Science.gov

Sample records for acids alanine glycine

  1. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    NASA Astrophysics Data System (ADS)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  2. Degradation of Glycine and Alanine on Irradiated Quartz

    NASA Astrophysics Data System (ADS)

    Pawlikowski, Maciej; Benko, Aleksandra; Wróbel, Tomasz P.

    2013-04-01

    Recent researches suggest participation of minerals in the formation of life under primordial conditions. Among all of the minerals, quartz seems to be one of the most probable to take part in such processes. However, an external source of energy is needed, e.g. electric discharge. A device simulating the proposed conditions was designed and was used to simulate prebiotic conditions. Investigation of processes occurring during the stimulation of quartz with electric discharge was studied by means of Ultraviolet-visible (UV-VIS) spectroscopy, in order to monitor the generation kinetics of free radicals. Additionally, infrared spectroscopy was applied to identify chemical reaction products created in a solution of alanine or glycine, in the presence of quartz treated with electric discharge. Formation of increased amounts of free radicals, compared to experiments performed without quartz and/or amino acid, is reported, along with identification of possible degradation products of alanine. No synthetic reactions were observed.

  3. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    PubMed

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well. PMID:26369758

  4. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  5. Comparative study of glycine, alanine or casein as inert nitrogen sources in endotoxemic rats.

    PubMed

    Chambon-Savanovitch, C; Felgines, C; Farges, M C; Raul, F; Cézard, J P; Davot, P; Vasson, M P; Cynober, L A

    1999-10-01

    Pharmacological effects of dietary amino acids (AA) and peptides must be compared to an isonitrogenous control that is as inert as possible. To establish a rationale for the choice of such a control, potential metabolic and nutritional effects of three currently used nitrogenous controls (glycine, alanine, and casein) were evaluated in an endotoxemic rat model that has well-defined alterations in AA and protein metabolism. Five-week-old male Sprague-Dawley rats (113 +/- 1 g) were randomly assigned to four groups and received at d 0 an intraperitoneal injection of endotoxin (3 mg/kg). After withdrawal of food for 24 h, the rats were enterally refed for 48 h with a liquid diet (Osmolite((R))) supplemented with 0.19 g N. kg(-1). d(-1) in the form of glycine [lipopolysaccharide (LPS)-GLY group], alanine (LPS-ALA group) or casein (LPS-CAS group). One group (LPS group) received only Osmolite((R)). Plasma, two skeletal muscles, the liver and the intestine were then removed. Body and tissue weights and tissue protein contents did not differ among the four groups. Intestine histomorphometry showed no significant difference among groups. Jejunal hydrolase activities were significantly affected by the nitrogenous supplementations, but no effect was observed in the ileum. Only limited significant effects were observed on plasma and tissue-free AA concentrations, except for an accumulation of glycine in the plasma and tissues from the LPS-GLY group, compared to other groups. Overall, whereas glycine as a nitrogenous control should be used with care, either alanine or casein may be used as the "placebo," with the choice depending on the study to be performed. PMID:10498760

  6. Ionization constants of aqueous amino acids at temperatures up to 250°C using hydrothermal pH indicators and UV-visible spectroscopy: Glycine, α-alanine, and proline

    NASA Astrophysics Data System (ADS)

    Clarke, Rodney G. F.; Collins, Christopher M.; Roberts, Jenene C.; Trevani, Liliana N.; Bartholomew, Richard J.; Tremaine, Peter R.

    2005-06-01

    Ionization constants for several simple amino acids have been measured for the first time under hydrothermal conditions, using visible spectroscopy with a high-temperature, high-pressure flow cell and thermally stable colorimetric pH indicators. This method minimizes amino acid decomposition at high temperatures because the data can be collected rapidly with short equilibration times. The first ionization constant for proline and α-alanine, K a,COOH, and the first and second ionization constants for glycine, K a,COOH and K a,NH4+, have been determined at temperatures as high as 250°C. Values for the standard partial molar heat capacity of ionization, Δ rC po, COOH and Δ rC po, NH4+, have been determined from the temperature dependence of ln (K a,COOH) and ln (K a,NH4+). The methodology has been validated by measuring the ionization constant of acetic acid up to 250°C, with results that agree with literature values obtained by potentiometric measurements to within the combined experimental uncertainty. We dedicate this paper to the memory of Dr. Donald Irish (1932-2002) of the University of Waterloo—friend and former supervisor of two of the authors (R.J.B. and P.R.T.).

  7. IR spectroscopic signatures of solid glycine and alanine in astrophysical ices

    NASA Astrophysics Data System (ADS)

    Rodriguez-Lazcano, Y.; Maté, B.; Tanarro, I.; Herrero, V.; Escribano, R.

    2012-09-01

    The conversion from solid neutral to zwitterionic glycine (or alanine) is studied using infrared spectroscopy from the point of view of the interactions of this molecule with polar (water) and non-polar (CO2, CH4) surroundings. Such environments could be found on astrophysical matter. Different spectral features are suggested as suitable probes for the presence of glycine (or alanine) in astrophysical media, depending on their form (normal or zwitterionic), temperature, and composition.

  8. Determination of β-N-methylamino-L-alanine, N-(2-aminoethyl)glycine, and 2,4-diaminobutyric acid in Food Products Containing Cyanobacteria by Ultra-Performance Liquid Chromatography and Tandem Mass Spectrometry: Single-Laboratory Validation.

    PubMed

    Glover, W Broc; Baker, Teesha C; Murch, Susan J; Brown, Paula N

    2015-01-01

    A single-laboratory validation study was completed for the determination of β-N-methylamino-L-alanine (BMAA), N-(2-aminoethyl)glycine (AEG), and 2,4-diaminobutyric acid (DAB) in bulk natural health product supplements purchased from a health food store in Canada. BMAA and its isomers were extracted with acid hydrolysis to free analytes from protein association. Acid was removed with the residue evaporated to dryness and reconstituted with derivatization using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AccQ-Fluor). Chromatographic separation and detection were achieved using RP ultra-performance LC coupled to a tandem mass spectrometer operated in multiple reaction monitoring mode. Data from biological samples were evaluated for precision and accuracy across different days to ensure repeatability. Accuracy was assessed by spike recovery of biological samples using varying amino acid concentrations, with an average recovery across all samples of 108.6%. The analytical range was found to be 764-0.746 ng/mL prior to derivatization, thereby providing a linear range compatible with potentially widely varying analyte concentrations in commercial health food products. Both the U. S. Food and Drug Administration (FDA) and U. S. Pharmacopeia definitions were evaluated for determining method limits, with the FDA approach found to be most suitable having an LOD of 0.187 ng/mL and LLOQ of 0.746 ng/mL. BMAA in the collected specimens was detected at concentrations lower than 1 μg/g, while AEG and DAB were found at concentrations as high as 100 μg/g. Finding these analytes, even at low concentrations, has potential public health significance and suggests a need to screen such products prior to distribution. The method described provides a rapid, accurate, and precise method to facilitate that screening process. PMID:26651568

  9. Analytical continuation in coupling constant method; application to the calculation of resonance energies and widths for organic molecules: Glycine, alanine and valine and dimer of formic acid

    NASA Astrophysics Data System (ADS)

    Papp, P.; Matejčík, Š.; Mach, P.; Urban, J.; Paidarová, I.; Horáček, J.

    2013-06-01

    The method of analytic continuation in the coupling constant (ACCC) in combination with use of the statistical Padé approximation is applied to the determination of resonance energy and width of some amino acids and formic acid dimer. Standard quantum chemistry codes provide accurate data which can be used for analytic continuation in the coupling constant to obtain the resonance energy and width of organic molecules with a good accuracy. The obtained results are compared with the existing experimental ones.

  10. Simultaneous Determination of Glutamate, Glycine, and Alanine in Human Plasma Using Precolumn Derivatization with 6-Aminoquinolyl-N-hydroxysuccinimidyl Carbamate and High-Performance Liquid Chromatography

    PubMed Central

    Huang, Qing Xian; Li, Shu Cui; Yang, Mei Zi; Rao, Bin

    2012-01-01

    A simple, sensitive and reproducible high-performance liquid chromatography (HPLC) method has been validated for determining concentrations of glutamate, glycine, and alanine in human plasma. Proteins in plasma were precipitated with perchloric acid, followed by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC). Simultaneous analysis of glutamate, glycine, and alanine is achieved using reversed-phase HPLC conditions and ultraviolet detection. Excellent linearity was observed for these three amino acids over their concentration ranges with correlation coefficients (r)>0.999. The intra- and inter-day precision were below 10%. This method utilizes quality control samples and demonstrates excellent plasma recovery and accuracy. The developed method has been successfully applied to measure plasma glutamate, glycine, and alanine in twenty volunteers. PMID:23118561

  11. Formation of homochiral glycine/Cu(111) quantum corral array realized using alanine nuclei

    NASA Astrophysics Data System (ADS)

    Nakamura, Miki; Huang, Hui; Kanazawa, Ken; Taninaka, Atsushi; Yoshida, Shoji; Takeuchi, Osamu; Shigekawa, Hidemi

    2015-08-01

    Glycine has enantiomeric isomers on a Cu(111) surface through the dissociation of hydrogen from the carboxyl group and forms an array of quantum corrals of ∼1.3 nm diameter. Stable homo-chiral glycinate trimers are formed in the first step, which subsequently form a network with a hexagonal arrangement. However, domains with R- or S-chirality coexist with the same probability. On the other hand, α-alanine has D- and L-chirality in nature and forms a similar quantum corral array on Cu(111) with R- and S-chirality, respectively. Here, by using α-alanine molecules as nuclei, the chirality of glycine molecules was controlled and a homochiral quantum corral array was successfully formed, which indicates the possibility that the optical isomers can be separated through a method such as preferential crystallization.

  12. Functional characterization of a member of alanine or glycine: cation symporter family in halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Bualuang, Aporn; Kageyama, Hakuto; Tanaka, Yoshito; Incharoensakdi, Aran; Takabe, Teruhiro

    2015-01-01

    Membrane proteins of amino acid-polyamine-organocation (APC) superfamily transport amino acids and amines across membranes and play important roles in the regulation of cellular processes. The alanine or glycine: cation symporter (AGCS) family belongs to APC superfamily and is found in prokaryotes, but its substrate specificity remains to be clarified. In this study, we found that a halotolerant cyanobacterium, Aphanothece halophytica has two putative ApagcS genes. The deduced amino acid sequence of one of genes, ApagcS1, exhibited high homology to Pseudomonas AgcS. The ApagcS1 gene was expressed in Escherichia coli JW4166 which is deficient in glycine uptake. Kinetics studies in JW4166 revealed that ApAgcS1 is a sodium-dependent glycine transporter. Competition experiments showed the significant inhibition by glutamine, asparagine, and glycine. The level of mRNA for ApagcS1 was induced by NaCl and nitrogen-deficient stresses. Uptake of glutamine by ApAgcS1 was also observed. Based on these data, the physiological role of ApAgcS1 was discussed. PMID:25421789

  13. A single glycine-alanine exchange directs ligand specificity of the elephant progestin receptor.

    PubMed

    Wierer, Michael; Schrey, Anna K; Kühne, Ronald; Ulbrich, Susanne E; Meyer, Heinrich H D

    2012-01-01

    The primary gestagen of elephants is 5α-dihydroprogesterone (DHP), which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR). Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A) of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD), we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems. PMID:23209719

  14. Molecular dynamics of glycine ions in alanine doped TGS single crystal as probed by polarized laser raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bajpai, P. K.; Verma, A. L.

    2012-10-01

    Polarized Raman spectra of pure and alanine doped tri-glycine sulfate (TGS) single crystals at 12 K in different scattering geometries are analyzed. Sub species modes due to three crystallographically distinguishable glycine ions G (I), G (II) and G (III) are assigned. It is observed that alanine doping does not change the crystalline field and acts as local perturbation only. The major changes due to doping are observed in the relative intensities of different modes; most of the modes associated with G (I) and SO42- ions show reversal behavior in relative intensity at high doping concentration. The observed spectral changes are analyzed in terms of reorientation of G (I) ions with sub species modes of G (II)/ G (III) following the reorientation due to complex hydrogen bonding network.

  15. Enzymatic properties of the glycine D-alanine [corrected] aminopeptidase of Aspergillus oryzae and its activity profiles in liquid-cultured mycelia and solid-state rice culture (rice koji).

    PubMed

    Marui, Junichiro; Matsushita-Morita, Mayumi; Tada, Sawaki; Hattori, Ryota; Suzuki, Satoshi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei; Takeuchi, Michio; Kusumoto, Ken-Ichi

    2012-01-01

    The gdaA gene encoding S12 family glycine-D-alanine aminopeptidase (GdaA) was found in the industrial fungus Aspergillus oryzae. GdaA shares 43% amino acid sequence identity with the D-aminopeptidase of the Gram-negative bacterium Ochrobactrum anthropi. GdaA purified from an A. oryzae gdaA-overexpressing strain exhibited high D-stereospecificity and efficiently released N-terminal glycine and D-alanine of substrates in a highly specific manner. The optimum pH and temperature were 8 to 9 and 40°C, respectively. This enzyme was stable under alkaline conditions at pH 8 to 11 and relatively resistant to acidic conditions until pH 5.0. The chelating reagent EDTA, serine protease inhibitors such as AEBSF, benzamidine, TPCK, and TLCK, and the thiol enzyme inhibitor PCMB inhibited the enzyme. The aminopeptidase inhibitor bestatin did not affect the activity. GdaA was largely responsible for intracellular glycine and D-alanine aminopeptidase activities in A. oryzae during stationary-phase growth in liquid media. In addition, the activity increased in response to the depletion of nitrogen or carbon sources in the growth media, although the GdaA-independent glycine aminopeptidase activity highly increased simultaneously. Aminopeptidases of A. oryzae attract attention because the enzymatic release of a variety of amino acids and peptides is important for the enhancement of the palatability of fermented foods. GdaA activity was found in extracts of a solid-state rice culture of A. oryzae (rice koji), which is widely used as a starter culture for Japanese traditional fermented foods, and was largely responsible for the glycine and D-alanine aminopeptidase activity detected at a pH range of 6 to 9. PMID:22005737

  16. Synthesis of beta-hydroxy-alpha-amino acids with a reengineered alanine racemase.

    PubMed

    Fesko, Kateryna; Giger, Lars; Hilvert, Donald

    2008-11-15

    The Y265A mutant of alanine racemase (alrY265A) was evaluated as a catalyst for the synthesis of beta-hydroxy-alpha-amino acids. It promotes the PLP-dependent aldol condensation of glycine with a range of aromatic aldehydes. The desired products were obtained with complete stereocontrol at C(alpha) (ee>99%, D) and moderate to high selectivity at C(beta) (up to 97% de). The designed enzyme is thus similar to natural d-threonine aldolases in its substrate specificity and stereoselectivity. Moreover, its ability to utilize alanine as an alternative donor suggests an expanded scope of potential utility for the production of biologically active compounds. PMID:18760921

  17. COMPARISON OF ALANINE AMINOPEPTIDASE ACTIVITIES IN HETERODERA GLYCINES AND CAENORHABDITIS ELEGANS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminopeptidase activities in the cytosolic fraction of whole body homogenates of Caenorhabditis elegans and Heterodera glycines were examined. Activities were detected using a colorimetric assay based upon hydrolysis of aminoacyl p-nitroanilides (Xxx-pNA). Properties including substrate preference...

  18. Osteocompatibility evaluation of poly(glycine ethyl ester-co-alanine ethyl ester)phosphazene with honeycomb-patterned surface topography.

    PubMed

    Duan, Shun; Yang, Xiaoping; Mao, Jifu; Qi, Bing; Cai, Qing; Shen, Hong; Yang, Fei; Deng, Xuliang; Wang, Shenguo

    2013-02-01

    Biodegradable amino acid ester-substituted polyphosphazenes are unique biomaterials for tissue engineering. Considering the surface properties as topography and chemical composition having vital roles in regulating cellular response, in this study, a kind of micropatterned polyphosphazene films were prepared and subjected to osteoblasts culture. Briefly, poly(glycine ethyl ester-co-alanine ethyl ester)phosphazene (PGAP) was synthesized, and its solution in chloroform was cast under high (80%) or low (20%) environmental humidity. Honeycomb-patterned or flat PGAP films were resulted. By analyzing with scanning electron microscope, atomic force microscope, X-ray photoelectron spectroscope, and water contact angle measurement, the honeycomb-patterned PGAP films demonstrated higher surface roughness, phosphorous and nitrogen content, and hydrophilicity than the flat one. Although the initial cell attachment and proliferation on PGAP films were inferior to those on conventional poly(lactic-co-glycolic acid) films, P-containing PGAP was a sort of bone-binding bioactive polymer. With these alternations, honeycomb-patterned PGAP films had accordingly enhanced protein adsorption and apatite deposition in simulated body fluid and showed great advantages in promoting osteogenous differentiation. The results suggested a potential way to make polyphosphazenes as good choices for bone tissue regeneration by increasing their surface roughness and phosphorous content. PMID:22733644

  19. Oral administration of D-alanine in monkeys robustly increases plasma and cerebrospinal fluid levels but experimental D-amino acid oxidase inhibitors had minimal effect.

    PubMed

    Rojas, Camilo; Alt, Jesse; Ator, Nancy A; Wilmoth, Heather; Rais, Rana; Hin, Niyada; DeVivo, Michael; Popiolek, Michael; Tsukamoto, Takashi; Slusher, Barbara S

    2016-09-01

    Hypofunction of the N-methyl-d-aspartate (NMDA) receptor is thought to exacerbate psychosis in patients diagnosed with schizophrenia. Consistent with this hypothesis, D-alanine, a co-agonist at the glycine site of the NMDA receptor, was shown to improve positive and cognitive symptoms when used as add-on therapy for schizophrenia treatment. However, D-alanine had to be administered at high doses (~7 g) to observe clinical effects. One possible reason for the high dose is that D-alanine could be undergoing oxidation by D-amino acid oxidase (DAAO) before it reaches the brain. If this is the case, the dose could be reduced by co-administration of D-alanine with a DAAO inhibitor (DAAOi). Early studies with rodents showed that co-administration of D-alanine with 5-chloro-benzo[d]isoxazol-3-ol (CBIO), a prototype DAAOi, significantly enhanced the levels of extracellular D-alanine in the frontal cortex compared with D-alanine alone. Further, the use of CBIO reduced the dose of D-alanine needed to attenuate prepulse inhibition deficits induced by dizocilpine. The objective of the work reported herein was to confirm the hypothesis that DAAO inhibition can enhance D-alanine exposure in a species closer to humans: non-human primates. We report that while oral D-alanine administration to baboons (10 mg/kg) enhanced D-alanine plasma and CSF levels over 20-fold versus endogenous levels, addition of experimental DAAOi to the regimen exhibited a 2.2-fold enhancement in plasma and no measurable effect on CSF levels. The results provide caution regarding the utility of DAAO inhibition to increase D-amino acid levels as treatment for patients with schizophrenia. PMID:27287825

  20. FT-IR and Raman spectroscopic and DFT studies of anti-cancer active molecule N-{(meta-ferrocenyl) Benzoyl} - L-Alanine - Glycine ethyl ester

    NASA Astrophysics Data System (ADS)

    Xavier, T. S.; Kenny, Peter T. M.; Manimaran, D.; Joe, I. Hubert

    2015-06-01

    FT-Raman and FT-IR spectra of N-{(meta-ferrocenyl) Benzoyl} - L-alanine - glycine ethyl ester were recorded in solid phase. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering intensities were calculated by using density functional method(B3LYP) with 6-31G(d, p) basis set. Vibrational assignment of the molecule was done by using potential energy distribution analysis. Natural bond orbital analysis, Mulliken charge analysis and HOMO-LUMO energy were used to elucidate the reasons for intra molecular charge transfer. Docking studies were conducted to predict its anticancer activity.

  1. Selective potentiation of alpha 1 glycine receptors by ginkgolic acid

    PubMed Central

    Maleeva, Galyna; Buldakova, Svetlana; Bregestovski, Piotr

    2015-01-01

    Glycine receptors (GlyRs) belong to the superfamily of pentameric cys-loop receptor-operated channels and are involved in numerous physiological functions, including movement, vision, and pain. In search for compounds performing subunit-specific modulation of GlyRs we studied action of ginkgolic acid, an abundant Ginkgo biloba product. Using patch-clamp recordings, we analyzed the effects of ginkgolic acid in concentrations from 30 nM to 25 μM on α1–α3 and α1/β, α2/β configurations of GlyR and on GABAARs expressed in cultured CHO-K1 cells and mouse neuroblastoma (N2a) cells. Ginkgolic acid caused an increase in the amplitude of currents mediated by homomeric α1 and heteromeric α1/β GlyRs and provoked a left-shift of the concentration-dependent curves for glycine. Even at high concentrations (10–25 μM) ginkgolic acid was not able to augment ionic currents mediated by α2, α2/β, and α3 GlyRs, or by GABAAR consisting of α1/β2/γ2 subunits. Mutation of three residues (T59A/A261G/A303S) in the α2 GlyR subunit to the corresponding ones from the α1 converted the action of ginkgolic acid to potentiation with a distinct decrease in EC50 for glycine, suggesting an important role for these residues in modulation by ginkgolic acid. Our results suggest that ginkgolic acid is a novel selective enhancer of α1 GlyRs. PMID:26578878

  2. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Fukaya, Minoru; Rai, Vandna; Takabe, Teruhiro

    2015-12-01

    A halotolerant cyanobacterium Aphanothece halophytica thrives in extreme salinity with accumulation of a potent osmoprotectant glycine betaine. Recently, this cyanobacterium was shown to accumulate sunscreen molecule mycosporine-2-glycine significantly at high salinity. In this study, we investigated effects of nitrate and amino acid provision on the accumulation of glycine betaine and mycosporine-2-glycine. With elevated nitrate concentrations at high salinity, intracellular levels of both metabolites were enhanced. Six-fold high nitrate concentration increased the relative amounts of glycine betaine and mycosporine-2-glycine to be 1.5 and 2.0 folds compared with control condition : Increased levels were time- and dose-dependent manner. Exogenous supply of glycine/serine at high salinity resulted in the similar trends as observed in excess nitrate experiment. Intracellular level of glycine betaine increased ∼1.6 folds with glycine/serine supplementation. These supplementations also caused the increased level of mycosporine-2-glycine, namely 1.4 and 2 folds by glycine and serine, respectively. The transcription of glycine betaine and mycosporine-2-glycine biosynthetic genes was strongly induced under high-nitrate-salt condition. These results suggest the dependence of glycine betaine and mycosporine-2-glycine productions on substrate availability, and the effect of nitrate was possibly associated with stimulation of osmoprotectant increment in this extremophile. PMID:26474598

  3. Amino acid transport across the tonoplast of vacuoles isolated from barley mesophyll protoplasts: Uptake of alanine, leucine, and glutamine. [Hordeum vulgare L

    SciTech Connect

    Dietz, K.J.; Jaeger, R.; Kaiser, G.; Martinoia, E. )

    1990-01-01

    Mesophyll protoplasts from leaves of well-fertilized barley (Hordeum vulgare L.) plants contained amino acids at concentrations as high as 120 millimoles per liter. With the exception of glutamic acid, which is predominantly localized in the cytoplasm, a major part of all other amino acids was contained inside the large central vacuole. Alanine, leucine, and glutamine are the dominant vacuolar amino acids in barley. Their transport into isolated vacuoles was studied using {sup 14}C-labeled amino acids. Uptake was slow in the absence of ATP. A three- to sixfold stimulation of uptake was observed after addition of ATP or adenylyl imidodiphosphate an ATP analogue not being hydrolyzed by ATPases. Other nucleotides were ineffective in increasing the rate of uptake. ATP-Stimulated amino acid transport was not dependent on the transtonoplast pH or membrane potential. p-Chloromercuriphenylsulfonic acid and n-ethyl maleimide increased transport independently of ATP. Neutral amino acids such as valine or leucine effectively decreased the rate of alanine transport. Glutamine and glycine were less effective or not effective as competitive inhibitors of alanine transport. The results indicate the existence of a uniport translocator specific for neutral or basic amino acids that is under control of metabolic effectors.

  4. Inhibitors of alanine racemase enzyme: a review.

    PubMed

    Azam, Mohammed Afzal; Jayaram, Unni

    2016-08-01

    Alanine racemase is a fold type III PLP-dependent amino acid racemase enzyme catalysing the conversion of l-alanine to d-alanine utilised by bacterial cell wall for peptidoglycan synthesis. As there are no known homologs in humans, it is considered as an excellent antibacterial drug target. The standard inhibitors of this enzyme include O-carbamyl-d-serine, d-cycloserine, chlorovinyl glycine, alaphosphin, etc. d-Cycloserine is indicated for pulmonary and extra pulmonary tuberculosis but therapeutic use of drug is limited due to its severe toxic effects. Toxic effects due to off-target affinities of cycloserine and other substrate analogs have prompted new research efforts to identify alanine racemase inhibitors that are not substrate analogs. In this review, an updated status of known inhibitors of alanine racemase enzyme has been provided which will serve as a rich source of structural information and will be helpful in generating selective and potent inhibitor of alanine racemase. PMID:26024289

  5. The natural non-protein amino acid N-β-methylamino-L-alanine (BMAA) is incorporated into protein during synthesis.

    PubMed

    Glover, W Broc; Mash, Deborah C; Murch, Susan J

    2014-11-01

    N-β-methylamino-L-alanine (BMAA) is an amino acid produced by cyanobacteria and accumulated through trophic levels in the environment and natural food webs. Human exposure to BMAA has been linked to progressive neurodegenerative diseases, potentially due to incorporation of BMAA into protein. The insertion of BMAA and other non-protein amino acids into proteins may trigger protein misfunction, misfolding and/or aggregation. However, the specific mechanism by which BMAA is associated with proteins remained unidentified. Such studies are challenging because of the complexity of biological systems and samples. A cell-free in vitro protein synthesis system offers an excellent approach for investigation of changing amino acid composition in protein. In this study, we report that BMAA incorporates into protein as an error in synthesis when a template DNA sequence is used. Bicinchoninic acid assay of total protein synthesis determined that BMAA effectively substituted for alanine and serine in protein product. LC-MS/MS confirmed that BMAA was selectively inserted into proteins in place of other amino acids, but isomers N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobutyric acid (DAB) did not share this characteristic. Incorporation of BMAA into proteins was significantly higher when genomic DNA from post-mortem brain was the template. About half of BMAA in the synthetic proteins was released with denaturation with sodium dodecylsulfonate and dithiothreitol, but the remaining BMAA could only be released by acid hydrolysis. Together these data demonstrate that BMAA is incorporated into the amino acid backbone of proteins during synthesis and also associated with proteins through non-covalent bonding. PMID:25096519

  6. Glycine as a d-amino acid surrogate in the K+-selectivity filter

    PubMed Central

    Valiyaveetil, Francis I.; Sekedat, Matthew; MacKinnon, Roderick; Muir, Tom W.

    2004-01-01

    The K+ channel-selectivity filter consists of two absolutely conserved glycine residues. Crystal structures show that the first glycine in the selectivity filter, Gly-77 in KcsA, is in a left-handed helical conformation. Although the left-handed helical conformation is not favorable for the naturally occurring l-amino acids, it is favorable for the chirally opposite d-amino acids. Here, we demonstrate that Gly-77 can be replaced by d-Ala with almost complete retention of function. In contrast, substitution with an l-amino acid results in a nonfunctional channel. This finding suggests that glycine is used as a surrogate d-amino acid in the selectivity filter. The absolute conservation of glycine in the K+-selectivity filter can be explained as a result of glycine being the only natural amino acid that can play this role. PMID:15563591

  7. Active transport of. gamma. -aminobutyric acid and glycine into synaptic vesicles

    SciTech Connect

    Kish, P.E.; Fischer-Bovenkerk, C.; Ueda, T. )

    1989-05-01

    Although {gamma}-aminobutyric acid (GABA) and glycine are recognized as major amino acid inhibitory neurotransmitters in the central nervous system, their storage is poorly understood. In this study the authors have characterized vesicular GABA and glycine uptakes in the cerebrum and spinal cord, respectively. They present evidence that GABA and glycine are each taken up into isolated synaptic vesicles in an ATP-dependent manner and that the uptake is driven by an electrochemical proton gradient. Uptake for both amino acids exhibited kinetics with low affinity similar to a vesicular glutamate uptake. The ATP-dependent GABA uptake was not inhibited by the putative amino acid neurotransmitters glycine, taurine, glutamate, or aspartate or by GABA analogs, agonists, and antagonists. Similarly, ATP-dependent glycine uptake was hardly affected by GABA, taurine, glutamate, or aspartate or by glycine analogs or antagonists. The GABA uptake was not affected by chloride, which is in contrast to the uptake of the excitatory neurotransmitter glutamate, whereas the glycine uptake was slightly stimulated by low concentrations of chloride. Tissue distribution studies indicate that the vesicular uptake systems for GABA, glycine, and glutamate are distributed in different proportions in the cerebrum and spinal cord. These results suggest that the vesicular uptake systems for GABA, glycine, and glutamate are distinct from each other.

  8. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean; Liao, Hans H; Gort, Steven John; Selifonova, Olga V

    2014-11-18

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  9. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean; Liao, Hans H.; Gort, Steven John; Selifonova, Olga V.

    2011-10-04

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  10. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glycine (aminoacetic acid) in food for human consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Specific Administrative Rulings and Decisions § 170.50 Glycine...

  11. Requirement for alanine in the amino acid control of deprivation-induced protein degradation in liver.

    PubMed Central

    Pösö, A R; Mortimore, G E

    1984-01-01

    Protein degradation in liver is actively controlled by a small group of inhibitory amino acids--leucine, tyrosine (or phenylalanine), glutamine, proline, histidine, tryptophan, and methionine. Other evidence, however, suggests that one or more of the remaining 12 noninhibitory amino acids is also required for suppression of proteolysis at normal concentrations. This question was investigated in livers of fed rats perfused in the single-pass mode. The deletion of alanine at normal (1x), but not at 4x or 10x normal, plasma amino acid concentrations evoked a near-maximal acceleration of protein degradation. No other noninhibitory amino acid was effective. Because alanine alone was not directly inhibitory and its omission was not associated with a decrease in inhibitory amino acid pools, alanine was presumed to act as a coregulator in the expression of inhibitory activity. When tested alone, the inhibitory group was as effective as the complete mixture at 0.5x and 4x levels, but it lost its suppressive ability within a narrow zone of concentration centered slightly above 1x. The addition of 1x (0.48 mM) alanine completely restored the inhibition. Pyruvate and lactate could be effectively substituted, but only at concentrations 10-20 times greater than that of alanine. These, together with earlier findings, indicate the existence of a regulatory complex that recognizes specific amino acids and transmits positive and negative signals to proteolytic sites. The results also suggest that alanine can provide an important regulatory link between energy demands and protein degradation. PMID:6589593

  12. Anaerobic Accumulation of γ-Aminobutyric Acid and Alanine in Radish Leaves (Raphanus sativus, L.)

    PubMed Central

    Streeter, John G.; Thompson, John F.

    1972-01-01

    In leaves, the anaerobic accumulation of alanine was accompanied by a loss of aspartate, and these changes preceded γ-aminobutyrate accumulation and glutamate loss. Changes in keto acid content did not appear to be the cause of amino acid changes. Accumulation of γ-aminobutyrate was due to acceleration of glutamate decarboxylation and arrest of γ-aminobutyrate transamination. Changes in enzyme content did not explain the changes in reaction rates in vivo. Most of the aspartate may be converted anaerobically to alanine via oxalacetate and pyruvate. PMID:16658004

  13. Osteogenesis Imperfecta Missense Mutations in Collagen: Structural consequences of a glycine to alanine replacement at a highly charged site

    PubMed Central

    Xiao, Jianxi; Cheng, Haiming; Silva, Teresita; Baum, Jean; Brodsky, Barbara

    2011-01-01

    Glycine is required as every third residue in the collagen triple-helix, and a missense mutation leading to the replacement of even one Gly in the repeating (Gly-Xaa-Yaa)n sequence by a larger residue leads to a pathological condition. Gly to Ala missense mutations are highly underrepresented in osteogenesis imperfecta (OI) and other collagen diseases, suggesting that the smallest replacement residue Ala might cause the least structural perturbation and mildest clinical consequences. The relatively small number of Gly to Ala mutation sites that do lead to OI must have some unusual features, such as greater structural disruption due to local sequence environment or location at a biologically important site. Here, peptides are used to model a severe OI case where a Gly to Ala mutation is found within a highly stabilizing Lys-Gly-Asp sequence environment. NMR, CD and DSC studies indicate this Gly to Ala replacement leads to a substantial loss in triple-helix stability and non-equivalence of the Ala residues in the three chains such that only one of the three Ala residues is capable of form a good backbone hydrogen bond. Examination of reported OI Gly to Ala mutations suggests preferential location at known collagen binding sites, and we propose that structural defects due to Ala replacements may lead to pathology when interfering with interactions. PMID:22054507

  14. Structural, functional and optical studies on the amino acid doped glycine crystal

    NASA Astrophysics Data System (ADS)

    Manikandan, M. R.; Mahalingam, T.; Ravi, G.

    2012-06-01

    Single crystals of pure and amino acid (L-arginine) doped γ-glycine single crystals have been grown from aqueous solution by employing slow evaporation method. Morphological changes in different crystallographic planes were observed in the L-arginine doped γ-glycine crystals. Incorporation of L-arginine was confirmed qualitatively by FTIR spectroscopy. Powder X-ray diffraction was carried out to confirm γ-glycine and assess the single phase nature of the crystals. The lower cutoff wavelength was decreased by the influence of L-arginine in γ-glycine and this leads to an increase in the band gap. Nonlinear optical study revealed that L-arginine doping increases the SHG efficiency of the glycine crystal.

  15. Heat-initiated prebiotic formation of peptides from glycine/aspartic acid and glycine/valine in aqueous environment and clay suspension

    NASA Astrophysics Data System (ADS)

    Pant, Chandra Kala; Lata, Hem; Pathak, Hari Datt; Mehata, Mohan Singh

    2009-04-01

    The effect of heat on the reaction system of glycine/aspartic acid and glycine/valine in the aqueous environment as well as in montmorillonite clay suspension with or without divalent cations (Ca2+, Mg2+ and Ni2+) has been investigated at 85°C±5°C for varying periods under prebiotic drying and wetting conditions. The resulting products were analysed and characterized by chromatographic and spectroscopic methods. Peptide formation appears to depend on the duration of heat effect, nature of reactant amino acids and, to some extent, on montmorillonite clay incorporated with divalent cations. In the glycine/aspartic acid system, oligomerization of glycine was limited up to trimer level (Gly)3 along with the formation of glycyl-aspartic acid, while linear and cyclic peptides of aspartic acid were not formed, whereas the glycine/valine system preferentially elongated homo-oligopeptide of glycine up to pentamer level (Gly)5 along with formation of hetero-peptides (Gly-Val and Val-Gly). These studies are relevant in the context of the prebiotic origin of proteins and the role of clay and metal ions in condensation and oligomerization of amino acids. The length of the bio-oligomer chain depends upon the reaction conditions. However, condensation into even a small length seems significant, as the same process would have taken millions of years in the primitive era of the Earth, leading to the first proteins.

  16. Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation.

    PubMed

    Perego, M; Glaser, P; Minutello, A; Strauch, M A; Leopold, K; Fischer, W

    1995-06-30

    The Bacillus subtilis dlt operon (D-alanyl-lipoteichoic acid) is responsible for D-alanine esterification of both lipoteichoic acid (LTA) and wall teichoic acid (WTA). The dlt operon contains five genes, dltA-dltE. Insertional inactivation of dltA-dltD results in complete absence of D-alanine from both LTA and WTA. Based on protein sequence similarity with the Lactobacillus casei dlt gene products (Heaton, M. P., and Neuhaus, F. C. (1992) J. Bacteriol. 174, 4707-4717), we propose that dltA encodes the D-alanine-D-alanyl carrier protein ligase (Dcl) and dltC the D-alanyl carrier protein (Dcp). We further hypothesize that the products of dltB and dltD are concerned with the transport of activated D-alanine through the membrane and the final incorporation of D-alanine into LTA. The hydropathy profiles of the dltB and dltD gene products suggest a transmembrane location for the former and an amino-terminal signal peptide for the latter. The incorporation of D-alanine into LTA and WTA did not separate in any of the mutants studied which indicates that either one and the same enzyme is responsible for D-alanine incorporation into both polymers or a separate enzyme, encoded outside the dlt operon, transfers the D-alanyl residues from LTA to WTA (Haas, R., Koch, H.-U., and Fischer, W. (1984) FEMS Microbiol. Lett. 21, 27-31). Inactivation of dltE has no effect on D-alanine ester content of both LTA and WTA, and at present we cannot propose any function for its gene product. Transcription analysis shows that the dlt operon is transcribed from a sigma D-dependent promoter and follows the pattern of transcription of genes belonging to the sigma D regulon. However, the turn off of transcription observed before sporulation starts seems to be dependent on the Spo0A and AbrB sporulation proteins and results in a D-alanine-free purely anionic LTA in the spore membrane. The dlt operon is dispensable for cell growth; its inactivation does not affect cell growth or morphology as

  17. THE AMPHOTERIC PROPERTIES OF SOME AMINO-ACIDS AND PEPTIDES.

    PubMed

    Eckweiler, H; Noyes, H M; Falk, K G

    1921-01-20

    The titration curves of solutions of glycine, alanine, alpha-ammo-butyric acid, leucine, glycyl-glycine, alanyl-glycine, alanyl-alanine, acetone, acetamide, urea, acetic acid, and aceturic acid were determined and some of the relations as dependent upon the chemical structures discussed. The isoelectric points of some of the amphoteric electrolytes were found experimentally. The definition of isoelectric point, its theoretical significance, and method of calculation were considered in some detail. PMID:19871865

  18. Disposition and metabolism of 2-fluoro-beta-alanine conjugates of bile acids following secretion into bile.

    PubMed

    Zhang, R W; Barnes, S; Diasio, R B

    1991-04-15

    Since 2-fluoro-beta-alanine (FBAL) conjugates of bile acids (BA), the primary biliary metabolites of fluoropyrimidine (FP) drugs, have been suggested to be related to the hepatotoxicity which develops in patients receiving FP chemotherapy by intrahepatic arterial infusion (Proc. Natl. Acad. Sci. USA 84, 5439-5443, 1987), it was important to determine whether they undergo enterohepatic circulation and hence accumulate in the liver and biliary system. In initial studies, sensitivity of FBAL-BA conjugates to hydrolysis by pancreatic enzymes was examined. In subsequent in vivo studies, a model FBAL-BA conjugate, FBAL-chenodeoxycholate (FBAL-CDC), was introduced into the lumen of the small intestine of anesthetized rats with biliary fistulas to quantitate the intestinal absorption, metabolism and tissue distribution of the conjugate. The results indicated that: (1) FBAL-BA conjugates were resistant to hydrolysis by pancreatic enzymes (carboxypeptidase A, carboxypeptidase B and trypsin) and by human pancreatic juice, but were completely hydrolyzed by cholyglycine hydrolase. (2) At least one-half of the administered FBAL-CDC was deconjugated during the process of intestinal absorption, as shown by HPLC analysis of the radioactivity in portal venous blood. (3) Deconjugated FBAL or CDC was reconjugated in liver with other bile acids or amino acids (glycine and taurine), respectively, as shown by radiochromatography of bile. (4) FBAL, formed as a result of hydrolysis of FBAL-CDC, had a wide tissue distribution. In conclusion, FBAL-CDC has a rapid turnover during its enterohepatic circulation due to deconjugation in the intestine and reconjugation in the liver. PMID:1902118

  19. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Glycine (aminoacetic acid) in food for human consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... (aminoacetic acid) in food for human consumption. (a) Heretofore, the Food and Drug Administration...

  20. Calcium Binding to Amino Acids and Small Glycine Peptides in Aqueous Solution: Toward Peptide Design for Better Calcium Bioavailability.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2016-06-01

    Deprotonation of amino acids as occurs during transfer from stomach to intestines during food digestion was found by comparison of complex formation constants as determined electrochemically for increasing pH to increase calcium binding (i) by a factor of around 6 for the neutral amino acids, (ii) by a factor of around 4 for anions of the acidic amino acids aspartic and glutamic acid, and (iii) by a factor of around 5.5 for basic amino acids. Optimized structures of the 1:1 complexes and ΔHbinding for calcium binding as calculated by density functional theory (DFT) confirmed in all complexes a stronger calcium binding and shorter calcium-oxygen bond length in the deprotonated form. In addition, the stronger calcium binding was also accompanied by a binding site shift from carboxylate binding to chelation by α-amino group and carboxylate oxygen for leucine, aspartate, glutamate, alanine, and asparagine. For binary amino acid mixtures, the calcium-binding constant was close to the predicted geometric mean of the individual amino acid binding constants indicating separate binding of calcium to two amino acids when present together in solution. At high pH, corresponding to conditions for calcium absorption, the binding affinity increased in the order Lys < Arg < Cys < Gln < Gly ∼ Ala < Asn < His < Leu < Glu< Asp. In a series of glycine peptides, calcium-binding affinity was found to increase in the order Gly-Leu ∼ Gly-Gly < Ala-Gly < Gly-His ∼ Gly-Lys-Gly < Glu-Cys-Gly < Gly-Glu, an ordering confirmed by DFT calculations for the dipeptides and which also accounted for large synergistic effects in calcium binding for up to 6 kJ/mol when compared to the corresponding amino acid mixtures. PMID:27159329

  1. The Infrared Spectrum of Matrix Isolated Aminoacetonitrile: A Precursor to the Amino Acid Glycine

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Bauschlicher, Charles W., Jr.; Sandford, Scott A.

    2003-01-01

    We present infrared (IR) spectral data from matrix isolation experiments and density functional theory calculations on the pre-biologically interesting molecule aminoacetonitrile, a precursor to glycine. We find that this nitrile has an unusually weak nitrile (C=N) stretch in the infrared, in contrast to expectations based on measurements and models of other nitriles under astrophysical conditions. The absence of an observable nitrile absorption feature in the infrared will make the IR search for this molecule considerably more difficult, and will raise estimates of upper limits on nitriles in interstellar and outer Solar System ices. This is also of relevance to assessing the formation routes of the amino acid glycine, since aminoacetonitrile is the putative precursor to glycine via the Strecker synthesis, the mechanism postulated to have produced the amino acids in meteorites.

  2. Origin of Glycine from Acid Hydrolysis of the β-Lactam Antibiotic A16886B

    PubMed Central

    Brannon, D. R.; Mabe, J. A.; Ellis, R.; Whitney, J. G.; Nagarajan, R.

    1972-01-01

    Structural analysis of two new β-lactam antibiotics, A16884A and A16886B, indicated that they, like cephalosporin C, were composed of modified valine and cysteine residues, and α-aminoadipic acid. However, acid hydrolysis of A16886B and A16884A produced three times as much glycine as did hydrolysis of cephalosporin C under the same conditions. Samples of A16886B-14C-6 and A16886B-14C-8 were prepared by the addition of cysteine-14C-3 and cystine-14C-1 to fermentations of Streptomyces clavuligerus. The specific activity of glycine obtained from hydrolysis of A16886B-14C-6 was considerably higher than that from hydrolysis of A16886B-14C-8. An explanation for the difference in amounts of glycine obtained from hydrolysis of these antibiotics is discussed. PMID:5045470

  3. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glycine (aminoacetic acid) in food for human consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Specific Administrative...

  4. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glycine (aminoacetic acid) in food for human consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Specific Administrative...

  5. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glycine (aminoacetic acid) in food for human consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Specific Administrative...

  6. Functional interaction of transmembrane helices 3 and 6 in rhodopsin. Replacement of phenylalanine 261 by alanine causes reversion of phenotype of a glycine 121 replacement mutant.

    PubMed

    Han, M; Lin, S W; Minkova, M; Smith, S O; Sakmar, T P

    1996-12-13

    Replacement of a highly conserved glycine residue on transmembrane (TM) helix 3 of bovine rhodopsin (Gly121) by amino acid residues with larger side chains causes a progressive blue-shift in the lambdamax value of the pigment, a decrease in thermal stability, and an increase in reactivity with hydroxylamine. In addition, mutation of Gly121 causes a relative reversal in the selectivity of opsin for 11-cis-retinal over all-trans-retinal. It was suggested that Gly121 plays an important role in defining the 11-cis-retinal binding pocket of rhodopsin (Han, M., Lin, S. W., Smith, S. O., and Sakmar, T. P. (1996) J. Biol. Chem. 271, 32330-32336). Here, we combined the mutant opsin G121L with second site replacements of four different amino acid residues on TM helix 6: Met257, Val258, Phe261, or Trp265. We show that the loss of function phenotypes of the G121L mutant described above can be partially reverted specifically by the mutation of Phe261, a residue highly conserved in all G protein-coupled receptors. For example, the double-replacement mutant G121L/F261A has spectral, chromophore-binding, and transducin-activating properties intermediate between those of G121L and rhodopsin. This rescue of the G121L defects did not occur with the other second site mutations tested. We conclude that specific portions of TM helices 3 and 6, which include Gly121 and Phe261, respectively, define the chromophore-binding pocket in rhodopsin. Finally, the results are placed in the context of a molecular graphics model of the TM domain of rhodopsin, which includes the retinal-binding pocket. PMID:8943296

  7. Mode of Action of Glycine on the Biosynthesis of Peptidoglycan

    PubMed Central

    Hammes, W.; Schleifer, K. H.; Kandler, O.

