Science.gov

Sample records for acidosis-induced neuronal death

  1. Acidosis-Induced Dysfunction of Cortical GABAergic Neurons through Astrocyte-Related Excitotoxicity

    PubMed Central

    Guan, Sudong; Zhu, Yan; Wang, Jin-Hui

    2015-01-01

    Background Acidosis impairs cognitions and behaviors presumably by acidification-induced changes in neuronal metabolism. Cortical GABAergic neurons are vulnerable to pathological factors and their injury leads to brain dysfunction. How acidosis induces GABAergic neuron injury remains elusive. As the glia cells and neurons interact each other, we intend to examine the role of the astrocytes in acidosis-induced GABAergic neuron injury. Results Experiments were done at GABAergic cells and astrocytes in mouse cortical slices. To identify astrocytic involvement in acidosis-induced impairment, we induced the acidification in single GABAergic neuron by infusing proton intracellularly or in both neurons and astrocytes by using proton extracellularly. Compared the effects of intracellular acidification and extracellular acidification on GABAergic neurons, we found that their active intrinsic properties and synaptic outputs appeared more severely impaired in extracellular acidosis than intracellular acidosis. Meanwhile, extracellular acidosis deteriorated glutamate transporter currents on the astrocytes and upregulated excitatory synaptic transmission on the GABAergic neurons. Moreover, the antagonists of glutamate NMDA-/AMPA-receptors partially reverse extracellular acidosis-induced injury in the GABAergic neurons. Conclusion Our studies suggest that acidosis leads to the dysfunction of cortical GABAergic neurons by astrocyte-mediated excitotoxicity, in addition to their metabolic changes as indicated previously. PMID:26474076

  2. DNA Damage Induced Neuronal Death

    DTIC Science & Technology

    1999-10-01

    Experiments are proposed to examine the molecular mechanism by which mustard chemical warfare agents induce neuronal cell death . DNA damage is the...proposed underlying mechanism of mustard-induced neuronal cell death . We propose a novel research strategy to test this hypothesis by using mice with...perturbed DNA repair to explore the relationship between mustard-induced DNA damage and neuronal cell death . Initial in vitro studies (Years 1, 2 & 3

  3. Calcium imaging in neuron cell death.

    PubMed

    Calvo, María; Villalobos, Carlos; Núñez, Lucía

    2015-01-01

    Intracellular Ca2+ is involved in control of a large variety of cell functions including apoptosis and neuron cell death. For example, intracellular Ca2+ overload is critical in neuron cell death induced by excitotoxicity. Thus, single cell monitoring of intracellular Ca2+ concentration ([Ca2+]cyt ) in neurons concurrently with apoptosis and neuron cell death is widely required. Procedures for culture and preparation of primary cultures of hippocampal rat neurons and fluorescence imaging of cytosolic Ca2+ concentration in Fura2/AM -loaded neurons are described. We also describe a method for apoptosis detection by immunofluorescence imaging. Finally, a simple method for concurrent measurements of [Ca2+]cyt and apoptosis in the same neurons is described.

  4. TRPA1 and TRPV1 Antagonists Do Not Inhibit Human Acidosis-Induced Pain.

    PubMed

    Schwarz, Matthias G; Namer, Barbara; Reeh, Peter W; Fischer, Michael J M

    2017-01-03

    Acidosis occurs in a variety of pathophysiological and painful conditions where it is thought to excite or contribute to excitation of nociceptive neurons. Despite potential clinical relevance the principal receptor for sensing acidosis is unclear, but several receptors have been proposed. We investigated the contribution of the acid-sensing ion channels, transient receptor potential vanilloid type 1 (TRPV1) and transient receptor potential ankyrin type 1 (TRPA1) to peripheral pain signaling. We first established a human pain model using intraepidermal injection of the TRPA1 agonist carvacrol. This resulted in concentration-dependent pain sensations, which were reduced by experimental TRPA1 antagonist A-967079. Capsaicin-induced pain was reduced by the TRPV1 inhibitor BCTC. Amiloride was used to block acid-sensing ion channels. Testing these antagonists in a double-blind and randomized experiment, we probed the contribution of the respective channels to experimental acidosis-induced pain in 15 healthy human subjects. A continuous intraepidermal injection of pH 4.3 was used to counter the buffering capacity of tissue and generate a prolonged painful stimulation. In this model, addition of A-967079, BCTC or amiloride did not reduce the reported pain. In conclusion, target-validated antagonists, applied locally in human skin, have excluded the main hypothesized targets and the mechanism of the human acidosis-induced pain remains unclear.

  5. TRPM7, the cytoskeleton and neuronal death

    PubMed Central

    Asrar, Suhail; Aarts, Michelle

    2013-01-01

    Ischemic stroke is one of the leading causes of disability and death in the world. Elucidation of the underlying mechanisms associated with neuronal death during this detrimental process has been of significant interest in the field of research. One principle component vital to the maintenance of cellular integrity is the cytoskeleton. Studies suggest that abnormalities at the level of this fundamental structure are directly linked to adverse effects on cellular well-being, including cell death. In recent years, evidence has also emerged regarding an imperative role for the transient receptor potential (TRP) family member TRPM7 in the mediation of excitotoxic-independent neuronal demise. In this review, we will elaborate on the current knowledge and unique properties associated with the functioning of this structure. In addition, we will deliberate the involvement of distinct mechanistic pathways during TRPM7-dependent cell death, including modifications at the level of the cytoskeleton. PMID:23247582

  6. Neuronal cell death in hepatic encephalopathy.

    PubMed

    Butterworth, Roger F

    2007-12-01

    It is generally assumed that neuronal cell death is minimal in liver failure and is insufficient to account for the neuropsychiatric symptoms characteristic of hepatic encephalopathy. However, contrary to this assumption, neuronal cell damage and death are well documented in liver failure patients, taking the form of several distinct clinical entities namely acquired (non-Wilsonian) hepatocerebral degeneration, cirrhosis-related Parkinsonism, post-shunt myelopathy and cerebellar degeneration. In addition, there is evidence to suggest that liver failure contributes to the severity of neuronal loss in Wernicke's encephalopathy. The long-standing nature of the thalamic and cerebellar lesions, over 80% of which are missed by routine clinical evaluation, together with the probability that they are nutritional in origin, underscores the need for careful nutritional management (adequate dietary protein, Vitamin B(1)) in liver failure patients. Mechanisms identified with the potential to cause neuronal cell death in liver failure include NMDA receptor-mediated excitotoxicity, lactic acidosis, oxidative/nitrosative stress and the presence of pro-inflammatory cytokines. The extent of neuronal damage in liver failure may be attenuated by compensatory mechanisms that include down-regulation of NMDA receptors, hypothermia and the presence of neuroprotective steroids such as allopregnanolone. These findings suggest that some of the purported "sequelae" of liver transplantation (gait ataxia, memory loss, confusion) could reflect preexisting neuropathology.

  7. Non-Specific Inhibition of Ischemia- and Acidosis-Induced Intracellular Calcium Elevations and Membrane Currents by α-Phenyl-N-tert-butylnitrone, Butylated Hydroxytoluene and Trolox

    PubMed Central

    Katnik, Christopher; Cuevas, Javier

    2014-01-01

    Ischemia, and subsequent acidosis, induces neuronal death following brain injury. Oxidative stress is believed to be a key component of this neuronal degeneration. Acute chemical ischemia (azide in the absence of external glucose) and acidosis (external media buffered to pH 6.0) produce increases in intracellular calcium concentration ([Ca2+]i) and inward membrane currents in cultured rat cortical neurons. Two α-tocopherol analogues, trolox and butylated hydroxytoluene (BHT), and the spin trapping molecule α-Phenyl-N-tert-butylnitrone (PBN) were used to determine the role of free radicals in these responses. PBN and BHT inhibited the initial transient increases in [Ca2+]i, produced by ischemia, acidosis and acidic ischemia and increased steady state levels in response to acidosis and the acidic ischemia. BHT and PBN also potentiated the rate at which [Ca2+]i increased after the initial transients during acidic ischemia. Trolox inhibited peak and sustained increases in [Ca2+]i during ischemia. BHT inhibited ischemia induced initial inward currents and trolox inhibited initial inward currents activated by acidosis and acidic ischemia. Given the inconsistent results obtained using these antioxidants, it is unlikely their effects were due to elimination of free radicals. Instead, it appears these compounds have non-specific effects on the ion channels and exchangers responsible for these responses. PMID:24583849

  8. Antioxidant gene therapy against neuronal cell death

    PubMed Central

    Navarro-Yepes, Juliana; Zavala-Flores, Laura; Annadurai, Anandhan; Wang, Fang; Skotak, Maciej; Chandra, Namas; Li, Ming; Pappa, Aglaia; Martinez-Fong, Daniel; Razo, Luz Maria Del; Quintanilla-Vega, Betzabet; Franco, Rodrigo

    2014-01-01

    Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders. This work reviews the evidence demonstrating the ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat inherited and acquired disorders offer many unique advantages over conventional therapeutic approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene delivery techniques for antioxidant gene therapy. PMID:24333264

  9. Do Single Seizures Cause Neuronal Death in the Human Hippocampus?

    PubMed Central

    Rocha, Luisa L; Lopez-Meraz, Maria-Leonor; Niquet, Jerome; Wasterlain, Claude G

    2007-01-01

    The question of whether repeated single seizures cause neuronal death in the adult human brain is of great clinical importance and might have broad therapeutic implications. Reviewed here are recent studies on the effects of repeated single seizures (in the absence of status epilepticus) on hippocampal volume and on neuronal death markers in blood and in surgically ablated hippocampi. PMID:17520081

  10. Life and death of neurons in the aging brain

    NASA Technical Reports Server (NTRS)

    Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    Neurodegenerative disorders are characterized by extensive neuron death that leads to functional decline, but the neurobiological correlates of functional decline in normal aging are less well defined. For decades, it has been a commonly held notion that widespread neuron death in the neocortex and hippocampus is an inevitable concomitant of brain aging, but recent quantitative studies suggest that neuron death is restricted in normal aging and unlikely to account for age-related impairment of neocortical and hippocampal functions. In this article, the qualitative and quantitative differences between aging and Alzheimer's disease with respect to neuron loss are discussed, and age-related changes in functional and biochemical attributes of hippocampal circuits that might mediate functional decline in the absence of neuron death are explored. When these data are viewed comprehensively, it appears that the primary neurobiological substrates for functional impairment in aging differ in important ways from those in neurodegenerative disorders such as Alzheimer's disease.

  11. Death of Neurons following Injury Requires Conductive Neuronal Gap Junction Channels but Not a Specific Connexin

    PubMed Central

    Fontes, Joseph D.; Ramsey, Jon; Polk, Jeremy M; Koop, Andre; Denisova, Janna V.; Belousov, Andrei B.

    2015-01-01

    Pharmacological blockade or genetic knockout of neuronal connexin 36 (Cx36)-containing gap junctions reduces neuronal death caused by ischemia, traumatic brain injury and NMDA receptor (NMDAR)-mediated excitotoxicity. However, whether Cx36 gap junctions contribute to neuronal death via channel-dependent or channel-independent mechanism remains an open question. To address this, we manipulated connexin protein expression via lentiviral transduction of mouse neuronal cortical cultures and analyzed neuronal death twenty-four hours following administration of NMDA (a model of NMDAR excitotoxicity) or oxygen-glucose deprivation (a model of ischemic injury). In cultures prepared from wild-type mice, over-expression and knockdown of Cx36-containing gap junctions augmented and prevented, respectively, neuronal death from NMDAR-mediated excitotoxicity and ischemia. In cultures obtained form from Cx36 knockout mice, re-expression of functional gap junction channels, containing either neuronal Cx36 or non-neuronal Cx43 or Cx31, resulted in increased neuronal death following insult. In contrast, the expression of communication-deficient gap junctions (containing mutated connexins) did not have this effect. Finally, the absence of ethidium bromide uptake in non-transduced wild-type neurons two hours following NMDAR excitotoxicity or ischemia suggested the absence of active endogenous hemichannels in those neurons. Taken together, these results suggest a role for neuronal gap junctions in cell death via a connexin type-independent mechanism that likely relies on channel activities of gap junctional complexes among neurons. A possible contribution of gap junction channel-permeable death signals in neuronal death is discussed. PMID:26017008

  12. [Transient brain ischemia: NMDA receptor modulation and delayed neuronal death].

    PubMed

    Benquet, Pascal; Gee, Christine E; Gerber, Urs

    2008-02-01

    Transient global ischemia induces delayed neuronal death in certain cell types and brain regions while sparing cells in other areas. A key process through which oxygen-glucose deprivation triggers cell death is the excessive accumulation of the neurotransmitter glutamate leading to over excitation of neurons. In certain neurons this increase in glutamate will potentiate the NMDA type of glutamate receptor, which can then initiate cell death. This review provides an update of the neurophysiological, cellular and molecular mechanisms inducing post-ischemic plasticity of NMDA receptors, focusing on the sensitive CA1 pyramidal neurons in the hippocampus as compared to the relatively resistant neighboring CA3 neurons. Both a change in the equilibrium between protein tyrosine kinases/phosphatases and an increased density of surface NMDA receptors in response to ischemia may explain the selective vulnerability of specific cell types. Implications for the treatment of stroke and reasons for the failures of human clinical trials utilizing NMDA receptor antagonists are also discussed.

  13. Life and Death of a Neuron

    MedlinePlus

    ... results from the release of excess glutamate. Macrophages (green) eat dying neurons in order to clear debris. ... Page NINDS Pseudotumor Cerebri Information Page NINDS Psychogenic Movement Information Page NINDS Rasmussen's Encephalitis Information Page NINDS ...

  14. Independent controls for neocortical neuron production and histogenetic cell death

    NASA Technical Reports Server (NTRS)

    Verney, C.; Takahashi, T.; Bhide, P. G.; Nowakowski, R. S.; Caviness, V. S. Jr

    2000-01-01

    We estimated the proportion of cells eliminated by histogenetic cell death during the first 2 postnatal weeks in areas 1, 3 and 40 of the mouse parietal neocortex. For each layer and for the subcortical white matter in each neocortical area, the number of dying cells per mm(2) was calculated and the proportionate cell death for each day of the 2-week interval was estimated. The data show that cell death proceeds essentially uniformly across the neocortical areas and layers and that it does not follow either the spatiotemporal gradient of cell cycle progression in the pseudostratified ventricular epithelium of the cerebral wall, the source of neocortical neurons, or the 'inside-out' neocortical neuronogenetic sequence. Therefore, we infer that the control mechanisms of neocortical histogenetic cell death are independent of mechanisms controlling neuronogenesis or neuronal migration but may be associated with the ingrowth, expansion and a system-wide matching of neuronal connectivity. Copyright 2000 S. Karger AG, Basel.

  15. Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics.

    PubMed

    Dawson, Ted M; Dawson, Valina L

    2017-01-06

    Mitochondria lie at the crossroads of neuronal survival and cell death. They play important roles in cellular bioenergetics, control intracellular Ca(2+) homeostasis, and participate in key metabolic pathways. Mutations in genes involved in mitochondrial quality control cause a myriad of neurodegenerative diseases. Mitochondria have evolved strategies to kill cells when they are not able to continue their vital functions. This review provides an overview of the role of mitochondria in neurologic disease and the cell death pathways that are mediated through mitochondria, including their role in accidental cell death, the regulated cell death pathways of apoptosis and parthanatos, and programmed cell death. It details the current state of parthanatic cell death and discusses potential therapeutic strategies targeting initiators and effectors of mitochondrial-mediated cell death in neurologic disorders.

  16. Induction of neuronal cell death by paraneoplastic Ma1 antigen.

    PubMed

    Chen, Huai-Lu; D'Mello, Santosh R

    2010-12-01

    Paraneoplastic Ma1 (PNMA1) is a member of a family of proteins involved in an autoimmune disorder called paraneoplastic neurological syndrome. Although it is widely expressed in brain, nothing is known about the function of PNMA1 in neurons. We find that PNMA1 expression is highest in the perinatal brain, a period during which developmentally regulated neuronal death occurs. PNMA1 expression increases in cerebellar granule neurons (CGNs) induced to die by low potassium (LK) and in cortical neurons following homocysteic acid (HCA) treament. Elevated PNMA1 expression is also observed in the degenerating striatum in two separate mouse models of Huntington's disease, the R6/2 transgenic model and the 3-nitropropionic acid-induced chemical model. Suppression of endogenous PNMA1 expression inhibits LK-induced neuronal apoptosis. Ectopic expression of PNMA1 promotes apoptosis even in medium containing high potassium, a condition that normally ensures survival of CGNs. Deletion of the N-terminal half of the PNMA1 protein abrogates its apoptotic activity, whereas deletion of the C-terminal half renders the protein more toxic. Within the N-terminal half, the ability to induce neuronal death depends on the presence of a BH3-like domain. In addition to being necessary for apoptosis, the BH3-like domain is necessary for self-association of PNMA1. Apoptosis by PNMA1 expression is inhibited by overexpression of Bcl2, suggesting that PNMA1-induced neuronal death may depend on the binding of a proapoptotic member of the Bcl2 family to the BH3 domain. Taken together, our results suggest that PNMA1 is a proapoptotic protein in neurons, elevated expression of which may contribute to neurodegenerative disorders.

  17. FGF-2 induces neuronal death through upregulation of system xc-.

    PubMed

    Liu, Xiaoqian; Albano, Rebecca; Lobner, Doug

    2014-02-14

    The cystine/glutamate antiporter (system xc-) transports cystine into cell in exchange for glutamate. Fibroblast growth factor-2 (FGF-2) upregulates system xc- selectively on astrocytes, which leads to increased cystine uptake, the substrate for glutathione production, and increased glutamate release. While increased intracellular glutathione can limit oxidative stress, the increased glutamate release can potentially lead to excitotoxicity to neurons. To test this hypothesis, mixed neuronal and glial cortical cultures were treated with FGF-2. Treatment with FGF-2 for 48 h caused a significant neuronal death in these cultures. Cell death was not observed in neuronal-enriched cultures, or astrocyte-enriched cultures, suggesting the toxicity was the result of neuron-glia interaction. Blocking system xc- eliminated the neuronal death as did the AMPA/kainate receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX), but not the NMDA receptor antagonist memantine. When cultures were exposed directly to glutamate, both NBQX and memantine blocked the neuronal toxicity. The mechanism of this altered profile of glutamate receptor mediated toxicity by FGF-2 is unclear. The selective calcium permeable AMPA receptor antagonist 1-naphthyl acetyl spermine (NASPM) failed to offer protection. The most likely explanation for the results is that 48 h FGF-2 treatment induces AMPA/kainate receptor toxicity through increased system xc- function resulting in increased release of glutamate. At the same time, FGF-2 alters the sensitivity of the neurons to glutamate toxicity in a manner that promotes selective AMPA/kainate receptor mediated toxicity.

  18. Sex Stratified Neuronal Cultures to Study Ischemic Cell Death Pathways

    PubMed Central

    Verma, Saurabh; Traystman, Richard J.; Herson, Paco S.

    2013-01-01

    Sex differences in neuronal susceptibility to ischemic injury and neurodegenerative disease have long been observed, but the signaling mechanisms responsible for those differences remain unclear. Primary disassociated embryonic neuronal culture provides a simplified experimental model with which to investigate the neuronal cell signaling involved in cell death as a result of ischemia or disease; however, most neuronal cultures used in research today are mixed sex. Researchers can and do test the effects of sex steroid treatment in mixed sex neuronal cultures in models of neuronal injury and disease, but accumulating evidence suggests that the female brain responds to androgens, estrogens, and progesterone differently than the male brain. Furthermore, neonate male and female rodents respond differently to ischemic injury, with males experiencing greater injury following cerebral ischemia than females. Thus, mixed sex neuronal cultures might obscure and confound the experimental results; important information might be missed. For this reason, the Herson Lab at the University of Colorado School of Medicine routinely prepares sex-stratified primary disassociated embryonic neuronal cultures from both hippocampus and cortex. Embryos are sexed before harvesting of brain tissue and male and female tissue are disassociated separately, plated separately, and maintained separately. Using this method, the Herson Lab has demonstrated a male-specific role for the ion channel TRPM2 in ischemic cell death. In this manuscript, we share and discuss our protocol for sexing embryonic mice and preparing sex-stratified hippocampal primary disassociated neuron cultures. This method can be adapted to prepare sex-stratified cortical cultures and the method for embryo sexing can be used in conjunction with other protocols for any study in which sex is thought to be an important determinant of outcome. PMID:24378980

  19. Neuronal cell death: an overview of its different forms in central and peripheral neurons.

    PubMed

    Lossi, Laura; Castagna, Claudia; Merighi, Adalberto

    2015-01-01

    The discovery of neuronal cell death dates back to the nineteenth century. Nowadays, after a very long period of conceptual difficulties, the notion that cell death is a phenomenon occurring during the entire life course of the nervous system, from neurogenesis to adulthood and senescence, is fully established. The dichotomy between apoptosis, as the prototype of programmed cell death (PCD ), and necrosis, as the prototype of death caused by an external insult, must be carefully reconsidered, as different types of PCD: apoptosis, autophagy, pyroptosis, and oncosis have all been demonstrated in neurons (and glia ). These modes of PCD may be triggered by different stimuli, but share some intracellular pathways such that different types of cell death may affect the same population of neurons according to several intrinsic and extrinsic factors. Therefore, a mixed morphology is often observed also depending on degrees of differentiation, activity, and injury. The main histological and ultrastructural features of the different types of cell death in neurons are described and related to the cellular pathways that are specifically activated in any of these types of PCD.

  20. Statins induce differentiation and cell death in neurons and astroglia.

    PubMed

    März, Pia; Otten, Uwe; Miserez, André R

    2007-01-01

    Statins are potent inhibitors of the hydroxy-methyl-glutaryl-coenzyme A reductase, the rate limiting enzyme for cholesterol biosynthesis. Experimental and clinical studies with statins suggest that they have beneficial effects on neurodegenerative disorders. Thus, it was of interest to characterize the direct effects of statins on CNS neurons and glial cells. We have treated defined cultures of neurons and astrocytes of newborn rats with two lipophilic statins, atorvastatin and simvastatin, and analyzed their effects on morphology and survival. Treatment of astrocytes with statins induced a time- and dose-dependent stellation, followed by apoptosis. Similarly, statins elicited programmed cell death of cerebellar granule neurons but with a higher sensitivity. Analysis of different signaling cascades revealed that statins fail to influence classical pathways such as Akt or MAP kinases, known to be activated in CNS cells. In addition, astrocyte stellation triggered by statins resembled dibutryl-cyclic AMP (db-cAMP) induced morphological differentiation. However, in contrast to db-cAMP, statins induced upregulation of low-density lipoprotein receptors, without affecting GFAP expression, indicating separate underlying mechanisms. Analysis of the cholesterol biosynthetic pathway revealed that lack of mevalonate and of its downstream metabolites, mainly geranylgeranyl-pyrophosphate (GGPP), is responsible for the statin-induced apoptosis of neurons and astrocytes. Moreover, astrocytic stellation triggered by statins was inhibited by mevalonate and GGPP. Interestingly, neuronal cell death was significantly reduced in astrocyte/neuron co-cultures treated with statins. We postulate that under these conditions signals provided by astrocytes, e.g., isoprenoids play a key role in neuronal survival.

  1. Microglial activation induces neuronal death in Chandipura virus infection

    PubMed Central

    Verma, Abhishek Kumar; Ghosh, Sourish; Pradhan, Sreeparna; Basu, Anirban

    2016-01-01

    Neurotropic viruses induce neurodegeneration either directly by activating host death domains or indirectly through host immune response pathways. Chandipura Virus (CHPV) belonging to family Rhabdoviridae is ranked among the emerging pathogens of the Indian subcontinent. Previously we have reported that CHPV induces neurodegeneration albeit the root cause of this degeneration is still an open question. In this study we explored the role of microglia following CHPV infection. Phenotypic analysis of microglia through lectin and Iba-1 staining indicated cells were in an activated state post CHPV infection in cortical region of the infected mouse brain. Cytokine Bead Array (CBA) analysis revealed comparatively higher cytokine and chemokine levels in the same region. Increased level of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), Nitric Oxide (NO) and Reactive Oxygen species (ROS) in CHPV infected mouse brain indicated a strong inflammatory response to CHPV infection. Hence it was hypothesized through our analyses that this inflammatory response may stimulate the neuronal death following CHPV infection. In order to validate our hypothesis supernatant from CHPV infected microglial culture was used to infect neuronal cell line and primary neurons. This study confirmed the bystander killing of neurons due to activation of microglia post CHPV infection. PMID:26931456

  2. Epigenetic regulation of motor neuron cell death through DNA methylation.

    PubMed

    Chestnut, Barry A; Chang, Qing; Price, Ann; Lesuisse, Catherine; Wong, Margaret; Martin, Lee J

    2011-11-16

    DNA methylation is an epigenetic mechanism for gene silencing engaged by DNA methyltransferase (Dnmt)-catalyzed methyl group transfer to cytosine residues in gene-regulatory regions. It is unknown whether aberrant DNA methylation can cause neurodegeneration. We tested the hypothesis that Dnmts can mediate neuronal cell death. Enforced expression of Dnmt3a induced degeneration of cultured NSC34 cells. During apoptosis of NSC34 cells induced by camptothecin, levels of Dnmt1 and Dnmt3a increased fivefold and twofold, respectively, and 5-methylcytosine accumulated in nuclei. Truncation mutation of the Dnmt3a catalytic domain and Dnmt3a RNAi blocked apoptosis of cultured neurons. Inhibition of Dnmt catalytic activity with RG108 and procainamide protected cultured neurons from excessive DNA methylation and apoptosis. In vivo, Dnmt1 and Dnmt3a are expressed differentially during mouse brain and spinal cord maturation and in adulthood when Dnmt3a is abundant in synapses and mitochondria. Dnmt1 and Dnmt3a are expressed in motor neurons of adult mouse spinal cord, and, during their apoptosis induced by sciatic nerve avulsion, nuclear and cytoplasmic 5-methylcytosine immunoreactivity, Dnmt3a protein levels and Dnmt enzyme activity increased preapoptotically. Inhibition of Dnmts with RG108 blocked completely the increase in 5-methycytosine and the apoptosis of motor neurons in mice. In human amyotrophic lateral sclerosis (ALS), motor neurons showed changes in Dnmt1, Dnmt3a, and 5-methylcytosine similar to experimental models. Thus, motor neurons can engage epigenetic mechanisms to drive apoptosis, involving Dnmt upregulation and increased DNA methylation. These cellular mechanisms could be relevant to human ALS pathobiology and disease treatment.

  3. Stem cells decreased neuronal cell death after hypoxic stress in primary fetal rat neurons in vitro.

    PubMed

    Sakai, Tetsuro; Xu, Yan

    2012-01-01

    To explore stem cell-mediated neuronal protection through extracellular signaling pathways by transplanted stem cells, we sought to identify potential candidate molecules responsible for neuronal protection using an in vitro coculture system. Primary fetal rat hippocampal neurons underwent hypoxia (≤1% oxygen) for 96 h nad then were returned to a normoxic condition. The study group then received rat umbilical cord matrix-derived stem cells, while the control group received fresh media only. The experimental group showed decreased neuronal apoptosis compared to the control group [44.5 ± 1.6% vs. 71.0 ± 4.2% (mean ± SD, p = 0.0005) on day 5] and higher neuronal survival (4.9 ± 1.2 cells/100× field vs. 2.2 ± 0.3, p = 0.02 on day 5). Among 90 proteins evaluated using a protein array, stem cell coculture media showed increased protein secretion of TIMP-1 (5.61-fold), TIMP-2 (4.88), CNTF-Rα (3.42), activin A (2.20), fractalkine (2.04), CCR4 (2.02), and decreased secretion in MIP-2 (0.30-fold), AMPK α1 (0.43), TROY (0.48), and TIMP-3 (0.50). This study demonstrated that coculturing stem cells with primary neurons in vitro decreased neuronal cell death after hypoxia with significantly altered protein secretion. The results suggest that stem cells may offer neuronal protection through extracellular signaling.

  4. DNA damage, neuronal and glial cell death and neurodegeneration.

    PubMed

    Barzilai, Ari

    2010-11-01

    The DNA damage response (DDR) is a key factor in the maintenance of genome stability. As such, it is a central axis in sustaining cellular homeostasis in a variety of contexts: development, growth, differentiation, and maintenance of the normal life cycle of the cell. It is now clear that diverse mechanisms encompassing cell cycle regulation, repair pathways, many aspects of cellular metabolism, and cell death are inter-linked and act in concert in response to DNA damage. Defects in the DDR in proliferating cells can lead to cancer, while DDR defects in neurons may result in neurodegeneration. Mature neurons are highly differentiated, post-mitotic cells that cannot be replenished after disease or trauma. Their high metabolic activity generates large amounts of reactive oxygen species with DNA damaging capacity. Moreover, their intense transcriptional activity increases the potential for genomic DNA damage. Respectively, neurons have elaborate mechanisms to defend the integrity of their genome, thus ensuring their longevity and functionality in the face of these threats. Over the course of the past two decades, there has been a substantial increase in our understanding of the role of glial cells in supporting the neuronal cell DDR and longevity. This review article focuses on the potential role of the DDR in the etiology and pathogenesis of neurodegenerative diseases, and in addition, it describes various aspects of glial cell functionality in two genomic instability disorders: ataxia telangiectasia (A-T) and Nijmegen breakage syndrome.

  5. HIP/PAP prevents excitotoxic neuronal death and promotes plasticity

    PubMed Central

    Haldipur, Parthiv; Dupuis, Nina; Degos, Vincent; Moniaux, Nicolas; Chhor, Vibol; Rasika, Sowmyalakshmi; Schwendimann, Leslie; le Charpentier, Tifenn; Rougier, Elodie; Amouyal, Paul; Amouyal, Gilles; Dournaud, Pascal; Bréchot, Christian; El Ghouzzi, Vincent; Faivre, Jamila; Fleiss, Bobbi; Mani, Shyamala; Gressens, Pierre

    2014-01-01

    Objectives Excitotoxicity plays a significant role in the pathogenesis of perinatal brain injuries. Among the consequences of excessive activation of the N-methyl-d-aspartate (NMDA)-type glutamate are oxidative stress caused by free radical release from damaged mitochondria, neuronal death and subsequent loss of connectivity. Drugs that could protect nervous tissue and support regeneration are attractive therapeutic options. The hepatocarcinoma intestine pancreas protein/pancreatitis-associated protein I (HIP/PAP) or Reg3α, which is approved for clinical testing for the protection and regeneration of the liver, is upregulated in the central nervous system following injury or disease. Here, we examined the neuroprotective/neuroregenerative potential of HIP/PAP following excitotoxic brain injury. Methods We studied the expression of HIP/PAP and two of its putative effectors, cAMP-regulated phosphoprotein 19 (ARPP19) and growth-associated protein 43 (GAP-43), in the neonatal brain, and the protective/regenerative properties of HIP/PAP in three paradigms of perinatal excitotoxicity: intracerebral injection of the NMDA agonist ibotenate in newborn pups, a pediatric model of traumatic brain injury, and cultured primary cortical neurons. Results HIP/PAP, ARPP19, and GAP-43 were expressed in the neonatal mouse brain. HIP/PAP prevented the formation of cortical and white matter lesions and reduced neuronal death and glial activation following excitotoxic insults in vivo. In vitro, HIP/PAP promoted neuronal survival, preserved neurite complexity and fasciculation, and protected cell contents from reactive oxygen species (ROS)-induced damage. Interpretation HIP/PAP has strong neuroprotective/neuroregenerative potential following excitotoxic injury to the developing brain, and could represent an interesting therapeutic strategy in perinatal brain injury. PMID:25493266

  6. Neuronal death enhanced by N-methyl-d-aspartate antagonists

    PubMed Central

    Ikonomidou, Chrysanthy; Stefovska, Vanya; Turski, Lechoslaw

    2000-01-01

    Glutamate promotes neuronal survival during brain development and destroys neurons after injuries in the mature brain. Glutamate antagonists are in human clinical trials aiming to demonstrate limitation of neuronal injury after head trauma, which consists of both rapid and slowly progressing neurodegeneration. Furthermore, glutamate antagonists are considered for neuroprotection in chronic neurodegenerative disorders with slowly progressing cell death only. Therefore, humans suffering from Huntington's disease, characterized by slowly progressing neurodegeneration of the basal ganglia, are subjected to trials with glutamate antagonists. Here we demonstrate that progressive neurodegeneration in the basal ganglia induced by the mitochondrial toxin 3-nitropropionate or in the hippocampus by traumatic brain injury is enhanced by N-methyl-d-aspartate antagonists but ameliorated by α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonists. These observations reveal that N-methyl-d-aspartate antagonists may increase neurodestruction in mature brain undergoing slowly progressing neurodegeneration, whereas blockade of the action of glutamate at α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors may be neuroprotective. PMID:11058158

  7. Humanin Derivatives Inhibit Necrotic Cell Death in Neurons

    PubMed Central

    Cohen, Aviv; Lerner-Yardeni, Jenny; Meridor, David; Kasher, Roni; Nathan, Ilana; Parola, Abraham H

    2015-01-01

    Humanin and its derivatives are peptides known for their protective antiapoptotic effects against Alzheimer’s disease. Herein, we identify a novel function of the humanin-derivative AGA(C8R)-HNG17 (namely, protection against cellular necrosis). Necrosis is one of the main modes of cell death, which was until recently considered an unmoderated process. However, recent findings suggest the opposite. We have found that AGA(C8R)-HNG17 confers protection against necrosis in the neuronal cell lines PC-12 and NSC-34, where necrosis is induced in a glucose-free medium by either chemohypoxia or by a shift from apoptosis to necrosis. Our studies in traumatic brain injury models in mice, where necrosis is the main mode of neuronal cell death, have shown that AGA(C8R)-HNG17 has a protective effect. This result is demonstrated by a decrease in a neuronal severity score and by a reduction in brain edema, as measured by magnetic resonance imaging (MRI). An insight into the peptide’s antinecrotic mechanism was attained through measurements of cellular ATP levels in PC-12 cells under necrotic conditions, showing that the peptide mitigates a necrosis-associated decrease in ATP levels. Further, we demonstrate the peptide’s direct enhancement of the activity of ATP synthase activity, isolated from rat-liver mitochondria, suggesting that AGA(C8R)-HNG17 targets the mitochondria and regulates cellular ATP levels. Thus, AGA(C8R)-HNG17 has potential use for the development of drug therapies for necrosis-related diseases, for example, traumatic brain injury, stroke, myocardial infarction, and other conditions for which no efficient drug-based treatment is currently available. Finally, this study provides new insight into the mechanisms underlying the antinecrotic mode of action of AGA(C8R)-HNG17. PMID:26062019

  8. Nerve growth factor withdrawal-induced cell death in neuronal PC12 cells resembles that in sympathetic neurons

    PubMed Central

    1992-01-01

    Previous studies have shown that in neuronal cells the developmental phenomenon of programmed cell death is an active process, requiring synthesis of both RNA and protein. This presumably reflects a requirement for novel gene products to effect cell death. It is shown here that the death of nerve growth factor-deprived neuronal PC12 cells occurs at the same rate as that of rat sympathetic neurons and, like rat sympathetic neurons, involves new transcription and translation. In nerve growth factor-deprived neuronal PC12 cells, a decline in metabolic activity, assessed by uptake of [3H]2-deoxyglucose, precedes the decline in cell number, assessed by counts of trypan blue-excluding cells. Both declines are prevented by actinomycin D and anisomycin. In contrast, the death of nonneuronal (chromaffin-like) PC12 cells is not inhibited by transcription or translation inhibitors and thus does not require new protein synthesis. DNA fragmentation by internucleosomal cleavage does not appear to be a consistent or significant aspect of cell death in sympathetic neurons, neuronal PC12 cells, or nonneuronal PC12 cells, notwithstanding that the putative nuclease inhibitor aurintricarboxylic acid protects sympathetic neurons, as well as neuronal and nonneuronal PC12 cells, from death induced by trophic factor removal. Both phenotypic classes of PC12 cells respond to aurintricarboxylic acid with similar dose-response characteristics. Our results indicate that programmed cell death in neuronal PC12 cells, but not in nonneuronal PC12 cells, resembles programmed cell death in sympathetic neurons in significant mechanistic aspects: time course, role of new protein synthesis, and lack of a significant degree of DNA fragmentation. PMID:1469055

  9. Therapeutic Effects of PPARα on Neuronal Death and Microvascular Impairment

    PubMed Central

    Moran, Elizabeth P.; Ma, Jian-xing

    2015-01-01

    Peroxisome-proliferator activated receptor-alpha (PPARα) is a broadly expressed nuclear hormone receptor and is a transcription factor for diverse target genes possessing a PPAR response element (PPRE) in the promoter region. The PPRE is highly conserved, and PPARs thus regulate transcription of an extensive array of target genes involved in energy metabolism, vascular function, oxidative stress, inflammation, and many other biological processes. PPARα has potent protective effects against neuronal cell death and microvascular impairment, which have been attributed in part to its antioxidant and anti-inflammatory properties. Here we discuss PPARα's effects in neurodegenerative and microvascular diseases and also recent clinical findings that identified therapeutic effects of a PPARα agonist in diabetic microvascular complications. PMID:25705219

  10. Dopamine Promotes Striatal Neuronal Apoptotic Death via ERK Signaling Cascades

    PubMed Central

    Chen, Jun; Rusnak, Milan; Lombroso, Paul J.; Sidhu, Anita

    2009-01-01

    Although the mechanisms underlying striatal neurodegeneration are poorly understood, we have shown that striatal pathogenesis may be initiated by high synaptic levels of extracellular dopamine (DA). Here we investigated in rat striatal primary neurons the mobilization of the mitogen activated protein kinase (MAPK) signaling pathways after treatment with DA. Instead of observing an elevation of the archetypical pro-cytotoxic MAPKs, p-JNK and p-p38 MAPK, we found that DA, acting through D1 DA receptors, induced a sustained stimulation of the phosphorylated form of extracellular signal-regulated kinase (p-ERK) via a cAMP/PKA/Rap1/B-Raf/MEK pathway. Blockade of D2 DA receptors, β-adrenergic receptors or NMDA receptors with receptor-specific antagonists had no significant effect on this process. Activation of D1 DA receptors and PKA by DA caused phosphorylation and inactivation of the striatal–enriched tyrosine phosphatase (STEP), an important phosphatase for the dephosphorylation and subsequent inactivation of p-ERK in striatum. Interestingly p-ERK was primarily retained in the cytoplasm, with only low amounts translocated to the nucleus. The scaffold protein β-arrestin2 interacted with both p-ERK and D1 DA receptor, triggering the cytosolic retention of p-ERK and inducing striatal neuronal apoptotic death. These data provide unique insight into a novel role of p-ERK in striatal neurodegeneration. PMID:19200235

  11. Neuron-specific knock-down of SMN1 causes neuron degeneration and death through an apoptotic mechanism

    PubMed Central

    Gallotta, Ivan; Mazzarella, Nadia; Donato, Alessandra; Esposito, Alessandro; Chaplin, Justin C.; Castro, Silvana; Zampi, Giuseppina; Battaglia, Giorgio S.; Hilliard, Massimo A.; Bazzicalupo, Paolo; Di Schiavi, Elia

    2016-01-01

    Spinal muscular atrophy is a devastating disease that is characterized by degeneration and death of a specific subclass of motor neurons in the anterior horn of the spinal cord. Although the gene responsible, survival motor neuron 1 (SMN1), was identified 20 years ago, it has proven difficult to investigate its effects in vivo. Consequently, a number of key questions regarding the molecular and cellular functions of this molecule have remained unanswered. We developed a Caenorhabditis elegans model of smn-1 loss-of-function using a neuron-specific RNA interference strategy to knock-down smn-1 selectively in a subclass of motor neurons. The transgenic animals presented a cell-autonomous, age-dependent degeneration of motor neurons detected as locomotory defects and the disappearance of presynaptic and cytoplasmic fluorescent markers in targeted neurons. This degeneration led to neuronal death as revealed by positive reactivity to genetic and chemical cell-death markers. We show that genes of the classical apoptosis pathway are involved in the smn-1-mediated neuronal death, and that this phenotype can be rescued by the expression of human SMN1, indicating a functional conservation between the two orthologs. Finally, we determined that Plastin3/plst-1 genetically interacts with smn-1 to prevent degeneration, and that treatment with valproic acid is able to rescue the degenerative phenotype. These results provide novel insights into the cellular and molecular mechanisms that lead to the loss of motor neurons when SMN1 function is reduced. PMID:27260405

  12. Common Mechanisms of Neuronal Cell Death After Exposure to Diverse Environmental Insults: Implications for Treatment

    DTIC Science & Technology

    2002-10-01

    Neuronal cell death after exposure to neurotoxins or after central nervous system (CNS) injury is the major cause of devastating neurological...neuronal cell death is critical to development of appropriate treatment strategies. Although the environmental causes of CNS injury are diverse (e.g...of cellular and molecular events is responsible for the vast majority of cell death . The research results contained in this annual report summarize the

  13. RARβ regulates neuronal cell death and differentiation in the avian ciliary ganglion

    PubMed Central

    Boerries, Melanie; Busch, Hauke

    2015-01-01

    ABSTRACT Programmed cell death during chicken ciliary ganglion (CG) development is mostly discussed as an extrinsically regulated process, guided either by the establishment of a functional balance between preganglionic and postganglionic activity or the availability of target‐derived neurotrophic factors. We found that the expression of the gene coding for the nuclear retinoic acid receptor β (RARB) is transiently upregulated prior to and during the execution phase of cell death in the CG. Using retroviral vectors, the expression of RARB was knocked down during embryonic development in ovo. The knockdown led to a significant increase in CG neuron number after the cell death phase. BrdU injections and active caspase‐3 staining revealed that this increase in neuron number was due to an inhibition of apoptosis during the normal cell death phase. Furthermore, apoptotic neuron numbers were significantly increased at a stage when cell death is normally completed. While the cholinergic phenotype of the neurons remained unchanged after RARB knockdown, the expression of the proneural gene Cash1 was increased, but somatostatin‐like immunoreactivity, a hallmark of the mature choroid neuron population, was decreased. Taken together, these results point toward a delay in neuronal differentiation as well as cell death. The availability of nuclear retinoic acid receptor β (RARβ) and RARβ‐induced transcription of genes could therefore be a new intrinsic cue for the maturation of CG neurons and their predisposition to undergo cell death. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1204–1218, 2015 PMID:25663354

  14. Motor neuron death in ALS – programmed by astrocytes?

    PubMed Central

    Pirooznia, Sheila K.; Dawson, Valina L.; Dawson, Ted M.

    2014-01-01

    Motor neurons in ALS die via cell-autonomous and non-cell autonomous mechanisms. Using adult human astrocytes and motor neurons, Re et al (2014) discover that familial and sporadic ALS derived human adult astrocytes secrete neurotoxic factors that selectively kill motor neurons through necroptosis, suggesting a new therapeutic avenue. PMID:24607221

  15. bcl-2 transgene expression can protect neurons against developmental and induced cell death.

    PubMed Central

    Farlie, P G; Dringen, R; Rees, S M; Kannourakis, G; Bernard, O

    1995-01-01

    The bcl-2 protooncogene, which protects various cell types from apoptotic cell death, is expressed in the developing and adult nervous system. To explore its role in regulation of neuronal cell death, we generated transgenic mice expressing Bcl-2 under the control of the neuron-specific enolase promoter, which forced expression uniquely in neurons. Sensory neurons isolated from dorsal root ganglia of newborn mice normally require nerve growth factor for their survival in culture, but those from the bcl-2 transgenic mice showed enhanced survival in its absence. Furthermore, apoptotic death of motor neurons after axotomy of the sciatic nerve was inhibited in these mice. The number of neurons in two neuronal populations from the central and peripheral nervous system was increased by 30%, indicating that Bcl-2 expression can protect neurons from cell death during development. The generation of these transgenic mice suggests that Bcl-2 may play an important role in survival of neurons both during development and throughout adult life. Images Fig. 1 Fig. 2 Fig. 4 PMID:7753817

  16. Prolonged elevation of serum neuron-specific enolase in children after clinical diagnosis of brain death.

    PubMed

    Suzuki, Yasuhiro; Mogami, Yukiko; Toribe, Yausihisa; Yamada, Keitaro; Yanagihara, Keiko; Hirata, Ikuko; Mano, Toshiyuki

    2012-01-01

    To elucidate the time course of neuronal cell death after the clinical criteria for brain death are met, the authors reviewed serial changes of serum neuron-specific enolase levels in 3 children (age range, 3-15 years) clinically diagnosed as brain dead due to cardiopulmonary arrest. All patients survived for more than 2 months after brain death. Children with brain death had higher peak neuron-specific enolase values (1069-2849 ng/mL) than did 3 control children (256-1800 ng/mL) who did not become brain dead but had poor neurological outcome (1 death, 2 vegetative state) after cardiopulmonary arrest. A major finding is that children with brain death showed persistent elevation of neuron-specific enolase at 4 weeks (>400 ng/mL) and 8 weeks (>50 ng/mL) after cardiopulmonary arrest, in comparison with 2 surviving patients without brain death (<50 ng/mL at 4 weeks). This prolonged elevation of neuron-specific enolase suggests that total brain necrosis might not be present at the time of clinical diagnosis of brain death.

  17. p53 controls neuronal death in the CA3 region of the newborn mouse hippocampus.

    PubMed

    Murase, Sachiko; Poser, Steve W; Joseph, Joby; McKay, Ronald D

    2011-08-01

    It is important to determine the mechanisms controlling the number of neurons in the nervous system. Previously, we reported that neuronal activity plays a central role in controlling neuron number in the neonatal hippocampus of rodents. Neuronal survival requires sustained activation of the serine-threonine kinase Akt, which is initiated by neurotrophins and continued for several hours by neuronal activity and integrin signaling. Here, we focus on the CA3 region to show that neuronal apoptosis requires p53. As in wild-type animals, neuronal death occurs in the first postnatal week and ends by postnatal day (P)10 in p53(-/-) mice. During this period, the CA3 region of p53(-/-) mice contains significantly lower numbers of apoptotic cells, and at the end of the death period, it contains more neurons than the wild type. At P10, the p53(-/-) CA3 region contains a novel subpopulation of neurons with small soma size. These neurons show normal levels of tropomyosin receptor kinase receptor activation, but lower levels of activated Akt than the neurons with somata of normal size. These results suggest that p53 is the key downstream regulator of the novel survival-signaling pathway that regulates the number of CA3 neurons in the first 10 days of postnatal life.

  18. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    SciTech Connect

    Sun, Li; Wu, Zhou; Baba, Masashi; Peters, Christoph; Uchiyama, Yasuo; Nakanishi, Hiroshi

    2010-08-27

    Research highlights: {yields} Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. {yields} CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. {yields} CB-deficiency significantly increased the mean survival ratio of injured neurons. {yields} Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy

  19. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death

    PubMed Central

    Noh, Kyung-Min; Yokota, Hidenori; Mashiko, Toshihiro; Castillo, Pablo E.; Zukin, R. Suzanne; Bennett, Michael V. L.

    2005-01-01

    Transient global or forebrain ischemia induced experimentally in animals can cause selective, delayed neuronal death of hippocampal CA1 pyramidal neurons. A striking feature is a delayed rise in intracellular free Zn2+ in CA1 neurons just before the onset of histologically detectable cell death. Here we show that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) at Schaffer collateral to CA1 synapses in postischemic hippocampus exhibit properties of Ca2+/Zn2+-permeable, Glu receptor 2 (GluR2)-lacking AMPARs before the rise in Zn2+ and cell death. At 42 h after ischemia, AMPA excitatory postsynaptic currents exhibited pronounced inward rectification and marked sensitivity to 1-naphthyl acetyl spermine (Naspm), a selective channel blocker of GluR2-lacking AMPARs. In control hippocampus, AMPA excitatory postsynaptic currents were electrically linear and relatively insensitive to Naspm. Naspm injected intrahippocampally at 9-40 h after insult greatly reduced the late rise in intracellular free Zn2+ in postischemic CA1 neurons and afforded partial protection against ischemia-induced cell death. These results implicate GluR2-lacking AMPA receptors in the ischemia-induced rise in free Zn2+ and death of CA1 neurons, although a direct action at the time of the rise in Zn2+ is unproven. This receptor subtype appears to be an important therapeutic target for intervention in ischemia-induced neuronal death in humans. PMID:16093311

  20. Endoplasmic Reticulum Stress as a Mediator of Neurotoxin-Induced Dopamine Neuron Death

    DTIC Science & Technology

    2005-07-01

    that there is determine the number of neurons lost by simply counting an earlier independent natural cell death event affecting Nissl -stained neuronal...neurons increased their viability (Hoffmann et Members of the Bcl-2 family take an important part in al. 1983). Tomozawa and Appel ( 1986 ) demonstrated that...expression, because it Akerud P, Alberch J, Eketjall S, Wagner J, Arenas E (1999) has also been observed for counts of Nissl -stained profiles

  1. Nuclear trafficking of Pten after brain injury leads to neuron survival not death.

    PubMed

    Goh, Choo-Peng; Putz, Ulrich; Howitt, Jason; Low, Ley-Hian; Gunnersen, Jenny; Bye, Nicole; Morganti-Kossmann, Cristina; Tan, Seong-Seng

    2014-02-01

    There is controversy whether accumulation of the tumor suppressor PTEN protein in the cell nucleus under stress conditions such as trauma and stroke causes cell death. A number of in vitro studies have reported enhanced apoptosis in neurons possessing nuclear PTEN, with the interpretation that its nuclear phosphatase activity leads to reduction of the survival protein phospho-Akt. However, there have been no in vivo studies to show that nuclear PTEN in neurons under stress is detrimental. Using a mouse model of injury, we demonstrate here that brain trauma altered the nucleo-cytoplasmic distribution of Pten, resulting in increased nuclear Pten but only in surviving neurons near the lesion. This event was driven by Ndfip1, an adaptor and activator of protein ubiquitination by Nedd4 E3 ligases. Neurons next to the lesion with nuclear PTEN were invariably negative for TUNEL, a marker for cell death. These neurons also showed increased Ndfip1 which we previously showed to be associated with neuron survival. Biochemical assays revealed that overall levels of Pten in the affected cortex were unchanged after trauma, suggesting that Pten abundance globally had not increased but rather Pten subcellular location in affected neurons had changed. Following experimental injury, the number of neurons with nuclear Pten was reduced in heterozygous mice (Ndfip1(+/-)) although lesion volumes were increased. We conclude that nuclear trafficking of Pten following injury leads to neuron survival not death.

  2. Cyclin D1 is an essential mediator of apoptotic neuronal cell death.

    PubMed Central

    Kranenburg, O; van der Eb, A J; Zantema, A

    1996-01-01

    Many neurons in the developing nervous system undergo programmed cell death, or apoptosis. However, the molecular mechanism underlying this phenomenon is largely unknown. In the present report, we present evidence that the cell cycle regulator cyclin D1 is involved in the regulation of neuronal cell death. During neuronal apoptosis, cyclin D1-dependent kinase activity is stimulated, due to an increase in cyclin D1 levels. Moreover, artificial elevation of cyclin D1 levels is sufficient to induce apoptosis, even in non-neural cell types. Cyclin D1-induced apoptosis, like neuronal apoptosis, can be inhibited by 21 kDa E1B, Bcl2 and pRb, but not by 55 kDa E1B. Most importantly, however, overexpression of the cyclin D-dependent kinase inhibitor p16INK4 protects neurons from apoptotic cell death, demonstrating that activation of endogenous cyclin D1-dependent kinases is essential during neuronal apoptosis. These data support a model in which neuronal apoptosis results from an aborted attempt to activate the cell cycle in terminally differentiated neurons. Images PMID:8598205

  3. Human group IIA secretory phospholipase A2 induces neuronal cell death via apoptosis.

    PubMed

    Yagami, Tatsurou; Ueda, Keiichi; Asakura, Kenji; Hata, Satoshi; Kuroda, Takayuki; Sakaeda, Toshiyuki; Takasu, Nobuo; Tanaka, Kazushige; Gemba, Takefumi; Hori, Yozo

    2002-01-01

    Expression of group IIA secretory phospholipase A2 (sPLA2-IIA) is documented in the cerebral cortex (CTX) after ischemia, suggesting that sPLA2-IIA is associated with neurodegeneration. However, how sPLA2-IIA is involved in the neurodegeneration remains obscure. To clarify the pathologic role of sPLA2-IIA, we examined its neurotoxicity in rats that had the middle cerebral artery occluded and in primary cultures of cortical neurons. After occlusion, sPLA2 activity was increased in the CTX. An sPLA2 inhibitor, indoxam, significantly ameliorated not only the elevated activity of the sPLA2 but also the neurodegeneration in the CTX. The neuroprotective effect of indoxam was observed even when it was administered after occlusion. In primary cultures, sPLA2-IIA caused marked neuronal cell death. Morphologic and ultrastructural characteristics of neuronal cell death by sPLA2-IIA were apoptotic, as evidenced by condensed chromatin and fragmented DNA. Before apoptosis, sPLA2-IIA liberated arachidonic acid (AA) and generated prostaglandin D2 (PGD2), an AA metabolite, from neurons. Indoxam significantly suppressed not only AA release, but also PGD2 generation. Indoxam prevented neurons from sPLA2-IIA-induced neuronal cell death. The neuroprotective effect of indoxam was observed even when it was administered after sPLA2-IIA treatment. Furthermore, a cyclooxygenase-2 inhibitor significantly prevented neurons from sPLA2-IIA-induced PGD2 generation and neuronal cell death. In conclusion, sPLA2-IIA induces neuronal cell death via apoptosis, which might be associated with AA metabolites, especially PGD2. Furthermore, sPLA2 contributes to neurodegeneration in the ischemic brain, highlighting the therapeutic potential of sPLA2-IIA inhibitors for stroke.

  4. Endogenous recovery after brain damage: molecular mechanisms that balance neuronal life/death fate.

    PubMed

    Tovar-y-Romo, Luis B; Penagos-Puig, Andrés; Ramírez-Jarquín, Josué O

    2016-01-01

    Neuronal survival depends on multiple factors that comprise a well-fueled energy metabolism, trophic input, clearance of toxic substances, appropriate redox environment, integrity of blood-brain barrier, suppression of programmed cell death pathways and cell cycle arrest. Disturbances of brain homeostasis lead to acute or chronic alterations that might ultimately cause neuronal death with consequent impairment of neurological function. Although we understand most of these processes well when they occur independently from one another, we still lack a clear grasp of the concerted cellular and molecular mechanisms activated upon neuronal damage that intervene in protecting damaged neurons from death. In this review, we summarize a handful of endogenously activated mechanisms that balance molecular cues so as to determine whether neurons recover from injury or die. We center our discussion on mechanisms that have been identified to participate in stroke, although we consider different scenarios of chronic neurodegeneration as well. We discuss two central processes that are involved in endogenous repair and that, when not regulated, could lead to tissue damage, namely, trophic support and neuroinflammation. We emphasize the need to construct integrated models of neuronal degeneration and survival that, in the end, converge in neuronal fate after injury. Under neurodegenerative conditions, endogenously activated mechanisms balance out molecular cues that determine whether neurons contend toxicity or die. Many processes involved in endogenous repair may as well lead to tissue damage depending on the strength of stimuli. Signaling mediated by trophic factors and neuroinflammation are examples of these processes as they regulate different mechanisms that mediate neuronal demise including necrosis, apoptosis, necroptosis, pyroptosis and autophagy. In this review, we discuss recent findings on balanced regulation and their involvement in neuronal death.

  5. Toxic Neuronal Death by Glyceraldehyde-3-Phosphate Dehydrongenase and Mitochondria

    DTIC Science & Technology

    2001-08-01

    Parkinson’s Disease (PD) and after a number of forms of toxic exposure. If unique elements in the signaling pathways for the PD or toxic apoptosis can be identified and their apoptosis signaling impeded, neuronal loss may be slowed or reduced in the conditions. The research proposed in this grant was designed to examine the role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in apoptotic neuronal signaling. Recent studies in postmortem brain have implicated GAPDH apoptosis signaling in Parkinson’s disease (PD). Propargylamines, with

  6. Casein Kinase 1 Suppresses Activation of REST in Insulted Hippocampal Neurons and Halts Ischemia-Induced Neuronal Death

    PubMed Central

    Kaneko, Naoki; Hwang, Jee-Yeon; Gertner, Michael; Pontarelli, Fabrizio

    2014-01-01

    Repressor Element-1 (RE1) Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF) is a gene-silencing factor that is widely expressed during embryogenesis and plays a strategic role in neuronal differentiation. Recent studies indicate that REST can be activated in differentiated neurons during a critical window of time in postnatal development and in adult neurons in response to neuronal insults such as seizures and ischemia. However, the mechanism by which REST is regulated in neurons is as yet unknown. Here, we show that REST is controlled at the level of protein stability via β-TrCP-dependent, ubiquitin-based proteasomal degradation in differentiated neurons under physiological conditions and identify Casein Kinase 1 (CK1) as an upstream effector that bidirectionally regulates REST cellular abundance. CK1 associates with and phosphorylates REST at two neighboring, but distinct, motifs within the C terminus of REST critical for binding of β-TrCP and targeting of REST for proteasomal degradation. We further show that global ischemia in rats in vivo triggers a decrease in CK1 and an increase in REST in selectively vulnerable hippocampal CA1 neurons. Administration of the CK1 activator pyrvinium pamoate by in vivo injection immediately after ischemia restores CK1 activity, suppresses REST expression, and rescues neurons destined to die. Our results identify a novel and previously unappreciated role for CK1 as a brake on REST stability and abundance in adult neurons and reveal that loss of CK1 is causally related to ischemia-induced neuronal death. These findings point to CK1 as a potential therapeutic target for the amelioration of hippocampal injury and cognitive deficits associated with global ischemia. PMID:24760862

  7. Inhibition of telomerase causes vulnerability to endoplasmic reticulum stress-induced neuronal cell death.

    PubMed

    Hosoi, Toru; Nakatsu, Kanako; Shimamoto, Akira; Tahara, Hidetoshi; Ozawa, Koichiro

    2016-08-26

    Endoplasmic reticulum (ER) stress is implicated in several diseases, such as cancer and neurodegenerative diseases. In the present study, we investigated the possible involvement of telomerase in ER stress-induced cell death. ER stress-induced cell death was ameliorated in telomerase reverse transcriptase (TERT) over-expressing MCF7 cells (MCF7-TERT cell). Telomerase specific inhibitor, BIBR1532, reversed the inhibitory effect of TERT on ER stress-induced cell death in MCF7-TERT cells. These findings suggest that BIBR1532 may specifically inhibit telomerase activity, thereby inducing cell death in ER stress-exposed cells. TERT was expressed in the SH-SY5Y neuroblastoma cell line. To analyze the possible involvement of telomerase in ER stress-induced neuronal cell death, we treated SH-SY5Y neuroblastoma cells with BIBR1532 and analyzed ER stress-induced cell death. We found that BIBR1532 significantly enhanced the ER stress-induced neuronal cell death. These findings suggest that inhibition of telomerase activity may enhance vulnerability to neuronal cell death caused by ER stress.

  8. Early immature neuronal death initiates cerebral ischemia-induced neurogenesis in the dentate gyrus.

    PubMed

    Kim, D H; Lee, H E; Kwon, K J; Park, S J; Heo, H; Lee, Y; Choi, J W; Shin, C Y; Ryu, J H

    2015-01-22

    Throughout adulthood, neurons are continuously replaced by new cells in the dentate gyrus (DG) of the hippocampus, and this neurogenesis is increased by various neuronal injuries including ischemic stroke and seizure. While several mechanisms of this injury-induced neurogenesis have been elucidated, the initiation factor remains unclear. Here, we investigated which signal(s) trigger(s) ischemia-induced cell proliferation and neurogenesis in the hippocampal DG region. We found that early apoptotic cell death of the immature neurons occurred in the DG region following transient forebrain ischemia/reperfusion in mice. Moreover, early immature neuronal death in the DG initiated transient forebrain ischemia/reperfusion-induced neurogenesis through glycogen synthase kinase-3β/β-catenin signaling, which was mediated by microglia-derived insulin-like growth factor-1 (IGF-1). Additionally, we observed that the blockade of immature neuronal cell death, early microglial activation, or IGF-1 signaling attenuated ischemia-induced neurogenesis. These results suggest that early immature neuronal cell death initiates ischemia-induced neurogenesis through microglial IGF-1 in mice.

  9. Is neuronal death required for seizure-induced epileptogenesis in the immature brain?

    PubMed Central

    Baram, Tallie Z.; Eghbal-Ahmadi, Mariam; Bender, Roland A.

    2011-01-01

    Do seizures cause neuronal death? At least in the immature hippocampus, this may not be the critical question for determining the mechanisms of epileptogenesis. Neuronal injury and death have clearly been shown to occur in most epilepsy models in the mature brain, and are widely considered a prerequisite to seizure-induced epilepsy. In contrast, little neuronal death occurs after even a severe and prolonged seizure prior to the third postnatal week. However, seizures early in life, for example prolonged experimental febrile seizures, can profoundly and permanently change the hippocampal circuit in a pro-epileptogenic direction. These seizure-induced alterations of limbic excitability may require transient structural injury, but are mainly due to functional changes in expression of gene coding for specific receptors and channels, leading to altered functional properties of hippocampal neurons. Thus, in some pro-epileptogenic models in the developing brain, neither the death of neurons nor death-induced abnormalities of surviving neurons may underlie the formation of an epileptic circuit. Rather, findings in the experimental prolonged febrile seizure model suggest that persistent functional alterations of gene expression (‘neuroplasticity’) in diverse hippocampal neuronal populations may promote pro-epileptogenic processes induced by these seizures. These findings also suggest that during development, relatively short, intense bursts of neuronal activity may disrupt ‘normal’ programmed maturational processes to result in permanent, selective alterations of gene expression, with profound functional consequences. Therefore, determining the cascade of changes in the programmed expression of pertinent genes, including their temporal and cell-specific spatial profiles, may provide important information for understanding the process of transformation of an evolving, maturing hippocampal network into one which is hyperexcitable. PMID:12143355

  10. Neuronal death or dismemberment mediated by Sox14

    PubMed Central

    Osterloh, Jeannette M; Freeman, Marc R

    2016-01-01

    The pruning of unneeded axons and dendrites is crucial for circuitry maturation, but poorly understood on the molecular level. During Drosophila metamorphosis, the transcription factor Sox14 acts as a context-dependent mediator of death, axonal or dendritic pruning. Its transcriptional target Mical acts specifically in dendrite pruning. PMID:19935724

  11. Protein Kinase Pathways That Regulate Neuronal Survival and Death

    DTIC Science & Technology

    2004-08-01

    calcium/calmodulin-dependent kinase (CaMK) in- hnMF sfrs E2 n E2,aemrel ncreased in parallel with enhanced expression of the GABAA hibitor KN93 to...purified by cesium chloride gra- neurons were placed in conditioned medium and the medium was dient ultracentrifugation. The viral titer was determined...membrane de- rifled by cesium chloride gradient ultracentrifugation. The viral titer polarization) and serum for their survival in vitro (20, 21, 24

  12. Redox Regulation of Intracellular Zinc: Molecular Signaling in the Life and Death of Neurons

    PubMed Central

    Aizenman, Elias

    2011-01-01

    Abstract Zn2+ has emerged as a major regulator of neuronal physiology, as well as an important signaling agent in neural injury. The intracellular concentration of this metal is tightly regulated through the actions of Zn2+ transporters and the thiol-rich metal binding protein metallothionein, closely linking the redox status of the cell to cellular availability of Zn2+. Accordingly, oxidative and nitrosative stress during ischemic injury leads to an accumulation of neuronal free Zn2+ and the activation of several downstream cell death processes. While this Zn2+ rise is an established signaling event in neuronal cell death, recent evidence suggests that a transient, sublethal accumulation of free Zn2+ can also play a critical role in neuroprotective pathways activated during ischemic preconditioning. Thus, redox-sensitive proteins, like metallothioneins, may play a critical role in determining neuronal cell fate by regulating the localization and concentration of intracellular free Zn2+. Antioxid. Redox Signal. 15, 2249–2263. PMID:20849376

  13. New aspects of 24(S)-hydroxycholesterol in modulating neuronal cell death.

    PubMed

    Noguchi, Noriko; Urano, Yasuomi; Takabe, Wakako; Saito, Yoshiro

    2015-10-01

    24(S)-Hydroxycholesterol (24S-OHC), which is enzymatically produced in the brain, has been known to play an important role in maintaining cholesterol homeostasis in the brain and has been proposed as a possible biomarker of neurodegenerative disease. Recent studies have revealed diverse functions of 24S-OHC and gained increased attention. For example, 24S-OHC at sublethal concentrations has been found to induce an adaptive response via activation of the liver X receptor signaling pathway, thereby protecting neuronal cells against subsequent oxidative stress. It has also been found that physiological concentrations of 24S-OHC suppress amyloid-β production via downregulation of amyloid precursor protein trafficking in neuronal cells. On the other hand, high concentrations of 24S-OHC have been found to induce a type of nonapoptotic programmed cell death in neuronal cells expressing little caspase-8. Because neuronal cell death induced by 24S-OHC has been found to proceed by a unique mechanism, which is different from but in some ways similar to necroptosis-necroptosis being a type of programmed necrosis induced by tumor necrosis factor α-neuronal cell death induced by 24S-OHC has been called "necroptosis-like" cell death. 24S-OHC-induced cell death is dependent on the formation of 24S-OHC esters but not on oxidative stress. This review article discusses newly reported aspects of 24S-OHC in neuronal cell death and sheds light on the possible importance of controlling 24S-OHC levels in the brain for preventing neurodegenerative disease.

  14. The effects of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function after glutamate excitotoxicity.

    PubMed

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2014-11-07

    NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke.

  15. Simultaneous activation of mitophagy and autophagy by staurosporine protects against dopaminergic neuronal cell death.

    PubMed

    Ha, Ji-Young; Kim, Ji-Soo; Kim, Seo-Eun; Son, Jin H

    2014-02-21

    Abnormal autophagy is frequently observed during dopaminergic neurodegeneration in Parkinson's disease (PD). However, it is not yet firmly established whether active autophagy is beneficial or pathogenic with respect to dopaminergic cell loss. Staurosporine, a common inducer of apoptosis, is often used in mechanistic studies of dopaminergic cell death. Here we report that staurosporine activates both autophagy and mitophagy simultaneously during dopaminergic neuronal cell death, and evaluate the physiological significance of these processes during cell death. First, staurosporine treatment resulted in induction of autophagy in more than 75% of apoptotic cells. Pharmacological inhibition of autophagy by bafilomycin A1 decreased significantly cell viability. In addition, staurosporine treatment resulted in activation of the PINK1-Parkin mitophagy pathway, of which deficit underlies some familial cases of PD, in the dopaminergic neuronal cell line, SN4741. The genetic blockade of this pathway by PINK1 null mutation also dramatically increased staurosporine-induced cell death. Taken together, our data suggest that staurosporine induces both mitophagy and autophagy, and that these pathways exert a significant neuroprotective effect, rather than a contribution to autophagic cell death. This model system may therefore be useful for elucidating the mechanisms underlying crosstalk between autophagy, mitophagy, and cell death in dopaminergic neurons.

  16. Cytidine 5'-diphosphocholine (CDP-choline) adversely effects on pilocarpine seizure-induced hippocampal neuronal death.

    PubMed

    Kim, Jin Hee; Lee, Dong Won; Choi, Bo Young; Sohn, Min; Lee, Song Hee; Choi, Hui Chul; Song, Hong Ki; Suh, Sang Won

    2015-01-21

    Citicoline (CDP-choline; cytidine 5'-diphosphocholine) is an important intermediate in the biosynthesis of cell membrane phospholipids. Citicoline serves as a choline donor in the biosynthetic pathways of acetylcholine and neuronal membrane phospholipids, mainly phosphatidylcholine. The ability of citicoline to reverse neuronal injury has been tested in animal models of cerebral ischemia and clinical trials have been performed in stroke patients. However, no studies have examined the effect of citicoline on seizure-induced neuronal death. To clarify the potential therapeutic effects of citicoline on seizure-induced neuronal death, we used an animal model of pilocarpine-induced epilepsy. Temporal lobe epilepsy (TLE) was induced by intraperitoneal injection of pilocarpine (25mg/kg) in adult male rats. Citicoline (100 or 300 mg/kg) was injected into the intraperitoneal space two hours after seizure onset and a second injection was performed 24h after the seizure. Citicoline was injected once per day for one week after pilocarpine- or kainate-induced seizure. Neuronal injury and microglial activation were evaluated at 1 week post-seizure. Surprisingly, rather than offering protection, citicoline treatment actually enhanced seizure-induced neuronal death and microglial activation in the hippocampus compared to vehicle treated controls. Citicoline administration after seizure-induction increased immunoglobulin leakage via BBB disruption in the hippocampus compared with the vehicle-only group. To clarify if this adverse effect of citicoline is generalizable across alternative seizure models, we induced seizure by kainate injection (10mg/kg, i.p.) and then injected citicoline as in pilocarpine-induced seizure. We found that citicoline did not modulate kainate seizure-induced neuronal death, BBB disruption or microglial activation. These results suggest that citicoline may not have neuroprotective effects after seizure and that clinical application of citicoline after

  17. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer's disease brain.

    PubMed

    Busser, J; Geldmacher, D S; Herrup, K

    1998-04-15

    Alzheimer's disease (AD) is a major dementing illness characterized by regional concentrations of senile plaques, neurofibrillary tangles, and extensive neuronal cell death. Although cell and synaptic loss is most directly linked to the severity of symptoms, the mechanisms leading to the neuronal death remain unclear. Based on evidence linking neuronal death during development to unexpected reappearance of cell cycle events, we investigated the brains of 12 neuropathologically verified cases of Alzheimer's disease and eight age-matched, disease-free controls for the presence of cell cycle proteins. Aberrant expression of cyclin D, cdk4, proliferating cell nuclear antigen, and cyclin B1 were identified in the hippocampus, subiculum, locus coeruleus, and dorsal raphe nuclei, but not inferotemporal cortex or cerebellum of AD cases. With only one exception, control subjects showed no significant expression of cell cycle markers in any of the six regions. We propose that disregulation of various components of the cell cycle is a significant contributor to regionally specific neuronal death in AD.

  18. Prevention of delayed neuronal death in gerbil hippocampus by a novel vinca alkaloid derivative (vinconate).

    PubMed

    Araki, T; Kogure, K

    1989-08-01

    We investigated the effect of vinconate, a novel vinca alkaloid derivative, on delayed neuronal death using Mongolian gerbils. The animals were allowed to survive for 7 d after 3 or 5 min of forebrain ischemia induced by bilateral occlusion of the common carotid arteries. Morphological changes and calcium (45Ca) accumulation were evaluated in the CA1 sector of the hippocampus after ischemia. Vinconate (50, 100, and 300 mg/kg) showed protective effects against neuronal death in a dose-dependent manner when administered intraperitoneally (ip) 10 min before 5 min of ischemia. However, the administration of vinconate (100 and 300 mg/kg, ip) immediately after 5 min of ischemia showed no therapeutic effect, whereas a marked therapeutic effect of vinconate (50 and 100 mg/kg, ip) was observed when administered immediately after 3 min of ischemia. An anesthetic dose of pentobarbital (40 mg/kg, ip) also produced significant protection against neuronal death. Furthermore, a 45Ca autoradiographic study indicated that a marked calcium accumulation was found in the Ca1 sector at 7 d after 5 min of ischemia, which was consistent with the extent of histological neuronal damage. When vinconate (100 and 300 mg/kg, ip) was administered 10 min before 5 min of ischemia, the abnormal calcium accumulation was not detected in the CA1 sector. These data indicate that suppression of abnormal neuronal activity may be owing to the antagonistic action of vinconate on calcium accumulation.

  19. Expression level of P2X7 receptor is a determinant of ATP-induced death of mouse cultured neurons.

    PubMed

    Ohishi, A; Keno, Y; Marumiya, A; Sudo, Y; Uda, Y; Matsuda, K; Morita, Y; Furuta, T; Nishida, K; Nagasawa, K

    2016-04-05

    Activation of P2X7 receptor (P2X7R), a purinergic receptor, expressed by neurons is well-known to induce their death, but whether or not their sensitivity to ATP depends on its expression levels remains unclear. Here, we examined the effect of the expression level of P2X7Rs on cell viability using pure neuron cultures, co-cultures with astrocytes derived from SJL- and ddY-strain mice, and mouse P2X7R-expressing HEK293T cell systems. Treatment of pure neuron cultures with 5mM ATP for 2h, followed by 3-h incubation in fresh medium, resulted in death of both types of neurons, and their death was prevented by administration of P2X7R-specific antagonists. In both SJL- and ddY-neurons, ATP-induced neuronal death was inhibited by a mitochondrial permeability transition pore inhibitor cyclosporine A, mitochondrial dysfunction being involved in their death. The ATP-induced neuronal death was greater for SJL-neurons than for ddY-ones, this being correlated with the expression level of P2X7R in them, and the same results were obtained for the HEK293T cell systems. Co-culture of neurons with astrocytes increased the ATP-induced neuronal death compared to the case of pure neuron cultures. Overall, we reveal that neuronal vulnerability to ATP depends on the expression level of P2X7R, and co-existence of astrocytes exacerbates ATP-induced neuronal death.

  20. Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review.

    PubMed

    Cadet, Jean Lud; Jayanthi, Subramaniam; Deng, Xiaolin

    2005-11-01

    The abuse of the illicit drug methamphetamine (METH) is a major concern because it can cause terminal degeneration and neuronal cell death in the brain. METH-induced cell death occurs via processes that resemble apoptosis. In the present review, we discuss the role of various apoptotic events in the causation of METH-induced neuronal apoptosis in vitro and in vivo. Studies using comprehensive approaches to gene expression profiling have allowed for the identification of several genes that are up-regulated or down-regulated after an apoptosis-inducing dose of the drug. Further experiments have also documented the fact that the drug can cause demise of striatal enkephalinergic neurons by cross-talks between mitochondria-, endoplasmic reticulum- and receptor-mediated apoptotic events. These neuropathological observations have also been reported in models of drug-induced neuroplastic alterations used to mimic drug addiction (Nestler, 2001).

  1. DJ-1 mediates paraquat-induced dopaminergic neuronal cell death.

    PubMed

    Kwon, Hyun Joo; Heo, Jun Young; Shim, Jung Hee; Park, Ji Hoon; Seo, Kang Sik; Ryu, Min Jeong; Han, Jeong Su; Shong, Minho; Son, Jin H; Kweon, Gi Ryang

    2011-04-25

    There are two causes of Parkinson's disease (PD): environmental insults and genetic mutations of PD-associated genes. Environmental insults and genetic mutations lead to mitochondrial dysfunction, and a combination of mitochondrial dysfunction and increased oxidative stress in dopaminergic neurons is thought to contribute to the pathogenesis of PD. Among the PD-associated genes, DJ-1 acts as a redox sensor for oxidative stress and has been also proposed to maintain mitochondrial complex I activity. To understand molecular functions of DJ-1 in the cell, we have generated DJ-1 null cells from the DJ-1(-/-) mouse embryos. Using these null cells, we investigated the susceptibility to an environmental toxin, paraquat, which is known to inhibit mitochondrial complex I. Interestingly, we found that DJ-1 null cells showed a resistance to paraquat-induced apoptosis, including reduced poly (ADP-ribose) polymerase and procaspase-3. Also DJ-1 null cells generated less superoxide than SN4741 cells by paraquat treatment. Consistent with the reduced paraquat sensitivity, DJ-1 null cells showed reduced complex I activity, which was partially rescued by ectopic DJ-I expression. In summary, our results suggest that DJ-1 is critical to maintain mitochondrial complex I and complex I could be a key target in interaction of paraquat toxicity and DJ-1 for giving rise to PD.

  2. Delayed neuronal death in hippocampal CA1 pyramidal neurons after forebrain ischemia in hyperglycemic gerbils: amelioration by indomethacin.

