily, supplementing the EAC therapy with L. acidophilus, at this dose, shows no benefit. Further studies with different dosages and duration of treatment, and other probiotics or probiotic combinations are required to improve eradication. PMID:21207091

  15. Prevention of Mycobacterium avium subsp. paratuberculosis (MAP) Infection in BALB/c Mice by Feeding Probiotic Lactobacillus acidophilus NP-51

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to examine effects of feeding Lactobacillus acidophilus strain NP51 to mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP). Mice were randomized to ten treatment groups; sentinels, control, heat-killed MAP, viable MAP, heat-killed NP51, viable ...

  16. Prevention of Mycobacterium avium subsp. paratuberculosis (MAP) infection in BALB/c mice by feeding probiotic Lactobacillus acidophilus NP-51

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to examine effects of feeding Lactobacillus acidophilus strain NP51 to mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP). Mice were randomized to ten treatment groups; sentinels, control, heat-killed MAP, viable MAP, heat-killed NP51, viable ...

  17. Supplementation of Lactobacillus acidophilus fermentation product can attenuate the acute phase response following a lipopolysaccharide challenge in pigs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine if feeding a Lactobacillus acidophilus fermentation product to weaned pigs would reduce stress and acute phase responses (APR) following a lipopolysaccharide (LPS) challenge. Pigs (n=30; 6.4±0.1 kilograms body weight) were housed individually in pens with ad libi...

  18. Prevention of Mycobacterium avium subsp. paratuberculosis (MAP) Infection in Balb/c Mice by Feeding Probiotic Lactobacillus acidophilus NP-51

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to examine effects of feeding Lactobacillus acidophilus strain NP51 to mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease. We hypothesized that feeding NP51 would increase Th-1 responses and decrease prog...

  19. Prevention of Mycobacterium avium subsp. paratuberculosis Infection in BALB/c Mice by Feeding Lactobacillus acidophilus Strain NP-51

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The immune responses of 390 BALB/c mice fed the probiotic Lactobacillus acidophilus strain NP51® and infected with Mycobacterium avium subspecies paratuberculosis (MAP) were evaluated in a 6-month trial. Mice were randomized to nine treatment groups fed either viable- or heat-killed NP51 and inocula...

  20. Prevention of Mycobacterium avium subsp. paratuberculosis (MAP) infection in Balb/c mice by feeding probiotic Lactobacillus acidophilus NP-51

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to examine effects of feeding Lactobacillus acidophilus strain NP51 to mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease. We hypothesized that feeding NP51 would increase Th-1 responses and decrease prog...

  1. Potential for tyndalized Lactobacillus acidophilus as an effective component in moisturizing skin and anti-wrinkle products

    PubMed Central

    Im, A-Rang; Kim, Hui Seong; Hyun, Jin Won; Chae, Sungwook

    2016-01-01

    It is widely accepted that ultraviolet (UV) irradiation induces skin damage. In the present study, a UVB-induced hairless mouse model of skin photoaging was developed to determine whether tyndalized Lactobacillus acidophilus was able to significantly enhance the repair of photodamaged skin. To evaluate the effects of tyndalized L. acidophilus on UVB-induced skin-wrinkle formation in vivo, HR-1 hairless male mice were exposed to UVB radiation and orally administered tyndalized L. acidophilus. Compared with the control group, the UVB irradiation mice displayed a significant increase in transepidermal water loss and a reduction in skin hydration. In mice with UVB-induced photodamage, the effacement of the fine wrinkles by tyndalized L. acidophilus was correlated with dermal collagen synthesis, accompanied by histological changes. Furthermore, western blotting was performed to investigate the protein expression levels of matrix metalloproteinases (MMPs) and mitogen-activated protein kinase. Notably, orally administered tyndalized L. acidophilus reduced the expression levels of MMP-1 and MMP-9. Based upon the aforementioned results, it was determined that tyndalized L. acidophilus effectively inhibited the wrinkle formation induced by UVB irradiation, and that this may be attributed to the downregulation of MMPs. Therefore, tyndalized L. acidophilus may be considered a potential agent for preventing skin photoaging and wrinkle formation. PMID:27446272

  2. Isolation of potential probiotic Lactobacillus rhamnosus strains from traditional fermented mare milk produced in Sumbawa Island of Indonesia.

    PubMed

    Shi, Tala; Nishiyama, Keita; Nakamata, Koichi; Aryantini, Ni Putu Desy; Mikumo, Dai; Oda, Yuji; Yamamoto, Yuji; Mukai, Takao; Sujaya, I Nengah; Urashima, Tadasu; Fukuda, Kenji

    2012-01-01

    To explore potential probiotics in the traditional foods of Indonesia, fermented mare milk produced in Sumbawa Island was investigated in this study. Gram stain, catalase activity, gas production, cell morphology, carbohydrate utilization pattern, and 16S rDNA sequencing were performed to identify isolated lactic acid bacteria. To assess their probiotic ability, tolerance of low pH, bile salts, artificial gastrointestinal fluids, and adhesion properties to extracellular matrices, were examined. In total 27 strains, 25 Lactobacillus rhamnosus and two Lactobacillus fermentum, were obtained. Among the isolated lactobacilli, three Lb. rhamnosus strains, FSMM15, FSMM22, and FSMM26, were selected as candidates for probiotics, using Lb. rhamnosus GG as index. In vitro binding assay of the three strains against several extracellular matrix proteins revealed that FSMM15 and FSMM26 gave greater binding ratios of mucin/bovine serum albumin (BSA) and significantly higher adhesive abilities to fibronectin than Lb. rhamnosus GG. FSMM22 showed significantly higher adhesion to laminin than Lb. rhamnosus GG. PMID:23047104

  3. Antigenotoxic and Antimutagenic Activities of Probiotic Lactobacillus rhamnosus Vc against N-Methyl-N'-Nitro-N-Nitrosoguanidine.

    PubMed

    Pithva, Sheetal P; Ambalam, Padma S; Ramoliya, Jignesh M; Dave, Jayantilal M; Vyas, Bharatkumar Rajiv Manuel

    2015-01-01

    The present study provides experimental evidence of in vivo reduction of genotoxic and mutagenic activities of potent carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) by the strain Lactobacillus rhamnosus Vc. In vitro studies revealed that coincubation of MNNG with viable cells of L. rhamnosus Vc resulted in the detoxification of the parent compound accompanied with reduction in genotoxicity (69%) and mutagenicity (61%) as evaluated by SOS-Chromotest and Ames test, respectively. Oral feeding of probiotic bacteria L. rhamnosus Vc (10(9) cfu) to Gallus gallus (chicks) for 30 days provided protection against MNNG-induced damage as evidenced from the significant decrease (P = 0.009) in glutathione S-transferase activity in the L. rhamnosus Vc+MNNG-treated chicks in comparison to the MNNG-treated chicks. Histopathology of colon and liver showed intact cells and mild inflammation in the L. rhamnosus Vc+MNNG-treated chicks, whereas heavy inflammation and degenerative changes were observed in MNNG-treated chicks. The results indicate that the probiotic L. rhamnosus Vc provided in vivo protection against MNNG-induced colon damage by detoxification of MNNG to less toxic metabolites. PMID:26312410

  4. A Lactobacillus rhamnosus Strain Induces a Heme Oxygenase Dependent Increase in Foxp3+ Regulatory T Cells

    PubMed Central

    Karimi, Khalil; Kandiah, Nalaayini; Chau, Jessie; Bienenstock, John; Forsythe, Paul

    2012-01-01

    We investigated the consequences of feeding with a Lactobacillus species on the immune environment in GALT, and the role of dendritic cells and heme oxygenase-1 in mediating these responses. Feeding with a specific strain of Lactobacillus rhamnosus induced a significant increase in CD4+CD25+Foxp3+ functional regulatory T cells in GALT. This increase was greatest in the mesenteric lymph nodes and associated with a marked decrease in TNF and IFNγ production. Dendritic cell regulatory function and HO-1 expression was also increased. The increase in Foxp3+ T cells could be prevented by treatment with a heme oxygenase inhibitor. However, neither inhibition of heme oxygenase nor blockade of IL-10 and TGFβ prevented the inhibition of inflammatory cytokine production. In conclusion Lactobacillus feeding induced a tolerogenic environment in GALT. HO-1 was critical to the enhancement of Foxp3+ regulatory T cells while additional, as yet unknown, pathways were involved in the down-regulation of inflammatory cytokine production by T cells. PMID:23077634

  5. Microencapsulation of alginate-immobilized bagasse with Lactobacillus rhamnosus NRRL 442: enhancement of survivability and thermotolerance.

    PubMed

    Shaharuddin, Shahrulzaman; Muhamad, Ida Idayu

    2015-03-30

    The aim of this research was to enhance the survivability of Lactobacillus rhamnosus NRRL 442 against heat exposure via a combination of immobilization and microencapsulation processes using sugarcane bagasse (SB) and sodium alginate (NaA), respectively. The microcapsules were synthesized using different alginate concentration of 1, 2 and 3% and NaA:SB ratio of 1:0, 1:1 and 1:1.5. This beneficial step of probiotic immobilization before microencapsulation significantly enhanced microencapsulation efficiency and cell survivability after heat exposure of 90°C for 30s. Interestingly, the microcapsule of SB-immobilized probiotic could obtain protection from heat using microencapsulation of NaA concentration as low as 1%. SEM images illustrated the incorporation of immobilized L. rhamnosus within alginate matrices and its changes after heat exposure. FTIR spectra confirmed the change in functional bonding in the presence of sugarcane bagasse, probiotic and alginate. The results demonstrated a great potential in the synthesis of heat resistant microcapsules for probiotic. PMID:25563958

  6. Piliation of Lactobacillus rhamnosus GG promotes adhesion, phagocytosis, and cytokine modulation in macrophages.

    PubMed

    Vargas García, Cynthia E; Petrova, Mariya; Claes, Ingmar J J; De Boeck, Ilke; Verhoeven, Tine L A; Dilissen, Ellen; von Ossowski, Ingemar; Palva, Airi; Bullens, Dominique M; Vanderleyden, Jos; Lebeer, Sarah

    2015-03-01

    Recently, spaCBA-encoded pili on the cell surface of Lactobacillus rhamnosus GG were identified to be key molecules for binding to human intestinal mucus and Caco-2 intestinal epithelial cells. Here, we investigated the role of the SpaCBA pilus of L. rhamnosus GG in the interaction with macrophages in vitro by comparing the wild type with surface mutants. Our results show that SpaCBA pili play a significant role in the capacity for adhesion to macrophages and also promote bacterial uptake by these phagocytic cells. Interestingly, our data suggest that SpaCBA pili also mediate anti-inflammatory effects by induction of interleukin-10 (IL-10) mRNA and reduction of interleukin-6 (IL-6) mRNA in a murine RAW 264.7 macrophage cell line. These pili appear to mediate these effects indirectly by promoting close contact with the macrophages, facilitating the exertion of anti-inflammatory effects by other surface molecules via yet unknown mechanisms. Blockage of complement receptor 3 (CR3), previously identified to be a receptor for streptococcal pili, significantly decreased the uptake of pilus-expressing strains in RAW 264.7 cells, while the expression of IL-10 and IL-6 mRNA by these macrophages was not affected by this blocking. On the other hand, blockage of Toll-like receptor 2 (TLR2) significantly reduced the expression of IL-6 mRNA irrespective of the presence of pili. PMID:25576613

  7. Piliation of Lactobacillus rhamnosus GG Promotes Adhesion, Phagocytosis, and Cytokine Modulation in Macrophages

    PubMed Central

    Vargas García, Cynthia E.; Petrova, Mariya; Claes, Ingmar J. J.; De Boeck, Ilke; Verhoeven, Tine L. A.; Dilissen, Ellen; von Ossowski, Ingemar; Palva, Airi; Bullens, Dominique M.; Vanderleyden, Jos

    2015-01-01

    Recently, spaCBA-encoded pili on the cell surface of Lactobacillus rhamnosus GG were identified to be key molecules for binding to human intestinal mucus and Caco-2 intestinal epithelial cells. Here, we investigated the role of the SpaCBA pilus of L. rhamnosus GG in the interaction with macrophages in vitro by comparing the wild type with surface mutants. Our results show that SpaCBA pili play a significant role in the capacity for adhesion to macrophages and also promote bacterial uptake by these phagocytic cells. Interestingly, our data suggest that SpaCBA pili also mediate anti-inflammatory effects by induction of interleukin-10 (IL-10) mRNA and reduction of interleukin-6 (IL-6) mRNA in a murine RAW 264.7 macrophage cell line. These pili appear to mediate these effects indirectly by promoting close contact with the macrophages, facilitating the exertion of anti-inflammatory effects by other surface molecules via yet unknown mechanisms. Blockage of complement receptor 3 (CR3), previously identified to be a receptor for streptococcal pili, significantly decreased the uptake of pilus-expressing strains in RAW 264.7 cells, while the expression of IL-10 and IL-6 mRNA by these macrophages was not affected by this blocking. On the other hand, blockage of Toll-like receptor 2 (TLR2) significantly reduced the expression of IL-6 mRNA irrespective of the presence of pili. PMID:25576613

  8. Evaluation of genetic polymorphism among Lactobacillus rhamnosus non-starter Parmigiano Reggiano cheese strains.

    PubMed

    Bove, Claudio Giorgio; De Dea Lindner, Juliano; Lazzi, Camilla; Gatti, Monica; Neviani, Erasmo

    2011-01-01

    Parmigiano Reggiano (PR) is an Italian cooked, long-ripened cheese made with unheated cow's milk and natural whey starter. The microflora is involved in the manufacturing of this cheese, arising from the natural whey starter, the raw milk and the environment. Molecular studies have shown that mesophilic non-starter lactic acid bacteria (NSLAB) are the dominant microflora present during the ripening of PR. In this study, a characterisation of Lactobacillus rhamnosus isolated from a single PR manufacturing and ripening process is reported, using a combination of genotypic fingerprinting techniques (RAPD-PCR and REP-PCR). The intraspecies heterogeneity evidenced for 66 strains is correlated to their abilities to adapt to specific environmental and technological conditions. The detection of biotypes that correlate with specific moments in cheese ripening or differential development throughout this process suggests that these strains may have specific roles closely linked to their peculiar technological properties. PMID:21131087

  9. Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite.

    PubMed

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Jokić, Bojan M; Nikolić, Svetlana B; Pejin, Jelena D

    2013-05-01

    In this study, lactic acid and biomass production on liquid distillery stillage from bioethanol production with Lactobacillus rhamnosus ATCC 7469 was studied. The cells were immobilized onto zeolite, a microporous aluminosilicate mineral and the lactic acid production with free and immobilized cells was compared. The immobilization allowed simple cell separation from the fermentation media and their reuse in repeated batch cycles. A number of viable cells of over 10(10) CFU g(-1) of zeolite was achieved at the end of fourth fermentation cycle. A maximal process productivity of 1.69 g L(-1), maximal lactic acid concentration of 42.19 g L(-1) and average yield coefficient of 0.96 g g(-1) were achieved in repeated batch fermentation on the liquid stillage without mineral or nitrogen supplementation. PMID:23186681

  10. Influence of manufacturing processes on cell surface properties of probiotic strain Lactobacillus rhamnosus Lcr35®.

    PubMed

    Nivoliez, Adrien; Veisseire, Philippe; Alaterre, Elina; Dausset, Caroline; Baptiste, Fabrice; Camarès, Olivier; Paquet-Gachinat, Marylise; Bonnet, Muriel; Forestier, Christiane; Bornes, Stéphanie

    2015-01-01

    The influence of the industrial process on the properties of probiotics, administered as complex manufactured products, has been poorly investigated. In the present study, we comparatively assessed the cell wall characteristics of the probiotic strain Lactobacillus rhamnosus Lcr35® together with three of its commercial formulations with intestinal applications. Putative secreted and transmembrane-protein-encoding genes were initially searched in silico in the genome of L. rhamnosus Lcr35®. A total of 369 candidate genes were identified which expressions were followed using a custom Lactobacillus DNA chip. Among them, 60 or 67 genes had their expression either upregulated or downregulated in the Lcr Restituo® packet or capsule formulations, compared to the native Lcr35® strain. Moreover, our data showed that the probiotic formulations (Lcr Lenio®, Lcr restituo® capsule and packet) showed a better capacity to adhere to intestinal epithelial Caco-2 cells than the native Lcr35® strain. Microbial (MATS) tests showed that the probiotic was an electron donor and that they were more hydrophilic than the native strain. The enhanced adhesion capacity of the active pharmaceutical ingredients (APIs) to epithelial Caco-2 cells and their antipathogen effect could be due to this greater surface hydrophilic character. These findings suggest that the manufacturing process influences the protein composition and the chemical properties of the cell wall. It is therefore likely that the antipathogen effect of the formulation is modulated by the industrial process. Screening of the manufactured products' properties would therefore represent an essential step in evaluating the effects of probiotic strains. PMID:25280746

  11. Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism

    PubMed Central

    Weiss, Gudrun; Rasmussen, Simon; Zeuthen, Louise Hjerrild; Nielsen, Birgit Nøhr; Jarmer, Hanne; Jespersen, Lene; Frøkiær, Hanne

    2010-01-01

    Lactobacilli are probiotics that, among other health-promoting effects, have been ascribed immunostimulating and virus-preventive properties. Certain Lactobacillus spp. have been shown to possess strong interleukin-12 (IL-12) -inducing properties. As IL-12 production depends on the up-regulation of type I interferons (IFNs), we hypothesized that the strong IL-12-inducing capacity of Lactobacillus acidophilus NCFM in murine bone-marrow-derived dendritic cells (DCs) is caused by an up-regulation of IFN-β, which subsequently induces IL-12 and the double-stranded RNA binding Toll-like receptor-3 (TLR-3). The expression of the genes encoding IFN-β, TLR-3, IL-12 and IL-10 in DCs upon stimulation with L. acidophilus NCFM was determined. Lactobacillus acidophilus NCFM induced a much stronger expression of Ifn-β, Il-12 and Il-10 compared with the synthetic double-stranded RNA ligand Poly I:C, whereas the levels of expressed Tlr-3 were similar. Whole genome microarray gene expression analysis revealed that other genes related to viral defence were significantly up-regulated and among the strongest induced genes in DCs stimulated with L. acidophilus NCFM. The ability to induce IFN-β was also detected in another L. acidophilus strain (X37), but was not a property of other probiotic strains tested, i.e. Bifidobacterium bifidum Z9 and Escherichia coli Nissle 1917. The IFN-β expression was markedly reduced in TLR-2−/− DCs, dependent on endocytosis, and the major cause of the induction of Il-12 and Tlr-3 in DCs stimulated with L. acidophilus NCFM. Collectively, our results reveal that certain lactobacilli trigger the expression of viral defence genes in DCs in a TLR-2 manner dependent on IFN-β. PMID:20545783

  12. Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism.

    PubMed

    Weiss, Gudrun; Rasmussen, Simon; Zeuthen, Louise Hjerrild; Nielsen, Birgit Nøhr; Jarmer, Hanne; Jespersen, Lene; Frøkiaer, Hanne

    2010-10-01

    Lactobacilli are probiotics that, among other health-promoting effects, have been ascribed immunostimulating and virus-preventive properties. Certain Lactobacillus spp. have been shown to possess strong interleukin-12 (IL-12) -inducing properties. As IL-12 production depends on the up-regulation of type I interferons (IFNs), we hypothesized that the strong IL-12-inducing capacity of Lactobacillus acidophilus NCFM in murine bone-marrow-derived dendritic cells (DCs) is caused by an up-regulation of IFN-β, which subsequently induces IL-12 and the double-stranded RNA binding Toll-like receptor-3 (TLR-3). The expression of the genes encoding IFN-β, TLR-3, IL-12 and IL-10 in DCs upon stimulation with L. acidophilus NCFM was determined. Lactobacillus acidophilus NCFM induced a much stronger expression of Ifn-β, Il-12 and Il-10 compared with the synthetic double-stranded RNA ligand Poly I:C, whereas the levels of expressed Tlr-3 were similar. Whole genome microarray gene expression analysis revealed that other genes related to viral defence were significantly up-regulated and among the strongest induced genes in DCs stimulated with L. acidophilus NCFM. The ability to induce IFN-β was also detected in another L. acidophilus strain (X37), but was not a property of other probiotic strains tested, i.e. Bifidobacterium bifidum Z9 and Escherichia coli Nissle 1917. The IFN-β expression was markedly reduced in TLR-2(-/-) DCs, dependent on endocytosis, and the major cause of the induction of Il-12 and Tlr-3 in DCs stimulated with L. acidophilus NCFM. Collectively, our results reveal that certain lactobacilli trigger the expression of viral defence genes in DCs in a TLR-2 manner dependent on IFN-β. PMID:20545783

  13. Proteome reference map of Lactobacillus acidophilus NCFM and quantitative proteomics towards understanding the prebiotic action of lactitol.

    PubMed

    Majumder, Avishek; Sultan, Abida; Jersie-Christensen, Rosa R; Ejby, Morten; Schmidt, Bjarne Gregers; Lahtinen, Sampo J; Jacobsen, Susanne; Svensson, Birte

    2011-09-01

    Lactobacillus acidophilus NCFM is a probiotic bacterium adapted to survive in the gastrointestinal tract and with potential health benefits to the host. Lactitol is a synthetic sugar alcohol used as a sugar replacement in low calorie foods and selectively stimulating growth of L. acidophilus NCFM. In the present study the whole-cell extract proteome of L. acidophilus NCFM grown on glucose until late exponential phase was resolved by 2-DE (pH 3-7). A total of 275 unique proteins assigned to various physiological processes were identified from 650 spots. Differential 2-DE (DIGE) (pH 4-7) of L. acidophilus NCFM grown on glucose and lactitol, revealed 68 spots with modified relative intensity. Thirty-two unique proteins were identified in 41 of these spots changing 1.6-12.7-fold in relative abundance by adaptation of L. acidophilus NCFM to growth on lactitol. These proteins included β-galactosidase small subunit, galactokinase, galactose-1-phosphate uridylyltransferase and UDP-glucose-4-epimerase, which all are potentially involved in lactitol metabolism. This first comprehensive proteome analysis of L. acidophilus NCFM provides insights into protein abundance changes elicited by the prebiotic lactitol. PMID:21751373

  14. Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain NCFM enhances gram-positive immune responses.

    PubMed

    Kim, Younghoon; Mylonakis, Eleftherios

    2012-07-01

    Although the immune response of Caenorhabditis elegans to microbial infections is well established, very little is known about the effects of health-promoting probiotic bacteria on evolutionarily conserved C. elegans host responses. We found that the probiotic Gram-positive bacterium Lactobacillus acidophilus NCFM is not harmful to C. elegans and that L. acidophilus NCFM is unable to colonize the C. elegans intestine. Conditioning with L. acidophilus NCFM significantly decreased the burden of a subsequent Enterococcus faecalis infection in the nematode intestine and prolonged the survival of nematodes exposed to pathogenic strains of E. faecalis and Staphylococcus aureus, including multidrug-resistant (MDR) isolates. Preexposure of nematodes to Bacillus subtilis did not provide any beneficial effects. Importantly, L. acidophilus NCFM activates key immune signaling pathways involved in C. elegans defenses against Gram-positive bacteria, including the p38 mitogen-activated protein kinase pathway (via TIR-1 and PMK-1) and the β-catenin signaling pathway (via BAR-1). Interestingly, conditioning with L. acidophilus NCFM had a minimal effect on Gram-negative infection with Pseudomonas aeruginosa or Salmonella enterica serovar Typhimurium and had no or a negative effect on defense genes associated with Gram-negative pathogens or general stress. In conclusion, we describe a new system for the study of probiotic immune agents and our findings demonstrate that probiotic conditioning with L. acidophilus NCFM modulates specific C. elegans immunity traits. PMID:22585961

  15. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant; Selle, Kurt; O’Flaherty, Sarah; Goh, Yong Jun

    2013-01-01

    Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium Lactobacillus acidophilus NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells in vitro, and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. Lba-1029, a putative SLAP gene, was deleted from the chromosome of L. acidophilus. Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of L. acidophilus NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers. PMID:24002751

  16. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM.

    PubMed

    Johnson, Brant; Selle, Kurt; O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd

    2013-11-01

    Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium Lactobacillus acidophilus NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells in vitro, and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. Lba-1029, a putative SLAP gene, was deleted from the chromosome of L. acidophilus. Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of L. acidophilus NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers. PMID:24002751

  17. Lactobacillus acidophilus supplementation in human subjects and their resistance to enterotoxigenic Escherichia coli infection.

    PubMed

    Ouwehand, A C; ten Bruggencate, S J M; Schonewille, A J; Alhoniemi, E; Forssten, S D; Bovee-Oudenhoven, I M J

    2014-02-01

    To assess the effect of Lactobacillus acidophilus (American Type Culture Collection (ATCC) 700396) on enterotoxigenic Escherichia coli (ETEC) infection, in the present study, a parallel, double-blind, placebo-controlled 4-week intervention was performed in healthy males. The subjects largely consumed their habitual diet, but had to abstain from consuming dairy foods generally high in Ca. The subjects were randomised into the L. acidophilus (dose 10⁹ colony-forming units twice daily; n 20) or the placebo (n 19) group. After an adaptation period of 2 weeks, the subjects were orally infected with a live, but attenuated, ETEC vaccine, able to induce mild, short-lived symptoms. Before and after the challenge, the subjects recorded stool consistency, bowel habits, and frequency and severity of gastrointestinal complaints. The ETEC challenge led to a significant increase in faecal output on the 2nd day and a concomitant increase in Bristol stool scale scores. Likewise, abdominal pain, bloating, flatulence, fever, headache and nausea peaked 1 d after the oral challenge. The concentrations of faecal calprotectin and IgA peaked 2 d after and that of serum IgM peaked 9 and 15 d after the oral challenge. The concentrations of serum IgA and IgG were unaffected. The ETEC challenge led to a reduction in the number of Bacteroides-Prevotella, Bifidobacterium, Clostridium cluster XIVab and total faecal bacteria. Probiotic treatment was associated with a larger increase in Bristol stool scale scores and more fever, headache and nausea after the ETEC challenge compared with the placebo treatment. These differences were, however, small and with substantial variation within the groups. Oral application of an attenuated live ETEC vaccine provides a useful model for food-borne infections. Supplementation with L. acidophilus ATCC 700396, however, was ineffective in reducing ETEC infection symptoms in healthy men. PMID:23930950

  18. Synbiotic impact of tagatose on viability of Lactobacillus rhamnosus strain GG mediated by the phosphotransferase system (PTS).

    PubMed

    Koh, Ji Hoon; Choi, Seung Hye; Park, Seung Won; Choi, Nag-Jin; Kim, Younghoon; Kim, Sae Hun

    2013-10-01

    Synbiotics, the combination of prebiotics and probiotics, has been shown to produce synergistic effects that promote gastrointestinal well-being of host. Tagatose is a low calorie food ingredient with putative health-promoting benefits. Herein, we investigated its synbiotic impact on the viability of Lactobacillus casei 01 and Lactobacillus rhamnosus strain GG and the potential mechanism involved. Tagatose, as a synbiotic substrate, enhanced the growth of L. casei 01 and L. rhamnosus strain GG compared to other prebiotics. Other gut-indigenous such as Clostridium spp. readily utilized fructooligosaccharide (FOS), the most widely used functional prebiotics, but not tagatose. Additionally, tagatose enhanced probiotic functions of L. casei 01 and L. rhamnosus strain GG by reinforcing their attachment on HT-29 intestine epithelial cells and enhancing their cholesterol-lowering activities. Whole transcriptome study and quantitative real-time polymerase chain reaction (qRT-PCR) test showed that the presence of tagatose in L. rhamnosus strain GG caused induction of a large number of genes associated with carbohydrate metabolism including the phosphotransferase system (PTS). Collectively, these results indicate the tagatose enhanced the growth of L. casei 01 and L. rhamnosus strain GG and their probiotic activities by activating tagatose-associated PTS networks. Importantly, this study highlights the potential application of tagatose and L. casei 01 and/or L. rhamnosus strain GG as a synbiotic partner in functional dairy foods (i.e. yogurt and cheese) and therapeutic dietary supplements. PMID:23764214

  19. The Variable Regions of Lactobacillus rhamnosus Genomes Reveal the Dynamic Evolution of Metabolic and Host-Adaptation Repertoires

    PubMed Central

    Ceapa, Corina; Davids, Mark; Ritari, Jarmo; Lambert, Jolanda; Wels, Michiel; Douillard, François P.; Smokvina, Tamara; de Vos, Willem M.; Knol, Jan; Kleerebezem, Michiel

    2016-01-01

    Lactobacillus rhamnosus is a diverse Gram-positive species with strains isolated from different ecological niches. Here, we report the genome sequence analysis of 40 diverse strains of L. rhamnosus and their genomic comparison, with a focus on the variable genome. Genomic comparison of 40 L. rhamnosus strains discriminated the conserved genes (core genome) and regions of plasticity involving frequent rearrangements and horizontal transfer (variome). The L. rhamnosus core genome encompasses 2,164 genes, out of 4,711 genes in total (the pan-genome). The accessory genome is dominated by genes encoding carbohydrate transport and metabolism, extracellular polysaccharides (EPS) biosynthesis, bacteriocin production, pili production, the cas system, and the associated clustered regularly interspaced short palindromic repeat (CRISPR) loci, and more than 100 transporter functions and mobile genetic elements like phages, plasmid genes, and transposons. A clade distribution based on amino acid differences between core (shared) proteins matched with the clade distribution obtained from the presence–absence of variable genes. The phylogenetic and variome tree overlap indicated that frequent events of gene acquisition and loss dominated the evolutionary segregation of the strains within this species, which is paralleled by evolutionary diversification of core gene functions. The CRISPR-Cas system could have contributed to this evolutionary segregation. Lactobacillus rhamnosus strains contain the genetic and metabolic machinery with strain-specific gene functions required to adapt to a large range of environments. A remarkable congruency of the evolutionary relatedness of the strains’ core and variome functions, possibly favoring interspecies genetic exchanges, underlines the importance of gene-acquisition and loss within the L. rhamnosus strain diversification. PMID:27358423

  20. The Variable Regions of Lactobacillus rhamnosus Genomes Reveal the Dynamic Evolution of Metabolic and Host-Adaptation Repertoires.

    PubMed

    Ceapa, Corina; Davids, Mark; Ritari, Jarmo; Lambert, Jolanda; Wels, Michiel; Douillard, François P; Smokvina, Tamara; de Vos, Willem M; Knol, Jan; Kleerebezem, Michiel

    2016-01-01

    Lactobacillus rhamnosus is a diverse Gram-positive species with strains isolated from different ecological niches. Here, we report the genome sequence analysis of 40 diverse strains of L. rhamnosus and their genomic comparison, with a focus on the variable genome. Genomic comparison of 40 L. rhamnosus strains discriminated the conserved genes (core genome) and regions of plasticity involving frequent rearrangements and horizontal transfer (variome). The L. rhamnosus core genome encompasses 2,164 genes, out of 4,711 genes in total (the pan-genome). The accessory genome is dominated by genes encoding carbohydrate transport and metabolism, extracellular polysaccharides (EPS) biosynthesis, bacteriocin production, pili production, the cas system, and the associated clustered regularly interspaced short palindromic repeat (CRISPR) loci, and more than 100 transporter functions and mobile genetic elements like phages, plasmid genes, and transposons. A clade distribution based on amino acid differences between core (shared) proteins matched with the clade distribution obtained from the presence-absence of variable genes. The phylogenetic and variome tree overlap indicated that frequent events of gene acquisition and loss dominated the evolutionary segregation of the strains within this species, which is paralleled by evolutionary diversification of core gene functions. The CRISPR-Cas system could have contributed to this evolutionary segregation. Lactobacillus rhamnosus strains contain the genetic and metabolic machinery with strain-specific gene functions required to adapt to a large range of environments. A remarkable congruency of the evolutionary relatedness of the strains' core and variome functions, possibly favoring interspecies genetic exchanges, underlines the importance of gene-acquisition and loss within the L. rhamnosus strain diversification. PMID:27358423

  1. Microencapsulation of Lactobacillus acidophilus NCFM using polymerized whey proteins as wall material.

    PubMed

    Jiang, Yujun; Zheng, Zhe; Zhang, Tiehua; Hendricks, Gregory; Guo, Mingruo

    2016-09-01

    Survivability of probiotics in foods is essential for developing functional food containing probiotics. We investigated polymerized whey protein (PWP)-based microencapsulation process which is developed for protecting probiotics like Lactobacillus acidophilus NCFM and compared with the method using sodium alginate (SA). The entrapment rate was 89.3 ± 4.8% using PWP, while it was 73.2 ± 1.4% for SA. The microencapsulated NCFM by PWP and SA were separately subjected to digestion juices and post-fermentation storage of fermented cows' and goats' milk using the encapsulated culture. The log viable count of NCFM in PWP-based microencapsulation was 4.56, compared with that of 4.26 in SA-based ones and 3.13 for free culture. Compared with using SA as wall material, PWP was more effective in protecting probiotic. Microencapsulation of L. acidophilus NCFM using PWP as wall material can be exploited in the development of fermented dairy products with better survivability of probiotic organism. PMID:27309796

  2. Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing.

    PubMed

    Senz, Martin; van Lengerich, Bernhard; Bader, Johannes; Stahl, Ulf

    2015-01-01

    The viability of bacteria during industrial processing is an essential quality criterion for bacterial preparations, such as probiotics and starter cultures. Therefore, producing stable microbial cultures during proliferation is of great interest. A strong correlation between the culture medium and cellular morphology was observed for the lactic acid bacterium Lactobacillus acidophilus NCFM, which is commonly used in the dairy industry as a probiotic supplement and as a starter culture. The cell shapes ranged from single short rods to long filamentous rods. The culture medium composition could control this phenomenon of pleomorphism, especially the use of peptone in combination with an adequate heating of the medium during preparation. Furthermore, we observed a correlation between the cell size and stability of the microorganisms during industrial processing steps, such as freeze-drying, extrusion encapsulation and storage following dried preparations. The results revealed that short cells are more stable than long cells during each of the industrially relevant processing steps. As demonstrated for L. acidophilus NCFM, the adaptation of the medium composition and optimized medium preparation offer the possibility to increase the concentration of viable cells during up- and survival rate during down-stream processing. PMID:25305442

  3. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon

    PubMed Central

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-01-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. PMID:23879596

  4. Effect of Low Shear Modeled Microgravity (LSMMG) on the Probiotic Lactobacillus Acidophilus ATCC 4356

    NASA Technical Reports Server (NTRS)

    Stahl, S.; Voorhies, A.; Lorenzi, H.; Castro-Wallace, S.; Douglas, G.

    2016-01-01

    The introduction of generally recognized as safe (GRAS) probiotic microbes into the spaceflight food system has the potential for use as a safe, non-invasive, daily countermeasure to crew microbiome and immune dysregulation. However, the microgravity effects on the stress tolerances and genetic expression of probiotic bacteria must be determined to confirm translation of strain benefits and to identify potential for optimization of growth, survival, and strain selection for spaceflight. The work presented here demonstrates the translation of characteristics of a GRAS probiotic bacteria to a microgravity analog environment. Lactobacillus acidophilus ATCC 4356 was grown in the low shear modeled microgravity (LSMMG) orientation and the control orientation in the rotating wall vessel (RWV) to determine the effect of LSMMG on the growth, survival through stress challenge, and gene expression of the strain. No differences were observed between the LSMMG and control grown L. acidophilus, suggesting that the strain will behave similarly in spaceflight and may be expected to confer Earth-based benefits.

  5. Membrane filter method to study the effects of Lactobacillus acidophilus and Bifidobacterium longum on fecal microbiota.

    PubMed

    Shimizu, Hidenori; Benno, Yoshimi

    2015-11-01

    A large number of commensal bacteria inhabit the intestinal tract, and interbacterial communication among gut microbiota is thought to occur. In order to analyze symbiotic relationships between probiotic strains and the gut microbiota, a ring with a membrane filter fitted to the bottom was used for in vitro investigations. Test strains comprising probiotic nitto strains (Lactobacillus acidophilus NT and Bifidobacterium longum NT) and type strains (L. acidophilus JCM1132(T) and B. longum JCM1217(T) ) were obtained from diluted fecal samples using the membrane filter to simulate interbacterial communication. Bifidobacterium spp., Streptococcus pasteurianus, Collinsella aerofaciens, and Clostridium spp. were the most abundant gut bacteria detected before coculture with the test strains. Results of the coculture experiments indicated that the test strains significantly promote the growth of Ruminococcus gnavus, Ruminococcus torques, and Veillonella spp. and inhibit the growth of Sutterella wadsworthensis. Differences in the relative abundances of gut bacterial strains were furthermore observed after coculture of the fecal samples with each test strain. Bifidobacterium spp., which was detected as the dominant strain in the fecal samples, was found to be unaffected by coculture with the test strains. In the present study, interbacterial communication using bacterial metabolites between the test strains and the gut microbiota was demonstrated by the coculture technique. The detailed mechanisms and effects of the complex interbacterial communications that occur among the gut microbiota are, however, still unclear. Further investigation of these relationships by coculture of several fecal samples with probiotic strains is urgently required. PMID:26486646

  6. Transcriptional analysis of prebiotic uptake and catabolism by Lactobacillus acidophilus NCFM.

    PubMed

    Andersen, Joakim Mark; Barrangou, Rodolphe; Hachem, Maher Abou; Lahtinen, Sampo J; Goh, Yong-Jun; Svensson, Birte; Klaenhammer, Todd R

    2012-01-01

    The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β-linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC) transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota. PMID:23028535

  7. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon.

    PubMed

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-09-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. PMID:23879596

  8. Characterization of the tre locus and analysis of trehalose cryoprotection in Lactobacillus acidophilus NCFM.

    PubMed

    Duong, Tri; Barrangou, Rodolphe; Russell, W Michael; Klaenhammer, Todd R

    2006-02-01

    Freezing and lyophilization are common methods used for preservation and storage of microorganisms during the production of concentrated starter cultures destined for industrial fermentations or product formulations. The compatible solute trehalose has been widely reported to protect bacterial, yeast and animal cells against a variety of environmental stresses, particularly freezing and dehydration. Analysis of the Lactobacillus acidophilus NCFM genome revealed a putative trehalose utilization locus consisting of a transcriptional regulator, treR; a trehalose phosphoenolpyruvate transferase system (PTS) transporter, treB; and a trehalose-6-phosphate hydrolase, treC. The objective of this study was to characterize the tre locus in L. acidophilus and determine whether or not intracellular uptake of trehalose contributes to cryoprotection. Cells subjected to repeated freezing and thawing cycles were monitored for survival in the presence of various concentrations of trehalose. At 20% trehalose a 2-log increase in survival was observed. The trehalose PTS transporter and trehalose hydrolase were disrupted by targeted plasmid insertions. The resulting mutants were unable to grow on trehalose, indicating that both trehalose transport into the cell via a PTS and hydrolysis via a trehalose-6-phosphate hydrolase were necessary for trehalose fermentation. Trehalose uptake was found to be significantly reduced in the transporter mutant but unaffected in the hydrolase mutant. Additionally, the cryoprotective effect of trehalose was reduced in these mutants, suggesting that intracellular transport and hydrolysis contribute significantly to cryoprotection. PMID:16461669

  9. Transcriptional and functional analysis of galactooligosaccharide uptake by lacS in Lactobacillus acidophilus.

    PubMed

    Andersen, Joakim M; Barrangou, Rodolphe; Abou Hachem, Maher; Lahtinen, Sampo; Goh, Yong Jun; Svensson, Birte; Klaenhammer, Todd R

    2011-10-25

    Probiotic microbes rely on their ability to survive in the gastrointestinal tract, adhere to mucosal surfaces, and metabolize available energy sources from dietary compounds, including prebiotics. Genome sequencing projects have proposed models for understanding prebiotic catabolism, but mechanisms remain to be elucidated for many prebiotic substrates. Although β-galactooligosaccharides (GOS) are documented prebiotic compounds, little is known about their utilization by lactobacilli. This study aimed to identify genetic loci in Lactobacillus acidophilus NCFM responsible for the transport and catabolism of GOS. Whole-genome oligonucleotide microarrays were used to survey the differential global transcriptome during logarithmic growth of L. acidophilus NCFM using GOS or glucose as a sole source of carbohydrate. Within the 16.6-kbp gal-lac gene cluster, lacS, a galactoside-pentose-hexuronide permease-encoding gene, was up-regulated 5.1-fold in the presence of GOS. In addition, two β-galactosidases, LacA and LacLM, and enzymes in the Leloir pathway were also encoded by genes within this locus and up-regulated by GOS stimulation. Generation of a lacS-deficient mutant enabled phenotypic confirmation of the functional LacS permease not only for the utilization of lactose and GOS but also lactitol, suggesting a prominent role of LacS in the metabolism of a broad range of prebiotic β-galactosides, known to selectively modulate the beneficial gut microbiota. PMID:22006318

  10. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM.

    PubMed

    Hymes, Jeffrey P; Johnson, Brant R; Barrangou, Rodolphe; Klaenhammer, Todd R

    2016-05-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified inLactobacillus acidophilusNCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on thein silicodetection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) inL. acidophilusNCFM, anfbpB-deficient strain was constructed. TheL. acidophilusmutant with a deletion offbpBlost the ability to adhere to mucin and fibronectinin vitro Homologues offbpBwere identified in five additional putative S-layer-forming species, but no homologues were detected in species outside theL. acidophilushomology group. PMID:26921419

  11. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM.

    PubMed

    Majumder, Avishek; Cai, Liyang; Ejby, Morten; Schmidt, Bjarne G; Lahtinen, Sampo J; Jacobsen, Susanne; Svensson, Birte

    2012-04-01

    Lactobacillus acidophilus NCFM (NCFM) is a well-documented probiotic bacterium isolated from human gut. Detailed 2D gel-based NCFM proteomics addressed the so-called alkaline range, i.e., pH 6-11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D gel using MALDI-TOF-MS. The 102 unique gene products among the 150 protein identifications were assigned to different functional categories, and evaluated by considering a calculated distribution of abundance as well as grand average of hydrophobicity values. None of the very few available lactic acid bacteria proteome reference maps included the range of pI >7.0. The present report of such data on the proteome of NCFM fundamentally complements current knowledge on protein profiles limited to the acid and neutral pH range. PMID:22522807

  12. Synergistic effects of the Lactobacillus acidophilus surface layer and nisin on bacterial growth.

    PubMed

    Prado-Acosta, Mariano; Ruzal, Sandra M; Allievi, Mariana C; Palomino, María Mercedes; Sanchez Rivas, Carmen

    2010-02-01

    We have previously described a murein hydrolase activity for the surface layer (S-layer) of Lactobacillus acidophilus ATCC 4356. Here we show that, in combination with nisin, this S-layer acts synergistically to inhibit the growth of pathogenic Gram-negative Salmonella enterica and potential pathogenic Gram-positive bacteria, Staphylococcus aureus and Bacillus cereus. In addition, bacteriolytic effects were observed for the Gram-positive species tested. We postulate that the S-layer enhances the access of nisin into the cell membrane by enabling it to cross the cell wall, while nisin provides the sudden ion-nonspecific dissipation of the proton motive force required to enhance the S-layer murein hydrolase activity. PMID:19948852

  13. Characterization of the temperate bacteriophage phi adh and plasmid transduction in Lactobacillus acidophilus ADH.

    PubMed Central

    Raya, R R; Kleeman, E G; Luchansky, J B; Klaenhammer, T R

    1989-01-01

    Lactobacillus acidophilus ADH is lysogenic and harbors an inducible prophage, phi adh. Bacteriophage were detected in cell lysates induced by treatment with mitomycin C or UV light. Electron microscopy of lysates revealed phage particles with a hexagonal head (62 nm) and a long, noncontractile, flexible tail (398 nm) ending in at last five short fibers. Phage phi adh was classified within Bradley's B1 phage group and the Siphoviridae family. The phi adh genome is a linear double-stranded DNA molecule of 41.7 kilobase pairs with cohesive ends: a physical map of the phi adh genome was constructed. A prophage-cured derivative of strain ADH, designated NCK102, was isolated from cells that survived UV exposure. NCK102 did not exhibit mitomycin C-induced lysis, but broth cultures lysed upon addition of phage. Phage phi adh produced clear plaques on NCK102 in media containing 10 mM CaCl2 at pH values between 5.2 and 5.5. A relysogenized derivative (NCK103) of NCK102 was isolated that exhibited mitomycin C-induced lysis and superinfection immunity to phage phi adh. Hybridization experiments showed that the phi adh genome was present in the ADH and NCK103 chromosomes, but absent in NCK102. These results demonstrated classic lytic and lysogenic cycles of replication for the temperate phage phi adh induced from L. acidophilus ADH. Phage phi adh also mediates transduction of plasmid DNA. Transductants of strain ADH containing pC194, pGK12, pGB354, and pVA797 were detected at frequencies in the range of 3.6 x 10(-8) to 8.3 x 10(-10) per PFU. Rearrangements or deletions were not detected in these plasmids as a consequence of transduction. This is the first description of plasmid transduction in the genus Lactobacillus. Images PMID:2508554

  14. Effects of fermentation with Lactobacillus rhamnosus GG on product quality and fatty acids of goat milk yogurt.

    PubMed

    Jia, Ru; Chen, Han; Chen, Hui; Ding, Wu

    2016-01-01

    The effect of fermentation with Lactobacillus rhamnosus GG on the product quality of goat milk yogurt using traditional yogurt starter was studied through single-factor experiments and orthogonal experiments. The optimum fermentation condition was evaluated by the titratable acidity of goat milk yogurt, water-retaining capability, sensory score, and texture properties; the fatty acids of the fermented goat milk were determined by a gas chromatograph. Results indicate that high product quality of goat milk yogurt can be obtained and the content of short-chain and medium-chain fatty acids can be decreased significantly when amount of sugar added was 7%, inoculation amount was 3%, the ratio of 3 lactic acid bacteria--Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, and L. rhamnosus GG--was 1:1:3, and fermentation temperature was 42°C. PMID:26601583

  15. Live and Heat-Killed Lactobacillus rhamnosus ATCC 7469 May Induce Modulatory Cytokines Profiles on Macrophages RAW 264.7

    PubMed Central

    Jorjão, Adeline Lacerda; de Oliveira, Felipe Eduardo; Leão, Mariella Vieira Pereira; Carvalho, Cláudio Antonio Talge; Jorge, Antonio Olavo Cardoso; de Oliveira, Luciane Dias

    2015-01-01

    This study aimed to evaluate the capacity of Lactobacillus rhamnosus and/or its products to induce the synthesis of cytokines (TNF-α, IL-1β, IL-4, IL-6, IL-10, and IL-12) by mouse macrophages (RAW 264.7). Three microorganism preparations were used: live L. rhamnosus (LLR) suspension, heat-killed L. rhamnosus (HKLR) suspension, and the supernatant of a heat-killed L. rhamnosus (SHKLR) suspension, which were cultured with macrophages (37°C, 5% CO2) for 2 h and 30 min. After that, cells were cultured for 16 h. The supernatants were used for the quantitation of cytokines, by ELISA. The results were compared with the synthesis induced by lipopolysaccharide (LPS) and analysed, using ANOVA and Tukey test, 5%. LLR and HKLR groups were able to significantly increase the production of TNF-α, IL-6, and IL-10 (P < 0.05). SHKLR also significantly increased the production of TNF-α and IL-10 (P < 0.05) but not IL-6 (P > 0.05). All the L. rhamnosus suspensions were not able to produce detectable levels of IL-1β or significant levels of IL-4 and IL-12 (P > 0.05). In conclusion, live and heat-killed L. rhamnosus suspensions were able to induce the synthesis of different cytokines with proinflammatory (TNF-α and IL-6) or regulatory (IL-10) functions, suggesting the role of strain L. rhamnosus ATCC 7469 in the modulation or in the stimulation of immune responses. PMID:26649329

  16. A Comparative Pan-Genome Perspective of Niche-Adaptable Cell-Surface Protein Phenotypes in Lactobacillus rhamnosus

    PubMed Central

    Kant, Ravi; Sigvart-Mattila, Pia; Paulin, Lars; Mecklin, Jukka-Pekka; Saarela, Maria; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    Lactobacillus rhamnosus is a ubiquitously adaptable Gram-positive bacterium and as a typical commensal can be recovered from various microbe-accessible bodily orifices and cavities. Then again, other isolates are food-borne, with some of these having been long associated with naturally fermented cheeses and yogurts. Additionally, because of perceived health benefits to humans and animals, numerous L. rhamnosus strains have been selected for use as so-called probiotics and are often taken in the form of dietary supplements and functional foods. At the genome level, it is anticipated that certain genetic variances will have provided the niche-related phenotypes that augment the flexible adaptiveness of this species, thus enabling its strains to grow and survive in their respective host environments. For this present study, we considered it functionally informative to examine and catalogue the genotype-phenotype variation existing at the cell surface between different L. rhamnosus strains, with the presumption that this might be relatable to habitat preferences and ecological adaptability. Here, we conducted a pan-genomic study involving 13 genomes from L. rhamnosus isolates with various origins. In using a benchmark strain (gut-adapted L. rhamnosus GG) for our pan-genome comparison, we had focused our efforts on a detailed examination and description of gene products for certain functionally relevant surface-exposed proteins, each of which in effect might also play a part in niche adaptability among the other strains. Perhaps most significantly of the surface protein loci we had analyzed, it would appear that the spaCBA operon (known to encode SpaCBA-called pili having a mucoadhesive phenotype) is a genomic rarity and an uncommon occurrence in L. rhamnosus. However, for any of the so-piliated L. rhamnosus strains, they will likely possess an increased niche-specific fitness, which functionally might presumably be manifested by a protracted transient colonization of

  17. Functional Analysis of Lactobacillus rhamnosus GG Pili in Relation to Adhesion and Immunomodulatory Interactions with Intestinal Epithelial Cells

    PubMed Central

    Claes, Ingmar; Tytgat, Hanne L. P.; Verhoeven, Tine L. A.; Marien, Eyra; von Ossowski, Ingemar; Reunanen, Justus; Palva, Airi; de Vos, Willem M.; De Keersmaecker, Sigrid C. J.; Vanderleyden, Jos

    2012-01-01

    Lactobacillus rhamnosus GG, a probiotic with good survival capacity in the human gut, has well-documented adhesion properties and health effects. Recently, spaCBA-encoded pili that bind to human intestinal mucus were identified on its cell surface. Here, we report on the phenotypic analysis of a spaCBA pilus knockout mutant in comparison with the wild type and other adhesin mutants. The SpaCBA pilus of L. rhamnosus GG showed to be key for efficient adherence to the Caco-2 intestinal epithelial cell (IEC) line and biofilm formation. Moreover, the spaCBA mutant induces an elevated level of interleukin-8 (IL-8) mRNA in Caco-2 cells compared to the wild type, possibly involving an interaction of lipoteichoic acid with Toll-like receptor 2. In contrast, an L. rhamnosus GG mutant without exopolysaccharides but with an increased exposure of pili leads to the reduced expression of IL-8. Using Transwells to partition bacteria from Caco-2 cells, IL-8 induction is blocked completely regardless of whether wild-type or mutant L. rhamnosus GG cells are used. Taken together, our data suggest that L. rhamnosus GG SpaCBA pili, while promoting strong adhesive interactions with IECs, have a functional role in balancing IL-8 mRNA expression induced by surface molecules such as lipoteichoic acid. PMID:22020518

  18. Comparative proteome cataloging of Lactobacillus rhamnosus strains GG and Lc705.

    PubMed

    Savijoki, Kirsi; Lietzén, Niina; Kankainen, Matti; Alatossava, Tapani; Koskenniemi, Kerttu; Varmanen, Pekka; Nyman, Tuula A

    2011-08-01

    The present study reports an in-depth proteome analysis of two Lactobacillus rhamnosus strains, the well-known probiotic strain GG and the dairy strain Lc705. We used GeLC-MS/MS, in which proteins are separated using 1-DE and identified using nanoLC-MS/MS, to generate high-quality protein catalogs. To maximize the number of identifications, all data sets were searched against the target databases using two search engines, Mascot and Paragon. As a result, over 1600 high-confidence protein identifications, covering nearly 60% of the predicted proteomes, were obtained from each strain. This approach enabled identification of more than 40% of all predicted surfome proteins, including a high number of lipoproteins, integral membrane proteins, peptidoglycan associated proteins, and proteins predicted to be released into the extracellular environment. A comparison of both data sets revealed the expression of more than 90 proteins in GG and 150 in Lc705, which lack evolutionary counterparts in the other strain. Differences were noted in proteins with a likely role in biofilm formation, phage-related functions, reshaping the bacterial cell wall, and immunomodulation. The present study provides the most comprehensive catalog of the Lactobacillus proteins to date and holds great promise for the discovery of novel probiotic effector molecules. PMID:21615180

  19. Theoretical insight into the heat shock response (HSR) regulation in Lactobacillus casei and L. rhamnosus.

    PubMed

    Rossi, Franca; Zotta, Teresa; Iacumin, Lucilla; Reale, Anna

    2016-08-01

    The understanding of the heat shock response (HSR) in lactobacilli from a regulatory point of view is still limited, though an increased knowledge on the regulation of this central stress response can lead to improvements in the exploitation of these health promoting microorganisms. Therefore the aim of this in silico study, that is the first to be carried out for members of the Lactobacillus genus, was predicting how HSR influences cell functions in the food associated and probiotic species Lactobacillus casei and Lactobacillus rhamnosus. To this purpose, thirteen whole genomes of these bacteria were analyzed to identify which genes involved in HSR are present. It was found that all the genomes share 25 HSR related genes, including those encoding protein repair systems, HSR repressors, HrcA and CtsR, and the positive regulators of HSR, alternative σ factors σ(32) and σ(24). Two genes encoding a σ(70)/σ(24) factor and a Lon protease, respectively, were found only in some genomes. The localization of the HSR regulators binding sites in genomes was analyzed in order to identify regulatory relationships driving HSR in these lactobacilli. It was observed that the binding site for the HrcA repressor is found upstream of the hrcA-grpE-dnaK-dnaJ and groES-groEL gene clusters, of two hsp genes, clpE, clpL and clpP, while the CtsR repressor binding site precedes the ctsR-clpC operon, clpB, clpE and clpP. Therefore the ClpE-ClpP protease complex is dually regulated by HrcA and CtsR. Consensus sequences for the promoters recognized by the HSR alternative σ factors were defined for L. casei and L. rhamnosus and were used in whole genome searches to identify the genes that are possibly regulated by these transcription factors and whose expression level is expected to increases in HSR. The results were validated by applying the same procedure of promoter consensus generation and whole genome search to an additional 11 species representative of the main Lactobacillus

  20. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages.

    PubMed

    Hong, Yi-Fan; Kim, Hangeun; Kim, Hye Sun; Park, Woo Jung; Kim, Joo-Yun; Chung, Dae Kyun

    2016-01-01

    Lactobacillus acidophilus species are well-known probiotics with the beneficial activity of regulating cholesterol levels. In this study, we showed that L. acidophilus K301 reduced the level of cholesterol through reverse transport in macrophages. L. acidophilus K301 upregulated the mRNA and protein levels of genes such as ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) under the control of liver X receptor (LXR), resulting in increased apoA-I-dependent cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. L. acidophilus K301 induced both ABCA1 and ABCG1 through the endogenous LXR agonist 24(S), 25-epoxcycholesterol, which is synthesized by intracellular cholesterol synthetic pathways. In vivo studies using L. acidophilus K301-treated ApoE-/- mice showed reduced accumulation of lipoproteins in the arterial lumen. The inhibitory effects of L. acidophilus K301 on accumulation of lipoprotein in atherosclerotic plaques were mediated by the induction of squalene reductase (SQLE) and oxidosqualene cyclase (OSC) and resulted in ABCA1-mediated cholesterol efflux. Taken together, our findings revealed that Lactobacillus acidophilus K301 regulates the expression of genes related to cholesterol reverse transport via the induction of endogenous LXR agonist, suggesting the therapeutic potential of Lactobacillus acidophilus K301 as an anti-atherosclerotic agent. PMID:27120199

  1. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages

    PubMed Central

    Kim, Hye Sun; Park, Woo Jung; Kim, Joo-Yun; Chung, Dae Kyun

    2016-01-01

    Lactobacillus acidophilus species are well-known probiotics with the beneficial activity of regulating cholesterol levels. In this study, we showed that L. acidophilus K301 reduced the level of cholesterol through reverse transport in macrophages. L. acidophilus K301 upregulated the mRNA and protein levels of genes such as ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) under the control of liver X receptor (LXR), resulting in increased apoA-I-dependent cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. L. acidophilus K301 induced both ABCA1 and ABCG1 through the endogenous LXR agonist 24(S), 25-epoxcycholesterol, which is synthesized by intracellular cholesterol synthetic pathways. In vivo studies using L. acidophilus K301-treated ApoE-/- mice showed reduced accumulation of lipoproteins in the arterial lumen. The inhibitory effects of L. acidophilus K301 on accumulation of lipoprotein in atherosclerotic plaques were mediated by the induction of squalene reductase (SQLE) and oxidosqualene cyclase (OSC) and resulted in ABCA1-mediated cholesterol efflux. Taken together, our findings revealed that Lactobacillus acidophilus K301 regulates the expression of genes related to cholesterol reverse transport via the induction of endogenous LXR agonist, suggesting the therapeutic potential of Lactobacillus acidophilus K301 as an anti-atherosclerotic agent. PMID:27120199

  2. Reclassification of Lactobacillus casei subsp. casei ATCC 393 and Lactobacillus rhamnosus ATCC 15820 as Lactobacillus zeae nom. rev., designation of ATCC 334 as the neotype of L. casei subsp. casei, and rejection of the name Lactobacillus paracasei.

    PubMed

    Dicks, L M; Du Plessis, E M; Dellaglio, F; Lauer, E

    1996-01-01

    The type strain of Lactobacillus casei subsp. casei (ATCC 393) exhibits low levels of DNA homology with other strains of L. casei subsp. casei (8 to 46%) and strains of Lactobacillus paracasei (30 to 50%), but exhibits a level of DNA similarity of 80% with Lactobacillus rhamnosus ATCC 15820, the original type strain of "Lactobacterium zeae" Kuznetsov 1959. Strains ATCC 393T (T = type strain) and ATCC 15820T are members of one protein profile cluster that is separate from the other Lactobacillus spp. The randomly amplified polymorphic DNA PCR profile of strain ATCC 393T is also different from the profiles obtained for the other species. L. casei ATCC 334T is genetically closely related to L. casei subsp. casei strains (71 to 97%) and L. paracasei strains (71 to 91%), is a member of the same protein profile cluster as these organisms, and shares several DNA amplicons with L. paracasei strains. On the basis of these results, we propose that L. casei subsp. casei ATCC 393T and L. rhamnosus ATCC 15820 should be reclassified as members of Lactobacillus zeae nom. rev. (type strain, ATCC 15820), that strain ATCC 334 should be designated the neotype strain of L. casei subsp. casei, and that the name L. paracasei should be rejected. PMID:8573516

  3. Inhibition of adhesion of enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decreases bacterial invasion.

    PubMed

    Coconnier, M H; Bernet, M F; Kernéis, S; Chauvière, G; Fourniat, J; Servin, A L

    1993-07-01

    Salmonella typhimurium and enteropathogenic Escherichia coli (EPEC) were found to adhere to the brush border of differentiated human intestinal epithelial Caco-2 cells in culture, whereas Yersinia pseudotuberculosis and Listeria monocytogenes adhered to the periphery of undifferentiated Caco-2 cells. All these enterovirulent strains invaded the Caco-2 cells. Using a heat-killed human Lactobacillus acidophilus (strain LB) which strongly adheres both to undifferentiated and differentiated Caco-2 cells, we have studied inhibition of cell association with and invasion within Caco-2 cells by enterovirulent bacteria. Living and heat-killed Lactobacillus acidophilus strain LB inhibited both cell association and invasion of Caco-2 cells by enterovirulent bacteria in a concentration-dependent manner. The mechanism of inhibition of both adhesion and invasion appears to be due to steric hindrance of human enterocytic pathogen receptors by whole-cell lactobacilli rather than to a specific blockade of receptors. PMID:8354463

  4. Characterization of nitrite degradation by Lactobacillus casei subsp. rhamnosus LCR 6013.

    PubMed

    Liu, Dong-mei; Wang, Pan; Zhang, Xin-yue; Xu, Xi-lin; Wu, Hui; Li, Li

    2014-01-01

    Nitrites are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. The nitrite degradation capacity of Lactobacillus casei subsp. rhamnosus LCR 6013 was investigated in pickle fermentation. After LCR 6013 fermentation for 120 h at 37°C, the nitrite concentration in the fermentation system was significantly lower than that in the control sample without the LCR 6013 strain. The effects of NaCl and Vc on nitrite degradation by LCR 6013 in the De Man, Rogosa and Sharpe (MRS) medium were also investigated. The highest nitrite degradations, 9.29 mg/L and 9.89 mg/L, were observed when NaCl and Vc concentrations were 0.75% and 0.02%, respectively in the MRS medium, which was significantly higher than the control group (p ≤ 0.01). Electron capture/gas chromatography and indophenol blue staining were used to study the nitrite degradation pathway of LCR 6013. The nitrite degradation products contained N2O, but no NH4(+). The LCR 6013 strain completely degraded all NaNO2 (50.00 mg/L) after 16 h of fermentation. The enzyme activity of NiR in the periplasmic space was 2.5 times of that in the cytoplasm. Our results demonstrated that L. casei subsp. rhamnosus LCR 6013 can effectively degrade nitrites in both the pickle fermentation system and in MRS medium by NiR. Nitrites are degraded by the LCR 6013 strain, likely via the nitrate respiration pathway (NO2(-)>NO->N2O->N2), rather than the aammonium formation pathway (dissimilatory nitrate reduction to ammonium, DNRA), because the degradation products contain N2O, but not NH4(+). PMID:24755671

  5. The quorum sensing luxS gene is induced in Lactobacillus acidophilus NCFM in response to Listeria monocytogenes.

    PubMed

    Moslehi-Jenabian, Saloomeh; Vogensen, Finn Kvist; Jespersen, Lene

    2011-10-01

    The luxS gene involved in quorum sensing has been shown to control different behaviour of probiotic lactobacilli. In this study we investigated if luxS in Lactobacillus acidophilus NCFM was up-regulated in response to Listeria monocytogenes EGD-e. The two bacterial strains were grown in mono- and co-culture and the growth of both bacteria and the transcriptional level of luxS in L. acidophilus cells were monitored. Contrary to L. acidophilus, the growth of L. monocytogenes was significantly affected by co-cultivation. Transcriptional analysis showed that the expression of luxS increased during exponential growth in L. acidophilus cells with the highest level in the late-exponential growth phase, decreasing in the stationary phase. Following co-cultivation with L. monocytogenes, the transcriptional level of luxS increased significantly in mid-exponential growing cells of L. acidophilus after incubation with viable L. monocytogenes cells and by addition of cell-free culture supernatant of L. monocytogenes, whereas incubation with heat killed cells of L. monocytogenes had no effect on the transcriptional level. This could indicate that the up-regulation of luxS is due to a response to a secreted compound produced by L. monocytogenes cells. PMID:21784546

  6. Identification and purification of a protein that induces production of the Lactobacillus acidophilus bacteriocin lactacin B.