    1973-01-01

    The mechanism of glycine action in growth inhibition was studied on eight different species of bacteria of various genera representing the four most common peptidoglycan types. To inhibit the growth of the different organisms to 80%, glycine concentrations from 0.05 to 1.33 M had to be applied. The inhibited cells showed morphological aberrations. It has been demonstrated that glycine is incorporated into the nucleotide-activated peptidoglycan precursors. The amount of incorporated glycine was equivalent to the decrease in the amount of alanine. With one exception glycine is also incorporated into the peptidoglycan. Studies on the primary structure of both the peptidoglycan precursors and the corresponding peptidoglycan have revealed that glycine can replace l-alanine in position 1 and d-alanine residues in positions 4 and 5 of the peptide subunit. Replacement of l-alanine in position 1 of the peptide subunit together with an accumulation of uridine diphosphate-muramic acid (UDP-MurNAc), indicating an inhibition of the UDP-MurNAc:l-Ala ligase, has been found in three bacteria (Staphylococcus aureus, Lactobacillus cellobiosus and L. plantarum). However, discrimination against precursors with glycine in position 1 in peptidoglycan synthesis has been observed only in S. aureus. Replacement of d-alanine residues was most common. It occurred in the peptidoglycan with one exception in all strains studied. In Corynebacterium sp., C. callunae, L. plantarum, and L. cellobiosus most of the d-alanine replacing glycine occurs C-terminal in position 4, and in C. insidiosum and S. aureus glycine is found C-terminal in position 5. It is suggested that the modified peptidoglycan precursors are accumulated by being poor substrates for some of the enzymes involved in peptidoglycan synthesis. Two mechanisms leading to a more loosely cross-linked peptidoglycan and to morphological changes of the cells are considered. First, the accumulation of glycine-containing precursors may lead to

  8. Helix propensities of conformationally restricted amino acids. Non-natural substitutes for helix breaking proline and helix forming alanine.

    PubMed

    Alías, Miriam; Ayuso-Tejedor, Sara; Fernández-Recio, Juan; Cativiela, Carlos; Sancho, Javier

    2010-02-21

    Alpha helices are useful scaffolds to build biologically active peptides. The intrinsic stability of an alpha-helix is a key feature that can be successfully designed, and it is governed by the constituting amino acid residues. Their individual contributions to helix stability are given, according to Lifson-Roig theory, by their w parameters, which are known for all proteinogenic amino acids, but not for non-natural ones. On the other hand, non-natural, conformationally-restricted amino acids can be used to impart biochemical stability to peptides intended for in vivo administration. Efficient design of peptides based on these amino acids requires the previous determination of their w parameters. We begin here this task by determining the w parameters of two restricted analogs of alanine: (alpha-methyl)alanine and 1-aminocyclopropanecarboxylic acid. According to their w values (alpha-methyl)alanine is almost as good a helix forming residue as alanine, while 1-aminocyclopropanecarboxylic acid is, similarly to proline, a helix breaker. PMID:20135035

  9. Membrane Potential and Proton Cotransport of Alanine and Phosphate as Affected by Permeant Weak Acids in Lemna gibba1

    PubMed Central

    Basso, Barbara; Ullrich-Eberius, Cornelia I.

    1987-01-01

    The treatment of Lemna gibba plants with the weak acids (trimethylacetic acid and butyric acid), used as tools to decrease intracellular pH, induced a hyperpolarization of membrane potential, dependent on the concentration of the undissociated permeant form of the weak acid and on the value of the resting potential. Measurements were carried out both with `high potential' and `low potential' plants and the maximum values af acid induced hyperpolarizations were about 35 and 71 millivolts, respectively. Weak acids influenced also the transient light-dark membrane potential changes, typical for photosynthesizing material, suggesting a dependence of these changes on an acidification of cytoplasm. In the presence of the weak acids, the membrane depolarization induced by the cotransport of alanine and phosphate with protons was reduced; the maximum reduction (about 90%) was obtained with alanine during 2 millimolar trimethylacetic acid perfusion at pH 5. A strong inhibition of the uptake rates (up to 48% for [14C]alanine and 68% for 32P-phosphate) was obtained in the presence of the weak acids, both by decreasing the pH of the medium and by increasing the concentration of the acid. In these experimental conditions, the ATP level and O2 uptake rates did not change significantly. These results constitute good evidence that H+/solute cotransport in Lemna, already known to be dependent on the electrochemical potential difference for protons, is also strongly regulated by the cytoplasmic pH value. PMID:16665758

  10. Bidirectional Interaction of Alanine with Sulfuric Acid in the Presence of Water and the Atmospheric Implication.

    PubMed

    Wang, Chun-Yu; Ma, Yan; Chen, Jiao; Jiang, Shuai; Liu, Yi-Rong; Wen, Hui; Feng, Ya-Juan; Hong, Yu; Huang, Teng; Huang, Wei

    2016-04-21

    Amino acids are recognized as important components of atmospheric aerosols, which impact on the Earth's climate directly and indirectly. However, much remains unknown about the initial events of nucleation. In this work, the interaction of alanine [NH2CH(CH3)COOH or Ala], one of the most abundant amino acids in the atmosphere, with sulfuric acid (SA) and water (W) has been investigated at the M06-2X/6-311++G(3df, 3pd) level of theory. We have studied thermodynamics of the hydrated (Ala)(SA) core system with up to four water molecules. We found that Ala, with one amino group and one carboxyl group, can interact with H2SO4 and H2O in two directions and that it has a high cluster stabilizing effect similar to that of ammonia, which is one of the key nucleation precursor. The corresponding Gibbs free energies of the (Ala)(SA)(W)n (n = 0-4) clusters formation at 298.15 K predicted that Ala can contribute to the stabilization of small binary clusters. Our results showed that the hydrate distribution is temperature-dependent and that a higher humidity and temperature can contribute to the formation of hydrated clusters. PMID:26997115

  11. Chiral selectivity of amino acid adsorption on chiral surfaces—The case of alanine on Pt

    SciTech Connect

    Franke, J.-H.; Kosov, D. S.

    2015-02-07

    We study the binding pattern of the amino acid alanine on the naturally chiral Pt surfaces Pt(531), Pt(321), and Pt(643). These surfaces are all vicinal to the (111) direction but have different local environments of their kink sites and are thus a model for realistic roughened Pt surfaces. Alanine has only a single methyl group attached to its chiral center, which makes the number of possible binding conformations computationally tractable. Additionally, only the amine and carboxyl group are expected to interact strongly with the Pt substrate. On Pt(531), we study the molecule in its pristine as well as its deprotonated form and find that the deprotonated one is more stable by 0.47 eV. Therefore, we study the molecule in its deprotonated form on Pt(321) and Pt(643). As expected, the oxygen and nitrogen atoms of the deprotonated molecule provide a local binding “tripod” and the most stable adsorption configurations optimize the interaction of this “tripod” with undercoordinated surface atoms. However, the interaction of the methyl group plays an important role: it induces significant chiral selectivity of about 60 meV on all surfaces. Hereby, the L-enantiomer adsorbs preferentially to the Pt(321){sup S} and Pt(643){sup S} surfaces, while the D-enantiomer is more stable on Pt(531){sup S}. The binding energies increase with increasing surface density of kink sites, i.e., they are largest for Pt(531){sup S} and smallest for Pt(643){sup S}.

  12. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    SciTech Connect

    Seyedhosseini, E. Ivanov, M.; Bdikin, I.; Vasileva, D.; Kudryavtsev, A.; Rodriguez, B. J.; Kholkin, A. L.

    2015-08-21

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  13. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    NASA Astrophysics Data System (ADS)

    Seyedhosseini, E.; Bdikin, I.; Ivanov, M.; Vasileva, D.; Kudryavtsev, A.; Rodriguez, B. J.; Kholkin, A. L.

    2015-08-01

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  14. Enantioselective hydrogenation of pyruvic acid oxime to alanine on Pd/Alumina

    SciTech Connect

    Borszeky, K.; Mallat, T.; Aeschiman, R.

    1996-06-01

    The chemo- and enantioselective hydrogenation of pyruvic acid oxime have been studied on Pd/alumina, the latter in the presence of the 1,2-amino alcohol type alkaloids ephedrine, cinchonidine, and cinchonine. High yields of racemic alanine (90-98%) were obtained in the absence of alkaloids in polar solvents at 0-45{degrees}C and 10 bar. Enantioselection increased with higher temperature and alkalid: oxime molar ratio. A 1:1 ephedrine: oxime molar ratio afforded the best enantiomeric excess (26%). The presence of alkaloid resulted in a decrease of reaction rate by a factor of up to 140, compared to the racemic hydrogenation. Based on X-ray crystal structure analysis of the alkaloid-pyruvic acid oxime adduct, a mechanism is proposed for the steric course of the reaction. Extended interactions by multiple H bonds between the adsorbed alkaloid-oxime salt units on the Pd surface is assumed to be at the origin of the moderate enantioselectivity and the very low enantioselective hydrogenation rate. 28 refs., 5 figs., 3 tabs.

  15. Streptomyces beta-alanine:alpha-ketoglutarate aminotransferase, a novel omega-amino acid transaminase. Purification, crystallization, and enzymologic properties.

    PubMed

    Yonaha, K; Suzuki, K; Toyama, S

    1985-03-25

    An enzyme which catalyzes the transamination of beta-alanine with alpha-ketoglutarate was purified to homogeneity from Streptomyces griseus IFO 3102 and crystallized. Molecular weight of the enzyme was found to be 185,000 +/- 10,000 by a gel-filtration method. The enzyme consists of four subunits identical in molecular weight (51,000 +/- 1,000). The transaminase is composed of 483 amino acids/subunit containing 7 and 8 residues of half-cystine and methionine, respectively. The enzyme exhibits absorption maxima at 278 and 415 nm. The pyridoxal 5'-phosphate content was determined to be 4 mol/mol of enzyme. The enzyme catalyzes transamination of omega-amino acids including taurine and hypotaurine. beta-Alanine and DL-beta-aminoisobutyrate served as a good amino donor; the Michaelis constants are 8.0 and 12.5 mM, respectively. alpha-Ketoglutarate is the only amino acceptor (Km = 4.0 mM); pyruvate and oxalacetate are inactive. Based on the substrate specificity, the terminology of beta-alanine:alpha-ketoglutarate transaminase is proposed for the enzyme. Carbonyl reagents, HgCl2,DL-gabaculine, and alpha-fluoro-beta-alanine strongly inhibited the enzyme. PMID:3972825

  16. Modulation of inhibitory glycine receptors in cultured embryonic mouse hippocampal neurons by zinc, thiol containing redox agents and carnosine.

    PubMed

    Thio, L L; Zhang, H X

    2006-01-01

    Modulation of inhibitory glycine receptors by zinc (Zn(2+)) and endogenous redox agents such as glutathione may alter inhibition in the mammalian brain. Despite the abundance of Zn(2+) in the hippocampus and its ability to modulate glycine receptors, few studies have examined Zn(2+) modulation of hippocampal glycine receptors. Whether redox agents modulate hippocampal glycine receptors also remains unknown. This study examined Zn(2+) and redox modulation of glycine receptor-mediated currents in cultured embryonic mouse hippocampal neurons using whole-cell recordings. Zn(2+) concentrations below 10 microM potentiated currents elicited by low glycine, beta-alanine, and taurine concentrations by 300-400%. Zn(2+) concentrations above 300 microM produced nearly complete inhibition. Potentiating Zn(2+) concentrations shifted the dose-response curves for the three agonists to the left and decreased the Hill coefficient for glycine and beta-alanine but not taurine. Inhibiting Zn(2+) concentrations shifted the dose-response curves for glycine and beta-alanine to the right but reduced the maximum taurine response. Histidine residues may participate in potentiation because diethyl pyrocarbonate and pH 5.4 diminished Zn(2+) enhancement of glycine currents. pH 5.4 diminished Zn(2+) block of glycine currents, but diethyl pyrocarbonate did not. These findings indicate that separate sites mediate Zn(2+) potentiation and inhibition. The redox agents glutathione, dithiothreitol, tris(2-carboxyethyl)phosphine, and 5,5'-dithiobis(2-nitrobenzoic acid) did not alter glycine currents by a redox mechanism. However, glutathione and dithiothreitol interfered with the effects of Zn(2+) on glycine currents by chelating it. Carnosine had similar effects. Thus, Zn(2+) and thiol containing redox agents that chelate Zn(2+) modulate hippocampal glycine receptors with the mechanism of Zn(2+) modulation being agonist dependent. PMID:16515845

  17. First report for voltammetric determination of methyldopa in the presence of folic acid and glycine.

    PubMed

    Molaakbari, Elahe; Mostafavi, Ali; Beitollahi, Hadi

    2014-03-01

    In this study, a carbon paste electrode modified with TiO2 nanoparticles and ferrocene monocarboxylic acid (FM) was used to prepare a novel electrochemical sensor. The objective of this novel electrode modification was to seek new electrochemical performances for the detection of methyldopa in the presence of folic acid and glycine. The peak potentials recorded in a phosphate buffer solution (PBS) of pH7.0 were 325, 750 and 880 mV vs. Ag/AgCl/KCl (3.0M) for methyldopa, folic acid and glycine, respectively. Under the optimum pH of 7.0, the oxidation of methyldopa occurred at a potential about 160 mV less positive than that of the unmodified carbon paste electrode (CPE). The response of catalytic current with methyldopa concentration showed a linear relation in the range from 2.0×10(-7) to 1.0×10(-4)M with a detection limit of 8.0 (± 0.2)×10(-8)M. PMID:24433900

  18. Biosynthesis of d-Alanyl-Lipoteichoic Acid: Characterization of Ester-Linked d-Alanine in the In Vitro-Synthesized Product

    PubMed Central

    Childs, Warren C.; Neuhaus, Francis C.

    1980-01-01

    d-Alanyl-lipoteichoic acid (d-alanyl-LTA) contains d-alanine ester residues which control the ability of this polyer to chelate Mg2+. In Lactobacillus casei a two-step in vitro reaction sequence catalyzed by the d-alanine-activating enzyme and d-alanine:membrane acceptor ligase incorporates d-alanine into membrane acceptor. In this paper we provide additional evidence that the in vitro system catalyzes the covalent incorporation of d-[14C]alanine into membrane acceptor which is the poly([3H]glycerol phosphate) moiety of d-alanyl-LTA. This conclusion was supported by the observation that the d-[14C]alanine and [3H]glycerol labels of the partially purified product were co-precipitated by antiserum containing globulins specific for poly(glycerol phosphate). The isolation of d-[14C]alanyl-[3H]glycerol from d-[14C]alanine·[3H]glycerol-labeled d-alanyl-LTA synthesized in the in vitro system indicated that the d-alanine was linked to the poly(glycerol phosphate) chain of the LTA. A comparison of the reactivities of the d-alanine residues of d-alanyl-glycerol and d-alanyl-LTA supported the conclusion that the incorporated residue of d-alanine was attached by an ester linkage. Thus, the data indicated that the in vitro system catalyzes the incorporation of d-alanine covalently linked by ester linkages to the glycerol moieties of the poly(glycerol phosphate) chains of d-alanyl-LTA. New procedures are presented for the partial purification of d-alanyl-LTA with a high yield of ester-linked d-alanine and for the sequential degradation of the poly(glycerol phosphate) moiety substituted with d-alanine of d-alanyl-LTA with phosphodiesterase II/phosphatase from Aspergillus niger. PMID:6772629

  19. Structural Characterization and Epitope Mapping of the Glutamic Acid/Alanine-rich Protein from Trypanosoma congolense

    PubMed Central

    Loveless, Bianca C.; Mason, Jeremy W.; Sakurai, Tatsuya; Inoue, Noboru; Razavi, Morteza; Pearson, Terry W.; Boulanger, Martin J.

    2011-01-01

    Trypanosoma congolense is an African trypanosome that causes serious disease in cattle in Sub-Saharan Africa. The four major life cycle stages of T. congolense can be grown in vitro, which has led to the identification of several cell-surface molecules expressed on the parasite during its transit through the tsetse vector. One of these, glutamic acid/alanine-rich protein (GARP), is the first expressed on procyclic forms in the tsetse midgut and is of particular interest because it replaces the major surface coat molecule of bloodstream forms, the variant surface glycoprotein (VSG) that protects the parasite membrane, and is involved in antigenic variation. Unlike VSG, however, the function of GARP is not known, which necessarily limits our understanding of parasite survival in the tsetse. Toward establishing the function of GARP, we report its three-dimensional structure solved by iodide phasing to a resolution of 1.65 Å. An extended helical bundle structure displays an unexpected and significant degree of homology to the core structure of VSG, the only other major surface molecule of trypanosomes to be structurally characterized. Immunofluorescence microscopy and immunoaffinity-tandem mass spectrometry were used in conjunction with monoclonal antibodies to map both non-surface-disposed and surface epitopes. Collectively, these studies enabled us to derive a model describing the orientation and assembly of GARP on the surface of trypanosomes. The data presented here suggest the possible structure-function relationships involved in replacement of the bloodstream form VSG by GARP as trypanosomes differentiate in the tsetse vector after a blood meal. PMID:21471223

  20. Glycolysis and the Tricarboxylic Acid Cycle Are Linked by Alanine Aminotransferase during Hypoxia Induced by Waterlogging of Lotus japonicus1[W][OA

    PubMed Central

    Rocha, Marcio; Licausi, Francesco; Araújo, Wagner L.; Nunes-Nesi, Adriano; Sodek, Ladaslav; Fernie, Alisdair R.; van Dongen, Joost T.

    2010-01-01

    The role of nitrogen metabolism in the survival of prolonged periods of waterlogging was investigated in highly flood-tolerant, nodulated Lotus japonicus plants. Alanine production revealed to be a critical hypoxic pathway. Alanine is the only amino acid whose biosynthesis is not inhibited by nitrogen deficiency resulting from RNA interference silencing of nodular leghemoglobin. The metabolic changes that were induced following waterlogging can be best explained by the activation of alanine metabolism in combination with the modular operation of a split tricarboxylic acid pathway. The sum result of this metabolic scenario is the accumulation of alanine and succinate and the production of extra ATP under hypoxia. The importance of alanine metabolism is discussed with respect to its ability to regulate the level of pyruvate, and this and all other changes are discussed in the context of current models concerning the regulation of plant metabolism. PMID:20089769

  1. Genetics Home Reference: glycine encephalopathy

    MedlinePlus

    ... a molecule called glycine. This molecule is an amino acid , which is a building block of proteins. Glycine ... Additional Information & Resources MedlinePlus (3 links) Health Topic: Amino Acid Metabolism Disorders Health Topic: Genetic Brain Disorders Health ...

  2. Kinetic determinants of agonist action at the recombinant human glycine receptor

    PubMed Central

    Lewis, Trevor M; Schofield, Peter R; McClellan, Annette M L

    2003-01-01

    The amino acids glycine, β-alanine and taurine are all endogenous agonists of the glycine receptor. In this study, a combination of rapid agonist application onto macropatches and steady-state single-channel recordings was used to compare the actions of glycine, β-alanine and taurine upon homomeric α1 human glycine receptors transiently expressed in human embryonic kidney (HEK 293) cells. The 10–90 % rise times determined from rapid application of 100 μm of each agonist were indistinguishable, indicating each agonist has a similar association rate. At saturating concentrations (30 mm) the rise time for glycine (0.26 ms) was 1.8-fold faster than that for β-alanine (0.47 ms) and 3.9-fold faster than that for taurine (1.01 ms), indicating clear differences in the maximum opening rate between agonists. The relaxation following rapid removal of agonist was fitted with a single exponential for β-alanine (3.0 ms) and taurine (2.2 ms), and two exponential components for glycine with a weighted mean time constant of 27.1 ms. This was consistent with differences in dissociation rates estimated from analysis of bursts, with taurine > β-alanine > glycine. Exponential fits to the open period distributions gave time constants that did not differ between agonists and the geometric distribution for the number of openings per burst indicated that all three agonists had a significant component of single-opening bursts. Based upon these data, we propose a kinetic scheme with three independent open states, where the opening rates are dependent upon the activating agonist, while the closing rates are an intrinsic characteristic of the receptor. PMID:12679369

  3. The Use of p-Aminobenzoic Acid as a Probe Substance for the Targeted Profiling of Glycine Conjugation.

    PubMed

    Nortje, Carla; van der Sluis, Rencia; van Dijk, Alberdina Aike; Erasmus, Elardus

    2016-03-01

    Glycine conjugation facilitates the metabolism of toxic aromatic acids, capable of disrupting mitochondrial integrity. Owing to the high exposure to toxic substrates, characterization of individual glycine conjugation capacity, and its regulatory factors has become increasingly important. Aspirin and benzoate have been employed for this purpose; however, adverse reactions, aspirin intolerance, and Reye's syndrome in children are substantial drawbacks. The goal of this study was to investigate p-aminobenzoic acid (PABA) as an alternative glycine conjugation probe. Ten human volunteers participated in a PABA challenge test, and p-aminohippuric acid (PAHA), p-acetamidobenzoic acid, and p-acetamidohippuric acid were quantified in urine. The glycine N-acyltransferase gene of the volunteers was also screened for two polymorphisms associated with normal and increased enzyme activity. All of the individuals were homozygous for increased enzyme activity, but excretion of PAHA varied significantly (16-56%, hippurate ratio). The intricacies of PABA metabolism revealed possible limiting factors and the potential of PABA as an indicator of Phase 0 biotransformation. PMID:26484797

  4. Pharmacological PPARα Activation Markedly Alters Plasma Turnover of the Amino Acids Glycine, Serine and Arginine in the Rat

    PubMed Central

    Ericsson, Anette; Turner, Nigel; Hansson, Göran I.; Wallenius, Kristina; Oakes, Nicholas D.

    2014-01-01

    The current study extends previously reported PPARα agonist WY 14,643 (30 µmol/kg/day for 4 weeks) effects on circulating amino acid concentrations in rats fed a 48% saturated fat diet. Steady-state tracer experiments were used to examine in vivo kinetic mechanisms underlying altered plasma serine, glycine and arginine levels. Urinary urea and creatinine excretion were measured to assess whole-body amino acid catabolism. WY 14,643 treated animals demonstrated reduced efficiency to convert food consumed to body weight gain while liver weight was increased compared to controls. WY 14,643 raised total amino acid concentration (38%), largely explained by glycine, serine and threonine increases. 3H-glycine, 14C-serine and 14C-arginine tracer studies revealed elevated rates of appearance (Ra) for glycine (45.5±5.8 versus 17.4±2.7 µmol/kg/min) and serine (21.0±1.4 versus 12.0±1.0) in WY 14,643 versus control. Arginine was substantially decreased (−62%) in plasma with estimated Ra reduced from 3.1±0.3 to 1.2±0.2 µmol/kg/min in control versus WY 14,643. Nitrogen excretion over 24 hours was unaltered. Hepatic arginase activity was substantially decreased by WY 14,643 treatment. In conclusion, PPARα agonism potently alters metabolism of several specific amino acids in the rat. The changes in circulating levels of serine, glycine and arginine reflected altered fluxes into the plasma rather than changes in clearance or catabolism. This suggests that PPARα has an important role in modulating serine, glycine and arginine de novo synthesis. PMID:25486018

  5. Autolysis of Lactococcus lactis Is Increased upon d-Alanine Depletion of Peptidoglycan and Lipoteichoic Acids

    PubMed Central

    Steen, Anton; Palumbo, Emmanuelle; Deghorain, Marie; Cocconcelli, Pier Sandro; Delcour, Jean; Kuipers, Oscar P.; Kok, Jan; Buist, Girbe; Hols, Pascal

    2005-01-01

    Mutations in the genes encoding enzymes responsible for the incorporation of d-Ala into the cell wall of Lactococcus lactis affect autolysis. An L. lactis alanine racemase (alr) mutant is strictly dependent on an external supply of d-Ala to be able to synthesize peptidoglycan and to incorporate d-Ala in the lipoteichoic acids (LTA). The mutant lyses rapidly when d-Ala is removed at mid-exponential growth. AcmA, the major lactococcal autolysin, is partially involved in the increased lysis since an alr acmA double mutant still lyses, albeit to a lesser extent. To investigate the role of d-Ala on LTA in the increased cell lysis, a dltD mutant of L. lactis was investigated, since this mutant is only affected in the d-alanylation of LTA and not the synthesis of peptidoglycan. Mutation of dltD results in increased lysis, showing that d-alanylation of LTA also influences autolysis. Since a dltD acmA double mutant does not lyse, the lysis of the dltD mutant is totally AcmA dependent. Zymographic analysis shows that no degradation of AcmA takes place in the dltD mutant, whereas AcmA is degraded by the extracellular protease HtrA in the wild-type strain. In L. lactis, LTA has been shown to be involved in controlled (directed) binding of AcmA. LTA lacking d-Ala has been reported in other bacterial species to have an improved capacity for autolysin binding. Mutation of dltD in L. lactis, however, does not affect peptidoglycan binding of AcmA; neither the amount of AcmA binding to the cells nor the binding to specific loci is altered. In conclusion, d-Ala depletion of the cell wall causes lysis by two distinct mechanisms. First, it results in an altered peptidoglycan that is more susceptible to lysis by AcmA and also by other factors, e.g., one or more of the other (putative) cell wall hydrolases expressed by L. lactis. Second, reduced amounts of d-Ala on LTA result in decreased degradation of AcmA by HtrA, which results in increased lytic activity. PMID:15601695

  6. Characterization of lipoteichoic acid structures from three probiotic Bacillus strains: involvement of D-alanine in their biological activity.

    PubMed

    Villéger, Romain; Saad, Naima; Grenier, Karine; Falourd, Xavier; Foucat, Loïc; Urdaci, Maria C; Bressollier, Philippe; Ouk, Tan-Sothea

    2014-10-01

    Probiotics represent a potential strategy to influence the host's immune system thereby modulating immune response. Lipoteichoic Acid (LTA) is a major immune-stimulating component of Gram-positive cell envelopes. This amphiphilic polymer, anchored in the cytoplasmic membrane by means of its glycolipid component, typically consists of a poly (glycerol-phosphate) chain with D-alanine and/or glycosyl substitutions. LTA is known to stimulate macrophages in vitro, leading to secretion of inflammatory mediators such as Nitric Oxide (NO). This study investigates the structure-activity relationship of purified LTA from three probiotic Bacillus strains (Bacillus cereus CH, Bacillus subtilis CU1 and Bacillus clausii O/C). LTAs were extracted from bacterial cultures and purified. Chemical modification by means of hydrolysis at pH 8.5 was performed to remove D-alanine. The molecular structure of native and modified LTAs was determined by (1)H NMR and GC-MS, and their inflammatory potential investigated by measuring NO production by RAW 264.7 macrophages. Structural analysis revealed several differences between the newly characterized LTAs, mainly relating to their D-alanylation rates and poly (glycerol-phosphate) chain length. We observed induction of NO production by LTAs from B. subtilis and B. clausii, whereas weaker NO production was observed with B. cereus. LTA dealanylation abrogated NO production independently of the glycolipid component, suggesting that immunomodulatory potential depends on D-alanine substitutions. D-alanine may control the spatial configuration of LTAs and their recognition by cell receptors. Knowledge of molecular mechanisms behind the immunomodulatory abilities of probiotics is essential to optimize their use. PMID:25090957

  7. Toxicity and intracellular accumulation of bile acids in sandwich-cultured rat hepatocytes: role of glycine conjugates.

    PubMed

    Chatterjee, Sagnik; Bijsmans, Ingrid T G W; van Mil, Saskia W C; Augustijns, Patrick; Annaert, Pieter

    2014-03-01

    Excessive intrahepatic accumulation of bile acids (BAs) is a key mechanism underlying cholestasis. The aim of this study was to quantitatively explore the relationship between cytotoxicity of BAs and their intracellular accumulation in sandwich-cultured rat hepatocytes (SCRH). Following exposure of SCRH (on day-1 after seeding) to various BAs for 24h, glycine-conjugated BAs were most potent in exerting toxicity. Moreover, unconjugated BAs showed significantly higher toxicity in day-1 compared to day-3 SCRH. When day-1/-3 SCRH were exposed (0.5-4h) to 5-100μM (C)DCA, intracellular levels of unconjugated (C)DCA were similar, while intracellular levels of glycine conjugates were up to 4-fold lower in day-3 compared to day-1 SCRH. Sinusoidal efflux was by far the predominant efflux pathway of conjugated BAs both in day-1 and day-3 SCRH, while canalicular BA efflux showed substantial interbatch variability. After 4h exposure to (C)DCA, intracellular glycine conjugate levels were at least 10-fold higher than taurine conjugate levels. Taken together, reduced BA conjugate formation in day-3 SCRH results in lower intracellular glycine conjugate concentrations, explaining decreased toxicity of (C)DCA in day-3 versus day-1 SCRH. Our data provide for the first time a direct link between BA toxicity and glycine conjugate exposure in SCRH. PMID:24211540

  8. Structures of an alanine racemase from Bacillus anthracis (BA0252) in the presence and absence of (R)-1-aminoethylphosphonic acid (l-Ala-P)

    SciTech Connect

    Au, Kinfai; Ren, Jingshan; Walter, Thomas S.; Harlos, Karl; Nettleship, Joanne E.; Owens, Raymond J.; Stuart, David I.; Esnouf, Robert M.

    2008-05-01

    Structures of BA0252, an alanine racemase from B. anthracis, in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) and determined by X-ray crystallography to resolutions of 2.1 and 1.47 Å, respectively, are described. Bacillus anthracis, the causative agent of anthrax, has been targeted by the Oxford Protein Production Facility to validate high-throughput protocols within the Structural Proteomics in Europe project. As part of this work, the structures of an alanine racemase (BA0252) in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) have determined by X-ray crystallo@@graphy to resolutions of 2.1 and 1.47 Å, respectively. Difficulties in crystallizing this protein were overcome by the use of reductive methylation. Alanine racemase has attracted much interest as a possible target for anti-anthrax drugs: not only is d-alanine a vital component of the bacterial cell wall, but recent studies also indicate that alanine racemase, which is accessible in the exosporium, plays a key role in inhibition of germination in B. anthracis. These structures confirm the binding mode of l-Ala-P but suggest an unexpected mechanism of inhibition of alanine racemase by this compound and could provide a basis for the design of improved alanine racemase inhibitors with potential as anti-anthrax therapies.

  9. Synthesis, growth and optical properties of an efficient nonlinear optical single crystal: L-alanine DL-malic acid

    NASA Astrophysics Data System (ADS)

    Kirubagaran, R.; Madhavan, J.

    2015-02-01

    Single crystals of L-alanine DL-malic acid (LADLMA) have been grown from aqueous solution by slow-cooling technique. Powder X-ray diffraction studies reveal the structure of the crystal to be orthorhombic. The nonlinear optical conversion efficiency test was carried out for the grown crystals using the Kurtz powder technique. The third order nonlinear refractive index and the nonlinear absorption coefficient where evaluated by Z-scan measurements. As the material have a negative refractive index it could be used in the protection of optical sensors such as night vision devices.

  10. Determination of β-Cyano-L-alanine, γ-Glutamyl-β-cyano-L-alanine, and Common Free Amino Acids in Vicia sativa (Fabaceae) Seeds by Reversed-Phase High-Performance Liquid Chromatography

    PubMed Central

    Megías, Cristina; Cortés-Giraldo, Isabel; Girón-Calle, Julio; Vioque, Javier; Alaiz, Manuel

    2014-01-01

    A method for determination of β-cyano-L-alanine, γ-glutamyl-β-cyano-L-alanine and other free amino acids in Vicia sativa is presented. Seed extracts were derivatized by reaction with diethyl ethoxymethylenemalonate and analyzed by reverse-phase high-performance liquid chromatography. Calibration curves showed very good linearity of the response. The limit of detection and quantification was 0.15 and 0.50 μM, respectively. The method has high intra- (RSD = 0.28–0.31%) and interrepeatability (RSD = 2.76–3.08%) and remarkable accuracy with a 99% recovery in spiked samples. The method is very easy to carry out and allows for ready analysis of large number of samples using very basic HPLC equipment because the derivatized samples are very stable and have very good chromatographic properties. The method has been applied to the determination of γ-glutamyl-β-cyano-L-alanine, β-cyano-L-alanine, and common free amino acids in eight wild populations of V. sativa from southwestern Spain. PMID:25587488

  11. Formation of simple biomolecules from alanine in ocean by impacts

    NASA Astrophysics Data System (ADS)

    Umeda, Y.; Sekine, T.; Furukawa, Y.; Kakegawa, T.; Kobayashi, T.

    2013-12-01

    The biomolecules on the Earth are thought either to have originated from the extraterrestrial parts carried with flying meteorites or to have been formed from the inorganic materials on the Earth through given energy. From the standpoint to address the importance of impact energy, it is required to simulate experimentally the chemical reactions during impacts, because violent impacts may have occurred 3.8-4.0 Gyr ago to create biomolecules initially. It has been demonstrated that shock reactions among ocean (H2O), atmospheric nitrogen, and meteoritic constitution (Fe) can induce locally reduction environment to form simple bioorganic molecules such as ammonia and amino acid (Nakazawa et al., 2005; Furukawa et al., 2009). We need to know possible processes for alanine how chemical reactions proceed during repeated impacts and how complicated biomolecules are formed. Alanine can be formed from glycine (Umeda et al., in preparation). In this study, we carried out shock recovery experiments at pressures of 4.4-5.7 GPa to investigate the chemical reactions of alanine. Experiments were carried out with a propellant gun. Stainless steel containers (30 mm in diameter, 30 mm long) with 13C-labeled alanine aqueous solution immersed in olivine or hematite powders were used as targets. Air gap was present in the sample room (18 mm in diameter, 2 mm thick) behind the sample. The powder, solution, and air represent meteorite, ocean, and atmosphere on early Earth, respectively. Two powders of olivine and hematite help to keep the oxygen fugacity low and high during experiments, respectively in order to investigate the effect of oxygen fugacity on chemical processes of alanine. The recovered containers, after cleaned completely, were immersed into liquid nitrogen to freeze sample solution and then we drilled on the impact surface to extract water-soluble run products using pure water. Thus obtained products were analyzed by LC/MS for four amino acids (glycine, alanine, valine, and

  12. Growth enhancing effect of exogenous glycine and characterization of its uptake in halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Bualuang, Aporn; Incharoensakdi, Aran

    2015-02-01

    Alkaliphilic halotolerant cyanobacterium Aphanothece halophytica showed optimal growth in the medium containing 0.5 M NaCl. The increase of exogenously added glycine to the medium up to 10 mM significantly promoted cell growth under both normal (0.5 M NaCl) and salt stress (2.0 M NaCl) conditions. Salt stress imposed by either 2.0 or 3.0 M NaCl retarded cell growth; however, exogenously added glycine at 10 mM concentration to salt-stress medium resulted in the reduction of growth inhibition particularly under 3.0 M NaCl condition. The uptake of glycine by intact A. halophytica was shown to exhibit saturation kinetics with an apparent K s of 160 μM and V max of 3.9 nmol/min/mg protein. The optimal pH for glycine uptake was at pH 8.0. The uptake activity was decreased in the presence of high concentration of NaCl. Both metabolic inhibitors and ionophores decreased glycine uptake in A. halophytica suggesting an energy-dependent glycine uptake. Several neutral amino acids showed considerable inhibition of glycine uptake with higher than 50 % inhibition observed with serine, cysteine and alanine whereas acidic, basic and aromatic amino acids showed only slight inhibition of glycine uptake. PMID:25536900

  13. DL-β-Aminobutyric Acid-Induced Resistance in Soybean against Aphis glycines Matsumura (Hemiptera: Aphididae)

    PubMed Central

    Zhong, Yunpeng; Wang, Biao; Yan, Junhui; Cheng, Linjing; Yao, Luming; Xiao, Liang; Wu, Tianlong

    2014-01-01

    Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA) against Aphis glycines Matsumura, the soybean aphid (SA) was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), chitinase (CHI), and β-1, 3-glucanase (GLU) in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA. PMID:24454805

  14. Extracellular matrix-like surfactant polymers containing arginine-glycine-aspartic acid (RGD) peptides.

    PubMed

    Anderson, Eric H; Ruegsegger, Mark A; Murugesan, Gurunathan; Kottke-Marchant, Kandice; Marchant, Roger E

    2004-08-01

    We report on a novel series of biomimetic polymers exhibiting interfacial properties similar to the extracellular matrix. A series of well-defined surfactant polymers were synthesized by simultaneously incorporating arginine-glycine-aspartic acid (RGD) peptide, dextran oligosaccharide, and hexyl ligands with controlled feed ratios onto a poly(vinyl amine) (PVAm) backbone. The peptide sequence was H-GSSSGRGDSPA-NH(2) (Pep) having a hydrophilic extender at the amino terminus and capped carboxy terminus. The peptide-to-dextran (Pep:Dex) ratios were varied to create surfactants having 0, 25, 50, 75, and 100 mol-% peptide relative to dextran. The surfactants were characterized by IR, NMR and atomic force microscopy (AFM) for composition and surface active properties. AFM confirmed full surface coverage of PVAm(Pep)(100%) on graphite, and supported the mechanism of interdigitation of hexyl ligands between surfactant molecules within a specified range of hexyl chain densities. the attachment and growth of human pulmonary artery endothelial cells on the PVAm(Pep)(100%) surface was identical to the fibronectin positive control. Cell adhesion decreased dramatically with decreasing peptide density on the surfactant polymers. Molecular model of a peptide surfactant polymer, consisting of poly(vinyl amine) backbone with peptide, dextran oligosaccharide and hexyl branches coupled to the polymer chain. PMID:15468270

  15. The Formation of Racemic Amino Acids by UV Photolysis of Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Dworkin, Jason P.; Sandford, Scott A.; Cooper, George; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Small biologically relevant organic molecules including the amino acids glycine, alanine, and marine were formed in the laboratory by the UV (Ultraviolet) photolysis of realistic interstellar ice analogs, composed primarily of H2O, and including CH3OH, NH3, and HCN, under interstellar conditions. N-formyl glycine, cycloserine (4-amino-3-isoxazolidinone), and glycerol were detected before hydrolysis, and glycine, racemic alanine, racemic marine, glycerol, ethanolamine, and glyceric acid were found after hydrolysis. This suggests that some meteoritic amino acids (and other molecules) may be the direct result of interstellar ice photochemistry, expanding the current paradigm that they formed by reactions in liquid water on meteorite parent bodies.

  16. Variable clinical manifestations of a glycine to glutamic acid substitution of the COL3A1 gene at residue 736

    SciTech Connect

    Pope, F.M.; Narcisi, P.; Richards, A.J.

    1994-09-01

    Glycine substitutions at the 3{prime} end of the COL3A1 gene generally produce a characteristic clinical phenotype including acrogeria and severe vascular fragility. Here we report a three generation British family in which the propositus presented with aneurysms of the groins. He, his mother, sister and elder daughter all had the external clinical phenotype of vascular EDS IV whilst another daughter and nephew were clinically normal. Cultured skin fibroblasts from the propositus and his clinically affected relatives poorly secreted normal and overmodified collagen III species. Normal components of secreted proteins predominated whilst overmodified molecules were prominent in intracellular material. Surprisingly the normal children also secreted less collagen type III than expected (though more than their clinically abnormal relatives). cDNA from bases 2671 to 3714 were amplified as four overlapping PCR fragments and analysed by DGGE. The region between 2671 and 3015 was heterozygous. Sequencing showed a mutation of glycine to glutamic acid at residue 736. This mutation created an extra Apa 1 restriction site which was suitable for family studies. These showed inheritance of the mutant gene by both vascular and non-vascular clinical phenotypes. This family therefore illustrates that replacement of glycine to glutamic acid at position 736 produces variable clinical and biochemical phenotypes ranging from easily recognizable vascular EDS IV with very poor collagen secretion to an EDS III-like picture and with less severe protein disturbance. The reasons for these differences are at present unexplained.

  17. (3H) 5,7-dichlorokynurenic acid, a high affinity ligand for the NMDA receptor glycine regulatory site

    SciTech Connect

    Hurt, S.D.; Baron, B.M. )

    1991-01-01

    The NMDA subtype of glutamate receptors is allosterically linked to a strychnine-insensitive glycine regulatory site. Kynurenic acid and its halogenated derivatives are non-competitive NMDA antagonists acting at the glycine site. The authors have prepared (3H) 5,7-dichlorokyrurenic acid (DCKA) as an antagonist radioligand and have characterized its binding. 3-Bromo-5,7-DCKA was catalytically dehalogenated in the presence of tritium gas and HPLC purified to yield (3H) 5,7-DCKA with a specific activity of 17.6 Ci/mmol. (3H) 5,7-DCKA bound to rat brain synaptosomes with a Kd of 69 {plus minus} 23 nM and Bmax = 14.5 {plus minus} 3.2 pmoles/mg protein. Binding was 65-70% specific at 10 nM (3H) 5,7-DCKA. This ligand is thus more selective and has higher affinity than (3H) glycine, in addition to being an antagonist.

  18. Efficient optical resolution of amino acid by alanine racemaze chiral analogue supported on mesoporous carbon

    NASA Astrophysics Data System (ADS)

    Jang, D.; Kim, K.; Park, D.; Kim, G.

    2012-09-01

    Optically pure D-amino acids are industrially important chiral building blocks for the synthesis of pharmaceuticals, food ingredients, and drug intermediates. Chemoenzymatic dynamic kinetic-resolution processes have recently been developed for deracemization of amino acids. S-ARCA would be a good candidate for the selective adsorption of D amino acid through the imine formation reaction. The organic phase containing S-ARCA adsorbent, TPPC or Ionic Liquid (as a phase transfer catalyst) in MC were coated on the surfaces of mesoporous carbon C-SBA-15(CMK). The aqueous solution of racemic D/L-amino acid and NaOH were added to the carbon support coated with ARCA. The D/L ratios on ARCA and in solution were determined with increasing reaction time. S-ARCA has a unique property for the selective adsorption of D- amino acid (up to 90% selcetivity) in the racemic mixture. The fixed bed reactor containing ARCA/carbon support was also adopted successfully for the selective separation of amino acid.

  19. Is the reaction between formic acid and protonated aminomethanol a possible source of glycine precursors in the interstellar medium?

    NASA Astrophysics Data System (ADS)

    Redondo, Pilar; Largo, Antonio; Barrientos, Carmen

    2015-07-01

    Context. One of the most interesting questions in interstellar chemistry concerns whether we can detect the basic building blocks of proteins in astronomical sources. In ascertaining whether amino acids could be possible interstellar molecules, a crucial point is how they could be synthesized in the interstellar medium. Aims: We do a theoretical study of the ion-molecule reaction involving protonated aminomethanol and formic acid to establish its viability in space. This ion-molecule reaction has been proposed by other authors as a possible way to produce glycine in the interstellar medium. Methods: The relevant stationary points on the potential energy surface of the reaction between protonated aminomethanol and formic acid have been theoretically studied by using ab initio methods. The second-order Moller-Plesset level was employed, in conjunction with the correlation-consistent polarized valence triple-zeta (cc-pVTZ) basis set. In addition, the electronic energies were refined by means of single-point calculations at the CCSD(T) level (coupled cluster single and double excitation model augmented with a non-iterative treatment of triple excitations) on the MP2/cc-pVTZ geometries with the aug-cc-pVTZ basis set. Results: Formation of protonated glycine is an exothermic process; however, the process presents a net activation barrier that makes this reaction unfeasible under interstellar conditions. Conclusions: The reaction of protonated aminomethanol with formic acid does not seem to be a plausible source of interstellar glycine. This particular case is a clear example that a detailed study of the potential energy surface is needed to establish the relevance of a process in the interstellar medium.

  20. Cloning and characterization of a complementary deoxyribonucleic acid encoding haploid-specific alanine-rich acidic protein located on chromosome-X.