    PubMed

    Kondo, F; Kondo, Y; Makino, H; Ogawa, N

    2000-01-17

    Hyperglycemia worsens ischemic-induced neuronal damage. Many reports argue the delayed neuronal cell death (DND) after forebrain ischemia in gerbils is due to apoptosis. We examined the effects of hyperglycemia and indomethacin on DND after forebrain ischemia in gerbils. Complete occlusion of both common carotid arteries was performed for 3.5 min followed by declamping and reperfusion. Blood glucose levels were maintained at 25-30 mmol/1 for 24 h after reperfusion in the hyperglycemic groups. We examined morphological changes consistent with DND using Nissel-stained sections and DNA fragmentation using TUNEL staining, at 12, 24, 36, 48, 60, 72, 84, 96, 108, 120 h, and 7 days after reperfusion. DND was noted 96-120 h after ischemia in normoglycemic group. Hyperglycemia enhanced the development of DND at an earlier stage (48-84 h after ischemia). TUNEL positive neurons were detected 72-108 h after reperfusion in normoglycemic group, but very few TUNEL positive neurons were detected in hyperglycemic group at 36-48 h. Indomethacin reduced the number of TUNEL-positive cells in normoglycemia and completely inhibited the appearance of TUNEL-positive cells under hyperglycemia. The number of viable neurons at 7 days after ischemia was markedly higher in indomethacin-treated groups than vehicle-treated group. Our results indicate that hyperglycemia worsens DND after forebrain ischemia in gerbils but such process is not associated with DNA fragmentation. Our results also showed that indomethacin provides a neuroprotective effect in normo- and hyperglycemic conditions.

  3. NMDAR-Mediated Hippocampal Neuronal Death is Exacerbated by Activities of ASIC1a

    PubMed Central

    Gao, Su; Yu, Yang; Ma, Zhi-Yuan; Sun, Hui; Zhang, Yong-Li; Wang, Xing-Tao; Wang, Chaoyun; Fan, Wei-Ming; Zheng, Qing-Yin

    2015-01-01

    NMDARs and ASIC1a both exist in central synapses and mediate important physiological and pathological conditions, but the functional relationship between them is unclear. Here we report several novel findings that may shed light on the functional relationship between these two ion channels in the excitatory postsynaptic membrane of mouse hippocampus. Firstly, NMDAR activation induced by either NMDA or OGD led to increased [Ca2+]i and greater apoptotic and necrotic cell deaths in cultured hippocampal neurons; these cell deaths were prevented by application of NMDAR antagonists. Secondly, ASIC1a activation induced by pH 6.0 extracellular solution (ECS) showed similar increases in apoptotic and necrotic cell deaths; these cell deaths were prevented by ASIC1a antagonists, and also by NMDAR antagonists. Since increased [Ca2+]i leads to increased cell deaths and since NMDAR exhibits much greater calcium permeability than ASIC1a, these data suggest that ASIC1a-induced neuronal death is mediated through activation of NMDARs. Thirdly, treatment of hippocampal cultures with both NMDA and acidic ECS induced greater degrees of cell deaths than either NMDA or acidic ECS treatment alone. These results suggest that ASIC1a activation up-regulates NMDAR function. Additional data supporting the functional relationship between ASIC1a and NMDAR are found in our electrophysiology experiments in hippocampal slices, where stimulation of ASIC1a induced a marked increase in NMDAR EPSC amplitude, and inhibition of ASIC1a resulted in a decrease in NMDAR EPSC amplitude. In summary, we present evidence that ASIC1a activity facilitates NMDAR function and exacerbates NMDAR-mediated neuronal death in pathological conditions. These findings are invaluable to the search for novel therapeutic targets in the treatment of brain ischemia. PMID:25947342

  4. Leptomeningeal neurons are a common finding in infants and are increased in sudden infant death syndrome.

    PubMed

    Rickert, Christian H; Gros, Oliver; Nolte, Kay W; Vennemann, Mechtild; Bajanowski, Thomas; Brinkmann, Bernd

    2009-03-01

    Developmental abnormalities of the brain, in particular, the brainstem potentially affecting centers for breathing, circulation and sleep regulation, are thought to be involved in the etiology of sudden infant death syndrome (SIDS). In order to investigate whether leptomeningeal neurons could serve as morphological indicators for a developmental failure or retardation in cerebral maturation, we evaluated the density of isolated leptomeningeal neurons (without associated glia) in 15 brain regions of 24 SIDS and 8 control cases, representing part of the German Study on sudden infant death. Leptomeningeal neurons were encountered in 79% of SIDS and 68% of control cases. More leptomeningeal neurons in SIDS versus control cases were found in lower pons (p = 0.002), upper pons (p = 0.016), cerebellar hemispheres (p = 0.012), lower medulla oblongata (p = 0.039), and temporal lobe (p = 0.041). Summarizing the data according to gross anatomical region of origin (i.e., brainstem, cerebellum or cerebrum), higher numbers of leptomeningeal neurons in SIDS cases were only found in the brainstem (p = 0.006 vs. 0.13 and 0.19, respectively). Our data show that single leptomeningeal neurons are present in most normal infantile brains. The age-dependent increase of leptomeningeal neurons among SIDS cases may either (a) represent a delayed maturation or retardation, i.e., a later or slower reduction of neurons or a delayed peak in occurrence (shift toward an older age), or (b) may be interpreted as a generally increased occurrence of leptomeningeal neurons among SIDS cases as a result of a diffuse developmental abnormality during central nervous system maturation.

  5. Mechanism for the Protective Effect of Resveratrol against Oxidative Stress-Induced Neuronal Death

    PubMed Central

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2010-01-01

    Oxidative stress can induce cytotoxicity in neurons, which plays an important role in the etiology of neuronal damage and degeneration. The present study seeks to determine the cellular and biochemical mechanisms underlying resveratrol’s protective effect against oxidative neuronal death. The cultured HT22 cells, an immortalized mouse hippocampal neuronal cell line, were used as an in vitro model, and the oxidative stress and neurotoxicity in these neuronal cells were induced by exposure to high concentrations of glutamate. Resveratrol strongly protected HT22 cells from glutamate-induced oxidative cell death. Resveratrol’s neuroprotective effect was independent of its direct radical-scavenging property, but instead was dependent on its ability to selectively induce the expression of mitochondrial superoxide dismutase (SOD2), and subsequently, reduce mitochondrial oxidative stress and damage. The induction of the mitochondrial SOD2 by resveratrol was mediated through the activation of the PI3K/Akt and GSK-3β/β-catenin signaling pathways. Taken together, the results of this study show that up-regulation of the mitochondrial SOD2 by resveratrol represents an important mechanism for its protection of neuronal cells against oxidative cytotoxicity resulting form mitochondrial oxidative stress. PMID:20542495

  6. The N-terminal Set-β Protein Isoform Induces Neuronal Death.

    PubMed

    Trakhtenberg, Ephraim F; Morkin, Melina I; Patel, Karan H; Fernandez, Stephanie G; Sang, Alan; Shaw, Peter; Liu, Xiongfei; Wang, Yan; Mlacker, Gregory M; Gao, Han; Velmeshev, Dmitry; Dombrowski, Susan M; Vitek, Michael P; Goldberg, Jeffrey L

    2015-05-22

    Set-β protein plays different roles in neurons, but the diversity of Set-β neuronal isoforms and their functions have not been characterized. The expression and subcellular localization of Set-β are altered in Alzheimer disease, cleavage of Set-β leads to neuronal death after stroke, and the full-length Set-β regulates retinal ganglion cell (RGC) and hippocampal neuron axon growth and regeneration in a subcellular localization-dependent manner. Here we used various biochemical approaches to investigate Set-β isoforms and their role in the CNS, using the same type of neurons, RGCs, across studies. We found multiple alternatively spliced isoforms expressed from the Set locus in purified RGCs. Set transcripts containing the Set-β-specific exon were the most highly expressed isoforms. We also identified a novel, alternatively spliced Set-β transcript lacking the nuclear localization signal and demonstrated that the full-length (∼39-kDa) Set-β is localized predominantly in the nucleus, whereas a shorter (∼25-kDa) Set-β isoform is localized predominantly in the cytoplasm. Finally, we show that an N-terminal Set-β cleavage product can induce neuronal death.

  7. Pathways to ischemic neuronal cell death: are sex differences relevant?

    PubMed Central

    Lang, Jesse T; McCullough, Louise D

    2008-01-01

    We have known for some time that the epidemiology of human stroke is sexually dimorphic until late in life, well beyond the years of reproductive senescence and menopause. Now, a new concept is emerging: the mechanisms and outcome of cerebral ischemic injury are influenced strongly by biological sex as well as the availability of sex steroids to the brain. The principal mammalian estrogen (17 β estradiol or E2) is neuroprotective in many types of brain injury and has been the major focus of investigation over the past several decades. However, it is becoming increasingly clear that although hormones are a major contributor to sex-specific outcomes, they do not fully account for sex-specific responses to cerebral ischemia. The purpose of this review is to highlight recent studies in cell culture and animal models that suggest that genetic sex determines experimental stroke outcome and that divergent cell death pathways are activated after an ischemic insult. These sex differences need to be identified if we are to develop efficacious neuroprotective agents for use in stroke patients. PMID:18573200

  8. Sudden Death Following Selective Neuronal Lesions in the Rat Nucleus Tractus Solitarii

    PubMed Central

    Talman, William T.; Lin, Li-Hsien

    2013-01-01

    In efforts to assess baroreflex and cardiovascular responses in rats in which substance P (SP) or catecholamine transmission had been eliminated we studied animals after bilateral injections into the nucleus tractus solitarii (NTS) of SP or stabilized SP (SSP) conjugated to saporin (SP-SAP or SSP-SAP respectively) or SAP conjugated to an antibody to dopamine-β-hydroxylase (anti-DBH-SAP). We found that SP- and SSP-SAP eliminated NTS neurons that expressed the SP neurokinin-1 receptor (NK1R) while anti-DBH-SAP eliminated NTS neurons expressing tyrosine hydroxylase (TH) and DBH. The toxins were selective. Thus SP-or SSP-SAP did not eliminate TH/DBH neurons and anti-DBH-SAP did not eliminate NK1R neurons in the NTS. Each toxin, however, led to chronic lability of arterial blood pressure, diminished baroreflex function, cardiac ventricular irritability, coagulation necrosis of cardiac myocytes and, in some animals, sudden death associated with asystole. However, when TH/DBH neurons were targeted and eliminated by injection of 6-hydroxydopamine (6-OHDA), none of the cardiovascular or cardiac changes occurred. The studies reviewed here reveal that selective lesions of the NTS lead to altered baroreflex control and to cardiac changes that may lead to sudden death. Though the findings could support a role for SP or catecholamines in baroreflex transmission neither is proven in that NK1R colocalizes with glutamate receptors. Thus neurons with both are lost when treated with SP- or SSP-SAP. In addition, loss of catecholamine neurons after treatment with 6-OHDA does not affect cardiovascular control. Thus, the effect of the toxins may depend on an action of SAP independent of the effects of the SAP conjugates on targeted neuronal types. PMID:23245583

  9. Cofilin inhibition restores neuronal cell death in oxygen glucose deprivation model of ischemia

    PubMed Central

    Madineni, Anusha; Alhadidi, Qasim; Shah, Zahoor A.

    2014-01-01

    Ischemia is a condition associated with decreased blood supply to the brain, eventually leading to death of neurons. It is associated with a diverse cascade of responses involving both degenerative and regenerative mechanisms. At the cellular level, the changes are initiated prominently in the neuronal cytoskeleton. Cofilin, a cytoskeletal actin severing protein, is known to be involved in the early stages of apoptotic cell death. Evidence supports its intervention in the progression of disease states like Alzheimer's and ischemic kidney disease. In the present study, we have hypothesized the possible involvement of cofilin in ischemia. Using PC12 cells and mouse primary cultures of cortical neurons, we investigated the potential role of cofilin in ischemia in two different in vitro ischemic models: chemical induced oxidative stress and oxygen-glucose deprivation/reperfusion (OGD/R). The expression profile studies demonstrated a decrease in phosphocofilin levels in all models of ischemia, implying stress-induced cofilin activation. Furthermore, calcineurin and slingshot 1L (SSH) phosphatases were found to be the signaling mediators of the cofilin activation. In primary cultures of cortical neurons, cofilin was found to be significantly activated after 1 h of OGD. To delineate the role of activated cofilin in ischemia, we knocked down cofilin by siRNA technique and tested the impact of cofilin silencing on neuronal viability. Cofilin siRNA-treated neurons showed a significant reduction of cofilin levels in all treatment groups (control, OGD and OGD/R). Additionally, cofilin siRNA reduced cofilin mitochondrial translocation and caspase 3 cleavage, with a concomitant increase in neuronal viability. These results strongly support the active role of cofilin in ischemia-induced neuronal degeneration and apoptosis. We believe that targeting this protein mediator has a potential for therapeutic intervention in ischemic brain injury and stroke. PMID:25526862

  10. Cofilin Inhibition Restores Neuronal Cell Death in Oxygen-Glucose Deprivation Model of Ischemia.

    PubMed

    Madineni, Anusha; Alhadidi, Qasim; Shah, Zahoor A

    2016-03-01

    Ischemia is a condition associated with decreased blood supply to the brain, eventually leading to death of neurons. It is associated with a diverse cascade of responses involving both degenerative and regenerative mechanisms. At the cellular level, the changes are initiated prominently in the neuronal cytoskeleton. Cofilin, a cytoskeletal actin severing protein, is known to be involved in the early stages of apoptotic cell death. Evidence supports its intervention in the progression of disease states like Alzheimer's and ischemic kidney disease. In the present study, we have hypothesized the possible involvement of cofilin in ischemia. Using PC12 cells and mouse primary cultures of cortical neurons, we investigated the potential role of cofilin in ischemia in two different in vitro ischemic models: chemical induced oxidative stress and oxygen-glucose deprivation/reperfusion (OGD/R). The expression profile studies demonstrated a decrease in phosphocofilin levels in all models of ischemia, implying stress-induced cofilin activation. Furthermore, calcineurin and slingshot 1L (SSH) phosphatases were found to be the signaling mediators of the cofilin activation. In primary cultures of cortical neurons, cofilin was found to be significantly activated after 1 h of OGD. To delineate the role of activated cofilin in ischemia, we knocked down cofilin by small interfering RNA (siRNA) technique and tested the impact of cofilin silencing on neuronal viability. Cofilin siRNA-treated neurons showed a significant reduction of cofilin levels in all treatment groups (control, OGD, and OGD/R). Additionally, cofilin siRNA-reduced cofilin mitochondrial translocation and caspase 3 cleavage, with a concomitant increase in neuronal viability. These results strongly support the active role of cofilin in ischemia-induced neuronal degeneration and apoptosis. We believe that targeting this protein mediator has a potential for therapeutic intervention in ischemic brain injury and stroke.

  11. Transcriptional repression induces a slowly progressive atypical neuronal death associated with changes of YAP isoforms and p73

    PubMed Central

    Hoshino, Masataka; Qi, Mei-ling; Yoshimura, Natsue; Miyashita, Tomoyuki; Tagawa, Kazuhiko; Wada, Yo-ichi; Enokido, Yasushi; Marubuchi, Shigeki; Harjes, Phoebe; Arai, Nobutaka; Oyanagi, Kiyomitsu; Blandino, Giovanni; Sudol, Marius; Rich, Tina; Kanazawa, Ichiro; Wanker, Erich E.; Saitoe, Minoru; Okazawa, Hitoshi

    2006-01-01

    Transcriptional disturbance is implicated in the pathology of polyglutamine diseases, including Huntington's disease (HD). However, it is unknown whether transcriptional repression leads to neuronal death or what forms that death might take. We found transcriptional repression-induced atypical death (TRIAD) of neurons to be distinct from apoptosis, necrosis, or autophagy. The progression of TRIAD was extremely slow in comparison with other types of cell death. Gene expression profiling revealed the reduction of full-length yes-associated protein (YAP), a p73 cofactor to promote apoptosis, as specific to TRIAD. Furthermore, novel neuron-specific YAP isoforms (YAPΔCs) were sustained during TRIAD to suppress neuronal death in a dominant-negative fashion. YAPΔCs and activated p73 were colocalized in the striatal neurons of HD patients and mutant huntingtin (htt) transgenic mice. YAPΔCs also markedly attenuated Htt-induced neuronal death in primary neuron and Drosophila melanogaster models. Collectively, transcriptional repression induces a novel prototype of neuronal death associated with the changes of YAP isoforms and p73, which might be relevant to the HD pathology. PMID:16461361

  12. P2X7 receptor-induced death of motor neurons by a peroxynitrite/FAS-dependent pathway

    PubMed Central

    Gandelman, Mandi; Levy, Mark; Cassina, Patricia; Barbeito, Luis; Beckman, Joseph S

    2013-01-01

    The P2X7 receptor/channel responds to extracellular ATP and is associated with neuronal death and neuroinflammation in spinal cord injury and amyotrophic lateral sclerosis (ALS). Whether activation of P2X7 directly causes motor neuron death is unknown. We found that cultured motor neurons isolated from embryonic rat spinal cord express P2X7 and underwent caspase-dependent apoptosis when exposed to exceptionally low concentrations of the P2X7 agonist 3′-O-(4-benzoyl)-ATP (BzATP). The P2X7 inhibitors BBG, oATP and KN-62 prevented BzATP-induced motor neuron death. The endogenous P2X7 agonist ATP induced motor neuron death at low concentrations (1-100 μM). High concentrations of ATP (1 mM) paradoxically became protective due to degradation in the culture media to produce adenosine and activate adenosine receptors. P2X7-induced motor neuron death was dependent on neuronal nitric oxide synthase-mediated production of peroxynitrite, p38 activation and autocrine FAS signaling. Taken together, our results indicate that motor neurons are highly sensitive to P2X7 activation, which triggers apoptosis by activation of the well-established peroxynitrite/FAS death pathway in motor neurons. PMID:23646980

  13. Procaspase-activating compound 1 induces a caspase-3-dependent cell death in cerebellar granule neurons

    SciTech Connect

    Aziz, Gulzeb; Akselsen, Oyvind W.; Hansen, Trond V.; Paulsen, Ragnhild E.

    2010-09-15

    Procaspase-activating compound 1, PAC-1, has been introduced as a direct activator of procaspase-3 and has been suggested as a therapeutic agent against cancer. Its activation of procaspase-3 is dependent on the chelation of zinc. We have tested PAC-1 and an analogue of PAC-1 as zinc chelators in vitro as well as their ability to activate caspase-3 and induce cell death in chicken cerebellar granule neuron cultures. These neurons are non-dividing, primary cells with normal caspase-3. The results reported herein show that PAC-1 chelates zinc, activates procaspase-3, and leads to caspase-3-dependent cell death in neurons, as the specific caspase-3-inhibitor Ac-DEVD-cmk inhibited both the caspase-3 activity and cell death. Thus, chicken cerebellar granule neurons is a suitable model to study mechanisms of interference with apoptosis of PAC-1 and similar compounds. Furthermore, the present study also raises concern about potential neurotoxicity of PAC-1 if used in cancer therapy.

  14. Extrasynaptic NMDA receptor-induced tau overexpression mediates neuronal death through suppressing survival signaling ERK phosphorylation

    PubMed Central

    Sun, Xu-Ying; Tuo, Qing-Zhang; Liuyang, Zhen-Yu; Xie, Ao-Ji; Feng, Xiao-Long; Yan, Xiong; Qiu, Mei; Li, Shen; Wang, Xiu-Lian; Cao, Fu-Yuan; Wang, Xiao-Chuan; Wang, Jian-Zhi; Liu, Rong

    2016-01-01

    Intracellular accumulation of the hyperphosphorylated tau is a pathological hallmark in the brain of Alzheimer disease. Activation of extrasynaptic NMDA receptors (E-NMDARs) induces excitatory toxicity that is involved in Alzheimer's neurodegeneration. However, the intrinsic link between E-NMDARs and the tau-induced neuronal damage remains elusive. In the present study, we showed in cultured primary cortical neurons that activation of E-NMDA receptors but not synaptic NMDA receptors dramatically increased tau mRNA and protein levels, with a simultaneous neuronal degeneration and decreased neuronal survival. Memantine, a selective antagonist of E-NMDARs, reversed E-NMDARs-induced tau overexpression. Activation of E-NMDARs in wild-type mouse brains resulted in neuron loss in hippocampus, whereas tau deletion in neuronal cultures and in the mouse brains rescued the E-NMDARs-induced neuronal death and degeneration. The E-NMDARs-induced tau overexpression was correlated with a reduced ERK phosphorylation, whereas the increased MEK activity, decreased binding and activity of ERK phosphatase to ERK, and increased ERK phosphorylation were observed in tau knockout mice. On the contrary, addition of tau proteins promoted ERK dephosphorylation in vitro. Taking together, these results indicate that tau overexpression mediates the excitatory toxicity induced by E-NMDAR activation through inhibiting ERK phosphorylation. PMID:27809304

  15. Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice

    SciTech Connect

    Nabeshima, T.; Katoh, A.; Ishimaru, H.; Yoneda, Y.; Ogita, K.; Murase, K.; Ohtsuka, H.; Inari, K.; Fukuta, T.; Kameyama, T. )

    1991-01-01

    We investigated the interrelationship of delayed amnesia, delayed neuronal death and changes in acetylcholine concentration induced by carbon monoxide (CO)-exposure in mice. In the test for retention of the passive avoidance task, amnesia was observed 5 and 7 days after CO-exposure when the mice were exposed to CO 1 day after training; in the case when the mice were exposed to CO 5 and 7 days before training, amnesia was also observed in a retention test given 1 day after training. The number of pyramidal cells in the hippocampal CA1 subfield was lower than that of the control 3, 5 and 7 days after CO-exposure. But the neurodegeneration in the parietal cortex, area 1, was not observed until 7 days after CO-exposure. The findings indicated that the amnesia and the neuronal death were produced after a delay when the mice were exposed to CO. In addition, the delayed amnesia was closely related to the delayed neuronal death in the hippocampal CA1 subfield. Moreover, (3H)glutamate and (3H)glycine binding sites did not change after CO-exposure but, 7 days after CO-exposure, the concentration of acetylcholine and the binding of (3H)quinuclidinyl benzilate in the frontal cortex and the striatum were found to have significantly changed, but those in the hippocampus did not show significant change. Therefore, we suggest that delayed amnesia induced by CO-exposure may result from delayed neuronal death in the hippocampal CA1 subfield and dysfunction in the acetylcholinergic neurons, in the frontal cortex, the striatum and/or the hippocampus.

  16. Ethanol-induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured fetal cortical neurons.

    PubMed

    Ramachandran, Vinitha; Watts, Lora Talley; Maffi, Shivani Kaushal; Chen, Juanjuan; Schenker, Steven; Henderson, George

    2003-11-15

    In utero ethanol exposure elicits apoptotic cell death in the fetal brain, and this may be mediated by oxidative stress. Our studies utilize cultured fetal rat cortical neurons and illustrate that ethanol elicits a rapid onset of oxidative stress, which culminates in mitochondrially mediated apoptotic cell death. Cells exposed to ethanol (2.5 mg/ml) remained attached to their polylysine matrix during a 24-hr exposure, but they exhibited distinct signs of oxidative stress, decreased viability, and apoptosis. Confocal microscopy of live cortical neurons pretreated with dichlorodihydrofluorescein diacetate demonstrated an increase in reactive oxygen species (ROS) within 5 min of ethanol exposure. The levels of ROS further increased by 58% within 1 hr (P <.05) and by 82% within 2 hr (P <.05), accompanied by increases of mitochondrial 4-hydroxynonenal (HNE). These early events were followed by decreased trypan blue exclusion of 10% to 32% (P <.05) at the 6- to 24-hr time points, respectively. This culminates in apoptotic death, with increases of Annexin V binding of 43%, 89%, 123%, and 238%, at 2, 6, 12, and 24 hr of ethanol treatment, respectively, as well as DNA fragmentation increases of 50% and 65% by 12 and 24 hr, respectively. Release of cytochrome c by mitochondria increased by 53% at 6 hr of exposure (P <.05), concomitant with activation of caspase 3 (52% at 12 hr, P <.05). Pretreatment with N-acetylcysteine increased cellular glutathione and prevented apoptosis. These studies provide a time line illustrating that oxidative stress and formation of a proapoptotic lipid peroxidation product, HNE, precede a cascade of mitochondrially mediated events in cultured fetal cortical neurons, culminating in apoptotic death. The prevention of apoptosis by augmentation of glutathione stores also strongly supports a role for oxidative stress in ethanol-mediated apoptotic death of fetal cortical neurons.

  17. Cardiac arrest triggers hippocampal neuronal death through autophagic and apoptotic pathways

    PubMed Central

    Cui, Derong; Shang, Hanbing; Zhang, Xiaoli; Jiang, Wei; Jia, Xiaofeng

    2016-01-01

    The mechanism of neuronal death induced by ischemic injury remains unknown. We investigated whether autophagy and p53 signaling played a role in the apoptosis of hippocampal neurons following global cerebral ischemia-reperfusion (I/R) injury, in a rat model of 8-min asphyxial cardiac arrest (CA) and resuscitation. Increased autophagosome numbers, expression of lysosomal cathepsin B, cathepsin D, Beclin-1, and microtubule-associated protein light chain 3 (LC3) suggested autophagy in hippocampal cells. The expression of tumor suppressor protein 53 (p53) and its target genes: Bax, p53-upregulated modulator of apoptosis (PUMA), and damage-regulated autophagy modulator (DRAM) were upregulated following CA. The p53-specific inhibitor pifithrin-α (PFT-α) significantly reduced the expression of pro-apoptotic proteins (Bax and PUMA) and autophagic proteins (LC3-II and DRAM) that generally increase following CA. PFT-α also reduced hippocampal neuronal damage following CA. Similarly, 3-methyladenine (3-MA), which inhibits autophagy and bafilomycin A1 (BFA), which inhibits lysosomes, significantly inhibited hippocampal neuronal damage after CA. These results indicate that CA affects both autophagy and apoptosis, partially mediated by p53. Autophagy plays a significant role in hippocampal neuronal death induced by cerebral I/R following asphyxial-CA. PMID:27273382

  18. Cell Death, Neuronal Plasticity and Functional Loading in the Development of the Central Nervous System

    NASA Technical Reports Server (NTRS)

    Keefe, J. R.

    1985-01-01

    Research on the precise timing and regulation of neuron production and maturation in the vestibular and visual systems of Wistar rats and several inbred strains of mice (C57B16 and Pallid mutant) concentrated upon establishing a timing baseline for mitotic development of the neurons of the vestibular nuclei and the peripheral vestibular sensory structures (maculae, cristae). This involved studies of the timing and site of neuronal cell birth and preliminary studies of neuronal cell death in both central and peripheral elements of the mammalian vestibular system. Studies on neuronal generation and maturation in the retina were recently added to provide a mechanism for more properly defining the in utero' developmental age of the individual fetal subject and to closely monitor potential transplacental effects of environmentally stressed maternal systems. Information is given on current efforts concentrating upon the (1) perinatal period of development (E18 thru P14) and (2) the role of cell death in response to variation in the functional loading of the vestibular and proprioreceptive systems in developing mammalian organisms.

  19. Cabergoline, dopamine D2 receptor agonist, prevents neuronal cell death under oxidative stress via reducing excitotoxicity.

    PubMed

    Odaka, Haruki; Numakawa, Tadahiro; Adachi, Naoki; Ooshima, Yoshiko; Nakajima, Shingo; Katanuma, Yusuke; Inoue, Takafumi; Kunugi, Hiroshi

    2014-01-01

    Several lines of evidence demonstrate that oxidative stress is involved in the pathogenesis of neurodegenerative diseases, including Parkinson's disease. Potent antioxidants may therefore be effective in the treatment of such diseases. Cabergoline, a dopamine D2 receptor agonist and antiparkinson drug, has been studied using several cell types including mesencephalic neurons, and is recognized as a potent radical scavenger. Here, we examined whether cabergoline exerts neuroprotective effects against oxidative stress through a receptor-mediated mechanism in cultured cortical neurons. We found that neuronal death induced by H₂O₂ exposure was inhibited by pretreatment with cabergoline, while this protective effect was eliminated in the presence of a dopamine D2 receptor inhibitor, spiperone. Activation of ERK1/2 by H₂O₂ was suppressed by cabergoline, and an ERK signaling pathway inhibitor, U0126, similarly protected cortical neurons from cell death. This suggested the ERK signaling pathway has a critical role in cabergoline-mediated neuroprotection. Furthermore, increased extracellular levels of glutamate induced by H₂O₂, which might contribute to ERK activation, were reduced by cabergoline, while inhibitors for NMDA receptor or L-type Ca²⁺ channel demonstrated a survival effect against H₂O₂. Interestingly, we found that cabergoline increased expression levels of glutamate transporters such as EAAC1. Taken together, these results suggest that cabergoline has a protective effect on cortical neurons via a receptor-mediated mechanism including repression of ERK1/2 activation and extracellular glutamate accumulation induced by H₂O₂.

  20. Bifunctional apoptosis inhibitor (BAR) protects neurons from diverse cell death pathways.

    PubMed

    Roth, W; Kermer, P; Krajewska, M; Welsh, K; Davis, S; Krajewski, S; Reed, J C

    2003-10-01

    The bifunctional apoptosis regulator (BAR) is a multidomain protein that was originally identified as an inhibitor of Bax-induced apoptosis. Immunoblot analysis of normal human tissues demonstrated high BAR expression in the brain, compared to low or absent expression in other organs. Immunohistochemical staining of human adult tissues revealed that the BAR protein is predominantly expressed by neurons in the central nervous system. Immunofluorescence microscopy indicated that BAR localizes mainly to the endoplasmic reticulum (ER) of cells. Overexpression of BAR in CSM 14.1 neuronal cells resulted in significant protection from a broad range of cell death stimuli, including agents that activate apoptotic pathways involving mitochondria, TNF-family death receptors, and ER stress. Downregulation of BAR by antisense oligonucleotides sensitized neuronal cells to induction of apoptosis. Moreover, the search for novel interaction partners of BAR identified several candidate proteins that might contribute to the regulation of neuronal apoptosis (HIP1, Hippi, and Bap31). Taken together, the expression pattern and functional data suggest that the BAR protein is involved in the regulation of neuronal survival.

  1. A histopathological study of premature and mature infants with pontosubicular neuron necrosis: neuronal cell death in perinatal brain damage.

    PubMed

    Takizawa, Yuji; Takashima, Sachio; Itoh, Masayuki

    2006-06-20

    Perinatal hypoxic-ischemic brain damage is a major cause of neuronal and behavior deficits, in which the onset of injury can be before, at or after birth, and the effects may be delayed. Pontosubicular neuron necrosis (PSN) is one of perinatal hypoxic-ischemic brain injury and its pathological peculiarity is neuronal apoptosis. In this study, we investigated whether apoptotic cascade of PSN used a caspase-pathway or not, and whether hypoglycemia activated apoptosis or not. Sections of the pons of PSN with and without hypoglycemia were stained using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) and immunohistochemistry for glial fibrillary acidic protein (GFAP), Bcl-2, Bcl-x and activated caspase 3. Additionally, we performed immunoblot analysis of Bcl-2, Bcl-x and activated caspase 3. TUNEL-positive cell was closely associated with the presence of karyorrhexis. Under combination of karyorrhectic and TUNEL-positive cells, number of apoptotic cells in premature brains was significantly more than in mature brains. Hypoxic-ischemic brain injury was considered to easily lead to apoptosis in premature infants. Moreover, as this pathophysiology, caspase-pathway activation contributed to neuronal death from caspase-immunoexpression analyses. PSN with hypoglycemia showed large number of apoptotic cells and higher expression of activated caspase 3. The result may be more severe with the background of hypoglycemia and prematurity complicated by hypoxia and/or ischemia.

  2. High-Content Genome-Wide RNAi Screen Reveals CCR3 as a Key Mediator of Neuronal Cell Death

    PubMed Central

    Wang, Huaishan; Sherbini, Omar; Ling-lin Pai, Emily; Kwon, Ji-Sun; He, Wei; Wang, Hong; Chi, Zhikai; Xu, Jinchong; Jiang, Haisong; Andrabi, Shaida A.

    2016-01-01

    Neuronal loss caused by ischemic injury, trauma, or disease can lead to devastating consequences for the individual. With the goal of limiting neuronal loss, a number of cell death pathways have been studied, but there may be additional contributors to neuronal death that are yet unknown. To identify previously unknown cell death mediators, we performed a high-content genome-wide screening of short, interfering RNA (siRNA) with an siRNA library in murine neural stem cells after exposure to N-methyl-N-nitroso-N′-nitroguanidine (MNNG), which leads to DNA damage and cell death. Eighty genes were identified as key mediators for cell death. Among them, 14 are known cell death mediators and 66 have not previously been linked to cell death pathways. Using an integrated approach with functional and bioinformatics analysis, we provide possible molecular networks, interconnected pathways, and/or protein complexes that may participate in cell death. Of the 66 genes, we selected CCR3 for further evaluation and found that CCR3 is a mediator of neuronal injury. CCR3 inhibition or deletion protects murine cortical cultures from oxygen-glucose deprivation–induced cell death, and CCR3 deletion in mice provides protection from ischemia in vivo. Taken together, our findings suggest that CCR3 is a previously unknown mediator of cell death. Future identification of the neural cell death network in which CCR3 participates will enhance our understanding of the molecular mechanisms of neural cell death. PMID:27822494

  3. High-Content Genome-Wide RNAi Screen Reveals CCR3 as a Key Mediator of Neuronal Cell Death.

    PubMed

    Zhang, Jianmin; Wang, Huaishan; Sherbini, Omar; Ling-Lin Pai, Emily; Kang, Sung-Ung; Kwon, Ji-Sun; Yang, Jia; He, Wei; Wang, Hong; Eacker, Stephen M; Chi, Zhikai; Mao, Xiaobo; Xu, Jinchong; Jiang, Haisong; Andrabi, Shaida A; Dawson, Ted M; Dawson, Valina L

    2016-01-01

    Neuronal loss caused by ischemic injury, trauma, or disease can lead to devastating consequences for the individual. With the goal of limiting neuronal loss, a number of cell death pathways have been studied, but there may be additional contributors to neuronal death that are yet unknown. To identify previously unknown cell death mediators, we performed a high-content genome-wide screening of short, interfering RNA (siRNA) with an siRNA library in murine neural stem cells after exposure to N-methyl-N-nitroso-N'-nitroguanidine (MNNG), which leads to DNA damage and cell death. Eighty genes were identified as key mediators for cell death. Among them, 14 are known cell death mediators and 66 have not previously been linked to cell death pathways. Using an integrated approach with functional and bioinformatics analysis, we provide possible molecular networks, interconnected pathways, and/or protein complexes that may participate in cell death. Of the 66 genes, we selected CCR3 for further evaluation and found that CCR3 is a mediator of neuronal injury. CCR3 inhibition or deletion protects murine cortical cultures from oxygen-glucose deprivation-induced cell death, and CCR3 deletion in mice provides protection from ischemia in vivo. Taken together, our findings suggest that CCR3 is a previously unknown mediator of cell death. Future identification of the neural cell death network in which CCR3 participates will enhance our understanding of the molecular mechanisms of neural cell death.

  4. YCl3 Promotes Neuronal Cell Death by Inducing Apoptotic Pathways in Rats

    PubMed Central

    Ding, Yechun; Tian, Yuantong; Zeng, Zhaoyi; Shuai, Ping; Lan, Haiying; Zhu, Xianshen; Zhong, Yi

    2017-01-01

    The pollutants rare earth elements (REEs) have posed great threats to human health. To investigate the cytotoxicity of yttrium (Y), a model that rats have free access to water containing YCl3 for 6 months is utilized. The results showed that YCl3 treatment promoted neuronal cell apoptosis by upregulating the proapoptotic factors Bax, caspase-3, Cyto c, and DAPK and by downregulating the antiapoptotic factors Bcl-2 and XIAP at both mRNA and protein levels. Conclusively, YCl3 exhibited cytotoxicity and promoted neuronal cell death by the induction of apoptotic pathways. PMID:28326317

  5. Depletion of medullary serotonergic neurons in patients with multiple system atrophy who succumbed to sudden death.

    PubMed

    Tada, Mari; Kakita, Akiyoshi; Toyoshima, Yasuko; Onodera, Osamu; Ozawa, Tetsutaro; Morita, Takashi; Nishizawa, Masatoyo; Takahashi, Hitoshi

    2009-07-01

    Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by prominent autonomic failure with ataxia and/or parkinsonism. The leading cause of death in MSA is sudden death. We have shown that the early development of autonomic failure is an independent risk factor for sudden death. The depletion of sympathetic preganglionic neurons in the spinal intermediolateral cell column (IML) and its afferent medullary catecholaminergic and serotonergic neurons has been proposed to be partly responsible for autonomic failure in MSA. In this study, we investigated whether the depletion of neurons in any of these autonomic neuron groups contributes to sudden death in MSA. Out of 52 autopsy-proven patients with MSA, we selected 12 individuals who had died within 3.5 years after disease onset to define the accurate levels of slices and identify early neuropathological changes of autonomic nuclei in MSA. Four patients succumbed to sudden death and eight patients died through established causes. Serial 10 mum sections were obtained from the 8th segment of the thoracic cord and the rostral medulla oblongata. Sections from the medulla oblongata were immunostained for thyrosine hydroxylase and tryptophan hydroxylase. The total cell number in the five sections was computed for comparison. Compared with the control, the MSA group showed a marked depletion of neurons in the IML (38.0 +/- 7.1 versus 75.2 +/- 7.6 cells, P < 0.001), thyrosine hydroxylase-immunoreactive neurons in the ventrolateral medulla (VLM) (17.4 +/- 5.1 versus 72.8 +/- 13.6 cells, P < 0.01) and tryptophan hydroxylase-immunoreactive neurons in the VLM (15.6 +/- 9.2 versus 60.8 +/- 17.0 cells, P < 0.01), nucleus raphe obscurus (19.3 +/- 4.4 versus 75.3 +/- 8.6 cells, P < 0.001), nucleus raphe pallidus (2.1 +/- 2.7 versus 9.0 +/- 3.4 cells, P < 0.03), and arcuate nucleus (0.4 +/- 0.8 versus 2.3 +/- 1.5 cells, P < 0.05). Moreover, in patients who succumbed to sudden death, when compared with patients who

  6. Angiotensin II protects cultured midbrain dopaminergic neurons against rotenone-induced cell death.

    PubMed

    Grammatopoulos, Tom N; Ahmadi, Ferogh; Jones, Susan M; Fariss, Marc W; Weyhenmeyer, James A; Zawada, W Michael

    2005-05-31

    In this study, we demonstrate that angiotensin II (Ang II) protects dopamine (DA) neurons from rotenone toxicity in vitro. Primary ventral mesencephalic (VM) cultures from E15 rats were grown for 5 days and then cultured in the presence of the mitochondrial complex I inhibitor, rotenone. Acute exposure (20 h) to 20 nM rotenone reduced the number of tyrosine hydroxylase-positive (TH+) neurons by 50 +/- 6% when compared to untreated cultures. Pre-treatment of VM cultures with 100 nM Ang II decreased TH+ neuronal loss to 25 +/- 10% at the 20-nM rotenone concentration. Ang II in the presence of the angiotensin type 1 receptor (AT1R) antagonist, losartan, was even more effective in protecting DA neurons showing a loss of only 13 +/- 4% at 20 nM rotenone. Conversely, the AT2R antagonist, PD123319, abolished the protective effects of Ang II. Furthermore, both the NMDA receptor antagonist, MK801, and the antioxidant, alpha-tocopheryl succinate (vitamin E analogue), prevented rotenone-induced toxicity. Here, we show that acute exposure of VM cultures to the pesticide rotenone leads to dopaminergic neuronal cell death and that angiotensin acting through the AT2 receptor protects dopamine neurons from rotenone toxicity.

  7. miR-455 inhibits neuronal cell death by targeting TRAF3 in cerebral ischemic stroke

    PubMed Central

    Yao, Shengtao; Tang, Bo; Li, Gang; Fan, Ruiming; Cao, Fang

    2016-01-01

    Ischemic stroke is one of the leading causes of brain disease, with high morbidity, disability, and mortality. MicroRNAs (miRNAs) have been identified as vital gene regulators in various types of human diseases. Accumulating evidence has suggested that aberrant expression of miRNAs play critical roles in the pathologies of ischemic stroke. Yet, the precise mechanism by which miRNAs control cerebral ischemic stroke remains unclear. In the present study, we explored whether miR-455 suppresses neuronal death by targeting TRAF3 in cerebral ischemic stroke. The expression levels of miR-455 and TRAF3 were detected by quantitative real-time polymerase chain reaction and Western blot. The role of miR-455 in cell death caused by oxygen–glucose deprivation (OGD) was assessed using Cell Counting Kit-8 (CCK-8) assay. The influence of miR-455 on infarct volume was evaluated in mouse brain after middle cerebral artery occlusion (MCAO). Bioinformatics softwares and luciferase analysis were used to find and confirm the targets of miR-455. The results showed that the expression levels of miR-455 significantly decreased in primary neuronal cells subjected to OGD and mouse brain subjected to MCAO. In addition, forced expression of miR-455 inhibited neuronal death and weakened ischemic brain infarction in focal ischemia-stroked mice. Furthermore, TRAF3 was proved to be a direct target of miR-455, and miR-455 could negatively suppress TRAF3 expression. Biological function analysis showed that TRAF3 silencing displayed the neuroprotective effect in ischemic stroke and could enhance miR-455-induced positive impact on ischemic injury both in vitro and in vivo. Taken together, miR-455 played a vital role in protecting neuronal cells from death by downregulating TRAF3 protein expression. These findings may represent a novel latent therapeutic target for cerebral ischemic stroke. PMID:27980410

  8. [Neuronal death in the neocortex of drug resistant temporal lobe epilepsy patients].

    PubMed

    Lorigados Pedre, L; Orozco Suárez, S; Morales Chacón, L; García Maeso, I; Estupiñán Diaz, B; Bender del Busto, J E; Pavón Fuentes, N; Paula Piñero, B; Rocha Arrieta, L

    2008-11-01

    Introduction. Participation of apoptotic death mechanisms in drug resistant temporal lobe epilepsy (DRTLE) is currently under great debate. We have investigated if there is neuronal loss and the immunodetection to different markers in neocortical tissue death in eigth patients with DRTLE. The neocortexes of five patients deceased due to non-neurological causes, paired in age and gender were evaluated as control tissue. Methods. The evaluation of neuronal loss was made by means of a stereological study and with immunohistochemical techniques with the synaptophysin marker. Immunopositivity to different apoptotic markers (annexin V, caspase 3 and 8, bcl-2 and p53) and detection of deoxyribonucleic acid (DNA) fragmentation (TUNEL) were analyzed and double labeling with synaptophysin was performed in every case. The results were evaluated with confocal microscope and analyzed with the Zeiss LSM 5 Image Browser Program, 2.80.1113 (Germany). Results. A statistically significant decrease in the total number of cells (p < 0.05) and the synaptophysin cells+ (p<0.01) in the neocortex (layer IV) of the patients with DRTLE when compared with the control tissue was found. No significant differences were found in the apoptotic markers bcl-2, p53, caspase 3 and 8 for any of the neocortex layers while there was a statistically significant increase in the number of TUNEL cells+ (p<0.05) and annexin V+ (p<0.05) in the neocortical layer IV of the patients. Conclusions. This group of evidence speaks in favor of the existence of an effect on the neuronal number in the neocortex layer IV that may be associated with noncaspase dependent apoptotic death process, without being able to rule out death by necrosis. Key words: Drug resistant temporal lobe epilepsy. Apoptosis. Necrosis. Neuronal loss. Neurología 2008;23(9):555-565.

  9. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury.

    PubMed

    Sarkar, Chinmoy; Zhao, Zaorui; Aungst, Stephanie; Sabirzhanov, Boris; Faden, Alan I; Lipinski, Marta M

    2014-01-01

    Dysregulation of autophagy contributes to neuronal cell death in several neurodegenerative and lysosomal storage diseases. Markers of autophagy are also increased after traumatic brain injury (TBI), but its mechanisms and function are not known. Following controlled cortical impact (CCI) brain injury in GFP-Lc3 (green fluorescent protein-LC3) transgenic mice, we observed accumulation of autophagosomes in ipsilateral cortex and hippocampus between 1 and 7 d. This accumulation was not due to increased initiation of autophagy but rather to a decrease in clearance of autophagosomes, as reflected by accumulation of the autophagic substrate SQSTM1/p62 (sequestosome 1). This was confirmed by ex vivo studies, which demonstrated impaired autophagic flux in brain slices from injured as compared to control animals. Increased SQSTM1 peaked at d 1-3 but resolved by d 7, suggesting that the defect in autophagy flux is temporary. The early impairment of autophagy is at least in part caused by lysosomal dysfunction, as evidenced by lower protein levels and enzymatic activity of CTSD (cathepsin D). Furthermore, immediately after injury both autophagosomes and SQSTM1 accumulated predominantly in neurons. This was accompanied by appearance of SQSTM1 and ubiquitin-positive puncta in the affected cells, suggesting that, similar to the situation observed in neurodegenerative diseases, impaired autophagy may contribute to neuronal injury. Consistently, GFP-LC3 and SQSTM1 colocalized with markers of both caspase-dependent and caspase-independent cell death in neuronal cells proximal to the injury site. Taken together, our data indicated for the first time that autophagic clearance is impaired early after TBI due to lysosomal dysfunction, and correlates with neuronal cell death.

  10. Effect of acupuncture on 6-hydroxydopamine-induced nigrostratal dopaminergic neuronal cell death in rats.

    PubMed

    Kim, Yeung-Kee; Lim, Hyung-Ho; Song, Yun-Kyung; Lee, Hee-Hyuk; Lim, Sabina; Han, Seung-Moo; Kim, Chang-Ju

    In this study, we investigated the effect of acupuncture at the Zusanli acupoint (ST36) on the nigrostriatal dopaminergic neuronal cell death in the rats with Parkinson's disease. Two weeks after unilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum, an apomorphine-induced rotational behavior test showed significant rotational asymmetry in the rats with Parkinson's disease. Immunostaining for tyrosine hydroxylase demonstrated a dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. Acupuncture at the ST36 for 14 days significantly inhibited rotational asymmetry in the rats with Parkinson's disease, and also protected against 6-OHDA-induced nigrostriatal dopaminergic neuronal loss. These effects of acupuncture were not observed for the non-acupoint (hip) acupuncture. The present study shows that acupuncture at the ST36 acupoint can be used as a useful strategy for the treatment of Parkinson's disease.

  11. Protective effects of N-methyl-D-aspartate receptor antagonism on VX-induced neuronal cell death in cultured rat cortical neurons.

    PubMed

    Wang, Yushan; Weiss, M Tracy; Yin, Junfei; Tenn, Catherine C; Nelson, Peggy D; Mikler, John R

    2008-01-01

    Exposure of the central nervous system to organophosphorus (OP) nerve agents induces seizures and neuronal cell death. Here we report that the OP nerve agent, VX, induces apoptotic-like cell death in cultured rat cortical neurons. The VX effects on neurons were concentration-dependent, with an IC(50) of approximately 30 microM. Blockade of N-methyl-D-aspartate receptors (NMDAR) with 50 microM. D-2-amino-5-phosphonovalerate (APV) diminished 30 microM VX-induced total cell death, as assessed by alamarBlue assay and Hoechst staining. In contrast, neither antagonists of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) nor metabotropic glutamate receptors (mGluRs) had any effect on VX-induced neurotoxicity. VX-induced neuronal cell death could not be solely attributed to acetylcholinesterase (AChE) inhibition, since neither the reversible pharmacological cholinesterase inhibitor, physostigmine, nor the muscarinic receptor antagonist, atropine, affected VX-induced cell death. Importantly, APV was found to be therapeutically effective against VX-induced cell death up to 2 h post VX exposure. These results suggest that NMDARs, but not AMPARs or mGluRs, play important roles in VX-induced cell death in cultured rat cortical neurons. Based on their therapeutic effects, NMDAR antagonists may be beneficial in the treatment of VX-induced neurotoxicities.

  12. Neuroprotective effect of Arthrospira (Spirulina) platensis against kainic acid-neuronal death.

    PubMed

    Pérez-Juárez, Angélica; Chamorro, Germán; Alva-Sánchez, Claudia; Paniagua-Castro, Norma; Pacheco-Rosado, Jorge

    2016-08-01

    Context Arthrospira (Spirulina) platensis (SP) is a cyanobacterium which has attracted attention because of its nutritional value and pharmacological properties. It was previously reported that SP reduces oxidative stress in the hippocampus and protects against damaging neurobehavioural effects of systemic kainic acid (KA). It is widely known that the systemic administration of KA induces neuronal damage, specifically in the CA3 hippocampal region. Objective The present study determines if the SP sub-chronic treatment has neuroprotective properties against KA. Materials and methods Male SW mice were treated with SP during 24 d, at doses of 0, 200, and 800 mg/kg, once daily, and with KA (35 mg/kg, ip) as a single dose on day 14. After the treatment, a histological analysis was performed and the number of atrophic neuronal cells in CA3 hippocampal region was quantified. Results Pretreatment with SP does not protect against seizures induced by KA. However, mortality in the SP 200 and the SP 800 groups was of 20%, while for the KA group, it was of 60%. A single KA ip administration produced a considerable neuronal damage, whereas both doses of SP sub-chronic treatment reduced the number of atrophic neurons in CA3 hippocampal region with respect to the KA group. Discussion The SP neurobehaviour improvement after KA systemic administration correlates with the capacity of SP to reduce KA-neuronal death in CA3 hippocampal cells. This neuroprotection may be related to the antioxidant properties of SP. Conclusion SP reduces KA-neuronal death in CA3 hippocampal cells.

  13. Increased neuronal death and disturbed axonal growth in the Polμ-deficient mouse embryonic retina

    PubMed Central

    Baleriola, Jimena; Álvarez-Lindo, Noemí; de la Villa, Pedro; Bernad, Antonio; Blanco, Luis; Suárez, Teresa; de la Rosa, Enrique J.

    2016-01-01

    Programmed cell death occurs naturally at different stages of neural development, including neurogenesis. The functional role of this early phase of neural cell death, which affects recently differentiated neurons among other cell types, remains undefined. Some mouse models defective in DNA double-strand break (DSB) repair present massive cell death during neural development, occasionally provoking embryonic lethality, while other organs and tissues remain unaffected. This suggests that DSBs occur frequently and selectively in the developing nervous system. We analyzed the embryonic retina of a mouse model deficient in the error-prone DNA polymerase μ (Polμ), a key component of the non-homologous end-joining (NHEJ) repair system. DNA DSBs were increased in the mutant mouse at embryonic day 13.5 (E13.5), as well as the incidence of cell death that affected young neurons, including retinal ganglion cells (RGCs). Polμ−/− mice also showed disturbed RGC axonal growth and navigation, and altered distribution of the axonal guidance molecules L1-CAM and Bravo (also known as Nr-CAM). These findings demonstrate that Polμ is necessary for proper retinal development, and support that the generation of DSBs and their repair via the NHEJ pathway are genuine processes involved in neural development. PMID:27172884

  14. Ginkgolic acids induce neuronal death and activate protein phosphatase type-2C.

    PubMed

    Ahlemeyer, B; Selke, D; Schaper, C; Klumpp, S; Krieglstein, J

    2001-10-26

    The standardized extract from Ginkgo biloba (EGb 761) is used for the treatment of dementia. Because of allergenic and genotoxic effects, ginkgolic acids are restricted in EGb 761 to 5 ppm. The question arises whether ginkgolic acids also have neurotoxic effects. In the present study, ginkgolic acids caused death of cultured chick embryonic neurons in a concentration-dependent manner, in the presence and in the absence of serum. Ginkgolic acids-induced death showed features of apoptosis as we observed chromatin condensation, shrinkage of the nucleus and reduction of the damage by the protein synthesis inhibitor cycloheximide, demonstrating an active type of cell death. However, DNA fragmentation detected by the terminal-transferase-mediated ddUTP-digoxigenin nick-end labeling (TUNEL) assay and caspase-3 activation, which are also considered as hallmarks of apoptosis, were not seen after treatment with 150 microM ginkgolic acids in serum-free medium, a dose which increased the percentage of neurons with chromatin condensation and shrunken nuclei to 88% compared with 25% in serum-deprived, vehicle-treated controls. This suggests that ginkgolic acid-induced death showed signs of apoptosis as well as of necrosis. Ginkgolic acids specifically increased the activity of protein phosphatase type-2C, whereas other protein phosphatases such as protein phosphatases 1A, 2A and 2B, tyrosine phosphatase, and unspecific acid- and alkaline phosphatases were inhibited or remained unchanged, suggesting protein phosphatase 2C to play a role in the neurotoxic effect mediated by ginkgolic acids.

  15. Involvement of the cystic fibrosis transmembrane conductance regulator in the acidosis-induced efflux of ATP from rat skeletal muscle.

    PubMed

    Tu, Jie; Le, Gengyun; Ballard, Heather J

    2010-11-15

    The present study was performed to investigate the effect of acidosis on the efflux of ATP from skeletal muscle. Infusion of lactic acid to the perfused hindlimb muscles of anaesthetised rats produced dose-dependent decreases in pH and increases in the interstitial ATP of extensor digitorum longus (EDL) muscle: 10 mM lactic acid reduced the venous pH from 7.22 ± 0.04 to 6.97 ± 0.02 and increased interstitial ATP from 38 ± 8 to 67 ± 11 nM. The increase in interstitial ATP was well-correlated with the decrease in pH (r(2) = 0.93; P < 0.05). Blockade of cellular uptake of lactic acid using α-cyano-hydroxycinnamic acid abolished the lactic acid-induced ATP release, whilst infusion of sodium lactate failed to depress pH or increase interstitial ATP, suggesting that intracellular pH depression, rather than lactate, stimulated the ATP efflux. Incubation of cultured skeletal myoblasts with 10 mM lactic acid significantly increased the accumulation of ATP in the bathing medium from 0.46 ± 0.06 to 0.76 ± 0.08 μM, confirming the skeletal muscle cells as the source of the released ATP. Acidosis-induced ATP efflux from the perfused muscle was abolished by CFTR(inh)-172, a specific inhibitor of the cystic fibrosis transmembrane conductance regulator (CFTR), or glibenclamide, an inhibitor of both K(ATP) channels and CFTR, but it was not affected by atractyloside, an inhibitor of the mitochondrial ATP transporter. Silencing of the CFTR gene using an siRNA abolished the acidosis-induced increase in ATP release from cultured myoblasts. CFTR expression on skeletal muscle cells was confirmed using immunostaining in the intact muscle and Western blotting in the cultured cells. These data suggest that depression of the intracellular pH of skeletal muscle cells stimulates ATP efflux, and that CFTR plays an important role in the release mechanism.

  16. Retrograde labeling of regenerated electromotor neurons with HRP in a teleost fish, Sternarchus albifrons: relation to cell death.

    PubMed

    Anderson, M J; Fong, H L; Waxman, S G

    1985-01-01

    Back-labeling of regenerated electromotor neurons in the teleost Sternarchus albifrons was performed to test the hypothesis that, in regenerated spinal cord, incorrectly located electromotor neurons are eliminated because their axons do not reach the correct target area (electric organ). In each cross section examined, all of the regenerated electromotor neurons ipsilateral to the implantation site were labeled with horseradish peroxidase, including those ectopic cells located at the edge of the cord, which are later eliminated by selective cell death. Retrograde labeling of these ectopic neurons demonstrates that their axons do extend into the correct target area (the regenerated electric organ). Thus total misdirection of the axons cannot be the cause of their subsequent cell death. We conclude that selective neuronal death in this system does not reflect the absence of axonal projection to the correct target area.

  17. Antihelminthic Benzimidazoles Are Novel HIF Activators That Prevent Oxidative Neuronal Death via Binding to Tubulin

    PubMed Central

    Aleyasin, Hossein; Karuppagounder, Saravanan S.; Kumar, Amit; Sleiman, Sama; Basso, Manuela; Ma, Thong; Siddiq, Ambreena; Chinta, Shankar J.; Brochier, Camille; Langley, Brett; Haskew-Layton, Renee; Bane, Susan L.; Riggins, Gregory J.; Gazaryan, Irina; Starkov, Anatoly A.; Andersen, Julie K.

    2015-01-01

    Abstract Aims: Pharmacological activation of the adaptive response to hypoxia is a therapeutic strategy of growing interest for neurological conditions, including stroke, Huntington's disease, and Parkinson's disease. We screened a drug library with known safety in humans using a hippocampal neuroblast line expressing a reporter of hypoxia-inducible factor (HIF)-dependent transcription. Results: Our screen identified more than 40 compounds with the ability to induce hypoxia response element-driven luciferase activity as well or better than deferoxamine, a canonical activator of hypoxic adaptation. Among the chemical entities identified, the antihelminthic benzimidazoles represented one pharmacophore that appeared multiple times in our screen. Secondary assays confirmed that antihelminthics stabilized the transcriptional activator HIF-1α and induced expression of a known HIF target gene, p21cip1/waf1, in post-mitotic cortical neurons. The on-target effect of these agents in stimulating hypoxic signaling was binding to free tubulin. Moreover, antihelminthic benzimidazoles also abrogated oxidative stress-induced death in vitro, and this on-target effect also involves binding to free tubulin. Innovation and Conclusions: These studies demonstrate that tubulin-binding drugs can activate a component of the hypoxic adaptive response, specifically the stabilization of HIF-1α and its downstream targets. Tubulin-binding drugs, including antihelminthic benzimidazoles, also abrogate oxidative neuronal death in primary neurons. Given their safety in humans and known ability to penetrate into the central nervous system, antihelminthic benzimidazoles may be considered viable candidates for treating diseases associated with oxidative neuronal death, including stroke. Antioxid. Redox Signal. 22, 121–134. PMID:24766300

  18. Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death

    PubMed Central

    Vereczki, Viktoria; Martin, Erica; Rosenthal, Robert E; Hof, Patrick R; Hoffman, Gloria E; Fiskum, Gary

    2008-01-01

    Resuscitation and prolonged ventilation using 100% oxygen after cardiac arrest is standard clinical practice despite evidence from animal models indicating that neurologic outcome is improved using normoxic compared with hyperoxic resuscitation. This study tested the hypothesis that normoxic ventilation during the first hour after cardiac arrest in dogs protects against prelethal oxidative stress to proteins, loss of the critical metabolic enzyme pyruvate dehydrogenase complex (PDHC), and minimizes subsequent neuronal death in the hippocampus. Anesthetized beagles underwent 10 mins ventricular fibrillation cardiac arrest, followed by defibrillation and ventilation with either 21% or 100% O2. At 1 h after resuscitation, the ventilator was adjusted to maintain normal blood gas levels in both groups. Brains were perfusion-fixed at 2 h reperfusion and used for immunohistochemical measurements of hippocampal nitrotyrosine, a product of protein oxidation, and the E1α subunit of PDHC. In hyperoxic dogs, PDHC immunostaining diminished by approximately 90% compared with sham-operated dogs, while staining in normoxic animals was not significantly different from nonischemic dogs. Protein nitration in the hippocampal neurons of hyperoxic animals was 2–3 times greater than either sham-operated or normoxic resuscitated animals at 2 h reperfusion. Stereologic quantification of neuronal death at 24 h reperfusion showed a 40% reduction using normoxic compared with hyperoxic resuscitation. These results indicate that postischemic hyperoxic ventilation promotes oxidative stress that exacerbates prelethal loss of pyruvate dehydrogenase and delayed hippocampal neuronal cell death. Moreover, these findings indicate the need for clinical trials comparing the effects of different ventilatory oxygen levels on neurologic outcome after cardiac arrest. PMID:16251887

  19. Oxidation of Survival Factor MEF2D in Neuronal Death and Parkinson's Disease

    PubMed Central

    Gao, Li; She, Hua; Li, Wenming; Zeng, Jin; Zhu, Jinqiu; Jones, Dean P.

    2014-01-01

    Abstract Aims: Dysfunction of myocyte enhancer factor 2D (MEF2D), a key survival protein and transcription factor, underlies the pathogenic loss of dopaminergic (DA) neurons in Parkinson's disease (PD). Both genetic factors and neurotoxins associated with PD impair MEF2D function in vitro and in animal models of PD. We investigated whether distinct stress conditions target MEF2D via converging mechanisms. Results: We showed that exposure of a DA neuronal cell line to 6-hyroxydopamine (6-OHDA), which causes PD in animals models, led to direct oxidative modifications of MEF2D. Oxidized MEF2D bound to heat-shock cognate protein 70 kDa, the key regulator for chaperone-mediated autophagy (CMA), at a higher affinity. Oxidative stress also increased the level of lysosomal-associated membrane protein 2A (LAMP2A), the rate-limiting receptor for CMA substrate flux, and stimulated CMA activity. These changes resulted in accelerated degradation of MEF2D. Importantly, 6-OHDA induced MEF2D oxidation and increased LAMP2A in the substantia nigra pars compacta region of the mouse brain. Consistently, the levels of oxidized MEF2D were much higher in postmortem PD brains compared with the controls. Functionally, reducing the levels of either MEF2D or LAMP2A exacerbated 6-OHDA-induced death of the DA neuronal cell line. Expression of an MEF2D mutant that is resistant to oxidative modification protected cells from 6-OHDA-induced death. Innovation: This study showed that oxidization of survival protein MEF2D is one of the pathogenic mechanisms involved in oxidative stress-induced DA neuronal death. Conclusion: Oxidation of survival factor MEF2D inhibits its function, underlies oxidative stress-induced neurotoxicity, and may be a part of the PD pathogenic process. Antioxid. Redox Signal. 20, 2936–2948. PMID:24219011

  20. Histone Hyperacetylation Up-regulates Protein Kinase Cδ in Dopaminergic Neurons to Induce Cell Death

    PubMed Central

    Jin, Huajun; Kanthasamy, Arthi; Harischandra, Dilshan S.; Kondru, Naveen; Ghosh, Anamitra; Panicker, Nikhil; Anantharam, Vellareddy; Rana, Ajay; Kanthasamy, Anumantha G.

    2014-01-01

    The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease. PMID:25342743

  1. Decrease in doublecortin expression without neuronal cell death in rat retrosplenial cortex after stress exposure.

    PubMed

    Kutsuna, Nobuo; Suma, Takeshi; Takada, Yoshiyuki; Yamashita, Akiko; Oshima, Hideki; Sakatani, Kaoru; Yamamoto, Takamitsu; Katayama, Yoichi

    2012-03-07

    Exposure to acute stress by forced swim impairs spatial learning and memory in rats. The retrosplenial cortex plays an important role in spatial learning and memory. A cell population that expresses immature neuronal markers, including doublecortin (DCX), plays a key role in plasticity of the adult brain through formation of new neurons. Here, we aimed to determine whether rats exposed to acute stress showed changes in DCX expression in retrosplenial cortex cells. Twelve male Sprague-Dawley rats were used. Six were subjected to acute stress by forced swim (group S), and the remaining six served as controls (group C). Immunohistochemical staining was performed for DCX, neuron-specific nuclear protein, parvalbumin, calbindin, calretinin, and somatostatin. Newly generated cells were immunohistochemically detected by daily administration of 5-bromo-2'-deoxyuridine for 1 week. Fluoro-Jade B staining was performed to detect cell death. Group S showed lower number of DCX-expressing cells than group C (P<0.001). The proportion of DCX-expressing cells showing neuron-specific nuclear protein co-localization (24% in group S; 27% in group C) or parvalbumin co-localization (65% in group S; 61% in group C) remained unchanged after acute stress exposure. Neither 5-bromo-2'-deoxyuridine-positive nor Fluoro-Jade B-positive cells were found in the retrosplenial cortex of groups S and C. DCX-expressing cells in the retrosplenial cortex decreases markedly without cell death after acute stress exposure. Neuronal differentiation of these cells toward gamma aminobutyric acidergic interneurons appears to be unaltered. The decrease in DCX expression may reduce plasticity potential within the retrosplenial cortex and attenuate spatial learning and memory function.

  2. Cabergoline, Dopamine D2 Receptor Agonist, Prevents Neuronal Cell Death under Oxidative Stress via Reducing Excitotoxicity

    PubMed Central

    Odaka, Haruki; Numakawa, Tadahiro; Adachi, Naoki; Ooshima, Yoshiko; Nakajima, Shingo; Katanuma, Yusuke; Inoue, Takafumi; Kunugi, Hiroshi

    2014-01-01

    Several lines of evidence demonstrate that oxidative stress is involved in the pathogenesis of neurodegenerative diseases, including Parkinson's disease. Potent antioxidants may therefore be effective in the treatment of such diseases. Cabergoline, a dopamine D2 receptor agonist and antiparkinson drug, has been studied using several cell types including mesencephalic neurons, and is recognized as a potent radical scavenger. Here, we examined whether cabergoline exerts neuroprotective effects against oxidative stress through a receptor-mediated mechanism in cultured cortical neurons. We found that neuronal death induced by H2O2 exposure was inhibited by pretreatment with cabergoline, while this protective effect was eliminated in the presence of a dopamine D2 receptor inhibitor, spiperone. Activation of ERK1/2 by H2O2 was suppressed by cabergoline, and an ERK signaling pathway inhibitor, U0126, similarly protected cortical neurons from cell death. This suggested the ERK signaling pathway has a critical role in cabergoline-mediated neuroprotection. Furthermore, increased extracellular levels of glutamate induced by H2O2, which might contribute to ERK activation, were reduced by cabergoline, while inhibitors for NMDA receptor or L-type Ca2+ channel demonstrated a survival effect against H2O2. Interestingly, we found that cabergoline increased expression levels of glutamate transporters such as EAAC1. Taken together, these results suggest that cabergoline has a protective effect on cortical neurons via a receptor-mediated mechanism including repression of ERK1/2 activation and extracellular glutamate accumulation induced by H2O2. PMID:24914776

  3. Leukotriene receptor antagonists, LY293111 and ONO-1078, protect neurons from the sPLA2-IB-induced neuronal cell death independently of blocking their receptors.

    PubMed

    Yagami, Tatsurou; Yamamoto, Yasuhiro; Kohma, Hiromi

    2013-09-01

    In the ischemic brain, leukotrienes (LTs) are increased and their receptor antagonists protect neurons. However, it has not yet been sufficiently clarified how antagonists for LT receptors exhibit neuroprotective effects. In the present study, we evaluated protective effects of receptor antagonists for LTB4 (LY293111) and cysteinyl LTs (ONO-1078) in the primary culture of rat cortical neurons. The group IB secretory phospholipase A2 (sPLA2-IB)-induced neuronal cell death had been established as the in vitro model for cerebral ischemia. sPLA2-IB triggered the influx of Ca(2+) into neurons via L-type voltage-dependent calcium channel (L-VDCC). Subsequently, the enzyme produced eicosanoids including LTB4 before neuronal cell death. Neither administration of LTB4 nor cysteinyl LTs such as LTC4, LTD4 and LTE4 killed neurons. However, both LY293111 and ONO-1078 significantly prevented neurons from the neurotoxicity of sPLA2-IB, suggesting that the two LT receptor blockers protected neurons through alternative pathways beside LT receptors. An L-VDCC blocker does not only inhibit the influx of Ca(2+) into neurons but also rescues neurons from the sPLA2-IB-induced neuronal cell death. The two LT receptor antagonists also blocked the sPLA2-IB-induced Ca(2+) influx significantly. Thus, LTs exhibited no neurotoxicity, but their receptor antagonists protected neurons directly in the in vitro ischemic model. Furthermore, the suppression of L-VDCC appeared to be involved in the neuroprotective effects of LY293111 and ONO-1078 independent of blocking their receptors.

  4. Oxidative response of neutrophils to platelet-activating factor is altered during acute ruminal acidosis induced by oligofructose in heifers

    PubMed Central

    Concha, Claudia; Carretta, María Daniella; Alarcón, Pablo; Conejeros, Ivan; Gallardo, Diego; Hidalgo, Alejandra Isabel; Tadich, Nestor; Cáceres, Dante Daniel; Hidalgo, María Angélica

    2014-01-01

    Reactive oxygen species (ROS) production is one of the main mechanisms used to kill microbes during innate immune response. D-lactic acid, which is augmented during acute ruminal acidosis, reduces platelet activating factor (PAF)-induced ROS production and L-selectin shedding in bovine neutrophils in vitro. This study was conducted to investigate whether acute ruminal acidosis induced by acute oligofructose overload in heifers interferes with ROS production and L-selectin shedding in blood neutrophils. Blood neutrophils and plasma were obtained by jugular venipuncture, while ruminal samples were collected using rumenocentesis. Lactic acid from plasma and ruminal samples was measured by HPLC. PAF-induced ROS production and L-selectin shedding were measured in vitro in bovine neutrophils by a luminol chemiluminescence assay and flow cytometry, respectively. A significant increase in ruminal and plasma lactic acid was recorded in these animals. Specifically, a decrease in PAF-induced ROS production was observed 8 h after oligofructose overload, and this was sustained until 48 h post oligofructose overload. A reduction in PAF-induced L-selectin shedding was observed at 16 h and 32 h post oligofructose overload. Overall, the results indicated that neutrophil PAF responses were altered in heifers with ruminal acidosis, suggesting a potential dysfunction of the innate immune response. PMID:25013355

  5. Oxidative response of neutrophils to platelet-activating factor is altered during acute ruminal acidosis induced by oligofructose in heifers.

    PubMed

    Concha, Claudia; Carretta, María Daniella; Alarcón, Pablo; Conejeros, Ivan; Gallardo, Diego; Hidalgo, Alejandra Isabel; Tadich, Nestor; Cáceres, Dante Daniel; Hidalgo, María Angélica; Burgos, Rafael Agustín

    2014-01-01

    Reactive oxygen species (ROS) production is one of the main mechanisms used to kill microbes during innate immune response. D-lactic acid, which is augmented during acute ruminal acidosis, reduces platelet activating factor (PAF)-induced ROS production and L-selectin shedding in bovine neutrophils in vitro. This study was conducted to investigate whether acute ruminal acidosis induced by acute oligofructose overload in heifers interferes with ROS production and L-selectin shedding in blood neutrophils. Blood neutrophils and plasma were obtained by jugular venipuncture, while ruminal samples were collected using rumenocentesis. Lactic acid from plasma and ruminal samples was measured by HPLC. PAF-induced ROS production and L-selectin shedding were measured in vitro in bovine neutrophils by a luminol chemiluminescence assay and flow cytometry, respectively. A significant increase in ruminal and plasma lactic acid was recorded in these animals. Specifically, a decrease in PAF-induced ROS production was observed 8 h after oligofructose overload, and this was sustained until 48 h post oligofructose overload. A reduction in PAF-induced L-selectin shedding was observed at 16 h and 32 h post oligofructose overload. Overall, the results indicated that neutrophil PAF responses were altered in heifers with ruminal acidosis, suggesting a potential dysfunction of the innate immune response.

  6. Cyclooxygenase-2 contributes to VX-induced cell death in cultured cortical neurons.

    PubMed

    Tenn, Catherine C; Weiss, M Tracy; Beaup, Claire; Peinnequin, Andre; Wang, Yushan; Dorandeu, Frederic

    2012-04-05

    The link between cell death and increased cyclooxygenases-2 (COX-2) activity has not been clearly established. In this study, we examined whether COX-2 activation contributed to the mechanism of neurotoxicity produced by an organophosphorous nerve agent in cultured rat cortical neurons. Exposure of neuronal cells to the nerve agent, VX resulted in an increase in COX enzyme activity in the culture media. A concentration dependent increase in the activity levels of COX-2 enzyme was observed while there was little to no effect on COX-1. In addition, COX-2 mRNA and protein levels increased several hours post-VX exposure. Pre-treatment of the cortical cells with the COX-2 selective inhibitor, NS 398 resulted in a decrease in both the enzyme activity and prostaglandin (PGE(2) and PGF(2α)) release, as well as in a reduction in cell death. These findings indicate that the increase in COX-2 activity may contribute to the mechanism of VX-induced neurotoxicity in cultured rat cortical neuron.

  7. Acupuncture suppresses kainic acid-induced neuronal death and inflammatory events in mouse hippocampus.

    PubMed

    Kim, Seung-Tae; Doo, Ah-Reum; Kim, Seung-Nam; Kim, Song-Yi; Kim, Yoon Young; Kim, Jang-Hyun; Lee, Hyejung; Yin, Chang Shik; Park, Hi-Joon

    2012-09-01

    The administration of kainic acid (KA) causes seizures and produces neurodegeneration in hippocampal CA3 pyramidal cells. The present study investigated a possible role of acupuncture in reducing hippocampal cell death and inflammatory events, using a mouse model of kainic acid-induced epilepsy. Male C57BL/6 mice received acupuncture treatments at acupoint HT8 or in the tail area bilaterally once a day for 2 days and again immediately after an intraperitoneal injection of KA (30 mg/kg). HT8 is located on the palmar surface of the forelimbs, between the fourth and fifth metacarpal bones. Twenty-four hours after the KA injection, neuronal cell survival, the activations of microglia and astrocytes, and mRNA expression of two proinflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), were measured in the hippocampus. Acupuncture stimulation at HT8, but not in the tail area, significantly reduced the KA-induced seizure, neuron death, microglial and astrocyte activations, and IL-1β mRNA expression in the hippocampus. The acupuncture stimulation also decreased the mRNA expression of TNF-α, but it was not significant. These results indicate that acupuncture at HT8 can inhibit hippocampal cell death and suppress KA-induced inflammatory events, suggesting a possible role for acupuncture in the treatment of epilepsy.

  8. Ceramide and neurodegeneration: Susceptibility of neurons and oligodendrocytes to cell damage and death

    PubMed Central

    Jana, Arundhati; Hogan, Edward L.; Pahan, Kalipada

    2009-01-01

    Neurodegenerative disorders are marked by extensive neuronal apoptosis and gliosis. Although several apoptosis-inducing agents have been described, understanding of the regulatory mechanisms underlying modes of cell death is incomplete. A major breakthrough in delineation of the mechanism of cell death came from elucidation of the sphingomyelin (SM)-ceramide pathway that has received worldwide attention in recent years. The SM pathway induces apoptosis, differentiation, proliferation, and growth arrest depending upon cell and receptor types, and on downstream targets. Sphingomyelin, a plasma membrane constituent, is abundant in mammalian nervous system, and ceramide, its primary catabolic product released by activation of either neutral or acidic sphingomyelinase, serves as a potential lipid second messenger or mediator molecule modulating diverse cellular signaling pathways. Neutral sphingomyelinase (NSMase) is a key enzyme in the regulated activation of the SM cycle and is particularly sensitive to oxidative stress. In a context of increasing clarification of the mechanisms of neurodegeneration, we thought that it would be useful to review details of recent findings that we and others have made concerning different pro-apoptotic neurotoxins including proinflammatory cytokines, hypoxia-induced SM hydrolysis and ceramide production that induce cell death in human primary neurons and primary oligodendrocytes: redox sensitive events. What has and is emerging is a vista of therapeutically important ceramide regulation affecting a variety of different neurodegenerative and neuroinflammatory disorders. PMID:19147160

  9. Neuronal cell death in the arcuate nucleus of the medulla oblongata in stillbirth.

    PubMed

    Folkerth, Rebecca D; Zanoni, Sallie; Andiman, Sarah E; Billiards, Saraid S

    2008-02-01

    The hypothesis that unexplained stillbirth arises in a similar manner as the sudden infant death syndrome (SIDS) is based in part on shared neuropathologic features between the two entities, including hypoxic-ischemic lesions such as white matter and brainstem gliosis, as well as aplasia or hypoplasia of the arcuate nucleus on the ventral surface of the medulla. The arcuate nucleus is the putative homologue of the respiratory chemosensory region at the ventral medullary surface in animals that is involved in central chemosensitivity. To determine arcuate nucleus pathology in stillbirth, and its co-occurrence with evidence of hypoxia-ischemia, we reviewed brain specimens from the archives of our hospitals from 22 consecutive stillbirths from 22 to 41 gestational weeks. Explained causes of death (n=17) included nuchal cord, acute chorioamnionitis, placental abruption, and fetal glomerulosclerosis; 5 cases were unexplained. In 12 brains, we observed nuclear karyorrhexis and/or pyknosis with cytoplasmic hypereosinophilia in neurons in the arcuate nucleus in both explained (n=8) and unexplained (n=4) cases (54.5% of total cases). Three additional cases had arcuate aplasia (n=1) or hypoplasia (n=2) (13.6% of total cases); one of the latter cases also had neuronal necrosis in the hypoplastic arcuate. The degree of gliosis in the region of the arcuate nucleus was variable across all cases, without statistically significant differences between groups with and without arcuate nucleus necrosis. Other lesions in association with (n=14) and without (n=8) arcuate nucleus abnormalities were diffuse cerebral white matter gliosis, periventricular leukomalacia (PVL), and neuronal necrosis in the hippocampus, basal ganglia, thalamus, basis pontis, and brainstem tegmentum. In 16/20 (80.0%) cases (with or without histologic necrosis of the arcuate), immunostaining with caspase-3 demonstrated positive neurons. Our findings suggest that neuronal pathology in the arcuate nucleus may be

  10. Environmental enrichment increases doublecortin-associated new neurons and decreases neuronal death without modifying anxiety-like behavior in mice chronically exposed to toluene.