    PubMed Central

    Barefoot, S F; Chen, Y R; Hughes, T A; Bodine, A B; Shearer, M Y; Hughes, M D

    1994-01-01

    Lactacin B is a heat-stable bacteriocin produced by Lactobacillus acidophilus N2 that is active against closely related lactobacilli, including Lactobacillus delbrueckii subsp. lactis (formerly Lactobacillus leichmannii) ATCC 4797. Pure producer cultures propagated in MRS broth (initial pH 6.5) contain no lactacin B; it is detected only in cultures maintained at pH 5.0 to 6.0 and produced optimally at pH 6.0 S. F. Barefoot and T. R. Klaenhammer, Antimicrob. Agents Chemother. 26:328-334, 1984). Associative growth of producer and indicator, L. delbrueckii subsp. lactis ATCC 4797, resulted in production of an inhibitor identical to lactacin B. Associative growth increased lactacin B production from nondetectable levels (< 100 activity units [AU]/ml) to between 3,200 and 6,400 AU/ml in MRS broth (initial pH 6.5) and resulted in early but equal production of lactacin B (approximately 25,600 AU/ml) in broth maintained at pH 6.0. Indicator cells, but not spent culture filtrates, induced lactacin B production. Indicator cells disrupted by a French pressure cell yielded cell-free filtrates containing inducing activity. Chromatofocusing and gel filtration high-performance liquid chromatography of cell-free filtrates yielded a protein with a pI of 4.1 and a molecular size of approximately 58 kDa that induced lactacin B production. Analytical isoelectric focusing yielded a single protein band. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels contained a 28-kDa protein suggesting a two-subunit structure. Protein sequencing identified an N-terminal serine and 18 additional amino acids. To our knowledge, there are not previous descriptions of proteins that induce bacteriocin production in lactic acid bacteria. Images PMID:7986029

  7. Lactobacillus rhamnosus BFE 5264 and Lactobacillus plantarum NR74 Promote Cholesterol Excretion Through the Up-Regulation of ABCG5/8 in Caco-2 Cells.

    PubMed

    Yoon, Hong-Sup; Ju, Jae-Hyun; Kim, Hannah; Lee, Jieun; Park, Hyun-Joon; Ji, Yosep; Shin, Hyeun-Kil; Do, Myoung-Sool; Lee, Jung-Min; Holzapfel, Wilhelm

    2011-12-01

    The effect of two putative probiotic strains, Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74, on the control of cholesterol efflux in enterocytes was assessed by focusing on the promotion of ATP-binding cassette sub-family G members 5 and 8 (ABCG5 and ABCG8). Differentiated Caco-2 enterocytes were treated with live bacteria, heat-killed bacteria, a bacterial cell wall fraction, and metabolites and were subjected to cholesterol uptake assay, mRNA analysis, and protein analyses. Following LXR-transfection by incubation with CHO-K1 cells in DNA-lipofectin added media, the luciferase assay was conducted for LXR analysis. Treatment of Caco-2 cells with L. rhamnosus BFE5264 (isolated from traditional fermented Maasai milk) and L. plantarum NR74 (isolated from Korean kimchi) resulted in the up-regulation of LXR, concomitantly with the elevated expression of ABCG5 and ABCG8. This was associated with the promotion of cholesterol efflux at significantly higher levels compared to the positive control strain L. rhamnosus GG (LGG). The experiment with CHO-K1 cells confirmed up-regulation of LXR-beta by the test strains, and treatment with the live L. rhamnosus BFE5264 and L. plantarum NR74 strains significantly increased cholesterol efflux. Heat-killed cells and cell wall fractions of both LAB strains induced the upregulation of ABCG5/8 through LXR activation. By contrast, LAB metabolites did not show any effect on ABCG5/8 and LXR expression. Data from this study suggest that LAB strains, such as L. rhamnosus BFE5264 and L. plantarum NR74, may promote cholesterol efflux in enterocytes, and thus potentially contribute to the prevention of hypercholesterolemia and atherosclerosis. PMID:26781680

  8. Antibiotic susceptibility of members of the Lactobacillus acidophilus group using broth microdilution and molecular identification of their resistance determinants.

    PubMed

    Mayrhofer, Sigrid; van Hoek, Angela H A M; Mair, Christiane; Huys, Geert; Aarts, Henk J M; Kneifel, Wolfgang; Domig, Konrad J

    2010-11-15

    The range of antibiotic susceptibility to 13 antibiotics in 101 strains of the Lactobacillus acidophilus group was examined using the lactic acid bacteria susceptibility test medium (LSM) and broth microdilution. Additionally, microarray analysis and PCR were applied to identify resistance genes responsible for the displayed resistant phenotypes in a selection of strains. In general, narrow as well as broad unimodal and bimodal MIC distributions were observed for the Lactobacillus acidophilus group and the tested antimicrobial agents. Atypically resistant strains could be determined by visual inspection of the obtained MIC ranges for ampicillin, chloramphenicol, clindamycin, erythromycin, quinupristin/dalfopristin, streptomycin and tetracycline. For most of these atypically resistant strains underlying resistance determinants were found. To our knowledge erm(A) was detected in lactobacilli for the first time within this study. Data derived from this study can be used as a basis for reviewing present microbiological breakpoints for categorization of susceptible and resistant strains within the Lactobacillus acidophilus group to assess the safety of microorganisms intended for use in food and feed applications. PMID:20888656

  9. Inhibitory effect of essential oils against Lactobacillus rhamnosus and starter culture in fermented milk during its shelf-life period

    PubMed Central

    Moritz, Cristiane Mengue Feniman; Rall, Vera Lúcia Mores; Saeki, Margarida Júri; Júnior, Ary Fernandes

    2012-01-01

    The use of essential oils in foods has attracted great interest, due to their antagonistic action against pathogenic microorganisms. However, this action is undesirable for probiotic foods, as products containing Lactobacillus rhamnosus. The aim of the present study was to measure the sensitivity profile of L. rhamnosus and a yogurt starter culture in fermented milk, upon addition of increasing concentrations of cinnamon, clove and mint essential oils. Essential oils were prepared by steam distillation, and chemically characterised by gas chromatography-mass spectrometry (GC-MS) and determination of density. Survival curves were obtained from counts of L. rhamnosus and the starter culture (alone and in combination), upon addition of 0.04% essential oils. In parallel, titratable acidity was monitored over 28 experimental days. Minimum inhibitory concentration values, obtained using the microdilution method in Brain Heart Infusion medium, were 0.025, 0.2 and 0.4% for cinnamon, clove and mint essential oils, respectively. Cinnamon essential oil had the highest antimicrobial activity, especially against the starter culture, interfering with lactic acid production. Although viable cell counts of L. rhamnosus were lower following treatment with all 3 essential oils, relative to controls, these results were not statistically significant; in addition, cell counts remained greater than the minimum count of 108CFU/mL required for a product to be considered a probiotic. Thus, although use of cinnamon essential oil in yogurt makes starter culture fermentation unfeasible, it does not prevent the application of L. rhamnosus to probiotic fermented milk. Furthermore, clove and mint essential oil caused sublethal stress to L. rhamnosus. PMID:24031939

  10. The major secreted protein Msp1/p75 is O-glycosylated in Lactobacillus rhamnosus GG

    PubMed Central

    2012-01-01

    Background Although the occurrence, biosynthesis and possible functions of glycoproteins are increasingly documented for pathogens, glycoproteins are not yet widely described in probiotic bacteria. Nevertheless, knowledge of protein glycosylation holds important potential for better understanding specific glycan-mediated interactions of probiotics and for glycoengineering in food-grade microbes. Results Here, we provide evidence that the major secreted protein Msp1/p75 of the probiotic Lactobacillus rhamnosus GG is glycosylated. Msp1 was shown to stain positive with periodic-acid Schiff staining, to be susceptible to chemical deglycosylation, and to bind with the mannose-specific Concanavalin A (ConA) lectin. Recombinant expression in Escherichia coli resulted in a significant reduction in molecular mass, loss of ConA reactivity and increased sensitivity towards pronase E and proteinase K. Mass spectrometry showed that Msp1 is O-glycosylated and identified a glycopeptide TVETPSSA (amino acids 101-108) bearing hexoses presumably linked to the serine residues. Interestingly, these serine residues are not present in the homologous protein of several Lactobacillus casei strains tested, which also did not bind to ConA. The role of the glycan substitutions in known functions of Msp1 was also investigated. Glycosylation did not seem to impact significantly on the peptidoglycan hydrolase activity of Msp1. In addition, the glycan chain appeared not to be required for the activation of Akt signaling in intestinal epithelial cells by Msp1. On the other hand, examination of different cell extracts showed that Msp1 is a glycosylated protein in the supernatant, but not in the cell wall and cytosol fraction, suggesting a link between glycosylation and secretion of this protein. Conclusions In this study we have provided the first evidence of protein O-glycosylation in the probiotic L rhamnosus GG. The major secreted protein Msp1 is glycosylated with ConA reactive sugars at the

  11. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt--a review.

    PubMed

    Ashraf, Rabia; Shah, Nagendra P

    2011-10-01

    Yoghurt is increasingly being used as a carrier of probiotic bacteria for their potential health benefits. To meet with a recommended level of ≥10(6) viable cells/g of a product, assessment of viability of probiotic bacteria in market preparations is crucial. This requires a working method for selective enumeration of these probiotic bacteria and lactic acid bacteria in yoghurt such as Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei and Bifidobacterium. This chapter presents an overview of media that could be used for differential and selective enumerations of yoghurt bacteria. De Man Rogosa Sharpe agar containing fructose (MRSF), MRS agar pH 5.2 (MRS 5.2), reinforced clostridial prussian blue agar at pH 5.0 (RCPB 5.0) or reinforced clostridial agar at pH 5.3 (RCA 5.3) are suitable for enumeration of Lb. delbrueckii subsp. bulgaricus when the incubation is carried out at 45°C for 72h. S. thermophilus (ST) agar and M17 are recommended for selective enumeration of S. thermophilus. Selective enumeration of Lb. acidophilus in mixed culture could be made in Rogosa agar added with 5-bromo-4-chloro-3-indolyl-β-d-glucopyranoside (X-Glu) or MRS containing maltose (MRSM) and incubation in a 20% CO2 atmosphere. Lb. casei could be selectively enumerated on specially formulated Lb. casei (LC) agar from products containing yoghurt starter bacteria (S. thermophilus and Lb. delbrueckii subsp. bulgaricus), Lb. acidophilus, Bifidobacterium spp. and Lb. casei. Bifidobacterium could be enumerated on MRS agar supplemented with nalidixic acid, paromomycin, neomycin sulphate and lithium chloride (MRS-NPNL) under anaerobic incubation at 37°C for 72h. PMID:21807435

  12. Optimization of Lactobacillus acidophilus cultivation using taro waste and evaluation of its biological activity.

    PubMed

    Hsieh, Shu-Chen; Liu, Jui-Ming; Pua, Xiao-Hui; Ting, Yuwen; Hsu, Ren-Jun; Cheng, Kuan-Chen

    2016-03-01

    In this study, taro waste (TW) was utilized for Lactobacillus acidophilus BCRC 14079 cultivation and the anti-tumor and immune-modulatory properties of heat-killed cells (HKCs), cytoplasmic fraction (CF), and exopolysaccharide (EPS) were evaluated. The optimum liquefaction enzyme dosage, temperature, and time determined by Box-Behnken design response surface methodology (BBD-RSM) were 9 mL/L of α-amylase, 79.2 °C, and 5 h of reaction, respectively. The optimum temperature and reaction time for saccharification were determined as 60 °C and 3 h. The optimum medium, CGMY1 medium, constitutes of TW hydrolysate containing 37 g/L of glucose, 25 g/L of corn gluten meal (CGM), and 1 g/L of yeast extract (YE). Results of MTT assay showed that HKCs and EPS from CGM medium exhibited the highest anti-proliferative in HT-29 (IC50 of HKCs, 467.25 μg/mL; EPS, 716.10 μg/mL) and in Caco-2 cells (IC50 of EPS, 741.60 μg/mL). Luciferase-based NF-ΚB and COX-2 systems indicated HKCs from CGM medium stimulated the highest expression of luciferin in both systems. The luciferase activities by using 100 and 500 μg/mL of HKCs from CGM were 24.30- and 45.83-fold in NF-ΚB system and 11.54- and 4.93-fold in COX-2 system higher than the control. In conclusion, this study demonstrated the potential of TW medium for L. acidophilus cultivation and the production of non-viable probiotics with enhanced biological activities. PMID:26572522

  13. Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk.

    PubMed

    Azcarate-Peril, M A; Tallon, R; Klaenhammer, T R

    2009-03-01

    Lactic acid bacteria have been used as starter strains in the production of fermented dairy products for centuries. Lactobacillus acidophilus is a widely recognized probiotic bacteria commonly added to yogurt and used in dietary supplements. In this study, a whole genome microarray was employed to monitor gene expression of L. acidophilus NCFM cells propagated in 11% skim milk during early, mid and late logarithmic phase, and stationary phase. Approximately 21% of 1,864 open reading frames were differentially expressed at least in one time point. Genes differentially expressed in skim milk included several members of the proteolytic enzyme system. Expression of prtP (proteinase precursor) and prtM (maturase) increased over time as well as several peptidases and transport systems. Expression of Opp1 (oligopeptide transport system 1) was highest at 4 h, whereas gene expression of Opp2 increased over time reaching its highest level at 12 h, suggesting that the 2 systems have different specificities. Expression of a 2-component regulatory system, previously shown to regulate acid tolerance and proteolytic activity, also increased during the early log and early stationary phases of growth. Expression of the genes involved in lactose utilization increased immediately (5 min) upon exposure to milk. The acidification activity, survival under storage conditions, and adhesion to mucin and Caco-2 tissue culture cells of selected mutants containing insertionally inactivated genes differentially expressed in the wild-type strain during growth in milk were examined for any potential links between probiotic properties and bacterial growth and survival in milk. Some of the most interesting genes found to be expressed in milk were correlated with signaling (autoinducer-2) and adherence to mucin and intestinal epithelial cells, in vitro. PMID:19233780

  14. [Study on effect of Lactobacillus acidophilus MG2-1 on serum lipid metabolism in rats].

    PubMed

    Menghe, Bilige; Zhang, He-Ping; Chen, Yong-Fu; Guan, Hong; Zhou, Dong-Po

    2005-12-01

    Wistar rats were fed with a high lipid diet supplemented with living or thermal death bacteria of Lactobacillus acidophilus MG2-1 which was isolated from koumiss in Mongolia and was of good ability of acid tolerance and decreasing the level of cholesterol in vitro. The effect of Lb. acidophilus MG2-1 on the metabolism of serum cholesterol was discussed. It was showed that it was on the 14th day of experiment that the inhibiting effects of the increase of serum cholesterol level of rat groups fed with living bacteria and heat-killed bacteria was significantly (p > 0.05) and very significantly (p < 0.01) higher than that of the high lipid diet group respectively; at the same time, the level of serum HDL-C of the thermal death bacteria group was significantly higher than that of the high lipid diet group (p < 0.05), also arteriosclerosis index of wistar rats in experimental group is significantly lower than that of the high lipid diet group (p < 0.01). The total bile acid level of the thermal death bacteria group in fecal is significantly higher than that of the high lipid diet group (p < 0.05). It is suggested that the increase of serum cholesterol level in rats can be inhibited and arteriosclerosis can also be prevented by this strain. During the period of tests, the effect of the strain on serum lipid in rats weaken with the time going, while the dose of bacteria fed was not changed. PMID:16496693

  15. The Effects of Lactobacillus acidophilus on the Intestinal Smooth Muscle Contraction through PKC/MLCK/MLC Signaling Pathway in TBI Mouse Model

    PubMed Central

    Fang, Huan; Zhu, Lina; Gao, Ning; Zhu, Jingci

    2015-01-01

    Clinical studies have shown that probiotics influence gastrointestinal motility. However, the molecular mechanisms by which probiotic Lactobacillus modulates intestinal motility in traumatic brain injury (TBI) mouse model have not been explored. In the present study, we provided evidence showing that treatment of TBI mice with Lactobacillus acidophilus significantly improved the terminal ileum villus morphology, restored the impaired interstitial cells of Cajal (ICC) and the disrupted ICC networks after TBI, and prevented TBI-mediated inhibition of contractile activity in intestinal smooth muscle. Mechanistically, the decreased concentration of MLCK, phospho-MLC20 and phospho-MYPT1 and increased concentration of MLCP and PKC were observed after TBI, and these events mediated by TBI were efficiently prevented by Lactobacillus acidophilus application. These findings may provide a novel mechanistic basis for the application of Lactobacillus acidophilus in the treatment of TBI. PMID:26030918

  16. Compositional and physicochemical factors governing the viability of Lactobacillus rhamnosus GG embedded in starch-protein based edible films

    PubMed Central

    Soukoulis, Christos; Singh, Poonam; Macnaughtan, William; Parmenter, Christopher; Fisk, Ian D.

    2016-01-01

    Probiotic incorporation in edible films and coatings has been shown recently to be an efficient strategy for the delivery of probiotics in foods. In the present work, the impact of the compositional, physicochemical and structural properties of binary starch-protein edible films on Lactobacillus rhamnosus GG viability and stability was evaluated. Native rice and corn starch, as well as bovine skin gelatine, sodium caseinate and soy protein concentrate were used for the fabrication of the probiotic edible films. Starch and protein type both impacted the structural, mechanical, optical and thermal properties of the films, and the process loss of L. rhamnosus GG during evaporation-dehydration was significantly lower in the presence of proteins (0.91–1.07 log CFU/g) compared to solely starch based systems (1.71 log CFU/g). A synergistic action between rice starch and proteins was detected when monitoring the viability of L. rhamnosus GG over four weeks at fridge and room temperature conditions. In particular, a 3- to 7-fold increase in the viability of L. rhamnosus GG was observed in the presence of proteins, with sodium caseinate – rice starch based films offering the most enhanced stability. The film's shelf-life (as calculated using the FAO/WHO (2011) basis of 6 log viable CFU/g) ranged between 27-96 and 15–24 days for systems stored at fridge or room temperature conditions respectively. PMID:26726280

  17. Comparative Genome Analysis of Lactobacillus rhamnosus Clinical Isolates from Initial Stages of Dental Pulp Infection: Identification of a New Exopolysaccharide Cluster

    PubMed Central

    Nadkarni, Mangala A.; Chen, Zhiliang; Wilkins, Marc R.; Hunter, Neil

    2014-01-01

    The human oral microbiome has a major role in oral diseases including dental caries. Our studies on progression of caries infection through dentin and more recently, the invasion of vital dental pulp, detected Lactobacillus rhamnosus in the initial stages of infection of vital pulp tissue. In this study employing current high-throughput next generation sequencing technology we sought to obtain insight into genomic traits of tissue invasive L. rhamnosus, to recognise biomarkers that could provide an understanding of pathogenic potential of lactobacilli, generally regarded as safe. Roche GS FLX+ technology was used to generate whole genome sequences of two clinical isolates of L. rhamnosus infecting vital pulp. Detailed genome-wide comparison of the genetic profiles of tissue invasive L. rhamnosus with probiotic L. rhamnosus was performed to test the hypothesis that specific strains of L. rhamnosus possessing a unique gene complement are selected for the capacity to invade vital pulp tissue. Analysis identified 264 and 258 genes respectively, from dental pulp-invasive L. rhamnosus strains LRHMDP2 and LRHMDP3 isolated from two different subjects that were not present in the reference probiotic L. rhamnosus strain ATCC 53103 (GG). Distinct genome signatures identified included the presence of a modified exopolysaccharide cluster, a characteristic confirmed in a further six clinical isolates. Additional features of LRHMDP2 and LRHMDP3 were altered transcriptional regulators from RpoN, NtrC, MutR, ArsR and zinc-binding Cro/CI families, as well as changes in the two-component sensor kinase response regulator and ABC transporters for ferric iron. Both clinical isolates of L. rhamnosus contained a single SpaFED cluster, as in L. rhamnosus Lc705, instead of the two Spa clusters (SpaCBA and SpaFED) identified in L. rhamnosus ATCC 53103 (GG). Genomic distance analysis and SNP divergence confirmed a close relationship of the clinical isolates but segregation from the reference

  18. Lactobacillus rhamnosus GG: An Updated Strategy to Use Microbial Products to Promote Health

    PubMed Central

    Yan, Fang; Polk, D. Brent

    2013-01-01

    It is now widely appreciated that probiotics exert their beneficial effects through several mechanisms, including inhibitory effects on pathogens, maintenance of the balance of intestinal microbiota, and regulation of immune responses and intestinal epithelial homeostasis. A significant area of progress has come from observations that specific products derived from probiotics mediate their mechanism(s) of action. This review focuses on new insights into the well-studied probiotic bacterium Lactobacillus rhamnosus GG (LGG). The biologic consequences of LGG-derived products enhance LGG adherence to intestinal epithelial cells and protect intestinal epithelial cells from injury through regulating several signaling pathways. Thus, LGG-derived products may provide novel approaches for health and disease prevention and treatment, especially for intestinal inflammatory disorders. However, compared to LGG functional proteins predicted by analysis of LGG genome sequences, the number of identified LGG-derived products is limited. As more mechanistic evidence becomes available to characterize the relationship between probiotics and host cellular responses, the development of more therapeutics from naturally derived or modified probiotics may be part of our future. PMID:24795791

  19. Controlled release of Lactobacillus rhamnosus biofilm probiotics from alginate-locust bean gum microcapsules.

    PubMed

    Cheow, Wean Sin; Kiew, Tie Yi; Hadinoto, Kunn

    2014-03-15

    Chitosan-coated alginate microcapsules containing high-density biofilm Lactobacillus rhamnosus have been previously shown to exhibit higher freeze drying- and thermal-tolerance than their planktonic counterparts. However, their cell release profile remains poor due to the capsules' susceptibility to the gastric environment. Herein the effects of adding locust bean (LB) and xanthan (XT) gums to alginate (AGN) capsules on the stress tolerance and cell release profiles in simulated gastrointestinal fluids are investigated. Compared to the AGN-only capsules, the AGN-LB capsules exhibit improved stress tolerance (i.e. ≈ 6x for freeze drying, 100x for thermotolerance, 10x for acid), whereas the AGN-XT capsules only improve the acid tolerance. Importantly, the AGN-LB capsules possess the optimal cell release profile with a majority of cells released in the simulated intestinal juice than in the gastric juice. The AGN-LB capsules' superiority is attributed to their stronger interaction with the chitosan coating and high swelling capacity, thus delaying their bulk dissolution. PMID:24528770

  20. Lactobacillus rhamnosus GG SpaC pilin subunit binds to the carbohydrate moieties of intestinal glycoconjugates.

    PubMed

    Nishiyama, Keita; Ueno, Shintaro; Sugiyama, Makoto; Yamamoto, Yuji; Mukai, Takao

    2016-06-01

    Lactobacillus rhamnosus GG (LGG) is a well-established probiotic strain. The beneficial properties of this strain are partially dependent on its prolonged residence in the gastrointestinal tract, and are likely influenced by its adhesion to the intestinal mucosa. The pilin SpaC subunit, located within the Spa pili structure, is the most well studied LGG adhesion factor. However, the binding epitopes of SpaC remain largely unknown. The aim of this study was to evaluate the binding properties of SpaC to the carbohydrate moieties of intestinal glycoconjugates using a recombinant SpaC protein. In a competitive enzyme-linked immunosorbent assay, SpaC binding was markedly reduced by addition of purified mucin and the mucin oligosaccharide fraction. Histochemical staining revealed that the binding of SpaC was drastically reduced by periodic acid treatment. Moreover, in the surface plasmon resonance-based Biacore assay, SpaC bound strongly to the carbohydrate moieties containing β-galactoside at the non-reducing terminus of glycolipids. We here provide the first demonstration that SpaC binds to the oligosaccharide chains of mucins, and that the carbohydrate moieties containing β-galactoside at the non-reducing termini of glycoconjugates play a crucial role in this binding. Our results demonstrate the importance of carbohydrates of SpaC for mucus interactions. PMID:26434750

  1. Inactivation of Lactobacillus rhamnosus GG by fixation modifies its probiotic properties.

    PubMed

    Markowicz, C; Kubiak, P; Grajek, W; Schmidt, M T

    2016-01-01

    Probiotics are microorganisms that have beneficial effects on the host and are safe for oral intake in a suitable dose. However, there are situations in which the administration of living microorganisms poses a risk for immunocompromised host. The objective of this study was to evaluate the influence of several fixation methods on selected biological properties of Lactobacillus rhamnosus GG that are relevant to its probiotic action. Fixation of the bacterial cells with ethanol, 2-propanol, glutaraldehyde, paraformaldehyde, and heat treatment resulted in a significant decrease of alkaline phosphatase, peroxidase, and β-galactosidase activities. Most of the fixation procedures reduced bacterial cell hydrophobicity and increased adhesion capacity. The fixation procedures resulted in a different perception of the bacterial cells by enterocytes, which was shown as changes in gene expression in enterocytes. The results show that some procedures of inactivation allow a fraction of the enzymatic activity to be maintained. The adhesion properties of the bacterial cells were enhanced, but the response of enterocytes to fixed cells was different than to live bacteria. Inactivation allows maintenance and modification of some of the properties of the bacterial cells. PMID:26634746

  2. Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation.

    PubMed

    Lin, Patricia W; Myers, Loren E S; Ray, Laurie; Song, Shuh-Chyung; Nasr, Tala R; Berardinelli, Andrew J; Kundu, Kousik; Murthy, Niren; Hansen, Jason M; Neish, Andrew S

    2009-10-15

    Uncontrolled inflammatory responses in the immature gut may play a role in the pathogenesis of many intestinal inflammatory syndromes that present in newborns or children, such as necrotizing enterocolitis (NEC), idiopathic inflammatory bowel diseases (IBD), or infectious enteritis. Consistent with previous reports that murine intestinal function matures over the first 3 weeks of life, we show that inflammatory signaling in the neonatal mouse gut increases during postnatal maturation, with peak responses occurring at 2-3 weeks. Probiotic bacteria can block inflammatory responses in cultured epithelia by inducing the generation of reactive oxygen species (ROS), which inhibit NF-kappaB activation through oxidative inactivation of the key regulatory enzyme Ubc12. We now report for the first time that the probiotic Lactobacillus rhamnosus GG (LGG) can induce ROS generation in intestinal epithelia in vitro and in vivo. Intestines from immature mice gavage fed LGG exhibited increased GSH oxidation and cullin-1 deneddylation, reflecting local ROS generation and its resultant Ubc12 inactivation, respectively. Furthermore, prefeeding LGG prevented TNF-alpha-induced intestinal NF-kappaB activation. These studies indicate that LGG can reduce inflammatory signaling in immature intestines by inducing local ROS generation and may be a mechanism by which probiotic bacteria can prevent NEC in premature infants or reduce the severity of IBD in children. PMID:19660542

  3. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.

    PubMed

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A; Gilbert, Jack A; Nagler, Cathryn R

    2016-03-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut. PMID:26394008

  4. In Vitro Inhibition of 4-Nitroquinoline-1-Oxide Genotoxicity by Probiotic Lactobacillus rhamnosus IMC501.

    PubMed

    Bocci, Alessandro; Sebastiani, Bartolomeo; Trotta, Francesca; Federici, Ermanno; Cenci, Giovanni

    2015-10-28

    Inhibition of 4-nitroquinoline-1-oxide (4-NQO) genotoxicity by a probiotic strain of Lactobacillus rhamnosus (IMC501) was assessed by the prokaryotic short-term bioassay SOSChromotest, using Escherichia coli PQ37 as the target organism. Results showed the ability of strain IMC501 to rapidly and markedly counteract, in vitro, the DNA damage originated by the considered genotoxin. The inhibition was associated with a spectroscopic hypsochromic shift of the original 4-NQO profile and progressive absorbance increase of a new peak. IR-Raman and GC-MS analyses confirmed the disappearance of 4-NQO after contact with the microorganism, showing also the absence of any genotoxic molecule potentially available for metabolic activation (i.e., 4-hydroxyaminoquinoline-1-oxide and 4-nitrosoquinoline-1-oxide). Furthermore, we have shown the presence of the phenyl-quinoline and its isomers as major non-genotoxic conversion products, which led to the hypothesis of a possible pattern of molecular transformation. These findings increase knowledge on lactobacilli physiology and contribute to the further consideration of antigenotoxicity as a nonconventional functional property of particular probiotic strains. PMID:26059518

  5. Lactobacillus rhamnosus Ingestion Promotes Innate Host Defense in an Enteric Parasitic Infection

    PubMed Central

    McClemens, Jessica; Kim, Janice J.; Wang, Huaqing; Mao, Yu-Kang; Collins, Matthew; Kunze, Wolfgang; Bienenstock, John

    2013-01-01

    Enteric parasite infections around the world are a huge economic burden and decrease the quality of life for many people. The use of beneficial bacteria has attracted attention for their potential therapeutic applications in various diseases. However, the effects of beneficial bacteria in enteric parasitic infections remain largely unexplored. We investigated the effects of ingestion of Lactobacillus rhamnosus (JB-1) in a model of enteric nematode (Trichuris muris) infection. C57BL/6 (resistant to infection), AKR (susceptible to infection), interleukin 10 (IL-10) knockout (KO), and mucin Muc2 KO mice were infected with T. muris and treated orally with probiotic JB-1 or medium. The mice were sacrificed on various days postinfection to examine goblet cells, epithelial cell proliferation, cytokines, and worm burdens. Treatment with JB-1 significantly enhanced worm expulsion in resistant C57BL/6 mice, and this was associated with increases in IL-10 levels, goblet cell numbers, and epithelial cell proliferation. Beneficial effects of JB-1 were absent in IL-10 KO and resistant mice treated with γ-irradiated bacteria. Live JB-1 treatment also expedited worm expulsion in Muc2 KO mice and, more importantly, in AKR mice (susceptible to infection). Injection of IL-10 directly into the colonic tissue of uninfected mice induced goblet cell hyperplasia. These findings demonstrate that JB-1 modulates goblet cell biology and promotes parasite expulsion via an IL-10-mediated pathway and provide novel insights into probiotic effects on innate defense in nematode infection. PMID:23536695

  6. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

    DOE PAGESBeta

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T.; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A.; Gilbert, Jack A.; Nagler, Cathryn R.

    2015-09-22

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow’s milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceaemore » (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. As a result, our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut.« less

  7. Microencapsulated Lactobacillus rhamnosus GG powders: relationship of powder physical properties to probiotic survival during storage.

    PubMed

    Ying, Dan Yang; Phoon, Mei Chi; Sanguansri, Luz; Weerakkody, Rangika; Burgar, Iko; Augustin, Mary Ann

    2010-01-01

    Freeze-dried commercial Lactobacillus rhamnosus GG (LGG) were encapsulated in an emulsion-based formulation stabilized by whey protein and resistant starch and either spray-dried or freeze-dried to produce probiotic microcapsules. There was no difference in loss of probiotics viability after spray drying or freeze drying. Particle size, morphology, moisture sorption, and water mobility of the powder microcapsules were examined. Particle size analysis and scanning electron microscopy showed that spray-dried LGG microcapsules (SDMC) were small spherical particles, whereas freeze-dried LGG microcapsules (FDMC) were larger nonspherical particles. Moisture sorption isotherms obtained using dynamic vapor sorption showed a slightly higher water uptake in spray-dried microcapsules. The effect of water mobility, as measured by nuclear magnetic resonance (NMR) spectroscopy, at various water activities (a(w) 0.32, 0.57, and 0.70) and probiotic viability during storage at 25 °C was also examined. Increasing the relative humidity of the environment at which the samples were stored caused an increase in water mobility and the rate of loss in viability. The viability data during storage indicated that SDMC had better storage stability compared to FDMC. Although more water was adsorbed for spray-dried than freeze-dried microcapsules, water mobility was similar for corresponding storage conditions because there was a stronger water-binding energy for spray-dried microcapsule. This possibly accounted for the improved survival of probiotics in spray-dried microcapsules. PMID:21535593

  8. Effective prophylaxis against rotavirus diarrhea using a combination of Lactobacillus rhamnosus GG and antibodies

    PubMed Central

    Pant, Neha; Marcotte, Harold; Brüssow, Harald; Svensson, Lennart; Hammarström, Lennart

    2007-01-01

    Background Rotavirus is a worldwide cause of infectious infantile diarrhea that claims over 600,000 lives annually. Recently, two new vaccine candidates have been developed but their efficacy in developing countries, still remains to be proven. Oral delivery of specific immunoglobulins provides passive immunity and is a fast acting treatment for rotavirus diarrhea. Probiotic bacteria have also gained considerable attention lately as treatment for rotavirus diarrhea. Here we report an evaluation of the therapeutic potential of different probiotics and their combination with anti – rotavirus antibodies in a mouse model of rotavirus diarrhea. Results Of the six probiotic bacteria tested, Lactobacillus rhamnosus strain GG had the strongest influence in reducing prevalence, duration and severity of diarrhea and was therefore chosen for combination treatment with immunoglobulins. The combination treatment reduced the diarrhea outcome measures significantly, prevented histopathological changes and reduced the virus load in the intestines. Conclusion The advantages associated with immunoglobulins and probiotics based therapy is that the treatment provides a rapid therapeutic effect and is cost efficient. These components do not require special storage conditions and could potentially complement the rehydration therapy that is currently used. PMID:17900343

  9. Determination of Critical Point of pO2 Level in the Production of Lactic Acid by Lactobacillus rhamnosus

    NASA Astrophysics Data System (ADS)

    Mel, Maizirwan; Karim, Mohamed Ismail Abdul; Salleh, Mohamad Ramlan Mohamed; Abdullah, Rohane

    The study was conducted to determine the critical point of pO2 level in the production of lactic acid by Lactobacillus rhamnosus. The fermentation process was successfully carried out in laboratory scale fermenter/bioreactor using different pO2 level (the main parameter that significantly affects the growth of L. rhamnosus and lactic acid production) together with two other parameters; the agitation rate and pH. From the result, it was observed that the best production of lactic acid with the concentration of 16.85 g L-1 or 1.68% production yield has been obtained at the operating parameters of 5% pO2 level, agitation speed of 100 rpm and sample pH 6. The critical point of pO2 was found to be between 5 and 10%.

  10. Solution Structure of Acidocin B, a Circular Bacteriocin Produced by Lactobacillus acidophilus M46

    PubMed Central

    Acedo, Jeella Z.; van Belkum, Marco J.; Lohans, Christopher T.; McKay, Ryan T.; Miskolzie, Mark

    2015-01-01

    Acidocin B, a bacteriocin produced by Lactobacillus acidophilus M46, was originally reported to be a linear peptide composed of 59 amino acid residues. However, its high sequence similarity to gassericin A, a circular bacteriocin from Lactobacillus gasseri LA39, suggested that acidocin B might be circular as well. Acidocin B was purified from culture supernatant by a series of hydrophobic interaction chromatographic steps. Its circular nature was ascertained by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry and tandem mass spectrometry (MS/MS) sequencing. The peptide sequence was found to consist of 58 amino acids with a molecular mass of 5,621.5 Da. The sequence of the acidocin B biosynthetic gene cluster was also determined and showed high nucleotide sequence similarity to that of gassericin A. The nuclear magnetic resonance (NMR) solution structure of acidocin B in sodium dodecyl sulfate micelles was elucidated, revealing that it is composed of four α-helices of similar length that are folded to form a compact, globular bundle with a central pore. This is a three-dimensional structure for a member of subgroup II circular bacteriocins, which are classified based on their isoelectric points of ∼7 or lower. Comparison of acidocin B with carnocyclin A, a subgroup I circular bacteriocin with four α-helices and a pI of 10, revealed differences in the overall folding. The observed variations could be attributed to inherent diversity in their physical properties, which also required the use of different solvent systems for three-dimensional structural elucidation. PMID:25681186

  11. Genome Sequence and Characteristics of Lrm1, a Prophage from Industrial Lactobacillus rhamnosus Strain M1▿ †

    PubMed Central

    Durmaz, Evelyn; Miller, Michael J.; Azcarate-Peril, M. Andrea; Toon, Stephen P.; Klaenhammer, Todd R.

    2008-01-01

    Prophage Lrm1 was induced with mitomycin C from an industrial Lactobacillus rhamnosus starter culture, M1. Electron microscopy of the lysate revealed relatively few intact bacteriophage particles among empty heads and disassociated tails. The defective Siphoviridae phage had an isometric head of approximately 55 nm and noncontractile tail of about 275 nm with a small baseplate. In repeated attempts, the prophage could not be cured from L. rhamnosus M1, nor could a sensitive host be identified. Sequencing of the phage Lrm1 DNA revealed a genome of 39,989 bp and a G+C content of 45.5%. A similar genomic organization and mosaic pattern of identities align Lrm1 among the closely related Lactobacillus casei temperate phages A2, ΦAT3, and LcaI and with L. rhamnosus virulent phage Lu-Nu. Of the 54 open reading frames (ORFs) identified, all but 8 shared homology with other phages of this group. Five unknown ORFs were identified that had no homologies in the databases nor predicted functions. Notably, Lrm1 encodes a putative endonuclease and a putative DNA methylase with homology to a methylase in Lactococcus lactis phage Tuc2009. Possibly, the DNA methylase, endonuclease, or other Lrm1 genes provide a function crucial to L. rhamnosus M1 survival, resulting in the stability of the defective prophage in its lysogenic state. The presence of a defective prophage in an industrial strain could provide superinfection immunity to the host but could also contribute DNA in recombination events to produce new phages potentially infective for the host strain in a large-scale fermentation environment. PMID:18539811

  12. Lactobacillus rhamnosus HN001 decreases the severity of necrotizing enterocolitis in neonatal mice and preterm piglets: evidence in mice for a role of TLR9

    PubMed Central

    Good, Misty; Sodhi, Chhinder P.; Ozolek, John A.; Buck, Rachael H.; Goehring, Karen C.; Thomas, Debra L.; Vikram, Amit; Bibby, Kyle; Morowitz, Michael J.; Firek, Brian; Lu, Peng

    2014-01-01

    Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in premature infants and develops partly from an exaggerated intestinal epithelial immune response to indigenous microbes. There has been interest in administering probiotic bacteria to reduce NEC severity, yet concerns exist regarding infection risk. Mechanisms of probiotic activity in NEC are unknown although activation of the microbial DNA receptor Toll-like receptor-9 (TLR9) has been postulated. We now hypothesize that the Gram-positive bacterium Lactobacillus rhamnosus HN001 can attenuate NEC in small and large animal models, that its microbial DNA is sufficient for its protective effects, and that protection requires activation of the Toll-like receptor 9 (TLR9). We now show that oral administration of live or UV-inactivated Lactobacillus rhamnosus HN001 attenuates NEC severity in newborn mice and premature piglets, as manifest by reduced histology score, attenuation of mucosal cytokine response, and improved gross morphology. TLR9 was required for Lactobacillus rhamnosus-mediated protection against NEC in mice, as the selective decrease of TLR9 from the intestinal epithelium reversed its protective effects. Strikingly, DNA of Lactobacillus rhamnosus HN001 reduced the extent of proinflammatory signaling in cultured enterocytes and in samples of resected human ileum ex vivo, suggesting the therapeutic potential of this probiotic in clinical NEC. Taken together, these findings illustrate that Lactobacillus rhamnosus HN001 is an effective probiotic for NEC via activation of the innate immune receptor TLR9 and that Lactobacillus rhamnosus DNA is sufficient for its protective effects, potentially reducing concerns regarding the infectious risk of this novel therapeutic approach. PMID:24742987

  13. Derivation of DNA probes for enumeration of a specific strain of Lactobacillus acidophilus in piglet digestive tract samples.

    PubMed Central

    Rodtong, S; Dobbinson, S; Thode-Andersen, S; McConnell, M A; Tannock, G W

    1993-01-01

    Four DNA probes were derived that hybridized specifically to DNA from Lactobacillus acidophilus O. The probes were constructed by randomly cloning lactobacillus DNA in plasmid vector pBR322. Two of the probes (pSR1 and pSR2) were composed of vector and plasmid DNA inserts (3.6 and 1.6 kb, respectively); the others (pSR3 and pSR4) were composed of vector and chromosomally derived inserts (6.9 and 1.4 kb, respectively). The probes were used to enumerate, by colony hybridization, strain O in digestive tract samples collected from piglets inoculated 24 hours previously with a culture of the strain. The probes did not hybridize to DNA from lactobacilli inhabiting the digestive tract of uninoculated piglets. Strain O made up about 10% of the total lactobacillus population of the pars esophagea and about 20% of the population in other digestive tract samples. Images PMID:8285690

  14. Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells

    PubMed Central

    2014-01-01

    Background Previous findings suggested that Lactobacillus rhamnosus CRL1505 is able to increase resistance of children to intestinal viral infections. However, the intestinal cells, cytokines and receptors involved in the immunoregulatory effect of this probiotic strain have not been fully characterized. Results We aimed to gain insight into the mechanisms involved in the immunomodulatory effect of the CRL1505 strain and therefore evaluated in vitro the crosstalk between L. rhamnosus CRL1505, porcine intestinal epithelial cells (IECs) and antigen presenting cells (APCs) from swine Peyer’s patches in order to deepen our knowledge about the mechanisms, through which this strain may help preventing viral diarrhoea episodes. L. rhamnosus CRL1505 was able to induce IFN–α and –β in IECs and improve the production of type I IFNs in response to poly(I:C) challenge independently of Toll-like receptor (TLR)-2 or TLR9 signalling. In addition, the CRL1505 strain induced mRNA expression of IL-6 and TNF-α via TLR2 in IECs. Furthermore, the strain significantly increased surface molecules expression and cytokine production in intestinal APCs. The improved Th1 response induced by L. rhamnosus CRL1505 was triggered by TLR2 signalling and included augmented expression of MHC-II and co-stimulatory molecules and expression of IL-1β, IL-6, and IFN-γ in APCs. IL-10 was also significantly up-regulated by CRL1505 in APCs. Conclusions It was recently reviewed the emergence of TLR agonists as new ways to transform antiviral treatments by introducing panviral therapeutics with less adverse effects than IFN therapies. The use of L. rhamnosus CRL1505 as modulator of innate immunity and inductor of antiviral type I IFNs, IFN-γ, and regulatory IL-10 clearly offers the potential to overcome this challenge. PMID:24886142

  15. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice

    PubMed Central

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFMTM (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM. PMID:24717228

  16. Preparation and Characterization of Alginate and Psyllium Beads Containing Lactobacillus acidophilus

    PubMed Central

    Lotfipour, Farzaneh; Mirzaeei, Shahla; Maghsoodi, Maryam

    2012-01-01

    This paper describes preparation and characterization of beads of alginate and psyllium containing probiotic bacteria of Lactobacillus acidophilus DMSZ20079. Twelve different formulations containing alginate (ALG) and alginate-psyllium (ALG-PSL) were prepared using extrusion technique. The prepared beads were characterized in terms of size, morphology and surface properties, encapsulation efficiency, viabilities in acid (pH 1.8, 2 hours) and bile (0.5% w/v, 2 hours) conditions, and release in simulated colon pH conditions. The results showed that spherical beads with narrow size distribution ranging from 1.59 ± 0.04 to 1.67 ± 0.09 mm for ALG and from 1.61 ± 0.06 to 1.80 ± 0.07 mm for ALG-PSL with encapsulation efficiency higher than 98% were achieved. Furthermore, addition of PSL into ALG enhanced the integrity of prepared beads in comparison with ALG formulations. The results indicated that incorporation of PSL into alginate beads improved viability of the bacteria in acidic conditions as well as bile conditions. Also, stimulating effect of PSL on the probiotic bacteria was observed through 20-hour incubation in simulated colonic pH solution. According to our in vitro studies, PSL can be a suitable polymer candidate for partial substitution with ALG for probiotic coating. PMID:22649306

  17. Optimization of anticancer exopolysaccharide production from probiotic Lactobacillus acidophilus by response surface methodology.

    PubMed

    Deepak, Venkataraman; Ram Kumar Pandian, Sureshbabu; Sivasubramaniam, Shiva D; Nellaiah, Hariharan; Sundar, Krishnan

    2016-04-01

    Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths in the Western world. Recently, much attention has been focused on decreasing the risk of CRC by consuming probiotics. In the present study, exopolysaccharide (EPS) extracted from Lactobacillus acidophilus was found to inhibit the growth of CaCo2 colon cancer cell line in a dose-dependent manner. The experiment was performed in both normoxic and hypoxic conditions, and EPS was found to reduce the survival of CaCo2 cell line in both the conditions. Quantitative polymerase chain reaction (qPCR) studies demonstrated that EPS treatment upregulated the expression of peroxisome proliferator activator receptor-γ (PPAR-γ) in both normoxia and hypoxia conditions, whereas it upregulated the expression of erythropoietin (EPO) in the normoxic condition, but there was no significant expression under hypoxic conditions. Hence, the EPS production was optimized by Plackett-Burman design followed by central composite rotatory design. The optimized production of EPS at 24 hr was found to be 400 mg/L. During batch cultivation the production peaked at 21 hr, resulting in an EPS concentration of 597 mg/L. PMID:25831127

  18. In vitro evaluation of anticancer properties of exopolysaccharides from Lactobacillus acidophilus in colon cancer cell lines.

    PubMed

    Deepak, Venkataraman; Ramachandran, Sharavan; Balahmar, Reham Mohammed; Pandian, Sureshbabu Ram Kumar; Sivasubramaniam, Shiva D; Nellaiah, Hariharan; Sundar, Krishnan

    2016-02-01

    The present work aims at studying the effect of exopolysaccharides (EPS) from Lactobacillus acidophilus on the colon cancer cell lines in vitro. Initial analysis showed that EPS has antioxidative properties. EPS was also found to induce cytotoxicity in two colon cancer cell lines, viz. HCT15 and CaCo2 under normoxia and hypoxia. The membrane integrity was also found to be affected in EPS-treated cells. Once the toxic concentration was determined (5 mg/ml), the effect of EPS on the messenger RNA (mRNA) expression of various genes was studied by quantitative real-time (RT)-PCR under both normoxic and hypoxic conditions. The results suggest that EPS downregulated the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) and upregulated the expression of tissue inhibitor of metalloproteinases-3 (TIMP-3), hypoxia-inducible factor-2α (HIF-2α), and hemeoxygenase-1 (HO-1). An increase in plasminogen activator inhibitor-1 (PAI-1) was also observed. These results show that EPS may inhibit the expressions of genes involved in tumor angiogenesis and survival. Increase in the expression of HO-1 also shows that EPS have antioxidative properties. PMID:26659393

  19. Cloning, expression and characterization of a mucin-binding GAPDH from Lactobacillus acidophilus.

    PubMed

    Patel, Dhaval K; Shah, Kunal R; Pappachan, Anju; Gupta, Sarita; Singh, Desh Deepak

    2016-10-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme involved in glycolysis. It is also referred to as a moonlighting protein as it has many diverse functions like regulation of apoptosis, iron homeostasis, cell-matrix interactions, adherence to human colon etc. apart from its principal role in glycolysis. Lactobacilli are lactic acid bacteria which colonize the human gut and confer various health benefits to humans. In the present study, we have cloned, expressed and purified the GAPDH from Lactobacillus acidophilus to get a recombinant product (r-LaGAPDH) and characterized it. Size exclusion chromatography shows that r-LaGAPDH exists as a tetramer in solution and have a mucin binding and hemagglutination activity indicating carbohydrate like binding adhesion mechanism. Fluorescence spectroscopy studies showed an interaction of r-LaGAPDH with mannose, galactose, N-acetylgalactosamine and N-acetylglucosamine with a Kd of 3.6±0.7×10(-3)M, 4.34±0.09×10(-3)M, 4±0.87×10(-3)M and 3.7±0.28×10(-3)M respectively. We hope that this preliminary data will generate more interest in further elucidation of the roles of GAPDH in the adhesion processes of the bacteria. PMID:27180300

  20. Effect of probiotics Lactobacillus acidophilus on Citrobacter rodentium colitis: the role of dendritic cells.

    PubMed

    Chen, Chien-Chang; Chiu, Cheng-Hsun; Lin, Tzou-Yien; Shi, Hai Ning; Walker, W Allan

    2009-02-01

    Modulation of the intestinal immune response early in life by administration of probiotic bacteria may be an effective strategy for preventing or attenuating infectious diarrhea. We preinoculated the mice early in life with the probiotic bacteria Lactobacillus acidophilus NCFM (La) at age 2 wk. Dendritic cells (DCs) were collected and purified from mesenteric lymph nodes (MLN) and spleens of the BalbC/ByJ mice. DC isolation and adoptive transfer was used to examine the function of probiotics. We demonstrated that when mice were adoptively transferred with La-primed DCs (t-LaDC) instead of oral consumption with La, there was a similar effect on fecal bacteria counts, IgA levels, and colonic histopathology, as well as cytokine levels in MLN when there was intestinal bacterial infection. The above findings suggest that DCs play a key role in probiotics attenuating Citrobacter rodentium (Cr) colitis. Moreover, the location of La-primed DC hints that there is interaction of DCs and T cells in the digestive system of the host. Up-regulated expression of a surface marker on DCs indicated that inoculation with probiotics will stimulate the function of DCs, thereby further increasing immune response triggered by DC. PMID:19262293

  1. SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis

    PubMed Central

    Lightfoot, Yaíma L; Selle, Kurt; Yang, Tao; Goh, Yong Jun; Sahay, Bikash; Zadeh, Mojgan; Owen, Jennifer L; Colliou, Natacha; Li, Eric; Johannssen, Timo; Lepenies, Bernd; Klaenhammer, Todd R; Mohamadzadeh, Mansour

    2015-01-01

    Intestinal immune regulatory signals govern gut homeostasis. Breakdown of such regulatory mechanisms may result in inflammatory bowel disease (IBD). Lactobacillus acidophilus contains unique surface layer proteins (Slps), including SlpA, SlpB, SlpX, and lipoteichoic acid (LTA), which interact with pattern recognition receptors to mobilize immune responses. Here, to elucidate the role of SlpA in protective immune regulation, the NCK2187 strain, which solely expresses SlpA, was generated. NCK2187 and its purified SlpA bind to the C-type lectin SIGNR3 to exert regulatory signals that result in mitigation of colitis, maintenance of healthy gastrointestinal microbiota, and protected gut mucosal barrier function. However, such protection was not observed in Signr3−/− mice, suggesting that the SlpA/SIGNR3 interaction plays a key regulatory role in colitis. Our work presents critical insights into SlpA/SIGNR3-induced responses that are integral to the potential development of novel biological therapies for autoinflammatory diseases, including IBD. PMID:25666591

  2. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice.

    PubMed

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFM(TM) (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM. PMID:24717228

  3. Viable intestinal passage of a canine jejunal commensal strain Lactobacillus acidophilus LAB20 in dogs.

    PubMed

    Tang, Yurui; Saris, Per E J

    2014-10-01

    The strain Lactobacillus acidophilus LAB20 with immunomodulatory properties was previously found dominant in the jejunal chyme of four dogs, and the novel surface layer protein of LAB20 suggested its competitive colonization in canine gut. To evaluate the persistence and survival of LAB20 in healthy dogs, LAB20 was fed to five healthy pet dogs for 3 days, at a dosage of 10(8) CFU daily as fermented milk supplement. The fecal samples, from 1 day prior to feeding, three continuous feeding days, and on day 5, 7, 14, and 21, were collected for strain-specific detection of LAB20 using real-time PCR. We found that LAB20 count was significantly increased in dog fecal samples at the second feeding day, but rapidly decreased after feeding ceased. The fecal samples from prior to feeding, during feeding, and post-cessation days were plated onto mLBS7 agar, from where LAB20 was recovered and distinguishable from other fecal lactobacilli based on its colony morphotype. Using strain-specific PCR detection, the colonies were further verified as LAB20 indicating that LAB20 can survive through the passage of the canine intestine. This study suggested that canine-derived strain LAB20 maintained at high numbers during feeding, viably transited through the dog gut, and could be identified based on its colony morphotype. PMID:24849733

  4. Synbiotic yogurt-ice cream produced via incorporation of microencapsulated lactobacillus acidophilus (la-5) and fructooligosaccharide.

    PubMed

    Ahmadi, Abbas; Milani, Elnaz; Madadlou, Ashkan; Mortazavi, Seyed Ali; Mokarram, Reza Rezaei; Salarbashi, Davoud

    2014-08-01

    Yogurt-ice cream is a nutritious product with a refreshing taste and durability profoundly longer than that of yogurt. The probiotic Lactobacillus acidophilus (La-5) cells either in free or encapsulated form were incorporated into yog-ice cream and their survivability were studied. Fructooligosaccharide (FOS) as a prebiotic compound at three levels (0, 4 & 8 % w/w) was added to yogurt-ice cream mix and its effects on some chemical properties, overrun and firmness of product were evaluated. The higher the incorporated FOS concentration, the lower were the pH value and higher the total solid content of treatments. FOS incorporation (8 %) significantly increased the overrun of treatments and reduced their firmness. The viable counts of free probiotics decreased from ~9.55 to ~7.3 log cfu/g after 60 days of frozen storage while that of encapsulated cells merely decreased less than 1 log cycle. Encapsulation with alginate microbeads protected the probiotic cells against injuries in the freezing stage as well as, during frozen storage. PMID:25114349

  5. Some probiotic and antibacterial properties of Lactobacillus acidophilus cultured from dahi a native milk product.

    PubMed

    Mahmood, Talat; Masud, Tariq; Sohail, Asma

    2014-08-01

    In this study, different strains of Lactobacillus acidophilus from dahi were analyzed for certain probiotic and antibacterial properties. Initially, these strains were confirmed by the amplification of 16S rRNA regions and then screened for antibacterial activities against food borne pathogens. The phenotypic relationship between apparent antibacterial activity and cell wall proteins were established by cluster analysis. It was observed that those strains, which have prominent bands having size 22-25 kDa possess antibacterial activity. On the basis of wide spectrum of killing pattern, a strain LA06FT was further characterized that showed no change in its behavior when subjected to the antibiotic protected environment and grow well in acid-bile conditions. The bacteriocin produced by this strain has specific antibacterial activity of 5369.13 AU mg(-1). It remained stable at 60-90 °C and pH range of 4.5-6.5 while proteolytic enzymes inactivate the bacteriocin that confirm its proteinic nature having molecular weight of ≤8.5 kDa. PMID:24689927

  6. Elaboration of a probiotic oblea from whey fermented using Lactobacillus acidophilus or Bifidobacterium infantis.

    PubMed

    Trujillo-de Santiago, G; Sáenz-Collins, C P; Rojas-de Gante, C

    2012-12-01

    A novel probiotic product was developed, which was formulated as an oblea (wafer-type dehydrated traditional Mexican dessert) using goat sweet whey fermented with Bifidobacterium infantis or Lactobacillus acidophilus. To obtain the probiotic oblea, the fermented whey was formulated with prebiotic carbohydrates (inulin and resistant starch) and gelatin, and the preparation was poured onto a polytetrafluoroethylene-coated nonstick baking pan, dried in a convection oven, and finally dehydrated at a low relative humidity and room temperature (23±2°C). The amounts of prebiotic carbohydrates and gelatin to be used in the formulation were determined by a factorial experimental design. An untrained sensory panel evaluated 3 quality characteristics (film formation, homogeneity, and smoothness) in the final product. Three different drying temperatures were tested, namely, 40, 55, and 70°C. Bacterial survival at each temperature was determined by viable plate-counting. The best formulation, based on the quality characteristics tested, consisted of 58.33% (vol/vol) of fermented whey, 8.33% (vol/vol) of 6% (wt/vol) resistant starch dispersion, 16.66% (vol/vol) of 15% (wt/vol) inulin solution, and 16.66% (vol/vol) of a 10% (wt/vol) gelatin solution. Drying at 55±2°C for 2.66±0.22 h allowed for concentrations of probiotic bacteria above 9 log(10) cfu/g, which is above the minimum concentration required in a probiotic product. PMID:23040019

  7. Effect of the probiotic Lactobacillus rhamnosus on the expression of genes involved in European eel spermatogenesis.

    PubMed

    Vílchez, M Carmen; Santangeli, Stefania; Maradonna, Francesca; Gioacchini, Giorgia; Verdenelli, Cristina; Gallego, Victor; Peñaranda, David S; Tveiten, Helge; Pérez, Luz; Carnevali, Oliana; Asturiano, Juan F

    2015-11-01

    Positive effects of probiotics on fish reproduction have been reported in several species. In the present study, 40 male European eels were weekly treated with recombinant hCG for 9 weeks and with three different concentrations (10(3), 10(5), and 10(6) CFU/mL) of probiotic Lactobacillus rhamnosus IMC 501 (Sinbyotec, Italy). The probiotics were daily added to the water from the sixth week of the hCG treatment. Males from the treated and control groups were sacrificed after 1, 2, and 3 weeks of probiotic treatment (seventh-ninth weeks of hCG treatment); at this point, sperm and testis samples were also collected. Sperm volume was estimated, and motility was analyzed by computer-assisted sperm analysis software. Alternations in transcription of specific genes involved in reproductive process such as activin, androgen receptors α and β (arα and arβ), progesterone receptor 1 (pr1), bone morphogenetic protein 15 (bmp15), and FSH receptor (fshr) were analyzed in the testis. After 2 weeks of probiotic treatment, sperm production and sperm motility parameters (percentage of motile cells and percentage of straight-swimming spermatozoa) were increased in the European eel treated with 10(5) CFU/mL compared to controls or to the other probiotic doses. These changes were associated with increases in messenger RNA expression of activin, arα, arβ, pr1, and fshr. Conversely, after 3 weeks, activin and pr1 expression decreased. No significant changes were observed on bmp15 expression throughout the duration of the treatment with 10(5) CFU/mL dose. The lowest and highest probiotic dose (10(3) and 10(6) CFU/mL, respectively) inhibited the transcription of all genes along all the experiment, except for arα and arβ after 1 week of probiotic treatment when compared to controls. The changes observed by transcriptomic analysis and the sperm parameters suggest that a treatment with L rhamnosus at 10(5) CFU/mL for 2 weeks could improve spermatogenesis process in Anguilla

  8. Lactobacillus rhamnosus GG Reverses Insulin Resistance but Does Not Block Its Onset in Diet-Induced Obese Mice.

    PubMed

    Park, Kun-Young; Kim, Bobae; Hyun, Chang-Kee

    2015-05-01

    Recently, Lactobacillus rhamnosus GG (LGG) was shown to exert insulin-sensitizing and adiposity-reducing effects in high-fat (HF) diet-fed mice. In the present study, we observed that the effects were correlated with the extent of dysbiosis induced by HF diet feeding before LGG administration. LGG-treated mice were protected from HF diet-induced adiposity and/ or insulin resistance when LGG was treated after, not along with, HF diet feeding. Results indicate that, under HF dietary condition, supplemented LGG reverses insulin resistance, but does not block its onset. PMID:25433553

  9. Effect of aqueous and alcoholic Stevia (Stevia rebaudiana) extracts against Streptococcus mutans and Lactobacillus acidophilus in comparison to chlorhexidine: An in vitro study

    PubMed Central

    Ajagannanavar, Sunil Lingaraj; Shamarao, Supreetha; Battur, Hemant; Tikare, Shreyas; Al-Kheraif, Abdulaziz Abdullah; Al Sayed, Mohammed Sayed Al Esawy

    2014-01-01

    Introduction: Stevia (S. rebaudiana) a herb which has medicinal value and was used in ancient times as a remedy for a great diversity of ailments and sweetener. Leaves of Stevia contain a high concentration of Stevioside and Rebaudioside which are supposed to be sweetening agents. Aim: To compare the efficacy of aqueous and alcoholic S. rebaudiana extract against Streptococcus mutans and Lactobacillus acidophilus in comparison to chlorhexidine. Materials and Methods: In the first part of the study, various concentrations of aqueous and ethanolic Stevia extract were prepared in the laboratory of Pharmacy College. It was then subjected to microbiological assay to determine its zone of inhibition using Agar disk diffusion test and minimum inhibitory concentration (MIC) using serial broth dilution method against Streptococcus mutans and Lactobacillus acidophilus. Chlorhexidine was used as a positive control. One way Analysis of Variance (ANOVA) test was used for multiple group comparisons followed by Tukey post hoc for group wise comparisons. Results: Minimum inhibitory concentration (MIC) of aqueous and ethnolic Stevia extract against Streptococcus mutans and Lactobacillus acidophilus were 25% and 12.5% respectively. Mean zone of inhibition of the aqueous and alcoholic Stevia extracts against Streptococcus mutans at 48 hours were 22.8 mm and 26.7 mm respectively. Mean zone of inhibition of the aqueous and alcoholic Stevia extracts against Lactobacillus acidophilus at 48 hours were 14.4 mm and 15.1 mm respectively. Mean zone of inhibition of the chlorhexidine against Streptococcus mutans and Lactobacillus acidophilus at 48 hours was 20.5 and 13.2 respectively. Conclusion: The inhibitory effect shown by alcoholic Stevia extract against Streptococcus mutans and Lactobacillus acidophilus was superior when compared with that of aqueous form and was inferior when compared with Chlorhexidine. PMID:25558451

  10. Proteomics and Transcriptomics Characterization of Bile Stress Response in Probiotic Lactobacillus rhamnosus GG*

    PubMed Central

    Koskenniemi, Kerttu; Laakso, Kati; Koponen, Johanna; Kankainen, Matti; Greco, Dario; Auvinen, Petri; Savijoki, Kirsi; Nyman, Tuula A.; Surakka, Anu; Salusjärvi, Tuomas; de Vos, Willem M.; Tynkkynen, Soile; Kalkkinen, Nisse; Varmanen, Pekka

    2011-01-01

    Lactobacillus rhamnosus GG (GG) is a widely used and intensively studied probiotic bacterium. Although the health benefits of strain GG are well documented, the systematic exploration of mechanisms by which this strain exerts probiotic effects in the host has only recently been initiated. The ability to survive the harsh conditions of the gastrointestinal tract, including gastric juice containing bile salts, is one of the vital characteristics that enables a probiotic bacterium to transiently colonize the host. Here we used gene expression profiling at the transcriptome and proteome levels to investigate the cellular response of strain GG toward bile under defined bioreactor conditions. The analyses revealed that in response to growth of strain GG in the presence of 0.2% ox gall the transcript levels of 316 genes changed significantly (p < 0.01, t test), and 42 proteins, including both intracellular and surface-exposed proteins (i.e. surfome), were differentially abundant (p < 0.01, t test in total proteome analysis; p < 0.05, t test in surfome analysis). Protein abundance changes correlated with transcriptome level changes for 14 of these proteins. The identified proteins suggest diverse and specific changes in general stress responses as well as in cell envelope-related functions, including in pathways affecting fatty acid composition, cell surface charge, and thickness of the exopolysaccharide layer. These changes are likely to strengthen the cell envelope against bile-induced stress and signal the GG cells of gut entrance. Notably, the surfome analyses demonstrated significant reduction in the abundance of a protein catalyzing the synthesis of exopolysaccharides, whereas a protein dedicated for active removal of bile compounds from the cells was up-regulated. These findings suggest a role for these proteins in facilitating the well founded interaction of strain GG with the host mucus in the presence of sublethal doses of bile. The significance of these findings

  11. Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system

    PubMed Central

    Li, Ran; Zhang, Yufeng; Polk, D. Brent; Tomasula, Peggy M.; Yan, Fang; Liu, LinShu

    2016-01-01

    Probiotics have shown beneficial effects on health and prevention of diseases in humans. However, a concern for application of probiotics is the loss of viability during storage and gastrointestinal transit. The aim of this study was to develop an encapsulation system to preserve viability of probiotics when they are administrated orally and apply Lactobacillus rhamnosus GG (LGG) as a probiotic model to evaluate the effectiveness of this approach using in vitro and in vivo experiments. LGG was encapsulated in hydrogel beads prepared using pectin, a food grade polysaccharide, glucose, and calcium chloride, and lyophilized by freeze-drying. Encapsulated LGG was cultured in vitro under the condition that mimicked the physiological environment of the human gastrointestinal tract. Compared to non-encapsulated LGG, encapsulation increased tolerance of LGG in the acid condition, protected LGG from protease digestion, and improved shelf time when stored at the ambient condition, in regard of survivability and production of p40, a known LGG-derived protein involved in LGG’s beneficial effects on intestinal homeostasis. To evaluate the effects of encapsulation on p40 production in vivo and prevention of intestinal inflammation by LGG, mice were gavaged with LGG containing beads and treated with dextran sulphate sodium (DSS) to induce intestinal injury and colitis. Compared to non-encapsulated LGG, encapsulated LGG enhanced more p40 production in mice, and exerted higher levels of effects on prevention of DSS-induced colonic injury and colitis and suppression of pro-inflammatory cytokine production. These data indicated that the encapsulation system developed in this study preserves viability of LGG in vitro and in vivo, leading to longer shelf time and enhancing the functions of LGG in the gastrointestinal tract. Thus, this encapsulation approach may have the potential application for improving efficacy of probiotics. PMID:27063422

  12. Effect of Lactobacillus rhamnosus GG Administration on Vancomycin-Resistant Enterococcus Colonization in Adults with Comorbidities.