    PubMed

    Uchida, K; Tsuchida, J; Tanaka, H; Koga, M; Nishina, Y; Nozaki, M; Yoshinaga, K; Toshimori, K; Matsumiya, K; Okuyama, A; Nishimune, Y

    2000-10-01

    We have isolated a cDNA clone encoding a germ cell-specific protein from an expression cDNA library prepared from the mouse testis using testis-specific polyclonal antibodies. Northern blot analysis showed a transcript of 1.1 kilobases exclusively expressed in haploid germ cells of the testis. Sequence analysis of the cDNA revealed one long open reading frame consisting of 238 deduced amino acids, rich in basic amino acids in the N-terminal one-third that also contained the nuclear localization signal, and rich in acidic amino acids, including two type of acidic alanine-rich repeats, in the rest of the deduced protein. The protein having a molecular weight of approximately 55 kDa and an isoelectric point of pH 4.3-4.7 was also exclusively detected in the testis by Western blot analysis. As the cDNA was located on chromosome-X, Halap-X (haploid-specific alanine-rich acidic protein located on chromosome-X) was proposed for the name of the protein encoded by the cDNA. Immunohistochemical observation revealed that the Halap-X protein was predominantly present in the nucleoplasm of round spermatids but gradually decreased as spermatids matured, followed by the subsequent appearance in the cytoplasm of elongating spermatids. Thus, the Halap-X protein was transferred from the nuclei to the cytoplasm during the spermatid maturation when the chromatin condensation and transformation of the nuclei occurred. The Halap-X may facilitate specific association of nuclear DNA with some basic chromosomal proteins and play important roles in the process of chromatin condensation. PMID:10993819

  1. The cyanobacterial amino acid β-N-methylamino-l-alanine perturbs the intermediary metabolism in neonatal rats.

    PubMed

    Engskog, Mikael K R; Karlsson, Oskar; Haglöf, Jakob; Elmsjö, Albert; Brittebo, Eva; Arvidsson, Torbjörn; Pettersson, Curt

    2013-10-01

    The neurotoxic amino acid β-N-methylamino-l-alanine (BMAA) is produced by most cyanobacteria. BMAA is considered as a potential health threat because of its putative role in neurodegenerative diseases. We have previously observed cognitive disturbances and morphological brain changes in adult rodents exposed to BMAA during the development. The aim of this study was to characterize changes of major intermediary metabolites in serum following neonatal exposure to BMAA using a non-targeted metabolomic approach. NMR spectroscopy was used to obtain serum metabolic profiles from neonatal rats exposed to BMAA (40, 150, 460mg/kg) or vehicle on postnatal days 9-10. Multivariate data analysis of binned NMR data indicated metabolic pattern differences between the different treatment groups. In particular five metabolites, d-glucose, lactate, 3-hydroxybutyrate, creatine and acetate, were changed in serum of BMAA-treated neonatal rats. These metabolites are associated with changes in energy metabolism and amino acid metabolism. Further statistical analysis disclosed that all the identified serum metabolites in the lowest dose group were significantly (p<0.05) decreased. The neonatal rat model used in this study is so far the only animal model that displays significant biochemical and behavioral effects after a low short-term dose of BMAA. The demonstrated perturbation of intermediary metabolism may contribute to BMAA-induced developmental changes that result in long-term effects on adult brain function. PMID:23886855

  2. Experimental and theoretical enthalpies of formation of glycine-based sulfate/bisulfate amino acid ionic liquids.

    PubMed

    Zhu, Jing-Fang; He, Ling; Zhang, Lei; Huang, Ming; Tao, Guo-Hong

    2012-01-12

    The experimental and theoretical enthalpies of formation of several structural-similar glycine-based sulfate/bisulfate amino acid ionic liquids including glycine sulfate (Gly(2)SO(4), 1), glycine bisulfate (GlyHSO(4), 2), N,N-dimethylglycine sulfate ([DMGly](2)SO(4), 3), N,N-dimethylglycine bisulfate ([DMGly]HSO(4), 4), N,N-dimethylglycine methyl ester sulfate ([DMGlyC(1)](2)SO(4), 5), N,N-dimethylglycine methyl ester bisulfate ([DMGlyC(1)]HSO(4), 6), N,N,N-trimethylglycine methyl ester sulfate ([TMGlyC(1)](2)SO(4), 7), and N,N,N-trimethylglycine methyl ester bisulfate ([TMGlyC(1)]HSO(4), 8) were studied. Their experimental enthalpies of formation were obtained from the corresponding energies of combustion determined by the bomb calorimetry method. The enthalpies of formation of these amino acid ionic liquids are in the range from -1406 kJ mol(-1) to -1128 kJ mol(-1). Systematic theoretical study on these amino acid ionic liquids were performed by quantum chemistry calculation using the Gaussian03 suite of programs. The geometric optimization and the frequency analyses are carried out using the B3LYP method with the 6-31+G** basis set. Their calculated enthalpies of formation were derived from the single point energies carried out with the HF/6-31+G**, B3LYP/6-31+G**, B3LYP/6-311++G**, and MP2/6-311++G** level of theory, respectively. The relevance of experimental and calculated enthalpies of formation was studied. The calculated enthalpies of formation are in good agreement with their experimental data in less than 3% error. PMID:22148242

  3. Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase

    SciTech Connect

    Han,Q.; Robinson, H.; Gao, Y.; Vogelaar, N.; Wilson, S.; Rizzi, M.; Li, J.

    2006-01-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  4. Extraterrestrial Amino Acids in Orgueil and Ivuna: Tracing the Parent Body of CI Type Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Meyer, Michael (Technical Monitor); Ehrenfreund, Pascale; Glavin, Daniel P.; Bota, Oliver; Cooper, George; Bada, Jeffrey

    2001-01-01

    Amino acid analyses using HPLC of pristine interior pieces of the CI carbonaceous chondrites Orgueil and Ivuna have found that beta-alanine, glycine, and gamma-amino-n-butyric acid (ABA) are the most abundant amino acids in these two meteorites, with concentrations ranging from approx. 600 to 2,000 parts per billion (ppb). Other alpha-amino acids such as alanine, alpha-ABA, alpha-aminoisobutyric acid (AIB), and isovaline are present only in trace amounts (less than 200 ppb). Carbon isotopic measurements of beta-alanine and glycine and the presence of racemic (D/L 1) alanine and beta-ABA in Orgueil suggest that these amino acids are extraterrestrial in origin. In comparison to the CM carbonaceous chondrites Murchison and Murray, the amino acid composition of the CIs is strikingly distinct, suggesting that these meteorites came from a different type of parent body, possibly an extinct comet, than did the CM carbonaceous chondrites.

  5. Effects of inhibitory amino acids on expression of GABAA Rα and glycine Rα1 in hypoxic rat cortical neurons during development

    PubMed Central

    Qian, H; Feng, Y; He, XZ; Yang, YL; Sung, JH; Xia, Y

    2011-01-01

    Recent studies suggest that GABA and glycine are protective to mature but toxic to immature cortical neurons during prolonged hypoxia. Since the action of these inhibitory amino acids is mediated by GABA and glycine receptors, the expression of these receptors is a critical factor in determining neuronal response to GABAA and glycine in hypoxia. Therefore, we asked whether in rat cortical neurons, 1) hypoxia alters the expression of the GABA and glycine receptors; 2) inhibitory amino acids change the course of GABA and glycine receptor expression; and 3) there are any differences between the immature and mature neurons. In cultured rat cortical neurons from day 4 (4 Days in Vitro or DIV 4) to day 20 (DIV 20), we observed that 1) GABAARα and GlyRα1 underwent differential changes in expression during the development in-vitro; 2) hypoxia for 3 days decreased GABAARα and GlyRα1 density in the neurons in-between DIV 4 and DIV 20, but did not induce a major change in immature (DIV 4) and mature (DIV 20) neurons; 3) during normoxia GABA, glycine and taurine decreased GABAARα and GlyRα1 density in the immature neurons, but had a tendency to increase the density in the mature neurons, except for taurine; 4) under hypoxia, all these amino acids decreased GABAARα and GlyRα1 density in most groups of the immature neurons with a slight effect on the mature neurons; and 5) δ-opioid receptor activation with DADLE increased GABAARα and GlyRα1 density in both the immature and mature neurons under normoxia and in the mature neurons under hypoxic condition. These data suggest that inhibitory amino acids differentially regulate the expression of GABAA and glycine receptors in rat cortical neurons in normoxic and hypoxic conditions with major differences between the immature and mature neurons. PMID:22018691

  6. The importance of glutamate, glycine, and {gamma}-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity

    SciTech Connect

    Fitsanakis, Vanessa A.; Aschner, Michael . E-mail: michael.aschner@vanderbilt.edu

    2005-05-01

    Historically, amino acids were studied in the context of their importance in protein synthesis. In the 1950s, the focus of research shifted as amino acids were recognized as putative neurotransmitters. Today, many amino acids are considered important neurochemicals. Although many amino acids play a role in neurotransmission, glutamate (Glu), glycine (Gly), and {gamma}-aminobutyric acid (GABA) are among the more prevalent and better understood. Glu, the major excitatory neurotransmitter, and Gly and GABA, the major inhibitory neurotransmitters, in the central nervous system, are known to be tightly regulated. Prolonged exposure to environmental toxicants, such as manganese (Mn), mercury (Hg), or lead (Pb), however, can lead to dysregulation of these neurochemicals and subsequent neurotoxicity. While the ability of these metals to disrupt the regulation of Glu, Gly and GABA have been studied, few articles have examined the collective role of these amino acids in the respective metal's mechanism of toxicity. For each of the neurotransmitters above, we will provide a brief synopsis of their regulatory function, including the importance of transport and re-uptake in maintaining their optimal function. Additionally, the review will address the hypothesis that aberrant homeostasis of any of these amino acids, or a combination of the three, plays a role in the neurotoxicity of Mn, Hg, or Pb.

  7. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    SciTech Connect

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-03-03

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method.

  8. Conformational characterization of peptides rich in the cycloaliphatic C alpha,alpha-disubstituted glycine 1-aminocyclononane-1-carboxylic acid.

    PubMed

    Gatos, M; Formaggio, F; Crisma, M; Valle, G; Toniolo, C; Bonora, G M; Saviano, M; Iacovino, R; Menchise, V; Galdiero, S; Pedone, C; Benedetti, E

    1997-01-01

    A series of N- and C-protected, monodispersed homo-oligopeptides (to the pentamer level) from the cycloaliphatic C alpha,alpha-dialkylated glycine 1-aminocyclononane-1-carboxylic acid (Ac9c) and two Ala/Ac9c tripeptides have been synthesized by solution methods and fully characterized. The conformational preferences of all the model peptides were determined in deuterochloroform solution by FT-IR absorption and 1H-NMR. The molecular structures of the amino acid derivatives mCIAc-Ac9c-OH and Z-Ac9c-OtBu, the dipeptide pBrBz-(Ac9c)2-OtBu, the tetrapeptide Z-(Ac9c)4-OtBu, and the pentapeptide Z-(Ac9c)5-OtBu were determined in the crystal state by X-ray diffraction. Based on this information, the average geometry and the preferred conformation for the cyclononyl moiety of the Ac9c residue have been assessed. The backbone conformational data are strongly in favour of the conclusion that the Ac9c residue is a strong beta-turn and helix former. A comparison with the structural propensity of alpha-aminoisobutyric acid, the prototype of C alpha,alpha-dialkylated glycines, and the other extensively investigated members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n = 3-8) is made and the implications for the use of the Ac9c residue in conformationally constrained analogues of bioactive peptides are briefly examined. PMID:9391912

  9. Effect of acidity on the glycine-nitrate combustion synthesis of nanocrystalline alumina powder

    SciTech Connect

    Peng Tianyou . E-mail: typeng@whu.edu.cn; Liu Xun; Dai Ke; Xiao Jiangrong; Song Haibo

    2006-09-14

    Nanocrystalline alumina powders were prepared by combustion synthesis using glycine as fuel and nitrate as an oxidizer. The effect of the pH values in the precursor solutions on crystallite sizes, surface areas and morphologies of the synthesized alumina powder has been investigated by X-ray diffractometry, thermal analysis, nitrogen adsorption-desorption, and transmission electron microscopy. With decreasing the pH values in the precursor solutions, the obtained materials could be modified from segregated nanoparticles (pH 10.5) to aggregates of nanoparticles (pH 6.0), and finally to a flaky morphology (pH 2.5). The rates of decomposition, the interaction of coordination as well as the hydrogen bonding of the glycine and the Al-hydroxides species at different pH values were found to be responsible for the generation of flake and/or segregated nanoparticles during auto-ignition reactions. The as-prepared combustion ashes were converted into pure nanocrystalline alumina after calcination at elevated temperatures. The specific surface areas of the products calcined at 800 deg. C ranged from 96 to 39 m{sup 2}/g with the pH decreased from 10.5 to 2.5.

  10. Combination of amino acids reduces pigmentation in B16F0 melanoma cells.

    PubMed

    Ishikawa, Masago; Kawase, Ichiro; Ishii, Fumio

    2007-04-01

    Amino acids, the building blocks of proteins, play significant roles in numerous physiological events in mammals. As the effects of amino acids on melanogenesis have yet to be demonstrated, the present study was conducted to identify whether amino acids, in particular alanine, glycine, isoleucine and leucine, influence melanogenesis in B16F0 melanoma cells. Glycine and L-isoleucine, but not D-isoleucine, reduced melanogenesis in a concentration-dependent manner without any morphological changes in B16F0 melanoma cells. L-Alanine and L-leucine, but not D-alanine and D-leucine, also reduced melanogenesis without any morphological changes in B16F0 melanoma cells. However these amino acids did not show a concentration-dependency. Combination of L-alanine and the other amino acids, particularly 4 amino acids combination, had an additive effect on the inhibition of melanogenesis compared with single treatment of L-alanine. None of the amino acids affected the activity of tyrosinase, a key enzyme in melanogenesis. These results suggest that L-alanine, glycine, L-isoleucine and L-leucine, but not the D-form amino acids, have a hypopigmenting effect in B16F0 melanoma cells, and that these effects are not due to the inhibition of tyrosinase activity. Combination of these 4 amino acids had the additive effect on hypopigmentation that was as similar as that of kojic acid. PMID:17409501

  11. Growth, Optical, Dielectric and Ferroelectric Properties of Non-Linear Optical Single Crystal: Glycine-Phthalic Acid

    NASA Astrophysics Data System (ADS)

    Suresh, Sagadevan

    2016-07-01

    Single crystals of glycine-phthalic acid (GPA) were grown by slow evaporation process using aqueous solution. X-ray diffraction analysis was used to examine its cell structure and it was found that the GPA crystal corresponded to the orthorhombic system. To identify absorption range and cut-off wavelength for the GPA crystal, UV-visible spectrum was recorded. UV-visible spectroscopy was used to study the optical constants such as the refractive index, the extinction coefficient, electrical susceptibility, and optical conductivity. As a function of different frequencies and temperatures, the dielectric constant and the dielectric loss were examined. The electrical properties like plasma energy, Penn gap, Fermi energy, and polarizability were determined for the analysis of the second harmonic generation (SHG). Using the Kurtz powder technique, the SHG of the GPA crystal was studied. Investigations relating to hysteresis were carried out to ascertain the ferroelectric nature of the material.

  12. Electrophysiological Signature of Homomeric and Heteromeric Glycine Receptor Channels.

    PubMed

    Raltschev, Constanze; Hetsch, Florian; Winkelmann, Aline; Meier, Jochen C; Semtner, Marcus

    2016-08-19

    Glycine receptors are chloride-permeable, ligand-gated ion channels and contribute to the inhibition of neuronal firing in the central nervous system or to facilitation of neurotransmitter release if expressed at presynaptic sites. Recent structure-function studies have provided detailed insights into the mechanisms of channel gating, desensitization, and ion permeation. However, most of the work has focused only on comparing a few isoforms, and among studies, different cellular expression systems were used. Here, we performed a series of experiments using recombinantly expressed homomeric and heteromeric glycine receptor channels, including their splice variants, in the same cellular expression system to investigate and compare their electrophysiological properties. Our data show that the current-voltage relationships of homomeric channels formed by the α2 or α3 subunits change upon receptor desensitization from a linear to an inwardly rectifying shape, in contrast to their heteromeric counterparts. The results demonstrate that inward rectification depends on a single amino acid (Ala(254)) at the inner pore mouth of the channels and is closely linked to chloride permeation. We also show that the current-voltage relationships of glycine-evoked currents in primary hippocampal neurons are inwardly rectifying upon desensitization. Thus, the alanine residue Ala(254) determines voltage-dependent rectification upon receptor desensitization and reveals a physio-molecular signature of homomeric glycine receptor channels, which provides unprecedented opportunities for the identification of these channels at the single cell level. PMID:27382060

  13. Kinetics of amino acids equilibration in the dialysate during CAPD.

    PubMed

    De Santo, N G; Capodicasa, G; Di Leo, V A; Di Serafino, A; Cirillo, D; Esposito, R; Fiore, R; Cucciniello, E; Damiano, M; Buonadonna, L; Di Iorio, R; Capasso, G; Giordano, C

    1981-01-01

    The equilibrium between plasma and peritoneal dialysis fluid has been studies for 23 amino acids during peritoneal exchanges at dwell times up to 8 hours in patients on CAPD. It is demonstrated that equilibration is a particular process typical for each amino acid which after 8 hour is nearly complete only for Glycine, Alanine and Asparagine. PMID:7216530

  14. Synthesis and biological evaluation of a new set of pyrazolo[1,5-c]quinazolines as glycine/N-methyl-D-aspartic acid receptor antagonists.

    PubMed

    Varano, Flavia; Catarzi, Daniela; Colotta, Vittoria; Poli, Daniela; Filacchioni, Guido; Galli, Alessandro; Costagli, Chiara

    2009-08-01

    Previous studies have shown that 8-chloro-5,6-dihydro-5-oxo-pyrazolo[1,5-c]quinazoline-2-carboxylates (PQZ series) represent a family of glycine/N-methyl-D-aspartic acid (NMDA) and/or (R,S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) and/or kainic acid (KA) receptor antagonists. Moreover, some groups have been identified that introduced in suitable positions of the PQZ 2-carboxylate framework shift affinity and selectivity toward glycine/NMDA receptor. These substituents are a carboxylate function at position-1 and/or a chlorine atom at position-9. In this paper we report a study on some new 5,6-dihydro-5-oxo-pyrazolo[1,5-c]quinazoline-1-carboxylates bearing at position-2 a lipophilic amide group or lacking substituent at this same position. All the newly synthesised compounds were evaluated for their binding at glycine/NMDA, AMPA and KA receptors. These studies led to the identification of some new PQZ derivatives endowed with good glycine/NMDA receptor affinity and selectivity and to better definition of the structure-activity relationship (SAR) of this class of compounds. PMID:19652407

  15. LeProT1, a transporter for proline, glycine betaine, and gamma-amino butyric acid in tomato pollen.

    PubMed Central

    Schwacke, R; Grallath, S; Breitkreuz, K E; Stransky, E; Stransky, H; Frommer, W B; Rentsch, D

    1999-01-01

    During maturation, pollen undergoes a period of dehydration accompanied by the accumulation of compatible solutes. Solute import across the pollen plasma membrane, which occurs via proteinaceous transporters, is required to support pollen development and also for subsequent germination and pollen tube growth. Analysis of the free amino acid composition of various tissues in tomato revealed that the proline content in flowers was 60 times higher than in any other organ analyzed. Within the floral organs, proline was confined predominantly to pollen, where it represented >70% of total free amino acids. Uptake experiments demonstrated that mature as well as germinated pollen rapidly take up proline. To identify proline transporters in tomato pollen, we isolated genes homologous to Arabidopsis proline transporters. LeProT1 was specifically expressed both in mature and germinating pollen, as demonstrated by RNA in situ hybridization. Expression in a yeast mutant demonstrated that LeProT1 transports proline and gamma-amino butyric acid with low affinity and glycine betaine with high affinity. Direct uptake and competition studies demonstrate that LeProT1 constitutes a general transporter for compatible solutes. PMID:10072398

  16. Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds.

    PubMed

    Silva, Luís R; Pereira, Maria J; Azevedo, Jessica; Mulas, Rebeca; Velazquez, Encarna; González-Andrés, Fernando; Valentão, Patrícia; Andrade, Paula B

    2013-12-15

    Soybean (Glycine max (L.) Merrill) is one of the most important food crops for human and animal consumption, providing oil and protein at relatively low cost. The least expensive source of nitrogen for soybean is the biological fixation of atmospheric nitrogen by the symbiotic association with soil bacteria, belonging mainly to the genus Bradyrhizobium. This study was conducted to assess the effect of the inoculation of G. max with Bradyrhizobium japonicum on the metabolite profile and antioxidant potential of its seeds. Phenolic compounds, sterols, triterpenes, organic acids, fatty acids and volatiles profiles were characterised by different chromatographic techniques. The antioxidant activity was evaluated against DPPH, superoxide and nitric oxide radicals. Inoculation with B. japonicum induced changes in the profiles of primary and secondary metabolites of G. max seeds, without affecting their antioxidant capacity. The increase of organic and fatty acids and volatiles suggest a positive effect of the inoculation process. These findings indicate that the inoculation with nodulating B. japonicum is a beneficial agricultural practice, increasing the content of bioactive metabolites in G. max seeds owing to the establishment of symbiosis between plant and microorganism, with direct effects on seed quality. PMID:23993531

  17. Water deficit-induced changes in abscisic acid, growth polysomes, and translatable RNA in soybean hypocotyls. [Glycine max L

    SciTech Connect

    Bensen, R.J.; Boyer, J.S.; Mullet, J.E. )

    1988-01-01

    Soybean seedlings (Glycine max L.) were germinated and dark-grown in water-saturated vermiculite for 48 hours, then transferred either to water-saturated vermiculite or to low water potential vermiculite. A decrease in growth rate was detectable within 0.8 hour post-transfer to low water potential vermiculite. A fourfold increase in the abscisic acid content of the elongating region was observed within 0.5 hour. At 24 hours post-transfer, hypocotyl elongation was severely arrested and abscisic acid reached its highest measured level. A comparison of the polyA{sup +} RNA populations isolated at 24 hours post-transfer from the elongating region of water-saturated and low water potential vermiculite-grown seedlings was made by two-dimensional polyacrylamide gel analysis of in vitro translation products. It revealed both increases and decreases in the relative amounts of a number of translation products. Rewatering seedlings grown in low water potential vermiculite at 24 hours post-transfer led to a total recovery in growth rate within 0.5 hour, while abscisic acid in the elongating hypocotyl region required 1 to 2 hours to return to uninduced levels. Application of 1.0 millimolar {+-} abscisic acid to well-watered seedlings resulted in a 48% reduction in hypocotyl growth rate during the first 2 hours after treatment. Plants treated with abscisic acid for 24 hours had a lower polysome content than control plants. However, hypocotyl growth inhibition in abscisic acid-treated seedlings preceded the decline in polysome content.

  18. Amino acids (L-arginine and L-alanine) passivated CdS nanoparticles: Synthesis of spherical hierarchical structure and nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Talwatkar, S. S.; Tamgadge, Y. S.; Sunatkari, A. L.; Gambhire, A. B.; Muley, G. G.

    2014-12-01

    CdS nanoparticles (NPs) passivated with amino acids (L-alanine and L-arginine) having spherical hierarchical morphology were synthesized by room temperature wet chemical method. Synthesized NPs were characterized by ultraviolet-visible (UV-vis) spectroscopy to study the variation of band gaps with concentration of surface modifying agents. Increase in band gap has been observed with the increase in concentration of surface modifying agents and was found more prominent for CdS NPs passivated with L-alanine. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were carried out for the study of crystal structure and morphology of CdS NPs. The average particle size of CdS NPs calculated from Debye-Scherer formula was found to less than 5 nm and agrees well with those determined from UV-vis spectra and TEM data. Fourier transform infrared (FT-IR) spectroscopy was performed to know the functional groups of the grown NPs. Peaks in FT-IR spectra indicate the formation of CdS NPs and capping with L-alanine and L-arginine. Photoluminescence spectra of these NPs were also studied. Finally, colloidal solution of CdS-PVAc was subjected to Z-scan experiment under low power cw laser illumination to characterize them for third order nonlinear optical properties. CdS-PVAc colloidal solution shows enhanced nonlinear absorption due to RSA and weak FCA on account of two photon absorption processes triggered by thermal effect.

  19. Glycine restores the anabolic response to leucine in a mouse model of acute inflammation.

    PubMed

    Ham, Daniel J; Caldow, Marissa K; Chhen, Victoria; Chee, Annabel; Wang, Xuemin; Proud, Christopher G; Lynch, Gordon S; Koopman, René

    2016-06-01

    Amino acids, especially leucine, potently stimulate protein synthesis and reduce protein breakdown in healthy skeletal muscle and as a result have received considerable attention as potential treatments for muscle wasting. However, the normal anabolic response to amino acids is impaired during muscle-wasting conditions. Although the exact mechanisms of this anabolic resistance are unclear, inflammation and ROS are believed to play a central role. The nonessential amino acid glycine has anti-inflammatory and antioxidant properties and preserves muscle mass in calorie-restricted and tumor-bearing mice. We hypothesized that glycine would restore the normal muscle anabolic response to amino acids under inflammatory conditions. Relative rates of basal and leucine-stimulated protein synthesis were measured using SUnSET methodology 4 h after an injection of 1 mg/kg lipopolysaccharide (LPS). Whereas leucine failed to stimulate muscle protein synthesis in LPS-treated mice pretreated with l-alanine (isonitrogenous control), leucine robustly stimulated protein synthesis (+51%) in mice pretreated with 1 g/kg glycine. The improvement in leucine-stimulated protein synthesis was accompanied by a higher phosphorylation status of mTOR, S6, and 4E-BP1 compared with l-alanine-treated controls. Despite its known anti-inflammatory action in inflammatory cells, glycine did not alter the skeletal muscle inflammatory response to LPS in vivo or in vitro but markedly reduced DHE staining intensity, a marker of oxidative stress, in muscle cross-sections and attenuated LPS-induced wasting in C2C12 myotubes. Our observations in male C57BL/6 mice suggest that glycine may represent a promising nutritional intervention for the attenuation of skeletal muscle wasting. PMID:27094036

  20. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    PubMed

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-01

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations. PMID:26119066

  1. Palladium-catalyzed β-C(sp(3))-H arylation of phthaloyl alanine with hindered aryl iodides: synthesis of complex β-aryl α-amino acids.

    PubMed

    Zhang, Xuekai; He, Gang; Chen, Gong

    2016-06-28

    An efficient protocol for palladium-catalyzed β-C(sp(3))-H arylation of aliphatic carboxamides equipped with a 2-(2-pyridyl) ethylamine (PE) auxiliary was developed. The PE auxiliary is uniquely effective at facilitating the arylation of primary C(sp(3))-H bonds with sterically hindered aryl iodides. A variety of aryl iodides bearing alkoxyl, carbonyl, nitro and halogen groups on the ortho position can react with the PE-coupled phthaloyl alanine substrate in moderate to excellent yield. These reactions offer a useful solution for preparing complex β-aryl α-amino acid products from readily accessible starting materials. PMID:26781005

  2. Electron paramagnetic resonance studies of gamma-irradiated DL-alanine ethyl ester hydrochloride, L-theanine and L-glutamic acid dimethyl ester hydrochloride.

    PubMed

    Başkan, M Halim; Aydın, Murat

    2013-08-01

    The electron paramagnetic resonance (EPR) of gamma irradiated powders of DL-alanine ethyl ester hydrochloride, L-theanine and L-glutamic acid dimethyl ester hydrochloride were investigated at room temperature. The observed paramagnetic species were attributed to the CH3ĊHCOOC2H5, -CH2ĊHCOOH and -CH2ĊHCOOCH3 radicals, respectively. Hyperfine structure constants and g-values were determined for these three radicals. Some spectroscopic properties and suggestions concerning the possible structure of the radicals were also discussed. PMID:23680512

  3. Electron paramagnetic resonance studies of gamma-irradiated DL-alanine ethyl ester hydrochloride, L-theanine and L-glutamic acid dimethyl ester hydrochloride

    NASA Astrophysics Data System (ADS)

    Başkan, M. Halim; Aydın, Murat

    2013-08-01

    The electron paramagnetic resonance (EPR) of gamma irradiated powders of DL-alanine ethyl ester hydrochloride, L-theanine and L-glutamic acid dimethyl ester hydrochloride were investigated at room temperature. The observed paramagnetic species were attributed to the CH3ĊHCOOC2H5, -CH2ĊHCOOH and -CH2ĊHCOOCH3 radicals, respectively. Hyperfine structure constants and g-values were determined for these three radicals. Some spectroscopic properties and suggestions concerning the possible structure of the radicals were also discussed.

  4. Genome-Wide Identification, Classification, and Expression Analysis of Amino Acid Transporter Gene Family in Glycine Max

    PubMed Central

    Cheng, Lin; Yuan, Hong-Yu; Ren, Ren; Zhao, Shi-Qi; Han, Ya-Peng; Zhou, Qi-Ying; Ke, Dan-Xia; Wang, Ying-Xiang; Wang, Lei

    2016-01-01

    Amino acid transporters (AATs) play important roles in transporting amino acid across cellular membranes and are essential for plant growth and development. To date, the AAT gene family in soybean (Glycine max L.) has not been characterized. In this study, we identified 189 AAT genes from the entire soybean genomic sequence, and classified them into 12 distinct subfamilies based upon their sequence composition and phylogenetic positions. To further investigate the functions of these genes, we analyzed the chromosome distributions, gene structures, duplication patterns, phylogenetic tree, tissue expression patterns of the 189 AAT genes in soybean. We found that a large number of AAT genes in soybean were expanded via gene duplication, 46 and 36 GmAAT genes were WGD/segmental and tandemly duplicated, respectively. Further comprehensive analyses of the expression profiles of GmAAT genes in various stages of vegetative and reproductive development showed that soybean AAT genes exhibited preferential or distinct expression patterns among different tissues. Overall, our study provides a framework for further analysis of the biological functions of AAT genes in either soybean or other crops. PMID:27148336

  5. Genome-Wide Identification, Classification, and Expression Analysis of Amino Acid Transporter Gene Family in Glycine Max.

    PubMed

    Cheng, Lin; Yuan, Hong-Yu; Ren, Ren; Zhao, Shi-Qi; Han, Ya-Peng; Zhou, Qi-Ying; Ke, Dan-Xia; Wang, Ying-Xiang; Wang, Lei

    2016-01-01

    Amino acid transporters (AATs) play important roles in transporting amino acid across cellular membranes and are essential for plant growth and development. To date, the AAT gene family in soybean (Glycine max L.) has not been characterized. In this study, we identified 189 AAT genes from the entire soybean genomic sequence, and classified them into 12 distinct subfamilies based upon their sequence composition and phylogenetic positions. To further investigate the functions of these genes, we analyzed the chromosome distributions, gene structures, duplication patterns, phylogenetic tree, tissue expression patterns of the 189 AAT genes in soybean. We found that a large number of AAT genes in soybean were expanded via gene duplication, 46 and 36 GmAAT genes were WGD/segmental and tandemly duplicated, respectively. Further comprehensive analyses of the expression profiles of GmAAT genes in various stages of vegetative and reproductive development showed that soybean AAT genes exhibited preferential or distinct expression patterns among different tissues. Overall, our study provides a framework for further analysis of the biological functions of AAT genes in either soybean or other crops. PMID:27148336

  6. The Benzyl Ester Group of Amino Acid Monomers Enhances Substrate Affinity and Broadens the Substrate Specificity of the Enzyme Catalyst in Chemoenzymatic Copolymerization.

    PubMed

    Ageitos, Jose Manuel; Yazawa, Kenjiro; Tateishi, Ayaka; Tsuchiya, Kousuke; Numata, Keiji

    2016-01-11

    The chemoenzymatic polymerization of amino acid monomers by proteases involves a two-step reaction: the formation of a covalent acyl-intermediate complex between the protease and the carboxyl ester group of the monomer and the subsequent deacylation of the complex by aminolysis to form a peptide bond. Although the initiation with the ester group of the monomer is an important step, the influence of the ester group on the polymerization has not been studied in detail. Herein, we studied the effect of the ester groups (methyl, ethyl, benzyl, and tert-butyl esters) of alanine and glycine on the synthesis of peptides using papain as the catalyst. Alanine and glycine were selected as monomers because of their substantially different affinities toward papain. The efficiency of the polymerization of alanine and glycine benzyl esters was much greater than that of the other esters. The benzyl ester group therefore allowed papain to equally polymerize alanine and glycine, even though the affinity of alanine toward papain is substantially higher. The characterization of the copolymers of alanine and glycine in terms of the secondary structure and thermal properties revealed that the thermal stability of the peptides depends on the amino acid composition and resultant secondary structure. The current results indicate that the nature of the ester group drastically affects the polymerization efficiency and broadens the substrate specificity of the protease. PMID:26620763

  7. The metabolism of the non-proteinogenic amino acid β-N-methylamino-L-alanine (BMAA) in the cyanobacterium Synechocystis PCC6803.

    PubMed

    Downing, Simoné; Downing, Timothy Grant

    2016-06-01

    The neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) is produced by cyanobacteria under nitrogen starvation conditions and its metabolism is closely associated with cellular nitrogen control. Very little is known regarding the metabolism or biosynthesis of this amino acid in the producing organisms and current knowledge is limited to the spontaneous formation of carbamate adducts in the presence of aqueous carbon dioxide, the rapid removal of free cellular BMAA upon the addition of ammonia to nitrogen-starved cyanobacterial cultures, and the link between cellular nitrogen status and BMAA synthesis. Data presented here show that exogenous BMAA is readily metabolised by cyanobacteria during which, the primary amino group is rapidly transferred to other cellular amino acids. Furthermore, data suggest that BMAA is metabolised in cyanobacteria via a reversible transamination reaction. This study presents novel data on BMAA metabolism in cyanobacteria and provides the first proposed biosynthetic precursor to BMAA biosynthesis in cyanobacteria. PMID:26948425

  8. Free amino acid composition of quince (Cydonia oblonga Miller) fruit (pulp and peel) and jam.

    PubMed

    Silva, Branca M; Casal, Susana; Andrade, Paula B; Seabra, Rosa M; Oliveira, M Beatriz P P; Ferreira, Margarida A

    2004-03-10

    Twenty-one free amino acids present in several samples of quince fruit (pulp and peel) and quince jam (homemade and industrially manufactured) were analyzed by GC/FID. The analyses showed some differences between quince pulps and peels. Generally, the highest content in total free amino acids and in glycine was found in peels. As a general rule, the three major free amino acids detected in pulps were aspartic acid, asparagine, and hydroxyproline. For quince peels, usually, the three most abundant amino acids were glycine, aspartic acid, and asparagine. Similarly, for quince jams the most important free amino acids were aspartic acid, asparagine, and glycine or hydroxyproline. This study suggests that the free amino acid analysis can be useful for the evaluation of quince jam authenticity. It seems that glycine percentage can be used for the detection of quince peel addition while high alanine content can be related to pear addition. PMID:14995121

  9. The glycine deportation system and its pharmacological consequences.

    PubMed

    Beyoğlu, Diren; Idle, Jeffrey R

    2012-08-01

    The glycine deportation system is an essential component of glycine catabolism in man whereby 400 to 800mg glycine per day are deported into urine as hippuric acid. The molecular escort for this deportation is benzoic acid, which derives from the diet and from gut microbiota metabolism of dietary precursors. Three components of this system, involving hepatic and renal metabolism, and renal active tubular secretion help regulate systemic and central nervous system levels of glycine. When glycine levels are pathologically high, as in congenital nonketotic hyperglycinemia, the glycine deportation system can be upregulated with pharmacological doses of benzoic acid to assist in normalization of glycine homeostasis. In congenital urea cycle enzymopathies, similar activation of the glycine deportation system with benzoic acid is useful for the excretion of excess nitrogen in the form of glycine. Drugs which can substitute for benzoic acid as substrates for the glycine deportation system have adverse reactions that may involve perturbations of glycine homeostasis. The cancer chemotherapeutic agent ifosfamide has an unacceptably high incidence of encephalopathy. This would appear to arise as a result of the production of toxic aldehyde metabolites which deplete ATP production and sequester NADH in the mitochondrial matrix, thereby inhibiting the glycine deportation system and causing de novo glycine synthesis by the glycine cleavage system. We hypothesize that this would result in hyperglycinemia and encephalopathy. This understanding may lead to novel prophylactic strategies for ifosfamide encephalopathy. Thus, the glycine deportation system plays multiple key roles in physiological and neurotoxicological processes involving glycine. PMID:22584143

  10. The glycine deportation system and its pharmacological consequences☆

    PubMed Central

    Beyoğlu, Diren; Idle, Jeffrey R.

    2013-01-01

    The glycine deportation system is an essential component of glycine catabolism in man whereby 400 to 800 mg glycine per day are deported into urine as hippuric acid. The molecular escort for this deportation is benzoic acid, which derives from the diet and from gut microbiota metabolism of dietary precursors. Three components of this system, involving hepatic and renal metabolism, and renal active tubular secretion help regulate systemic and central nervous system levels of glycine. When glycine levels are pathologically high, as in congenital nonketotic hyperglycinemia, the glycine deportation system can be upregulated with pharmacological doses of benzoic acid to assist in normalization of glycine homeostasis. In congenital urea cycle enzymopathies, similar activation of the glycine deportation system with benzoic acid is useful for the excretion of excess nitrogen in the form of glycine. Drugs which can substitute for benzoic acid as substrates for the glycine deportation system have adverse reactions that may involve perturbations of glycine homeostasis. The cancer chemotherapeutic agent ifosfamide has an unacceptably high incidence of encephalopathy. This would appear to arise as a result of the production of toxic aldehyde metabolites which deplete ATP production and sequester NADH in the mitochondrial matrix, thereby inhibiting the glycine deportation system and causing de novo glycine synthesis by the glycine cleavage system. We hypothesize that this would result in hyperglycinemia and encephalopathy. This understanding may lead to novel prophylactic strategies for ifosfamide encephalopathy. Thus, the glycine deportation system plays multiple key roles in physiological and neurotoxicological processes involving glycine. PMID:22584143

  11. Comparison of oleic acid metabolism in the soybean (Glycine max (L. ) Merr. ) genotypes Williams and A5, a mutant with decreased linoleic acid in the seed

    SciTech Connect

    Martin, B.A.; Rinne, R.W.

    1986-05-01

    The metabolism of oleoyl coenzyme A (CoA) was examined in developing seed from two soybean (Glycine max (L.) Merr.) genotypes: Williams, a standard cultivar and A5, a mutant containing nearly twice the oleic acid (18:1) content of Williams. The in vitro rates of esterification of oleoyl-CoA to lysophosphatides by acyl-CoA: lysophosphatidylcholine acyltransferase was similar in both genotypes and lysophosphatidyl-ethanolamine was a poor substrate. Crude extracts desaturated exogenous (1-/sup 14/C)dioleoyl phosphatidylcholine at 14% of the rate achieved with (1-/sup 14/C)oleoyl-CoA, and 50 micromolar lysophosphaatidylcholine. The desaturase enzyme also required NADH for full activity. Extracts from Williams contained 1.5-fold more oleoyl phosphatidylcholine desaturase activity, on a fresh weight basis, than did A5 and appeared to have a similar affinity for oleoyl-CoA. There was 1.2- to 1.9-fold more linoleic acid (18:2) in phosphatidylcholine from Williams than from A5, measured at two stages of development, but both genotypes had a similar distribution of fatty acids in the one and two positions. Phosphatidylethanolamine in A5 contained relatively more linoleic acid (18:2) in the one position than did Williams. The increased oleic acid (18:1) content in A5 appeared to be a result of decreased rates of 18:1 desaturation of oleoyl-phosphatidylcholine in this genotype.

  12. Propofol differentially inhibits the release of glutamate, γ-aminobutyric acid and glycine in the spinal dorsal horn of rats

    PubMed Central

    Yang, Jing; Wang, Wei; Yong, Zheng; Mi, Weidong; Zhang, Hong

    2015-01-01

    Objective(s): Propofol (2, 6-diisopropylphenol) is an intravenous anesthetic that is commonly used for the general anesthesia. It is well known that the spinal cord is one of the working targets of general anesthesia including propofol. However, there is a lack of investigation of the effects of propofol on spinal dorsal horn which is important for the sensory transmission of nociceptive signals. The objective of this study was to investigate the effects of increasing dosage of propofol on the release of glutamate (Glu), γ-aminobutyric acid (GABA) and glycine (Gly) in the spinal dorsal horn. Materials and Methods: The efflux of Glu, GABA or Gly in the spinal dorsal horn of rats was detected using transverse spinal microdialysis under an awake condition and various depths of propofol anesthesia. The infusion rates of propofol were, in order, 400 µg/(kg·min), 600 µg/(kg·min) and 800 µg/(kg·min), with a 20 min infusion period being maintained at each infusion rate. Results: Propofol decreased the glutamate efflux within spinal dorsal horn in a dose-dependent manner, and the maximum decrease was 56.8 ± 6.0% at high-dose propofol infusion producing immobility. The inhibitory GABA and Gly efflux was also decreased about 15–20% at low-dose propofol infusion only producing sedation, but did not continue to drop with higher doses of propofol. Conclusion: Propofol decreased both excitatory and inhibitory amino acids efflux in spinal dorsal horn, and the preferential suppression of the excitatory amino acid might be associated with the analgesic effect of propofol. PMID:26557972

  13. Arginine-glycine-aspartic acid-conjugated dendrimer-modified quantum dots for targeting and imaging melanoma.

    PubMed

    Li, Zhiming; Huang, Peng; Lin, Jing; He, Rong; Liu, Bing; Zhang, Xiaomin; Yang, Sen; Xi, Peng; Zhang, Xuejun; Ren, Qiushi; Cui, Daxiang

    2010-08-01

    Angiogenesis is essential for the development of malignant tumors and provides important targets for tumor diagnosis and therapy. Quantum dots have been broadly investigated for their potential application in cancer molecular imaging. In present work, CdSe quantum dots were synthesized, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified CdSe quantum dots were conjugated with arginine-glycine-aspartic acid (RGD) peptides. These prepared nanoprobes were injected into nude mice loaded with melanoma (A375) tumor xenografts via tail vessels, IVIS imaging system was used to image the targeting and bio-distribution of as-prepared nanoprobes. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. RGD-conjugated quantum dots can specifically target human umbilical vein endothelial cells (HUVEC) and A375 melanoma cells, as well as nude mice loaded with A735 melanoma cells. High-performance RGD-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as tumor diagnosis and therapy. PMID:21125820

  14. Characterization of an acidic chitinase from seeds of black soybean (Glycine max (L) Merr Tainan No. 3).

    PubMed

    Chang, Ya-Min; Chen, Li-Chun; Wang, Hsin-Yi; Chiang, Chui-Liang; Chang, Chen-Tien; Chung, Yun-Chin

    2014-01-01

    Using 4-methylumbelliferyl-β-D-N,N',N″-triacetylchitotrioside (4-MU-GlcNAc3) as a substrate, an acidic chitinase was purified from seeds of black soybean (Glycine max Tainan no. 3) by ammonium sulfate fractionation and three successive steps of column chromatography. The purified chitinase was a monomeric enzyme with molecular mass of 20.1 kDa and isoelectric point of 4.34. The enzyme catalyzed the hydrolysis of synthetic substrates p-nitrophenyl N-acetyl chitooligosaccharides with chain length from 3 to 5 (GlcNAcn, n = 3-5), and pNp-GlcNAc4 was the most degradable substrate. Using pNp-GlcNAc4 as a substrate, the optimal pH for the enzyme reaction was 4.0; kinetic parameters Km and kcat were 245 µM and 10.31 min-1, respectively. This enzyme also showed activity toward CM-chitin-RBV, a polymer form of chitin, and N-acetyl chitooligosaccharides, an oligomer form of chitin. The smallest oligomer substrate was an N-acetylglucosamine tetramer. These results suggested that this enzyme was an endo-splitting chitinase with short substrate cleavage activity and useful for biotechnological applications, in particular for the production of N-acetyl chitooligosaccharides. PMID:25437446

  15. Covariation Analysis of Serumal and Urinary Metabolites Suggests Aberrant Glycine and Fatty Acid Metabolism in Chronic Hepatitis B

    PubMed Central

    Yang, Xue; Kong, Xiangliang; Cao, Zhiwei; Zhang, Yongyu; Hu, Yiyang; Tang, Kailin

    2016-01-01

    Background Chronic hepatitis b (CHB) is one of the most serious viral diseases threatening human health by putting patients at lifelong risk of cirrhosis and hepatocellular carcinoma (HCC). Although some proofs of altered metabolites in CHB were accumulated, its metabolic mechanism remains poorly understood. Analyzing covariations between metabolites may provide new hints toward underlying metabolic pathogenesis in CHB patients. Methods The present study collected paired urine and serum samples from the same subjects including 145 CHB and 23 healthy controls. A large-scale analysis of metabolites’ covariation within and across biofluids was systematically done to explore the underlying biological evidences for reprogrammed metabolism in CHB. Randomization and relative ranking difference were introduced to reduce bias caused by different sample size. More importantly, functional indication was interpreted by mapping differentially changed covariations to known metabolic pathways. Results Our results suggested reprogrammed pathways related to glycine metabolism, fatty acids metabolism and TCA cycle in CHB patients. With further improvement, the covariation analysis combined with network association study would pave new alternative way to interpret functional clues in clinical multi-omics data. PMID:27228119

  16. Incorporation of glycine-2-C-14 in acid-insoluble proteins of rat bones and teeth during hypokinesia and administration of thyrocalcitonine

    NASA Technical Reports Server (NTRS)

    Volozhin, A. I.; Stekolnikov, L. I.; Uglova, N. N.; Potkin, V. Y.