    PubMed

    Paez-Martinez, Nayeli; Flores-Serrano, Zoraida; Ortiz-Lopez, Leonardo; Ramirez-Rodriguez, Gerardo

    2013-11-01

    Toluene misuse is a health problem worldwide with broad effects at the level of the central nervous system; however, therapeutic alternatives for inhalant abusers are limited. Chronic use of volatile substances is associated with different neurological and cognitive alterations, being anxiety a psychiatric condition with high prevalence. At cellular level toluene reduces neurogenesis and induces neuronal death. On the other hand, environmental enrichment has demonstrated to produce positive effects at behavioral and neuronal levels. Thus, the aim of the present work was to model alterations occasioned after repeated exposure to toluene (anxiety, reduction in neurogenesis - measured as doublecortin-labeled cells - and neuronal death). Subsequently, the influence of environmental enrichment on these effects was evaluated. Adolescent mice were exposed to toluene vapors from 1 to 4 weeks. Effects on anxiety were evaluated with the burying behavior test, whereas neurogenesis and hippocampal cell death were analyzed with immunohistochemistry, using anti-doublecortin or anti-active-Caspase-3 antibodies, respectively. Results showed that chronic toluene exposure increased anxiety in the burying behavior test; additionally, toluene decreased neurogenesis and enhanced neuronal death. Environmental enrichment (EE) enhanced the anxiety like response in air-exposed mice but did not modify the toluene anxiety response. Additionally, EE enhanced neurogenesis in toluene-pretreated animals at the same level to that found in animals unexposed to toluene and decreased neuronal death. Overall, the present study showed that environmental enrichment positively impacts some effects produced by repeated exposure to toluene.

  11. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model

    PubMed Central

    Achour, Imène; Arel-Dubeau, Anne-Marie; Renaud, Justine; Legrand, Manon; Attard, Everaldo; Germain, Marc; Martinoli, Maria-Grazia

    2016-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model. PMID:27517912

  12. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model.

    PubMed

    Achour, Imène; Arel-Dubeau, Anne-Marie; Renaud, Justine; Legrand, Manon; Attard, Everaldo; Germain, Marc; Martinoli, Maria-Grazia

    2016-08-09

    Parkinson's disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE's ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model.

  13. Exogenous α-Synuclein Fibrils Induce Lewy Body Pathology Leading to Synaptic Dysfunction and Neuron Death

    PubMed Central

    Volpicelli-Daley, Laura A.; Luk, Kelvin C.; Patel, Tapan P.; Tanik, Selcuk A.; Riddle, Dawn M.; Stieber, Anna; Meany, David F.; Trojanowski, John Q.; Lee, Virginia M.-Y.

    2011-01-01

    Summary Inclusions comprised of α-synuclein (α-syn), i.e. Lewy bodies (LBs) and Lewy neurites (LNs), define synucleinopathies including Parkinson’s Disease (PD) and dementia with Lewy Bodies (DLB). Here, we demonstrate that pre-formed fibrils generated from full length and truncated recombinant α-syn enter primary neurons, likely by adsorptive-mediated endocytosis and promote recruitment of soluble endogenous α-syn into insoluble PD-like LBs and LNs. Remarkably, endogenous α-syn was sufficient for formation of these aggregates, and overexpression of wild type or mutant α-syn was not required. LN-like pathology first developed in axons and propagated to form LB-like inclusions in perikarya. Accumulation of pathologic α-syn led to selective decreases in synaptic proteins, progressive impairments in neuronal excitability and connectivity, and eventually, neuron death. Thus, our data contribute important insights into the etiology and pathogenesis of PD-like α-syn inclusions, their impact on neuronal functions, and provide a model for discovering therapeutics targeting pathologic α-syn- mediated neurodegeneration. PMID:21982369

  14. Bowel movement frequency in late-life and substantia nigra neuron density at death.

    PubMed

    Petrovitch, Helen; Abbott, Robert D; Ross, G Webster; Nelson, James; Masaki, Kamal H; Tanner, Caroline M; Launer, Lenore J; White, Lon R

    2009-02-15

    Constipation is associated with future risk of Parkinson's disease (PD) and with incidental Lewy bodies (LB) in the locus ceruleus or substantia nigra (SN). Our purpose is to examine the independent association between bowel movement frequency in late-life and postmortem SN neuron density. Bowel movement frequency was assessed in the Honolulu-Asia Aging Study from 1991 to 1993 in 414 men aged 71 to 93 years with later postmortem evaluations. Brains were examined for LB in the SN and locus ceruleus and neurons were counted in four quadrants from a transverse section of SN. In nonsmokers, neuron densities (counts/mm(2)) for men with >1, 1, and <1 bowel movement daily were 18.5, 18.8, 10.1 (P < 0.001) for dorsomedial; 15.3, 16.4, 10.2 (P < 0.03) for ventromedial; and 18.6, 18.3, 10.9 (P = 0.011) for ventrolateral quadrants. Relationships were not significant in the dorsolateral quadrant or in any quadrant among smokers. After adjustment for age, time to death, coffee drinking, tricep skinfold thickness, excessive daytime sleepiness, cognitive function, PD, and incidental LB, density ratios in nonsmokers with 1 or more bowel movement(s) daily were significantly higher compared to those with <1 daily. Constipation is associated with low SN neuron density independent of the presence of LB.

  15. Differential roles of phospholipases A2 in neuronal death and neurogenesis: implications for Alzheimer disease.

    PubMed

    Schaeffer, Evelin L; da Silva, Emanuelle R; Novaes, Barbara de A; Skaf, Heni D; Gattaz, Wagner F

    2010-12-01

    The involvement of phospholipase A(2) (PLA(2)) in Alzheimer disease (AD) was first investigated nearly 15 years ago. Over the years, several PLA(2) isoforms have been detected in brain tissue: calcium-dependent secreted PLA(2) or sPLA(2) (IIA, IIC, IIE, V, X, and XII), calcium-dependent cytosolic PLA(2) or cPLA(2) (IVA, IVB, and IVC), and calcium-independent PLA(2) or iPLA(2) (VIA and VIB). Additionally, numerous in vivo and in vitro studies have suggested the role of different brain PLA(2) in both physiological and pathological events. This review aimed to summarize the findings in the literature relating the different brain PLA(2) isoforms with alterations found in AD, such as neuronal cell death and impaired neurogenesis process. The review showed that sPLA(2)-IIA, sPLA(2)-V and cPLA(2)-IVA are involved in neuronal death, whereas sPLA(2)-III and sPLA(2)-X are related to the process of neurogenesis, and that the cPLA(2) and iPLA(2) groups can be involved in both neuronal death and neurogenesis. In AD, there are reports of reduced activity of the cPLA(2) and iPLA(2) groups and increased expression of sPLA(2)-IIA and cPLA(2)-IVA. The findings suggest that the inhibition of cPLA(2) and iPLA(2) isoforms (yet to be determined) might contribute to impaired neurogenesis, whereas stimulation of sPLA(2)-IIA and cPLA(2)-IVA might contribute to neurodegeneration in AD.

  16. Endoplasmic Reticulum Stress as a Mediator of Neurotoxin-Induced Dopamine Neuron Death

    DTIC Science & Technology

    2007-07-01

    are those of the author( s ) and should not be construed as an official Department of the Army position, policy or decision unless so designated by...Stress as a Mediator of Neurotoxin-Induced Dopamine Neuron Death 5b. GRANT NUMBER DAMD17-03-1-0492 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d...PROJECT NUMBER Robert E. Burke, M.D 5e. TASK NUMBER E-Mail: rb43@columbia.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND

  17. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice.

    PubMed

    Motoyama, N; Wang, F; Roth, K A; Sawa, H; Nakayama, K; Nakayama, K; Negishi, I; Senju, S; Zhang, Q; Fujii, S

    1995-03-10

    bcl-x is a member of the bcl-2 gene family, which may regulate programmed cell death. Mice were generated that lacked Bcl-x. The Bcl-x-deficient mice died around embryonic day 13. Extensive apoptotic cell death was evident in postmitotic immature neurons of the developing brain, spinal cord, and dorsal root ganglia. Hematopoietic cells in the liver were also apoptotic. Analyses of bcl-x double-knockout chimeric mice showed that the maturation of Bcl-x-deficient lymphocytes was diminished. The life-span of immature lymphocytes, but not mature lymphocytes, was shortened. Thus, Bcl-x functions to support the viability of immature cells during the development of the nervous and hematopoietic systems.

  18. Interleukin-1β secreted from betanodavirus-infected microglia caused the death of neurons in giant grouper brains.

    PubMed

    Chiang, Yu-Hui; Wu, Yu-Chi; Chi, Shau-Chi

    2017-05-01

    High interleukin (IL)-1β gene expression was observed in dead giant grouper brains after nervous necrosis virus (NNV) infection. To investigate the neuronal death caused by NNV infection, primary tissue culture of giant grouper brains (pGB) was performed. In NNV-infected pGB cells, the viral capsid protein was detected in both neurons and microglia; furthermore, microglial proliferation and neuronal death were observed. The culture supernatant (CS) of NNV-infected pGB cells contained IL-1β and tumor necrosis factor-α, which were mainly released from the microglia. A new batch of pGB cells was treated with CS, resulting in neuronal death, which could be prevented by blocking the IL-1β in the CS by using anti-IL-1β polyclonal antibodies. Moreover, pGB cells treated with recombinant IL-1β showed microglial proliferation and neuronal death. Thus, NNV infection may activate microglial proliferation and stimulate microglial secretion of IL-1β, which is a critical cytokine responsible for neuronal death in NNV-infected grouper brains.

  19. Valproic acid induces neuronal cell death through a novel calpain-dependent necroptosis pathway

    PubMed Central

    Bollino, Dominique; Balan, Irina; Aurelian, Laure

    2015-01-01

    A growing body of evidence indicates that valproic acid (VPA), a histone deacetylase (HDAC) inhibitor used to treat epilepsy and mood disorders, has HDAC-related and -unrelated neurotoxic activity, the mechanism of which is still poorly understood. We report that VPA induces neuronal cell death through an atypical calpain-dependent necroptosis pathway that initiates with downstream activation of c-Jun N-terminal kinase 1 (JNK1) and increased expression of receptor-interacting protein 1 (RIP-1) and is accompanied by cleavage and mitochondrial release/nuclear translocation of apoptosis-inducing-factor (AIF), mitochondrial release of Smac/DIABLO, and inhibition of the anti-apoptotic protein X-linked inhibitor of apoptosis (XIAP). Coinciding with AIF nuclear translocation, VPA induces phosphorylation of the necroptosis-associated histone H2A family member H2AX, which is known to contribute to lethal DNA degradation. These signals are inhibited in neuronal cells that express constitutively activated MEK/ERK and/or PI3-K/Akt survival pathways, allowing them to resist VPA-induced cell death. The data indicate that VPA has neurotoxic activity and identify a novel calpain-dependent necroptosis pathway that includes JNK1 activation and RIP-1 expression. PMID:25581256

  20. TRPV1 stimulation triggers apoptotic cell death of rat cortical neurons

    SciTech Connect

    Shirakawa, Hisashi; Yamaoka, Tomoko; Sanpei, Kazuaki; Sasaoka, Hirotoshi; Nakagawa, Takayuki; Kaneko, Shuji

    2008-12-26

    Transient receptor potential vanilloid 1 (TRPV1) functions as a polymodal nociceptor and is activated by several vanilloids, including capsaicin, protons and heat. Although TRPV1 channels are widely distributed in the brain, their roles remain unclear. Here, we investigated the roles of TRPV1 in cytotoxic processes using TRPV1-expressing cultured rat cortical neurons. Capsaicin induced severe neuronal death with apoptotic features, which was completely inhibited by the TRPV1 antagonist capsazepine and was dependent on extracellular Ca{sup 2+} influx. Interestingly, nifedipine, a specific L-type Ca{sup 2+} channel blocker, attenuated capsaicin cytotoxicity, even when applied 2-4 h after the capsaicin. ERK inhibitor PD98059 and several antioxidants, but not the JNK and p38 inhibitors, attenuated capsaicin cytotoxicity. Together, these data indicate that TRPV1 activation triggers apoptotic cell death of rat cortical cultures via L-type Ca{sup 2+} channel opening, Ca{sup 2+} influx, ERK phosphorylation, and reactive oxygen species production.

  1. Nicotinamide reduces acute cortical neuronal death and edema in the traumatically injured brain.

    PubMed

    Hoane, Michael R; Gilbert, David R; Holland, Michael A; Pierce, Jeremy L

    2006-11-06

    Previous studies have shown that administration of nicotinamide (Vitamin B(3)) in animal models of traumatic brain injury (TBI) and ischemia significantly reduced the size of infarction or injury and improved functional recovery. The present study evaluated the ability of nicotinamide to provide acute neuroprotection and edema reduction following TBI. Groups of rats were assigned to nicotinamide (500mg/kg) or saline (1.0ml/kg) treatment conditions and received contusion injuries or sham surgeries. Drug treatment was administered 15min following injury. Brains were harvested 24h later and either processed for histology or water content. Frozen sections were stained with the degenerating neuron stain (Fluoro-Jade B) (FJ) and cell counts were performed at the site of injury. Additional brains were processed for water content (a measure of injury-induced edema). Results of this study showed that administration of nicotinamide following TBI significantly reduced the number of FJ(+) neurons in the injured cortex compared to saline-treated animals. Examination of the water content of the brains also revealed that administration of nicotinamide significantly attenuated the amount of water compared to saline-treated animals in the injured cortex. These results indicate that nicotinamide administration significantly reduced neuronal death and attenuated cerebral edema following injury. The current findings suggest that nicotinamide significantly modulates acute pathophysiological processes following injury and that this may account for its beneficial effects on recovery of function following injury.

  2. Mfn2 downregulation in excitotoxicity causes mitochondrial dysfunction and delayed neuronal death

    PubMed Central

    Martorell-Riera, Alejandro; Segarra-Mondejar, Marc; Muñoz, Juan P; Ginet, Vanessa; Olloquequi, Jordi; Pérez-Clausell, Jeús; Palacín, Manuel; Reina, Manuel; Puyal, Julien; Zorzano, Antonio; Soriano, Francesc X

    2014-01-01

    Mitochondrial fusion and fission is a dynamic process critical for the maintenance of mitochondrial function and cell viability. During excitotoxicity neuronal mitochondria are fragmented, but the mechanism underlying this process is poorly understood. Here, we show that Mfn2 is the only member of the mitochondrial fusion/fission machinery whose expression is reduced in in vitro and in vivo models of excitotoxicity. Whereas in cortical primary cultures, Drp1 recruitment to mitochondria plays a primordial role in mitochondrial fragmentation in an early phase that can be reversed once the insult has ceased, Mfn2 downregulation intervenes in a delayed mitochondrial fragmentation phase that progresses even when the insult has ceased. Downregulation of Mfn2 causes mitochondrial dysfunction, altered calcium homeostasis, and enhanced Bax translocation to mitochondria, resulting in delayed neuronal death. We found that transcription factor MEF2 regulates basal Mfn2 expression in neurons and that excitotoxicity-dependent degradation of MEF2 causes Mfn2 downregulation. Thus, Mfn2 reduction is a late event in excitotoxicity and its targeting may help to reduce excitotoxic damage and increase the currently short therapeutic window in stroke. PMID:25147362

  3. ASIC channel inhibition enhances excitotoxic neuronal death in an in vitro model of spinal cord injury.

    PubMed

    Mazzone, Graciela L; Veeraraghavan, Priyadharishini; Gonzalez-Inchauspe, Carlota; Nistri, Andrea; Uchitel, Osvaldo D

    2017-02-20

    In the spinal cord high extracellular glutamate evokes excitotoxic damage with neuronal loss and severe locomotor impairment. During the cell dysfunction process, extracellular pH becomes acid and may activate acid-sensing ion channels (ASICs) which could be important contributors to neurodegenerative pathologies. Our previous studies have shown that transient application of the glutamate analog kainate (KA) evokes delayed excitotoxic death of spinal neurons, while white matter is mainly spared. The present goal was to enquire if ASIC channels modulated KA damage in relation to locomotor network function and cell death. Mouse spinal cord slices were treated with KA (0.01 or 0.1mM) for 1h, and then washed out for 24h prior to analysis. RT-PCR results showed that KA (at 0.01mM concentration that is near-threshold for damage) increased mRNA expression of ASIC1a, ASIC1b, ASIC2 and ASIC3, an effect reversed by the ASIC inhibitor 4',6-diamidino-2-phenylindole (DAPI). A KA neurotoxic dose (0.1mM) reduced ASIC1a and ASIC2 expression. Cell viability assays demonstrated KA-induced large damage in spinal slices from mice with ASIC1a gene ablation. Likewise, immunohistochemistry indicated significant neuronal loss when KA was followed by the ASIC inhibitors DAPI or amiloride. Electrophysiological recording from ventral roots of isolated spinal cords showed that alternating oscillatory cycles were slowed down by 0.01mMKA, and intensely inhibited by subsequently applied DAPI or amiloride. Our data suggest that early rise in ASIC expression and function counteracted deleterious effects on spinal networks by raising the excitotoxicity threshold, a result with potential implications for improving neuroprotection.

  4. Treatment with harmine ameliorates functional impairment and neuronal death following traumatic brain injury

    PubMed Central

    ZHONG, ZEQI; TAO, YUAN; YANG, HUI

    2015-01-01

    Traumatic brain injury (TBI) is a leading cause of mortality in young individuals, and results in motor and cognitive deficiency. Excitotoxicity is an important process during neuronal cell death, which is caused by excessive release of glutamate following TBI. Astrocytic glutamate transporters have a predominant role in maintaining extracellular glutamate concentrations below excitotoxic levels, and glutamate transporter 1 (GLT-1) may account for >90% of glutamate uptake in the brain. The β-carboline alkaloid harmine has been demonstrated to exert neuroprotective actions in vivo, and the beneficial effects were specifically due to elevation of GLT-1. However, whether harmine provides neuroprotection following TBI remains to be elucidated. The present study performed intraperitoneal harmine injections in rats (30 mg/kg per day for up to 5 days), in order to investigate whether harmine treatment attenuates brain edema and improves functional recovery in a rat model of TBI. The neuronal survival ratio and the protein expression of apoptosis-associated caspase 3 were also assessed in the hippocampus of the rat brain. Furthermore, the expression levels of GLT-1 and inflammatory cytokines were detected, in order to determine the underlying mechanisms. The results of the present study demonstrated that administration of harmine significantly attenuated cerebral edema, and improved learning and memory ability. In addition, harmine significantly increased the protein expression of GLT-1, and markedly attenuated the expression levels of interleukin-1β and tumor necrosis factor-α, thereby attenuating apoptotic neuronal death in the hippocampus. These results provided in vivo evidence that harmine may exert neuroprotective effects by synergistically reducing excitotoxicity and inflammation following TBI. PMID:26496827

  5. Protein carbonylation, protein aggregation and neuronal cell death in a murine model of multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Dasgupta, Anushka

    Many studies have suggested that oxidative stress plays an important role in the pathophysiology of both multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Yet, the mechanism by which oxidative stress leads to tissue damage in these disorders is unclear. Recent work from our laboratory has revealed that protein carbonylation, a major oxidative modification caused by severe and/or chronic oxidative stress conditions, is elevated in MS and EAE. Furthermore, protein carbonylation has been shown to alter protein structure leading to misfolding/aggregation. These findings prompted me to hypothesize that carbonylated proteins, formed as a consequence of oxidative stress and/or decreased proteasomal activity, promote protein aggregation to mediate neuronal apoptosis in vitro and in EAE. To test this novel hypothesis, I first characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of myelin-oligodendrocyte glycoprotein (MOG)35-55 peptide-induced EAE in C57BL/6 mice [Chapter 2]. The results show that carbonylated proteins accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. I discovered not only that there is a temporal correlation between protein carbonylation and apoptosis but also that carbonyl levels are significantly higher in apoptotic cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are also present during the course of EAE, which seems to be due to reduced autophagy. In chapter 3, I show that when gluthathione levels are reduced to those in EAE spinal cord, both neuron-like PC12 (nPC12) cells and primary neuronal cultures accumulate carbonylated proteins and undergo cell death (both by necrosis and apoptosis). Immunocytochemical and biochemical studies also revealed a temporal

  6. The role of mitochondria-mediated intrinsic death pathway in gingerdione derivative I6-induced neuronal apoptosis.

    PubMed

    Lin, Chia-Ho; Chen, Po-See; Kuo, Sheng-Chu; Huang, Li-Jiau; Gean, Po-Wu; Chiu, Ted-H

    2012-03-01

    Neuronal death induced by I6 displayed apoptotic characteristics but the precise mechanism has not been fully elucidated. In the present studies, I6 at 24 h after intraperitoneal administration significantly decreased the density of surviving neurons and increased caspase-3 activity in frontal cortex, suggesting that peripherally administered I6 may cross BBB to induce CNS toxicity. In rat embryonic primary cortical cells, I6-induced reduction of mitochondrial viability and neuronal apoptosis was inhibited by vitamin E. In addition, I6-induced reactive oxygen species (ROS) caused the disruption of mitochondria membrane potential (MMP), the release of cytochrome c, the activation of caspase-9 and caspase-3, and cleavage of poly(ADP-ribose) polymerase (PARP), resulting in activation of mitochondrial-mediated intrinsic death pathway. Pre-treatment with antioxidant vitamin E or N-acetylcysteine (NAC) completely abolished the I6-induced generation of ROS, loss of MMP, release of cytochrome c, activation of caspase-9 and caspase-3, and cleavage of PARP. Carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), a mitochondrial uncoupler, significantly reduced I6-induced neuronal death as well as caspase-3 activation and PARP cleavage. These results suggest that I6 induces neuronal death by promoting intracellular ROS production to cause a loss of MMP that result in release of cytochrome c and activation of mitochondria-mediated intrinsic death pathway.

  7. Effect of Polyphenols on Oxidative Stress and Mitochondrial Dysfunction in Neuronal Death and Brain Edema in Cerebral Ischemia

    PubMed Central

    Panickar, Kiran S.; Anderson, Richard A.

    2011-01-01

    Polyphenols are natural substances with variable phenolic structures and are elevated in vegetables, fruits, grains, bark, roots, tea, and wine. There are over 8000 polyphenolic structures identified in plants, but edible plants contain only several hundred polyphenolic structures. In addition to their well-known antioxidant effects, select polyphenols also have insulin-potentiating, anti-inflammatory, anti-carcinogenic, anti-viral, anti-ulcer, and anti-apoptotic properties. One important consequence of ischemia is neuronal death and oxidative stress plays a key role in neuronal viability. In addition, neuronal death may be initiated by the activation of mitochondria-associated cell death pathways. Another consequence of ischemia that is possibly mediated by oxidative stress and mitochondrial dysfunction is glial swelling, a component of cytotoxic brain edema. The purpose of this article is to review the current literature on the contribution of oxidative stress and mitochondrial dysfunction to neuronal death, cell swelling, and brain edema in ischemia. A review of currently known mechanisms underlying neuronal death and edema/cell swelling will be undertaken and the potential of dietary polyphenols to reduce such neural damage will be critically reviewed. PMID:22174658

  8. MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells

    PubMed Central

    Ito, Keisuke; Eguchi, Yutaka; Imagawa, Yusuke; Akai, Shuji; Mochizuki, Hideki; Tsujimoto, Yoshihide

    2017-01-01

    Regulation of cell death is potentially a powerful treatment modality for intractable diseases such as neurodegenerative diseases. Although there have been many reports about the possible involvement of various types of cell death in neurodegenerative diseases, it is still unclear exactly how neurons die in patients with these diseases, thus treatment strategies based on cell death regulation have not been established yet. To obtain some insight into the mechanisms of cell death involved in neurodegenerative diseases, we studied the effect of 1-methyl-4-phenylpyridinium (MPP+) on the human neuroblastoma cell line SH-SY5Y (a widely used model of Parkinson’s disease). We found that MPP+ predominantly induced non-apoptotic death of neuronally differentiated SH-SY5Y cells. This cell death was strongly inhibited by necrostatin-1 (Nec-1), a necroptosis inhibitor, and by an indole-containing compound (3,3′-diindolylmethane: DIM). However, it occurred independently of receptor-interacting serine/threonine-protein kinase 1/3 (RIP1/RIP3), indicating that this form of cell death was not necroptosis. MPP+-induced cell death was also inhibited by several inhibitors of ferroptosis, including ferrostatin-1 (Fer-1). Although MPP+-induced death and ferroptosis shared some features, such as occurrence of lipid peroxidation and inhibition by Fer-1, MPP+-induced death seemed to be distinct from ferroptosis because MPP+-induced death (but not ferroptosis) was inhibited by Nec-1, was independent of p53, and was accompanied by ATP depletion and mitochondrial swelling. Further investigation of MPP+-induced non-apoptotic cell death may be useful for understanding the mechanisms of neuronal loss and for treatment of neurodegenerative diseases such as Parkinson’s disease. PMID:28250973

  9. MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells.

    PubMed

    Ito, Keisuke; Eguchi, Yutaka; Imagawa, Yusuke; Akai, Shuji; Mochizuki, Hideki; Tsujimoto, Yoshihide

    2017-01-01

    Regulation of cell death is potentially a powerful treatment modality for intractable diseases such as neurodegenerative diseases. Although there have been many reports about the possible involvement of various types of cell death in neurodegenerative diseases, it is still unclear exactly how neurons die in patients with these diseases, thus treatment strategies based on cell death regulation have not been established yet. To obtain some insight into the mechanisms of cell death involved in neurodegenerative diseases, we studied the effect of 1-methyl-4-phenylpyridinium (MPP+) on the human neuroblastoma cell line SH-SY5Y (a widely used model of Parkinson's disease). We found that MPP+ predominantly induced non-apoptotic death of neuronally differentiated SH-SY5Y cells. This cell death was strongly inhibited by necrostatin-1 (Nec-1), a necroptosis inhibitor, and by an indole-containing compound (3,3'-diindolylmethane: DIM). However, it occurred independently of receptor-interacting serine/threonine-protein kinase 1/3 (RIP1/RIP3), indicating that this form of cell death was not necroptosis. MPP+-induced cell death was also inhibited by several inhibitors of ferroptosis, including ferrostatin-1 (Fer-1). Although MPP+-induced death and ferroptosis shared some features, such as occurrence of lipid peroxidation and inhibition by Fer-1, MPP+-induced death seemed to be distinct from ferroptosis because MPP+-induced death (but not ferroptosis) was inhibited by Nec-1, was independent of p53, and was accompanied by ATP depletion and mitochondrial swelling. Further investigation of MPP+-induced non-apoptotic cell death may be useful for understanding the mechanisms of neuronal loss and for treatment of neurodegenerative diseases such as Parkinson's disease.

  10. The Small-Molecule TrkB Agonist 7, 8-Dihydroxyflavone Decreases Hippocampal Newborn Neuron Death After Traumatic Brain Injury.

    PubMed

    Chen, Liang; Gao, Xiang; Zhao, Shu; Hu, Weipeng; Chen, Jinhui

    2015-06-01

    Previous studies in rodents have shown that after a moderate traumatic brain injury (TBI) with a controlled cortical impact (CCI) device, the adult-born immature granular neurons in the dentate gyrus are the most vulnerable cell type in the hippocampus. There is no effective approach for preventing immature neuron death after TBI. We found that tyrosine-related kinase B (TrkB), a receptor of brain-derived neurotrophic factor (BDNF), is highly expressed in adult-born immature neurons. We determined that the small molecule imitating BDNF, 7, 8-dihydroxyflavone (DHF), increased phosphorylation of TrkB in immature neurons both in vitro and in vivo. Pretreatment with DHF protected immature neurons from excitotoxicity-mediated death in vitro, and systemic administration of DHF before moderate CCI injury reduced the death of adult-born immature neurons in the hippocampus 24 hours after injury. By contrast, inhibiting BDNF signaling using the TrkB antagonist ANA12 attenuated the neuroprotective effects of DHF. These data indicate that DHF may be a promising chemical compound that promotes immature neuron survival after TBI through activation of the BDNF signaling pathway.

  11. Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death.

    PubMed

    Parker, J A; Connolly, J B; Wellington, C; Hayden, M; Dausset, J; Neri, C

    2001-11-06

    Huntington's disease (HD) is a dominant neurodegenerative disease caused by polyglutamine (polyQ) expansion in the protein huntingtin (htt). HD pathogenesis appears to involve the production of mutated N-terminal htt, cytoplasmic and nuclear aggregation of htt, and abnormal activity of htt interactor proteins essential to neuronal survival. Before cell death, neuronal dysfunction may be an important step of HD pathogenesis. To explore polyQ-mediated neuronal toxicity, we expressed the first 57 amino acids of human htt containing normal [19 Gln residues (Glns)] and expanded (88 or 128 Glns) polyQ fused to fluorescent marker proteins in the six touch receptor neurons of Caenorhabditis elegans. Expanded polyQ produced touch insensitivity in young adults. Noticeably, only 28 +/- 6% of animals with 128 Glns were touch sensitive in the tail, as mediated by the PLM neurons. Similar perinuclear deposits and faint nuclear accumulation of fusion proteins with 19, 88, and 128 Glns were observed. In contrast, significant deposits and morphological abnormalities in PLM cell axons were observed with expanded polyQ (128 Glns) and partially correlated with touch insensitivity. PLM cell death was not detected in young or old adults. These animals indicate that significant neuronal dysfunction without cell death may be induced by expanded polyQ and may correlate with axonal insults, and not cell body aggregates. These animals also provide a suitable model to perform in vivo suppression of polyQ-mediated neuronal dysfunction.

  12. Intravenous immunoglobulin protects neurons against amyloid beta-peptide toxicity and ischemic stroke by attenuating multiple cell death pathways.

    PubMed

    Widiapradja, Alexander; Vegh, Viktor; Lok, Ker Zhing; Manzanero, Silvia; Thundyil, John; Gelderblom, Mathias; Cheng, Yi-Lin; Pavlovski, Dale; Tang, Sung-Chun; Jo, Dong-Gyu; Magnus, Tim; Chan, Sic L; Sobey, Christopher G; Reutens, David; Basta, Milan; Mattson, Mark P; Arumugam, Thiruma V

    2012-07-01

    Intravenous immunoglobulin (IVIg) preparations obtained by fractionating blood plasma, are increasingly being used increasingly as an effective therapeutic agent in treatment of several inflammatory diseases. Its use as a potential therapeutic agent for treatment of stroke and Alzheimer's disease has been proposed, but little is known about the neuroprotective mechanisms of IVIg. In this study, we investigated the effect of IVIg on downstream signaling pathways that are involved in neuronal cell death in experimental models of stroke and Alzheimer's disease. Treatment of cultured neurons with IVIg reduced simulated ischemia- and amyloid βpeptide (Aβ)-induced caspase 3 cleavage, and phosphorylation of the cell death-associated kinases p38MAPK, c-Jun NH2 -terminal kinase and p65, in vitro. Additionally, Aβ-induced accumulation of the lipid peroxidation product 4-hydroxynonenal was attenuated in neurons treated with IVIg. IVIg treatment also up-regulated the anti-apoptotic protein, Bcl2 in cortical neurons under ischemia-like conditions and exposure to Aβ. Treatment of mice with IVIg reduced neuronal cell loss, apoptosis and infarct size, and improved functional outcome in a model of focal ischemic stroke. Together, these results indicate that IVIg acts directly on neurons to protect them against ischemic stroke and Aβ-induced neuronal apoptosis by inhibiting cell death pathways and by elevating levels of the anti-apoptotic protein Bcl2.

  13. Torpedo electromotor system development: neuronal cell death and electric organ development in the fourth branchial arch.

    PubMed

    Fox, G Q; Richardson, G P; Kirk, C

    1985-06-08

    The fourth branchial arch of Torpedo marmorata has been examined at the light and electron microscopic level during development. Of interest was the determination of the extent of electric organ tissue reported to be present in this arch and its possible relationship to electromotoneuron cell death in the electric lobes. The main electric organ of the torpedo is derived from the hyoid and first three branchial arches and is innervated by four major electromotor nerves. Extensive electromotoneuron cell death occurs in the electric lobes and most notably in the posterior poles. This feature could be due to a tendency for these neurons to innervate the fourth branchial arch where little or no electric tissue is formed. Our findings support this conclusion but are not entirely consistent with the idea that a population mismatch has occurred. This is because cell death precedes the genesis of the target cells. The presence of innervated differentiated electric tissue in this arch is also reported, leading to the conclusion that Torpedo marmorata possesses an accessory electric organ.

  14. Cerebrospinal fluid high mobility group box 1 is associated with neuronal death in subarachnoid hemorrhage.

    PubMed

    Wang, Kuo-Chuan; Tang, Sung-Chun; Lee, Jing-Er; Li, Yu-I; Huang, Yi-Shuian; Yang, Wei-Shiung; Jeng, Jiann-Shing; Arumugam, Thiruma V; Tu, Yong-Kwang

    2017-02-01

    We aim to determine the cerebrospinal fluid levels of high mobility group box 1 in subarachnoid hemorrhage patients and to investigate the involvement of the receptor for advanced glycation end products and high mobility group box 1 in the pathogenesis of post-subarachnoid hemorrhage neuronal death. The study included 40 patients (mean age, 59 ± 19 years) with Fisher's grade ≥ III aneurysmal subarachnoid hemorrhage. Cerebrospinal fluid was collected on the seventh day post-hemorrhage. Receptor for advanced glycation end products expression was examined in rat brain tissue following subarachnoid hemorrhage and in cultured neurons exposed to post-subarachnoid hemorrhage cerebrospinal fluid. Therapeutic effects of the recombinant soluble form of RAGE on subarachnoid hemorrhage models were also investigated. The results indicated that a higher level of cerebrospinal fluid high mobility group box 1 was independently associated with unfavorable outcome at three months post-subarachnoid hemorrhage (OR = 1.061, 95% CI: 1.005-1.121). Expression of RAGE increased in post-subarachnoid hemorrhage rat brain cells and in cultured neuron with stimulation of post-subarachnoid hemorrhage cerebrospinal fluid. Administration of recombinant soluble form of RAGE significantly reduced the number of positive TUNEL staining cells in subarachnoid hemorrhage rat and improved cell viability in post-subarachnoid hemorrhage cerebrospinal fluid-treated cultured neurons. Thus, the level of cerebrospinal fluid high mobility group box 1 can be a prognostic indicator for patients with Fisher's grade ≥ III aneurysmal subarachnoid hemorrhage and that treatment with soluble form of RAGE is a novel approach for subarachnoid hemorrhage.

  15. Hydroxysafflor Yellow A Protects Neurons From Excitotoxic Death through Inhibition of NMDARs

    PubMed Central

    Wang, Xingtao; Ma, Zhiyuan; Fu, Zhongxiao; Gao, Su; Yang, Liu; Jin, Yan; Sun, Hui; Wang, Chaoyun; Fan, Weiming; Chen, Lin; Zheng, Qing-Yin; Bi, Guoqiang

    2016-01-01

    Excessive glutamate release causes overactivation of N-methyl d-aspartate receptors (NMDARs), leading to excitatory neuronal damage in cerebral ischemia. Hydroxysafflor yellow A (HSYA), a compound extracted from Carthamus tinctorius L., has been reported to exert a neuroprotective effect in many pathological conditions, including brain ischemia. However, the underlying mechanism of HSYA's effect on neurons remains elusive. In the present study, we conducted experiments using patch-clamp recording of mouse hippocampal slices. In addition, we performed Ca2+ imaging, Western blots, as well as mitochondrial-targeted circularly permuted yellow fluorescent protein transfection into cultured hippocampal neurons in order to decipher the physiological mechanism underlying HSYA's neuroprotective effect. Through the electrophysiology experiments, we found that HSYA inhibited NMDAR-mediated excitatory postsynaptic currents without affecting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor and γ-aminobutyric acid A-type receptor-mediated currents. This inhibitory effect of HSYA on NMDARs was concentration dependent. HSYA did not show any preferential inhibition of either N-methyl d-aspartate receptor subtype 2A- or N-methyl d-aspartate receptor subtype 2B- subunit-containing NMDARs. Additionally, HSYA exhibits a facilitatory effect on paired NMDAR-mediated excitatory postsynaptic currents. Furthermore, HSYA reduced the magnitude of NMDAR-mediated membrane depolarization currents evoked by oxygen-glucose deprivation, and suppressed oxygen-glucose deprivation–induced and NMDAR-dependent ischemic long-term potentiation, which is believed to cause severe reperfusion damage after ischemia. Through the molecular biology experiments, we found that HSYA inhibited the NMDA-induced and NMDAR-mediated intracellular Ca2+ concentration increase in hippocampal cultures, reduced apoptotic and necrotic cell deaths, and prevented mitochondrial damage. Together, our data

  16. Mitochondrial dysfunction and death in motor neurons exposed to the glutathione-depleting agent ethacrynic acid.

    PubMed

    Rizzardini, M; Lupi, M; Bernasconi, S; Mangolini, A; Cantoni, L

    2003-03-15

    This study investigated the mechanisms of toxicity of glutathione (GSH) depletion in one cell type, the motor neuron. Ethacrynic acid (EA) (100 microM) was added to immortalized mouse motor neurons (NSC-34) to deplete both cytosolic and mitochondrial glutathione rapidly. This caused a drop in GSH to 25% of the initial level in 1 h and complete loss in 4 h. This effect was accompanied by enhanced generation of reactive oxygen species (ROS) with a peak after 2 h of exposure, and by signs of mitochondrial dysfunction such as a decrease in 3-(4,5-dimethyl-2-thiazoyl)-2,5-diphenyltetrazolium bromide (MTT) (30% less after 4 h). The increase in ROS and the MTT reduction were both EA concentration-dependent. Expression of heme oxygenase-1 (HO-1), a marker of oxidative stress, also increased. The mitochondrial damage was monitored by measuring the mitochondrial membrane potential (MMP) from the uptake of rhodamine 123 into mitochondria. MMP dropped (20%) after only 1 h exposure to EA, and slowly continued to decline until 3 h, with a steep drop at 5 h (50% decrease), i.e. after the complete GSH loss. Quantification of DNA fragmentation by the TUNEL technique showed that the proportion of cells with fragmented nuclei rose from 10% after 5 h EA exposure to about 65% at 18 h. These results indicate that EA-induced GSH depletion rapidly impairs the mitochondrial function of motor neurons, and this precedes cell death. This experimental model of oxidative toxicity could be useful to study mechanisms of diseases like spinal cord injury (SCI) and amyotrophic lateral sclerosis (ALS), where motor neurons are the vulnerable population and oxidative stress has a pathogenic role.

  17. Tat-HSP22 inhibits oxidative stress-induced hippocampal neuronal cell death by regulation of the mitochondrial pathway.

    PubMed

    Jo, Hyo Sang; Kim, Dae Won; Shin, Min Jea; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Yeo, Eun Ji; Choi, Yeon Joo; Yeo, Hyeon Ji; Sohn, Eun Jeong; Son, Ora; Cho, Sung-Woo; Kim, Duk-Soo; Yu, Yeon Hee; Lee, Keun Wook; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2017-01-04

    Oxidative stress plays an important role in the progression of various neuronal diseases including ischemia. Heat shock protein 22 (HSP22) is known to protect cells against oxidative stress. However, the protective effects and mechanisms of HSP22 in hippocampal neuronal cells under oxidative stress remain unknown. In this study, we determined whether HSP22 protects against hydrogen peroxide (H2O2)-induced oxidative stress in HT-22 using Tat-HSP22 fusion protein. We found that Tat-HSP22 transduced into HT-22 cells and that H2O2-induced cell death, oxidative stress, and DNA damage were significantly reduced by Tat-HSP22. In addition, Tat-HSP22 markedly inhibited H2O2-induced mitochondrial membrane potential, cytochrome c release, cleaved caspase-3, and Bax expression levels, while Bcl-2 expression levels were increased in HT-22 cells. Further, we showed that Tat-HSP22 transduced into animal brain and inhibited cleaved-caspase-3 expression levels as well as significantly inhibited hippocampal neuronal cell death in the CA1 region of animals in the ischemic animal model. In the present study, we demonstrated that transduced Tat-HSP22 attenuates oxidative stress-induced hippocampal neuronal cell death through the mitochondrial signaling pathway and plays a crucial role in inhibiting neuronal cell death, suggesting that Tat-HSP22 protein may be used to prevent oxidative stress-related brain diseases including ischemia.

  18. In vitro research of the alteration of neurons in vagal core in medulla oblongata at asphyxic deaths.

    PubMed

    Haliti, Naim; Islami, Hilmi; Elezi, Nevzat; Shabani, Ragip; Abdullahu, Bedri; Dragusha, Gani

    2010-08-01

    The aim of this study was to research the morphological changes of neurons in the vagus nerve nuclei in medulla oblongata in asphyxia related death cases. Morphological changes that were investigated were mainly in the dorsal motor respiratory center (DMRC), nucleus tractus solitarius (nTS) and nucleus ambigus (nA) in the medulla oblongata. In our research, the autopsy material from asphyxia related death cases was used from various etiologies: monoxide carbon (CO), liquid drowning, strangulation, electricity, clinical-pathological death, firing weapon, explosive weapon, sharp and blunt objects and death cases due to accident. The material selected for research was taken from medulla oblongata and lungs from all lobes. The material from the medulla oblongata and lungs was fixed in a 10% solution of buffered formalin. Special histochemical methods for central nervous system (CNS) were employed like: Cresyl echt violet, toluidin blue, Sevier-Munger modification and Grimelius. For stereometrical analysis of the quantitative density of the neurons the universal testing system Weibel M42 was used. The acquired results show that in sudden asphyxia related death cases, there are alterations in the nuclei of vagal nerve in form of: central chromatolysis, axonal retraction, axonal fragmentation, intranuclear vacuolization, cytoplasmic vacuolization, edema, condensation and dispersion of substance of Nissl, proliferation of oligodendrocytes, astrocytes and microglia. The altered population of vagus nerve neurons does not show an important statistical significance compared to the overall quantity of the neurons in the nuclei of the vagus nerve (p<0.05).

  19. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus.

    PubMed

    Sharma, D R; Wani, W Y; Sunkaria, A; Kandimalla, R J; Sharma, R K; Verma, D; Bal, A; Gill, K D

    2016-06-02

    Aluminum is a light weight and toxic metal present ubiquitously on earth, which has gained considerable attention due to its neurotoxic effects. It also has been linked ecologically and epidemiologically to several neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Guamanian-Parkinsonian complex and Amyotrophic lateral sclerosis (ALS). The mechanism of aluminum neurotoxicity is poorly understood, but it is well documented that aluminum generates reactive oxygen species (ROS). Enhanced ROS production leads to disruption of cellular antioxidant defense systems and release of cytochrome c (cyt-c) from mitochondria to cytosol resulting in apoptotic cell death. Quercetin (a natural flavonoid) protects it from oxidative damage and has been shown to decrease mitochondrial damage in various animal models of oxidative stress. We hypothesized that if oxidative damage to mitochondria does play a significant role in aluminum-induced neurodegeneration, and then quercetin should ameliorate neuronal apoptosis. Administration of quercetin (10 mg/kg body wt/day) reduced aluminum (10 mg/kg body wt/day)-induced oxidative stress (decreased ROS production, increased mitochondrial superoxide dismutase (MnSOD) activity). In addition, quercetin also prevents aluminum-induced translocation of cyt-c, and up-regulates Bcl-2, down-regulates Bax, p53, caspase-3 activation and reduces DNA fragmentation. Quercetin also obstructs aluminum-induced neurodegenerative changes in aluminum-treated rats as seen by Hematoxylin and Eosin (H&E) staining. Further electron microscopic studies revealed that quercetin attenuates aluminum-induced mitochondrial swelling, loss of cristae and chromatin condensation. These results indicate that treatment with quercetin may represent a therapeutic strategy to attenuate the neuronal death against aluminum-induced neurodegeneration.

  20. Methylglyoxal causes strong weakening of detoxifying capacity and apoptotic cell death in rat hippocampal neurons.

    PubMed

    Di Loreto, Silvia; Zimmitti, Vincenzo; Sebastiani, Pierluigi; Cervelli, Carla; Falone, Stefano; Amicarelli, Fernanda

    2008-01-01

    The hippocampus is known to play a crucial role in learning and memory. Recent data from literature show that cognitive problems, common to aged or diabetic patients, may be related to accumulation of toxic alpha-oxoaldehydes such as methylglyoxal. Thus, it is possible that methylglyoxal could be, at least in part, responsible for the impairment of cognitive functions, and the knowledge of the mechanisms through which this compound elicits neuronal toxicity could be useful for the development of possible therapeutic strategies. We previously reported a high susceptibility of hippocampal neurons to methylglyoxal, through an oxidation-dependent mechanism. In the present study, we extend our investigation on the molecular mechanisms which underlie methylglyoxal toxicity, focusing on possible effects on expression and activity of glyoxalases, its main detoxifying enzymes, and glutathione peroxidase, as well as on the levels of reduced glutathione. We also investigate methylglyoxal-induced modulation of brain derived neurotrophic factor and proinflammatory cytokines. Our results show that methylglyoxal causes a dramatic depletion of reduced glutathione and a significant inhibition of both glyoxalase and glutathione peroxidase activities. Furthermore, methylglyoxal treatment seems to affect the expression of inflammatory cytokines and survival factors. In conclusion, our findings suggest that methylglyoxal-induced neurotoxicity occurs through the impairment of detoxification pathway and depletion of reduced glutathione. This, in turn, triggers widespread apoptotic cell death, occurring through the convergence of both mitochondrial and Fas-receptor pathways.

  1. Galectin-3 expression in delayed neuronal death of hippocampal CA1 following transient forebrain ischemia, and its inhibition by hypothermia.

    PubMed

    Satoh, Kunio; Niwa, Masayuki; Goda, Wael; Binh, Nguyen Huy; Nakashima, Masaya; Takamatsu, Manabu; Hara, Akira

    2011-03-25

    The ischemic damage in the hippocampal CA1 sector following transient ischemia, delayed neuronal death, is a typical apoptosis, but the mechanism underlying the delayed neuronal death is still far from fully understood. Galectin-3 is a β-galactosidase-binding lectin which is important in cell proliferation and apoptotic regulation. Galectin-3 is expressed by microglial cells in experimental models of adult stroke. It has been reported that activated microglial cells are widely observed in the brain, including in the hippocampal CA1 region after transient ischemic insult. In the present study, time course expression of galectin-3 following transient forebrain ischemia in gerbils was examined by immunohistochemistry, combined with Iba-1 immunostaining (a specific microglial cell marker), hematoxylin and eosin staining (for morphological observation), and in situ terminal dUTP-biotin nick end labeling of DNA fragments method (for determination of cell death). Following transient ischemia, we observed a transient increase of galectin-3 expression in CA1 region, which was maximal 96h after reperfusion. Galectin-3 expression was predominately localized within CA1 region and observed only in cells which expressed Iba-1. The galectin-3-positive microglial cells emerge after the onset of neuronal cell damage. Expressions of galectin-3 and Iba-1 were strongly reduced by hypothermia during ischemic insult. Prevention of galectin-3 and Iba-1 expression in microglia by hypothermia has led us to propose that hypothermia either inhibits microglial activation or prevents delayed neuronal death itself. Our results indicate that galectin-3 might exert its effect by modulating the neuronal damage in delayed neuronal death.

  2. Necroptosis drives motor neuron death in models of both sporadic and familial ALS

    PubMed Central

    Re, Diane B.; Verche, Virginia Le; Yu, Changhao; Amoroso, Mackenzie W.; Politi, Kristin A.; Phani, Sudarshan; Ikiz, Burcin; Hoffmann, Lucas; Koolen, Martijn; Nagata, Tetsuya; Papadimitriou, Dimitra; Nagy, Peter; Mitsumoto, Hiroshi; Kariya, Shingo; Wichterle, Hynek; Henderson, Christopher E.; Przedborski, Serge

    2014-01-01

    SUMMARY Most cases of neurodegenerative disease are sporadic, hindering the use of genetic mouse models to analyze disease mechanisms. Focusing on the motor neuron (MN) disease amyotrophic lateral sclerosis (ALS) we therefore devised a fully humanized co-culture model composed of human adult primary sporadic ALS (sALS) astrocytes and human embryonic stem cell-derived MNs. The model reproduces the cardinal features of human ALS: sALS astrocytes, but not those from control patients, trigger selective death of MNs. The mechanisms underlying this non-cell-autonomous toxicity were investigated in both astrocytes and MNs. Although causal in familial ALS (fALS), SOD1 does not contribute to the toxicity of sALS astrocytes. Death of MNs triggered by either sALS or fALS astrocytes occurs through necroptosis, a form of programmed necrosis involving receptor-interacting protein 1 and the mixed lineage kinase domain-like protein. The necroptotic pathway therefore constitutes a novel potential therapeutic target for this incurable disease. PMID:24508385

  3. Arctic ground squirrel neuronal progenitor cells resist oxygen and glucose deprivation-induced death

    PubMed Central

    Drew, Kelly L; Wells, Matthew; McGee, Rebecca; Ross, Austin P; Kelleher-Andersson, Judith

    2016-01-01

    AIM: To investigate the influence of ischemia/reperfusion on arctic ground squirrel (AGS) neuronal progenitor cells (NPCs), we subjected these cultured cells to oxygen and glucose deprivation. METHODS: AGS NPCs were expanded and differentiated into NPCs and as an ischemia vulnerable control, commercially available human NPCs (hNPCs) were seeded from thawed NPCs. NPCs, identified by expression of TUJ1 were seen at 14-21 d in vitro (DIV). Cultures were exposed to control conditions, hypoxia, oxygen and glucose deprivation or glucose deprivation alone or following return to normal conditions to model reperfusion. Cell viability and death were assessed from loss of ATP as well as from measures of alamarBlue® and lactate dehydrogenase in the media and from counts of TUJ1 positive cells using immunocytochemistry. Dividing cells were identified by expression of Ki67 and phenotyped by double labeling with GFAP, MAP2ab or TUJ1. RESULTS: We report that when cultured in NeuraLife™, AGS cells remain viable out to 21 DIV, continue to express TUJ1 and begin to express MAP2ab. Viability of hNPCs assessed by fluorescence alamarBlue (arbitrary units) depends on both glucose and oxygen availability [viability of hNPCs after 24 h oxygen glucose deprivation (OGD) with return of oxygen and glucose decreased from 48151 ± 4551 in control cultures to 43481 ± 2413 after OGD, P < 0.05]. By contrast, when AGS NPCs are exposed to the same OGD with reperfusion at 14 DIV, cell viability assessed by alamarBlue increased from 165305 ± 11719 in control cultures to 196054 ± 13977 after OGD. Likewise AGS NPCs recovered ATP (92766 ± 6089 in control and 92907 ± 4290 after modeled reperfusion; arbitrary luminescence units), and doubled in the ratio of TUJ1 expressing neurons to total dividing cells (0.11 ± 0.04 in control cultures vs 0.22 ± 0.2 after modeled reperfusion, P < 0.05). Maintaining AGS NPCs for a longer time in culture lowered resistance to injury, however, did not impair

  4. FoxO3a is activated and executes neuron death via Bim in response to β-amyloid

    PubMed Central

    Sanphui, P; Biswas, S C

    2013-01-01

    The molecules that mediate death of selective neurons in Alzheimer's disease (AD) are mostly unknown. The Forkhead transcription factor FoxO3a has emerged as an important mediator of cell fate including apoptosis. When phosphorylated by Akt, it is localized in the cytosol as an inactive complex bound with 14-3-3 protein. For activation and localization of FoxO3a in the nucleus, further modifications are required, such as phosphorylation by mammalian sterile 20-like kinase 1 (MST1) and arginine methylation by protein arginine methyltransferase1. We report here that Akt-mediated phosphorylation of FoxO3a is diminished in neurons exposed to oligomeric β-amyloid (Aβ), in vitro and in vivo. We also find that oligomeric Aβ activates FoxO3a by MST1 phosphorylation and arginine methylation in primary cultures of hippocampal and cortical neurons. Moreover, FoxO3a translocates from the cytosol to nucleus in cultured neurons in response to Aβ. Most importantly, the nuclear redistribution of FoxO3a is significantly increased in Aβ-overexpressing AβPPswe-PS1dE9 mice and Aβ-infused rat brains. We further find that FoxO3a is essential for loss of neurons and neural networks in response to Aβ. Recent reports implicate Bim, a pro-apoptotic member of Bcl-2 family, in neuron death in AD, as a key target of this transcription factor. We show that Bim is a direct target of FoxO3a in Aβ-treated neurons. Our findings thus indicate that FoxO3a is activated, translocated to the nucleus and mediates neuron death via Bim in response to Aβ toxicity. PMID:23661003

  5. Homocysteine-NMDA receptor mediated activation of extracellular-signal regulated kinase leads to neuronal cell death

    PubMed Central

    Poddar, Ranjana; Paul, Surojit

    2009-01-01

    Hyper-homocysteinemia is an independent risk factor for stroke and neurological abnormalities. However the underlying cellular mechanisms by which elevated homocysteine can promote neuronal death is not clear. In the present study we have examined the role of NMDA receptor mediated activation of the extracellular-signal regulated mitogen activated protein (ERK MAP) kinase pathway in homocysteine-dependent neurotoxicity. The study demonstrates that in neurons L-homocysteine-induced cell death is mediated through activation of NMDA receptors. The study also shows that homocysteine-dependent NMDA receptor stimulation and resultant Ca2+ influx leads to rapid and sustained phosphorylation of ERK MAP kinase. Inhibition of ERK phosphorylation attenuates homocysteine mediated neuronal cell death thereby demonstrating that activation of ERK MAP kinase signaling pathway is an intermediate step that couples homocysteine mediated NMDA receptor stimulation to neuronal death. The findings also show that cAMP response-element binding protein (CREB), a pro-survival transcription factor and a downstream target of ERK, is only transiently activated following homocysteine exposure. The sustained activation of ERK but a transient activation of CREB together suggest that exposure to homocysteine initiates a feedback loop that shuts off CREB signaling without affecting ERK phosphorylation and thereby facilitates homocysteine mediated neurotoxicity. PMID:19508427

  6. [Death of neurons and glial cells, induced by a photodynamic injury: signaling processes and neurone-glial interactions].

    PubMed

    Uzdenskiĭ, A B; Kolosov, M S; Lobanov, A V

    2007-01-01

    The mechanisms of photodynamic (PD) injury of neurons and glial cells are reviewed. Neuron responses: firing stimulation at high photosensitizer concentrations and inhibition at low concentrations (< 10(-7) M) that were followed by necrosis, are described. Glial cells died from both necrosis and apoptosis. Local laser inactivation of a neuron enhanced PD-induced apoptosis of glial cells, thus indicating that neuron maintained the survival of glia. Inter- and intracellular signaling mediated photodamage of these cells. Using inhibitors or activators of signaling proteins, the involvement of Ca(2+)-, adenylate cyclase- and tyrosine kinase-mediated signaling pathways in responses of neurons and glial cells to photosensitization was shown. Their pharmacological modulation can change selectivity of PD injury of neuronal and glial cells and efficiency of PD therapy.

  7. Arginine vasopressin neuronal loss results from autophagy-associated cell death in a mouse model for familial neurohypophysial diabetes insipidus.

    PubMed

    Hagiwara, D; Arima, H; Morishita, Y; Wenjun, L; Azuma, Y; Ito, Y; Suga, H; Goto, M; Banno, R; Sugimura, Y; Shiota, A; Asai, N; Takahashi, M; Oiso, Y

    2014-03-27

    Familial neurohypophysial diabetes insipidus (FNDI) characterized by progressive polyuria is mostly caused by mutations in the gene encoding neurophysin II (NPII), which is the carrier protein of the antidiuretic hormone, arginine vasopressin (AVP). Although accumulation of mutant NPII in the endoplasmic reticulum (ER) could be toxic for AVP neurons, the precise mechanisms of cell death of AVP neurons, reported in autopsy studies, remain unclear. Here, we subjected FNDI model mice to intermittent water deprivation (WD) in order to promote the phenotypes. Electron microscopic analyses demonstrated that, while aggregates are confined to a certain compartment of the ER in the AVP neurons of FNDI mice with water access ad libitum, they were scattered throughout the dilated ER lumen in the FNDI mice subjected to WD for 4 weeks. It is also demonstrated that phagophores, the autophagosome precursors, emerged in the vicinity of aggregates and engulfed the ER containing scattered aggregates. Immunohistochemical analyses revealed that expression of p62, an adapter protein between ubiquitin and autophagosome, was elicited on autophagosomal membranes in the AVP neurons, suggesting selective autophagy induction at this time point. Treatment of hypothalamic explants of green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3 (LC3) transgenic mice with an ER stressor thapsigargin increased the number of GFP-LC3 puncta, suggesting that ER stress could induce autophagosome formation in the hypothalamus of wild-type mice as well. The cytoplasm of AVP neurons in FNDI mice was occupied with vacuoles in the mice subjected to WD for 12 weeks, when 30-40% of AVP neurons are lost. Our data thus demonstrated that autophagy was induced in the AVP neurons subjected to ER stress in FNDI mice. Although autophagy should primarily be protective for neurons, it is suggested that the organelles including ER were lost over time through autophagy, leading to autophagy

  8. Role and regulation of Cdc25A phosphatase in neuron death induced by NGF deprivation or β-amyloid

    PubMed Central

    Chatterjee, Nandini; Sanphui, Priyankar; Kemeny, Stav; Greene, Lloyd A; Biswas, Subhas C

    2016-01-01

    Neuron death during development and in Alzheimer’s disease (AD) is associated with aberrant regulation/induction of cell cycle proteins. However, the proximal events in this process are unknown. Cell cycle initiation requires dephosphorylation of cyclin-dependent kinases by cell division cycle 25A (Cdc25A). Here, we show that Cdc25A is essential for neuronal death in response to NGF deprivation or β-amyloid (Aβ) treatment and describe the mechanisms by which it is regulated in these paradigms. Cdc25A mRNA, protein and Cdc25A phosphatase activity were induced by NGF deprivation and Aβ treatment. Enhanced Cdc25A expression was also observed in rat brains infused with Aβ and in Aβ-overexpressing AβPPswe-PS1dE9 mice. In cultured neurons Cdc25A inhibition by chemical inhibitors or shRNA prevented cell death and neurite degeneration caused by NGF deprivation or Aβ. Additionally, Cdc25A inhibition diminished distal signaling events including Cdk-dependent elevation of phospho-pRb and subsequent caspase-3 activation. Mechanism studies revealed that Cdc25A induction by NGF deprivation and Aβ is mediated by activation of Forkhead transcription factors that in turn suppress miR-21, a negative regulator of Cdc25A. Our studies thus identify Cdc25A as a required upstream element of the apoptotic cell cycle pathway that is required for neuron death in response to trophic factor deprivation and to Aβ exposure and therefore as a potential target to suppress pathologic neuron death. PMID:28028440

  9. Cellular NAD depletion and decline of SIRT1 activity play critical roles in PARP-1-mediated acute epileptic neuronal death in vitro.

    PubMed

    Wang, Shengjun; Yang, Xue; Lin, Youting; Qiu, Xiaoxue; Li, Hui; Zhao, Xiuhe; Cao, Lili; Liu, Xuewu; Pang, Yuejiu; Wang, Xuping; Chi, Zhaofu

    2013-10-16

    Intense poly(ADP-ribose) polymerase-1 (PARP-1) activation was implicated as a major cause of caspase-independent cell death in the hippocampal neuronal culture (HNC) model of acute acquired epilepsy (AE). The molecular mechanisms are quite complicated. The linkage among neuronal death, cellular nicotinamide adenine dinucleotide (NAD) levels, apoptosis-inducing factor (AIF) translocation, SIRT1 expression and activity were investigated here. The results showed that PARP-1 over-activation caused by Mg²⁺-free stimuli led to cellular NAD depletion which could block AIF translocation from mitochondria to nucleus and attenuate neuronal death. Also, SIRT1 deacetylase activity was reduced by Mg²⁺-free treatment, accompanied by elevated ratio of neuronal death, which could be rescued by NAD repletion. These data demonstrated that cellular NAD depletion and decline of SIRT1 activity play critical roles in PARP-1-mediated epileptic neuronal death in the HNC model of acute AE.

  10. Nerve growth factor neuroprotection of ethanol-induced neuronal death in rat cerebral cortex is age dependent.

    PubMed

    Mooney, S M; Miller, M W

    2007-10-26

    Organotypic cultures of rat cortex were used to test the hypotheses that nerve growth factor (NGF) is neuroprotective for immature cortical neurons and that ethanol abolishes this neuroprotection in a developmental stage-dependent manner. Samples were obtained on gestational day (G) 16 or postnatal day (P) 3 and cultured with ethanol (0 or 400 mg/dl) and NGF (0 or 30 ng/ml) for 72 h. Dying neurons were identified as exhibiting terminal nick-end labeling, immunoreactivity for activated caspase 3, or condensed nuclear chromatin. Two cortical compartments were examined in fetal tissue: a superficial, cell-sparse marginal zone (MZ) and a cell-dense cortical plate (CP). At P3, the CP was subdivided into a cell-dense upper cortical plate (UCP) and a less densely packed lower cortical plate (LCP). Neuronal death in the MZ was affected by neither NGF nor ethanol at both ages. In the fetal CP, NGF did not affect the incidence of cell death, but ethanol increased it. Treatment with NGF caused an upregulation of the expression of Neg, a gene known to be affected by NGF and ethanol. NGF did not ameliorate the ethanol-induced death. In pups, ethanol increased the amount of death in the LCP. NGF did protect against this death. Neither ethanol nor NGF altered the incidence of cell death in the UCP. The laminar-dependent neuroprotection did not correlate with expression of NGF receptors or Neg. Thus, NGF can be protective against the neurotoxic effect of ethanol in the neonatal brain. This effect is site selective and time dependent and it targets postmigratory, differentiating neurons.

  11. Multidendritic sensory neurons in the adult Drosophila abdomen: origins, dendritic morphology, and segment- and age-dependent programmed cell death

    PubMed Central

    Shimono, Kohei; Fujimoto, Azusa; Tsuyama, Taiichi; Yamamoto-Kochi, Misato; Sato, Motohiko; Hattori, Yukako; Sugimura, Kaoru; Usui, Tadao; Kimura, Ken-ichi; Uemura, Tadashi

    2009-01-01

    Background For the establishment of functional neural circuits that support a wide range of animal behaviors, initial circuits formed in early development have to be reorganized. One way to achieve this is local remodeling of the circuitry hardwiring. To genetically investigate the underlying mechanisms of this remodeling, one model system employs a major group of Drosophila multidendritic sensory neurons - the dendritic arborization (da) neurons - which exhibit dramatic dendritic pruning and subsequent growth during metamorphosis. The 15 da neurons are identified in each larval abdominal hemisegment and are classified into four categories - classes I to IV - in order of increasing size of their receptive fields and/or arbor complexity at the mature larval stage. Our knowledge regarding the anatomy and developmental basis of adult da neurons is still fragmentary. Results We identified multidendritic neurons in the adult Drosophila abdomen, visualized the dendritic arbors of the individual neurons, and traced the origins of those cells back to the larval stage. There were six da neurons in abdominal hemisegment 3 or 4 (A3/4) of the pharate adult and the adult just after eclosion, five of which were persistent larval da neurons. We quantitatively analyzed dendritic arbors of three of the six adult neurons and examined expression in the pharate adult of key transcription factors that result in the larval class-selective dendritic morphologies. The 'baseline design' of A3/4 in the adult was further modified in a segment-dependent and age-dependent manner. One of our notable findings is that a larval class I neuron, ddaE, completed dendritic remodeling in A2 to A4 and then underwent caspase-dependent cell death within 1 week after eclosion, while homologous neurons in A5 and in more posterior segments degenerated at pupal stages. Another finding is that the dendritic arbor of a class IV neuron, v'ada, was immediately reshaped during post-eclosion growth. It exhibited

  12. A Common Carcinogen Benzo[a]pyrene Causes Neuronal Death in Mouse via Microglial Activation

    PubMed Central

    Nazmi, Arshed; Kumawat, Kanhaiya Lal; Basu, Anirban

    2010-01-01

    Background Benzo[a]pyrene (B[a]P) belongs to a class of polycyclic aromatic hydrocarbons that serve as micropollutants in the environment. B[a]P has been reported as a probable carcinogen in humans. Exposure to B[a]P can take place by ingestion of contaminated (especially grilled, roasted or smoked) food or water, or inhalation of polluted air. There are reports available that also suggests neurotoxicity as a result of B[a]P exposure, but the exact mechanism of action is unknown. Methodology/Principal Findings Using neuroblastoma cell line and primary cortical neuron culture, we demonstrated that B[a]P has no direct neurotoxic effect. We utilized both in vivo and in vitro systems to demonstrate that B[a]P causes microglial activation. Using microglial cell line and primary microglial culture, we showed for the first time that B[a]P administration results in elevation of reactive oxygen species within the microglia thereby causing depression of antioxidant protein levels; enhanced expression of inducible nitric oxide synthase, that results in increased production of NO from the cells. Synthesis and secretion of proinflammatory cytokines were also elevated within the microglia, possibly via the p38MAP kinase pathway. All these factors contributed to bystander death of neurons, in vitro. When administered to animals, B[a]P was found to cause microglial activation and astrogliosis in the brain with subsequent increase in proinflammatory cytokine levels. Conclusions/Significance Contrary to earlier published reports we found that B[a]P has no direct neurotoxic activity. However, it kills neurons in a bystander mechanism by activating the immune cells of the brain viz the microglia. For the first time, we have provided conclusive evidence regarding the mechanism by which the micropollutant B[a]P may actually cause damage to the central nervous system. In today's perspective, where rising pollution levels globally are a matter of grave concern, our study throws light on

  13. Th17 Cells Induce Dopaminergic Neuronal Death via LFA-1/ICAM-1 Interaction in a Mouse Model of Parkinson's Disease.

    PubMed

    Liu, Zhan; Huang, Yan; Cao, Bei-Bei; Qiu, Yi-Hua; Peng, Yu-Ping

    2016-11-14

    T helper (Th)17 cells, a subset of CD4(+) T lymphocytes, have strong pro-inflammatory property and appear to be essential in the pathogenesis of many inflammatory diseases. However, the involvement of Th17 cells in Parkinson's disease (PD) that is characterized by a progressive degeneration of dopaminergic (DAergic) neurons in the nigrostriatal system is unclear. Here, we aimed to demonstrate that Th17 cells infiltrate into the brain parenchyma and induce neuroinflammation and DAergic neuronal death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- or 1-methyl-4-phenylpyridinium (MPP(+))-induced PD models. Blood-brain barrier (BBB) disruption in the substantia nigra (SN) was assessed by the signal of FITC-labeled albumin that was injected into blood circulation via the ascending aorta. Live cell imaging system was used to observe a direct contact of Th17 cells with neurons by staining these cells using the two adhesion molecules, leukocyte function-associated antigen (LFA)-1 and intercellular adhesion molecule (ICAM)-1, respectively. Th17 cells invaded into the SN where BBB was disrupted in MPTP-induced PD mice. Th17 cells exacerbated DAergic neuronal loss and pro-inflammatory/neurotrophic factor disorders in MPP(+)-treated ventral mesencephalic (VM) cell cultures. A direct contact of LFA-1-stained Th17 cells with ICAM-1-stained VM neurons was dynamically captured. Either blocking LFA-1 in Th17 cells or blocking ICAM-1 in VM neurons with neutralizing antibodies abolished Th17-induced DAergic neuronal death. These results establish that Th17 cells infiltrate into the brain parenchyma of PD mice through lesioned BBB and exert neurotoxic property by promoting glial activation and importantly by a direct damage to neurons depending on LFA-1/ICAM-1 interaction.

  14. Bid mediates fission, membrane permeabilization and peri-nuclear accumulation of mitochondria as a prerequisite for oxidative neuronal cell death.

    PubMed

    Grohm, Julia; Plesnila, Nikolaus; Culmsee, Carsten

    2010-07-01

    Mitochondria are highly dynamic organelles that undergo permanent fusion and fission, a process that is important for mitochondrial function and cellular survival. Emerging evidence suggests that oxidative stress disturbs mitochondrial morphology dynamics, resulting in detrimental mitochondrial fragmentation. In particular, such fatal mitochondrial fission has been detected in neurons exposed to oxidative stress, suggesting mitochondrial dynamics as a key feature in intrinsic death pathways. However, the regulation of mitochondrial fission in neurons exposed to lethal stress is largely unknown. Here, we used a model of glutamate toxicity in HT-22 cells for investigating mitochondrial fission and fusion in neurons exposed to oxidative stress. In these immortalized hippocampal neurons, glutamate induces glutathione depletion and increased formation of reactive oxygen species (ROS). Glutamate toxicity resulted in mitochondrial fragmentation and peri-nuclear accumulation of the organelles. Further, mitochondrial fission was associated with loss of mitochondrial outer membrane potential (MOMP). The Bid-inhibitor BI-6c9 prevented MOMP and mitochondrial fission, and protected the cells from cell death. In conclusion, oxidative stress induced by glutamate causes mitochondrial translocation of Bid thereby inducing mitochondrial fission and associated mitochondrial cell death pathways. Inhibiting regulators of pathological mitochondrial fragmentation is proposed as an efficient strategy of neuroprotection.

  15. Block of Na+,K+-ATPase and induction of hybrid death by 4-aminopyridine in cultured cortical neurons.

    PubMed

    Wang, Xue Qing; Xiao, Ai Ying; Yang, Aizhen; LaRose, Lori; Wei, Ling; Yu, Shan Ping

    2003-05-01

    K(+) channel blockers such as 4-aminopyridine (4-AP) can be toxic to neurons; the cellular mechanism underlying the toxicity, however, is obscure. In cultured mouse cortical neurons, we tested the hypothesis that the toxic effect of 4-AP might result from inhibiting the Na(+),K(+)-ATPase (Na(+),K(+)-pump) and thereafter induction of a hybrid death of concomitant apoptosis and necrosis. The Na(+),K(+)-pump activity, monitored as whole-cell membrane currents, was markedly blocked by 4-AP in concentration- and voltage-dependent manners in low millimolar ranges. At similar concentrations, 4-AP induced a neuronal death sensitive to attenuation by the caspase inhibitor Z-VAD-FMK (Z-Val-Ala-Asp(OMe)-fluoromethyl ketone) or Ca(2+) chelator BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester). Electron microscopy confirmed hybrid ultrastructural features of coexisting apoptotic and necrotic components in same cells. We suggest that 4-AP is a potent antagonist of the Na(+),K(+)-ATPase and an inducer of the hybrid death of central neurons.

  16. NR2B-NMDA receptor mediated modulation of the tyrosine phosphatase STEP regulates glutamate induced neuronal cell death

    PubMed Central

    Poddar, Ranjana; Deb, Ishani; Mukherjee, Saibal; Paul, Surojit

    2011-01-01

    The present study examines the role of a neuron-specific tyrosine phosphatase (STEP) in excitotoxic cell death. Our findings demonstrate that p38 MAPK, a stress-activated kinase that is known to play a role in the etiology of excitotoxic cell death is a substrate of STEP. Glutamate-mediated NMDA receptor stimulation leads to rapid but transient activation of p38 MAPK, which is primarily dependent on NR2A-NMDA receptor activation. Conversely, activation of NR2B-NMDA receptors leads to dephosphorylation and subsequent activation of STEP, which in turn leads to inactivation of p38 MAPK. Thus during transient NMDA receptor stimulation, increases in STEP activity appears to limit the duration of activation of p38 MAPK and improves neuronal survival. However, if NR2B-NMDA receptor stimulation is sustained, protective effects of STEP activation are lost, as these stimuli cause significant degradation of active STEP, leading to secondary activation of p38 MAP kinase. Consistent with this observation, a cell transducible TAT-STEP peptide that constitutively binds to p38 MAPK attenuated neuronal cell death caused by sustained NMDA receptor stimulation. The findings imply that the activation and levels of STEP are dependent on the duration and magnitude of NR2B-NMDA receptor stimulation and STEP serves as a modulator of NMDA receptor dependent neuronal injury, through its regulation of p38 MAPK. PMID:21029094

  17. Type A and B monoamine oxidase in age-related neurodegenerative disorders: their distinct roles in neuronal death and survival.

    PubMed

    Naoi, Makoto; Maruyama, Wakako; Inaba-Hasegawa, Keiko

    2012-01-01

    In neurodegenerative disorders, including Parkinson's and Alzheimer's diseases, type B monoamine oxidase (MAO-B) has been proposed to play a primary role though generating reactive oxygen species in oxidation of monoamine substrates. MAO-B oxidizes MPTP into MPP+, and an MAO-B inhibitor, deprenyl, prevents the MPTP oxidation and also MPP+neutotoxicity. These results suggest the association of MAO-B with neuronal death in neurodegenerative disorders. On the other hand, deprenyl and rasagiline, selective MAO-B inhibitors, have been proved to protect neuronal cells in cellular and animal models of neurodegeneration. These inhibitors decrease oxidation of the substrates, scavenge oxygen radicals, intervene apoptosis signal pathway in mitochondria and induce pro-survival genes coding anti-apoptotic Bcl-2 and neurotrophic factors. However, the association of MAO-B itself with the neuroprotective function of MAO-B inhibitors remains enigmatic. Recently, the involvement of type A MAO (MAO-A) in neuronal death has been shown by upregulation MAO-A expression in cellular models. MAO-A is a target of an endogenous neurotoxin, Nmethyl( R)salsolinol, and MAO-A knockdown (KO) with short interfering (si)RNA protects neuronal death from apoptosis. In addition, MAO-A mediates the increased expression of genes for anti-apoptotic, pro-survival Bcl-2 and neurotrophic factors by MAO-B inhibitors, whereas MAO-B doe not. In this review, we present our recent results on the novel role of MAO-A and MAO-B in neuronal death and also in the neuroprotective gene induction by MAO inhibitors. The future development of new series of neuroprotective drugs is discussed among compounds, which have high affinity to MAO-A and can induce pro-survival genes. MAO-A is expected to play a role in disease-modifying therapy for neurodegenerative disorders.

  18. Discovery of a novel neuroprotectant, BHDPC, that protects against MPP+/MPTP-induced neuronal death in multiple experimental models.