    PubMed

    Doron, Shira; Hibberd, Patricia L; Goldin, Barry; Thorpe, Cheleste; McDermott, Laura; Snydman, David R

    2015-08-01

    Vancomycin-resistant enterococci (VRE) are endemic in health care settings. These organisms colonize the gastrointestinal tract and can lead to infection which is associated with increased mortality. There is no treatment for VRE colonization. We conducted a randomized, double-blind, placebo-controlled clinical trial to examine the safety and efficacy of administration of the probiotic Lactobacillus rhamnosus GG (LGG) for the reduction or elimination of intestinal colonization by VRE. Colonized adults were randomized to receive LGG or placebo for 14 days. Quantitative stool cultures for LGG and VRE were collected at baseline and days 7, 14, 21, 28, and 56. Day 14 stool samples from some subjects were analyzed by quantitative PCR (qPCR) for LGG. Patients were closely monitored for adverse events. Eleven subjects, of whom 5 received LGG and 6 received placebo, were analyzed. No differences in VRE colony counts were seen at any time points between groups. No decline in colony counts was seen over time in subjects who received LGG. LGG was detected by PCR in all samples tested from subjects who received LGG but was only isolated in culture from 2 of 5 subjects in the LGG group. No treatment-related adverse events were seen. We demonstrated that LGG could be administered safely to patients with comorbidities and is recoverable in some patients' stool cultures. Concomitant administration of antibiotics may have resulted in an inability to recover viable organisms from stool samples, but LGG DNA could still be detected by qPCR. LGG administration did not affect VRE colonization in this study. (This study was registered at Clinicaltrials.gov under registration no. NCT00756262.). PMID:26014940

  13. Ehealth: Low FODMAP diet vs Lactobacillus rhamnosus GG in irritable bowel syndrome

    PubMed Central

    Pedersen, Natalia; Andersen, Nynne Nyboe; Végh, Zsuzsanna; Jensen, Lisbeth; Ankersen, Dorit Vedel; Felding, Maria; Simonsen, Mette Hestetun; Burisch, Johan; Munkholm, Pia

    2014-01-01

    AIM: To investigate the effects of a low fermentable, oligosaccharides, disaccharides, monosaccharides and polyols diet (LFD) and the probiotic Lactobacillus rhamnosus GG (LGG) in irritable bowel syndrome (IBS). METHODS: Randomised, unblinded controlled trial on the effect of 6-wk treatment with LFD, LGG or a normal Danish/Western diet (ND) in patients with IBS fulfilling Rome III diagnostic criteria, recruited between November 2009 and April 2013. Patients were required to complete on a weekly basis the IBS severity score system (IBS-SSS) and IBS quality of life (IBS-QOL) questionnaires in a specially developed IBS web self-monitoring application. We investigated whether LFD or LGG could reduce IBS-SSS and improve QOL in IBS patients. RESULTS: One hundred twenty-three patients (median age 37 years, range: 18-74 years), 90 (73%) females were randomised: 42 to LFD, 41 to LGG and 40 to ND. A significant reduction in mean ± SD of IBS-SSS from baseline to week 6 between LFD vs LGG vs ND was revealed: 133 ± 122 vs 68 ± 107, 133 ± 122 vs 34 ± 95, P < 0.01. Adjusted changes of IBS-SSS for baseline covariates showed statistically significant reduction of IBS-SSS in LFD group compared to ND (IBS-SSS score 75; 95%CI: 24-126, P < 0.01), but not in LGG compared to ND (IBS-SSS score 32; 95%CI: 18-80, P = 0.20). IBS-QOL was not altered significantly in any of the three groups: mean ± SD in LFD 8 ± 18 vs LGG 7 ± 17, LFD 8 ± 18 vs ND 0.1 ± 15, P = 0.13. CONCLUSION: Both LFD and LGG are efficatious in patients with IBS. PMID:25473176

  14. Lactobacillus rhamnosus GG Effect on Behavior of Zebrafish During Chronic Ethanol Exposure

    PubMed Central

    Schneider, Ana Claudia Reis; Rico, Eduardo Pacheco; de Oliveira, Diogo Losch; Rosemberg, Denis Broock; Guizzo, Ranieli; Meurer, Fábio; da Silveira, Themis Reverbel

    2016-01-01

    Abstract Ethanol is a widely consumed drug, which acts on the central nervous system to induce behavioral alterations ranging from disinhibition to sedation. Recent studies have produced accumulating evidence for the therapeutic role of probiotic bacteria in behavior. We aimed to investigate the effect of Lactobacillus rhamnosus GG (LGG) on the behavior of adult zebrafish chronically exposed to ethanol. Adult wild-type zebrafish were randomly divided into four groups, each containing 15 fish. The following groups were formed: Control (C), received unsupplemented feed during the trial period; Probiotic (P), fed with feed supplemented with LGG; Ethanol (E), received unsupplemented feed and 0.5% of ethanol directly added to the tank water; and Probiotic+Ethanol (P+E), group under ethanol exposure (0.5%) and fed with LGG supplemented feed. After 2 weeks of exposure, the novel tank test was used to evaluate fish behavior, which was analyzed using computer-aided video tracking. LGG alone did not alter swimming behavior of the fish. Ethanol exposure led to robust behavioral effects in the form of reduced anxiety levels, as indicated by increased vertical exploration and more time spent in the upper region of the novel tank. The group exposed to ethanol and treated with LGG behaved similarly to animals exposed to ethanol alone. Taken together, these results show that zebrafish behavior was not altered by LGG per se, as seen in murine models. This was the first study to investigate the effects of a probiotic diet on behavior after a chronic ethanol exposure. PMID:26862467

  15. Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system.

    PubMed

    Li, Ran; Zhang, Yufeng; Polk, D Brent; Tomasula, Peggy M; Yan, Fang; Liu, LinShu

    2016-05-28

    Probiotics have shown beneficial effects on health and prevention of diseases in humans. However, a concern for application of probiotics is the loss of viability during storage and gastrointestinal transit. The aim of this study was to develop an encapsulation system to preserve viability of probiotics when they are administrated orally and apply Lactobacillus rhamnosus GG (LGG) as a probiotic model to evaluate the effectiveness of this approach using in vitro and in vivo experiments. LGG was encapsulated in hydrogel beads prepared using pectin, a food grade polysaccharide, glucose, and calcium chloride, and lyophilized by freeze-drying. Encapsulated LGG was cultured in vitro under the condition that mimicked the physiological environment of the human gastrointestinal tract. Compared to non-encapsulated LGG, encapsulation increased tolerance of LGG in the acid condition, protected LGG from protease digestion, and improved shelf time when stored at the ambient condition, in regard of survivability and production of p40, a known LGG-derived protein involved in LGG's beneficial effects on intestinal homeostasis. To evaluate the effects of encapsulation on p40 production in vivo and prevention of intestinal inflammation by LGG, mice were gavaged with LGG containing beads and treated with dextran sulphate sodium (DSS) to induce intestinal injury and colitis. Compared to non-encapsulated LGG, encapsulated LGG enhanced more p40 production in mice, and exerted higher levels of effects on prevention of DSS-induced colonic injury and colitis and suppression of pro-inflammatory cytokine production. These data indicated that the encapsulation system developed in this study preserves viability of LGG in vitro and in vivo, leading to longer shelf time and enhancing the functions of LGG in the gastrointestinal tract. Thus, this encapsulation approach may have the potential application for improving efficacy of probiotics. PMID:27063422

  16. Optimization and shelf life of a low-lactose yogurt with Lactobacillus rhamnosus HN001.

    PubMed

    Ibarra, A; Acha, R; Calleja, M-T; Chiralt-Boix, A; Wittig, E

    2012-07-01

    Lactose intolerance results in gastrointestinal discomfort and the malabsorption of certain nutrients, such as calcium. The replacement of milk with low-lactose and probiotic-enriched dairy products is an effective strategy of mitigating the symptoms of lactose intolerance. Lactobacillus rhamnosus HN001 (HN001) is a safe, immunity-stimulating probiotic. We have developed a process to increase the hydrolysis of lactose and HN001 growth in yogurt versus β-galactosidase (βG) concentration and enzymatic hydrolysis time (EHT) before bacterial fermentation. The objective of this study was to optimize the conditions by which yogurt is processed as a function of βG and EHT using a multifactorial design, with lactose content, HN001 growth, process time, and sensory quality as dependent variables. Further, the shelf life of the optimized yogurt was evaluated. In the optimization study, polynomials explained the dependent variables. Based on Pearson correlation coefficients, HN001 growth correlated positively with the hydrolysis of lactose. However, low lactose content and high HN001 count increased the fermentation time and lowered the sensory quality. The optimized conditions-using polynomials to obtain yogurt with >1 × 10(7) cfu of HN001/mL, <10 g of lactose/L, and a minimum overall sensory quality of 7 on the Karlsruhe scale-yielded a theoretical value of 910 neutral lactose units/kg for βG and 2.3h for EHT, which were validated in an industrial-scale assay. Based on a shelf-life study at 3 temperatures, the hydrolysis of lactose and the growth of HN001 continue during storage. Arrhenius equations were developed for the variables in the shelf-life study. Our results demonstrate that it is feasible to develop a low-lactose yogurt to which HN001 has been added for lactose-intolerant persons who wish to strengthen their immune system. PMID:22720912

  17. Lactobacillus rhamnosus GG Effect on Behavior of Zebrafish During Chronic Ethanol Exposure.

    PubMed

    Schneider, Ana Claudia Reis; Rico, Eduardo Pacheco; de Oliveira, Diogo Losch; Rosemberg, Denis Broock; Guizzo, Ranieli; Meurer, Fábio; da Silveira, Themis Reverbel

    2016-01-01

    Ethanol is a widely consumed drug, which acts on the central nervous system to induce behavioral alterations ranging from disinhibition to sedation. Recent studies have produced accumulating evidence for the therapeutic role of probiotic bacteria in behavior. We aimed to investigate the effect of Lactobacillus rhamnosus GG (LGG) on the behavior of adult zebrafish chronically exposed to ethanol. Adult wild-type zebrafish were randomly divided into four groups, each containing 15 fish. The following groups were formed: Control (C), received unsupplemented feed during the trial period; Probiotic (P), fed with feed supplemented with LGG; Ethanol (E), received unsupplemented feed and 0.5% of ethanol directly added to the tank water; and Probiotic+Ethanol (P+E), group under ethanol exposure (0.5%) and fed with LGG supplemented feed. After 2 weeks of exposure, the novel tank test was used to evaluate fish behavior, which was analyzed using computer-aided video tracking. LGG alone did not alter swimming behavior of the fish. Ethanol exposure led to robust behavioral effects in the form of reduced anxiety levels, as indicated by increased vertical exploration and more time spent in the upper region of the novel tank. The group exposed to ethanol and treated with LGG behaved similarly to animals exposed to ethanol alone. Taken together, these results show that zebrafish behavior was not altered by LGG per se, as seen in murine models. This was the first study to investigate the effects of a probiotic diet on behavior after a chronic ethanol exposure. PMID:26862467

  18. Structure determination of the exopolysaccharide produced by Lactobacillus rhamnosus strains RW-9595M and R.

    PubMed Central

    Van Calsteren, Marie-Rose; Pau-Roblot, Corinne; Bégin, André; Roy, Denis

    2002-01-01

    Exopolysaccharides (EPSs) were isolated and purified from Lactobacillus rhamnosus strains RW-9595M, which has been shown to possess cytokine-stimulating activity, and R grown under various fermentation conditions (carbon source, incubation temperature and duration). Identical (1)H NMR spectra were obtained in all cases. Molecular masses were determined by gel permeation chromatography. The primary structure was elucidated using chemical and spectroscopic techniques. Organic acid, monosaccharide and absolute configuration analyses gave the following composition: pyruvate, 1; D-glucose, 2; D-galactose, 1; and l-rhamnose, 4. Methylation analysis indicated the presence of three residues of 3-linked rhamnose, and one residue each of 2,3-linked rhamnose, 2-linked glucose, 3-linked glucose and 4,6-linked galactose. The EPS was submitted to periodate oxidation followed by borohydride reduction. Monosaccharide analysis of the resulting polysaccharide gave the new composition: rhamnose, 4; and glucose, 1. Methylation analysis confirmed the loss of the 2-linked glucose and 4,6-linked galactose residues. On the basis of one- and two-dimensional (1)H and (13)C NMR data, the structure of the native EPS was consistent with the following heptasaccharide repeating unit: [3Rha alpha-3Glc beta-3[Gal4,6(R)Py alpha-2]Rha alpha-3Rha alpha-3Rha alpha-2Glc alpha-](n) where Rha corresponds to rhamnose (6-deoxymannose) and Py corresponds to pyruvate acetal. Complete (1)H and (13)C assignments are reported for the native and the corresponding pyruvate-hydrolysed polysaccharide. Electrospray MS and MS/MS data are given for the oligosaccharide produced by Smith degradation. PMID:11903041

  19. Lactobacillus rhamnosus GG reduces hepatic TNFα production and inflammation in chronic alcohol-induced liver injury.

    PubMed

    Wang, Yuhua; Liu, Yanlong; Kirpich, Irina; Ma, Zhenhua; Wang, Cuiling; Zhang, Min; Suttles, Jill; McClain, Craig; Feng, Wenke

    2013-09-01

    The therapeutic effects of probiotic treatment in alcoholic liver disease (ALD) have been studied in both patients and experimental animal models. Although the precise mechanisms of the pathogenesis of ALD are not fully understood, gut-derived endotoxin has been postulated to play a crucial role in hepatic inflammation. Previous studies have demonstrated that probiotic therapy reduces circulating endotoxin derived from intestinal gram-negative bacteria in ALD. In this study, we investigated the effects of probiotics on hepatic tumor necrosis factor-α (TNFα) production and inflammation in response to chronic alcohol ingestion. Mice were fed Lieber DeCarli liquid diet containing 5% alcohol for 8weeks, and Lactobacillus rhamnosus GG (LGG) was supplemented in the last 2 weeks. Eight-week alcohol feeding caused a significant increase in hepatic inflammation as shown by histological assessment and hepatic tissue myeloperoxidase activity assay. Two weeks of LGG supplementation reduced hepatic inflammation and liver injury and markedly reduced TNFα expression. Alcohol feeding increased hepatic mRNA expression of Toll-like receptors (TLRs) and CYP2E1 and decreased nuclear factor erythroid 2-related factor 2 expression. LGG supplementation attenuated these changes. Using human peripheral blood monocytes-derived macrophages, we also demonstrated that incubation with ethanol primes both lipopolysaccharide- and flagellin-induced TNFα production, and LGG culture supernatant reduced this induction in a dose-dependent manner. In addition, LGG treatment also significantly decreased alcohol-induced phosphorylation of p38 MAP kinase. In conclusion, probiotic LGG treatment reduced alcohol-induced hepatic inflammation by attenuation of TNFα production via inhibition of TLR4- and TLR5-mediated endotoxin activation. PMID:23618528

  20. Effect of Lactobacillus rhamnosus GG Administration on Vancomycin-Resistant Enterococcus Colonization in Adults with Comorbidities

    PubMed Central

    Hibberd, Patricia L.; Goldin, Barry; Thorpe, Cheleste; McDermott, Laura; Snydman, David R.

    2015-01-01

    Vancomycin-resistant enterococci (VRE) are endemic in health care settings. These organisms colonize the gastrointestinal tract and can lead to infection which is associated with increased mortality. There is no treatment for VRE colonization. We conducted a randomized, double-blind, placebo-controlled clinical trial to examine the safety and efficacy of administration of the probiotic Lactobacillus rhamnosus GG (LGG) for the reduction or elimination of intestinal colonization by VRE. Colonized adults were randomized to receive LGG or placebo for 14 days. Quantitative stool cultures for LGG and VRE were collected at baseline and days 7, 14, 21, 28, and 56. Day 14 stool samples from some subjects were analyzed by quantitative PCR (qPCR) for LGG. Patients were closely monitored for adverse events. Eleven subjects, of whom 5 received LGG and 6 received placebo, were analyzed. No differences in VRE colony counts were seen at any time points between groups. No decline in colony counts was seen over time in subjects who received LGG. LGG was detected by PCR in all samples tested from subjects who received LGG but was only isolated in culture from 2 of 5 subjects in the LGG group. No treatment-related adverse events were seen. We demonstrated that LGG could be administered safely to patients with comorbidities and is recoverable in some patients' stool cultures. Concomitant administration of antibiotics may have resulted in an inability to recover viable organisms from stool samples, but LGG DNA could still be detected by qPCR. LGG administration did not affect VRE colonization in this study. (This study was registered at Clinicaltrials.gov under registration no. NCT00756262.) PMID:26014940

  1. Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism.

    PubMed

    Falcinelli, Silvia; Picchietti, Simona; Rodiles, Ana; Cossignani, Lina; Merrifield, Daniel L; Taddei, Anna Rita; Maradonna, Francesca; Olivotto, Ike; Gioacchini, Giorgia; Carnevali, Oliana

    2015-01-01

    The microbiome plays an important role in lipid metabolism but how the introduction of probiotic communities affects host lipid metabolism is poorly understood. Using a multidisciplinary approach we addressed this knowledge gap using the zebrafish model by coupling high-throughput sequencing with biochemical, molecular and morphological analysis to evaluate the changes in the intestine. Analysis of bacterial 16S libraries revealed that Lactobacillus rhamnosus was able to modulate the gut microbiome of zebrafish larvae, elevating the abundance of Firmicutes sequences and reducing the abundance of Actinobacteria. The gut microbiome changes modulated host lipid processing by inducing transcriptional down-regulation of genes involved in cholesterol and triglycerides metabolism (fit2, agpat4, dgat2, mgll, hnf4α, scap, and cck) concomitantly decreasing total body cholesterol and triglyceride content and increasing fatty acid levels. L. rhamnosus treatment also increased microvilli and enterocyte lengths and decreased lipid droplet size in the intestinal epithelium. These changes resulted in elevated zebrafish larval growth. This integrated system investigation demonstrates probiotic modulation of the gut microbiome, highlights a novel gene network involved in lipid metabolism, provides an insight into how the microbiome regulates molecules involved in lipid metabolism, and reveals a new potential role for L. rhamnosus in the treatment of lipid disorders. PMID:25822072

  2. Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism

    PubMed Central

    Falcinelli, Silvia; Picchietti, Simona; Rodiles, Ana; Cossignani, Lina; Merrifield, Daniel L.; Taddei, Anna Rita; Maradonna, Francesca; Olivotto, Ike; Gioacchini, Giorgia; Carnevali, Oliana

    2015-01-01

    The microbiome plays an important role in lipid metabolism but how the introduction of probiotic communities affects host lipid metabolism is poorly understood. Using a multidisciplinary approach we addressed this knowledge gap using the zebrafish model by coupling high-throughput sequencing with biochemical, molecular and morphological analysis to evaluate the changes in the intestine. Analysis of bacterial 16S libraries revealed that Lactobacillus rhamnosus was able to modulate the gut microbiome of zebrafish larvae, elevating the abundance of Firmicutes sequences and reducing the abundance of Actinobacteria. The gut microbiome changes modulated host lipid processing by inducing transcriptional down-regulation of genes involved in cholesterol and triglycerides metabolism (fit2, agpat4, dgat2, mgll, hnf4α, scap, and cck) concomitantly decreasing total body cholesterol and triglyceride content and increasing fatty acid levels. L. rhamnosus treatment also increased microvilli and enterocyte lengths and decreased lipid droplet size in the intestinal epithelium. These changes resulted in elevated zebrafish larval growth. This integrated system investigation demonstrates probiotic modulation of the gut microbiome, highlights a novel gene network involved in lipid metabolism, provides an insight into how the microbiome regulates molecules involved in lipid metabolism, and reveals a new potential role for L. rhamnosus in the treatment of lipid disorders. PMID:25822072

  3. Improved production of live cells of Lactobacillus rhamnosus by continuous cultivation using glucose-yeast extract medium.

    PubMed

    Ling, Liew Siew; Mohamad, Rosfarizan; Rahim, Raha Abdul; Wan, Ho Yin; Ariff, Arbakariya Bin

    2006-08-01

    In this study, the growth kinetics of Lactobacillus rhamnosus and lactic acid production in continuous culture were assessed at a range of dilution rates (0.05 h(-1) to 0.40 h(-1)) using a 2 L stirred tank fermenter with a working volume of 600 ml. Unstructured models, predicated on the Monod and Luedeking-Piret equations, were employed to simulate the growth of the bacterium, glucose consumption, and lactic acid production at different dilution rates in continuous cultures. The maximum specific growth rate of L. rhamnosus, mu-max, was estimated at 0.40 h(-1), and the Monod cell growth saturation constant, Ks, at approximately 0.25 g/L. Maximum cell viability (1.3 x 10(10) CFU/ml) was achieved in the dilution rate range of D = 0.28 h(-1) to 0.35 h(-1). Both maximum viable cell yield and productivity were achieved at D = 0.35 h(-1). The continuous cultivation of L. rhamnosus at D = 0.35 h(-1) resulted in substantial improvements in cell productivity, of 267% (viable cell count) that achieved via batch cultivation. PMID:16953180

  4. Lactobacillus acidophilus induces cytokine and chemokine production via NF-κB and p38 mitogen-activated protein kinase signaling pathways in intestinal epithelial cells.

    PubMed

    Jiang, Yujun; Lü, Xuena; Man, Chaoxin; Han, Linlin; Shan, Yi; Qu, Xingguang; Liu, Ying; Yang, Shiqin; Xue, Yuqing; Zhang, Yinghua

    2012-04-01

    Intestinal epithelial cells can respond to certain bacteria by producing an array of cytokines and chemokines which are associated with host immune responses. Lactobacillus acidophilus NCFM is a characterized probiotic, originally isolated from human feces. This study aimed to test the ability of L. acidophilus NCFM to stimulate cytokine and chemokine production in intestinal epithelial cells and to elucidate the mechanisms involved in their upregulation. In experiments using intestinal epithelial cell lines and mouse models, we observed that L. acidophilus NCFM could rapidly but transiently upregulate a number of effector genes encoding cytokines and chemokines such as interleukin 1α (IL-1α), IL-1β, CCL2, and CCL20 and that cytokines showed lower expression levels with L. acidophilus NCFM treatment than chemokines. Moreover, L. acidophilus NCFM could activate a pathogen-associated molecular pattern receptor, Toll-like receptor 2 (TLR2), in intestinal epithelial cell lines. The phosphorylation of NF-κB p65 and p38 mitogen-activated protein kinase (MAPK) in intestinal epithelial cell lines was also enhanced by L. acidophilus NCFM. Furthermore, inhibitors of NF-κB (pyrrolidine dithiocarbamate [PDTC]) and p38 MAPK (SB203580) significantly reduced cytokine and chemokine production in the intestinal epithelial cell lines stimulated by L. acidophilus NCFM, suggesting that both NF-κB and p38 MAPK signaling pathways were important for the production of cytokines and chemokines induced by L. acidophilus NCFM. PMID:22357649

  5. AcmB Is an S-Layer-Associated β-N-Acetylglucosaminidase and Functional Autolysin in Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant R.

    2016-01-01

    ABSTRACT Autolysins, also known as peptidoglycan hydrolases, are enzymes that hydrolyze specific bonds within bacterial cell wall peptidoglycan during cell division and daughter cell separation. Within the genome of Lactobacillus acidophilus NCFM, there are 11 genes encoding proteins with peptidoglycan hydrolase catalytic domains, 9 of which are predicted to be functional. Notably, 5 of the 9 putative autolysins in L. acidophilus NCFM are S-layer-associated proteins (SLAPs) noncovalently colocalized along with the surface (S)-layer at the cell surface. One of these SLAPs, AcmB, a β-N-acetylglucosaminidase encoded by the gene lba0176 (acmB), was selected for functional analysis. In silico analysis revealed that acmB orthologs are found exclusively in S-layer- forming species of Lactobacillus. Chromosomal deletion of acmB resulted in aberrant cell division, autolysis, and autoaggregation. Complementation of acmB in the ΔacmB mutant restored the wild-type phenotype, confirming the role of this SLAP in cell division. The absence of AcmB within the exoproteome had a pleiotropic effect on the extracellular proteins covalently and noncovalently bound to the peptidoglycan, which likely led to the observed decrease in the binding capacity of the ΔacmB strain for mucin and extracellular matrices fibronectin, laminin, and collagen in vitro. These data suggest a functional association between the S-layer and the multiple autolysins noncovalently colocalized at the cell surface of L. acidophilus NCFM and other S-layer-producing Lactobacillus species. IMPORTANCE Lactobacillus acidophilus is one of the most widely used probiotic microbes incorporated in many dairy foods and dietary supplements. This organism produces a surface (S)-layer, which is a self-assembling crystalline array found as the outermost layer of the cell wall. The S-layer, along with colocalized associated proteins, is an important mediator of probiotic activity through intestinal adhesion and modulation of

  6. Predominant genera of fecal microbiota in children with atopic dermatitis are not altered by intake of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bi-07.

    PubMed

    Larsen, Nadja; Vogensen, Finn K; Gøbel, Rikke; Michaelsen, Kim F; Abu Al-Soud, Waleed; Sørensen, Søren J; Hansen, Lars H; Jakobsen, Mogens

    2011-03-01

    The effect of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 on the composition of the Lactobacillus group, Bifidobacterium and the total bacterial population in feces from young children with atopic dermatitis was investigated. The study included 50 children randomized to intake of one of the probiotic strain or placebo. Microbial composition was characterized by denaturing gradient gel electrophoresis, quantitative PCR and, in a subset of subjects, by pyrosequencing of the 16S rRNA gene. The core population of the Lactobacillus group was identified as Lactobacillus gasseri, Lactobacillus fermentum, Lactobacillus oris, Leuconostoc mesenteroides, while the bifidobacterial community included Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum and Bifidobacterium catenulatum. The fecal numbers of L. acidophilus and B. lactis increased significantly after intervention, indicating survival of the ingested bacteria. The levels of Bifidobacterium correlated positively (P=0.03), while the levels of the Lactobacillus group negatively (P=0.01) with improvement of atopic eczema evaluated by the Severity Scoring of Atopic Dermatitis index. This correlation was observed across the whole study cohort and not attributed to the probiotic intake. The main conclusion of the study is that administration of L. acidophilus NCFM and B. lactis Bi-07 does not affect the composition and diversity of the main bacterial populations in feces. PMID:21204871

  7. Efficacy of prolonged ingestion of Lactobacillus acidophilus L-92 in adult patients with atopic dermatitis.

    PubMed

    Yamamoto, Kozo; Yokoyama, Kazuhito; Matsukawa, Takehisa; Kato, Sayaka; Kato, Shinji; Yamada, Kazuhisa; Hirota, Tatsuhiko

    2016-07-01

    To evaluate the safety and efficacy of prolonged ingestion of Lactobacillus acidophilus L-92 (L-92) on skin symptoms in adult atopic dermatitis (AD) patients, a placebo-controlled double-blinded parallel-group comparison study was performed. This included daily administration of heat-killed and dried L-92 or placebo for 24wk in 50 AD patients who were 16yr old or older. The severity of skin symptoms was evaluated at baseline and at 4, 8, 12, 16, 20, and 24wk during the intervention using the investigator global assessment, eczema area and severity index, and scoring atopic dermatitis. Serum cytokine and blood marker levels were also measured at baseline and at 4, 8, 16, and 24wk during the intervention. No adverse events were reported during the study period. Compared with the placebo group, the L-92 group showed significant decreases in investigator global assessment, eczema area and severity index, and scoring atopic dermatitis. Subjective symptoms in adult AD patients were reduced by intake of L-92. Furthermore, it was suggested that sustained ingestion of L-92 resulted in suppression of scratching behavior and maintenance of remission status of skin symptoms. Sixteen weeks after the study commenced, a significant decrease in lactate dehydrogenase and a significant increase in transforming growth factor-β were observed in the L-92 group compared with the placebo group. In the L-92 group, a significant elevation of IL-12 (p70) level at the end of treatment period compared with before the treatment was observed. This study suggested that L-92 suppresses type-2-helper-T-cell-dominant inflammation by activating regulatory T cells and type 1 helper T cells. PMID:27108169

  8. Application of Lactobacillus acidophilus (LA 5) strain in fruit-based ice cream.

    PubMed

    Senanayake, Suraji A; Fernando, Sirimali; Bamunuarachchi, Arthur; Arsekularatne, Mariam

    2013-11-01

    A study was performed to apply a probiotic strain into fermented ice cream mix with suitable fruit bases to develop a value-added product with a substantial level of viable organisms for a sufficient shelf life. Pure direct vat strain culture of Lactobacillus acidophilus (LA 5) in freeze-dried form was inoculated into a mixture of ice cream, frozen, and the number of viable organisms during frozen storage for a period of time was enumerated, using turbidity measurements with a spectrophotometer. An ice cream sample prepared without the probiotic culture was compared with the test sample for quality, by testing the basic quality parameters for ice cream. Results show a reduction in the over run of the probiotic ice cream compared to the nonprobiotic ice cream. Significantly high level (P < 0.05) of total solids (42%), proteins (16.5%), and titratable acidity (2.2%) was observed in the test sample compared to the nonprobiotic ice cream. Significantly low pH level in the probiotic sample may be due to the lactic acid produced by the probiotic culture. No significant difference (P > 0.05) in the fat content in the two types of ice cream was observed. A significantly low level (P < 0.05) of melting in the probiotic one may have resulted from less over run, than the nonprobiotic sample. Rapid reduction in the viable cells during frozen storage occurred at -18°C and gradual adaptation occurred over the first 4 weeks. At the 10th week, 1.0 × 10(7) numbers of viable organisms were present in 1 g of the probiotic ice cream. Results show the presence of a sufficient number of viable organisms in the product for the 10-week period, which would be beneficial to consumers. PMID:24804052

  9. Rational engineering of Lactobacillus acidophilus NCFM maltose phosphorylase into either trehalose or kojibiose dual specificity phosphorylase.

    PubMed

    Nakai, Hiroyuki; Petersen, Bent O; Westphal, Yvonne; Dilokpimol, Adiphol; Abou Hachem, Maher; Duus, Jens Ø; Schols, Henk A; Svensson, Birte

    2010-10-01

    Lactobacillus acidophilus NCFM maltose phosphorylase (LaMP) of the (alpha/alpha)(6)-barrel glycoside hydrolase family 65 (GH65) catalyses both phosphorolysis of maltose and formation of maltose by reverse phosphorolysis with beta-glucose 1-phosphate and glucose as donor and acceptor, respectively. LaMP has about 35 and 26% amino acid sequence identity with GH65 trehalose phosphorylase (TP) and kojibiose phosphorylase (KP) from Thermoanaerobacter brockii ATCC35047. The structure of L. brevis MP and multiple sequence alignment identified (alpha/alpha)(6)-barrel loop 3 that forms the rim of the active site pocket as a target for specificity engineering since it contains distinct sequences for different GH65 disaccharide phosphorylases. Substitution of LaMP His413-Glu421, His413-Ile418 and His413-Glu415 from loop 3, that include His413 and Glu415 presumably recognising the alpha-anomeric O-1 group of the glucose moiety at subsite +1, by corresponding segments from Ser426-Ala431 in TP and Thr419-Phe427 in KP, thus conferred LaMP with phosphorolytic activity towards trehalose and kojibiose, respectively. Two different loop 3 LaMP variants catalysed the formation of trehalose and kojibiose in yields superior of maltose by reverse phosphorolysis with (alpha1, alpha1)- and alpha-(1,2)-regioselectivity, respectively, as analysed by nuclear magnetic resonance. The loop 3 in GH65 disaccharide phosphorylase is thus a key determinant for specificity both in phosphorolysis and in regiospecific reverse phosphorolysis. PMID:20713411

  10. Genomic Characterization of Non-Mucus-Adherent Derivatives of Lactobacillus rhamnosus GG Reveals Genes Affecting Pilus Biogenesis

    PubMed Central

    Rasinkangas, Pia; Reunanen, Justus; Douillard, François P.; Ritari, Jarmo; Uotinen, Virva; Palva, Airi

    2014-01-01

    Lactobacillus rhamnosus GG is one of the best-characterized lactic acid bacteria and can be considered a probiotic paradigm. Comparative and functional genome analysis showed that L. rhamnosus GG harbors a genomic island including the spaCBA-srtC1 gene cluster, encoding the cell surface-decorating host-interacting pili. Here, induced mutagenesis was used to study pilus biogenesis in L. rhamnosus GG. A combination of two powerful approaches, mutation selection and next-generation sequencing, was applied to L. rhamnosus GG for the selection of pilus-deficient mutants from an enriched population. The isolated mutants were first screened by immuno-dot blot analysis using antiserum against pilin proteins. Relevant mutants were selected, and the lack of pili was confirmed by immunoelectron microscopy. The pilosotype of 10 mutant strains was further characterized by analyzing pilin expression using Western blot, dot blot, and immunofluorescence methods. A mucus binding assay showed that the mutants did not adhere to porcine intestinal mucus. Comparative genome sequence analysis using the Illumina MiSeq platform allowed us to determine the nature of the mutations in the obtained pilus-deficient derivatives. Three major classes of mutants with unique genotypes were observed: class I, with mutations in the srtC1 gene; class II, with a deletion containing the spaCBA-srtC1 gene cluster; and class III, with mutations in the spaA gene. Only a limited number of collateral mutations were observed, and one of the pilus-deficient derivatives with a deficient srtC1 gene contained 24 other mutations. This strain, PB12, can be considered a candidate for human trials addressing the impact of the absence of pili. PMID:25192985

  11. Effect of pepsin-treated bovine and goat caseinomacropeptide on Escherichia coli and Lactobacillus rhamnosus in acidic conditions.

    PubMed

    Robitaille, G; Lapointe, C; Leclerc, D; Britten, M

    2012-01-01

    Caseinomacropeptide (CMP) is a 7-kDa phosphoglycopolypeptide released from κ-casein during milk digestion and in the cheesemaking process. The objective of the study was to analyze the effect of pepsin-treated CMP from cow and goat milk on the resistance of Escherichia coli and Lactobacillus rhamnosus during acid stress. Bacterial cells in the exponential growth phase were suspended in acidified phosphate buffered saline with or without pepsin-treated CMP. Viability was determined during a 90-min incubation period. Pepsin-treated CMP exhibited bactericidal activity at pH 3.5 when added in a dose-dependent manner to E. coli, decreasing survival by more than 90% within 15 min at 0.25 mg/mL. At pH >4.5, the bactericidal activity disappeared, indicating that pepsin-treated CMP was efficient at low pH only. The effectiveness of pepsin-treated CMP at pH 3.5 was not affected by the presence of glycoconjugates linked to CMP or by the bovine or caprine origin of milk. In contrast, L. rhamnosus, a probiotic, was more resistant to acid stress when pepsin-treated bovine or caprine CMP was added to the media. Viability reached 50% after 60 min of incubation at pH 3 compared with 5% survival in the media without added pepsin-treated CMP. Neither glycosylation extent nor sequence variations between CMP from bovine milk and caprine milk affected the protective activity of hydrolyzed CMP toward L. rhamnosus. This suggests that encrypted bioactive peptides released by the pepsin treatment of CMP had an antibacterial effect on E. coli in acidic media, but improved the resistance of L. rhamnosus to acid stress. The peptide fragment accountable for bactericidal activity is the N-terminal region κ-casein f(106-124). PMID:22192178

  12. The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus

    PubMed Central

    Nancib, Aicha; Nancib, Nabil; Boubendir, Abdelhafid; Boudrant, Joseph

    2015-01-01

    The production of lactic acid from date juice by Lactobacillus caseisubsp. rhamnosus in batch and fed-batch cultures has been investigated. The fed-batch culture system gave better results for lactic acid production and volumetric productivity. The aim of this work is to determine the effects of the feeding rate and the concentration of the feeding medium containing date juice glucose on the cell growth, the consumption of glucose and the lactic acid production by Lactobacillus casei subsp. rhamnosus in fed-batch cultures. For this study, two concentrations of the feeding medium (62 and 100 g/L of date juice glucose) were tested at different feeding rates (18, 22, 33, 75 and 150 mL/h). The highest volumetric productivity (1.3 g/L.h) and lactic acid yield (1.7 g/g) were obtained at a feeding rate of 33 mL/h and a date juice glucose concentration of 62 g/L in the feeding medium. As a result, most of the date juice glucose was completely utilised (residual glucose 1 g/L), and a maximum lactic acid production level (89.2 g/L) was obtained. PMID:26413076

  13. A lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis and preserves barrier function by activation of EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study was to determine the mechanisms by which p40...

  14. No evidence of harms of probiotic Lactobacillus rhamnosus GG ATCC 53103 in healthy elderly-a Phase I Open Label Study to assess safety, tolerability and cytokine responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although Lactobacillus rhamnosus GG ATCC 53103 (LGG) has been consumed since the mid 1990s by between 2 and 5 million people daily, the scientific literature lacks rigorous clinical trials that describe the potential harms of LGG, particularly in the elderly. The primary objective of this open label...

  15. Effectiveness of Lactobacillus helveticus and Lactobacillus rhamnosus for the management of antibiotic-associated diarrhoea in healthy adults: a randomised, double-blind, placebo-controlled trial.

    PubMed

    Evans, Malkanthi; Salewski, Ryan P; Christman, Mary C; Girard, Stephanie-Anne; Tompkins, Thomas A

    2016-07-01

    Broad-spectrum antibiotic use can disrupt the gastrointestinal microbiota resulting in diarrhoea. Probiotics may be beneficial in managing this type of diarrhoea. The aim of this 10-week randomised, double-blind, placebo-controlled, parallel study was to investigate the effect of Lactobacillus helveticus R0052 and Lactobacillus rhamnosus R0011 supplementation on antibiotic-associated diarrhoea in healthy adults. Subjects were randomised to receive 1 week of amoxicillin-clavulanic acid (875 mg/125 mg) once per day, plus a daily dose of 8×109 colony-forming units of a multi-strain probiotic (n 80) or placebo (n 80). The probiotic or placebo intervention was maintained for 1 week after completion of the antibiotic. Primary study outcomes of consistency and frequency of bowel movements were not significantly different between the probiotic and placebo groups. The secondary outcomes of diarrhoea-like defecations, Gastrointestinal Symptoms Rating Scale scores, safety parameters and adverse events were not significantly different between the probiotic intervention and the placebo. A post hoc analysis on the duration of diarrhoea-like defecations showed that probiotic intervention reduced the length of these events by 1 full day (probiotic, 2·70 (sem 0·36) d; placebo, 3·71 (sem 0·36) d; P=0·037; effect size=0·52). In conclusion, this study provides novel evidence that L. helveticus R0052 and L. rhamnosus R0011 supplementation significantly reduced the duration of diarrhoea-like defecations in healthy adults receiving antibiotics. PMID:27169634

  16. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 exhibit strong antifungal effects against vulvovaginal candidiasis-causing Candida glabrata isolates

    PubMed Central

    Chew, SY; Cheah, YK; Seow, HF; Sandai, D; Than, LTL

    2015-01-01

    Aims This study investigates the antagonistic effects of the probiotic strains Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 against vulvovaginal candidiasis (VVC)-causing Candida glabrata. Methods and Results Growth inhibitory activities of Lact. rhamnosus GR-1 and Lact. reuteri RC-14 strains against C. glabrata were demonstrated using a spot overlay assay and a plate-based microtitre assay. In addition, these probiotic lactobacilli strains also exhibited potent candidacidal activity against C. glabrata, as demonstrated by a LIVE/DEAD yeast viability assay performed using confocal laser scanning microscopy. The metabolic activities of all C. glabrata strains were completely shut down in response to the challenges by the probiotic lactobacilli strains. In addition, both probiotic lactobacilli strains exhibited strong autoaggregation and coaggregation phenotypes in the presence of C. glabrata, which indicate that these lactobacilli strains may exert their probiotic effects through the formation of aggregates and, thus the consequent prevention of colonization by C. glabrata. Conclusions Probiotic Lact. rhamnosus GR-1 and Lact. reuteri RC-14 strains exhibited potent antagonistic activities against all of the tested C. glabrata strains. These lactobacilli exhibited antifungal effects, including those attributed to their aggregation abilities, and their presence caused the cessation of growth and eventual cell death of C. glabrata. Significance and Impact of the Study This is the first study to report on the antagonistic effects of these probiotic lactobacilli strains against the non-Candida albicans Candida (NCAC) species C. glabrata. PMID:25688886

  17. Mucosal Immunogenicity of Genetically Modified Lactobacillus acidophilus Expressing an HIV-1 Epitope within the Surface Layer Protein.

    PubMed

    Kajikawa, Akinobu; Zhang, Lin; LaVoy, Alora; Bumgardner, Sara; Klaenhammer, Todd R; Dean, Gregg A

    2015-01-01

    Surface layer proteins of probiotic lactobacilli are theoretically efficient epitope-displaying scaffolds for oral vaccine delivery due to their high expression levels and surface localization. In this study, we constructed genetically modified Lactobacillus acidophilus strains expressing the membrane proximal external region (MPER) from human immunodeficiency virus type 1 (HIV-1) within the context of the major S-layer protein, SlpA. Intragastric immunization of mice with the recombinants induced MPER-specific and S-layer protein-specific antibodies in serum and mucosal secretions. Moreover, analysis of systemic SlpA-specific cytokines revealed that the responses appeared to be Th1 and Th17 dominant. These findings demonstrated the potential use of the Lactobacillus S-layer protein for development of oral vaccines targeting specific peptides. PMID:26509697

  18. Mucosal Immunogenicity of Genetically Modified Lactobacillus acidophilus Expressing an HIV-1 Epitope within the Surface Layer Protein

    PubMed Central

    Kajikawa, Akinobu; Zhang, Lin; LaVoy, Alora; Bumgardner, Sara; Klaenhammer, Todd R.; Dean, Gregg A.

    2015-01-01

    Surface layer proteins of probiotic lactobacilli are theoretically efficient epitope-displaying scaffolds for oral vaccine delivery due to their high expression levels and surface localization. In this study, we constructed genetically modified Lactobacillus acidophilus strains expressing the membrane proximal external region (MPER) from human immunodeficiency virus type 1 (HIV-1) within the context of the major S-layer protein, SlpA. Intragastric immunization of mice with the recombinants induced MPER-specific and S-layer protein-specific antibodies in serum and mucosal secretions. Moreover, analysis of systemic SlpA-specific cytokines revealed that the responses appeared to be Th1 and Th17 dominant. These findings demonstrated the potential use of the Lactobacillus S-layer protein for development of oral vaccines targeting specific peptides. PMID:26509697

  19. Use of a continuous-culture biofilm system to study the antimicrobial susceptibilities of Gardnerella vaginalis and Lactobacillus acidophilus.

    PubMed

    Muli, F; Struthers, J K

    1998-06-01

    Gardnerella vaginalis and Lactobacillus acidophilus have been shown to grow to high titers in a simple biofilm system. This system was used in the present investigation to compare the biofilm-eradicating concentrations (BECs) of amoxicillin, clindamycin, erythromycin, and metronidazole to standard tube MIC and minimum bactericidal concentration (MBC) results. With the lactobacillus, the BEC/tube MBC ratio was at least 16:1, while for G. vaginalis the ratio varied from 2:1 to 512:1. The simple continuous-culture system used in the present investigation is ideal for investigating the BEC for bacteria involved in complex ecological situations such as bacterial vaginosis and may be useful for the identification of the most effective and selective antibiotic therapy. PMID:9624489

  20. Influence of a combination of Lactobacillus acidophilus NCFM and lactitol on healthy elderly: intestinal and immune parameters.

    PubMed

    Ouwehand, Arthur C; Tiihonen, Kirsti; Saarinen, Markku; Putaala, Heli; Rautonen, Nina

    2009-02-01

    With increasing age, a number of physiological changes take place which are reflected in immune and bowel function. These changes may relate to the commonly assumed age-related changes in intestinal microbiota; most noticeably a reduction in bifidobacteria. The current study aimed at modifying the intestinal microbiota with a potential synbiotic on selected immune and microbiota markers. Healthy elderly subjects were randomised to consume during 2 weeks either a placebo (sucrose) or a combination of lactitol and Lactobacillus acidophilus NCFM twice daily in a double-blind parallel trial. After the intervention, stool frequency was higher in the synbiotic group than in the placebo group and a significant increase in faecal L. acidophilus NCFM levels was observed in the synbiotic group, after baseline correction. In contrast to the generally held opinion, the study subjects had faecal Bifidobacterium levels that were similar to those reported in healthy young adults. These levels were, nevertheless, significantly increased by the intervention. Levels of SCFA were not changed significantly. Of the measured immune markers, PGE2 levels were different between treatments and IgA levels changed over time. These changes were modest which may relate to the fact that the volunteers were healthy. Spermidine levels changed over time which may suggest an improved mucosal integrity and intestinal motility. The results suggest that consumption of lactitol combined with L. acidophilus NCFM twice daily may improve some markers of the intestinal microbiota composition and mucosal functions. PMID:18634707

  1. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid

    PubMed Central

    Liguori, Rossana; Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Woiciechowski, Adenise Lorenci; Ionata, Elena; Marcolongo, Loredana; Faraco, Vincenza

    2015-01-01

    Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1 g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16 g/L of lactic acid (yield of 0.61 g/g), 27% higher than the value (17.49 g/L) obtained in the absence of a nitrogen source. PMID:26640784

  2. Enterotoxigenic intestinal bacteria in tropical sprue. IV. Effect of linoleic acid on growth interrelationships of Lactobacillus acidophilus and Klebsiella pneumoniae.

    PubMed

    Mickelson, M J; Klipstein, F A

    1975-11-01

    The factors responsible for colonization of the small intestine by enterotoxigenic coliform bacteria in Puerto Ricans with tropical sprue are unknown, but epidemiological observations have suggested that they may be related to an increased dietary intake of long-chain unsaturated fatty acids, particularly linoleic acid, which is known to exert an inhibitory effect on the growth of gram-positive organisms that normally comprise the flora of the small intestine. We have examined, by using a glucose-limited continuous-culture system, what effect this fatty acid exerts on the growth relationships of enteric gram-positive and coliform bacteria. In this system, colonization by an invading strain of Klebsiella pneumoniae was prevented by the presence of an established culture of Lactobacillus acidophilus, principally by virtue of a lowered pH of the medium that was incompatible with Klebsiella growth. However, when the population density of L. acidophilus was reduced by the presence of a sufficient concentration of linoleic acid, the invading K. pneumoniae successfully colonized the system and, once established, suppressed the growth of L. acidophilus. These observations indicate that, under the conditions of our chemostat, gram-positive enteric bacteria suppress coliform growth and that this effect is reversible by the presence of linoleic acid. It remains to be established, however, what pertinence these in vitro observations have to conditions within the intestinal tract of persons living in the tropics. PMID:811564

  3. Viability of Lactobacillus acidophilus in synbiotic guava mousses and its survival under in vitro simulated gastrointestinal conditions.

    PubMed

    Buriti, Flávia C A; Castro, Inar A; Saad, Susana M I

    2010-02-28

    The effects of refrigeration, freezing and substitution of milk fat by inulin and whey protein concentrate (WPC) on Lactobacillus acidophilus La-5 viability and resistance to gastric and enteric simulated conditions in synbiotic guava mousses effects were investigated. Refrigerated mousses supplemented with WPC presented the best probiotic viability, ranging from 7.77 to 6.24 log cfu/g during 28 days of storage. The highest probiotic populations, above 7.45 log cfu/g, were observed for all frozen mousses during 112 days of storage. Decreased L. acidophilus survival during the in vitro gastrointestinal simulation was observed both for refrigerated and frozen mousses. Nonetheless, for the refrigerated mousses, the addition of inulin enhanced the probiotic survival during the in vitro assays in the first week of storage. L. acidophilus survival in simulated gastrointestinal fluids was also improved through freezing. The frozen storage may be used to provide increased shelf-life for synbiotic guava mousses. Even though the protective effect of inulin and WPC on the probiotic microorganism tested was shown to be more specific for the refrigerated products, the partial replacement of milk fat by these ingredients may also help, as it improves the nutritional value of mousses in both storage conditions. PMID:20056289

  4. The substitution of a traditional starter culture in mutton fermented sausages by Lactobacillus acidophilus and Bifidobacterium animalis.

    PubMed

    Holko, I; Hrabě, J; Šalaková, A; Rada, V

    2013-07-01

    Common starter cultures used in fermented mutton sausages were substituted by probiotic strains of Lactobacillus acidophilus CCDM 476 and Bifidobacterium animalis 241a. Technological properties of the traditional and the probiotic sausages were compared. The potential probiotic effect was evaluated by enumeration of bifidobacteria and lactobacilli in stool samples of 15 volunteers before and after a 14-day consumption period. The numbers of lactobacilli (10(7) cfu/g) and bifidobacteria (10(3) cfu/g) in the final product did not affect the technological properties. The use of L. acidophilus as a starter culture was found more beneficial than the use of B. animalis. Even after 60 days of storage, high counts of L. acidophilus (10(6) cfu/g) were detected; on the other hand, the counts of B. animalis were under the detection limit. Regarding sensory properties, the probiotic products showed better texture, and, curiously, a reduction of the typical smell of mutton. The numbers of lactobacilli in stool samples increased significantly after the consumption of the probiotic sausages. PMID:23567124

  5. Active Lactobacillus rhamnosus LA68 or Lactobacillus plantarum WCFS1 administration positively influences liver fatty acid composition in mice on a HFD regime.

    PubMed

    Ivanovic, Nevena; Minic, Rajna; Djuricic, Ivana; Radojevic Skodric, Sanja; Zivkovic, Irena; Sobajic, Sladjana; Djordjevic, Brizita

    2016-06-15

    Western life style, and high calorie diet in particular is causing major health problems such as insulin resistance, hepatic steatosis and heart disease in the modern age. High fat diet (HFD) induces similar changes in mice, such as increased body weight, hypercholesterolemia and accumulation of triglycerides in the liver. These changes can be ameliorated by the administration of some Lactobacillus species. The focus of this study was to analyze the fatty acid content of liver, heart and brain tissues of mice fed HFD and administered with either Lactobacillus plantarum WCFS1 or Lactobacillus rhamnosus LA68, and to analyze the fatty acid content of these organs after a two months washout period. The fatty acid composition of mouse liver tissue changed significantly due to probiotic administration during a 12 weeks HFD regime and active Lactobacillus administration had a slightly reversing effect toward the standard mouse diet group, but after the washout period these changes disappeared. The fatty acid composition of the heart and brain tissues was significantly changed in the HFD regime but probiotic administration had no significant influence on the fatty acid profile of these two organs. Upon the 8 weeks washout period the only remaining beneficial effect was the significantly lower mouse weight in the supplemented groups compared to the HFD group. PMID:27231730

  6. Ingestion of yogurt containing Lactobacillus acidophilus and Bifidobacterium to potentiate immunoglobulin A responses to cholera toxin in mice.

    PubMed

    Tejada-Simon, M V; Lee, J H; Ustunol, Z; Pestka, J J

    1999-04-01

    Lactic acid bacteria have been reported to have benefits for the prevention and treatment of some forms of diarrhea and related conditions. To determine whether these effects might involve direct stimulation of the gastrointestinal immune response, we administered yogurt to try to enhance mucosal and systemic antibodies against an orally presented immunogen, cholera toxin. Yogurts were manufactured with starter cultures containing different species and strains of lactic acid bacteria. Mice were fed these yogurts for 3 wk, during which they were also orally immunized twice with 10 micrograms of cholera toxin. Blood was collected on d 0 and 21, and fecal pellets were collected weekly. Mice that were immunized orally with cholera toxin responded by producing specific intestinal and serum immunoglobulin (Ig)A anti-cholera toxin. Antibody responses of the IgA isotype were significantly increased in mice fed yogurts made with starters containing the conventional yogurt bacteria Lactobacillus bulgaricus and Streptococcus thermophilus supplemented with Lactobacillus acidophilus, Bifidobacterium bifidum, and Bifidobacterium infantis. Yogurt that was manufactured with starters containing only conventional yogurt bacteria produced less IgA anti-cholera toxin than did the control group fed nonfat dry milk. Although strong responses were also observed for IgG anti-cholera toxin in serum, the responses did not differ among groups. Thus, administration of yogurt supplemented with L. acidophilus and Bifidobacterium spp. enhanced mucosal and systemic IgA responses to the cholera toxin immunogen. PMID:10212452

  7. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury

    PubMed Central

    Wang, Yuhua; Liu, Yanlong; Sidhu, Anju; Ma, Zhenhua; McClain, Craig

    2012-01-01

    Endotoxemia is a contributing cofactor to alcoholic liver disease (ALD), and alcohol-induced increased intestinal permeability is one of the mechanisms of endotoxin absorption. Probiotic bacteria have been shown to promote intestinal epithelial integrity and protect barrier function in inflammatory bowel disease (IBD) and in ALD. Although it is highly possible that some common molecules secreted by probiotics contribute to this action in IBD, the effect of probiotic culture supernatant has not yet been studied in ALD. We examined the effects of Lactobacillus rhamnosus GG culture supernatant (LGG-s) on the acute alcohol-induced intestinal integrity and liver injury in a mouse model. Mice on standard chow diet were supplemented with supernatant from LGG culture (109 colony-forming unit/mouse) for 5 days, and one dose of alcohol at 6 g/kg body wt was administered via gavage. Intestinal permeability was measured by FITC-FD-4 ex vivo. Alcohol-induced liver injury was examined by measuring the activity of alanine aminotransferase (ALT) in plasma, and liver steatosis was evaluated by triglyceride content and Oil Red O staining of the liver sections. LGG-s pretreatment restored alcohol-induced reduction in ileum mRNA levels of claudin-1, intestine trefoil factor (ITF), P-glycoprotein (P-gp), and cathelin-related antimicrobial peptide (CRAMP), which play important roles on intestinal barrier integrity. As a result, LGG-s pretreatment significantly inhibited the alcohol-induced intestinal permeability, endotoxemia and subsequently liver injury. Interestingly, LGG-s pretreatment increased ileum mRNA expression of hypoxia-inducible factor (HIF)-2α, an important transcription factor of ITF, P-gp, and CRAMP. These results suggest that LGG-s ameliorates the acute alcohol-induced liver injury by promoting HIF signaling, leading to the suppression of alcohol-induced increased intestinal permeability and endotoxemia. The use of bacteria-free LGG culture supernatant provides a novel

  8. Lactobacillus rhamnosus L34 and Lactobacillus casei L39 suppress Clostridium difficile-induced IL-8 production by colonic epithelial cells

    PubMed Central

    2014-01-01

    Background Clostridium difficile is the main cause of hospital-acquired diarrhea and colitis known as C. difficile-associated disease (CDAD).With increased severity and failure of treatment in CDAD, new approaches for prevention and treatment, such as the use of probiotics, are needed. Since the pathogenesis of CDAD involves an inflammatory response with a massive influx of neutrophils recruited by interleukin (IL)-8, this study aimed to investigate the probiotic effects of Lactobacillus spp. on the suppression of IL-8 production in response to C. difficile infection. Results We screened Lactobacillus conditioned media from 34 infant fecal isolates for the ability to suppress C. difficile-induced IL-8 production from HT-29 cells. Factors produced by two vancomycin-resistant lactobacilli, L. rhamnosus L34 (LR-L34) and L.casei L39 (LC-L39), suppressed the secretion and transcription of IL-8 without inhibiting C. difficile viability or toxin production. Conditioned media from LR-L34 suppressed the activation of phospho-NF-κB with no effect on phospho-c-Jun. However, LC-L39 conditioned media suppressed the activation of both phospho-NF-κB and phospho-c-Jun. Conditioned media from LR-L34 and LC-L39 also decreased the production of C. difficile-induced GM-CSF in HT-29 cells. Immunomodulatory factors present in the conditioned media of both LR-L34 and LC-L39 are heat-stable up to 100°C and > 100 kDa in size. Conclusions Our results suggest that L. rhamnosus L34 and L. casei L39 each produce factors capable of modulating inflammation stimulated by C. difficile. These vancomycin-resistant Lactobacillus strains are potential probiotics for treating or preventing CDAD. PMID:24989059

  9. Ability of Lactobacillus rhamnosus GAF01 to remove AFM1 in vitro and to counteract AFM1 immunotoxicity in vivo.

    PubMed

    Abbès, Samir; Salah-Abbès, Jalila Ben; Sharafi, Hakimeh; Jebali, Rania; Noghabi, Kambiz Akbari; Oueslati, Ridha

    2013-01-01

    Aflatoxin M1 (AFM1) has been detected in many parts of the world both in raw milk and many dairy products, causing great economic losses and human disease. Unfortunately, there are few studies dealing with AFM1 immunotoxicity/interactions with lactic acid bacteria for potential application as a natural preventive agent. The aim of this study was to isolate (from dairy products) food-grade probiotic bacteria able to degrade/bind AFM1 in vitro and evaluate whether the same organism(s) could impart a protective role against AFM1-induced immunotoxicity in exposed Balb/c mice. Bacteria (Lactobacillus plantarum MON03 and L. rhamnosus GAF01) were isolated from Tunisian artisanal butter and then tested for abilities to eliminate AFM1 from phosphate-buffered saline (PBS) and reconstituted milk (containing 0.05, 0.10, and 0.20 µg AFM1/ml) after 0, 6, and 24 h at 37°C. Results showed that the selected bacteria could 'remove' AFM1 both in PBS and skimmed milk. The binding abilities of AFM1 by L. plantarum MON03 and L. rhamnosus GAF01 strains (at 10(8) CFU/ml) in PBS and reconstituted milk ranged, respectively, from 16.1-78.6% and 15.3-95.1%; overall, L. rhamnosus showed a better potential for removal than L. plantarum. 'Removal' appeared to be by simple binding; the bacteria/AFM1 complex was stable and only a very small proportion of mycotoxin was released back into the solution. L. rhamnosus GAF01 had the highest binding capacity and was selected for use in the in vivo study. Those results indicated that use of the organism prevented AFM1-induced effects on total white and red blood cells, and lymphocyte subtypes, after 15 days of host treatment. These studies clearly indicated that L. rhamnosus GAF01 was able to bind AFM1 in vitro and-by mechanisms that might also be related to a binding effect-counteract AFM1-induced immunotoxicity. Moreover, by itself, this bacterium was not toxic and could potentially be used as an additive in dairy products and in biotechnology for

  10. Food matrices and cell conditions influence survival of Lactobacillus rhamnosus GG under heat stresses and during storage.

    PubMed

    Endo, Akihito; Teräsjärvi, Johanna; Salminen, Seppo

    2014-03-17

    The present study evaluated impact of moisture content and cell conditions on survival of probiotic strain, Lactobacillus rhamnosus GG, under lethal heat stresses and during long-term storage using freeze-dried cells and oils as matrices. Viable cell counts of freeze-dried L. rhamnosus GG cells suspended in oils had only 1-log-reduction after 5min at 80°C and approximately 3-log-reduction after 20min, while no or very few viable cells were recorded for freeze dried cells suspended in buffer and cultured cells in oils. Surprisingly, freeze-dried cells suspended in oils still contained 4.3 to 6.7logCFU/ml after 5min at 95°C. Long-term storage study indicated that freeze-dried cells suspended in oils kept viable conditions for 4months, and a loss of the viability was only 0.3 to 0.6logCFU/ml. Viable cell counts of cultured cells suspended in oils were not present after 3days to 3months. These results clearly indicate that moisture and cell conditions have a great impact on survival of probiotics under severe heat stress in processing and during long-term storage. Combination of freeze-dried cells and oils as carrier provides beneficial options to preserve viability of probiotics in food processes and storage. PMID:24480189

  11. Lactobacillus rhamnosus GG Intake Modifies Preschool Children’s Intestinal Microbiota, Alleviates Penicillin-Associated Changes, and Reduces Antibiotic Use

    PubMed Central

    Korpela, Katri; Salonen, Anne; Virta, Lauri J.; Kumpu, Minna; Kekkonen, Riina A.; de Vos, Willem M.