    1979-01-01

    A forced limitation of the motor activity in rats (from 5 to 60 days) results in reduced incorporation of glycine 2-C14 in the total acid insoluble proteins of limb bones and its increase in the teeth and mandibular-maxillary bones. Daily administration of five micrograms of thyrocalcitonine together with polyvinylpyrrolidone normalizes the protein metabolism in the bone tissues during the 40 days of experimentation.

  17. Combination of cathodic reduction with adsorption for accelerated removal of Cr(VI) through reticulated vitreous carbon electrodes modified with sulfuric acid-glycine co-doped polyaniline.

    PubMed

    Mo, Xi; Yang, Zhao-hui; Xu, Hai-yin; Zeng, Guang-ming; Huang, Jing; Yang, Xia; Song, Pei-pei; Wang, Li-ke

    2015-04-01

    Improving the reduction kinetics is crucial in the electroreduction process of Cr(VI). In this study, we developed a novel adsorption-electroreduction system for accelerated removal of Cr(VI) by employing reticulated vitreous carbon electrode modified with sulfuric acid-glycine co-doped polyaniline (RVC/PANI-SA-GLY). Firstly, response surface methodology confirmed the optimum polymerization condition of co-doped polyaniline for modifying electrodes (Aniline, sulfuric acid and glycine, respectively, of 0.2 mol/L, 0.85 mol/L, 0.93 mol/L) when untraditional dopant glycine was added. Subsequently, RVC/PANI-SA-GLY showed higher Cr(VI) removal percentages in electroreduction experiments over RVC electrode modified with sulfuric acid doped polyaniline (RVC/PANI-SA) and bare RVC electrode. In contrast to RVC/PANI-SA, the improvement by RVC/PANI-SA-GLY was more significant and especially obvious at more negative potential, lower initial Cr(VI) concentration, relatively less acidic solution and higher current densities, best achieving 7.84% higher removal efficiency with entire Cr(VI) eliminated after 900 s. Current efficiencies were likewise enhanced by RVC/PANI-SA-GLY under quite negative potentials. Fourier transform infrared (FTIR) and energy dispersive spectrometer (EDS) analysis revealed a possible adsorption-reduction mechanism of RVC/PANI-SA-GLY, which greatly contributed to the faster reduction kinetics and was probably relative to the absorption between protonated amine groups of glycine and HCrO4(-). Eventually, the stability of RVC/PANI-SA-GLY was proven relatively satisfactory. PMID:25603298

  18. Effect of glycine supplementation in low protein diets with amino acids from soy protein isolate or free amino acids on broiler growth and nitrogen utilisation.

    PubMed

    Siegert, W; Wild, K J; Schollenberger, M; Helmbrecht, A; Rodehutscord, M

    2016-06-01

    Here, it was investigated whether substitution of amino acids (AA) from soy protein isolate with free AA in low crude protein diets influences the growth performance and N utilisation in broilers, and whether interactions with dietary glycine equivalent (Glyequi) concentration exist. Birds were distributed in two 2 × 2 factorial arrangements of 48 floor pens containing 10 birds each, plus 48 metabolism cages containing two birds each. Experimental feed was provided for ad libitum consumption from d 7 to 22. Diets contained either a soy protein isolate at 79 g/kg or a mix of free AA, which supplied the same amount of 18 proteinogenic AA. A mix of free glycine and l-serine was used to obtain low and high (12.0 and 20.5 g/kg dry matter) levels of dietary Glyequi. Substitution of soy protein isolate with free AA reduced the average daily gain and feed efficiency, mainly due to reduced feed intake. Efficiency of N accretion was not influenced by the AA source or Glyequi concentration on d 21, possibly due to the lower AA digestibility of soy protein isolate and higher urinary excretion of nitrogenous substances in the treatments with the AA mix. The average daily weight gain of the treatments with high Glyequi concentration was higher for both AA sources. This increase was due to higher average daily feed intake by broilers in the treatments with soy protein isolate and due to the increased feed efficiency in the treatments with the AA mix. Broilers exhibited different growth responses to dietary Glyequi between the AA sources; however, these responses could not be attributed to the different utilisation of Glyequi for uric acid synthesis. PMID:26955743

  19. Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168.

    PubMed

    Cooper, Gareth R; Moir, Anne

    2011-05-01

    The paradigm gerA operon is required for endospore germination in response to c-alanine as the sole germinant, and the three protein products, GerAA, GerAB, and GerAC are predicted to form a receptor complex in the spore inner membrane. GerAB shows homology to the amino acid-polyamine-organocation (APC) family of single-component transporters and is predicted to be an integral membrane protein with 10 membrane-spanning helices. Site-directed mutations were introduced into the gerAB gene at its natural location on the chromosome. Alterations to some charged or potential helix-breaking residues within membrane spans affected receptor function dramatically. In some cases, this is likely to reflect the complete loss of the GerA receptor complex, as judged by the absence of the germinant receptor protein GerAC, which suggests that the altered GerAB protein itself may be unstable or that the altered structure destabilizes the complex. Mutants that have a null phenotype for Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain-alanine germination but retain GerAC protein at near-normal levels are more likely to define amino acid residues of functional, rather than structural, importance. Single-amino-acid substitutions in each of the GerAB and GerAA proteins can prevent incorporation of GerAC protein into the spore; this provides strong evidence that the proteins within a specific receptor interact and that these interactions are required for receptor assembly. The lipoprotein nature of the GerAC receptor subunit is also important; an amino acid change in the prelipoprotein signal sequence in the gerAC1 mutant results in the absence of GerAC protein from the spore. PMID:21378181

  20. Comparative Physiological Evidence that β-Alanine Betaine and Choline-O-Sulfate Act as Compatible Osmolytes in Halophytic Limonium Species 1

    PubMed Central

    Hanson, Andrew D.; Rathinasabapathi, Bala; Chamberlin, Beverly; Gage, Douglas A.

    1991-01-01

    The quaternary ammonium compounds accumulated in saline conditions by five salt-tolerant species of Limonium (Plumbaginaceae) were analyzed by fast atom bombardment mass spectrometry. Three species accumulated β-alanine betaine and choline-O-sulfate; the others accumulated glycine betaine and choline-O-sulfate. Three lines of evidence indicated that β-alanine betaine and choline-O-sulfate replace glycine betaine as osmo-regulatory solutes. First, tests with bacteria showed that β-alanine betaine and choline-O-sulfate have osmoprotective properties comparable to glycine betaine. Second, when β-alanine betaine and glycine betaine accumulators were salinized, the levels of their respective betaines, plus that of choline-O-sulfate, were closely correlated with leaf solute potential. Third, substitution of sulfate for chloride salinity caused an increase in the level of choline-O-sulfate and a matching decrease in glycine betaine level. Experiments with 14C-labeled precursors established that β-alanine betaine accumulators did not synthesize glycine betaine and vice versa. These experiments also showed that β-alanine betaine synthesis occurs in roots as well as leaves of β-alanine betaine accumulators and that choline-O-sulfate and glycine betaine share choline as a precursor. Unlike glycine betaine, β-alanine betaine synthesis cannot interfere with conjugation of sulfate to choline by competing for choline and does not require oxygen. These features of β-alanine betaine may be advantageous in sulfate-rich salt marsh environments. PMID:16668509

  1. Mechanisms by which dichloroacetate lowers lactic acid levels: the kinetic interrelationships between lactate, pyruvate, alanine, and glucose.

    PubMed

    Jahoor, F; Zhang, X J; Frazer, E

    1994-01-01

    Dichloroacetate (DCA) is gaining use as an alternative to bicarbonate therapy in the treatment of lactic acidosis. To determine the mechanism(s) by which DCA lowers blood lactate levels, we studied its effect on the kinetic interrelationships between pyruvate, lactate, alanine, and glucose in the hindlimb of dogs during hormonal stimulation of pyruvate production (Ra) and its conversion to lactate. Three groups of dogs (n = 6) were infused with 1-13C-pyruvate to measure whole body pyruvate Ra, and pyruvate Ra and utilization (Rd) across the hindlimb during either a 4-hr infusion of saline (controls), or somatostatin, glucagon, and epinephrine (SGE), or SGE plus dichloroacetate (SGE + DCA). Pyruvate Ra was used as an index of rate of glycolysis and Rd as an index of pyruvate oxidation. In the controls, all kinetic parameters were constant during the saline infusion. Hindlimb pyruvate Ra and Rd were almost equal, and lactate release negligible. Compared to controls, SGE administration significantly increased (P < 0.05) wholebody pyruvate Ra (48.5 +/- 6.2 vs 33.6 +/- 2.4 mumol/kg/min) and blood lactate levels (P < 0.05). Hindlimb pyruvate Ra increased by approximately 150%, but Rd remained unchanged resulting in marked increases in lactate and alanine effluxes. Adding DCA to the SGE infusion significantly reduced wholebody pyruvate Ra (P < 0.05) and blood lactate levels (P < 0.01). In the hindlimb, however, there was no decrease in lactate output, despite a 91% increase in pyruvate utilization because pyruvate Ra also increased. These results suggest that during stimulation of rate of glycolysis, DCA lowers lactate levels by reducing the overall availability of pyruvate for lactate synthesis. This is accomplished by suppressing the rate of glycolysis in tissues other than skeletal muscle and stimulating pyruvate oxidation. PMID:7906882

  2. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I

    PubMed Central

    Pey, Angel L.; Albert, Armando; Salido, Eduardo

    2013-01-01

    Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP) as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis. PMID:23956997

  3. A structural insight into the P1S1 binding mode of diaminoethylphosphonic and phosphinic acids, selective inhibitors of alanine aminopeptidases.

    PubMed

    Węglarz-Tomczak, Ewelina; Berlicki, Łukasz; Pawełczak, Małgorzata; Nocek, Bogusław; Joachimiak, Andrzej; Mucha, Artur

    2016-07-19

    N'-substituted 1,2-diaminoethylphosphonic acids and 1,2-diaminoethylphosphinic dipeptides were explored to unveil the structural context of the unexpected selectivity of these inhibitors of M1 alanine aminopeptidases (APNs) versus M17 leucine aminopeptidase (LAP). The diaminophosphonic acids were obtained via aziridines in an improved synthetic procedure that was further expanded for the phosphinic pseudodipeptide system. The inhibitory activity, measured for three M1 and one M17 metalloaminopeptidases of different sources (bacterial, human and porcine), revealed several potent compounds (e.g., Ki = 65 nM of 1u for HsAPN). Two structures of an M1 representative (APN from Neisseria meningitidis) in complex with N-benzyl-1,2-diaminoethylphosphonic acid and N-cyclohexyl-1,2-diaminoethylphosphonic acid were determined by the X-ray crystallography. The analysis of these structures and the models of the phosphonic acid complexes of the human ortholog provided an insight into the role of the additional amino group and the hydrophobic substituents of the ligands within the S1 active site region. PMID:27100031

  4. THE EFFECTS OF SALINITY CHANGE ON THE FREE AMINO ACID POOLS OF TWO NEREID POLYCHAETES, 'NEANTHES SUCCINEA' AND 'LEONEREIS CULVERI'

    EPA Science Inventory

    The response of the free amino acid pools of two nereid polychaetes, Neanthes succinea and Leonereis culveri to both increased and decreased salinities was examined. In both species, glycine and alanine accounted for most of the observed change in the total free amino acid (FAA) ...

  5. PREPARATIVE ISOLATION AND PURIFICATION OF THREE GLYCINE-CONJUGATED CHOLIC ACIDS FROM PULVIS FELLIS SUIS BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY COUPLED WITH ELSD DETECTION

    PubMed Central

    He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2011-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:10:1.5, v/v/v/v) by eluting the lower phase in the head-to-tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 25 °C, respectively. In a single operation, 33 mg of GCDCA, 38 mg of GHDCA and 23 mg of GHCA were obtained from 200 mg of crude extract with the purity of 95.65%, 96.72% and 96.63%, respectively, in one step separation. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three glycine-conjugated cholic acids were identified by ESI-MS, 1H NMR and 13C NMR. PMID:23008527

  6. Persistent GABAA/C responses to gabazine, taurine and beta-alanine in rat hypoglossal motoneurons.

    PubMed

    Chesnoy-Marchais, D

    2016-08-25

    In hypoglossal motoneurons, a sustained anionic current, sensitive to a blocker of ρ-containing GABA receptors, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and insensitive to bicuculline, was previously shown to be activated by gabazine. In order to better characterize the receptors involved, the sensitivity of this atypical response to pentobarbital (30μM), allopregnanolone (0.3μM) and midazolam (0.5μM) was first investigated. Pentobarbital potentiated the response, whereas the steroid and the benzodiazepine were ineffective. The results indicate the involvement of hybrid heteromeric receptors, including at least a GABA receptor ρ subunit and a γ subunit, accounting for the pentobarbital-sensitivity. The effects of the endogenous β amino acids, taurine and β-alanine, which are released under various pathological conditions and show neuroprotective properties, were then studied. In the presence of the glycine receptor blocker strychnine (1μM), both taurine (0.3-1mM) and β-alanine (0.3mM) activated sustained anionic currents, which were partly blocked by TPMPA (100μM). Thus, both β amino acids activated ρ-containing GABA receptors in hypoglossal motoneurons. Bicuculline (20μM) reduced responses to taurine and β-alanine, but small sustained responses persisted in the presence of both strychnine and bicuculline. Responses to β-alanine were slightly increased by allopregnanolone, indicating a contribution of the bicuculline- and neurosteroid-sensitive GABAA receptors underlying tonic inhibition in these motoneurons. Since sustained activation of anionic channels inhibits most mature principal neurons, the ρ-containing GABA receptors permanently activated by taurine and β-alanine might contribute to some of their neuroprotective properties under damaging overexcitatory situations. PMID:27246441

  7. A chemically modified carbon paste electrode with d-lactate dehydrogenase and alanine aminotranferase enzyme sequences for d-lactic acid analysis.

    PubMed

    Shu, H C; Wu, N P

    2001-04-12

    An amperometric biosensor was constructed for the analysis of d-lactic acid based on immobilizing d-lactate dehydrogenase(d-LDH), alanine aminotransferase (ALT), NAD(+), a redox polymer and polyethylenimine in carbon paste. The effect of addition of ALT in the paste, using enzyme sequences of ALT/d-LDH, was insignificant for d-lactic acid analysis. The responses of d-lactic acid in ALT/d-LDH paste electrode are the same as those in d-LDH paste electrode. However, the interference effect of pyruvate in the sample can be substantially reduced if sodium glutamate was applied in the carrier solution. When ALT immobilized in control porous glass as an immobilized enzyme reactor (IMER) was mounted in flow injection analysis system with the d-LDH paste electrode as detector for d-lactate analysis, the interference of the pyruvate can be significantly eliminated. The adverse effect of pyruvate in the samples for d-lactic acid analysis was reduced more effectively in ALT IMER with d-LDH electrode than in ALT/d-LDH electrode. PMID:18968259

  8. Rhodotorulic Acid from Species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a New Alanine-Containing Ferrichrome from Cryptococcus melibiosum

    PubMed Central

    Atkin, C. L.; Neilands, J. B.; Phaff, H. J.

    1970-01-01

    An examination of 142 strains within 19 genera of yeasts and yeastlike organisms for formation of hydroxamic acids in low-iron culture showed production of hydroxamates by two unclassified strains and by 52 strains among the genera Aessosporon (3 of 3 strains), Cryptococcus (1 of 43), Leucosporidium (3 of 11), Rhodosporidium (4 of 4), Rhodotorula (27 of 39), Sporidiobolus (2 of 2), and Sporobolomyces (12 of 13). Crystalline rhodotorulic acid was isolated in amounts sufficient to account for most or all of the measured hydroxamate in culture supernatants of 16 strains representative of the five last-mentioned hydroxamate-producing genera. A new alanine-containing ferrichrome was isolated from one strain of Cryptococcus melibiosum. Rhodotorulic acid was a major metabolic product of many of the positive strains when grown in low-iron media, and iron was shown to repress its synthesis and excretion into the culture medium. The taxonomic significance of production of hydroxamic acids is described in connection with the position of these yeast species in the subclass Heterobasidiomycetidae. PMID:5529038

  9. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones.

    PubMed Central

    Bormann, J; Hamill, O P; Sakmann, B

    1987-01-01

    1. The ion-selective and ion transport properties of glycine receptor (GlyR) and gamma-aminobutyric acid receptor (GABAR) channels in the soma membrane of mouse spinal cord neurones were investigated using the whole-cell, cell-attached and outside-out patch versions of the patch-clamp technique. 2. Current-voltage (I-V) relations of transmitter-activated currents obtained from whole-cell measurements with 145 mM-Cl- intracellularly and extracellularly, showed outward rectification. In voltage-jump experiments, the instantaneous I-V relations were linear, and the steady-state I-V relations were rectifying outwardly indicating that the gating of GlyR and GABAR channels is voltage sensitive. 3. The reversal potential of whole-cell currents shifted 56 mV per tenfold change in internal Cl- activity indicating activation of Cl(-)-selective channels. The permeability ratio of K+ to Cl- (PK/PCl) was smaller than 0.05 for both channels. 4. The permeability sequence for large polyatomic anions was formate greater than bicarbonate greater than acetate greater than phosphate greater than propionate for GABAR channels; phosphate and propionate were not measurably permeant in GlyR channels. This indicates that open GlyR and GABAR channels have effective pore diameters of 5.2 and 5.6 A, respectively. The sequence of relative permeabilities for small anions was SCN- greater than I- greater than Br- greater than Cl- greater than F- for both channels. 5. GlyR and GABAR channels are multi-conductance-state channels. In cell-attached patches the single-channel slope conductances close to 0 mV membrane potential were 29, 18 and 10 pS for glycine, and 28, 17 and 10 pS for GABA-activated channels. The most frequently observed (main) conductance states were 29 and 17 pS for the GlyR and GABAR channel, respectively. 6. In outside-out patches with equal extracellular and intracellular concentrations of 145 mM-Cl-, the conductance states were 46, 30, 20 and 12 pS for GlyR channels and 44, 30

  10. Study of Glycine and Folic Acid Supplementation to Ameliorate Transfusion Dependence in Congenital SLC25A38 Mutated Sideroblastic Anemia.

    PubMed

    LeBlanc, Marissa A; Bettle, Amanda; Berman, Jason N; Price, Victoria E; Pambrun, Chantale; Yu, Zhijie; Tiller, Marilyn; McMaster, Christopher R; Fernandez, Conrad V

    2016-07-01

    Congenital sideroblastic anemia (CSA) is a hematological disorder characterized by the presence of ringed sideroblasts in bone marrow erythroid precursors. Mutations in the erythroid-specific glycine mitochondrial transporter gene SLC25A38 have been found in a subset of patients with transfusion-dependent congenital CSA. Further studies in a zebrafish model identified a promising ameliorative strategy with combined supplementation with glycine and folate. We tested this combination in three individuals with SLC25A38 CSA, with a primary objective to decrease red blood cell transfusion requirements. No significant impact was observed on transfusion requirements or any hematologic parameters. PMID:27038157

  11. Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans

    PubMed Central

    Glynn, Erin L.; Piner, Lucy W.; Huffman, Kim M.; Slentz, Cris A.; Elliot-Penry, Lorraine; AbouAssi, Hiba; White, Phillip J.; Bain, James R.; Muehlbauer, Michael J.; Ilkayeva, Olga R.; Stevens, Robert D.; Porter Starr, Kathryn N.; Bales, Connie W.; Volpi, Elena; Brosnan, M. Julia; Trimmer, Jeff K.; Rolph, Timothy P.

    2016-01-01

    Aims/hypotheses Obesity is associated with decreased insulin sensitivity (IS) and elevated plasma branched-chain amino acids (BCAAs). The purpose of this study was to investigate the relationship between BCAA metabolism and IS in overweight (OW) individuals during exercise intervention. Methods Whole-body leucine turnover, IS by hyperinsulinaemic–euglycaemic clamp, and circulating and skeletal muscle amino acids, branched-chain α-keto acids and acylcarnitines were measured in ten healthy controls (Control) and nine OW, untrained, insulin-resistant individuals (OW-Untrained). OW-Untrained then underwent a 6 month aerobic and resistance exercise programme and repeated testing (OW-Trained). Results IS was higher in Control vs OW-Untrained and increased significantly following exercise. IS was lower in OW-Trained vs Control expressed relative to body mass, but was not different from Control when normalised to fat-free mass (FFM). Plasma BCAAs and leucine turnover (relative to FFM) were higher in OW-Untrained vs Control, but did not change on average with exercise. Despite this, within individuals, the decrease in molar sum of circulating BCAAs was the best metabolic predictor of improvement in IS. Circulating glycine levels were higher in Control and OW-Trained vs OW-Untrained, and urinary metabolic profiling suggests that exercise induces more efficient elimination of excess acyl groups derived from BCAA and aromatic amino acid (AA) metabolism via formation of urinary glycine adducts. Conclusions/interpretation A mechanism involving more efficient elimination of excess acyl groups derived from BCAA and aromatic AA metabolism via glycine conjugation in the liver, rather than increased BCAA disposal through oxidation and turnover, may mediate interactions between exercise, BCAA metabolism and IS. Trial registration Clinicaltrials.gov NCT01786941 PMID:26254576

  12. Protein association of the neurotoxin and non-protein amino acid BMAA (β-N-methylamino-L-alanine) in the liver and brain following neonatal administration in rats.

    PubMed

    Karlsson, Oskar; Jiang, Liying; Andersson, Marie; Ilag, Leopold L; Brittebo, Eva B

    2014-04-01

    The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) is not an amino acid that is normally found in proteins. Our previous autoradiographic study of (3)H-labeled BMAA in adult mice unexpectedly revealed a tissue distribution similar to that of protein amino acids. The aim of this study was to characterize the distribution of free and protein-bound BMAA in neonatal rat tissues following a short exposure using autoradiographic imaging and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The autoradiographic imaging of (14)C-L-BMAA demonstrated a distinct uptake of radioactivity that was retained following acid extraction in tissues with a high rate of cell turnover and/or protein synthesis. The UHPLC-MS/MS analysis conclusively demonstrated a dose-dependent increase of protein-associated BMAA in neonatal rat tissues. The level of protein-associated BMAA in the liver was more than 10 times higher than that in brain regions not fully protected by the blood-brain barrier which may be due to the higher rate of protein synthesis in the liver. In conclusion, this study demonstrated that BMAA was associated with rat proteins suggesting that BMAA may be misincorporated into proteins. However, protein-associated BMAA seemed to be cleared over time, as none of the samples from adult rats had any detectable free or protein-associated BMAA. PMID:24472610

  13. Combined use of l-alanine tert butyl ester lactate and trimethyl-β-cyclodextrin for the enantiomeric separations of 2-arylpropionic acids nonsteroidal anti-inflammatory drugs.

    PubMed

    Mavroudi, Maria C; Kapnissi-Christodoulou, Constantina P

    2015-10-01

    In this study, a new CE method, employing a binary system of trimethyl-β-CD (TM-β-CD) and a chiral amino acid ester-based ionic liquid (AAIL), was developed for the chiral separation of seven 2-arylpropionic acid nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the enantioseparation of ibuprofen, ketoprofen, carprofen, indoprofen, flurbiprofen, naproxen, and fenoprofen was improved significantly by supporting the BGE with the chiral AAIL l-alanine tert butyl ester lactate (l-AlaC4 Lac). Parameters, such as concentrations of TM-β-CD and l-AlaC4 Lac, and buffer pH, were systematically examined in order to optimize the chiral separation of each NSAID. It was observed that the addition of the AAIL into the BGE improved both resolution and efficiency significantly. After optimization of separation conditions, baseline separation (Rs >1.5) of five of the analytes was achieved in less than 11 min, while the resolution of ibuprofen and flurbiprofen was approximately 1.2. The optimized enantioseparation conditions for all analytes involve a BGE of 5 mM sodium acetate/acetic acid (pH 5.0), an applied voltage of 30 kV, and a temperature of 20°C. In addition, the results obtained by computing the %-RSD values of the EOF and the two enantiomer peaks, demonstrated excellent run-to-run, batch-to-batch, and day-to-day reproducibilities. PMID:26080944

  14. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity

    PubMed Central

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  15. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity.

    PubMed

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  16. Ruthenium-nitrosyl complexes with glycine, L-alanine, L-valine, L-proline, D-proline, L-serine, L-threonine, and L-tyrosine: synthesis, X-ray diffraction structures, spectroscopic and electrochemical properties, and antiproliferative activity.

    PubMed

    Rathgeb, Anna; Böhm, Andreas; Novak, Maria S; Gavriluta, Anatolie; Dömötör, Orsolya; Tommasino, Jean Bernard; Enyedy, Eva A; Shova, Sergiu; Meier, Samuel; Jakupec, Michael A; Luneau, Dominique; Arion, Vladimir B

    2014-03-01

    The reactions of [Ru(NO)Cl5](2-) with glycine (Gly), L-alanine (L-Ala), L-valine (L-Val), L-proline (L-Pro), D-proline (D-Pro), L-serine (L-Ser), L-threonine (L-Thr), and L-tyrosine (L-Tyr) in n-butanol or n-propanol afforded eight new complexes (1-8) of the general formula [RuCl3(AA-H)(NO)](-), where AA = Gly, L-Ala, L-Val, L-Pro, D-Pro, L-Ser, L-Thr, and L-Tyr, respectively. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry (ESI-MS), (1)H NMR, UV-visible and ATR IR spectroscopy, cyclic voltammetry, and X-ray crystallography. X-ray crystallography studies have revealed that in all cases the same isomer type (from three theoretically possible) was isolated, namely mer(Cl),trans(NO,O)-[RuCl3(AA-H)(NO)], as was also recently reported for osmium analogues with Gly, L-Pro, and D-Pro (see Z. Anorg. Allg. Chem. 2013, 639, 1590-1597). Compounds 1, 4, 5, and 8 were investigated by ESI-MS with regard to their stability in aqueous solution and reactivity toward sodium ascorbate. In addition, cell culture experiments in three human cancer cell lines, namely, A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma), were performed, and the results are discussed in conjunction with the lipophilicity of compounds. PMID:24555845

  17. Ruthenium-Nitrosyl Complexes with Glycine, l-Alanine, l-Valine, l-Proline, d-Proline, l-Serine, l-Threonine, and l-Tyrosine: Synthesis, X-ray Diffraction Structures, Spectroscopic and Electrochemical Properties, and Antiproliferative Activity

    PubMed Central

    2014-01-01

    The reactions of [Ru(NO)Cl5]2– with glycine (Gly), l-alanine (l-Ala), l-valine (l-Val), l-proline (l-Pro), d-proline (d-Pro), l-serine (l-Ser), l-threonine (l-Thr), and l-tyrosine (l-Tyr) in n-butanol or n-propanol afforded eight new complexes (1–8) of the general formula [RuCl3(AA–H)(NO)]−, where AA = Gly, l-Ala, l-Val, l-Pro, d-Pro, l-Ser, l-Thr, and l-Tyr, respectively. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry (ESI-MS), 1H NMR, UV–visible and ATR IR spectroscopy, cyclic voltammetry, and X-ray crystallography. X-ray crystallography studies have revealed that in all cases the same isomer type (from three theoretically possible) was isolated, namely mer(Cl),trans(NO,O)-[RuCl3(AA–H)(NO)], as was also recently reported for osmium analogues with Gly, l-Pro, and d-Pro (see Z. Anorg. Allg. Chem.2013, 639, 1590–1597). Compounds 1, 4, 5, and 8 were investigated by ESI-MS with regard to their stability in aqueous solution and reactivity toward sodium ascorbate. In addition, cell culture experiments in three human cancer cell lines, namely, A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma), were performed, and the results are discussed in conjunction with the lipophilicity of compounds. PMID:24555845

  18. Further Characterization of Glycine-Containing Microcystins from the McMurdo Dry Valleys of Antarctica

    PubMed Central

    Puddick, Jonathan; Prinsep, Michèle R.; Wood, Susanna A.; Cary, Stephen Craig; Hamilton, David P.; Holland, Patrick T.

    2015-01-01

    Microcystins are hepatotoxic cyclic peptides produced by several cyanobacterial genera worldwide. In 2008, our research group identified eight new glycine-containing microcystin congeners in two hydro-terrestrial mat samples from the McMurdo Dry Valleys of Eastern Antarctica. During the present study, high-resolution mass spectrometry, amino acid analysis and micro-scale thiol derivatization were used to further elucidate their structures. The Antarctic microcystin congeners contained the rare substitution of the position-1 d-alanine for glycine, as well as the acetyl desmethyl modification of the position-5 Adda moiety (3S-amino-9S-methoxy-2S,6,8S-trimethyl-10-phenyldeca-4E,6E-dienoic acid). Amino acid analysis was used to determine the stereochemistry of several of the amino acids and conclusively demonstrated the presence of glycine in the microcystins. A recently developed thiol derivatization technique showed that each microcystin contained dehydrobutyrine in position-7 instead of the commonly observed N-methyl dehydroalanine. PMID:25675414

  19. Cyanobacteria Produce N-(2-Aminoethyl)Glycine, a Backbone for Peptide Nucleic Acids Which May Have Been the First Genetic Molecules for Life on Earth

    PubMed Central

    Banack, Sandra Anne; Metcalf, James S.; Jiang, Liying; Craighead, Derek; Ilag, Leopold L.; Cox, Paul Alan

    2012-01-01

    Prior to the evolution of DNA-based organisms on earth over 3.5 billion years ago it is hypothesized that RNA was the primary genetic molecule. Before RNA-based organisms arose, peptide nucleic acids may have been used to transmit genetic information by the earliest forms of life on earth. We discovered that cyanobacteria produce N-(2-aminoethyl)glycine (AEG), a backbone for peptide nucleic acids. We detected AEG in axenic strains of cyanobacteria with an average concentration of 1 µg/g. We also detected AEG in environmental samples of cyanobacteria as both a free or weakly bound molecule and a tightly bound form released by acid hydrolysis, at concentrations ranging from not detected to 34 µg/g. The production of AEG by diverse taxa of cyanobacteria suggests that AEG may be a primitive feature which arose early in the evolution of life on earth. PMID:23145061

  20. Exogenous amino acids as fuel in shock.

    PubMed

    Daniel, A M; Kapadia, B; MacLean, L D

    1982-01-01

    It has been suggested that in shock branched-chain amino acids are preferentially oxidized resulting in continued proteolysis and stimulated gluconeogenesis. To determine if exogenous amino acids could be used as fuel in shock, dogs rendered hypotensive by controlled cardiac tamponade and normotensive controls were infused with amino acid mixtures and individual amino acids. When Nephramine, a mixture rich in branched-chain amino acids, was infused, plasma alpha-amino nitrogen levels rose but urea output did not increase in either the control state or in shock, suggesting that these amino acids were not rapidly deaminated to serve as fuels. Travasol, which in addition contained large amounts of alanine and glycine, tripled urea output in the controls and doubled it in shock. The limit of urea production was reached in both groups at 35 mumoles urea/minute/kg. In the Travasol-infused animals plasma alpha-amino nitrogen levels were maintained in normotension but rose sharply in shock. When glycine alone was infused into five dogs in shock urea production rate was 30.6 + 2.1 mumoles/minute/kg; with alanine the same value was 22.5 + 2.2 mumoles/minute/kg. In both cases plasma alpha-amino nitrogen levels were high, suggesting that transport of these amino acids into the cell was slow in shock. In four dogs in shock glycine-14C was added to the glycine infusate as a tracer. At radioactive equilibrium 28% of the label infused appeared in CO2; another 22% appeared in glucose. It is concluded that of all the amino acids tested only glycine and alanine are deaminated rapidly enough to serve as exogenous fuels in shock. PMID:6814205

  1. Radiolysis of amino acids by heavy and energetic cosmic ray analogues in simulated space environments: α-glycine zwitterion form

    NASA Astrophysics Data System (ADS)

    Portugal, Williamary; Pilling, Sergio; Boduch, Philippe; Rothard, Hermann; Andrade, Diana P. P.

    2014-07-01

    In this work, we studied the stability of the glycine molecule in the crystalline zwitterion form, known as α-glycine (+NH3CH2COO-), under the action of heavy cosmic ray analogues. The experiments were conducted in a high vacuum chamber at the heavy-ion accelerator Grand Accélérateur National d'Ions Lourds (GANIL), in Caen, France. The samples were bombarded at two temperatures (14 and 300 K) by 58Ni11+ ions of 46 MeV, up to a final fluence of 1013 ion cm-2. The chemical evolution of the sample was evaluated in situ using a Fourier Transform Infrared Spectrometer (FTIR). The bombardment at 14 K produced several daughter species, such as OCN-, CO, CO2 and CN-. The results also suggest the appearance of peptide bonds during irradiation, but this must be confirmed by further experiments. The half-life of glycine in the interstellar medium was estimated to be 7.8 × 103 yr (300 K) and 2.8 × 103 yr (14 K). In the Solar system, the values were 8.4 × 102 yr (300 K) and 3.6 × 103 yr (14 K). It is believed that glycine could be present in space environments that suffered aqueous changes, such as the interiors of comets, meteorites and planetesimals. This molecule is present in the proteins of all living beings. Therefore, studying its stability in these environments will provide further understanding of the role of this species in prebiotic chemistry on Earth.

  2. Functional differentiation of human jejunum and ileum: A comparison of the handling of glucose, peptides, and amino acids

    PubMed Central

    Silk, D. B. A.; Webb, Joan P. W.; Lane, Annette E.; Clark, M. L.; Dawson, A. M.

    1974-01-01

    The characteristics of glucose, glycine, L-alanine, and glycyl-L-alanine absorption from the jejunum and ileum have been compared in normal human subjects. A perfusion technique has been used, and correct positioning of the perfusion tube has been confirmed by measuring the differential jejunal and ileal handling of bicarbonate. Glucose and glycine were absorbed faster from the jejunum than from the ileum of all subjects studied, and L-alanine was absorbed faster from the jejunum than from the ileum in five out of six subjects studied. In contrast, the dipeptide glycyl-L-alanine was absorbed at comparable rates from the jejunum and ileum. Higher concentrations of free amino acids were detected in the luminal contents aspirated during the ileal dipeptide perfusions. These results emphasize the importance of oligopeptide transport in the absorption of protein digestion products, especially in the human ileum, and the practical implications of these findings are discussed. PMID:4852103

  3. Serine and glycine metabolism in cancer☆

    PubMed Central

    Amelio, Ivano; Cutruzzolá, Francesca; Antonov, Alexey; Agostini, Massimiliano; Melino, Gerry

    2014-01-01

    Serine and glycine are biosynthetically linked, and together provide the essential precursors for the synthesis of proteins, nucleic acids, and lipids that are crucial to cancer cell growth. Moreover, serine/glycine biosynthesis also affects cellular antioxidative capacity, thus supporting tumour homeostasis. A crucial contribution of serine/glycine to cellular metabolism is through the glycine cleavage system, which refuels one-carbon metabolism; a complex cyclic metabolic network based on chemical reactions of folate compounds. The importance of serine/glycine metabolism is further highlighted by genetic and functional evidence indicating that hyperactivation of the serine/glycine biosynthetic pathway drives oncogenesis. Recent developments in our understanding of these pathways provide novel translational opportunities for drug development, dietary intervention, and biomarker identification of human cancers. PMID:24657017

  4. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  5. Effect of pH, urea, peptide length, and neighboring amino acids on alanine alpha-proton random coil chemical shifts.

    PubMed

    Carlisle, Elizabeth A; Holder, Jessica L; Maranda, Abby M; de Alwis, Adamberage R; Selkie, Ellen L; McKay, Sonya L

    2007-01-01

    Accurate random coil alpha-proton chemical shift values are essential for precise protein structure analysis using chemical shift index (CSI) calculations. The current study determines the chemical shift effects of pH, urea, peptide length and neighboring amino acids on the alpha-proton of Ala using model peptides of the general sequence GnXaaAYaaGn, where Xaa and Yaa are Leu, Val, Phe, Tyr, His, Trp or Pro, and n = 1-3. Changes in pH (2-6), urea (0-1M), and peptide length (n = 1-3) had no effect on Ala alpha-proton chemical shifts. Denaturing concentrations of urea (8M) caused significant downfield shifts (0.10 +/- 0.01 ppm) relative to an external DSS reference. Neighboring aliphatic residues (Leu, Val) had no effect, whereas aromatic amino acids (Phe, Tyr, His and Trp) and Pro caused significant shifts in the alanine alpha-proton, with the extent of the shifts dependent on the nature and position of the amino acid. Smaller aromatic residues (Phe, Tyr, His) caused larger shift effects when present in the C-terminal position (approximately 0.10 vs. 0.05 ppm N-terminal), and the larger aromatic tryptophan caused greater effects in the N-terminal position (0.15 ppm vs. 0.10 C-terminal). Proline affected both significant upfield (0.06 ppm, N-terminal) and downfield (0.25 ppm, C-terminal) chemical shifts. These new Ala correction factors detail the magnitude and range of variation in environmental chemical shift effects, in addition to providing insight into the molecular level interactions that govern protein folding. PMID:17054116

  6. Isovaleric, methylmalonic, and propionic acid decrease anesthetic EC50 in tadpoles, modulate glycine receptor function, and interact with the lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine

    PubMed Central

    Weng, Yun; Hsu, Tienyi Theresa; Zhao, Jing; Nishimura, Stefanie; Fuller, Gerald G.; Sonner, James M.

    2010-01-01

    Introduction Elevated concentrations of isovaleric, methylmalonic, and propionic acid are associated with impaired consciousness in genetic diseases (organic acidemias). We conjectured that part of the central nervous system depression observed in these disorders was due to anesthetic effects of these metabolites. We tested three hypotheses. First, that these metabolites would have anesthetic-sparing effects, possibly being anesthetics by themselves. Second, that these compounds would modulate glycine and GABAA receptor function, increasing chloride currents through these channels as potent clinical inhaled anesthetics do. Third, that these compounds would affect physical properties of lipids. Methods Anesthetic EC50’s were measured in Xenopus laevis tadpoles. Glycine and GABAA receptors were expressed in Xenopus laevis oocytes and studied using two-electrode voltage clamping. Pressure-area isotherms of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers were measured with and without added organic acids. Results Isovaleric acid was an anesthetic in tadpoles, while methylmalonic and propionic acid decreased isoflurane’s EC50 by half. All three organic acids concentration-dependently increased current through α1 glycine receptors. There were minimal effects on α1β2γ2s GABAA receptors. The organic acids increased total lateral pressure (surface pressure) of DPPC monolayers, including at mean molecular areas typical of bilayers. Conclusion Isovaleric, methylmalonic, and propionic acid have anesthetic affects in tadpoles, positively modulate glycine receptor fuction, and affect physical properties of DPPC monolayers. PMID:19372333

  7. NMR studies of protonation and hydrogen bond states of internal aldimines of pyridoxal 5'-phosphate acid-base in alanine racemase, aspartate aminotransferase, and poly-L-lysine.

    PubMed

    Chan-Huot, Monique; Dos, Alexandra; Zander, Reinhard; Sharif, Shasad; Tolstoy, Peter M; Compton, Shara; Fogle, Emily; Toney, Michael D; Shenderovich, Ilya; Denisov, Gleb S; Limbach, Hans-Heinrich

    2013-12-01

    Using (15)N solid-state NMR, we have studied protonation and H-bonded states of the cofactor pyridoxal 5'-phosphate (PLP) linked as an internal aldimine in alanine racemase (AlaR), aspartate aminotransferase (AspAT), and poly-L-lysine. Protonation of the pyridine nitrogen of PLP and the coupled proton transfer from the phenolic oxygen (enolimine form) to the aldimine nitrogen (ketoenamine form) is often considered to be a prerequisite to the initial step (transimination) of the enzyme-catalyzed reaction. Indeed, using (15)N NMR and H-bond correlations in AspAT, we observe a strong aspartate-pyridine nitrogen H-bond with H located on nitrogen. After hydration, this hydrogen bond is maintained. By contrast, in the case of solid lyophilized AlaR, we find that the pyridine nitrogen is neither protonated nor hydrogen bonded to the proximal arginine side chain. However, hydration establishes a weak hydrogen bond to pyridine. To clarify how AlaR is activated, we performed (13)C and (15)N solid-state NMR experiments on isotopically labeled PLP aldimines formed by lyophilization with poly-L-lysine. In the dry solid, only the enolimine tautomer is observed. However, a fast reversible proton transfer involving the ketoenamine tautomer is observed after treatment with either gaseous water or gaseous dry HCl. Hydrolysis requires the action of both water and HCl. The formation of an external aldimine with aspartic acid at pH 9 also produces the ketoenamine form stabilized by interaction with a second aspartic acid, probably via a H-bond to the phenolic oxygen. We postulate that O-protonation is an effectual mechanism for the activation of PLP, as is N-protonation, and that enzymes that are incapable of N-protonation employ this mechanism. PMID:24147985

  8. Knockdown of a putative alanine aminotransferase gene affects amino acid content and flight capacity in the Colorado potato beetle Leptinotarsa decemlineata.

    PubMed

    Wan, Pin-Jun; Fu, Kai-Yun; Lü, Feng-Gong; Guo, Wen-Chao; Li, Guo-Qing

    2015-07-01

    Alanine aminotransferase (ALT) plays important physiological and biochemical roles in insect. In this study, a full-length Ldalt cDNA was cloned from Leptinotarsa decemlineata. It was ubiquitously expressed in the eggs, larvae, pupae and adults. In the adults, Ldalt mRNA was widely distributed in thorax muscles, fat body, midgut, foregut, hindgut, Malpighian tubules, ventral ganglion and epidermis, with the expression levels from the highest to the lowest. Two double-stranded RNAs (dsRNAs) (dsLdalt1 and dsLdalt2) targeting Ldalt were constructed and bacterially expressed. After adults fed on dsLdalt1- and dsLdalt2-immersed foliage for 3 day, Ldalt mRNA abundance was significantly decreased by 79.5 and 71.1 %, and ALT activities were significantly reduced by 64.5 and 67.6 %, respectively. Moreover, silencing Ldalt affected free amino acid contents. Lysine was decreased by 100.0 and 100.0 %, and arginine was reduced by 87.5 and 89.4 %, respectively, in the hemolymph from dsLdalt1- and dsLdalt2-ingested beetles, compared with control ones. In contrast, proline was increased by 88.7 and 96.4 %. Furthermore, ingestion of dsLdalt1 and dsLdalt2 significantly decreased flight speed, shortened flight duration time and flight distance. In addition, knocking down Ldalt significantly increased adult mortality. These data imply that LdALT plays important roles in amino acid metabolism and in flight in L. decemlineata. PMID:25868655

  9. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  10. Thermodynamics of helix-coil transitions in amino-acid homopolymers studied by multicanonical algorithms

    NASA Astrophysics Data System (ADS)

    Hansmann, Ulrich H. E.; Okamoto, Yuko

    1996-03-01

    Thermodynamics of helix-coil transitions in amino-acid homopolymers are studied by the multicanonical algorithms. Homopolymers of length 10 are considered for three characteristic amino acids, alanine (helix former), valine (helix indifferent), and glycine (helix breaker). For alanine other lengths (15 and 20) are also considered in order to examine the length dependence. From one multicanonical production run with completely random initial conformations, we have obtained various thermodynamic quantities (average helix length, specific heat, etc.) as functions of temperature. The results, though preliminary, suggest that the helix-coil transition for poly-alanine is second-order, while the nature of phase transition is not clear for poly-valine and poly-glycine.

  11. Prebiotic Synthesis of Hydrophobic and Protein Amino Acids

    PubMed Central

    Ring, David; Wolman, Yecheskel; Friedmann, Nadav; Miller, Stanley L.