    PubMed

    Chong, Cheong-Meng; Ma, Dan; Zhao, Chao; Franklin, Robin J M; Zhou, Zhong-Yan; Ai, Nana; Li, Chuwen; Yu, Huidong; Hou, Tingjun; Sa, Fei; Lee, Simon Ming-Yuen

    2015-12-01

    Progressive degeneration and death of neurons are main causes of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Although some current medicines may temporarily improve their symptoms, no treatments can slow or halt the progression of neuronal death. In this study, a pyrimidine derivative, benzyl 7-(4-hydroxy-3-methoxyphenyl)-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate (BHDPC), was found to attenuate dramatically the MPTP-induced death of dopaminergic neurons and improve behavior movement deficiency in zebrafish, supporting its potential neuroprotective activity in vivo. Further study in rat organotypic cerebellar cultures indicated that BHDPC was able to suppress MPP(+)-induced cell death of brain tissue slices ex vivo. The protective effect of BHDPC against MPP(+) toxicity was also effective in human neuroblastoma SH-SY5Y cells through restoring abnormal changes in mitochondrial membrane potential and numerous apoptotic regulators. Western blotting analysis indicated that BHDPC was able to activate PKA/CREB survival signaling and further up-regulate Bcl2 expression. However, BHDPC failed to suppress MPP(+)-induced cytotoxicity and the increase of caspase 3 activity in the presence of the PKA inhibitor H89. Taken together, these results suggest that BHDPC is a potential neuroprotectant with prosurvival effects in multiple models of neurodegenerative disease in vitro, ex vivo, and in vivo.

  19. Cyclosporin A inhibits caspase-independent death of NGF-deprived sympathetic neurons: a potential role for mitochondrial permeability transition.

    PubMed

    Chang, Louis K; Johnson, Eugene M

    2002-05-27

    Opening of the permeability transition pore (PTP) has been implicated as an important mitochondrial event that occurs during apoptosis. We examined the role of the PTP in the well-characterized cell death of rat sympathetic neurons deprived of nerve growth factor (NGF) in vitro. Removal of NGF causes these neurons to undergo either a classic apoptotic cell death or, when treated with a broad-spectrum caspase inhibitor such as boc-aspartyl(OMe)-fluoromethylketone (BAF), a delayed, nonapoptotic cell death. The PTP inhibitor, cyclosporin A (CsA), blocked commitment-to-die in the presence of BAF, as defined by the ability of NGF readdition to rescue cells, but had little effect on commitment-to-die in the absence of BAF. CsA did not have trophic effects on BAF-saved cells, but did block the decrease in mitochondrial membrane potential. These data suggest that PTP opening is a critical event in caspase-independent, nonapoptotic (but not caspase-dependent, apoptotic) death of NGF-deprived rat sympathetic neurons.

  20. Oxidative modification of neurofilament-L and neuronal cell death induced by the catechol neurotoxin, tetrahydropapaveroline.

    PubMed

    Kyeong, Inn Goo; Eum, Won Sik; Choi, Soo Young; Kang, Jung Hoon

    2013-02-13

    Tetrahydropapaveroline (THP), which is an endogenous neurotoxin, has been suspected to be associated with dopaminergic neurotoxicity of l-DOPA. In this study, we examined oxidative modification of neurofilament-L (NF-L) and neuronal cell death induced by THP. When disassembled NF-L was incubated with THP, protein aggregation was increased in a time- and THP dose-dependent manner. The formation of carbonyl compounds and dityrosine were observed in the THP-mediated NF-L aggregates. Radical scavengers reduced THP-mediated NF-L modification. These results suggest that the modification of NF-L by THP may be due to oxidative damage resulting from the generation of reactive oxygen species (ROS). When THP exposed NF-L was subjected to amino acid analysis, glutamate, proline and lysine residues were found to be particularly sensitive. We also investigated the effects of copper ions on THP-mediated NF-L modification. At a low concentration of THP, copper ions enhanced the modification of NF-L. Treatment of C6 astrocyte cells with THP led to a concentration-dependent reduction in cell viability. When these cells were treated with 100μM THP, the levels of ROS increased 3.5-fold compared with control cells. Furthermore, treatment of cells with THP increased NF-L aggregate formation, suggesting the involvement of NF-L modification in THP-induced cell damage.

  1. Fibrinogen nitrotyrosination after ischemic stroke impairs thrombolysis and promotes neuronal death.

    PubMed

    Ill-Raga, Gerard; Palomer, Ernest; Ramos-Fernández, Eva; Guix, Francesc X; Bosch-Morató, Mònica; Guivernau, Biuse; Tajes, Marta; Valls-Comamala, Victòria; Jiménez-Conde, Jordi; Ois, Angel; Pérez-Asensio, Fernando; Reyes-Navarro, Mario; Caballo, Carolina; Gil-Gómez, Gabriel; Lopez-Vilchez, Irene; Galan, Ana M; Alameda, Francesc; Escolar, Gines; Opazo, Carlos; Planas, Anna M; Roquer, Jaume; Valverde, Miguel A; Muñoz, Francisco J

    2015-03-01

    Ischemic stroke is an acute vascular event that compromises neuronal viability, and identification of the pathophysiological mechanisms is critical for its correct management. Ischemia produces increased nitric oxide synthesis to recover blood flow but also induces a free radical burst. Nitric oxide and superoxide anion react to generate peroxynitrite that nitrates tyrosines. We found that fibrinogen nitrotyrosination was detected in plasma after the initiation of ischemic stroke in human patients. Electron microscopy and protein intrinsic fluorescence showed that in vitro nitrotyrosination of fibrinogen affected its structure. Thromboelastography showed that initially fibrinogen nitrotyrosination retarded clot formation but later made the clot more resistant to fibrinolysis. This result was independent of any effect on thrombin production. Immunofluorescence analysis of affected human brain areas also showed that both fibrinogen and nitrotyrosinated fibrinogen spread into the brain parenchyma after ischemic stroke. Therefore, we assayed the toxicity of fibrinogen and nitrotyrosinated fibrinogen in a human neuroblastoma cell line. For that purpose we measured the activity of caspase-3, a key enzyme in the apoptotic pathway, and cell survival. We found that nitrotyrosinated fibrinogen induced higher activation of caspase 3. Accordingly, cell survival assays showed a more neurotoxic effect of nitrotyrosinated fibrinogen at all concentrations tested. In summary, nitrotyrosinated fibrinogen would be of pathophysiological interest in ischemic stroke due to both its impact on hemostasis - it impairs thrombolysis, the main target in stroke treatments - and its neurotoxicity that would contribute to the death of the brain tissue surrounding the infarcted area.

  2. XBP1 mitigates aminoglycoside-induced endoplasmic reticulum stress and neuronal cell death

    PubMed Central

    Oishi, N; Duscha, S; Boukari, H; Meyer, M; Xie, J; Wei, G; Schrepfer, T; Roschitzki, B; Boettger, E C; Schacht, J

    2015-01-01

    Here we study links between aminoglycoside-induced mistranslation, protein misfolding and neuropathy. We demonstrate that aminoglycosides induce misreading in mammalian cells and assess endoplasmic reticulum (ER) stress and unfolded protein response (UPR) pathways. Genome-wide transcriptome and proteome analyses revealed upregulation of genes related to protein folding and degradation. Quantitative PCR confirmed induction of UPR markers including C/EBP homologous protein, glucose-regulated protein 94, binding immunoglobulin protein and X-box binding protein-1 (XBP1) mRNA splicing, which is crucial for UPR activation. We studied the effect of a compromised UPR on aminoglycoside ototoxicity in haploinsufficient XBP1 (XBP1+/−) mice. Intra-tympanic aminoglycoside treatment caused high-frequency hearing loss in XBP1+/− mice but not in wild-type littermates. Densities of spiral ganglion cells and synaptic ribbons were decreased in gentamicin-treated XBP1+/− mice, while sensory cells were preserved. Co-injection of the chemical chaperone tauroursodeoxycholic acid attenuated hearing loss. These results suggest that aminoglycoside-induced ER stress and cell death in spiral ganglion neurons is mitigated by XBP1, masking aminoglycoside neurotoxicity at the organismal level. PMID:25973683

  3. Hijacking microglial glutathione by inorganic arsenic impels bystander death of immature neurons through extracellular cystine/glutamate imbalance

    PubMed Central

    Singh, Vikas; Gera, Ruchi; Kushwaha, Rajesh; Sharma, Anuj Kumar; Patnaik, Satyakam; Ghosh, Debabrata

    2016-01-01

    Arsenic-induced altered microglial activity leads to neuronal death, but the causative mechanism remains unclear. The present study showed, arsenic-exposed (10 μM) microglial (N9) culture supernatant induced bystander death of neuro-2a (N2a), which was further validated with primary microglia and immature neuronal cultures. Results indicated that arsenic-induced GSH synthesis by N9 unfavorably modified the extracellular milieu for N2a by lowering cystine and increasing glutamate concentration. Similar result was observed in N9-N2a co-culture. Co-exposure of arsenic and 250 μM glutamate, less than the level (265 μM) detected in arsenic-exposed N9 culture supernatant, compromised N2a viability which was rescued by cystine supplementation. Therefore, microglia executes bystander N2a death by competitive inhibition of system Xc- (xCT) through extracellular cystine/glutamate imbalance. We confirmed the role of xCT in mediating bystander N2a death by siRNA inhibition studies. Ex-vivo primary microglia culture supernatant from gestationally exposed mice measured to contain lower cystine and higher glutamate compared to control and N-acetyl cysteine co-treated group. Immunofluorescence staining of brain cryosections from treated group showed more dead immature neurons with no such effect on microglia. Collectively, we showed, in presence of arsenic microglia alters cystine/glutamate balance through xCT in extracellular milieu leading to bystander death of immature neurons. PMID:27477106

  4. Pre-B-cell colony-enhancing factor protects against apoptotic neuronal death and mitochondrial damage in ischemia

    PubMed Central

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2016-01-01

    We previously demonstrated that Pre-B-cell colony-enhancing factor (PBEF), also known as nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in mammalian NAD+ biosynthesis pathway, plays a brain and neuronal protective role in ischemic stroke. In this study, we further investigated the mechanism of its neuroprotective effect after ischemia in the primary cultured mouse cortical neurons. Using apoptotic cell death assay, fluorescent imaging, molecular biology, mitochondrial biogenesis measurements and Western blotting analysis, our results show that the overexpression of PBEF in neurons can significantly promote neuronal survival, reduce the translocation of apoptosis inducing factor (AIF) from mitochondria to nuclei and inhibit the activation of capase-3 after glutamate-induced excitotoxicity. We further found that the overexpression of PBEF can suppress glutamate-induced mitochondrial fragmentation, the loss of mitochondrial DNA (mtDNA) content and the reduction of PGC-1 and NRF-1 expressions. Furthermore, these beneficial effects by PBEF are dependent on its enzymatic activity of NAD+ synthesis. In summary, our study demonstrated that PBEF ameliorates ischemia-induced neuronal death through inhibiting caspase-dependent and independent apoptotic signaling pathways and suppressing mitochondrial damage and dysfunction. Our study provides novel insights into the mechanisms underlying the neuroprotective effect of PBEF, and helps to identify potential targets for ischemic stroke therapy. PMID:27576732

  5. Time-course of neuronal death in the mouse pilocarpine model of chronic epilepsy using Fluoro-Jade C staining.

    PubMed

    Wang, Lian; Liu, Yong-Hong; Huang, Yuan-Gui; Chen, Liang-Wei

    2008-11-19

    Epilepsy is a serious neurological disorder in human beings and the long-term pathological events remain largely obscure. We are interested in elucidating long-term brain injury that may occur in the temporal lobe epilepsy, and time-course of neuronal death was examined in a mouse pilocarpine model of chronic epilepsy by Fluoro-Jade C (FJC) dye that can specifically stain the degenerative neurons in the central nervous system. The FJC stain combined with immunohistochemistry to neuronal nuclear specific protein revealed that pilocarpine-induced status epilepticus (SE) resulted in massive degenerative death of neuronal cells in brains with their dense distribution in the cerebral cortex and hippocampus. The FJC-positive degenerating neurons, most of them also expressed apoptosis signaling molecules such as caspase-9 and activated caspase-3, occurred at 4h, increased into peak levels at 12h-3d, and then gradually went down at 7d-14d after onset of SE. More interestingly, a large percentage (about 88%) of FJC-positive degenerative neurons were GABAergic as indicated with their immunoreactivity to glutamic acid decarboxylase-67, implying that inhibitory function of GABAergic neural system might by seriously damaged in brains subject to SE attack in this mouse pilocarpine model. Taken together with previous studies, time-course of degenerative neurons in the mouse pilocarpine model by Fluoro-Jade C staining further benefits understanding of long-term brain pathological changes and recurrent seizure mechanism, and may also result in finding the most suitable time-window in therapeutic manipulation of the chronic epilepsy in human beings.

  6. Fragile X mental retardation protein is required for programmed cell death and clearance of developmentally-transient peptidergic neurons.

    PubMed

    Gatto, Cheryl L; Broadie, Kendal

    2011-08-15

    Fragile X syndrome (FXS), caused by loss of fragile X mental retardation 1 (FMR1) gene function, is the most common heritable cause of intellectual disability and autism spectrum disorders. The FMR1 product (FMRP) is an RNA-binding protein best established to function in activity-dependent modulation of synaptic connections. In the Drosophila FXS disease model, loss of functionally-conserved dFMRP causes synaptic overgrowth and overelaboration in pigment dispersing factor (PDF) peptidergic neurons in the adult brain. Here, we identify a very different component of PDF neuron misregulation in dfmr1 mutants: the aberrant retention of normally developmentally-transient PDF tritocerebral (PDF-TRI) neurons. In wild-type animals, PDF-TRI neurons in the central brain undergo programmed cell death and complete, processive clearance within days of eclosion. In the absence of dFMRP, a defective apoptotic program leads to constitutive maintenance of these peptidergic neurons. We tested whether this apoptotic defect is circuit-specific by examining crustacean cardioactive peptide (CCAP) and bursicon circuits, which are similarly developmentally-transient and normally eliminated immediately post-eclosion. In dfmr1 null mutants, CCAP/bursicon neurons also exhibit significantly delayed clearance dynamics, but are subsequently eliminated from the nervous system, in contrast to the fully persistent PDF-TRI neurons. Thus, the requirement of dFMRP for the retention of transitory peptidergic neurons shows evident circuit specificity. The novel defect of impaired apoptosis and aberrant neuron persistence in the Drosophila FXS model suggests an entirely new level of "pruning" dysfunction may contribute to the FXS disease state.

  7. GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte–neuron interactions

    PubMed Central

    L'Episcopo, F; Drouin-Ouellet, J; Tirolo, C; Pulvirenti, A; Giugno, R; Testa, N; Caniglia, S; Serapide, M F; Cisbani, G; Barker, R A; Cicchetti, F; Marchetti, B

    2016-01-01

    Glycogen synthase kinase-3β (GSK-3β) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3β expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2–4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3β were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3β mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3β-Tyr216 being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3β-Tyr216 was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3β in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3β in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3β as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD. PMID:27124580

  8. Neuronal Cell Death Induced by Mechanical Percussion Trauma in Cultured Neurons is not Preceded by Alterations in Glucose, Lactate and Glutamine Metabolism

    PubMed Central

    Jayakumar, A. R.; Bak, L. K.; Rama Rao, K. V.; Waagepetersen, H.S.; Schousboe, A.; Norenberg, M.D.

    2016-01-01

    Traumatic brain injury (TBI) is a devastating neurological disorder that usually presents in acute and chronic forms. Brain edema and associated increased intracranial pressure in the early phase following TBI are major consequences of acute trauma. On the other hand, neuronal injury, leading to neurobehavioral and cognitive impairments, that usually develop months to years after single or repetitive episodes of head trauma, are major consequences of chronic TBI. The molecular mechanisms responsible for TBI-induced injury, however, are unclear. Recent studies have suggested that early mitochondrial dysfunction and subsequent energy failure play a role in the pathogenesis of TBI. We therefore examined whether oxidative metabolism of 13C-labeled glucose, lactate or glutamine is altered early following in vitro mechanical percussion-induced trauma (5 atm) to neurons (4–24 h), and whether such events contribute to the development of neuronal injury. Cell viability was assayed using the release of the cytoplasmic enzyme lactate dehydrogenase (LDH), together with fluorescence-based cell staining (calcein and ethidium homodimer-1 for live and dead cells, respectively). Trauma had no effect on the LDH release in neurons from 1 h to 18 h. However, a significant increase in LDH release was detected at 24 h after trauma. Similar findings were identified when traumatized neurons were stained with fluorescent markers. Additionally 13C-labeling of glutamate showed a small, but statistically significant decrease at 14 h after trauma. However, trauma had no effect on the cycling ratio of the TCA cycle at any time-period examined. These findings indicate that trauma does not cause a disturbance in oxidative metabolism of any of the substrates used for neurons. Accordingly, such metabolic disturbance does not appear to contribute to the neuronal death in the early stages following trauma. PMID:26729365

  9. Exacerbation of excitotoxic neuronal death induced during mitochondrial inhibition in vivo: relation to energy imbalance or ATP depletion?

    PubMed

    Del Río, P; Montiel, T; Chagoya, V; Massieu, L

    2007-06-08

    During the past two decades a close relationship between the energy state of the cell and glutamate neurotoxicity has been suggested. We have previously shown that increasing the extracellular concentration of glutamate does not cause neuronal death unless a deficit in energy metabolism occurs. The mechanisms of glutamate-induced neuronal death have been extensively studied in vitro and it has been associated with a rapid and severe decrease in ATP levels, accompanied with mitochondrial dysfunction. In this study we aimed to investigate the time course of the changes in energy metabolites during glutamate-induced neuronal death, in the presence of a moderate inhibition of mitochondrial metabolism in the rat striatum in vivo. We also aimed to study whether or not, as reported in vitro, changes in ATP levels are related to the extension of neuronal death. Results show that glutamate-induced lesions are exacerbated when rats are previously treated with a subtoxic dose of the mitochondrial toxin 3-nitropropionic acid (3-NP). However, changes in nucleotide levels were similar in rats injected with glutamate alone and in rats injected with glutamate and previously treated with 3-NP. In spite of the presence of an extensive striatal lesion, nucleotide levels were recovered in 3-NP-treated rats 24 h after glutamate injection. Results show that 3-NP pre-treatment induced an imbalance in nucleotide levels that predisposed cells to glutamate toxicity; however it did not influence the bioenergetic changes induced by glutamate alone. Enhancement of glutamate neurotoxicity in 3-NP pre-treated rats is more related to a sustained nucleotide imbalance than just to a rapid decrease in ATP levels.

  10. Altered Mitochondrial Dynamics Contributes to Propofol-Induced Cell Death in Human Stem Cell-Derived Neurons

    PubMed Central

    Twaroski, Danielle M.; Yan, Yasheng; Zaja, Ivan; Clark, Eric; Bosnjak, Zeljko J.; Bai, Xiaowen

    2015-01-01

    Background Studies in developing animals have shown that when anesthetic agents are administered early in life, it can lead to neuronal cell death and learning disabilities. Development of human embryonic stem cell (hESC)-derived neurons has provided a valuable tool for understanding the effects of anesthetics on developing human neurons. Unbalanced mitochondrial fusion/fission leads to various pathological conditions including neurodegeneration. The aim of this study was to dissect the role of mitochondrial dynamics in propofol-induced neurotoxicity. Methods TUNEL staining was used to assess cell death in hESC-derived neurons. Mitochondrial fission was assessed using TOM20 staining and electron microscopy. Expression of mitochondrial fission-related proteins was assessed by Western blot and confocal microscopy was used to assess opening time of the mitochondrial permeability transition pore (mPTP). Results Exposure to 6 hours of 20 μg/mL propofol increased cell death from 3.18±0.17% in the control-treated group to 9.6±0.95% and led to detrimental increases in mitochondrial fission (n=5 coverslips/group) accompanied by increased expression of activated dynamin-related protein 1 (Drp1) and cyclin-dependent kinase 1 (CDK1), key proteins responsible for mitochondrial fission. Propofol exposure also induced earlier opening of the mPTP from 118.9±3.1 seconds in the control-treated group to 73.3±1.6 seconds. Pretreatment of the cells with mdivi-1, a mitochondrial fission blocker rescued the propofol-induced toxicity, mitochondrial fission and mPTP opening time (n=75 cells/group). Inhibiting CDK1 attenuated the increase in cell death and fission and the increase in expression of activated Drp1. Conclusions These data demonstrate for the first time that propofol-induced neurotoxicity occurs through a mitochondrial fission/mPTP-mediated pathway. PMID:26352374

  11. TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia

    PubMed Central

    Ye, M; Yang, W; Ainscough, J F; Hu, X-P; Li, X; Sedo, A; Zhang, X-H; Zhang, X; Chen, Z; Li, X-M; Beech, D J; Sivaprasadarao, A; Luo, J-H; Jiang, L-H

    2014-01-01

    Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn2+ level ([Zn2+]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia–reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [Zn2+]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [Zn2+]c but abolished the cytosolic Zn2+ accumulation during reperfusion as well as ROS-elicited increases in the [Zn2+]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [Zn2+]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury. PMID:25429618

  12. NMDA-Receptors Are Involved in Cu2+/Paraquat-Induced Death of Cultured Cerebellar Granule Neurons.

    PubMed

    Stelmashook, E V; Genrikhs, E E; Aleksandrova, O P; Amelkina, G A; Zelenova, E A; Isaev, N K

    2016-08-01

    Rat cultured cerebellar granule neurons (CGNs) were not sensitive to CuCl2 (1-10 µM, 24 h), whereas paraquat (150 µM) decreased neuronal survival to 79 ± 3% of control level. Simultaneous treatment of CGNs with paraquat and CuCl2 (2, 5, or 10 µM Cu2+/paraquat) caused significant copper dose-dependent death, lowering their survival to 56 ± 4, 37 ± 3, or 16 ± 2%, respectively, and stimulating elevated production of free radicals in CGNs. Introduction of vitamin E, a non-competitive antagonist of NMDA subtype of glutamate receptors (MK-801), and also removal of glutamine from the incubation medium decreased toxicity of Cu2+/paraquat mixture. However, addition of Cu2+ into the incubation medium did not affect CGNs death caused by glutamate. These data emphasize that excessive copper in the brain may trigger oxidative stress, which in turn results in release of glutamate, overstimulation of glutamate receptors, and neuronal death.

  13. A Cytotoxic, Co-operative Interaction Between Energy Deprivation and Glutamate Release From System xc− Mediates Aglycemic Neuronal Cell Death

    PubMed Central

    Thorn, Trista L.; He, Yan; Jackman, Nicole A.; Lobner, Doug; Hewett, James A.

    2015-01-01

    The astrocyte cystine/glutamate antiporter (system xc−) contributes substantially to the excitotoxic neuronal cell death facilitated by glucose deprivation. The purpose of this study was to determine the mechanism by which this occurred. Using pure astrocyte cultures, as well as, mixed cortical cell cultures containing both neurons and astrocytes, we found that neither an enhancement in system xc− expression nor activity underlies the excitotoxic effects of aglycemia. In addition, using three separate bioassays, we demonstrate no change in the ability of glucose-deprived astrocytes—either cultured alone or with neurons—to remove glutamate from the extracellular space. Instead, we demonstrate that glucose-deprived cultures are 2 to 3 times more sensitive to the killing effects of glutamate or N-methyl-D-aspartate when compared with their glucose-containing controls. Hence, our results are consistent with the weak excitotoxic hypothesis such that a bioenergetic deficiency, which is measureable in our mixed but not astrocyte cultures, allows normally innocuous concentrations of glutamate to become excitotoxic. Adding to the burgeoning literature detailing the contribution of astrocytes to neuronal injury, we conclude that under our experimental paradigm, a cytotoxic, co-operative interaction between energy deprivation and glutamate release from astrocyte system xc− mediates aglycemic neuronal cell death. PMID:26553727

  14. Microglial AGE-albumin is critical for neuronal death in Parkinson’s disease: a possible implication for theranostics

    PubMed Central

    Bayarsaikhan, Enkhjargal; Bayarsaikhan, Delger; Lee, Jaesuk; Son, Myeongjoo; Oh, Seyeon; Moon, Jeongsik; Park, Hye-Jeong; Roshini, Arivazhagan; Kim, Seung U; Song, Byoung-Joon; Jo, Seung-Mook; Byun, Kyunghee; Lee, Bonghee

    2015-01-01

    Advanced glycation end products (AGEs) are known to play an important role in the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD), by inducing protein aggregation and cross-link, formation of Lewy body, and neuronal death. In this study, we observed that AGE-albumin, the most abundant AGE product in the human PD brain, is synthesized in activated microglial cells and accumulates in the extracellular space. AGE-albumin synthesis in human-activated microglial cells is distinctly inhibited by ascorbic acid and cytochalasin treatment. Accumulated AGE-albumin upregulates the receptor to AGE, leading to apoptosis of human primary dopamine (DA) neurons. In animal experiments, we observed reduced DA neuronal cell death by treatment with soluble receptor to AGE. Our study provides evidence that activated microglial cells are one of the main contributors in AGE-albumin accumulation, deleterious to DA neurons in human and animal PD brains. Finally, activated microglial AGE-albumin could be used as a diagnostic and therapeutic biomarker with high sensitivity for neurodegenerative disorders, including PD. PMID:27601894

  15. Stress-induced nuclear translocation of CDK5 suppresses neuronal death by downregulating ERK activation via VRK3 phosphorylation

    PubMed Central

    Song, Haengjin; Kim, Wanil; Choi, Jung-Hyun; Kim, Sung-Hoon; Lee, Dohyun; Park, Choon-Ho; Kim, Sangjune; Kim, Do-Yeon; Kim, Kyong-Tai

    2016-01-01

    Although extracellular signal-related kinase 1/2 (ERK 1/2) activity is generally associated with cell survival, prolonged ERK activation induced by oxidative stress also mediates neuronal cell death. Here we report that oxidative stress-induced cyclin-dependent kinase 5 (CDK5) activation stimulates neuroprotective signaling via phosphorylation of vaccinia-related kinase 3 (VRK3) at Ser 108. The binding of vaccinia H1-related (VHR) phosphatase to phosphorylated VRK3 increased its affinity for phospho-ERK and subsequently downregulated ERK activation. Overexpression of VRK3 protected human neuroblastoma SH-SY5Y cells against hydrogen peroxide (H2O2)-induced apoptosis. However the CDK5 was unable to phosphorylate mutant VRK3, and thus the mutant forms of VRK3 could not attenuate apoptotic process. Suppression of CDK5 activity results in increase of ERK activation and elevation of proapoptotic protein Bak expression in mouse cortical neurons. Results from VRK3-deficient neurons were further confirmed the role of VRK3 phosphorylation in H2O2-evoked ERK regulation. Importantly, we showed an association between phospho-VRK3 levels and the progression of human Alzheimer’s disease (AD) and Parkinson’s disease (PD). Together our work reveals endogenous protective mechanism against oxidative stress-induced neuronal cell death and suggest VRK3 as a potential therapeutic target in neurodegenerative diseases. PMID:27346674

  16. The Alteration of Neonatal Raphe Neurons by Prenatal-Perinatal Nicotine. Meaning for Sudden Infant Death Syndrome.

    PubMed

    Cerpa, Verónica J; Aylwin, María de la Luz O; Beltrán-Castillo, Sebastián; Bravo, Eduardo U; Llona, Isabel R; Richerson, George B; Eugenín, Jaime L

    2015-10-01

    Nicotine may link maternal cigarette smoking with respiratory dysfunctions in sudden infant death syndrome (SIDS). Prenatal-perinatal nicotine exposure blunts ventilatory responses to hypercapnia and reduces central respiratory chemoreception in mouse neonates at Postnatal Days 0 (P0) to P3. This suggests that raphe neurons, which are altered in SIDS and contribute to central respiratory chemoreception, may be affected by nicotine. We therefore investigated whether prenatal-perinatal nicotine exposure affects the activity, electrical properties, and chemosensitivity of raphe obscurus (ROb) neurons in mouse neonates. Osmotic minipumps, implanted subcutaneously in 5- to 7-day-pregnant CF1 mice, delivered nicotine bitartrate (60 mg kg(-1) d(-1)) or saline (control) for up to 28 days. In neonates, ventilation was recorded by head-out plethysmography, c-Fos (neuronal activity marker), or serotonin autoreceptors (5HT1AR) were immunodetected using light microscopy, and patch-clamp recordings were made from raphe neurons in brainstem slices under normocarbia and hypercarbia. Prenatal-perinatal nicotine exposure decreased the hypercarbia-induced ventilatory responses at P1-P5, reduced both the number of c-Fos-positive ROb neurons during eucapnic normoxia at P1-P3 and their hypercapnia-induced recruitment at P3, increased 5HT1AR immunolabeling of ROb neurons at P3-P5, and reduced the spontaneous firing frequency of ROb neurons at P3 without affecting their CO2 sensitivity or their passive and active electrical properties. These findings reveal that prenatal-perinatal nicotine reduces the activity of neonatal ROb neurons, likely as a consequence of increased expression of 5HT1ARs. This hypoactivity may change the functional state of the respiratory neural network leading to breathing vulnerability and chemosensory failure as seen in SIDS.

  17. Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson's Disease

    PubMed Central

    Deas, Emma; Cremades, Nunilo; Angelova, Plamena R.; Ludtmann, Marthe H.R.; Yao, Zhi; Chen, Serene; Horrocks, Mathew H.; Banushi, Blerida; Little, Daniel; Devine, Michael J.; Gissen, Paul; Klenerman, David; Dobson, Christopher M.; Wood, Nicholas W.

    2016-01-01

    Abstract Aims: Protein aggregation and oxidative stress are both key pathogenic processes in Parkinson's disease, although the mechanism by which misfolded proteins induce oxidative stress and neuronal death remains unknown. In this study, we describe how aggregation of alpha-synuclein (α-S) from its monomeric form to its soluble oligomeric state results in aberrant free radical production and neuronal toxicity. Results: We first demonstrate excessive free radical production in a human induced pluripotent stem-derived α-S triplication model at basal levels and on application of picomolar doses of β-sheet-rich α-S oligomers. We probed the effects of different structural species of α-S in wild-type rat neuronal cultures and show that both oligomeric and fibrillar forms of α-S are capable of generating free radical production, but that only the oligomeric form results in reduction of endogenous glutathione and subsequent neuronal toxicity. We dissected the mechanism of oligomer-induced free radical production and found that it was interestingly independent of several known cellular enzymatic sources. Innovation: The oligomer-induced reactive oxygen species (ROS) production was entirely dependent on the presence of free metal ions as addition of metal chelators was able to block oligomer-induced ROS production and prevent oligomer-induced neuronal death. Conclusion: Our findings further support the causative role of soluble amyloid oligomers in triggering neurodegeneration and shed light into the mechanisms by which these species cause neuronal damage, which, we show here, can be amenable to modulation through the use of metal chelation. Antioxid. Redox Signal. 24, 376–391. PMID:26564470

  18. Distribution of corticospinal motor neurons in the postnatal rat: quantitative evidence for massive collateral elimination and modest cell death.

    PubMed

    Oudega, M; Varon, S; Hagg, T

    1994-09-01

    The postnatal development of rat corticospinal motor neurons (CSMN) was studied by retrograde tracing with cholera toxin B subunit (CTB) injected into the upper cervical dorsal spinal cord on the first postnatal day (P0), P3, P10, P20, and at adulthood. CTB-labeled neurons were visualized by immunocytochemistry and extensively quantified throughout the cortex. At P0, CSMN were found to an extent similar to that reported in P3 animals with other neuronal tracers, now permitting in vitro studies of neonatal CSMN. Between P0 and P3, the number of labeled neurons increased by 30% to a total maximum of approximately 185,000 in both cortices. The increase occurred throughout the cortex. At P10, the number of labeled CSMN had decreased to 60% of the number at P3. Fewer CSMN were evident particularly in the perirhinal cortex. Between P10 and P20, the number of CSMN decreased further to 52% of the maximal number at P3. This decrease occurred predominantly in the cingulate and parietal cortex. The number of labeled CSMN in rats injected at P0 and analyzed at P20 was 10% lower than the number in P0-injected littermates that were analyzed at P3, which suggests that only a small portion of the "disappearing" CSMN undergoes developmental neuronal death. Thus, the spinal projection of the remaining 38% is apparently eliminated between P3 and P20. Detailed quantitative analysis of the CSMN distribution demonstrated that neuronal death occurs predominantly in the perirhinal cortex. In contrast, axonal elimination of corticospinal projections occurred throughout the CSMN field, i.e., primarily in the frontal, occipital, and perirhinal cortex between P3-P10 and in the cingulate and parietal cortex between P10-P20.

  19. Reduced calcium binding protein immunoreactivity induced by electroconvulsive shock indicates neuronal hyperactivity, not neuronal death or deactivation.

    PubMed

    Kim, J-E; Kwak, S-E; Kim, D-S; Won, M H; Kwon, O-S; Choi, S-Y; Kang, T-C

    2006-01-01

    Calcium-binding proteins (CBPs), such as parvalbumin and calbindin D-28k, are useful markers of specific neuronal types in the CNS. In recent studies, expression of CBPs may be indicative of a deactivated neuronal state, particularly epilepsy. However, it is controversial whether altered expression of CBPs in the hippocampus practically indicate neuronal activity. Therefore, the present study was performed to investigate the extent of profiles of expression of CBPs in the rat hippocampus affected by several episodes induced by electroconvulsive shock. In the present study, following electroconvulsive shock expression of CBPs were reduced in the hippocampus in a stimulus-dependent manner, and recovered to the control level at 6 h after electroconvulsive shock. However, paired-pulse responses of the dentate gyrus were transiently impaired by electroconvulsive shock, and immediately normalized to baseline value. In addition, effects of electroconvulsive shock on expression of CBPs and paired-pulse responses were prevented by pretreatment of vigabatrin. These findings suggest that reduced expression of CBPs induced by seizure activity may be indicative of hyperactivity of CBP positive neurons, which is a practical consequence of the abnormal discharge, and that they may play an important role in regulating seizure activity.

  20. Underediting of GluR2 mRNA, a neuronal death inducing molecular change in sporadic ALS, does not occur in motor neurons in ALS1 or SBMA.

    PubMed

    Kawahara, Yukio; Sun, Hui; Ito, Kyoko; Hideyama, Takuto; Aoki, Masashi; Sobue, Gen; Tsuji, Shoji; Kwak, Shin

    2006-01-01

    Deficient RNA editing of the AMPA receptor subunit GluR2 at the Q/R site is a primary cause of neuronal death and recently has been reported to be a tightly linked etiological cause of motor neuron death in sporadic amyotrophic lateral sclerosis (ALS). We quantified the RNA editing efficiency of the GluR2 Q/R site in single motor neurons of rats transgenic for mutant human Cu/Zn-superoxide dismutase (SOD1) as well as patients with spinal and bulbar muscular atrophy (SBMA), and found that GluR2 mRNA was completely edited in all the motor neurons examined. It seems likely that the death cascade is different among the dying motor neurons in sporadic ALS, familial ALS with mutant SOD1 and SBMA.

  1. Ascorbate prevents cell death from prolonged exposure to glutamate in an in vitro model of human dopaminergic neurons.

    PubMed

    Ballaz, Santiago; Morales, Ingrid; Rodríguez, Manuel; Obeso, José A

    2013-12-01

    Ascorbate (vitamin C) is a nonenzymatic antioxidant highly concentrated in the brain. In addition to mediating redox balance, ascorbate is linked to glutamate neurotransmission in the striatum, where it renders neuroprotection against excessive glutamate stimulation. Oxidative stress and glutamatergic overactivity are key biochemical features accompanying the loss of dopaminergic neurons in the substantia nigra that characterizes Parkinson's disease (PD). At present, it is not clear whether antiglutamate agents and ascorbate might be neuroprotective agents for PD. Thus, we tested whether ascorbate can prevent cell death from prolonged exposure to glutamate using dopaminergic neurons of human origin. To this purpose, dopamine-like neurons were obtained by differentiation of SH-SY5Y cells and then cultured for 4 days without antioxidant (antiaging) protection to evaluate glutamate toxicity and ascorbate protection as a model system of potential factors contributing to dopaminergic neuron death in PD. Glutamate dose dependently induced toxicity in dopaminergic cells largely by the stimulation of AMPA and metabotropic receptors and to a lesser extent by N-methyl-D-aspartate and kainate receptors. At relatively physiological levels of extracellular concentration, ascorbate protected cells against glutamate excitotoxicity. This neuroprotection apparently relies on the inhibition of oxidative stress, because ascorbate prevented the pro-oxidant action of the scavenging molecule quercetin, which occurred over the course of prolonged exposure, as is also seen with glutamate. Our findings show the relevance of ascorbate as a neuroprotective agent and emphasize an often underappreciated role of oxidative stress in glutamate excitotoxicity. Occurrence of a glutamate-ascorbate link in dopaminergic neurons may explain previous contradictions regarding their putative role in PD.

  2. NRA-2, a nicalin homolog, regulates neuronal death by controlling surface localization of toxic Caenorhabditis elegans DEG/ENaC channels.

    PubMed

    Kamat, Shaunak; Yeola, Shrutika; Zhang, Wenying; Bianchi, Laura; Driscoll, Monica

    2014-04-25

    Hyperactivated DEG/ENaCs induce neuronal death through excessive cation influx and disruption of intracellular calcium homeostasis. Caenorhabditis elegans DEG/ENaC MEC-4 is hyperactivated by the (d) mutation and induces death of touch neurons. The analogous substitution in MEC-10 (MEC-10(d)) co-expressed in the same neurons is only mildly neurotoxic. We exploited the lower toxicity of MEC-10(d) to identify RNAi knockdowns that enhance neuronal death. We report here that knock-out of the C. elegans nicalin homolog NRA-2 enhances MEC-10(d)-induced neuronal death. Cell biological assays in C. elegans neurons show that NRA-2 controls the distribution of MEC-10(d) between the endoplasmic reticulum and the cell surface. Electrophysiological experiments in Xenopus oocytes support this notion and suggest that control of channel distribution by NRA-2 is dependent on the subunit composition. We propose that nicalin/NRA-2 functions in a quality control mechanism to retain mutant channels in the endoplasmic reticulum, influencing the extent of neuronal death. Mammalian nicalin may have a similar role in DEG/ENaC biology, therefore influencing pathological conditions like ischemia.

  3. NRA-2, a Nicalin Homolog, Regulates Neuronal Death by Controlling Surface Localization of Toxic Caenorhabditis elegans DEG/ENaC Channels*

    PubMed Central

    Kamat, Shaunak; Yeola, Shrutika; Zhang, Wenying; Bianchi, Laura; Driscoll, Monica

    2014-01-01

    Hyperactivated DEG/ENaCs induce neuronal death through excessive cation influx and disruption of intracellular calcium homeostasis. Caenorhabditis elegans DEG/ENaC MEC-4 is hyperactivated by the (d) mutation and induces death of touch neurons. The analogous substitution in MEC-10 (MEC-10(d)) co-expressed in the same neurons is only mildly neurotoxic. We exploited the lower toxicity of MEC-10(d) to identify RNAi knockdowns that enhance neuronal death. We report here that knock-out of the C. elegans nicalin homolog NRA-2 enhances MEC-10(d)-induced neuronal death. Cell biological assays in C. elegans neurons show that NRA-2 controls the distribution of MEC-10(d) between the endoplasmic reticulum and the cell surface. Electrophysiological experiments in Xenopus oocytes support this notion and suggest that control of channel distribution by NRA-2 is dependent on the subunit composition. We propose that nicalin/NRA-2 functions in a quality control mechanism to retain mutant channels in the endoplasmic reticulum, influencing the extent of neuronal death. Mammalian nicalin may have a similar role in DEG/ENaC biology, therefore influencing pathological conditions like ischemia. PMID:24567339

  4. Inhibition of autophagy via activation of PI3K/Akt pathway contributes to the protection of ginsenoside Rb1 against neuronal death caused by ischemic insults.

    PubMed

    Luo, Tianfei; Liu, Guiying; Ma, Hongxi; Lu, Bin; Xu, Haiyang; Wang, Yujing; Wu, Jiang; Ge, Pengfei; Liang, Jianmin

    2014-09-01

    Lethal autophagy is a pathway leading to neuronal death caused by transient global ischemia. In this study, we examined the effect of Ginsenoside Rb1 (GRb1) on ischemia/reperfusion-induced autophagic neuronal death and investigated the role of PI3K/Akt. Ischemic neuronal death in vitro was induced by using oxygen glucose deprivation (OGD) in SH-SY5Y cells, and transient global ischemia was produced by using two vessels occlusion in rats. Cellular viability of SH-SY5Y cells was assessed by MTT assay, and CA1 neuronal death was evaluated by Hematoxylin-eosin staining. Autophagic vacuoles were detected by using both fluorescent microscopy in combination with acridine orange (AO) and Monodansylcadaverine (MDC) staining and transmission electronic microscopy. Protein levels of LC3II, Beclin1, total Akt and phosphor-Akt at Ser473 were examined by western blotting analysis. GRb1 inhibited both OGD and transient ischemia-induced neuronal death and mitigated OGD-induced autophagic vacuoles in SH-SY5Y cells. By contrast, PI3K inhibitor LY294002 counteracted the protection of GRb1 against neuronal death caused by either OGD or transient ischemia. LY294002 not only mitigated the up-regulated protein level of phosphor Akt at Ser473 caused by GRb1, but also reversed the inhibitory effect of GRb1 on OGD and transient ischemia-induced elevation in protein levels of LC3II and Beclin1.

  5. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    SciTech Connect

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H.; Mattson, Mark P.; Camandola, Simonetta

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  6. Involvement of cyclin D1/CDK4 and pRb mediated by PI3K/AKT pathway activation in Pb{sup 2+}-induced neuronal death in cultured hippocampal neurons

    SciTech Connect

    Li Chenchen Xing Tairan Tang Mingliang Yong Wu Yan Dan Deng Hongmin Wang Huili Wang Ming Chen Jutao Ruan Diyun

    2008-06-15

    Lead (Pb) is widely recognized as a neurotoxicant. One of the suggested mechanisms of lead neurotoxicity is apoptotic cell death. And the mechanism by which Pb{sup 2+} causes neuronal death is not well understood. The present study sought to examine the obligate nature of cyclin D1/cyclin-dependent kinase 4 (CDK4), phosphorylation of its substrate retinoblastoma protein (pRb) and its select upstream signal phosphoinositide 3-kinase (PI3K)/AKT pathway in the death of primary cultured rat hippocampal neurons evoked by Pb{sup 2+}. Our data showed that lead treatment of primary hippocampal cultures results in dose-dependent cell death. Inhibition of CDK4 prevented Pb{sup 2+}-induced neuronal death significantly but was incomplete. In addition, we demonstrated that the levels of cyclin D1 and pRb/p107 were increased during Pb{sup 2+} treatment. These elevated expression persisted up to 48 h, returning to control levels after 72 h. We also presented pharmacological and morphological evidences that cyclin D1/CDK4 and pRb/p107 were required for such kind of neuronal death. Addition of the PI3K inhibitor LY294002 (30 {mu}M) or wortmannin (100 nM) significantly rescued the cultured hippocampal neurons from death caused by Pb{sup 2+}. And that Pb{sup 2+}-elicited phospho-AKT (Ser473) participated in the induction of cyclin D1 and partial pRb/p107 expression. These results provide evidences that cell cycle elements play a required role in the death of neurons evoked by Pb{sup 2+} and suggest that certain signaling elements upstream of cyclin D1/CDK4 are modified and/or required for this form of neuronal death.

  7. HDAC2 selectively regulates FOXO3a-mediated gene transcription during oxidative stress-induced neuronal cell death.

    PubMed

    Peng, Shengyi; Zhao, Siqi; Yan, Feng; Cheng, Jinbo; Huang, Li; Chen, Hong; Liu, Qingsong; Ji, Xunming; Yuan, Zengqiang

    2015-01-21

    All neurodegenerative diseases are associated with oxidative stress-induced neuronal death. Forkhead box O3a (FOXO3a) is a key transcription factor involved in neuronal apoptosis. However, how FOXO3a forms complexes and functions in oxidative stress processing remains largely unknown. In the present study, we show that histone deacetylase 2 (HDAC2) forms a physical complex with FOXO3a, which plays an important role in FOXO3a-dependent gene transcription and oxidative stress-induced mouse cerebellar granule neuron (CGN) apoptosis. Interestingly, we also found that HDAC2 became selectively enriched in the promoter region of the p21 gene, but not those of other target genes, and inhibited FOXO3a-mediated p21 transcription. Furthermore, we found that oxidative stress reduced the interaction between FOXO3a and HDAC2, leading to an increased histone H4K16 acetylation level in the p21 promoter region and upregulated p21 expression in a manner independent of p53 or E2F1. Phosphorylation of HDAC2 at Ser 394 is important for the HDAC2-FOXO3a interaction, and we found that cerebral ischemia/reperfusion reduced phosphorylation of HDAC2 at Ser 394 and mitigated the HDAC2-FOXO3a interaction in mouse brain tissue. Our study reveals the novel regulation of FOXO3a-mediated selective gene transcription via epigenetic modification in the process of oxidative stress-induced cell death, which could be exploited therapeutically.

  8. Evidence for the involvement of apoptosis-inducing factor-mediated caspase-independent neuronal death in Alzheimer disease.

    PubMed

    Yu, Wenfeng; Mechawar, Naguib; Krantic, Slavica; Quirion, Rémi

    2010-05-01

    Accumulating evidence suggests the involvement of caspase-dependent and -independent mechanisms in neuronal cell death in Alzheimer disease (AD). The apoptosis-inducing factor (AIF) is a mitochondrial oxido-reductase originally characterized as a mediator of caspase-independent programmed cell death (PCD). In this postmortem study, we investigated the distribution of AIF and its possible morphological association with pathological features in the hippocampus, as well as entorhinal and medial gyrus of temporal cortices of late stage AD, dementia with Lewy bodies (DLB), and control subjects. In comparison with controls, a significant increase in neuronal AIF immunoreactivity (AIF-ir) was observed in the hippocampus and the superficial layers of entorhinal and medial gyrus of temporal cortices in AD--but not DLB--samples. AIF-ir in neuronal nuclei was also significantly more widespread in AD compared with control and DLB samples. Furthermore, AIF-ir was found to be colocalized with neurofibrillary tangles (NFTs) in AD brains. Interestingly, a significant positive correlation was seen between nuclear AIF-ir and Braak stage in CA1 of the hippocampus as well as in entorhinal and temporal cortices in AD samples. These data show for the first time: (1) the nuclear localization of AIF in the AD brain and (2) its colocalization with NFTs, suggesting a possible involvement of AIF-mediated caspase-independent PCD, at least in the late stage of this neuropathology.

  9. 1–42 β-Amyloid peptide requires PDK1/nPKC/Rac 1 pathway to induce neuronal death

    PubMed Central

    Manterola, L; Hernando-Rodríguez, M; Ruiz, A; Apraiz, A; Arrizabalaga, O; Vellón, L; Alberdi, E; Cavaliere, F; Lacerda, H M; Jimenez, S; Parada, L A; Matute, C; Zugaza, J L

    2013-01-01

    1–42 β-Amyloid (Aβ1–42) peptide is a key molecule involved in the development of Alzheimer's disease. Some of its effects are manifested at the neuronal morphological level. These morphological changes involve loss of neurites due to cytoskeleton alterations. However, the mechanism of Aβ1–42 peptide activation of the neurodegenerative program is still poorly understood. Here, Aβ1–42 peptide-induced transduction of cellular death signals through the phosphatidylinositol 3-kinase (PI3K)/phosphoinositol-dependent kinase (PDK)/novel protein kinase C (nPKC)/Rac 1 axis is described. Furthermore, pharmacological inhibition of PDK1 and nPKC activities blocks Rac 1 activation and neuronal cell death. Our results provide insights into an unsuspected connection between PDK1, nPKCs and Rac 1 in the same signal-transduction pathway and points out nPKCs and Rac 1 as potential therapeutic targets to block the toxic effects of Aβ1–42 peptide in neurons. PMID:23340502

  10. A rare mutation in UNC5C predisposes to Alzheimer’s disease and increases neuronal cell death

    PubMed Central

    Wetzel-Smith, MK; Hunkapiller, J; Bhangale, TR; Srinivasan, K; Maloney, JA; Atwal, JK; Sa, SM; Yaylaoglu, MB; Foreman, O; Ortmann, W; Rathore, N; Hansen, DV; Tessier-Lavigne, M; Mayeux, R; Pericak-Vance, M; Haines, J; Farrer, LA; Schellenberg, GD; Goate, A; Behrens, TW

    2015-01-01

    We have identified a rare coding mutation, T835M (rs137875858), in the Netrin receptor UNC5C that segregated with disease in an autosomal dominant pattern in two families enriched for late-onset Alzheimer’s disease (LOAD), and was associated with disease across four large case/control cohorts (OR = 2.15, Pmeta= 0.0095). T835M alters a conserved residue in the hinge region of UNC5C, and in vitro studies demonstrate that this mutation leads to increased cell death in several cell types, including neurons. Furthermore, neurons expressing T835M UNC5C are more susceptible to multiple neurodegenerative stimuli, including β-Amyloid (Aβ). Based on these data and the enriched hippocampal expression of UNC5C in the adult nervous system, we propose one possible mechanism in which T835M UNC5C contributes to the risk of Alzheimer’s disease is by increasing susceptibility to neuronal cell death, particularly in vulnerable regions of the Alzheimer’s brain. PMID:25419706

  11. Selective 14-3-3γ induction quenches p-β-catenin Ser37/Bax-enhanced cell death in cerebral cortical neurons during ischemia

    PubMed Central

    Lai, X J; Ye, S Q; Zheng, L; Li, L; Liu, Q R; Yu, S B; Pang, Y; Jin, S; Li, Q; Yu, A C H; Chen, X Q

    2014-01-01

    Ischemia-induced cell death is a major cause of disability or death after stroke. Identifying the key intrinsic protective mechanisms induced by ischemia is critical for the development of effective stroke treatment. Here, we reported that 14-3-3γ was a selective ischemia-inducible survival factor in cerebral cortical neurons reducing cell death by downregulating Bax depend direct 14-3-3γ/p-β-catenin Ser37 interactions in the nucleus. 14-3-3γ, but not other 14-3-3 isoforms, was upregulated in primary cerebral cortical neurons upon oxygen–glucose deprivation (OGD) as measured by quantitative PCR, western blot and fluorescent immunostaining. The selective induction of 14-3-3γ in cortical neurons by OGD was verified by the in vivo ischemic stroke model. Knocking down 14-3-3γ alone or inhibiting 14-3-3/client interactions was sufficient to induce cell death in normal cultured neurons and exacerbate OGD-induced neuronal death. Ectopic overexpression of 14-3-3γ significantly reduced OGD-induced cell death in cultured neurons. Co-immunoprecipitation and fluorescence resonance energy transfer demonstrated that endogenous 14-3-3γ bound directly to more p-β-catenin Ser37 but not p-Bad, p-Ask-1, p-p53 and Bax. During OGD, p-β-catenin Ser37 but not p-β-catenin Ser45 was increased prominently, which correlated with Bax elevation in cortical neurons. OGD promoted the entry of 14-3-3γ into the nuclei, in correlation with the increase of nuclear p-β-catenin Ser37 in neurons. Overexpression of 14-3-3γ significantly reduced Bax expression, whereas knockdown of 14-3-3γ increased Bax in cortical neurons. Abolishing β-catenin phosphorylation at Ser37 (S37A) significantly reduced Bax and cell death in neurons upon OGD. Finally, 14-3-3γ overexpression completely suppressed β-catenin-enhanced Bax and cell death in neurons upon OGD. Based on these data, we propose that the 14-3-3γ/p-β-catenin Ser37/Bax axis determines cell survival or death of neurons during ischemia

  12. Melatonin Mediates Protective Effects against Kainic Acid-Induced Neuronal Death through Safeguarding ER Stress and Mitochondrial Disturbance

    PubMed Central

    Xue, Feixiao; Shi, Cai; Chen, Qingjie; Hang, Weijian; Xia, Liangtao; Wu, Yue; Tao, Sophia Z.; Zhou, Jie; Shi, Anbing; Chen, Juan

    2017-01-01

    Kainic acid (KA)-induced neuronal death is linked to mitochondrial dysfunction and ER stress. Melatonin is known to protect hippocampal neurons from KA-induced apoptosis, but the exact mechanisms underlying melatonin protective effects against neuronal mitochondria disorder and ER stress remain uncertain. In this study, we investigated the sheltering roles of melatonin during KA-induced apoptosis by focusing on mitochondrial dysfunction and ER stress mediated signal pathways. KA causes mitochondrial dynamic disorder and dysfunction through calpain activation, leading to neuronal apoptosis. Ca2+ chelator BAPTA-AM and calpain inhibitor calpeptin can significantly restore mitochondrial morphology and function. ER stress can also be induced by KA treatment. ER stress inhibitor 4-phenylbutyric acid (PBA) attenuates ER stress-mediated apoptosis and mitochondrial disorder. It is worth noting that calpain activation was also inhibited under PBA administration. Thus, we concluded that melatonin effectively inhibits KA-induced calpain upregulation/activation and mitochondrial deterioration by alleviating Ca2+ overload and ER stress. PMID:28293167

  13. Amelioration of oxygen and glucose deprivation-induced neuronal death by chloroform fraction of bay leaves (Laurus nobilis).

    PubMed

    Cho, Eun-Young; Lee, Sung-Jin; Nam, Kung-Woo; Shin, Jongheon; Oh, Ki-bong; Kim, Kyeong Ho; Mar, Woongchon

    2010-01-01

    The purpose of this study was to determine whether the Laurus nobilis chloroform fraction (LNCF) protects against cerebral ischemia neuronal damage. Human neuroblastoma SH-SY5Y cells and brain slices from rats were subjected to oxygen and glucose deprivation (OGD), followed by reoxgenation with and without LNCF. The viabilities of SH-SY5Y cells and brain slices from the rats were 58.5±4.9% and 79.7±5.9% in the group subjected to OGD, and 80.4±0.4% and 97.2±1.9% at 4 µg/ml of LNCF, respectively. LNCF also significantly inhibited death-associated protein kinase (DAPK) dephosphorylation. Pretreatment with LNCF at 4 mg/kg significantly decreased infarct size by 79% of vehicle control in the middle cerebral artery occlusion (MCAO) in vivo model. LNCF is a neuroprotective drug candidate against cerebral ischemia neuronal damage.

  14. miR-134 regulates ischemia/reperfusion injury-induced neuronal cell death by regulating CREB signaling.

    PubMed

    Huang, Weidong; Liu, Xiaobin; Cao, Jie; Meng, Facai; Li, Min; Chen, Bo; Zhang, Jie

    2015-04-01

    microRNA-134 (miR-134) has been reported to be a brain-specific miRNA and is differently expressed in brain tissues subjected to ischemic injury. However, the underlying mechanism of miR-134 in regulating cerebral ischemic injury remains poorly understood. The current study was designed to delineate the molecular basis of miR-134 in regulating cerebral ischemic injury. Using the oxygen-glucose deprivation (OGD) model of hippocampal neuron ischemia in vitro, we found that the overexpression of miR-134 mediated by recombinant adeno-associated virus (AAV) vector infection significantly promoted neuron death induced by OGD/reoxygenation, whereas the inhibition of miR-134 provided protective effects against OGD/reoxygenation-induced cell death. Moreover, cyclic AMP (cAMP) response element-binding protein (CREB) as a putative target of miR-134 was downregulated and upregulated by miR-134 overexpression or inhibition, respectively. The direct interaction between miR-134 and the 3'-untranslated region (UTR) of CREB mRNA was further confirmed by dual-luciferase reporter assay. Overexpression of miR-134 also inhibited the expression of the downstream gene of CREB, including brain-derived neurotrophic factor (BDNF) and the anti-apoptotic gene Bcl-2, whereas the inhibition of miR-134 upregulated the expression of BDNF and Bcl-2 in neurons after OGD/reoxygenation. Notably, the knockdown of CREB by CREB siRNA apparently abrogated the protective effect of anti-miR-134 on OGD/reoxygenation-induced cell death. Taken together, our study suggests that downregulation of miR-134 alleviates ischemic injury through enhancing CREB expression and downstream genes, providing a promising and potential therapeutic target for cerebral ischemic injury.

  15. Serotonergic neuronal death and concomitant serotonin deficiency curb copulation ability of Drosophila platonic mutants

    PubMed Central

    Yilmazer, Yasemin B.; Koganezawa, Masayuki; Sato, Kosei; Xu, Jinhua; Yamamoto, Daisuke

    2016-01-01

    Drosophila platonic (plt) males court females, but fail to copulate. Here we show that plt is an allele of scribbler (sbb), a BMP signalling component. sbb knockdown in larvae leads to the loss of approximately eight serotonergic neurons, which express the sex-determinant protein Doublesex (Dsx). Genetic deprivation of serotonin (5-HT) from dsx-expressing neurons results in copulation defects. Thus, sbb+ is developmentally required for the survival of a specific subset of dsx-expressing neurons, which support the normal execution of copulation in adults by providing 5-HT. Our study highlights the conserved involvement of serotonergic neurons in the control of copulatory mechanisms and the key role of BMP signalling in the formation of a sex-specific circuitry. PMID:27958269

  16. Protection of dichlorvos induced oxidative stress and nigrostriatal neuronal death by chronic Coenzyme Q{sub 10} pretreatment

    SciTech Connect

    Binukumar, BK; Gupta, Nidhi; Bal, Amanjit; Gill, Kiran Dip

    2011-10-01

    Numerous epidemiological studies have shown an association between pesticide exposure and increased risk of developing Parkinson's diseases. Oxidative stress generated as a result of mitochondrial dysfunction has been implicated as an important factor in the etiology of Parkinson's disease. Previously, we reported that chronic dichlorvos exposure causes mitochondrial impairments and nigrostriatal neuronal death in rats. The present study was designed to test whether Coenzyme Q{sub 10} (CoQ{sub 10}) administration has any neuroprotective effect against dichlorvos mediated nigrostriatal neuronal death, {alpha}-synuclein aggregation, and motor dysfunction. Male albino rats were administered dichlorvos by subcutaneous injection at a dose of 2.5 mg/kg body weight over a period of 12 weeks. Results obtained there after showed that dichlorvos exposure leads to enhanced mitochondrial ROS production, {alpha}-synuclein aggregation, decreased dopamine and its metabolite levels resulting in nigrostriatal neurodegeneration. Pretreatment by Coenzyme Q{sub 10} (4.5 mg/kg ip for 12 weeks) to dichlorvos treated animals significantly attenuated the extent of nigrostriatal neuronal damage, in terms of decreased ROS production, increased dopamine and its metabolite levels, and restoration of motor dysfunction when compared to dichlorvos treated animals. Thus, the present study shows that Coenzyme Q{sub 10} administration may attenuate dichlorvos induced nigrostriatal neurodegeneration, {alpha}-synuclein aggregation and motor dysfunction by virtue of its antioxidant action. - Highlights: > CoQ{sub 10} administration attenuates dichlorvos induced nigrostriatal neurodegenaration. > CoQ{sub 10} pre treatment leads to preservation of TH-IR neurons. > CoQ{sub 10} may decrease oxidative damage and {alpha}-synuclin aggregation. > CoQ{sub 10} treatment enhances motor function and protects rats from catalepsy.

  17. Thiopental Inhibits Global Protein Synthesis by Repression of Eukaryotic Elongation Factor 2 and Protects from Hypoxic Neuronal Cell Death

    PubMed Central

    Schwer, Christian I.; Lehane, Cornelius; Guelzow, Timo; Zenker, Simone; Strosing, Karl M.; Spassov, Sashko; Erxleben, Anika; Heimrich, Bernd; Buerkle, Hartmut; Humar, Matjaz

    2013-01-01

    Ischemic and traumatic brain injury is associated with increased risk for death and disability. The inhibition of penumbral tissue damage has been recognized as a target for therapeutic intervention, because cellular injury evolves progressively upon ATP-depletion and loss of ion homeostasis. In patients, thiopental is used to treat refractory intracranial hypertension by reducing intracranial pressure and cerebral metabolic demands; however, therapeutic benefits of thiopental-treatment are controversially discussed. In the present study we identified fundamental neuroprotective molecular mechanisms mediated by thiopental. Here we show that thiopental inhibits global protein synthesis, which preserves the intracellular energy metabolite content in oxygen-deprived human neuronal SK-N-SH cells or primary mouse cortical neurons and thus ameliorates hypoxic cell damage. Sensitivity to hypoxic damage was restored by pharmacologic repression of eukaryotic elongation factor 2 kinase. Translational inhibition was mediated by calcium influx, activation of the AMP-activated protein kinase, and inhibitory phosphorylation of eukaryotic elongation factor 2. Our results explain the reduction of cerebral metabolic demands during thiopental treatment. Cycloheximide also protected neurons from hypoxic cell death, indicating that translational inhibitors may generally reduce secondary brain injury. In conclusion our study demonstrates that therapeutic inhibition of global protein synthesis protects neurons from hypoxic damage by preserving energy balance in oxygen-deprived cells. Molecular evidence for thiopental-mediated neuroprotection favours a positive clinical evaluation of barbiturate treatment. The chemical structure of thiopental could represent a pharmacologically relevant scaffold for the development of new organ-protective compounds to ameliorate tissue damage when oxygen availability is limited. PMID:24167567

  18. Signaling Pathways that Mediate Neurotoxin-Induced Death of Dopamine Neurons

    DTIC Science & Technology

    2008-11-01

    instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information...from E15 embryonic rats to investigate our hypothesis. The data obtained should lead to the identification of promising therapeutic strategies to slow...dopamine neurons in culture. This allowed us to study dopamine neurons (GFP-positive cells) using live-cell imaging techniques. Most of the data

  19. Peripherin-mediated death of motor neurons rescued by overexpression of neurofilament NF-H proteins.

    PubMed

    Beaulieu, Jean-Martin; Julien, Jean-Pierre

    2003-04-01

    In previous studies, we showed that overexpression of peripherin, a neuronal intermediate filament (IF) protein, in mice deficient for neurofilament light (NF-L) subunits induced a progressive adult-onset degeneration of spinal motor neurons characterized by the presence of IF inclusion bodies reminiscent of axonal spheroids found in amyotrophic lateral sclerosis (ALS). In contrast, the overexpression of human neurofilament heavy (NF-H) proteins provoked the formation of massive perikaryal IF protein accumulations with no loss of motor neurons. To further investigate the toxic properties of IF protein inclusions, we generated NF-L null mice that co-express both peripherin and NF-H transgenes. The axonal count in L5 ventral roots from 6 and 8-month-old transgenic mice showed that NF-H overexpression rescued the peripherin-mediated degeneration of motor neurons. Our analysis suggests that the protective effect of extra NF-H proteins is related to the sequestration of peripherin into the perikaryon of motor neurons, thereby abolishing the development of axonal IF inclusions that might block transport. These findings illustrate the importance of IF protein stoichiometry in formation, localization and toxicity of neuronal inclusion bodies.

  20. Cabergoline protects dopaminergic neurons against rotenone-induced cell death in primary mesencephalic cell culture.

    PubMed

    Meinel, J; Radad, K; Rausch, W-D; Reichmann, H; Gille, G

    2015-01-01

    In the present study, primary mesencephalic cell cultures prepared from embryonic mouse mesencephala were used to investigate the neuroprotective effect of cabergoline, an ergoline D2 receptor agonist, against the pesticide and neurotoxin rotenone relevant to Parkinson disease (PD). Treatment of cultures with cabergoline alone significantly increased the number of tyrosine hydroxylase immunoreactive (THir) neurons and reduced the release of lactate dehydrogenase (LDH) into the culture medium compared to untreated controls. Against rotenone toxicity, cabergoline significantly rescued degenerating THir neurons, reduced the release of LDH into the culture medium and improved the morphology of surviving THir neurons. The neuroprotective effects afforded by cabergoline were independent of dopaminergic stimulation as blocking of dopamine receptors by the dopamine receptor antagonist sulpiride did not prevent them. Furthermore, rotenone-induced formation of reactive oxygen species (ROS) was significantly reduced by cabergoline. Although cabergoline increased the glutathione (GSH) content in the culture, the protective effect for dopaminergic neurons seemed not to be predominantly mediated by increasing GSH, as depletion of GSH by L-buthionine-(S,R)-sulfoximine (BSO), a GSH biosynthesis inhibitor, did not prevent cabergoline-mediated neuroprotection of THir neurons in rotenone-treated cultures. Moreover, cabergoline significantly increased the ATP/protein ratio in primary mesencephalic cell cultures when added alone or prior to rotenone treatment. These results indicate a neuroprotective effect of cabergoline for dopaminergic neurons against rotenone toxicity. This effect was independent of dopamine receptor stimulation and was at least partially mediated by reducing ROS production and increasing the ATP/protein ratio.

  1. Investigating the Mechanisms Underlying Neuronal Death in Ischemia Using In Vitro Oxygen-Glucose Deprivation: Potential Involvement of Protein SUMOylation

    PubMed Central

    CIMAROSTI, HELENA; HENLEY, JEREMY M.

    2012-01-01

    It is well established that brain ischemia can cause neuronal death via different signaling cascades. The relative importance and interrelationships between these pathways, however, remain poorly understood. Here is presented an overview of studies using oxygen-glucose deprivation of organotypic hippocampal slice cultures to investigate the molecular mechanisms involved in ischemia. The culturing techniques, setup of the oxygen-glucose deprivation model, and analytical tools are reviewed. The authors focus on SUMOylation, a posttranslational protein modification that has recently been implicated in ischemia from whole animal studies as an example of how these powerful tools can be applied and could be of interest to investigate the molecular pathways underlying ischemic cell death. PMID:19029060

  2. Spatiotemporal pattern of neuronal injury induced by DFP in rats: A model for delayed neuronal cell death following acute OP intoxication

    SciTech Connect

    Li Yonggang; Lein, Pamela J.; Liu Cuimei; Bruun, Donald A.; Tewolde, Teclemichael; Ford, Gregory; Ford, Byron D.

    2011-06-15

    Organophosphate (OP) neurotoxins cause acute cholinergic toxicity and seizures resulting in delayed brain damage and persistent neurological symptoms. Testing novel strategies for protecting against delayed effects of acute OP intoxication has been hampered by the lack of appropriate animal models. In this study, we characterize the spatiotemporal pattern of cellular injury after acute intoxication with the OP diisopropylfluorophosphate (DFP). Adult male Sprague-Dawley rats received pyridostigmine (0.1 mg/kg, im) and atropine methylnitrate (20 mg/kg, im) prior to DFP (9 mg/kg, ip) administration. All DFP-treated animals exhibited moderate to severe seizures within minutes after DFP injection but survived up to 72 h. AChE activity was significantly depressed in the cortex, hippocampus, subcortical brain tissue and cerebellum at 1 h post-DFP injection and this inhibition persisted for up to 72 h. Analysis of neuronal injury by Fluoro-Jade B (FJB) labeling revealed delayed neuronal cell death in the hippocampus, cortex, amygdala and thalamus, but not the cerebellum, starting at 4 h and persisting until 72 h after DFP treatment, although temporal profiles varied between brain regions. At 24 h post-DFP injection, the pattern of FJB labeling corresponded to TUNEL staining in most brain regions, and FJB-positive cells displayed reduced NeuN immunoreactivity but were not immunopositive for astrocytic (GFAP), oligodendroglial (O4) or macrophage/microglial (ED1) markers, demonstrating that DFP causes a region-specific delayed neuronal injury mediated in part by apoptosis. These findings indicate the feasibility of this model for testing neuroprotective strategies, and provide insight regarding therapeutic windows for effective pharmacological intervention following acute OP intoxication. - Research Highlights: > DFP induced neuronal FJB labeling starting at 4-8 h after treatment > The pattern of DFP-induced FJB labeling closely corresponded to TUNEL staining > FJB

  3. Status epilepticus decreases glutamate receptor 2 mRNA and protein expression in hippocampal pyramidal cells before neuronal death

    PubMed Central

    Grooms, Sonja Y.; Opitz, Thoralf; Bennett, Michael V. L.; Zukin, R. Suzanne

    2000-01-01

    Kainic acid (KA)-induced status epilepticus in adult rats leads to delayed, selective death of pyramidal neurons in the hippocampal CA1 and CA3. Death is preceded by down-regulation of glutamate receptor 2 (GluR2) mRNA and protein [the subunit that limits Ca2+ permeability of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] in CA1 and CA3, as indicated by in situ hybridization, immunolabeling, and quantitative Western blotting. GluR1 mRNA and protein are unchanged or slightly increased before cell death. These changes could lead to formation of GluR2-lacking, Ca2+-permeable AMPA receptors and increased toxicity of endogenous glutamate. GluR2 immunolabeling is unchanged in granule cells of the dentate gyrus, which are resistant to seizure-induced death. Thus, formation of Ca2+-permeable AMPA receptors may be a critical mediator of delayed neurodegeneration after status epilepticus. PMID:10725374

  4. Pedicularioside A from Buddleia lindleyana inhibits cell death induced by 1-methyl-4-phenylpyridinium ions (MPP+) in primary cultures of rat mesencephalic neurons.

    PubMed

    Li, Yan-Yun; Lu, Jiang-Hai; Li, Quan; Zhao, Yu-Ying; Pu, Xiao-Ping

    2008-01-28

    Parkinson's disease is characterized by the progressive degeneration of midbrain dopaminergic neurons. Buddleia lindleyana is a traditional Chinese herb, commonly called Zui Yu Cao. The purification and identification of pedicularioside A and other phenylethanoid glycosides from this plant have been reported. However, their neuroprotective effects on the 1-methyl-4-phenylpyridinium ion (MPP(+))-induced death of rat mesencephalic neuron primary cultures and the precise mechanism of this protection remains unclear. We used the 3-(4, 5-dimethylthiozol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay for cellular growth to examine the effects of five phenylethanoid glycosides isolated from B. lindleyana, including pedicularioside A, leucosceptoside A, isoacteoside, acteoside, and arenariside, on the viability of mesencephalic neurons treated with MPP(+). Of the compounds tested, pedicularioside A exhibited the greatest degree of protection from MPP(+)-induced cell death. We also observed a marked increase in the number of tyrosine hydroxylase immunoreactive neurons. Pedicularioside A inhibited expression of the caspase-3 gene and cleavage of poly (ADP-ribose) polymerase (PARP) in cultures exposed to MPP(+). Our results suggest that pedicularioside A has a neuroprotective effect to improve the survival of mesencephalic neurons (dopaminergic neurons and non-dopaminergic neurons). The mode of action appears to be the inhibition of caspase-3 gene expression, thereby protecting mesencephalic neurons from MPP(+)-induced cell death.

  5. Carbon Monoxide Releasing Molecule-A1 (CORM-A1) Improves Neurogenesis: Increase of Neuronal Differentiation Yield by Preventing Cell Death.

    PubMed

    Almeida, Ana S; Soares, Nuno L; Vieira, Melissa; Gramsbergen, Jan Bert; Vieira, Helena L A

    2016-01-01

    Cerebral ischemia and neurodegenerative diseases lead to impairment or death of neurons in the central nervous system. Stem cell based therapies are promising strategies currently under investigation. Carbon monoxide (CO) is an endogenous product of heme degradation by heme oxygenase (HO) activity. Administration of CO at low concentrations produces several beneficial effects in distinct tissues, namely anti-apoptotic and anti-inflammatory. Herein the CO role on modulation of neuronal differentiation was assessed. Three different models with increasing complexity were used: human neuroblastoma SH-S5Y5 cell line, human teratocarcinoma NT2 cell line and organotypic hippocampal slice cultures (OHSC). Cell lines were differentiated into post-mitotic neurons by treatment with retinoic acid (RA) supplemented with CO-releasing molecule A1 (CORM-A1). CORM-A1 positively modulated neuronal differentiation, since it increased final neuronal production and enhanced the expression of specific neuronal genes: Nestin, Tuj1 and MAP2. Furthermore, during neuronal differentiation process, there was an increase in proliferative cell number (ki67 mRNA expressing cells) and a decrease in cell death (lower propidium iodide (PI) uptake, limitation of caspase-3 activation and higher Bcl-2 expressing cells). CO supplementation did not increase the expression of RA receptors. In the case of SH-S5Y5 model, small amounts of reactive oxygen species (ROS) generation emerges as important signaling molecules during CO-promoted neuronal differentiation. CO's improvement of neuronal differentiation yield was validated using OHSC as ex vivo model. CORM-A1 treatment of OHSC promoted higher levels of cells expressing the neuronal marker Tuj1. Still, CORM-A1 increased cell proliferation assessed by ki67 expression and also prevented cell death, which was followed by increased Bcl-2 expression, decreased levels of active caspase-3 and PI uptake. Likewise, ROS signaling emerged as key factors in CO

  6. Contribution of downregulation of L-type calcium currents to delayed neuronal death in rat hippocampus after global cerebral ischemia and reperfusion.

    PubMed

    Li, Xiao-Ming; Yang, Jian-Ming; Hu, De-Hui; Hou, Feng-Qing; Zhao, Miao; Zhu, Xin-Hong; Wang, Ying; Li, Jian-Guo; Hu, Ping; Chen, Liang; Qin, Lu-Ning; Gao, Tian-Ming

    2007-05-09

    Transient forebrain ischemia induces delayed, selective neuronal death in the CA1 region of the hippocampus. The underlying molecular mechanisms are as yet unclear, but it is known that activation of L-type Ca2+ channels specifically increases the expression of a group of genes required for neuronal survival. Accordingly, we examined temporal changes in L-type calcium-channel activity in CA1 and CA3 pyramidal neurons of rat hippocampus after transient forebrain ischemia by patch-clamp techniques. In vulnerable CA1 neurons, L-type Ca2+-channel activity was persistently downregulated after ischemic insult, whereas in invulnerable CA3 neurons, no change occurred. Downregulation of L-type calcium channels was partially caused by oxidation modulation in postischemic channels. Furthermore, L-type but neither N-type nor P/Q-type Ca2+-channel antagonists alone significantly inhibited the survival of cultured hippocampal neurons. In contrast, specific L-type calcium-channel agonist remarkably reduced neuronal cell death and restored the inhibited channels induced by nitric oxide donor. More importantly, L-type calcium-channel agonist applied after reoxygenation or reperfusion significantly decreased neuronal injury in in vitro oxygen-glucose deprivation ischemic model and in animals subjected to forebrain ischemia-reperfusion. Together, the present results suggest that ischemia-induced inhibition of L-type calcium currents may give rise to delayed death of neurons in the CA1 region, possibly via oxidation mechanisms. Our findings may lead to a new perspective on neuronal death after ischemic insult and suggest that a novel therapeutic approach, activation of L-type calcium channels, could be tested at late stages of reperfusion for stroke treatment.

  7. Tyrosol exerts a protective effect against dopaminergic neuronal cell death in in vitro model of Parkinson's disease.

    PubMed

    Dewapriya, Pradeep; Himaya, S W A; Li, Yong-Xin; Kim, Se-Kwon

    2013-11-15

    Experimental evidence suggests that tyrosol [2-(4-hydroxyphenyl)ethanol] exhibits potent protective activities against several pathogeneses. In this study, we evaluated the protective effect of tyrosol against 1-methyl-4-phenylpyridinium (MPP(+))-induced CATH.a neuron cell death. Tyrosol dose-dependently protected CATH.a cells from MPP(+)-induced cell death and the protection was more apparent after prolong incubation (48h). The data showed that tyrosol treatment suppressed the reduction of phospho-tyrosine hydroxylase level in CATH.a cells. Further, the compound repressed MPP(+)-induced depletion of mitochondrial membrane potential (Δψm) and thereby maintained intracellular ATP production in the cell. The cellular signalling pathway studies revealed that tyrosol protected CATH.a cells from MPP(+)-induced apoptotic signalling, most likely via activation of PI3K/Akt signalling pathway along with up-regulation of anti-oxidative enzymes (SOD-1 and SOD-2) and DJ-1 protein in the cell. Collectively, present study demonstrates that tyrosol significantly protects dopaminergic neurons from MPP(+)-induced degradation, and reveals potential neuroprotective mechanism of tyrosol.