    2016-01-01

    Antibiotic use is considered among the most severe causes of disturbance to children’s developing intestinal microbiota, and frequently causes adverse gastrointestinal effects ranging from mild and transient diarrhoea to life-threatening infections. Probiotics are commonly advocated to help in preventing antibiotic-associated gastrointestinal symptoms. However, it is currently unknown whether probiotics alleviate the antibiotic-associated changes in children’s microbiota. Furthermore, it is not known how long-term probiotic consumption influences the developing microbiota of children. We analysed the influence of long-term Lactobacillus rhamnosus GG intake on preschool children’s antibiotic use, and antibiotic-associated gastrointestinal complaints in a double blind, randomized placebo-controlled trial with 231 children aged 2–7. In addition, we analysed the effect of L. rhanmosus GG on the intestinal microbiota in a subset of 88 children. The results show that long-term L. rhamnosus GG supplementation has an influence on the composition of the intestinal microbiota in children, causing an increase in the abundance of Prevotella, Lactococcus, and Ruminococcus, and a decrease in Escherichia. The treatment appeared to prevent some of the changes in the microbiota associated with penicillin use, but not those associated with macrolide use. The treatment, however, did reduce the frequency of gastrointestinal complaints after a macrolide course. Finally, the treatment appeared to prevent certain bacterial infections for up to 3 years after the trial, as indicated by reduced antibiotic use. Trial Registration: ClinicalTrials.gov NCT01014676 PMID:27111772

  12. Expression of the toxin-antitoxin genes yefM(Lrh), yoeB(Lrh) in human Lactobacillus rhamnosus isolates.

    PubMed

    Krügel, Hans; Klimina, Ksenia M; Mrotzek, Grit; Tretyakov, Alexander; Schöfl, Gerhard; Saluz, Hans-Peter; Brantl, Sabine; Poluektova, Elena U; Danilenko, Valery N

    2015-08-01

    Lactobacilli are important microorganisms in various activities, for example, diary products, meat ripening, bread and pickles, but, moreover, are associated directly with human skin and cavities (e.g., mouth, gut, or vagina). Some of them are used as probiotics. Therefore, the molecular biological investigation of these bacteria is important. Earlier we described several toxin antitoxin systems (type II) in lactobacilli. Here, we describe the structure and transcriptional regulation of genes, encoding TA system YefM-YoeB(Lrh) in three strains of Lactobacillus rhamnosus comparing stationary and exponential growth phases, the influence of stress factors and mRNA stability. The same TA system is responding to physiological and stress conditions differently in related strains. Using primer extension and RLM-RACE methods we determined three transcription start sites of RNAs in the operon. The promoter region of the operon is preceded by a conserved BOX element occurring at multiple positions in the genomes of L. rhamnosus strains. Downstream of and partially overlapping with the 3' end of the yoeB(Lrh) toxin gene, a divergently transcribed unexpected RNA was detected. PMID:25832734

  13. Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women.

    PubMed

    Sanchez, Marina; Darimont, Christian; Drapeau, Vicky; Emady-Azar, Shahram; Lepage, Melissa; Rezzonico, Enea; Ngom-Bru, Catherine; Berger, Bernard; Philippe, Lionel; Ammon-Zuffrey, Corinne; Leone, Patricia; Chevrier, Genevieve; St-Amand, Emmanuelle; Marette, André; Doré, Jean; Tremblay, Angelo

    2014-04-28

    The present study investigated the impact of a Lactobacillus rhamnosus CGMCC1.3724 (LPR) supplementation on weight loss and maintenance in obese men and women over 24 weeks. In a double-blind, placebo-controlled, randomised trial, each subject consumed two capsules per d of either a placebo or a LPR formulation (1.6 × 10(8) colony-forming units of LPR/capsule with oligofructose and inulin). Each group was submitted to moderate energy restriction for the first 12 weeks followed by 12 weeks of weight maintenance. Body weight and composition were measured at baseline, at week 12 and at week 24. The intention-to-treat analysis showed that after the first 12 weeks and after 24 weeks, mean weight loss was not significantly different between the LPR and placebo groups when all the subjects were considered. However, a significant treatment × sex interaction was observed. The mean weight loss in women in the LPR group was significantly higher than that in women in the placebo group (P = 0.02) after the first 12 weeks, whereas it was similar in men in the two groups (P= 0.53). Women in the LPR group continued to lose body weight and fat mass during the weight-maintenance period, whereas opposite changes were observed in the placebo group. Changes in body weight and fat mass during the weight-maintenance period were similar in men in both the groups. LPR-induced weight loss in women was associated not only with significant reductions in fat mass and circulating leptin concentrations but also with the relative abundance of bacteria of the Lachnospiraceae family in faeces. The present study shows that the Lactobacillus rhamnosus CGMCC1.3724 formulation helps obese women to achieve sustainable weight loss. PMID:24299712

  14. Lactobacillus rhamnosus CNCMI-4317 Modulates Fiaf/Angptl4 in Intestinal Epithelial Cells and Circulating Level in Mice

    PubMed Central

    Jacouton, Elsa; Mach, Núria; Cadiou, Julie; Lapaque, Nicolas; Clément, Karine; Doré, Joël; van Hylckama Vlieg, Johan E. T.; Smokvina, Tamara; Blottière, Hervé M

    2015-01-01

    Background and Objectives Identification of new targets for metabolic diseases treatment or prevention is required. In this context, FIAF/ANGPTL4 appears as a crucial regulator of energy homeostasis. Lactobacilli are often considered to display beneficial effect for their hosts, acting on different regulatory pathways. The aim of the present work was to study the effect of several lactobacilli strains on Fiaf gene expression in human intestinal epithelial cells (IECs) and on mice tissues to decipher the underlying mechanisms. Subjects and Methods Nineteen lactobacilli strains have been tested on HT–29 human intestinal epithelial cells for their ability to regulate Fiaf gene expression by RT-qPCR. In order to determine regulated pathways, we analysed the whole genome transcriptome of IECs. We then validated in vivo bacterial effects using C57BL/6 mono-colonized mice fed with normal chow. Results We identified one strain (Lactobacillus rhamnosus CNCMI–4317) that modulated Fiaf expression in IECs. This regulation relied potentially on bacterial surface-exposed molecules and seemed to be PPAR-γ independent but PPAR-α dependent. Transcriptome functional analysis revealed that multiple pathways including cellular function and maintenance, lymphoid tissue structure and development, as well as lipid metabolism were regulated by this strain. The regulation of immune system and lipid and carbohydrate metabolism was also confirmed by overrepresentation of Gene Ontology terms analysis. In vivo, circulating FIAF protein was increased by the strain but this phenomenon was not correlated with modulation Fiaf expression in tissues (except a trend in distal small intestine). Conclusion We showed that Lactobacillus rhamnosus CNCMI–4317 induced Fiaf expression in human IECs, and increased circulating FIAF protein level in mice. Moreover, this effect was accompanied by transcriptome modulation of several pathways including immune response and metabolism in vitro. PMID:26439630

  15. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model.

    PubMed

    Zhang, Wei; Zhu, Yao-Hong; Yang, Jin-Cai; Yang, Gui-Yan; Zhou, Dong; Wang, Jiu-Feng

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2) were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR) was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial cell activation in

  16. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model

    PubMed Central

    Yang, Jin-Cai; Yang, Gui-Yan; Zhou, Dong; Wang, Jiu-Feng

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2) were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR) was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial cell activation in

  17. The N-Terminal GYPSY Motif Is Required for Pilin-Specific Sortase SrtC1 Functionality in Lactobacillus rhamnosus Strain GG.

    PubMed

    Douillard, François P; Rasinkangas, Pia; Bhattacharjee, Arnab; Palva, Airi; de Vos, Willem M

    2016-01-01

    Predominantly identified in pathogenic Gram-positive bacteria, sortase-dependent pili are also found in commensal species, such as the probiotic-marketed strain Lactobacillus rhamnosus strain GG. Pili are typically associated with host colonization, immune signalling and biofilm formation. Comparative analysis of the N-terminal domains of pilin-specific sortases from various piliated Gram-positive bacteria identified a conserved motif, called GYPSY, within the signal sequence. We investigated the function and role of the GYPSY residues by directed mutagenesis in homologous (rod-shaped) and heterologous (coccoid-shaped) expression systems for pilus formation. Substitutions of some of the GYPSY residues, and more specifically the proline residue, were found to have a direct impact on the degree of piliation of Lb. rhamnosus GG. The present findings uncover a new signalling element involved in the functionality of pilin-specific sortases controlling the pilus biogenesis of Lb. rhamnosus GG and related piliated Gram-positive species. PMID:27070897

  18. The N-Terminal GYPSY Motif Is Required for Pilin-Specific Sortase SrtC1 Functionality in Lactobacillus rhamnosus Strain GG

    PubMed Central

    Douillard, François P.; Rasinkangas, Pia; Bhattacharjee, Arnab; Palva, Airi; de Vos, Willem M.

    2016-01-01

    Predominantly identified in pathogenic Gram-positive bacteria, sortase-dependent pili are also found in commensal species, such as the probiotic-marketed strain Lactobacillus rhamnosus strain GG. Pili are typically associated with host colonization, immune signalling and biofilm formation. Comparative analysis of the N-terminal domains of pilin-specific sortases from various piliated Gram-positive bacteria identified a conserved motif, called GYPSY, within the signal sequence. We investigated the function and role of the GYPSY residues by directed mutagenesis in homologous (rod-shaped) and heterologous (coccoid-shaped) expression systems for pilus formation. Substitutions of some of the GYPSY residues, and more specifically the proline residue, were found to have a direct impact on the degree of piliation of Lb. rhamnosus GG. The present findings uncover a new signalling element involved in the functionality of pilin-specific sortases controlling the pilus biogenesis of Lb. rhamnosus GG and related piliated Gram-positive species. PMID:27070897

  19. Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: An efficiency continuous cell-recycle fermentation system for lactic acid production.

    PubMed

    Zhao, Zijian; Xie, Xiaona; Wang, Zhi; Tao, Yanchun; Niu, Xuedun; Huang, Xuri; Liu, Li; Li, Zhengqiang

    2016-06-01

    Lactic acid bacteria immobilization methods have been widely used for lactic acid production. Until now, the most common immobilization matrix used is calcium alginate. However, Ca-alginate gel disintegrated during lactic acid fermentation. To overcome this deficiency, we developed an immobilization method in which Lactobacillus rhamnosus cells were successfully encapsulated into an ordered mesoporous silica-based material under mild conditions with a high immobilization efficiency of 78.77% by using elemental analysis. We also optimized the cultivation conditions of the immobilized L. rhamnosus and obtained a high glucose conversion yield of 92.4%. Furthermore, L. rhamnosus encapsulated in mesoporous silica-based material exhibited operational stability during repeated fermentation processes and no decrease in lactic acid production up to 8 repeated batches. PMID:26803707

  20. Effect of Porphyromonas gingivalis and Lactobacillus acidophilus on secretion of IL1B, IL6, and IL8 by gingival epithelial cells.

    PubMed

    Zhao, Jun-jun; Feng, Xi-ping; Zhang, Xiu-li; Le, Ke-yi

    2012-08-01

    Porphyromonas gingivalis alters cytokine expression in gingival epithelial cells, stimulating inflammatory responses that may lead to periodontal disease. This study explored the effect of Lactobacillus acidophilus on the specific expressions of the interleukins (ILs) IL1B, IL6, and IL8 induced by the pathogen. Human gingival epithelial cells were co-cultured with P. gingivalis, L. acidophilus, or L. acidophilus + P. gingivalis; the control group consisted of the cells alone. Protein and gene expression levels of the ILs were detected using ELISA and qRT-PCR, respectively. The supernatant from the P. gingivalis group held significantly higher protein and mRNA levels of IL1B, IL6, and IL8, compared to the control group. In the mixed bacterial group (L. acidophilus + P. gingivalis), the levels of all three ILs decreased with increasing concentrations of L. acidophilus and were significantly different from the P. gingivalis group. This suggests that in gingival cells, L. acidophilus offsets the P. gingivalis-induced secretion of these ILs in a dose-dependent manner. PMID:22382516

  1. Yield improvement of exopolysaccharides by screening of the Lactobacillus acidophilus ATCC and optimization of the fermentation and extraction conditions

    PubMed Central

    Liu, Qi; Huang, Xingjian; Yang, Dengxiang; Si, Tianlei; Pan, Siyi; Yang, Fang

    2016-01-01

    Exopolysacharides (EPS) produced by Lactobacillus acidophilus play an important role in food processing with its well-recognized antioxidant activity. In this study, a L. acidophilus mutant strain with high-yielding EPS (2.92±0.05 g/L) was screened by chemical mutation (0.2 % diethyl sulfate). Plackett-Burman (PB) design and response surface methodology (RSM) were applied to optimize the EPS fermentation parameters and central composite design (CCD) was used to optimize the EPS extraction parameters. A strain with high-yielding EPS was screened. It was revealed that three parameters (Tween 80, dipotassium hydrogen phosphate and trisodium citrate) had significant influence (P < 0.05) on the EPS yield. The optimal culture conditions for EPS production were: Tween 80 0.6 mL, dipotassium hydrogen phosphate 3.6 g and trisodium citrate 4.1 g (with culture volume of 1 L). In these conditions, the maximum EPS yield was 3.96±0.08 g/L. The optimal extraction conditions analyzed by CCD were: alcohol concentration 70 %, the ratio of material to liquid (M/L ratio) 1:3.6 and the extraction time 31 h. In these conditions, the maximum EPS extraction yield was 1.48±0.23 g/L. It was confirmed by the verification experiments that the EPS yield from L. acidophilus mutant strains reached 5.12±0.73 g/L under the optimized fermentation and extraction conditions, which was 3.8 times higher than that of the control (1.05±0.06 g/L). The results indicated that the strain screening with high-yielding EPS was successful and the optimized fermentation and extraction conditions significantly enhanced EPS yield. It was efficient and industrially promising. PMID:27103893

  2. Directed chromosomal integration and expression of the reporter gene gusA3 in Lactobacillus acidophilus NCFM.

    PubMed

    Douglas, Grace L; Klaenhammer, Todd R

    2011-10-01

    Lactobacillus acidophilus NCFM is a probiotic microbe that survives passage through the human gastrointestinal tract and interacts with the host epithelium and mucosal immune cells. The potential for L. acidophilus to express antigens at mucosal surfaces has been investigated with various antigens and plasmid expression vectors. Plasmid instability and antibiotic selection complicate the possibility of testing these constructs in human clinical trials. Integrating antigen encoding genes into the chromosome for expression is expected to eliminate selection requirements and provide genetic stability. In this work, a reporter gene encoding a β-glucuronidase (GusA3) was integrated into four intergenic chromosomal locations. The integrants were tested for genetic stability and GusA3 activity. Two locations were selected for insertion downstream of constitutively highly expressed genes, one downstream of slpA (LBA0169), encoding a highly expressed surface-layer protein, and one downstream of phosphopyruvate hydratase (LBA0889), a highly expressed gene with homologs in other lactic acid bacteria. An inducible location was selected downstream of lacZ (LBA1462), encoding a β-galactosidase. A fourth location was selected in a low-expression region. The expression of gusA3 was evaluated from each location by measuring GusA3 activity on 4-methyl-umbelliferyl-β-d-glucuronide (MUG). GusA3 activity from both highly expressed loci was more than three logs higher than the gusA3-negative parent, L. acidophilus NCK1909. GusA3 activity from the lacZ locus was one log higher in cells grown in lactose than in glucose. The differences in expression levels between integration locations highlights the importance of rational targeting with gene cassettes intended for chromosomal expression. PMID:21873486

  3. Yield improvement of exopolysaccharides by screening of the Lactobacillus acidophilus ATCC and optimization of the fermentation and extraction conditions.

    PubMed

    Liu, Qi; Huang, Xingjian; Yang, Dengxiang; Si, Tianlei; Pan, Siyi; Yang, Fang

    2016-01-01

    Exopolysacharides (EPS) produced by Lactobacillus acidophilus play an important role in food processing with its well-recognized antioxidant activity. In this study, a L. acidophilus mutant strain with high-yielding EPS (2.92±0.05 g/L) was screened by chemical mutation (0.2 % diethyl sulfate). Plackett-Burman (PB) design and response surface methodology (RSM) were applied to optimize the EPS fermentation parameters and central composite design (CCD) was used to optimize the EPS extraction parameters. A strain with high-yielding EPS was screened. It was revealed that three parameters (Tween 80, dipotassium hydrogen phosphate and trisodium citrate) had significant influence (P < 0.05) on the EPS yield. The optimal culture conditions for EPS production were: Tween 80 0.6 mL, dipotassium hydrogen phosphate 3.6 g and trisodium citrate 4.1 g (with culture volume of 1 L). In these conditions, the maximum EPS yield was 3.96±0.08 g/L. The optimal extraction conditions analyzed by CCD were: alcohol concentration 70 %, the ratio of material to liquid (M/L ratio) 1:3.6 and the extraction time 31 h. In these conditions, the maximum EPS extraction yield was 1.48±0.23 g/L. It was confirmed by the verification experiments that the EPS yield from L. acidophilus mutant strains reached 5.12±0.73 g/L under the optimized fermentation and extraction conditions, which was 3.8 times higher than that of the control (1.05±0.06 g/L). The results indicated that the strain screening with high-yielding EPS was successful and the optimized fermentation and extraction conditions significantly enhanced EPS yield. It was efficient and industrially promising. PMID:27103893

  4. Real-time analysis of metabolic activity within Lactobacillus acidophilus by phasor fluorescence lifetime imaging microscopy of NADH.

    PubMed

    Torno, Keenan; Wright, Belinda K; Jones, Mark R; Digman, Michelle A; Gratton, Enrico; Phillips, Michael

    2013-04-01

    Nicotinamide adenine dinucleotide (NADH) is an endogenous fluorescent molecule commonly used as a metabolic biomarker. Fluorescence lifetime imaging microscopy (FLIM) is a method in which the fluorescence decay is measured at each pixel of an image. While the fluorescence spectrum of free and protein-bound NADH is very similar, free and protein-bound NADH display very different decay profiles. Therefore, FLIM can provide a way to distinguish free/bound NADH at the level of single bacteria within biological samples. The phasor technique is a graphical method to analyse the entire image and to produce a histogram of pixels with different decay profile. In this study, NADH fluorescence decay profiles within Lactobacillus acidophilus samples treated using different protocols indicated discernible variations. Clear distinctions between fluorescence decay profiles of NADH in samples of artificially heightened metabolic activity in comparison to those of samples lacking an accessible carbon source were obtained. PMID:23233088

  5. Advancing the use of Lactobacillus acidophilus surface layer protein A for the treatment of intestinal disorders in humans.

    PubMed

    Sahay, Bikash; Ge, Yong; Colliou, Natacha; Zadeh, Mojgan; Weiner, Chelsea; Mila, Ashley; Owen, Jennifer L; Mohamadzadeh, Mansour

    2015-01-01

    Intestinal immunity is subject to complex and fine-tuned regulation dictated by interactions of the resident microbial community and their gene products with host innate cells. Deterioration of this delicate process may result in devastating autoinflammatory diseases, including inflammatory bowel disease (IBD), which primarily comprises Crohn's disease (CD) and ulcerative colitis (UC). Efficacious interventions to regulate proinflammatory signals, which play critical roles in IBD, require further scientific investigation. We recently demonstrated that rebalancing intestinal immunity via the surface layer protein A (SlpA) from Lactobacillus acidophilus NCFM potentially represents a feasible therapeutic approach to restore intestinal homeostasis. To expand on these findings, we established a new method of purifying bacterial SlpA, a new SlpA-specific monoclonal antibody, and found no SlpA-associated toxicity in mice. Thus, these data may assist in our efforts to determine the immune regulatory efficacy of SlpA in humans. PMID:26647142

  6. Lactobacillus rhamnosus GR-1 Ameliorates Escherichia coli-Induced Inflammation and Cell Damage via Attenuation of ASC-Independent NLRP3 Inflammasome Activation.

    PubMed

    Wu, Qiong; Liu, Ming-Chao; Yang, Jun; Wang, Jiu-Feng; Zhu, Yao-Hong

    2016-02-01

    Escherichia coli is a major environmental pathogen causing bovine mastitis, which leads to mammary tissue damage and cell death. We explored the effects of the probiotic Lactobacillus rhamnosus GR-1 on ameliorating E. coli-induced inflammation and cell damage in primary bovine mammary epithelial cells (BMECs). Increased Toll-like receptor 4 (TLR4), NOD1, and NOD2 mRNA expression was observed following E. coli challenge, but this increase was attenuated by L. rhamnosus GR-1 pretreatment. Immunofluorescence and Western blot analyses revealed that L. rhamnosus GR-1 pretreatment decreased the E. coli-induced increases in the expression of the NOD-like receptor family member pyrin domain-containing protein 3 (NLRP3) and the serine protease caspase 1. However, expression of the adaptor protein apoptosis-associated speck-like protein (ASC, encoded by the Pycard gene) was decreased during E. coli infection, even with L. rhamnosus GR-1 pretreatment. Pretreatment with L. rhamnosus GR-1 counteracted the E. coli-induced increases in interleukin-1β (IL-1β), -6, -8, and -18 and tumor necrosis factor alpha mRNA expression but upregulated IL-10 mRNA expression. Our data indicate that L. rhamnosus GR-1 reduces the adhesion of E. coli to BMECs, subsequently ameliorating E. coli-induced disruption of cellular morphology and ultrastructure and limiting detrimental inflammatory responses, partly via promoting TLR2 and NOD1 synergism and attenuating ASC-independent NLRP3 inflammasome activation. Although the residual pathogenic activity of L. rhamnosus, the dosage regimen, and the means of probiotic supplementation in cattle remain undefined, our data enhance our understanding of the mechanism of action of this candidate probiotic, allowing for development of specific probiotic-based therapies and strategies for preventing pathogenic infection of the bovine mammary gland. PMID:26655757

  7. Fibres as carriers for Lactobacillus rhamnosus during freeze-drying and storage in apple juice and chocolate-coated breakfast cereals.

    PubMed

    Saarela, Maria; Virkajärvi, Ilkka; Nohynek, Liisa; Vaari, Anu; Mättö, Jaana

    2006-11-01

    The capability of different fibre preparations to protect the viability and stability of Lactobacillus rhamnosus during freeze-drying, storage in freeze-dried form and after formulation into apple juice and chocolate-coated breakfast cereals was studied. In freeze-drying trials wheat dextrin and polydextrose proved to be promising carriers for the L. rhamnosus strains: both freeze-drying survival and storage stability at 37 degrees C were comparable to the control carrier (sucrose). Using apple fibre and inulin carriers resulted in powders with fairly good initial freeze-drying survival but with poor storage stability at 37 degrees C. When fresh L. rhamnosus cells were added into apple juice (pH 3.5) together with oat flour with 20% beta-glucan the survival of the cells was much better at 4 degrees C and at 20 degrees C than with sucrose, wheat dextrin and polydextrose, whereas with freeze-dried cells no protective effect of oat flour could be seen. The stability of freeze-dried L. rhamnosus cells at 20 degrees C was higher in chocolate-coated breakfast cereals compared to low pH apple juice. Similar to freeze-drying stability, wheat dextrin and polydextrose proved to be better carriers than oat flour in chocolate-coated breakfast cereals. Regardless of their differing capability to adhere to fibre preparations the two L. rhamnosus strains studied gave parallel results in the stability studies with different carriers. PMID:16844253

  8. Lactobacillus acidophilus: characterization of the species and application in food production.

    PubMed

    Anjum, Nazia; Maqsood, Shabana; Masud, Tariq; Ahmad, Asif; Sohail, Asma; Momin, Abdul

    2014-01-01

    L. acidophilus is a homofermentative, microaerophilic, short chain gram positive microorganism with rod morphology having its bacteriocins belonging to class II a. Several bacteriocins of L. acidophilus have been isolated and characterized. These are structurally similar, but their molecular weight varies as well as their spectrum of antimicrobial activity. They exhibit important technical properties, i.e., thermostability and retaining of activity at a wide pH range along with strong inhibitory actions against food spoilage and pathogenic bacteria make them an important class of biopreservatives. L. acidophilus can be added as an adjunct in many food fermentation processes contributing to unique taste, flavor, and texture. It also preserves the products by producing lactic acid and bacteriocins. A lot of new information regarding the bacteriocins of L. acidophilus has emerged during the last few years. In this review, an attempt has been made to summarize and discuss all the available information regarding the sources of bacteriocins production, their characteristics, and their antimicrobial action along with their application. PMID:24499153

  9. Heat and Osmotic Stress Responses of Probiotic Lactobacillus rhamnosus HN001 (DR20) in Relation to Viability after Drying

    PubMed Central

    Prasad, Jaya; McJarrow, Paul; Gopal, Pramod

    2003-01-01

    The viability of lactic acid bacteria in frozen, freeze-dried, and air-dried forms is of significant commercial interest to both the dairy and food industries. In this study we observed that when prestressed with either heat (50°C) or salt (0.6 M NaCl), Lactobacillus rhamnosus HN001 (also known as DR20) showed significant (P < 0.05) improvement in viability compared with the nonstressed control culture after storage at 30°C in the dried form. To investigate the mechanisms underlying this stress-related viability improvement in L. rhamnosus HN001, we analyzed protein synthesis in cultures subjected to different growth stages and stress conditions, using two-dimensional gel electrophoresis and N-terminal sequencing. Several proteins were up- or down-regulated after either heat or osmotic shock treatments. Eleven proteins were positively identified, including the classical heat shock proteins GroEL and DnaK and the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, enolase, phosphoglycerate kinase, and triose phosphate isomerase, as well as tagatose 1,6-diphosphate aldolase of the tagatose pathway. The phosphocarrier protein HPr (histidine-containing proteins) was up-regulated in cultures after the log phase irrespective of the stress treatments used. The relative synthesis of an ABC transport-related protein was also up-regulated after shock treatments. Carbohydrate analysis of cytoplasmic contents showed higher levels (20 ± 3 μg/mg of protein) in cell extracts (CFEs) derived from osmotically stressed cells than in the unstressed control (15 ± 3 μg/mg of protein). Liquid chromatography of these crude carbohydrate extracts showed significantly different profiles. Electrospray mass spectrometry analysis of CFEs revealed, in addition to normal mono-, di-, tri-, and tetrasaccharides, the presence of saccharides modified with glycerol. PMID:12571012

  10. Astragalus Root and Elderberry Fruit Extracts Enhance the IFN-β Stimulatory Effects of Lactobacillus acidophilus in Murine-Derived Dendritic Cells

    PubMed Central

    Frøkiær, Hanne; Henningsen, Louise; Metzdorff, Stine Broeng; Weiss, Gudrun; Roller, Marc; Flanagan, John; Fromentin, Emilie; Ibarra, Alvin

    2012-01-01

    Many foods and food components boost the immune system, but little data are available regarding the mechanisms by which they do. Bacterial strains have disparate effects in stimulating the immune system. Indendritic cells, the gram-negative bacteria Escherichia coli upregulates proinflammatory cytokines, whereas gram-positive Lactobacillus acidophilus induces a robust interferon (IFN)-β response. The immune-modulating effects of astragalus root and elderberry fruit extracts were examined in bone marrow-derived murine dendritic cells that were stimulated with L. acidophilus or E. coli. IFN-β and other cytokines were measured by ELISA and RT-PCR. Endocytosis of fluorescence-labeled dextran and L. acidophilus in the presence of elderberry fruit or astragalus root extract was evaluated in dendritic cells. Our results show that both extracts enhanced L. acidophilus-induced IFN-β production and slightly decreased the proinflammatory response to E. coli. The enhanced IFN-β production was associated with upregulation of toll-like receptor 3 and to a varying degree, the cytokines IL-12, IL-6, IL-1β and TNF-α. Both extracts increased endocytosis in immature dendritic cells, and only slightly influenced the viability of the cells. In conclusion, astragalus root and elderberry fruit extracts increase the IFN-β inducing activity of L. acidophilus in dendritic cells, suggesting that they may exert antiviral and immune-enhancing activity. PMID:23118903

  11. Studying the Stability of S-Layer Protein of Lactobacillus Acidophilus ATCC 4356 in Simulated Gastrointestinal Fluids Using SDS-PAGE and Circular Dichroism

    PubMed Central

    Eslami, Neda; Kermanshahi, Rouha Kasra; Erfan, Mohammad

    2013-01-01

    Crystalline arrays of proteinaceous subunits forming surface layers (S-layers) are now recognized as one of the most common outermost cell envelope components of prokaryotic organisms. The surface layer protein of Lactobacillus acidophilus ATCC4356 is composed of a single species of protein of apparent molecular weight of 43-46 KDa. Considering the Lactobacillus acidophilus ATCC4356 having the S-layer is stable in harsh gastrointestinal (GI) conditions, a protective role against destructive GI factors which has been proposed for these nanostructures. It opens interesting perspectives in the using and development of this S-layer as a protective coat for oral administration of unstable drug nanocarriers. To achieve this goal, it is necessary to study the in-vitro stability of the S-layers in the simulated gastrointestinal fluids (SGIF). This study was planned to evaluate the in-vitro stability of the extracted S-layer protein of Lactobacillus acidophilus ATCC4356 in SGIF using it as a protective coat in oral drug delivery. Sodium dodecyl sulfate gel electrophoresis (SDS-PAGE) and circular dichroism (CD) spectroscopy were used to study the stability of the S-layer protein incubated in SGIF. Both the SDS-PAGE and CD spectra results showed that Lactobacillus acidophilus ATCC4356 S-layer protein is stable in simulated gastric fluid (SGF) with pH = 2 up to 5 min. It is stable in SGF pH = 3.2 and above it, with and without pepsin. It is also stable in all the simulated intestinal fluids. This S-layer is also stable in all of the simulated intestinal fluids. PMID:24250671

  12. Using Recombinant Lactococci as an Approach to Dissect the Immunomodulating Capacity of Surface Piliation in Probiotic Lactobacillus rhamnosus GG

    PubMed Central

    Nummenmaa, Elina; Mäkinen, Veli-Matti; Reunanen, Justus; Satokari, Reetta; de Vos, Willem M.; Palva, Ilkka; Palva, Airi

    2013-01-01

    Primarily arising from their well understood beneficial health effects, many lactobacilli strains are considered good candidates for use as probiotics in humans and animals. Lactobacillar probiosis can itself be best typified by the Lactobacillus rhamnosus GG strain, which, with its well-documented clinical benefits, has emerged as one of the most widely used probiotics in the food and health-supplement industries. Even so, many facets of its molecular mechanisms and limitations as a beneficial commensal bacterium still remain to be thoroughly explored and dissected. Because L. rhamnosus GG is one of only a few such strains exhibiting surface piliation (called SpaCBA), we sought to examine whether this particular type of cell-surface appendage has a discernible immunomodulating capacity and is able to trigger targeted responses in human immune-related cells. Thus, presented herein for this study, we recombinantly engineered Lactococcus lactis to produce native (and pilin-deleted) SpaCBA pili that were assembled in a structurally authentic form and anchored to the cell surface, and which had retained mucus-binding functionality. By using these recombinant lactococcal constructs, we were able to demonstrate that the SpaCBA pilus can be a contributory factor in the activation of Toll-like receptor 2-dependent signaling in HEK cells as well as in the modulation of pro- and anti-inflammatory cytokine (TNF-α, IL-6, IL-10, and IL-12) production in human monocyte-derived dendritic cells. From these data, we suggest that the recombinant-expressed and surface-anchored SpaCBA pilus, given its projected functioning in the gut environment, might be viewed as a new microbe-associated molecular pattern (MAMP)-like modulator of innate immunity. Accordingly, our study has brought some new insight to the molecular immunogenicity of the SpaCBA pilus, thus opening the way to a better understanding of its possible role in the multifaceted nature of L. rhamnosus GG probiosis within the

  13. Inactivation of bacterial pathogens in yoba mutandabota, a dairy product fermented with the probiotic Lactobacillus rhamnosus yoba.

    PubMed

    Mpofu, Augustine; Linnemann, Anita R; Nout, Martinus J R; Zwietering, Marcel H; Smid, Eddy J; den Besten, Heidy M W

    2016-01-18

    Mutandabota is a dairy product consumed as a major source of proteins and micronutrients in Southern Africa. In this study the microbial safety of traditional and a variant of mutandabota fermented with the probiotic Lactobacillus rhamnosus yoba (yoba mutandabota) was investigated by challenging the products with five important food pathogens: Listeria monocytogenes, Salmonella spp., Campylobacter jejuni, Escherichia coli O157:H7 and Bacillus cereus. Pasteurized full-fat cow's milk was used for producing traditional and yoba mutandabota, and was inoculated with a cocktail of strains of the pathogens at an inoculum level of 5.5 log cfu/mL. Survival of the pathogens was monitored over a potential consumption time of 24h for traditional mutandabota, and over 24h of fermentation followed by 24h of potential consumption time for yoba mutandabota. In traditional mutandabota (pH3.4 ± 0.1) no viable cells of B. cereus and C. jejuni were detected 3h after inoculation, while L. monocytogenes, E. coli O157:H7 and Salmonella spp. significantly declined (P<0.05), but could still be detected (<3.5 log inactivation) at the end of the potential consumption time. This indicated that consumption of traditional mutandabota exposes consumers to the risk of food-borne microbial infections. In yoba mutandabota, L. rhamnosus yoba grew from 5.5 ± 0.1 log cfu/mL to 9.1 ± 0.4 log cfu/mL in the presence of pathogens. The pH of yoba mutandabota dropped from 4.2 ± 0.1 to 3.3 ± 0.1 after 24h of fermentation, mainly due to organic acids produced during fermentation. Only Salmonella spp. was able to grow in yoba mutandabota during the first 9h of fermentation, but then decreased in viable plate count. None of the tested pathogens were detected (>3.5 log inactivation) after 3h into potential consumption time of yoba mutandabota. Inactivation of pathogens in mutandabota is of public health significance because food-borne pathogens endanger public health upon consumption of contaminated food

  14. Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture.

    PubMed Central

    Coconnier, M H; Klaenhammer, T R; Kernéis, S; Bernet, M F; Servin, A L

    1992-01-01

    The adhesion of Lactobacillus acidophilus BG2FO4, a human stool isolate, to two human enterocytelike cell lines (Caco-2 and HT-29) and to the mucus secreted by a subpopulation of mucus-secreting HT29-MTX cells was investigated. Scanning electron microscopy revealed that the bacteria interacted with the well-defined apical microvilli of Caco-2 cells without cell damage and with the mucus secreted by the subpopulation of HT29-MTX cells. The adhesion to Caco-2 cells did not require calcium and involved an adhesion-promoting factor that was present in the spent supernatant of L. acidophilus cultures. This factor promoted adhesion of poorly adhering human Lactobacillus casei GG but did not promote adhesion of L. casei CNRZ 387, a strain of dairy origin. The adherence components on the bacterial cells and in the spent supernatant were partially characterized. Carbohydrates on the bacterial cell wall appeared to be partly responsible for the interaction between the bacteria and the extracellular adhesion-promoting factor. The adhesion-promoting factor was proteinaceous, since trypsin treatment dramatically decreased the adhesion of the L. acidophilus strain. The adhesion-promoting factor may be an important component of Lactobacillus species that colonize the gastrointestinal tract. Images PMID:1622282

  15. Human dendritic cell DC-SIGN and TLR-2 mediate complementary immune regulatory activities in response to Lactobacillus rhamnosus JB-1.

    PubMed

    Konieczna, Patrycja; Schiavi, Elisa; Ziegler, Mario; Groeger, David; Healy, Selena; Grant, Ray; O'Mahony, Liam

    2015-01-01

    The microbiota is required for optimal host development and ongoing immune homeostasis. Lactobacilli are common inhabitants of the mammalian large intestine and immunoregulatory effects have been described for certain, but not all, strains. The mechanisms underpinning these protective effects are beginning to be elucidated. One such protective organism is Lactobacillus rhamnosus JB-1 (Lb. rhamnosus JB-1). Lb. murinus has no such anti-inflammatory protective effects and was used as a comparator organism. Human monocyte-derived dendritic cells (MDDCs) were co-incubated with bacteria and analysed over time for bacterial adhesion and intracellular processing, costimulatory molecule expression, cytokine secretion and induction of lymphocyte polarization. Neutralising antibodies were utilized to identify the responsible MDDC receptors. Lb. rhamnosus JB-1 adhered to MDDCs, but internalization and intracellular processing was significantly delayed, compared to Lb. murinus which was rapidly internalized and processed. Lb. murinus induced CD80 and CD86 expression, accompanied by high levels of cytokine secretion, while Lb. rhamnosus JB-1 was a poor inducer of costimulatory molecule expression and cytokine secretion. Lb. rhamnosus JB-1 primed MDDCs induced Foxp3 expression in autologous lymphocytes, while Lb. murinus primed MDDCs induced Foxp3, T-bet and Ror-γt expression. DC-SIGN was required for Lb. rhamnosus JB-1 adhesion and influenced IL-12 secretion, while TLR-2 influenced IL-10 and IL-12 secretion. Here we demonstrate that the delayed kinetics of bacterial processing by MDDCs correlates with MDDC activation and stimulation of lymphocytes. Thus, inhibition or delay of intracellular processing may be a novel strategy by which certain commensals may avoid the induction of proinflammatory responses. PMID:25816321

  16. Human Dendritic Cell DC-SIGN and TLR-2 Mediate Complementary Immune Regulatory Activities in Response to Lactobacillus rhamnosus JB-1

    PubMed Central

    Konieczna, Patrycja; Schiavi, Elisa; Ziegler, Mario; Groeger, David; Healy, Selena; Grant, Ray; O’Mahony, Liam

    2015-01-01

    The microbiota is required for optimal host development and ongoing immune homeostasis. Lactobacilli are common inhabitants of the mammalian large intestine and immunoregulatory effects have been described for certain, but not all, strains. The mechanisms underpinning these protective effects are beginning to be elucidated. One such protective organism is Lactobacillus rhamnosus JB-1 (Lb. rhamnosus JB-1). Lb. murinus has no such anti-inflammatory protective effects and was used as a comparator organism. Human monocyte-derived dendritic cells (MDDCs) were co-incubated with bacteria and analysed over time for bacterial adhesion and intracellular processing, costimulatory molecule expression, cytokine secretion and induction of lymphocyte polarization. Neutralising antibodies were utilized to identify the responsible MDDC receptors. Lb. rhamnosus JB-1 adhered to MDDCs, but internalization and intracellular processing was significantly delayed, compared to Lb. murinus which was rapidly internalized and processed. Lb. murinus induced CD80 and CD86 expression, accompanied by high levels of cytokine secretion, while Lb. rhamnosus JB-1 was a poor inducer of costimulatory molecule expression and cytokine secretion. Lb. rhamnosus JB-1 primed MDDCs induced Foxp3 expression in autologous lymphocytes, while Lb. murinus primed MDDCs induced Foxp3, T-bet and Ror-γt expression. DC-SIGN was required for Lb. rhamnosus JB-1 adhesion and influenced IL-12 secretion, while TLR-2 influenced IL-10 and IL-12 secretion. Here we demonstrate that the delayed kinetics of bacterial processing by MDDCs correlates with MDDC activation and stimulation of lymphocytes. Thus, inhibition or delay of intracellular processing may be a novel strategy by which certain commensals may avoid the induction of proinflammatory responses. PMID:25816321

  17. Modulatory activity of Lactobacillus rhamnosus OLL2838 in a mouse model of intestinal immunopathology.

    PubMed

    Ogita, Tasuku; Bergamo, Paolo; Maurano, Francesco; D'Arienzo, Rossana; Mazzarella, Giuseppe; Bozzella, Giuseppina; Luongo, Diomira; Sashihara, Toshihiro; Suzuki, Takuya; Tanabe, Soichi; Rossi, Mauro

    2015-06-01

    Gut microbiota and probiotic strains play an important role in oral tolerance by modulating regulatory and effector cell components of the immune system. We have previously described the ability of Lactobacilli to influence both the innate and adaptive immunity to wheat gluten, a food antigen, in mouse. In this study, we further explored the immunomodulatory mechanisms elicited in this model by testing three specific probiotic strains, namely L. rhamnosus OLL2838, B. infantis ATCC15697 and S. thermophilus Sfi39. In vitro analysis showed the all tested strains induced maturation of bone marrow derived dendritic cells (DCs). However, only L. rhamnosus induced appreciable levels of IL-10 and nitric oxide productions, whereas S. thermophilus essentially elicited IL-12 and TNF-α. The anti-inflammatory ability of OLL2838 was then tested in vivo by adopting mice that develop a gluten-specific enteropathy. This model is characterized by villus blunting, crypt hyperplasia, high levels of intestinal IFN-γ, increased cell apoptosis in lamina propria, and reduced intestinal total glutathione (GSHtot) and glutathione S-transferase (GST) activity. We found that, following administration of OLL2838, GSHtot and GST activity were enhanced, whereas caspase-3 activity was reduced. On the contrary, this probiotic strain failed in recovering the normal histology and further increased intestinal IFN-γ. Confocal microscopy revealed the inability of the probiotic strain to appropriately interact with enterocytes of the small intestine and with Peyer's patches in treated mice. In conclusion, these data highlighted the potential of L. rhamnosus OLL2838 to recover specific toxicity parameters induced by gluten in enteropathic mice through mechanisms that involve induction of low levels of reactive oxygen species (ROS). PMID:25623030

  18. Lactobacillus acidophilus attenuates Aeromonas hydrophila induced cytotoxicity in catla thymus macrophages by modulating oxidative stress and inflammation.

    PubMed

    Patel, Bhakti; Kumar, Premranjan; Banerjee, Rajanya; Basu, Madhubanti; Pal, Arttatrana; Samanta, Mrinal; Das, Surajit

    2016-07-01

    The pathogenesis of Aeromonas hydrophila, a potent fish pathogen, is attributed to its ability to cause motile aeromonad septicaemia leading to apoptosis in a myriad of fish species, including freshwater carp Catla catla. However, the underlying mechanism of antagonistic activity of probiotics against A. hydrophila induced apoptosis is not elucidated due to lack of appropriate in-vitro models. This study reported that the exposure of catla thymus macrophages (CTM) to A. hydrophila markedly induced cellular injuries as evidenced by elevated levels of reactive oxygen species (ROS), reactive nitrogen species (RNS), increased apoptosis, DNA damage and decreased cellular viability. Flow cytometry analysis and Annexin-V/propidium iodide assay further confirmed increased ROS positive cells leading to cell death after infection. The quantitative real-time PCR analysis, also revealed upregulation of inducible nitric-oxide synthase (iNOS), pro-inflammatory cytokine (TNFα), cyclooxygenase2 (COX-2) and downregulation of anti-inflammatory cytokine (IL-10). Pretreatment of cells with probiotic, Lactobacillus acidophilus attenuated A. hydrophila induced apoptosis as evident from the decrease in the levels of ROS, RNS and DNA damage. Significant increase (P≤0.05) in expression of TNFα and IL-10 and decrease in iNOS and COX-2 was observed on probiotic stimulation. In-vivo study using catla fingerlings confirmed similar pattern of ROS, iNOS, NO production and cytokine expression in thymus. This study provides a comprehensive insight into the mechanistic basis of L. acidophilus induced macrophage mediated inflammatory response against A. hydrophila in CTM cells. Further, it speculates the possibility of using cost-effective in-vitro models for screening probiotic candidates of therapeutic potential in aquaculture industry. PMID:27262084

  19. Functional roles of aggregation-promoting-like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM.

    PubMed

    Goh, Yong Jun; Klaenhammer, Todd R

    2010-08-01

    Aggregation-promoting factors (Apf) are secreted proteins that have been associated with a diverse number of functional roles in lactobacilli, including self-aggregation, the bridging of conjugal pairs, coaggregation with other commensal or pathogenic bacteria, and maintenance of cell shape. In silico genome analysis of Lactobacillus acidophilus NCFM identified LBA0493 as a 696-bp apf gene that encodes a putative 21-kDa Apf protein. Transcriptional studies of NCFM during growth in milk showed apf to be one of the most highly upregulated genes in the genome. In the present study, reverse transcriptase-quantitative PCR (RT-QPCR) analysis revealed that the apf gene was highly induced during the stationary phase compared to that during the logarithmic phase. To investigate the functional role of Apf in NCFM, an Delta apf deletion mutant was constructed. The resulting Delta apf mutant, NCK2033, did not show a significant difference in cell morphology or growth compared to that of the NCFMDelta upp reference strain, NCK1909. The autoaggregation phenotype of NCK2033 in planktonic culture was unaffected. Additional phenotypic assays revealed that NCK2033 was more susceptible to treatments with oxgall bile and sodium dodecyl sulfate (SDS). Survival rates of NCK2033 decreased when stationary-phase cells were exposed to simulated small-intestinal and gastric juices. Furthermore, NCK2033 in the stationary phase showed a reduction of in vitro adherence to Caco-2 intestinal epithelial cells, mucin glycoproteins, and fibronectin. The data suggest that the Apf-like proteins may contribute to the survival of L. acidophilus during transit through the digestive tract and, potentially, participate in the interactions with the host intestinal mucosa. PMID:20562289

  20. Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding.

    PubMed

    Fredslund, Folmer; Hachem, Maher Abou; Larsen, René Jonsgaard; Sørensen, Pernille Gerd; Coutinho, Pedro M; Lo Leggio, Leila; Svensson, Birte

    2011-09-23

    Lactobacillus acidophilus NCFM is a probiotic bacterium known for its beneficial effects on human health. The importance of α-galactosidases (α-Gals) for growth of probiotic organisms on oligosaccharides of the raffinose family present in many foods is increasingly recognized. Here, the crystal structure of α-Gal from L. acidophilus NCFM (LaMel36A) of glycoside hydrolase (GH) family 36 (GH36) is determined by single-wavelength anomalous dispersion. In addition, a 1.58-Å-resolution crystallographic complex with α-d-galactose at substrate binding subsite -1 was determined. LaMel36A has a large N-terminal twisted β-sandwich domain, connected by a long α-helix to the catalytic (β/α)(8)-barrel domain, and a C-terminal β-sheet domain. Four identical monomers form a tightly packed tetramer where three monomers contribute to the structural integrity of the active site in each monomer. Structural comparison of LaMel36A with the monomeric Thermotoga maritima α-Gal (TmGal36A) reveals that O2 of α-d-galactose in LaMel36A interacts with a backbone nitrogen in a glycine-rich loop of the catalytic domain, whereas the corresponding atom in TmGal36A is from a tryptophan side chain belonging to the N-terminal domain. Thus, two distinctly different structural motifs participate in substrate recognition. The tetrameric LaMel36A furthermore has a much deeper active site than the monomeric TmGal36A, which possibly modulates substrate specificity. Sequence analysis of GH36, inspired by the observed structural differences, results in four distinct subgroups having clearly different active-site sequence motifs. This novel subdivision incorporates functional and architectural features and may aid further biochemical and structural analyses within GH36. PMID:21827767

  1. Substances released from probiotic Lactobacillus rhamnosus GR-1 potentiate NF-κB activity in Escherichia coli-stimulated urinary bladder cells.

    PubMed

    Karlsson, Mattias; Scherbak, Nikolai; Khalaf, Hazem; Olsson, Per-Erik; Jass, Jana

    2012-11-01

    Lactobacillus rhamnosus GR-1 is a probiotic bacterium used to maintain urogenital health. The putative mechanism for its probiotic effect is by modulating the host immunity. Urinary tract infections (UTI) are often caused by uropathogenic Escherichia coli that frequently evade or suppress immune responses in the bladder and can target pathways, including nuclear factor-kappaB (NF-κB). We evaluated the role of L. rhamnosus GR-1 on NF-κB activation in E. coli-stimulated bladder cells. Viable L. rhamnosus GR-1 was found to potentiate NF-κB activity in E. coli-stimulated T24 bladder cells, whereas heat-killed lactobacilli demonstrated a marginal increase in NF-κB activity. Surface components released by trypsin- or LiCl treatment, or the resultant heat-killed shaved lactobacilli, had no effect on NF-κB activity. Isolation of released products from L. rhamnosus GR-1 demonstrated that the induction of NF-κB activity was owing to released product(s) with a relatively large native size. Several putative immunomodulatory proteins were identified, namely GroEL, elongation factor Tu and NLP/P60. GroEL and elongation factor Tu have previously been shown to elicit immune responses from human cells. Isolating and using immune-augmenting substances produced by lactobacilli is a novel strategy for the prevention or treatment of UTI caused by immune-evading E. coli. PMID:22620976

  2. Administration of probiotics Lactobacillus rhamnosus GG and Lactobacillus gasseri K7 during pregnancy and lactation changes mouse mesenteric lymph nodes and mammary gland microbiota.

    PubMed

    Treven, P; Mrak, V; Bogovič Matijašić, B; Horvat, S; Rogelj, I

    2015-04-01

    The milk and mammary gland (MG) microbiome can be influenced by several factors, such as mode of delivery, breastfeeding, maternal lifestyle, health status, and diet. An increasing number of studies show a variety of positive effects of consumption of probiotics during pregnancy and breastfeeding on the mother and the newborn. The aim of this study was to investigate the effect of oral administration of probiotics Lactobacillus gasseri K7 (LK7) and Lactobacillus rhamnosus GG (LGG) during pregnancy and lactation on microbiota of the mouse mesenteric lymph nodes (MLN), MG, and milk. Pregnant FVB/N mice were fed skim milk or probiotics LGG or LK7 resuspended in skim milk during gestation and lactation. On d 3 and 8 postpartum, blood, feces, MLN, MG, and milk were analyzed for the presence of LGG or LK7. The effects of probiotics on MLN, MG, and milk microbiota was evaluated by real-time PCR and by 16S ribosomal DNA 454-pyrosequencing. In 5 of 8 fecal samples from the LGG group and in 5 of 8 fecal samples from the LK7 group, more than 1 × 10(3) of live LGG or LK7 bacterial cells were detected, respectively, whereas no viable LGG or LK7 cells were detected in the control group. Live lactic acid bacteria but no LGG or LK7 were detected in blood, MLN, and MG. Both probiotics significantly increased the total bacterial load as assessed by copies of 16S ribosomal DNA in MLN, and a similar trend was observed in MG. Metagenomic sequencing revealed that both probiotics increased the abundance of Firmicutes in MG, especially the abundance of lactic acid bacteria. The Lactobacillus genus appeared exclusively in MG from probiotic groups. Both probiotics influenced MLN microbiota by decreasing diversity (Chao1) and increasing the distribution of species (Shannon index). The LGG probiotic also affected the MG microbiota as it increased diversity and distribution of species and proportions of the genera Lactobacillus and Bifidobacterium. These results provide evidence that

  3. Lactobacillus rhamnosus GG increases Toll-like receptor 3 gene expression in murine small intestine ex vivo and in vivo.

    PubMed

    Aoki-Yoshida, A; Saito, S; Fukiya, S; Aoki, R; Takayama, Y; Suzuki, C; Sonoyama, K

    2016-06-01

    Administration of Lactobacillus rhamnosus GG (LGG) has been reported to be therapeutically effective against acute secretory diarrhoea resulting from the structural and functional intestinal mucosal lesions induced by rotavirus infection; however, the underlying mechanisms remain to be completely elucidated. Because Toll-like receptor 3 (TLR3) plays a key role in the innate immune responses following the recognition of rotavirus, the present study examined whether LGG influences TLR3 gene expression in murine small intestine ex vivo and in vivo. We employed cultured intestinal organoids derived from small intestinal crypts as an ex vivo tissue model. LGG supplementation increased TLR3 mRNA levels in the intestinal organoids, as estimated by quantitative real-time polymerase chain reaction. Likewise, single and 7-day consecutive daily administrations of LGG increased TLR3 mRNA levels in the small intestine of C57BL/6N mice. The mRNA levels of other TLRs were not substantially altered both ex vivo and in vivo. In addition, LGG supplementation increased the mRNA levels of an antiviral type 1 interferon, interferon-α (IFN-α), and a neutrophil chemokine, CXCL1, upon stimulation with a synthetic TLR3 ligand, poly(I:C) in the intestinal organoids. LGG administration did not alter IFN-α and CXCL1 mRNA levels in the small intestine in vivo. Supplementation of other bacterial strains, Bifidobacterium bifidum and Lactobacillus paracasei, failed to increase TLR3 and poly(I:C)-stimulated CXCL1 mRNA levels ex vivo. We propose that upregulation of TLR3 gene expression may play a pivotal role in the therapeutic efficacy of LGG against rotavirus-associated diarrhoea. In addition, we demonstrated that intestinal organoids may be a promising ex vivo tissue model for investigating host-pathogen interactions and the antiviral action of probiotics in the intestinal epithelium. PMID:27013459

  4. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans.

    PubMed

    Grompone, Gianfranco; Martorell, Patricia; Llopis, Silvia; González, Núria; Genovés, Salvador; Mulet, Ana Paula; Fernández-Calero, Tamara; Tiscornia, Inés; Bollati-Fogolín, Mariela; Chambaud, Isabelle; Foligné, Benoit; Montserrat, Agustín; Ramón, Daniel

    2012-01-01

    Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3 mM and 5 mM H(2)O(2)). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. Moreover, transcriptomic analysis of C. elegans fed with this strain showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans. This strain also had a clear anti-inflammatory profile when co-cultured with HT-29 cells, stimulated by pro-inflammatory cytokines, and co-culture systems with HT-29 cells and DC in the presence of LPS. Finally, this Lactobacillus strain reduced inflammation in a murine model of colitis. This work suggests that C. elegans is a fast, predictive and convenient screening tool to identify new potential antioxidant probiotic strains for subsequent use in humans. PMID:23300685

  5. Construction and immunogenicity of the recombinant Lactobacillus acidophilus pMG36e-E0-LA-5 of bovine viral diarrhea virus.

    PubMed

    Zhao, Yuelan; Jiang, Lufeng; Liu, Teng; Wang, Min; Cao, Wenbo; Bao, Yongzhan; Qin, Jianhua

    2015-12-01

    Bovine viral diarrhea/mucosal disease (BVD/MD) is an infectious disease of cattle with a worldwide distribution, creating a substantial economic impact. It is caused by bovine viral diarrhea virus (BVDV). This research was conducted to construct the recombinant Lactobacillus acidophilus (L. acidophilus) pMG36e-E0-LA-5 of BVDV E0 gene and to test its immunogenicity and protective efficacy against BVDV infection in the mice model. The BVDV E0 gene was sub-cloned into the expression vector and then transformed into the L. acidophilus LA-5 strain by electroporation. The recombinant L. acidophilus pMG36e-E0-LA-5 was confirmed by the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. The mice were immunized orally with the recombinant L. acidophilus pMG36e-E0-LA-5. The serum IgG antibody and fecal sIgA antibody responses, expression levels of interleukin (IL)-12 (IL-12) and interferon gamma (IFN-γ) were detected respectively. On the 7th day after the last-immunization, the mice were inoculated with BVDV to evaluate the protective efficiency of the recombinant L. acidophilus pMG36e-E0-LA-5. The results showed that the expressed products protein E0 in the L. acidophilus LA-5 resulted in single band of 27kDa by SDS-PAGE and its strong reactivity with BVDV antibody was confirmed by Western blotting. The IgG and sIgA antibodies responses, IL-12 and IFN-γ expression levels in the vaccinated mice with recombinant L. acidophilus pMG36e-E0-LA-5 were significantly higher than those in the control mice. The protective rate of the vaccinated mice against BVDV increased significantly, and a 90.00% protection rate in virulent challenge was observed. These results indicated that the recombinant L. acidophilus pMG36e-E0-LA-5 strain was successfully constructed and it could effectively improve the immune response in mice and might provide protection against BVDV. PMID:26386184

  6. Immunomodulation of Lactobacillus rhamnosus GG (LGG)-derived soluble factors on antigen-presenting cells of healthy blood donors.

    PubMed

    Fong, Fiona Long Yan; Kirjavainen, Pirkka V; El-Nezami, Hani

    2016-01-01

    Lactobacillus rhamnosus GG (LGG) cells have been shown to promote type-1 immune responsiveness; however knowledge of immunomodulation of soluble factors secreted by LGG is limited. This is the first study to investigate whether LGG soluble factors promote a comparable immune responsiveness as the bacterial cells. Both treatments - LGG conditioned medium with (CM + LGG) or without (CM) LGG cells, in this study increased expression of several toll-like receptors (TLRs) in all studied cell types and antigen presentation-associated receptor HLA-DR in macrophages and "intermediate" monocytes; but decreased that of activation markers on monocytes and macrophages and production of IL-10, IL-12 and TNFα in macrophages. In co-culture with mononuclear cells, CM increased Th1-type cytokine profile but not as pronounced as CM + LGG. This study suggests that LGG soluble factors exert similar immunomodulatory effects as the intact cells, but cells may be required for optimal type-1 immune responsiveness polarizing capacity of this probiotic strain. PMID:26961406

  7. Lactobacillus rhamnosus GG improves glucose tolerance through alleviating ER stress and suppressing macrophage activation in db/db mice.

    PubMed

    Park, Kun-Young; Kim, Bobae; Hyun, Chang-Kee

    2015-05-01

    Although recent studies have reported that Lactobacillus rhamnosus GG (LGG), the most extensively studied probiotic strain, exerts an anti-hyperglycemic effect on several rodent models, the underlying mechanism remains unclear. In this study, twenty male C57BL/KsJ-db/db (db/db) mice were divided into 2 groups, LGG-treated and control group, which received a daily dose of LGG (1 × 10(8) CFU per mouse) and PBS orally for 4 weeks, respectively. We observed that glucose tolerance was significantly improved in LGG-treated db/db mice. Insulin-stimulated Akt phosphorylation and GLUT4 translocation were higher in skeletal muscle of LGG-treated mice relative to their controls. It was also observed that LGG treatment caused significant reductions in endoplasmic reticulum (ER) stress in skeletal muscle and M1-like macrophage activation in white adipose tissues. Our results indicate that the anti-diabetic effect of LGG in db/db mice is associated with alleviated ER stress and suppressed macrophage activation, resulting in enhanced insulin sensitivity. These findings suggest a therapeutic potential of probiotics for prevention and treatment of type 2 diabetes. PMID:26060355

  8. Inhibition of Streptococcus pneumoniae adherence to human epithelial cells in vitro by the probiotic Lactobacillus rhamnosus GG

    PubMed Central

    2013-01-01

    Background Colonization of the nasopharynx by Streptococcus pneumoniae is considered a prerequisite for pneumococcal infections such as pneumonia and otitis media. Probiotic bacteria can influence disease outcomes through various mechanisms, including inhibition of pathogen colonization. Here, we examine the effect of the probiotic Lactobacillus rhamnosus GG (LGG) on S. pneumoniae colonization of human epithelial cells using an in vitro model. We investigated the effects of LGG administered before, at the same time as, or after the addition of S. pneumoniae on the adherence of four pneumococcal isolates. Results LGG significantly inhibited the adherence of all the pneumococcal isolates tested. The magnitude of inhibition varied with LGG dose, time of administration, and the pneumococcal isolate used. Inhibition was most effective when a higher dose of LGG was administered prior to establishment of pneumococcal colonization. Mechanistic studies showed that LGG binds to epithelial cells but does not affect pneumococcal growth or viability. Administration of LGG did not lead to any significant changes in host cytokine responses. Conclusions These findings demonstrate that LGG can inhibit pneumococcal colonization of human epithelial cells in vitro and suggest that probiotics could be used clinically to prevent the establishment of pneumococcal carriage. PMID:23561014

  9. Epithelial Adhesion Mediated by Pilin SpaC Is Required for Lactobacillus rhamnosus GG-Induced Cellular Responses

    PubMed Central

    Ardita, Courtney S.; Mercante, Jeffrey W.; Kwon, Young Man; Luo, Liping; Crawford, Madelyn E.; Powell, Domonica N.; Jones, Rheinallt M.