    1972-01-01

    The formation of amino acids by the action of electric discharges on a mixture of methane, nitrogen, and water with traces of ammonia was studied in detail. The presence of glycine, alanine, α-amino-n-butyric acid, α-aminoisobutyric acid, valine, norvaline, isovaline, leucine, isoleucine, alloisoleucine, norleucine, proline, aspartic acid, glutamic acid, serine, threonine, allothreonine, α-hydroxy-γ-aminobutyric acid, and α,γ-diaminobutyric acid was confirmed by ion-exchange chromatography and gas chromatography-mass spectrometry. All of the primary α-amino acids found in the Murchison Meteorite have been synthesized by this electric discharge experiment. PMID:4501592

  12. L-alanine uptake in membrane vesicles from Mytilus edulis gills

    SciTech Connect

    Pajor, A.M.; Wright, S.H.

    1986-03-05

    Previous studies have shown that gills from M. edulis can accumulate L-alanine from seawater by a saturable process specific for ..cap alpha..-neutral amino acids. This uptake occurs against chemical gradients in excess of 10/sup 6/ to 1. To further characterize this uptake, membrane vesicles were prepared from M. edulis gill tissue by differential centrifugation. Enrichments of putative enzyme markers (relative to that in combined initial fractions) were as follows: ..gamma..-Glutamyltranspeptidase, 25-30x; Alkaline Phosphatase, 5-6x; K/sup +/-dependent para-Nitrophenyl Phosphatase, 3-5x; Succinate Dehydrogenase 0.1-0.2x. These results suggest that the preparation is enriched in plasma membranes, although histochemical studies will be needed to verify this. The time course of /sup 14/C-L-alanine uptake in the presence of inwardly-directed Na/sup +/ gradient showed a transient overshoot (3-5 fold) at 10 minutes which decreased to equilibrium after six hours. The size of the overshoot and early uptake rates depended on the size of the inwardly-directed Na/sup +/ gradient. No overshoot was seen in the presence of inwardly-directed gradients of LiCl or choline-Cl, or with equilibrium concentrations NaCl or mannitol. A reduced overshoot was seen with a gradient of NaSCN. A small overshoot was seen with an inwardly-directed gradient of KCl. Transport of L-alanine included saturable and diffusive components. Uptake of 6 ..mu..M L-alanine was inhibited more than 80% by 100 ..mu..M ..cap alpha..-zwitterionic amino acids (alanine, leucine, glycine); by 30 to 75% by proline, aspartate and lysine; and less than 20% by a ..beta..-amino acid, taurine. The results of these experiments agree with those from intact gill studies and support the hypothesis that L-alanine is transported into gill epithelial cells by a secondary active transport process involving Na/sup +/.

  13. [Alanine solution as enzyme reaction buffer used in A to O blood group conversion].

    PubMed

    Li, Su-Bo; Zhang, Xue; Zhang, Yin-Ze; Tan, Ying-Xia; Bao, Guo-Qiang; Wang, Ying-Li; Ji, Shou-Ping; Gong, Feng; Gao, Hong-Wei

    2014-06-01

    The aim of this study was to investigate the effect of alanine solution as α-N-acetylgalactosaminidase enzyme reaction buffer on the enzymatic activity of A antigen. The binding ability of α-N-acetylgalactosaminidase with RBC in different reaction buffer such as alanine solution, glycine solution, normal saline (0.9% NaCl), PBS, PCS was detected by Western blot. The results showed that the efficiency of A to O conversion in alanine solution was similar to that in glycine solution, and Western blot confirmed that most of enzymes blinded with RBC in glycine or alanine solution, but few enzymes blinded with RBC in PBS, PCS or normal saline. The evidences indicated that binding of enzyme with RBC was a key element for A to O blood group conversion, while the binding ability of α-N-acetylgalactosaminidase with RBC in alanine or glycine solution was similar. It is concluded that alanine solution can be used as enzyme reaction buffer in A to O blood group conversion. In this buffer, the α-N-acetylgalactosaminidase is closely blinded with RBC and α-N-acetylgalactosaminidase plays efficient enzymatic activity of A antigen. PMID:24989301

  14. High-performance liquid chromatographic mass spectrometric method for the determination of ursodeoxycholic acid and its glycine and taurine conjugates in human plasma.

    PubMed

    Tessier, E; Neirinck, L; Zhu, Z

    2003-12-25

    A novel sensitive high-performance liquid chromatography-electrospray mass spectrometry method has been developed for the determination of ursodeoxycholic acid (UDCA) and its glycine and taurine conjugates, glycoursodeoxycholic acid (GDCA) and tauroursodeoxycholic acid (TDCA). The procedure involved a solid phase extraction of UDCA, GDCA, TDCA and the internal standard, 23-nordeoxycholic acid from human plasma on a C18 Bond Elut cartridge. Chromatography was performed by isocratic reverse phase separation with methanol/25 mM ammonium acetate (40/60, v/v) containing 0.05% acetic acid on a C18 column with embedded polar functional group. Detection was achieved using an LC-MS/MS system. The standard curve was linear over a working range of 10-3000 ng/ml for all analytes and gave an average correlation coefficient of 0.9992 or better during validation. The absolute recovery for UDCA, GDCA, TDCA and the internal standard was 87.3, 83.7, 79.5 and 95.8%, respectively. This method is simple, sensitive and suitable for pharmacokinetics, bioequivalence or clinical studies. PMID:14643509

  15. GAS-PHASE SYNTHESIS OF PRECURSORS OF INTERSTELLAR GLYCINE: A COMPUTATIONAL STUDY OF THE REACTIONS OF ACETIC ACID WITH HYDROXYLAMINE AND ITS IONIZED AND PROTONATED DERIVATIVES

    SciTech Connect

    Barrientos, Carmen; Redondo, Pilar; Largo, Laura; Rayon, Victor M.; Largo, Antonio

    2012-04-01

    A computational study of the reactions of hydroxylamine and its ionized and protonated derivatives with acetic acid is provided. The reaction of neutral hydroxylamine with acetic acid, despite being clearly exothermic, involves a very large energy barrier. The reaction of ionized hydroxylamine with acetic acid is also clearly exothermic, but again a significant energy barrier is found (around 24 kcal mol{sup -1} at the CCSD(T) level). The reaction of the most stable protonated isomer of hydroxylamine, NH{sub 3}OH{sup +}, with acetic acid also involves a high barrier (more than 27 kcal mol{sup -1} at the CCSD(T) level). Only the higher energy isomer, NH{sub 2}OH{sup +}{sub 2}, leads to a sensibly lower energy barrier (about 2.3 kcal mol{sup -1} at the CCSD(T) level). Nevertheless, an estimate of the reaction coefficient at low temperatures such as those reigning in the interstellar medium gives very low values. Therefore, it seems that precursors of interstellar glycine could not be efficiently produced from the reactions of hydroxylamine-derived ions with acetic acid.

  16. Host-pathogen interactions. XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. [Glycine max L

    SciTech Connect

    Davis, K.R.; Darvill, A.G.; Albersheim, P.; Dell, A.

    1986-02-01

    Recent studies have demonstrated that an apparently homogeneous preparation of an ..cap alpha..-1,4-D-endopolygalacturonic acid lyase (EC 4.2,2.2) isolated from the phytopathogenic bacterium Erwinia carotovora induced phytoalexin accumulation in cotyledons of soybean (Glycine max (L.) Merr. cv Wayne) and that this pectin-degrading enzyme released heat-stable elicitors of phytoalexins from soybean cell walls, citrus pectin, and sodium polypectate. The present paper reports the purification, by anion-exchange chromatography on QAE-Sephadex columns followed by gel-permeation chromatography on a Bio-Gel P-6 column, of the two fractions with highest specific elicitor activity present in a crude elicitor-preparation obtained by lyase treatment of sodium polypectate. Structural analysis of the fraction with highest specific elicitor activity indicated that the major, if not only, component was a decasaccharide of ..cap alpha..-1,4-D-galactosyluronic acid that contained the expected product of lyase cleavage, 4-deoxy-..beta..-L-5-threo-hexopyranos-4-enyluronic acid (4,5-unsaturated galactosyluronic acid), at the nonreducing terminus. This modified decagalacturonide fraction exhibited half-maximum and maximum elicitor activity at 1 microgram/cotyledon (6 micromolar) and 5 micrograms/cotyledon (32 micromolar) galactosyluronic acid equivalents, respectively. Reducing 90 to 95% of the carboxyl groups of the galactosyluronic acid residues abolished the elicitor activity of the decagalacturonide fraction. The second most elicitor-active fraction contained mostly undeca-..cap alpha..-1,4-D-galactosyluronic acid that contained 4,5-unsaturated galactosyluronic acid at the nonreducing termini. This fraction exhibited half-maximum and maximum elicitor activity at approximately 3 micrograms/cotyledon (17 micromolar) and 6 micrograms/cotyledon (34 micromolar) galactosyluronic acid equivalents, respectively.

  17. Modulation of antimicrobial effects of beta-lactams by amino acids in vitro.

    PubMed

    Gillissen, G; Schumacher, M; Breuer-Werle, M

    1991-06-01

    Glycine as well as 11 and 10, respectively, out of a total of 12 D-amino-acids tested increased the antimicrobial efficacy of imipenem (IMI) and of ampicillin (AMP) using the serosensitive strain E. coli ATCC 8739. D-proline was ineffective in assays with IMI as well as D-proline and D-leucine in assays with AMP. - In contrast, L-amino-acids behaved differently: In assays with IMI, 9 out of 13 isomers were ineffective whereas 3 were antagonistic (L-phenylalanine, L-serine, L-tryptophan). In combination with AMP, however, 10 L-amino acids had an antagonistic effect and 2 (L-leucine, L-methionine) were ineffective. L-alanine was an exception and showed a synergism with both antibiotics which was assumed to have been due to a racemase activity of cells. - Seroresistance of E. coli apparently reduced the synergistic effect of glycine and beta-lactams. - Glycine, alanine and tryptophan lost their typical synergistic or antagonistic effect with AMP when tested as di- or tri-amino-acid compounds. This was not the case with di-L-alanine - It is supposed that the synergistic effect of glycine or of D-amino-acids with beta-lactams can be explained mainly by an inhibition of carboxypeptidases. PMID:1930574

  18. Blood-brain barrier permeability to leucine-enkephalin, D-alanine2-D-leucine5-enkephalin and their N-terminal amino acid (tyrosine).

    PubMed

    Zlokovic, B V; Begley, D J; Chain-Eliash, D G

    1985-06-10

    The permeability of the blood-brain barrier to [tyrosyl-3,5-3H]enkephalin-(5-L-leucine) (abbreviated to Leu-Enk) and of its synthetic analogue D-alanine2-[tyrosyl-3,5-3H]enkephalin-(5-D-leucine) (abbreviated to D-Ala2-D-Leu5-Enk) was studied, in the adult rat, by means of Oldendorf's27 intracarotid injection technique. The brain uptake index (BUI) corrected for residual vascular radioactivity was about the same for both peptides, indicating a low extraction from the blood during a 5- or 15-s period of exposure to the peptides. Transport of Leu-Enk was not saturated by unlabelled Enk at a concentration as high as 5 mM but was completely abolished by 5mM tyrosine and by the inhibitor of aminopeptidase activity, bacitracin (2 mM). Also the typical L-transport system substrate, 2-aminobicyclo(2,2,1)heptane-2 carboxylic acid (BCH)9 at 10 mM concentration markedly reduced (by 80%) Leu-Enk uptake by the brain. In contrast, brain uptake of D-Ala2-D-Leu5-Enk was reduced only to about one-half of its control value by bacitracin or by 25% by BCH. Brain uptake for L-tyrosine was typically large and markedly inhibited by BCH but not inhibited by 5 mM unlabelled Leu-Enk. These results show that the measurable but low first-pass extractions for enkephalins are not representative of the uptake of these peptides into the brain, but rather reflect their extreme sensitivity to enzymatic degradation with a release of the N-terminal tyrosine residue. The results also suggest that small amounts of D-Ala2-D-Leu5-Enk might cross the blood-brain barrier in an intact form.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3891014

  19. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture.

    PubMed

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    2016-01-01

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system. PMID:27621619

  20. A search for endogenous amino acids in martian meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Glavin, D. P.; McDonald, G. D.; Becker, L.

    1998-01-01

    Trace amounts of glycine, serine, and alanine were detected in the carbonate component of the martian meteorite ALH84001 by high-performance liquid chromatography. The detected amino acids were not uniformly distributed in the carbonate component and ranged in concentration from 0.1 to 7 parts per million. Although the detected alanine consists primarily of the L enantiomer, low concentrations (<0.1 parts per million) of endogenous D-alanine may be present in the ALH84001 carbonates. The amino acids present in this sample of ALH84001 appear to be terrestrial in origin and similar to those in Allan Hills ice, although the possibility cannot be ruled out that minute amounts of some amino acids such as D-alanine are preserved in the meteorite.

  1. A search for endogenous amino acids in martian meteorite ALH84001.

    PubMed

    Bada, J L; Glavin, D P; McDonald, G D; Becker, L

    1998-01-16

    Trace amounts of glycine, serine, and alanine were detected in the carbonate component of the martian meteorite ALH84001 by high-performance liquid chromatography. The detected amino acids were not uniformly distributed in the carbonate component and ranged in concentration from 0.1 to 7 parts per million. Although the detected alanine consists primarily of the L enantiomer, low concentrations (<0.1 parts per million) of endogenous D-alanine may be present in the ALH84001 carbonates. The amino acids present in this sample of ALH84001 appear to be terrestrial in origin and similar to those in Allan Hills ice, although the possibility cannot be ruled out that minute amounts of some amino acids such as D-alanine are preserved in the meteorite. PMID:9430583

  2. Protective effect of Mn(III)-desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max "Sambaiba".

    PubMed

    Esposito, Jéssica Bordotti Nobre; Esposito, Breno Pannia; Azevedo, Ricardo Antunes; Cruz, Luciano Soares; da Silva, Luzimar Campos; de Souza, Silvia Ribeiro

    2015-04-01

    This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone. PMID:25510614

  3. Ingesting a preworkout supplement containing caffeine, creatine, β-alanine, amino acids, and B vitamins for 28 days is both safe and efficacious in recreationally active men.

    PubMed

    Kendall, Kristina L; Moon, Jordan R; Fairman, Ciaran M; Spradley, Brandon D; Tai, Chih-Yin; Falcone, Paul H; Carson, Laura R; Mosman, Matt M; Joy, Jordan M; Kim, Michael P; Serrano, Eric R; Esposito, Enrico N

    2014-05-01

    The purpose of this study was to determine the safety and efficacy of consuming a preworkout supplement (SUP) containing caffeine, creatine, β-alanine, amino acids, and B vitamins for 28 days. We hypothesized that little to no changes in kidney and liver clinical blood markers or resting heart rate and blood pressure (BP) would be observed. In addition, we hypothesized that body composition and performance would improve in recreationally active males after 28 days of supplementation. In a double-blind, placebo-controlled study, participants were randomly assigned to ingest one scoop of either the SUP or placebo every day for 28 days, either 20 minutes before exercise or ad libitum on nonexercise days. Resting heart rate and BP, body composition, and fasting blood samples were collected before and after supplementation. Aerobic capacity as well as muscular strength and endurance were also measured. Significant (P < .05) main effects for time were observed for resting heart rate (presupplementation, 67.59 ± 7.90 beats per minute; postsupplementation, 66.18 ± 7.63 beats per minute), systolic BP (presupplementation, 122.41 ± 11.25 mm Hg; postsupplementation, 118.35 ± 11.58 mm Hg), blood urea nitrogen (presupplementation, 13.12 ± 2.55 mg/dL; postsupplementation, 15.24 ± 4.47 mg/dL), aspartate aminotransferase (presupplementation, 34.29 ± 16.48 IU/L; postsupplementation, 24.76 ± 4.71 IU/L), and alanine aminotransferase (presupplementation, 32.76 ± 19.72 IU/L; postsupplementation, 24.88 ± 9.68 IU/L). Significant main effects for time were observed for body fat percentage (presupplementation, 15.55% ± 5.79%; postsupplementation, 14.21% ± 5.38%; P = .004) and fat-free mass (presupplementation, 70.80 ± 9.21 kg; postsupplementation, 71.98 ± 9.27 kg; P = .006). A significant decrease in maximal oxygen consumption (presupplementation, 47.28 ± 2.69 mL/kg per minute; postsupplementation, 45.60 ± 2.81 mL/kg per minute) and a significant increase in percentage of

  4. Respiration of [14C]alanine by the ectomycorrhizal fungus Paxillus involutus.

    PubMed

    Chalot, M; Brun, A; Finlay, R D; Söderström, B

    1994-08-01

    The ectomycorrhizal fungus Paxillus involutus efficiently took up exogenously supplied [14C]alanine and rapidly converted it to pyruvate, citrate, succinate, fumarate and to CO2, thus providing direct evidence for the utilisation of alanine as a respiratory substrate. [14C]alanine was further actively metabolised to glutamate, glutamine and aspartate. Exposure to aminooxyacetate completely suppressed 14CO2 evolution and greatly reduced the flow of carbon from [14C]alanine to tricarboxylic acid cycle intermediates and amino acids, suggesting that alanine aminotransferase plays a pivotal role in alanine metabolism in Paxillus involutus. PMID:8082830

  5. Synthesis, structural characterization, in vitro antimicrobial and anticancer activity studies of ternary metal complexes containing glycine amino acid and the anti-inflammatory drug lornoxicam

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mohamed, Gehad G.; El-Dessouky, Maher M. I.

    2015-02-01

    Mixed ligand complexes were synthesized using lornoxicam (LOR) as the primary ligand and glycine amino acid (HGly) as the secondary ligand. They were characterized by FT-IR, UV-Vis, mass, 1H NMR, ESR spectral studies, TG-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesized complexes, general formulae of [M(LOR)2(Gly)]·Xn·yH2O where M = Cr(III) (X = Cl, n = 2, y = 3), Mn(II) (X = Cl, n = 1, y = 1), Co(II) (X = BF4, n = 1, y = 0), Ni(II) (X = Cl, n = 1, y = 0), Cu(II) (X = BF4, n = 1, y = 2) and Zn(II) (X = BF4, n = 1, y = 2) and (M = Fe(II) (X = BF4, n = 1, y = 1) and Fe(III) (X = Cl, n = 2, y = 1) with an octahedral structure were proposed. Thermal analyses show that the complexes lose water molecules of hydration initially and subsequently expel anionic parts and organic ligands in continuous steps. The kinetic parameters namely E, ΔH∗, ΔS∗ and ΔG∗ illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficiency of the LOR and HGly ligands and the ternary complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to possess efficient antimicrobial properties compared to lornoxicam and most of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. Also, the two ligands, in comparison to ternary metal complexes are screened for their anticancer activity against breastic cancer cell line. The results showed that the metal complexes be more active than the parent LOR and glycine free ligands except Cr(III) ternary complex which was found to be inactive.

  6. Human milk nonprotein nitrogen components: changing patterns of free amino acids and urea in the course of early lactation.

    PubMed

    Harzer, G; Franzke, V; Bindels, J G

    1984-08-01

    Free amino acids and urea were analyzed in 78 human milk samples obtained during the first 5 wk of lactation from 10 mothers delivering at term. Significant differences (p less than 0.05) in the concentrations between colostral and mature milk were found for glutamic acid, glutamine, alanine, glycine, cystine, and phosphoethanolamine which increased, and with serine, phosphoserine, aspartic acid + asparagine, arginine, lysine, isoleucine, phenylalanine, proline, methionine, tryptophan, and beta-alanine which decreased. Some of these changes occurred within the first 5 days of lactation, so that differences between transitional and mature milk became negligible (glutamic acid, alanine, and serine, aspartic acid + asparagine, lysine, isoleucine, methionine, tryptophan, respectively). No significant differences between any of the three stages of lactation were found regarding the concentrations of total free amino acids, urea, taurine, threonine, valine, leucine, histidine, and tyrosine. Possible relevances for free amino acids, including nonprotein ones, in human milk are discussed. PMID:6147084

  7. Evolution of threonine aldolases, a diverse family involved in the second pathway of glycine biosynthesis.

    PubMed

    Liu, Guangxiu; Zhang, Manxiao; Chen, Ximing; Zhang, Wei; Ding, Wei; Zhang, Qi

    2015-02-01

    Threonine aldolases (TAs) catalyze the interconversion of threonine and glycine plus acetaldehyde in a pyridoxal phosphate-dependent manner. This class of enzymes complements the primary glycine biosynthetic pathway catalyzed by serine hydroxymethyltransferase (SHMT), and was shown to be necessary for yeast glycine auxotrophy. Because the reverse reaction of TA involves carbon-carbon bond formation, resulting in a β-hydroxyl-α-amino acid with two adjacent chiral centers, TAs are of high interests in synthetic chemistry and bioengineering studies. Here, we report systematic phylogenetic analysis of TAs. Our results demonstrated that L-TAs and D-TAs that are specific for L- and D-threonine, respectively, are two phylogenetically unique families, and both enzymes are different from their closely related enzymes SHMTs and bacterial alanine racemases (ARs). Interestingly, L-TAs can be further grouped into two evolutionarily distinct families, which share low sequence similarity with each other but likely possess the same structural fold, suggesting a convergent evolution of these enzymes. The first L-TA family contains enzymes of both prokaryotic and eukaryotic origins, and is related to fungal ARs, whereas the second contains only prokaryotic L-TAs. Furthermore, we show that horizontal gene transfer may occur frequently during the evolution of both L-TA families. Our results indicate the complex, dynamic, and convergent evolution process of TAs and suggest an updated classification scheme for L-TAs. PMID:25644973

  8. Accumulated analyses of amino acid precursors in returned lunar samples

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Harada, K.; Hare, P. E.

    1973-01-01

    Six amino acids (glycine, alanine, aspartic acid, glutamic acid, serine, and threonine) obtained by hydrolysis of extracts have been quantitatively determined in ten collections of fines from five Apollo missions. Although the amounts found, 7-45 ng/g, are small, the lunar amino acid/carbon ratios are comparable to those of the carbonaceous chondrites, Murchison and Murray, as analyzed by the same procedures. Since both the ratios of amino acid to carbon, and the four or five most common types of proteinous amino acid found, are comparable for the two extraterrestrial sources despite different cosmophysical histories of the moon and meteorites, common cosmochemical processes are suggested.

  9. Spectroscopic investigations of humic-like acids formed via polycondensation reactions between glycine, catechol and glucose in the presence of natural zeolites

    NASA Astrophysics Data System (ADS)

    Fukuchi, Shigeki; Miura, Akitaka; Okabe, Ryo; Fukushima, Masami; Sasaki, Masahide; Sato, Tsutomu

    2010-10-01

    Polycondensation reactions between low-molecular-weight compounds, such as amino acids, sugars and phenols, are crucially important processes in the formation of humic substances, and clay minerals have the ability to catalyze these reactions. In the present study, catechol (CT), glycine (Gly) and glucose (Gl) were used as representative phenols, amino acids and sugars, respectively, and the effects of the catalytic activities of natural zeolites on polycondensation reactions between these compounds were investigated. The extent of polycondensation was evaluated by measuring the specific absorbance at 600 nm ( E600) as an index of the degree of darkening. After a 3-week incubation period, the E600 values for solutions that contained zeolite samples were 4-10 times greater than those measured in the absence of zeolite, suggesting that the zeolite had, in fact, catalyzed the polycondensation reaction. The humic-like acids (HLAs) produced in the reactions were isolated, and their elemental composition and molecular weights determined. When formed in the presence of a zeolite, the nitrogen contents and molecular weights for the HLAs were significantly higher, compared to the HLA sample formed in the absence of zeolite. In addition, solid-state CP-MAS 13C NMR spectra and carboxylic group analyses of the HLA samples indicated that the concentration of carbonyl carbon species for quinones and ketones produced in the presence of zeolite were higher than the corresponding values for samples produced in the absence of a zeolite. Carbonyl carbons in quinones and ketones indicate the nucleophilic characteristics of the samples. Therefore, a nitrogen atom in Gly, which serves as nucleophile, is incorporated into quinones and ketones in CT and Gl. The differences in the catalytic activities of the zeolite samples can be attributed to differences in their transition metal content (Fe, Mn and Ti), which function as Lewis acids.

  10. Plane wave density functional theory studies of the structural and the electronic properties of amino acids attached to graphene oxide via peptide bonding

    NASA Astrophysics Data System (ADS)

    Min, Byeong June; Jeong, Hae Kyung; Lee, ChangWoo

    2015-08-01

    We studied via plane wave pseudopotential total-energy calculations within the local spin density approximation (LSDA) the electronic and the structural properties of amino acids (alanine, glycine, and histidine) attached to graphene oxide (GO) by peptide bonding. The HOMO-LUMO gap, the Hirshfeld charges, and the equilibrium geometrical structures exhibit distinctive variations that depend on the species of the attached amino acid. The GO-amino acid system appears to be a good candidate for a biosensor.

  11. Effect of Cooking on Isoflavones, Phenolic Acids, and Antioxidant Activity in Sprouts of Prosoy Soybean (Glycine max).

    PubMed

    Kumari, Shweta; Chang, Sam K C

    2016-07-01

    Soy sprouts possess health benefits and is required to be cooked before consumption. The effects of cooking on the phenolic components and antioxidant properties of soy sprouts with different germination days were investigated. A food-grade cultivar Prosoy with a high protein content was germinated for 1, 2, 3, 5, and 7 d and cooked till palatable for 20, 20, 5, 5, and 7 min, respectively. Total phenolic content (TPC), total flavonoids content (TFC), condensed tannins content (CTC), individual phenolic acids, isoflavones, DPPH, ferric-reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) of raw and cooked sprouts were measured. Cooking caused significant losses in phenolic content and antioxidant activities, and maximum loss was on day 3 > 5 > 7, including TPC (32%, 23%, and 15%), TFC (50%, 44%, and 20%), CTC (73%, 47%, and 12%), DPPH (31%, 15%, and 5%), FRAP (34%, 25%, and 1%), and ORAC (34%, 22%, 32%), respectively. Cooking caused significant losses in most individual phenolic acid, benzoic group, cinnamic group, total phenolic composition, individual isoflavones, and total isoflavones. The losses of phenolic acids such as gallic, protocatechuic, hydroxybenzoic, syringic, chlorogenic, or sinapic acids during cooking were not compensated by the increases in trihydroxybenzoic, vanillic or coumaric acids on certain days of germination. Cooking caused minimal changes in phenolic acid composition of day 1 and 2 sprouts compared to 3, 5, and 7 d sprouts. PMID:27258930

  12. Organic Reference Materials for Hydrogen, Carbon, and Nitrogen Stable Isotope-Ratio Measurements: Caffeines, n-Alkanes, Fatty Acid Methyl Esters, Glycines, L-Valines, Polyethylenes, and Oils.

    PubMed

    Schimmelmann, Arndt; Qi, Haiping; Coplen, Tyler B; Brand, Willi A; Fong, Jon; Meier-Augenstein, Wolfram; Kemp, Helen F; Toman, Blaza; Ackermann, Annika; Assonov, Sergey; Aerts-Bijma, Anita T; Brejcha, Ramona; Chikaraishi, Yoshito; Darwish, Tamim; Elsner, Martin; Gehre, Matthias; Geilmann, Heike; Gröning, Manfred; Hélie, Jean-François; Herrero-Martín, Sara; Meijer, Harro A J; Sauer, Peter E; Sessions, Alex L; Werner, Roland A

    2016-04-19

    An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope-δ scales. The RMs span a range of δ(2)H(VSMOW-SLAP) values from -210.8 to +397.0 mUr or ‰, for δ(13)C(VPDB-LSVEC) from -40.81 to +0.49 mUr and for δ(15)N(Air) from -5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a (2)H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ(2)H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain (13)C and carbon-bound organic (2)H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies. PMID:26974360

  13. The pH at the First Equivalence Point in the Titration of a Diprotic Acid

    NASA Astrophysics Data System (ADS)

    Ault, Addison

    2003-12-01

    Some readers will note a similarity between this approach and the one I took in a paper entitled “Do pH in Your Head” (2). In an example in that article the isoelectric pH of glycine (the pH at which the average charge of a glycine molecule is zero), has the value of 6.0, which is exactly half-way between 2.4, the pKa of the carboxyl group of glycine, and 9.6, the pKa of the ammonium group of glycine. This is what one would expect when realizing that a solution of neutral glycine right out of the bottle is equivalent to glycine obtained by titration of the conjugate acid of glycine to the first equivalence point. Those who are interested might want to consider why the isoelectric pH of an “acidic” amino acid, such as alanine, is exactly half-way between the pKa values of the two carboxyl groups, and why the isoelectric pH of a “basic” amino acid such as lysine is exactly half-way between the pKa values of the two ammonium groups.

  14. Effect of protein restriction on (15)N transfer from dietary [(15)N]alanine and [(15)N]Spirulina platensis into urea.

    PubMed

    Hamadeh, M J; Hoffer, L J

    2001-08-01

    Six normal men consumed a mixed test meal while adapted to high (1.5 g. kg(-1) x day(-1)) and low (0.3 g. kg(-1) x day(-1)) protein intakes. They completed this protocol twice: when the test meals included 3 mg/kg of [(15)N]alanine ([(15)N]Ala) and when they included 30 mg/kg of intrinsically labeled [(15)N]Spirulina platensis ([(15)N]SPI). Six subjects with insulin-dependent diabetes mellitus (IDDM) receiving conventional insulin therapy consumed the test meal with added [(15)N]Ala while adapted to their customary high-protein diet. Protein restriction increased serum alanine, glycine, glutamine, and methionine concentrations and reduced those of leucine. Whether the previous diet was high or low in protein, there was a similar increase in serum alanine, methionine, and branched-chain amino acid concentrations after the test meal and a similar pattern of (15)N enrichment in serum amino acids for a given tracer. When [(15)N]Ala was included in the test meal, (15)N appeared rapidly in serum alanine and glutamine, to a minor degree in leucine and isoleucine, and not at all in other circulating amino acids. With [(15)N]SPI, there was a slow appearance of the label in all serum amino acids analyzed. Despite the different serum amino acid labeling, protein restriction reduced the postmeal transfer of dietary (15)N in [(15)N]Ala or [(15)N]SPI into [(15)N]urea by similar amounts (38 and 43%, respectively, not significant). The response of the subjects with IDDM was similar to that of the normal subjects. Information about adaptive reductions in dietary amino acid catabolism obtained by adding [(15)N]Ala to a test meal appears to be equivalent to that obtained using an intrinsically labeled protein tracer. PMID:11440912

  15. Characterization of mycosporine-serine-glycine methyl ester, a major mycosporine-like amino acid from dinoflagellates: a mass spectrometry study.

    PubMed

    Carignan, Mario O; Carreto, José I

    2013-08-01

    Several unknown mycosporine-like amino acids (MAAs) have been previously isolated from some cultured species of toxic dinoflagellates of the Alexandrium genus (Dinophyceae). One of them, originally called M-333, was tentatively identified as a shinorine methyl ester, but the precise nature of this compound is still unknown. Using a high-resolution reversed-phase liquid chromatography mass spectrometry analyses (HPLC/MS), we found that natural populations of the red tide dinoflagellate Prorocentrum micans Ehrenberg showed a net dominance of M-333 together with lesser amounts of other MAAs. We also documented the isolation and characterization of this MAA from natural dinoflagellate populations and from Alexandrium tamarense (Lebour) Balech cultures. Using a comparative fragmentation study in electrospray mass spectrometry between deuterated and non-deuterated M-333 compounds and synthesized mono and dimethyl esters of shinorine, this novel compound was characterized as mycosporine-serine-glycine methyl ester, a structure confirmed by nuclear magnetic resonance. These isobaric compounds can be differentiated by their fragmentation patterns in MS(3) experiments because the extension and the specific site of the methylation changed the fragmentation pathway. PMID:27007200

  16. Facilitation of cell adhesion by immobilized dengue viral nonstructural protein 1 (NS1): arginine-glycine-aspartic acid structural mimicry within the dengue viral NS1 antigen.

    PubMed

    Chang, Hsin-Hou; Shyu, Huey-Fen; Wang, Yo-Ming; Sun, Der-Shan; Shyu, Rong-Hwa; Tang, Shiao-Shek; Huang, Yao-Shine

    2002-09-15

    Dengue virus infection causes life-threatening hemorrhagic fever. Increasing evidence implies that dengue viral nonstructural protein 1 (NS1) exhibits a tendency to elicit potentially hazardous autoantibodies, which show a wide spectrum of specificity against extracellular matrix and platelet antigens. How NS1 elicits autoantibodies remains unclear. To address the hypothesis that NS1 and matrix proteins may have structural and functional similarity, cell-matrix and cell-NS1 interactions were evaluated using a cell-adhesion assay. The present study showed that dengue NS1 immobilized on coverslips resulted in more cell adhesion than did the control proteins. This cell adhesion was inhibited by peptides containing arginine-glycine-aspartic acid (RGD), a motif important for integrin-mediated cell adhesion. In addition, anti-NS1 antibodies blocked RGD-mediated cell adhesion. Although there is no RGD motif in the NS1 protein sequence, these data indicate that RGD structural mimicry exists within the NS1 antigen. PMID:12198607

  17. Glycine max cultivar Dare chloroplast fatty acid desaturase 7 (FAD7) gene, complete cds; nuclear gene for chloroplast product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomic sequence of soybean GmFAD7 (2455 nucleotides) was determined and reported to GenBank and assigned the accession number HM769340. The structure and deduced amino acid sequence of soybean FAD7 is similar to other higher plant plastidal omega-3 desaturases: 8 exons and 7 introns, predicted...

  18. Glycine max cultivar Dare chloroplast fatty acid desaturase 8 (FAD8) gene, complete cds; nuclear gene for chloroplast product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomic sequence of soybean GmFAD8 (2480 nucleotides) was determined and reported to GenBank and assigned the accession number HM769341. The structure and deduced amino acid sequence of soybean FAD8 is similar to other higher plant plastidal omega-3 desaturases: 8 exons and 7 introns, predicted...

  19. Advanced asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid by alkylation/cyclization of newly designed axially chiral Ni(II) complex of glycine Schiff base.

    PubMed

    Kawashima, Aki; Shu, Shuangjie; Takeda, Ryosuke; Kawamura, Akie; Sato, Tatsunori; Moriwaki, Hiroki; Wang, Jiang; Izawa, Kunisuke; Aceña, José Luis; Soloshonok, Vadim A; Liu, Hong

    2016-04-01

    Asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid (vinyl-ACCA) is in extremely high demand due to the pharmaceutical importance of this tailor-made, sterically constrained α-amino acid. Here we report the development of an advanced procedure for preparation of the target amino acid via two-step SN2 and SN2' alkylation of novel axially chiral nucleophilic glycine equivalent. Excellent yields and diastereoselectivity coupled with reliable and easy scalability render this method of immediate use for practical synthesis of (1R,2S)-vinyl-ACCA. PMID:26661034

  20. Comparison of EPR response of alanine and Gd₂O₃-alanine dosimeters exposed to TRIGA Mainz reactor.

    PubMed

    Marrale, M; Schmitz, T; Gallo, S; Hampel, G; Longo, A; Panzeca, S; Tranchina, L

    2015-12-01

    In this work we report some preliminary results regarding the analysis of electron paramagnetic resonance (EPR) response of alanine pellets and alanine pellets added with gadolinium used for dosimetry at the TRIGA research reactor in Mainz, Germany. Two set-ups were evaluated: irradiation inside PMMA phantom and irradiation inside boric acid phantom. We observed that the presence of Gd2O3 inside alanine pellets increases the EPR signal by a factor of 3.45 and 1.24 in case of PMMA and boric acid phantoms, respectively. We can conclude that in the case of neutron beam with a predominant thermal neutron component the addition of gadolinium oxide can significantly improve neutron sensitivity of alanine pellets. Monte Carlo (MC) simulations of both response of alanine and Gd-added alanine pellets with FLUKA code were performed and a good agreement was achieved for pure alanine dosimeters. For Gd2O3-alanine deviations between MC simulations and experimental data were observed and discussed. PMID:26315099

  1. Glycine production in severe childhood undernutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Although nutritionally dispensable amino acids are not essential in the diet, from a biochemical standpoint, dispensable amino acids such as glycine are essential for life. This is especially true under unique circumstances, such as when the availability of labile nitrogen for dispensabl...

  2. The Amino Acid Composition of the Sutter's Mill Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Burton, A. S.; Elsila, J. E.; Dworkin, J. P.; Yin, Q. Z.; Cooper, G.; Jenniskens, P.

    2012-01-01

    In contrast to the Murchison meteorite which had a complex distribution of amino acids with a total C2 to Cs amino acid abundance of approx.14,000 parts-per-billion (ppb) [2], the Sutters Mill meteorite was found to be highly depleted in amino acids. Much lower abundances (approx.30 to 180 ppb) of glycine, beta-alanine, L-alanine and L-serine were detected in SM2 above procedural blank levels indicating that this meteorite sample experienced only minimal terrestrial amino acid contamination after its fall to Earth. Carbon isotope measurements will be necessary to establish the origin of glycine and beta-alanine in SM2. Other non-protein amino acids that are rare on Earth, yet commonly found in other CM meteorites such as aaminoisobutyric acid (alpha-AIB) and isovaline, were not identified in SM2. However, traces of beta-AIB (approx.1 ppb) were detected in SM2 and could be" extraterrestrial in origin. The low abundances of amino acids in the Sutter's Mill meteorite is consistent with mineralogical evidence that at least some parts of the Sutter's Mill meteorite parent body experienced extensive aqueous and/or thermal alteration.

  3. Plant and Soil Emissions of Amines and Amino Acids: A Source of Secondary Aerosol Precursors

    NASA Astrophysics Data System (ADS)

    Jackson, M. L.; Doskey, P. V.; Pypker, T. G.

    2011-12-01

    Ammonia (NH3) is the most abundant alkaline gas in the atmosphere and forms secondary aerosol by neutralizing sulfuric and nitric acids that are released during combustion of fossil fuels. Ammonia is primarily emitted by cropping and livestock operations. However, C2 and C3 amines (pKb 3.3-3.4), which are stronger bases than NH3 (pKb 4.7) have been observed in nuclei mode aerosol that is the precursor to secondary aerosol. Mixtures of amines and amino acids have been identified in diverse environments in aerosol, fog water, cloud water, the soluble fraction of precipitation, and in dew. Glycine (pKb 4.2), serine (pKb 4.8) and alanine (pKb 3.7 and 4.1 for the D and L forms, respectively) are typically the most abundant species. The only reported values of gas-phase glycine, serine and alanine were in marine air and ranged from 6-14 pptv. The origin of atmospheric amines and amino acids has not been fully identified, although sources are likely similar to NH3. Nitrate assimilation in plants forms glycine, serine, and L-alanine, while D-alanine is present in bacterial cell walls. Glycine is converted to serine during C3 plant photorespiration, producing CO2 and NH3. Bacteria metabolize glycine and alanine to methylamine and ethylamine via decarboxylation. Likely sources of amino acids are plants and bacteria, thus concentrations near continental sources are likely greater than those measured in marine air. The overall goal of the research is to examine seasonal variations and relationships between the exchange of CO2, NH3, amines, and amino acids with a corn/soybean rotation in the Midwest Corn Belt. The study presents gaseous profiles of organic amine compounds from various species of vegetation using a mist chamber trapping technique and analysis of the derivatized species by high pressure liquid chromatography with fluorescence detection. Amino acid and amine profiles were obtained for red oak (Quercus rubra), sugar maple (Acer saccharinum), white pine (Pinus

  4. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties. PMID:26159785

  5. Alanine transport across in vitro rabbit vagina.

    PubMed

    Hajjar, J J; Mroueh, A M

    1979-04-01

    Transmural flux of alanine across the vaginal epithelium of the rabbit is a specialized mechanism. There is a net serosal to mucosal translocation of the amino acid in the absence of a concentration gradient. Changes in reproductive cycle do not influence this mechanism but, in castrated animals, it is abolished. Transport properties of vaginal epithelium is important because of increasing utilization of intravaginal contraceptives. PMID:455986

  6. Influence of amino acid specificities on the molecular and supramolecular organization of glycine-rich elastin-like polypeptides in water.

    PubMed

    Salvi, Anna M; Moscarelli, Pasquale; Satriano, Giuseppina; Bochicchio, Brigida; Castle, James E

    2011-10-01

    Elastin-like polypeptides adopt complex supramolecular structures, showing either a hydrophobic or a hydrophilic surface, depending on their surrounding environment and the supporting substrate. The preferred organization is important in many situations ranging from biocompatibility to bio-function. Here we compare the n-repeat pentamer LeuGlyGlyValGly (n = 7) with the analogue ValGlyGlyValGly (n = 5), as water suspensions and as deposits on silicon substrates. These sequences contain the repeat XxxGlyGlyZzzGly (Xxx, Zzz = Val, Leu) motif belonging to the hydrophobic glycine-rich domain of elastin and represent a simplified model from which to obtain information on molecular interactions functional to elastin itself. The compounds studied differ only by the presence of the -CH(2)- spacer in the Leu moiety and thus the work was aimed at revealing the influence of this spacer element on self assembly. Both polypeptides were studied under identical conditions, using combined techniques, to identify differences in their conformational states both at molecular (CD, FTIR) and supramolecular (XPS, AFM) levels. By these means, together with a Congo Red spectroscopic assay of β-sheet formation in water, a clear correlation between amino acid sequences (sequence specificity) and their kinetics and ordering of aggregation has emerged. The novel outcomes of this work are from the supplementary measurements, made to augment the AFM and XPS studies, showing that the significant step in the self assembly of both polypeptides takes place in the liquid phase and from the finding that the substitution of Val by Leu in the first position of the pentapeptide effectively inhibits the formation of amyloidal fibers. PMID:21509743

  7. Optical imaging of head and neck squamous cell carcinoma in vivo using arginine-glycine-aspartic acid peptide conjugated near-infrared quantum dots

    PubMed Central

    Huang, Hao; Bai, Yun-Long; Yang, Kai; Tang, Hong; Wang, You-Wei

    2013-01-01

    Molecular imaging plays a key role in personalized medicine and tumor diagnosis. Quantum dots with near-infrared emission spectra demonstrate excellent tissue penetration and photostability, and have recently emerged as important tools for in vivo tumor imaging. Integrin αvβ3 has been shown to be highly and specifically expressed in endothelial cells of tumor angiogenic vessels in almost all types of tumors, and specifically binds to the peptide containing arginine-glycine-aspartic acid (RGD). In this study, we conjugated RGD with quantum dots with emission wavelength of 800 nm (QD800) to generate QD800-RGD, and used it via intravenous injection as a probe to image tumors in nude mice bearing head and neck squamous cell carcinoma (HNSCC). Twelve hours after the injection, the mice were still alive and were sacrificed to isolate tumors and ten major organs for ex vivo analysis to localize the probe in these tissues. The results showed that QD800-RGD was specifically targeted to integrin αvβ3 in vitro and in vivo, producing clear tumor fluorescence images after the intravenous injection. The tumor-to-background ratio and size of tumor image were highest within 6 hours of the injection and declined significantly at 9 hours after the injection, but there was still a clearly visible tumor image at 12 hours. The greatest amount of QD800-RGD was found in liver and spleen, followed by tumor and lung, and a weak fluorescence signal was seen in tibia. No detectable signal of QD800-RGD was found in brain, heart, kidney, testis, stomach, or intestine. Our study demonstrated that using integrin αvβ3 as target, it is possible to use intravenously injected QD800-RGD to generate high quality images of HNSCC, and the technique offers great potential in the diagnosis and personalized therapy for HNSCC. PMID:24324343

  8. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors

    PubMed Central

    Farroni, Jeffrey S; McCool, Brian A

    2004-01-01

    Background Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. Results While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The β-amino acid taurine possessed 30–50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for β-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Conclusions Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In

  9. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    SciTech Connect

    E Butler; J Wang; Y Xiong; S Strobel

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  10. Regulation of Serine, Glycine, and One-Carbon Biosynthesis.

    PubMed

    Stauffer, George V

    2004-12-01

    The biosynthesis of serine, glycine, and one-carbon (C1) units constitutes a major metabolic pathway in Escherichia coli and Salmonella enterica serovar Typhimurium. C1 units derived from serine and glycine are used in the synthesis of purines, histidine, thymine, pantothenate, and methionine and in the formylation of the aminoacylated initiator fMet-TRNAfMet used to start translation in E. coli and serovar Typhimurium. The need for serine, glycine, and C1 units in many cellular functions makes it necessary for the genes encoding enzymes for their synthesis to be carefully regulated to meet the changing demands of the cell for these intermediates. This review discusses the regulation of the following genes: serA, serB, and serC; gly gene; gcvTHP operon; lpdA; gcvA and gcvR; and gcvB genes. Threonine utilization (the Tut cycle) constitutes a secondary pathway for serine and glycine biosynthesis. L-Serine inhibits the growth of E. coli cells in GM medium, and isoleucine releases this growth inhibition. The E. coli glycine transport system (Cyc) has been shown to transport glycine, D-alanine, D-serine, and the antibiotic D-cycloserine. Transport systems often play roles in the regulation of gene expression, by transporting effector molecules into the cell, where they are sensed by soluble or membrane-bound regulatory proteins. PMID:26443363

  11. Ectopic expression of Arabidopsis genes encoding salicylic acid- and jasmonic acid-related proteins confers partial resistance to soybean cyst nematode (Heterodera glycines) in transgenic soybean roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) an...