  8. Cause and Consequence: Mitochondrial Dysfunction Initiates and Propagates Neuronal Dysfunction, Neuronal Death and Behavioral Abnormalities in Age Associated Neurodegenerative Diseases

    PubMed Central

    Gibson, Gary E.; Starkov, Anatoly; Blass, John P.; Ratan, Rajiv R.; Beal, M. Flint

    2009-01-01

    SUMMARY Age-related neurodegenerative diseases are associated with mild impairment of oxidative metabolism and accumulation of abnormal proteins. Within the cell, the mitochondria appears to be a dominant site for initiation and propagation of disease processes. Shifts in metabolism in response to mild metabolic perturbations may decrease the threshold for irreversible injury in response to ordinarily sub lethal metabolic insults. Mild impairment of metabolism accrue from and lead to increased reactive oxygen species (ROS). Increased ROS change cell signaling via post transcriptional and transcriptional changes. The cause and consequences of mild impairment of mitochondrial metabolism is one focus of this review. Many experiments in tissues from humans support the notion that oxidative modification of the α-ketoglutarate dehydrogenase complex (KGDHC) compromises neuronal energy metabolism and enhance ROS production in Alzheimer’s Disease (AD). These data suggest that cognitive decline in AD derives from the selective tricarboxylic acid (TCA) cycle abnormalities. By contrast in Huntington’s Disease (HD), a movement disorder with cognitive features distinct form AD, complex II + III abnormalities may dominate. These distinct mitochondrial abnormalities culminate in oxidative stress, energy dysfunction, and aberrant homeostasis of cytosolic calcium. Cytosolic calcium, elevations even only transiently, leads to hyperactivity of a number of enzymes. One calcium activated enzyme with demonstrated pathophysiological import in HD and AD is transglutaminase (TGase). TGase is a cross linking enzymes that can modulate transcrption, inactivate metabolic enzymes, and cause aggregation of critical proteins. Recent data indicate that TGase can silence expression of genes involved in compensating for metabolic stress. Altogether, our results suggest that increasing KGDHC via inhibition of TGase or via a host of other strategies to be described would be effective therapeutic

  9. Neuronal Cell Death and Degeneration through Increased Nitroxidative Stress and Tau Phosphorylation in HIV-1 Transgenic Rats

    PubMed Central

    Cho, Young-Eun; Lee, Myoung-Hwa; Song, Byoung-Joon

    2017-01-01

    The underlying mechanisms for increased neurodegeneration and neurocognitive deficits in HIV-infected people are unclear. Therefore, this study was aimed to investigate the mechanisms of increased neurodegeneration in 5-month old male HIV-1 Transgenic (Tg) rats compared to the age- and gender-matched wild-type (WT) by evaluating histological changes and biochemical parameters of the key proteins involved in the cell death signaling and apoptosis. Histological and immunohistochemical analyses revealed decreased neuronal cells with elevated astrogliosis in HIV-1 Tg rats compared to WT. Mechanistic studies revealed that increased levels of nitroxidative stress marker proteins such as NADPH-oxidase, cytochrome P450-2E1 (CYP2E1), inducible nitric oxide synthase (iNOS), the stress-activated mitogen-activated protein kinases such as JNK and p38K, activated cell-cycle dependent CDK5, hypoxia-inducible protein-1α, nitrated proteins, hyperphosphorylated tau, and amyloid plaques in HIV-Tg rats were consistently observed in HIV-1 Tg rats. Confocal microscopy and cell viability analyses showed that treatment with an antioxidant N-acetylcysteine or a specific inhibitor of iNOS 1400W significantly prevented the increased apoptosis of neuro-2A cells by HIV-1 Tat or gp120 protein, demonstrating the causal role of HIV-1 mediated nitroxidative stress and protein nitration in promoting neuronal cell death. Immunoprecipitation and immunoblot analysis confirmed nitration of Hsp90, evaluated as an example of nitrated proteins, suggesting possible involvement of nitrated proteins in neuronal damage. Further, activated p-JNK directly binds tau and phosphorylates multiple amino acids, suggesting an important role of p-JNK in tau hyperphosphorylation and tauopathy. These changes were accompanied with elevated levels of many apoptosis-related proteins Bax and cleaved (activated) caspase-3 as well as proinflammatory cytokines including TNF-α, IL-6 and MCP-1. Collectively, these results

  10. Trasmembrane chemokines CX3CL1 and CXCL16 drive interplay between neurons, microglia and astrocytes to counteract pMCAO and excitotoxic neuronal death

    PubMed Central

    Rosito, Maria; Lauro, Clotilde; Chece, Giuseppina; Porzia, Alessandra; Monaco, Lucia; Mainiero, Fabrizio; Catalano, Myriam; Limatola, Cristina; Trettel, Flavia

    2014-01-01

    Upon noxious insults, cells of the brain parenchyma activate endogenous self-protective mechanisms to counteract brain damage. Interplay between microglia and astrocytes can be determinant to build a physiological response to noxious stimuli arisen from injury or stress, thus understanding the cross talk between microglia and astrocytes would be helpful to elucidate the role of glial cells in endogenous protective mechanisms and might contribute to the development of new strategy to mobilize such program and reduce brain cell death. Here we demonstrate that chemokines CX3CL1 and CXCL16 are molecular players that synergistically drive cross-talk between neurons, microglia and astrocytes to promote physiological neuroprotective mechanisms that counteract neuronal cell death due to ischemic and excitotoxic insults. In an in vivo model of permanent middle cerebral artery occlusion (pMCAO) we found that exogenous administration of soluble CXCL16 reduces ischemic volume and that, upon pMCAO, endogenous CXCL16 signaling restrains brain damage, being ischemic volume reduced in mice that lack CXCL16 receptor. We demonstrated that CX3CL1, acting on microglia, elicits CXCL16 release from glia and this is important to induce neroprotection since lack of CXCL16 signaling impairs CX3CL1 neuroprotection against both in vitro Glu-excitotoxic insult and pMCAO. Moreover the activity of adenosine receptor A3R and the astrocytic release of CCL2 play also a role in trasmembrane chemokine neuroprotective effect, since their inactivation reduces CX3CL1- and CXCL16 induced neuroprotection. PMID:25071451

  11. TRAF6 and p62 inhibit amyloid β-induced neuronal death through p75 neurotrophin receptor

    PubMed Central

    Geetha, Thangiah; Zheng, Chen; McGregor, Wade C.; White, B. Douglas; Diaz-Meco, Maria T.; Moscat, Jorge; Babu, Jeganathan Ramesh

    2014-01-01

    Amyloid β (Aβ) aggregates are the primary component of senile plaques in Alzheimer disease (AD) patient’s brain. Aβ is known to bind p75 neurotrophin receptor (p75NTR) and mediates Aβ-induced neuronal death. Recently, we showed that NGF leads to p75NTR polyubiquitination, which promotes neuronal cell survival. Here, we demonstrate that Aβ stimulation impaired the p75NTR polyubiquitination. TRAF6 and p62 are required for polyubiquitination of p75NTR on NGF stimulation. Interestingly, we found that overexpression of TRAF6/p62 restored p75NTR polyubiquitination upon Aβ/NGF treatment. Aβ significantly reduced NF-κB activity by attenuating the interaction of p75NTR with IKKβ. p75NTR increased NF-κB activity by recruiting TRAF6/p62, which thereby mediated cell survival. These findings indicate that TRAF6/p62 abrogated the Aβ-mediated inhibition of p75NTR polyubiquitination and restored neuronal cell survival. PMID:23017601

  12. Endoplasmic Reticulum Stress as a Mediator of Neurotoxin-Induced Dopamine Neuron Death

    DTIC Science & Technology

    2006-07-01

    nigra. J. Neurosci. 17, 2030–2039. Martin D. P., Schmidt R. E., DiStefano P., Lowry O., Carter J. and Johnson E. (1988) Inhibitors of protein synthesis...1994;124:537–546. 49. Martin DP, Schmidt RE, DiStefano P, Lowry O, Carter J, Johnson E. Inhibitors of protein synthesis and RNA synthesis prevent neuronal

  13. Tissue-type plasminogen activator controls neuronal death by raising surface dynamics of extrasynaptic NMDA receptors

    PubMed Central

    Lesept, Flavie; Chevilley, Arnaud; Jezequel, Julie; Ladépêche, Laurent; Macrez, Richard; Aimable, Margaux; Lenoir, Sophie; Bertrand, Thomas; Rubrecht, Laëtitia; Galea, Pascale; Lebouvier, Laurent; Petersen, Karl-Uwe; Hommet, Yannick; Maubert, Eric; Ali, Carine; Groc, Laurent; Vivien, Denis

    2016-01-01

    N-methyl-d-aspartate receptors (NMDARs) are ion channels whose synaptic versus extrasynaptic localization critically influences their functions. This distribution of NMDARs is highly dependent on their lateral diffusion at the cell membrane. Each obligatory subunit of NMDARs (GluN1 and GluN2) contains two extracellular clamshell-like domains with an agonist-binding domain and a distal N-terminal domain (NTD). To date, the roles and dynamics of the NTD of the GluN1 subunit in NMDAR allosteric signaling remain poorly understood. Using single nanoparticle tracking in mouse neurons, we demonstrate that the extracellular neuronal protease tissue-type plasminogen activator (tPA), well known to have a role in the synaptic plasticity and neuronal survival, leads to a selective increase of the surface dynamics and subsequent diffusion of extrasynaptic NMDARs. This process explains the previously reported ability of tPA to promote NMDAR-mediated calcium influx. In parallel, we developed a monoclonal antibody capable of specifically blocking the interaction of tPA with the NTD of the GluN1 subunit of NMDAR. Using this original approach, we demonstrate that the tPA binds the NTD of the GluN1 subunit at a lysine in position 178. Accordingly, when applied to mouse neurons, our selected antibody (named Glunomab) leads to a selective reduction of the tPA-mediated surface dynamics of extrasynaptic NMDARs, subsequent signaling and neurotoxicity, both in vitro and in vivo. Altogether, we demonstrate that the tPA is a ligand of the NTD of the obligatory GluN1 subunit of NMDAR acting as a modulator of their dynamic distribution at the neuronal surface and subsequent signaling. PMID:27831563

  14. Methyl Vitamin B12 but not methylfolate rescues a motor neuron-like cell line from homocysteine-mediated cell death.

    PubMed

    Hemendinger, Richelle A; Armstrong, Edward J; Brooks, Benjamin Rix

    2011-03-15

    Homocysteine is an excitatory amino acid implicated in multiple diseases including amyotrophic lateral sclerosis (ALS). Information on the toxicity of homocysteine in motor neurons is limited and few studies have examined how this toxicity can be modulated. In NSC-34D cells (a hybrid cell line derived from motor neuron-neuroblastoma), homocysteine induces apoptotic cell death in the millimolar range with a TC₅₀ (toxic concentration at which 50% of maximal cell death is achieved) of 2.2 mM, confirmed by activation of caspase 3/7. Induction of apoptosis was independent of short-term reactive oxygen species (ROS) generation. Methyl Vitamin B12 (MeCbl) and methyl tetrahydrofolate (MTHF), used clinically to treat elevated homocysteine levels, were tested for their ability to reverse homocysteine-mediated motor neuron cell death. MeCbl in the micromolar range was able to provide neuroprotection (2 h pretreatment prior to homocysteine) and neurorescue (simultaneous exposure with homocysteine) against millimolar homocysteine with an IC₅₀ (concentration at which 50% of maximal cell death is inhibited) of 0.6 μM and 0.4 μM, respectively. In contrast, MTHF (up to 10 μM) had no effect on homocysteine-mediated cell death. MeCbl inhibited caspase 3/7 activation by homocysteine in a time- and dose-dependent manner, whereas MTHF had no effect. We conclude that MeCbl is effective against homocysteine-induced cell death in motor neurons in a ROS-independent manner, via a reduction in caspase activation and apoptosis. MeCbl decreases Hcy induced motor neuron death in vitro in a hybrid cell line derived from motor neuron-neuroblastoma and may play a role in the treatment of late stage ALS where HCy levels are increased in animal models of ALS.

  15. Methyl Vitamin B12 but not methylfolate rescues a motor neuron-like cell line from homocysteine-mediated cell death

    SciTech Connect

    Hemendinger, Richelle A. Armstrong, Edward J.; Brooks, Benjamin Rix

    2011-03-15

    Homocysteine is an excitatory amino acid implicated in multiple diseases including amyotrophic lateral sclerosis (ALS). Information on the toxicity of homocysteine in motor neurons is limited and few studies have examined how this toxicity can be modulated. In NSC-34D cells (a hybrid cell line derived from motor neuron-neuroblastoma), homocysteine induces apoptotic cell death in the millimolar range with a TC{sub 50} (toxic concentration at which 50% of maximal cell death is achieved) of 2.2 mM, confirmed by activation of caspase 3/7. Induction of apoptosis was independent of short-term reactive oxygen species (ROS) generation. Methyl Vitamin B12 (MeCbl) and methyl tetrahydrofolate (MTHF), used clinically to treat elevated homocysteine levels, were tested for their ability to reverse homocysteine-mediated motor neuron cell death. MeCbl in the micromolar range was able to provide neuroprotection (2 h pretreatment prior to homocysteine) and neurorescue (simultaneous exposure with homocysteine) against millimolar homocysteine with an IC{sub 50} (concentration at which 50% of maximal cell death is inhibited) of 0.6 {mu}M and 0.4 {mu}M, respectively. In contrast, MTHF (up to 10 {mu}M) had no effect on homocysteine-mediated cell death. MeCbl inhibited caspase 3/7 activation by homocysteine in a time- and dose-dependent manner, whereas MTHF had no effect. We conclude that MeCbl is effective against homocysteine-induced cell death in motor neurons in a ROS-independent manner, via a reduction in caspase activation and apoptosis. MeCbl decreases Hcy induced motor neuron death in vitro in a hybrid cell line derived from motor neuron-neuroblastoma and may play a role in the treatment of late stage ALS where HCy levels are increased in animal models of ALS.

  16. SUMO-specific protease 1 protects neurons from apoptotic death during transient brain ischemia/reperfusion

    PubMed Central

    Zhang, Huijun; Wang, Yan; Zhu, Aoxue; Huang, Dehua; Deng, Shining; Cheng, Jinke; Zhu, Michael X; Li, Yong

    2016-01-01

    SUMO-specific protease 1 (SENP1) deconjugates SUMO from modified proteins. Although post-ischemic activation of SUMO conjugation was suggested to be neuroprotective against ischemia/reperfusion (I/R) injury, the function of SENP1 in this process remained unclear. Here we show that transient middle cerebral artery occlusion in mice followed by 6, 12 and 24 h reperfusion significantly enhanced SENP1 levels in the affected brain area, independent of transcription. Consistent with the increase in SENP1, the levels of SUMO1-conjugated proteins were decreased by I/R in cortical neurons of control littermate mice, but unchanged in that of animals with conditional ablation of SENP1 gene from adult principal neurons, the SENP1flox/flox:CamKIIα-Cre (SENP1 cKO) mice. The SENP1 cKO mice exhibited a significant increase in infarct volume in the cerebral cortex and more severe motor impairment in response to I/R as compared with the control littermates. Cortical neurons from I/R-injured SENP1 cKO mice became more apoptotic than that from control littermates, as indicated by both TUNEL staining and caspase-3 activation. Overexpression of SENP1 in somatosensory cortices of adult wild-type (WT) mice suppressed I/R-induced neuronal apoptosis. We conclude that SENP1 plays a neuroprotective role in I/R injury by inhibiting apoptosis through decreasing SUMO1 conjugation. These findings reveal a novel mechanism of neuroprotection by protein desumoylation, which may help develop new therapies for mitigating brain injury associated with ischemic stroke. PMID:27882949

  17. Cytokine-mediated survival from lethal herpes simplex virus infection: role of programmed neuronal death.

    PubMed Central

    Geiger, K D; Gurushanthaiah, D; Howes, E L; Lewandowski, G A; Reed, J C; Bloom, F E; Sarvetnick, N E

    1995-01-01

    The mechanisms responsible for cytokine-mediated antiviral effects are not fully understood. We approached this problem by studying the outcome of intraocular herpes simplex (HSV) infection in transgenic mice that express interferon gamma in the photoreceptor cells of the retina. These transgenic mice showed selective survival from lethal HSV-2 infection manifested in both eyes, the optic nerve, and the brain. Although transgenic mice developed greater inflammatory responses to the virus in the eyes, inflammation and viral titers in their brains were equivalent to nontransgenic mice. However, survival of transgenic mice correlated with markedly lower numbers of central neurons undergoing apoptosis. The protooncogene Bcl2 was found to be induced in the HSV-2-infected brains of transgenic mice, allowing us to speculate on its role in fostering neuronal survival in this model. These observations imply a complex interaction between cytokine, virus, and host cellular factors. Our results suggest a cytokine-regulated salvage pathway that allows for survival of infected neurons. Images Fig. 1 PMID:7724576

  18. The PtdIns(3,4)P(2) phosphatase INPP4A is a suppressor of excitotoxic neuronal death.

    PubMed

    Sasaki, Junko; Kofuji, Satoshi; Itoh, Reietsu; Momiyama, Toshihiko; Takayama, Kiyohiko; Murakami, Haruka; Chida, Shinsuke; Tsuya, Yuko; Takasuga, Shunsuke; Eguchi, Satoshi; Asanuma, Ken; Horie, Yasuo; Miura, Kouichi; Davies, Elizabeth Michele; Mitchell, Christina; Yamazaki, Masakazu; Hirai, Hirokazu; Takenawa, Tadaomi; Suzuki, Akira; Sasaki, Takehiko

    2010-05-27

    Phosphorylated derivatives of phosphatidylinositol, collectively referred to as phosphoinositides, occur in the cytoplasmic leaflet of cellular membranes and regulate activities such as vesicle transport, cytoskeletal reorganization and signal transduction. Recent studies have indicated an important role for phosphoinositide metabolism in the aetiology of diseases such as cancer, diabetes, myopathy and inflammation. Although the biological functions of the phosphatases that regulate phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) have been well characterized, little is known about the functions of the phosphatases regulating the closely related molecule phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P(2)). Here we show that inositol polyphosphate phosphatase 4A (INPP4A), a PtdIns(3,4)P(2) phosphatase, is a suppressor of glutamate excitotoxicity in the central nervous system. Targeted disruption of the Inpp4a gene in mice leads to neurodegeneration in the striatum, the input nucleus of the basal ganglia that has a central role in motor and cognitive behaviours. Notably, Inpp4a(-/-) mice show severe involuntary movement disorders. In vitro, Inpp4a gene silencing via short hairpin RNA renders cultured primary striatal neurons vulnerable to cell death mediated by N-methyl-d-aspartate-type glutamate receptors (NMDARs). Mechanistically, INPP4A is found at the postsynaptic density and regulates synaptic NMDAR localization and NMDAR-mediated excitatory postsynaptic current. Thus, INPP4A protects neurons from excitotoxic cell death and thereby maintains the functional integrity of the brain. Our study demonstrates that PtdIns(3,4)P(2), PtdIns(3,4,5)P(3) and the phosphatases acting on them can have distinct regulatory roles, and provides insight into the unique aspects and physiological significance of PtdIns(3,4)P(2) metabolism. INPP4A represents, to our knowledge, the first signalling protein with a function in neurons to suppress excitotoxic cell death

  19. BDNF up-regulates TrkB protein and prevents the death of CA1 neurons following transient forebrain ischemia.

    PubMed

    Ferrer, I; Ballabriga, J; Martí, E; Pérez, E; Alberch, J; Arenas, E

    1998-04-01

    The neurotrophin family of growth factors, which includes Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT3) and Neurotrophin-4/5 (NT4/5) bind and activate specific tyrosine kinase (Trk) receptors to promote cell survival and growth of different cell populations. For these reasons, growing attention has been paid to the use of neurotrophins as therapeutic agents in neurodegeneration, and to the regulation of the expression of their specific receptors by the ligands. BDNF expression, as revealed by immunohistochemistry, is found in the pre-subiculum, CA1, CA3, and dentate gyrus of the hippocampus. Strong TrkB immunoreactivity is present in most CA3 neurons but only in scattered neurons of the CA1 area. Weak TrkB immunoreactivity is found in the granule cell layer of the dentate gyrus. Unilateral grafting of BDNF-transfected fibroblasts into the hippocampus resulted in a marked increase in the intensity of the immunoreaction and in the number of TrkB-immunoreactive neurons in the granule cell layer of the dentate gyrus, pre-subiculum and CA1 area in the vicinity of the graft. No similar effects were produced after the injection of control mock-transfected fibroblasts. Delayed cell death in the CA1 area was produced following 5 min of forebrain ischemia in the gerbil. The majority of living cells in the CA1 area at the fourth day were BDNF/TrkB immunoreactive. Unilateral grafting of control mock-transfected or BDNF fibroblasts two days before ischemia resulted in a moderate non-specific protection of TrkB-negative, but not TrkB-positive cells, in the CA1 area of the grafted side. This finding is in line with a vascular and glial reaction, as revealed, by immunohistochemistry using astroglial and microglial cell markers. This astroglial response was higher in the grafted side than in the contralateral side in ischemic gerbils, but no differences were seen between BDNF-producing and non-BDNF-producing grafts. However, grafting of

  20. X-ray-induced cell death in the developing hippocampal complex involved neurons and requires protein synthesis

    SciTech Connect

    Ferrer, I.; Serrano, T.; Alcantara, S.; Tortosa, A.; Graus, F.

    1993-07-01

    Sprague-Dawley rats aged 1 or 15 days were irradiated with a single dose of 200 cGy X-rays and killed at different intervals from 3 to 48 hours (h). Dying cells were recognized by their shrunken and often fragmented nuclei and less damaged cytoplasm in the early stages. On the basis of immunocytochemical markers, dying cells probably represented a heterogeneous population which included neurons and immature cells. In rats aged 1 day the number of dying cells rapidly increased in the hippocampal complex with peak values 6 h after irradiation. This was following by a gentle decrease to reach normal values 48 h after irradiation. The most severely affected regions were the subplate and the cellular layer of the subiculum, gyrus dentatus and hilus, and the stratum oriens and pyramidale of the hippocampus (CA1 more affected than CA2, and this more affected than CA3). X-ray-induced cell death was abolished with an injection of cycloheximide (2 [mu]g/g i.p.) given at the time of irradiation. X-ray-induced cell death was not changed after the intraventicular administration of nerve growth factor (NGF; 10 [mu]g in saline) at the time of irradiation. Cell death was not induced by X-irradiation in rats aged 15 days. These results indicate that X-ray-induced cell death in the hippocampal complex of the developing rat is subjected to determinate temporal and regional patterns of vulnerability; it is an active process mediated by protein synthesis but probably not dependent on NGF. 60 refs., 5 figs.

  1. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    SciTech Connect

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2012-07-15

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K{sub 3}) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of

  2. Motor neuron cell death in wobbler mutant mice follows overexpression of the G-protein-coupled, protease-activated receptor for thrombin.

    PubMed Central

    Festoff, B. W.; D'Andrea, M. R.; Citron, B. A.; Salcedo, R. M.; Smirnova, I. V.; Andrade-Gordon, P.

    2000-01-01

    BACKGROUND: Mechanisms underlying neurodegeneration are actively sought for new therapeutic strategies. Transgenic, knockout and genetic mouse models greatly aid our understanding of the mechanisms for neuronal cell death. A naturally occurring, autosomal recessive mutant, known as wobbler, and mice transgenic for familial amyotrophic lateral sclerosis (FALS) superoxide dismutase (SOD)1 mutations are available, but the molecular mechanisms remain equally unknown. Both phenotypes are detectable after birth. Wobbler is detectable in the third week of life, when homozygotes (wr/wr) exhibit prominent gliosis and significant motor neuron loss in the cervical, but not in lumbar, spinal cord segments. To address molecular mechanisms, we evaluated "death signals" associated with the multifunctional serine protease, thrombin, which leads to apoptotic motor neuronal cell death in culture by cleavage of a G-protein coupled, protease-activated receptor 1 (PAR-1). MATERIALS AND METHODS: Thrombin activities were determined with chromogenic substrate assays, Western immunoblots and immunohistochemistry were performed with anti-PAR-1 to observe localizations of the receptor and anti-GFAP staining was used to monitor astrocytosis. PAR-1 mRNA levels and locations were determined by reverse transcription polymerase chain reaction (qRT-PCR) and in situ hybridizations. Cell death was monitored with in situ DNA fragmentation assays. RESULTS: In preliminary studies we found a 5-fold increase in PAR-1 mRNA in cervical spinal cords from wr/wr, compared with wild-type (wt) littermates. Our current studies suggested that reactive astrocytosis and motor neuron cell death were causally linked with alterations in thrombin signaling. PAR-1 protein expression was increased, as demonstrated by immunocytochemistry and confirmed with in situ hybridization, in phenotypic wr/wr motor neurons, compared with wt, but not in astrocytes. This increase was much greater in cervical, compared with lumbar

  3. Signaling Pathways that Mediate Neurotoxin-Induced Death of Dopamine Neurons

    DTIC Science & Technology

    2005-11-01

    undergoing apoptosis. Cell Death and Differentiation, 12: 255-265, 2005. 5. Zimmermann, AK, FA Loucks , SS Le, BD Butts, M McClure, RJ Bouchard, KA...279-289, 2005. 7. Le, SS, FA Loucks , H Udo, S Richardson-Burns, RA Phelps, RJ Bouchard, H Barth, K Aktories, KL Tyler, ER Kandel, KA Heidenreich...Apoptosis in Biochemistry and Structural Biology. 2004 2. Loucks FA, Zimmermann AK, Le SS, Bouchard RJ, Laessig TA, Heidenreich KA, and Linseman DA

  4. Common Mechanisms of Neuronal Cell Death after Exposure to Diverse Environmental Insults: Implications for Treatment

    DTIC Science & Technology

    2006-10-01

    corres\\DODcommonmechfinalreportJuly2006.doc 27 Ronald L. Hayes. Comparison of biomarkers alpha-II spectrin breakdown products, S100B , and tau after...death, we and others have made rapid advances in the development of biomarkers allowing non-invasive study of proteolytic pathology in in vivo models...In addition, proteomics-based platforms can provide powerful technologies to detect biomarkers ultimately providing capabilities for non-invasive

  5. Repair of oxidative DNA damage, cell-cycle regulation and neuronal death may influence the clinical manifestation of Alzheimer's disease.

    PubMed

    Silva, Aderbal R T; Santos, Ana Cecília Feio; Farfel, Jose M; Grinberg, Lea T; Ferretti, Renata E L; Campos, Antonio Hugo Jose Froes Marques; Cunha, Isabela Werneck; Begnami, Maria Dirlei; Rocha, Rafael M; Carraro, Dirce M; de Bragança Pereira, Carlos Alberto; Jacob-Filho, Wilson; Brentani, Helena

    2014-01-01

    Alzheimer's disease (AD) is characterized by progressive cognitive decline associated with a featured neuropathology (neuritic plaques and neurofibrillary tangles). Several studies have implicated oxidative damage to DNA, DNA repair, and altered cell-cycle regulation in addition to cell death in AD post-mitotic neurons. However, there is a lack of studies that systematically assess those biological processes in patients with AD neuropathology but with no evidence of cognitive impairment. We evaluated markers of oxidative DNA damage (8-OHdG, H2AX), DNA repair (p53, BRCA1, PTEN), and cell-cycle (Cdk1, Cdk4, Cdk5, Cyclin B1, Cyclin D1, p27Kip1, phospho-Rb and E2F1) through immunohistochemistry and cell death through TUNEL in autopsy hippocampal tissue samples arrayed in a tissue microarray (TMA) composed of three groups: I) "clinical-pathological AD" (CP-AD)--subjects with neuropathological AD (Braak ≥ IV and CERAD = B or C) and clinical dementia (CDR ≥ 2, IQCODE>3.8); II) "pathological AD" (P-AD)--subjects with neuropathological AD (Braak ≥ IV and CERAD = B or C) and without cognitive impairment (CDR 0, IQCODE<3.2); and III) "normal aging" (N)--subjects without neuropathological AD (Braak ≤ II and CERAD 0 or A) and with normal cognitive function (CDR 0, IQCODE<3.2). Our results show that high levels of oxidative DNA damage are present in all groups. However, significant reductions in DNA repair and cell-cycle inhibition markers and increases in cell-cycle progression and cell death markers in subjects with CP-AD were detected when compared to both P-AD and N groups, whereas there were no significant differences in the studied markers between P-AD individuals and N subjects. This study indicates that, even in the setting of pathological AD, healthy cognition may be associated with a preserved repair to DNA damage, cell-cycle regulation, and cell death in post-mitotic neurons.

  6. Quantitative relationships between huntingtin levels, polyglutamine length, inclusion body formation, and neuronal death provide novel insight into Huntington’s disease molecular pathogenesis

    PubMed Central

    Miller, Jason; Arrasate, Montserrat; Shaby, Benjamin A.; Mitra, Siddhartha; Masliah, Eliezer; Finkbeiner, Steven

    2010-01-01

    An expanded polyglutamine (polyQ) stretch in the protein huntingtin (htt) induces self-aggregation into inclusion bodies (IBs) and causes Huntington’s disease (HD). Defining precise relationships between early observable variables and neuronal death at the molecular and cellular levels should improve our understanding of HD pathogenesis. Here, we utilized an automated microscope that can track thousands of neurons individually over their entire lifetime to quantify interconnected relationships between early variables, such as htt levels, polyQ length, and IB formation, and neuronal death in a primary striatal model of HD. The resulting model revealed that: mutant htt increases the risk of death by tonically interfering with homeostatic coping mechanisms rather than producing accumulated damage to the neuron; htt toxicity is saturable; the rate limiting steps for inclusion body formation and death can be traced to different conformational changes in monomeric htt; and IB formation reduces the impact of a neuron’s starting levels of htt on its risk of death. Finally, the model that emerges from our quantitative measurements places critical limits on the potential mechanisms by which mutant htt might induce neurodegeneration, which should help direct future research. PMID:20685997

  7. Compatibility of SYTO 13 and Hoechst 33342 for Longitudinal Imaging of Neuron Viability and Cell Death

    DTIC Science & Technology

    2012-08-14

    neuronal differentiation ESNs were generated, plated and cultured as previously described [10,11]. ESNs were maintained in NeurobasalW- A medium ( NBA ...washed and incubated for 6 h in complete NBA medium without (control) or with 1 μM staurosporine. After 6 h, the media was replaced with complete NBA ...supplemented with 5 μg/mL PI for 10 min at 37°C and 5% CO2 followed by complete NBA with 5 μg/mL Hoechst or 500 nM SYTO 13 for 5 min. Cover- slips were

  8. Rapamycin protects against neuronal death and improves neurological function with modulation of microglia after experimental intracerebral hemorrhage in rats.

    PubMed

    Li, D; Liu, F; Yang, T; Jin, T; Zhang, H; Luo, X; Wang, M

    2016-09-30

    Intracerebral hemorrhage (ICH) results in a devastating brain disorder with high mortality and poor prognosis and effective therapeutic intervention for the disease remains a challenge at present. The present study investigated the neuroprotective effects of rapamycin on ICH-induced brain damage and the possible involvement of activated microglia. ICH was induced in rats by injection of type IV collagenase into striatum. Different dose of rapamycin was systemically administrated by intraperitoneal injection beginning at 1 h after ICH induction. Western blot analysis showed that ICH led to a long-lasting increase of phosphorylated mTOR and this hyperactivation of mTOR was reduced by systemic administration of rapamycin. Rapamycin treatment significantly improved the sensorimotor deficits induced by ICH, and attenuated ICH-induced brain edema formation as well as lesion volume. Nissl and Fluoro-Jade C staining demonstrated that administration with rapamycin remarkably decreased neuronal death surrounding the hematoma at 7 d after ICH insult. ELISA and real-time quantitative PCR demonstrated that rapamycin inhibited ICH-induced excessive expression of TNF-α and IL-1β in ipsilateral hemisphere. Furthermore, activation of microglia induced by ICH was significantly suppressed by rapamycin administration. These data indicated that treatment of rapamycin following ICH decreased the brain injuries and neuronal death at the peri-hematoma striatum, and increased neurological function, which associated with reduced the levels of proinflammatory cytokines and activated microglia. The results provide novel insight into the neuroprotective therapeutic strategy of rapamycin for ICH insult, which possibly involving the regulation of microglial activation.

  9. Oxidative stress-induced CREB upregulation promotes DNA damage repair prior to neuronal cell death protection.

    PubMed

    Pregi, Nicolás; Belluscio, Laura María; Berardino, Bruno Gabriel; Castillo, Daniela Susana; Cánepa, Eduardo Tomás

    2017-01-01

    cAMP response element-binding (CREB) protein is a cellular transcription factor that mediates responses to different physiological and pathological signals. Using a model of human neuronal cells we demonstrate herein, that CREB is phosphorylated after oxidative stress induced by hydrogen peroxide. This phosphorylation is largely independent of PKA and of the canonical phosphoacceptor site at ser-133, and is accompanied by an upregulation of CREB expression at both mRNA and protein levels. In accordance with previous data, we show that CREB upregulation promotes cell survival and that its silencing results in an increment of apoptosis after oxidative stress. Interestingly, we also found that CREB promotes DNA repair after treatment with hydrogen peroxide. Using a cDNA microarray we found that CREB is responsible for the regulation of many genes involved in DNA repair and cell survival after oxidative injury. In summary, the neuroprotective effect mediated by CREB appears to follow three essential steps following oxidative injury. First, the upregulation of CREB expression that allows sufficient level of activated and phosphorylated protein is the primordial event that promotes the induction of genes of the DNA Damage Response. Then and when the DNA repair is effective, CREB induces detoxification and survival genes. This kinetics seems to be important to completely resolve oxidative-induced neuronal damages.

  10. Intracerebroventricular administration of Shiga toxin type 2 induces striatal neuronal death and glial alterations: an ultrastructural study.

    PubMed

    Goldstein, Jorge; Loidl, César Fabián; Creydt, Virginia Pistone; Boccoli, Javier; Ibarra, Cristina

    2007-08-03

    Shiga toxin (Stx) from enterohemorrhagic Escherichia coli (STEC) is the main cause of hemorrhagic colitis which may derive to hemolytic-uremic syndrome (HUS). HUS is characterized by acute renal failure, thrombocytopenia and microangiopathic hemolytic anemia. Mortality in the acute stage has been lower than 5% of total affected argentine children with endemic HUS. Common signs of severe CNS involvement leading to death included seizures, alteration of consciousness, hemiparesis, visual disturbances, and brainstem symptoms. The main purpose of the present work was to study the direct involvement of Stx2 in brain cells by intracerebroventricular (i.c.v.) administration of Stx2. Immunodetection of Stx2 was confirmed by immunoelectron cytochemistry in different subsets and compartments of affected caudate putamen cells of corpus striatum. Transmission electron microscopy (TEM) studies revealed apoptotic neurons, glial ultrastructural alterations and demyelinated fibers. The i.c.v. microinfusion was applied for the first time in rats to demonstrate the direct action of Stx2 in neurons and glial cells. The toxin may affect brain neuroglial cells without the involvement of proinflammatory or systemic neurotoxic elements.

  11. Bone marrow transplantation in hindlimb muscles of motoneuron degenerative mice reduces neuronal death and improves motor function.

    PubMed

    Pastor, Diego; Viso-León, Mari Carmen; Botella-López, Arancha; Jaramillo-Merchan, Jesus; Moraleda, Jose M; Jones, Jonathan; Martínez, Salvador

    2013-06-01

    Bone marrow has proved to be an adequate source of stem cells for the treatment of numerous disorders, including neurodegenerative diseases. Bone marrow can be easily and relatively painlessly extracted from a patient or allogenic donor and then transplanted into the degenerative area. Here, the grafted cells will activate a number of mechanisms in order to protect, repair, and/or regenerate the damaged tissue. These properties make the bone marrow a feasible source for cell therapy. In this work, we transplanted bone marrow cells into a mouse model of motoneuron degeneration, with the particularity of placing the cells in the hindlimb muscles rather than in the spinal cord where neuronal degeneration occurs. To this end, we analyze the possibility for the transplanted cells to increase the survival rate of the spinal cord motoneurons by axonal-guided retrograde neurotrophism. As a result, the mice significantly improved their motor functions. This coincided with an increased number of motoneurons innervating the treated muscle compared with the neurons innervating the non-treated contralateral symmetric muscle. In addition, we detected an increase in glial-derived neurotrophic factor in the spinal cord, a neurotrophic factor known to be involved in the rescue of degenerating motoneurons, exerting a neuroprotective effect. Thus, we have proved that bone marrow injected into the muscles is capable of rescuing these motoneurons from death, which may be a possible therapeutic approach for spinal cord motoneuron degenerative diseases, such as amyotrophic lateral sclerosis.

  12. Blockade of the Interaction of Calcineurin with FOXO in Astrocytes Protects Against Amyloid-β-Induced Neuronal Death.

    PubMed

    Fernandez, Ana M; Hervas, Ruben; Dominguez-Fraile, Manuel; Garrido, Victoria Navarro; Gomez-Gutierrez, Patricia; Vega, Miguel; Vitorica, Javier; Perez, Juan J; Torres Aleman, Ignacio

    2016-04-12

    Astrocytes actively participate in neuro-inflammatory processes associated to Alzheimer's disease (AD), and other brain pathologies. We recently showed that an astrocyte-specific intracellular signaling pathway involving an interaction of the phosphatase calcineurin with the transcription factor FOXO3 is a major driver in AD-associated pathological inflammation, suggesting a potential new druggable target for this devastating disease. We have now developed decoy molecules to interfere with calcineurin/FOXO3 interactions, and tested them in astrocytes and neuronal co-cultures exposed to amyloid-β (Aβ) toxicity. We observed that interference of calcineurin/FOXO3 interactions exerts a protective action against Aβ-induced neuronal death and favors the production of a set of growth factors that we hypothesize form part of a cytoprotective pathway to resolve inflammation. Furthermore, interference of the Aβ-induced interaction of calcineurin with FOXO3 by decoy compounds significantly decreased amyloid-β protein precursor (AβPP) synthesis, reduced the AβPP amyloidogenic pathway, resulting in lower Aβ levels, and blocked the expression of pro-inflammatory cytokines TNFα and IL-6 in astrocytes. Collectively, these data indicate that interrupting pro-inflammatory calcineurin/FOXO3 interactions in astrocytes triggered by Aβ accumulation in brain may constitute an effective new therapeutic approach in AD. Future studies with intranasal delivery, or brain barrier permeable decoy compounds, are warranted.

  13. Ginkgo biloba Prevents Transient Global Ischemia-Induced Delayed Hippocampal Neuronal Death Through Antioxidant and Anti-inflammatory Mechanism

    PubMed Central

    Tulsulkar, Jatin; Shah, Zahoor A.

    2012-01-01

    We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia. In a quest to extend our studies on EGB 761 and its constituents further, we used a model of transient global ischemia induced delayed hippocampal neuronal death and inflammation. Mice pretreated with different test drugs for 7 days were subjected to eight-minute bilateral common carotid artery occlusion (tBCCAO) at day 8. After 7 days of reperfusion, mice brains were dissected out for TUNEL assay and immunohistochemistry. In-situ detection of fragmented DNA (TUNEL staining) showed that out of all test drugs, only EGb 761 (13.6% ± 3.2) pretreatment protected neurons in the hippocampus against global ischemia (vs. vehicle, 85.1% ± 9.9; p < 0.05). Immunofluorescence-based studies demonstrated that pretreatment with EGb 761 upregulated the expression levels of heme oxygenase 1 (HO1), nuclear factor erythroid 2-related factor 2 (Nrf2), and vascular endothelial growth factor (VEGF) as compared to the vehicle group. In addition, increased number of activated astrocytes and microglia in the vehicle group was observed to be significantly lower in the EGb 761 pretreated group. Together, these results suggest that EGb 761 is a multifunctional neuroprotective agent, and the protection is in part associated with activation of the HO1/Nrf2 pathway, upregulation of VEGF and downregulation of inflammatory mediators such as astrocytes and microglia. PMID:23228346

  14. Bone Marrow Transplantation in Hindlimb Muscles of Motoneuron Degenerative Mice Reduces Neuronal Death and Improves Motor Function

    PubMed Central

    Viso-León, Mari Carmen; Botella-López, Arancha; Jaramillo-Merchan, Jesus; Moraleda, Jose M.; Jones, Jonathan; Martínez, Salvador

    2013-01-01

    Bone marrow has proved to be an adequate source of stem cells for the treatment of numerous disorders, including neurodegenerative diseases. Bone marrow can be easily and relatively painlessly extracted from a patient or allogenic donor and then transplanted into the degenerative area. Here, the grafted cells will activate a number of mechanisms in order to protect, repair, and/or regenerate the damaged tissue. These properties make the bone marrow a feasible source for cell therapy. In this work, we transplanted bone marrow cells into a mouse model of motoneuron degeneration, with the particularity of placing the cells in the hindlimb muscles rather than in the spinal cord where neuronal degeneration occurs. To this end, we analyze the possibility for the transplanted cells to increase the survival rate of the spinal cord motoneurons by axonal-guided retrograde neurotrophism. As a result, the mice significantly improved their motor functions. This coincided with an increased number of motoneurons innervating the treated muscle compared with the neurons innervating the non-treated contralateral symmetric muscle. In addition, we detected an increase in glial-derived neurotrophic factor in the spinal cord, a neurotrophic factor known to be involved in the rescue of degenerating motoneurons, exerting a neuroprotective effect. Thus, we have proved that bone marrow injected into the muscles is capable of rescuing these motoneurons from death, which may be a possible therapeutic approach for spinal cord motoneuron degenerative diseases, such as amyotrophic lateral sclerosis. PMID:23282201

  15. Acupuncture prevents 6-hydroxydopamine-induced neuronal death in the nigrostriatal dopaminergic system in the rat Parkinson's disease model.

    PubMed

    Park, Hi-Joon; Lim, Sabina; Joo, Wan-Seok; Yin, Chang-Shik; Lee, Hyang-Sook; Lee, Hye-Jung; Seo, Jung Chul; Leem, Kanghyun; Son, Yang-Sun; Kim, Youn-Jung; Kim, Chang-Ju; Kim, Yong-Sik; Chung, Joo-Ho

    2003-03-01

    Parkinson's disease (PD) is a chronic neurodegenerative disorder, and it has been suggested that treatments promoting survival and functional recovery of affected dopaminergic neurons could have a significant and long-term therapeutic value. In the present study, we investigated the neuroprotective effects of acupuncture on the nigrostriatal system in rat unilaterally lesioned with 6-hydroxydopamine (6-OHDA, 4 microg/microl, intrastriatal injection) using tyrosine hydroxylase (TH) and receptor for brain-derived neurotrophic factor, trkB, immunohistochemistries. Two weeks after the lesions were made, rats presented with asymmetry in rotational behavior (118.3 +/- 17.5 turns/h) following injection with apomorphine, a dopamine receptor agonist (0.5 mg/kg, sc). In contrast, acupunctural treatment at acupoints GB34 and LI3 was shown to significantly reduce this motor deficit (14.6 +/- 13.4 turns/h). Analysis via TH immunohistochemistry revealed a substantial loss of cell bodies in the substantia nigra (SN) (45.7% loss) and their terminals in the dorsolateral striatum ipsilateral to the 6-OHDA-induced lesion. However, acupunctural treatment resulted in the enhanced survival of dopaminergic neurons in the SN (21.4% loss) and their terminals in the dorsolateral striatum. Acupuncture also increased the expression of trkB significantly (35.6% increase) in the ipsilateral SN. In conclusion, we observed that only acupuncturing without the use of any drug has the neuroprotective effects against neuronal death in the rat PD model and these protective properties of acupuncture could be mediated by trkB.

  16. TLR4-activated microglia require IFN-γ to induce severe neuronal dysfunction and death in situ

    PubMed Central

    Papageorgiou, Ismini E.; Lewen, Andrea; Galow, Lukas V.; Cesetti, Tiziana; Scheffel, Jörg; Regen, Tommy; Hanisch, Uwe-Karsten; Kann, Oliver

    2016-01-01

    Microglia (tissue-resident macrophages) represent the main cell type of the innate immune system in the CNS; however, the mechanisms that control the activation of microglia are widely unknown. We systematically explored microglial activation and functional microglia–neuron interactions in organotypic hippocampal slice cultures, i.e., postnatal cortical tissue that lacks adaptive immunity. We applied electrophysiological recordings of local field potential and extracellular K+ concentration, immunohistochemistry, design-based stereology, morphometry, Sholl analysis, and biochemical analyses. We show that chronic activation with either bacterial lipopolysaccharide through Toll-like receptor 4 (TLR4) or leukocyte cytokine IFN-γ induces reactive phenotypes in microglia associated with morphological changes, population expansion, CD11b and CD68 up-regulation, and proinflammatory cytokine (IL-1β, TNF-α, IL-6) and nitric oxide (NO) release. Notably, these reactive phenotypes only moderately alter intrinsic neuronal excitability and gamma oscillations (30–100 Hz), which emerge from precise synaptic communication of glutamatergic pyramidal cells and fast-spiking, parvalbumin-positive GABAergic interneurons, in local hippocampal networks. Short-term synaptic plasticity and extracellular potassium homeostasis during neural excitation, also reflecting astrocyte function, are unaffected. In contrast, the coactivation of TLR4 and IFN-γ receptors results in neuronal dysfunction and death, caused mainly by enhanced microglial inducible nitric oxide synthase (iNOS) expression and NO release, because iNOS inhibition is neuroprotective. Thus, activation of TLR4 in microglia in situ requires concomitant IFN-γ receptor signaling from peripheral immune cells, such as T helper type 1 and natural killer cells, to unleash neurotoxicity and inflammation-induced neurodegeneration. Our findings provide crucial mechanistic insight into the complex process of microglia activation

  17. 3',4',7-Trihydroxyflavone prevents apoptotic cell death in neuronal cells from hydrogen peroxide-induced oxidative stress.

    PubMed

    Kwon, Seung-Hwan; Hong, Sa-Ik; Ma, Shi-Xun; Lee, Seok-Yong; Jang, Choon-Gon

    2015-06-01

    In this study, we investigated the mechanisms of 3',4',7-trihydroxyflavone (THF) protection of neuronal cells from neuronal cell death induced by the oxidative stress-related neurotoxin hydrogen peroxide (H2O2). Pretreatment with THF significantly elevated cell viability, reduced H2O2-induced lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) production, glutathione (GSH) content, superoxide dismutase (SOD) activity, catalase (CAT) activity, and mitochondria membrane potential (MMP) loss. Western blot data demonstrated that THF inhibited the H2O2-induced up- or down-regulation of cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), Bax, Bcl-2, and Bcl-xL, and attenuated the H2O2-induced release of cytochrome c from the mitochondria to the cytosol. In addition, pretreatment with THF attenuated H2O2-induced rapid and significant phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinases (PI3K)/Akt. THF also inhibited nuclear factor-κB (NF-κB) translocation to the nucleus induced by H2O2, down-stream of H2O2-induced phosphorylation of MAPKs and PI3K/Akt. These data provide the first evidence that THF protects neuronal cells against H2O2-induced oxidative stress, possibly through ROS reduction, mitochondria protection, and NF-κB modulation via MAPKs and PI3K/Akt pathways. The neuroprotective effects of THF make it a promising candidate as a therapeutic agent for neurodegenerative diseases.

  18. Japanese encephalitis virus infection decrease endogenous IL-10 production: correlation with microglial activation and neuronal death.

    PubMed

    Swarup, Vivek; Ghosh, Joydeep; Duseja, Rachna; Ghosh, Soumya; Basu, Anirban

    2007-06-13

    The anti-inflammatory cytokine interleukin (IL)-10 is synthesized in the central nervous system (CNS) and acts to limit clinical symptoms of stroke, multiple sclerosis, Alzheimer's disease, meningitis, and the behavioral changes that occur during bacterial infections. Expression of IL-10 is critical during the course of most major diseases in the CNS and promotes survival of neurons and all glial cells in the brain by blocking the effects of proinflammatory cytokines and by promoting expression of cell survival signals. In order to assess functional importance of this cytokine in viral encephalitis we have exploited an experimental model of Japanese encephalitis (JE). We report for the first time that in Japanese encephalitis, there is a progressive decline in level of IL-10. The extent of progressive decrease in IL-10 level following viral infection is inversely proportional to the increase in the level of proinflammatory cytokines as well as negative consequences that follows viral infection.

  19. Beneficial effects of carnosic acid on dieldrin-induced dopaminergic neuronal cell death.

    PubMed

    Park, Jeong Ae; Kim, Seung; Lee, Sook-Young; Kim, Chun-Sung; Kim, Do Kyung; Kim, Sung-Jun; Chun, Hong Sung

    2008-08-27

    Carnosic acid (CA) is one of the bioactive polyphenols present in extracts of the herb rosemary (Rosmarinus officinalis). In this study, we examined possible protective effects of CA on neurotoxicity induced by dieldrin, an organochlorine pesticide implicated in sporadic Parkinson's disease, in cultured dopaminergic cells (SN4741). CA (5-10 muM) pretreatment showed potent protective effects in a concentration-related manner and prevented dieldrin (10 muM)-induced caspase-3 activation, Jun N-terminal kinase phosphorylation, and caspase-12 activation. Furthermore, dieldrin-induced downregulation of brain-derived neurotrophic factor production was significantly attenuated by CA. These results suggest that CA may safeguard dopaminergic neuronal cells from environmental neurotoxins by enhancing brain-derived neurotrophic factor and repressing apoptotic molecules.

  20. Acute estradiol protects CA1 neurons from ischemia-induced apoptotic cell death via the PI3K/Akt pathway

    PubMed Central

    Jover-Mengual, Teresa; Miyawaki, Takahiro; Latuszek, Adrianna; Alborch, Enrique; Zukin, R. Suzanne; Etgen, Anne M.

    2010-01-01

    Global ischemia arising during cardiac arrest or cardiac surgery causes highly selective, delayed death of hippocampal CA1 neurons. Exogenous estradiol ameliorates global ischemia-induced neuronal death and cognitive impairment in male and female rodents. However, the molecular mechanisms by which a single acute injection of estradiol administered after the ischemic event intervenes in global ischemia-induced apoptotic cell death are unclear. Here we show that acute estradiol acts via the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling cascade to protect CA1 neurons in ovariectomized female rats. We demonstrate that global ischemia promotes early activation of glycogen synthase kinase-3β (GSK3β) and forkhead transcription factor of the O class (FOXO)3A, known Akt targets that are related to cell survival, and activation of caspase-3. Estradiol prevents ischemia-induced dephosphorylation and activation of GSK3β and FOXO3A, and the caspase death cascade. These findings support a model whereby estradiol acts by activation of PI3K/Akt signaling to promote neuronal survival in the face of global ischemia. PMID:20114038

  1. Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway

    PubMed Central

    Liot, G; Bossy, B; Lubitz, S; Kushnareva, Y; Sejbuk, N; Bossy-Wetzel, E

    2009-01-01

    Mitochondrial respiratory complex II inhibition plays a central role in Huntington’s disease (HD). Remarkably, 3-NP, a complex II inhibitor, recapitulates HD-like symptoms. Furthermore, decreases in mitochondrial fusion or increases in mitochondrial fission have been implicated in neurodegenerative diseases. However, the relationship between mitochondrial energy defects and mitochondrial dynamics has never been explored in detail. In addition, the mechanism of neuronal cell death by complex II inhibition remains unclear. Here, we tested the temporal and spatial relationship between energy decline, impairment of mitochondrial dynamics, and neuronal cell death in response to 3-NP using quantitative fluorescence time-lapse microscopy and cortical neurons. 3-NP caused an immediate drop in ATP. This event corresponded with a mild rise in reactive oxygen species (ROS), but mitochondrial morphology remained unaltered. Unexpectedly, several hours after this initial phase, a second dramatic rise in ROS occurred, associated with profound mitochondrial fission characterized by the conversion of filamentous to punctate mitochondria and neuronal cell death. Glutamate receptor antagonist AP5 abolishes the second peak in ROS, mitochondrial fission, and cell death. Thus, secondary excitotoxicity, mediated by glutamate receptor activation of the NMDA subtype, and consequent oxidative and nitrosative stress cause mitochondrial fission, rather than energy deficits per se. These results improve our understanding of the cellular mechanisms underlying HD pathogenesis. PMID:19300456

  2. Neuronal cells but not muscle cells are resistant to oxidative stress mediated protein misfolding and cell death: role of molecular chaperones.

    PubMed

    Bhattacharya, Arunabh; Wei, Rochelle; Hamilton, Ryan T; Chaudhuri, Asish R

    2014-04-18

    Our recent study in a mouse model of familial-Amyotrophic Lateral Sclerosis (f-ALS) revealed that muscle proteins are equally sensitive to misfolding as spinal cord proteins despite the presence of low mutant CuZn-superoxide dismutase, which is considered to be the key toxic element for initiation and progression of f-ALS. More importantly, we observed differential level of heat shock proteins (Hsp's) between skeletal muscle and spinal cord tissues prior to the onset and during disease progression; spinal cord maintains significantly higher level of Hsp's compared to skeletal muscle. In this study, we report two important observations; (i) muscle cells (but not neuronal cells) are extremely vulnerable to protein misfolding and cell death during challenge with oxidative stress and (ii) muscle cells fail to mount Hsp's during challenge unlike neuronal cells. These two findings can possibly explain why muscle atrophy precedes the death of motor neurons in f-ALS mice.

  3. Suppression of autophagy precipitates neuronal cell death following low doses of methamphetamine.

    PubMed

    Castino, Roberta; Lazzeri, Gloria; Lenzi, Paola; Bellio, Natascia; Follo, Carlo; Ferrucci, Michela; Fornai, Francesco; Isidoro, Ciro

    2008-08-01

    Methamphetamine abuse is toxic to dopaminergic neurons, causing nigrostriatal denervation and striatal dopamine loss. Following methamphetamine exposure, the number of nigral cell bodies is generally preserved, but their cytoplasm features autophagic-like vacuolization and cytoplasmic accumulation of alpha-synuclein-, ubiquitin- and parkin-positive inclusion-like bodies. Whether autophagy is epiphenomenal or it plays a role in the mechanism of methamphetamine toxicity and, in the latter case, whether its role consists of counteracting or promoting the neurotoxic effect remains obscure. We investigated the signaling pathway and the significance (protective vs. toxic) of autophagy activation and the convergence of the autophagic and the ubiquitin-proteasome pathways at the level of the same intracellular bodies in a simple cell model of methamphetamine toxicity. We show that autophagy is rapidly up-regulated in response to methamphetamine. Confocal fluorescence microscopy and immuno-electron microscopy studies demonstrated the presence of alpha-synuclein aggregates in autophagy-lysosomal structures in cells exposed to methamphetamine, a condition compatible with cell survival. Inhibition of autophagy either by pharmacologic or genetic manipulation of the class III Phosphatidylinositol-3 kinase-mediated signaling prevented the removal of alpha-synuclein aggregates and precipitated a bax-mediated mitochondrial apoptosis pathway.

  4. DJ-1-dependent protective activity of DJ-1-binding compound no. 23 against neuronal cell death in MPTP-treated mouse model of Parkinson's disease.

    PubMed

    Takahashi-Niki, Kazuko; Inafune, Ayako; Michitani, Naruyuki; Hatakeyama, Yoshitaka; Suzuki, Kotaro; Sasaki, Mai; Kitamura, Yoshihisa; Niki, Takeshi; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2015-03-01

    Parkinson's disease (PD) is caused by dopaminergic cell death in the substantia nigra, leading to a reduced level of dopamine in the striatum. Oxidative stress is one of the causes of PD. Since symptomatic PD therapies are used, identification of compounds or proteins that inhibit oxidative stress-induced neuronal cell death is necessary. DJ-1 is a causative gene product of familial PD and plays a role in anti-oxidative stress reaction. We have identified various DJ-1-binding compounds, including compound-23, that restored neuronal cell death and locomotion defects observed in neurotoxin-induced PD models. In this study, wild-type and DJ-1-knockout mice were injected intraperitoneally with 1 mg/kg of compound-23 and then with 30 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at 1 h after injection. Five days after administration, the effects of compound-23 on MPTP-induced locomotion deficits, on dopaminergic cell death and on brain dopamine levels were analyzed by rotor rod tests, by staining cells with an anti-TH antibody and by an HPLC, respectively. The results showed that compound-23 inhibited MPTP-induced reduction of retention time on the rotor rod bar, neuronal cell death in the substantia nigra and striatum and dopamine content in wild-type mice but not in DJ-1-knockout mice, indicating a DJ-1-dependent effect of compound-23.

  5. Vitamin B-6 nutrition, 3-hydroxykynurenine (3HK), and neuronal cell death

    SciTech Connect

    Eastman, C.L.; Guilarte, T.R. )

    1990-02-26

    Neonatal vitamin B-6 restriction results in CNS neurochemical and neuropathological impairment including ataxia, tremor, and seizures. Coincident with the onset of neurological signs, there is a dramatic increase in the CNS levels of 3HK, an endogenous tryptophan metabolite which has been reported to possess convulsant and cytotoxic properties. Previous studies have shown that H{sub 2}O{sub 2} plays a critical role in 3HK toxicity. In 3HK exposed cell cultures, toxic levels of H{sub 2}O{sub 2} may be produced intracellularly by the action of cellular oxidases or on either side of the cell membrane by iron-catalyzed autooxidation of 3HK. Alternatively, H{sub 2}O{sub 2} may be required as a cosubstrate for the peroxidative oxidation of 3HK to a toxic quinoneimine. In order to address the issue of the site and mode of action of 3HK toxicity, the authors have examined the effects of treatments administered before and after exposure to 3HK such that their effects must reflect actions confined within the intracellular compartment. The results show that the toxicity of 3HK was attenuated by post-treatment with catalase and by pre-treatment with desferrioxamine or horseradish peroxidase. These results support a direct role for H{sub 2}O{sub 2} in 3HK toxicity and suggest that cell death results from toxic levels of H{sub 2}O{sub 2} in the intracellular compartment.

  6. Topiramate attenuates early brain injury following subarachnoid haemorrhage in rats via duplex protection against inflammation and neuronal cell death.

    PubMed

    Tian, Yong; Guo, Song-Xue; Li, Jian-Ru; Du, Hang-Gen; Wang, Chao-Hui; Zhang, Jian-Min; Wu, Qun

    2015-10-05

    Early brain injury (EBI) following aneurysmal subarachnoid haemorrhage (SAH) insults contributes to the poor prognosis and high mortality observed in SAH patients. Topiramate (TPM) is a novel, broad-spectrum, antiepileptic drug with a reported protective effect against several brain injuries. The current study aimed to investigate the potential of TPM for neuroprotection against EBI after SAH and the possible dose-dependency of this effect. An endovascular perforation SAH model was established in rats, and TPM was administered by intraperitoneal injection after surgery at three different doses (20mg/kg, 40mg/kg, and 80mg/kg). The animals' neurological scores and brain water content were evaluated, and ELISA, Western blotting and immunostaining assays were conducted to assess the effect of TPM. The results revealed that TPM lowers the elevated levels of myeloperoxidase and proinflammatory mediators observed after SAH in a dose-related fashion, and the nuclear factor-kappa B (NF-κB) signalling pathway is the target of neuroinflammation regulation. In addition, TPM ameliorated SAH-induced cortical neuronal apoptosis by influencing Bax, Bcl-2 and cleaved caspase-3 protein expression, and the effect of TPM was enhanced in a dose-dependent manner. Various dosages of TPM also upregulated the protein expression of the γ-aminobutyric acid (GABA)-ergic signalling molecules, GABAA receptor (GABAAR) α1, GABAAR γ2, and K(+)-Cl(-) co-transporter 2 (KCC2) together and downregulated Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1) expression. Thus, TPM may be an effective neuroprotectant in EBI after SAH by regulating neuroinflammation and neuronal cell death.

  7. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Instability and Death of Spiral Wave in a Two-Dimensional Array of Hindmarsh-Rose Neurons

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Ni; Ma, Jun; Tang, Jun; Li, Yan-Long

    2010-02-01

    Spiral wave could be observed in the excitable media, the neurons are often excitable within appropriate parameters. The appearance and formation of spiral wave in the cardiac tissue is linked to monomorphic ventricular tachycardia that can denervate into polymorphic tachycardia and ventricular fibrillation. The neuronal system often consists of a large number of neurons with complex connections. In this paper, we theoretically study the transition from spiral wave to spiral turbulence and homogeneous state (death of spiral wave) in two-dimensional array of the Hindmarsh-Rose neuron with completely nearest-neighbor connections. In our numerical studies, a stable rotating spiral wave is developed and selected as the initial state, then the bifurcation parameters are changed to different values to observe the transition from spiral wave to homogeneous state, breakup of spiral wave and weak change of spiral wave, respectively. A statistical factor of synchronization is defined with the mean field theory to analyze the transition from spiral wave to other spatial states, and the snapshots of the membrane potentials of all neurons and time series of mean membrane potentials of all neurons are also plotted to discuss the change of spiral wave. It is found that the sharp changing points in the curve for factor of synchronization vs. bifurcation parameter indicate sudden transition from spiral wave to other states. And the results are independent of the number of neurons we used.

  8. Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation

    PubMed Central

    2012-01-01

    Background The mechanisms of progressive dopaminergic neuronal loss in Parkinson’s disease (PD) remain poorly understood, largely due to the complex etiology and multifactorial nature of disease pathogenesis. Several lines of evidence from human studies and experimental models over the last decade have identified neuroinflammation as a potential pathophysiological mechanism contributing to disease progression. Tumor necrosis factor α (TNF) has recently emerged as the primary neuroinflammatory mediator that can elicit dopaminergic cell death in PD. However, the signaling pathways by which TNF mediates dopaminergic cell death have not been completely elucidated. Methods In this study we used a dopaminergic neuronal cell model and recombinant TNF to characterize intracellular signaling pathways activated during TNF-induced dopaminergic neurotoxicity. Etanercept and neutralizing antibodies to tumor necrosis factor receptor 1 (TNFR1) were used to block TNF signaling. We confirmed the results from our mechanistic studies in primary embryonic mesencephalic cultures and in vivo using the stereotaxic lipopolysaccharide (LPS) model of nigral dopaminergic degeneration. Results TNF signaling in dopaminergic neuronal cells triggered the activation of protein kinase Cδ (PKCδ), an isoform of the novel PKC family, by caspase-3 and caspase-8 dependent proteolytic cleavage. Both TNFR1 neutralizing antibodies and the soluble TNF receptor Etanercept blocked TNF-induced PKCδ proteolytic activation. Proteolytic activation of PKCδ was accompanied by translocation of the kinase to the nucleus. Notably, inhibition of PKCδ signaling by small interfering (si)RNA or overexpression of a PKCδ cleavage-resistant mutant protected against TNF-induced dopaminergic neuronal cell death. Further, primary dopaminergic neurons obtained from PKCδ knockout (−/−) mice were resistant to TNF toxicity. The proteolytic activation of PKCδ in the mouse substantia nigra in the neuroinflammatory LPS

  9. Protective effect of the green tea component, L-theanine on environmental toxins-induced neuronal cell death.

    PubMed

    Cho, Hong-Suk; Kim, Seung; Lee, Sook-Young; Park, Jeong Ae; Kim, Sung-Jun; Chun, Hong Sung

    2008-07-01

    Several environmental neurotoxins and oxidative stress inducers are known to damage the nervous system and are considered major factors associated with the selective vulnerability of nigral dopaminergic neurons in Parkinson's disease (PD). Gamma-glutamylethylamide (L-theanine), a natural glutamate analog in green tea, has been shown to exert strong anti-ischemic effect. In this study, we investigated the protective effects of L-theanine on neurotoxicity induced by PD-related neurotoxicants, rotenone and dieldrin in cultured human dopaminergic cell line, SH-SY5Y. Our initial experiments revealed that L-theanine (500 microM) attenuated both rotenone- and dieldrin-induced DNA fragmentation and apoptotic death in SH-SY5Y cells. In addition, L-theanine partially prevented both rotenone- and dieldrin-induced heme oxygenase-1 (HO-1) up-regulation. Both rotenone- and dieldrin-induced down-regulation of extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylation was significantly blocked by pretreatment with L-theanine. Furthermore, pretreatment with L-theanine significantly attenuated the down-regulation of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) production in SH-SY5Y cells. These results suggest that L-theanine directly provide neuroprotection against PD-related neurotoxicants and may be clinically useful for preventing PD symptoms.

  10. Protective effects of bupivacaine against kainic acid-induced seizure and neuronal cell death in the rat hippocampus.

    PubMed

    Chiu, Kuan Ming; Wu, Chia Chan; Wang, Ming Jiuh; Lee, Ming Yi; Wang, Su Jane

    2015-01-01

    The excessive release of glutamate is a critical element in the neuropathology of epilepsy, and bupivacaine, a local anesthetic agent, has been shown to inhibit the release of glutamate in rat cerebrocortical nerve terminals. This study investigated whether bupivacaine produces antiseizure and antiexcitotoxic effects using a kainic acid (KA) rat model, an animal model used for temporal lobe epilepsy, and excitotoxic neurodegeneration experiments. The results showed that administering bupivacaine (0.4 mg/kg or 2 mg/kg) intraperitoneally to rats 30 min before intraperitoneal injection of KA (15 mg/kg) increased seizure latency and reduced the seizure score. In addition, bupivacaine attenuated KA-induced hippocampal neuronal cell death, and this protective effect was accompanied by the inhibition of microglial activation and production of proinflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in the hippocampus. Moreover, bupivacaine shortened the latency of escaping onto the platform in the Morris water maze learning performance test. Collectively, these data suggest that bupivacaine has therapeutic potential for treating epilepsy.

  11. Crosstalk between 2 organelles: Lysosomal storage of heparan sulfate causes mitochondrial defects and neuronal death in mucopolysaccharidosis III type C

    PubMed Central

    Pshezhetsky, Alexey V

    2015-01-01

    More than 30% of all lysosomal diseases are mucopolysaccharidoses, disorders affecting the enzymes needed for the stepwise degradation of glycosaminoglycans (mucopolysaccharides). Mucopolysaccharidosis type IIIC (MPS IIIC) is a severe neurologic disease caused by genetic deficiency of heparan sulfate acetyl-CoA: α-glucosaminide N-acetyltransferase (HGSNAT). Through our studies, we have cloned the gene, identified molecular defects in MPS IIIC patients and most recently completed phenotypic characterization of the first animal model of the disease, a mouse with a germline inactivation of the Hgsnat gene.1 The obtained data have led us to propose that Hgsnat deficiency and lysosomal accumulation of heparan sulfate in microglial cells followed by their activation and cytokine release result in mitochondrial dysfunction in the neurons causing their death which explains why MPS IIIC manifests primarily as a neurodegenerative disease. The goal of this addendum is to summarize data yielding new insights into the mechanism of MPS IIIC and promising novel therapeutic solutions for this and similar disorders. PMID:26459666

  12. The regulation of p53 up-regulated modulator of apoptosis by JNK/c-Jun pathway in β-amyloid-induced neuron death.

    PubMed

    Akhter, Rumana; Sanphui, Priyankar; Das, Hrishita; Saha, Pampa; Biswas, Subhas Chandra

    2015-09-01

    Neuronal loss in selective areas of brain underlies the pathology of Alzheimer's disease (AD). Recent evidences place oligomeric β-amyloid (Aβ) central to the disease. However, mechanism of neuron death in response to Aβ remains elusive. Activation of the c-Jun N-terminal kinase (JNK) pathway and induction of the AP-1 transcription factor c-Jun are reported in AD. However, targets of JNK/c-Jun in Aβ-induced neuron death are mostly unknown. Our study shows that pro-apoptotic proteins, Bim (Bcl-2 interacting mediator of cell death) and Puma (p53 up-regulated modulator of apoptosis) are targets of c-Jun in Aβ-treated neurons. We demonstrate that the JNK/c-Jun pathway is activated, in cultures of cortical neurons following treatment with oligomeric Aβ and in AD transgenic mice, and that inhibition of this pathway by selective inhibitor blocks induction of Puma by Aβ. We also find that both JNK and p53 pathways co-operatively regulate Puma expression in Aβ-treated neurons. Moreover, we identified a novel AP1-binding site on rat puma gene which is necessary for direct binding of c-Jun with Puma promoter. Finally, we find that knocking down of c-Jun by siRNA provides significant protection from Aβ toxicity and that induction of Bim and Puma by Aβ in neurons requires c-Jun. Taken together, our results suggest that both Bim and Puma are target of c-Jun and elucidate the intricate regulation of Puma expression by JNK/c-Jun and p53 pathways in neurons upon Aβ toxicity. JNK/c-Jun pathway is shown to be activated in neurons of the Alzheimer's disease (AD) brain and plays a vital role in neuron death in AD models. However, downstream targets of c-Jun in this disease have not been thoroughly elucidated. Our study shows that two important pro-apoptotic proteins, Bim (Bcl-2 interacting mediator of cell death) and Puma (p53 up-regulated modulator of apoptosis) are targets of c-Jun in Aβ-treated neurons. We demonstrate that the JNK/c-jun pathway is activated, in cultures

  13. Hsp27 binding to the 3'UTR of bim mRNA prevents neuronal death during oxidative stress-induced injury: a novel cytoprotective mechanism.

    PubMed

    Dávila, David; Jiménez-Mateos, Eva M; Mooney, Claire M; Velasco, Guillermo; Henshall, David C; Prehn, Jochen H M

    2014-11-01

    Neurons face a changeable microenvironment and therefore need mechanisms that allow rapid switch on/off of their cytoprotective and apoptosis-inducing signaling pathways. Cellular mechanisms that control apoptosis activation include the regulation of pro/antiapoptotic mRNAs through their 3'-untranslated region (UTR). This region holds binding elements for RNA-binding proteins, which can control mRNA translation. Here we demonstrate that heat shock protein 27 (Hsp27) prevents oxidative stress-induced cell death in cerebellar granule neurons by specific regulation of the mRNA for the proapoptotic BH3-only protein, Bim. Hsp27 depletion induced by oxidative stress using hydrogen peroxide (H2O2) correlated with bim gene activation and subsequent neuronal death, whereas enhanced Hsp27 expression prevented these. This effect could not be explained by proteasomal degradation of Bim or bim promoter inhibition; however, it was associated with a specific increase in the levels of bim mRNA and with its binding to Hsp27. Finally, we determined that enhanced Hsp27 expression in neurons exposed to H2O2 or glutamate prevented the translation of a reporter plasmid where bim-3'UTR mRNA sequence was cloned downstream of a luciferase gene. These results suggest that repression of bim mRNA translation through binding to the 3'UTR constitutes a novel cytoprotective mechanism of Hsp27 during stress in neurons.

  14. Increase of galectin-3 expression in microglia by hyperthermia in delayed neuronal death of hippocampal CA1 following transient forebrain ischemia.

    PubMed

    Satoh, Kunio; Niwa, Masayuki; Binh, Nguyen Huy; Nakashima, Masaya; Kobayashi, Kazuhiro; Takamatsu, Manabu; Hara, Akira

    2011-10-31

    The ischemic damage in the hippocampal CA1 region following transient forebrain ischemia, delayed neuronal death, is a typical apoptotic response, but the underlying mechanisms are not fully understood. We have reported that mild hyperthermia (38 °C) accelerates DNA fragmentation of the gerbil CA1 pyramidal neurons following transient forebrain ischemia. Recently, we reported that galectin-3, a β-galactosidase-binding lectin, is spatio-temporally expressed only by activated microglial cells located within CA1 region following transient forebrain ischemia in gerbils. Furthermore, expression of galectin-3 and Iba-1 (a specific microglial cell marker) are strongly reduced by hypothermia during ischemic insult. To further elucidate the effect of hyperthermia on the expression of galectin-3 by micloglia in delayed neuronal death, we examined immunohistochemical expression of galectin-3 and Iba-1, in situ terminal dUTP-biotin nick end labeling of DNA fragmentation (for determination of cell death) and hematoxylin and eosin staining (for morphological observation). We observed that between 37 °C and 39 °C, there was a temperature-dependent enhancement of galectin-3 expression in microglial cells in the CA1 region following transient ischemia. Apoptotic DNA fragmentation, detected by TUNEL staining, was observed in CA1 region in normothermia. This TUNEL staining was enhanced by hyperthermia at 37.5 °C and 38 °C, but not at 39 °C. Ischemia-induced neuronal degeneration in CA1 region in gerbil hippocampus subjected to hyperthermia (37.5 °C, 38 °C and 39 °C) observed by HE staining is similar to that in normothermic gerbils. These findings imply that galectin-3 expression in microglia may influence the survival of CA1 pyramidal neurons in cases such as hyperthermia-related neuronal injury.

  15. Sensory defects in Necdin deficient mice result from a loss of sensory neurons correlated within an increase of developmental programmed cell death

    PubMed Central

    Andrieu, David; Meziane, Hamid; Marly, Fabienne; Angelats, Corinne; Fernandez, Pierre-Alain; Muscatelli, Françoise

    2006-01-01

    Background The human NECDIN gene is involved in a neurodevelopmental disorder, Prader-Willi syndrome (PWS). Previously we reported a mouse Necdin knock-out model with similar defects to PWS patients. Despite the putative roles attributed to Necdin, mainly from in vitro studies, its in vivo function remains unclear. In this study, we investigate sensory-motor behaviour in Necdin deficient mice. We reveal cellular defects and analyse their cause. Results We report sensory differences in Necdin deficient mice compared to wild type animals. These differences led us to investigate sensory neuron development in Necdin deficient mouse embryos. First, we describe the expression pattern of Necdin in developing DRGs and report a reduction of one-third in specified sensory neurons in dorsal roots ganglia and show that this neuronal loss is achieved by E13.5, when DRGs sensory neurons are specified. In parallel, we observed an increase of 41% in neuronal apoptosis during the wave of naturally occurring cell death at E12.5. Since it is assumed that Necdin is a P75NTR interactor, we looked at the P75NTR-expressing cell population in Necdin knock-out embryos. Unexpectedly, Necdin loss of function has no effect on p75NTR expressing neurons suggesting no direct genetic interaction between Necdin and P75NTR in this context. Although we exclude a role of Necdin in axonal outgrowth from spinal sensory neurons in early developmental stages; such a role could occur later in neuronal differentiation. Finally we also exclude an anti-proliferative role of Necdin in developing sensory neurons. Conclusion Overall, our data show clearly that, in early development of the nervous system, Necdin is an anti-apoptotic or survival factor. PMID:17116257

  16. Protective effect of keishi-bukuryo-gan and its constituent medicinal plants against nitric oxide donor-induced neuronal death in cultured cerebellar granule cells.

    PubMed

    Shimada, Y; Yokoyama, K; Goto, H; Sekiya, N; Mantani, N; Tahara, E; Hikiami, H; Terasawa, K

    2004-07-01

    Keishi-bukuryo-gan (Gui-Zhi-Fu-Ling-Wan) (KBG) is a traditional Chinese/Japanese medical (Kampo) formulation that has been administered to patients with "Oketsu" (blood stagnation) syndrome. In the process of neuronal cell death induced by brain ischemia, excessive generation of nitric oxide (NO) free radicals is implicated in the neurotoxicity. In the present study, we examined the protective effects of KBG and its constituent medicinal plants against NO donors, sodium nitroprusside (SNP) and 2,2'-(hydroxynitrosohydrazino)bis-ethanamine (NOC18)-induced neuronal death in cultured rat cerebellar granule cells (CGCs). MTT assay showed cell viability to be significantly increased by the addition of KBG extract (KBGE) (100 microg/ml), Cinnamomi Cortex extract (CCE) (3, 10 and 30 microg/ml), Paeoniae Radix extract (PRE) (100 microg/ml) and Moutan Cortex extract (MCE) (10 and 30 microg/ml) compared with exposure to SNP (30 microM, 24 h) only. Also, cell viability was significantly increased by the addition of KBGE (100 and 300 microg/ml), CCE (30 and 100 microg/ml), PRE (100 and 300 microg/ml) and MCE (30 and 100 microg/ml) compared with exposure to NOC 18 (100 microM, 48 h) only. Persicae Semen extract and Hoelen extract did not protect against NO donor-induced neuronal death. These results suggest that KBG has protective effect against NO-mediated neuronal death in cultured CGCs and that it is derived from Cinnamomi Cortex, Paeoniae Radix and Moutan Cortex.