    2014-01-01

    Lactobacillus rhamnosus GG is a widely used probiotic, and the strain's salutary effects on the intestine have been extensively documented. We previously reported that strain GG can modulate inflammatory signaling, as well as epithelial migration and proliferation, by activating NADPH oxidase 1-catalyzed generation of reactive oxygen species (ROS). However, how strain GG induces these responses is unknown. Here, we report that strain GG's probiotic benefits are dependent on the bacterial-epithelial interaction mediated by the SpaC pilin subunit. By comparing strain GG to an isogenic mutant that lacks SpaC (strain GGΩspaC), we establish that SpaC is necessary for strain GG to adhere to gut mucosa, that SpaC contributes to strain GG-induced epithelial generation of ROS, and that SpaC plays a role in strain GG's capacity to stimulate extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling in enterocytes. In addition, we show that SpaC is required for strain GG-mediated stimulation of cell proliferation and protection against radiologically inflicted intestinal injury. The identification of a critical surface protein required for strain GG to mediate its probiotic influence advances our understanding of the molecular basis for the symbiotic relationship between some commensal bacteria of the gut lumen and enterocytes. Further insights into this relationship are critical for the development of novel approaches to treat intestinal diseases. PMID:24928883

  10. Influence of manufacturing processes on in vitro properties of the probiotic strain Lactobacillus rhamnosus Lcr35®.

    PubMed

    Nivoliez, Adrien; Camares, Olivier; Paquet-Gachinat, Marylise; Bornes, Stéphanie; Forestier, Christiane; Veisseire, Philippe

    2012-08-31

    Probiotics are administered as complex manufactured products and yet most studies on probiotic bacterial strains have been performed with native culture strains. Little is known about the influence of industrial processes on the properties of the microorganisms. In this study, we comparatively assessed the characteristics of the probiotic bacterial strain Lactobacillus rhamnosus (Lcr35(®)) together with four of its commercial formulations, including three intestinal formulas (BACILOR with Lcr Restituo(®) packet and capsule and FLOREA Lcr Lenio(®)) and one vaginal formula (GYNOPHILUS Lcr Regenerans(®)). Lcr35(®) grown from the intestinal formulas displayed increased resistance to acidic pH and bile stress, especially FLOREA (Lcr Lenio(®)), which showed a 4.5log higher number of viable bacteria compared to the results obtained with the control native Lcr35(®) strain. Adhesion to intestinal cells was significantly higher with Lcr Restituo(®) packet and Lcr Restituo(®) capsule vs Lcr35(®). Bacteria from the vaginal formulation GYNOPHILUS had increased ability to metabolize glycogen thereby increasing lactic acid production. In vitro growth inhibition of the pathogen Candida albicans was significantly higher with bacteria from the vaginal formulation (4.5 log difference) and in the presence of vaginal epithelial cells than with the native strain. Our results show that the manufacturing process influences strain properties and should therefore be adapted according to the strain and the therapeutic indication. PMID:22542933

  11. Immunomodulation of Lactobacillus rhamnosus GG (LGG)-derived soluble factors on antigen-presenting cells of healthy blood donors

    PubMed Central

    Fong, Fiona Long Yan; Kirjavainen, Pirkka V.; El-Nezami, Hani

    2016-01-01

    Lactobacillus rhamnosus GG (LGG) cells have been shown to promote type-1 immune responsiveness; however knowledge of immunomodulation of soluble factors secreted by LGG is limited. This is the first study to investigate whether LGG soluble factors promote a comparable immune responsiveness as the bacterial cells. Both treatments − LGG conditioned medium with (CM + LGG) or without (CM) LGG cells, in this study increased expression of several toll-like receptors (TLRs) in all studied cell types and antigen presentation-associated receptor HLA-DR in macrophages and “intermediate” monocytes; but decreased that of activation markers on monocytes and macrophages and production of IL-10, IL-12 and TNFα in macrophages. In co-culture with mononuclear cells, CM increased Th1-type cytokine profile but not as pronounced as CM + LGG. This study suggests that LGG soluble factors exert similar immunomodulatory effects as the intact cells, but cells may be required for optimal type-1 immune responsiveness polarizing capacity of this probiotic strain. PMID:26961406

  12. Protective effects of Lactobacillus rhamnosus GG against dyslipidemia in high-fat diet-induced obese mice.

    PubMed

    Kim, Bobae; Park, Kun-Young; Ji, Yosep; Park, Soyoung; Holzapfel, Wilhelm; Hyun, Chang-Kee

    2016-04-29

    Recent reports suggest that gut microbiota can be a major determinant of dyslipidemia and non-alcoholic fatty liver disease (NAFLD) and its modulation by treating probiotics is a valid strategy to exert a protective effect. In this study, high-fat diet (HFD)-fed mice were orally administrated with Lactobacillus rhamnosus GG (LGG) for 13 weeks. Significant reductions in the weights of the liver, mesenteric and subcutaneous adipose tissues were observed in LGG-treated HFD-fed mice compared to LGG-non-treated controls. The serum levels of triglyceride and cholesterol were also significantly reduced in LGG-treated mice. Gut microbial composition analysis showed that shifts in the diversity of dominant gut bacteria were caused by HFD and restored by LGG treatment. A remarkable decrease of hepatic fat content was also observed in LGG-treated mice, accompanied by downregulated expressions of lipogenic and pro-inflammatory genes in the liver. LGG-treated mice had lower expression levels of genes involved in cholesterol synthesis, but conversely, higher expression levels of cholesterol efflux-related genes compared to LGG-non-treated controls. The cholesterol-lowering effect of LGG was also found to be mediated by suppression of FXR and FGF15 signaling, resulting in the upregulation of hepatic CYP7A1. Our findings confirm a therapeutic potential of probiotics for ameliorating dyslipidemia and NAFLD. PMID:27018382

  13. Genetic and Biochemical Characterization of the Cell Wall Hydrolase Activity of the Major Secreted Protein of Lactobacillus rhamnosus GG

    PubMed Central

    Claes, Ingmar J. J.; Schoofs, Geert; Regulski, Krzysztof; Courtin, Pascal; Chapot-Chartier, Marie-Pierre; Rolain, Thomas; Hols, Pascal; von Ossowski, Ingemar; Reunanen, Justus; de Vos, Willem M.; Palva, Airi; Vanderleyden, Jos; De Keersmaecker, Sigrid C. J.; Lebeer, Sarah

    2012-01-01

    Lactobacillus rhamnosus GG (LGG) produces two major secreted proteins, designated here Msp1 (LGG_00324 or p75) and Msp2 (LGG_00031 or p40), which have been reported to promote the survival and growth of intestinal epithelial cells. Intriguingly, although each of these proteins shares homology with cell wall hydrolases, a physiological function that correlates with such an enzymatic activity remained to be substantiated in LGG. To investigate the bacterial function, we constructed knock-out mutants in the corresponding genes aiming to establish a genotype to phenotype relation. Microscopic examination of the msp1 mutant showed the presence of rather long and overly extended cell chains, which suggests that normal daughter cell separation is hampered. Subsequent observation of the LGG wild-type cells by immunofluorescence microscopy revealed that the Msp1 protein accumulates at the septum of exponential-phase cells. The cell wall hydrolyzing activity of the Msp1 protein was confirmed by zymogram analysis. Subsequent analysis by RP-HPLC and mass spectrometry of the digestion products of LGG peptidoglycan (PG) by Msp1 indicated that the Msp1 protein has D-glutamyl-L-lysyl endopeptidase activity. Immunofluorescence microscopy and the failure to construct a knock-out mutant suggest an indispensable role for Msp2 in priming septum formation in LGG. PMID:22359601

  14. Lactobacillus rhamnosus GG improves glucose tolerance through alleviating ER stress and suppressing macrophage activation in db/db mice

    PubMed Central

    Park, Kun-Young; Kim, Bobae; Hyun, Chang-Kee

    2015-01-01

    Although recent studies have reported that Lactobacillus rhamnosus GG (LGG), the most extensively studied probiotic strain, exerts an anti-hyperglycemic effect on several rodent models, the underlying mechanism remains unclear. In this study, twenty male C57BL/KsJ-db/db (db/db) mice were divided into 2 groups, LGG-treated and control group, which received a daily dose of LGG (1 × 108 CFU per mouse) and PBS orally for 4 weeks, respectively. We observed that glucose tolerance was significantly improved in LGG-treated db/db mice. Insulin-stimulated Akt phosphorylation and GLUT4 translocation were higher in skeletal muscle of LGG-treated mice relative to their controls. It was also observed that LGG treatment caused significant reductions in endoplasmic reticulum (ER) stress in skeletal muscle and M1-like macrophage activation in white adipose tissues. Our results indicate that the anti-diabetic effect of LGG in db/db mice is associated with alleviated ER stress and suppressed macrophage activation, resulting in enhanced insulin sensitivity. These findings suggest a therapeutic potential of probiotics for prevention and treatment of type 2 diabetes. PMID:26060355

  15. Saccharomyces cerevisiae EC-1118 enhances the survivability of probiotic Lactobacillus rhamnosus HN001 in an acidic environment.

    PubMed

    Lim, Phebe Lixuan; Toh, Mingzhan; Liu, Shao Quan

    2015-08-01

    The present study attempted to partially characterize and elucidate the viability-enhancing effect of a yeast strain Saccharomyces cerevisiae EC-1118 on a probiotic strain Lactobacillus rhamnosus HN001 under acidic conditions using a model system (non-growing cells). The yeast was found to significantly enhance (P < 0.05) the viability of the probiotic strain under acidic conditions (pH 2.5 to 4.0) by 2 to 4 log cycles, and the viability-enhancing effects were observed to be influenced by pH, and probiotic and yeast concentrations. Microscopic observation and co-aggregation assay revealed that the viability-enhancing effect of the yeast could be attributed to direct cell-cell contact co-aggregation mediated by yeast cell surface and/or cell wall components or metabolites. Furthermore, non-viable yeast cells killed by thermal means were observed to enhance the viability of the probiotic strain as well, suggesting that the surface and/or cell wall component(s) of the yeast contributing to co-aggregation was heat-stable. Cell-free yeast supernatant was also found to enhance the viability of the probiotic strain, indicating the presence of protective yeast metabolite(s) in the supernatant. These findings laid the foundation for further understanding of the mechanism(s) involved and for developing novel microbial starter cultures possibly without the use of live yeast for ambient-stable high-moisture probiotic foods. PMID:25846337

  16. Lactobacillus rhamnosus GG treatment potentiates intestinal hypoxia-inducible factor, promotes intestinal integrity and ameliorates alcohol-induced liver injury.

    PubMed

    Wang, Yuhua; Kirpich, Irina; Liu, Yanlong; Ma, Zhenhua; Barve, Shirish; McClain, Craig J; Feng, Wenke

    2011-12-01

    Gut-derived endotoxin is a critical factor in the development and progression of alcoholic liver disease (ALD). Probiotics can treat alcohol-induced liver injury associated with gut leakiness and endotoxemia in animal models, as well as in human ALD; however, the mechanism or mechanisms of their beneficial action are not well defined. We hypothesized that alcohol impairs the adaptive response-induced hypoxia-inducible factor (HIF) and that probiotic supplementation could attenuate this impairment, restoring barrier function in a mouse model of ALD by increasing HIF-responsive proteins (eg, intestinal trefoil factor) and reversing established ALD. C57BJ/6N mice were fed the Lieber DeCarli diet containing 5% alcohol for 8 weeks. Animals received Lactobacillus rhamnosus GG (LGG) supplementation in the last 2 weeks. LGG supplementation significantly reduced alcohol-induced endotoxemia and hepatic steatosis and improved liver function. LGG restored alcohol-induced reduction of HIF-2α and intestinal trefoil factor levels. In vitro studies using the Caco-2 cell culture model showed that the addition of LGG supernatant prevented alcohol-induced epithelial monolayer barrier dysfunction. Furthermore, gene silencing of HIF-1α/2α abolished the LGG effects, indicating that the protective effect of LGG is HIF-dependent. The present study provides a mechanistic insight for utilization of probiotics for the treatment of ALD, and suggests a critical role for intestinal hypoxia and decreased trefoil factor in the development of ALD. PMID:22093263

  17. The effects of Lactobacillus acidophilus as feed supplement on skin mucosal immune parameters, intestinal microbiota, stress resistance and growth performance of black swordtail (Xiphophorus helleri).

    PubMed

    Hoseinifar, Seyed Hossein; Roosta, Zahra; Hajimoradloo, Abdolmajid; Vakili, Farzaneh

    2015-02-01

    The present study evaluates the effects of different levels of dietary Lactobacillus acidophilus as feed supplement on intestinal microbiota, skin mucus immune parameters and salinity stress resistance as well as growth performance of black swordtail (Xiphophorus helleri). One-thousand and eight hundred healthy black swordtail larvae (0.03 ± 0.001 g) were randomly distributed in 12 tanks (100 L) at a density of 150 fish per aquaria and fed different levels of dietary L. acidophilus (0, 1.5 × 10(8), 3 × 10(8) and 6 × 10(8) CFU g(-1)) for 10 weeks. At the end of trial, there were significant differences among antibacterial activity of skin mucus in probiotic fed fish and control group (P < 0.05). Furthermore, the skin mucus protein level and alkaline phosphatase activity in control group were significantly lower than those of L. acidophilus fed fish (P < 0.05). Microbiological assessments revealed that feeding with probiotic supplemented diet remarkably increased total autochthonous bacteria and autochthonous lactic acid bacteria levels (P < 0.05). The results showed that dietary administration of L. acidophilus significantly elevated black swordtail resistance against salinity stress (i.e survival %) (P < 0.05). Also, dietary administration of different levels of L. acidophilus improved weight gain, SGR, FCR compared to fish fed unsupplemented diet (P < 0.05). These results demonstrate beneficial effects of dietary L. acidophilus on mucosal immune parameters, intestinal microbiota, stress resistance and growth parameters of black swordtail and the appropriate inclusion is 6 × 10(8) CFU g(-1). PMID:25514375

  18. Effect of Aqueous and Alcoholic Licorice (Glycyrrhiza Glabra) Root Extract Against Streptococcus Mutans and Lactobacillus Acidophilus in Comparison to Chlorhexidine: An In Vitro Study

    PubMed Central

    Ajagannanavar, Sunil Lingaraj; Battur, Hemant; Shamarao, Supreetha; Sivakumar, Vivek; Patil, Pavan Uday; Shanavas, P

    2014-01-01

    Background: Glycyrrhiza (licorice) an herb, which has medicinal value and was used in ancient times as a remedy for a great diversity of ailments and sweetener. Roots of Glycyrrhiza contain a high concentration of saponin and glycyrrhizin, which are supposed to be sweetening agents. The aim of the study was to compare the efficacy of aqueous and alcoholic licorice root extract against Streptococcus mutans and Lactobacillus acidophilus in comparison to chlorhexidine (CHX). Materials and Methods: In the first part of the study, various concentrations of aqueous and ethanolic licorice extract were prepared in the laboratory of Pharmacy College. It was then subjected to microbiological assay to determine its zone of inhibition using agar disk diffusion test and minimum inhibitory concentration (MIC) using serial broth dilution method against S. mutans and L. acidophilus. CHX was used as a positive control. Results: MIC of aqueous and ethnolic licorice root extract against S. mutans and L. acidophilus were 25% and 12.5%, respectively. Mean zone of inhibition of the aqueous and alcoholic licorice extracts against S. mutans at 48 h were 22.8 mm and 26.7 mm, respectively. Mean zone of inhibition of the aqueous and alcoholic licorice extracts against L. acidophilus at 48 h were 14.4 mm and 15.1 mm, respectively. Mean zone of inhibition of the CHX against S. mutans and L. acidophilus at 48 h was 20.5 and 13.2, respectively. Conclusion: The inhibitory effect shown by alcoholic licorice root extract against S. mutans and L. acidophilus was superior when compared with that of aqueous form and CHX. PMID:25214729

  19. Effect of exopolysaccharides on the hydrolysis of beta-lactoglobulin by Lactobacillus acidophilus CRL 636 in an in vitro gastric/pancreatic system.

    PubMed

    Pescuma, Micaela; Hébert, Elvira María; Dalgalarrondo, Michèle; Haertlé, Thomas; Mozzi, Fernanda; Chobert, Jean-Marc; Font de Valdez, Graciela

    2009-06-24

    An analysis of the peptides generated by hydrolysis of BLG by nonproliferating cells of the strain Lactobacillus acidophilus CRL 636 was carried out. The effect of polysaccharides (pectin, and two EPS synthesized by two Streptococcus thermophilus strains, EPS1190 and EPS804) on BLG digestibility using an in vitro gastric/pancreatic system was analyzed. Polysaccharides are commonly used in the dairy industry to improve food texture; these hydrocolloids may interact with proteins, affecting their digestibility. Nonproliferating cells of Lb. acidophilus CRL 636 were able to hydrolyze 52% of BLG. Twenty-six resulting peptides with molecular masses in the range 544-4119 Da were identified by LC-MS/MS. These peptides resulted mostly from the hydrolysis of the more accessible N-terminal part of BLG. Degradation of BLG by pepsin was poor (8%). When BLG was previously hydrolyzed by Lb. acidophilus CRL 636, peptic hydrolysis was of 54.8%, while when pectin and EPS1190 were added, hydrolysis was higher (58.2 and 57.2%, respectively). Peptides crossing 8 kDa dialysis membranes after trypsin/chymotrypsin hydrolysis were analyzed by HPSEC. The produced peptides were smaller when BLG was hydrolyzed previously by the Lb. acidophilus strain. Moreover, in the presence of pectin, the amount of the larger peptide (3.5 kDa) observed in the size exclusion chromatograms was considerably decreased. Our studies showed that prehydrolysis of BLG by Lb. acidophilus CRL 636 had a positive influence on BLG digestibility and that polysaccharides may change the peptide profile yielded by trypsin/chymotrypsin hydrolysis, releasing smaller size peptides, which are known to be less immune-reactive. Moreover, Lb. acidophilus CRL 636 was able to hydrolyze the main epitopes (41-60, 102-124, and 149-162) of BLG, reducing its allergenic content. PMID:19469473

  20. Differentiation of Lactobacillus Species by Molecular Typing

    PubMed Central

    Zhong, Wei; Millsap, Kevin; Bialkowska-Hobrzanska, Hanna; Reid, Gregor

    1998-01-01

    A total of 64 type, reference, clinical, health food, and stock isolates of microaerophilic Lactobacillus species were examined by restriction fragment length polymorphisms. Of particular interest were members of six of the eight species most commonly recovered from the vaginas of healthy premenopausal women, namely, Lactobacillus jensenii, L. casei, L. rhamnosus, L. acidophilus, L. plantarum, and L. fermentum. Six main groupings were identified on the basis of ribotyping. This technique was able to classify fresh isolates to the species level. In the case of the ribotype A grouping for L. rhamnosus, differences between strains were evident by chromosome typing (chromotyping). Many isolates did not possess plasmids. Six L. rhamnosus strains isolated from four different health food products appeared to be identical to L. rhamnosus ATCC 21052. The molecular typing system is useful for identifying and differentiating Lactobacillus isolates. Studies of strains of potential importance to the urogenital flora should include molecular characterization as a means of comparing genetic traits with those of strains whose characteristics associated with colonization and antagonism against pathogens have been defined. PMID:9647809

  1. A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus

    PubMed Central

    Hirata, Akiko; Kishino, Shigenobu; Park, Si-Bum; Takeuchi, Michiki; Kitamura, Nahoko; Ogawa, Jun

    2015-01-01

    Hydroxy FAs, one of the gut microbial metabolites of PUFAs, have attracted much attention because of their various bioactivities. The purpose of this study was to identify lactic acid bacteria with the ability to convert linoleic acid (LA) to hydroxy FAs. A screening process revealed that a gut bacterium, Lactobacillus acidophilus NTV001, converts LA mainly into 13-hydroxy-cis-9-octadecenoic acid and resulted in the identification of the hydratase responsible, fatty acid hydratase 1 (FA-HY1). Recombinant FA-HY1 was purified, and its enzymatic characteristics were investigated. FA-HY1 could convert not only C18 PUFAs but also C20 and C22 PUFAs. C18 PUFAs with a cis carbon-carbon double bond at the Δ12 position were converted into the corresponding 13-hydroxy FAs. Arachidonic acid and DHA were converted into the corresponding 15-hydroxy FA and 14-hydroxy FA, respectively. To the best of our knowledge, this is the first report of a bacterial FA hydratase that can convert C20 and C22 PUFAs into the corresponding hydroxy FAs. These novel hydroxy FAs produced by using FA-HY1 should contribute to elucidating the bioactivities of hydroxy FAs. PMID:25966711

  2. Yogurt containing bioactive molecules produced by Lactobacillus acidophilus La-5 exerts a protective effect against enterohemorrhagic Escherichia coli in mice.

    PubMed

    Zeinhom, Mohamed; Tellez, Angela M; Delcenserie, Veronique; El-Kholy, A M; El-Shinawy, S H; Griffiths, Mansel W

    2012-10-01

    An active fraction extracted from Lactobacillus acidophilus La5 cell-free spent medium (LAla-5AF) was incorporated in a dairy matrix and tested to assess its antivirulent effect against enterohemorrhagic Escherichia coli (EHEC). Mice in experimental groups were fed for 4 days with yogurt supplemented with LAla-5AF. On the fifth day, mice were challenged with a single dose (10(7) CFU per mouse) of E. coli O157:H7. The clinical manifestations of the infection were significantly less severe in mice fed the yogurt supplemented with LAla-5AF. EHEC attachment and colonization was attenuated by LAla-5AF. Tumor necrosis factor alpha production was down-regulated, which might indicate a protective effect in the kidney during EHEC infection. To investigate the mechanisms associated with the in vivo effects observed, LAla-5AF was tested by reverse transcription real-time PCR to confirm its effects on the expression of several virulence genes of EHEC O157. The results showed that these fractions were able to down-regulate several virulence genes of EHEC, including stxB2, qseA, luxS, tir, ler, eaeA, and hlyB. PMID:23043828

  3. The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo.

    PubMed

    Bernet-Camard, M F; Liévin, V; Brassart, D; Neeser, J R; Servin, A L; Hudault, S

    1997-07-01

    The adhering human Lactobacillus acidophilus strain LA1 inhibits the cell association and cell invasion of enteropathogens in cultured human intestinal Caco-2 cells (M. F. Bernet, D. Brassard, J. R. Neeser, and A. L. Servin, Gut 35:483-489, 1994). Here, we demonstrate that strain LA1 developed its antibacterial activity in conventional or germ-free mouse models orally infected by Salmonella typhimurium. We present evidence that the spent culture supernatant of strain LA1 (LA1-SCS) contained antibacterial components active against S. typhimurium infecting the cultured human intestinal Caco-2 cells. The LA1-SCS antibacterial activity was observed in vitro against a wide range of gram-negative and gram-positive pathogens, such as Staphylococcus aureus, Listeria monocytogenes, S. typhimurium, Shigella flexneri, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterobacter cloacae. By contrast, no activity was observed against species of the normal gut flora, such as lactobacilli and bifidobacteria. The LA1-SCS antibacterial activity was insensitive to proteases and independent of lactic acid production. PMID:9212421

  4. The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo.

    PubMed Central

    Bernet-Camard, M F; Liévin, V; Brassart, D; Neeser, J R; Servin, A L; Hudault, S

    1997-01-01

    The adhering human Lactobacillus acidophilus strain LA1 inhibits the cell association and cell invasion of enteropathogens in cultured human intestinal Caco-2 cells (M. F. Bernet, D. Brassard, J. R. Neeser, and A. L. Servin, Gut 35:483-489, 1994). Here, we demonstrate that strain LA1 developed its antibacterial activity in conventional or germ-free mouse models orally infected by Salmonella typhimurium. We present evidence that the spent culture supernatant of strain LA1 (LA1-SCS) contained antibacterial components active against S. typhimurium infecting the cultured human intestinal Caco-2 cells. The LA1-SCS antibacterial activity was observed in vitro against a wide range of gram-negative and gram-positive pathogens, such as Staphylococcus aureus, Listeria monocytogenes, S. typhimurium, Shigella flexneri, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterobacter cloacae. By contrast, no activity was observed against species of the normal gut flora, such as lactobacilli and bifidobacteria. The LA1-SCS antibacterial activity was insensitive to proteases and independent of lactic acid production. PMID:9212421

  5. Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus.

    PubMed

    Pfeiler, Erika A; Azcarate-Peril, M Andrea; Klaenhammer, Todd R

    2007-07-01

    Lactobacillus acidophilus NCFM is an industrially important strain used extensively as a probiotic culture. Tolerance of the presence of bile is an attribute important to microbial survival in the intestinal tract. A whole-genome microarray was employed to examine the effects of bile on the global transcriptional profile of this strain, with the intention of elucidating genes contributing to bile tolerance. Genes involved in carbohydrate metabolism were generally induced, while genes involved in other aspects of cellular growth were mostly repressed. A 7-kb eight-gene operon encoding a two-component regulatory system (2CRS), a transporter, an oxidoreductase, and four hypothetical proteins was significantly upregulated in the presence of bile. Deletion mutations were constructed in six genes of the operon. Transcriptional analysis of the 2CRS mutants showed that mutation of the histidine protein kinase (HPK) had no effect on the induction of the operon, whereas the mutated response regulator (RR) showed enhanced induction when the cells were exposed to bile. These results indicate that the 2CRS plays a role in bile tolerance and that the operon it resides in is negatively controlled by the RR. Mutations in the transporter, the HPK, the RR, and a hypothetical protein each resulted in loss of tolerance of bile. Mutations in genes encoding another hypothetical protein and a putative oxidoreductase resulted in significant increases in bile tolerance. This functional analysis showed that the operon encoded proteins involved in both bile tolerance and bile sensitivity. PMID:17449631

  6. A prebiotic mixture improved Lactobacillus acidophilus and Bifidobacterium animalis gastrointestinal in vitro resistance in petit-suisse.

    PubMed

    Padilha, Marina; Villarreal Morales, Martha Lissete; Vieira, Antonio Diogo Silva; Costa, Mayra Garcia Maia; Saad, Susana Marta Isay

    2016-05-18

    The survival of two probiotic strains -Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 - incorporated into probiotic (PC) and into synbiotic (SC, with inulin + fructooligosaccharides, respectively, at 7.5 and at 2.5 g per 100 g) petit-suisse cheese was investigated in the beginning (day 1) and at the end (28 days) of storage at 4 °C when the food products were subjected to in vitro gastrointestinal simulated assays. Species-specific quantitative real time PCR (qPCR) combined with propidium monoazide (PMA-qPCR) was employed to quantify the strains. Initial La-5 and Bb-12 populations were always above 7 log CFU g(-1). The presence of the prebiotic ingredients in SC improved the Bb-12 and La-5 resistance after the 6 h assay, with higher populations in all the in vitro stages and throughout the storage period (p < 0.05), leading to equal or superior survival rates (SR) in SC of both probiotic strains, in the beginning as well as at the end of storage. The mean La-5 SR were 58% (PC) and 67% (SC), whereas the mean Bb-12 SR were 60% (PC) and 79% (SC). Our findings suggest that the addition of a prebiotic mixture in petit-suisse cheese was advantageous, since it improved both the Bb-12 and La-5 viability and tolerance under in vitro gastrointestinal simulated conditions, both in the fresh product and in the product refrigerated for 28 days. PMID:27112363

  7. Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic.

    PubMed

    Celebioglu, Hasan Ufuk; Ejby, Morten; Majumder, Avishek; Købler, Carsten; Goh, Yong Jun; Thorsen, Kristian; Schmidt, Bjarne; O'Flaherty, Sarah; Abou Hachem, Maher; Lahtinen, Sampo J; Jacobsen, Susanne; Klaenhammer, Todd R; Brix, Susanne; Mølhave, Kristian; Svensson, Birte

    2016-05-01

    Whole cell and surface proteomes were analyzed together with adhesive properties of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) grown on the emerging prebiotic raffinose, exemplifying a synbiotic. Adhesion of NCFM to mucin and intestinal HT-29 cells increased three-fold after culture with raffinose versus glucose, as also visualized by scanning electron microscopy. Comparative proteomics using 2D-DIGE showed 43 unique proteins to change in relative abundance in whole cell lysates from NCFM grown on raffinose compared to glucose. Furthermore, 14 unique proteins in 18 spots of the surface subproteome underwent changes identified by differential 2DE, including elongation factor G, thermostable pullulanase, and phosphate starvation inducible stress-related protein increasing in a range of +2.1 - +4.7 fold. By contrast five known moonlighting proteins decreased in relative abundance by up to -2.4 fold. Enzymes involved in raffinose catabolism were elevated in the whole cell proteome; α-galactosidase (+13.9 fold); sucrose phosphorylase (+5.4 fold) together with metabolic enzymes from the Leloir pathway for galactose utilization and the glycolysis; β-galactosidase (+5.7 fold); galactose (+2.9/+3.1 fold) and fructose (+2.8 fold) kinases. The insights at the molecular and cellular levels contributed to the understanding of the interplay of a synbiotic composed of NCFM and raffinose with the host. PMID:26959526

  8. Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB.

    PubMed

    Coconnier, M H; Lievin, V; Hemery, E; Servin, A L

    1998-11-01

    The purpose of the present study was to examine the activity of the human Lactobacillus acidophilus strain LB, which secretes an antibacterial substance(s) against Helicobacter pylori in vitro and in vivo. The spent culture supernatant (SCS) of the strain LB (LB-SCS) dramatically decreased the viability of H. pylori in vitro independent of pH and lactic acid levels. Adhesion of H. pylori to the cultured human mucosecreting HT29-MTX cells decreased in parallel with the viability of H. pylori. In conventional mice, oral treatment with the LB-SCS protected against infection with Helicobacter felis. Indeed, at both 8 and 49 days post-LB-SCS treatment (29 and 70 days postinfection), inhibition of stomach colonization by H. felis was observed, and no evidence of gastric histopathological lesions was found. LB-SCS treatment inhibits the H. pylori urease activity in vitro and in H. pylori that remained associated with the cultured human mucosecreting HT29-MTX cells. Moreover, a decrease in urease activity was detected in the stomach of the mice infected with H. felis and treated with LB-SCS. PMID:9797324

  9. Lactobacillus rhamnosus and its cell-free culture supernatant differentially modulate inflammatory biomarkers in Escherichia coli-challenged human dendritic cells.

    PubMed

    Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gomez-Llorente, Carolina; Romero, Fernando; Gil, Angel

    2014-05-28

    The intestinal immune system maintains a delicate balance between immunogenicity against invading pathogens and tolerance to the commensal microbiota and food antigens. Different strains of probiotics possess the ability to finely regulate the activation of dendritic cells (DC), polarising the subsequent activity of T-cells. Nevertheless, information about their underlying mechanisms of action is scarce. In the present study, we investigated the immunomodulatory effects of a potentially probiotic strain, Lactobacillus rhamnosus CNCM I-4036, and its cell-free culture supernatant (CFS) on human DC challenged with Escherichia coli. The results showed that the levels of pro-inflammatory cytokines such as IL-1β, IL-6, IL-8 and IL-12p70 were higher in the cells treated with live L. rhamnosus than in the cells treated with the CFS. In the presence of E. coli, the supernatant was more effective than the probiotic bacteria in reducing the secretion of pro-inflammatory cytokines. In addition, live L. rhamnosus potently induced the production of transforming growth factor (TGF)-β1 and TGF-β2, whereas the CFS increased the secretion of TGF-β1. However, in the presence of E. coli, both treatments restored the levels of TGF-β. The probiotic strain L. rhamnosus CNCM I-4036 and its CFS were able to activate the Toll-like receptor signalling pathway, enhancing innate immunity. The two treatments induced gene transcription of TLR-9. Live L. rhamnosus activated the expression of TLR-2 and TLR-4 genes, whereas the CFS increased the expression of TLR-1 and TLR-5 genes. In response to the stimulation with probiotic/CFS and E. coli, the expression of each gene tested was notably increased, with the exception of TNF-α and NFKBIA. In conclusion, the CFS exhibited an extraordinary ability to suppress the production of pro-inflammatory cytokines by DC, and may be used as an effective and safer alternative to live bacteria. PMID:24480321

  10. The potential probiotic Lactobacillus rhamnosus CTC1679 survives the passage through the gastrointestinal tract and its use as starter culture results in safe nutritionally enhanced fermented sausages.

    PubMed

    Rubio, Raquel; Martín, Belén; Aymerich, Teresa; Garriga, Margarita

    2014-09-01

    The human-derived potential probiotic strain Lactobacillus rhamnosus CTC1679 was used as a starter culture in reduced fat and sodium low-acid fermented sausages (fuets) to assess its ability to survive through the gastrointestinal tract (GIT) in a human intervention study consisting of 5 healthy volunteers who consumed 25 g fuet a day for 21 days. Faecal samples were analysed during and after consumption. L. rhamnosus CTC1679 produced a transient colonisation of the human GIT and persisted during the ingestion period of fuet containing L. rhamnosus CTC1679 at levels ca. 8log CFU/g. After 3 days of non-consumption, the strain was still recovered in the faeces of all the volunteers. To evaluate the safety of the nutritionally enhanced manufactured fuets, a challenge test was designed in a separately manufactured batch. L. rhamnosus CTC1679 was able to grow, survive and dominate (levels ca. 10(8) CFU/g) the endogenous lactic acid bacteria (LAB), prevented the growth of Listeria monocytogenes throughout the whole ripening process of the fuets and eliminated Salmonella. After 35 days of storage at 4 °C, L. monocytogenes was not detected, achieving absence in 25 g of the product. The application of high hydrostatic pressure (HHP) treatment (600 MPa for 5 min) at the end of ripening (day 14) produced an immediate reduction of L. monocytogenes to levels <1log CFU/g. After 35 days of storage at 4 °C the pathogen was not detected. Thus, the strain L. rhamnosus CTC1679 is a suitable starter culture for producing safe potentially probiotic fermented sausages. PMID:24998181

  11. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion☆

    PubMed Central

    Yonekura, Lina; Sun, Han; Soukoulis, Christos; Fisk, Ian

    2014-01-01

    We evaluated sodium alginate, chitosan and hydroxypropyl methylcellulose (HPMC) as co-encapsulants for spray dried Lactobacillus acidophilus NCIMB 701748 by assessing their impact on cell viability and physicochemical properties of the dried powders, viability over 35 days of storage at 25 °C and survival after simulated digestion. Fibres were added to a control carrier medium containing whey protein concentrate, d-glucose and maltodextrin. Sodium alginate and HPMC did not affect cell viability but chitosan reduced viable counts in spray dried powders, as compared to the control. Although chitosan caused large losses of viability during spray-drying, these losses were counteracted by the excellent storage stability compared to control, sodium alginate and HPMC, and the overall effect became positive after the 35-day storage. Chitosan also improved survival rates in simulated GI conditions, however no single fibre could improve L. acidophilus NCIMB 701748 viability in all steps from production through storage and digestion. PMID:24748900

  12. Construction and Immunological Evaluation of Dual Cell Surface Display of HIV-1 Gag and Salmonella enterica Serovar Typhimurium FliC in Lactobacillus acidophilus for Vaccine Delivery

    PubMed Central

    Kajikawa, Akinobu; Zhang, Lin; Long, Julie; Nordone, Shila; Stoeker, Laura; LaVoy, Alora; Bumgardner, Sara; Klaenhammer, Todd

    2012-01-01

    Oral vaccines that elicit a mucosal immune response may be effective against human immunodeficiency virus type 1 (HIV-1) because its transmission occurs mainly at the mucosa. The aim of this study was to construct recombinant Lactobacillus for oral delivery of oral vaccines against HIV-1 and to evaluate their immunogenicity. A recombinant Lactobacillus acidophilus strain expressing the HIV-1 Gag on the bacterial cell surface was established by fusion with the signal peptide and anchor motif of a mucus binding protein (Mub) from L. acidophilus with or without coexpression of Salmonella enterica serovar Typhimurium flagellin (FliC) fused to a different Mub signal peptide and anchor. Using HEK293 cells engineered to express Toll-like receptor 5 (TLR5), the biological activity of FliC on the bacterial cell surfaces was determined. The surface-exposed flagellin retained its TLR5-stimulating activity, suggesting that the recombinant strain with Gag and FliC dual display might provide a different immunopotency than the strain expressing only Gag. The immunological properties of the recombinant strains were assessed by coculture with human myeloid dendritic cells (DCs). The heterologous antigens on the cell surface affected maturation and cytokine responses of DCs. Acquired immune responses were also investigated by intragastric immunization of mice. The enzyme-linked immunosorbent spot assay showed induction of gamma interferon-producing cells at local mucosa after immunization of mice with the Gag-producing strain. Meanwhile, the immunization with L. acidophilus displaying both Gag and FliC resulted in an increase of Gag-specific IgA-secreting cells. These results suggested that the Gag-displaying L. acidophilus elicited specific immune responses and the coexistence of FliC conferred an adjuvant effect on local IgA production. PMID:22761297

  13. Differential Effects of Escherichia coli Nissle and Lactobacillus rhamnosus Strain GG on Human Rotavirus Binding, Infection, and B Cell Immunity.

    PubMed

    Kandasamy, Sukumar; Vlasova, Anastasia N; Fischer, David; Kumar, Anand; Chattha, Kuldeep S; Rauf, Abdul; Shao, Lulu; Langel, Stephanie N; Rajashekara, Gireesh; Saif, Linda J

    2016-02-15

    Rotavirus (RV) causes significant morbidity and mortality in children worldwide. The intestinal microbiota plays an important role in modulating host-pathogen interactions, but little is known about the impact of commonly used probiotics on human RV (HRV) infection. In this study, we compared the immunomodulatory effects of Gram-positive (Lactobacillus rhamnosus strain GG [LGG]) and Gram-negative (Escherichia coli Nissle [EcN]) probiotic bacteria on virulent human rotavirus (VirHRV) infection and immunity using neonatal gnotobiotic piglets. Gnotobiotic piglets were colonized with EcN, LGG, or EcN+LGG or uncolonized and challenged with VirHRV. Mean peak virus shedding titers and mean cumulative fecal scores were significantly lower in EcN-colonized compared with LGG-colonized or uncolonized piglets. Reduced viral shedding titers were correlated with significantly reduced small intestinal HRV IgA Ab responses in EcN-colonized compared with uncolonized piglets post-VirHRV challenge. However the total IgA levels post-VirHRV challenge in the intestine and pre-VirHRV challenge in serum were significantly higher in EcN-colonized than in LGG-colonized piglets. In vitro treatment of mononuclear cells with these probiotics demonstrated that EcN, but not LGG, induced IL-6, IL-10, and IgA, with the latter partially dependent on IL-10. However, addition of exogenous recombinant porcine IL-10 + IL-6 to mononuclear cells cocultured with LGG significantly enhanced IgA responses. The greater effectiveness of EcN in moderating HRV infection may also be explained by the binding of EcN but not LGG to Wa HRV particles or HRV 2/4/6 virus-like particles but not 2/6 virus-like particles. Results suggest that EcN and LGG differentially modulate RV infection and B cell responses. PMID:26800875

  14. Mucosal Adhesion Properties of the Probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED Pilin Subunits▿

    PubMed Central

    von Ossowski, Ingemar; Reunanen, Justus; Satokari, Reetta; Vesterlund, Satu; Kankainen, Matti; Huhtinen, Heikki; Tynkkynen, Soile; Salminen, Seppo; de Vos, Willem M.; Palva, Airi

    2010-01-01

    Lactobacillus rhamnosus GG is a well-established Gram-positive probiotic strain, whose health-benefiting properties are dependent in part on prolonged residence in the gastrointestinal tract and are likely dictated by adherence to the intestinal mucosa. Previously, we identified two pilus gene clusters (spaCBA and spaFED) in the genome of this probiotic bacterium, each of which contained the predicted genes for three pilin subunits and a single sortase. We also confirmed the presence of SpaCBA pili on the cell surface and attributed an intestinal mucus-binding capacity to one of the pilin subunits (SpaC). Here, we report cloning of the remaining pilin genes (spaA, spaB, spaD, spaE, and spaF) in Escherichia coli, production and purification of the recombinant proteins, and assessment of the adherence of these proteins to human intestinal mucus. Our findings indicate that the SpaB and SpaF pilin subunits also exhibit substantial binding to mucus, which can be inhibited competitively in a dose-related manner. Moreover, the binding between the SpaB pilin subunit and the mucosal substrate appears to operate through electrostatic contacts and is not related to a recognized mucus-binding domain. We conclude from these results that it is conceivable that two pilin subunits (SpaB and SpaC) in the SpaCBA pilus fiber play a role in binding to intestinal mucus, but for the uncharacterized and putative SpaFED pilus fiber only a single pilin subunit (SpaF) is potentially responsible for adhesion to mucus. PMID:20118368

  15. Hypoallergenic formula with Lactobacillus rhamnosus GG for babies with colic: A pilot study of recruitment, retention, and fecal biomarkers

    PubMed Central

    Fatheree, Nicole Y; Liu, Yuying; Ferris, Michael; Van Arsdall, Melissa; McMurtry, Valarie; Zozaya, Marcela; Cai, Chunyan; Rahbar, Mohammad H; Hessabi, Manouchehr; Vu, Ta; Wong, Christine; Min, Juleen; Tran, Dat Q; Navarro, Fernando; Gleason, Wallace; Gonzalez, Sara; Rhoads, J Marc

    2016-01-01

    AIM: To investigate recruitment, retention, and estimates for effects of formula supplementation with Lactobacillus rhamnosus GG (LGG) on inflammatory biomarkers and fecal microbial community in infants with colic. METHODS: A prospective, double-blind, placebo-controlled trial was conducted in otherwise healthy infants with colic. We screened 74 infants and randomized and analyzed results in 20 infants [9 receiving LGG (LGG+) and 11 not receiving LGG (LGG-)]. LGG was incorporated in the formula (Nutramigen®) (minimum of 3 × 107 CFU/d) in the LGG+ group. Fecal microbiota and inflammatory biomarkers, including fecal calprotectin (FC), plasma cytokines, circulating regulatory T cells (Tregs), and crying + fussing time were analyzed to determine optimal time points and effect sizes for a larger trial. RESULTS: Recruitment in this population was slow, with about 66% of eligible infants willing to enroll; subject retention was better (75%). These rates were influenced by parents’ reluctance to volunteer their infant for a clinical trial and by their tendency to change formulas. The maximal difference of crying + fussing time was observed at day 14, comparing the 2 groups, with a mean difference of -91 (95%CI: -76, 259) min (P = NS). FC showed no significant difference, but the optimal time to determine a potential effect was at day 90 [with a mean difference of 121 (95%CI: -48, 291) μg/g stool], observing a lower level of FC in the LGG+ group. The fecal microbial communities were chaotic, as determined by Shannon’s diversity index and not apparently influenced by the probiotic. No significant change was observed in plasma inflammatory cytokines or Tregs, comparing LGG+ to LGG- groups. CONCLUSION: Designing future colic trials involving a probiotic-supplemented formula for infants in the United States will require consideration for difficult enrollment. Infants with colic have major variations in feal microbiota and calprotectin, both of which improve with time

  16. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

    SciTech Connect

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T.; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A.; Gilbert, Jack A.; Nagler, Cathryn R.

    2015-09-22

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow’s milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. As a result, our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut.

  17. Antiproliferative effects on colon adenocarcinoma cells induced by co-administration of vitamin K1 and Lactobacillus rhamnosus GG.

    PubMed

    Orlando, Antonella; Linsalata, Michele; Russo, Francesco

    2016-06-01

    Vitamin K (VK), an essential nutrient associated with the clotting cascade, has also been demonstrated to have anticancer properties in various cancer cells including colon cancer cells. Also probiotics have gained interest as potential anticancer agents. Among them, Lactobacillus rhamnosus GG (L.GG) has been shown to inhibit cell proliferation and polyamine biosynthesis as well as to induce apoptosis in different human gastrointestinal cancer cells. Nevertheless, the exact mechanisms involved in these actions are not completely elucidated. Therefore, the aims of the present study were to evaluate in three differently graded human colon cancer cells (namely Caco-2, HT-29 and SW480) the effects of increasing VK1 concentrations, administered alone or in combination with viable L.GG, on the cell proliferation evaluated by MTT test, apoptosis investigated by Bax/Bcl-2 ratio and the percentage of the apoptotic cells, and the cell cycle evaluated by MUSE cell analyzer. Both VK1 and L.GG administered alone up to 72 h, caused inhibition of proliferation, induction of apoptosis and the cell cycle arrest in all the tested colon cancer cells. When VK1 and L.GG were co-administered, the addition of increasing VK1 concentrations potentiated the probiotic antiproliferative effect in a dose-dependent manner, being also related to the individual features of each cell line. The effect was more evident in Caco-2 and HT-29 cells compared to the less differentiated SW480. The enhanced antiproliferative efficacy due to co-administration of L.GG and VK1 could represent a suitable option in a functional food strategy for cancer growth inhibition and chemoprevention. PMID:27035094

  18. Modulation of Respiratory TLR3-Anti-Viral Response by Probiotic Microorganisms: Lessons Learned from Lactobacillus rhamnosus CRL1505

    PubMed Central

    Kitazawa, Haruki; Villena, Julio

    2014-01-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants and young children. Host immune response is implicated in both protective and immunopathological mechanisms during RSV infection. Activation of Toll-like receptor (TLR)-3 in innate immune cells by RSV can induce airway inflammation, protective immune response, and pulmonary immunopathology. A clear understanding of RSV–host interaction is important for the development of novel and effective therapeutic strategies. Several studies have centered on whether probiotic microorganisms with the capacity to stimulate the immune system (immunobiotics) might sufficiently stimulate the common mucosal immune system to improve defenses in the respiratory tract. In this regard, it was demonstrated that some orally administered immunobiotics do have the ability to stimulate respiratory immunity and increase resistance to viral infections. Moreover, during the last decade scientists have significantly advanced in the knowledge of the cellular and molecular mechanisms involved in the protective effect of immunobiotics in the respiratory tract. This review examines the most recent advances dealing with the use of immunobiotic bacteria to improve resistance against viral respiratory infections. More specifically, the article discuss the mechanisms involved in the capacity of the immunobiotic strain Lactobacillus rhamnosus CRL1505 to modulate the TLR3-mediated immune response in the respiratory tract and to increase the resistance to RSV infection. In addition, we review the role of interferon (IFN)-γ and interleukin (IL)-10 in the immunoregulatory effect of the CRL1505 strain that has been successfully used for reducing incidence and morbidity of viral airways infections in children. PMID:24860569

  19. An L-Fucose Operon in the Probiotic Lactobacillus rhamnosus GG Is Involved in Adaptation to Gastrointestinal Conditions.

    PubMed

    Becerra, Jimmy E; Yebra, María J; Monedero, Vicente

    2015-06-01

    L-Fucose is a sugar present in human secretions as part of human milk oligosaccharides, mucins, and other glycoconjugates in the intestinal epithelium. The genome of the probiotic Lactobacillus rhamnosus GG (LGG) carries a gene cluster encoding a putative L-fucose permease (fucP), L-fucose catabolic pathway (fucI, fucK, fucU, and fucA), and a transcriptional regulator (fucR). The metabolism of L-fucose in LGG results in 1,2-propanediol production, and their fucI and fucP mutants displayed a severe and mild growth defect on L-fucose, respectively. Transcriptional analysis revealed that the fuc genes are induced by L-fucose and subject to a strong carbon catabolite repression effect. This induction was triggered by FucR, which acted as a transcriptional activator necessary for growth on L-fucose. LGG utilized fucosyl-α1,3-N-acetylglucosamine and contrarily to other lactobacilli, the presence of fuc genes allowed this strain to use the L-fucose moiety. In fucI and fucR mutants, but not in fucP mutant, L-fucose was not metabolized and it was excreted to the medium during growth on fucosyl-α1,3-N-acetylglucosamine. The fuc genes were induced by this fucosyl-disaccharide in the wild type and the fucP mutant but not in a fucI mutant, showing that FucP does not participate in the regulation of fuc genes and that L-fucose metabolism is needed for FucR activation. The l-fucose operon characterized here constitutes a new example of the many factors found in LGG that allow this strain to adapt to the gastrointestinal conditions. PMID:25819967

  20. An l-Fucose Operon in the Probiotic Lactobacillus rhamnosus GG Is Involved in Adaptation to Gastrointestinal Conditions

    PubMed Central

    Becerra, Jimmy E.; Yebra, María J.

    2015-01-01

    l-Fucose is a sugar present in human secretions as part of human milk oligosaccharides, mucins, and other glycoconjugates in the intestinal epithelium. The genome of the probiotic Lactobacillus rhamnosus GG (LGG) carries a gene cluster encoding a putative l-fucose permease (fucP), l-fucose catabolic pathway (fucI, fucK, fucU, and fucA), and a transcriptional regulator (fucR). The metabolism of l-fucose in LGG results in 1,2-propanediol production, and their fucI and fucP mutants displayed a severe and mild growth defect on l-fucose, respectively. Transcriptional analysis revealed that the fuc genes are induced by l-fucose and subject to a strong carbon catabolite repression effect. This induction was triggered by FucR, which acted as a transcriptional activator necessary for growth on l-fucose. LGG utilized fucosyl-α1,3-N-acetylglucosamine and contrarily to other lactobacilli, the presence of fuc genes allowed this strain to use the l-fucose moiety. In fucI and fucR mutants, but not in fucP mutant, l-fucose was not metabolized and it was excreted to the medium during growth on fucosyl-α1,3-N-acetylglucosamine. The fuc genes were induced by this fucosyl-disaccharide in the wild type and the fucP mutant but not in a fucI mutant, showing that FucP does not participate in the regulation of fuc genes and that l-fucose metabolism is needed for FucR activation. The l-fucose operon characterized here constitutes a new example of the many factors found in LGG that allow this strain to adapt to the gastrointestinal conditions. PMID:25819967

  1. Feeding probiotic Lactobacillus rhamnosus (MTCC 5897) fermented milk to suckling mothers alleviates ovalbumin-induced allergic sensitisation in mice offspring.

    PubMed

    Saliganti, Vamshi; Kapila, Rajeev; Sharma, Rohit; Kapila, Suman

    2015-10-28

    The neonatal period is often polarised to T helper (Th2) response at the time of birth, predisposing offspring to allergic disorders. Passive immunity through the mother's milk is critical for immune system development of newborns. Probiotics have been proposed to harmonise Th1/Th2 imbalance in allergic conditions in adults. In the present study, the anti-allergic effects of feeding probiotic Lactobacillus rhamnosus-fermented milk (PFM) either to dams during the suckling period or to their offspring after weaning individually or else in successive periods against ovalbumin (OVA)-induced allergy in newborns was analysed. After allergen sensitisation, physical symptoms of allergy, gut immune response, humoral immune response and cell-mediated response through interleukins were detected. Consumption of PFM by mothers and offspring showed a reduction (P<0·01) in physical allergic symptoms in newborns with an increase (P<0·01) in the numbers of goblet and IgA+ cells in the small intestine. Similarly, considerable (P<0·001) decreases in OVA-specific antibodies (IgE, IgG, IgG1) and ratios of IgE/IgG2a and IgG1/IgG2a in the sera of newborn mice were recorded. A decrease in IL-4 and an increase in interferon-γ levels further confirmed the shift from Th2 to Th1 pathway in PFM-fed mice. It is logical to conclude that the timing of PFM intervention in alleviating allergic symptoms is critical, which was found to be most effective when mothers were fed during the suckling period. PMID:26330132

  2. Effects of Orally Administered Viable Lactobacillus rhamnosus GG and Propionibacterium freudenreichii subsp. shermanii JS on Mouse Lymphocyte Proliferation

    PubMed Central

    Kirjavainen, Pirkka V.; ElNezami, Hani S.; Salminen, Seppo J.; Ahokas, Jorma T.; Wright, Paul F. A.

    1999-01-01

    Immunomodulation by probiotics is a subject of growing interest, but the knowledge of dose response and time profile relationships is minimal. In this study we examined the effects of Lactobacillus rhamnosus GG (LGG) and Propionibacterium freudenreichii subsp. shermanii JS (PJS) on the proliferative activity of murine lymphocytes ex vivo. Dose dependency was assessed by treating animals perorally with a low or a high dose (i.e., 109 or 1012 viable bacteria/kg of body weight) for 7 days. The lower dose levels of each strain appeared to enhance T-cell proliferation at the optimal concanavalin A (ConA) concentration (by 69 to 84%) and B-cell proliferation at the optimal and supraoptimal concentrations of lipopolysaccharide (by 57 to 82%). B-cell proliferation was also enhanced by the high LGG dose (by 32 to 39%) but was accompanied by a marginal decrease in T-cell proliferation (by 8%) at the optimal ConA concentration. The time profiles of the immune responses were assessed after daily treatment with the higher dose for 3, 7, and 14 days. A significant decrease in basal lymphoproliferation (by 32 to 42%) was observed with PJS treatment after the 3- and 7-day periods; however, this activity returned to control levels after 14 days of treatment, which also resulted in significantly enhanced T-cell proliferation at optimal and supraoptimal ConA concentrations (by 24 to 80%). The 14-day LGG treatment also enhanced the latter activity (by 119%). In conclusion, LGG and PJS have specific dose- and duration-dependent immunomodulatory effects on the proliferative activity of B and T lymphocytes and may also reduce lymphocyte sensitivity to the cytotoxic effects of lectin mitogens. PMID:10548566

  3. Lactobacillus rhamnosus GG Activation of Dendritic Cells and Neutrophils Depends on the Dose and Time of Exposure

    PubMed Central

    Bay, Boon Huat

    2016-01-01

    This study evaluates the ability of Lactobacillus rhamnosus GG (LGG) to activate DC and neutrophils and modulate T cell activation and the impact of bacterial dose on these responses. Murine bone marrow derived DC or neutrophils were stimulated with LGG at ratios of 5 : 1, 10 : 1, and 100 : 1 (LGG : cells) and DC maturation (CD40, CD80, CD86, CD83, and MHC class II) and cytokine production (IL-10, TNF-α, and IL-12p70) were examined after 2 h and 18 h coculture and compared to the ability of BCG (the present immunotherapeutic agent for bladder cancer) to stimulate these cells. A 2 h exposure to 100 : 1 (high dose) or an 18 h exposure to 5 : 1 or 10 : 1 (low dose), LGG : cells, induced the highest production of IL-12 and upregulation of CD40, CD80, CD86, and MHC II on DC. In DCs stimulated with LGG activated neutrophils IL-12 production decreased with increasing dose. LGG induced 10-fold greater IL-12 production than BCG. T cell IFNγ and IL-2 production was significantly greater when stimulated with DC activated with low dose LGG. In conclusion, DC or DC activated with neutrophils exposed to low dose LGG induced greater Th1 polarization in T cells and this could potentially exert stronger antitumor effects. Thus the dose of LGG used for immunotherapy could determine treatment efficacy. PMID:27525288

  4. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice

    PubMed Central

    Laval, L; Martin, R; Natividad, JN; Chain, F; Miquel, S; de Maredsous, C Desclée; Capronnier, S; Sokol, H; Verdu, EF; van Hylckama Vlieg, JET; Bermúdez-Humarán, LG; Smokvina, T; Langella, P

    2015-01-01

    Impaired gut barrier function has been reported in a wide range of diseases and syndromes and in some functional gastrointestinal disorders. In addition, there is increasing evidence that suggests the gut microbiota tightly regulates gut barrier function and recent studies demonstrate that probiotic bacteria can enhance barrier integrity. Here, we aimed to investigate the effects of Lactobacillus rhamnosus CNCM I-3690 on intestinal barrier function. In vitro results using a Caco-2 monolayer cells stimulated with TNF-α confirmed the anti-inflammatory nature of the strain CNCM I-3690 and pointed out a putative role for the protection of the epithelial function. Next, we tested the protective effects of L. rhamnosus CNCM I-3690 in a mouse model of increased colonic permeability. Most importantly, we compared its performance to that of the well-known beneficial human commensal bacterium Faecalibacterium prauznitzii A2-165. Increased colonic permeability was normalized by both strains to a similar degree. Modulation of apical tight junction proteins expression was then analyzed to decipher the mechanism underlying this effect. We showed that CNCM I-3690 partially restored the function of the intestinal barrier and increased the levels of tight junction proteins Occludin and E-cadherin. The results indicate L. rhamnosus CNCM I-3690 is as effective as the commensal anti-inflammatory bacterium F. prausnitzii to treat functional barrier abnormalities. PMID:25517879

  5. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice.

    PubMed

    Laval, L; Martin, R; Natividad, J N; Chain, F; Miquel, S; Desclée de Maredsous, C; Capronnier, S; Sokol, H; Verdu, E F; van Hylckama Vlieg, J E T; Bermúdez-Humarán, L G; Smokvina, T; Langella, P

    2015-01-01

    Impaired gut barrier function has been reported in a wide range of diseases and syndromes and in some functional gastrointestinal disorders. In addition, there is increasing evidence that suggests the gut microbiota tightly regulates gut barrier function and recent studies demonstrate that probiotic bacteria can enhance barrier integrity. Here, we aimed to investigate the effects of Lactobacillus rhamnosus CNCM I-3690 on intestinal barrier function. In vitro results using a Caco-2 monolayer cells stimulated with TNF-α confirmed the anti-inflammatory nature of the strain CNCM I-3690 and pointed out a putative role for the protection of the epithelial function. Next, we tested the protective effects of L. rhamnosus CNCM I-3690 in a mouse model of increased colonic permeability. Most importantly, we compared its performance to that of the well-known beneficial human commensal bacterium Faecalibacterium prauznitzii A2-165. Increased colonic permeability was normalized by both strains to a similar degree. Modulation of apical tight junction proteins expression was then analyzed to decipher the mechanism underlying this effect. We showed that CNCM I-3690 partially restored the function of the intestinal barrier and increased the levels of tight junction proteins Occludin and E-cadherin. The results indicate L. rhamnosus CNCM I-3690 is as effective as the commensal anti-inflammatory bacterium F. prausnitzii to treat functional barrier abnormalities. PMID:25517879

  6. Reduction in cholesterol absorption in Caco-2 cells through the down-regulation of Niemann-Pick C1-like 1 by the putative probiotic strains Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74 from fermented foods.

    PubMed

    Yoon, Hong-Sup; Ju, Jae-Hyun; Kim, Han-Nah; Park, Hyun-Joon; Ji, Yosep; Lee, Ji-Eun; Shin, Hyeun-Kil; Do, Myoung-Sool; Holzapfel, Wilhelm

    2013-02-01

    Hypercholesterolaemia is a major risk factor related to atherosclerosis, and it may be influenced by our diet. This study addresses the impact of Lactobacillus rhamnosus BFE5264 (isolated from Maasai fermented milk) and Lactobacillus plantarum NR74 (from Korean kimchi) on the control of cholesterol absorption through down-regulation of Niemann-Pick C1-like 1 (NPC1L1) expression. Caco-2 enterocytes were treated with the live, heat-killed (HK) bacteria, bacterial cell wall extracts and metabolites; mRNA level and protein expression were measured. Caco-2 cells showed lower NPC1L1 expression in the presence of the live test strains than the control, elucidating down-regulation of cholesterol uptake, and were compared well with the positive control, L. rhamnosus GG. This effect was also observed with HK bacteria and cell wall fractions but not with their metabolites. The potential of some Lactobacillus strains associated with traditional fermented foods to suppress cholesterol uptake and promote its efflux in enterocytes has been suggested from these data. PMID:22816655

  7. Preservative effect of food-based fermentate from Lactobacillus acidophilus NX2-6 on chilled pork patties.

    PubMed

    Zhang, Qianying; Lu, Yingjian; Liu, Xiaoxi; Bie, Xiaomei; Lv, Fengxia; Lu, Zhaoxin

    2014-03-01

    The food-based fermentate (FBF) from Lactobacillus acidophilus NX2-6 has a broad-spectrum antibacterial activity but has not previously been reported as a food preservative. Experiments were conducted to assess its application as a preservative in pork patties. The effect of freeze-dried FBF on the microbiological parameters, physicochemical changes, and sensory evaluations of chilled pork patties stored for 15 days at 4°C was investigated. The five treatments evaluated included a control (meat only), nisin (meat plus 0.5% nisin), L.1 (meat plus 2% freeze-dried FBF), L.2 (meat plus 4% freeze-dried FBF), and L.3 (meat plus 8% freeze-dried FBF). The results showed that freeze-dried FBF could significantly (P < 0.05) inhibit aerobic bacteria, coliforms, Pseudomonas spp., and lactic acid bacteria, with the lowest microbial counts observed in L.3. The addition of freeze-dried FBF resulted in concentration-dependent decreases in total volatile basic nitrogen values and pH values but increases in lipid oxidation and color instability. Based on the criteria regarding microbiological and physicochemical parameters, the shelf life was 9 to 12 days for L.1, 12 to 15 days for L.2, and over 15 days for L.3, while the shelf-lives of the control and nisin treatments were 3 to 6 days, indicating that freeze-dried FBF could extend the shelf life by more than 3 days. Although the shelf life of L.1 was shorter than those of L.2 and L.3, the appearance of L.1 was much better than those of L.2 and L.3. Overall, treatment with 4 or 8% freeze-dried FBF could be improved if color and lipid oxidation could be improved by appropriate stabilizers, and a lower concentration (2%) of freeze-dried FBF has great potential as a natural and safe preservative in chilled pork patties. PMID:24674438

  8. Stability of free and encapsulated Lactobacillus acidophilus ATCC 4356 in yogurt and in an artificial human gastric digestion system.

    PubMed

    Ortakci, F; Sert, S

    2012-12-01

    The objective of this study was to determine the effect of encapsulation on survival of probiotic Lactobacillus acidophilus ATCC 4356 (ATCC 4356) in yogurt and during artificial gastric digestion. Strain ATCC 4356 was added to yogurt either encapsulated in calcium alginate or in free form (unencapsulated) at levels of 8.26 and 9.47 log cfu/g, respectively, and the influence of alginate capsules (1.5 to 2.5mm) on the sensorial characteristics of yogurts was investigated. The ATCC 4356 strain was introduced into an artificial gastric solution consisting of 0.08 N HCl (pH 1.5) containing 0.2% NaCl or into artificial bile juice consisting of 1.2% bile salts in de Man, Rogosa, and Sharpe broth to determine the stability of the probiotic bacteria. When incubated for 2h in artificial gastric juice, the free ATCC 4356 did not survive (reduction of >7 log cfu/g). We observed, however, greater survival of encapsulated ATCC 4356, with a reduction of only 3 log cfu/g. Incubation in artificial bile juice (6 h) did not significantly affect the viability of free or encapsulated ATCC 4356. Moreover, statistically significant reductions (~1 log cfu/g) of both free and encapsulated ATCC 4356 were observed during 4-wk refrigerated storage of yogurts. The addition of probiotic cultures in free or alginate-encapsulated form did not significantly affect appearance/color or flavor/odor of the yogurts. However, significant deficiencies were found in body/texture of yogurts containing encapsulated ATCC 4356. We concluded that incorporation of free and encapsulated probiotic bacteria did not substantially change the overall sensory properties of yogurts, and encapsulation in alginate using the extrusion method greatly enhanced the survival of probiotic bacteria against an artificial human gastric digestive system. PMID:23021757

  9. Gut microbiota of healthy elderly NSAID users is selectively modified with the administration of Lactobacillus acidophilus NCFM and lactitol.

    PubMed

    Björklund, Marika; Ouwehand, Arthur C; Forssten, Sofia D; Nikkilä, Janne; Tiihonen, Kirsti; Rautonen, Nina; Lahtinen, Sampo J

    2012-08-01

    Ageing changes gut microbiota composition and alters immune system function. Probiotics, prebiotics and synbiotics may improve the health status of elderly individuals by modifying the intestinal environment and the microbiota composition, and by stimulating the immune system. In this work, we studied the effects of synbiotic supplementation on the gut microbiota of healthy elderly volunteers. Fifty-one elders were randomly assigned to consume either a synbiotic dietary supplement or a placebo in addition to their usual diet for a 2-week period. The synbiotic product consisted of the probiotic Lactobacillus acidophilus NCFM and the prebiotic lactitol and was ingested twice a day, with a total daily dose of 10 g lactitol and 2 × 10(10) cells of probiotic bacteria. Before, during and after the intervention period fecal quantities of six phylogenetic bacterial groups were determined using quantitative PCR, and relative changes in total microbiota composition were assessed by percent guanine-plus-cytosine profiling. The microbiota profiles showed certain relative changes within the microbial community, and indicated an increase of bifidobacteria levels during synbiotic supplementation. Quantification by PCR confirmed the in changes in the microbiota composition; for example increases in total levels of endogenous bifidobacteria and lactobacilli were recorded. Throughout the 6-week study period there was a decrease unrelated to intervention in the Blautia coccoides-Eubacterium rectale bacterial group levels and Clostridium cluster XIVab levels, but this decrease appeared to be halted during the synbiotic intervention. In conclusion, putatively beneficial changes in microbiota were observed in the elderly subjects supplemented with the synbiotic product. PMID:21853265

  10. The optimization of l-lactic acid production from sweet sorghum juice by mixed fermentation of Bacillus coagulans and Lactobacillus rhamnosus under unsterile conditions.

    PubMed

    Wang, Yong; Chen, Changjing; Cai, Di; Wang, Zheng; Qin, Peiyong; Tan, Tianwei

    2016-10-01

    The cost reduction of raw material and sterilization could increase the economic feasibility of l-lactic acid fermentation, and the development of an cost-effective and efficient process is highly desired. To improve the efficiency of open fermentation by Lactobacillus rhamnosus based on sweet sorghum juice (SSJ) and to overcome sucrose utilization deficiency of Bacillus coagulans, a mixed fermentation was developed. Besides, the optimization of pH, sugar concentration and fermentation medium were also studied. Under the condition of mixed fermentation and controlled pH, a higher yield of 96.3% was achieved, compared to that (68.8%) in sole Lactobacillus rhamnosus fermentation. With an optimized sugar concentration and a stepwise-controlled pH, the l-lactic acid titer, yield and productivity reached 121gL(-1), 94.6% and 2.18gL(-1)h(-1), respectively. Furthermore, corn steep powder (CSP) as a cheap source of nitrogen and salts was proved to be an efficient supplement to SSJ in this process. PMID:27469090

  11. An Exopolysaccharide-Deficient Mutant of Lactobacillus rhamnosus GG Efficiently Displays a Protective Llama Antibody Fragment against Rotavirus on Its Surface

    PubMed Central

    Álvarez, Beatriz; Krogh-Andersen, Kasper; Tellgren-Roth, Christian; Martínez, Noelia; Günaydın, Gökçe; Lin, Yin; Martín, M. Cruz; Álvarez, Miguel A.; Hammarström, Lennart

    2015-01-01

    Rotavirus is the leading cause of infantile diarrhea in developing countries, where it causes a high number of deaths among infants. Two vaccines are available, being highly effective in developed countries although markedly less efficient in developing countries. As a complementary treatment to the vaccines, a Lactobacillus strain producing an anti-rotavirus antibody fragment in the gastrointestinal tract could potentially be used. In order to develop such an alternative therapy, the effectiveness of Lactobacillus rhamnosus GG to produce and display a VHH antibody fragment (referred to as anti-rotavirus protein 1 [ARP1]) on the surface was investigated. L. rhamnosus GG is one of the best-characterized probiotic bacteria and has intrinsic antirotavirus activity. Among four L. rhamnosus GG strains [GG (CMC), GG (ATCC 53103), GG (NCC 3003), and GG (UT)] originating from different sources, only GG (UT) was able to display ARP1 on the bacterial surface. The genomic analysis of strain GG (UT) showed that the genes welE and welF of the EPS cluster are inactivated, which causes a defect in exopolysaccharide (EPS) production, allowing efficient display of ARP1 on its surface. Finally, GG (UT) seemed to confer a level of protection against rotavirus-induced diarrhea similar to that of wild-type GG (NCC 3003) in a mouse pup model, indicating that the EPS may not be involved in the intrinsic antirotavirus activity. Most important, GG (EM233), a derivative of GG (UT) producing ARP1, was significantly more protective than the control strain L. casei BL23. PMID:26092449

  12. An Exopolysaccharide-Deficient Mutant of Lactobacillus rhamnosus GG Efficiently Displays a Protective Llama Antibody Fragment against Rotavirus on Its Surface.