  12. Alteration of substrate specificity of alanine dehydrogenase

    PubMed Central

    Fernandes, Puja; Aldeborgh, Hannah; Carlucci, Lauren; Walsh, Lauren; Wasserman, Jordan; Zhou, Edward; Lefurgy, Scott T.; Mundorff, Emily C.

    2015-01-01

    The l-alanine dehydrogenase (AlaDH) has a natural history that suggests it would not be a promising candidate for expansion of substrate specificity by protein engineering: it is the only amino acid dehydrogenase in its fold family, it has no sequence or structural similarity to any known amino acid dehydrogenase, and it has a strong preference for l-alanine over all other substrates. By contrast, engineering of the amino acid dehydrogenase superfamily members has produced catalysts with expanded substrate specificity; yet, this enzyme family already contains members that accept a broad range of substrates. To test whether the natural history of an enzyme is a predictor of its innate evolvability, directed evolution was carried out on AlaDH. A single mutation identified through molecular modeling, F94S, introduced into the AlaDH from Mycobacterium tuberculosis (MtAlaDH) completely alters its substrate specificity pattern, enabling activity toward a range of larger amino acids. Saturation mutagenesis libraries in this mutant background additionally identified a double mutant (F94S/Y117L) showing improved activity toward hydrophobic amino acids. The catalytic efficiencies achieved in AlaDH are comparable with those that resulted from similar efforts in the amino acid dehydrogenase superfamily and demonstrate the evolvability of MtAlaDH specificity toward other amino acid substrates. PMID:25538307

  13. Substrate properties of C1 inhibitor Ma (alanine 434----glutamic acid). Genetic and structural evidence suggesting that the P12-region contains critical determinants of serine protease inhibitor/substrate status.

    PubMed

    Skriver, K; Wikoff, W R; Patston, P A; Tausk, F; Schapira, M; Kaplan, A P; Bock, S C

    1991-05-15

    The serine protease inhibitor (serpin) C1 inhibitor inactivates enzymes involved in the regulation of vascular permeability. A patient from the Ma family with the genetic disorder hereditary angioedema inherited a dysfunctional C1 inhibitor allele. Relative to normal plasma, the patients's plasma contained an additional C1 inhibitor immunoreactive band, which comigrated with normal C1 inhibitor cleaved by plasma kallikrein, C1s, or factor XIIa. C1 inhibitor Ma did not react with a monoclonal antibody to a neoepitope that is present in complexed and cleaved normal C1 inhibitor, suggesting conformational differences between cleaved normal C1- inhibitor and cleaved C1 inhibitor Ma. Molecular cloning and sequencing of exon 8 of the C1 inhibitor Ma allele revealed a single C to A mutation, changing alanine 434 to glutamic acid. Ala 434 of C1 inhibitor aligns with the P12 residue of the prototypical serpin alpha 1-antitrypsin. The P12 amino acid of all inhibitory serpins is alanine, and it is present in a highly conserved region on the amino-terminal side of the serpin-reactive center loop. Whereas normal C1 inhibitor expressed by transfected COS-1 cells formed complexes with and was cleaved by kallikrein, fXIIa, and C1s, COS-1-expressed Ala434---Glu C1 inhibitor was cleaved by these enzymes but did not form complexes with them. These results, together with evidence from other studies, suggest that serpin protease inhibitor activity is the result of protein conformational change that occurs when the P12 region of a serpin moves from a surface location, on the reactive site loop of the native molecule, to an internal location within sheet A of the complexed inhibitor. PMID:2026621

  14. Spectroscopic studies on covalent functionalization of single-walled carbon nanotubes with glycine.

    PubMed

    Deborah, M; Jawahar, A; Mathavan, T; Kumara Dhas, M; Benial, A Milton Franklin

    2014-10-22

    Single-walled carbon nanotubes (SWCNTs) have a great potential in a wide range of applications, but faces limitation in terms of dispersion feasibility. The functionalization process of SWCNTs with the amino acid, glycine involves oxidation reaction using a mild aqueous acid mixture of HNO3 and H2SO4 (1:3), via ultrasonication technique and the resulted oxidized SWCNTs were again treated with the amino acid glycine suspension. The resulted glycine functionalized carbon nanotubes have been characterized by XRD, UV-Vis, FTIR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (002) intensity was observed for glycine functionalized SWCNTs compared with oxidized SWCNTs, which is likely due to sample purification by acid washing. The red shift was observed in the UV-Vis spectra of glycine functionalized SWCNTs, which reveals that the covalent bond formation between glycine molecule and SWCNTs. The functional groups of oxidized SWCNTs and glycine functionalized SWCNTs were identified and assigned. EPR results indicate that the unpaired electron undergoes reduction process in glycine functionalized SWCNTs. SEM images show that the increase in the diameter of the SWCNTs was observed for glycine functionalized SWCNTs, which indicates that the adsorption of glycine molecule on the sidewalls of oxidized SWCNTs. EDX elemental micro analysis confirms that the nitrogen element exists in glycine functionalized SWCNTs. The functionalization has been chosen due to CONH bioactive sites in glycine functionalized SWCNTs for future applications. PMID:25448929

  15. Identification and characterization of heptapeptide modulators of the glycine receptor.

    PubMed

    Cornelison, Garrett L; Pflanz, Natasha C; Tipps, Megan E; Mihic, S John

    2016-06-01

    The glycine receptor is a member of the Cys-loop receptor superfamily of ligand-gated ion channels and is implicated as a possible therapeutic target for the treatment of diseases such as alcoholism and inflammatory pain. In humans, four glycine receptor subtypes (α1, α2, α3, and β) co-assemble to form pentameric channel proteins as either α homomers or αβ heteromers. To date, few agents have been identified that can selectively modulate the glycine receptor, especially those possessing subtype specificity. We used a cell-based method of phage display panning, coupled with two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes, to identify novel heptapeptide modulators of the α1β glycine receptor. This involved a panning procedure in which the phage library initially underwent subtractive panning against Human Embryonic Kidney (HEK) 293 cells expressing alternative glycine receptor subtypes before panning the remaining library over HEK 293 cells expressing the target, the α1β glycine receptor. Peptides were identified that act with selectivity on α1β and α3β, compared to α2β, glycine receptors. In addition, peptide activity at the glycine receptor decreased when zinc was chelated by tricine, similar to previous observations of a decrease in ethanol's enhancing actions at the receptor in the absence of zinc. Comparisons of the amino acid sequences of heptapeptides capable of potentiating glycine receptor function revealed several consensus sequences that may be predictive of a peptide's enhancing ability. PMID:27038522

  16. Photoacoustic spectral studies on lanthanide amino acid complexes

    NASA Astrophysics Data System (ADS)

    Yang, Yue-tao; Zhao, Gui-wen; Zhang, Shu-yi

    2003-01-01

    Several kinds of lanthanide complexes with glycine, alanine, phenylalanine, and tryptophan were synthesized and their photoacoustic (PA) spectra were measured. For the complexes of weakly fluorescent lanthanide ions with amino acids, the PA spectra reflect the influences of the ligands on the energy levels of lanthanide ions, whereas for the complexes of fluorescent lanthanide ions with amino acids, the PA spectra can be used to study the energy transfer from aromatic amino acids to lanthanide ions. At last, separating the overlapping peaks of lanthanide complex with tryptophan using the PA phase resolved method is introduced.

  17. The Origin of Amino Acids in Lunar Regolith Samples

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  18. Systematic detection of BMAA (β-N-methylamino-l-alanine) and DAB (2,4-diaminobutyric acid) in mollusks collected in shellfish production areas along the French coasts.

    PubMed

    Réveillon, Damien; Séchet, Véronique; Hess, Philipp; Amzil, Zouher

    2016-02-01

    The neurotoxin β-N-methylamino-l-alanine (BMAA) is naturally present in some microalgal species in the marine environment. The accumulation of BMAA has widely been observed in filter-feeding bivalves that are known to consume primary producers constituting the base of complex aquatic food webs. This study was performed to assess the occurrence of BMAA and isomers in mollusks collected from nine representative shellfish production areas located on the three French coasts (Channel, Atlantic and Mediterranean sites). The use of a highly selective and sensitive HILIC-MS/MS method, with D5DAB as internal standard, revealed the systematic detection of BMAA and DAB, in concentrations ranging from 0.20 to 6.7 μg g(-1) dry weight of digestive gland tissues of mollusks. While we detected BMAA in four strains of diatoms in a previous study, here BMAA was only detected in one diatom species previously not investigated out of the 23 microalgal species examined (belonging to seven classes). The concentrations of BMAA and DAB in mussels and oysters were similar at different sampling locations and despite the high diversity of phytoplankton populations that mollusks feed on at these locations. Only small variations of BMAA and DAB levels were observed and these were not correlated to any of the phytoplankton species reported. Therefore, extensive research should be performed on both origin and metabolism of BMAA in shellfish. The levels observed in this study are similar to those found in other studies in France or elsewhere. A previous study had related such levels to a cluster of Amyotrophic Lateral Sclerosis in the South of France; hence the widespread occurrence of BMAA in shellfish from all coasts in France found in this study suggests the need for further epidemiological and toxicological studies to establish the levels that are relevant for a link between the consumption of BMAA-containing foodstuffs and neurodegenerative diseases. PMID:26615827

  19. Amyloid Aggregates Arise from Amino Acid Condensations under Prebiotic Conditions.

    PubMed

    Greenwald, Jason; Friedmann, Michael P; Riek, Roland

    2016-09-12

    Current theories on the origin of life reveal significant gaps in our understanding of the mechanisms that allowed simple chemical precursors to coalesce into the complex polymers that are needed to sustain life. The volcanic gas carbonyl sulfide (COS) is known to catalyze the condensation of amino acids under aqueous conditions, but the reported di-, tri-, and tetra-peptides are too short to support a regular tertiary structure. Here, we demonstrate that alanine and valine, two of the proteinogenic amino acids believed to have been among the most abundant on a prebiotic earth, can polymerize into peptides and subsequently assemble into ordered amyloid fibers comprising a cross-β-sheet quaternary structure following COS-activated continuous polymerization of as little as 1 mm amino acid. Furthermore, this spontaneous assembly is not limited to pure amino acids, since mixtures of glycine, alanine, aspartate, and valine yield similar structures. PMID:27511635

  20. Effect of amino acids on insulin-stimulated glucose metabolism in fat cells.

    PubMed

    Mizunuma, T; Takahashi, Y; Okuda, H

    1981-02-01

    The effect of amino acids on insulin responsiveness in epididymal adipose tissue was examined. It was found that insulin-stimulated glucose oxidation in fat cells was significantly inhibited by glycine, alanine, valine, leucine, isoleucine, cysteine, methionine, lysine, phenylalanine, and proline. The effect of insulin on glucose incorporation into triglyceride is also severely diminished by these amino acids. In addition, alanine reduced the incorporation of precursors ([U-14C]glucose or [1-14C]palmitate) into triglyceride both in vitro and in vivo. The Ki values of alanine were 0.4 and 0.5 mM toward the precursors of glucose and palmitate, respectively. The mechanism of reduction of insulin responsiveness in rat adipose tissue is discussed on the basis of these results. PMID:7016847

  1. Improved detection of β-N-methylamino-L-alanine using N-hydroxysuccinimide ester of N-butylnicotinic acid for the localization of BMAA in blue mussels (Mytilus edulis).

    PubMed

    Andrýs, Rudolf; Zurita, Javier; Zguna, Nadezda; Verschueren, Klaas; De Borggraeve, Wim M; Ilag, Leopold L

    2015-05-01

    β-N-Methylamino-L-alanine (BMAA) is an important non-protein amino acid linked to neurodegenerative diseases, specifically amyotrophic lateral sclerosis (ALS). Because it can be transferred and bioaccumulated higher up the food chain, it poses significant public health concerns; thus, improved detection methods are of prime importance for the identification and management of these toxins. Here, we report the successful use of N-hydroxysuccinimide ester of N-butylnicotinic acid (C4-NA-NHS) for the efficient separation of BMAA from its isomers and higher sensitivity in detecting BMAA compared to the current method of choice using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization. Implementation of this efficient method allowed localization of BMAA in the non-visceral tissues of blue mussels, suggesting that more efficient depuration may be required to remove this toxin prior to consumption. This is a crucial method in establishing the absence or presence of the neurotoxic amino acid BMAA in food, environmental or biomedical samples. PMID:25821115

  2. Effect of L-tryptophan injection in rats on some enzymes of amino acid metabolism in liver. I. In vitro studies of the effect of L-tryptophan and its metabolites on the extramitochondrial L-alanine: 2-ketoglutaric aminotransferase.

    PubMed

    Katsos, A; Philippidis, H; Palaiologos, G

    1981-02-01

    Fed and fasted rats were injected with L-tryptophan (12.5 mg/100 g body weight) and the specific activities of L-glutamic: NAD oxidoreductase (deaminating) (EC 1.4.1.2) (GDH), L-aspartic-2-ketoglutaric aminotransferase (EC 2.6.1.1) (GOT) and L-alanine-2-ketoglutaric aminotransferase (EC 2.6.1.2) (GPT) from hepatic mitochondria and cytosol were compared. L-tryptophan results in a decrease of mitochondrial GDH activity by 22% and of cytosolic GPT and GOT by 42% and 38% respectively in the liver of fasted rats. Xanthurenate is a potent inhibitor of purified extramitochondrial GPT, whereas anthranilate and quinolinate are less potent inhibitors. L-tryptophan, 5-OH-tryptophan and indole exert a slight inhibition. Kynurenine, 5-OH-tryptamine, tryptamine, picolinic acid, nicotinic acid and indoloacetic acid do not show any inhibition of GPT. It is suggested that L-tryptophan injection inhibits extramitochondrial GPT by its transformation to xanthurenate and anthranilate. PMID:7227974

  3. Postirradiation effects in alanine dosimeter probes of two different suppliers.

    PubMed

    Anton, Mathias

    2008-03-01

    The measurand relevant for the dosimetry for radiation therapy is the absorbed dose to water, DW. The Physikalisch-Technische Bundesanstalt (PTB) is establishing a secondary standard for DW for high-energy photon and electron radiation based on electron spin resonance (ESR) of the amino acid alanine. For practical applications, like, for example, intercomparison measurements using the ESR/alanine dosimetry system, the temporal evolution of the ESR signal of irradiated probes is an important issue. This postirradiation behaviour is investigated for alanine pellets of two different suppliers for different storage conditions. The influence of the storage conditions on the temporal evolution may be dependent on the type of probes used. The measurement and analysis method developed at the PTB is able to circumvent the apparent difficulties in the case of alanine/paraffin probes. Care has to be taken in case this method cannot be applied. PMID:18296760

  4. Earthworms accumulate alanine in response to drought.

    PubMed

    Holmstrup, Martin; Slotsbo, Stine; Henriksen, Per G; Bayley, Mark

    2016-09-01

    Earthworms have ecologically significant functions in tropical and temperate ecosystems and it is therefore important to understand how these animals survive during drought. In order to explore the physiological responses to dry conditions, we simulated a natural drought incident in a laboratory trial exposing worms in slowly drying soil for about one month, and then analyzed the whole-body contents of free amino acids (FAAs). We investigated three species forming estivation chambers when soils dry out (Aporrectodea tuberculata, Aporrectodea icterica and Aporrectodea longa) and one species that does not estivate during drought (Lumbricus rubellus). Worms subjected to drought conditions (< -2MPa) substantially increased the concentration of FAAs and in particular alanine that was significantly upregulated in all tested species. Alanine was the most important FAA reaching 250-650μmolg(-1) dry weight in dehydrated Aporrectodea species and 300μmolg(-1) dry weight in L. rubellus. Proline was only weakly upregulated in some species as were a few other FAAs. Species forming estivation chambers (Aporrectodea spp.) did not show a better ability to conserve body water than the non-estivating species (L. rubellus) at the same drought level. These results suggest that the accumulation of alanine is an important adaptive trait in drought tolerance of earthworms in general. PMID:27107492

  5. Propofol restores the function of "hyperekplexic" mutant glycine receptors in Xenopus oocytes and mice.

    PubMed

    O'Shea, Sean Michael; Becker, Lore; Weiher, Hans; Betz, Heinrich; Laube, Bodo

    2004-03-01

    Human hereditary hyperekplexia ("startle disease") is a neurological disorder characterized by exaggerated, convulsive movements in response to unexpected stimuli. Molecular genetic studies have shown that this disease is often caused by amino acid substitutions at arginine 271 to glutamine or leucine of the alpha1 subunit of the inhibitory glycine receptor (GlyR). When exogenously expressed in Xenopus oocytes, agonist responses of mutant alpha1(R271Q) and alpha1(R271L) GlyRs show higher EC50 values and lower maximal inducible responses (relative efficacies) compared with oocytes expressing wild-type alpha1 GlyR subunits. Here, we report that the maximal glycine-induced currents (I(max)) of mutant alpha1(R271Q) and alpha1(R271L) GlyRs were dramatically potentiated in the presence of the anesthetic propofol (PRO), whereas the I(max) of wild-type alpha(1) receptors was not affected. Quantitative analysis of the agonist responses of the isofunctionally substituted alpha1(R271K) mutant GlyR revealed that saturating concentrations of PRO decreased the EC50 values of both glycine and the partial agonist beta-alanine by >10-fold, with relative efficacies increasing by 4- and 16-fold, respectively. Transgenic (tg) mice carrying the alpha1(R271Q) mutation (tg271Q-300) have both spontaneous and induced tremor episodes that closely resemble the movements of startled hyperekplexic patients. After treatment with subanesthetic doses of PRO, the tg271Q-300 mutant mice showed temporary reflexive and locomotor improvements that made them indistinguishable from wild-type mice. Together, these results demonstrate that the functional and behavioral effects of hyperekplexia mutations can be effectively reversed by drugs that potentiate GlyR responses. PMID:14999083

  6. Zinc Modulation of Glycine Receptors

    PubMed Central

    Trombley, Paul Q.; Blakemore, Laura J.; Hill, Brook J.

    2011-01-01

    Glycine receptors are widely expressed in the mammalian central nervous system, and previous studies have demonstrated that glycine receptors are modulated by endogenous zinc. Zinc is concentrated in synaptic vesicles in several brain regions but is particularly abundant in the hippocampus and olfactory bulb. In the present study, we used patch-clamp electrophysiology of rat hippocampal and olfactory bulb neurons in primary culture to examine the effects of zinc on glycine receptors. Although glycine has been reported to reach millimolar concentrations during synaptic transmission, most previous studies on the effects of zinc on glycine receptors have used relatively low concentrations of glycine. High concentrations of glycine cause receptor desensitization. Our current results extend our previous demonstration that the modulatory actions of zinc are largely prevented when co-applied with desensitizing concentrations of glycine (300 μM), suggesting that the effects of zinc are dependent on the state of the receptor. In contrast, pre-application of 300 μM zinc, prior to glycine (300 μM) application, causes a slowly developing inhibition with a slow rate of recovery, suggesting that the timing of zinc and glycine release also influences the effects of zinc. Furthermore, previous evidence suggests that synaptically released zinc can gain intracellular access, and we provide the first demonstration that low concentrations of intracellular zinc can potentiate glycine receptors. These results support the notion that zinc has complex effects on glycine receptors and multiple factors may interact to influence the efficacy of glycinergic transmission. PMID:21530619

  7. Addition of amino acids and dipeptides to fullerene C{sub 60} giving rise to monoadducts

    SciTech Connect

    Romanova, V.S.; Tsyryapkin, V.A.; Vol`pin, M.E.

    1994-12-01

    The authors have developed a general method for the direct addition of amino acids and dipeptides of various structures to fullerene C{sub 60}. In all cases the addition involves the amino group. The reaction proceeds when the solutions of fullerene and an amino acid (or dipeptide) are mixed at 50-100 {degrees}C. The fullerene derivatives of the following amino acids and dipeptides have been obtained: glycine, p-aminobenzoic acid, {omega}-aminocaproic acid, L-proline, L-alanine, L-alanyl-Lalanine, D,L-alanyl-D,L-alanine, glycyl-L-valine. The adduct of methyl L-ananinate with C{sub 60} was also prepared.

  8. Atomic Layer Deposition of L-Alanine Polypeptide

    DOE PAGESBeta

    Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; Dunphy, Darren R.; Tsai, Andy; Tam, Siu-Yue; Fan, Hongyou Y.; Zhang, Hongxia; Rogers, David; Rempe, Susan; et al

    2014-10-30

    L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.

  9. Synthesis of 3,4-dihydro-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxides and their evaluation as ligands for NMDA receptor glycine binding site.

    PubMed

    Bluke, Zanda; Paass, Einars; Sladek, Meik; Abel, Ulrich; Kauss, Valerjans

    2016-08-01

    A series of 2-substituted 3,4-dihydro-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxides were synthesized and evaluated for their affinity to the glycine binding site of the N-methyl-d-aspartate (NMDA) receptor. The binding affinity was determined by the displacement of radioligand [(3)H]MDL-105,519 from rat cortical membrane preparations. The most attractive structures in the search for prospective NMDA receptor ligands were identified to be 2-arylcarbonylmethyl substituted 3,4-dihydro-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxides. It has been demonstrated for the first time that the replacement of NH group in the ligand by sp(3) CH2 is tolerated. This finding may pave the way for previously unexplored approaches for designing new ligands of the NMDA receptor. PMID:26114309

  10. Polymerization of amino acids under primitive earth conditions.

    NASA Technical Reports Server (NTRS)

    Flores, J. J.; Ponnamperuma, C.

    1972-01-01

    Small amounts of peptides were obtained when equal amounts of methane and ammonia were reacted with vaporized aqueous solutions of C14-labeled glycine, L-alanine, L-aspartic acid, L-glutamic acid and L-threonine in the presence of a continuous spark discharge in a 24-hr cyclic process. The experiment was designed to demonstrate the possibility of peptide synthesis under simulated primeval earth conditions. It is theorized that some dehydration-condensation processes may have taken place, with ammonium cyanide, the hydrogencyanide tetramer or aminonitriles as intermediate products, during the early chemical evolution of the earth.

  11. Amino acid and peptide absorption in patients with coeliac disease and dermatitis herpetiformis

    PubMed Central

    Silk, D. B. A.; Kumar, Parveen J.; Perrett, D.; Clark, M. L.; Dawson, A. M.

    1974-01-01

    A double-lumen perfusion technique has been used to study amino acid and peptide absorption in eight normal control subjects, 13 patients with untreated adult coeliac disease, and 16 patients with dermatitis herpetiformis who had varying morphological abnormalities of the small bowel. All subjects were perfused with isotonic solutions containing 10 mM glycyl-L-alanine and 10 mM glycine + 10 mM L-alanine. Patients with adult coeliac disease had impaired absorption of glycine (p < 0·01) and L-alanine (p < 0·05) from the amino acid solution compared with the control subjects. Amino acid uptake from the dipeptide solution was not significantly impaired, although four individual patients had impaired uptake of both amino acids. In contrast to these findings, very few patients with dermatitis herpetiformis had impaired amino acid absorption from either solution. Sodium absorption was impaired from both solutions when the groups of patients with adult coeliac disease and dermatitis herpetiformis with subtotal villous atrophy and partial villous atrophy were studied, and there were patients in each group who secreted sodium and water. The results suggest that malabsorption of dietary protein is unlikely to occur in dermatitis herpetiformis but may occur and contribute to protein deficiency seen in some severe cases of adult coeliac disease. The impairment of sodium and water absorption provides evidence that there may be functional impairment of the jejunal mucosa in dermatitis herpetiformis as well as in adult coeliac disease. PMID:4820629

  12. Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Argue, Leanne; Hyre, Aaron; Jacobson, Michele; Christesen, Steven D.

    2006-05-01

    Raman and surface-enhanced Raman spectroscopy (SERS) studies of bacteria have reported a wide range of vibrational mode assignments associated with biological material. We present Raman and SER spectra of the amino acids phenylalanine, tyrosine, tryptophan, glutamine, cysteine, alanine, proline, methionine, asparagine, threonine, valine, glycine, serine, leucine, isoleucine, aspartic acid and glutamic acid and the nucleic acid bases adenosine, guanosine, thymidine, and uridine to better characterize biological vibrational mode assignments for bacterial target identification. We also report spectra of the bacteria Bacillus globigii, Pantoea agglomerans, and Yersinia rhodei along with band assignments determined from the reference spectra obtained.

  13. Amino Acid and Vitamin Requirements of Several Bacteroides Strains

    PubMed Central

    Quinto, Grace

    1966-01-01

    Nutritional studies were performed on nine Bacteroides strains, by use of the methodology and media of anaerobic rumen microbiology. Ristella perfoetens CCI required l-arginine hydrochloride, l-tryptophan, l-leucine, l-histidine hydrochloride, l-cysteine hydrochloride, dl-valine, dl-tyrosine, and the vitamin calcium-d-pantothenate, since scant turbidity developed in media without these nutrients. R. perfoetens was stimulated by glycine, dl-lysine hydrochloride, dl-isoleucine, l-proline, l-glutamic acid, dl-alanine, dl-phenylalanine, dl-methionine, and the vitamins nicotinamide and p-aminobenzoic acid, since maximal turbidity developed more slowly in media without these nutrients than in complete medium. Medium A-23, which was devised for R. perfoetens, contained salts, 0.0002% nicotinamide and calcium d-pantothenate, 0.00001% p-aminobenzoic acid, 0.044% l-tryptophan, 0.09% l-glutamic acid, and 0.1% of the other 13 amino acids listed above. Zuberella clostridiformis and seven strains of R. pseudoinsolita did not require vitamins, and showed no absolute requirement for any one amino acid. Various strains produced maximal turbidity more slowly in media deficient in l-proline, glycine, l-glutamic acid, dl-serine, l-histidine hydrochloride, dl-alanine, or l-cysteine hydrochloride, than in complete medium. These eight strains grew optimally in medium A-23 plus 0.1% dl-serine but without vitamins. PMID:16349673

  14. Aza-Glycine Induces Collagen Hyperstability.

    PubMed

    Zhang, Yitao; Malamakal, Roy M; Chenoweth, David M

    2015-10-01

    Hydrogen bonding is fundamental to life on our planet, and nature utilizes H-bonding in nearly all biomolecular interactions. Often, H-bonding is already maximized in natural biopolymer systems such as nucleic acids, where Watson-Crick H-bonds are fully paired in double-helical structures. Synthetic chemistry allows molecular editing of biopolymers beyond nature's capability. Here we demonstrate that substitution of glycine (Gly) with aza-glycine in collagen may increase the number of interfacial cross-strand H-bonds, leading to hyperstability in the triple-helical form. Gly is the only amino acid that has remained intolerant to substitution in collagen. Our results highlight the vital importance of maximizing H-bonding in higher order biopolymer systems using minimally perturbing alternatives to nature's building blocks. PMID:26368649

  15. Glycine enhanced separation of Co(II) and Ni(II) with bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) by liquid-liquid extraction and supported liquid membranes

    SciTech Connect

    Reichley-Yinger, L.; Danesi, P.R.

    1985-01-01

    The extraction behavior of Co and Ni ions from aqueous nitrate solution containing glycine, and their separation by liquid-liquid extraction and supported liquid membranes (SLMs) has been studied. The separation factor between the two metals is greatly enhanced by the presence of glycine. The enhancement is due to the preferential complexation of the Ni ions by glycine. The conditional equilibrium constants of the extraction reactions and the SLM permeability coefficients have been measured. The results indicate that metal glycinate complexes are not extracted and that in presence of glycine very clean Co-Ni separation can be obtained in a single SLM pass.

  16. The Pseudomonas aeruginosa antimetabolite L -2-amino-4-methoxy-trans-3-butenoic acid (AMB) is made from glutamate and two alanine residues via a thiotemplate-linked tripeptide precursor

    PubMed Central

    Rojas Murcia, Nelson; Lee, Xiaoyun; Waridel, Patrice; Maspoli, Alessandro; Imker, Heidi J.; Chai, Tiancong; Walsh, Christopher T.; Reimmann, Cornelia

    2015-01-01

    The Pseudomonas aeruginosa toxin L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is a non-proteinogenic amino acid which is toxic for prokaryotes and eukaryotes. Production of AMB requires a five-gene cluster encoding a putative LysE-type transporter (AmbA), two non-ribosomal peptide synthetases (AmbB and AmbE), and two iron(II)/α-ketoglutarate-dependent oxygenases (AmbC and AmbD). Bioinformatics analysis predicts one thiolation (T) domain for AmbB and two T domains (T1 and T2) for AmbE, suggesting that AMB is generated by a processing step from a precursor tripeptide assembled on a thiotemplate. Using a combination of ATP-PPi exchange assays, aminoacylation assays, and mass spectrometry-based analysis of enzyme-bound substrates and pathway intermediates, the AmbB substrate was identified to be L-alanine (L-Ala), while the T1 and T2 domains of AmbE were loaded with L-glutamate (L-Glu) and L-Ala, respectively. Loading of L-Ala at T2 of AmbE occurred only in the presence of AmbB, indicative of a trans loading mechanism. In vitro assays performed with AmbB and AmbE revealed the dipeptide L-Glu-L-Ala at T1 and the tripeptide L-Ala-L-Glu-L-Ala attached at T2. When AmbC and AmbD were included in the assay, these peptides were no longer detected. Instead, an L-Ala-AMB-L-Ala tripeptide was found at T2. These data are in agreement with a biosynthetic model in which L-Glu is converted into AMB by the action of AmbC, AmbD, and tailoring domains of AmbE. The importance of the flanking L-Ala residues in the precursor tripeptide is discussed. PMID:25814981

  17. Identification of combined conjugation of nabumetone phase I metabolites with glucuronic acid and glycine in minipig biotransformation using coupling high-performance liquid chromatography with electrospray ionization mass spectrometry.

    PubMed

    Česlová, Lenka; Holčapek, Michal; Nobilis, Milan

    2014-01-01

    High-performance liquid chromatography (HPLC) coupled with electrospray ionization mass spectrometry (ESI-MS) was applied for the analysis of nabumetone metabolites during the biotransformation in minipigs. In addition to known phase I metabolites, the identification of phase II metabolites was achieved on the basis of their full-scan mass spectra and subsequent MS(n) analysis using both positive-ion and negative-ion ESI mode. Some phase I metabolites are conjugated with both glucuronide acid and glycine, which is quite unusual type of phase II metabolite not presented so far for nabumetone. These metabolites were found in small intestine content, but they were absent in minipigs urine. PMID:24083957

  18. The Hypothesis that the Genetic Code Originated in Coupled Synthesis of Proteins and the Evolutionary Predecessors of Nucleic Acids in Primitive Cells

    PubMed Central

    Francis, Brian R.

    2015-01-01

    Although analysis of the genetic code has allowed explanations for its evolution to be proposed, little evidence exists in biochemistry and molecular biology to offer an explanation for the origin of the genetic code. In particular, two features of biology make the origin of the genetic code difficult to understand. First, nucleic acids are highly complicated polymers requiring numerous enzymes for biosynthesis. Secondly, proteins have a simple backbone with a set of 20 different amino acid side chains synthesized by a highly complicated ribosomal process in which mRNA sequences are read in triplets. Apparently, both nucleic acid and protein syntheses have extensive evolutionary histories. Supporting these processes is a complex metabolism and at the hub of metabolism are the carboxylic acid cycles. This paper advances the hypothesis that the earliest predecessor of the nucleic acids was a β-linked polyester made from malic acid, a highly conserved metabolite in the carboxylic acid cycles. In the β-linked polyester, the side chains are carboxylic acid groups capable of forming interstrand double hydrogen bonds. Evolution of the nucleic acids involved changes to the backbone and side chain of poly(β-d-malic acid). Conversion of the side chain carboxylic acid into a carboxamide or a longer side chain bearing a carboxamide group, allowed information polymers to form amide pairs between polyester chains. Aminoacylation of the hydroxyl groups of malic acid and its derivatives with simple amino acids such as glycine and alanine allowed coupling of polyester synthesis and protein synthesis. Use of polypeptides containing glycine and l-alanine for activation of two different monomers with either glycine or l-alanine allowed simple coded autocatalytic synthesis of polyesters and polypeptides and established the first genetic code. A primitive cell capable of supporting electron transport, thioester synthesis, reduction reactions, and synthesis of polyesters and

  19. The Hypothesis that the Genetic Code Originated in Coupled Synthesis of Proteins and the Evolutionary Predecessors of Nucleic Acids in Primitive Cells.

    PubMed

    Francis, Brian R

    2015-01-01

    Although analysis of the genetic code has allowed explanations for its evolution to be proposed, little evidence exists in biochemistry and molecular biology to offer an explanation for the origin of the genetic code. In particular, two features of biology make the origin of the genetic code difficult to understand. First, nucleic acids are highly complicated polymers requiring numerous enzymes for biosynthesis. Secondly, proteins have a simple backbone with a set of 20 different amino acid side chains synthesized by a highly complicated ribosomal process in which mRNA sequences are read in triplets. Apparently, both nucleic acid and protein syntheses have extensive evolutionary histories. Supporting these processes is a complex metabolism and at the hub of metabolism are the carboxylic acid cycles. This paper advances the hypothesis that the earliest predecessor of the nucleic acids was a β-linked polyester made from malic acid, a highly conserved metabolite in the carboxylic acid cycles. In the β-linked polyester, the side chains are carboxylic acid groups capable of forming interstrand double hydrogen bonds. Evolution of the nucleic acids involved changes to the backbone and side chain of poly(β-d-malic acid). Conversion of the side chain carboxylic acid into a carboxamide or a longer side chain bearing a carboxamide group, allowed information polymers to form amide pairs between polyester chains. Aminoacylation of the hydroxyl groups of malic acid and its derivatives with simple amino acids such as glycine and alanine allowed coupling of polyester synthesis and protein synthesis. Use of polypeptides containing glycine and l-alanine for activation of two different monomers with either glycine or l-alanine allowed simple coded autocatalytic synthesis of polyesters and polypeptides and established the first genetic code. A primitive cell capable of supporting electron transport, thioester synthesis, reduction reactions, and synthesis of polyesters and

  20. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5118 Alanine. (a) Product. Alanine...

  1. The fatty acids as penetration enhancers of amino acids by ion pairing.

    PubMed

    Arct, J; Chelkowska, M; Kasiura, K; Pietrzykowski, P

    2002-12-01

    The influence of palmitic acid on n-octanol/water partition coefficient (log P) of selected amino acids, alanine, glycine, proline, hydroxyproline, seine, valine, threonine and lysine, was measured at a wide range of pH. A parabolic shape curve was obtained in every case (pH vs. Deltalog P), with maximum depending on the amino acid. In each case in the presence of palmitic acid, the apparent partition coefficient increased. To check the possible mechanism of extraction of amino acids into n-octanol phase in the presence of palmitate additionally, the influence of an amount of counter ion on partition coefficient of lysine was investigated. The results suggest that the enhanced partitioning of lysine results from the ion pair formation with palmitate. The ion pair stratum corneum-lipid membrane transport of the amino acids was investigated as well, using palmitate as a counter ion. The apparent permeability coefficients were enhanced significantly by palmitic acid at pH 7.4. As many substances (e.g. organic solvents, unsaturated fatty acids, etc.) are penetration enhancers which change the structure of intercellular lipid, the influence of palmitic acid on membrane was investigated. After pretreatment of membrane with palmitic acid, no changes in permeation of alanine were observed. Investigations suggest the enhanced permeation of amino acids via ion pairing. The method for prediction of pH in which the possibility of ion pairing is the highest was developed as well. PMID:18494885

  2. Caramelization of maltose solution in presence of alanine.

    PubMed

    Fadel, H H M; Farouk, A

    2002-01-01

    Two solutions of maltose in water were used to prepare caramels. Alanine as a catalyst was added to one of these solutions. The caramelization was conducted at 130 degrees C for total time period 90 minutes. Convenient samples were taken of each caramel solution every 30 min and subjected to sensory analysis and isolation of volatile components. The odour and colour sensory tests were evaluated according to the international standard methods (ISO). The results showed that, the presence of alanine gave rise to a high significant (P < 0.01) decrease in acid attributes and remarkable increase in the sweet and caramel attributes, which are the most important caramel notes. On the other hand the increase in heating time in presence of alanine as a catalyst resulted in a high significant (P < 0.01) increase in the browning rate of caramel solution. The new technique Solid Phase Micro Extraction (SPME) was used for trapping the volatile components in the headspace of each caramel samples followed by thermal desorption and GC and GC - MS analysis. The 5-hydroxymethyl-2-furfural (HMF), the main characteristic caramel product, showed its highest value in sample containing alanine after heating for 60 minutes. The best sensory results of the sample contains alanine were confirmed by the presence of high concentrations of the most potent odorants of caramel besides to the formation of some volatile compounds have caramel like flavours such as 2-acetyl pyrrole, 2-furanones and 1-(2-furanyl)1,2-propandione. PMID:12395187

  3. Cometary Glycine Detected in Samples Returned by Stardust

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    Our previous analysis of cometary samples returned to Earth by NASA's Stardust spacecraft showed several amines and amino acids, but the or igin of these compounds could not be firmly established. Here, we pre sent the stable carbon isotopic ratios of glycine and E-amino-n-caproic acid (EACA), the two most abundant amino acids identified in Stardu st-returned foil samples measured by gas chromatography-mass spectrom etry coupled with isotope ratio mass spectrometry. The Delta C-13 value for glycine of +29 +/- ? 6%: strongly suggests an extraterrestrial origin For glycine, while the Delta C-13 value for EACA of -25 +/-2 % indicates terrestrial contamination by Nylon-6 during curation. This represents the first detection of a cometary amino acid.

  4. Purification and characterization of the glycine receptor of pig spinal cord

    SciTech Connect

    Graham, D.; Pfeiffer, F.; Simler, R.; Betz, H.

    1985-02-12

    A large-scale purification procedure was developed to isolate the glycine receptor of pig spinal cord by affinity chromatography on aminostrychnine agarose. After an overall purification of about 10,000-fold, the glycine receptor preparations contained three major polypeptides of Mr 48,000, 58,000, and 93,000. Photoaffinity labeling with (/sup 3/H)strychnine showed that the (/sup 3/H)strychnine binding site is associated with the Mr 48,000 and, to a much lesser extent, the Mr 58,000 polypeptides. (/sup 3/H)Strychnine binding to the purified receptor exhibited a dissociation constant K /sub D/ of 13.8 nM and was inhibited by the agonists glycine, taurine, and beta-alanine. Gel filtration and sucrose gradient centrifugation gave a Stokes radius of 7.1 nm and an apparent sedimentation coefficient of 9.6 S. Peptide mapping of the (/sup 3/H)strychnine-labeled Mr 48,000 polypeptides of purified pig and rat glycine receptor preparations showed that the strychnine binding region of this receptor subunit is highly conserved between these species. Also, three out of six monoclonal antibodies against the glycine receptor of rat spinal cord significantly cross-reacted with their corresponding polypeptides of the pig glycine receptor. These results show that the glycine receptor of pig spinal cord is very similar to the well-characterized rat receptor protein and can be purified in quantities sufficient for protein chemical analysis.

  5. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    PubMed

    Fernández-Murray, J Pedro; Prykhozhij, Sergey V; Dufay, J Noelia; Steele, Shelby L; Gaston, Daniel; Nasrallah, Gheyath K; Coombs, Andrew J; Liwski, Robert S; Fernandez, Conrad V; Berman, Jason N; McMaster, Christopher R

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia. PMID:26821380

  6. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia

    PubMed Central

    Dufay, J. Noelia; Steele, Shelby L.; Gaston, Daniel; Nasrallah, Gheyath K.; Coombs, Andrew J.; Liwski, Robert S.; Fernandez, Conrad V.; Berman, Jason N.; McMaster, Christopher R.

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia. PMID:26821380

  7. DETECTABILITY OF GLYCINE IN SOLAR-TYPE SYSTEM PRECURSORS

    SciTech Connect

    Jiménez-Serra, Izaskun; Testi, Leonardo; Caselli, Paola; Viti, Serena E-mail: ltesti@eso.org E-mail: sv@star.ucl.ac.uk

    2014-06-01

    Glycine (NH{sub 2}CH{sub 2}COOH) is the simplest amino acid relevant to life. Its detection in the interstellar medium is key to understanding the formation mechanisms of pre-biotic molecules and their subsequent delivery onto planetary systems. Glycine has been extensively searched for toward hot molecular cores, although these studies did not yield any firm detection. In contrast to hot cores, low-mass star forming regions, in particular their earliest stages represented by cold pre-stellar cores, may be better suited for the detection of glycine as well as more relevant to the study of pre-biotic chemistry in young solar system analogs. We present one-dimensional spherically symmetric radiative transfer calculations of the glycine emission expected to arise from the low-mass pre-stellar core L1544. Water vapor has recently been reported toward this core, indicating that a small fraction of the grain mantles in L1544 (∼0.5%) has been injected into the gas phase. Assuming that glycine is photo-desorbed together with water in L1544, and considering a solid abundance of glycine on ices of ∼10{sup –4} with respect to water, our calculations reveal that several glycine lines between 67 GHz and 80 GHz have peak intensities larger than 10 mK. These results show for the first time that glycine could reach detectable levels in cold objects such as L1544. This opens up the possibility of detecting glycine, and other pre-biotic species, at the coldest and earliest stages in the formation of solar-type systems with near-future instrumentation such as the Band 2 receivers of ALMA.

  8. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    PubMed

    Cao, Xiaochuang; Ma, Qingxu; Zhong, Chu; Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many

  9. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China

    PubMed Central

    Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3−-N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many

  10. The prebiotic synthesis of amino acids - interstellar vs. atmospheric mechanisms

    NASA Astrophysics Data System (ADS)

    Meierhenrich, U. J.; Muñoz Caro, G. M.; Schutte, W. A.; Barbier, B.; Arcones Segovia, A.; Rosenbauer, H.; Thiemann, W. H.-P.; Brack, A.

    2002-11-01

    Until very recently, prebiotic amino acids were believed to have been generated in the atmosphere of the early Earth, as successfully simulated by the Urey-Miller experiments. Two independent studies now identified ice photochemistry in the interstellar medium as a possible source of prebiotic amino acids. Ultraviolet irradiation of ice mixtures containing identified interstellar molecules (such as H2O, CO2, CO, CH3OH, and NH3) in the conditions of vacuum and low temperature found in the interstellar medium generated amino acid structures including glycine, alanine, serine, valine, proline, and aspartic acid. After warmup, hydrolysis and derivatization, our team was able to identify 16 amino acids as well as furans and pyrroles. Enantioselective analyses of the amino acids showed racemic mixtures. A prebiotic interstellar origin of amino acid structures is now discussed to be a plausible alternative to the Urey-Miller mechanism.

  11. The Aspergillus nidulans proline permease as a model for understanding the factors determining substrate binding and specificity of fungal amino acid transporters.

    PubMed

    Gournas, Christos; Evangelidis, Thomas; Athanasopoulos, Alexandros; Mikros, Emmanuel; Sophianopoulou, Vicky

    2015-03-01

    Amino acid uptake in fungi is mediated by general and specialized members of the yeast amino acid transporter (YAT) family, a branch of the amino acid polyamine organocation (APC) transporter superfamily. PrnB, a highly specific l-proline transporter, only weakly recognizes other Put4p substrates, its Saccharomyces cerevisiae orthologue. Taking advantage of the high sequence similarity between the two transporters, we combined molecular modeling, induced fit docking, genetic, and biochemical approaches to investigate the molecular basis of this difference and identify residues governing substrate binding and specificity. We demonstrate that l-proline is recognized by PrnB via interactions with residues within TMS1 (Gly(56), Thr(57)), TMS3 (Glu(138)), and TMS6 (Phe(248)), which are evolutionary conserved in YATs, whereas specificity is achieved by subtle amino acid substitutions in variable residues. Put4p-mimicking substitutions in TMS3 (S130C), TMS6 (F252L, S253G), TMS8 (W351F), and TMS10 (T414S) broadened the specificity of PrnB, enabling it to recognize more efficiently l-alanine, l-azetidine-2-carboxylic acid, and glycine without significantly affecting the apparent Km for l-proline. S253G and W351F could transport l-alanine, whereas T414S, despite displaying reduced proline uptake, could transport l-alanine and glycine, a phenotype suppressed by the S130C mutation. A combination of all five Put4p-ressembling substitutions resulted in a functional allele that could also transport l-alanine and glycine, displaying a specificity profile impressively similar to that of Put4p. Our results support a model where residues in these positions determine specificity by interacting with the substrates, acting as gating elements, altering the flexibility of the substrate binding core, or affecting conformational changes of the transport cycle. PMID:25572393

  12. Amino acids in the Martian meteorite Nakhla

    PubMed Central

    Glavin, Daniel P.; Bada, Jeffrey L.; Brinton, Karen L. F.; McDonald, Gene D.