  17. Brain-derived neurotrophic factor, but not neurotrophin-3, prevents ischaemia-induced neuronal cell death in organotypic rat hippocampal slice cultures.

    PubMed

    Pringle, A K; Sundstrom, L E; Wilde, G J; Williams, L R; Iannotti, F

    1996-06-28

    We have investigated the neuroprotective actions of neurotrophins in a model of ischaemia using slice cultures. Ischaemia was induced in organotypic hippocampal cultures by simultaneous oxygen and glucose deprivation. Cell death was assessed 24 h later by propidium iodide fluorescence. Pre- but not post-ischaemic addition of brain-derived neurotrophic factor (BDNF) produced a concentration-dependent reduction in neuronal damage. Neurotrophin-3 was not neuroprotective. These data suggest that BDNF may form part of an endogenous neuroprotective mechanism.

  18. A Comparative Study of Five Mouse Models of Alzheimer's Disease: Cell Cycle Events Reveal New Insights into Neurons at Risk for Death

    PubMed Central

    Li, Luming; Cheung, Timmy; Chen, Jianmin; Herrup, Karl

    2011-01-01

    Ectopic cell cycle events (CCEs) in postmitotic neurons link the neurodegenerative process in human Alzheimer's disease (AD) with the brain phenotype of transgenic mouse models with known familial AD genes. Most reports on the mouse models use the appearance of brain amyloid pathology as a key outcome measure. In the current paper, we focus on the induction of neurodegeneration using CCEs as markers for impending neuronal loss. We compare 5 mouse models of familial AD for the appearance of CCEs in subcortical regions—deep cerebellar nuclei, amygdala, locus coeruleus, hippocampus, and dorsal raphe. We find that the models differ in their CCE involvement as well as in the appearance of phosphorylated tau and amyloid deposition, suggesting that each model represents a different disease phenotype. Comparison with the pattern of neuron death in human AD suggests that each may represent a distinctly different disease model when used in preclinical trials. PMID:21912750

  19. Interference with Protease-activated Receptor 1 Alleviates Neuronal Cell Death Induced by Lipopolysaccharide-Stimulated Microglial Cells through the PI3K/Akt Pathway

    PubMed Central

    Li, Yuxin; Yang, Wuyang; Quinones-Hinojosa, Alfredo; Wang, Baocheng; Xu, Shujun; Zhu, Weijie; Yu, Feng; Yuan, Shaoji; Lu, Peigang

    2016-01-01

    Excessive microglial cells activation in response to inflammatory stimuli leads to synaptic loss, dysfunction, and neuronal cell death. Activated microglia are involved in the pathogenesis of neurological conditions and frequently contribute to several complications. Accumulating evidence suggests that signaling through PAR-1 is involved in inflammation, however, its function has yet to be fully elucidated. Here, we have demonstrated that the suppression of PAR-1 leads to down-regulation of inflammatory factors including IL-1β, IL-6, TNF-α, NO, as well as the prevention of activation of NF-κB in BV2 cells. In addition, we found that a PAR-1 antagonist, SCH, prevented LPS-induced excessive microglial activation in a dose-dependent manner. As a result of SCH treatment, neuronal cell death via up-regulation of Akt-mediated pathways was reduced. Our results demonstrate that the beneficial effects of SCH are linked to its ability to block an inflammatory response. Further, we found that SCH inhibited the death of PC12 neurons from the cytotoxicity of activated BV2 cells via activation of the PI3K/Akt pathway. These neuro-protective effects appear to be related to inhibition of PAR-1, and represents a novel neuroprotective strategy that could has potential for use in therapeutic interventions of neuroinflammatory disease. PMID:27910893

  20. Protection of hypoglycemia-induced neuronal death by β-hydroxybutyrate involves the preservation of energy levels and decreased production of reactive oxygen species

    PubMed Central

    Julio-Amilpas, Alberto; Montiel, Teresa; Soto-Tinoco, Eva; Gerónimo-Olvera, Cristian; Massieu, Lourdes

    2015-01-01

    Glucose is the main energy substrate in brain but in certain circumstances such as prolonged fasting and the suckling period alternative substrates can be used such as the ketone bodies (KB), beta-hydroxybutyrate (BHB), and acetoacetate. It has been shown that KB prevent neuronal death induced during energy limiting conditions and excitotoxicity. The protective effect of KB has been mainly attributed to the improvement of mitochondrial function. In the present study, we have investigated the protective effect of D-BHB against neuronal death induced by severe noncoma hypoglycemia in the rat in vivo and by glucose deprivation (GD) in cortical cultures. Results show that systemic administration of D-BHB reduces reactive oxygen species (ROS) production in distinct cortical areas and subregions of the hippocampus and efficiently prevents neuronal death in the cortex of hypoglycemic animals. In vitro results show that D-BHB stimulates ATP production and reduces ROS levels, while the nonphysiologic isomer of BHB, L-BHB, has no effect on energy production but reduces ROS levels. Data suggest that protection by BHB, not only results from its metabolic action but is also related to its capability to reduce ROS, rendering this KB as a suitable candidate for the treatment of ischemic and traumatic injury. PMID:25649993

  1. Quinazoline-based tricyclic compounds that regulate programmed cell death, induce neuronal differentiation, and are curative in animal models for excitotoxicity and hereditary brain disease

    PubMed Central

    Vainshtein, A; Veenman, L; Shterenberg, A; Singh, S; Masarwa, A; Dutta, B; Island, B; Tsoglin, E; Levin, E; Leschiner, S; Maniv, I; Pe’er, L; Otradnov, I; Zubedat, S; Aga-Mizrachi, S; Weizman, A; Avital, A; Marek, I; Gavish, M

    2015-01-01

    Expanding on a quinazoline scaffold, we developed tricyclic compounds with biological activity. These compounds bind to the 18 kDa translocator protein (TSPO) and protect U118MG (glioblastoma cell line of glial origin) cells from glutamate-induced cell death. Fascinating, they can induce neuronal differentiation of PC12 cells (cell line of pheochromocytoma origin with neuronal characteristics) known to display neuronal characteristics, including outgrowth of neurites, tubulin expression, and NeuN (antigen known as ‘neuronal nuclei’, also known as Rbfox3) expression. As part of the neurodifferentiation process, they can amplify cell death induced by glutamate. Interestingly, the compound 2-phenylquinazolin-4-yl dimethylcarbamate (MGV-1) can induce expansive neurite sprouting on its own and also in synergy with nerve growth factor and with glutamate. Glycine is not required, indicating that N-methyl-D-aspartate receptors are not involved in this activity. These diverse effects on cells of glial origin and on cells with neuronal characteristics induced in culture by this one compound, MGV-1, as reported in this article, mimic the diverse events that take place during embryonic development of the brain (maintenance of glial integrity, differentiation of progenitor cells to mature neurons, and weeding out of non-differentiating progenitor cells). Such mechanisms are also important for protective, curative, and restorative processes that occur during and after brain injury and brain disease. Indeed, we found in a rat model of systemic kainic acid injection that MGV-1 can prevent seizures, counteract the process of ongoing brain damage, including edema, and restore behavior defects to normal patterns. Furthermore, in the R6-2 (transgenic mouse model for Huntington disease; Strain name: B6CBA-Tg(HDexon1)62Gpb/3J) transgenic mouse model for Huntington disease, derivatives of MGV-1 can increase lifespan by >20% and reduce incidence of abnormal movements. Also in vitro

  2. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models

    PubMed Central

    Karuppagounder, Saravanan S.; Alim, Ishraq; Khim, Soah J.; Bourassa, Megan W.; Sleiman, Sama F.; John, Roseleen; Thinnes, Cyrille C.; Yeh, Tzu-Lan; Demetriades, Marina; Neitemeier, Sandra; Cruz, Dana; Gazaryan, Irina; Killilea, David W.; Morgenstern, Lewis; Xi, Guohua; Keep, Richard F.; Schallert, Timothy; Tappero, Ryan V.; Zhong, Jian; Cho, Sunghee; Maxfield, Frederick R.; Holman, Theodore R.; Culmsee, Carsten; Fong, Guo-Hua; Su, Yijing; Ming, Guo-li; Song, Hongjun; Cave, John W.; Schofield, Christopher J.; Colbourne, Frederick; Coppola, Giovanni; Ratan, Rajiv R.

    2017-01-01

    Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron, and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. We show that the hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) family of iron-dependent, oxygen-sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in the mouse striatum improved functional recovery after ICH. A low-molecular-weight hydroxyquinoline inhibitor of the HIF-PHD enzymes, adaptaquin, reduced neuronal death and behavioral deficits after ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of activity of the prodeath factor ATF4 rather than activation of an HIF-dependent prosurvival pathway. Together, these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier-permeable inhibitor adaptaquin can improve functional outcomes after ICH in several rodent models. PMID:26936506

  3. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models

    DOE PAGES

    Karuppagounder, Saravanan S.; Alim, Ishraq; Khim, Soah J.; ...

    2016-03-02

    Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. Here we show that the hypoxia-inducible factor prolyl-hydroxylase (HIF- PHD) family of iron-dependent oxygen sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in mouse striatum improved functional recovery following ICH. A low molecular weight hydroxyquinoline inhibitor of the HIF-PHDs, adaptaquin, reduced neuronal death and behavioral deficitsmore » following ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of expression of the prodeath factor ATF4 rather than activation of a HIF-dependent prosurvival pathway. In conclusion, together these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier permeable inhibitor adaptaquin can improve functional outcomes following ICH in multiple rodent species.« less

  4. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models

    SciTech Connect

    Karuppagounder, Saravanan S.; Alim, Ishraq; Khim, Soah J.; Bourassa, Megan W.; Sleiman, Sama F.; John, Roseleen; Thinnes, Cyrille C.; Yeh, Tzu-Lan; Demetriades, Marina; Neitemeier, Sandra; Cruz, Dana; Gazaryan, Irina; Killilea, David W.; Morgenstern, Lewis; Xi, Guohu; Keep, Richard F.; Schallert, Timothy; Tappero, Ryan V.; Zhong, Jian; Cho, Sunghee; Maxfield, Frederick R.; Holman, T. R.; Culmsee, Carsten; Fong, Guo-Hua -H.; Su, Yijing; Ming, Guo-li; Song, Hongjun; Cave, John W.; Schofield, Christopher J.; Colbourne, Frederick; Coppola, Giovanni; Ratan, Rajiv R.

    2016-03-02

    Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. Here we show that the hypoxia-inducible factor prolyl-hydroxylase (HIF- PHD) family of iron-dependent oxygen sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in mouse striatum improved functional recovery following ICH. A low molecular weight hydroxyquinoline inhibitor of the HIF-PHDs, adaptaquin, reduced neuronal death and behavioral deficits following ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of expression of the prodeath factor ATF4 rather than activation of a HIF-dependent prosurvival pathway. In conclusion, together these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier permeable inhibitor adaptaquin can improve functional outcomes following ICH in multiple rodent species.

  5. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models.

    PubMed

    Karuppagounder, Saravanan S; Alim, Ishraq; Khim, Soah J; Bourassa, Megan W; Sleiman, Sama F; John, Roseleen; Thinnes, Cyrille C; Yeh, Tzu-Lan; Demetriades, Marina; Neitemeier, Sandra; Cruz, Dana; Gazaryan, Irina; Killilea, David W; Morgenstern, Lewis; Xi, Guohua; Keep, Richard F; Schallert, Timothy; Tappero, Ryan V; Zhong, Jian; Cho, Sunghee; Maxfield, Frederick R; Holman, Theodore R; Culmsee, Carsten; Fong, Guo-Hua; Su, Yijing; Ming, Guo-li; Song, Hongjun; Cave, John W; Schofield, Christopher J; Colbourne, Frederick; Coppola, Giovanni; Ratan, Rajiv R

    2016-03-02

    Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron, and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. We show that the hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) family of iron-dependent, oxygen-sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in the mouse striatum improved functional recovery after ICH. A low-molecular-weight hydroxyquinoline inhibitor of the HIF-PHD enzymes, adaptaquin, reduced neuronal death and behavioral deficits after ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of activity of the prodeath factor ATF4 rather than activation of an HIF-dependent prosurvival pathway. Together, these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier-permeable inhibitor adaptaquin can improve functional outcomes after ICH in several rodent models.

  6. Molecular basis of vitamin E action. Tocotrienol potently inhibits glutamate-induced pp60(c-Src) kinase activation and death of HT4 neuronal cells.

    PubMed

    Sen, C K; Khanna, S; Roy, S; Packer, L

    2000-04-28

    HT4 hippocampal neuronal cells were studied to compare the efficacy of tocopherols and tocotrienol to protect against glutamate-induced death. Tocotrienols were more effective than alpha-tocopherol in preventing glutamate-induced death. Uptake of tocotrienols from the culture medium was more efficient compared with that of alpha-tocopherol. Vitamin E molecules have potent antioxidant properties. Results show that at low concentrations, tocotrienols may have protected cells by an antioxidant-independent mechanism. Examination of signal transduction pathways revealed that protein tyrosine phosphorylation processes played a central role in the execution of death. Activation of pp60(c-Src) kinase and phosphorylation of ERK were observed in response to glutamate treatment. Nanomolar amounts of alpha-tocotrienol, but not alpha-tocopherol, blocked glutamate-induced death by suppressing glutamate-induced early activation of c-Src kinase. Overexpression of kinase-active c-Src sensitized cells to glutamate-induced death. Tocotrienol treatment prevented death of Src-overexpressing cells treated with glutamate. alpha-Tocotrienol did not influence activity of recombinant c-Src kinase suggesting that its mechanism of action may include regulation of SH domains. This study provides first evidence describing the molecular basis of tocotrienol action. At a concentration 4-10-fold lower than levels detected in plasma of supplemented humans, tocotrienol regulated unique signal transduction processes that were not sensitive to comparable concentrations of tocopherol.

  7. IL-1β increases necrotic neuronal cell death in the developing rat hippocampus after status epilepticus by activating type I IL-1 receptor (IL-1RI).

    PubMed

    Medel-Matus, Jesús-Servando; Álvarez-Croda, Dulce-Mariely; Martínez-Quiroz, Joel; Beltrán-Parrazal, Luis; Morgado-Valle, Consuelo; López-Meraz, María-Leonor

    2014-11-01

    Interleukin-1β (IL-1β) is associated with seizure-induced neuronal cell death in the adult brain. The contribution of IL-1β to neuronal injury induced by status epilepticus (SE) in the immature brain remains unclear. In the present study, we investigated the effects of IL-1β administration on hippocampal neuronal cell death associated with SE in the immature brain, and the role of the type I receptor of IL-1β (IL-1RI). SE was induced with lithium-pilocarpine in 14-days-old (P14) rat pups. Six hours after SE onset, pups were i.c.v. injected in the right ventricle with IL-1β (0, 0.3, 3, 30, or 300 ng), 30 ng of IL-1RI antagonist (IL-1Ra) alone, or 30 ng of IL-1Ra plus 3ng of IL-1β. As control groups, pups without seizures were injected with 3 ng of IL-1β or vehicle. Twenty-four hours after SE onset, neuronal cell death in the CA1 field of dorsal hippocampus was assessed by hematoxylin-eosin, Fluoro-Jade B and in vivo propidium iodide (PI) staining; expression of active caspase-3 (aCas-3) was also determined, using immunohistochemistry. The concentration-response curve of IL-1β showed a bell-shape. Only pups injected with 3 ng of IL-1β after SE showed a significant increase in the number of cells with eosinophilic cytoplasm and pyknotic nuclei, as well as F-JB positive cells with respect to the vehicle group. This effect was prevented when IL-1β was injected with IL-1Ra. Injection of 3 ng of IL-1β increased the number of PI-positive cells in CA1 area after SE. Injection of 3 ng of IL-1β did not produce hippocampal cell death in rats without seizures. Active caspase-3 expression was not observed after treatments in hippocampus. The activation of the IL-1β/IL-1RI system increases necrotic neuronal cell death caused by SE in rat pups.

  8. Multifaceted role of nitric oxide in an in vitro mouse neuronal injury model: transcriptomic profiling defines the temporal recruitment of death signalling cascades

    PubMed Central

    Peng, Zhao Feng; Chen, Minghui Jessica; Manikandan, Jayapal; Melendez, Alirio J; Shui, Guanghou; Russo-Marie, Françoise; Whiteman, Matthew; Beart, Philip M; Moore, Philip K; Cheung, Nam Sang

    2012-01-01

    Abstract Nitric oxide is implicated in the pathogenesis of various neuropathologies characterized by oxidative stress. Although nitric oxide has been reported to be involved in the exacerbation of oxidative stress observed in several neuropathologies, existent data fail to provide a holistic description of how nitrergic pathobiology elicits neuronal injury. Here we provide a comprehensive description of mechanisms contributing to nitric oxide induced neuronal injury by global transcriptomic profiling. Microarray analyses were undertaken on RNA from murine primary cortical neurons treated with the nitric oxide generator DETA-NONOate (NOC-18, 0.5 mM) for 8–24 hrs. Biological pathway analysis focused upon 3672 gene probes which demonstrated at least a ±1.5-fold expression in a minimum of one out of three time-points and passed statistical analysis (one-way anova, P < 0.05). Numerous enriched processes potentially determining nitric oxide mediated neuronal injury were identified from the transcriptomic profile: cell death, developmental growth and survival, cell cycle, calcium ion homeostasis, endoplasmic reticulum stress, oxidative stress, mitochondrial homeostasis, ubiquitin-mediated proteolysis, and GSH and nitric oxide metabolism. Our detailed time-course study of nitric oxide induced neuronal injury allowed us to provide the first time a holistic description of the temporal sequence of cellular events contributing to nitrergic injury. These data form a foundation for the development of screening platforms and define targets for intervention in nitric oxide neuropathologies where nitric oxide mediated injury is causative. PMID:21352476

  9. Neuronal death induced by misfolded prion protein is due to NAD+ depletion and can be relieved in vitro and in vivo by NAD+ replenishment

    PubMed Central

    Zhou, Minghai; Ottenberg, Gregory; Sferrazza, Gian Franco; Hubbs, Christopher; Fallahi, Mohammad; Rumbaugh, Gavin; Brantley, Alicia F.

    2015-01-01

    The mechanisms of neuronal death in protein misfolding neurodegenerative diseases such as Alzheimer’s, Parkinson’s and prion diseases are poorly understood. We used a highly toxic misfolded prion protein (TPrP) model to understand neurotoxicity induced by prion protein misfolding. We show that abnormal autophagy activation and neuronal demise is due to severe, neuron-specific, nicotinamide adenine dinucleotide (NAD+) depletion. Toxic prion protein-exposed neuronal cells exhibit dramatic reductions of intracellular NAD+ followed by decreased ATP production, and are completely rescued by treatment with NAD+ or its precursor nicotinamide because of restoration of physiological NAD+ levels. Toxic prion protein-induced NAD+ depletion results from PARP1-independent excessive protein ADP-ribosylations. In vivo, toxic prion protein-induced degeneration of hippocampal neurons is prevented dose-dependently by intracerebral injection of NAD+. Intranasal NAD+ treatment of prion-infected sick mice significantly improves activity and delays motor impairment. Our study reveals NAD+ starvation as a novel mechanism of autophagy activation and neurodegeneration induced by a misfolded amyloidogenic protein. We propose the development of NAD+ replenishment strategies for neuroprotection in prion diseases and possibly other protein misfolding neurodegenerative diseases. PMID:25678560

  10. Neuronal death induced by misfolded prion protein is due to NAD+ depletion and can be relieved in vitro and in vivo by NAD+ replenishment.

    PubMed

    Zhou, Minghai; Ottenberg, Gregory; Sferrazza, Gian Franco; Hubbs, Christopher; Fallahi, Mohammad; Rumbaugh, Gavin; Brantley, Alicia F; Lasmézas, Corinne I

    2015-04-01

    The mechanisms of neuronal death in protein misfolding neurodegenerative diseases such as Alzheimer's, Parkinson's and prion diseases are poorly understood. We used a highly toxic misfolded prion protein (TPrP) model to understand neurotoxicity induced by prion protein misfolding. We show that abnormal autophagy activation and neuronal demise is due to severe, neuron-specific, nicotinamide adenine dinucleotide (NAD(+)) depletion. Toxic prion protein-exposed neuronal cells exhibit dramatic reductions of intracellular NAD(+) followed by decreased ATP production, and are completely rescued by treatment with NAD(+) or its precursor nicotinamide because of restoration of physiological NAD(+) levels. Toxic prion protein-induced NAD(+) depletion results from PARP1-independent excessive protein ADP-ribosylations. In vivo, toxic prion protein-induced degeneration of hippocampal neurons is prevented dose-dependently by intracerebral injection of NAD(+). Intranasal NAD(+) treatment of prion-infected sick mice significantly improves activity and delays motor impairment. Our study reveals NAD(+) starvation as a novel mechanism of autophagy activation and neurodegeneration induced by a misfolded amyloidogenic protein. We propose the development of NAD(+) replenishment strategies for neuroprotection in prion diseases and possibly other protein misfolding neurodegenerative diseases.

  11. MC1568 Inhibits Thimerosal-Induced Apoptotic Cell Death by Preventing HDAC4 Up-Regulation in Neuronal Cells and in Rat Prefrontal Cortex.

    PubMed

    Guida, Natascia; Laudati, Giusy; Mascolo, Luigi; Cuomo, Ornella; Anzilotti, Serenella; Sirabella, Rossana; Santopaolo, Marianna; Galgani, Mario; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M T; Formisano, Luigi

    2016-12-01

    Ethylmercury thiosalicylate (thimerosal) is an organic mercury-based compound commonly used as an antimicrobial preservative that has been found to be neurotoxic. In contrast, histone deacetylases (HDACs) inhibition has been found to be neuroprotective against several environmental contaminants, such as polychlorinated biphenyls, di-2-ethylhexyl phthalate, and methylmercury. The aim of this study was to investigate the effect of HDAC inhibition on thimerosal-induced neurotoxicity in neuroblastoma cells and cortical neurons. Interestingly, we found that thimerosal, at 0.5 μM in SH-SY5Y cells and at 1 μM in neurons, caused cell death by activation of apoptosis, which was prevented by the HDAC class IIA inhibitor MC1568 but not the class I inhibitor MS275. Furthermore, thimerosal specifically increased HDAC4 protein expression but not that of HDACs 5, 6, 7, and 9. Western blot analysis revealed that MC1568 prevented thimerosal-induced HDAC4 increase. In addition, both HDAC4 knocking-down and MC1568 inhibited thimerosal-induced cell death in SH-SY5Y cells and cortical neurons. Importantly, intramuscular injection of 12 μg/kg thimerosal on postnatal days 7, 9, 11, and 15 increased HDAC4 levels in the prefrontal cortex (PFC), which decreased histone H4 acetylation in infant male rats, in parallel increased motor activity changes. In addition, coadministration of 40 mg/kg MC1568 (intraperitoneal injection) moderated the HDAC4 increase which reduced histone H4 deacetylation and caspase-3 cleavage in the PFC. Finally, open-field testing showed that thimerosal-induced motor activity changes are reduced by MC1568. These findings indicate that HDAC4 regulates thimerosal-induced cell death in neurons and that treatment with MC1568 prevents thimerosal-induced activation of caspase-3 in the rat PFC.

  12. Histone hyperacetylation up-regulates protein kinase Cδ in dopaminergic neurons to induce cell death: relevance to epigenetic mechanisms of neurodegeneration in Parkinson disease.

    PubMed

    Jin, Huajun; Kanthasamy, Arthi; Harischandra, Dilshan S; Kondru, Naveen; Ghosh, Anamitra; Panicker, Nikhil; Anantharam, Vellareddy; Rana, Ajay; Kanthasamy, Anumantha G

    2014-12-12

    The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease.

  13. Kainic acid-induced neurodegeneration and activation of inflammatory processes in organotypic hippocampal slice cultures: treatment with cyclooxygenase-2 inhibitor does not prevent neuronal death.

    PubMed

    Järvelä, Juha T; Ruohonen, Saku; Kukko-Lukjanov, Tiina-Kaisa; Plysjuk, Anna; Lopez-Picon, Francisco R; Holopainen, Irma E

    2011-06-01

    In the postnatal rodent hippocampus status epilepticus (SE) leads to age- and region-specific excitotoxic neuronal damage, the precise mechanisms of which are still incompletely known. Recent studies suggest that the activation of inflammatory responses together with glial cell reactivity highly contribute to excitotoxic neuronal damage. However, pharmacological tools to attenuate their activation in the postnatal brain are still poorly elucidated. In this study, we investigated the role of inflammatory mediators in kainic acid (KA)-induced neuronal damage in organotypic hippocampal slice cultures (OHCs). A specific cyclooxygenase-2 (COX-2) inhibitor N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) was used to study whether or not it could ameliorate neuronal death. Our results show that KA treatment (24 h) resulted in a dose-dependent degeneration of CA3a/b pyramidal neurons. Furthermore, COX-2 immunoreactivity was pronouncedly enhanced particularly in CA3c pyramidal neurons, microglial and astrocyte morphology changed from a resting to active appearance, the expression of the microglial specific protein, Iba1, increased, and prostaglandin E₂ (PGE₂) production increased. These indicated the activation of inflammatory processes. However, the expression of neither proinflammatory cytokines, i.e. tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), nor the anti-inflammatory cytokine IL-10 mRNA was significantly altered by KA treatment as studied by real-time PCR. Despite activation of an array of inflammatory processes, neuronal damage could not be rescued either with the combined pre- and co-treatment with a specific COX-2 inhibitor, NS-398. Our results suggest that KA induces activation of a repertoire of inflammatory processes in immature OHCs, and that the timing of anti-inflammatory treatment to achieve neuroprotection is a challenge due to developmental properties and the complexity of inflammatory processes activated by

  14. Auraptene and Other Prenyloxyphenylpropanoids Suppress Microglial Activation and Dopaminergic Neuronal Cell Death in a Lipopolysaccharide-Induced Model of Parkinson’s Disease

    PubMed Central

    Okuyama, Satoshi; Semba, Tomoki; Toyoda, Nobuki; Epifano, Francesco; Genovese, Salvatore; Fiorito, Serena; Taddeo, Vito Alessandro; Sawamoto, Atsushi; Nakajima, Mitsunari; Furukawa, Yoshiko

    2016-01-01

    In patients with Parkinson’s disease (PD), hyperactivated inflammation in the brain, particularly microglial hyperactivation in the substantia nigra (SN), is reported to be one of the triggers for the delayed loss of dopaminergic neurons and sequential motor functional impairments. We previously reported that (1) auraptene (AUR), a natural prenyloxycoumain, suppressed inflammatory responses including the hyperactivation of microglia in the ischemic brain and inflamed brain, thereby inhibiting neuronal cell death; (2) 7-isopentenyloxycoumarin (7-IP), another natural prenyloxycoumain, exerted anti-inflammatory and neuroprotective effects against excitotoxicity; and (3) 4′-geranyloxyferulic acid (GOFA), a natural prenyloxycinnamic acid, also exerted anti-inflammatory effects. In the present study, using an intranigral lipopolysaccharide (LPS)-induced PD-like mouse model, we investigated whether AUR, 7-IP, and GOFA suppress microglial activation and protect against dopaminergic neuronal cell death in the SN. We successfully showed that these prenyloxyphenylpropanoids exhibited these prospective abilities, suggesting the potential of these compounds as neuroprotective agents for patients with PD. PMID:27763495

  15. Akt attenuates apoptotic death through phosphorylation of H2A under hydrogen peroxide-induced oxidative stress in PC12 cells and hippocampal neurons

    PubMed Central

    Park, Ji Hye; Kim, Chung Kwon; Lee, Sang Bae; Lee, Kyung-Hoon; Cho, Sung-Woo; Ahn, Jee-Yin

    2016-01-01

    Although the essential role of protein kinase B (PKB)/Akt in cell survival signaling has been clearly established, the mechanism by which Akt mediates the cellular response to hydrogen peroxide (H2O2)-induced oxidative stress remains unclear. We demonstrated that Akt attenuated neuronal apoptosis through direct association with histone 2A (H2A) and phosphorylation of H2A at threonine 17. At early time points during H2O2 exposure of PC12 cells and primary hippocampal neurons, when the cells can tolerate the level of DNA damage, Akt was activated and phosphorylated H2A, leading to inhibition of apoptotic death. At later time points, Akt delivered the NAD+-dependent protein deacetylase Sirtuin 2 (Sirt 2) to the vicinity of phosphorylated H2A in response to irreversible DNA damage, thereby inducing H2A deacetylation and subsequently leading to apoptotic death. Ectopically expressed T17A-substituted H2A minimally interacted with Akt and failed to prevent apoptosis under oxidative stress. Thus Akt-mediated H2A phosphorylation has an anti-apoptotic function in conditions of H2O2-induced oxidative stress in neurons and PC12 cells. PMID:26899247

  16. S-Nitrosylation of parkin as a novel regulator of p53-mediated neuronal cell death in sporadic Parkinson’s disease

    PubMed Central

    2013-01-01

    Background Mutations in the gene encoding parkin, a neuroprotective protein with dual functions as an E3 ubiquitin ligase and transcriptional repressor of p53, are linked to familial forms of Parkinson’s disease (PD). We hypothesized that oxidative posttranslational modification of parkin by environmental toxins may contribute to sporadic PD. Results We first demonstrated that S-nitrosylation of parkin decreased its activity as a repressor of p53 gene expression, leading to upregulation of p53. Chromatin immunoprecipitation as well as gel-shift assays showed that parkin bound to the p53 promoter, and this binding was inhibited by S-nitrosylation of parkin. Additionally, nitrosative stress induced apoptosis in cells expressing parkin, and this death was, at least in part, dependent upon p53. In primary mesencephalic cultures, pesticide-induced apoptosis was prevented by inhibition of nitric oxide synthase (NOS). In a mouse model of pesticide-induced PD, both S-nitrosylated (SNO-)parkin and p53 protein levels were increased, while administration of a NOS inhibitor mitigated neuronal death in these mice. Moreover, the levels of SNO-parkin and p53 were simultaneously elevated in postmortem human PD brain compared to controls. Conclusions Taken together, our data indicate that S-nitrosylation of parkin, leading to p53-mediated neuronal cell death, contributes to the pathophysiology of sporadic PD. PMID:23985028

  17. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    SciTech Connect

    Kikuchi, Kiyoshi; Kawahara, Ko-ichi; Biswas, Kamal Krishna; Ito, Takashi; Tancharoen, Salunya; Morimoto, Yoko; Matsuda, Fumiyo; Oyama, Yoko; Takenouchi, Kazunori; Miura, Naoki; Arimura, Noboru; Nawa, Yuko; Meng, Xiaojie; Shrestha, Binita; Arimura, Shinichiro; and others

    2009-07-24

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.

  18. Genetic Dissection of γ-secretase-dependent and - independent Functions of Presenilin in Regulating Neuronal Cell Cycle and Cell Death

    PubMed Central

    Kallhoff-Munoz, Verena; Hu, Lingyun; Chen, Xiaoli; Pautler, Robia G.; Zheng, Hui

    2008-01-01

    Cell cycle markers have been shown to be upregulated and proposed to lead to apoptosis of post-mitotic neurons in Alzheimer’s disease (AD). Presenilin (PS) plays a critical role in AD pathogenesis, and loss of function studies in mice established a potent effect of PS in cell proliferation in peripheral tissues. Whether PS has a similar activity in the neuronal cell cycle has not been investigated. PS exhibits γ-secretase-dependent and -independent functions; the former requires aspartate 257 (D257) as part of the active site, and the latter involves the hydrophilic loop domain encoded by exon 10. We used two novel mouse models, one expressing the PS1 D257A mutation on a postnatal PS conditional knockout background and the other deleting exon 10 of PS1, to dissect the γ-secretase-dependent and -independent activities of PS in the adult CNS. Whereas γ-secretase plays a dominant role in neuronal survival, our studies reveal potent neuronal cell cycle regulation mediated by the PS1 hydrophilic loop. Although neurons expressing cell cycle markers do not directly succumb to apoptosis, they are more vulnerable under stress conditions. Importantly, our data identify a novel pool of cytoplasmic p53 as a downstream mediator of this cellular vulnerability. These results support a model whereby the PS γ-secretase activity is essential in maintaining neuronal viability, and the PS1 loop domain modulates neuronal homeostasis through cell cycle and cytoplasmic p53 control. PMID:18971484

  19. Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death.

    PubMed

    Mark, R J; Hensley, K; Butterfield, D A; Mattson, M P

    1995-09-01

    The amyloid beta-peptide (A beta) that accumulates as insoluble plaques in the brain in Alzheimer's disease can be directly neurotoxic and can increase neuronal vulnerability to excitotoxic insults. The mechanism of A beta toxicity is unclear but is believed to involve generation of reactive oxygen species (ROS) and loss of calcium homeostasis. We now report that exposure of cultured rat hippocampal neurons to A beta 1-40 or A beta 25-35 causes a selective reduction in Na+/K(+)-ATPase activity which precedes loss of calcium homeostasis and cell degeneration. Na+/K(+)-ATPase activity was reduced within 30 min of exposure to A beta 25-35 and declined to less than 40% of basal level by 3 hr. A beta did not impair other Mg(2+)-dependent ATPase activities or Na+/Ca2+ exchange. Experiments with ouabain, a specific inhibitor of the Na+/K(+)-ATPase, demonstrated that impairment of this enzyme was sufficient to induce an elevation of [Ca2+]i and neuronal injury. Impairment of Na+/K(+)-ATPase activity appeared to be causally involved in the elevation of [Ca2+]i and neurotoxicity since suppression of Na+ influx significantly reduced A beta- and ouabain-induced [Ca2+]i elevation and neuronal death. Neuronal degeneration induced by ouabain appeared to be of an apoptotic form as indicated by nuclear condensation and DNA fragmentation. The antioxidant free radical scavengers vitamin E and propylgallate significantly attenuated A beta-induced impairment of Na+/K(+)-ATPase activity, elevation of [Ca2+]i and neurotoxicity, suggesting a role for ROS. Finally, exposure of synaptosomes from postmortem human hippocampus to A beta resulted in a significant and specific reduction in Na+/K(+)-ATPase and Ca(2+)-ATPase activities, without affecting other Mg(2+)-dependent ATPase activities or Na+/Ca2+ exchange. These data suggest that impairment of ion-motive ATPases may play a role in the pathogenesis of neuronal injury in Alzheimer's disease.

  20. Genistein inhibition of OGD-induced brain neuron death correlates with its modulation of apoptosis, voltage-gated potassium and sodium currents and glutamate signal pathway.

    PubMed

    Ma, Xue-Ling; Zhang, Feng; Wang, Yu-Xiang; He, Cong-Cong; Tian, Kun; Wang, Hong-Gang; An, Di; Heng, Bin; Liu, Yan-Qiang

    2016-07-25

    In the present study, we established an in vitro model of hypoxic-ischemia via exposing primary neurons of newborn rats to oxygen-glucose deprivation (OGD) and observing the effects of genistein, a soybean isoflavone, on hypoxic-ischemic neuron viability, apoptosis, voltage-activated potassium (Kv) and sodium (Nav) currents, and glutamate receptor subunits. The results indicated that OGD exposure reduced the viability and increased the apoptosis of brain neurons. Meanwhile, OGD exposure caused changes in the current-voltage curves and current amplitude values of voltage-activated potassium and sodium currents; OGD exposure also decreased GluR2 expression and increased NR2 expression. However, genistein at least partially reversed the effects caused by OGD. The results suggest that hypoxic-ischemia-caused neuronal apoptosis/death is related to an increase in K(+) efflux, a decrease in Na(+) influx, a down-regulation of GluR2, and an up-regulation of NR2. Genistein may exert some neuroprotective effects via the modulation of Kv and Nav currents and the glutamate signal pathway, mediated by GluR2 and NR2.

  1. Amyloid-β reduces the expression of neuronal FAIM-L, thereby shifting the inflammatory response mediated by TNFα from neuronal protection to death

    PubMed Central

    Carriba, P; Jimenez, S; Navarro, V; Moreno-Gonzalez, I; Barneda-Zahonero, B; Moubarak, R S; Lopez-Soriano, J; Gutierrez, A; Vitorica, J; Comella, J X

    2015-01-01

    The brains of patients with Alzheimer's disease (AD) present elevated levels of tumor necrosis factor-α (TNFα), a cytokine that has a dual function in neuronal cells. On one hand, TNFα can activate neuronal apoptosis, and on the other hand, it can protect these cells against amyloid-β (Aβ) toxicity. Given the dual behavior of this molecule, there is some controversy regarding its contribution to the pathogenesis of AD. Here we examined the relevance of the long form of Fas apoptotic inhibitory molecule (FAIM) protein, FAIM-L, in regulating the dual function of TNFα. We detected that FAIM-L was reduced in the hippocampi of patients with AD. We also observed that the entorhinal and hippocampal cortex of a mouse model of AD (PS1M146LxAPP751sl) showed a reduction in this protein before the onset of neurodegeneration. Notably, cultured neurons treated with the cortical soluble fractions of these animals showed a decrease in endogenous FAIM-L, an effect that is mimicked by the treatment with Aβ-derived diffusible ligands (ADDLs). The reduction in the expression of FAIM-L is associated with the progression of the neurodegeneration by changing the inflammatory response mediated by TNFα in neurons. In this sense, we also demonstrate that the protection afforded by TNFα against Aβ toxicity ceases when endogenous FAIM-L is reduced by short hairpin RNA (shRNA) or by treatment with ADDLs. All together, these results support the notion that levels of FAIM-L contribute to determine the protective or deleterious effect of TNFα in neuronal cells. PMID:25675299

  2. N-methyl-N-nitrosourea-induced neuronal cell death in a large animal model of retinal degeneration in vitro.

    PubMed

    Taylor, Linnéa; Arnér, Karin; Ghosh, Fredrik

    2016-07-01

    N-methyl-N-nitrosourea (MNU) has been reported to induce photoreceptor-specific degeneration with minimal inner retinal impact in small animals in vivo. Pending its use within a retinal transplantation paradigm, we here explore the effects of MNU on outer and inner retinal neurons and glia in an in vitro large animal model of retinal degeneration. The previously described degenerative culture explant model of adult porcine retina was used and compared with explants receiving 10 or 100 μg/ml MNU (MNU10 and MNU100) supplementation. All explants were kept for 5 days in vitro, and examined for morphology as well as for glial and neuronal immunohistochemical markers. Rhodopsin-labeled photoreceptors were present in all explants. The number of cone photoreceptors (transducin), rod bipolar cells (PKC) and horizontal cells (calbindin) was significantly lower in MNU treated explants (p < 0.001). Gliosis was attenuated in MNU10 treated explants, with expression of vimentin, glial fibrillary protein (GFAP), glutamine synthetase (GS), and bFGF comparable to in vivo controls. In corresponding MNU100 counterparts, the expression of Müller cell proteins was almost extinguished. We here show that MNU causes degeneration of outer and inner retinal neurons and glia in the adult porcine retina in vitro. MNU10 explants display attenuation of gliosis, despite decreased neuronal survival compared with untreated controls. Our results have impact on the use of MNU as a large animal photoreceptor degeneration model, on tissue engineering related to retinal transplantation, and on our understanding of gliosis related neuronal degenerative cell death.

  3. Thromboxane synthetase inhibitor ameliorates delayed neuronal death in the CA1 subfield of the hippocampus after transient global ischemia in gerbils.

    PubMed

    Iijima, T; Sawa, H; Shiokawa, Y; Saito, I; Ishii, H; Nakamura, Z; Sankawa, H

    1996-07-01

    Thromboxane A2 accumulates in the hippocampus after global ischemia and may play a key role in postischemic hypoperfusion. Thromboxane synthetase inhibitor (OKY-046) inhibits the accumulation of thromboxane A2 and promotes prostacycline production. Therefore, we set out to determine whether the inhibition of thromboxane synthesis would ameriolate postischemic neuronal death. Three groups of six Mongolian gerbils were subjected to different treatments: untreated control, untreated ischemia, and treated ischemia. Immediately after forebrain ischemia, OKY-046 (10 mg/kg) was injected intraperitoneally into the treated group. After 7 days of survival, the histopathology of the brain was examined. Pyramidal cell density in the CA1 sector in the treated group was 147 +/- 70 nuclei/mm (mean +/- SD), which was significantly (p < 0.05) higher than than in the untreated group (33 +/- 10 (nuclei/mm). The findings were 231 +/- 7 nuclei/mm for the control group. No significant difference was seen in the profile of temporal muscle temperature before and after ischemia between the groups. Ultrastructurally, the vessels in the CAI sector showed lumen patency in the treated group, whereas occluded vessels with an extended perivascular space were observed in the untreated group. Thromboxane synthetase inhibitor thus partly ameliorates the selective vulnerability of the hippocampus after forebrain ischemia, suggesting that thromboxane A2 is involved in the development of delayed neuronal death, independently of any thermal effect.

  4. Activity-dependent regulation of [Ca2+]i in avian cochlear nucleus neurons: roles of protein kinases A and C and relation to cell death.

    PubMed

    Zirpel, L; Lippe, W R; Rubel, E W

    1998-05-01

    Neurons of the cochlear nucleus, nucleus magnocellularis (NM), of young chicks require excitatory afferent input from the eighth nerve for maintenance and survival. One of the earliest changes seen in NM neurons after deafferentation is an increase in intracellular calcium concentration ([Ca2+]i). This increase in [Ca2+]i is due to loss of activation of metabotropic glutamate receptors (mGluR) that activate second-messenger cascades involved in [Ca2+]i regulation. Because mGluRs are known to act via the phospholipase C and adenylate cyclase signal transduction pathways, the goal of this study was to determine the roles of protein kinases A (PKA) and C (PKC) activities in the regulation of NM neuron [Ca2+]i by eighth nerve stimulation. Additionally, we sought to determine the relationship between increased [Ca2+]i and cell death as measured by propidium iodide incorporation. [Ca2+]i of individual NM neurons in brain stem slices was monitored using fura-2 ratiometric fluorescence imaging. NM field potentials were monitored in experiments in which the eighth nerve was stimulated. Five hertz orthodromic stimulation maintained NM neuron [Ca2+]i at approximately 110 nM for 180 min. In the absence of stimulation, NM neuron [Ca2+]i increased steadily to a mean of 265 nM by 120 min. This increase was attenuated by superfusion of PKC activators phorbol-12,13-myristate acetate (100 nM) or dioctanoylglycerol (50 microM) and by activators of PKA: 1 mM 8-bromoadenosine-3',5'-cyclophosphate sodium (8-Br-cAMP), 50 microM forskolin or 100 microM Sp-adenosine 3',5'-cyclic monophosphothioate triethylamine. Inhibition of PKA (100 microM Rp-cAMPS) or PKC (50 nM bisindolymaleimide or 10 microM U73122) during continuous orthodromic stimulation resulted in an increase in NM neuron [Ca2+]i that exceeded 170 and 180 nM, respectively, by 120 min. Nonspecific kinase inhibition with 1 microM staurosporine during stimulation resulted in an [Ca2+]i increase that was greater in magnitude than

  5. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells

    NASA Astrophysics Data System (ADS)

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B.

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT.

  6. PARP-1 activation causes neuronal death in the hippocampal CA1 region by increasing the expression of Ca(2+)-permeable AMPA receptors.

    PubMed

    Gerace, E; Masi, A; Resta, F; Felici, R; Landucci, E; Mello, T; Pellegrini-Giampietro, D E; Mannaioni, G; Moroni, F

    2014-10-01

    An excessive activation of poly(ADP-ribose) polymerases (PARPs) may trigger a form of neuronal death similar to that occurring in neurodegenerative disorders. To investigate this process, we exposed organotypic hippocampal slices to N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG, 100μM for 5min), an alkylating agent widely used to activate PARP-1. MNNG induced a pattern of degeneration of the CA1 pyramidal cells morphologically similar to that observed after a brief period of oxygen and glucose deprivation (OGD). MNNG exposure was also associated with a dramatic increase in PARP-activity and a robust decrease in NAD(+) and ATP content. These effects were prevented by PARP-1 but not PARP-2 inhibitors. In our experimental conditions, cell death was not mediated by AIF translocation (parthanatos) or caspase-dependent apoptotic processes. Furthermore, we found that PARP activation was followed by a significant deterioration of neuronal membrane properties. Using electrophysiological recordings we firstly investigated the suggested ability of ADP-ribose to open TRPM2 channels in MNNG-induced cells death, but the results we obtained showed that TRPM2 channels are not involved. We then studied the involvement of glutamate receptor-ion channel complex and we found that NBQX, a selective AMPA receptor antagonist, was able to effectively prevent CA1 neuronal loss while MK801, a NMDA antagonist, was not active. Moreover, we observed that MNNG treatment increased the ratio of GluA1/GluA2 AMPAR subunit expression, which was associated with an inward rectification of the IV relationship of AMPA sEPSCs in the CA1 but not in the CA3 subfield. Accordingly, 1-naphthyl acetyl spermine (NASPM), a selective blocker of Ca(2+)-permeable GluA2-lacking AMPA receptors, reduced MNNG-induced CA1 pyramidal cell death. In conclusion, our results show that activation of the nuclear enzyme PARP-1 may change the expression of membrane proteins and Ca(2+) permeability of AMPA channels, thus affecting

  7. Methylmercury causes neuronal cell death through the suppression of the TrkA pathway: In vitro and in vivo effects of TrkA pathway activators

    SciTech Connect

    Fujimura, Masatake; Usuki, Fusako

    2015-02-01

    Methylmercury (MeHg) is an environmental toxin which induces cell death specific for the nervous systems. Here we show that MeHg causes neuronal cell death through the suppression of the tropomyosin receptor kinase A (TrkA) pathway, and that compounds activating the TrkA pathway prevent MeHg-induced nerve damage in vitro and in vivo. We first investigated the mechanism of MeHg-induced neurotoxicity in differentiating neurons using PC12 cells. Exposure to 100 nM MeHg for 1 day induced apoptosis in differentiating PC12 cells. Further, MeHg-induced apoptosis was preceded by inhibition of neurite extension, as determined by ELISA analyses of the neurite-specific protein neurofilament triplet H protein (NF-H). To determine the mechanism of MeHg-induced apoptosis, we evaluated the effects of MeHg on the TrkA pathway, which is known to regulate neuronal differentiation and viability. Western blot analysis demonstrated that, like the TrkA phosphorylation inhibitor K252a, MeHg inhibited phosphorylation of TrkA and its downstream effectors. Furthermore, GM1 ganglioside and its analog MCC-257, which enhance TrkA phosphorylation, overcame the effect of MeHg in neurons, supporting the involvement of the TrkA pathway in MeHg-induced nerve damage. Finally, we demonstrated that MCC-257 rescued the clinical sign and pathological changes in MeHg-exposed rats. These findings indicate that MeHg-induced apoptosis in neuron is triggered by inhibition of the TrkA pathway, and that GM1 ganglioside and MCC-257 effectively prevent MeHg-induced nerve damage. - Highlights: • Exposure to 100 nM MeHg for 1 day induced apoptosis in differentiating PC12 cells. • Inhibition of neurite extension was involved in MeHg-induced apoptosis. • Like the TrkA phosphorylation inhibitor, MeHg inhibited phosphorylation of TrkA. • GM1 ganglioside and its analog effectively prevented MeHg-induced nerve damage.

  8. Improvement of cognitive deficits and decreased cholinergic neuronal cell loss and apoptotic cell death following neurotrophin infusion after experimental traumatic brain injury.

    PubMed

    Sinson, G; Perri, B R; Trojanowski, J Q; Flamm, E S; McIntosh, T K

    1997-03-01

    This study explores the effects of infusion of nerve growth factor (NGF) on behavioral outcome and cell death in the septal region using the clinically relevant model of fluid-percussion brain injury in the rat. Animals were subjected to fluid-percussion brain injury and 24 hours later a miniosmotic pump was implanted to infuse NGF (12 animals) or vehicle (12 animals) directly into the region of maximum injury for 2 weeks. Four weeks postinjury the animals were tested for cognitive function using a Morris Water Maze paradigm. Neurological motor function was evaluated over a 4-week postinjury period. The rats receiving NGF infusions had significantly higher memory scores than vehicle-treated animals. Examination of the cholinergic neurons in the medial septal region using choline acetyltransferase immunohistochemistry demonstrated significant cell loss after injury. Infusion of NGF significantly attenuated loss of these cholinergic neurons. A second group of animals was subjected to fluid-percussion brain injury alone (23 rats) or injury followed by NGF infusion (18 rats). These animals were killed between 24 hours and 2 weeks postinjury and the septal region was examined for the presence of apoptotic cells using the terminal deoxynucleotidyl transferase-mediated biotinylated-deoxyuridinetriphosphate nick-end labeling technique. Apoptotic cells were identified as early as 24 hours postinjury; their numbers peaked at 4 and 7 days, and then declined by 14 days. The NGF-treated animals had some apoptotic cells; however, even at 7 days there were significantly fewer of these cells. No significant motor differences were observed between the NGF- and vehicle-treated groups. These data indicate that NGF administration beginning 24 hours after fluid-percussion brain injury has a beneficial effect on cognition and results in sparing of cholinergic septal neurons. These improvements persist after cessation of NGF administration. The beneficial effects of NGF may be related to

  9. IL-13-induced oxidative stress via microglial NADPH oxidase contributes to death of hippocampal neurons in vivo.

    PubMed

    Park, Keun W; Baik, Hyung H; Jin, Byung K

    2009-10-01

    In the present study, we investigated the effects of IL-13, a well-known anti-inflammatory cytokine, on the thrombin-treated hippocampus in vivo. NeuN immunohistochemistry and Nissl staining revealed significant loss of hippocampal CA1 neurons upon intrahippocampal injection of thrombin. This neurotoxicity was accompanied by substantial microglial activation, as evident from OX-42 immunohistochemistry results. In parallel, Western blot analysis and hydroethidine histochemistry disclosed activation of NADPH oxidase, generation of reactive oxygen species, and oxidative damage in the hippocampal CA1 area showing hippocampal neuron degeneration. Interestingly, immunohistochemical and biochemical experiments showed that intrahippocampal injection of thrombin increased IL-13 immunoreactivity and IL-13 levels as early as 8 h after thrombin, reaching a peak at 7 days, which was maintained up to 14 days. Moreover, double-label immunohistochemistry revealed IL-13 immunoreactivity exclusively in activated microglia. IL-13-neutralizing Abs significantly rescued CA1 hippocampal neurons from thrombin neurotoxicity. In parallel, neutralization of IL-13 inhibited activation of NADPH oxidase, reactive oxygen species production, and oxidative damage. Additionally, IL-13 neutralization suppressed the expression of inducible NO synthase and several proinflammatory cytokines. To our knowledge, the present study is the first to show that IL-13 triggers microglial NADPH oxidase-derived oxidative stress, leading to the degeneration of hippocampal neurons in vivo, as occurs in cases of Alzheimer's disease.

  10. Peripheral benzodiazepine receptor ligand PK11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum.

    PubMed

    Ryu, Jae K; Choi, Hyun B; McLarnon, James G

    2005-11-01

    The effects of the peripheral benzodiazepine receptor (PBR) ligand, PK11195, were investigated in the rat striatum following the administration of quinolinic acid (QUIN). Intrastriatal QUIN injection caused an increase of PBR expression in the lesioned striatum as demonstrated by immunohistochemical analysis. Double immunofluorescent staining indicated PBR was primarily expressed in ED1-immunoreactive microglia but not in GFAP-immunoreactive astrocytes or NeuN-immunoreactive neurons. PK11195 treatment significantly reduced the level of microglial activation and the expression of pro-inflammatory cytokines and iNOS in QUIN-injected striatum. Oxidative-mediated striatal QUIN damage, characterized by increased expression of markers for lipid peroxidation (4-HNE) and oxidative DNA damage (8-OHdG), was significantly diminished by PK11195 administration. Furthermore, intrastriatal injection of PK11195 with QUIN significantly reduced striatal lesions induced by the excitatory amino acid and diminished QUIN-mediated caspase-3 activation in striatal neurons. These results suggest that inflammatory responses from activated microglia are damaging to striatal neurons and pharmacological targeting of PBR in microglia may be an effective strategy in protecting neurons in neurological disorders such as Huntington's disease.

  11. Midazolam anesthesia protects neuronal cells from oxidative stress-induced death via activation of the JNK-ERK pathway

    PubMed Central

    Liu, Jing-Yu; Guo, Feng; Wu, Hong-Ling; Wang, Ying; Liu, Jin-Shan

    2016-01-01

    Midazolam is an anesthetic agent commonly used during clinical and surgical procedures, which has been shown to exert ROS-suppressing and apoptosis-modulating pharmacological activities in various cellular systems. However, the effects of midazolam on oxidative stress in neuronal cells require elucidation. The present study investigated the effects of midazolam on buthionine sulfoximine (BSO)- and hydrogen peroxide (H2O2)-induced oxidative stress in primary cortical neuronal cells. In addition, the effects of midazolam on middle cerebral artery occlusion (MCAO) in mice and on ethanol-induced neuroapoptosis in the brains of neonatal mice were determined. Subsequently, cell viability was detected using the MTT assay; intracellular reactive oxygen species (ROS) generation was determined using the 2′,7′-dichlorodihydrofluorescein diacetate method with confocal microscopy; terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was conducted to detect apoptotic cells; immunohistochemistry was performed to detect activated caspase-3; neuronal deficit and infarct volume analyses were conducted; and quantitative polymerase chain reaction and western blotting were performed to detect the expression levels of genes and proteins associated with apoptosis and cell survival pathways. The results demonstrated that BSO (10 mM) and H2O2 (1 mM) suppressed proliferation of cortical neuronal cells by inducing apoptosis. These effects were suppressed following treatment with midazolam in a dose-dependent manner. In addition, BSO and H2O2 induced ROS generation in neuronal cells; however, this was effectively suppressed by midazolam (100 µM). Beneficial synergistic effects were detected when midazolam was used in combination with the known antioxidant trolox. BSO and H2O2 also suppressed the protein expression levels of c-Jun N-terminal kinases (JNK), phosphorylated (p)JNK, extracellular signal-regulated kinases (ERK)1/2, pERK1/2, AKT and nuclear factor

  12. Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment

    SciTech Connect

    Ivanov, Vladimir N.; Hei, Tom K.

    2013-04-01

    Chronic arsenic toxicity is a global health problem that affects more than 100 million people worldwide. Long-term health effects of inorganic sodium arsenite in drinking water may result in skin, lung and liver cancers and in severe neurological abnormalities. We investigated in the present study whether sodium arsenite affects signaling pathways that control cell survival, proliferation and neuronal differentiation of human neural stem cells (NSC). We demonstrated that the critical signaling pathway, which was suppressed by sodium arsenite in NSC, was the protective PI3K–AKT pathway. Sodium arsenite (2–4 μM) also caused down-regulation of Nanog, one of the key transcription factors that control pluripotency and self-renewal of stem cells. Mitochondrial damage and cytochrome-c release induced by sodium arsenite exposure was followed by initiation of the mitochondrial apoptotic pathway in NSC. Beside caspase-9 and caspase-3 inhibitors, suppression of JNK activity decreased levels of arsenite-induced apoptosis in NSC. Neuronal differentiation of NSC was substantially inhibited by sodium arsenite exposure. Overactivation of JNK1 and ERK1/2 and down-regulation of PI3K–AKT activity induced by sodium arsenite were critical factors that strongly affected neuronal differentiation. In conclusion, sodium arsenite exposure of human NSC induces the mitochondrial apoptotic pathway, which is substantially accelerated due to the simultaneous suppression of PI3K–AKT. Sodium arsenite also negatively affects neuronal differentiation of NSC through overactivation of MEK–ERK and suppression of PI3K–AKT. - Highlights: ► Arsenite induces the mitochondrial apoptotic pathway in human neural stem cells. ► Arsenite-induced apoptosis is strongly upregulated by suppression of PI3K–AKT. ► Arsenite-induced apoptosis is strongly down-regulated by inhibition of JNK–cJun. ► Arsenite negatively affects neuronal differentiation by inhibition of PI3K–AKT.

  13. Impairment of enzymatic antioxidant defenses is associated with bilirubin-induced neuronal cell death in the cerebellum of Ugt1 KO mice.

    PubMed

    Bortolussi, G; Codarin, E; Antoniali, G; Vascotto, C; Vodret, S; Arena, S; Cesaratto, L; Scaloni, A; Tell, G; Muro, A F

    2015-05-07

    Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration.

  14. Impairment of enzymatic antioxidant defenses is associated with bilirubin-induced neuronal cell death in the cerebellum of Ugt1 KO mice

    PubMed Central

    Bortolussi, G; Codarin, E; Antoniali, G; Vascotto, C; Vodret, S; Arena, S; Cesaratto, L; Scaloni, A; Tell, G; Muro, A F

    2015-01-01

    Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration. PMID:25950469

  15. The novel mitochondrial iron chelator 5-((methylamino)methyl)-8-hydroxyquinoline protects against mitochondrial-induced oxidative damage and neuronal death.

    PubMed

    Mena, Natalia P; García-Beltrán, Olimpo; Lourido, Fernanda; Urrutia, Pamela J; Mena, Raúl; Castro-Castillo, Vicente; Cassels, Bruce K; Núñez, Marco T

    2015-08-07

    Abundant evidence indicates that iron accumulation, oxidative damage and mitochondrial dysfunction are common features of Huntington's disease, Parkinson's disease, Friedreich's ataxia and a group of disorders known as Neurodegeneration with Brain Iron Accumulation. In this study, we evaluated the effectiveness of two novel 8-OH-quinoline-based iron chelators, Q1 and Q4, to decrease mitochondrial iron accumulation and oxidative damage in cellular and animal models of PD. We found that at sub-micromolar concentrations, Q1 selectively decreased the mitochondrial iron pool and was extremely effective in protecting against rotenone-induced oxidative damage and death. Q4, in turn, preferentially chelated the cytoplasmic iron pool and presented a decreased capacity to protect against rotenone-induced oxidative damage and death. Oral administration of Q1 to mice protected substantia nigra pars compacta neurons against oxidative damage and MPTP-induced death. Taken together, our results support the concept that oral administration of Q1 is a promising therapeutic strategy for the treatment of NBIA.

  16. miR-525-5p inhibits ADAMTS13 and is correlated with Ischemia/reperfusion injury-induced neuronal cell death.

    PubMed

    Zhao, Liyan; Hua, Cong; Li, Yunqian; Sun, Qingqing; Wu, Wei

    2015-01-01

    The understanding of molecular mechanism underlying ischemia/reperfusion-induced neuronal death and neurological dysfunction may provide therapeutic targets for ischemic stroke. In this study, miR-525-5p is clearly reduced in the ischemic brain after oxygen-glucose deprivation (OGD). Using TargetScan, MicroCosm Targets version 5, and microRNA.org databases, we identified miR-525-5p as a possible regulator of the ADAMTS13. We validated that ADAMTS13 is a target for miR-525-5p with a luciferase reporter activity assay. Moreover, adult rats subjected to focal cerebral ischemia exhibited a substantial reduction of miR-525-5p expression, which was inversely upregulated by ADAMTS13 expression. In vivo treatment with miR-525-5p agomir effectively decreased ADAMTS13 mRNA and protein levels in the ischemic region. Furthermore, knockdown of cerebral miR-525-5p reduced cell death and infarct size. In addition, the knockdown of ADAMTS13 by ADAMTS13 siRNA apparently abrogated the protective effect of miR-525-5p antagomir on OGD-induced cell death. Our data demonstrate that miR-525-5p is an endogenous regulator of ADAMTS13 that improves ischemia/reperfusion (I/R)-induced brain injury and dysfunction.

  17. Hyperbaric oxygen and hyperbaric air treatment result in comparable neuronal death reduction and improved behavioral outcome after transient forebrain ischemia in the gerbil.

    PubMed

    Malek, Michal; Duszczyk, Malgorzata; Zyszkowski, Marcin; Ziembowicz, Apolonia; Salinska, Elzbieta

    2013-01-01

    Anoxic brain injury resulting from cardiac arrest is responsible for approximately two-thirds of deaths. Recent evidence suggests that increased oxygen delivered to the brain after cardiac arrest may be an important factor in preventing neuronal damage, resulting in an interest in hyperbaric oxygen (HBO) therapy. Interestingly, increased oxygen supply may be also reached by application of normobaric oxygen (NBO) or hyperbaric air (HBA). However, previous research also showed that the beneficial effect of hyperbaric treatment may not directly result from increased oxygen supply, leading to the conclusion that the mechanism of hyperbaric prevention of brain damage is not well understood. The aim of our study was to compare the effects of HBO, HBA and NBO treatment on gerbil brain condition after transient forebrain ischemia, serving as a model of cardiac arrest. Thereby, we investigated the effects of repetitive HBO, HBA and NBO treatment on hippocampal CA1 neuronal survival, brain temperature and gerbils behavior (the nest building), depending on the time of initiation of the therapy (1, 3 and 6 h after ischemia). HBO and HBA applied 1, 3 and 6 h after ischemia significantly increased neuronal survival and behavioral performance and abolished the ischemia-evoked brain temperature increase. NBO treatment was most effective when applied 1 h after ischemia; later application had a weak or no protective effect. The results show that HBO and HBA applied between 1 and 6 h after ischemia prevent ischemia-evoked neuronal damage, which may be due to the inhibition of brain temperature increase, as a result of the applied rise in ambient pressure, and just not due to the oxygen per se. This perspective is supported by the finding that NBO treatment was less effective than HBO or HBA therapy. The results presented in this paper may pave the way for future experimental studies dealing with pressure and temperature regulation.

  18. Esterification of 24S-OHC induces formation of atypical lipid droplet-like structures, leading to neuronal cell death.

    PubMed

    Takabe, Wakako; Urano, Yasuomi; Vo, Diep-Khanh Ho; Shibuya, Kimiyuki; Tanno, Masaki; Kitagishi, Hiroaki; Fujimoto, Toyoshi; Noguchi, Noriko

    2016-11-01

    The 24(S)-hydroxycholesterol (24S-OHC), which plays an important role in maintaining brain cholesterol homeostasis, has been shown to possess neurotoxicity. We have previously reported that 24S-OHC esterification by ACAT1 and the resulting lipid droplet (LD) formation are responsible for 24S-OHC-induced cell death. In the present study, we investigate the functional roles of 24S-OHC esters and LD formation in 24S-OHC-induced cell death, and we identify four long-chain unsaturated fatty acids (oleic acid, linoleic acid, arachidonic acid, and DHA) with which 24S-OHC is esterified in human neuroblastoma SH-SY5Y cells treated with 24S-OHC. Here, we find that cotreatment of cells with 24S-OHC and each of these four unsaturated fatty acids increases prevalence of the corresponding 24S-OHC ester and exacerbates induction of cell death as compared with cell death induced by treatment with 24S-OHC alone. Using electron microscopy, we find in the present study that 24S-OHC induces formation of LD-like structures coupled with enlarged endoplasmic reticulum (ER) lumina, and that these effects are suppressed by treatment with ACAT inhibitor. Collectively, these results illustrate that ACAT1-catalyzed esterification of 24S-OHC with long-chain unsaturated fatty acid followed by formation of atypical LD-like structures at the ER membrane is a critical requirement for 24S-OHC-induced cell death.

  19. Protective Effects of Cannabidiol against Seizures and Neuronal Death in a Rat Model of Mesial Temporal Lobe Epilepsy

    PubMed Central

    Do Val-da Silva, Raquel A.; Peixoto-Santos, Jose E.; Kandratavicius, Ludmyla; De Ross, Jana B.; Esteves, Ingrid; De Martinis, Bruno S.; Alves, Marcela N. R.; Scandiuzzi, Renata C.; Hallak, Jaime E. C.; Zuardi, Antonio W.; Crippa, Jose A.; Leite, Joao P.

    2017-01-01

    The present study reports the behavioral, electrophysiological, and neuropathological effects of cannabidiol (CBD), a major non-psychotropic constituent of Cannabis sativa, in the intrahippocampal pilocarpine-induced status epilepticus (SE) rat model. CBD was administered before pilocarpine-induced SE (group SE+CBDp) or before and after SE (group SE+CBDt), and compared to rats submitted only to SE (SE group), CBD, or vehicle (VH group). Groups were evaluated during SE (behavioral and electrophysiological analysis), as well as at days one and three post-SE (exploratory activity, electrophysiological analysis, neuron density, and neuron degeneration). Compared to SE group, SE+CBD groups (SE+CBDp and SE+CBDt) had increased SE latency, diminished SE severity, increased contralateral afterdischarge latency and decreased relative powers in delta (0.5–4 Hz) and theta (4–10 Hz) bands. Only SE+CBDp had increased vertical exploratory activity 1-day post SE and decreased contralateral relative power in delta 3 days after SE, when compared to SE group. SE+CBD groups also showed decreased neurodegeneration in the hilus and CA3, and higher neuron density in granule cell layer, hilus, CA3, and CA1, when compared to SE group. Our findings demonstrate anticonvulsant and neuroprotective effects of CBD preventive treatment in the intrahippocampal pilocarpine epilepsy model, either as single or multiple administrations, reinforcing the potential role of CBD in the treatment of epileptic disorders. PMID:28367124

  20. Ruta graveolens L. Induces Death of Glioblastoma Cells and Neural Progenitors, but Not of Neurons, via ERK 1/2 and AKT Activation

    PubMed Central

    Gentile, Maria Teresa; Volpicelli, Floriana; Gatti, Monica; Thellung, Stefano; Florio, Tullio; Melone, Mariarosa A. B.; Colucci-D’Amato, Luca

    2015-01-01

    Glioblastoma multiforme is a highly aggressive brain tumor whose prognosis is very poor. Due to early invasion of brain parenchyma, its complete surgical removal is nearly impossible, and even after aggressive combined treatment (association of surgery and chemo- and radio-therapy) five-year survival is only about 10%. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases, including cancer. Here, we report that the water extract of Ruta graveolens L., commonly known as rue, induces death in different glioblastoma cell lines (U87MG, C6 and U138) widely used to test novel drugs in preclinical studies. Ruta graveolens’ effect was mediated by ERK1/2 and AKT activation, and the inhibition of these pathways, via PD98058 and wortmannin, reverted its antiproliferative activity. Rue extract also affects survival of neural precursor cells (A1) obtained from embryonic mouse CNS. As in the case of glioma cells, rue stimulates the activation of ERK1/2 and AKT in A1 cells, whereas their blockade by pharmacological inhibitors prevents cell death. Interestingly, upon induction of differentiation and cell cycle exit, A1 cells become resistant to rue’s noxious effects but not to those of temozolomide and cisplatin, two alkylating agents widely used in glioblastoma therapy. Finally, rutin, a major component of the Ruta graveolens water extract, failed to cause cell death, suggesting that rutin by itself is not responsible for the observed effects. In conclusion, we report that rue extracts induce glioma cell death, discriminating between proliferating/undifferentiated and non-proliferating/differentiated neurons. Thus, it can be a promising tool to isolate novel drugs and also to discover targets for therapeutic intervention. PMID:25785932

  1. Studies of benzamide- and thiol-based histone deacetylase inhibitors in models of oxidative-stress-induced neuronal death: identification of some HDAC3-selective inhibitors.

    PubMed

    Chen, Yufeng; He, Rong; Chen, Yihua; D'Annibale, Melissa A; Langley, Brett; Kozikowski, Alan P

    2009-05-01

    We compare three structurally different classes of histone deacetylase (HDAC) inhibitors that contain benzamide, hydroxamate, or thiol groups as the zinc binding group (ZBG) for their ability to protect cortical neurons in culture from cell death induced by oxidative stress. This study reveals that none of the benzamide-based HDAC inhibitors (HDACIs) provides any neuroprotection whatsoever, in distinct contrast to HDACIs that contain other ZBGs. Some of the sulfur-containing HDACIs, namely the thiols, thioesters, and disulfides present modest neuroprotective activity but show toxicity at higher concentrations. Taken together, these data demonstrate that the HDAC6-selective mercaptoacetamides that were reported previously provide the best protection in the homocysteic acid model of oxidative stress, thus further supporting their study in animal models of neurodegenerative diseases.

  2. Voltage-dependent anion channels (VDACs) promote mitophagy to protect neuron from death in an early brain injury following a subarachnoid hemorrhage in rats.

    PubMed

    Li, Jian; Lu, Jianfei; Mi, Yongjie; Shi, Zhao; Chen, Chunhua; Riley, John; Zhou, Changman

    2014-07-21

    The term mitophagy is coined to describe the selective removal of mitochondria by autophagy but the process itself is still contentious, especially in the early period following subarachnoid hemorrhage (SAH). In the present study, we investigated the role of mitophagy following 48h after SAH injury in rats. Specifically evaluating whether mitophagy, through voltage dependant anion channels (VDACs) interacting with microtubule-associated protein 1 light chain 3, could orchestrate the induction of apoptotic and necrotic cell death in neurons, a VDAC1siRNA and an activitor Rapamycian (RAPA), were engaged. One hundred and twelve male Sprague-Dawley rats were randomly divided into 4 groups: Sham, SAH, SAH+VDAC1siRNA, and SAH+RAPA. Outcomes measured included mortality rate, brain edema, BBB disruption, and neurobehavioral testing. We also used western blotting techniques to analyze the expressions of key mitophagic/autophagic proteins and pro-apoptotic protein such as ROS, VDAC1, LC-3II and Caspase-3. Rapamycin treatment significantly improved the mortality rate, cerebral edema, and neurobehavioral deficits; apoptotic and necrotic cell death in neurons were reduced by Rapamycin following SAH injury. However, VDAC1siRNA worsened the brain injury following SAH. Immunohistochemical staining and western blot analysis demonstrated a decreased expression of VDAC1, LC3II, and an increase of ROS and Caspase-3 followed by VDAC1siRNA administration. In conclusion, mitophagy induced by VDAC1 following SAH injury may in fact play a significant role in neuroprotection, the mechanism which may be through the attenuation of the apoptosic and necrosic molecular pathways. This translates a preservation of functional integrity and an improvement in mortality.

  3. Inhibition of the Receptor for Advanced Glycation End-Products (RAGE) Attenuates Neuroinflammation While Sensitizing Cortical Neurons Towards Death in Experimental Subarachnoid Hemorrhage.

    PubMed

    Li, Hua; Yu, Jia-Sheng; Zhang, Ding-Ding; Yang, Yi-Qing; Huang, Li-Tian; Yu, Zhuang; Chen, Ru-Dong; Yang, Hong-Kuan; Hang, Chun-Hua

    2017-01-01

    Subarachnoid hemorrhage (SAH) is a threatening and devastating neurological insult with high mortality and morbidity rates. Despite considerable efforts, the underlying pathophysiological mechanisms are still poorly understood. The receptor for advanced glycation end products (RAGE) is a multiligand receptor that has been implicated in various pathological conditions. We previously showed that RAGE was upregulated and may be involved in pathophysiology of SAH. In the current study, we investigated its potential role in SAH. We found that the upregulation of RAGE after SAH was NF-κB-dependent positive feedback regulation. Further, pharmacological inhibition of RAGE attenuated neuroinflammation, indicating a possible contributive role of RAGE in inflammation-associated brain injury after SAH. Conversely, however, inhibition of RAGE sensitized neurons, exacerbating cell death, which correlated with augmented apoptosis and diminished autophagy, suggesting that activation of RAGE may protect against SAH-induced neuronal injury. Furthermore, we demonstrate that inhibition of RAGE significantly reduced brain edema and improved neurological function at day 1 but not at day 3 post-SAH. Taken together, these results suggest that RAGE exerts dual role after SAH. Our findings also suggest caution should be exercised in setting RAGE-targeted treatment for SAH.

  4. rAAV8-733-Mediated Gene Transfer of CHIP/Stub-1 Prevents Hippocampal Neuronal Death in Experimental Brain Ischemia.

    PubMed

    Cabral-Miranda, Felipe; Nicoloso-Simões, Elisa; Adão-Novaes, Juliana; Chiodo, Vince; Hauswirth, William W; Linden, Rafael; Chiarini, Luciana Barreto; Petrs-Silva, Hilda

    2017-02-01

    Brain ischemia is a major cause of adult disability and death, and it represents a worldwide health problem with significant economic burden for modern society. The identification of the molecular pathways activated after brain ischemia, together with efficient technologies of gene delivery to the CNS, may lead to novel treatments based on gene therapy. Recombinant adeno-associated virus (rAAV) is an effective platform for gene transfer to the CNS. Here, we used a serotype 8 rAAV bearing the Y733F mutation (rAAV8-733) to overexpress co-chaperone E3 ligase CHIP (also known as Stub-1) in rat hippocampal neurons, both in an oxygen and glucose deprivation model in vitro and in a four-vessel occlusion model of ischemia in vivo. We show that CHIP overexpression prevented neuronal degeneration in both cases and led to a decrease of both eIF2α (serine 51) and AKT (serine 473) phosphorylation, as well as reduced amounts of ubiquitinated proteins following hypoxia or ischemia. These data add to current knowledge of ischemia-related signaling in the brain and suggest that gene therapy based on the role of CHIP in proteostasis may provide a new venue for brain ischemia treatment.

  5. Vitamin E protected cultured cortical neurons from oxidative stress-induced cell death through the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase.

    PubMed

    Numakawa, Yumiko; Numakawa, Tadahiro; Matsumoto, Tomoya; Yagasaki, Yuki; Kumamaru, Emi; Kunugi, Hiroshi; Taguchi, Takahisa; Niki, Etsuo

    2006-05-01

    The role of vitamin E in the CNS has not been fully elucidated. In the present study, we found that pre-treatment with vitamin E analogs including alphaT (alpha-tocopherol), alphaT3 (alpha -tocotrienol), gammaT, and gammaT3 for 24 h prevented the cultured cortical neurons from cell death in oxidative stress stimulated by H2O2, while Trolox, a cell-permeable analog of alphaT, did not. The preventive effect of alphaT was dependent on de novo protein synthesis. Furthermore, we found that alphaT exposure induced the activation of both the MAP kinase (MAPK) and PI3 kinase (PI3K) pathways and that the alphaT-dependent survival effect was blocked by the inhibitors, U0126 (an MAPK pathway inhibitor) or LY294002 (a PI3K pathway inhibitor). Interestingly, the up-regulation of Bcl-2 (survival promoting molecule) was induced by alphaT application. The up-regulation of Bcl-2 did not occur in the presence of U0126 or LY294002, suggesting that alphaT-up-regulated Bcl-2 is mediated by these kinase pathways. These observations suggest that vitamin E analogs play an essential role in neuronal maintenance and survival in the CNS.

  6. Carvedilol, a third-generation β-blocker prevents oxidative stress-induced neuronal death and activates Nrf2/ARE pathway in HT22 cells

    SciTech Connect

    Ouyang, Ying; Chen, Ziwei; Tan, Min; Liu, Anmin; Chen, Meihui; Liu, Jun; Pi, Rongbiao; Fang, Jianpei

    2013-11-29

    Highlights: •Carvedilol significantly prevented oxidative stress-induced cell death. •Carvedilol significantly decreased the production of ROS. •Carvedilol activated Nrf2/ARE pathway. •Carvedilol increased the protein levels of HO-1 and NQO-1. -- Abstract: Carvedilol, a nonselective β-adrenoreceptor blocker with pleiotropic activities has been shown to exert neuroprotective effect due to its antioxidant property. However, the neuroprotective mechanism of carvedilol is still not fully uncovered. Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. Here we investigated the effect of carvedilol on oxidative stress-induced cell death (glutamate 2 mM and H{sub 2}O{sub 2} 600 μM) and the activity of Nrf2/ARE pathway in HT22 hippocampal cells. Carvedilol significantly increased cell viability and decreased ROS in HT22 cells exposed to glutamate or H{sub 2}O{sub 2}. Furthermore, carvedilol activated the Nrf2/ARE pathway in a concentration-dependent manner, and increased the protein levels of heme oxygenase-1(HO-1) and NAD(P)H quinone oxidoreductase-1(NQO-1), two downstream factors of the Nrf2/ARE pathway. Collectively, our results indicate that carvedilol protects neuronal cell against glutamate- and H{sub 2}O{sub 2}-induced neurotoxicity possibly through activating the Nrf2/ARE signaling pathway.