    PubMed

    Álvarez, Beatriz; Krogh-Andersen, Kasper; Tellgren-Roth, Christian; Martínez, Noelia; Günaydın, Gökçe; Lin, Yin; Martín, M Cruz; Álvarez, Miguel A; Hammarström, Lennart; Marcotte, Harold

    2015-09-01

    Rotavirus is the leading cause of infantile diarrhea in developing countries, where it causes a high number of deaths among infants. Two vaccines are available, being highly effective in developed countries although markedly less efficient in developing countries. As a complementary treatment to the vaccines, a Lactobacillus strain producing an anti-rotavirus antibody fragment in the gastrointestinal tract could potentially be used. In order to develop such an alternative therapy, the effectiveness of Lactobacillus rhamnosus GG to produce and display a VHH antibody fragment (referred to as anti-rotavirus protein 1 [ARP1]) on the surface was investigated. L. rhamnosus GG is one of the best-characterized probiotic bacteria and has intrinsic antirotavirus activity. Among four L. rhamnosus GG strains [GG (CMC), GG (ATCC 53103), GG (NCC 3003), and GG (UT)] originating from different sources, only GG (UT) was able to display ARP1 on the bacterial surface. The genomic analysis of strain GG (UT) showed that the genes welE and welF of the EPS cluster are inactivated, which causes a defect in exopolysaccharide (EPS) production, allowing efficient display of ARP1 on its surface. Finally, GG (UT) seemed to confer a level of protection against rotavirus-induced diarrhea similar to that of wild-type GG (NCC 3003) in a mouse pup model, indicating that the EPS may not be involved in the intrinsic antirotavirus activity. Most important, GG (EM233), a derivative of GG (UT) producing ARP1, was significantly more protective than the control strain L. casei BL23. PMID:26092449

  13. How does the supernatant of Lactobacillus acidophilus affect the proliferation and differentiation activities of rat bone marrow-derived stromal cells?

    PubMed

    Samadikuchaksaraei, A; Gholipourmalekabadi, M; Saberian, M; Abdollahpour Alitappeh, M; Shahidi Delshad, E

    2016-01-01

    Low proliferation rate and unwanted differentiation of bone marrow-derived stromal cells (rBMSCs) during the frequent passages have limited the use of such cells in clinical cell therapy. Recently, the researchers have focused on the effects of the components produced by some bacteria on proliferation of the stem cells. In this study, we discussed the possible effects of the Lactobacillus acidophilus supernatant on proliferation and differentiation of the rBMSCs. For this aim, the cells were isolated from rat bone marrow, characterized by culturing on tissue specific differentiation media and stained. The cells (passage two) were treated with different concentrations of the L. acidophilus supernatant (0, 0.1, 0.3, 0.9, 3, 9 and 30 &mgr;l/ml) for 14 days. The proliferation and differentiation capacity of the cells were then determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT assay) and tissue specific staining. The results showed a positive effect of the supernatant on the cell proliferation in 3 and 9 &mgr;l/ml concentrations, while did not affect the differentiation capacity of the rBMSCs. The current study strongly suggests the L. acidophilus supernatant as an alternative material that could be added to the media with aim of improvement in the proliferation rate of the rBMSCs without affecting their differentiation capacity. PMID:27609467

  14. Transcriptional analysis of genes associated with stress and adhesion in Lactobacillus acidophilus NCFM during the passage through an in vitro gastrointestinal tract model.

    PubMed

    Weiss, G; Jespersen, L

    2010-01-01

    The aim of the present study was to investigate the transcription of genes associated with stress and adhesion in Lactobacillus acidophilus NCFM during the passage through an in vitro gastrointestinal tract model. As acidified milk exerted a protective effect on the bacteria leading to increased survival, the gene expression studies were carried out with pre-inoculation of L. acidophilus NCFM in acidified milk. The induction of the genes encoding the stress-related proteins GroEL, DnaK and ClpP, and adhesion-related genes encoding mucin-binding proteins, fibronectin-binding protein and S-layer was analyzed by real-time PCR. The genes encoding GroEL, DnaK and ClpP were significantly up-regulated (9- to 16-fold) during gastric digestion and declined upon subsequent duodenal digestion. The genes encoding mucin-binding proteins and fibronectin-binding protein were not influenced by saliva and gastric juice, but they were significantly upregulated during incubation in duodenal juice and bile (6- to 7-fold). A significant induction of the gene encoding the S-layer protein was not detected. Our results give a better understanding of the functionality of L. acidophilus NCFM and other probiotics during passage through the gastrointestinal tract; hence, they provide an implementable basis for the selection of prospective probiotic candidates. PMID:20559014

  15. Lactobacillus acidophilus induces a slow but more sustained chemokine and cytokine response in naïve foetal enterocytes compared to commensal Escherichia coli

    PubMed Central

    2010-01-01

    Background The first exposure to microorganisms at mucosal surfaces is critical for immune maturation and gut health. Facultative anaerobic bacteria are the first to colonise the infant gut, and the impact of these bacteria on intestinal epithelial cells (IEC) may be determinant for how the immune system subsequently tolerates gut bacteria. Results To mirror the influence of the very first bacterial stimuli on infant IEC, we isolated IEC from mouse foetuses at gestational day 19 and from germfree neonates. IEC were stimulated with gut-derived bacteria, Gram-negative Escherichia coli Nissle and Gram-positive Lactobacillus acidophilus NCFM, and expression of genes important for immune regulation was measured together with cytokine production. E. coli Nissle and L. acidophilus NCFM strongly induced chemokines and cytokines, but with different kinetics, and only E. coli Nissle induced down-regulation of Toll-like receptor 4 and up-regulation of Toll-like receptor 2. The sensitivity to stimulation was similar before and after birth in germ-free IEC, although Toll-like receptor 2 expression was higher before birth than immediately after. Conclusions In conclusion, IEC isolated before gut colonisation occurs at birth, are highly responsive to stimulation with gut commensals, with L. acidophilus NCFM inducing a slower, but more sustained response than E. coli Nissle. E. coli may induce intestinal tolerance through very rapid up-regulation of chemokine and cytokine genes and down-regulation of Toll-like receptor 4, while regulating also responsiveness to Gram-positive bacteria. PMID:20085657

  16. Impairment of swimming motility by antidiarrheic Lactobacillus acidophilus strain LB retards internalization of Salmonella enterica serovar Typhimurium within human enterocyte-like cells.

    PubMed

    Liévin-Le Moal, Vanessa; Amsellem, Raymonde; Servin, Alain L

    2011-10-01

    We report that both culture and the cell-free culture supernatant (CFCS) of Lactobacillus acidophilus strain LB (Lactéol Boucard) have the ability (i) to delay the appearance of Salmonella enterica serovar Typhimurium strain SL1344-induced mobilization of F-actin and, subsequently, (ii) to retard cell entry by S. Typhimurium SL1344. Time-lapse imaging and Western immunoblotting showed that S. Typhimurium SL1344 swimming motility, as represented by cell tracks of various types, was rapidly but temporarily blocked without affecting the expression of FliC flagellar propeller protein. We show that the product(s) secreted by L. acidophilus LB that supports the inhibitory activity is heat stable and of low molecular weight. The product(s) caused rapid depolarization of the S. Typhimurium SL1344 cytoplasmic membrane without affecting bacterial viability. We identified inhibition of swimming motility as a newly discovered mechanism by which the secreted product(s) of L. acidophilus strain LB retards the internalization of the diarrhea-associated pathogen S. enterica serovar Typhimurium within cultured human enterocyte-like cells. PMID:21825295

  17. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed Central

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-01-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents. PMID:8787394

  18. Enzymology and Structure of the GH13_31 Glucan 1,6-α-Glucosidase That Confers Isomaltooligosaccharide Utilization in the Probiotic Lactobacillus acidophilus NCFM

    PubMed Central

    Møller, Marie S.; Fredslund, Folmer; Majumder, Avishek; Nakai, Hiroyuki; Poulsen, Jens-Christian N.; Lo Leggio, Leila; Svensson, Birte

    2012-01-01

    Isomaltooligosaccharides (IMO) have been suggested as promising prebiotics that stimulate the growth of probiotic bacteria. Genomes of probiotic lactobacilli from the acidophilus group, as represented by Lactobacillus acidophilus NCFM, encode α-1,6 glucosidases of the family GH13_31 (glycoside hydrolase family 13 subfamily 31) that confer degradation of IMO. These genes reside frequently within maltooligosaccharide utilization operons, which include an ATP-binding cassette transporter and α-glucan active enzymes, e.g., maltogenic amylases and maltose phosphorylases, and they also occur separated from any carbohydrate transport or catabolism genes on the genomes of some acidophilus complex members, as in L. acidophilus NCFM. Besides the isolated locus encoding a GH13_31 enzyme, the ABC transporter and another GH13 in the maltooligosaccharide operon were induced in response to IMO or maltotetraose, as determined by reverse transcription-PCR (RT-PCR) transcriptional analysis, suggesting coregulation of α-1,6- and α-1,4-glucooligosaccharide utilization loci in L. acidophilus NCFM. The L. acidophilus NCFM GH13_31 (LaGH13_31) was produced recombinantly and shown to be a glucan 1,6-α-glucosidase active on IMO and dextran and product-inhibited by glucose. The catalytic efficiency of LaGH13_31 on dextran and the dextran/panose (trisaccharide) efficiency ratio were the highest reported for this class of enzymes, suggesting higher affinity at distal substrate binding sites. The crystal structure of LaGH13_31 was determined to a resolution of 2.05 Å and revealed additional substrate contacts at the +2 subsite in LaGH13_31 compared to the GH13_31 from Streptococcus mutans (SmGH13_31), providing a possible structural rationale to the relatively high affinity for dextran. A comprehensive phylogenetic and activity motif analysis mapped IMO utilization enzymes from gut microbiota to rationalize preferential utilization of IMO by gut residents. PMID:22685275

  19. Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM.

    PubMed

    Møller, Marie S; Fredslund, Folmer; Majumder, Avishek; Nakai, Hiroyuki; Poulsen, Jens-Christian N; Lo Leggio, Leila; Svensson, Birte; Abou Hachem, Maher

    2012-08-01

    Isomaltooligosaccharides (IMO) have been suggested as promising prebiotics that stimulate the growth of probiotic bacteria. Genomes of probiotic lactobacilli from the acidophilus group, as represented by Lactobacillus acidophilus NCFM, encode α-1,6 glucosidases of the family GH13_31 (glycoside hydrolase family 13 subfamily 31) that confer degradation of IMO. These genes reside frequently within maltooligosaccharide utilization operons, which include an ATP-binding cassette transporter and α-glucan active enzymes, e.g., maltogenic amylases and maltose phosphorylases, and they also occur separated from any carbohydrate transport or catabolism genes on the genomes of some acidophilus complex members, as in L. acidophilus NCFM. Besides the isolated locus encoding a GH13_31 enzyme, the ABC transporter and another GH13 in the maltooligosaccharide operon were induced in response to IMO or maltotetraose, as determined by reverse transcription-PCR (RT-PCR) transcriptional analysis, suggesting coregulation of α-1,6- and α-1,4-glucooligosaccharide utilization loci in L. acidophilus NCFM. The L. acidophilus NCFM GH13_31 (LaGH13_31) was produced recombinantly and shown to be a glucan 1,6-α-glucosidase active on IMO and dextran and product-inhibited by glucose. The catalytic efficiency of LaGH13_31 on dextran and the dextran/panose (trisaccharide) efficiency ratio were the highest reported for this class of enzymes, suggesting higher affinity at distal substrate binding sites. The crystal structure of LaGH13_31 was determined to a resolution of 2.05 Å and revealed additional substrate contacts at the +2 subsite in LaGH13_31 compared to the GH13_31 from Streptococcus mutans (SmGH13_31), providing a possible structural rationale to the relatively high affinity for dextran. A comprehensive phylogenetic and activity motif analysis mapped IMO utilization enzymes from gut microbiota to rationalize preferential utilization of IMO by gut residents. PMID:22685275

  20. Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM.

    PubMed

    Goh, Yong Jun; Azcárate-Peril, M Andrea; O'Flaherty, Sarah; Durmaz, Evelyn; Valence, Florence; Jardin, Julien; Lortal, Sylvie; Klaenhammer, Todd R

    2009-05-01

    In silico genome analysis of Lactobacillus acidophilus NCFM coupled with gene expression studies have identified putative genes and regulatory networks that are potentially important to this organism's survival, persistence, and activities in the gastrointestinal tract. Correlation of key genotypes to phenotypes requires an efficient gene replacement system. In this study, use of the upp-encoded uracil phosphoribosyltransferase (UPRTase) of L. acidophilus NCFM was explored as a counterselection marker to positively select for recombinants that have resolved from chromosomal integration of pORI-based plasmids. An isogenic mutant carrying a upp gene deletion was constructed and was resistant to 5-fluorouracil (5-FU), a toxic uracil analog that is also a substrate for UPRTase. A 3.0-kb pORI-based counterselectable integration vector bearing a upp expression cassette, pTRK935, was constructed and introduced into the Deltaupp host harboring the pTRK669 helper plasmid. Extrachromosomal replication of pTRK935 complemented the mutated chromosomal upp allele and restored sensitivity to 5-FU. This host background provides a platform for a two-step plasmid integration and excision strategy that can select for plasmid-free recombinants with either the wild-type or mutated allele of the targeted gene in the presence of 5-FU. The efficacy of the system was demonstrated by in-frame deletion of the slpX gene (LBA0512) encoding a novel 51-kDa secreted protein associated with the S-layer complex of L. acidophilus. The resulting DeltaslpX mutant exhibited lower growth rates, increased sensitivity to sodium dodecyl sulfate, and greater resistance to bile. Overall, this improved gene replacement system represents a valuable tool for investigating the mechanisms underlying the probiotic functionality of L. acidophilus. PMID:19304841

  1. Dietary Lactobacillus rhamnosus GG Supplementation Improves the Mucosal Barrier Function in the Intestine of Weaned Piglets Challenged by Porcine Rotavirus

    PubMed Central

    Mao, Xiangbing; Gu, Changsong; Hu, Haiyan; Tang, Jun; Chen, Daiwen; Yu, Bing; He, Jun; Yu, Jie; Luo, Junqiu; Tian, Gang

    2016-01-01

    Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain. The aim of this study was to investigate whether dietary LGG supplementation could alleviate diarrhea via improving jejunal mucosal barrier function in the weaned piglets challenged by RV, and further analyze the potential roles for apoptosis of jejunal mucosal cells and intestinal microbiota. A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets: the basal diet and LGG supplementing diet. On day 11, all pigs were orally infused RV or the sterile essential medium. RV infusion increased the diarrhea rate, increased the RV-Ab, NSP4 and IL-2 concentrations and the Bax mRNA levels of jejunal mucosa (P<0.05), decreased the villus height, villus height: crypt depth, the sIgA, IL-4 and mucin 1 concentrations and the ZO-1, occludin and Bcl-2 mRNA levels of jejunal mucosa (P<0.05), and affected the microbiota of ileum and cecum (P<0.05) in the weaned pigs. Dietary LGG supplementation increased the villus height and villus height: crypt depth, the sIgA, IL-4, mucin 1 and mucin 2 concentrations, and the ZO-1, occludin and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05) reduced the Bax mRNA levels of the jejunal mucosa (P<0.05) in weaned pigs. Furthermore, dietary LGG supplementation alleviated the increase of diarrhea rate in the weaned pigs challenged by RV (P<0.05), and relieve the effect of RV infection on the villus height, crypt depth and the villus height: crypt depth of the jejunal mucosa (P<0.05), the NSP4, sIgA, IL-2, IL-4, mucin 1 and mucin 2 concentrations of jejunal mucosa (P<0.05), the ZO-1, occludin, Bax and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05), and the microbiota of ileum and cecum (P<0.05) in the weaned pigs challenged by RV. These results suggest that supplementing LGG in diets alleviated the diarrhea of weaned piglets challenged by RV via inhibiting the virus multiplication and improving the jejunal mucosal barrier function

  2. Dietary Lactobacillus rhamnosus GG Supplementation Improves the Mucosal Barrier Function in the Intestine of Weaned Piglets Challenged by Porcine Rotavirus.

    PubMed

    Mao, Xiangbing; Gu, Changsong; Hu, Haiyan; Tang, Jun; Chen, Daiwen; Yu, Bing; He, Jun; Yu, Jie; Luo, Junqiu; Tian, Gang

    2016-01-01

    Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain. The aim of this study was to investigate whether dietary LGG supplementation could alleviate diarrhea via improving jejunal mucosal barrier function in the weaned piglets challenged by RV, and further analyze the potential roles for apoptosis of jejunal mucosal cells and intestinal microbiota. A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets: the basal diet and LGG supplementing diet. On day 11, all pigs were orally infused RV or the sterile essential medium. RV infusion increased the diarrhea rate, increased the RV-Ab, NSP4 and IL-2 concentrations and the Bax mRNA levels of jejunal mucosa (P<0.05), decreased the villus height, villus height: crypt depth, the sIgA, IL-4 and mucin 1 concentrations and the ZO-1, occludin and Bcl-2 mRNA levels of jejunal mucosa (P<0.05), and affected the microbiota of ileum and cecum (P<0.05) in the weaned pigs. Dietary LGG supplementation increased the villus height and villus height: crypt depth, the sIgA, IL-4, mucin 1 and mucin 2 concentrations, and the ZO-1, occludin and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05) reduced the Bax mRNA levels of the jejunal mucosa (P<0.05) in weaned pigs. Furthermore, dietary LGG supplementation alleviated the increase of diarrhea rate in the weaned pigs challenged by RV (P<0.05), and relieve the effect of RV infection on the villus height, crypt depth and the villus height: crypt depth of the jejunal mucosa (P<0.05), the NSP4, sIgA, IL-2, IL-4, mucin 1 and mucin 2 concentrations of jejunal mucosa (P<0.05), the ZO-1, occludin, Bax and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05), and the microbiota of ileum and cecum (P<0.05) in the weaned pigs challenged by RV. These results suggest that supplementing LGG in diets alleviated the diarrhea of weaned piglets challenged by RV via inhibiting the virus multiplication and improving the jejunal mucosal barrier function

  3. Lactobacillus rhamnosus GG supplementation during critical windows of gestation influences immune phenotype in Swiss albino mice offspring.

    PubMed

    Himaja, N; Hemalatha, R; Narendra Babu, K; Shujauddin, M

    2016-03-11

    Probiotic supplementation during critical windows of gestation might have a significant influence on the infant's immune phenotype. Swiss albino mice (F0 generation) aged 31 days were supplemented orally with probiotic Lactobacillus rhamnosus GG (LGG); and the supplementation was continued throughout mating, gestation and lactation. The pups (F1 generation) born to them were separated post weaning and received either the same probiotic supplementation as their mothers or were denied supplementation postnatally. Neutrophil phagocytic ability, splenocyte proliferation, immunoglobulins and cytokines were determined in both F0 and F1 pups. In addition, antibody response against hepatitis-B surface antigen (HBsAg) was determined in F1 pups. Probiotic supplementation had no effect on the neutrophil phagocytic ability and splenocyte proliferation index. The serum immunoglobulin G (IgG) and secretory IgA (s-IgA) among the probiotic supplemented group of F0 generation were significantly (P<0.05) higher compared to the controls. Similarly, the mean concentration of interleukin (IL)-10, IL-17 and interferon gamma (IFN-γ) among F0 probiotic group were significantly higher (P<0.05) compared to the control. Prenatal and postnatal probiotic supplementation in F1 pups led to similar results as F0 dams. Prenatal probiotic supplementation in F1 pups led to significantly (P<0.05) higher serum IgG (55.15±1.35 ng/ml) and intestinal s-IgA (77.9 ± 2.86 ng/mg protein) concentration when compared to the control. Similarly, IFN-γ concentration increased (P<0.05) with prenatal probiotic supplementation compared to the control. However, IL-10 and IL-17 concentrations of prenatal probiotic supplemented F1 pups were comparable to the control. As for the antibody response to HBsAg, prenatal probiotic supplementation led to enhanced HBsAg antibody response (471.4±3.97 U/ml) compared to the control. LGG affected the immune regulation and immune responses favourably in mothers and offspring

  4. The other way around: probiotic Lactobacillus acidophilus NP51 restrict progression of Mycobacterium avium subspecies paratuberculosis (MAP) infection in Balb/c mice via activiation of CD8 alpha+ immune cell-mediated immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to examine the immune-modulating effects of feeding a novel probiotic Lactobacillus acidophilus strain NP51 to specific pathogen-free Balb/c mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease (JD) in rumi...

  5. The other way around: Probiotic lactobacillus acidophilus NP51 restricts progression of Mycobacterium avium subspecies paratuberculosis (MAP) infection in Balb/c mice through activation of CD8+ T cell-mediated immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to examine immune effects of feeding novel probiotic Lactobacillus acidophilus strain NP51 to specific pathogen-free Balb/c mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease (JD). We hypothesized that fe...

  6. Bacteriocin production and resistance to drugs are advantageous features for Lactobacillus acidophilus La-14, a potential probiotic strain.

    PubMed

    Todorov, Svetoslav Dimitrov; Furtado, Danielle Nader; Saad, Susana Marta Isay; Gombossy de Melo Franco, Bernadette Dora

    2011-10-01

    L. acidophilus La-14 produces bacteriocin active against L. monocytogenes ScottA (1600 AU/ml) in MRS broth at 30°C or 37°C. The bacteriocin proved inhibitory to different serological types of Listeria spp. Antimicrobial activity was completely lost after treatment of the cell-free supernatant with proteolytic enzymes. Addition of bacteriocin produced by L. acidophilus La-14 to a 3 h-old culture of L. monocytogenes ScottA repressed cell growth in the following 8h. Treatment of stationary phase cells of L. monocytogenes ScottA (107-108 CFU/ml) by the bacteriocin resulted in growth inhibition. Growth of L. acidophilus La-14 was not inhibited by commercial drugs from different generic groups, including nonsteroidal anti-inflammatory drugs (NSAID) containing diclofenac potassium or ibuprofen arginine. Only one non-antibiotic drug tested, Atlansil (an antiarrhythmic agent), had an inhibitory effect on L. acidophilus La-14 with MIC of 2.5 mg/ml. L. acidophilus La-14 was not affected by drugs containing sodium or potassium diclofenac. L. acidophilus La-14 shows a good resistance to several drugs and may be applied in combination for therapeutic use. PMID:22143809

  7. Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data.

    PubMed

    Lahti, Leo; Salonen, Anne; Kekkonen, Riina A; Salojärvi, Jarkko; Jalanka-Tuovinen, Jonna; Palva, Airi; Orešič, Matej; de Vos, Willem M

    2013-01-01

    Accumulating evidence indicates that the intestinal microbiota regulates our physiology and metabolism. Bacteria marketed as probiotics confer health benefits that may arise from their ability to affect the microbiota. Here high-throughput screening of the intestinal microbiota was carried out and integrated with serum lipidomic profiling data to study the impact of probiotic intervention on the intestinal ecosystem, and to explore the associations between the intestinal bacteria and serum lipids. We performed a comprehensive intestinal microbiota analysis using a phylogenetic microarray before and after Lactobacillus rhamnosus GG intervention. While a specific increase in the L. rhamnosus-related bacteria was observed during the intervention, no other changes in the composition or stability of the microbiota were detected. After the intervention, lactobacilli returned to their initial levels. As previously reported, also the serum lipid profiles remained unaltered during the intervention. Based on a high-resolution microbiota analysis, intake of L. rhamnosus GG did not modify the composition of the intestinal ecosystem in healthy adults, indicating that probiotics confer their health effects by other mechanisms. The most prevailing association between the gut microbiota and lipid profiles was a strong positive correlation between uncultured phylotypes of Ruminococcus gnavus-group and polyunsaturated serum triglycerides of dietary origin. Moreover, a positive correlation was detected between serum cholesterol and Collinsella (Coriobacteriaceae). These associations identified with the spectrometric lipidome profiling were corroborated by enzymatically determined cholesterol and triglyceride levels. Actinomycetaceae correlated negatively with triglycerides of highly unsaturated fatty acids while a set of Proteobacteria showed negative correlation with ether phosphatidylcholines. Our results suggest that several members of the Firmicutes, Actinobacteria and

  8. Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium.

    PubMed

    Bove, Claudio Giorgio; De Angelis, Maria; Gatti, Monica; Calasso, Maria; Neviani, Erasmo; Gobbetti, Marco

    2012-11-01

    The aim of this study was to demonstrate the metabolic and proteomic adaptation of Lactobacillus rhamnosus strains, which were isolated at different stages of Parmigiano Reggiano cheese ripening. Compared to de Man, Rogosa, and Sharpe (MRS) broth, cultivation under cheese-like conditions (cheese broth, CB) increased the number of free amino acids used as carbon sources. Compared with growth on MRS or pasteurized and microfiltrated milk, all strains cultivated in CB showed a low synthesis of d,l-lactic acid and elevated levels of acetic acid. The proteomic maps of the five representative strains, showing different metabolic traits, were comparatively determined after growth on MRS and CB media. The amount of intracellular and cell-associated proteins was affected by culture conditions and diversity between strains, depending on their time of isolation. Protein spots showing decreased (62 spots) or increased (59 spot) amounts during growth on CB were identified using MALDI-TOF-MS/MS or LC-nano-ESI-MS/MS. Compared with cultivation on MRS broth, the L. rhamnosus strains cultivated under cheese-like conditions had modified amounts of some proteins responsible for protein biosynthesis, nucleotide, and carbohydrate metabolisms, the glycolysis pathway, proteolytic activity, cell wall, and exopolysaccharide biosynthesis, cell regulation, amino acid, and citrate metabolism, oxidation/reduction processes, and stress responses. PMID:22965658

  9. Comparison of ribotyping, randomly amplified polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains.

    PubMed

    Tynkkynen, S; Satokari, R; Saarela, M; Mattila-Sandholm, T; Saxelin, M

    1999-09-01

    A total of 24 strains, biochemically identified as members of the Lactobacillus casei group, were identified by PCR with species-specific primers. The same set of strains was typed by randomly amplified polymorphic DNA (RAPD) analysis, ribotyping, and pulsed-field gel electrophoresis (PFGE) in order to compare the discriminatory power of the methods. Species-specific primers for L. rhamnosus and L. casei identified the type strain L. rhamnosus ATCC 7469 and the neotype strain L. casei ATCC 334, respectively, but did not give any signal with the recently revived species L. zeae, which contains the type strain ATCC 15820 and the strain ATCC 393, which was previously classified as L. casei. Our results are in accordance with the suggested new classification of the L. casei group. Altogether, 21 of the 24 strains studied were identified with the species-specific primers. In strain typing, PFGE was the most discriminatory method, revealing 17 genotypes for the 24 strains studied. Ribotyping and RAPD analysis yielded 15 and 12 genotypes, respectively. PMID:10473394

  10. The antimicrobial properties of the lowbush blueberry (Vaccinium angustifolium) fractional components against foodborne pathogens and the conservation of probiotic Lactobacillus rhamnosus.

    PubMed

    Lacombe, Alison; Wu, Vivian C H; White, Jennifer; Tadepalli, Shravaini; Andre, Enroe E

    2012-05-01

    The antimicrobial properties of lowbush blueberry (Vaccinium angustifolium) were studied against Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and Lactobacillus rhamnosus to determine which fractional components have antimicrobial effects and which microorganisms are most susceptible to these antimicrobial properties. Lowbush blueberry extract (F1) was separated using a C-18 Sep-Pak cartridge into monomeric phenolics (F2) and anthocyanins plus proanthocyanidins (F3). Fraction 3 was further separated into anthocyanins (F4) and proanthocyanidins (F5) using a LH-20 Sephadex column. Each fraction was initially screened for antimicrobial properties using agar diffusion assay. Treatments that demonstrated inhibition were further analyzed for inhibition in liquid culture. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using a two-fold dilution series and viable cell counts taken at 0 and 24 h to examine growth reduction. Fraction 3 demonstrated the lowest MICs/MBCs followed by F1, F2, F4, and F5. L. monocytogenes was the most susceptible to blueberry fraction treatment, followed by E. coli O157:H7, and S. Typhimurium. L. rhamnosus was the least susceptible to each fraction treatment. The results can be applied to the field of preventive medicine, food safety, and enrich the understanding of the health benefits of lowbush blueberries. PMID:22265292

  11. Comparison of Ribotyping, Randomly Amplified Polymorphic DNA Analysis, and Pulsed-Field Gel Electrophoresis in Typing of Lactobacillus rhamnosus and L. casei Strains

    PubMed Central

    Tynkkynen, Soile; Satokari, Reetta; Saarela, Maria; Mattila-Sandholm, Tiina; Saxelin, Maija

    1999-01-01

    A total of 24 strains, biochemically identified as members of the Lactobacillus casei group, were identified by PCR with species-specific primers. The same set of strains was typed by randomly amplified polymorphic DNA (RAPD) analysis, ribotyping, and pulsed-field gel electrophoresis (PFGE) in order to compare the discriminatory power of the methods. Species-specific primers for L. rhamnosus and L. casei identified the type strain L. rhamnosus ATCC 7469 and the neotype strain L. casei ATCC 334, respectively, but did not give any signal with the recently revived species L. zeae, which contains the type strain ATCC 15820 and the strain ATCC 393, which was previously classified as L. casei. Our results are in accordance with the suggested new classification of the L. casei group. Altogether, 21 of the 24 strains studied were identified with the species-specific primers. In strain typing, PFGE was the most discriminatory method, revealing 17 genotypes for the 24 strains studied. Ribotyping and RAPD analysis yielded 15 and 12 genotypes, respectively. PMID:10473394

  12. The hsp 16 gene of the probiotic Lactobacillus acidophilus is differently regulated by salt, high temperature and acidic stresses, as revealed by reverse transcription quantitative PCR (qRT-PCR) analysis.

    PubMed

    Capozzi, Vittorio; Arena, Mattia Pia; Crisetti, Elisabetta; Spano, Giuseppe; Fiocco, Daniela

    2011-01-01

    Small heat shock proteins (sHsps) are ubiquitous conserved chaperone-like proteins involved in cellular proteins protection under stressful conditions. In this study, a reverse transcription quantitative PCR (RT-qPCR) procedure was developed and used to quantify the transcript level of a small heat shock gene (shs) in the probiotic bacterium Lactobacillus acidophilus NCFM, under stress conditions such as heat (45 °C and 53 °C), bile (0.3% w/v), hyperosmosis (1 M and 2.5 M NaCl), and low pH value (pH 4). The shs gene of L. acidophilus NCFM was induced by salt, high temperature and acidic stress, while repression was observed upon bile stress. Analysis of the 5' noncoding region of the hsp16 gene reveals the presence of an inverted repeat (IR) sequence (TTAGCACTC-N9-GAGTGCTAA) homologue to the controlling IR of chaperone expression (CIRCE) elements found in the upstream regulatory region of Gram-positive heat shock operons, suggesting that the hsp16 gene of L. acidophilus might be transcriptionally controlled by HrcA. In addition, the alignment of several small heat shock proteins identified so far in lactic acid bacteria, reveals that the Hsp16 of L. acidophilus exhibits a strong evolutionary relationship with members of the Lactobacillus acidophilus group. PMID:21954366

  13. Therapeutic effect of tyndallized Lactobacillus rhamnosus IDCC 3201 on atopic dermatitis mediated by down-regulation of immunoglobulin E in NC/Nga mice.

    PubMed

    Lee, Seung-Hun; Yoon, Jong-Min; Kim, Young-Hoo; Jeong, Dong-Gu; Park, Soobong; Kang, Dae-Jung

    2016-07-01

    The therapeutic effect of oral administration of Lactobacillus rhamnosus IDCC 3201 tyndallizate (RHT3201) on atopic dermatitis (AD)-like skin lesions in NC/Nga mice were investigated. After induction of dermatitis in NC/Nga mice with house-dust mite extract, each group was fed RHT3201 with 1 × 10(8) , 1 × 10(9) , or 1 × 10(10) cells orally once a day for 8 weeks. Dermatitis scores and frequency of scratching were improved by oral feeding with RHT3201. In contrast to the control group, RHT3201-fed mice showed significantly down-regulated mast cell numbers and serum immunoglobulin E (IgE) concentrations had significantly less IL4 in their axillary lymph node cells. The therapeutic effect of RHT3201 was found to be dose-dependent. These findings indicate that RHT3201 has potential for treating AD. PMID:27240551

  14. Effects of prebiotic oligosaccharides consumption on the growth and expression profile of cell surface-associated proteins of a potential probiotic Lactobacillus rhamnosus FSMM15

    PubMed Central

    MURTINI, Devi; ARYANTINI, Ni Putu Desy; SUJAYA, I Nengah; URASHIMA, Tadasu; FUKUDA, Kenji

    2015-01-01

    To investigate carbohydrate preference of a potential probiotic, Lactobacillus rhamnosus FSMM15, six prebiotics, including two milk-derived prebiotics, galactooligosaccharides and lacto-N-biose I, and four plant-origin prebiotics, beet oligosaccharide syrup, difructose anhydride III, fructooligosaccharides, and raffinose, were examined. The strain utilized the milk-derived prebiotics at similar levels to glucose but did not utilize the plant-origin ones in the same manner, reflecting their genetic background, which allows them to adapt to dairy ecological niches. These prebiotics had little influence on the expression pattern of cell surface-associated proteins in the strain; however, an ATP-binding cassette transporter substrate-binding protein and a glyceraldehyde-3-phosphate dehydrogenase were suggested to be upregulated in response to carbon starvation stress. PMID:26858929

  15. No Evidence of Harms of Probiotic Lactobacillus rhamnosus GG ATCC 53103 in Healthy Elderly—A Phase I Open Label Study to Assess Safety, Tolerability and Cytokine Responses

    PubMed Central

    Hibberd, Patricia L.; Kleimola, Lauren; Fiorino, Anne-Maria; Botelho, Christine; Haverkamp, Miriam; Andreyeva, Irina; Poutsiaka, Debra; Fraser, Claire; Solano-Aguilar, Gloria; Snydman, David R.

    2014-01-01

    Background Although Lactobacillus rhamnosus GG ATCC 53103 (LGG) has been consumed by 2 to 5 million people daily since the mid 1990s, there are few clinical trials describing potential harms of LGG, particularly in the elderly. Objectives The primary objective of this open label clinical trial is to assess the safety and tolerability of 1×1010 colony forming units (CFU) of LGG administered orally twice daily to elderly volunteers for 28 days. The secondary objectives were to evaluate the effects of LGG on the gastrointestinal microbiome, host immune response and plasma cytokines. Methods Fifteen elderly volunteers, aged 66–80 years received LGG capsules containing 1×1010 CFU, twice daily for 28 days and were followed through day 56. Volunteers completed a daily diary, a telephone call on study days 3, 7 and 14 and study visits in the Clinical Research Center at baseline, day 28 and day 56 to determine whether adverse events had occurred. Assessments included prompted and open-ended questions. Results There were no serious adverse events. The 15 volunteers had a total of 47 events (range 1–7 per volunteer), 39 (83%) of which were rated as mild and 40% of which were considered related to consuming LGG. Thirty-one (70%) of the events were expected, prompted symptoms while 16 were unexpected events. The most common adverse events were gastrointestinal (bloating, gas, and nausea), 27 rated as mild and 3 rated as moderate. In the exploratory analysis, the pro-inflammatory cytokine interleukin 8 decreased during LGG consumption, returning towards baseline one month after discontinuing LGG (p = 0.038) while there was no difference in other pro- or anti-inflammatory plasma cytokines. Conclusions Lactobacillus rhamnosus GG ATCC 53103 is safe and well tolerated in healthy adults aged 65 years and older. Trial Registration ClinicalTrials.gov NCT 01274598 PMID:25438151

  16. Lipopolysaccharide-Induced Profiles of Cytokine, Chemokine, and Growth Factors Produced by Human Decidual Cells Are Altered by Lactobacillus rhamnosus GR-1 Supernatant.

    PubMed

    Li, Wei; Yang, Siwen; Kim, Sung O; Reid, Gregor; Challis, John R G; Bocking, Alan D

    2014-01-15

    The aim of this study was to assess the effects of bacterial lipopolysaccharide (LPS) and Lactobacillus rhamnosus GR-1 supernatant (GR-1SN) on secretion profiles of cytokines, chemokines, and growth factors from primary cultures of human decidual cells. Lipopolysaccharide significantly increased the output of proinflammatory cytokines (interleukin [IL]-1B, IL-2, IL-6, IL-12p70, IL-15, IL-17A, interferon gamma [IFN-γ], and tumor necrosis factor [TNF]); anti-inflammatory cytokines (IL-1RN, IL-4, IL-9, and IL-10); chemokines (IL-8, eotaxin, IFN-inducible protein 10 [IP-10], monocyte chemoattractant protein 1 [MCP-1], macrophage inflammatory protein-1α [MIP-1α], macrophage inflammatory protein-1β [MIP-1β], and regulated on activation normal T cell expressed and secreted [RANTES]); and growth factors (granulocyte colony-stimulating factor [CSF] 3, CSF-2, and vascular endothelial growth factor A [VEGFA]). Lactobacillus rhamnosus GR-1SN alone significantly increased CSF-3, MIP-1α MIP-1β, and RANTES but decreased IL-15 and IP-10 output. The GR-1SN also significantly or partially reduced LPS-induced proinflammatory cytokines TNF, IFN-γ, IL-1β, IL-2 IL-6, IL-12p70, IL-15, IL-17, and IP-10; partially reduced LPS-induced anti-inflammatory cytokines IL-1RN, IL-4 and IL-10, and LPS-induced VEGFA output but did not affect CSF-3, MIP-1α, MIP-1β, MCP-1, IL-8, and IL-9. Our results demonstrate that GR-1SN attenuates the inflammatory responses to LPS by human decidual cells, suggesting its potential role in ameliorating intrauterine infection. PMID:24429676

  17. Effect of growth conditions on production of rhamnose-containing cell wall and capsular polysaccharides by strains of Lactobacillus casei subsp. rhamnosus.

    PubMed Central

    Wicken, A J; Ayres, A; Campbell, L K; Knox, K W

    1983-01-01

    Strains of Lactobacillus casei subsp. rhamnosus possessing two cell wall polysaccharides, a hexosamine-containing H-polysaccharide and a rhamnose-containing R-polysaccharide, were examined for the effect of growth conditions on the production of these two components. In strain NCTC 6375, R- and H-polysaccharides accounted for an estimated 44 and 20%, respectively, of the cell wall for organisms grown in batch culture with glucose as the carbohydrate source. Growth on fructose-containing media reduced the amount of R-polysaccharide by approximately 50% without affecting the amount of H-polysaccharide. Subculture of fructose-grown organisms in glucose restored the original proportions of the two polysaccharides. Galactose- and sucrose-grown cells behaved similarly to glucose-grown cells with respect to polysaccharide production, whereas growth in rhamnose or ribose showed values close to those for fructose-grown cells. Continuous culture of strain NCTC 6375 for more than 100 generations showed a gradual and irreversible reduction of the R-polysaccharide to less than 5% of the cell wall and an increase of the H-polysaccharide to 40% of the cell wall. Other type culture strains of L. casei subsp. rhamnosus, NCIB 7473 and ATCC 7469, behaved similarly in batch and continuous culture. In contrast, strains of L. casei subsp. rhamnosus isolated at the Institute of Dental Research showed phenotypic stability with respect to the relative proportions of R- and H-polysaccharides in both batch and continuous culture. Changes in polysaccharide composition of type culture strains were also mirrored in changes in the immunogenicity of the two components and resistance to the rate of enzymic lysis of whole organisms. For L. casei subsp. rhamnosus strain NCTC 10302 the R-polysaccharide is present entirely as capsular material. The amount of R-polysaccharide produced was also markedly dependent on the carbohydrate component of the medium in batch culture and both dilution rate and

  18. Egg quality and productive performance of laying hens fed different levels of skimmed milk powder added to a diet containing Lactobacillus acidophilus.

    PubMed

    Cesari, V; Mangiagalli, M G; Giardini, A; Galimberti, P; Carteri, S; Gallazzi, D; Toschi, I

    2014-05-01

    The current trial was carried out on a commercial poultry farm to study the effect of skim milk powder (SMP) added to a diet containing Lactobacillus acidophilus on performance and egg quality of laying hens from 20 to 49 wk of age. A total of 2,400 Hy-Line W-36 laying hens were housed in 600 unenriched cages (4 hens each) located over 4 tier levels. Animals were assigned to 1 of 3 experimental treatments (0, 3, and 4). The laying hens assigned to treatments 3 and 4 received a diet enriched respectively with 3 and 4% SMP, whereas the animals in treatment 0 were fed a diet without SMP. All diets, moreover, were supplemented with L. acidophilus D2/CSL. Hen performance was determined throughout the experimental period and egg quality was measured on 30 eggs per treatment every week. Results showed that productive performance in terms of egg production, egg weight, and feed conversion ratio was not influenced by SMP at 3 or 4% of the diet. Egg quality was significantly affected by SMP included at 3 or 4% of the diet. Eggs from treatments 3 and 4, in fact, displayed higher shell thickness than those from treatment 0 (P < 0.0001). Likewise, specific gravity, Haugh unit, and shell percentage were significantly affected by the addition of SMP. In conclusion, in our study, SMP added to a diet containing L. acidophilus had no significant effects on the productive parameters of hens during the laying period, whereas significant improvements were found in certain egg quality characteristics. PMID:24795312

  19. Production of 13S-hydroxy-9(Z)-octadecenoic acid from linoleic acid by whole recombinant cells expressing linoleate 13-hydratase from Lactobacillus acidophilus.

    PubMed

    Park, Ji-Young; Lee, Seon-Hwa; Kim, Kyoung-Rok; Park, Jin-Byung; Oh, Deok-Kun

    2015-08-20

    Linoleate 13-hydratase from Lactobacillus acidophilus LMG 11470 converted linoleic acid to hydroxyl fatty acid, which was identified as 13S-hydroxy-9(Z)-octadecenoic acid (13-HOD) by GC-MS and NMR. The expression of linoleate 13-hydratase gene in Escherichia coli was maximized by using pACYC plasmid and super optimal broth with catabolite repression (SOC) medium containing 40mM Mg(2+). To optimize induction conditions, recombinant cells were cultivated at 37°C, 1mM isopropyl-β-d-thiogalactopyranoside was added at 2h, and the culture was further incubated at 16°C for 18h. Recombinant cells expressing linoleate 13-hydratase from L. acidophilus were obtained under the optimized expression conditions and used for 13-HOD production from linoleic acid. The optimal reaction conditions were pH 6.0, 40°C, 0.25% (v/v) Tween 40, 25gl(-1) cells, and 100gl(-1) linoleic acid, and under these conditions, whole recombinant cells produced 79gl(-1) 13-HOD for 3h with a conversion yield of 79% (w/w), a volumetric productivity of 26.3gl(-1)h(-1), and a specific productivity of 1.05g g-cells(-1)h(-1). To the best of our knowledge, the recombinant cells produced hydroxy fatty acid with the highest concentration and productivity reported so far. PMID:26015260

  20. Implications of modifying membrane fatty acid composition on membrane oxidation, integrity, and storage viability of freeze-dried probiotic, Lactobacillus acidophilus La-5.

    PubMed

    Hansen, Marie-Louise R W; Petersen, Mikael A; Risbo, Jens; Hümmer, Magdalena; Clausen, Anders

    2015-01-01

    The aim of this study was to investigate the effect of altering the fatty acid profile of the lipid membrane on storage survival of freeze-dried probiotic, Lactobacillus acidophilus La-5, as well as study the membrane integrity and lipid oxidation. The fatty acid composition of the lipid membrane of L. acidophilus La-5 was significantly different upon growth in MRS (containing Tween 80, an oleic acid source), or in MRS with Tween 20 (containing C12:0 and C14:0), linoleic, or linolenic acid supplemented. Bacteria grown in MRS showed the highest storage survival rates. No indications of loss of membrane integrity could be found, and membrane integrity could therefore not be connected with loss of viability. Survival of bacteria grown with linoleic or linolenic acid was more negatively affected by the presence of oxygen, than bacteria grown in MRS or with Tween 20 supplemented. A small, but significant, loss of linolenic acid during storage could be identified, and an increase of volatile secondary oxidation products during storage was found for bacteria grown in MRS, or with linoleic, or linolenic acid supplemented, but not for bacteria grown with Tween 20. Overall, the results indicate that lipid oxidation and loss of membrane integrity are not the only or most important detrimental reactions which can occur during storage. By altering the fatty acid composition, it was also found that properties of oleic acid gave rise to more robust bacteria than more saturated or unsaturated fatty acids did. PMID:25823709

  1. Lactobacillus acidophilus Increases the Anti-apoptotic Micro RNA-21 and Decreases the Pro-inflammatory Micro RNA-155 in the LPS-Treated Human Endothelial Cells.

    PubMed

    Kalani, Mehdi; Hodjati, Hossein; Sajedi Khanian, Mahdi; Doroudchi, Mehrnoosh

    2016-06-01

    Given the anti-inflammatory and protective role of probiotics in atherosclerosis and the regulatory role of micro RNA (miRNA) in endothelial cell (dys) functions, this study aimed to investigate the effect of Lactobacillus acidophilus (La) on cellular death and the expression of miRNA-21, 92a, 155, and 663 in human umbilical vein endothelial cell (HUVEC) induced by Escherichia coli lipopolysaccharide (Ec-LPS). LPS-treated and untreated HUVECs were cultured in the presence of different La conditions such as La-conditioned media (LaCM), La water extract (LaWE), La culture-filtered (LaFS) and unfiltered supernatants (LaUFS). After 24 h, apoptosis, necrosis and the levels of the mentioned miRNAs were measured using flow cytometry and real-time PCR methods, respectively. LaCM decreased apoptosis, necrosis and inflammatory miR-155 and conversely increased anti-apoptotic miR-21 in Ec-LPS-treated HUVECs. Association analysis revealed negative correlations between necrosis and the levels of miR-21, miR-92a, and miR-155. The beneficial effects of L. acidophilus on the ECs death and expression of atherosclerosis related miRNAs in these cells imply a new aspect of its regulation in cardiovascular diseases rather than previously described ones and suggest this probiotic bacterium as a candidate in the preventative therapy of atherosclerosis. PMID:27107761

  2. Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria.

    PubMed Central

    Bernet, M F; Brassart, D; Neeser, J R; Servin, A L

    1994-01-01

    Four human Lactobacillus acidophilus strains were tested for their ability to adhere onto human enterocyte like Caco-2 cells in culture. The LA 1 strain exhibited a high calcium independent adhesive property. This adhesion onto Caco-2 cells required a proteinaceous adhesion promoting factor, which was present in the spent bacterial broth culture supernatant. LA 1 strain also strongly bound to the mucus secreted by the homogeneous cultured human goblet cell line HT29-MTX. The inhibitory effect of LA 1 organisms against Caco-2 cell adhesion and cell invasion by a large variety of diarrhoeagenic bacteria was investigated. As a result, the following dose dependent inhibitions were obtained: (a) against the cell association of enterotoxigenic, diffusely adhering and enteropathogenic Escherichia coli, and Salmonella typhimurium; (b) against the cell invasion by enteropathogenic Escherichia coli, Yersinia pseudotuberculosis, and Salmonella typhimurium. Incubations of L acidophilus LA 1 before and together with enterovirulent E coli were more effective than incubation after infection by E coli. Images Figure 1 Figure 2 PMID:8174985

  3. Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria.

    PubMed

    Bernet, M F; Brassart, D; Neeser, J R; Servin, A L

    1994-04-01

    Four human Lactobacillus acidophilus strains were tested for their ability to adhere onto human enterocyte like Caco-2 cells in culture. The LA 1 strain exhibited a high calcium independent adhesive property. This adhesion onto Caco-2 cells required a proteinaceous adhesion promoting factor, which was present in the spent bacterial broth culture supernatant. LA 1 strain also strongly bound to the mucus secreted by the homogeneous cultured human goblet cell line HT29-MTX. The inhibitory effect of LA 1 organisms against Caco-2 cell adhesion and cell invasion by a large variety of diarrhoeagenic bacteria was investigated. As a result, the following dose dependent inhibitions were obtained: (a) against the cell association of enterotoxigenic, diffusely adhering and enteropathogenic Escherichia coli, and Salmonella typhimurium; (b) against the cell invasion by enteropathogenic Escherichia coli, Yersinia pseudotuberculosis, and Salmonella typhimurium. Incubations of L acidophilus LA 1 before and together with enterovirulent E coli were more effective than incubation after infection by E coli. PMID:8174985

  4. Effect of some nutritional and environmental parameters on the production of diacetyl and on starch consumption by Pediococcus pentosaceus and Lactobacillus acidophilus in submerged cultures.

    PubMed

    Escamilla, M L; Valdés, S E; Soriano, J; Tomasini, A

    2000-01-01

    Three series of 5-day submerged cultures with Pediococcus pentosaceus MITJ-10 and Lactobacillus acidophilus Hansen 1748 were carried out in starch-based media, and the effect of cultural factors on the changes of starch, diacetyl and amylase activity determined. In axenic cultures, Ped. pentosaceus MITJ-10 produced more diacetyl (63.27 mg l(-1)) by adding glucose, yeast extract and CaCO3 (P < 0.01), at 28 degrees C (P < 0.05); but more starch was consumed (18.4 g l(-1)) in the absence of glucose (P < 0.01). Lact. acidophilus Hansen 1748 consumed more starch (26.56 g l(-1)) at 28 degrees C, with CaCO3, glucose (P < 0.01) and yeast extract (P < 0.05); however, the amylolytic activity (10077U l(-1)) was favoured at 35 degrees C (P < 0.01). Little starch was consumed in mixed cultures due to the low pH; nevertheless, diacetyl content rose to 135.76 mg l(-1) at 32 degrees C (P < 0.01). Therefore, both studied strains might be useful to produce aromatic extensors from starchy substrates. These natural aromatic extensors are of interest to the food industry. PMID:10735253

  5. A Lactobacillus acidophilus strain of human gastrointestinal microbiota origin elicits killing of enterovirulent Salmonella enterica Serovar Typhimurium by triggering lethal bacterial membrane damage.

    PubMed

    Coconnier-Polter, Marie-Hélène; Liévin-Le Moal, Vanessa; Servin, Alain L

    2005-10-01

    The human gastrointestinal microbiota produces antagonistic activities against gastrointestinal bacterial pathogens. We undertook a study to investigate the mechanism(s) by which a Lactobacillus acidophilus strain of human microbiota origin antagonizes the gram-negative enteroinvasive pathogen Salmonella enterica serovar Typhimurium. We showed that the cell-free culture supernatant of L. acidophilus strain LB (LB-CFCS) induced the following effects in S. enterica SL1344: (i) a decrease in intracellular ATP that paralleled bacterial death, (ii) the release of lipopolysaccharide, (iii) permeabilization of the bacterial membrane, and (iv) an increase in the sensitivity of Salmonella to the lytic action of sodium dodecyl sulfate. Finally, we showed using two mutant strains of Salmonella, PhoP MS7953s and PmrA JKS1170, that the two-component regulatory systems PhoP-PhoQ and PmrA-PmrB that regulate the mechanisms of resistance to antibacterial agents in Salmonella did not influence the anti-Salmonella effect of LB-CFCS. PMID:16204528

  6. Impact of colostomy on intestinal microflora and bacterial translocation in young rats fed with heat-killed Lactobacillus acidophilus strain LB.

    PubMed

    Rigon-Zimmer, K; Mullié, C; Tir-Touil-Meddah, A; Buisson, P; Léké, L; Canarelli, J P

    2008-01-01

    A rat animal model of left colostomy was found to significantly impair the growth curve of rats. Assessment of the intestinal flora showed that colostomy mostly affects the cecal but not colonic microflora. Generally, the number of enterococci was increased in both ileum and cecum; cecal lactobacilli also rose, accounting for a promotion of lactic acid bacteria in colostomised rats. No significant differences between colostomised, laparotomised and control rats could be observed for the translocation of intestinal bacteria to internal organs of rats (i.e. spleen, kidneys, lungs or liver), whatever their diet. Heat-killed Lactobacillus acidophilus strain LB administration (dead probiotic bacteria) tended to exhibit a stimulatory effect on bifidobacteria, probably affecting the culture-medium fermentation substances included in the pharmaceutical product. This effect was abolished by laparotomy and colostomy. A trend towards a probiotic-like effect, not susceptible to colostomy, was also witnessed as counts of lactobacilli tended to increase in both cecum and colon of all animals fed with L. acidophilus LB. PMID:18481224

  7. Antagonistic activity of Lactobacillus acidophilus LB against intracellular Salmonella enterica serovar Typhimurium infecting human enterocyte-like Caco-2/TC-7 cells.

    PubMed

    Coconnier, M H; Liévin, V; Lorrot, M; Servin, A L

    2000-03-01

    To gain further insight into the mechanism by which lactobacilli develop antimicrobial activity, we have examined how Lactobacillus acidophilus LB inhibits the promoted cellular injuries and intracellular lifestyle of Salmonella enterica serovar Typhimurium SL1344 infecting the cultured, fully differentiated human intestinal cell line Caco-2/TC-7. We showed that the spent culture supernatant of strain LB (LB-SCS) decreases the number of apical serovar Typhimurium-induced F-actin rearrangements in infected cells. LB-SCS treatment efficiently decreased transcellular passage of S. enterica serovar Typhimurium. Moreover, LB-SCS treatment inhibited intracellular growth of serovar Typhimurium, since treated intracellular bacteria displayed a small, rounded morphology resembling that of resting bacteria. We also showed that LB-SCS treatment inhibits adhesion-dependent serovar Typhimurium-induced interleukin-8 production. PMID:10698785

  8. Cost effectiveness of cryoprotective agents and modified De-man Rogosa Sharpe medium on growth of Lactobacillus acidophilus.

    PubMed

    Pyar, Hassan; Peh, Kok-Khiang

    2014-04-01

    The effect of cryoprotective agents (namely, sodium chloride, sucrose, dextran, sorbitol, monosodium glutamate, glycerol, skim milk and skim milk with malt extract) and modified De-Man Rogosa Sharpe (MRS) medium, on the viability and stability of L. acidophilus ATCC 4962, was investigated. The modified MRS medium was not only economical, but it gave a relatively higher yield of L. acidophilus ATCC 4962 than the commercial MRS. Monosodium glutamate, skim milk and skim milk with malt extract provided significantly higher viable counts, with optimum concentration at 0.3%. Nevertheless, at concentration above 0.5%, there was a reduction in cell viability, which could be attributed to cell shrinkage associated with osmotic pressure changes inside the cells. It was also found that L. acidophilus ATCC 4962 was stable at 28 degrees C for eight weeks. Skim milk demonstrated a significant growth of probiotics. Skim milk was the preferred cryoprotective agent, as it is of low cost, easily available and demonstrated a significant growth of probiotics. In conclusion, modified MRS medium with skim milk is suggested for the remarkable growth and yield of L. acidophilus. PMID:25911832

  9. Antimicrobial efficacy of Acacia nilotica, Murraya koenigii (L.) Sprengel, Eucalyptus hybrid, Psidium guajava extracts and their combination on Streptococcus mutans and Lactobacillus acidophilus

    PubMed Central

    Chandra Shekar, B. R.; Nagarajappa, Ramesh; Jain, Richa; Singh, Rupal; Thakur, Rupesh; Shekar, Suma

    2016-01-01

    Background: The aim of this in vitro study was to assess antimicrobial efficacy of Acacia nilotica, Murraya koenigii (L.) Sprengel, Eucalyptus hybrid, Psidium guajava extracts, and their combination on Streptococcus mutans and Lactobacillus acidophilus. Materials and Methods: The branches of four plants were collected, identified, and authenticated by a taxonomist. The plants were rinsed in water, healthy leaves were separated and shade dried over a period of 3-4 weeks. Soxhlet apparatus using ethanol was employed for extraction procedure. The combinations of plant extracts were prepared by mixing equal quantities of 10% solutions of each of these extracts. 0.2% chlorhexidine and dimethyl sulfoxide were used as positive and negative controls, respectively. The antimicrobial efficacy testing was done using agar well-diffusion method under anaerobic conditions. The mean diameter of inhibition zone was computed and compared between different categories using one-way analysis of variance and Tukey's post-hoc test. A qualitative assay was carried out to identify the various phytochemical constituents in the plants. The data was assessed by SPSS version 20. The statistical significance was fixed at 0.05. Results: All the plants extracts and their combinations inhibited S. mutans and L. acidophilus. However, the quadruple combination of A. nilotica + M. koenigii (L.) Sprengel + Eucalyptus hybrid + P. guajava produced the maximum inhibition zone (23.5 ± 2.2 mm) against S. mutans. Although, 0.2% chlorhexidine produced the highest inhibition zone against L. acidophilus (18.8 ± 1.2 mm), A. nilotica extract produced maximum inhibition among the various plant extracts and their combinations (14.1 ± 1.8 mm). Conclusion: All the individual plant extracts and their combinations were effective against S. mutans and L. acidophilus. These could be tried as herbal alternates to chlorhexidine. However, these in vitro results have to be further evaluated for any toxicity of the

  10. Effect of buckwheat flour and oat bran on growth and cell viability of the probiotic strains Lactobacillus rhamnosus IMC 501®, Lactobacillus paracasei IMC 502® and their combination SYNBIO®, in synbiotic fermented milk.

    PubMed

    Coman, Maria Magdalena; Verdenelli, Maria Cristina; Cecchini, Cinzia; Silvi, Stefania; Vasile, Aida; Bahrim, Gabriela Elena; Orpianesi, Carla; Cresci, Alberto

    2013-10-15

    Fermented foods have a great significance since they provide and preserve large quantities of nutritious foods in a wide diversity of flavors, aromas and texture, which enrich the human diet. Originally fermented milks were developed as a means of preserving nutrients and are the most representatives of the category. The first aim of this study was to screen the effect of buckwheat flour and oat bran as prebiotics on the production of probiotic fiber-enriched fermented milks, by investigating the kinetics of acidification of buckwheat flour- and oat bran-supplemented milk fermented by Lactobacillus rhamnosus IMC 501®, Lactobacillus paracasei IMC 502® and their 1:1 combination named SYNBIO®. The probiotic strains viability, pH and sensory characteristics of the fermented fiber-enriched milk products, stored at 4 °C for 28 days were also monitored. The results showed that supplementation of whole milk with the tested probiotic strains and the two vegetable substrates results in a significant faster lowering of the pH. Also, the stability of L. rhamnosus IMC 501®, L. paracasei IMC 502® and SYNBIO® during storage at 4 °C for 28 days in buckwheat flour- and oat bran-supplemented samples was remarkably enhanced. The second aim of the study was to develop a new synbiotic product using the best combination of probiotics and prebiotics by promoting better growth and survival and be acceptable to the consumers with high concentration of probiotic strain. This new product was used to conduct a human feeding trial to validate the fermented milk as a carrier for transporting bacterial cells into the human gastrointestinal tract. The probiotic strains were recovered from fecal samples in 40 out of 40 volunteers fed for 4 weeks one portion per day of synbiotic fermented milk carrying about 10(9) viable cells. PMID:24140807

  11. The Lactobacillus acidophilus S-layer protein gene expression site comprises two consensus promoter sequences, one of which directs transcription of stable mRNA.

    PubMed Central

    Boot, H J; Kolen, C P; Andreadaki, F J; Leer, R J; Pouwels, P H

    1996-01-01

    S-proteins are proteins which form a regular structure (S-layer) on the outside of the cell walls of many bacteria. Two S-protein-encoding genes are located in opposite directions on a 6.0-kb segment of the chromosome of Lactobacillus acidophilus ATCC 4356 bacteria. Inversion of this chromosomal segment occurs through recombination between two regions with identical sequences, thereby interchanging the expressed and the silent genes. In this study, we show that the region involved in recombination also has a function in efficient S-protein production. Two promoter sequences are present in the S-protein gene expression site, although only the most downstream promoter (P-1) is used to direct mRNA synthesis. S-protein mRNA directed by this promoter has a half-life of 15 min. Its untranslated leader can form a stable secondary structure in which the 5' end is base paired, whereas the ribosome-binding site is exposed. Truncation of this leader sequence results in a reduction in protein production, as shown by reporter gene analysis of Lactobacillus casei. The results obtained indicate that the untranslated leader sequence of S-protein mRNA is involved in efficient S-protein production. PMID:8808926

  12. Lactobacillus species: taxonomic complexity and controversial susceptibilities.

    PubMed

    Goldstein, Ellie J C; Tyrrell, Kerin L; Citron, Diane M

    2015-05-15

    The genus Lactobacillus is a taxonomically complex and is composed of over 170 species that cannot be easily differentiated phenotypically and often require molecular identification. Although they are part of the normal human gastrointestinal and vaginal flora, they can also be occasional human pathogens. They are extensively used in a variety of commercial products including probiotics. Their antimicrobial susceptibilities are poorly defined in part because of their taxonomic complexity and are compounded by the different methods recommended by Clinical Laboratory Standards Institute and International Dairy Foundation. Their use as probiotics for prevention of Clostridium difficile infection is prevalent among consumers worldwide but raises the question of will the use of any concurrent antibiotic effect their ability to survive. Lactobacillus species are generally acid resistant and are able to survive ingestion. They are generally resistant to metronidazole, aminoglycosides and ciprofloxacin with L. acidophilus being susceptible to penicillin and vancomycin, whereas L. rhamnosus and L. casei are resistant to metronidazole and vancomycin. PMID:25922408

  13. Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major.