    1999-01-01

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, β-alanine, and γ-amino-n-butyric acid (γ-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the d/l ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth. PMID:10430856

  13. Amino acids in the Martian meteorite Nakhla

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. L.; Brinton, K. L.; McDonald, G. D.

    1999-01-01

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  14. Compositions containing poly ([gamma]glutamylcysteinyl)glycines

    DOEpatents

    Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.

    1992-02-18

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting the removal, and the apparatus used in effecting the removal are described. One or more of the polypeptides, poly ([gamma]glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ([gamma]glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form. 1 figs.

  15. Compositions containing poly (.gamma.-glutamylcysteinyl)glycines

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1992-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  16. Baicalin Activates Glycine and γ-Aminobutyric Acid Receptors on Substantia Gelatinosa Neurons of the Trigeminal Subsnucleus Caudalis in Juvenile Mice.

    PubMed

    Yin, Hua; Bhattarai, Janardhan Prasad; Oh, Sun Mi; Park, Soo Joung; Ahn, Dong Kuk; Han, Seong Kyu

    2016-01-01

    The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) receives nociceptive afferent inputs from thin-myelinated A[Formula: see text] fibers and unmyelinated C fibers and has been shown to be involved in the processing of orofacial nociceptive information. Scutellaria baicalensis Georgi (Huang-Qin, SbG), one of the 50 fundamental herbs of Chinese herbology, has been used historically as anti-inflammatory and antineoplastic medicine. Baicalin, one of the major compounds of SbG, has been reported to have neuroprotective, anti-inflammatory and analgesic effects. However, the receptor type activated by baicalin and its precise action mechanism on the SG neurons of Vc have not yet been studied. The whole-cell patch clamp technique was performed to examine the ion channels activated by baicalin on the SG neurons of Vc. In high Cl[Formula: see text] pipette solution, the baicalin (300[Formula: see text][Formula: see text]M) induced repeatable inward currents ([Formula: see text][Formula: see text]pA, [Formula: see text]) without desensitization on all the SG neurons tested. Further, the inward currents showed a concentration (0.1-3[Formula: see text]mM) dependent pattern. The inward current was sustained in the presence of tetrodotoxin (0.5[Formula: see text][Formula: see text]M), a voltage sensitive Na[Formula: see text] channel blocker. In addition, baicalin-induced inward currents were reduced in the presence of picrotoxin (50[Formula: see text][Formula: see text]M), a GABAA receptor antagonist, flumazenil (100[Formula: see text][Formula: see text]M), a benzodiazepine-sensitive GABAA receptor antagonist, and strychnine (2[Formula: see text][Formula: see text]M), a glycine receptor antagonist, respectively. These results indicate that baicalin has inhibitory effects on the SG neurons of the Vc, which are due to the activation of GABAA and/or the glycine receptor. Our results suggest that baicalin may be a potential target for orofacial pain modulation

  17. Acquisition of Raman spectra of amino acids using portable instruments: Outdoor measurements and comparison

    NASA Astrophysics Data System (ADS)

    Culka, A.; Jehlička, J.; Edwards, H. G. M.

    2010-12-01

    Raman spectra of 13 amino acids: L-alanine, β-alanine, L-asparagine, L-aspartic acid, L-glutamic acid, L-glutamine, glycine, L-methionine, L-proline, L-serine, L-threonine, L-tryptophan and L-tyrosine were acquired outdoors using two portable Raman instruments from the Ahura and Delta Nu manufacturers, both with 785 nm laser excitation. Both instruments provide quality Raman spectra with nevertheless a variable dependence upon the prevailing experimental conditions. The data acquired in these experiments will inform the selection of suitable Raman spectrometers for the in-field detection of biomolecules of relevance to the search for life signatures spectroscopically in terrestrial extreme environments and in extraterrestrial exploration, especially of planetary surfaces and subsurfaces using robotic instrumentation.

  18. Acquisition of Raman spectra of amino acids using portable instruments: outdoor measurements and comparison.

    PubMed

    Culka, A; Jehlička, J; Edwards, H G M

    2010-12-01

    Raman spectra of 13 amino acids: L-alanine, β-alanine, L-asparagine, L-aspartic acid, L-glutamic acid, L-glutamine, glycine, L-methionine, L-proline, L-serine, L-threonine, L-tryptophan and L-tyrosine were acquired outdoors using two portable Raman instruments from the Ahura and Delta Nu manufacturers, both with 785 nm laser excitation. Both instruments provide quality Raman spectra with nevertheless a variable dependence upon the prevailing experimental conditions. The data acquired in these experiments will inform the selection of suitable Raman spectrometers for the in-field detection of biomolecules of relevance to the search for life signatures spectroscopically in terrestrial extreme environments and in extraterrestrial exploration, especially of planetary surfaces and subsurfaces using robotic instrumentation. PMID:20863748

  19. Some Operational Characteristics of Glycine Release in Rat Retina: The Role of Reverse Mode Operation of Glycine Transporter Type-1 (GlyT-1) in Ischemic Conditions.

    PubMed

    Hanuska, Adrienn; Szénási, Gábor; Albert, Mihaly; Koles, Laszlo; Varga, Agoston; Szabo, Andras; Matyus, Peter; Harsing, Laszlo G

    2016-02-01

    Rat posterior eyecups containing the retina were prepared, loaded with [(3)H]glycine and superfused in order to determine its release originated from glycinergic amacrine cells and/or glial cells. Deprivation of oxygen and glucose from the Krebs-bicarbonate buffer used for superfusion evoked a marked increase of [(3)H]glycine release, an effect that was found to be external Ca(2+)-independent. Whereas oxygen and glucose deprivation increased [(3)H]glycine release, its uptake was reduced suggesting that energy deficiency shifts glycine transporter type-1 operation from normal to reverse mode. The increased release of [(3)H]glycine evoked by oxygen and glucose deprivation was suspended by addition of the non-competitive glycine transporter type-1 inhibitor NFPS and the competitive inhibitor ACPPB further suggesting the involvement of this transporter in the mediation of [(3)H]glycine release. Oxygen and glucose deprivation also evoked [(3)H]glutamate release from rat retina and the concomitantly occurring release of the NMDA receptor agonist glutamate and the coagonist glycine makes NMDA receptor pathological overstimulation possible in hypoxic conditions. [(3)H]Glutamate release was suspended by addition of the excitatory amino acid transporter inhibitor TBOA. Sarcosine, a substrate inhibitor of glycine transporter type-1, also increased [(3)H]glycine release probably by heteroexchange shifting transporter operation into reverse mode. This effect of sarcosine was also external Ca(2+)-independent and could be suspended by NFPS. Energy deficiency in retina induced by ouabain, an inhibitor of the Na(+)-K(+)-dependent ATPase, and by rotenone, a mitochondrial complex I inhibitor added with the glycolytic inhibitor 2-deoxy-D-glucose, led to increase of retinal [(3)H]glycine efflux. These effects of ouabain and rotenone/2-deoxy-D-glucose could also be blocked by NFPS pointed to the preferential reverse mode operation of glycine transporter type-1 as a consequence of

  20. Glycine Transporters and Their Inhibitors

    NASA Astrophysics Data System (ADS)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  1. Deuterium Fractionation during Amino Acid Formation by Photolysis of Interstellar Ice Analogs Containing Deuterated Methanol

    NASA Astrophysics Data System (ADS)

    Oba, Yasuhiro; Takano, Yoshinori; Watanabe, Naoki; Kouchi, Akira

    2016-08-01

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH2DOH at 10 K. Five amino acids (glycine, α-alanine, β-alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warming up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α-alanine and β-alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.

  2. Prebiotic syntheses of vitamin coenzymes: II. Pantoic acid, pantothenic acid, and the composition of coenzyme A

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1993-01-01

    Pantoic acid can by synthesized in good prebiotic yield from isobutyraldehyde or alpha-ketoisovaleric acid + H2CO + HCN. Isobutyraldehyde is the Strecker precursor to valine and alpha-ketoisovaleric acid is the valine transamination product. Mg2+ and Ca2+ as well as several transition metals are catalysts for the alpha-ketoisovaleric acid reaction. Pantothenic acid is produced from pantoyl lactone (easily formed from pantoic acid) and the relatively high concentrations of beta-alanine that would be formed on drying prebiotic amino acid mixtures. There is no selectivity for this reaction over glycine, alanine, or gamma-amino butyric acid. The components of coenzyme A are discussed in terms of ease of prebiotic formation and stability and are shown to be plausible choices, but many other compounds are possible. The gamma-OH of pantoic acid needs to be capped to prevent decomposition of pantothenic acid. These results suggest that coenzyme A function was important in the earliest metabolic pathways and that the coenzyme A precursor contained most of the components of the present coenzyme.

  3. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ingredients: Sodium chloride 8.82 grams, potassium phosphate 4.20 grams, citric acid anhydrous 0.5 gram, potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  4. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ingredients: Sodium chloride 8.82 grams, potassium phosphate 4.20 grams, citric acid anhydrous 0.5 gram, potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  5. Alanine aminotransferase controls seed dormancy in barley.

    PubMed

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G; Fincher, Geoffrey B; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  6. Alanine aminotransferase controls seed dormancy in barley

    PubMed Central

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G.; Fincher, Geoffrey B.; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  7. Fragmentation of amino acids induced by collisions with low-energy highly charged ions

    NASA Astrophysics Data System (ADS)

    Piekarski, D. G.; Maclot, S.; Domaracka, A.; Adoui, L.; Alcamí, M.; Rousseau, P.; Díaz-Tendero, S.; Huber, B. A.; Martín, F.

    2014-04-01

    Fragmentation of amino acids NH2-(CH2)n-COOH (n=1 glycine; n=2 β-alanine and n=3 γ-aminobutyric acid GABA) following collisions with slow highly charged ions has been studied in the gas phase by a combined experimental and theoretical approach. In the experiments, a multi-coincidence detection method was used to deduce the charge state of the molecules before fragmentation. Quantum chemistry calculations have been carried out in the basis of the density functional theory and ab initio molecular dynamics. The combination of both methodologies is essential to unambiguously unravel the different fragmentation pathways.

  8. Organic compounds in lunar samples: pyrolysis products, hydrocarbons, amino acids.

    PubMed

    Nagy, B; Drew, D M; Hamilton, P B; Modzeleski, V E; Murphy, M E; Scott, W M; Urey, H C; Young, M

    1970-01-30

    Lunar fines and a chip from inside a rock pyrolyzed in helium at 700 degrees C gave methane, other gases, and aromatic hydrocarbons. Benzene/methanol extracts of fines yielded traces of high molecular weight alkanes and sulfur. Traces of glycine, alanine, ethanolamine, and urea were found in aqueous extracts. Biological controls and a terrestrial rock, dunite, subjected to exhaust from the lunar module descent engine showed a different amino acid distribution. Interpretation of the origin of the carbon compounds requires extreme care, because of possible contamination acquired during initial sample processing. PMID:5410553

  9. Estrogen-like osteoprotective effects of glycine in in vitro and in vivo models of menopause.

    PubMed

    Kim, Min-Ho; Kim, Hyung-Min; Jeong, Hyun-Ja

    2016-03-01

    Recently, the placenta mesotherapy has been widely used to treat menopause. Placenta contains amino acids, peptides, minerals, and estrogen. Here, we investigated the estrogen-like osteoprotective effects of glycine (a main ingredient of placenta) in in vitro and in vivo models of menopause. We assessed the effect of glycine on MG-63 osteoblast cell line, MCF-7 estrogen-dependent cell line, and ovariectomized (OVX) mice. Glycine significantly increased the MG-63 cell proliferation in a dose-dependent manner. Activity of alkaline phosphatase (ALP) and phosphorylation of extracellular-signal-regulated kinase were increased by glycine in MG-63 cells. Glycine also increased the BrdU-incorporation and Ki-67 mRNA expression in MCF-7 cells. Glycine induced the up-regulation of estrogen receptor-β mRNA expression and estrogen-response element-luciferase activity in MG-63 and MCF-7 cells. In OVX mice, glycine was administered orally at a daily dose of 10 mg/kg per day for 8 weeks. Glycine resulted in the greatest decrease in weight gain caused by ovariectomy. Meanwhile, vaginal weight reduced by ovariectomy was increased by glycine. Glycine significantly increased the ALP activity in OVX mice. MicroCT-analysis showed that glycine significantly enhanced bone mineral density, trabecular number, and connectivity density in OVX mice. Moreover, glycine significantly increased the serum 17β-estradiol levels reduced by ovariectomy. Glycine has an estrogen-like osteoprotective effect in menopause models. Therefore, we suggest that glycine may be useful for the treatment of menopause. PMID:26563333

  10. Role of Alanine Dehydrogenase of Mycobacterium tuberculosis during Recovery from Hypoxic Nonreplicating Persistence

    PubMed Central

    Giffin, Michelle M.; Shi, Lanbo; Gennaro, Maria L.; Sohaskey, Charles D.

    2016-01-01

    Mycobacterium tuberculosis can maintain a nonreplicating persistent state in the host for decades, but must maintain the ability to efficiently reactivate and produce active disease to survive and spread in a population. Among the enzymes expressed during this dormancy is alanine dehydrogenase, which converts pyruvate to alanine, and glyoxylate to glycine concurrent with the oxidation of NADH to NAD. It is involved in the metabolic remodeling of M. tuberculosis through its possible interactions with both the glyoxylate and methylcitrate cycle. Both mRNA levels and enzymatic activities of isocitrate lyase, the first enzyme of the glyoxylate cycle, and alanine dehydrogenase increased during entry into nonreplicating persistence, while the gene and activity for the second enzyme of the glyoxylate cycle, malate synthase were not. This could suggest a shift in carbon flow away from the glyoxylate cycle and instead through alanine dehydrogenase. Expression of ald was also induced in vitro by other persistence-inducing stresses such as nitric oxide, and was expressed at high levels in vivo during the initial lung infection in mice. Enzyme activity was maintained during extended hypoxia even after transcription levels decreased. An ald knockout mutant of M. tuberculosis showed no reduction in anaerobic survival in vitro, but resulted in a significant lag in the resumption of growth after reoxygenation. During reactivation the ald mutant had an altered NADH/NAD ratio, and alanine dehydrogenase is proposed to maintain the optimal NADH/NAD ratio during anaerobiosis in preparation of eventual regrowth, and during the initial response during reoxygenation. PMID:27203084

  11. Role of Alanine Dehydrogenase of Mycobacterium tuberculosis during Recovery from Hypoxic Nonreplicating Persistence.

    PubMed

    Giffin, Michelle M; Shi, Lanbo; Gennaro, Maria L; Sohaskey, Charles D

    2016-01-01

    Mycobacterium tuberculosis can maintain a nonreplicating persistent state in the host for decades, but must maintain the ability to efficiently reactivate and produce active disease to survive and spread in a population. Among the enzymes expressed during this dormancy is alanine dehydrogenase, which converts pyruvate to alanine, and glyoxylate to glycine concurrent with the oxidation of NADH to NAD. It is involved in the metabolic remodeling of M. tuberculosis through its possible interactions with both the glyoxylate and methylcitrate cycle. Both mRNA levels and enzymatic activities of isocitrate lyase, the first enzyme of the glyoxylate cycle, and alanine dehydrogenase increased during entry into nonreplicating persistence, while the gene and activity for the second enzyme of the glyoxylate cycle, malate synthase were not. This could suggest a shift in carbon flow away from the glyoxylate cycle and instead through alanine dehydrogenase. Expression of ald was also induced in vitro by other persistence-inducing stresses such as nitric oxide, and was expressed at high levels in vivo during the initial lung infection in mice. Enzyme activity was maintained during extended hypoxia even after transcription levels decreased. An ald knockout mutant of M. tuberculosis showed no reduction in anaerobic survival in vitro, but resulted in a significant lag in the resumption of growth after reoxygenation. During reactivation the ald mutant had an altered NADH/NAD ratio, and alanine dehydrogenase is proposed to maintain the optimal NADH/NAD ratio during anaerobiosis in preparation of eventual regrowth, and during the initial response during reoxygenation. PMID:27203084

  12. Alpha-amylase from germinating soybean (Glycine max) seeds--purification, characterization and sequential similarity of conserved and catalytic amino acid residues.

    PubMed

    Kumari, Arpana; Singh, Vinay Kumar; Fitter, Jörg; Polen, Tino; Kayastha, Arvind M

    2010-10-01

    Starch hydrolyzing amylase from germinated soybeans seeds (Glycine max) has been purified 400-fold to electrophoretic homogeneity with a final specific activity of 384 units/mg. SDS-PAGE of the final preparation revealed a single protein band of 100 kDa, whereas molecular mass was determined to be 84 kDa by MALDI-TOF and gel filtration on Superdex-200 (FPLC). The enzyme exhibited maximum activity at pH 5.5 and a pI value of 4.85. The energy of activation was determined to be 6.09 kcal/mol in the temperature range 25-85 degrees C. Apparent Michaelis constant (K(m)((app))) for starch was 0.71 mg/mL and turnover number (k(cat)) was 280 s(-1) in 50 mM sodium acetate buffer, pH 5.5. Thermal inactivation studies at 85 degrees C showed first-order kinetics with rate constant (k) equal to 0.0063 min(-1). Soybean alpha-amylase showed high specificity for its primary substrate starch. High similarity of soybean alpha-amylase with known amylases suggests that this alpha-amylase belongs to glycosyl hydrolase family 13. Cereal alpha-amylases have gained importance due to their compatibility for biotechnological applications. Wide availability and easy purification protocol make soybean as an attractive alternative for plant alpha-amylase. Soybean can be used as commercially viable source of alpha-amylase for various industrial applications. PMID:20655076

  13. Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes*

    PubMed Central

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-01-01

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of l-aspartate1− with l-alanine0. Although physiological functions of AspT were well studied, l-aspartate1−:l-alanine0 antiport mechanisms are still unsolved. Here we report that the binding sites of l-aspartate and l-alanine are independently present in AspT by means of the kinetic studies. We purified His6-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (Km = 0.35 ± 0.03 mm for l-aspartate, Km = 0.098 ± 0 mm for d-aspartate, Km = 26 ± 2 mm for l-alanine, Km = 3.3 ± 0.2 mm for d-alanine). Competitive inhibition by various amino acids of l-aspartate or l-alanine in self-exchange reactions revealed that l-cysteine selectively inhibited l-aspartate self-exchange but only weakly inhibited l-alanine self-exchange. Additionally, l-serine selectively inhibited l-alanine self-exchange but barely inhibited l-aspartate self-exchange. The aspartate analogs l-cysteine sulfinic acid, l-cysteic acid, and d-cysteic acid competitively and strongly inhibited l-aspartate self-exchange compared with l-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of l-aspartate and l-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  14. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    PubMed

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  15. Preferential Pathway for Glycine Formation in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Pilling, S.; Boechat-Roberty, H. M.; Baptista, L.; Santos A. C., F.

    Interstellar clouds, similar to that from which the solar system was formed, contain many organic molecules including aldehydes, acids, ketones, and sugars Ehrenfreund & Charnley (2000). Those organic compounds have important functions in terrestrial biochemistry and could also have been important in prebiotic synthesis. The simplest amino acid, glycine (NH2CH2COOH), was recently detected in the hot molecular cores Sgr B2(N-LMH), Orion KL, and W51 e1/e2 Kuan et al. (2003). The formic acid (HCOOH) and acetic acid(CH3COOH) have also been detected in those regions Liu et al. (2002), Remijan et al. (2004). The goal of this work is to study experimentally photoionization and photodissociation processes of glycine precursor molecules, acetic acid and formic acid to elucidate a possible preferentially in the glycine synthesis between ice and gas phase. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing soft X-ray photons from a toroidal grating monochromator TGM) beamline (100 - 310 eV). The experimental set up consists of a high vacuum chamber with a Time-Of-Flight Mass Spectrometer (TOF-MS). Mass spectra were obtained using PhotoElectron PhotoIon Coincidence (PEPICO) technique. Kinetic energy distributions and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Dissociative and non-dissociative photoionization cross sections for both molecules were also determined Boechat-Roberty, Pilling & Santos (2005). Due to the high photodissociation cross section of formic acid it is possible that in PDRs regions, just after molecules evaporation from the grains surface, it is almost destructed by soft X-rays, justifying the observed low abundance of HCOOH in gaseous phase Ehrenfreund et al. (2001). Acetic acid have shown to be more stable to the ionizing field, and its main outcomes from dissociation process were the reactive ionic fragments COOH+ and CH3CO+. To

  16. How similar is the electronic structures of β-lactam and alanine?

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhojyoti; Ahmed, Marawan; Wang, Feng

    2016-02-01

    The C1s spectra of β-lactam i.e. 2-azetidinone (C3H5NO), a drug and L-alanine (C3H7NO2), an amino acid, exhibit striking similarities, which may be responsible for the competition between 2-azetidinone and the alanyl-alanine moiety in biochemistry. The present study is to reveal the degree of similarities and differences between their electronic structures of the two model molecular pairs. It is found that the similarities in C1s and inner valence binding energy spectra are due to their bonding connections but other properties such as ring structure (in 2-azetidinone) and chiral carbon (alanine) can be very different. Further, the inner valence region of ionization potential greater than 18 eV for 2-azetidinone and alanine is also significantly similar. Finally the strained lactam ring exhibits more chemical reactivity measured at all non-hydrogen atoms by Fukui functions with respect to alanine.

  17. Vibrational dynamics of crystalline L-alanine

    SciTech Connect

    Bordallo, H.N.; Eckert, J.; Barthes, M.

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  18. Glycine metabolism in rat kidney cortex slices.

    PubMed

    Rowsell, E V; Al-Naama, M M; Rowsell, K V

    1982-04-15

    When rat kidney cortex slices were incubated with glycine or [1-14C]glycine, after correcting for metabolite changes with control slices, product formation and glycine utilization fitted the requirements of the equation: 2 Glycine leads to ammonia + CO2 + serine. Evidence is presented that degradation via glyoxylate, by oxidation or transamination, is unlikely to have any significant role in kidney glycine catabolism. It is concluded that glycine metabolism in rat kidney is largely via glycine cleavage closely coupled with serine formation. 1-C decarboxylation and urea formation with glycine in rat hepatocyte suspensions were somewhat greater than decarboxylation or ammonia formation in kidney slices, showing that in the rat, potentially, the liver is quantitatively the more important organ in glycine catabolism. There was no evidence of ammonia formation from glycine with rat brain cortex, heart, spleen or diaphragm and 1-C decarboxylation was very weak. PMID:6810880

  19. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    SciTech Connect

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-04-15

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO{sub 3} with NaBH{sub 4} in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility.

  20. Expression, purification, and characterization of alanine racemase from Pseudomonas putida YZ-26.

    PubMed

    Liu, Jun-Lin; Liu, Xiao-Qin; Shi, Ya-Wei

    2012-01-01

    Alanine racemase catalyzes the interconversion of D: - and L: -alanine and plays an important role in supplying D: -alanine, a component of peptidoglycan biosynthesis, to most bacteria. Alanine racemase exists mostly in prokaryotes and is generally absent in higher eukaryotes; this makes it an attractive target for the design of new antibacterial drugs. Here, we present the cloning and characterization of a new gene-encoding alanine racemase from Pseudomonas putida YZ-26. An open reading frame (ORF) of 1,230 bp, encoding a protein of 410 amino acids with a calculated molecular weight of 44,217.3 Da, was cloned into modified vector pET32M to form the recombinant plasmid pET-alr. After introduction into E.coli BL21, the strain pET-alr/E.coli BL21 expressed His(6)-tagged alanine racemase. The recombinant alanine racemase was efficiently purified to homogeneity using Ni(2+)-NTA and a gel filtration column, with 82.5% activity recovery. The amino acid sequence deduced from the alanine racemase gene revealed identity similarities of 97.0, 93, 23, and 22.0% with from P. putida F1, P. putida200, P. aeruginosa, and Salmonella typhimurium, respectively. The recombinant alanine racemase is a monomeric protein with a molecular mass of 43 kDa. The enzyme exhibited activity with L: -alanine and L: -isoleucine, and showed higher specificity for the former compared with the latter. The enzyme was stable from pH 7.0-11.0; its optimum pH was at 9.0. The optimum temperature for the enzyme was 37°C, and its activity was rapidly lost at temperatures above 40°C. Divalent metals, including Sr(2+), Mn(2+), Co(2+), and Ni(2+) obviously enhanced enzymatic activity, while the Cu(2+) ion showed inhibitory effects. PMID:22806802

  1. Substrate specificity of duckling hepatic and renal D-amino acid oxidase.

    PubMed

    Elkin, R G; Lyons, M L

    1988-05-01

    The substrate specificity of duckling hepatic and renal D-amino acid oxidase (DAAO; D-amino acid: O2 oxidoreductase [deaminating], E.C. 1.4.3.3) was determined using a method based on the combination of coupled enzyme reactions and a colorimetric procedure. When activities were averaged across tissues, D-proline was the most reactive substrate, followed by (in order) D-phenylalanine, D-alanine, D-methionine, D-leucine, D-isoleucine, D-valine, D-tryptophan, D-arginine, and D-lysine. Compared with D-alanine, duckling DAAO had minimal or no reactivity with D-asparagine, D-glutamine, D-histidine, D-threonine, D-cysteine, glycine, or D-serine. These results were in general agreement with data from other vertebrate species. PMID:2900508

  2. Initiation of Spore Germination in Bacillus subtilis: Relationship to Inhibition of l-Alanine Metabolism

    PubMed Central

    Prasad, Chandan

    1974-01-01

    The inhibitory effects of anthranilic acid esters (methyl anthranilate and N-methyl anthranilate) on the l-alanine-induced initiation of spore germination was examined in Bacillus subtilis 168. Methyl anthranilate irreversibly inhibited alanine initiation by a competitive mechanism. In its presence, the inhibition could be reversed only by the combined addition of d-glucose, d-fructose, and K+. Both l-alanine dehydrogenase and l-glutamate-pyruvate transaminase, enzymes which catalyze the first reaction in l-alanine metabolism, were competitively inhibited by methyl anthranilate. The Ki values for germination initiation (0.053 mM) and of l-glutamate-pyruvate transaminase (0.068 mM) were similar, whereas that for l-alanine dehydrogenase (0.4 mM) was six to seven times higher. Since a mutant lacking l-alanine dehydrogenase activity germinated normally in l-alanine alone, it is speculated that the major pathway of l-alanine metabolism during initiation may be via transmination reaction. PMID:4212093

  3. Depolarization-induced release of amino acids from the vestibular nuclear complex.

    PubMed

    Godfrey, Donald A; Sun, Yizhe; Frisch, Christopher; Godfrey, Matthew A; Rubin, Allan M

    2012-04-01

    There is evidence from immunohistochemistry, quantitative microchemistry, and pharmacology for several amino acids as neurotransmitters in the vestibular nuclear complex (VNC), including glutamate, γ-aminobutyrate (GABA), and glycine. However, evidence from measurements of release has been limited. The purpose of this study was to measure depolarization-stimulated calcium-dependent release of amino acids from the VNC in brain slices. Coronal slices containing predominantly the VNC were prepared from rats and perfused with artificial cerebrospinal fluid (ACSF) in an interface chamber. Fluid was collected from the chamber just downstream from the VNC using a microsiphon. Depolarization was induced by 50 mM potassium in either control calcium and magnesium concentrations or reduced calcium and elevated magnesium. Amino acid concentrations in effluent fluid were measured by high performance liquid chromatography. Glutamate release increased fivefold during depolarization in control calcium concentration and twofold in low calcium/high magnesium. These same ratios were 6 and 1.5 for GABA, 2 and 1.3 for glycine, and 2 and 1.5 for aspartate. Differences between release in control and low calcium/high magnesium ACSF were statistically significant for glutamate, GABA, and glycine. Glutamine release decreased during and after depolarization, and taurine release slowly increased. No evidence for calcium-dependent release was found for serine, glutamine, alanine, threonine, arginine, taurine, or tyrosine. Our results support glutamate and GABA as major neurotransmitters in the VNC. They also support glycine as a neurotransmitter and some function for taurine. PMID:22147284

  4. Assessment of Fatty Acid Profile and Seed Mineral Nutrients of Two Soybean (Glycine max L.) Cultivars Under Elevated Ultraviolet-B: Role of ROS, Pigments and Antioxidants.

    PubMed

    Choudhary, Krishna Kumar; Agrawal, Shashi Bhushan

    2016-01-01

    Current scenarios under global climate change envisage a considerable increase in ultraviolet B (UV-B) radiation in near future which may affect the productivity and yield quality of major agricultural crops. Present investigation was conducted to examine various defense strategies adopted against elevated UV-B (ambient + 7.2 kJ m-(2) day-(1) ) and their impact on seed nutrients, content and quality of oil including fatty acid profile of two soybean cultivars (JS-335 and PS-1042). Elevated UV-B (eUV-B) exposure leads toward higher unsaturation of fatty acids and changes in other oil quality parameters (acid, iodine and saponification value) indicated that eUV-B favored the synthesis of long-chain fatty acids with fewer carboxylic acid groups, making the oil rancid, with undesirable flavor and low nutritional value. The effect was more severe in JS-335 as compared to PS-1042. Negative effects were also seen on nutrients of soybean seeds. Adverse effects resulted due to insufficient quenching of ROS (superoxide radical and hydrogen peroxide) by the defense system and thus unable to overcome the imposed oxidative stress. Credit of better performance by PS-1042 against eUV-B may be given to the adoption of efficient defense strategies like higher wax deposition, increase in lignin and flavonoids (quercetin and kaempferol) contents. PMID:26489397

  5. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    NASA Technical Reports Server (NTRS)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  6. Amino acid profile during exercise and training in Standardbreds.

    PubMed

    Westermann, C M; Dorland, L; Wijnberg, I D; de Sain-van der Velden, M G M; van Breda, E; Barneveld, A; de Graaf-Roelfsema, E; Keizer, H A; van der Kolk, J H

    2011-08-01

    The objective of this study is to assess the influence of acute exercise, training and intensified training on the plasma amino acid profile. In a 32-week longitudinal study using 10 Standardbred horses, training was divided into four phases, including a phase of intensified training for five horses. At the end of each phase, a standardized exercise test, SET, was performed. Plasma amino acid concentrations before and after each SET were measured. Training significantly reduced mean plasma aspartic acid concentration, whereas exercise significantly increased the plasma concentrations of alanine, taurine, methionine, leucine, tyrosine and phenylalanine and reduced the plasma concentrations of glycine, ornithine, glutamine, citrulline and serine. Normally and intensified trained horses differed not significantly. It is concluded that amino acids should not be regarded as limiting training performance in Standardbreds except for aspartic acid which is the most likely candidate for supplementation. PMID:20863542

  7. Integrin αvβ3 as a Promising Target to Image Neoangiogenesis Using In-House Generator-Produced Positron Emitter (68)Ga-Labeled DOTA-Arginine-Glycine-Aspartic Acid (RGD) Ligand.

    PubMed

    Vatsa, Rakhee; Bhusari, Priya; Kumar, Sunil; Chakraborty, Sudipta; Dash, Ashutosh; Singh, Gurpreet; Dhawan, Devinder Kumar; Shukla, Jaya; Mittal, Bhagwant Rai

    2015-06-01

    For the growth and spread of a tumor beyond 2 mm, angiogenesis plays a crucial role, and association of various integrins with angiogenesis is evidential. The aim of the study was radiolabeling of DOTA-chelated RGD (arginine-glycine-aspartic acid) peptide with (68)Ga for PET imaging in locally advanced breast carcinoma. DOTA-RGD was incubated with (68)GaCl3, eluted in 0.05 m HCl. Elution volume, peptide amount, and reaction pH were studied. Radio-ITLC, gas chromatography, endotoxin, and sterility testing were performed. Serial (n=3) and whole-body (n=2) PET/CT imaging was done on patients post i.v. injection of 111-185 MBq of (68)Ga-DOTA-RGD. Maximum radiolabeling yield was achieved with 3 mL elution volume of 15-20 μg peptide at pH 3.5-4.0 with 10 minutes of incubation at 95°C. Product samples were sterile having 99.5% radiochemical purity with residual ethanol content and endotoxins in injectable limits. Intense radiotracer uptake was noticed in the tumor with SUVmax 15.3 at 45 minutes in serial images. Physiological radiotracer uptake was seen in the liver, spleen, ventricles, and thyroid with excretion through the kidneys. The authors concluded that (68)Ga-DOTA-RGD has the potential for imaging α,vβ3 integrin-expressing tumors. PMID:26083951

  8. Functional Characterization of Alanine Racemase from Schizosaccharomyces pombe: a Eucaryotic Counterpart to Bacterial Alanine Racemase

    PubMed Central

    Uo, Takuma; Yoshimura, Tohru; Tanaka, Naotaka; Takegawa, Kaoru; Esaki, Nobuyoshi

    2001-01-01

    Schizosaccharomyces pombe has an open reading frame, which we named alr1+, encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1+ gene in Escherichia coli and purified the gene product (Alr1p), with an Mr of 41,590, to homogeneity. Alr1p contains pyridoxal 5′-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent Km and Vmax values as follows: for l-alanine, 5.0 mM and 670 μmol/min/mg, respectively, and for d-alanine, 2.4 mM and 350 μmol/min/mg, respectively. The enzyme is almost specific to alanine, but l-serine and l-2-aminobutyrate are racemized slowly at rates 3.7 and 0.37% of that of l-alanine, respectively. S. pombe uses d-alanine as a sole nitrogen source, but deletion of the alr1+ gene resulted in retarded growth on the same medium. This indicates that S. pombe has catabolic pathways for both enantiomers of alanine and that the pathway for l-alanine coupled with racemization plays a major role in the catabolism of d-alanine. Saccharomyces cerevisiae differs markedly from S. pombe: S. cerevisiae uses l-alanine but not d-alanine as a sole nitrogen source. Moreover, d-alanine is toxic to S. cerevisiae. However, heterologous expression of the alr1+ gene enabled S. cerevisiae to grow efficiently on d-alanine as a sole nitrogen source. The recombinant yeast was relieved from the toxicity of d-alanine. PMID:11244061

  9. Influence of the morphology and impurities of Ni(OH) 2 on the synthesis of neutral Ni(II)-amino acid complexes

    NASA Astrophysics Data System (ADS)

    Rodríguez-González, Vicente; Marceau, Eric; Che, Michel; Pepe, Claude

    2007-12-01

    Synthesis of neutral complexes of Ni 2+ with amino acids has often been reported on a qualitative basis, with a lack of information on the parameters involved in the dissolution of the nickel-containing solid precursor. This paper reports on a systematic study of the reactivity of Ni(OH) 2 toward glycine in aqueous solution. The crystallinity and size of hydroxide particles are found to be key parameters in the rapid glycine-promoted dissolution of the hydroxide and synthesis of [Ni(glycinate) 2(H 2O) 2]. These parameters derive from the nature of the salt used to prepare the hydroxide. Ni(II) chloride leads to the most reactive solid precursor, because of the presence of defects in the Ni(OH) 2 sheets arrangements, assigned to the substitution of Cl - ions to OH - ions at the edges of the particles. The reaction between this hydroxide and glycine at 80 °C is quantitative after 7 min and similar rates of dissolution are obtained with other amino acids, alanine or histidine, the reaction with serine being slower. When the hydroxide contains nitrate or carbonate ions, a glycinato complex with composition similar to [Ni(glycinate) 2(H 2O) 2], but with a different crystal structure, is also formed. Spectroscopic results may suggest a structure involving bridging ligands.

  10. Beta-alanine supplementation in high-intensity exercise.

    PubMed

    Harris, Roger C; Sale, Craig

    2012-01-01

    Glycolysis involves the oxidation of two neutral hydroxyl groups on each glycosyl (or glucosyl) unit metabolised, yielding two carboxylic acid groups. During low-intensity exercise these, along with the remainder of the carbon skeleton, are further oxidised to CO(2) and water. But during high-intensity exercise a major portion (and where blood flow is impaired, then most) is accumulated as lactate anions and H(+). The accumulation of H(+) has deleterious effects on muscle function, ultimately impairing force production and contributing to fatigue. Regulation of intracellular pH is achieved over time by export of H(+) out of the muscle, although physicochemical buffers in the muscle provide the first line of defence against H(+) accumulation. In order to be effective during high-intensity exercise, buffers need to be present in high concentrations in muscle and have pK(a)s within the intracellular exercise pH transit range. Carnosine (β-alanyl-L-histidine) is ideal for this role given that it occurs in millimolar concentrations within the skeletal muscle and has a pK(a) of 6.83. Carnosine is a cytoplasmic dipeptide formed by bonding histidine and β-alanine in a reaction catalysed by carnosine synthase, although it is the availability of β-alanine, obtained in small amounts from hepatic synthesis and potentially in greater amounts from the diet that is limiting to synthesis. Increasing muscle carnosine through increased dietary intake of β-alanine will increase the intracellular buffering capacity, which in turn might be expected to increase high-intensity exercise capacity and performance where this is pH limited. In this study we review the role of muscle carnosine as an H(+) buffer, the regulation of muscle carnosine by β-alanine, and the available evidence relating to the effects of β-alanine supplementation on muscle carnosine synthesis and the subsequent effects of this on high-intensity exercise capacity and performance. PMID:23075550

  11. Two alanine aminotranferases link mitochondrial glycolate oxidation to the major photorespiratory pathway in Arabidopsis and rice.

    PubMed

    Niessen, Markus; Krause, Katrin; Horst, Ina; Staebler, Norma; Klaus, Stephanie; Gaertner, Stefanie; Kebeish, Rashad; Araujo, Wagner L; Fernie, Alisdair R; Peterhansel, Christoph

    2012-04-01

    The major photorespiratory pathway in higher plants is distributed over chloroplasts, mitochondria, and peroxisomes. In this pathway, glycolate oxidation takes place in peroxisomes. It was previously suggested that a mitochondrial glycolate dehydrogenase (GlcDH) that was conserved from green algae lacking leaf-type peroxisomes contributes to photorespiration in Arabidopsis thaliana. Here, the identification of two Arabidopsis mitochondrial alanine:glyoxylate aminotransferases (ALAATs) that link glycolate oxidation to glycine formation are described. By this reaction, the mitochondrial side pathway produces glycine from glyoxylate that can be used in the glycine decarboxylase (GCD) reaction of the major pathway. RNA interference (RNAi) suppression of mitochondrial ALAAT did not result in major changes in metabolite pools under standard conditions or enhanced photorespiratroy flux, respectively. However, RNAi lines showed reduced photorespiratory CO(2) release and a lower CO(2) compensation point. Mitochondria isolated from RNAi lines are incapable of converting glycolate to CO(2), whereas simultaneous overexpression of GlcDH and ALAATs in transiently transformed tobacco leaves enhances glycolate conversion. Furthermore, analyses of rice mitochondria suggest that the side pathway for glycolate oxidation and glycine formation is conserved in monocotyledoneous plants. It is concluded that the photorespiratory pathway from green algae has been functionally conserved in higher plants. PMID:22268146

  12. Glycine Polymerization on Oxide Minerals

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  13. Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production

    SciTech Connect

    Darmaun, D.; Matthews, D.E.; Bier, D.M. Cornell Univ. Medical College, New York, NY )

    1988-09-01

    Physiological elevations of plasma cortisol levels, as are encountered in stress and severe trauma, were produced in six normal subjects by infusing them with hydrocortisone for 64 h. Amino acid kinetics were measured in the postabsorptive state using three 4-h infusions of L-(1-{sup 13}C)leucine, L-phenyl({sup 2}H{sub 5})phenylalanine, L-(2-{sup 15}N)glutamine, and L-(1-{sup 13}C)alanine tracers (1) before, (2) at 12 h, and (3) at 60 h of cortisol infusion. Before and throughout the study, the subjects ate a normal diet of adequate protein and energy intake. The cortisol infusion raised plasma cortisol levels significantly from 10 {plus minus} 1 to 32 {plus minus} 4 {mu}g/dl, leucine flux from 83 {plus minus} 3 to 97 {plus minus} 3 {mu}mol{center dot}kg{sup {minus}1}{center dot}h{sup {minus}1}, and phenylalanine flux from 34 {plus minus} 1 to 39 {plus minus} 1 (SE) {mu}mol{center dot}kg{sup {minus}1}{center dot}h{sup {minus}1} after 12 h of cortisol infusion. These increases were maintained until the cortisol infusion was terminated. These nearly identical 15% increases in two different essential amino acid appearance rates are reflective of increased whole body protein breakdown. Glutamine flux rose by 12 h of cortisol infusion and remained elevated at the same level at 64 h. The increase in flux was primarily due to a 55% increase in glutamine de novo synthesis. Alanine flux increased with acute hypercortisolemia and increased further at 60 h of cortisol infusion, a result primarily of increased alanine de novo synthesis. Insulin, alanine, and lactate plasma levels responded similarly with significant rises between the acute and chronic periods of cortisol infusion. Thus hypercortisolemia increases both protein breakdown and the turnover of important nonessential amino acids for periods of up to 64 h.

  14. Structural and catalytic properties of L-alanine dehydrogenase from Bacillus cereus.

    PubMed

    Porumb, H; Vancea, D; Mureşan, L; Presecan, E; Lascu, I; Petrescu, I; Porumb, T; Pop, R; Bârzu, O

    1987-04-01

    Alanine dehydrogenase from Bacillus cereus, a non-allosteric enzyme composed of six identical subunits, was purified to homogeneity by chromatography on blue-Sepharose and Sepharose 6B-CL. Like other pyridine-linked dehydrogenases, alanine dehydrogenase is inhibited by Cibacron blue, competitively with respect to NADH and noncompetitively with respect to pyruvate. The enzyme was inactivated by 0.1 M glycine/HCl (pH 2) and reactivated by 0.1 M phosphate (pH 8) supplemented with NAD+ or NADH. The reactivation was characterized by sigmoidal kinetics indicating a complex mechanism involving rate-limiting folding and association steps. Cibacron blue interfered with renaturation, presumably by competition with NADH. Chromatography on Sepharose 6B-CL of the partially renatured alanine dehydrogenase led to the separation of several intermediates, but only the hexamer was characterized by enzymatic activity. By immobilization on Sepharose 4B, alanine dehydrogenase from B. cereus retained 66% of the specific activity of the soluble enzyme. After denaturation of immobilized alanine dehydrogenase with 7 M urea, 37% of the initial protein was still bound to Sepharose, indicating that on the average the hexamer was attached to the matrix via, at most, two subunits. The ability of the denatured, immobilized subunits to pick up subunits from solution shows their capacity to fold back to the native conformation after urea treatment. The formation of "hybrids" between subunits of enzyme from B. cereus and Bacillus subtilis demonstrates the close resemblance of the tertiary and quaternary structures of alanine dehydrogenases from these species. PMID:3104322

  15. (L)-(Trimethylsilyl)alanine synthesis exploiting hydroxypinanone-induced diastereoselective alkylation.

    PubMed

    René, A; Vanthuyne, N; Martinez, J; Cavelier, F

    2013-08-01

    A new and efficient synthesis of (L)-(trimethylsilyl)alanine (TMSAla) with suitable protection for use in Solid Phase Peptide Synthesis (SPPS) has been accomplished starting from glycine tert-butyl ester and using hydroxypinanone as chiral inductor. The silylated side chain was introduced by alkylation of the Schiff base intermediate with iodomethyl(trimethylsilane) at -78 °C. Among the different synthetic routes that were tested including several chiral inductors and different Schiff bases, this strategy was selected and afforded (L)-TMSAla in good chemical overall yield with 98 % ee. PMID:23620077

  16. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    SciTech Connect

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-05-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. /sup 14/CO/sub 2/ production from the catabolism of /sup 14/C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. /sup 14/CO/sub 2/ formation from (1-/sup 14/C)- and (2-/sup 14/C)glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate.

  17. The effects of post-exercise glucose and alanine ingestion on plasma carnitine and ketosis in humans.

    PubMed Central

    Carlin, J I; Olson, E B; Peters, H A; Reddan, W G

    1987-01-01

    1. Several studies have hypothesized that alanine decreases plasma ketone body levels by increasing availability of oxaloacetate, thus allowing acetyl groups to enter the tricarboxylic acid cycle and releasing co-enzyme A (CoA). 2. Four, fasted adult males exercised at 50% of their maximal oxygen consumption for 1.5 h, then ingested 100 g of either glucose or alanine 2 h into recovery. 3. Post-exercise ketosis had developed at 2 h into recovery, as shown by a significantly elevated concentration of beta-hydroxybutyrate in the plasma. At this time plasma free fatty acids were elevated above resting levels while plasma free carnitine concentrations had fallen below resting values. 4. After either alanine or glucose ingestion beta-hydroxybutyrate concentrations fell to the same extent. After the alanine load free carnitine increased above that seen in the glucose trial. Following either alanine or glucose ingestion free fatty acid levels fell; they remained at resting levels in the alanine trial but decreased below rest in the glucose trial. 5. We assume that plasma carnitine concentrations largely reflect the hepatic carnitine pools; therefore, elevations in the plasma free carnitine are probably the result of an increased utilization of acetyl CoA. The significant elevation in plasma free carnitine concentration found after alanine ingestion is consistent with the hypothesis that alanine increases the oxidation of acetyl CoA by providing oxaloacetate for the tricarboxylic acid cycle. PMID:3443938

  18. The Strecker synthesis from interstellar precursors as a source of amino acids in carbonaceous chondrites: Deuterium retention during synthesis. [Abstract only

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Peterson, E.; Chang, S.