  7. MiADMSA reverses impaired mitochondrial energy metabolism and neuronal apoptotic cell death after arsenic exposure in rats

    SciTech Connect

    Dwivedi, Nidhi; Mehta, Ashish; Yadav, Abhishek; Binukumar, B.K.; Gill, Kiran Dip; Flora, Swaran J.S.

    2011-11-15

    Arsenicosis, due to contaminated drinking water, is a serious health hazard in terms of morbidity and mortality. Arsenic induced free radicals generated are known to cause cellular apoptosis through mitochondrial driven pathway. In the present study, we investigated the effect of arsenic interactions with various complexes of the electron transport chain and attempted to evaluate if there was any complex preference of arsenic that could trigger apoptosis. We also evaluated if chelation with monoisoamyl dimercaptosuccinic acid (MiADMSA) could reverse these detrimental effects. Our results indicate that arsenic exposure induced free radical generation in rat neuronal cells, which diminished mitochondrial potential and enzyme activities of all the complexes of the electron transport chain. Moreover, these complexes showed differential responses towards arsenic. These early events along with diminished ATP levels could be co-related with the later events of cytosolic migration of cytochrome c, altered bax/bcl{sub 2} ratio, and increased caspase 3 activity. Although MiADMSA could reverse most of these arsenic-induced altered variables to various extents, DNA damage remained unaffected. Our study for the first time demonstrates the differential effect of arsenic on the complexes leading to deficits in bioenergetics leading to apoptosis in rat brain. However, more in depth studies are warranted for better understanding of arsenic interactions with the mitochondria. -- Research highlights: Black-Right-Pointing-Pointer Arsenic impairs mitochondrial energy metabolism leading to neuronal apoptosis. Black-Right-Pointing-Pointer Arsenic differentially affects mitochondrial complexes, I - III and IV being more sensitive than complex II. Black-Right-Pointing-Pointer Arsenic-induced apoptosis initiates through ROS generation or impaired [Ca{sup 2+}]i homeostasis. Black-Right-Pointing-Pointer MiADMSA reverses arsenic toxicity via intracellular arsenic- chelation, antioxidant

  8. Neuronal Migration Disorders

    MedlinePlus

    ... Understanding Sleep The Life and Death of a Neuron Order Publications Support Resources Patient Organizations Professional Societies ... birth defects caused by the abnormal migration of neurons in the developing brain and nervous system. In ...

  9. The phosphorylation of Hsp20 enhances its association with amyloid-β to increase protection against neuronal cell death.

    PubMed

    Cameron, Ryan T; Quinn, Steven D; Cairns, Lynn S; MacLeod, Ruth; Samuel, Ifor D W; Smith, Brian O; Carlos Penedo, J; Baillie, George S

    2014-07-01

    Up-regulation of Hsp20 protein levels in response to amyloid fibril formation is considered a key protective response against the onset of Alzheimer's disease (AD). Indeed, the physical interaction between Hsp20 and Aβ is known to prevent Aβ oligomerisation and protects neuronal cells from Aβ mediated toxicity, however, details of the molecular mechanism and regulatory cell signalling events behind this process have remained elusive. Using both conventional MTT end-point assays and novel real time measurement of cell impedance, we show that Hsp20 protects human neuroblastoma SH-SY5Y cells from the neurotoxic effects of Aβ. In an attempt to provide a mechanism for the neuroprotection afforded by Hsp20, we used peptide array, co-immunoprecipitation analysis and NMR techniques to map the interaction between Hsp20 and Aβ and report a binding mode where Hsp20 binds adjacent to the oligomerisation domain of Aβ, preventing aggregation. The Hsp20/Aβ interaction is enhanced by Hsp20 phosphorylation, which serves to increase association with low molecular weight Aβ species and decrease the effective concentration of Hsp20 required to disrupt the formation of amyloid oligomers. Finally, using a novel fluorescent assay for the real time evaluation of morphology-specific Aβ aggregation, we show that phospho-dependency of this effect is more pronounced for fibrils than for globular Aβ forms and that 25mers corresponding to the Hsp20 N-terminal can be used as Aβ aggregate inhibitors. Our report is the first to provide a molecular model for the Hsp20/Aβ complex and the first to suggest that modulation of the cAMP/cGMP pathways could be a novel route to enhance Hsp20-mediated attenuation of Aβ fibril neurotoxicity.

  10. Silica nanoparticles mediated neuronal cell death in corpus striatum of rat brain: implication of mitochondrial, endoplasmic reticulum and oxidative stress

    NASA Astrophysics Data System (ADS)

    Parveen, Arshiya; Rizvi, Syed Husain Mustafa; Mahdi, Farzana; Tripathi, Sandeep; Ahmad, Iqbal; Shukla, Rajendra K.; Khanna, Vinay K.; Singh, Ranjana; Patel, Devendra K.; Mahdi, Abbas Ali

    2014-11-01

    Extensive uses of silica nanoparticles (SiNPs) in biomedical and industrial fields have increased the risk of exposure, resulting concerns about their safety. We focussed on some of the safety aspects by studying neurobehavioural impairment, oxidative stress (OS), neurochemical and ultrastructural changes in corpus striatum (CS) of male Wistar rats exposed to 80-nm SiNPs. Moreover, its role in inducing mitochondrial and endoplasmic reticulum (ER) stress-mediated neuronal apoptosis was also investigated. The results demonstrated impairment in neurobehavioural indices, and a significant increase in lipid peroxide levels (LPO), hydrogen peroxide (H2O2), superoxide (O2 -) and protein carbonyl content, whereas there was a significant decrease in the activities of the enzymes, manganese superoxide dismutase (Mn SOD), glutathione peroxidase (GPx), catalase (CAT) and reduced glutathione (GSH) content, suggesting impaired antioxidant defence system. Protein (cytochrome c, Bcl-2, Bax, p53, caspase-3, caspase 12 and CHOP/Gadd153) and mRNA (Bcl-2, Bax, p53 and CHOP/Gadd153, cytochrome c) expression studies of mitochondrial and ER stress-related apoptotic factors suggested that both the cell organelles were involved in OS-mediated apoptosis in treated rat brain CS. Moreover, electron microscopic studies clearly showed mitochondrial and ER dysfunction. In conclusion, the result of the study suggested that subchronic SiNPs' exposure has the potential to alter the behavioural activity and also to bring about changes in biochemical, neurochemical and ultrastructural profiles in CS region of rat brain. Furthermore, we also report SiNPs-induced apoptosis in CS, through mitochondrial and ER stress-mediated signalling.

  11. Cadmium-induced cell death of basal forebrain cholinergic neurons mediated by muscarinic M1 receptor blockade, increase in GSK-3β enzyme, β-amyloid and tau protein levels.

    PubMed

    Del Pino, Javier; Zeballos, Gabriela; Anadón, María José; Moyano, Paula; Díaz, María Jesús; García, José Manuel; Frejo, María Teresa

    2016-05-01

    Cadmium is a neurotoxic compound which induces cognitive alterations similar to those produced by Alzheimer's disease (AD). However, the mechanism through which cadmium induces this effect remains unknown. In this regard, we described in a previous work that cadmium blocks cholinergic transmission and induces a more pronounced cell death on cholinergic neurons from basal forebrain which is partially mediated by AChE overexpression. Degeneration of basal forebrain cholinergic neurons, as happens in AD, results in memory deficits attributable to the loss of cholinergic modulation of hippocampal synaptic circuits. Moreover, cadmium has been described to activate GSK-3β, induce Aβ protein production and tau filament formation, which have been related to a selective loss of basal forebrain cholinergic neurons and development of AD. The present study is aimed at researching the mechanisms of cell death induced by cadmium on basal forebrain cholinergic neurons. For this purpose, we evaluated, in SN56 cholinergic mourine septal cell line from basal forebrain region, the cadmium toxic effects on neuronal viability through muscarinic M1 receptor, AChE splice variants, GSK-3β enzyme, Aβ and tau proteins. This study proves that cadmium induces cell death on cholinergic neurons through blockade of M1 receptor, overexpression of AChE-S and GSK-3β, down-regulation of AChE-R and increase in Aβ and total and phosphorylated tau protein levels. Our present results provide new understanding of the mechanisms contributing to the harmful effects of cadmium on cholinergic neurons and suggest that cadmium could mediate these mechanisms by M1R blockade through AChE splices altered expression.

  12. Ionotropic glutamate receptors and glutamate transporters are involved in necrotic neuronal cell death induced by oxygen-glucose deprivation of hippocampal slice cultures.

    PubMed

    Bonde, C; Noraberg, J; Noer, H; Zimmer, J

    2005-01-01

    Organotypic hippocampal slice cultures represent a feasible model for studies of cerebral ischemia and the role of ionotropic glutamate receptors in oxygen-glucose deprivation-induced neurodegeneration. New results and a review of existing data are presented in the first part of this paper. The role of glutamate transporters, with special reference to recent results on inhibition of glutamate transporters under normal and energy-failure (ischemia-like) conditions is reviewed in the last part of the paper. The experimental work is based on hippocampal slice cultures derived from 7 day old rats and grown for about 3 weeks. In such cultures we investigated the subfield neuronal susceptibility to oxygen-glucose deprivation, the type of induced cell death and the involvement of ionotropic glutamate receptors. Hippocampal slice cultures were also used in our studies on glutamate transporters reviewed in the last part of this paper. Neurodegeneration was monitored and/or shown by cellular uptake of propidium iodide, loss of immunocytochemical staining for microtubule-associated protein 2 and staining with Fluoro-Jade B. To distinguish between necrotic vs. apoptotic neuronal cell death we used immunocytochemical staining for active caspase-3 (apoptosis indicator) and Hoechst 33342 staining of nuclear chromatin. Our experimental studies on oxygen-glucose deprivation confirmed that CA1 pyramidal cells were the most susceptible to this ischemia-like condition. Judged by propidium iodide uptake, a selective CA1 lesion, with only minor affection on CA3, occurred in cultures exposed to oxygen-glucose deprivation for 30 min. Nuclear chromatin staining by Hoechst 33342 and staining for active caspase-3 showed that oxygen-glucose deprivation induced necrotic cell death only. Addition of 10 microM of the N-methyl-D-aspartate glutamate receptor antagonist MK-801, and 20 microM of the non-N-methyl-D-aspartate glutamate receptor antagonist 2,3-dihyroxy-6-nitro-7-sulfamoyl

  13. Protective effect of S-allyl-L-cysteine against endoplasmic reticulum stress-induced neuronal death is mediated by inhibition of calpain.

    PubMed

    Imai, Toru; Kosuge, Yasuhiro; Endo-Umeda, Kaori; Miyagishi, Hiroko; Ishige, Kumiko; Makishima, Makoto; Ito, Yoshihisa

    2014-02-01

    Endoplasmic reticulum (ER) stress, implicated in various neurodegenerative processes, increases the level of intracellular Ca(2+) and leads to activation of calpain, a Ca(2+)-dependent cysteine protease. We have shown previously that S-allyl-L-cysteine (SAC) in aged garlic extracts significantly protects cultured rat hippocampal neurons (HPNs) against ER stress-induced neurotoxicity. The neuroprotective effect of SAC was compared with those of the related antioxidant compounds, L-cysteine (CYS) and N-acetylcysteine (NAC), on calpain activity in HPNs and also in vitro. SAC, but not CYS or NAC, reversibly restored the survival of HPNs and increased the degradation of α-spectrin, a substrate for calpain, induced by tunicamycin, a typical ER stress inducer. Activities of μ- and m-calpains in vitro were also concentration dependently suppressed by SAC, but not by CYS or NAC. At submaximal concentration, although ALLN (5 pM), which blocks the active site of calpain, and calpastatin (100 pM), an endogenous calpain-inhibitor protein, additively inhibited μ-calpain activity in vitro in combination with SAC, the effect of PD150606 (25 μM), which prevents interaction of Ca(2+) with the Ca(2+)-binding site of calpain, was unaffected by SAC. In contrast, SAC (1 mM) significantly reversed the effect of PD150606 at a concentration that elicited supramaximal inhibition (100 μM), but did not affect ALLN (1 nM)- and calpastatin (100 nM)-induced inhibition of μ-calpain activity. These results suggest that the protective effects of SAC against ER stress-induced neuronal cell death are not attributable to antioxidant activity, but to suppression of calpain through interaction with its Ca(2+)-binding site.

  14. miR-497 and miR-302b regulate ethanol-induced neuronal cell death through BCL2 protein and cyclin D2.

    PubMed

    Yadav, Sanjay; Pandey, Ankita; Shukla, Aruna; Talwelkar, Sarang S; Kumar, Ashutosh; Pant, Aditya B; Parmar, Devendra

    2011-10-28

    In chronic alcoholism, brain shrinkage and cognitive defects because of neuronal death are well established, although the sequence of molecular events has not been fully explored yet. We explored the role of microRNAs (miRNAs) in ethanol-induced apoptosis of neuronal cells. Ethanol-sensitive miRNAs in SH-SY5Y, a human neuroblastoma cell line, were identified using real-time PCR-based TaqMan low-density arrays. Long-term exposure to ethanol (0.5% v/v for 72 h) produced a maximum increase in expression of miR-497 (474-fold) and miR-302b (322-fold). Similar to SH-SY5Y, long-term exposure to ethanol induced miR-497 and miR-302b in IMR-32, another human neuroblastoma cell line. Using in silico approaches, BCL2 and cyclin D2 (CCND2) were identified as probable target genes of these miRNAs. Cotransfection studies with 3'-UTR of these genes and miRNA mimics have demonstrated that BCL2 is a direct target of miR-497 and that CCND2 is regulated negatively by either miR-302b or miR-497. Overexpression of either miR-497 or miR-302b reduced expression of their identified target genes and increased caspase 3-mediated apoptosis of SH-SY5Y cells. However, overexpression of only miR-497 increased reactive oxygen species formation, disrupted mitochondrial membrane potential, and induced cytochrome c release (mitochondria-related events of apoptosis). Moreover, ethanol induced changes in miRNAs, and their target genes were substantially prevented by pre-exposure to GSK-3B inhibitors. In conclusion, our studies have shown that ethanol-induced neuronal apoptosis follows both the mitochondria-mediated (miR-497- and BCL2-mediated) and non-mitochondria-mediated (miR-302b- and CCND2-mediated) pathway.

  15. miR-497 and miR-302b Regulate Ethanol-induced Neuronal Cell Death through BCL2 Protein and Cyclin D2*

    PubMed Central

    Yadav, Sanjay; Pandey, Ankita; Shukla, Aruna; Talwelkar, Sarang S.; Kumar, Ashutosh; Pant, Aditya B.; Parmar, Devendra

    2011-01-01

    In chronic alcoholism, brain shrinkage and cognitive defects because of neuronal death are well established, although the sequence of molecular events has not been fully explored yet. We explored the role of microRNAs (miRNAs) in ethanol-induced apoptosis of neuronal cells. Ethanol-sensitive miRNAs in SH-SY5Y, a human neuroblastoma cell line, were identified using real-time PCR-based TaqMan low-density arrays. Long-term exposure to ethanol (0.5% v/v for 72 h) produced a maximum increase in expression of miR-497 (474-fold) and miR-302b (322-fold). Similar to SH-SY5Y, long-term exposure to ethanol induced miR-497 and miR-302b in IMR-32, another human neuroblastoma cell line. Using in silico approaches, BCL2 and cyclin D2 (CCND2) were identified as probable target genes of these miRNAs. Cotransfection studies with 3′-UTR of these genes and miRNA mimics have demonstrated that BCL2 is a direct target of miR-497 and that CCND2 is regulated negatively by either miR-302b or miR-497. Overexpression of either miR-497 or miR-302b reduced expression of their identified target genes and increased caspase 3-mediated apoptosis of SH-SY5Y cells. However, overexpression of only miR-497 increased reactive oxygen species formation, disrupted mitochondrial membrane potential, and induced cytochrome c release (mitochondria-related events of apoptosis). Moreover, ethanol induced changes in miRNAs, and their target genes were substantially prevented by pre-exposure to GSK-3B inhibitors. In conclusion, our studies have shown that ethanol-induced neuronal apoptosis follows both the mitochondria-mediated (miR-497- and BCL2-mediated) and non-mitochondria-mediated (miR-302b- and CCND2-mediated) pathway. PMID:21878650

  16. The Membrane-Active Tri-Block Copolymer Pluronic F-68 Profoundly Rescues Rat Hippocampal Neurons from Oxygen–Glucose Deprivation-Induced Death through Early Inhibition of Apoptosis

    PubMed Central

    Shelat, Phullara B.; Plant, Leigh D.; Wang, Janice C.; Lee, Elizabeth

    2013-01-01

    Pluronic F-68, an 80% hydrophilic member of the Pluronic family of polyethylene-polypropylene-polyethylene tri-block copolymers, protects non-neuronal cells from traumatic injuries and rescues hippocampal neurons from excitotoxic and oxidative insults. F-68 interacts directly with lipid membranes and restores membrane function after direct membrane damage. Here, we demonstrate the efficacy of Pluronic F-68 in rescuing rat hippocampal neurons from apoptosis after oxygen–glucose deprivation (OGD). OGD progressively decreased neuronal survival over 48 h in a severity-dependent manner, the majority of cell death occurring after 12 h after OGD. Administration of F-68 for 48 h after OGD rescued neurons from death in a dose-dependent manner. At its optimal concentration (30 μm), F-68 rescued all neurons that would have died after the first hour after OGD. This level of rescue persisted when F-68 administration was delayed 12 h after OGD. F-68 did not alter electrophysiological parameters controlling excitability, NMDA receptor-activated currents, or NMDA-induced increases in cytosolic calcium concentrations. However, F-68 treatment prevented phosphatidylserine externalization, caspase activation, loss of mitochondrial membrane potential, and BAX translocation to mitochondria, indicating that F-68 alters apoptotic mechanisms early in the intrinsic pathway of apoptosis. The profound neuronal rescue provided by F-68 after OGD and the high level of efficacy with delayed administration indicate that Pluronic copolymers may provide a novel, membrane-targeted approach to rescuing neurons after brain ischemia. The ability of membrane-active agents to block apoptosis suggests that membranes or their lipid components play prominent roles in injury-induced apoptosis. PMID:23884935

  17. The essential role of p53-up-regulated modulator of apoptosis (Puma) and its regulation by FoxO3a transcription factor in β-amyloid-induced neuron death.

    PubMed

    Akhter, Rumana; Sanphui, Priyankar; Biswas, Subhas Chandra

    2014-04-11

    Neurodegeneration underlies the pathology of Alzheimer disease (AD). The molecules responsible for such neurodegeneration in AD brain are mostly unknown. Recent findings indicate that the BH3-only proteins of the Bcl-2 family play an essential role in various cell death paradigms, including neurodegeneration. Here we report that Puma (p53-up-regulated modulator of apoptosis), an important member of the BH3-only protein family, is up-regulated in neurons upon toxic β-amyloid 1-42 (Aβ(1-42)) exposure both in vitro and in vivo. Down-regulation of Puma by specific siRNA provides significant protection against neuron death induced by Aβ(1-42). We further demonstrate that the activation of p53 and inhibition of PI3K/Akt pathways induce Puma. The transcription factor FoxO3a, which is activated when PI3K/Akt signaling is inhibited, directly binds with the Puma gene and induces its expression upon exposure of neurons to oligomeric Aβ(1-42). Moreover, Puma cooperates with another BH3-only protein, Bim, which is already implicated in AD. Our results thus suggest that Puma is activated by both p53 and PI3K/Akt/FoxO3a pathways and cooperates with Bim to induce neuron death in response to Aβ(1-42).

  18. Nitric Oxide-induced Activation of the Type 1 Ryanodine Receptor Is Critical for Epileptic Seizure-induced Neuronal Cell Death.

    PubMed

    Mikami, Yoshinori; Kanemaru, Kazunori; Okubo, Yohei; Nakaune, Takuya; Suzuki, Junji; Shibata, Kazuki; Sugiyama, Hiroki; Koyama, Ryuta; Murayama, Takashi; Ito, Akihiro; Yamazawa, Toshiko; Ikegaya, Yuji; Sakurai, Takashi; Saito, Nobuhito; Kakizawa, Sho; Iino, Masamitsu

    2016-09-01

    Status epilepticus (SE) is a life-threatening emergency that can cause neurodegeneration with debilitating neurological disorders. However, the mechanism by which convulsive SE results in neurodegeneration is not fully understood. It has been shown that epileptic seizures produce markedly increased levels of nitric oxide (NO) in the brain, and that NO induces Ca(2+) release from the endoplasmic reticulum via the type 1 ryanodine receptor (RyR1), which occurs through S-nitrosylation of the intracellular Ca(2+) release channel. Here, we show that through genetic silencing of NO-induced activation of the RyR1 intracellular Ca(2+) release channel, neurons were rescued from seizure-dependent cell death. Furthermore, dantrolene, an inhibitor of RyR1, was protective against neurodegeneration caused by SE. These results demonstrate that NO-induced Ca(2+) release via RyR is involved in SE-induced neurodegeneration, and provide a rationale for the use of RyR1 inhibitors for the prevention of brain damage following SE.

  19. PKA Inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide) Attenuates Synaptic Dysfunction and Neuronal Cell Death following Ischemic Injury

    PubMed Central

    Song, Juhyun; Cheon, So Yeong; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-01-01

    The cyclic AMP-dependent protein kinase (PKA), which activates prosurvival signaling proteins, has been implicated in the expression of long-term potentiation and hippocampal long-term memory. It has come to light that H89 commonly known as the PKA inhibitor have diverse roles in the nervous system that are unrelated to its role as a PKA inhibitor. We have investigated the role of H89 in ischemic and reperfusion injury. First, we examined the expression of postsynaptic density protein 95 (PSD95), microtubule-associated protein 2 (MAP2), and synaptophysin in mouse brain after middle cerebral artery occlusion injury. Next, we examined the role of H89 pretreatment on the expression of brain-derived neurotrophic factor (BDNF), PSD95, MAP2, and the apoptosis regulators Bcl2 and cleaved caspase-3 in cultured neuroblastoma cells exposed to hypoxia and reperfusion injury. In addition, we investigated the alteration of AKT activation in H89 pretreated neuroblastoma cells under hypoxia and reperfusion injury. The data suggest that H89 may contribute to brain recovery after ischemic stroke by regulating neuronal death and proteins related to synaptic plasticity. PMID:26448879

  20. Chloroacetic acid induced neuronal cells death through oxidative stress-mediated p38-MAPK activation pathway regulated mitochondria-dependent apoptotic signals.

    PubMed

    Chen, Chun-Hung; Chen, Sz-Jie; Su, Chin-Chuan; Yen, Cheng-Chieh; Tseng, To-Jung; Jinn, Tzyy-Rong; Tang, Feng-Cheng; Chen, Kuo-Liang; Su, Yi-Chang; Lee, kuan-I; Hung, Dong-Zong; Huang, Chun-Fa

    2013-01-07

    Chloroacetic acid (CA), a toxic chlorinated analog of acetic acid, is widely used in chemical industries as an herbicide, detergent, and disinfectant, and chemical intermediates that are formed during the synthesis of various products. In addition, CA has been found as a by-product of chlorination disinfection of drinking water. However, there is little known about neurotoxic injuries of CA on the mammalian, the toxic effects and molecular mechanisms of CA-induced neuronal cell injury are mostly unknown. In this study, we examined the cytotoxicity of CA on cultured Neuro-2a cells and investigated the possible mechanisms of CA-induced neurotoxicity. Treatment of Neuro-2a cells with CA significantly reduced the number of viable cells (in a dose-dependent manner with a range from 0.1 to 3mM), increased the generation of ROS, and reduced the intracellular levels of glutathione depletion. CA also increased the number of sub-G1 hypodiploid cells; increased mitochondrial dysfunction (loss of MMP, cytochrome c release, and accompanied by Bcl-2 and Mcl-1 down-regulation and Bax up-regulation), and activated the caspase cascades activations, which displayed features of mitochondria-dependent apoptosis pathway. These CA-induced apoptosis-related signals were markedly prevented by the antioxidant N-acetylcysteine (NAC). Moreover, CA activated the JNK and p38-MAPK pathways, but did not that ERK1/2 pathway, in treated Neuro-2a cells. Pretreatment with NAC and specific p38-MAPK inhibitor (SB203580), but not JNK inhibitor (SP600125) effectively abrogated the phosphorylation of p38-MAPK and attenuated the apoptotic signals (including: decrease in cytotoxicity, caspase-3/-7 activation, the cytosolic cytochrome c release, and the reversed alteration of Bcl-2 and Bax mRNA) in CA-treated Neuro-2a cells. Taken together, these data suggest that oxidative stress-induced p38-MAPK activated pathway-regulated mitochondria-dependent apoptosis plays an important role in CA-caused neuronal cell

  1. Cytoprotective effects of vitamin E homologues against glutamate-induced cell death in immature primary cortical neuron cultures: Tocopherols and tocotrienols exert similar effects by antioxidant function.

    PubMed

    Saito, Yoshiro; Nishio, Keiko; Akazawa, Yoko Ogawa; Yamanaka, Kazunori; Miyama, Akiko; Yoshida, Yasukazu; Noguchi, Noriko; Niki, Etsuo

    2010-11-30

    Glutamate plays a critical role in pathological cell death within the nervous system. Vitamin E is known to protect cells from glutamate cytotoxicity, either by direct antioxidant action or by indirect nonantioxidant action. Further, α-tocotrienol (α-T3) has been reported to be more effective against glutamate-induced cytotoxicity than α-tocopherol (α-T). To shed more light on the function of vitamin E against glutamate toxicity, the protective effects of eight vitamin E homologues and related compounds, 2,2,5,7,8-pentamethyl-6-chromanol (PMC) and 2-carboxy-2,5,7,8-pentamethyl-6-chromanol (Trolox), against glutamate-induced cytotoxicity on immature primary cortical neurons were examined using different protocols. Glutamate induced the depletion of glutathione and generation of reactive oxygen species and lipid hydroperoxides, leading to cell death. α-, β-, γ-, and δ-T and -T3; PMC; and Trolox all exerted cytoprotective effects against glutamate-induced cytotoxicity, and a longer preincubation time increased both the cellular content and the cytoprotective effects of T more significantly than those of T3, the effect of preincubation being relatively small for T3 and PMC. The protective effect of Trolox was less potent than that of PMC. The cytoprotective effects of α-T and α-T3 corresponded to their intracellular content. Further, lipid peroxidation products were measured after reduction with triphenylphosphine followed by saponification with potassium hydroxide. It was found that glutamate treatment increased the formation of hydroxyeicosatetraenoic acid, hydroxyoctadecadienoic acid, and 8-F(2)-isoprostane 2α, which was suppressed by α-T. This study shows that vitamin E protects cells from glutamate-induced toxicity primarily by direct antioxidant action and that the apparent higher capacity of T3 compared to T is ascribed to the faster uptake of T3 compared to T into the cells. It is suggested that, considering the bioavailability, α-T should be more

  2. Transcriptional upregulation of both egl-1 BH3-only and ced-3 caspase is required for the death of the male-specific CEM neurons.

    PubMed

    Nehme, R; Grote, P; Tomasi, T; Löser, S; Holzkamp, H; Schnabel, R; Conradt, B

    2010-08-01

    Most of the 131 cells that die during the development of a Caenorhabditis elegans hermaphrodite do so approximately 30 min after being generated. Furthermore, in these cells, the pro-caspase proCED-3 is inherited from progenitors and the transcriptional upregulation of the BH3-only gene egl-1 is thought to be sufficient for apoptosis induction. In contrast, the four CEM neurons, which die in hermaphrodites, but not males, die approximately 150 min after being generated. We found that in the CEMs, the transcriptional activation of both the egl-1 and ced-3 gene is necessary for apoptosis induction. In addition, we show that the Bar homeodomain transcription factor CEH-30 represses egl-1 and ced-3 transcription in the CEMs, thereby permitting their survival. Furthermore, we identified three genes, unc-86, lrs-1, and unc-132, which encode a POU homeodomain transcription factor, a leucyl-tRNA synthetase, and a novel protein with limited sequence similarity to the mammalian proto-oncoprotein and kinase PIM-1, respectively, that promote the expression of the ceh-30 gene in the CEMs. On the basis of these results, we propose that egl-1 and ced-3 transcription are coregulated in the CEMs to compensate for limiting proCED-3 levels, which most probably are a result of proCED-3 turn over. Similar coregulatory mechanisms for BH3-only proteins and pro-caspases may function in higher organisms to allow efficient apoptosis induction. Finally, we present evidence that the timing of the death of the CEMs is controlled by TRA-1 Gli, the terminal global regulator of somatic sexual fate in C. elegans.

  3. Heat shock protein 70 protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus via inhibition of nuclear factor-κB activation-induced nitric oxide synthase II expression.

    PubMed

    Chang, Chiung-Chih; Chen, Shang-Der; Lin, Tsu-Kung; Chang, Wen-Neng; Liou, Chia-Wei; Chang, Alice Y W; Chan, Samuel H H; Chuang, Yao-Chung

    2014-02-01

    Status epilepticus induces subcellular changes that may eventually lead to neuronal cell death in the hippocampus. Based on an animal model of status epilepticus, our laboratory showed previously that sustained hippocampal seizure activity activates nuclear factor-κB (NF-κB) and upregulates nitric oxide synthase (NOS) II gene expression, leading to apoptotic neuronal cell death in the hippocampus. The present study examined the potential modulatory role of heat shock protein 70 (HSP70) on NF-κB signaling in the hippocampus following experimental status epilepticus. In Sprague-Dawley rats, kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 subfield to induce prolonged bilateral seizure activity. Expression of HSP70 was elevated as early as 1h after the elicitation of sustained seizure activity, followed by a progressive elevation that peaked at 24h. Pretreatment with an antisense oligonucleotide against hsp70 decreased the HSP70 expression, and significantly augmented IκB kinase (IKK) activity and phosphorylation of IκBα, alongside enhanced nuclear translocation and DNA binding activity of NF-κB in the hippocampal CA3 neurons and glial cells. These cellular events were followed by enhanced upregulation of NOS II and peroxynitrite expression 3h after sustained seizure activity that led to an increase of caspase-3 and DNA fragmentation in the hippocampal CA3 neurons 7days after experimental status epilepticus. We concluded that HSP70 protects against apoptotic cell death induced by NF-κB activation and NOS II-peroxynitrite signaling cascade in the hippocampal CA3 and glial cells following experimental status epilepticus via suppression of IKK activity and deactivation of IκBα.

  4. Mitochondrial Superoxide Dismutase SOD2, but not Cytosolic SOD1, Plays a Critical Role in Protection against Glutamate-Induced Oxidative Stress and Cell Death in HT22 Neuronal Cells

    PubMed Central

    Fukui, Masayuki; Zhu, Bao Ting

    2010-01-01

    Oxidative cell death is an important contributing factor in neurodegenerative diseases. Using HT22 mouse hippocampal neuronal cells as a model, we sought to demonstrate that mitochondria are crucial early targets of glutamate-induced oxidative cell death. We showed that when HT22 cells were transfected with shRNA for knockdown of the mitochondrial superoxide dismutase (SOD2), these cells became more susceptible to glutamate-induced oxidative cell death. The increased susceptibility was accompanied by increased accumulation of mitochondrial superoxide and loss of normal mitochondrial morphology and functions at early time points following glutamate exposure. However, overexpression of SOD2 in these cells reduced mitochondrial superoxide level, protected its morphology and functions, and provided resistance against glutamate-induced oxidative cytotoxicity. The change in the sensitivity of these SOD2-altered HT22 cells was neurotoxicant-specific, because the cytotoxicity of hydrogen peroxide was not altered in these cells. In addition, selective knockdown of the cytosolic SOD1 in cultured HT22 cells did not appreciably alter their susceptibility to either glutamate or hydrogen peroxide. These findings show that the mitochondrial SOD2 plays a critical role in protecting neuronal cells from glutamate-induced oxidative stress and cytotoxicity. These data also indicate that mitochodria are important early targets of glutamate-induced oxidative neurotoxicity. PMID:20060889

  5. Neonatal Death

    MedlinePlus

    ... Home > Complications & Loss > Loss & grief > Neonatal death Neonatal death E-mail to a friend Please fill in ... cope with your baby’s death. What is neonatal death? Neonatal death is when a baby dies in ...

  6. Retinoic acids acting through retinoid receptors protect hippocampal neurons from oxygen-glucose deprivation-mediated cell death by inhibition of c-jun-N-terminal kinase and p38 mitogen-activated protein kinase.

    PubMed

    Shinozaki, Y; Sato, Y; Koizumi, S; Ohno, Y; Nagao, T; Inoue, K

    2007-06-15

    Retinoic acids (RAs), including all-trans retinoic acid (ATRA) and 9-cis retinoic acid (9-cis RA), play fundamental roles in a variety of physiological events in vertebrates, through their specific nuclear receptors: retinoic acid receptor (RAR) and retinoid X receptor (RXR). Despite the physiological importance of RA, their functional significance under pathological conditions is not well understood. We examined the effect of ATRA on oxygen/glucose-deprivation/reperfusion (OGD/Rep)-induced neuronal damage in cultured rat hippocampal slices, and found that ATRA significantly reduced neuronal death. The cytoprotective effect of ATRA was observed not only in cornu ammonis (CA) 1 but also in CA2 and dentate gyrus (DG), and was attenuated by selective antagonists for RAR or RXR. By contrast, in the CA3 region, no protective effects of ATRA were observed. The OGD/Rep also increased phosphorylated forms of c-jun-N-terminal kinase (P-JNK) and p38 (P-p38) in hippocampus, and specific inhibitors for these kinases protected neurons. ATRA prevented the increases in P-JNK and P-p38 after OGD/Rep, as well as the decrease in NeuN and its shrinkage, all of which were inhibited by antagonists for RAR or RXR. These findings suggest that the ATRA signaling via retinoid receptors results in the inhibition of JNK and p38 activation, leading to the protection of neurons against OGD/Rep-induced damage in the rat hippocampus.

  7. Vanillin Protects Dopaminergic Neurons against Inflammation-Mediated Cell Death by Inhibiting ERK1/2, P38 and the NF-κB Signaling Pathway.

    PubMed

    Yan, Xuan; Liu, Dian-Feng; Zhang, Xiang-Yang; Liu, Dong; Xu, Shi-Yao; Chen, Guang-Xin; Huang, Bing-Xu; Ren, Wen-Zhi; Wang, Wei; Fu, Shou-Peng; Liu, Ju-Xiong

    2017-02-12

    Neuroinflammation plays a very important role in the pathogenesis of Parkinson's disease (PD). After activation, microglia produce pro-inflammatory mediators that damage surrounding neurons. Consequently, the inhibition of microglial activation might represent a new therapeutic approach of PD. Vanillin has been shown to protect dopaminergic neurons, but the mechanism is still unclear. Herein, we further study the underlying mechanisms in lipopolysaccharide (LPS)-induced PD models. In vivo, we firstly established rat models of PD by unilateral injection of LPS into substantia nigra (SN), and then examined the role of vanillin in motor dysfunction, microglial activation and degeneration of dopaminergic neurons. In vitro, murine microglial BV-2 cells were treated with vanillin prior to the incubation of LPS, and then the inflammatory responses and the related signaling pathways were analyzed. The in vivo results showed that vanillin markedly improved the motor dysfunction, suppressed degeneration of dopaminergic neurons and inhibited microglial over-activation induced by LPS intranigral injection. The in vitro studies demonstrated that vanillin reduces LPS-induced expression of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and IL-6 through regulating ERK1/2, p38 and NF-κB signaling. Collectively, these data indicated that vanillin has a role in protecting dopaminergic neurons via inhibiting inflammatory activation.

  8. Vanillin Protects Dopaminergic Neurons against Inflammation-Mediated Cell Death by Inhibiting ERK1/2, P38 and the NF-κB Signaling Pathway

    PubMed Central

    Yan, Xuan; Liu, Dian-Feng; Zhang, Xiang-Yang; Liu, Dong; Xu, Shi-Yao; Chen, Guang-Xin; Huang, Bing-Xu; Ren, Wen-Zhi; Wang, Wei; Fu, Shou-Peng; Liu, Ju-Xiong

    2017-01-01

    Neuroinflammation plays a very important role in the pathogenesis of Parkinson’s disease (PD). After activation, microglia produce pro-inflammatory mediators that damage surrounding neurons. Consequently, the inhibition of microglial activation might represent a new therapeutic approach of PD. Vanillin has been shown to protect dopaminergic neurons, but the mechanism is still unclear. Herein, we further study the underlying mechanisms in lipopolysaccharide (LPS)-induced PD models. In vivo, we firstly established rat models of PD by unilateral injection of LPS into substantia nigra (SN), and then examined the role of vanillin in motor dysfunction, microglial activation and degeneration of dopaminergic neurons. In vitro, murine microglial BV-2 cells were treated with vanillin prior to the incubation of LPS, and then the inflammatory responses and the related signaling pathways were analyzed. The in vivo results showed that vanillin markedly improved the motor dysfunction, suppressed degeneration of dopaminergic neurons and inhibited microglial over-activation induced by LPS intranigral injection. The in vitro studies demonstrated that vanillin reduces LPS-induced expression of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and IL-6 through regulating ERK1/2, p38 and NF-κB signaling. Collectively, these data indicated that vanillin has a role in protecting dopaminergic neurons via inhibiting inflammatory activation. PMID:28208679

  9. Fumonisin B1 induces necrotic cell death in BV-2 cells and murine cultured astrocytes and is antiproliferative in BV-2 cells while N2A cells and primary cortical neurons are resistant.

    PubMed

    Osuchowski, Marcin F; Sharma, Raghubir P

    2005-12-01

    Fumonisin B1 (FB1), a mycotoxin produced by Fusarium verticillioides, causes equine leukoencephalomalacia, impairs myelination, and inhibits neuronal growth in vitro. Intact mice do not show brain damage after systemic administration of FB1. We recently reported that intracerebroventricular administration of FB1 in mice caused neurodegeneration in the cortex and activation of astrocytes in the hippocampal area; results suggested that the neuronal damage may be secondary to activation of immunocompetent non-neuronal cells. Current study investigated effects of FB1 upon murine microglial (BV-2) and neuroblastoma (N2A) cell lines, and primary astrocytes and cortical neurons. BV-2 and N2A cultures and cells prepared from neonatal and postnatal brains of BALB/c mice were exposed to various concentrations of FB1 for 4 (BV-2 and N2A) or 4 and 8 (astrocytes and cortical neurons) days. FB1 at 25 microM decreased viability in BV-2 cells, whereas at 50 microM caused necrotic but not apoptotic cell death in both BV-2 and primary astrocytes (at day 8 only), assessed by lactic dehydrogenase release, and pripidium iodide and annexin V staining. Thymidine incorporation indicated that 2.5 microM FB1 decreased proliferation in BV-2 cells. DNA analysis by flow cytometry showed that the inhibition was not caused by cell cycle arrest. The mitochondrial activity decreased dose-dependently in BV-2 cells and was significantly elevated at 25 microM FB1, but not at 50 microM at days 4 or 8 in astrocytes. In BV-2 cells and primary astrocytes, the expression of TNFalpha and IL-1beta analyzed by real-time polymerase chain reaction was downregulated at 6 or 24 h. In all cell types tested the FB1 treatment caused accumulation of free sphinganine and decrease in free sphingosine levels at selected time points. Results indicated that primary and established murine brain immunocompetent cells are vulnerable to the FB1-dependent cytotoxicity in vitro whereas neuronal cells are not. The toxic effects

  10. Ischaemia- and excitotoxicity-induced CaMKII-Mediated neuronal cell death: The relative roles of CaMKII autophosphorylation at T286 and T253.

    PubMed

    Rostas, John A P; Hoffman, Alexander; Murtha, Lucy A; Pepperall, Debbie; McLeod, Damian D; Dickson, Phillip W; Spratt, Neil J; Skelding, Kathryn A

    2017-03-01

    Ischaemia/excitotoxicity produces persistent activation of CaMKII (Ca(2+)-calmodulin stimulated protein kinase II) that initiates cell death. This study investigated the involvement of CaMKII phosphorylation at T286 and T253 in producing this persistent activation. In T286A-αCaMKII transgenic mice that lack the ability to phosphorylate αCaMKII at T286, transient occlusion of the middle cerebral artery for 90 min resulted in no significant difference in infarct size compared to normal littermate controls. Overexpression of the phospho-mimic mutant T286D-αCaMKII in differentiated neuroblastoma cell lines did not enhance excitotoxicity-induced cell death compared to overexpression of wild type αCaMKII. By contrast, overexpression of the phospho-mimic mutant T253D-αCaMKII significantly enhanced excitotoxicity-induced cell death whereas overexpression of the phospho-null mutant T253V-αCaMKII produced no enhancement. These results indicate that T286 phosphorylation does not play a significant role in ischaemia/excitotoxicity induced CaMKII-mediated cell death and suggest that T253 phosphorylation is required to produce the persistent activation of CaMKII involved in ischaemia/excitotoxicity induced cell death.

  11. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death.

    PubMed

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB1 receptor antagonist AM251, but not with the selective CB2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB1 receptor, but not by the CB2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain.

  12. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB{sub 1} receptors and apoptotic cell death

    SciTech Connect

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.

  13. Histone deacetylase 4 promotes ubiquitin-dependent proteasomal degradation of Sp3 in SH-SY5Y cells treated with di(2-ethylhexyl)phthalate (DEHP), determining neuronal death

    SciTech Connect

    Guida, Natascia; Laudati, Giusy; Galgani, Mario; Santopaolo, Marianna; Montuori, Paolo; Triassi, Maria; Di Renzo, Gianfranco; Canzoniero, Lorella M.T.; Formisano, Luigi

    2014-10-01

    Phthalates, phthalic acid esters, are widely used as plasticizers to produce polymeric materials in industrial production of plastics and daily consumable products. Animal studies have shown that di(2-ethylhexyl)phthalate (DEHP) may cause toxic effects in the rat brain. In the present study, chronic exposure to DEHP (0.1–100 μM) caused dose-dependent cell death via the activation of caspase-3 in neuroblastoma cells. Intriguingly, this harmful effect was prevented by the pan-histone deacetylase (HDAC) inhibitor trichostatin A, by the class II HDAC inhibitor MC-1568, but not by the class I HDAC inhibitor MS-275. Furthermore, DEHP reduced specificity protein 3 (Sp3) gene expression, but not Sp3 mRNA, after 24 and 48 h exposures. However, Sp3 protein reduction was prevented by pre-treatment with MC-1568, suggesting the involvement of class II HDACs in causing this effect. Then, we investigated the possible relationship between DEHP-induced neuronal death and the post-translational mechanisms responsible for the down-regulation of Sp3. Interestingly, DEHP-induced Sp3 reduction was associated to its deacetylation and polyubiquitination. Co-immunoprecipitation studies showed that Sp3 physically interacted with HDAC4 after DEHP exposure, while HDAC4 inhibition by antisense oligodeoxynucleotide reverted the DEHP-induced degradation of Sp3. Notably, Sp3 overexpression was able to counteract the detrimental effect induced by DEHP. Taken together, these results suggest that DEHP exerts its toxic effect by inducing deacetylation of Sp3 via HDAC4, and afterwards, Sp3-polyubiquitination. - Highlights: • Di(2-ethylhexyl)phthalate (DEHP) is cytotoxic to SH-SY5Y cells and cortical neurons. • DEHP-induced cytotoxicity is mediated by apoptosis. • DEHP-induced apoptotic cell death is inhibited by class II HDAC MC-1568. • DEHP neurotoxicity is caused by HDAC4-mediated Sp3 degradation by ubiquitin.

  14. Disruption of IP₃R2-mediated Ca²⁺ signaling pathway in astrocytes ameliorates neuronal death and brain damage while reducing behavioral deficits after focal ischemic stroke.

    PubMed

    Li, Hailong; Xie, Yicheng; Zhang, Nannan; Yu, Yang; Zhang, Qiao; Ding, Shinghua

    2015-12-01

    Inositol trisphosphate receptor (IP3R)-mediated intracellular Ca(2+) increase is the major Ca(2+) signaling pathway in astrocytes in the central nervous system (CNS). Ca(2+) increases in astrocytes have been found to modulate neuronal function through gliotransmitter release. We previously demonstrated that astrocytes exhibit enhanced Ca(2+) signaling in vivo after photothrombosis (PT)-induced ischemia, which is largely due to the activation of G-protein coupled receptors (GPCRs). The aim of this study is to investigate the role of astrocytic IP3R-mediated Ca(2+) signaling in neuronal death, brain damage and behavior outcomes after PT. For this purpose, we conducted experiments using homozygous type 2 IP3R (IP3R2) knockout (KO) mice. Histological and immunostaining studies showed that IP3R2 KO mice were indeed deficient in IP3R2 in astrocytes and exhibited normal brain cytoarchitecture. IP3R2 KO mice also had the same densities of S100β+ astrocytes and NeuN+ neurons in the cortices, and exhibited the same glial fibrillary acidic protein (GFAP) and glial glutamate transporter (GLT-1) levels in the cortices and hippocampi as compared with wild type (WT) mice. Two-photon (2-P) imaging showed that IP3R2 KO mice did not exhibit ATP-induced Ca(2+) waves in vivo in the astrocytic network, which verified the disruption of IP3R-mediated Ca(2+) signaling in astrocytes of these mice. When subject to PT, IP3R2 KO mice had smaller infarction than WT mice in acute and chronic phases of ischemia. IP3R2 KO mice also exhibited less neuronal apoptosis, reactive astrogliosis, and tissue loss than WT mice. Behavioral tests, including cylinder, hanging wire, pole and adhesive tests, showed that IP3R2 KO mice exhibited reduced functional deficits after PT. Collectively, our study demonstrates that disruption of astrocytic Ca(2+) signaling by deleting IP3R2s has beneficial effects on neuronal and brain protection and functional deficits after stroke. These findings reveal a novel non

  15. Anterograde delivery of brain-derived neurotrophic factor to striatum via nigral transduction of recombinant adeno-associated virus increases neuronal death but promotes neurogenic response following stroke.

    PubMed

    Gustafsson, Elin; Andsberg, Gunnar; Darsalia, Vladimer; Mohapel, Paul; Mandel, Ronald J; Kirik, Deniz; Lindvall, Olle; Kokaia, Zaal

    2003-06-01

    To explore the role of brain-derived neurotrophic factor for survival and generation of striatal neurons after stroke, recombinant adeno-associated viral vectors carrying brain-derived neurotrophic factor or green fluorescent protein genes were injected into right rat substantia nigra 4-5 weeks prior to 30 min ipsilateral of middle cerebral artery occlusion. The brain-derived neurotrophic factor-recombinant adeno-associated viral transduction markedly increased the production of brain-derived neurotrophic factor protein by nigral cells. Brain-derived neurotrophic factor was transported anterogradely to the striatum and released in biologically active form, as revealed by the hypertrophic response of striatal neuropeptide Y-positive interneurons. Animals transduced with brain-derived neurotrophic factor-recombinant adeno-associated virus also exhibited abnormalities in body posture and movements, including tilted body to the right, choreiform movements of left forelimb and head, and spontaneous, so-called 'barrel' rotation along their long axis. The continuous delivery of brain-derived neurotrophic factor had no effect on the survival of striatal projection neurons after stroke, but exaggerated the loss of cholinergic, and parvalbumin- and neuropeptide Y-positive, gamma-aminobutyric acid-ergic interneurons. The high brain-derived neurotrophic factor levels in the animals subjected to stroke also gave rise to an increased number of striatal cells expressing doublecortin, a marker for migrating neuroblasts, and cells double-labelled with the mitotic marker, 5-bromo-2'-deoxyuridine-5'monophosphate, and early neuronal (Hu) or striatal neuronal (Meis2) markers. Our findings indicate that long-term anterograde delivery of high levels of brain-derived neurotrophic factor increases the vulnerability of striatal interneurons to stroke-induced damage. Concomitantly, brain-derived neurotrophic factor potentiates the stroke-induced neurogenic response, at least at early stages.

  16. Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death.

    PubMed

    Wen, Xinmei; Tan, Wenzhi; Westergard, Thomas; Krishnamurthy, Karthik; Markandaiah, Shashirekha S; Shi, Yingxiao; Lin, Shaoyu; Shneider, Neil A; Monaghan, John; Pandey, Udai B; Pasinelli, Piera; Ichida, Justin K; Trotti, Davide

    2014-12-17

    Expanded GGGGCC (G4C2) nucleotide repeats within the C9ORF72 gene are the most common genetic mutation associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Sense and antisense transcripts of these expansions are translated to form five dipeptide repeat proteins (DRPs). We employed primary cortical and motor neuron cultures, live-cell imaging, and transgenic fly models and found that the arginine-rich dipeptides, in particular Proline-Arginine (PR), are potently neurotoxic. Factors that anticipated their neurotoxicity included aggregation in nucleoli, decreased number of processing bodies, and stress granule formation, implying global translational dysregulation as path accountable for toxicity. Nuclear PR aggregates were also found in human induced motor neurons and postmortem spinal cord tissues from C9ORF72 ALS and ALS/FTD patients. Intronic G4C2 transcripts, but not loss of C9ORF72 protein, are also toxic to motor and cortical neurons. Interestingly, G4C2 transcript-mediated neurotoxicity synergizes with that of PR aggregates, suggesting convergence of mechanisms.

  17. Hyperactive mTOR signals in the proopiomelanocortin-expressing hippocampal neurons cause age-dependent epilepsy and premature death in mice

    PubMed Central

    Matsushita, Yuki; Sakai, Yasunari; Shimmura, Mitsunori; Shigeto, Hiroshi; Nishio, Miki; Akamine, Satoshi; Sanefuji, Masafumi; Ishizaki, Yoshito; Torisu, Hiroyuki; Nakabeppu, Yusaku; Suzuki, Akira; Takada, Hidetoshi; Hara, Toshiro

    2016-01-01

    Epilepsy is a frequent comorbidity in patients with focal cortical dysplasia (FCD). Recent studies utilizing massive sequencing data identified subsets of genes that are associated with epilepsy and FCD. AKT and mTOR-related signals have been recently implicated in the pathogenic processes of epilepsy and FCD. To clarify the functional roles of the AKT-mTOR pathway in the hippocampal neurons, we generated conditional knockout mice harboring the deletion of Pten (Pten-cKO) in Proopiomelanocortin-expressing neurons. The Pten-cKO mice developed normally until 8 weeks of age, then presented generalized seizures at 8–10 weeks of age. Video-monitored electroencephalograms detected paroxysmal discharges emerging from the cerebral cortex and hippocampus. These mice showed progressive hypertrophy of the dentate gyrus (DG) with increased expressions of excitatory synaptic markers (Psd95, Shank3 and Homer). In contrast, the expression of inhibitory neurons (Gad67) was decreased at 6–8 weeks of age. Immunofluorescence studies revealed the abnormal sprouting of mossy fibers in the DG of the Pten-cKO mice prior to the onset of seizures. The treatment of these mice with an mTOR inhibitor rapamycin successfully prevented the development of seizures and reversed these molecular phenotypes. These data indicate that the mTOR pathway regulates hippocampal excitability in the postnatal brain. PMID:26961412

  18. La deletion from mouse brain alters pre-tRNA metabolism and accumulation of pre-5.8S rRNA, with neuron death and reactive astrocytosis.

    PubMed

    Blewett, Nathan H; Iben, James R; Gaidamakov, Sergei; Maraia, Richard J

    2017-02-21

    Human La antigen (Sjögren's syndrome antigen B, SSB) is an abundant multifunctional RNA-binding protein. In the nucleoplasm, La binds to and protects from 3' exonucleases, the ends of precursor-tRNAs and other transcripts synthesized by RNA polymerase III, and facilitates their maturation, while a nucleolar isoform has been implicated in rRNA biogenesis by multiple independent lines of evidence. We showed earlier that conditional La knockout (La cKO) from mouse cortex neurons results in defective tRNA processing although pathway(s) involved in neuronal loss thereafter was unknown. Here we demonstrate La is stably associated with a spliced pre-tRNA intermediate. Microscopic evidence of aberrant nuclear accumulation of 5.8S rRNA in La cKO is supported by ten-fold increase in a pre-5.8S rRNA intermediate. To identify pathways involved in subsequent neurodegeneration and loss of brain mass in the cKO cortex we employed mRNA-Seq, immunohistochemistry and other approaches. This revealed robust enrichment of immune and astrocyte reactivity in La cKO cortex. Immunohistochemistry including temporal analyses demonstrated neurodegeneration followed by astrocyte invasion associated with immune response and decreasing cKO cortex size over time. Thus, deletion of La from post-mitotic neurons results in defective pre-tRNA and pre-rRNA processing, and progressive neurodegeneration with loss of cortical brain mass.

  19. Antisense Proline-Arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death

    PubMed Central

    Wen, Xinmei; Tan, Wenzhi; Westergard, Thomas; Krishnamurthy, Karthik; ShamamandriMarkandaiah, Shashirekha; Shi, Yingxiao; Lin, Shaoyu; Shneider, Neil A.; Monaghan, John; Pandey, Udai B.; Pasinelli, Piera; Ichida, Justin K.; Trotti, Davide

    2015-01-01

    SUMMARY Expanded GGGGCC nucleotide repeats within the C9ORF72 gene are the most common genetic mutation associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Sense and antisense transcripts of these expansions are translated to form five dipeptide repeat proteins (DRPs). We employed primary cortical and motor neuron cultures, live-cell imaging, and transgenic fly models and found that the arginine-rich dipeptides, in particular Proline-Arginine (PR), are potently neurotoxic. Factors that anticipated their neurotoxicity included aggregation in nucleoli, decreased number of processing bodies, and stress granules formation, implying global translational dysregulation as path accountable for toxicity. Nuclear PR aggregates were also found in human-induced motor neurons and postmortem spinal cord tissues from C9ORF72 ALS and ALS/FTD patients. Intronic G4C2 transcripts, but not loss of C9ORF72 protein, are also toxic to motor and cortical neurons. Interestingly, G4C2 transcript-mediated neurotoxicity synergizes with that of PR aggregates, suggesting convergence of mechanisms. PMID:25521377

  20. Neuroprotective effects of the allosteric agonist of metabotropic glutamate receptor 7 AMN082 on oxygen-glucose deprivation- and kainate-induced neuronal cell death.

    PubMed

    Domin, Helena; Jantas, Danuta; Śmiałowska, Maria

    2015-09-01

    Although numerous studies demonstrated a neuroprotective potency of unspecific group III mGluR agonists in in vitro and in vivo models of excitotoxicity, little is known about the protective role of group III mGlu receptor activation against neuronal cell injury evoked by ischemic conditions. The aim of the present study was to assess neuroprotective potential of the allosteric agonist of mGlu7 receptor, N,N'-Bis(diphenylmethyl)-1,2-ethanediamine dihydrochloride (AMN082) against oxygen-glucose deprivation (OGD)- and kainate (KA)-evoked neuronal cell damage in primary neuronal cultures, with special focus on its efficacy after delayed application. We demonstrated that in cortical neuronal cultures exposed to a 180 min OGD, AMN082 (0.01-1 µM) in a concentration- and time-dependent way attenuated the OGD-induced changes in the LDH release and MTT reduction assays. AMN082 (0.5 and 1 µM) produced also neuroprotective effects against KA-evoked neurotoxicity both in cortical and hippocampal cultures. Of particular importance was the finding that AMN082 attenuated excitotoxic neuronal injury after delayed application (30 min after OGD, or 30 min-1 h after KA). In both models of neurotoxicity, namely OGD- and KA-induced injury, the neuroprotective effects of AMN082 (1 µM) were reversed by the selective mGlu7 antagonist, 6-(4-Methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one hydrochloride (MMPIP, 1 µM), suggesting the mGlu7-dependent mechanism of neuroprotective effects of AMN082. Next, we showed that AMN082 (0.5 and 1 µM) attenuated the OGD-induced increase in the number of necrotic nuclei as well inhibited the OGD-evoked calpain activation, suggesting the participation of these processes in the mechanism of AMN082-mediated protection. Additionally, we showed that protection evoked by AMN082 (1 µM) in KA model was connected with the inhibition of toxin-induced caspase-3 activity, and this effect was abolished by the mGlu7

  1. Methamphetamine induces autophagy and apoptosis in a mesencephalic dopaminergic neuronal culture model: role of cathepsin-D in methamphetamine-induced apoptotic cell death.

    PubMed

    Kanthasamy, Arthi; Anantharam, V; Ali, Syed F; Kanthasamy, A G

    2006-08-01

    Autophagy is a phylogenetically conserved process that plays a critical role in the degradation of oxidatively damaged proteins and organelle turnover. The role of oxidative stress and apoptosis in methamphetamine (METH)-induced neurotoxicity is well known; however, the potential contribution of autophagy to METH-induced oxidative damage in dopaminergic neuronal systems remains unclear. The goals of the present article were twofold: (a) to develop an in vitro dopaminergic cell culture model to study cellular and molecular mechanisms underlying METH-induced autophagy and apoptosis, and (b) to determine whether lysosomal protease cathepsin-D activation, resulting from the loss of lysosomal membrane integrity, contributes to METH-induced apoptosis. To accomplish these goals, we characterized morphological and biochemical changes in an immortalized mesencephalic dopaminergic neuronal cell line (N27 cells) following treatment with METH. Exposure of METH (2 mM) to N27 cells resulted in the appearance of cytoplasmic vacuolar structures reminiscent of autophagic vacuoles within 3 h. In order to ascertain the identity of the vacuolar structures that are formed following METH exposure, immunohistochemical staining for markers of autophagy were performed. LAMP 2, a classical marker of autophagolysosomes, revealed an extensive punctuate pattern of distribution on the vacuolar membrane surface, with exclusive localization in the cytoplasm. Additionally, using DNA fragmentation analysis we showed a dose-dependent increase in fragmented DNA in METH treated N27 cells. Since METH-induced autophagy preceded DNA fragmentation, we tested whether dysfunction of the autophagolysosomal system contributes to nuclear damage. Immunofluorescence studies with cathepsin-d demonstrated a granular pattern of staining in untreated cells, whereas an increased cathepsin- D immunoreactivity with a globular pattern of staining was observed in METH-treated cells. Nevertheless, blockade of cathepsin

  2. Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death.

    PubMed

    Bussi, Claudio; Ramos, Javier Maria Peralta; Arroyo, Daniela S; Gaviglio, Emilia A; Gallea, Jose Ignacio; Wang, Ji Ming; Celej, Maria Soledad; Iribarren, Pablo

    2017-03-03

    Autophagy is a fundamental cellular homeostatic mechanism, whereby cells autodigest parts of their cytoplasm for removal or turnover. Neurodegenerative disorders are associated with autophagy dysregulation, and drugs modulating autophagy have been successful in several animal models. Microglial cells are phagocytes in the central nervous system (CNS) that become activated in pathological conditions and determine the fate of other neural cells. Here, we studied the effects of autophagy on the production of pro-inflammatory molecules in microglial cells and their effects on neuronal cells. We observed that both trehalose and rapamycin activate autophagy in BV2 microglial cells and down-regulate the production of pro-inflammatory cytokines and nitric oxide (NO), in response to LPS and alpha-synuclein. Autophagy also modulated the phosphorylation of p38 and ERK1/2 MAPKs in BV2 cells, which was required for NO production. These actions of autophagy modified the impact of microglial activation on neuronal cells, leading to suppression of neurotoxicity. Our results demonstrate a novel role for autophagy in the regulation of microglial cell activation and pro-inflammatory molecule secretion, which may be important for the control of inflammatory responses in the CNS and neurotoxicity.

  3. Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death

    PubMed Central

    Bussi, Claudio; Ramos, Javier Maria Peralta; Arroyo, Daniela S.; Gaviglio, Emilia A.; Gallea, Jose Ignacio; Wang, Ji Ming; Celej, Maria Soledad; Iribarren, Pablo

    2017-01-01

    Autophagy is a fundamental cellular homeostatic mechanism, whereby cells autodigest parts of their cytoplasm for removal or turnover. Neurodegenerative disorders are associated with autophagy dysregulation, and drugs modulating autophagy have been successful in several animal models. Microglial cells are phagocytes in the central nervous system (CNS) that become activated in pathological conditions and determine the fate of other neural cells. Here, we studied the effects of autophagy on the production of pro-inflammatory molecules in microglial cells and their effects on neuronal cells. We observed that both trehalose and rapamycin activate autophagy in BV2 microglial cells and down-regulate the production of pro-inflammatory cytokines and nitric oxide (NO), in response to LPS and alpha-synuclein. Autophagy also modulated the phosphorylation of p38 and ERK1/2 MAPKs in BV2 cells, which was required for NO production. These actions of autophagy modified the impact of microglial activation on neuronal cells, leading to suppression of neurotoxicity. Our results demonstrate a novel role for autophagy in the regulation of microglial cell activation and pro-inflammatory molecule secretion, which may be important for the control of inflammatory responses in the CNS and neurotoxicity. PMID:28256519

  4. Normal Molecular Specification and Neurodegenerative Disease-Like Death of Spinal Neurons Lacking the SNARE-Associated Synaptic Protein Munc18-1

    PubMed Central

    Law, Chris; Schaan Profes, Marcos; Levesque, Martin; Kaltschmidt, Julia A.; Verhage, Matthijs

    2016-01-01

    The role of synaptic activity during early formation of neural circuits is a topic of some debate; genetic ablation of neurotransmitter release by deletion of the Munc18-1 gene provides an excellent model to answer the question of whether such activity is required for early circuit formation. Previous analysis of Munc18-1−/− mouse mutants documented their grossly normal nervous system, but its molecular differentiation has not been assessed. Munc18-1 deletion in mice also results in widespread neurodegeneration that remains poorly characterized. In this study, we demonstrate that the early stages of spinal motor circuit formation, including motor neuron specification, axon growth and pathfinding, and mRNA expression, are unaffected in Munc18-1−/− mice, demonstrating that synaptic activity is dispensable for early nervous system development. Furthermore, we show that the neurodegeneration caused by Munc18-1 loss is cell autonomous, consistent with apparently normal expression of several neurotrophic factors and normal GDNF signaling. Consistent with cell-autonomous degeneration, we demonstrate defects in the trafficking of the synaptic proteins Syntaxin1a and PSD-95 and the TrkB and DCC receptors in Munc18-1−/− neurons; these defects do not appear to cause ER stress, suggesting other mechanisms for degeneration. Finally, we demonstrate pathological similarities to Alzheimer's disease, such as altered Tau phosphorylation, neurofibrillary tangles, and accumulation of insoluble protein plaques. Together, our results shed new light upon the neurodegeneration observed in Munc18-1−/− mice and argue that this phenomenon shares parallels with neurodegenerative diseases. SIGNIFICANCE STATEMENT In this work, we demonstrate the absence of a requirement for regulated neurotransmitter release in the assembly of early neuronal circuits by assaying transcriptional identity, axon growth and guidance, and mRNA expression in Munc18-1-null mice. Furthermore, we

  5. Neuronal cell cycle: the neuron itself and its circumstances.

    PubMed

    Frade, José M; Ovejero-Benito, María C

    2015-01-01

    Neurons are usually regarded as postmitotic cells that undergo apoptosis in response to cell cycle reactivation. Nevertheless, recent evidence indicates the existence of a defined developmental program that induces DNA replication in specific populations of neurons, which remain in a tetraploid state for the rest of their adult life. Similarly, de novo neuronal tetraploidization has also been described in the adult brain as an early hallmark of neurodegeneration. The aim of this review is to integrate these recent developments in the context of cell cycle regulation and apoptotic cell death in neurons. We conclude that a variety of mechanisms exists in neuronal cells for G1/S and G2/M checkpoint regulation. These mechanisms, which are connected with the apoptotic machinery, can be modulated by environmental signals and the neuronal phenotype itself, thus resulting in a variety of outcomes ranging from cell death at the G1/S checkpoint to full proliferation of differentiated neurons.

  6. Voodoo death.

    PubMed

    Lester, David

    2009-01-01

    Scholarly writing on voodoo death is reviewed. Criticisms that voodoo deaths in indigenous societies have never been well documented are refuted with cases medically documented in developed nations. The work of Cannon and Richter on sudden death in animals is reviewed and dismissed as irrelevant for understanding voodoo death. The role of starvation and dehydration is discussed, and it is suggested that the given-up/giving-up hypothesis best fits the phenomenon of voodoo death. Hypotheses for future research are suggested.

  7. AMPA receptor activation, but not the accumulation of endogenous extracellular glutamate, induces paralysis and motor neuron death in rat spinal cord in vivo.

    PubMed

    Corona, Juan Carlos; Tapia, Ricardo

    2004-05-01

    The mechanisms of motor neuron (MN) degeneration in amyotrophic lateral sclerosis (ALS) are unknown, but glutamate-mediated excitotoxicity may be involved. To examine directly this idea in vivo, we have used microdialysis in the rat lumbar spinal cord and showed that four- to fivefold increases in the concentration of endogenous extracellular glutamate during at least 1 h, by perfusion with the glutamate transport inhibitor L-2,4-trans-pyrrolidine-dicarboxylate, elicited no motor alterations or MN damage. Stimulation of glutamate release with 4-aminopyridine induced transitory ipsilateral hindlimb muscular twitches but no MN damage. In contrast, perfusion of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) did not modify glutamate levels but produced intense muscular spasms, followed by ipsilateral permanent hindlimb paralysis and a remarkable loss of MNs. These effects of AMPA were prevented by co-perfusion with the AMPA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline. Perfusion with NMDA or kainate produced no motor effects or MN damage. Thus, the elevation of endogenous extracellular glutamate in vivo due to blockade of its transport is innocuous for spinal MNs. Because this resistance is observed under the same experimental conditions in which MNs are highly vulnerable to AMPA, these results indicate that excitotoxicity due to this mechanism might not be an important factor in the pathogenesis of ALS.

  8. Cell death in the nervous system

    PubMed Central

    Bredesen, Dale E.; Rao, Rammohan V.; Mehlen, Patrick

    2014-01-01

    Neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease trigger neuronal cell death through endogenous suicide pathways. Surprisingly, although the cell death itself may occur relatively late in the course of the degenerative process, the mediators of the underlying cell-death pathways have shown promise as potential therapeutic targets. PMID:17051206

  9. Neuronal survival in the brain: neuron type-specific mechanisms.

    PubMed

    Pfisterer, Ulrich; Khodosevich, Konstantin

    2017-03-02

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.

  10. Attenuation of Magnesium Sulfate on CoCl₂-Induced Cell Death by Activating ERK1/2/MAPK and Inhibiting HIF-1α via Mitochondrial Apoptotic Signaling Suppression in a Neuronal Cell Line.

    PubMed

    Huang, Chih-Yang; Hsieh, You-Liang; Ju, Da-Tong; Lin, Chien-Chung; Kuo, Chia-Hua; Liou, Yi-Fan; Ho, Tsung-Jung; Tsai, Chang-Hai; Tsai, Fuu-Jen; Lin, Jing-Ying

    2015-08-31

    Magnesium sulfate (MgSO₄) ameliorates hypoxia/ischemia-induced neuronal apoptosis in a rat model. This study aimed to investigate the mechanisms governing the anti-apoptotic effect of MgSO₄ on cobalt chloride (CoCl₂)-exposed NB41A3 mouse neuroblastoma cells. MgSO₄ increased the viability of NB41A3 cells treated with CoCl₂ in a dose-dependent manner. MgSO₄ treatment was shown to lead to an increase in the anti-apoptotic Bcl-2 family proteins, with a concomitant decrease in the pro-apoptotic proteins. MgSO₄ also attenuated the CoCl₂-induced disruption of mitochondrial membrane potential (ΔΨ(m)) and reduced the release of cytochrome c form the mitochondria to the cytosol. Furthermore, exposure to CoCl₂ caused activation of the hypoxia-inducible factor 1α (HIF-1α). On the other hand, MgSO₄ markedly reduced CoCl₂-induced HIF-1α activation and suppressed HIF-1α downstream protein BNIP3. MgSO₄ treatment induced ERK1/2 activation and attenuated CoCl₂-induced activation of p38 and JNK. Addition of the ERK1/2 inhibitor U0126 significantly reduced the ability of MgSO₄ to protect neurons from CoCl₂-induced mitochondrial apoptotic events. However, incubation of cultures with the p38 and JNK inhibitors did not significantly affect MgSO₄-mediated neuroprotection. MgSO₄ appears to suppress CoCl₂-induced NB41A3 cell death by activating ERK1/2/ MAPK pathways, which further modulates the role of Bcl-2 family proteins and mitochondria in NB41A3 cells. Our data suggest that MgSO₄ may act as a survival factor that preserves mitochondrial integrity and inhibits apoptotic pathways.

  11. Sigma-1 (σ₁) receptor deficiency reduces β-amyloid(25-35)-induced hippocampal neuronal cell death and cognitive deficits through suppressing phosphorylation of the NMDA receptor NR2B.

    PubMed

    Yin, Jun; Sha, Sha; Chen, Tingting; Wang, Conghui; Hong, Juan; Jie, Pinghui; Zhou, Rong; Li, Lin; Sokabe, Masahiro; Chen, Ling

    2015-02-01

    In early Alzheimer's disease (AD) brain, reduction of sigma-1 receptors (σ1R) is detected. In this study, we employed male heterozygous σ1R knockout (σ1R(+/-)) mice showing normal cognitive performance to investigate association of σ1R deficiency with AD risk. Herein we report that a single injection (i.c.v.) of Aβ(25-35) impaired spatial memory with approximately 25% death of pyramidal cells in the hippocampal CA1 region of WT mice (Aβ(25-35)-WT mice), whereas it did not cause such impairments in σ1R(+/-) mice (Aβ(25-35)-σ1R(+/-) mice). Compared with WT mice, Aβ(25-35)-WT mice showed increased levels of NMDA-activated currents (INMDA) and NR2B phosphorylation (phospho-NR2B) in the hippocampal CA1 region at 48 h after Aβ25-35-injection (post-Aβ(25-35)) followed by approximately 40% decline at 72 h post-Aβ(25-35) of their respective control levels, which was inhibited by the σ1R antagonist NE100. In Aβ(25-35)-WT mice, the administration of NR2B inhibitor Ro25-6981 or NE100 on day 1-4 post-Aβ(25-35) attenuated the memory deficits and loss of pyramidal cells. By contrast, Aβ(25-35)-σ1R(+/-) mice showed a slight increase in the INMDA density and the phospho-NR2B at 48 h or 72 h post-Aβ25-35 compared to σ1R(+/-) mice. Treatment with σ1R agonist PRE084 in Aβ(25-35)-σ1R(+/-) mice caused the same changes in the INMDA density and the phospho-NR2B as those in Aβ(25-35)-WT mice. Furthermore, Aβ(25-35)-σ1R(+/-) mice treated with the NMDA receptor agonist NMDA or PRE084 on day 1-4 post-Aβ(25-35) showed a loss of neuronal cells and memory impairment. These results indicate that the σ1R deficiency can reduce Aβ(25-35)-induced neuronal cell death and cognitive deficits through suppressing Aβ(25-35)-enhanced NR2B phosphorylation.

  12. Cot Deaths.

    ERIC Educational Resources Information Center

    Tyrrell, Shelagh

    1985-01-01

    Addresses the tragedy of crib deaths, giving particular attention to causes, prevention, and medical research on Sudden Infant Death Syndrome (SIDS). Gives anecdotal accounts of coping strategies used by parents and families of SIDS infants. (DT)

  13. Synapse-to-neuron ratio is inversely related to neuronal density in mature neuronal cultures.

    PubMed

    Cullen, D Kacy; Gilroy, Meghan E; Irons, Hillary R; Laplaca, Michelle C

    2010-11-04

    Synapse formation is a fundamental process in neurons that occurs throughout development, maturity, and aging. Although these stages contain disparate and fluctuating numbers of mature neurons, tactics employed by neuronal networks to modulate synapse number as a function of neuronal density are not well understood. The goal of this study was to utilize an in vitro model to assess the influence of cell density and neuronal maturity on synapse number and distribution. Specifically, cerebral cortical neurons were plated in planar culture at densities ranging from 10 to 5000 neurons/mm², and synapse number and distribution were evaluated via immunocytochemistry over 21 days in vitro (DIV). High-resolution confocal microscopy revealed an elaborate three-dimensional distribution of neurites and synapses across the heights of high-density neuronal networks by 21 DIV, which were up to 18 μm thick, demonstrating the complex degree of spatial interactions even in planar high-density cultures. At 7 DIV, the mean number of synapses per neuron was less than 5, and this did not vary as a function of neuronal density. However, by 21 DIV, the number of synapses per neuron had jumped 30- to 80-fold, and the synapse-to-neuron ratio was greatest at lower neuronal densities (< 500 neurons/mm²; mean approximately 400 synapses/neuron) compared to mid and higher neuronal densities (500-4500 neurons/mm²; mean of approximately 150 synapses/neuron) (p<0.05). These results suggest a relationship between neuronal density and synapse number that may have implications in the neurobiology of developing neuronal networks as well as processes of cell death and regeneration.

  14. Geophysical variables and behavior: XCIX. Reductions in numbers of neurons within the parasolitary nucleus in rats exposed perinatally to a magnetic pattern designed to imitate geomagnetic continuous pulsations: implications for sudden infant death.

    PubMed

    Dupont, M J; McKay, B E; Parker, G; Persinger, M A

    2004-06-01

    Correlational analyses have shown a moderate strength association between the occurrence of continuous pulsations, a type of geomagnetic activity within the 0.2-Hz to 5-Hz range, and the occurrence of Sudden Infant Deaths. In the present study, rats were exposed continuously from two days before birth to seven days after birth to 0.5-Hz pulsed-square wave magnetic fields whose intensities were within either the nanoTesla or microTesla range. The magnetic fields were generated in either an east-west (E-W) or north-south (N-S) direction. At 21 days of age, the area of the parasolitary nucleus (but not the solitary nucleus) was significantly smaller, and the numbers of neurons were significantly less in rats that had been exposed to the nanoT fields generated in the east-west direction or to the microTesla fields generated within either E-W or N-S direction relative to those exposed to the N-S nanoTesla fields. These results suggest nanoTesla magnetic fields, when applied in a specific direction, might interact with the local geomagnetic field to affect cell migration in structures within the brain stem that modulate vestibular-related arousal and respiratory or cardiovascular stability.

  15. The Neuronal Ceroid-Lipofuscinoses

    ERIC Educational Resources Information Center

    Bennett, Michael J.; Rakheja, Dinesh

    2013-01-01

    The neuronal ceroid-lipofuscinoses (NCL's, Batten disease) represent a group of severe neurodegenerative diseases, which mostly present in childhood. The phenotypes are similar and include visual loss, seizures, loss of motor and cognitive function, and early death. At autopsy, there is massive neuronal loss with characteristic storage in…

  16. Semaphorins as mediators of neuronal apoptosis.

    PubMed

    Shirvan, A; Ziv, I; Fleminger, G; Shina, R; He, Z; Brudo, I; Melamed, E; Barzilai, A

    1999-09-01

    Shrinkage and collapse of the neuritic network are often observed during the process of neuronal apoptosis. However, the molecular and biochemical basis for the axonal damage associated with neuronal cell death is still unclear. We present evidence for the involvement of axon guidance molecules with repulsive cues in neuronal cell death. Using the differential display approach, an up-regulation of collapsin response mediator protein was detected in sympathetic neurons undergoing dopamine-induced apoptosis. A synchronized induction of mRNA of the secreted collapsin-1 and the intracellular collapsin response mediator protein that preceded commitment of neurons to apoptosis was detected. Antibodies directed against a conserved collapsin-derived peptide provided marked and prolonged protection of several neuronal cell types from dopamine-induced apoptosis. Moreover, neuronal apoptosis was inhibited by antibodies against neuropilin-1, a putative component of the semaphorin III/collapsin-1 receptor. Induction of neuronal apoptosis was also caused by exposure of neurons to semaphorin III-alkaline phosphatase secreted from 293EBNA cells. Anti-collapsin-1 antibodies were effective in blocking the semaphorin III-induced death process. We therefore suggest that, before their death, apoptosis-destined neurons may produce and secrete destructive axon guidance molecules that can affect their neighboring cells and thus transfer a "death signal" across specific and susceptible neuronal populations.