    PubMed

    Dawood, Mahmoud A O; Koshio, Shunsuke; Ishikawa, Manabu; Yokoyama, Saichiro; El Basuini, Mohammed F; Hossain, Md Sakhawat; Nhu, Truong H; Dossou, Serge; Moss, Amina S

    2016-02-01

    Pagrus major fingerlings (3·29 ± 0·02 g) were fed with basal diet (control) supplemented with Lactobacillus rhamnosus (LR), Lactococcus lactis (LL), and L. rhamnosus + L. lactis (LR + LL) at 10(6) cell g(-1) feed for 56 days. Feeding a mixture of LR and LL significantly increased feed utilization (FER and PER), intestine lactic acid bacteria (LAB) count, plasma total protein, alternative complement pathway (ACP), peroxidase, and mucus secretion compared with the other groups (P < 0.05). Serum lysozyme activity (LZY) significantly increased in LR + LL when compared with the control group. Additionally, fish fed the LR + LL diet showed a higher growth performance (Fn wt, WG, and SGR) and protein digestibility than the groups fed an individual LR or the control diet. Superoxide dismutase (SOD) significantly increased in LR and LR + LL groups when compared with the other groups. Moreover, the fish fed LR or LL had better improvement (P < 0.05) in growth, feed utilization, body protein and lipid contents, digestibility coefficients (dry matter, protein, and lipid), protease activity, total intestine and LAB counts, hematocrit, total plasma protein, biological antioxidant potential, ACP, serum and mucus LZY and bactericidal activities, peroxidase, SOD, and mucus secretion than the control group. Interestingly, fish fed diets with LR + LL showed significantly lower total cholesterol and triglycerides when compared with the other groups (P < 0.05). These data strongly suggest that a mixture of LR and LL probiotics may serve as a healthy immunostimulating feed additive in red sea bream aquaculture. PMID:26766177

  14. Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C)

    PubMed Central

    2012-01-01

    Background Some studies have shown that probiotics, including Lactobacillus rhamnosus CRL1505, had the potential to beneficially modulate the outcome of certain bacterial and viral respiratory infections. However, these studies did not determine the mechanism(s) by which probiotics contribute to host defense against respiratory viruses. Results In this work we demonstrated that orally administered Lactobacillus rhamnosus CRL1505 (Lr1505) was able to increase the levels of IFN-γ, IL-10 and IL-6 in the respiratory tract and the number of lung CD3+CD4+IFN-γ+ T cells. To mimic the pro-inflammatory and physiopathological consecuences of RNA viral infections in the lung, we used an experimental model of lung inflammation based on the administration of the artificial viral pathogen-associated molecular pattern poly(I:C). Nasal administration of poly(I:C) to mice induced a marked impairment of lung function that was accompanied by the production of pro-inflammatory mediators and inflammatory cell recruitment into the airways. The preventive administration of Lr1505 reduced lung injuries and the production of TNF-α, IL-6, IL-8 and MCP-1 in the respiratory tract after the challenge with poly(I:C). Moreover, Lr1505 induced a significant increase in lung and serum IL-10. We also observed that Lr1505 was able to increase respiratory IFN-γ levels and the number of lung CD3+CD4+IFN-γ+ T cells after poly(I:C) challenge. Moreover, higher numbers of both CD103+ and CD11bhigh dendritic cells and increased expression of MHC-II, IL-12 and IFN-γ in these cell populations were found in lungs of Lr1505-treated mice. Therefore, Lr1505 treatment would beneficially regulate the balance between pro-inflammatory mediators and IL-10, allowing an effective inflammatory response against infection and avoiding tissue damage. Conclusions Results showed that Lr1505 would induce a mobilization of cells from intestine and changes in cytokine profile that would be able to beneficially modulate

  15. The Effect of Lactobacillus crispatus and Lactobacillus rhamnosusCulture Supernatants on Expression of Autophagy Genes and HPV E6 and E7 Oncogenes in The HeLa Cell Line

    PubMed Central

    Motevaseli, Elahe; Azam, Rosa; Akrami, Seyed Mohammad; Mazlomy, Mohammadali; Saffari, Mojtaba; Modarressi, Mohammad Hossein; Daneshvar, Maryam; Ghafouri-Fard, Soudeh

    2016-01-01

    Objective The aim of this study was to clarify the mechanism by which lactobacilli exert their cytotoxic effects on cervical cancer cells. In addition, we aimed to evalu- ate the effect of lactobacilli on the expression of human papilloma virus (HPV) onco- genes. Materials and Methods In this experimental study, using quantitative real-time polymer- ase chain reaction (PCR), we analyzed the expression of CASP3 and three autophagy genes [ATG14, BECN1 and alpha 2 catalytic subunit of AMPK (PRKAA2)] along with HPV18 E6 and E7 genes in HeLa cells before and after treatment with Lactobacillus crispatus and Lactobacillus rhamnosus culture supernatants. Results The expression of CASP3 and autophagy genes in HeLa cells was de- creased after treatment with lactobacilli culture supernatants. However, this de- crease was not significant for PRKAA2 when compared with controls. In addition, expression of HPV E6 was significantly decreased after treatment with lactobacilli culture supernatants. Conclusion Lactobacilli culture supernatants can decrease expression of ATG14 and BECN1 as well as the HPV E6 oncogene. It has been demonstrated that the main changes occurring during cervical carcinogenesis in cell machinery can be reversed by suppression of HPV oncogenes. Therefore, downregulation of HPV E6 by lacto- bacilli may have therapeutic potential for cervical cancer. As the role of autophagy in cancer is complicated, further work is required to clarify the link between downregula- tion of autophagy genes and antiproliferative effects exerted by lactobacilli. PMID:26862519

  16. Influence of milk fermented with Lactobacillus rhamnosus NCDC 17 alone and in combination with herbal ingredients on diet induced adiposity and related gene expression in C57BL/6J mice.

    PubMed

    Pothuraju, Ramesh; Sharma, Raj Kumar; Chagalamarri, Jayasimha; Kavadi, Praveen Kumar; Jangra, Surender

    2015-11-01

    Obesity has become a major health problem in developed countries and is rapidly catching up in the developing world due to changes in their life style. Dietary incorporation of functional foods, including probiotic fermented milk and herbal ingredients, is being tried to ameliorate metabolic disorders. In the present study, the effect of dietary supplementation of a probiotic (Lactobacillus rhamnosus NCDC 17) fermented milk alone or either of the herbal preparations (Aloe vera/Gymnema sylvestre powders, 1% w/w) on the progression of obesity has been studied in C57BL/6J mice fed with a high fat diet for 12 weeks. At the end of the experimental period, oral administration of L. rhamnosus and herbs resulted in a significant decrease in the body weight, epididymal fat mass, fasting blood glucose and serum insulin levels. Supplementation of the probiotic L. rhamnosus alone and in combination with herbs showed a significant decrease in the adipocyte cell size and an increase in the number. Finally, obesity related adipokines levels were maintained at normal by the treatment groups. Thus, dietary intervention of milk fermented with probiotic L. rhamnosus alone or in combination with any of the herbal preparations seems to show anti-obesity and anti-inflammatory properties. PMID:26327356

  17. Yogurt containing probiotic Lactobacillus rhamnosus GR-1 and L. reuteri RC-14 helps resolve moderate diarrhea and increases CD4 count in HIV/AIDS patients.

    PubMed

    Anukam, Kingsley C; Osazuwa, Emanual O; Osadolor, Humphrey B; Bruce, Andrew W; Reid, Gregor

    2008-03-01

    HIV/AIDS is changing the human landscape in sub-Saharan Africa. Relatively few patients receive antiretroviral therapy, and many suffer from debilitating diarrhea that affects their quality of life. Given the track record of probiotics to alleviate diarrhea, conventional yogurt fermented with Lactobacillus delbruekii var bulgaricus and Streptococcus thermophilus was supplemented with probiotic Lactobacillus rhamnosus GR-1 and L. reuteri RC-14. Twenty-four HIV/AIDS adult female patients (18 to 44 y) with clinical signs of moderate diarrhea, CD4 counts over 200, and not receiving antiretrovirals or dietary supplements, consumed either 100 mL supplemented or unsupplemented yogurt per day for 15 days. Hematologic profiles, CD4 cell counts, and quality of life was evaluated at baseline, 15 and 30 days postprobiotic-yogurt feeding. There was no significant alteration in the hematologic parameters of both groups before and after the probiotic-yogurt feeding. The probiotic yogurt group at baseline, 15 and 30 days had a mean WBC count of 5.8+/-0.76 x 10(9)/L, 6.0+/-1.02 x 10(9)/L, and 5.4+/-0.14 x 10(9)/L, respectively. However, the mean CD4 cell count remained the same or increased at 15 and 30 days in 11/12 probiotic-treated subjects compared to 3/12 in the control. Diarrhea, flatulence, and nausea resolved in 12/12 probiotic-treated subjects within 2 days, compared to 2/12 receiving yogurt for 15 days. This is the first study to show the benefits of probiotic yogurt on quality of life of women in Nigeria with HIV/AIDS, and suggests that perhaps a simple fermented food can provide some relief in the management of the AIDS epidemic in Africa. PMID:18223503

  18. Effect of salt stress on morphology and membrane composition of Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium bifidum, and their adhesion to human intestinal epithelial-like Caco-2 cells.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2016-04-01

    The effects of NaCl reduction (10.0, 7.5, 5.0, 2.5, and 0% NaCl) and its substitution with KCl (50% substitution at each given concentration) on morphology of Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium longum was investigated using transmission electron microscopy. Changes in membrane composition, including fatty acids and phospholipids, were investigated using gas chromatography and thin layer chromatography. Adhesion ability of these bacteria to human intestinal epithelial-like Caco-2 cells, as affected by NaCl and its substitution with KCl, was also evaluated. Bacteria appeared elongated and the intracellular content appeared contracted when subjected to salt stress, as observed by transmission electron microscopy. Fatty acid content was altered with an increase in the ratio of unsaturated to saturated fatty acid content on increasing the NaCl-induced stress. Among the phospholipids, phosphatidylglycerol was reduced, whereas phosphatidylinositol and cardioplipin were increased when the bacteria were subjected to salt stress. There was a significant reduction in adhesion ability of the bacteria to Caco-2 cells when cultured in media supplemented with NaCl; however, the adhesion ability was improved on substitution with KCl at a given total salt concentration. The findings provide insights into bacterial membrane damage caused by NaCl. PMID:26874411

  19. Inhibition of miR122a by Lactobacillus rhamnosus GG culture supernatant increases intestinal occludin expression and protects mice from alcoholic liver disease.

    PubMed

    Zhao, Haiyang; Zhao, Cuiqing; Dong, Yuanyuan; Zhang, Min; Wang, Yuhua; Li, Fengyuan; Li, Xiaokun; McClain, Craig; Yang, Shulin; Feng, Wenke

    2015-05-01

    Alcoholic liver disease (ALD) has a high morbidity and mortality. Chronic alcohol consumption causes disruption of intestinal microflora homeostasis, intestinal tight junction barrier dysfunction, increased endotoxemia, and eventually liver steatosis/steatohepatitis. Probiotic Lactobacillus rhamnosus GG (LGG) and the bacteria-free LGG culture supernatant (LGGs) have been shown to promote intestinal epithelial integrity and protect intestinal barrier function in ALD. However, little is known about how LGGs mechanistically works to increase intestinal tight junction proteins. Here we show that chronic ethanol exposure increased intestinal miR122a expression, which decreased occludin expression leading to increased intestinal permeability. Moreover, LGGs supplementation decreased ethanol-elevated miR122a level and attenuated ethanol-induced liver injury in mice. Similar to the effect of ethanol exposure, overexpression of miR122a in Caco-2 monolayers markedly decreased occludin protein levels. In contrast, inhibition of miR122a increased occludin expression. We conclude that LGGs supplementation functions in intestinal integrity by inhibition of miR122a, leading to occludin restoration in mice exposed to chronic ethanol. PMID:25746479

  20. Kinetic model-based feed-forward controlled fed-batch fermentation of Lactobacillus rhamnosus for the production of lactic acid from Arabic date juice.

    PubMed

    Choi, Minsung; Al-Zahrani, Saeed M; Lee, Sang Yup

    2014-06-01

    Arabic date is overproduced in Arabic countries such as Saudi Arabia and Iraq and is mostly composed of sugars (70-80 wt%). Here we developed a fed-batch fermentation process by using a kinetic model for the efficient production of lactic acid to a high concentration from Arabic date juice. First, a kinetic model of Lactobacillus rhamnosus grown on date juice in batch fermentation was constructed in EXCEL so that the estimation of parameters and simulation of the model can be easily performed. Then, several fed-batch fermentations were conducted by employing different feeding strategies including pulsed feeding, exponential feeding, and modified exponential feeding. Based on the results of fed-batch fermentations, the kinetic model for fed-batch fermentation was also developed. This new model was used to perform feed-forward controlled fed-batch fermentation, which resulted in the production of 171.79 g l(-1) of lactic acid with the productivity and yield of 1.58 and 0.87 g l(-1) h(-1), respectively. PMID:24100793

  1. Microencapsulation of Lactobacillus rhamnosus GG by Transglutaminase Cross-Linked Soy Protein Isolate to Improve Survival in Simulated Gastrointestinal Conditions and Yoghurt.

    PubMed

    Li, Chun; Wang, Chun-Ling; Sun, Yu; Li, Ai-Li; Liu, Fei; Meng, Xiang-Chen

    2016-07-01

    Microencapsulation is an effective way to improve the survival of probiotics in simulated gastrointestinal (GI) conditions and yoghurt. In this study, microencapsulation of Lactobacillus rhamnosus GG (LGG) was prepared by first cross-linking of soy protein isolate (SPI) using transglutaminase (TGase), followed by embedding the bacteria in cross-linked SPI, and then freeze-drying. The survival of microencapsulated LGG was evaluated in simulated GI conditions and yoghurt. The results showed that a high microencapsulation yield of 67.4% was obtained. The diameter of the microencapsulated LGG was in the range of 52.83 to 275.16 μm. Water activity did not differ between free and microencapsulated LGG after freeze-drying. The survival of microencapsulated LGG under simulated gastric juice (pH 2.5 and 3.6), intestinal juice (0.3% and 2% bile salt) and storage at 4 °C were significantly higher than that of free cells. The survival of LGG in TGase cross-linked SPI microcapsules was also improved to 14.5 ± 0.5% during storage in yoghurt. The microencapsulation of probiotics by TGase-treated SPI can be a suitable alternative to polysaccharide gelation technologies. PMID:27228279

  2. New insights about pilus formation in gut-adapted Lactobacillus rhamnosus GG from the crystal structure of the SpaA backbone-pilin subunit

    PubMed Central

    Chaurasia, Priyanka; Pratap, Shivendra; von Ossowski, Ingemar; Palva, Airi; Krishnan, Vengadesan

    2016-01-01

    Thus far, all solved structures of pilin-proteins comprising sortase-assembled pili are from pathogenic genera and species. Here, we present the first crystal structure of a pilin subunit (SpaA) from a non-pathogen host (Lactobacillus rhamnosus GG). SpaA consists of two tandem CnaB-type domains, each with an isopeptide bond and E-box motif. Intriguingly, while the isopeptide bond in the N-terminal domain forms between lysine and asparagine, the one in the C-terminal domain atypically involves aspartate. We also solved crystal structures of mutant proteins where residues implicated in forming isopeptide bonds were replaced. Expectedly, the E-box-substituted E139A mutant lacks an isopeptide bond in the N-terminal domain. However, the C-terminal E269A substitution gave two structures; one of both domains with their isopeptide bonds present, and another of only the N-terminal domain, but with an unformed isopeptide bond and significant conformational changes. This latter crystal structure has never been observed for any other Gram-positive pilin. Notably, the C-terminal isopeptide bond still forms in D295N-substituted SpaA, irrespective of E269 being present or absent. Although E-box mutations affect SpaA proteolytic and thermal stability, a cumulative effect perturbing normal pilus polymerization was unobserved. A model showing the polymerized arrangement of SpaA within the SpaCBA pilus is proposed. PMID:27349405

  3. New insights about pilus formation in gut-adapted Lactobacillus rhamnosus GG from the crystal structure of the SpaA backbone-pilin subunit.

    PubMed

    Chaurasia, Priyanka; Pratap, Shivendra; von Ossowski, Ingemar; Palva, Airi; Krishnan, Vengadesan

    2016-01-01

    Thus far, all solved structures of pilin-proteins comprising sortase-assembled pili are from pathogenic genera and species. Here, we present the first crystal structure of a pilin subunit (SpaA) from a non-pathogen host (Lactobacillus rhamnosus GG). SpaA consists of two tandem CnaB-type domains, each with an isopeptide bond and E-box motif. Intriguingly, while the isopeptide bond in the N-terminal domain forms between lysine and asparagine, the one in the C-terminal domain atypically involves aspartate. We also solved crystal structures of mutant proteins where residues implicated in forming isopeptide bonds were replaced. Expectedly, the E-box-substituted E139A mutant lacks an isopeptide bond in the N-terminal domain. However, the C-terminal E269A substitution gave two structures; one of both domains with their isopeptide bonds present, and another of only the N-terminal domain, but with an unformed isopeptide bond and significant conformational changes. This latter crystal structure has never been observed for any other Gram-positive pilin. Notably, the C-terminal isopeptide bond still forms in D295N-substituted SpaA, irrespective of E269 being present or absent. Although E-box mutations affect SpaA proteolytic and thermal stability, a cumulative effect perturbing normal pilus polymerization was unobserved. A model showing the polymerized arrangement of SpaA within the SpaCBA pilus is proposed. PMID:27349405

  4. Transcriptional and Functional Analysis of Oxalyl-Coenzyme A (CoA) Decarboxylase and Formyl-CoA Transferase Genes from Lactobacillus acidophilus

    PubMed Central

    Azcarate-Peril, M. Andrea; Bruno-Bárcena, Jose M.; Hassan, Hosni M.; Klaenhammer, Todd R.

    2006-01-01

    Oxalic acid is found in dietary sources (such as coffee, tea, and chocolate) or is produced by the intestinal microflora from metabolic precursors, like ascorbic acid. In the human intestine, oxalate may combine with calcium, sodium, magnesium, or potassium to form less soluble salts, which can cause pathological disorders such as hyperoxaluria, urolithiasis, and renal failure in humans. In this study, an operon containing genes homologous to a formyl coenzyme A transferase gene (frc) and an oxalyl coenzyme A decarboxylase gene (oxc) was identified in the genome of the probiotic bacterium Lactobacillus acidophilus. Physiological analysis of a mutant harboring a deleted version of the frc gene confirmed that frc expression specifically improves survival in the presence of oxalic acid at pH 3.5 compared with the survival of the wild-type strain. Moreover, the frc mutant was unable to degrade oxalate. These genes, which have not previously been described in lactobacilli, appear to be responsible for oxalate degradation in this organism. Transcriptional analysis using cDNA microarrays and reverse transcription-quantitative PCR revealed that mildly acidic conditions were a prerequisite for frc and oxc transcription. As a consequence, oxalate-dependent induction of these genes occurred only in cells first adapted to subinhibitory concentrations of oxalate and then exposed to pH 5.5. Where genome information was available, other lactic acid bacteria were screened for frc and oxc genes. With the exception of Lactobacillus gasseri and Bifidobacterium lactis, none of the other strains harbored genes for oxalate utilization. PMID:16517636

  5. Impact of Bifidobacterium animalis subsp. lactis BB-12 and, Lactobacillus acidophilus LA-5-containing yoghurt, on fecal bacterial counts of healthy adults.

    PubMed

    Savard, Patricia; Lamarche, Benoît; Paradis, Marie-Eve; Thiboutot, Hélène; Laurin, Émilie; Roy, Denis

    2011-09-01

    This randomized, placebo-controlled, double blind, parallel dose-response study investigated the impact of 4-week commercial yoghurt consumption supplemented with Bifidobacterium animalis subsp. lactis (BB-12) and Lactobacillus acidophilus (LA-5) on fecal bacterial counts of healthy adults. Fifty-eight volunteers were randomly assigned to three different groups: 1. placebo (no probiotic, no starter and no green tea extract); 2. Yoptimal (10(9)cfu/100g of BB-12 and LA-5 and 40mg of green tea extract) and 3. Yoptimal-10 (10(10)cfu/100g of BB-12, 10(9)cfu/100g of LA-5 and 40mg of green tea extract). These yoghurt products also contained Lactobacillus delbrueckii subsp. bulgaricus (10(7)cfu/100g) and Streptococcus thermophilus (10(10)cfu/100g). The quantitative PCR (qPCR) results showed that there were significant increases (P=0.02) in bifidobacteria counts with the Yoptimal treatment as compared to baseline. The fecal numbers of B. animalis subsp. lactis and LA-5 significantly increased in the two probiotic treatments compared to the placebo treatment. Viable counts of fecal lactobacilli were significantly higher (P=0.05) and those of enterococci were significantly lower (P=0.04) after the intervention when compared to placebo. No significant difference was observed between treatments in volunteers' weight, waist girth, blood pressure, fasting plasma triglyceride and HDL-C concentrations, as well as cholesterol/HDL-cholesterol ratio. However, a significant increase in plasma cholesterol levels was observed in the placebo group (P=0.0018) but the levels remained stable in the two probiotic yoghurt groups. These results show that probiotic strains supplemented in the form of yoghurt remain active during gut transit and are associated with an increase in beneficial bacteria and a reduction in potentially pathogenic bacteria. This trial was registered at clinicaltrials.gov as NCT00730626. PMID:21296446

  6. Early administration of probiotic Lactobacillus acidophilus and/or prebiotic inulin attenuates pathogen-mediated intestinal inflammation and Smad 7 cell signaling

    PubMed Central

    Foye, Ondulla T.; Huang, I-Fei; Chiou, Christine C.; Walker, W. Allan; Shi, Hai Ning

    2014-01-01

    Immaturity of gut-associated immunity may contribute to pediatric mortality associated with enteric infections. A murine model to parallel infantile enteric disease was used to determine the effects of probiotic, Lactobacillus acidophilus (La), prebiotic, inulin, or both (synbiotic, syn) on pathogen-induced inflammatory responses, NF-κB, and Smad 7 signaling. Newborn mice were inoculated bi-weekly for 4 weeks with La, inulin, or syn and challenged with Citrobacter rodentium (Cr) at 5 weeks. Mouse intestinal epithelial cells (CMT93) were exposed to Cr to determine temporal alterations in NF-Kappa B and Smad 7 levels. Mice with pretreatment of La, inulin, and syn show reduced intestinal inflammation following Cr infection compared with controls, which is associated with significantly reduced bacterial colonization in La, inulin, and syn animals. Our results further show that host defense against Cr infection correlated with enhanced colonic IL-10 and transforming growth factor-β expression and inhibition of NF-κB in syn-treated mice, whereas mice pretreated with syn, La, or inulin had attenuation of Cr-induced Smad 7 expression. There was a temporal Smad 7 and NF-κB intracellular accumulation post-Cr infection and post-tumor necrosis factor stimulation in CMT93 cells. These results, therefore, suggest that probiotic, La, prebiotic inulin, or synbiotic may promote host-protective immunity and attenuate Cr-induced intestinal inflammation through mechanisms affecting NF-κB and Smad 7 signaling. PMID:22524476

  7. In vitro gastrointestinal resistance of Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 in soy and/or milk-based synbiotic apple ice creams.

    PubMed

    Matias, Natalia Silva; Padilha, Marina; Bedani, Raquel; Saad, Susana Marta Isay

    2016-10-01

    The viability and resistance to simulated gastrointestinal (GI) conditions of Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 in synbiotic ice creams, in which milk was replaced by soy extract and/or whey protein isolate (WPI) with inulin, were investigated. The ice creams were showed to be satisfactory vehicles for La-5 and Bb-12 (populations around 7.5logCFU/g), even after the whole storage period (84days/-18°C). In all formulations, the propidium monoazide qPCR (PMA-qPCR) analysis demonstrated that probiotics could resist the in vitro GI assay, with significant survival levels, achieving survival rates exceeding 50%. Additionally, scanning electron microscopy images evidenced cells with morphological differences, suggesting physiological changes in response to the induced stress during the in vitro assay. Although all formulations provided resistance to the probiotic strains under GI stress, the variation found in probiotic survival suggests that GI tolerance is indeed affected by the choice of the food matrix. PMID:27387254

  8. In vitro fermentation of rice bran combined with Lactobacillus acidophilus 14 150B or Bifidobacterium longum 05 by the canine faecal microbiota.

    PubMed

    Ogué-Bon, Eva; Khoo, Christina; Hoyles, Lesley; McCartney, Anne L; Gibson, Glenn R; Rastall, Robert A

    2011-03-01

    The fermentability of rice bran (RB), alone or in combination with one of two probiotics, by canine faecal microbiota was evaluated in stirred, pH-controlled, anaerobic batch cultures. RB enhanced the levels of bacteria detected by probes Bif164 (bifidobacteria) and Lab158 (lactic acid bacteria); however, addition of the probiotics did not have a significant effect on the predominant microbial counts compared with RB alone. RB sustained levels of Bifidobacterium longum 05 throughout the fermentation; in contrast, Lactobacillus acidophilus 14 150B levels decreased significantly after 5-h fermentation. RB fermentation induced changes in the short-chain fatty acid (SCFA) profile. However, RB combined with probiotics did not alter the SCFA levels compared with RB alone. Denaturing gradient gel electrophoresis analysis of samples obtained at 24 h showed a treatment effect with RB, which was not observed in the RB plus probiotic systems. Overall, the negative controls displayed lower species richness than the treatment systems and their banding profiles were distinct. This study illustrates the ability of a common ingredient found in pet food to modulate the canine faecal microbiota and highlights that RB may be an economical alternative to prebiotics for use in dog food. PMID:21204868

  9. Efficient one-pot enzymatic synthesis of alpha-(1-->4)-glucosidic disaccharides through a coupled reaction catalysed by Lactobacillus acidophilus NCFM maltose phosphorylase.

    PubMed

    Nakai, Hiroyuki; Dilokpimol, Adiphol; Abou Hachem, Maher; Svensson, Birte

    2010-05-27

    Lactobacillus acidophilus NCFM maltose phosphorylase (LaMalP) of glycoside hydrolase family 65 catalysed enzymatic synthesis of alpha-(1-->4)-glucosidic disaccharides from maltose and five monosaccharides in a coupled phosphorolysis/reverse phosphorolysis one-pot reaction. Thus phosphorolysis of maltose to beta-glucose 1-phosphate circumvented addition of costly beta-glucose 1-phosphate for reverse phosphorolysis with different monosaccharide acceptors, resulting in 91%, 89%, 88%, 86% and 84% yield of alpha-d-glucopyranosyl-(1-->4)-N-acetyl-D-glucosaminopyranose [N-acetyl-maltosamine], alpha-D-glucopyranosyl-(1-->4)-D-glucosaminopyranose [maltosamine], alpha-D-glucopyranosyl-(1-->4)-D-mannopyranose, alpha-D-glucopyranosyl-(1-->4)-L-fucopyranose and alpha-D-glucopyranosyl-(1-->4)-D-xylopyranose, respectively, from 0.1M maltose, 0.5M N-acetyl glucosamine, 0.1M glucosamine, 0.1M mannose, 1M L-fucose and 0.5M xylose in 0.2M phosphate-citrate pH 6.2. These current yields of 0.27-0.34 g of disaccharide products from 10 mL reaction mixtures are easy to scale up and moreover the strategy can be applied to large-scale production of other oligosaccharides from low-cost disaccharides as catalysed by phosphorylases with different substrate specificities. PMID:20392438

  10. The Differential Proteome of the Probiotic Lactobacillus acidophilus NCFM Grown on the Potential Prebiotic Cellobiose Shows Upregulation of Two β-Glycoside Hydrolases

    PubMed Central

    van Zanten, Gabriella C.; Sparding, Nadja; Majumder, Avishek; Lahtinen, Sampo J.; Svensson, Birte; Jacobsen, Susanne

    2015-01-01

    Probiotics, prebiotics, and combinations thereof, that is, synbiotics, are known to exert beneficial health effects in humans; however interactions between pro- and prebiotics remain poorly understood at the molecular level. The present study describes changes in abundance of different proteins of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) when grown on the potential prebiotic cellobiose as compared to glucose. Cytosolic cell extract proteomes after harvest at late exponential phase of NCFM grown on cellobiose or glucose were analyzed by two dimensional difference gel electrophoresis (2D-DIGE) in the acidic (pH 4–7) and the alkaline (pH 6–11) regions showing a total of 136 spots to change in abundance. Proteins were identified by MS or MS/MS from 81 of these spots representing 49 unique proteins and either increasing 1.5–13.9-fold or decreasing 1.5–7.8-fold in relative abundance. Many of these proteins were associated with energy metabolism, including the cellobiose related glycoside hydrolases phospho-β-glucosidase (LBA0881) and phospho-β-galactosidase II (LBA0726). The data provide insight into the utilization of the candidate prebiotic cellobiose by the probiotic bacterium NCFM. Several of the upregulated or downregulated identified proteins associated with utilization of cellobiose indicate the presence of carbon catabolite repression and regulation of enzymes involved in carbohydrate metabolism. PMID:25961012

  11. The Differential Proteome of the Probiotic Lactobacillus acidophilus NCFM Grown on the Potential Prebiotic Cellobiose Shows Upregulation of Two β -Glycoside Hydrolases.

    PubMed

    van Zanten, Gabriella C; Sparding, Nadja; Majumder, Avishek; Lahtinen, Sampo J; Svensson, Birte; Jacobsen, Susanne

    2015-01-01

    Probiotics, prebiotics, and combinations thereof, that is, synbiotics, are known to exert beneficial health effects in humans; however interactions between pro- and prebiotics remain poorly understood at the molecular level. The present study describes changes in abundance of different proteins of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) when grown on the potential prebiotic cellobiose as compared to glucose. Cytosolic cell extract proteomes after harvest at late exponential phase of NCFM grown on cellobiose or glucose were analyzed by two dimensional difference gel electrophoresis (2D-DIGE) in the acidic (pH 4-7) and the alkaline (pH 6-11) regions showing a total of 136 spots to change in abundance. Proteins were identified by MS or MS/MS from 81 of these spots representing 49 unique proteins and either increasing 1.5-13.9-fold or decreasing 1.5-7.8-fold in relative abundance. Many of these proteins were associated with energy metabolism, including the cellobiose related glycoside hydrolases phospho-β-glucosidase (LBA0881) and phospho-β-galactosidase II (LBA0726). The data provide insight into the utilization of the candidate prebiotic cellobiose by the probiotic bacterium NCFM. Several of the upregulated or downregulated identified proteins associated with utilization of cellobiose indicate the presence of carbon catabolite repression and regulation of enzymes involved in carbohydrate metabolism. PMID:25961012

  12. Early administration of probiotic Lactobacillus acidophilus and/or prebiotic inulin attenuates pathogen-mediated intestinal inflammation and Smad 7 cell signaling.

    PubMed

    Foye, Ondulla T; Huang, I-Fei; Chiou, Christine C; Walker, W Allan; Shi, Hai Ning

    2012-08-01

    Immaturity of gut-associated immunity may contribute to pediatric mortality associated with enteric infections. A murine model to parallel infantile enteric disease was used to determine the effects of probiotic, Lactobacillus acidophilus (La), prebiotic, inulin, or both (synbiotic, syn) on pathogen-induced inflammatory responses, NF-κB, and Smad 7 signaling. Newborn mice were inoculated bi-weekly for 4 weeks with La, inulin, or syn and challenged with Citrobacter rodentium (Cr) at 5 weeks. Mouse intestinal epithelial cells (CMT93) were exposed to Cr to determine temporal alterations in NF-Kappa B and Smad 7 levels. Mice with pretreatment of La, inulin, and syn show reduced intestinal inflammation following Cr infection compared with controls, which is associated with significantly reduced bacterial colonization in La, inulin, and syn animals. Our results further show that host defense against Cr infection correlated with enhanced colonic IL-10 and transforming growth factor-β expression and inhibition of NF-κB in syn-treated mice, whereas mice pretreated with syn, La, or inulin had attenuation of Cr-induced Smad 7 expression. There was a temporal Smad 7 and NF-κB intracellular accumulation post-Cr infection and post-tumor necrosis factor stimulation in CMT93 cells. These results, therefore, suggest that probiotic, La, prebiotic inulin, or synbiotic may promote host-protective immunity and attenuate Cr-induced intestinal inflammation through mechanisms affecting NF-κB and Smad 7 signaling. PMID:22524476

  13. Phenotypical analysis of the Lactobacillus rhamnosus GG fimbrial spaFED operon: surface expression and functional characterization of recombinant SpaFED pili in Lactococcus lactis.

    PubMed

    Rintahaka, Johanna; Yu, Xia; Kant, Ravi; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    A noticeable genomic feature of many piliated Gram-positive bacterial species is the presence of more than one pilus-encoding operon. Paradigmatically, the gut-adapted Lactobacillus rhamnosus GG strain contains two different fimbrial operons in its genome. However, whereas one of these operons (called spaCBA) is encoding for the functionally mucus-/collagen-binding SpaCBA pilus, for the other operon (called spaFED) any native expression of the SpaFED-called pili is still the subject of some uncertainty. Irrespective of such considerations, we decided it would be of relevance or interest to decipher the gross structure of this pilus type, and as well assess its functional capabilities for cellular adhesion and immunostimulation. For this, and by following the approach we had used previously to explicate the immuno-properties of SpaCBA pili, we constructed nisin-inducible expression clones producing either wild-type or SpaF pilin-deleted surface-assembled L. rhamnosus GG SpaFED pili on Lactococcus lactis cells. Using these piliated lactococcal constructs, we found that the pilin-polymerized architecture of a recombinant-produced SpaFED pilus coincides with sequence-based functional predictions of the related pilins, and in fact is prototypical of those other sortase-dependent pilus-like structures thus far characterized for piliated Gram-positive bacteria. Moreover, we confirmed that among the different pilin subunits encompassing spaFED operon-encoded pili, the SpaF pilin is a main adhesion determinant, and when present in the assembled structure can mediate pilus binding to mucus, certain extracellular matrix proteins, and different gut epithelial cell lines. However, somewhat unexpectedly, when recombinant SpaFED pili are surface-attached, we found that they could not potentiate the existing lactococcal cell-induced immune responses so elicited from intestinal- and immune-related cells, but rather instead, they could dampen them. Accordingly, we have now provided

  14. Phenotypical Analysis of the Lactobacillus rhamnosus GG Fimbrial spaFED Operon: Surface Expression and Functional Characterization of Recombinant SpaFED Pili in Lactococcus lactis

    PubMed Central

    Kant, Ravi; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    A noticeable genomic feature of many piliated Gram-positive bacterial species is the presence of more than one pilus-encoding operon. Paradigmatically, the gut-adapted Lactobacillus rhamnosus GG strain contains two different fimbrial operons in its genome. However, whereas one of these operons (called spaCBA) is encoding for the functionally mucus-/collagen-binding SpaCBA pilus, for the other operon (called spaFED) any native expression of the SpaFED-called pili is still the subject of some uncertainty. Irrespective of such considerations, we decided it would be of relevance or interest to decipher the gross structure of this pilus type, and as well assess its functional capabilities for cellular adhesion and immunostimulation. For this, and by following the approach we had used previously to explicate the immuno-properties of SpaCBA pili, we constructed nisin-inducible expression clones producing either wild-type or SpaF pilin-deleted surface-assembled L. rhamnosus GG SpaFED pili on Lactococcus lactis cells. Using these piliated lactococcal constructs, we found that the pilin-polymerized architecture of a recombinant-produced SpaFED pilus coincides with sequence-based functional predictions of the related pilins, and in fact is prototypical of those other sortase-dependent pilus-like structures thus far characterized for piliated Gram-positive bacteria. Moreover, we confirmed that among the different pilin subunits encompassing spaFED operon-encoded pili, the SpaF pilin is a main adhesion determinant, and when present in the assembled structure can mediate pilus binding to mucus, certain extracellular matrix proteins, and different gut epithelial cell lines. However, somewhat unexpectedly, when recombinant SpaFED pili are surface-attached, we found that they could not potentiate the existing lactococcal cell-induced immune responses so elicited from intestinal- and immune-related cells, but rather instead, they could dampen them. Accordingly, we have now provided

  15. Draft Genome Sequences of Five Strains of Lactobacillus acidophilus, Strain CIP 76.13T, Isolated from Humans, Strains CIRM-BIA 442 and CIRM-BIA 445, Isolated from Dairy Products, and Strains DSM 20242 and DSM 9126 of Unknown Origin.

    PubMed

    Falentin, Hélène; Cousin, Sylvie; Clermont, Dominique; Creno, Sophie; Ma, Laurence; Chuat, Victoria; Loux, Valentin; Rüdiger, Pukall; Bizet, Chantal; Bouchier, Christiane

    2013-01-01

    Lactobacillus acidophilus is a natural inhabitant of mammalian gastrointestinal systems and is used in dairy and pharmaceutical products. Five draft genome sequences, covering 1,995,790 nucleotides (nt) on average, are divided into 19 to 34 scaffolds covering 1,995 to 2,053 genes. The draft genome sequences were compared to the sequence of the L. acidophilus NCFM dairy strain. PMID:23969059

  16. Quantitative Real-Time PCR Analysis of Fecal Lactobacillus Species in Infants Receiving a Prebiotic Infant Formula

    PubMed Central

    Haarman, Monique; Knol, Jan

    2006-01-01

    The developing intestinal microbiota of breast-fed infants is considered to play an important role in the priming of the infants' mucosal and systemic immunity. Generally, Bifidobacterium and Lactobacillus predominate the microbiota of breast-fed infants. In intervention trials it has been shown that lactobacilli can exert beneficial effects on, for example, diarrhea and atopy. However, the Lactobacillus species distribution in breast-fed or formula-fed infants has not yet been determined in great detail. For accurate enumeration of different lactobacilli, duplex 5′ nuclease assays, targeted on rRNA intergenic spacer regions, were developed for Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus rhamnosus. The designed and validated assays were used to determine the amounts of different Lactobacillus species in fecal samples of infants receiving a standard formula (SF) or a standard formula supplemented with galacto- and fructo-oligosaccharides in a 9:1 ratio (OSF). A breast-fed group (BF) was studied in parallel as a reference. During the 6-week intervention period a significant increase was shown in total percentage of fecal lactobacilli in the BF group (0.8% ± 0.3% versus 4.1% ± 1.5%) and the OSF group (0.8% ± 0.3% versus 4.4% ± 1.4%). The Lactobacillus species distribution in the OSF group was comparable to breast-fed infants, with relatively high levels of L. acidophilus, L. paracasei, and L. casei. The SF-fed infants, on the other hand, contained more L. delbrueckii and less L. paracasei compared to breast-fed infants and OSF-fed infants. An infant milk formula containing a specific mixture of prebiotics is able to induce a microbiota that closely resembles the microbiota of BF infants. PMID:16597930

  17. An oral preparation of Lactobacillus acidophilus for the treatment of uncomplicated acute watery diarrhoea in Vietnamese children: study protocol for a multicentre, randomised, placebo-controlled trial

    PubMed Central

    2013-01-01

    Background Diarrhoeal disease is a major global health problem, particularly affecting children under the age of 5 years. Besides oral rehydration solution, probiotics are also commonly prescribed to children with acute watery diarrhoea in some settings. Results from randomised clinical trials (RCTs) in which investigators studied the effect of probiotics on diarrhoeal symptoms have largely shown a positive effect; yet, the overall quality of the data is limited. In Vietnam, probiotics are the most frequently prescribed treatment for children hospitalised with acute watery diarrhoea, but there is little justification for this treatment in this location. We have designed a RCT to test the hypothesis that an oral preparation of Lactobacillus acidophilus is superior to placebo in the treatment of acute watery diarrhoea in Vietnamese children. Methods This RCT was designed to study the effect of treatment with L. acidophilus (4 × 109 colony-forming units/day) for 5 days for acute watery diarrhoea against a placebo in 300 children ages 9 to 60 months admitted to hospitals in Vietnam. Clinical and laboratory data plus samples will be collected on admission, daily during hospitalisation, at discharge, and at follow-up visits for a subset of participants. The primary end point will be defined as the time from the first dose of study medication to the start of the first 24-hour period without diarrhoea as assessed by the on-duty nurse. Secondary endpoints include the time to cessation of diarrhoea as recorded by parents or guardians in an hourly checklist, stool frequency over the first 3 days, treatment failure, rotavirus and norovirus viral loads, and adverse events. Discussion The existing evidence for the use of probiotics in treating acute watery diarrhoea seems to favour their use. However, the size of the effect varies across publications. An array of different probiotic organisms, doses, treatment durations, study populations, designs, settings, and aetiologies

  18. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea: Effects on diarrhoea incidence, faecal microflora and immune responses.

    PubMed

    Zhang, Lu; Xu, Yong-Qian; Liu, Hao-Yu; Lai, Ting; Ma, Jin-Lei; Wang, Jiu-Feng; Zhu, Yao-Hong

    2010-02-24

    Probiotic bacterium Lactobacillus rhamnosus GG (LGG) has been demonstrated to adhere to pig intestinal mucus, and is able to displace and inhibit pathogens, including Escherichia coli (E. coli), in vitro. However, currently there are few data concerning the effects of LGG on piglet health. The objectives of this study were to assess the effectiveness of LGG in reducing the incidence and severity of post-weaning diarrhoea in piglets, and to investigate its mechanisms of action. Eighteen weaned barrows were allocated to nonchallenged control (NCN), challenged control (CCN) and LGG treatment (LGG) groups. Diarrhoea incidence was significantly lower in group LGG than group CCN after E. coli challenge. Faecal coliform bacteria counts were significantly increased, while lactobacilli and bifidobacteria counts were decreased, in group CCN compared with the other groups after challenge. In the jejunum and ileum, secretory immunoglobin A (SIgA) concentrations were significantly higher in group LGG than in group CCN. In group LGG, administration of short-term LGG before E. coli infection attenuated the elevation of serum IL-6 induced by E. coli. Significantly higher concentrations of TNF-alpha were observed in group LGG than NCN and CCN at 6h. IL-1beta concentrations in group NCN were significantly higher than LGG at 6h and higher than CCN at 24h. In conclusion, LGG was effective in ameliorating diarrhoea in post-weaning piglets induced by E. coli K88, possibly via modulation of intestinal microflora, enhancement of intestinal antibody defence, and regulation of production of systemic inflammatory cytokines. PMID:19782483

  19. Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances Treg and TH17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding.

    PubMed

    Chen, Rui-Cong; Xu, Lan-Man; Du, Shan-Jie; Huang, Si-Si; Wu, He; Dong, Jia-Jia; Huang, Jian-Rong; Wang, Xiao-Dong; Feng, Wen-Ke; Chen, Yong-Ping

    2016-01-22

    Impaired intestinal barrier function plays a critical role in alcohol-induced hepatic injury, and the subsequent excessive absorbed endotoxin and bacterial translocation activate the immune response that aggravates the liver injury. Lactobacillus rhamnosus GG supernatant (LGG-s) has been suggested to improve intestinal barrier function and alleviate the liver injury induced by chronic and binge alcohol consumption, but the underlying mechanisms are still not clear. In this study, chronic-binge alcohol fed model was used to determine the effects of LGG-s on the prevention of alcoholic liver disease in C57BL/6 mice and investigate underlying mechanisms. Mice were fed Lieber-DeCarli diet containing 5% alcohol for 10 days, and one dose of alcohol was gavaged on Day 11. In one group, LGG-s was supplemented along with alcohol. Control mice were fed isocaloric diet. Nine hours later the mice were sacrificed for analysis. Chronic-binge alcohol exposure induced an elevation in liver enzymes, steatosis and morphology changes, while LGG-s supplementation attenuated these changes. Treatment with LGG-s significantly improved intestinal barrier function reflected by increased mRNA expression of tight junction (TJ) proteins and villus-crypt histology in ileum, and decreased Escherichia coli (E. coli) protein level in liver. Importantly, flow cytometry analysis showed that alcohol reduced Treg cell population while increased TH17 cell population as well as IL-17 secretion, which was reversed by LGG-s administration. In conclusion, our findings indicate that LGG-s is effective in preventing chronic-binge alcohol exposure-induced liver injury and shed a light on the importance of the balance of Treg and TH17 cells in the role of LGG-s application. PMID:26617183

  20. Crystallization and X-ray Crystallographic Analysis of the Adhesive SpaC Pilin Subunit in the SpaCBA Pilus of Gut-adapted Lactobacillus rhamnosus GG.

    PubMed

    Kant, Abhiruchi; von Ossowski, Ingemar; Palva, Airi; Krishnan, Vengadesan

    2016-01-01

    Gram-positive Lactobacillus rhamnosus GG, a gut-adapted commensalic (and probiotic) strain, is known to express sortase-assembled pili on its cell surface. These SpaCBA-called pili consist of three different types of building blocks; the SpaA backbone-pilin subunit and the SpaB and SpaC ancillary pilins. SpaC is a relatively large (~90kDa) multi-domain fimbrial adhesin, and while it is located primarily at the SpaCBA pilus tip, occasionally, it can also be detected throughout the length of pilus backbone. Functionally, SpaC mainly accounts for SpaCBA pilus-mediated interactions with intestinal mucus, collagen, and human gut epithelial cells. Moreover, SpaC adhesiveness is also perceived to have a causal relationship with SpaCBA pilus-induced host-cell immune responses. In order to improve the mechanistic understanding of SpaC and its adhesive properties by structural investigation, we purified and successfully crystallized a recombinant construct of the near full-length SpaC protein (residues 36-856) in the presence of magnesium ions. X-ray diffraction data were collected to 2.6 Å resolution. The SpaC crystal belongs to the space group P21212 with unit cell parameters a = 116.5, b = 128.3, c = 136.5 Å and contains two molecules in the asymmetric unit. Presence of conserved metal ion-dependent adhesion site containing von Willebrand factor type A domain suggests its likely role in the function of SpaC. PMID:26732247

  1. Relative cost-effectiveness of using an extensively hydrolyzed casein formula containing the probiotic Lactobacillus rhamnosus GG in managing infants with cow’s milk allergy in Spain

    PubMed Central

    Guest, Julian F; Weidlich, Diana; Mascuñan Díaz, J Ignacio; Díaz, Juan J; Ojeda, Pedro Manuel; Ferrer-González, J Pablo; Gil, David; Onrubia, Isabel; Rincón Victor, Pedro

    2015-01-01

    Objective To estimate the cost-effectiveness of using an extensively hydrolyzed casein formula containing the probiotic Lactobacillus rhamnosus GG (eHCF + LGG; Nutramigen LGG) as a first-line management for cow’s milk allergy compared with eHCF alone, and amino acid formulae in Spain, from the perspective of the Spanish National Health Service (SNS). Methods Decision modeling was used to estimate the probability of immunoglobulin E (IgE)-mediated and non–IgE-mediated allergic infants developing tolerance to cow’s milk by 18 months. The models also estimated the SNS cost (at 2012/2013 prices) of managing infants over 18 months after starting a formula as well as the relative cost-effectiveness of each of the formulae. Results The probability of developing tolerance to cow’s milk by 18 months was higher among infants with either IgE-mediated or non–IgE-mediated allergy who were fed eHCF + LGG compared with those fed one of the other formulae. The total health care cost of initially feeding infants with eHCF + LGG was less than that of feeding infants with one of the other formulae. Hence, eHCF + LGG affords the greatest value for money to the SNS for managing both IgE-mediated and non–IgE-mediated cow’s milk allergy. Conclusion Using eHCF + LGG instead of eHCF alone or amino acid formulae for first-line management of newly-diagnosed infants with cow’s milk allergy affords a cost-effective use of publicly funded resources because it improves outcome for less cost. A randomized controlled study showing faster tolerance development in children receiving a probiotic-containing formula is required before this conclusion can be confirmed. PMID:26648744

  2. Lactobacillus rhamnosus GG influences polyamine metabolism in HGC-27 gastric cancer cell line: a strategy toward nutritional approach to chemoprevention of gastric cance.

    PubMed

    Linsalata, M; Cavallini, A; Messa, C; Orlando, A; Refolo, M G; Russo, F

    2010-01-01

    Chemoprevention by dietary constituents has recently emerged as a novel approach to control gastric cancer incidence. Over the past years, functional foods and food supplements, especially probiotics, have received much attention as potential dietary cancer prevention agents. The precise mechanisms by which these lactic cultures exert their antitumorigenic activities are not fully elucidated, but there is some evidence of their influence on cell proliferation and growth. Ornithine decarboxylase (ODC) and spermidine/spermine N1-acetyltransferase (SSAT) are the key enzymes involved in polyamine biosynthesis and catabolism, respectively. These polycationic compounds are significantly associated with cancer risk and represent a specific markers for neoplastic proliferation. The aim of this study was to investigate the effects of increasing concentrations of Lactobacillus rhamnosus strain GG (ATCC 53103) (L. GG) homogenate on polyamine biosynthesis and polyamine degradation as well as on resulting polyamine levels in HGC-27 human gastric cancer cells. The influence of this probiotic on cell proliferation was also evaluated. Administration of probiotic homogenate significantly reduced both ODC mRNA and activity as well as polyamine content and neoplastic proliferation. Besides, an increase in both SSAT mRNA and activity occurred after LGG administration in HGC-27. These data suggest that a nutritional component such as the probiotic L. GG could be proposed in an alternative approach to prevention of gastric cancer. This strategy could overcome the limitations due to a prolonged use of drugs and/or the occurrence of their adverse effects, and it could reasonably also start at a young age. PMID:20388096

  3. A Lactobacillus rhamnosus GG-derived Soluble Protein, p40, Stimulates Ligand Release from Intestinal Epithelial Cells to Transactivate Epidermal Growth Factor Receptor*

    PubMed Central

    Yan, Fang; Liu, Liping; Dempsey, Peter J.; Tsai, Yu-Hwai; Raines, Elaine W.; Wilson, Carole L.; Cao, Hailong; Cao, Zheng; Liu, LinShu; Polk, D. Brent

    2013-01-01

    p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis, and preserves barrier function by transactivation of the EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study is to determine the mechanisms by which p40 transactivates the EGFR in intestinal epithelial cells. Here we show that p40-conditioned medium activates EGFR in young adult mouse colon epithelial cells and human colonic epithelial cell line, T84 cells. p40 up-regulates a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) catalytic activity, and broad spectrum metalloproteinase inhibitors block EGFR transactivation by p40 in these two cell lines. In ADAM17-deficient mouse colonic epithelial (ADAM17−/− MCE) cells, p40 transactivation of EGFR is blocked, but can be rescued by re-expression with WT ADAM17. Furthermore, p40 stimulates release of heparin binding (HB)-EGF, but not transforming growth factor (TGF)α or amphiregulin, in young adult mouse colon cells and ADAM17−/− MCE cells overexpressing WT ADAM17. Knockdown of HB-EGF expression by siRNA suppresses p40 effects on transactivating EGFR and Akt, preventing apoptosis, and preserving tight junction function. The effects of p40 on HB-EGF release and ADAM17 activation in vivo are examined after administration of p40-containing pectin/zein hydrogel beads to mice. p40 stimulates ADAM17 activity and EGFR activation in colonic epithelial cells and increases HB-EGF levels in blood from WT mice, but not from mice with intestinal epithelial cell-specific ADAM17 deletion. Thus, these data define a mechanism of a probiotic-derived soluble protein in modulating intestinal epithelial cell homeostasis through ADAM17-mediated HB-EGF release, leading to transactivation of EGFR. PMID:24043629

  4. The Effect of Lactobacillus plantarum ATCC 8014 and Lactobacillus acidophilus NCFM Fermentation on Antioxidant Properties of Selected in Vitro Sprout Culture of Orthosiphon aristatus (Java Tea) as a Model Study

    PubMed Central

    Hunaefi, Dase; Akumo, Divine N.; Riedel, Heidi; Smetanska, Iryna

    2012-01-01

    High rosmarinic acid (RA) productivity has been achieved by applying jasmonic acid and yeast extract elicitors to the in vitro sprout culture of Orthosiphon aritatus (IOSC). The highest RA accumulation from three solvents was detected in IOSC after treatment with yeast extract (5 g/L). HPLC analysis clearly confirmed a drastic increase in RA subjected to yeast extract elicitation. Therefore, this yeast extract elicited IOSC was chosen for a lactic acid bacteria (LAB) fermentation study as a model system. This selected IOSC was subjected to different types of LAB fermentations (Lactobacillus plantarum ATCC 8014 and Lactobacillus acidophilus NCFM) for different periods of time 24, 48 and 72 h. The LAB fermentations consisted of solid state fermentations (SSF) and liquid state fermentations (LSF) in a Digital Control Unit (DCU) fermenter system. The aim was to determine the effect of fermentation on the antioxidant properties of the plant extract. Results indicated that all types of LAB fermentation decreased the level of RA and total phenolics, however, a slight increase in total flavonoids and flavonols was observed in SSF samples. HPLC results confirmed that the longer the fermentation, the greater the reduction in RA content. The highest reduction was obtained in the sample of LSF inoculated with L. plantarum for a period of 72 h. The temperature of fermentation (37 °C) was predicted as contributing to the declining level in RA content. The loss in RA was concomitant with a loss of total antioxidant activity (1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, Trolox Equivalent Antioxidant Capacity (TEAC), and Superoxide Dismutase (SOD)-like activity). These results indicate that RA is the major contributor to the antioxidant activity of this plant. PMID:26787613

  5. The Effect of Lactobacillus plantarum ATCC 8014 and Lactobacillus acidophilus NCFM Fermentation on Antioxidant Properties of Selected in Vitro Sprout Culture of Orthosiphon aristatus (Java Tea) as a Model Study.

    PubMed

    Hunaefi, Dase; Akumo, Divine N; Riedel, Heidi; Smetanska, Iryna

    2012-01-01

    High rosmarinic acid (RA) productivity has been achieved by applying jasmonic acid and yeast extract elicitors to the in vitro sprout culture of Orthosiphon aritatus (IOSC). The highest RA accumulation from three solvents was detected in IOSC after treatment with yeast extract (5 g/L). HPLC analysis clearly confirmed a drastic increase in RA subjected to yeast extract elicitation. Therefore, this yeast extract elicited IOSC was chosen for a lactic acid bacteria (LAB) fermentation study as a model system. This selected IOSC was subjected to different types of LAB fermentations (Lactobacillus plantarum ATCC 8014 and Lactobacillus acidophilus NCFM) for different periods of time 24, 48 and 72 h. The LAB fermentations consisted of solid state fermentations (SSF) and liquid state fermentations (LSF) in a Digital Control Unit (DCU) fermenter system. The aim was to determine the effect of fermentation on the antioxidant properties of the plant extract. Results indicated that all types of LAB fermentation decreased the level of RA and total phenolics, however, a slight increase in total flavonoids and flavonols was observed in SSF samples. HPLC results confirmed that the longer the fermentation, the greater the reduction in RA content. The highest reduction was obtained in the sample of LSF inoculated with L. plantarum for a period of 72 h. The temperature of fermentation (37 °C) was predicted as contributing to the declining level in RA content. The loss in RA was concomitant with a loss of total antioxidant activity (1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, Trolox Equivalent Antioxidant Capacity (TEAC), and Superoxide Dismutase (SOD)-like activity). These results indicate that RA is the major contributor to the antioxidant activity of this plant. PMID:26787613

  6. Quantitative profiling of bacteriocins present in dairy-free probiotic preparations of Lactobacillus acidophilus by nanoliquid chromatography-tandem mass spectrometry.

    PubMed

    Nandakumar, Renu; Talapatra, Kesh

    2014-01-01

    Bacteriocins are a heterogeneous group of ribosomally synthesized peptides or proteins with antimicrobial activity, produced predominantly by lactic acid bacteria, with potential applications as biopreservatives and probiotics. We describe here a novel strategy based on a bottom-up, shotgun proteomic approach using nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) with multiple fragmentation techniques for the quantitative profiling of bacteriocins present in the probiotic preparations of Lactobacillus acidophilus. A direct LC-MS/MS analysis with alternate collision-induced dissociation, high-energy collision dissociation, and electron-transfer dissociation fragmentation following a filter-assisted size-exclusion sample prefractionation has resulted in the identification of peptides belonging to 37 bacteriocins or related proteins. Peptides from lactacin F, helveticin J, lysin, avicin A, acidocin M, curvaticin FS47, and carocin D were predominant. The process of freeze drying under vacuum was observed to affect both the diversity and abundance of bacteriocins. Data acquisition using alternating complementary peptide fragmentation modes, especially electron-transfer dissociation, has significantly enhanced the peptide sequence coverage and number of bacteriocin peptides identified. Multi-enzyme proteolytic digestion was observed to increase the sample complexity and dynamic range, lowering the chances of detection of low-abundant bacteriocin peptides by LC-MS/MS. An analytical platform integrating size exclusion prefractionation, nanoLC-MS/MS analysis with multiple fragmentation techniques, and data-dependent decision tree-driven bioinformatic data analysis is novel in bacteriocin research and suitable for the comprehensive bioanalysis of diverse, low-abundant bacteriocins in complex samples. PMID:24565320

  7. Lactobacillus acidophilus stimulates intestinal P-glycoprotein expression via a c-Fos/c-Jun-dependent mechanism in intestinal epithelial cells.

    PubMed

    Priyamvada, Shubha; Anbazhagan, Arivarasu N; Kumar, Anoop; Soni, Vikas; Alrefai, Waddah A; Gill, Ravinder K; Dudeja, Pradeep K; Saksena, Seema

    2016-04-15

    Our previous studies showed that Lactobacillus acidophilus (LA) culture supernatant (CS) increased P-glycoprotein [Pgp/multidrug resistance 1 (MDR1)] function, expression, and promoter activity in Caco-2 cells. The current studies were designed to elucidate the molecular mechanisms mediating the stimulatory effects of LA CS on Pgp promoter activity. Deletion analysis indicated that the LA CS response element(s) is located in the -172/+428-bp region, and sequence analysis of this region revealed three potential binding sites for c-Fos or c-Jun: proximal activating protein (AP) 1a (-119/-98 bp), distal AP1b (-99/-78 bp), and AP1c (+175/+196 bp). LA CS (24 h) showed an approximately twofold increase in the protein expression of c-Fos and c-Jun in Caco-2 cells. Electrophoretic mobility shift assay showed that LA CS markedly increased the binding of Caco-2 nuclear proteins to AP1a and AP1b, but not AP1c. The DNA-protein complex was completely eliminated by c-Fos antibody, while c-Jun antibody partially eliminated the complex. Chromatin immunoprecipitation analysis also showed that LA CS enhanced the association of c-Fos and c-Jun (by ∼4- and 1.5-fold, respectively) with endogenous Pgp promoter in Caco-2 cells (p-172/+1). Interestingly, overexpression of c-Fos or c-Jun activated Pgp promoter by nearly twofold each. This increase was further enhanced (∼14-fold) when c-Fos and c-Jun were simultaneously overexpressed, suggesting that the presence of one of these transcription factors potentiates the effect of the other. These studies, for the first time, provide evidence for the involvement of c-Fos/c-Jun in stimulation of Pgp gene expression by LA CS in the human intestine. PMID:26867563

  8. Fructooligosaccharides and Lactobacillus acidophilus modify gut microbial populations, total tract nutrient digestibilities and fecal protein catabolite concentrations in healthy adult dogs.

    PubMed

    Swanson, Kelly S; Grieshop, Christine M; Flickinger, Elizabeth A; Bauer, Laura L; Chow, JoMay; Wolf, Bryan W; Garleb, Keith A; Fahey, George C

    2002-12-01

    The objective of this research was to determine whether fructooligosaccharides (FOS) and (or) Lactobacillus acidophilus (LAC) affected concentrations of gut microbial populations, fermentative end products and nutrient digestibilities in healthy adult dogs. Two experiments were performed using 40 adult dogs (20 dogs/experiment). Dogs in each experiment were randomly assigned to one of 4 treatments. Twice daily, treatments were given orally via gelatin capsules: 1) 2 g sucrose + 80 mg cellulose; 2) 2 g FOS + 80 mg cellulose; 3) 2 g sucrose + 1 x 10(9) colony forming units (cfu) LAC; or 4) 2 g FOS + 1 x 10(9) cfu LAC. Data were analyzed by the General Linear Models procedure of SAS. In Experiment 1, FOS resulted in lower (P = 0.08) Clostridium perfringens and greater fecal butyrate (P = 0.06) and lactate (P < 0.05) concentrations. In Experiment 2, FOS supplementation increased (P < 0.05) bifidobacteria, increased lactobacilli (P = 0.08), increased fecal lactate (P = 0.06) and butyrate (P < 0.05), and decreased (P < 0.05) fecal ammonia, isobutyrate, isovalerate and total branched-chain fatty acid concentrations. Dogs fed LAC had the highest fecal concentrations of hydrogen sulfide and methanethiol in Experiment 1 and dimethyl sulfide in Experiment 2, whereas dogs fed FOS had the lowest concentrations of these compounds. Overall, FOS appeared to enhance indices of gut health by positively altering gut microbial ecology and fecal protein catabolites, whereas LAC was more effective when fed in combination with FOS rather than fed alone. PMID:12468613

  9. Oral inoculation of probiotics Lactobacillus acidophilus NCFM suppresses tumour growth both in segmental orthotopic colon cancer and extra-intestinal tissue.

    PubMed

    Chen, Chien-Chang; Lin, Wei-Chuan; Kong, Man-Shan; Shi, Hai Ning; Walker, W Allan; Lin, Chun-Yen; Huang, Ching-Tai; Lin, Yung-Chang; Jung, Shih-Ming; Lin, Tzou-Yien

    2012-06-01

    Modulation of the cellular response by the administration of probiotic bacteria may be an effective strategy for preventing or inhibiting tumour growth. We orally pre-inoculated mice with probiotics Lactobacillus acidophilus NCFM (La) for 14 d. Subcutaneous dorsal-flank tumours and segmental orthotopic colon cancers were implanted into mice using CT-26 murine colon adenocarcinoma cells. On day 28 after tumour initiation, the lamina propria of the colon, mesenteric lymph nodes (MLN) and spleen were harvested and purified for flow cytometry and mRNA analyses. We demonstrated that La pre-inoculation reduced tumour volume growth by 50·3 %, compared with untreated mice at 28 d after tumour implants (2465·5 (SEM 1290·4) v. 4950·9 (SEM 1689·3) mm³, P<0·001). Inoculation with La reduced the severity of colonic carcinogenesis caused by CT-26 cells, such as level of colonic involvement and structural abnormality of epithelial/crypt damage. Moreover, La enhanced apoptosis of CT-26 cells both in dorsal-flank tumour and segmental orthotopic colon cancer, and the mean counts of apoptotic body were higher in mice pre-inoculated with La (P<0·05) compared with untreated mice. La pre-inoculation down-regulated the CXCR4 mRNA expressions in the colon, MLN and extra-intestinal tissue, compared with untreated mice (P<0·05). In addition, La pre-inoculation reduced the mean fluorescence index of MHC class I (H-2Dd, -Kd and -Ld) in flow cytometry analysis. Taken together, these findings suggest that probiotics La may play a role in attenuating tumour growth during CT-26 cell carcinogenesis. The down-regulated expression of CXCR4 mRNA and MHC class I, as well as increasing apoptosis in tumour tissue, indicated that La may be associated with modulating the cellular response triggered by colon carcinogenesis. PMID:21992995

  10. Lactobacillus rhamnosus GR-1 Limits Escherichia coli-Induced Inflammatory Responses via Attenuating MyD88-Dependent and MyD88-Independent Pathway Activation in Bovine Endometrial Epithelial Cells.