  17. The inhibition of 2-arachidonoyl-glycerol (2-AG) biosynthesis, rather than enhancing striatal damage, protects striatal neurons from malonate-induced death: a potential role of cyclooxygenase-2-dependent metabolism of 2-AG.

    PubMed

    Valdeolivas, S; Pazos, M R; Bisogno, T; Piscitelli, F; Iannotti, F A; Allarà, M; Sagredo, O; Di Marzo, V; Fernández-Ruiz, J

    2013-10-17

    The cannabinoid CB2 receptor, which is activated by the endocannabinoid 2-arachidonoyl-glycerol (2-AG), protects striatal neurons from apoptotic death caused by the local administration of malonate, a rat model of Huntington's disease (HD). In the present study, we investigated whether endocannabinoids provide tonic neuroprotection in this HD model, by examining the effect of O-3841, an inhibitor of diacylglycerol lipases, the enzymes that catalyse 2-AG biosynthesis, and JZL184 or OMDM169, two inhibitors of 2-AG inactivation by monoacylglycerol lipase (MAGL). The inhibitors were injected in rats with the striatum lesioned with malonate, and several biochemical and morphological parameters were measured in this brain area. Similar experiments were also conducted in vitro in cultured M-213 cells, which have the phenotypic characteristics of striatal neurons. O-3841 produced a significant reduction in the striatal levels of 2-AG in animals lesioned with malonate. However, surprisingly, the inhibitor attenuated malonate-induced GABA and BDNF deficiencies and the reduction in Nissl staining, as well as the increase in GFAP immunostaining. In contrast, JZL184 exacerbated malonate-induced striatal damage. Cyclooxygenase-2 (COX-2) was induced in the striatum 24 h after the lesion simultaneously with other pro-inflammatory responses. The COX-2-derived 2-AG metabolite, prostaglandin E2 glyceryl ester (PGE2-G), exacerbated neurotoxicity, and this effect was antagonized by the blockade of PGE2-G action with AGN220675. In M-213 cells exposed to malonate, in which COX-2 was also upregulated, JZL184 worsened neurotoxicity, and this effect was attenuated by the COX-2 inhibitor celecoxib or AGN220675. OMDM169 also worsened neurotoxicity and produced measurable levels of PGE2-G. In conclusion, the inhibition of 2-AG biosynthesis is neuroprotective in rats lesioned with malonate, possibly through the counteraction of the formation of pro-neuroinflammatory PGE2-G, formed from COX-2

  18. Invariant death.

    PubMed

    Frank, Steven A

    2016-01-01

    In nematodes, environmental or physiological perturbations alter death's scaling of time. In human cancer, genetic perturbations alter death's curvature of time. Those changes in scale and curvature follow the constraining contours of death's invariant geometry. I show that the constraints arise from a fundamental extension to the theories of randomness, invariance and scale. A generalized Gompertz law follows. The constraints imposed by the invariant Gompertz geometry explain the tendency of perturbations to stretch or bend death's scaling of time. Variability in death rate arises from a combination of constraining universal laws and particular biological processes.

  19. Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress

    PubMed Central

    2013-01-01

    Background A variety of oncogenic and environmental factors alter tumor metabolism to serve the distinct cellular biosynthetic and bioenergetic needs present during oncogenesis. Extracellular acidosis is a common microenvironmental stress in solid tumors, but little is known about its metabolic influence, particularly when present in the absence of hypoxia. In order to characterize the extent of tumor cell metabolic adaptations to acidosis, we employed stable isotope tracers to examine how acidosis impacts glucose, glutamine, and palmitate metabolism in breast cancer cells exposed to extracellular acidosis. Results Acidosis increased both glutaminolysis and fatty acid β-oxidation, which contribute metabolic intermediates to drive the tricarboxylic acid cycle (TCA cycle) and ATP generation. Acidosis also led to a decoupling of glutaminolysis and novel glutathione (GSH) synthesis by repressing GCLC/GCLM expression. We further found that acidosis redirects glucose away from lactate production and towards the oxidative branch of the pentose phosphate pathway (PPP). These changes all serve to increase nicotinamide adenine dinucleotide phosphate (NADPH) production and counter the increase in reactive oxygen species (ROS) present under acidosis. The reduced novel GSH synthesis under acidosis may explain the increased demand for NADPH to recycle existing pools of GSH. Interestingly, acidosis also disconnected novel ribose synthesis from the oxidative PPP, seemingly to reroute PPP metabolites to the TCA cycle. Finally, we found that acidosis activates p53, which contributes to both the enhanced PPP and increased glutaminolysis, at least in part, through the induction of G6PD and GLS2 genes. Conclusions Acidosis alters the cellular metabolism of several major metabolites, which induces a significant degree of metabolic inflexibility. Cells exposed to acidosis largely rely upon mitochondrial metabolism for energy generation to the extent that metabolic intermediates are redirected away from several other critical metabolic processes, including ribose and glutathione synthesis. These alterations lead to both a decrease in cellular proliferation and increased sensitivity to ROS. Collectively, these data reveal a role for p53 in cellular metabolic reprogramming under acidosis, in order to permit increased bioenergetic capacity and ROS neutralization. Understanding the metabolic adaptations that cancer cells make under acidosis may present opportunities to generate anti-tumor therapeutic agents that are more tumor-specific. PMID:24359630

  20. Death foretold.

    PubMed

    Biderman, A; Herman, J

    2000-01-01

    We briefly trace the history of a belief in the possibility that a person in apparent good health may accurately predict his or her own demise. The phenomenon is referred to as death foretold and we present presumed examples of it from the Bible, world literature, medical writings and newspaper reports without pretending to completeness. In two widely quoted scientific papers, death foretold is subsumed under the wider heading of decease due to psychic stress. We speculate on a possible link between the two, taking into consideration the fact that most people who prophesy their end are of an advanced age.

  1. Polyphenolic Antioxidants and Neuronal Regeneration

    PubMed Central

    Ataie, Amin; Shadifar, Mohammad; Ataee, Ramin

    2016-01-01

    Many studies indicate that oxidative stress is involved in the pathophysiology of neurodegenerative diseases. Oxidative stress can induce neuronal damages, modulate intracellular signaling and ultimately leads to neuronal death by apoptosis or necrosis. To review antioxidants preventive effects on oxidative stress and neurodegenerative diseases we accumulated data from international medical journals and academic informations’ sites. According to many studies, antioxidants could reduce toxic neuronal damages and many studies confirmed the efficacy of polyphenol antioxidants in fruits and vegetables to reduce neuronal death and to diminish oxidative stress. This systematic review showed the antioxidant activities of phytochemicals which play as natural neuroprotectives with low adverse effects against some neurodegenerative diseases as Parkinson or Alzheimer diseases. PMID:27303602

  2. Brain death.

    PubMed

    Wijdicks, Eelco F M

    2013-01-01

    The diagnosis of brain death should be based on a simple premise. If every possible confounder has been excluded and all possible treatments have been tried or considered, irreversible loss of brain function is clinically recognized as the absence of brainstem reflexes, verified apnea, loss of vascular tone, invariant heart rate, and, eventually, cardiac standstill. This condition cannot be reversed - not even partly - by medical or surgical intervention, and thus is final. Many countries in the world have introduced laws that acknowledge that a patient can be declared brain-dead by neurologic standards. The U.S. law differs substantially from all other brain death legislation in the world because the U.S. law does not spell out details of the neurologic examination. Evidence-based practice guidelines serve as a standard. In this chapter, I discuss the history of development of the criteria, the current clinical examination, and some of the ethical and legal issues that have emerged. Generally, the concept of brain death has been accepted by all major religions. But patients' families may have different ideas and are mostly influenced by cultural attitudes, traditional customs, and personal beliefs. Suggestions are offered to support these families.

  3. Death-associated protein kinase-mediated cell death modulated by interaction with DANGER.

    PubMed

    Kang, Bingnan N; Ahmad, Abdullah S; Saleem, Sofiyan; Patterson, Randen L; Hester, Lynda; Doré, Sylvain; Snyder, Solomon H

    2010-01-06

    Death-associated protein kinase (DAPK) is a key player in multiple cell death signaling pathways. We report that DAPK is regulated by DANGER, a partial MAB-21 domain-containing protein. DANGER binds directly to DAPK and inhibits DAPK catalytic activity. DANGER-deficient mouse embryonic fibroblasts and neurons exhibit greater DAPK activity and increased sensitivity to cell death stimuli than do wild-type control cells. In addition, DANGER-deficient mice manifest more severe brain damage after acute excitotoxicity and transient cerebral ischemia than do control mice. Accordingly, DANGER may physiologically regulate the viability of neurons and represent a potential therapeutic target for stroke and neurodegenerative diseases.

  4. Novel bio-spectroscopic imaging reveals disturbed protein homeostasis and thiol redox with protein aggregation prior to hippocampal CA1 pyramidal neuron death induced by global brain ischemia in the rat.

    PubMed

    Hackett, Mark J; Smith, Shari E; Caine, Sally; Nichol, Helen; George, Graham N; Pickering, Ingrid J; Paterson, Phyllis G

    2015-12-01

    Global brain ischemia resulting from cardiac arrest and cardiac surgery can lead to permanent brain damage and mental impairment. A clinical hallmark of global brain ischemia is delayed neurodegeneration, particularly within the CA1 subsector of the hippocampus. Unfortunately, the biochemical mechanisms have not been fully elucidated, hindering optimization of current therapies (i.e., therapeutic hypothermia) or development of new therapies. A major limitation to elucidating the mechanisms that contribute to neurodegeneration and understanding how these are influenced by potential therapies is the inability to relate biochemical markers to alterations in the morphology of individual neurons. Although immunocytochemistry allows imaging of numerous biochemical markers at the sub-cellular level, it is not a direct chemical imaging technique and requires successful "tagging" of the desired analyte. Consequently, important biochemical parameters, particularly those that manifest from oxidative damage to biological molecules, such as aggregated protein levels, have been notoriously difficult to image at the cellular or sub-cellular level. It has been hypothesized that reactive oxygen species (ROS) generated during ischemia and reperfusion facilitate protein aggregation, impairing neuronal protein homeostasis (i.e., decreasing protein synthesis) that in turn promotes neurodegeneration. Despite indirect evidence for this theory, direct measurements of morphology and ROS induced biochemical damage, such as increased protein aggregates and decreased protein synthesis, within the same neuron is lacking, due to the unavailability of a suitable imaging method. Our experimental approach has incorporated routine histology with novel wide-field synchrotron radiation Fourier transform infrared imaging (FTIRI) of the same neurons, ex vivo within brain tissue sections. The results demonstrate for the first time that increased protein aggregation and decreased levels of total protein

  5. [Accompany death].

    PubMed

    Salvador Borrell, Montserrat

    2010-11-01

    One of the roles of nursing is to take care of the patients in terminal situation. The time, the experience, the formation, and the personal and professional attitudes that the nurse has will propitiate that taking care of moribund patients might turn into one of the more rewarding human experiences in life. There for, it is indispensable that nurses assume death as a natural and inevitable reality to achieve. The principal aim of the study is to evaluate the competence of confrontation and the autoefficiency of the welfare among nurses who work with adult patients at the end of the life. Descriptive study realized in the units of Oncology, Hametology and Palliative Care of the following centers: La Fe, Clínico, Dr. Peset, H. General, Arnau de Vilanova and Dr. Moliner de Portacoelli in Valencia (Spain). The following instruments were used: the Bugen Scale of confrontation of the Death (1980-1981) and the Robbins Scale of Autoefficiency (1992). Data suggests that major coping gives major autoeffciency and vice versa. The realized study opens numerous questions, specially related with training and the burden of preparation along the whole professional career, in order to achieve competence for coping and autoefficiency.

  6. Invariant death

    PubMed Central

    Frank, Steven A.

    2016-01-01

    In nematodes, environmental or physiological perturbations alter death’s scaling of time. In human cancer, genetic perturbations alter death’s curvature of time. Those changes in scale and curvature follow the constraining contours of death’s invariant geometry. I show that the constraints arise from a fundamental extension to the theories of randomness, invariance and scale. A generalized Gompertz law follows. The constraints imposed by the invariant Gompertz geometry explain the tendency of perturbations to stretch or bend death’s scaling of time. Variability in death rate arises from a combination of constraining universal laws and particular biological processes. PMID:27785361

  7. [Neuronal ageing].

    PubMed

    Piechota, Małgorzata; Sunderland, Piotr

    2014-01-01

    Ageing leads to irreversible alterations in the nervous system, which to various extent impair its functions such as capacity to learn and memory. In old neurons and brain, similarly to what may take place in other cells, there is increased oxidative stress, disturbed energetic homeostasis and metabolism, accumulation of damage in proteins and nucleic acids. Characteristic of old neurons are alterations in plasticity, synaptic transmission, sensitivity to neurotrophic factors and cytoskeletal changes. Some markers of senescence, whose one of them is SA-beta-galactosidase were used to show the process of neuronal ageing both in vitro, and in vivo. Some research suggest that, despite the fact that neurons are postmitotic cells, it is cell cycle proteins which play a certain role in their biology, e.g. differentiation. However, their role in neuronal ageing is not known or explained. Ageing is the serious factor of development of neurodegenerative diseases among others Alzheimer disease.

  8. Neuronal uptake of serum albumin is associated with neuron damage during the development of epilepsy

    PubMed Central

    Liu, Zanhua; Liu, Jinjie; Wang, Suping; Liu, Sibo; Zhao, Yongbo

    2016-01-01

    It is well established that brain blood barrier dysfunction following the onset of seizures may lead to serum albumin extravasation into the brain. However, the effect of albumin extravasation on the development of epilepsy is yet to be fully elucidated. Previous studies have predominantly focused on the effect of albumin absorption by astrocytes; however, the present study investigated the effects of neuronal uptake of albumin in vitro and in kainic acid-induced Sprague-Dawley rat models of temporal lobe epilepsy. In the present study, electroencephalogram recordings were conducted to record seizure onset, Nissl and Evans blue staining were used to detect neuronal damage and albumin extravasation, respectively, and double immunofluorescence was used to explore neuronal absorption of albumin. Cell counting was also conducted in vitro to determine whether albumin contributes to neuronal death. The results of the present study indicated that extravasated serum albumin was absorbed by neurons, and the neurons that had absorbed albumin died and were dissolved 28 days after seizure onset in vivo. Furthermore, significant neuronal death was detected after albumin absorption in vitro in a dose- and time-dependent manner. These results suggested that albumin may be absorbed by neurons following the onset of seizures. Furthermore, the results indicated that neuronal albumin uptake may be associated with neuronal damage and death in epileptic seizures. Therefore, attenuating albumin extravasation following epileptic seizures may reduce brain damage and slow the development of epilepsy. PMID:27446263

  9. Encountering Death: Structured Activities for Death Awareness.

    ERIC Educational Resources Information Center

    Welch, Ira David; And Others

    This book is intended to be used as a supplement to standard textbooks on death and dying for college students. Chapter 1 "Encountering Death in the Self" builds the foundation for increased self-awareness for the study of death and dying. Chapter 2 "Encountering Death in the Family" provides activities which are appropriate for a wide variety of…

  10. Inhibition of neuronal ferroptosis protects hemorrhagic brain

    PubMed Central

    Li, Qian; Han, Xiaoning; Lan, Xi; Gao, Yufeng; Wan, Jieru; Durham, Frederick; Cheng, Tian; Yang, Jie; Wang, Zhongyu; Jiang, Chao; Ying, Mingyao; Stockwell, Brent R.

    2017-01-01

    Intracerebral hemorrhage (ICH) causes high mortality and morbidity, but our knowledge of post-ICH neuronal death and related mechanisms is limited. In this study, we first demonstrated that ferroptosis, a newly identified form of cell death, occurs in the collagenase-induced ICH model in mice. We found that administration of ferrostatin-1, a specific inhibitor of ferroptosis, prevented neuronal death and reduced iron deposition induced by hemoglobin in organotypic hippocampal slice cultures (OHSCs). Mice treated with ferrostatin-1 after ICH exhibited marked brain protection and improved neurologic function. Additionally, we found that ferrostatin-1 reduced lipid reactive oxygen species production and attenuated the increased expression level of PTGS2 and its gene product cyclooxygenase-2 ex vivo and in vivo. Moreover, ferrostatin-1 in combination with other inhibitors that target different forms of cell death prevented hemoglobin-induced cell death in OHSCs and human induced pluripotent stem cell–derived neurons better than any inhibitor alone. These results indicate that ferroptosis contributes to neuronal death after ICH, that administration of ferrostatin-1 protects hemorrhagic brain, and that cyclooxygenase-2 could be a biomarker of ferroptosis. The insights gained from this study will advance our knowledge of the post-ICH cell death cascade and be essential for future preclinical studies.

  11. Inhibition of neuronal ferroptosis protects hemorrhagic brain.

    PubMed

    Li, Qian; Han, Xiaoning; Lan, Xi; Gao, Yufeng; Wan, Jieru; Durham, Frederick; Cheng, Tian; Yang, Jie; Wang, Zhongyu; Jiang, Chao; Ying, Mingyao; Koehler, Raymond C; Stockwell, Brent R; Wang, Jian

    2017-04-06

    Intracerebral hemorrhage (ICH) causes high mortality and morbidity, but our knowledge of post-ICH neuronal death and related mechanisms is limited. In this study, we first demonstrated that ferroptosis, a newly identified form of cell death, occurs in the collagenase-induced ICH model in mice. We found that administration of ferrostatin-1, a specific inhibitor of ferroptosis, prevented neuronal death and reduced iron deposition induced by hemoglobin in organotypic hippocampal slice cultures (OHSCs). Mice treated with ferrostatin-1 after ICH exhibited marked brain protection and improved neurologic function. Additionally, we found that ferrostatin-1 reduced lipid reactive oxygen species production and attenuated the increased expression level of PTGS2 and its gene product cyclooxygenase-2 ex vivo and in vivo. Moreover, ferrostatin-1 in combination with other inhibitors that target different forms of cell death prevented hemoglobin-induced cell death in OHSCs and human induced pluripotent stem cell-derived neurons better than any inhibitor alone. These results indicate that ferroptosis contributes to neuronal death after ICH, that administration of ferrostatin-1 protects hemorrhagic brain, and that cyclooxygenase-2 could be a biomarker of ferroptosis. The insights gained from this study will advance our knowledge of the post-ICH cell death cascade and be essential for future preclinical studies.

  12. Aging and Death Education.

    ERIC Educational Resources Information Center

    Pinder, Margaret M.; Hayslip, Bert, Jr.

    1980-01-01

    The elderly death rate is somewhat higher than the death rate in general. Numbers of schools with gerontological curricula and frequency of death education courses are positively related to elderly death rates. The contention that elderly deaths have less social impact is not supported. (JAC)

  13. Acerogenin A from Acer nikoense Maxim Prevents Oxidative Stress-Induced Neuronal Cell Death through Nrf2-Mediated Heme Oxygenase-1 Expression in Mouse Hippocampal HT22 Cell Line.

    PubMed

    Lee, Dong-Sung; Cha, Byung-Yoon; Woo, Je-Tae; Kim, Youn-Chul; Jang, Jun-Hyeog

    2015-07-09

    Oxidative cell damage contributes to neuronal degeneration in many central nervous system (CNS) diseases such as Parkinson's disease, Alzheimer's disease, and ischemia. Inducible heme oxygenase (HO)-1 acts against oxidants that are thought to play a key role in the pathogenesis of neuronal diseases. The stem bark of Acer nikoense Maxim (Aceraceae) is indigenous to Japan; it has been used in folk medicine as a treatment of hepatic disorders and eye diseases. Acerogenin A, a natural compound isolated from Japanese folk medicine A. nikoense, showed neuroprotective effects and reactive oxygen species (ROS) reduction on glutamate-induced neurotoxicity by inducing the expression of HO-1 in mouse hippocampal HT22 cells. Furthermore, acerogenin A caused the nuclear accumulation of nuclear factor-E2-related factor 2 (Nrf2) and the activation of the PI3K/AKT signaling pathways. In this study, we demonstrated that acerogenin A effectively prevents glutamate-induced oxidative damage, and HO-1 induction via PI3K/Akt and Nrf2 pathways appears to play a key role in the protection of HT22 cells. Therefore, this study implies that the Nrf2/HO-1 pathway represents a biological target and that acerogenin A might be a candidate for the prevention of neurodegeneration.

  14. Patient fibroblasts-derived induced neurons demonstrate autonomous neuronal defects in adult-onset Krabbe disease

    PubMed Central

    Choi, Won Jun; Oh, Ki-Wook; Nahm, Minyeop; Xue, Yuanchao; Choi, Jae Hyeok; Choi, Ji Young; Kim, Young-Eun; Chung, Ki Wha; Fu, Xiang-Dong; Ki, Chang-Seok; Kim, Seung Hyun

    2016-01-01

    Krabbe disease (KD) is an autosomal recessive neurodegenerative disorder caused by defective β-galactosylceramidase (GALC), a lysosomal enzyme responsible for cleavage of several key substrates including psychosine. Accumulation of psychosine to the cytotoxic levels in KD patients is thought to cause dysfunctions in myelinating glial cells based on a comprehensive study of demyelination in KD. However, recent evidence suggests myelin-independent neuronal death in the murine model of KD, thus indicating defective GALC in neurons as an autonomous mechanism for neuronal cell death in KD. These observations prompted us to generate induced neurons (iNeurons) from two adult-onset KD patients carrying compound heterozygous mutations (p.[K563*];[L634S]) and (p.[N228_S232delinsTP];[G286D]) to determine the direct contribution of autonomous neuronal toxicity to KD. Here we report that directly converted KD iNeurons showed not only diminished GALC activity and increased psychosine levels, as expected, but also neurite fragmentation and abnormal neuritic branching. The lysosomal-associated membrane proteins 1 (LAMP1) was expressed at higher levels than controls, LAMP1-positive vesicles were significantly enlarged and fragmented, and mitochondrial morphology and its function were altered in KD iNeurons. Strikingly, we demonstrated that psychosine was sufficient to induce neurite defects, mitochondrial fragmentation, and lysosomal alterations in iNeurons derived in healthy individuals, thus establishing the causal effect of the cytotoxic GALC substrate in KD and the autonomous neuronal toxicity in KD pathology. PMID:27780934

  15. Novel model for the mechanisms of glutamate-dependent excitotoxicity: Role of neuronal gap junctions

    PubMed Central

    Belousov, Andrei B.

    2012-01-01

    In the mammalian central nervous system (CNS), coupling of neurons by gap junctions (electrical synapses) increases during early postnatal development, then decreases, but increases in the mature CNS following neuronal injury, such as ischemia, traumatic brain injury and epilepsy. Glutamate-dependent neuronal death also occurs in the CNS during development and neuronal injury, i.e., at the time when neuronal gap junction coupling is increased. Here, we review our recent studies on regulation of neuronal gap junction coupling by glutamate during development and injury and on the role of gap junctions in neuronal cell death. A novel model of the mechanisms of glutamate-dependent neuronal death is discussed, which includes neuronal gap junction coupling as a critical part of these mechanisms. PMID:22771704

  16. Death: 'nothing' gives insight.

    PubMed

    Ettema, Eric J

    2013-08-01

    According to a widely accepted belief, we cannot know our own death--death means 'nothing' to us. At first sight, the meaning of 'nothing' just implies the negation or absence of 'something'. Death then simply refers to the negation or absence of life. As a consequence, however, death has no meaning of itself. This leads to an ontological paradox in which death is both acknowledged and denied: death is … nothing. In this article, I investigate whether insight into the ontological paradox of the nothingness of death can contribute to a good end-of-life. By analysing Aquinas', Heidegger's and Derrida's understanding of death as nothingness, I explore how giving meaning to death on different ontological levels connects to, and at the same time provides resistance against, the harsh reality of death. By doing so, I intend to demonstrate that insight into the nothingness of death can count as a framework for a meaningful dealing with death.

  17. Sudden infant death syndrome

    MedlinePlus

    Crib death; SIDS ... However, SIDS is still a major cause of death in infants under 1 year old. Thousands of ... affects boys more often than girls. Most SIDS deaths occur in the winter. The following may increase ...

  18. [Unobserved death of an infant: cot death?].

    PubMed

    van Wouwe, J P; Dandachli, T H; Huber, J

    1999-10-02

    Three children, two girls aged 8 and 12 months and one boy aged 7 weeks, were found dead unexpectedly. Autopsy revealed pneumonia in two children, following which the diagnosis of 'natural, explained death' was made; one child showed no abnormalities and the diagnosis read 'natural, unexplained death' (cot death). Autopsy may currently only be performed with parental permission or, in case of doubt about unnatural cause of death, by order of the public prosecutor. The authors propose routine performance of a protocolled autopsy by GP, pediatrician, pathologist and medical examiner in order to avoid subsequent and possibly incorrect doubt about the cause of death.

  19. Dopamine selectively sensitizes dopaminergic neurons to rotenone-induced apoptosis.

    PubMed

    Ahmadi, Ferogh A; Grammatopoulos, Tom N; Poczobutt, Andy M; Jones, Susan M; Snell, Laurence D; Das, Mita; Zawada, W Michael

    2008-05-01

    Among various types of neurons affected in Parkinson's disease, dopamine (DA) neurons of the substantia nigra undergo the most pronounced degeneration. Products of DA oxidation and consequent cellular damage have been hypothesized to contribute to neuronal death. To examine whether elevated intracellular DA will selectively predispose the dopaminergic subpopulation of nigral neurons to damage by an oxidative insult, we first cultured rat primary mesencephalic cells in the presence of rotenone to elevate reactive oxygen species. Although MAP2(+) neurons were more sensitive to rotenone-induced toxicity than type 1 astrocytes, rotenone affected equally both DA (TH(+)) neurons and MAP2(+) neurons. In contrast, when intracellular DA concentration was elevated, DA neurons became selectively sensitized to rotenone. Raising intracellular DA levels in primary DA neurons resulted in dopaminergic neuron death in the presence of subtoxic concentrations of rotenone. Furthermore, mitochondrial superoxide dismutase mimetic, manganese (III) meso-tetrakis (4-benzoic acid) porphyrin, blocked activation of caspase-3, and consequent cell death. Our results demonstrate that an inhibitor of mitochondrial complex I and increased cytosolic DA may cooperatively lead to conditions of elevated oxidative stress and thereby promote selective demise of dopaminergic neurons.

  20. Ferroptosis and cell death mechanisms in Parkinson's disease.

    PubMed

    Guiney, Stephanie J; Adlard, Paul A; Bush, Ashley I; Finkelstein, David I; Ayton, Scott

    2017-03-01

    Symptoms of Parkinson's disease arise due to neuronal loss in multiple brain regions, especially dopaminergic neurons in the substantia nigra pars compacta. Current therapies aim to restore dopamine levels in the brain, but while these provide symptomatic benefit, they do not prevent ongoing neurodegeneration. Preventing neuronal death is a major strategy for disease-modifying therapies; however, while many pathogenic factors have been identified, it is currently unknown how neurons die in the disease. Ferroptosis, a recently identified iron-dependent cell death pathway, involves several molecular events that have previously been implicated in PD. This review will discuss ferroptosis and other cell death pathways implicated in PD neurodegeneration, with a focus on the potential to therapeutically target these pathways to slow the progression of this disease.

  1. Parkin protects dopaminergic neurons from excessive Wnt/beta-catenin signaling.

    PubMed

    Rawal, Nina; Corti, Olga; Sacchetti, Paola; Ardilla-Osorio, Hector; Sehat, Bita; Brice, Alexis; Arenas, Ernest

    2009-10-23

    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates beta-catenin protein levels in vivo. Stabilization of beta-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of beta-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and beta-catenin-induced cell death.

  2. Parkin protects dopaminergic neurons from excessive Wnt/{beta}-catenin signaling

    SciTech Connect

    Rawal, Nina; Corti, Olga; Sacchetti, Paola; Ardilla-Osorio, Hector; Sehat, Bita; Brice, Alexis; Arenas, Ernest

    2009-10-23

    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates {beta}-catenin protein levels in vivo. Stabilization of {beta}-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of {beta}-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and {beta}-catenin-induced cell death.

  3. Brain Death Determination.

    PubMed

    Spinello, Irene M

    2015-09-01

    In the United States, each year 1% to 2% of deaths are brain deaths. Considerable variation in the practice of determining brain death still remains, despite the publication of practice parameters in 1995 and an evidence-based guideline update in 2010. This review is intended to give bedside clinicians an overview of definition, the causes and pitfalls of misdiagnosing brain death, and a focus on the specifics of the brain death determination process.

  4. Neuron-derived IgG protects neurons from complement-dependent cytotoxicity.

    PubMed

    Zhang, Jie; Niu, Na; Li, Bingjie; McNutt, Michael A

    2013-12-01

    Passive immunity of the nervous system has traditionally been thought to be predominantly due to the blood-brain barrier. This concept must now be revisited based on the existence of neuron-derived IgG. The conventional concept is that IgG is produced solely by mature B lymphocytes, but it has now been found to be synthesized by murine and human neurons. However, the function of this endogenous IgG is poorly understood. In this study, we confirm IgG production by rat cortical neurons at the protein and mRNA levels, with 69.0 ± 5.8% of cortical neurons IgG-positive. Injury to primary-culture neurons was induced by complement leading to increases in IgG production. Blockage of neuron-derived IgG resulted in more neuronal death and early apoptosis in the presence of complement. In addition, FcγRI was found in microglia and astrocytes. Expression of FcγR I in microglia was increased by exposure to neuron-derived IgG. Release of NO from microglia triggered by complement was attenuated by neuron-derived IgG, and this attenuation could be reversed by IgG neutralization. These data demonstrate that neuron-derived IgG is protective of neurons against injury induced by complement and microglial activation. IgG appears to play an important role in maintaining the stability of the nervous system.

  5. Protective Effects of Hericium erinaceus Mycelium and Its Isolated Erinacine A against Ischemia-Injury-Induced Neuronal Cell Death via the Inhibition of iNOS/p38 MAPK and Nitrotyrosine

    PubMed Central

    Lee, Kam-Fai; Chen, Jiann-Hwa; Teng, Chih-Chuan; Shen, Chien-Heng; Hsieh, Meng-Chiao; Lu, Chien-Chang; Lee, Ko-Chao; Lee, Li-Ya; Chen, Wan-Ping; Chen, Chin-Chu; Huang, Wen-Shih; Kuo, Hsing-Chun

    2014-01-01

    Hericium erinaceus, an edible mushroom, has been demonstrated to potentiate the effects of numerous biological activities. The aim of this study was to investigate whether H. erinaceus mycelium could act as an anti-inflammatory agent to bring about neuroprotection using a model of global ischemic stroke and the mechanisms involved. Rats were treated with H. erinaceus mycelium and its isolated diterpenoid derivative, erinacine A, after ischemia reperfusion brain injuries caused by the occlusion of the two common carotid arteries. The production of inflammatory cytokines in serum and the infracted volume of the brain were measured. The proteins from the stroke animal model (SAM) were evaluated to determine the effect of H. erinaceus mycelium. H. erinaceus mycelium reduced the total infarcted volumes by 22% and 44% at a concentration of 50 and 300 mg/kg, respectively, compared to the SAM group. The levels of acute inflammatory cytokines, including interleukin-1β, interleukin-6 and tumor necrosis factor á, were all reduced by erinacine A. Levels of nitrotyrosine-containing proteins, phosphorylation of p38 MAPK and CCAAT enhancer-binding protein (C/EBP) and homologous protein (CHOP) expression were attenuated by erinacine A. Moreover, the modulation of ischemia injury factors present in the SAM model by erinacine A seemed to result in the suppression of reactive nitrogen species and the downregulation of inducible NO synthase (iNOS), p38 MAPK and CHOP. These findings confirm the nerve-growth properties of Hericium erinaceus mycelium, which include the prevention of ischemic injury to neurons; this protective effect seems to be involved in the in vivo activity of iNOS, p38 MAPK and CHOP. PMID:25167134

  6. Multidisciplinary Interventions in Motor Neuron Disease

    PubMed Central

    Williams, U. E.; Philip-Ephraim, E. E.; Oparah, S. K.

    2014-01-01

    Motor neuron disease is a neurodegenerative disease characterized by loss of upper motor neuron in the motor cortex and lower motor neurons in the brain stem and spinal cord. Death occurs 2–4 years after the onset of the disease. A complex interplay of cellular processes such as mitochondrial dysfunction, oxidative stress, excitotoxicity, and impaired axonal transport are proposed pathogenetic processes underlying neuronal cell loss. Currently evidence exists for the use of riluzole as a disease modifying drug; multidisciplinary team care approach to patient management; noninvasive ventilation for respiratory management; botulinum toxin B for sialorrhoea treatment; palliative care throughout the course of the disease; and Modafinil use for fatigue treatment. Further research is needed in management of dysphagia, bronchial secretion, pseudobulbar affect, spasticity, cramps, insomnia, cognitive impairment, and communication in motor neuron disease. PMID:26317009

  7. Neuronal Mitophagy in Neurodegenerative Diseases

    PubMed Central

    Martinez-Vicente, Marta

    2017-01-01

    Neuronal homeostasis depends on the proper functioning of different quality control systems. All intracellular components are subjected to continuous turnover through the coordinated synthesis, degradation and recycling of their constituent elements. Autophagy is the catabolic mechanism by which intracellular cytosolic components, including proteins, organelles, aggregates and any other intracellular materials, are delivered to lysosomes for degradation. Among the different types of selective autophagy described to date, the process of mitophagy involves the selective autophagic degradation of mitochondria. In this way, mitophagy is responsible for basal mitochondrial turnover, but can also be induced under certain physiological or pathogenic conditions to eliminate unwanted or damaged mitochondria. Dysfunctional cellular proteolytic systems have been linked extensively to neurodegenerative diseases (ND) like Alzheimer’s disease (AD), Parkinson’s disease (PD), or Huntington’s disease (HD), with autophagic failure being one of the main factors contributing to neuronal cell death in these diseases. Neurons are particularly vulnerable to autophagic impairment as well as to mitochondrial dysfunction, due mostly to their particular high energy dependence and to their post-mitotic nature. The accurate and proper degradation of dysfunctional mitochondria by mitophagy is essential for maintaining control over mitochondrial quality and quantity in neurons. In this report, I will review the role of mitophagy in neuronal homeostasis and the consequences of its dysfunction in ND. PMID:28337125

  8. Whither brain death?

    PubMed

    Bernat, James L

    2014-01-01

    The publicity surrounding the recent McMath and Muñoz cases has rekindled public interest in brain death: the familiar term for human death determination by showing the irreversible cessation of clinical brain functions. The concept of brain death was developed decades ago to permit withdrawal of therapy in hopeless cases and to permit organ donation. It has become widely established medical practice, and laws permit it in all U.S. jurisdictions. Brain death has a biophilosophical justification as a standard for determining human death but remains poorly understood by the public and by health professionals. The current controversies over brain death are largely restricted to the academy, but some practitioners express ambivalence over whether brain death is equivalent to human death. Brain death remains an accepted and sound concept, but more work is necessary to establish its biophilosophical justification and to educate health professionals and the public.

  9. Methylmalonate toxicity in primary neuronal cultures.

    PubMed

    McLaughlin, B A; Nelson, D; Silver, I A; Erecinska, M; Chesselet, M F

    1998-09-01

    Several inhibitors of mitochondrial complex II cause neuronal death in vivo and in vitro. The goal of the present work was to characterize in vitro the effects of malonate (a competitive blocker of the complex) which induces neuronal death in a pattern similar to that seen in striatum in Huntington's disease. Exposure of striatal and cortical cultures from embryonic rat brain for 24 h to methylmalonate, a compound which produces malonate intracellularly, led to a dose-dependent cell death. Methylmalonate (10 mM) caused >90% mortality of neurons although cortical cells were unexpectedly more vulnerable. Cell death was attenuated in a medium containing antioxidants. Further characterization revealed that DNA laddering could be detected after 3 h of treatment. Morphological observations (videomicroscopy and Hoechst staining) showed that both necrotic and apoptotic cell death occurred in parallel; apoptosis was more prevalent. A decrease in the ATP/ADP ratio was observed after 3 h of treatment with 10 mM methylmalonate. In striatal cultures it occurred concomitantly with a decline in GABA and a rise in aspartate content and the aspartate/glutamate ratio. Changes in ion concentrations were measured in similar cortical cultures from mouse brain. Neuronal [Na+]i increased while [K+]i and membrane potential decreased after 20 min of continuous incubation in 10 mM methylmalonate. These changes progressed with time, and a rise in [Ca2+]i was also observed after 1 h. The results demonstrate that malonate collapses cellular ion gradients, restoration of which imposes an additional load on the already compromised ATP-generation machinery. An early elevation in [Ca2+]i may trigger an increase in activity of proteases, lipases and endonucleases and production of free radicals and DNA damage which, ultimately, leads to cells death. The data also suggest that maturational and/or extrinsic factors are likely to be critical for the increased vulnerability of striatal neurons to

  10. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    PubMed

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  11. Are Death Anxiety and Death Depression Distinct Entities?

    ERIC Educational Resources Information Center

    Alvarado, Katherine A.; And Others

    1993-01-01

    Administered Death Anxiety Scale and Death Depression Scale to 200 individuals. Two scales correlated 0.55. Factor analysis of combined 32 items revealed factors: "death anxiety" having highest factor loadings with Death Anxiety Scale, "death depression" having highest factor loadings with Death Depression Scale, "death of…

  12. Rit GTPase Signaling Promotes Immature Hippocampal Neuronal Survival

    PubMed Central

    Cai, Weikang; Carlson, Shaun W.; Brelsfoard, Jennifer M.; Mannon, Catherine E.; Moncman, Carole L.; Saatman, Kathryn E.; Andres, Douglas A.

    2012-01-01

    The molecular mechanisms governing the spontaneous recovery seen following brain injury remain elusive, but recent studies indicate that injury-induced stimulation of hippocampal neurogenesis contributes to the repair process. The therapeutic potential of endogenous neurogenesis is tempered by the demonstration that traumatic brain injury (TBI) results in the selective death of adult-born immature neurons, compromising the cell population poised to compensate for trauma-induced neuronal loss. Here, we identify the Ras-related GTPase, Rit, as a critical player in the survival of immature hippocampal neurons following brain injury. While Rit knockout (Rit−/−) did not alter hippocampal development, hippocampal neural cultures derived from Rit−/− mice display increased cell death and blunted MAPK cascade activation in response to oxidative stress, without affecting BDNF-dependent signaling. When compared to wild-type hippocampal cultures, Rit loss rendered immature (Dcx+) neurons susceptible to oxidative damage, without altering the survival of neural progenitor (Nestin+) cells. Oxidative stress is a major contributor to neuronal cell death following brain injury. Consistent with the enhanced vulnerability of cultured Rit−/− immature neurons, Rit−/− mice exhibited a significantly greater loss of adult-born immature neurons within the dentate gyrus after TBI. In addition, post-TBI neuronal remodeling was blunted. Taken together, these data identify a new and unexpected role for Rit in injury-induced neurogenesis, functioning as a selective survival mechanism for immature hippocampal neurons within the subgranular zone of the dentate gyrus following TBI. PMID:22815504

  13. Children's Experience with Death.

    ERIC Educational Resources Information Center

    Zeligs, Rose

    Children's concepts of death grow with their age and development The three-year-old begins to notice that living things move and make sounds. The five-year-old thinks that life and death are reversable, but the six-year-old knows that death is final and brings sorrow. Children from eight through ten are interested in the causes of death and what…

  14. Necrostatin-1 protection of dopaminergic neurons

    PubMed Central

    Wu, Jing-ru; Wang, Jie; Zhou, Sheng-kui; Yang, Long; Yin, Jia-le; Cao, Jun-ping; Cheng, Yan-bo

    2015-01-01

    Necroptosis is characterized by programmed necrotic cell death and autophagic activation and might be involved in the death process of dopaminergic neurons in Parkinson's disease. We hypothesized that necrostatin-1 could block necroptosis and give protection to dopaminergic neurons. There is likely to be crosstalk between necroptosis and other cell death pathways, such as apoptosis and autophagy. PC12 cells were pretreated with necroststin-1 1 hour before exposure to 6-hydroxydopamine. We examined cell viability, mitochondrial membrane potential and expression patterns of apoptotic and necroptotic death signaling proteins. The results showed that the autophagy/lysosomal pathway is involved in the 6-hydroxydopamine-induced death process of PC12 cells. Mitochondrial disability induced overactive autophagy, increased cathepsin B expression, and diminished Bcl-2 expression. Necrostatin-1 within a certain concentration range (5–30 μM) elevated the viability of PC12 cells, stabilized mitochondrial membrane potential, inhibited excessive autophagy, reduced the expression of LC3-II and cathepsin B, and increased Bcl-2 expression. These findings suggest that necrostatin-1 exerted a protective effect against injury on dopaminergic neurons. Necrostatin-1 interacts with the apoptosis signaling pathway during this process. This pathway could be a new neuroprotective and therapeutic target in Parkinson's disease. PMID:26330837

  15. Necrostatin-1 protection of dopaminergic neurons.

    PubMed

    Wu, Jing-Ru; Wang, Jie; Zhou, Sheng-Kui; Yang, Long; Yin, Jia-le; Cao, Jun-Ping; Cheng, Yan-Bo

    2015-07-01

    Necroptosis is characterized by programmed necrotic cell death and autophagic activation and might be involved in the death process of dopaminergic neurons in Parkinson's disease. We hypothesized that necrostatin-1 could block necroptosis and give protection to dopaminergic neurons. There is likely to be crosstalk between necroptosis and other cell death pathways, such as apoptosis and autophagy. PC12 cells were pretreated with necroststin-1 1 hour before exposure to 6-hydroxydopamine. We examined cell viability, mitochondrial membrane potential and expression patterns of apoptotic and necroptotic death signaling proteins. The results showed that the autophagy/lysosomal pathway is involved in the 6-hydroxydopamine-induced death process of PC12 cells. Mitochondrial disability induced overactive autophagy, increased cathepsin B expression, and diminished Bcl-2 expression. Necrostatin-1 within a certain concentration range (5-30 μM) elevated the viability of PC12 cells, stabilized mitochondrial membrane potential, inhibited excessive autophagy, reduced the expression of LC3-II and cathepsin B, and increased Bcl-2 expression. These findings suggest that necrostatin-1 exerted a protective effect against injury on dopaminergic neurons. Necrostatin-1 interacts with the apoptosis signaling pathway during this process. This pathway could be a new neuroprotective and therapeutic target in Parkinson's disease.

  16. The pesticide rotenone induces caspase-3-mediated apoptosis in ventral mesencephalic dopaminergic neurons.

    PubMed

    Ahmadi, Ferogh A; Linseman, Daniel A; Grammatopoulos, Tom N; Jones, Susan M; Bouchard, Ron J; Freed, Curt R; Heidenreich, Kim A; Zawada, W Michael

    2003-11-01

    In vivo, the pesticide rotenone induces degeneration of dopamine neurons and parkinsonian-like pathology in adult rats. In the current study, we utilized primary ventral mesencephalic (VM) cultures from E15 rats as an in vitro model to examine the mechanism underlying rotenone-induced death of dopamine neurons. After 11 h of exposure to 30 nm rotenone, the number of dopamine neurons identified by tyrosine hydroxylase (TH) immunostaining declined rapidly with only 23% of the neurons surviving. By contrast, 73% of total cells survived rotenone treatment, indicating that TH+ neurons are more sensitive to rotenone. Examination of the role of apoptosis in TH+ neuron death, revealed that 10 and 30 nm rotenone significantly increased the number of apoptotic TH+ neurons from 7% under control conditions to 38 and 55%, respectively. The increase in apoptotic TH+ neurons correlated with an increase in immunoreactivity for active caspase-3 in TH+ neurons. The caspase-3 inhibitor, DEVD, rescued a significant number of TH+ neurons from rotenone-induced death. Furthermore, this protective effect lasted for at least 32 h post-rotenone and DEVD exposure, indicating lasting neuroprotection achieved with an intervention prior to the death commitment point. Our results show for the first time in primary dopamine neurons that, at low nanomolar concentrations, rotenone induces caspase-3-mediated apoptosis. Understanding the mechanism of rotenone-induced apoptosis in dopamine neurons may contribute to the development of new neuroprotective strategies against Parkinson's disease.

  17. Infant death scene investigation.

    PubMed

    Tabor, Pamela D; Ragan, Krista

    2015-01-01

    The sudden unexpected death of an infant is a tragedy to the family, a concern to the community, and an indicator of national health. To accurately determine the cause and manner of the infant's death, a thorough and accurate death scene investigation by properly trained personnel is key. Funding and resources are directed based on autopsy reports, which are only as accurate as the scene investigation. The investigation should include a standardized format, body diagrams, and a photographed or videotaped scene recreation utilizing doll reenactment. Forensic nurses, with their basic nursing knowledge and additional forensic skills and abilities, are optimally suited to conduct infant death scene investigations as well as train others to properly conduct death scene investigations. Currently, 49 states have child death review teams, which is an idea avenue for a forensic nurse to become involved in death scene investigations.

  18. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    PubMed Central

    Martin, Lee J.

    2010-01-01

    Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy. PMID:21258649

  19. Potentiated necrosis of cultured cortical neurons by neurotrophins.

    PubMed

    Koh, J Y; Gwag, B J; Lobner, D; Choi, D W

    1995-04-28

    The effects of neurotrophins on several forms of neuronal degeneration in murine cortical cell cultures were examined. Consistent with other studies, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 all attenuated the apoptotic death induced by serum deprivation or exposure to the calcium channel antagonist nimodipine. Unexpectedly, however, 24-hour pretreatment with these same neurotrophins markedly potentiated the necrotic death induced by exposure to oxygen-glucose deprivation or N-methyl-D-aspartate. Thus, certain neurotrophins may have opposing effects on different types of death in the same neurons.

  20. Matrix Metalloproteinase-9 Regulates Neuronal Circuit Development and Excitability.

    PubMed

    Murase, Sachiko; Lantz, Crystal L; Kim, Eunyoung; Gupta, Nitin; Higgins, Richard; Stopfer, Mark; Hoffman, Dax A; Quinlan, Elizabeth M

    2016-07-01

    In early postnatal development, naturally occurring cell death, dendritic outgrowth, and synaptogenesis sculpt neuronal ensembles into functional neuronal circuits. Here, we demonstrate that deletion of the extracellular proteinase matrix metalloproteinase-9 (MMP-9) affects each of these processes, resulting in maladapted neuronal circuitry. MMP-9 deletion increases the number of CA1 pyramidal neurons but decreases dendritic length and complexity. Parallel changes in neuronal morphology are observed in primary visual cortex and persist into adulthood. Individual CA1 neurons in MMP-9(-/-) mice have enhanced input resistance and a significant increase in the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs). Additionally, deletion of MMP-9 significantly increases spontaneous neuronal activity in awake MMP-9(-/-) mice and enhances response to acute challenge by the excitotoxin kainate. Our data document a novel role for MMP-9-dependent proteolysis: the regulation of several aspects of circuit maturation to constrain excitability throughout life.

  1. [The diagnosis of death].

    PubMed

    Echeverría, Carlos; Goic, Alejandro; Lavados, Manuel; Quintana, Carlos; Rojas, Alberto; Serani, Alejandro; Vacarezza, Ricardo

    2004-01-01

    This paper undertakes an analysis of the scientific criteria used in the diagnosis of death and underscores the importance of intellectual rigor in the definition of medical concepts, particularly regarding such a critical issue as the diagnosis of death. Under the cardiorespiratory criterion, death is defined as "the irreversible cessation of the functioning of an organism as a whole", and the tests used to confirm this criterion (negative life-signs) are sensitive and specific. In this case, cadaverous phenomena appear immediately following the diagnosis of death. On the other hand, doubts have arisen concerning the theoretical and the inner consistency of the criterion of brain death, since it does not satisfy the definition of "the irreversible cessation of the functioning of an organism as a whole", nor the requirement of "total and irreversible cessation of all functions of the entire brain, including the brain stem". There is evidence to the effect that the tests used to confirm this criterion are not specific enough. It is clear that brain death marks the beginning of a process that eventually ends in death, though death does not occur at that moment. From an ethical point of view, the conflict arises between the need to provide an unequivocal diagnosis of death and the possibility of saving a life through organ transplantation. The sensitive issue of brain death calls for a more thorough and in-depth discussion among physicians and the community at large.

  2. Neurotrophin signalling pathways regulating neuronal apoptosis.

    PubMed

    Miller, F D; Kaplan, D R

    2001-07-01

    Recent evidence indicates that naturally occurring neuronal death in mammals is regulated by the interplay between receptor-mediated prosurvival and proapoptotic signals. The neurotrophins, a family of growth factors best known for their positive effects on neuronal biology, have now been shown to mediate both positive and negative survival signals, by signalling through the Trk and p75 neurotrophin receptors, respectively. The mechanisms whereby these two neurotrophin receptors interact to determine neuronal survival have been difficult to decipher, largely because both can signal independently or coincidentally, depending upon the cell or developmental context. Nonetheless, the past several years have seen significant advances in our understanding of this receptor signalling system. In this review, we focus on the proapoptotic actions of the p75 neurotrophin receptor (p75NTR), and on the interplay between Trk and p75NTR that determines neuronal survival.

  3. Ablation of the Ferroptosis Inhibitor Glutathione Peroxidase 4 in Neurons Results in Rapid Motor Neuron Degeneration and Paralysis.

    PubMed

    Chen, Liuji; Hambright, William Sealy; Na, Ren; Ran, Qitao

    2015-11-20

    Glutathione peroxidase 4 (GPX4), an antioxidant defense enzyme active in repairing oxidative damage to lipids, is a key inhibitor of ferroptosis, a non-apoptotic form of cell death involving lipid reactive oxygen species. Here we show that GPX4 is essential for motor neuron health and survival in vivo. Conditional ablation of Gpx4 in neurons of adult mice resulted in rapid onset and progression of paralysis and death. Pathological inspection revealed that the paralyzed mice had a dramatic degeneration of motor neurons in the spinal cord but had no overt neuron degeneration in the cerebral cortex. Consistent with the role of GPX4 as a ferroptosis inhibitor, spinal motor neuron degeneration induced by Gpx4 ablation exhibited features of ferroptosis, including no caspase-3 activation, no TUNEL staining, activation of ERKs, and elevated spinal inflammation. Supplementation with vitamin E, another inhibitor of ferroptosis, delayed the onset of paralysis and death induced by Gpx4 ablation. Also, lipid peroxidation and mitochondrial dysfunction appeared to be involved in ferroptosis of motor neurons induced by Gpx4 ablation. Taken together, the dramatic motor neuron degeneration and paralysis induced by Gpx4 ablation suggest that ferroptosis inhibition by GPX4 is essential for motor neuron health and survival in vivo.

  4. A good death.

    PubMed

    2011-10-26

    Definitions of a good death often include being at home. Dying at home may be optimal for the patient but could place a significant burden on families and leave them with traumatic memories. Death in hospital should not mean that it is a 'bad death'. How someone dies is more important than where they die and nurses should be taught to provide good end of life care in all settings.

  5. [The extraordinary death].

    PubMed

    Plattner, Thomas; Zollinger, Ulrich

    2008-07-01

    The examination of a deceased person is an important duty for physicians. It comprises the certification of death, the certification of the identity of the deceased, a thorough examination of the body, an estimation of the moment of death and ends with the decision, if death was caused by a certain or possible violent cause in which case it must be reported to the authorities. Problems and pitfalls are discussed on the basis of practical case presentations.

  6. The Effects of Death Education.

    ERIC Educational Resources Information Center

    Freitag, Carl B.; Hassler, Shawn David

    Although fear of death is recorded in the writings of the oldest major religions, the study of death and the fear of death have only occurred for the last few decades. Death education courses have grown in number since the early 1970's. College students participated in an investigation of the effects of death education on death anxiety by…

  7. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    PubMed

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  8. Rapid Mechanically Controlled Rewiring of Neuronal Circuits

    PubMed Central

    Magdesian, Margaret H.; Lopez-Ayon, G. Monserratt; Mori, Megumi; Boudreau, Dominic; Goulet-Hanssens, Alexis; Sanz, Ricardo; Miyahara, Yoichi; Barrett, Christopher J.; Fournier, Alyson E.; De Koninck, Yves

    2016-01-01

    CNS injury may lead to permanent functional deficits because it is still not possible to regenerate axons over long distances and accurately reconnect them with an appropriate target. Using rat neurons, microtools, and nanotools, we show that new, functional neurites can be created and precisely positioned to directly (re)wire neuronal networks. We show that an adhesive contact made onto an axon or dendrite can be pulled to initiate a new neurite that can be mechanically guided to form new synapses at up to 0.8 mm distance in <1 h. Our findings challenge current understanding of the limits of neuronal growth and have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration. SIGNIFICANCE STATEMENT Brain and spinal cord injury may lead to permanent disability and death because it is still not possible to regenerate neurons over long distances and accurately reconnect them with an appropriate target. Using microtools and nanotools we have developed a new method to rapidly initiate, elongate, and precisely connect new functional neuronal circuits over long distances. The extension rates achieved are ≥60 times faster than previously reported. Our findings have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration after trauma and in neurodegenerative diseases. It also opens the door for the direct wiring of robust brain–machine interfaces as well as for investigations of fundamental aspects of neuronal signal processing and neuronal function. PMID:26791225

  9. L-F001, a Multifunction ROCK Inhibitor Prevents 6-OHDA Induced Cell Death Through Activating Akt/GSK-3beta and Nrf2/HO-1 Signaling Pathway in PC12 Cells and Attenuates MPTP-Induced Dopamine Neuron Toxicity in Mice.

    PubMed

    Luo, Liting; Chen, Jingkao; Su, Dan; Chen, Meihui; Luo, Bingling; Pi, Rongbiao; Wang, Lan; Shen, Wei; Wang, Rikang

    2017-02-01

    Amounting evidences demonstrated that Rho/Rho-associated kinase (ROCK) might be a novel target for the therapy of Parkinson's disease (PD). Recently, we synthesized L-F001 and revealed it was a potent ROCK inhibitor with multifunctional effects. Here we investigated the effects of L-F001 in PD models. We found that L-F001 potently attenuated 6-OHDA-induced cytotoxicity in PC12 cells and significantly decreased intracellular reactive oxygen species (ROS), prevented the 6-OHDA-induced decline of mitochondrial membrane potential and intracellular GSH levels. In addition, L-F001 increased Akt and GSK-3beta phosphorylation and induced the nuclear Nrf2 and HO-1 expression in a time- and concentration-dependent manner. Moreover, L-F001 restored the levels of p-Akt and p-GSK-3beta (Ser9) as well as HO-1 expression reduced by 6-OHDA. Those effects were blocked by the specific PI3K inhibitor, LY294002, indicating the involvement of Akt/GSK-3beta pathway in the neuroprotective effect of L-F001. In addition, L-F001 significantly attenuated the tyrosinehydroxylase immunoreactive cell loss in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-induced mice PD model. Together, our findings suggest that L-F001 prevents 6-OHDA-induced cell death through activating Akt/GSK-3beta and Nrf2/HO-1 signaling pathway and attenuates MPTP-induced dopaminergic neuron toxicity in mice. L-F001 might be a promising drug candidate for PD.

  10. Excitotoxins in neuronal apoptosis and necrosis.

    PubMed

    Nicotera, P; Lipton, S A

    1999-06-01

    Neuronal loss is common to many neurodegenerative diseases. Although necrosis is a common histopathologic feature observed in neuropathologic conditions, evidence is increasing that apoptosis can significantly contribute to neuronal demise. The prevalence of either type of cell death, apoptosis or necrosis, and the relevance for the progression of disease is still unclear. The debate on the occurrence and prevalence of one or the other type of death in pathologic conditions such as stroke or neurotoxic injury may in part be resolved by the proposal that different types of cell death within a tissue reflect either partial or complete execution of a common death program. Apoptosis is an active process of cell destruction, characterized morphologically by cell shrinkage, chromatin aggregation with extensive genomic fragmentation, and nuclear pyknosis. In contrast, necrosis is characterized by cell swelling, linked to rapid energy loss, and generalized disruption of ionic and internal homeostasis. This swiftly leads to membrane lysis, release of intracellular constituents that evoke a local inflammatory reaction, edema, and injury to the surrounding tissue. During the past few years, our laboratories have studied the signals and mechanisms responsible for induction or prevention of apoptosis/necrosis in neuronal injury and this is the subject of this review.

  11. Human prion protein-induced autophagy flux governs neuron cell damage in primary neuron cells.

    PubMed

    Moon, Ji-Hong; Lee, Ju-Hee; Nazim, Uddin Md; Lee, You-Jin; Seol, Jae-Won; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-05-24

    An unusual molecular structure of the prion protein, PrPsc is found only in mammals with transmissible prion diseases. Prion protein stands for either the infectious pathogen itself or a main component of it. Recent studies suggest that autophagy is one of the major functions that keep cells alive and has a protective effect against the neurodegeneration. In this study, we investigated that the effect of human prion protein on autophagy-lysosomal system of primary neuronal cells. The treatment of human prion protein induced primary neuron cell death and decreased both LC3-II and p62 protein amount indicating autophagy flux activation. Electron microscope pictures confirmed the autophagic flux activation in neuron cells treated with prion protein. Inhibition of autophagy flux using pharmacological and genetic tools prevented neuron cell death induced by human prion protein. Autophagy flux induced by prion protein is more activated in prpc expressing cells than in prpc silencing cells. These data demonstrated that prion protein-induced autophagy flux is involved in neuron cell death in prion disease and suggest that autophagy flux might play a critical role in neurodegenerative diseases including prion disease.

  12. Acetaminophen Induces Apoptosis in Rat Cortical Neurons

    PubMed Central

    Posadas, Inmaculada; Santos, Pablo; Blanco, Almudena; Muñoz-Fernández, Maríangeles; Ceña, Valentín

    2010-01-01

    Background Acetaminophen (AAP) is widely prescribed for treatment of mild pain and fever in western countries. It is generally considered a safe drug and the most frequently reported adverse effect associated with acetaminophen is hepatotoxicity, which generally occurs after acute overdose. During AAP overdose, encephalopathy might develop and contribute to morbidity and mortality. Our hypothesis is that AAP causes direct neuronal toxicity contributing to the general AAP toxicity syndrome. Methodology/Principal Findings We report that AAP causes direct toxicity on rat cortical neurons both in vitro and in vivo as measured by LDH release. We have found that AAP causes concentration-dependent neuronal death in vitro at concentrations (1 and 2 mM) that are reached in human plasma during AAP overdose, and that are also reached in the cerebrospinal fluid of rats for 3 hours following i.p injection of AAP doses (250 and 500 mg/Kg) that are below those required to induce acute hepatic failure in rats. AAP also increases both neuronal cytochrome P450 isoform CYP2E1 enzymatic activity and protein levels as determined by Western blot, leading to neuronal death through mitochondrial–mediated mechanisms that involve cytochrome c release and caspase 3 activation. In addition, in vivo experiments show that i.p. AAP (250 and 500 mg/Kg) injection induces neuronal death in the rat cortex as measured by TUNEL, validating the in vitro data. Conclusions/Significance The data presented here establish, for the first time, a direct neurotoxic action by AAP both in vivo and in vitro in rats at doses below those required to produce hepatotoxicity and suggest that this neurotoxicity might be involved in the general toxic syndrome observed during patient APP overdose and, possibly, also when AAP doses in the upper dosing schedule are used, especially if other risk factors (moderate drinking, fasting, nutritional impairment) are present. PMID:21170329

  13. Toxic Neuronal Death by Glyeraldehyde-3-Phosphate Dehydrogenase and Mitochondria

    DTIC Science & Technology

    2003-08-01

    Neuroreport, 10(5), 1149-1153. Sioud, M., & Jespersen, L. (1996). Enhancement of hammerhead ribozyme catalysis by glyceraldehyde-3-phosphate dehydrogenase...1996) Enhancemen t of hammerhead r ibozyme cata lysis by glycera ldehyde-3- phospha te dehydrogenase. J Mol Biol 257:775–789. Sirover MA (1997) Role of

  14. Role of Inflammation in MPTP-Induced Dopaminergic Neuronal Death

    DTIC Science & Technology

    2008-12-01

    Melov S, Doctrow SR, Schneider JA et al. Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 nullizygous mice treated...al, 2003). Bovine erythrocyte superoxide dismutase 1 (SOD1, 20U/hour) was infused into the striatum via Alzet osmotic minipumps, starting 24 hours

  15. Rodent CNS neuron development: Timing of cell birth and death

    NASA Technical Reports Server (NTRS)

    Keefe, J. R.

    1984-01-01

    Data obtained from a staged series of single paired injections of tritiated thymidine to pregnant Wistar rats or C57B16/j mice on selected embryonic days and several postnatal times are reported. All injected specimens were allowed to come to term, each litter culled to six pups and specimens were sacrificed on PN28, with fixation and embedding for paraffin and plastic embedding. The results are derived from serial paraffin sections of PN28 animals exposed to autoradiographic processing and plotted with respect to heavily labelled cell nuclei present in the selected brain stem nuclei and sensory ganglia. Counts from each time sample/structure are totalled and the percentage of cells in the total labelled population/structure represented by each injection time interval plotted.

  16. Neuronal Death Following Soman Intoxication: Necrosis or Apoptosis?

    DTIC Science & Technology

    2006-05-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER US Army Medical Research Institute of...MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) US Army Medical Research Institute of Chemical Defense Aberdeen Proving...40 min after onset of seizures, the anticholinergic drugs scopolamine and atropine failed to block soman-induced seizures, but diazepam and MK-801

  17. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury

    PubMed Central

    Xie, Cuicui; Ginet, Vanessa; Sun, Yanyan; Koike, Masato; Zhou, Kai; Li, Tao; Li, Hongfu; Li, Qian; Wang, Xiaoyang; Uchiyama, Yasuo; Truttmann, Anita C.; Kroemer, Guido; Puyal, Julien; Blomgren, Klas; Zhu, Changlian

    2016-01-01

    ABSTRACT Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy. PMID:26727396

  18. Programmed cell death

    SciTech Connect

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  19. Death Writ Large

    ERIC Educational Resources Information Center

    Kastenbaum, Robert

    2004-01-01

    Mainstream thanatology has devoted its efforts to improving the understanding, care, and social integration of people who are confronted with life-threatening illness or bereavement. This article suggests that it might now be time to expand the scope and mission to include large-scale death and death that occurs through complex and multi-domain…

  20. Near-death experiences.

    PubMed Central

    Blackmore, S J

    1996-01-01

    Reactions to claims of near-death experiences (NDE) range from the popular view that this must be evidence for life after death, to outright rejection of the experiences as, at best, drug induced hallucinations or, at worse, pure invention. Twenty years, and much research, later, it is clear that neither extreme is correct. PMID:8683504

  1. The Sociology of Death

    ERIC Educational Resources Information Center

    Fulton, Robert

    1977-01-01

    When we start to look at the issues associated with dying and death, we must do so in terms of the broadest parameters imaginable. Presented at the Conference on Death and Dying: Education, Counseling, and Care, December 1-3, 1976, Orlando, Florida. (Author)

  2. Facing Up to Death

    ERIC Educational Resources Information Center

    Ross, Elizabeth Kubler

    1972-01-01

    Doctor urges that Americans accept death as a part of life and suggests ways of helping dying patients and their families face reality calmly, with peace. Dying children and their siblings, as well as children's feelings about relatives' deaths, are also discussed. (PD)

  3. Death Acceptance through Ritual

    ERIC Educational Resources Information Center

    Reeves, Nancy C.

    2011-01-01

    This article summarizes the author's original research, which sought to discover the elements necessary for using death-related ritual as a psychotherapeutic technique for grieving people who experience their grief as "stuck," "unending," "maladaptive," and so on. A "death-related ritual" is defined as a ceremony, directly involving at least 1…

  4. Conflicting Thoughts about Death

    ERIC Educational Resources Information Center

    Harris, Paul L.

    2011-01-01

    Most research on children's conception of death has probed their understanding of its biological aspects: its inevitability, irreversibility and terminal impact. Yet many adults subscribe to a religious conception implying that death marks the beginning of a new life. Two recent empirical studies confirm that in the course of development, children…

  5. Education for Death

    ERIC Educational Resources Information Center

    Puolimatka, Tapio; Solasaari, Ulla

    2006-01-01

    Death is an unavoidable fact of human life, which cannot be totally ignored in education. Children reflect on death and raise questions that deserve serious answers. If an educator completely evades the issue, children will seek other conversation partners. It is possible to find arguments both from secular and religious sources, which alleviate…

  6. Physician-assisted death.

    PubMed Central

    1995-01-01

    Physician-assisted death includes both euthanasia and assistance in suicide. The CMA urges its members to adhere to the principles of palliative care. It does not support euthanasia and assisted suicide. The following policy summary includes definitions of euthanasia and assisted suicide, background information, basic ethical principles and physician concerns about legalization of physician-assisted death. PMID:7632208

  7. Death Obsession in Palestinians

    ERIC Educational Resources Information Center

    Abdel-Khalek, Ahmed M.; Al-Arja, Nahida S.; Abdalla, Taysir

    2006-01-01

    The authors explored death obsession level and correlates among a sample (N=601) of Palestinians living in the city of Beit Jala, the village of Al-Khader, and the Aida refugee camp in the Bethlehem area. They live in war conditions; the houses of half of them have been demolished. The Death Obsession Scale (DOS) was administered. Its alpha…

  8. Mozart's illnesses and death.

    PubMed Central

    Davies, P J

    1983-01-01

    Throughout his life Mozart suffered frequent attacks of tonsillitis. In 1784 he developed post-streptococcal Schönlein-Henoch syndrome which caused chronic glomerular nephritis and chronic renal failure. His fatal illness was due to Schönlein-Henoch purpura, with death from cerebral haemorrhage and bronchopneumonia. Venesection(s) may have contributed to his death. PMID:6352940

  9. The Psychology of Death

    ERIC Educational Resources Information Center

    Fields, B. Celestine

    1976-01-01

    Forty-eight black men and women living and/or attending school in the St. Louis and Washington, D.C. areas responded to questionnaires concerning feelings, attitudes, emotions, etc. towards death and dying. It is concluded that blacks see death as a very significant happening; and that although in some areas blacks have become Americanized in…

  10. Brain Death and Islam

    PubMed Central

    Ziad-Miller, Amna; Elamin, Elamin M.

    2014-01-01

    How one defines death may vary. It is important for clinicians to recognize those aspects of a patient’s religious beliefs that may directly influence medical care and how such practices may interface with local laws governing the determination of death. Debate continues about the validity and certainty of brain death criteria within Islamic traditions. A search of PubMed, Scopus, EMBASE, Web of Science, PsycNet, Sociological Abstracts, DIALOGUE ProQuest, Lexus Nexus, Google, and applicable religious texts was conducted to address the question of whether brain death is accepted as true death among Islamic scholars and clinicians and to discuss how divergent opinions may affect clinical care. The results of the literature review inform this discussion. Brain death has been acknowledged as representing true death by many Muslim scholars and medical organizations, including the Islamic Fiqh Academies of the Organization of the Islamic Conference and the Muslim World League, the Islamic Medical Association of North America, and other faith-based medical organizations as well as legal rulings by multiple Islamic nations. However, consensus in the Muslim world is not unanimous, and a sizable minority accepts death by cardiopulmonary criteria only. PMID:25287999

  11. Death, Children, and Books.

    ERIC Educational Resources Information Center

    Carr, Robin L.

    The books listed in this annotated bibliography are intended to help children understand the reality of death and deal with the mystery and emotions that accompany it. Each entry indicates the genre and reading level of the book and provides a brief description of the attitude toward death that it conveys. The selections include fables, fantasy,…

  12. Death in Denmark.

    PubMed Central

    Evans, M

    1990-01-01

    Does it matter that the hearts of 'brainstem dead' patients may persist in beating spontaneously? Hostile reactions, to the Danish inclusion of cardiac criteria in the determination of death, betray reductionist views of human life at the core of 'brainstem' conceptions of death. Such views (whether centred on neurological function or on abstractions concerning 'personhood') supplant the richness of human life and death with the poverty of essentialism: and mask the lethal nature of beating-heart organ retrieval. The affirmation of cardiac criteria for death is not an alternative form of essentialism as some critics suppose, but part of an understanding of human life and death which rejects essentialism altogether. The spontaneously persistent heartbeat does not constitute human life, but most certainly counts for it. PMID:2287015

  13. GABAergic Mechanism of Propofol Toxicity in Immature Neurons

    PubMed Central

    Kahraman, Sibel; Zup, Susan L.; McCarthy, Margaret M.; Fiskum, Gary

    2009-01-01

    Certain anesthetics exhibit neurotoxicity in the brains of immature but not mature animals. Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the adult brain, is excitatory on immature neurons via its action at the GABAA receptor, due to a reversed transmembrane chloride gradient. GABAA receptor activation in immature neurons is sufficient to open L-type voltage gated calcium channels. As propofol is a GABAA agonist, we hypothesized that it and more specific GABAA modulators would increase intracellular free calcium ([Ca2+]i), resulting in the death of neonatal rat hippocampal neurons. Neuronal [Ca2+]i was monitored using Fura2-AM fluorescence imaging. Cell death was assessed by double-staining with propidium iodide and Hoechst 33258 at 1 h (acute) and 48 h (delayed) after 5 h exposure of neurons to propofol or the GABAA receptor agonist, muscimol, in the presence and absence of the GABA receptor antagonist, bicuculline, or the L-type Ca2+ channel blocker, nifedipine. Fluorescent measurements of caspase-3,-7 activities were performed at 1 h after exposure. Both muscimol and propofol induced a rapid increase in [Ca2+]i in day in vitro (DIV) 4, but not in DIV 8 neurons, that was inhibited by nifedipine and bicuculline. Caspase-3,-7 activities and cell death increased significantly in DIV 4 but not DIV 8 hippocampal neuronal cultures 1 h after a 5 h exposure to propofol, but not muscimol, and were inhibited by the presence of bicuculline or nifedipine. We conclude that an increase in [Ca2+]i, due to activation of GABAA receptors and opening of L-type calcium channels, is necessary for propofol-induced death of immature rat hippocampal neurons but that additional mechanisms not elicited by GABAA activation alone also contribute to cell death. PMID:18812886

  14. Alphavirus Encephalomyelitis: Mechanisms and Approaches to Prevention of Neuronal Damage.

    PubMed

    Griffin, Diane E

    2016-07-01

    Mosquito-borne viruses are important causes of death and long-term neurologic disability due to encephalomyelitis. Studies of mice infected with the alphavirus Sindbis virus have shown that outcome is dependent on the age and genetic background of the mouse and virulence of the infecting virus. Age-dependent susceptibility reflects the acquisition by neurons of resistance to virus replication and virus-induced cell death with maturation. In mature mice, the populations of neurons most susceptible to infection are in the hippocampus and anterior horn of the spinal cord. Hippocampal infection leads to long-term memory deficits in mice that survive, while motor neuron infection can lead to paralysis and death. Neuronal death is immune-mediated, rather than a direct consequence of virus infection, and associated with entry and differentiation of pathogenic T helper 17 cells in the nervous system. To modulate glutamate excitotoxicity, mice were treated with an N-methyl-D-aspartate receptor antagonist, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonists or a glutamine antagonist. The N-methyl-D-aspartate receptor antagonist MK-801 protected hippocampal neurons but not motor neurons, and mice still became paralyzed and died. α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonists GYKI-52466 and talampanel protected both hippocampal and motor neurons and prevented paralysis and death. Glutamine antagonist 6-diazo-5-l-norleucine protected hippocampal neurons and improved memory generation in mice surviving infection with an avirulent virus. Surprisingly, in all cases protection was associated with inhibition of the antiviral immune response, reduced entry of inflammatory cells into the central nervous system, and delayed virus clearance, emphasizing the importance of treatment approaches that include prevention of immunopathologic damage.

  15. Neuronal loss as evidenced by automated quantification of neuronal density following moderate and severe traumatic brain injury in rats.

    PubMed

    Balança, Baptiste; Bapteste, Lionel; Lieutaud, Thomas; Ressnikoff, Denis; Guy, Rainui; Bezin, Laurent; Marinesco, Stéphane

    2016-01-01

    Traumatic brain injury causes widespread neurological lesions that can be reproduced in animals with the lateral fluid percussion (LFP) model. The characterization of the pattern of neuronal death generated in this model remains unclear, involving both cortical and subcortical brain regions. Here, 7 days after moderate (3 atmospheres absolute [ATA]) or severe (3.8 ATA) LFP, we estimated neuronal loss by using immunohistochemistry together with a computer-assisted automated method for quantifying neuronal density in brain sections. Neuronal counts were performed ipsilateral to the impact, in the parietal cortex ventral to the site of percussion, in the temporal cortex, in the dorsal thalamus, and in the hippocampus. These results were compared with the counts observed at similar areas in sham animals. We found that neuronal density was severely decreased in the temporal cortex (-60%), in the dorsal thalamus (-63%), and in area CA3 of the hippocampus (-36%) of injured animals compared with controls but was not significantly modified in the cortices located immediately ventral to the impact. Total cellular density increased in brain structures displaying neuronal death, suggesting the presence of gliosis. The increase in the severity of LFP did not change the pattern of neuronal injury. This automated method simplified the study of neuronal loss following traumatic brain injury and allowed the identification of a pattern of neuronal loss that spreads from the dorsal thalamus to the temporal cortex, with the most severe lesions being in brain structures remote from the site of impact.

  16. BID links ferroptosis to mitochondrial cell death pathways.

    PubMed

    Neitemeier, Sandra; Jelinek, Anja; Laino, Vincenzo; Hoffmann, Lena; Eisenbach, Ina; Eying, Roman; Ganjam, Goutham K; Dolga, Amalia M; Oppermann, Sina; Culmsee, Carsten

    2017-03-09

    Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the Xc(-) system or inhibition of glutathione peroxidase 4 (Gpx4) to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation. In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by Xc(-) inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death.

  17. Life and Death Decision Analysis.

    DTIC Science & Technology

    1979-12-01

    LIFE SMOKING: CANCER, EMPHYSEMA, SHORTENED LIFE BATHING: FALLING, ELECTROCUTION CONTRACEPTION: DEATH , ILLNESS PREGNANCY: DEATH , ILLNESS ABORTION ...economic effect is the one with the highest probability of causing my death . -13- EXPECTED NET SYSTEM DESIGN BENEFIT TO ME DEATH DEATH (r A(excluding death ...0-AO81 424 STANFORD UNIV CALIF DEPT OF ENGtNEERING-ECONOM!C SYSTEMS F/6 12/1 LIFE ANDI DEATH DECISION ANALYSIS.CU) DEC 79 R A HOWARD N0OOIN-79-C-0036

  18. In vitro neuronal cytotoxicity of latex and nonlatex orthodontic elastics.

    PubMed

    Hanson, Mark; Lobner, Doug

    2004-07-01

    Although the toxicity of many dental materials has been thoroughly investigated, the toxicity of orthodontic elastic materials has not been extensively tested. We evaluated the neurotoxicity of 3 latex and 3 nonlatex orthodontic elastics in murine cerebral cortical cell cultures. Standard-sized pieces of each material from 3 manufacturers (American, Masel, and GAC) were placed on culture well inserts, allowing the material to be exposed to the culture bathing media without causing physical disruption of the cells. Cell death was quantified by assaying the release of the cytosolic enzyme lactate dehydrogenase. Exposure of cortical cultures to the nonlatex elastics did not cause significant neuronal death, but exposure to each of the latex elastics resulted in significant neuronal death. The neuronal death induced by each of the latex elastics was blocked by adding the metal chelator, EDTA (calcium disodium ethylenediaminetetraacetate). Because many latexes use zinc-containing compounds in the prevulcanization process, and the death induced had characteristics similar to zinc-induced neuronal death, it seems likely that the toxicity of latex elastics was mediated by zinc release. Because ingestion of