    PubMed

    Liu, Mingchao; Wu, Qiong; Wang, Mengling; Fu, Yunhe; Wang, Jiufeng

    2016-08-01

    Intrauterine Escherichia coli infection after calving reduces fertility and causes major economic losses in the dairy industry. We investigated the protective effect of the probiotic Lactobacillus rhamnosus GR-1 on E. coli-induced cell damage and inflammation in primary bovine endometrial epithelial cells (BEECs). L. rhamnosus GR-1 reduced ultrastructure alterations and the percentage of BEECs apoptosis after E. coli challenge. Increased messenger RNA (mRNA) expression of immune response indicators, including pattern recognition receptors (toll-like receptor [TLR]2, TLR4, nucleotide-binding oligomerization domain [NOD]1, and NOD2), inflammasome proteins (NOD-like receptor family member pyrin domain-containing protein 3, apoptosis-associated speck-like protein, and caspase-1), TLR4 downstream adaptor molecules (myeloid differentiation antigen 88 [MyD88], toll-like receptor adaptor molecule 2 [TICAM2]), nuclear transcription factor kB (NF-kB), and the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-18, and interferon (IFN)-β, was observed following E. coli challenge. However, these increases were attenuated by L. rhamnosus GR-1 pretreatment. Our data indicate that L. rhamnosus GR-1 ameliorates the E. coli-induced disruption of cellular ultrastructure, subsequently reducing the percentage of BEECs apoptosis and limiting inflammatory responses, partly via attenuation of MyD88-dependent and MyD88-independent pathway activation. Certain probiotics could potentially prevent postpartum uterine diseases in dairy cows, ultimately reducing the use of antibiotics. PMID:27236308

  11. Cholesterol assimilation by Lactobacillus probiotic bacteria: an in vitro investigation.

    PubMed

    Tomaro-Duchesneau, Catherine; Jones, Mitchell L; Shah, Divya; Jain, Poonam; Saha, Shyamali; Prakash, Satya

    2014-01-01

    Excess cholesterol is associated with cardiovascular diseases (CVD), an important cause of mortality worldwide. Current CVD therapeutic measures, lifestyle and dietary interventions, and pharmaceutical agents for regulating cholesterol levels are inadequate. Probiotic bacteria have demonstrated potential to lower cholesterol levels by different mechanisms, including bile salt hydrolase activity, production of compounds that inhibit enzymes such as 3-hydroxy-3-methylglutaryl coenzyme A, and cholesterol assimilation. This work investigates 11 Lactobacillus strains for cholesterol assimilation. Probiotic strains for investigation were selected from the literature: Lactobacillus reuteri NCIMB 11951, L. reuteri NCIMB 701359, L. reuteri NCIMB 702655, L. reuteri NCIMB 701089, L. reuteri NCIMB 702656, Lactobacillus fermentum NCIMB 5221, L. fermentum NCIMB 8829, L. fermentum NCIMB 2797, Lactobacillus rhamnosus ATCC 53103 GG, Lactobacillus acidophilus ATCC 314, and Lactobacillus plantarum ATCC 14917. Cholesterol assimilation was investigated in culture media and under simulated intestinal conditions. The best cholesterol assimilator was L. plantarum ATCC 14917 (15.18±0.55 mg/10(10) cfu) in MRS broth. L. reuteri NCIMB 701089 assimilated over 67% (2254.70±63.33 mg/10(10) cfu) of cholesterol, the most of all the strains, under intestinal conditions. This work demonstrates that probiotic bacteria can assimilate cholesterol under intestinal conditions, with L. reuteri NCIMB 701089 showing great potential as a CVD therapeutic. PMID:25295259

  12. Antitumorigenic activity of the prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis on azoxymethane-induced colon carcinogenesis in rats.

    PubMed

    Femia, Angelo Pietro; Luceri, Cristina; Dolara, Piero; Giannini, Augusto; Biggeri, Annibale; Salvadori, Maddalena; Clune, Yvonne; Collins, Kevin J; Paglierani, Milena; Caderni, Giovanna

    2002-11-01

    Prebiotics such as fructans, and probiotics such as Lactobacilli or Bifidobacteria, or a combination of prebiotics and probiotics (synbiotics) are thought to be protective against colon cancer. Therefore, we studied whether the prebiotic inulin enriched with oligofructose (Raftilose-Synergy1, briefly, Synergy1, 10% of the diet), probiotics [Bifidobacterium lactis (Bb12) and Lactobacillus rhamnosus (LGG), each at 5x10(8) c.f.u./g diet] or synbiotics (a combination of the two) protect rats against azoxymethane (AOM)-induced colon cancer. Male F344 rats were divided into: Controls; PRE, which were fed a diet containing Synergy1; PRO, fed a diet containing LGG and Bb12; PREPRO, fed a diet containing Synergy1, LGG and BB12. Ten days after beginning the diets, rats were treated with AOM (15 mg/kg s.c. two times); dietary treatments were continued for the entire experiment. Thirty-one weeks after AOM, rats treated with Synergy1 (PRE and PREPRO groups) had a significantly lower (P < 0.001) number of tumours (adenomas and cancers) than rats without Synergy1 (colorectal tumours/rat were 1.9 +/- 1.7, 1.1 +/- 1.1, 2.2 +/- 1.4 and 0.9 +/- 1.2 in Controls, PRE, PRO and PREPRO groups, respectively, means +/- SD). A slight, not significant effect of probiotics in reducing malignant tumours was also observed (P = 0.079). Caecal short-chain fatty acids (SCFA) were higher (P < 0.001) in the groups treated with Synergy1. Apoptosis was increased in the normal mucosa of the PRO group, while no variation was observed in the tumours. Colonic proliferation was lower in the PRE group as compared with Controls. Glutathione S-transferase placental enzyme pi type expression, and to a lesser extent, inducible NO synthase were depressed in the tumours from rats in the PRE and PREPRO groups. Cycloxygenase-2 expression was increased in the tumours of control rats but not in those from PRE, PRO or PREPRO rats. In conclusion, prebiotic administration in the diet decreases AOM-induced carcinogenesis

  13. Probiotic Lactobacillus rhamnosus GG enhanced Th1 cellular immunity but did not affect antibody responses in a human gut microbiota transplanted neonatal gnotobiotic pig model.

    PubMed

    Wen, Ke; Tin, Christine; Wang, Haifeng; Yang, Xingdong; Li, Guohua; Giri-Rachman, Ernawati; Kocher, Jacob; Bui, Tammy; Clark-Deener, Sherrie; Yuan, Lijuan

    2014-01-01

    This study aims to establish a human gut microbiota (HGM) transplanted gnotobiotic (Gn) pig model of human rotavirus (HRV) infection and diarrhea, and to verify the dose-effects of probiotics on HRV vaccine-induced immune responses. Our previous studies using the Gn pig model found that probiotics dose-dependently regulated both T cell and B cell immune responses induced by rotavirus vaccines. We generated the HGM transplanted neonatal Gn pigs through daily feeding of neonatal human fecal suspension to germ-free pigs for 3 days starting at 12 hours after birth. We found that attenuated HRV (AttHRV) vaccination conferred similar overall protection against rotavirus diarrhea and virus shedding in Gn pigs and HGM transplanted Gn pigs. HGM promoted the development of the neonatal immune system, as evidenced by the significantly enhanced IFN-γ producing T cell responses and reduction of regulatory T cells and their cytokine production in the AttHRV-vaccinated pigs. The higher dose Lactobacillus rhamnosus GG (LGG) feeding (14 doses, up to 109 colony-forming-unit [CFU]/dose) effectively increased the LGG counts in the HGM Gn pig intestinal contents and significantly enhanced HRV-specific IFN-γ producing T cell responses to the AttHRV vaccine. Lower dose LGG (9 doses, up to 106 CFU/dose) was ineffective. Neither doses of LGG significantly improved the protection rate, HRV-specific IgA and IgG antibody titers in serum, or IgA antibody titers in intestinal contents compared to the AttHRV vaccine alone, suggesting that an even higher dose of LGG is needed to overcome the influence of the microbiota to achieve the immunostimulatory effect in the HGM pigs. This study demonstrated that HGM Gn pig is an applicable animal model for studying immune responses to rotavirus vaccines and can be used for studying interventions (i.e., probiotics and prebiotics) that may enhance the immunogenicity and protective efficacy of vaccines through improving the gut microbiota. PMID:24722168

  14. Relative cost-effectiveness of an extensively hydrolyzed casein formula containing the probiotic Lactobacillus rhamnosus GG in managing infants with cow’s milk allergy in Italy

    PubMed Central

    Guest, Julian F; Panca, Monica; Ovcinnikova, Olga; Nocerino, Rita

    2015-01-01

    Objective To estimate the cost-effectiveness of using an extensively hydrolyzed casein formula (eHCF) containing the probiotic Lactobacillus rhamnosus GG, (eHCF + LGG; Nutramigen LGG) as first-line management for cow’s milk allergy (CMA) compared with eHCF alone, soy-based formulae (SBF), hydrolyzed rice formulae (HRF), and amino acid formulae (AAF) in Italy, from the perspective of the Italian National Health Service (INHS) and parents. Methods Decision modeling was used to estimate the probability of infants developing tolerance to cow’s milk by 18 months, based on an observational study dataset. The model also estimated the cost (at 2012/2013 prices) of health care resource use funded by the INHS and formulae paid for by parents over 18 months after starting a formula, as well as the relative cost-effectiveness of each of the formulae. Results The probability of developing tolerance to cow’s milk by 18 months was higher among infants with either IgE-mediated or non-IgE-mediated allergy who were fed eHCF + LGG compared to those fed one of the other formulae. The total health care cost of initially feeding infants with eHCF + LGG was less than that of feeding infants with one of the other formulae. Hence, eHCF + LGG affords the greatest value for money to both the INHS and parents of infants with either IgE-mediated or non-IgE-mediated CMA. Conclusion Using eHCF + LGG instead of eHCF, SBF, HRF, or an AAF for first-line management of newly diagnosed infants with CMA in Italy affords a cost-effective use of publicly funded resources, and is cost-effective from the parents’ perspective, since it improves outcome for less cost. A randomized controlled study showing faster tolerance development in children receiving a probiotic-containing formula is required before this conclusion can be confirmed. PMID:26089692

  15. Relative cost-effectiveness of using an extensively hydrolyzed casein formula containing the probiotic Lactobacillus rhamnosus GG in managing infants with cow’s milk allergy in Poland

    PubMed Central

    Guest, Julian F; Weidlich, Diana; Kaczmarski, Maciej; Jarocka-Cyrta, Elzbieta; Kobelska-Dubiel, Natalia; Krauze, Agnieszka; Sakowska-Maliszewska, Iwona; Zawadzka-Krajewska, Anna

    2016-01-01

    Objective To estimate the cost-effectiveness of using an extensively hydrolyzed casein formula (eHCF) containing the probiotic Lactobacillus rhamnosus GG (eHCF + LGG; Nutramigen LGG) as an initial treatment for cow’s milk allergy compared with eHCF alone and amino acid formulas (AAF) in Poland from the perspective of the Polish National Health Fund (Narodowy Fundusz Zdrowia [NFZ]) and parents. Methods Decision modeling was used to estimate the probability of cow’s milk allergic infants developing tolerance to cow’s milk by 18 months. The model also estimated the cost to the NFZ and parents (Polish Zloty [PLN] at 2013–2014 prices) for managing infants over 18 months after starting one of the formulas as well as the relative cost-effectiveness of each of the formulas. Results The probability of developing tolerance to cow’s milk by 18 months was higher among infants who were fed eHCF + LGG (0.82) compared with those fed eHCF alone (0.53) or an AAF (0.22). An infant who is initially managed with eHCF + LGG is expected to consume fewer health care resources than infants managed with the other formulas. Hence, the estimated total health care cost incurred by the NFZ for initially feeding infants with eHCF + LGG (PLN 5,693) was less than that of feeding infants with eHCF alone (PLN 7,749) or an AAF (PLN 24,333). However, the total cost incurred by parents for initially feeding infants with an AAF (PLN 815) was marginally less than that of feeding with eHCF + LGG (PLN 993), which was less than that of feeding with eHCF alone (PLN 1,226). Conclusion Using eHCF + LGG instead of eHCF alone or an AAF for first-line management of newly diagnosed infants with cow’s milk allergy affords a cost-effective use of NFZ-funded resources, since it improves outcome for less cost. Whether eHCF + LGG would be viewed as being cost-effective by parents is dependent on their willingness to pay an additional cost for additional tolerance acquisition to cow’s milk. PMID:27418845

  16. Transcriptomic Profile of Whole Blood Cells from Elderly Subjects Fed Probiotic Bacteria Lactobacillus rhamnosus GG ATCC 53103 (LGG) in a Phase I Open Label Study

    PubMed Central

    Solano-Aguilar, Gloria; Molokin, Aleksey; Botelho, Christine; Fiorino, Anne-Maria; Vinyard, Bryan; Li, Robert; Chen, Celine; Urban, Joseph; Dawson, Harry; Andreyeva, Irina; Haverkamp, Miriam; Hibberd, Patricia L.

    2016-01-01

    We examined gene expression of whole blood cells (WBC) from 11 healthy elderly volunteers participating on a Phase I open label study before and after oral treatment with Lactobacillus rhamnosus GG-ATCC 53103 (LGG)) using RNA-sequencing (RNA-Seq). Elderly patients (65–80 yrs) completed a clinical assessment for health status and had blood drawn for cellular RNA extraction at study admission (Baseline), after 28 days of daily LGG treatment (Day 28) and at the end of the study (Day 56) after LGG treatment had been suspended for 28 days. Treatment compliance was verified by measuring LGG-DNA copy levels detected in host fecal samples. Normalized gene expression levels in WBC RNA were analyzed using a paired design built within three analysis platforms (edgeR, DESeq2 and TSPM) commonly used for gene count data analysis. From the 25,990 transcripts detected, 95 differentially expressed genes (DEGs) were detected in common by all analysis platforms with a nominal significant difference in gene expression at Day 28 following LGG treatment (FDR<0.1; 77 decreased and 18 increased). With a more stringent significance threshold (FDR<0.05), only two genes (FCER2 and LY86), were down-regulated more than 1.5 fold and met the criteria for differential expression across two analysis platforms. The remaining 93 genes were only detected at this threshold level with DESeq2 platform. Data analysis for biological interpretation of DEGs with an absolute fold change of 1.5 revealed down-regulation of overlapping genes involved with Cellular movement, Cell to cell signaling interactions, Immune cell trafficking and Inflammatory response. These data provide evidence for LGG-induced transcriptional modulation in healthy elderly volunteers because pre-treatment transcription levels were restored at 28 days after LGG treatment was stopped. To gain insight into the signaling pathways affected in response to LGG treatment, DEG were mapped using biological pathways and genomic data mining

  17. The maltodextrin transport system and metabolism in Lactobacillus acidophilus NCFM and production of novel alpha-glucosides through reverse phosphorolysis by maltose phosphorylase.

    PubMed

    Nakai, Hiroyuki; Baumann, Martin J; Petersen, Bent O; Westphal, Yvonne; Schols, Henk; Dilokpimol, Adiphol; Hachem, Maher A; Lahtinen, Sampo J; Duus, Jens Ø; Svensson, Birte

    2009-12-01

    A gene cluster involved in maltodextrin transport and metabolism was identified in the genome of Lactobacillus acidophilus NCFM, which encoded a maltodextrin-binding protein, three maltodextrin ATP-binding cassette transporters and five glycosidases, all under the control of a transcriptional regulator of the LacI-GalR family. Enzymatic properties are described for recombinant maltose phosphorylase (MalP) of glycoside hydrolase family 65 (GH65), which is encoded by malP (GenBank: AAV43670.1) of this gene cluster and produced in Escherichia coli. MalP catalyses phosphorolysis of maltose with inversion of the anomeric configuration releasing beta-glucose 1-phosphate (beta-Glc 1-P) and glucose. The broad specificity of the aglycone binding site was demonstrated by products formed in reverse phosphorolysis using various carbohydrate acceptor substrates and beta-Glc 1-P as the donor. MalP showed strong preference for monosaccharide acceptors with equatorial 3-OH and 4-OH, such as glucose and mannose, and also reacted with 2-deoxy glucosamine and 2-deoxy N-acetyl glucosamine. By contrast, none of the tested di- and trisaccharides served as acceptors. Disaccharide yields obtained from 50 mmbeta-Glc 1-P and 50 mm glucose, glucosamine, N-acetyl glucosamine, mannose, xylose or l-fucose were 99, 80, 53, 93, 81 and 13%, respectively. Product structures were determined by NMR and ESI-MS to be alpha-Glcp-(1-->4)-Glcp (maltose), alpha-Glcp-(1-->4)-GlcNp (maltosamine), alpha-Glcp-(1-->4)-GlcNAcp (N-acetyl maltosamine), alpha-Glcp-(1-->4)-Manp, alpha-Glcp-(1-->4)-Xylp and alpha-Glcp-(1-->4)- L-Fucp, the three latter being novel compounds. Modelling using L. brevis GH65 as the template and superimposition of acarbose from a complex with Thermoanaerobacterium thermosaccharolyticum GH15 glucoamylase suggested that loop 3 of MalP involved in substrate recognition blocked the binding of candidate acceptors larger than monosaccharides. PMID:19919544

  18. Lactobacillus

    MedlinePlus

    ... stomach ulcers. Treating diarrhea caused by the bacterium Clostridium difficile.Vaginal yeast infections after taking antibiotics. There is ... been used. For treating recurrent diarrhea caused by Clostridium difficile: 1.25 billion live Lactobacillus GG in two ...

  19. Assessment of the in vitro antimicrobial activity of Lactobacillus species for identifying new potential antibiotics.

    PubMed

    Dubourg, Grégory; Elsawi, Ziena; Raoult, Didier

    2015-11-01

    The bacteriocin-mediated antimicrobial properties of Lactobacillus spp. have been widely studied, leading to the use of these micro-organisms in the food industry as preservative agents against foodborne pathogens. In an era in which antibiotic resistance is becoming a public health issue, the antimicrobial activity of Lactobacillus spp. could be used for the discovery of new potential antibiotics. Thus, it is essential to have an accurate method of screening the production of antimicrobial agents by prokaryotes. Many in vitro assays have been published to date, largely concerning but not limited to Lactobacillus spp. However, these methods mainly use the spot-on-the-lawn method, which is prone to contamination during the overlay stage, with protocols using methanol vapours or the reverse side agar technique being applied to avoid such contamination. In this study, a method combining the spot-on-the-lawn and well diffusion methods was tested, permitting clear identification of inhibition zones from eight Lactobacillus spp. towards clinical isolates of 12 species (11 bacteria and 1 yeast) commonly found in human pathology. Lactobacillus plantarum CIP 106786 and Lactobacillus rhamnosus CSUR P567 exhibited the widest antimicrobial activity, whereas Lactobacillus acidophilus strain DSM 20079 was relatively inactive. In addition, the putative MIC(50) of L. rhamnosus against Proteus mirabilis was estimated at 1.1×10(9)CFU/mL using culture broth dilution. In conclusion, considering the increasing cultivable bacterial human repertoire, these findings open the way of an effective method to screen in vitro for the production of potential antimicrobial compounds. PMID:26163158

  20. The inhibitory effect of a fermented papaya preparation on growth, hydrophobicity, and acid production of Streptococcus mutans, Streptococcus mitis, and Lactobacillus acidophilus: its implications in oral health improvement of diabetics

    PubMed Central

    Somanah, Jhoti; Bourdon, Emmanuel; Bahorun, Theeshan; Aruoma, Okezie I

    2013-01-01

    Fermented papaya preparation (FPP) is a “natural health product.” The high incidence of dental caries, gingivitis, periodontitis, and oral microbial infection cases among patients with diabetes mellitus continues to prevail. The potential role of FPP against common oral microbiota (Streptococcus mutans, Streptococcus mitis, and Lactobacillus acidophilus) isolated from the human oral cavity was investigated using in vitro simulation models of dental plaque and caries. FPP showed an inhibitory effect against the growth (at 0.05 mg/mL: S. mutans: −6.9%; S. mitis: −4.47%, P < 0.05), acid production (at 0.05 mg/mL: S. mutans: +6.38%; L. acidophilus: +2.25%), and hydrophobicity (at 50 mg/mL: S. mutans: 1.01%, P < 0.01; S. mitis: 7.66%, P < 0.05) of tested microbiota. The results of this study suggest that low doses of FPP may be a suitable complement to good oral hygiene practice for the effective prevention of dental caries, plaque, and gingivitis. The functional application of FPP as a constituent of a balanced diet and active lifestyle can make a positive contribution to the oral health status and well-being of patients with diabetes. PMID:24804050

  1. Effects of synbiotic fermented milk containing Lactobacillus acidophilus La-5 and Bifidobacterium animalis ssp. lactis BB-12 on the fecal microbiota of adults with irritable bowel syndrome: A randomized double-blind, placebo-controlled trial.

    PubMed

    Bogovič Matijašić, Bojana; Obermajer, Tanja; Lipoglavšek, Luka; Sernel, Tjaša; Locatelli, Igor; Kos, Mitja; Šmid, Alenka; Rogelj, Irena

    2016-07-01

    We conducted a randomized double-blind, placebo-controlled multicentric study to investigate the influence of a synbiotic fermented milk on the fecal microbiota composition of 30 adults with irritable bowel syndrome (IBS). The synbiotic product contained Lactobacillus acidophilus La-5, Bifidobacterium animalis ssp. lactis BB-12, Streptococcus thermophilus, and dietary fiber (90% inulin, 10% oligofructose), and a heat-treated fermented milk without probiotic bacteria or dietary fiber served as placebo. Stool samples were collected after a run-in period, a 4-wk consumption period, and a 1-wk follow-up period, and were subjected to real-time PCR and 16S rDNA profiling by next-generation sequencing. After 4wk of synbiotic (11 subjects) or placebo (19 subjects) consumption, a greater increase in DNA specific for L. acidophilus La-5 and Bifidobacterium animalis ssp. lactis was detected in the feces of the synbiotic group compared with the placebo group by quantitative real-time PCR. After 1wk of follow-up, the content of L. acidophilus La-5 and B. animalis ssp. lactis decreased to levels close to initial levels. No significant changes with time or differences between the groups were observed for Lactobacillus, Enterobacteriaceae, Bifidobacterium, or all bacteria. The presence of viable BB-12- and La-5-like bacteria in the feces resulting from the intake of synbiotic product was confirmed by random amplification of polymorphic DNA (RAPD)-PCR. At the end of consumption period, the feces of all subjects assigned to the synbiotic group contained viable bacteria with a BB-12-like RAPD profile, and after 1wk of follow-up, BB-12-like bacteria remained in the feces of 87.5% of these subjects. The presence of La-5-like colonies was observed less frequently (37.5 and 25% of subjects, respectively). Next-generation sequencing of 16S rDNA amplicons revealed that only the percentage of sequences assigned to Strep. thermophilus was temporarily increased in both groups, whereas the

  2. Synbiotic Lactobacillus acidophilus NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial.

    PubMed

    van Zanten, Gabriella C; Krych, Lukasz; Röytiö, Henna; Forssten, Sofia; Lahtinen, Sampo J; Abu Al-Soud, Waleed; Sørensen, Søren; Svensson, Birte; Jespersen, Lene; Jakobsen, Mogens

    2014-10-01

    Probiotics, prebiotics, and combinations thereof, that is synbiotics, have been reported to modulate gut microbiota of humans. In this study, effects of a novel synbiotic on the composition and metabolic activity of human gut microbiota were investigated. Healthy volunteers (n = 18) were enrolled in a double-blinded, randomized, and placebo-controlled cross-over study and received synbiotic [Lactobacillus acidophilus NCFM (10(9) CFU) and cellobiose (5 g)] or placebo daily for 3 weeks. Fecal samples were collected and lactobacilli numbers were quantified by qPCR. Furthermore, 454 tag-encoded amplicon pyrosequencing was used to monitor the effect of synbiotic on the composition of the microbiota. The synbiotic increased levels of Lactobacillus spp. and relative abundances of the genera Bifidobacterium, Collinsella, and Eubacterium while the genus Dialister was decreased (P < 0.05). No other effects were found on microbiota composition. Remarkably, however, the synbiotic increased concentrations of branched-chain fatty acids, measured by gas chromatography, while short-chain fatty acids were not affected. PMID:25098489

  3. Functional and phenotypic characterization of a protein from Lactobacillus acidophilus involved in cell morphology, stress tolerance and adherence to intestinal cells.

    PubMed

    O'Flaherty, Sarah J; Klaenhammer, Todd R

    2010-11-01

    Structural components of the cell surface have an impact on some of the beneficial attributes of probiotic bacteria. In silico analysis of the L. acidophilus NCFM genome sequence revealed the presence of a putative cell surface protein that was predicted to be a myosin cross-reactive antigen (MCRA). As MCRAs are conserved among many probiotic bacteria, we used the upp-based counterselective gene replacement system, designed recently for use in L. acidophilus, to determine the functional role of this gene (LBA649) in L. acidophilus NCFM. Phenotypic assays were undertaken with the parent strain (NCK1909) and deletion mutant (NCK2015) to assign a function for this gene. The growth of NCK2015 (ΔLBA649) was reduced in the presence of lactate, acetate, porcine bile and salt. Adhesion of NCK2015 to Caco-2 cells was substantially reduced for both stationary-phase (∼45 % reduction) and exponential-phase cells (∼50 % reduction). Analysis of NCK2015 by scanning electron microscopy revealed a longer cell morphology after growth in MRS broth compared to NCK1909. These results indicate a role for LBA649 in stress tolerance, cell wall division and adherence to Caco-2 cells. PMID:20829293

  4. Probiotic properties of Lactobacillus strains isolated from the feces of breast-fed infants and Taiwanese pickled cabbage.

    PubMed

    Wang, Chung-Yi; Lin, Pei-Rong; Ng, Chang-Chai; Shyu, Yuan-Tay

    2010-12-01

    This study assessed potential probiotic Lactobacillus strains isolated from the feces of breast-fed infants and from Taiwanese pickled cabbage for their possible use in probiotic fermented foods by evaluating their (i) in vitro adhesive ability, resistance to biotic stress, resistance to pathogenic bacteria, and production of β-galactosidase; (ii) milk technological properties; and (iii) in vivo adhesive ability, intestinal survival and microbial changes during and after treatment. Five Lactobacillus isolates identified as Lactobacillus reuteri F03, Lactobacillus paracasei F08, Lactobacillus rhamnosus F14, Lactobacillus plantarum C06, and Lactobacillus acidophilus C11 that showed resistance to gastric juice and bile salts were selected for further evaluation of their probiotic properties. All the strains demonstrated the ability to adhere to Caco-2 cells, particularly, strain L. plantarum C06 and L. reuteri F03 showed satisfactory abilities, which were similar to that of the reference strain L. rhamnosus GG. The strains L. paracasei F08 and L. acidophilus C11 had the highest β-galactosidase activity. Most of the strains were resistant to aminoglycosides and vancomycin but sensitive to ampicillin, erythromycin, and penicillin. All the 5 strains elicited antibacterial activity against both Gram-positive (Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus) and -negative (Escherichia coli and Salmonella enterica) pathogens. Moreover, the strains L. reuteri F03, L. paracasei F08, and L. plantarum C06 could grow rapidly in milk without nutrient supplementation and reached 10⁸ cfu/mL after 24 h of fermentation at 37 °C. The viable cell counts of the 3 strains remained above 10⁷ cfu/mL after 21 d of storage at 4 °C. In the animal feeding trial, the number of intestinal lactobacilli increased significantly after administration of milk fermented with the 3 strains, and the counts of fecal coliforms and Clostridium perfringens were markedly reduced

  5. Importance of Molecular Methods to Determine Whether a Probiotic is the Source of Lactobacillus Bacteremia.

    PubMed

    Aroutcheva, Alla; Auclair, Julie; Frappier, Martin; Millette, Mathieu; Lolans, Karen; de Montigny, Danielle; Carrière, Serge; Sokalski, Stephen; Trick, William E; Weinstein, Robert A

    2016-03-01

    There has been an increasing interest in the use of probiotic products for the prevention of Clostridium difficile infection (CDI). Bio-K+(®) is a commercial probiotic product comprising three strains of lactobacilli--Lactobacillus acidophilus CL1285(®), Lact. casei LBC80R(®) and Lact. rhamnosus CLR2(®)--that have been applied to prevent CDI. Generally considered as safe, lactobacilli have potential to cause bacteremia, endocarditis and other infections. The source of Lactobacillus bacteremia can be normal human flora or lactobacilli-containing probiotic. The aim of this study was to assess whether probiotic lactobacilli caused bacteremia and to show the value of molecular identification and typing techniques to determine probiotic and patient strain relatedness. We report an episode of Lactobacillus bacteremia in a 69-year-old man admitted to a hospital with severe congestive heart failure. During his hospitalization, he required long-term antibiotic therapy. Additionally, the patient received Bio-K+(®) probiotic as part of a quality improvement project to prevent CDI. Subsequently, Lactobacillus bacteremia occurred. Two independent blinded laboratory evaluations, using pulse field gel electrophoresis, 16S rRNA gene sequencing and DNA fingerprint analysis (rep-PCR), were performed to determine whether the recovered Lact. acidophilus originated from the probiotic product. Ultimately, the patient strain was identified as Lact. casei and both laboratories found no genetic relation between the patient's strain and any of the probiotic lactobacilli. This clinical case of lactobacillus bacteremia in the setting of probiotic exposure demonstrates the value of using discriminatory molecular methods to clearly determine whether there were a link between the patient's isolate and the probiotic strains. PMID:26915093

  6. Effect of short term supplementation with Lactobacillus acidophilus LAFTI® L10 on resistance to influenza infection in young and old mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Impairment of the immune function in the aged animals contributes to a decreased ability to clear pathogens when infection occurs. Probiotics have been shown to improve the immune response in animal models. We, therefore, determined the effect of 8 wks of dietary supplementation with Lactobacillus a...

  7. Adhering heat-killed human Lactobacillus acidophilus, strain LB, inhibits the process of pathogenicity of diarrhoeagenic bacteria in cultured human intestinal cells.

    PubMed

    Coconnier, M H; Bernet, M F; Chauvière, G; Servin, A L

    1993-12-01

    Heat-killed L. acidophilus, strain LB, was tested for its ability to adhere in vitro onto human enterocyte-like Caco-2 and muco-secreting HT29-MTX cells in culture. The heat-killed LB bacteria exhibited a high adhesive property. A diffuse pattern of adhesion was observed to the undifferentiated cells, the apical brush border of the enterocytic cells, and to the mucus layer that covered the surface of the mucus-secreting cells. The inhibitory effect of heat-killed LB organisms against the human intestinal Caco-2 cell-adhesion and cell-invasion by a large variety of diarrhoeagenic bacteria was investigated. The following dose-dependent inhibitions were obtained: (i) against the cell-association of enterotoxigenic, diffusely-adhering and enteropathogenic Escherichia coli, Listeria monocytogenes, Yersinia pseudotuberculosis, and Salmonella typhimurium; (ii) against the cell-invasion by enteropathogenic Escherichia coli, Yersinia pseudotuberculosis, Listeria monocytogenes and Salmonella typhimurium. PMID:8188996

  8. Lactobacillus rhamnosus GG and Streptococcus thermophilus induce suppressor of cytokine signalling 3 (SOCS3) gene expression directly and indirectly via interleukin-10 in human primary macrophages

    PubMed Central

    Latvala, S; Miettinen, M; Kekkonen, R A; Korpela, R; Julkunen, I

    2011-01-01

    In the present study we have characterized T helper type 2 (Th2) [interleukin (IL)-10]/Th1 (IL-12) cytokine expression balance in human primary macrophages stimulated with multiple non-pathogenic Gram-positive bacteria used in the food industry and as probiotic substances. Bacteria representing Lactobacillus, Bifidobacterium, Lactococcus, Leuconostoc, Propionibacterium and Streptococcus species induced anti-inflammatory IL-10 production, although quantitative differences between the bacteria were observed. S. thermophilus was able to induce IL-12 production, while the production of IL-12 induced by other bacteria remained at a low level. The highest anti-inflammatory potential was seen with bifidobacteria, as evidenced by high IL-10/IL-12 induction ratios. All studied non-pathogenic bacteria were able to stimulate the expression of suppressor of cytokine signalling (SOCS) 3 that controls the expression of proinflammatory cytokine genes. Lactobacillus and Streptococcus species induced SOCS3 mRNA expression directly in the absence of protein synthesis and indirectly via bacteria-induced IL-10 production, as demonstrated by experiments with cycloheximide (CHX) and anti-IL-10 antibodies, respectively. The mitogen-activated protein kinase (MAPK) p38 signalling pathway played a key role in bacteria-induced SOCS3 gene expression. Enhanced IL-10 production and SOCS3 gene expression induced by live non-pathogenic Lactobacillus and Streptococcus is also likely to contribute to their immunoregulatory effects in vivo. PMID:21545585

  9. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm.

    PubMed

    Ciandrini, Eleonora; Campana, Raffaella; Casettari, Luca; Perinelli, Diego R; Fagioli, Laura; Manti, Anita; Palmieri, Giovanni Filippo; Papa, Stefano; Baffone, Wally

    2016-08-01

    Lactic acid bacteria (LAB) can interfere with pathogens through different mechanisms; one is the production of biosurfactants, a group of surface-active molecules, which inhibit the growth of potential pathogens. In the present study, biosurfactants produced by Lactobacillus reuteri DSM 17938, Lactobacillus acidophilus DDS-1, Lactobacillus rhamnosus ATCC 53103, and Lactobacillus paracasei B21060 were dialyzed (1 and 6 kDa) and characterized in term of reduction of surface tension and emulsifying activity. Then, aliquots of the different dialyzed biosurfactants were added to Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 in the culture medium during the formation of biofilm on titanium surface and the efficacy was determined by agar plate count, biomass analyses, and flow cytometry. Dialyzed biosurfactants showed abilities to reduce surface tension and to emulsifying paraffin oil. Moreover, they significantly inhibited the adhesion and biofilm formation on titanium surface of S. mutans and S. oralis in a dose-dependent way, as demonstrated by the remarkable decrease of cfu/ml values and biomass production. The antimicrobial properties observed for dialyzed biosurfactants produced by the tested lactobacilli opens future prospects for their use against microorganisms responsible of oral diseases. PMID:27102127

  10. Alterations in fecal Lactobacillus and Bifidobacterium species in type 2 diabetic patients in Southern China population

    PubMed Central

    Lê, Kim-Anne; Li, Yan; Xu, Xiaojing; Yang, Wanting; Liu, Tingting; Zhao, Xiaoning; Tang, Yongming Gorge; Cai, Dehong; Go, Vay Liang W.; Pandol, Stephen; Hui, Hongxiang

    2013-01-01

    Background: The connection between gut microbiota and metabolism and its role in the pathogenesis of diabetes are increasingly recognized. The objective of this study was to quantitatively measure Bifidobacterium and Lactobacillus species, members of commensal bacteria found in human gut, in type 2 diabetic patients (T2D) patients from Southern China. Methods: Fifty patients with T2D and thirty control individuals of similar body mass index (BMI) were recruited from Southern China. T2D and control subjects were confirmed with both oral glucose tolerance test (OGTT) and HbA1c measurements. Bifidobacterium and Lactobacillus species in feces were measured by real-time quantitative PCR. Data were analyzed with STATA 11.0 statistical software. Results: In comparison to control subjects T2D patients had significantly more total Lactobacillus (+18%), L. bugaricus (+13%), L. rhamnosum (+37%) and L. acidophilus (+48%) (P < 0.05). In contrast, T2D patients had less amounts of total Bifidobacteria (−7%) and B. adolescentis (−12%) (P < 0.05). Cluster analysis showed that gut microbiota pattern of T2D patients is characterized by greater numbers of L. rhamnosus and L. acidophillus, together with lesser numbers of B. adolescentis (P < 0.05). Conclusion: The gut microflora in T2D patients is characterized by greater numbers of Lactobacillus and lesser numbers of Bifidobacterium species. PMID:23386831

  11. Mining metagenomic whole genome sequences revealed subdominant but constant Lactobacillus population in the human gut microbiota.

    PubMed

    Rossi, Maddalena; Martínez-Martínez, Daniel; Amaretti, Alberto; Ulrici, Alessandro; Raimondi, Stefano; Moya, Andrés

    2016-06-01

    The genus Lactobacillus includes over 215 species that colonize plants, foods, sewage and the gastrointestinal tract (GIT) of humans and animals. In the GIT, Lactobacillus population can be made by true inhabitants or by bacteria occasionally ingested with fermented or spoiled foods, or with probiotics. This study longitudinally surveyed Lactobacillus species and strains in the feces of a healthy subject through whole genome sequencing (WGS) data-mining, in order to identify members of the permanent or transient populations. In three time-points (0, 670 and 700 d), 58 different species were identified, 16 of them being retrieved for the first time in human feces. L. rhamnosus, L. ruminis, L. delbrueckii, L. plantarum, L. casei and L. acidophilus were the most represented, with estimated amounts ranging between 6 and 8 Log (cells g(-1) ), while the other were detected at 4 or 5 Log (cells g(-1) ). 86 Lactobacillus strains belonging to 52 species were identified. 43 seemingly occupied the GIT as true residents, since were detected in a time span of almost 2 years in all the three samples or in 2 samples separated by 670 or 700 d. As a whole, a stable community of lactobacilli was disclosed, with wide and understudied biodiversity. PMID:27043715

  12. Consumption of prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis has minor effects on selected immune parameters in polypectomised and colon cancer patients.

    PubMed

    Roller, Monika; Clune, Yvonne; Collins, Kevin; Rechkemmer, Gerhard; Watzl, Bernhard

    2007-04-01

    Probiotics (PRO) modulate immunity in humans, while the effect of prebiotics (PRE) and synbiotics (SYN) on the human immune system are not well studied yet. The objective of this study was to investigate whether daily intake of a SYN modulates immune functions. In a randomised double-blind, placebo-controlled trial, thirty-four colon cancer patients who had undergone 'curative resection' and forty polypectomised patients participated. Subjects of the SYN group daily received encapsulated bacteria (1 x 10(10) colony-forming units of Lactobacillus rhamnosus GG (LGG) and 1 x 10(10) colony-forming units of Bifidobacterium lactis Bb12 (Bb12)) and 10 g of inulin enriched with oligofructose. Controls received encapsulated maltodextrin and 10 g of maltodextrin. Prior to intervention (T1), and 6 (T2) and 12 weeks after the start of the intervention (T3), phagocytic and respiratory burst activity of neutrophils and monocytes, lytic activity of natural killer cells and production of interleukin (IL)-2, IL-10 and IL-12, as well as tumour necrosis factor-alpha and interferon-gamma (IFN-gamma) by activated peripheral blood mononuclear cells (PBMC) were measured. In faeces, the concentrations of transforming growth factor-beta1 and prostaglandin E2 were measured. IL-2 secretion by activated PBMC from the polyp group increased significantly between T1 or T2 and T3 (P < 0.05). In the cancer group, SYN treatment resulted in an increased capacity of PBMC to produce IFN-gamma at T3 (P < 0.05). Other immunity-related parameters were not affected by SYN treatment, neither in the cancer nor in the polyp group. In conclusion, supplementation with this SYN has minor stimulatory effects on the systemic immune system of the two study groups. Further studies in humans should aim to focus on the gut-associated immune system. PMID:17349080

  13. Consumption of probiotic Lactobacillus rhamnosus (MTCC: 5897) containing fermented milk plays a key role in development of the immune system in newborn mice during the suckling-weaning transition.

    PubMed

    Saliganti, Vamshi; Kapila, Rajeev; Kapila, Suman

    2016-04-01

    Early infancy, the period when offspring rely not only on their own immunity to combat food-borne antigens but also acquire immunity through maternal sources (via transplacental routes and breast milk), is critical for immune system development Hence the present study was designed to evaluate the effect on offspring of administration of probiotic-containing fermented milk (PFM) either to mothers during the suckling period or to their offspring after weaning either separately or sequentially. PFM-fed mice showed enhanced leukocyte functionality in offspring as evidenced by significantly (P < 0.05) increased release of lysosomal enzymes (β-galactosidase, β-glucuronidase) in peritoneal fluid and nitric oxide production in culture supernatants of activated macrophages. Further, remarkably reduced levels (P < 0.01) of inflammatory markers (TNF-α, monocyte chemotactic protein-1) and allergic antibodies (total and milk specific IgE) were observed in offspring where PFM was fed either to them or to their mothers. However, considerably increased levels (P < 0.05) of SIgA were found in the guts of control and experimental groups animals irrespective of their exposure to PFM. Restoration of Th1/Th2 homeostasis further confirmed the useful effects of PFM supplementation by shifting the cytokine profile (IL-4, IFN-γ and IL-10) with increased IFN-γ/IL-4 and reduced IgE/Ig2Ga ratios. Hence, it is logical to conclude that administration of Lactobacillus rhamnosus-containing (MTCC:5897) fermented milk to mothers during the suckling period and to their offspring after weaning has beneficial effects on the development of newborns immune systems; this effect appears to be more pronounced when mothers are fed with it. PMID:26589556

  14. LC-MS/MS analysis of surface layer proteins as a useful method for the identification of lactobacilli from the Lactobacillus acidophilus group.

    PubMed

    Podlesny, Marcin; Jarocki, Piotr; Komon, Elwira; Glibowska, Agnieszka; Targonski, Zdzislaw

    2011-04-01

    For precise identification of a Lactobacillus K1 isolate, LC-MS/MS analysis of the putative surface layer protein was performed. The results obtained from LTQ-FT-ICR mass spectrometry confirmed that the analyzed protein spot is the surface layer protein originating from Lb. helveticus species. Moreover, the identified protein has the highest similarity with the surface layer protein from Lb. helveticus R0052. To evaluate the proteomic study, multilocus sequence analysis of selected housekeeping gene sequences was performed. Combination of 16S rRNA sequencing with partial sequences for the genes encoding the RNA polymerase alpha subunit (rpoA), phenylalanyl-tRNA synthase alpha subunit (pheS), translational elongation factor Tu (tuf), and Hsp60 chaperonins (groEL) also allowed to classify the analyzed isolate as Lb. helveticus. Further classification at the strain level was achieved by sequencing of the slp gene. This gene showed 99.8% identity with the corresponding slp gene of Lb. helveticus R0052, which is in good agreement with data obtained by nano-HPLC coupled to an LTQ-FT-ICR mass spectrometer. Finally, LC-MS/ MS analysis of surface layer proteins extracted from three other Lactobacillus strains proved that the proposed method is the appropriate molecular tool for the identification of S-layer-possessing lactobacilli at the species and even strain levels. PMID:21532327

  15. Effect of drying methods of microencapsulated Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris on secondary protein structure and glass transition temperature as studied by Fourier transform infrared and differential scanning calorimetry.

    PubMed

    Dianawati, Dianawati; Mishra, Vijay; Shah, Nagendra P

    2013-03-01

    Protective mechanisms of casein-based microcapsules containing mannitol on Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris, changes in their secondary protein structures, and glass transition of the microcapsules were studied after spray- or freeze-drying and after 10 wk of storage in aluminum foil pouches containing different desiccants (NaOH, LiCl, or silica gel) at 25°C. An in situ Fourier transform infrared analysis was carried out to recognize any changes in fatty acids (FA) of bacterial cell envelopes, interaction between polar site of cell envelopes and microcapsules, and alteration of their secondary protein structures. Differential scanning calorimetry was used to determine glass transition of microcapsules based on glass transition temperature (T(g)) values. Hierarchical cluster analysis based on functional groups of cell envelopes and secondary protein structures was also carried out to classify the microencapsulated bacteria due to the effects of spray- or freeze-drying and storage for 10 wk. The results showed that drying process did not affect FA and secondary protein structures of bacteria; however, those structures were affected during storage depending upon the type of desiccant used. Interaction between exterior of bacterial cell envelopes and microencapsulant occurred after spray- or freeze-drying; however, these structures were maintained after storage in foil pouch containing sodium hydroxide. Method of drying and type of desiccants influenced the level of similarities of microencapsulated bacteria. Desiccants and method of drying affected glass transition, yet no T(g) ≤25°C was detected. This study demonstrated that the changes in FA and secondary structures of the microencapsulated bacteria still occurred during storage at T(g) above room temperature, indicating that the glassy state did not completely prevent chemical activities. PMID:23357021

  16. Identification, cloning, and nucleotide sequence of a silent S-layer protein gene of Lactobacillus acidophilus ATCC 4356 which has extensive similarity with the S-layer protein gene of this species.

    PubMed Central

    Boot, H J; Kolen, C P; Pouwels, P H

    1995-01-01

    The bacterial S-layer forms a regular structure, composed of a monolayer of one (glyco)protein, on the surfaces of many prokaryotic species. S-layers are reported to fulfil different functions, such as attachment structures for extracellular enzymes and major virulence determinants for pathogenic species. Lactobacillus acidophilus ATCC 4356, which originates from the human pharynx, possesses such an S-layer. No function has yet been assigned to the S-layer of this species. Besides the structural gene (slpA) for the S-layer protein (S-protein) which constitutes this S-layer, we have identified a silent gene (slpB), which is almost identical to slpA in two regions. From the deduced amino acid sequence, it appears that the mature SB-protein (44,884 Da) is 53% similar to the SA-protein (43,636 Da) in the N-terminal and middle parts of the proteins. The C-terminal parts of the two proteins are identical except for one amino acid residue. The physical properties of the deduced S-proteins are virtually the same. Northern (RNA) blot analysis shows that only the slpA gene is expressed in wild-type cells, in line with the results from sequencing and primer extension analyses, which reveal that only the slpA gene harbors a promoter, which is located immediately upstream of the region where the two genes are identical. The occurrence of in vivo chromosomal recombination between the two S-protein-encoding genes will be described elsewhere. PMID:8522531

  17. Impact of inulin and okara on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions.

    PubMed

    Bedani, Raquel; Rossi, Elizeu Antonio; Isay Saad, Susana Marta

    2013-06-01

    The effect of inulin and/or okara flour on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product (FSP) and on probiotic survival under in vitro simulated gastrointestinal conditions were investigated throughout 28 days of storage at 4 °C. Employing a 2(2) design, four FSP trials were produced from soymilk fermented with ABT-4 culture (La-5, Bb-12, and Streptococcus thermophilus): FSP (control); FSP-I (with inulin, 3 g/100 mL of soymilk); FSP-O (with okara, 5 g/100 mL); FSP-IO (with inulin + okara, ratio 3:5 g/100 mL). Probiotic viabilities ranged from 8 to 9 log cfu/g during the 28 days of storage, and inulin and/or okara flour did not affect the viability of La-5 and Bb-12. Bb-12 resistance to the artificial gastrointestinal juices was higher than for La-5, since the Bb-12 and La-5 populations decreased approximately 0.6 log cfu/g and 3.8 log cfu/g, respectively, throughout storage period. Even though the protective effect of inulin and/or okara flour on probiotic microorganisms was not significant, when compared to a fresh culture, the FSP matrix improved Bb-12 survival on day 1 of storage and may be considered a good vehicle for Bb-12 and could play an important role in probiotic protection against gastrointestinal juices. PMID:23541206

  18. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  19. The Efficacy of Probiotic (Lactobacillus rhamnosus GG) and 5-ASA (Aminosalicylic Acid) in the Treatment of Experimental Radiation Proctitis in Rats.

    PubMed

    Dandin, Özgür; Akin, Mehmet Levhi; Balta, Ahmet Ziya; Yücel, Ergün; Karakaş, Dursun Özgür; Demirbaş, Sezai; Özdemir, Sevim; Haholu, Apdullah

    2015-12-01

    The aims of the study are to demonstrate the effect of probiotic use on the healing of radiation proctitis (RP) and evaluate the efficiency of fecal biomarkers at follow-up of the treatment. Thirty-two male/female rats were randomly separated into four groups of eight rats. The first group (control) was not radiated. RP was created by 17.5 Gy single dose rectal irradiation. The second group (RP) was subjected to RP, but not treated. The third group (RP+ASA) was treated with 5-aminosalicylic acid (5-ASA) 250 mg/kg daily by gastric lavage for 14 days after the irradiation, and the forth group (RP+LGG) was treated with Lactobacillus GG (LGG) 25 × 100 million CFU daily. Feces samples were taken at the 7th and 14th day of the treatment for fecal biomarkers. Rectums of the rats were resected at the 14th day by laparotomy. Samples were evaluated both macroscopically and microscopically. RP was achieved both macroscopically and microscopically. Weight loss of RP group is statistically significant (p < 0.005) than other groups. The healing ratio of RP+ASA and RP+LGG groups was significantly better than the RP group (p < 0.005) both macroscopically and microscopically. But there was no significant difference between ASA and LGG groups. Biochemically, fecal calprotectin was found to be more effective than fecal myeloperoxidase and fecal lactoferrin to show the efficacy of treatment of radiation proctitis. The results of our study demonstrate that probiotic is as effective as 5-aminosalicylic in the treatment of radiation proctitis, and fecal calprotectin is a useful biomarker in determining the response to the treatment. PMID:26730065

  20. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum modulates the formation of aberrant crypt foci, mucin-depleted foci, and cell proliferation on 1,2-dimethylhydrazine-induced colorectal carcinogenesis in Wistar rats.

    PubMed

    Mohania, Dheeraj; Kansal, Vinod K; Kruzliak, Peter; Kumari, Archana

    2014-08-01

    Aberrant crypt foci (ACF) and mucin-depleted foci (MDF) are pre-neoplastic lesions identified in the colon of carcinogen-treated rodents and in humans at high risk for colon cancer. The present study was carried out to divulge the protective potential of the probiotic Dahi containing Lactobacillus acidophilus LaVK2 and Bifidobacterium bifidum BbVK3 alone or in combination with piroxicam (PXC) on the development of early biomarkers of colorectal carcinogenesis in male Wistar rats administered 1,2-dimethylhydrazine (DMH). DMH was injected subcutaneously at the rate of 40 mg/kg body weight per animal twice a week for 2 weeks. A total of 120 male Wistar rats were randomly allocated to five groups, each group having 24 animals. The rats were fed with buffalo milk or probiotic supplement (20 grams) alone or as an adjunct with PXC in addition to a basal diet ad libitum for 32 weeks. Group I was offered buffalo milk (BM) and served as the control group. Group II was administered DMH along with BM and served as the DMH-control group; group III was administered BM-DMH-PXC, in which besides administering BM-DMH, PXC was also offered. Group IV was offered probiotic LaBb Dahi and DMH, and group V was offered both probiotic LaBb Dahi and PXC along with DMH. The rats were euthanized at the 8(th), 16(th), and 32(nd) week of the experiment and examined for development of ACF, aberrant crypts per ACF (AC/ACF), mucin-depleted foci (MDF), large MDF, and proliferating cell nuclear antigen (PCNA) labeling index. Administration of DMH in rats induced pre-neoplastic lesions (ACF and MDF) and increased the PCNA index in colorectal tissue. A significant (p<0.05) reduction in the number of ACF, AC/ACF, MDF, large MDF, and PCNA labeling index were observed in the probiotic LaBb Dahi group compared with the DMH control group. Feeding rats with LaBb Dahi or treatment with PXC diminished the initiation and progression of DMH-induced pre-neoplastic lesions and the PCNA index, and treatment with

  1. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents.

    PubMed

    Liévin-Le Moal, Vanessa; Servin, Alain L

    2014-04-01

    A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract. PMID:24696432

  2. Anti-Infective Activities of Lactobacillus Strains in the Human Intestinal Microbiota: from Probiotics to Gastrointestinal Anti-Infectious Biotherapeutic Agents

    PubMed Central

    Liévin-Le Moal, Vanessa

    2014-01-01

    SUMMARY A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract. PMID:24696432

  3. AI-2 signalling is induced by acidic shock in probiotic strains of Lactobacillus spp.

    PubMed

    Moslehi-Jenabian, Saloomeh; Gori, Klaus; Jespersen, Lene

    2009-11-15

    Survival and ability to respond to various environmental stresses such as low pH are important factors for lactobacilli for their function as probiotics. LuxS-mediated quorum sensing mechanism, which is based on the production of universal signal molecule called autoinducer-2 (AI-2), regulates important physiological traits and a variety of adaptive processes in different bacteria. The aim of this study was to investigate the effect of acidic stress on LuxS-mediated quorum sensing (AI-2 signalling) in four probiotic strains of different Lactobacillus species. Initially, the production of AI-2-like molecule was investigated in four strains of Lactobacillus spp. at standard growth conditions using Vibrio harveyi bioluminescence assay. Species variation in AI-2 activity was observed. AI-2 activity started at early-exponential growth phase and increased during the mid-exponential phase concomitant with the reduction of pH, reaching maximum at late exponential phase (L. rhamnosus GG) or at stationary phase (L. salivarius UCC118, L. acidophilus NCFM and L. johnsonii NCC533). Acidic shock experiments were conducted on L. rhamnosus GG and L. acidophilus NCFM after exposure to different acidic shocks (pH 5.0, 4.0 and 3.0) and to pH 6.5 as control, measuring AI-2 activity and transcription of the luxS gene. AI-2 activity increased by lowering the pH in a dose dependent manner and was negatively influenced by acid adaptation. In both species, the luxS gene was repressed after exposure to pH 6.5 as control. However, after acidic shock (pH 4.0) a transient response of luxS gene was observed and the transcription augmented over time, reaching a maximum level and decreased subsequently. Acid adaptation of cells attenuated the transcription of this gene. Based on the observations done in the present study, the luxS gene appears to have a clear role in acidic stress response in probiotic lactobacilli. This might be important in the survival of these bacteria during the passage

  4. Lactobacillus kitasatonis sp. nov., from chicken intestine.

    PubMed

    Mukai, Takao; Arihara, Keizo; Ikeda, Ami; Nomura, Kazuhito; Suzuki, Fumihiko; Ohori, Hitoshi

    2003-11-01

    Four strains isolated from chicken small intestine and strains JCM 1038 and JCM 1039 (designated as Lactobacillus acidophilus) were characterized by phenotypic and molecular taxonomic methods. They were Gram-positive, catalase-negative, facultatively anaerobic rods that did not produce gas from glucose. These strains had similar phenotypic characteristics and exhibited intergroup DNA relatedness values of >77 %, indicating that they comprised a single species. The 16S rRNA gene sequence of a representative strain, JCM 1039(T) (designated as type strain in this study), was determined and aligned with those of other Lactobacillus species. JCM 1039(T) was placed in the Lactobacillus delbrueckii cluster of the genus Lactobacillus on the basis of phylogenetic analysis and formed an independent cluster that was distinct from its closest neighbours, Lactobacillus amylovorus, Lactobacillus crispatus, Lactobacillus gallinarum, L. acidophilus and Lactobacillus helveticus. Results of DNA-DNA hybridization experiments and whole-cell protein profiles clearly indicated that these strains represent a novel Lactobacillus species, for which the name Lactobacillus kitasatonis sp. nov. is proposed; the type strain of this species is JCM 1039(T). PMID:14657145

  5. Bacteriocins Produced by L. Fermentum and L. Acidophilus Can Inhibit Cephalosporin Resistant E. Coli.

    PubMed Central

    Riaz, Saba; Kashif Nawaz, Syed; Hasnain, Shahida

    2010-01-01

    Reemerging infections occur due to resistant bacteria. Such infections create restrictions for clinicians and microbiologists in drug selection. Such problems demand new strategies for solution. Use of bacteriocins for this purpose may be fruitful. In the present research work, the inhibitory effects of bactericins on cephalosporin resistant Escherichia coli are used as model system for the control of antibiotic resistant pathogenic bacteria. Cephalosporin resistant Escherichia coli strain was isolated from pus by using conventional methodology. For bacteriocin production, Lactobacilli strains were selected by using selective media. Out of seventy two strains isolated from yogurt, fecal materials of human, chick, parrot and cat, only two strains (strain 45 and strain 52) were found to produce bacteriocins having antimicrobial potential against cephalosporin resistant Escherichia coli. Biochemical characterization showed that strain 45 belonged to group of Lactobacillus fermentum and strain 52 to Lactobacillus acidophilus. Both strains showed maximum growth at 25°C and 35°C respectively. Suitable pH was 5.5 and 6.0 for Lactobacillus fermentum and Lactobacillus acidophilus respectively. Bacteriocins produced by both strains were found stable at 50, 75 and 100°C for 60min. Function of bacteriocin was also not disturbed due to change in pH. These findings suggest that bacteriocin produced by Lactobacillus fermentum and Lactobacillus acidophilus can be used for the infection control of cephalosporin resistant Escherichia coli. PMID:24031540

  6. Gut Balance, a synbiotic supplement, increases fecal Lactobacillus paracasei but has little effect on immunity in healthy physically active individuals

    PubMed Central

    West, Nicholas P.; Pyne, David B.; Cripps, Allan; Christophersen, Claus T.; Conlon, Michael A.; Fricker, Peter A.

    2012-01-01

    Synbiotic supplements, which contain multiple functional ingredients, may enhance the immune system more than the use of individual ingredients alone. A double blind active controlled parallel trial over a 21 day exercise training period was conducted to evaluate the effect of Gut BalanceTM, which contains Lactobacillus paracasei subsp paracasei (L. casei 431®), Bifidobacterium animalis ssp lactis (BB-12®), Lactobacillus acidophilus (LA-5®), Lactobacillus rhamnosus (LGG®), two prebiotics (raftiline and raftilose) and bovine whey derived lactoferrin and immunoglobulins with acacia gum on fecal microbiota, short chain fatty acids (SCFA), gut permeability, salivary lactoferrin and serum cytokines. All subjects randomized were included in the analysis. There was a 9-fold (1.2-fold to 64-fold; 95% confidence intervals p = 0.03) greater increase in fecal L. paracasei numbers with Gut BalanceTM compared with acacia gum supplementation. Gut BalanceTM was associated with a 50% (-12% to 72%; p = 0.02) smaller increase in the concentration of serum IL-16 in comparison to acacia gum from pre- to post-study. No substantial effects of either supplement were evident in fecal SCFA concentrations, measures of mucosal immunity or GI permeability. Clinical studies are now required to determine whether Gut BalanceTM may exert beneficial GI health effects by increasing the recovery of fecal L. paracasei. Both supplements had little effect on immunity. Twenty-two healthy physically active male subjects (mean age = 33.9 ± 6.5 y) were randomly allocated to either daily prebiotic or synbiotic supplementation for 21 day. Saliva, blood, urine and fecal samples were collected pre-, mid- and post-intervention. Participants recorded patterns of physical activity on a self-reported questionnaire. PMID:22572834

  7. Characterization of the effects of three Lactobacillus species on the function of chicken macrophages.

    PubMed

    Brisbin, Jennifer T; Davidge, Lianne; Roshdieh, Ala; Sharif, Shayan

    2015-06-01

    Lactobacillus acidophilus, Lactobacillus reuteri and Lactobacillus salivarius can influence the adaptive immune responses in chickens but vary in their ability to do so. The present study attempted to identify how these three bacteria alter the innate immune system. A chicken macrophage cell line, MQ-NCSU, was co-cultured with the three live Lactobacillus species, alone or in combination, grown at different temperatures for various durations of time. Late exponential growth phase bacteria were more immunostimulatory, while bacterial growth temperature had little effect. L. acidophilus and L. salivarius significantly increased nitric oxide (NO) production and phagocytosis, while L. reuteri did not. In fact, L reuteri was shown to inhibit NO production of macrophages when co-cultured with the other bacteria or when cells were pre-treated with LPS. The results demonstrate a possible molecular mechanism for the immunomodulatory effects of L. acidophilus and L. salivarius, and a unique immunomodulatory ability of L. reuteri. PMID:25847283

  8. Molecular Analysis and Clinical Significance of Lactobacillus spp. Recovered from Clinical Specimens Presumptively Associated with Disease

    PubMed Central

    Martinez, Raquel M.; Hulten, Kristina G.; Bui, Uyen

    2014-01-01

    Lactobacillus spp. are part of the normal human flora and are generally assumed to be nonpathogenic. We determined the genotypic identification of >100 Lactobacillus isolates from clinical specimens in the context of presumed pathogenic potential (e.g., recovered as the single/predominant isolate from a sterile site or at ≥105 CFU/ml from urine). This study assessed the clinical significance and the frequency of occurrence of each Lactobacillus sp. We identified 16 species of Lactobacillus by 16S rRNA gene sequence analysis, 10 of which could not be associated with disease. While Lactobacillus rhamnosus, Lactobacillus gasseri, and Lactobacillus paracasei were associated with infections, L. gasseri was also a common colonizing/contaminating species. Lactobacillus casei, Lactobacillus johnsonii, and Lactobacillus delbrueckii were associated with at least one infection. Species commonly used in probiotic products (e.g., L. rhamnosus and L. casei) were identical, by 16S rRNA gene sequencing, to our isolates associated with disease. Human isolates of Lactobacillus spp. have differing site associations and levels of clinical significance. Knowing the niche and pathogenic potential of each Lactobacillus sp. can be of importance to both clinical microbiology and the food and probiotic supplement industry. PMID:24131686

  9. Comparative sequence analyses of the genes coding for 16S rRNA of Lactobacillus casei-related taxa.

    PubMed

    Mori, K; Yamazaki, K; Ishiyama, T; Katsumata, M; Kobayashi, K; Kawai, Y; Inoue, N; Shinano, H

    1997-01-01

    The primary structures of the 16S rRNA genes of the type strains of Lactobacillus casei and related taxa were determined by PCR DNA-sequencing methods. The sequences of Lactobacillus casei, Lactobacillus zeae, Lactobacillus paracasei, and Lactobacillus rhamnosus were different. The Knuc values ranged from 0.0040 to 0.0126. On the basis of the Knuc values and the levels of DNA-DNA relatedness among the strains of these species, the L. casei-related taxa should be classified in the following three species: L. zeae, which includes the type strains of L. zeae and L. casei; a species that includes the strains of L. paracasei and L. casei ATCC 334; and L. rhamnosus. PMID:8995801

  10. Genomic adaptation of the Lactobacillus casei group.

    PubMed

    Toh, Hidehiro; Oshima, Kenshiro; Nakano, Akiyo; Takahata, Muneaki; Murakami, Masaru; Takaki, Takashi; Nishiyama, Hidetoshi; Igimi, Shizunobu; Hattori, Masahira; Morita, Hidetoshi

    2013-01-01

    Lactobacillus casei, L. paracasei, and L. rhamnosus form a closely related taxonomic group (Lactobacillus casei group) within the facultatively heterofermentative lactobacilli. Here, we report the complete genome sequences of L. paracasei JCM 8130 and L. casei ATCC 393, and the draft genome sequence of L. paracasei COM0101, all of which were isolated from daily products. Furthermore, we re-annotated the genome of L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG), which we have previously reported. We confirmed that ATCC 393 is distinct from other st