    1994-01-01

    Amino acids in the Murchison carbonaceous chondrite are anomalously enriched in deuterium. Synthesis in Strecker reactions from D-enriched interstellar precursors during low temperature aqueous alteration of the parent body has been proposed by Cronin et al. (1988) to account for the isotopic observations. To test this hypothesis, we have measured the retention of deuterium in the glycine, alanine, and alpha-amino isobutyric acid produced, respectively, by reactions of formaldehyde-D2, acetaldehyde-D4, and acetone-D6 with HCN and NH3 in water.

  19. Felbamate increases [3H]glycine binding in rat brain and sections of human postmortem brain.

    PubMed

    McCabe, R T; Sofia, R D; Layer, R T; Leiner, K A; Faull, R L; Narang, N; Wamsley, J K

    1998-08-01

    The anticonvulsant compound felbamate (2-phenyl-1,3-propanediol dicarbamate; FBM) appears to inhibit the function of the N-methyl-D-aspartate (NMDA) receptor complex through an interaction with the strychnine-insensitive glycine recognition site. Since we have demonstrated previously that FBM inhibits the binding of [3H]5, 7-dichlorokynurenic acid (DCKA), a competitive antagonist at the glycine site, we assessed the ability of FBM to modulate the binding of an agonist, [3H]glycine, to rat forebrain membranes and human brain sections. In contrast to its ability to inhibit [3H]5,7-DCKA binding, FBM increased [3H]glycine binding (20 nM; EC50 = 485 microM; Emax = 211% of control; nH = 1.8). FBM, but not carbamazepine, phenytoin, valproic acid or phenobarbital, also increased [3H]glycine binding (50 nM; EC50 = 142 microM; Emax = 157% of control; nH = 1.6) in human cortex sections. Autoradiographic analysis of human brain slices demonstrated that FBM produced the largest increases in [3H]glycine binding in the cortex, hippocampus and the parahippocampal gyrus. Because various ions can influence the binding of glycine-site ligands, we assessed their effects on FBM-modulation of [3H]glycine binding. FBM-enhanced [3H]glycine binding was attenuated by Zn++ and not inhibited by Mg++ in human brain. These results suggest that FBM increases [3H]glycine binding in a manner sensitive to ions which modulate the NMDA receptor. These data support the hypothesis that FBM produces anticonvulsant and neuroprotective effects by inhibiting NMDA receptor function, likely through an allosteric modulation of the glycine site. PMID:9694960

  20. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    PubMed

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment. PMID:27509858

  1. Quest for Cells Responsible for Age-related Increase of Salivary Glycine and Proline.

    PubMed

    Hino, Shunsuke; Nishiyama, Akira; Matsuta, Tomohiko; Horie, Norio; Shimoyama, Tetsuo; Tanaka, Shoji; Sakagami, Hiroshi

    2016-01-01

    We have previously reported that salivary glycine and proline levels are increased to nearly butanoate level in elderly people. In order to identify the source of glycine and proline, we performed high-performance liquid chromatography analysis of amino acid production to a total of seven oral cells before and after stimulation with inflammation inducers. We found that production of amino acids (per a given number of cells) by normal oral mesenchymal cells (gingival fibroblast, pulp cell, periodontal ligament fibroblast) was approximately three-fold that of oral squamous cell carcinoma cell lines (HSC-2, HSC-3, HSC-4, Ca9-22), and that production of glycine and especially proline by all these seven cells was much lower than that of glutamine and glutamic acid. Treatment of three oral mesenchymal cells with interleukin (IL)-1β or lipopoly-saccharide (LPS) reproducibly increased the production of glutamic acid and glutamine, but not that of glycine and proline. Glycine and proline only marginally stimulated the IL-8 production by IL-1β-stimulated gingival fibroblast, whereas glycine dose-dependently inhibited the nitric oxide production by lipopolysaccharide-stimulated mouse macrophage-like RAW264.7 cells. These data demonstrated that normal oral mesenchymal cells are not the major source of glycine and proline that accumulates in the saliva of aged people, suggesting the involvement of the deregulation of collagen metabolism during aging. PMID:26912818

  2. Formation of amino acids by cobalt-60 irradiation of hydrogen cyanide solutions

    NASA Technical Reports Server (NTRS)

    Sweeney, M. A.; Toste, A. P.; Ponnamperuma, C.

    1976-01-01

    Experiments were conducted to study the pathway for the prebiotic origin of amino acids from hydrogen cyanide (HCN) under the action of ionizing radiation considered as an effective source of energy on the primitive earth. The irradiations were performed in a cobalt-60 source with a dose rate of 200,000 rad/hr. Seven naturally occurring amino acids are identified among the products formed by the hydrolysis of gamma-irradiated solutions of HCN: glycine, alanine, valine, serine, threonine, aspartic acid, and glutamic acid. The identity of these amino acids is established by gas chromatography and mass spectrometry. Control experiments provided evidence that the amino acids are not the result of contamination.

  3. Sodium dependency of L-alanine absorption in canine Thiry-Vella loops.

    PubMed

    Fleshler, B; Nelson, R A

    1970-03-01

    The effect of sodium on the absorption of L-alanine in vivo was tested by measuring the absorption of L-alanine from Thiry-Vella loops in dogs. Solutions containing L-alanine (10 or 50 mM) sodium at concentrations of 0, 74, or 145 m-equiv/1 and mannitol, as needed to maintain isotonicity were instilled into the loops for 10 minutes. Similar studies were done with L-alanine 50 mM and either 0 or 145 m-equiv/1 of sodium for five minutes. Under all conditions absorption of alanine was significantly less from the solution initially free of sodium. Although these differences were statistically significant, the physiological significance was not great since the actual differences in amounts of L-alanine absorbed were small. Insorption of sodium was low from the fluid which initially had no sodium, but exsorption proceeded rapidly and was unaffected by the luminal sodium concentration. This resulted in a rapid rise of intraluminal sodium concentration when no sodium was initially present. This persistent exsorption of sodium was, therefore, adequate to provide sodium in the lumen to activate the sodium-dependent carrier, postulated on the basis of studies in vitro. These data in vivo are consistent with the view that sodium at the intraluminal surface is important in accelerating amino acid transport, but indicate that in the absence of added intraluminal sodium the gut mucosa itself, under normal circumstances, provides the sodium needed for L-alanine absorption. PMID:5423904

  4. The stability of some selected amino acids under attempted redox constrained hydrothermal conditions.

    PubMed

    Andersson, E; Holm, N G

    2000-02-01

    In order to evaluate the stability of aspartic acid, serine, leucine, and alanine under redox buffered hydrothermal conditions, a series of experiments have been performed. The pyrite-pyrrhotite-magnetite (PPM) mineral assemblage was used in the experimental systems in order to constrain the oxygen fugacity. Likewise, the K-feldspar-muscovite-quartz (KMQ) assemblage was added to control the hydrogen ion activity during the experiments. The purpose was to compare the relative stabilities in buffered and unbuffered experiments. The experiments were conducted at 200 degrees C and 50 bar in Teflon coated autoclaves. Glycine, which was not present initially, started to appear at an early stage in the experimental systems and is believed to be the result of decomposition of serine. Similarly, the increase in relative abundance of alanine is likely to be the result of decomposition of serine. Decomposition rates of leucine, alanine and aspartic acid were found to be lower in experiments containing the redox buffer assemblage pyrite-pyrrhotite-magnetite than in non-redox buffered experiments. The decomposition rate of serine was higher in buffered experiments, which indicates that a transformation pathway via dehydration of serine to dehydroalanine followed by reduction to alanine is promoted by reducing conditions. PMID:10836261

  5. Association study of polymorphisms in the neutral amino acid transporter genes SLC1A4, SLC1A5 and the glycine transporter genes SLC6A5, SLC6A9 with schizophrenia

    PubMed Central

    Deng, Xiangdong; Sagata, Noriaki; Takeuchi, Naoko; Tanaka, Masami; Ninomiya, Hideaki; Iwata, Nakao; Ozaki, Norio; Shibata, Hiroki; Fukumaki, Yasuyuki

    2008-01-01

    Background Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the genes involved in glutametergic transmission. We report here association studies of schizophrenia with SLC1A4, SLC1A5 encoding neutral amino acid transporters ASCT1, ASCT2, and SLC6A5, SLC6A9 encoding glycine transporters GLYT2, GLYT1, respectively. Methods We initially tested the association of 21 single nucleotide polymorphisms (SNPs) distributed in the four gene regions with schizophrenia using 100 Japanese cases-control pairs and examined allele, genotype and haplotype association with schizophrenia. The observed nominal significance were examined in the full-size samples (400 cases and 420 controls). Results We observed nominally significant single-marker associations with schizophrenia in SNP2 (P = 0.021) and SNP3 (P = 0.029) of SLC1A4, SNP1 (P = 0.009) and SNP2 (P = 0.022) of SLC6A5. We also observed nominally significant haplotype associations with schizophrenia in the combinations of SNP2-SNP7 (P = 0.037) of SLC1A4 and SNP1-SNP4 (P = 0.043) of SLC6A5. We examined all of the nominal significance in the Full-size Sample Set, except one haplotype with insufficient LD. The significant association of SNP1 of SLC6A5 with schizophrenia was confirmed in the Full-size Sample Set (P = 0.018). Conclusion We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC6A5, whereas SLC1A4, SLC1A5 and SLC6A9 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population. PMID:18638388

  6. Glycine modulates membrane potential, cell volume, and phagocytosis in murine microglia.

    PubMed

    Komm, Barbara; Beyreis, Marlena; Kittl, Michael; Jakab, Martin; Ritter, Markus; Kerschbaum, Hubert H

    2014-08-01

    Phagocytes form engulfment pseudopodia at the contact area with their target particle by a process resembling cell volume (CV) regulatory mechanisms. We evaluated whether the osmoregulatory active neutral amino acid glycine, which contributes to CV regulation via activation of sodium-dependent neutral amino acid transporters (SNATs) improves phagocytosis in isotonic and hypertonic conditions in the murine microglial cell line BV-2 and primary microglial cells (pMG). In BV-2 cells and pMG, RT-PCR analysis revealed expression of SNATs (Slc38a1, Slc38a2), but not of GlyRs (Glra1-4). In BV-2 cells, glycine (5 mM) led to a rapid Na(+)-dependent depolarization of membrane potential (V mem). Furthermore, glycine increased CV by about 9%. Visualizing of phagocytosis of polystyrene microspheres by scanning electron microscopy revealed that glycine (1 mM) increased the number of BV-2 cells containing at least one microsphere by about 13%. Glycine-dependent increase in phagocytosis was suppressed by the SNAT inhibitor α-(methylamino)isobutyric acid (MeAIB), by replacing extracellular Na(+) with choline, and under hypertonic conditions, but not by the GlyR antagonist strychnine or the GlyR agonist taurine. Interestingly, hypertonicity-induced suppression of phagocytosis was rescued by glycine. These findings demonstrate that glycine increases phagocytosis in iso- and hypertonic conditions by activation of SNATs. PMID:24760586

  7. A novel low molecular weight alanine aminotransferase from fasted rat liver.

    PubMed

    Vedavathi, M; Girish, K S; Kumar, M Karuna

    2006-01-01

    Alanine is the most effective precursor for gluconeogenesis among amino acids, and the initial reaction is catalyzed by alanine aminotransferase (AlaAT). Although the enzyme activity increases during fasting, this effect has not been studied extensively. The present study describes the purification and characterization of an isoform of AlaAT from rat liver under fasting. The molecular mass of the enzyme is 17.7 kD with an isoelectric point of 4.2; glutamine is the N-terminal residue. The enzyme showed narrow substrate specificity for L-alanine with Km values for alanine of 0.51 mM and for 2-oxoglutarate of 0.12 mM. The enzyme is a glycoprotein. Spectroscopic and inhibition studies showed that pyridoxal phosphate (PLP) and free -SH groups are involved in the enzymatic catalysis. PLP activated the enzyme with a Km of 0.057 mM. PMID:16487061

  8. A single amino acid change (substitution of the conserved Glu-590 with alanine) in the C-terminal domain of rat liver carnitine palmitoyltransferase I increases its malonyl-CoA sensitivity close to that observed with the muscle isoform of the enzyme.

    PubMed

    Napal, Laura; Dai, Jia; Treber, Michelle; Haro, Diego; Marrero, Pedro F; Woldegiorgis, Gebre

    2003-09-01

    Carnitine palmitoyltransferase I (CPTI) catalyzes the conversion of long-chain fatty acyl-CoAs to acylcarnitines in the presence of l-carnitine. To determine the role of the highly conserved C-terminal glutamate residue, Glu-590, on catalysis and malonyl-CoA sensitivity, we separately changed the residue to alanine, lysine, glutamine, and aspartate. Substitution of Glu-590 with aspartate, a negatively charged amino acid with only one methyl group less than the glutamate residue in the wild-type enzyme, resulted in complete loss in the activity of the liver isoform of CPTI (L-CPTI). A change of Glu-590 to alanine, glutamine, and lysine caused a significant 9- to 16-fold increase in malonyl-CoA sensitivity but only a partial decrease in catalytic activity. Substitution of Glu-590 with neutral uncharged residues (alanine and glutamine) and/or a basic positively charged residue (lysine) significantly increased L-CPTI malonyl-CoA sensitivity to the level observed with the muscle isoform of the enzyme, suggesting the importance of neutral and/or positive charges in the switch of the kinetic properties of L-CPTI to the muscle isoform of CPTI. Since a conservative substitution of Glu-590 to aspartate but not glutamine resulted in complete loss in activity, we suggest that the longer side chain of glutamate is essential for catalysis and malonyl-CoA sensitivity. This is the first demonstration whereby a single residue mutation in the C-terminal region of the liver isoform of CPTI resulted in a change of its kinetic properties close to that observed with the muscle isoform of the enzyme and provides the rationale for the high malonyl-CoA sensitivity of muscle CPTI compared with the liver isoform of the enzyme. PMID:12826662

  9. Syntheses, structures, and properties of a series of novel high-nuclear 3d-4f clusters with mixed amino acids as ligands: {Ln6Cu24}(Ln = Gd, Tb, Pr and Sm).

    PubMed

    Shen, Chao-Jun; Hu, Sheng-Min; Sheng, Tian-Lu; Xue, Zhen-Zhen; Wu, Xin-Tao

    2015-04-14

    The first examples of high-nuclear 3d-4f heterometallic clusters with mixed amino acid ligands are reported. Four 30-nuclear clusters {Ln6Cu24}(Ln = Gd, Tb, Pr and Sm) were obtained through the self-assembly of Ln(III), Cu(II) and mixed amino acid ligands of glycine (HGly) and β-alanine (HAla). The metal skeleton of clusters may be described as a huge {Ln6Cu12} octahedron connected with 12 additional Cu(II) ions. The temperature dependence of magnetic susceptibilities of compounds were also studied. PMID:25756855

  10. Amino Acid Chemistry as a Link Between Small Solar System Bodies and Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Ehrenfreund, Pascale; Botta, Oliver; Cooper, George; Bada, Jeffrey L.

    2000-01-01

    Establishing chemical links between meteorites and small solar system bodies, such as comets and asteroids, provides a tool for investigating the processes that occurred during the formation of the solar system. Carbonaceous meteorites are of particular interest, since they may have seeded the early Earth with a variety of prebiotic organic compounds including amino acids, purines and pyrimidines, which are thought to be necessary for the origin of life. Here we report the results of high-performance liquid chromatography (HPLC) based amino acid analyses of the acid-hydrolyzed hot water extracts from pristine interior pieces of the CI carbonaceous chondrites Orgueil and Ivuna and the CM meteorites Murchison and Murray. We found that the CI meteorites Orgueil and Ivuna contained high abundances of beta-alanine and glycine, while only traces of other amino acids like alanine, alpha-amino-n-butryic acid (ABA) and alpha-aminoisobutyric acid (AIB) were detected in these meteorites. Carbon isotopic measurements of beta-alanine and glycine in Orgueil by gas chromatography combustion-isotope ratio mass spectrometry clearly indicate an extraterrestrial origin of these amino acids. The amino acid composition of Orgueil and Ivuna was strikingly different from the CM chondrites Murchison and Murray. The most notable difference was the high relative abundance of B-alanine in Orgueil and Ivuna compared to Murchison and Murray. Furthermore, AIB, which is one of the most abundant amino acids found in Murchison and Murray, was present in only trace amounts in Orgueil and Ivuna. Our amino acid data strongly suggest that the CI meteorites Orgueil and Ivuna came from a different type of parent body than the CM meteorites Murchison and Murray, possibly from an extinct comet. It is generally thought that carbonaceous meteorites are fragments of larger asteroidal bodies delivered via near Earth objects (NEO). Orbital and dynamic studies suggest that both fragments of main belt asteroids

  11. Characterization of psychrophilic alanine racemase from Bacillus psychrosaccharolyticus.

    PubMed

    Okubo, Y; Yokoigawa, K; Esaki, N; Soda, K; Kawai, H

    1999-03-16

    A psychrophilic alanine racemase gene from Bacillus psychrosaccharolyticus was cloned and expressed in Escherichia coli SOLR with a plasmid pYOK3. The gene starting with the unusual initiation codon GTG showed higher preference for codons ending in A or T. The enzyme purified to homogeneity showed the high catalytic activity even at 0 degrees C and was extremely labile over 35 degrees C. The enzyme was found to have a markedly large Km value (5.0 microM) for the pyridoxal 5'-phosphate (PLP) cofactor in comparison with other reported alanine racemases, and was stabilized up to 50 degrees C in the presence of excess amounts of PLP. The low affinity of the enzyme for PLP may be related to the thermolability, and may be related to the high catalytic activity, initiated by the transaldimination reaction, at low temperature. The enzyme has a distinguishing hydrophilic region around the residue no. 150 in the deduced amino acid sequence (383 residues), whereas the corresponding regions of other Bacillus alanine racemases are hydrophobic. The position of the region in the three dimensional structure of C atoms of the enzyme was predicted to be in a surface loop surrounding the active site. The region may interact with solvent and reduce the compactness of the active site. PMID:10080917

  12. Amino Acid Intakes Are Associated With Bone Mineral Density and Prevalence of Low Bone Mass in Women: Evidence From Discordant Monozygotic Twins.

    PubMed

    Jennings, Amy; MacGregor, Alexander; Spector, Tim; Cassidy, Aedín

    2016-02-01

    Although a higher protein intake, particularly from vegetable sources, has been shown to be associated with higher bone mineral density (BMD) the relative impact of specific amino acids on BMD and risk of osteoporosis remains to be determined. Mechanistic research suggests that a number of specific amino acids, including five nonessential amino acids--alanine, arginine, glutamic acid, glycine, and proline--may play a role in bone health, principally through improved production of insulin and insulin-like growth factor 1 and the synthesis of collagen and muscle protein. However to date, no previous studies have examined the associations between habitual intake of amino acids and direct measures of BMD and prevalence of osteoporosis or osteopenia, and no studies have examined this relationship in discordant identical twin-pairs. In these analyses of female monozygotic twin-pairs discordant for amino acid intake (n = 135), twins with higher intakes of alanine and glycine had significantly higher BMD at the spine than their co-twins with within-pair differences in spine-BMD of 0.012 g/cm(2) (SE 0.01; p = 0.039) and 0.014 g/cm(2) (SE 0.01; p = 0.026), respectively. Furthermore, in cross-sectional multivariable analyses of 3160 females aged 18 to 79 years, a higher intake of total protein was significantly associated with higher DXA-measured BMD at the spine (quartile Q4 to quartile Q1: 0.017 g/cm(2), SE 0.01, p = 0.035) and forearm (Q4 to Q1: 0.010 g/cm(2), SE 0.003, p = 0.002). Intake of six amino acids (alanine, arginine, glutamic acid, leucine, lysine, and proline) were associated with higher BMD at the spine and forearm with the strongest association observed for leucine (Q4 to Q1: 0.024 g/cm(2), SE 0.01, p = 0.007). When intakes were stratified by protein source, vegetable or animal, prevalence of osteoporosis or osteopenia was 13% to 19% lower comparing extreme quartiles of vegetable intake for five amino acids (not glutamic acid or proline). These data provide

  13. Antimicrobial Activity of Metal & Metal Oxide Nanoparticles Interfaced With Ligand Complexes Of 8-Hydroxyquinoline And α-Amino Acids

    NASA Astrophysics Data System (ADS)

    Bhanjana, Gaurav; Kumar, Neeraj; Thakur, Rajesh; Dilbaghi, Neeraj; Kumar, Sandeep

    2011-12-01

    Antimicrobial nanotechnology is a recent addition to the fight against disease causing organisms, replacing heavy metals and toxins. In the present work, mixed ligand complexes of metals like zinc, silver etc. and metal oxide have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and N-and/O-donor amino acids such as L-serine, L-alanine, glycine, cysteine and histidine as secondary ligands. These complexes were characterized using different spectroscopic techniques. The complexes were tested for antifungal and antibacterial activity by using agar well diffusion bioassay.

  14. A THREE-PHASE CHEMICAL MODEL OF HOT CORES: THE FORMATION OF GLYCINE

    SciTech Connect

    Garrod, Robin T.

    2013-03-01

    A new chemical model is presented that simulates fully coupled gas-phase, grain-surface, and bulk-ice chemistry in hot cores. Glycine (NH{sub 2}CH{sub 2}COOH), the simplest amino acid, and related molecules such as glycinal, propionic acid, and propanal, are included in the chemical network. Glycine is found to form in moderate abundance within and upon dust-grain ices via three radical-addition mechanisms, with no single mechanism strongly dominant. Glycine production in the ice occurs over temperatures {approx}40-120 K. Peak gas-phase glycine fractional abundances lie in the range 8 Multiplication-Sign 10{sup -11}-8 Multiplication-Sign 10{sup -9}, occurring at {approx}200 K, the evaporation temperature of glycine. A gas-phase mechanism for glycine production is tested and found insignificant, even under optimal conditions. A new spectroscopic radiative-transfer model is used, allowing the translation and comparison of the chemical-model results with observations of specific sources. Comparison with the nearby hot-core source NGC 6334 IRS1 shows excellent agreement with integrated line intensities of observed species, including methyl formate. The results for glycine are consistent with the current lack of a detection of this molecule toward other sources; the high evaporation temperature of glycine renders the emission region extremely compact. Glycine detection with ALMA is predicted to be highly plausible, for bright, nearby sources with narrow emission lines. Photodissociation of water and subsequent hydrogen abstraction from organic molecules by OH, and NH{sub 2}, are crucial to the buildup of complex organic species in the ice. The inclusion of alternative branches within the network of radical-addition reactions appears important to the abundances of hot-core molecules; less favorable branching ratios may remedy the anomalously high abundance of glycolaldehyde predicted by this and previous models.

  15. A Three-phase Chemical Model of Hot Cores: The Formation of Glycine

    NASA Astrophysics Data System (ADS)

    Garrod, Robin T.

    2013-03-01

    A new chemical model is presented that simulates fully coupled gas-phase, grain-surface, and bulk-ice chemistry in hot cores. Glycine (NH2CH2COOH), the simplest amino acid, and related molecules such as glycinal, propionic acid, and propanal, are included in the chemical network. Glycine is found to form in moderate abundance within and upon dust-grain ices via three radical-addition mechanisms, with no single mechanism strongly dominant. Glycine production in the ice occurs over temperatures ~40-120 K. Peak gas-phase glycine fractional abundances lie in the range 8 × 10-11-8 × 10-9, occurring at ~200 K, the evaporation temperature of glycine. A gas-phase mechanism for glycine production is tested and found insignificant, even under optimal conditions. A new spectroscopic radiative-transfer model is used, allowing the translation and comparison of the chemical-model results with observations of specific sources. Comparison with the nearby hot-core source NGC 6334 IRS1 shows excellent agreement with integrated line intensities of observed species, including methyl formate. The results for glycine are consistent with the current lack of a detection of this molecule toward other sources; the high evaporation temperature of glycine renders the emission region extremely compact. Glycine detection with ALMA is predicted to be highly plausible, for bright, nearby sources with narrow emission lines. Photodissociation of water and subsequent hydrogen abstraction from organic molecules by OH, and NH2, are crucial to the buildup of complex organic species in the ice. The inclusion of alternative branches within the network of radical-addition reactions appears important to the abundances of hot-core molecules; less favorable branching ratios may remedy the anomalously high abundance of glycolaldehyde predicted by this and previous models.

  16. Substitution of aspartic acid for glycine at position 310 in type II collagen produces achondrogenesis II, and substitution of serine at position 805 produces hypochondrogenesis: analysis of genotype-phenotype relationships.

    PubMed

    Bonaventure, J; Cohen-Solal, L; Ritvaniemi, P; Van Maldergem, L; Kadhom, N; Delezoide, A L; Maroteaux, P; Prockop, D J; Ala-Kokko, L

    1995-05-01

    Two different mutations were found in two unrelated probands with lethal chondrodysplasias, one with achondrogenesis type II and the other with the less severe phenotype of hypochondrogenesis. The mutations in the COL2A1 gene were identified by denaturing gradient gel electrophoresis analysis of genomic DNA followed by dideoxynucleotide sequencing and restriction site analysis. The proband with achondrogenesis type II had a heterozygous single-base mutation that substituted aspartate for glycine at position 310 of the alpha 1(II) chain of type II procollagen. The proband with hypochondrogenesis had a heterozygous single-base mutation that substituted serine for glycine at position 805. Type II collagen extracted from cartilage from the probands demonstrated the presence of type I collagen and a delayed electrophoretic mobility, indicating post-translational overmodifications. Analysis of CNBr peptides showed that, in proband 1, the entire peptides were overmodified. Examination of chondrocytes cultured in agarose or alginate indicated that there was a delayed secretion of type II procollagen. In addition, type II collagen synthesized by cartilage fragments from the probands demonstrated a decreased thermal stability. The melting temperature of the type II collagen containing the aspartate-for-glycine substitution was reduced by 4 degrees C, and that of the collagen containing the serine-for-glycine substitution was reduced by 2 degrees C. Electron microscopy of the extracellular matrix from the chondrocyte cultures showed a decreased density of matrix and the presence of unusually short and thin fibrils. Our results indicate that glycine substitutions in the N-terminal region of the type II collagen molecule can produce more severe phenotypes than mutations in the C-terminal region. The aspartate-for-glycine substitution at position 310, which was associated with defective secretion and a probable increased degradation of collagen, is the most destabilizing

  17. Substitution of aspartic acid for glycine at position 310 in type II collagen produces achondrogenesis II, and substitution of serine at position 805 produces hypochondrogenesis: analysis of genotype-phenotype relationships.

    PubMed Central

    Bonaventure, J; Cohen-Solal, L; Ritvaniemi, P; Van Maldergem, L; Kadhom, N; Delezoide, A L; Maroteaux, P; Prockop, D J; Ala-Kokko, L

    1995-01-01

    Two different mutations were found in two unrelated probands with lethal chondrodysplasias, one with achondrogenesis type II and the other with the less severe phenotype of hypochondrogenesis. The mutations in the COL2A1 gene were identified by denaturing gradient gel electrophoresis analysis of genomic DNA followed by dideoxynucleotide sequencing and restriction site analysis. The proband with achondrogenesis type II had a heterozygous single-base mutation that substituted aspartate for glycine at position 310 of the alpha 1(II) chain of type II procollagen. The proband with hypochondrogenesis had a heterozygous single-base mutation that substituted serine for glycine at position 805. Type II collagen extracted from cartilage from the probands demonstrated the presence of type I collagen and a delayed electrophoretic mobility, indicating post-translational overmodifications. Analysis of CNBr peptides showed that, in proband 1, the entire peptides were overmodified. Examination of chondrocytes cultured in agarose or alginate indicated that there was a delayed secretion of type II procollagen. In addition, type II collagen synthesized by cartilage fragments from the probands demonstrated a decreased thermal stability. The melting temperature of the type II collagen containing the aspartate-for-glycine substitution was reduced by 4 degrees C, and that of the collagen containing the serine-for-glycine substitution was reduced by 2 degrees C. Electron microscopy of the extracellular matrix from the chondrocyte cultures showed a decreased density of matrix and the presence of unusually short and thin fibrils. Our results indicate that glycine substitutions in the N-terminal region of the type II collagen molecule can produce more severe phenotypes than mutations in the C-terminal region. The aspartate-for-glycine substitution at position 310, which was associated with defective secretion and a probable increased degradation of collagen, is the most destabilizing

  18. Differences in postingestive metabolism of glutamate and glycine between C57BL/6ByJ and 129P3/J mice

    PubMed Central

    Ji, Hong; Bachmanov, Alexander A.

    2013-01-01

    Amino acids are essential nutrients for living organisms. There are genetic differences in voluntary consumption of amino acids among mouse strains. In two-bottle preference tests, C57BL/6ByJ (B6) mice consume more glutamate (Glu) and glycine (Gly) solutions than do 129P3/J (129) mice. To examine the role of postingestive metabolism of these amino acids in regulation of their intake, we compared metabolism of orally administered Glu and Gly in B6 and 129 mice. After administration of Glu, there were increases in circulating glucose and insulin in B6 mice, whereas 129 mice had elevated blood alanine and body temperature. After ingestion of Gly, B6 mice had increases in blood glucose, whereas there was an elevation of body temperature in 129 mice. These data suggest that B6 mice preferentially convert ingested Glu and Gly to glucose in contrast to 129 mice, which preferentially use them for thermogenesis. This study strongly supports the hypothesis that the metabolic fate of a nutrient plays an important regulatory role in control of its intake. This is the first detailed study of mouse strain differences in amino acid metabolism. PMID:17895396

  19. Detection of cyanotoxins, β-N-methylamino-L-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis.

    PubMed

    Banack, Sandra Anne; Caller, Tracie; Henegan, Patricia; Haney, James; Murby, Amanda; Metcalf, James S; Powell, James; Cox, Paul Alan; Stommel, Elijah

    2015-02-01

    A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-L-alanine (BMAA), a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam. Muscle, liver, and brain tissue samples from a Lake Mascoma carp, as well as filtered aerosol samples, were analyzed for microcystins (MC), free and protein-bound BMAA, and the BMAA isomers 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG). In carp brain, BMAA and DAB concentrations were 0.043 μg/g ± 0.02 SD and 0.01 μg/g ± 0.002 SD respectively. In carp liver and muscle, the BMAA concentrations were 1.28 μg/g and 1.27 μg/g respectively, and DAB was not detected. BMAA was detected in the air filters, as were the isomers DAB and AEG. These results demonstrate that a putative cause for ALS, BMAA, exists in an environment that has a documented cluster of ALS. Although cause and effect have not been demonstrated, our observations and measurements strengthen the association. PMID:25643180

  20. Detection of Cyanotoxins, β-N-methylamino-l-alanine and Microcystins, from a Lake Surrounded by Cases of Amyotrophic Lateral Sclerosis

    PubMed Central

    Banack, Sandra Anne; Caller, Tracie; Henegan, Patricia; Haney, James; Murby, Amanda; Metcalf, James S.; Powell, James; Cox, Paul Alan; Stommel, Elijah

    2015-01-01

    A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-l-alanine (BMAA), a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam. Muscle, liver, and brain tissue samples from a Lake Mascoma carp, as well as filtered aerosol samples, were analyzed for microcystins (MC), free and protein-bound BMAA, and the BMAA isomers 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG). In carp brain, BMAA and DAB concentrations were 0.043 μg/g ± 0.02 SD and 0.01 μg/g ± 0.002 SD respectively. In carp liver and muscle, the BMAA concentrations were 1.28 μg/g and 1.27 μg/g respectively, and DAB was not detected. BMAA was detected in the air filters, as were the isomers DAB and AEG. These results demonstrate that a putative cause for ALS, BMAA, exists in an environment that has a documented cluster of ALS. Although cause and effect have not been demonstrated, our observations and measurements strengthen the association. PMID:25643180

  1. Monopeptide versus Monopeptoid: Insights on Structure and Hydration of Aqueous Alanine and Sarcosine via X-ray Absorption Spectroscopy

    SciTech Connect

    Uejio, Janel S.; Schwartz, Craig P.; Duffin, Andrew M.; England, Alice; Prendergast, David; Saykally, Richard J.

    2009-11-19

    Despite the obvious significance, the aqueous interactions of peptides remain incompletely understood. Their synthetic analogues called peptoids (poly-N-substituted glycines), have recently emerged as a promising biomimetic material, particularly due to their robust secondary structure and resistance to denaturation. We describe comparative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy studies of aqueous sarcosine, the simplest peptoid, and alanine, its peptide isomer, interpreted by density functional theory calculations. The sarcosine nitrogen K-edge spectrum is blue-shifted with respect to that of alanine, in agreement with our calculations; we conclude that this shift results primarily from the methyl group substitution on the nitrogen of sarcosine. Our calculations indicate that the nitrogen K-edge spectrum of alanine differs significantly between dehydrated and hydrated scenarios, while that of the sarcosine zwitterion is less affected by hydration. In contrast, the computed sarcosine spectrum is greatly impacted by conformational variations, while the alanine spectrum is not. This relates to a predicted solvent dependence for alanine, as compared to sarcosine. Additionally, we show the theoretical nitrogen K-edge spectra to be sensitive to the degree of hydration, indicating that experimental X-ray spectroscopy may be able to distinguish between bulk and partial hydration, such as found in confined environments near proteins and in reverse micelles.

  2. Neutral amino acid transport in bovine articular chondrocytes.

    PubMed

    Barker, G A; Wilkins, R J; Golding, S; Ellory, J C

    1999-02-01

    1. The sodium-dependent amino acid transport systems responsible for proline, glycine and glutamine transport, together with the sodium-independent systems for leucine and tryptophan, have been investigated in isolated bovine chondrocytes by inhibition studies and ion replacement. Each system was characterized kinetically. 2. Transport via system A was identified using the system-specific analogue alpha-methylaminoisobutyric acid (MeAIB) as an inhibitor of proline, glycine and glutamine transport. 3. Uptake of proline, glycine and glutamine via system ASC was identified by inhibition with alanine or serine. 4. System Gly was identified by the inhibition of glycine transport with excess sarcosine (a substrate for system Gly) whilst systems A and ASC were inhibited. This system, having a very limited substrate specificity and tissue distribution, was also shown to be Na+ and Cl- dependent. Evidence for expression of the system Gly component GLYT-1 was obtained using the reverse transcriptase-polymerase chain reaction (RT-PCR). 5. System N, also of narrow substrate specificity and tissue distribution, was shown to be present in chondrocytes. Na+-dependent glutamine uptake was inhibited by high concentrations of histidine (a substrate of system N) in the presence of excess MeAIB and serine. 6. System L was identified using the system specific analogue 2-aminobicyclo(2,2, 1)heptane-2-carboxylic acid (BCH) and D-leucine as inhibitors of leucine and tryptophan transport. 7. The presence of system T was tested by using leucine, tryptophan and tyrosine inhibition. It was concluded that this system was absent in the chondrocyte. 8. Kinetic analysis showed the Na+-independent chondrocyte L system to have apparent affinities for leucine and tryptophan of 125 +/- 27 and 36 +/- 11 microM, respectively. 9. Transport of the essential amino acids leucine and tryptophan into bovine chondrocytes occurs only by the Na+-independent system L, but with a higher affinity than the

  3. Role of alanine-valine transaminase in Salmonella typhimurium and analysis of an avtA::Tn5 mutant.

    PubMed Central

    Berg, C M; Whalen, W A; Archambault, L B

    1983-01-01

    In Salmonella typhimurium, as in Escherichia coli, mutations in avtA, the gene encoding the alanine-valine transaminase (transaminase C), are silent unless they are combined with mutations involved in isoleucine-valine biosynthesis. avtA is repressed by leucine or alanine but not by valine. Transaminase C is found at reduced levels upon starvation for any one of several amino acids. We hypothesize that this is due to repression of avtA by the elevated alanine and leucine pools found in amino acid-starved cells. PMID:6309735

  4. Role of alanine-valine transaminase in Salmonella typhimurium and analysis of an avtA::Tn5 mutant.

    PubMed

    Berg, C M; Whalen, W A; Archambault, L B

    1983-09-01

    In Salmonella typhimurium, as in Escherichia coli, mutations in avtA, the gene encoding the alanine-valine transaminase (transaminase C), are silent unless they are combined with mutations involved in isoleucine-valine biosynthesis. avtA is repressed by leucine or alanine but not by valine. Transaminase C is found at reduced levels upon starvation for any one of several amino acids. We hypothesize that this is due to repression of avtA by the elevated alanine and leucine pools found in amino acid-starved cells. PMID:6309735

  5. Polymers with complexing properties. Simple poly(amino acids)

    NASA Technical Reports Server (NTRS)

    Roque, J. M.

    1978-01-01

    The free amino (0.3 equiv/residue) and carboxyl (0.5 equiv/residue) groups of thermal polylysine increased dramatically on treatment with distilled water. The total hydrolysis of such a polymer was abnormal in that only about 50% of the expected amino acids were recovered. Poly (lysine-co-alanine-co-glycine) under usual conditions hydrolyzed completely in 8 hours; whereas, when it was pretreated with diazomethane, a normal period of 24 hours was required to give (nearly) the same amounts of each free amino acid as compared with those obtained from the untreated polymer. The amino groups of the basic thermal poly(amino acids) were sterically hindered. The existence of nitrogen atoms linking two or three chains and reactive groups (anhydride, imine) were proposed.

  6. Ultraviolet radiation induces stress in etiolated Landoltia punctata, as evidenced by the presence of alanine, a universal stress signal: a ¹⁵N NMR study.

    PubMed

    Monselise, E B-I; Levkovitz, A; Kost, D

    2015-01-01

    Analysis with (15) N NMR revealed that alanine, a universal cellular stress signal, accumulates in etiolated duckweed plants exposed to 15-min pulsed UV light, but not in the absence of UV irradiation. The addition of 10 mm vitamin C, a radical scavenger, reduced alanine levels to zero, indicating the involvement of free radicals. Free D-alanine was detected in (15) N NMR analysis of the chiral amino acid content, using D-tartaric acid as solvent. The accumulation of D-alanine under stress conditions presents a new perspective on the biochemical processes taking place in prokaryote and eukaryote cells. PMID:24889211

  7. Effects of high-salinity seawater acclimation on the levels of D-alanine in the muscle and hepatopancreas of kuruma prawn, Marsupenaeus japonicus.

    PubMed

    Yoshikawa, Naoko; Yokoyama, Masahumi

    2015-12-10

    Changes in D- and L-alanine contents were determined in the muscle and hepatopancreas of kuruma prawn Marsupenaeus japonicus, during acclimation from seawater containing 100% salinity to artificial seawater containing 150% salinity. In the hepatopancreas, contents of both amino acids increased by approximately threefold. The activity of alanine racemase, which catalyzes the interconversion of D- and L-alanine, also increased in the high-salinity seawater. In addition, the expression of the gene encoding alanine racemase increased in the hepatopancreas with an increase in the alanine racemase activity. These data indicate that the biosynthesis of D- and L-alanine is controlled by the gene expression level of alanine racemase, and D-alanine in the hepatopancreas functions as a major osmolyte for isosmotic regulation. In contrast, the content of D-alanine and alanine racemase activity did not change in the muscle during hyper-osmotic acclimation. Therefore, we suggest that D-alanine, which exists in the several tissues of M. japonicus, is considered to be utilized in some different physiological phenomena in different tissues. PMID:26025417

  8. Gustatory responsiveness to the 20 proteinogenic amino acids in the spider monkey (Ateles geoffroyi).

    PubMed

    Larsson, Jenny; Maitz, Anna; Hernandez Salazar, Laura Teresa; Laska, Matthias

    2014-03-29

    The gustatory responsiveness of four adult spider monkeys to the 20 proteinogenic amino acids was assessed in two-bottle preference tests of brief duration (1min). We found that Ateles geoffroyi responded with significant preferences for seven amino acids (glycine, l-proline, l-alanine, l-serine, l-glutamic acid, l-aspartic acid, and l-lysine) when presented at a concentration of 100mM and/or 200mM and tested against water. At the same concentrations, the animals significantly rejected five amino acids (l-tryptophan, l-tyrosine, l-valine, l-cysteine, and l-isoleucine) and were indifferent to the remaining tastants. Further, the results show that the spider monkeys discriminated concentrations as low as 0.2mM l-lysine, 2mM l-glutamic acid, 10mM l-proline, 20mM l-valine, 40mM glycine, l-serine, and l-aspartic acid, and 80mM l-alanine from the alternative stimulus, with individual animals even scoring lower threshold values. A comparison between the taste qualities of the proteinogenic amino acids as described by humans and the preferences and aversions observed in the spider monkeys suggests a fairly high degree of agreement in the taste quality perception of these tastants between the two species. A comparison between the taste preference thresholds obtained with the spider monkeys and taste detection thresholds reported in human subjects suggests that the taste sensitivity of A. geoffroyi for the amino acids tested here might match that of Homo sapiens. The results support the assumption that the taste responses of spider monkeys to proteinogenic amino acids might reflect an evolutionary adaptation to their frugivorous and thus protein-poor diet. PMID:24480073

  9. Glucose and Alanine Metabolism in Children with Maple Syrup Urine Disease

    PubMed Central

    Haymond, Morey W.; Ben-Galim, Ehud; Strobel, Karen E.

    1978-01-01

    In vitro studies have suggested that catabolism of branched chain amino acids is linked with alanine and glutamine formed in, and released from, muscle. To explore this possibility in vivo, static and kinetic studies were performed in three patients with classical, and one patient with partial, branched chain α-ketoacid decarboxylase deficiency (maple syrup urine disease, MSUD) and compared to similar studies in eight age-matched controls. The subjects underwent a 24-30-h fast, and a glucose-alanine flux study using stable isotopes. Basal plasma leucine concentrations were elevated (P <0.001) in patients with MSUD (1,140±125 μM vs. 155±18 μM in controls); and in contrast to the controls, branched chain amino acid concentrations in plasma increased during the fast in the MSUD patients. Basal plasma alanine concentrations were lower (P <0.01) in patients with classical MSUD (153±8 μM vs. 495±27 μM in controls). This discrepancy was maintained throughout the fast despite a decrease in alanine concentrations in both groups. Plasma alanine and leucine concentrations in the patient with partial MSUD were intermediate between those of the controls and the subjects with the classical form of the disease. Circulating ketone bodies and glucoregulatory hormones concentrations were similar in the MSUD and normal subjects during the fast. Alanine flux rates in two patients with classical MSUD (3.76 and 4.00 μmol/Kg per min) and the patient with partial MSUD (5.76 μmol/Kg per min) were clearly lower than those of the controls (11.72±2.53 [SD] μmol/Kg per min). After short-term starvation, glucose flux and fasting concentrations were similar in the MSUD patients and normal subjects. These data indicate that branched chain amino acid catabolism is an important rate limiting event for alanine production in vivo. PMID:670400

  10. Purification and characterization of alanine dehydrogenase from a cyanobacterium, Phormidium lapideum.

    PubMed

    Sawa, Y; Tani, M; Murata, K; Shibata, H; Ochiai, H

    1994-11-01

    Alanine dehydrogenase (AlaDH) was purified to homogeneity from cell-free extracts of a non-N2-fixing filamentous cyanobacterium, Phormidium lapideum. The molecular mass of the native enzyme was 240 kDa, and SDS-PAGE revealed a minimum molecular mass of 41 kDa, suggesting a six-subunit structure. The NH2 terminal amino acid residues of the purified AlaDH revealed marked similarity with that of other AlaDHs. The enzyme was highly specific for L-alanine and NAD+, but showed relatively low amino-acceptor specificity. The pH optimum was 8.4 for reductive amination of pyruvate and 9.2 for oxidative deamination of L-alanine. The Km values were 5.0 mM for L-alanine and 0.04 mM for NAD+, 0.33 mM for pyruvate, 60.6 mM for NH4+ (pH 8.7), and 0.02 mM for NADH. Various L-amino acids including alanine, serine, threonine, and aromatic amino acids, inhibited the aminating reaction. The enzyme was inactivated upon incubation with pyridoxal 5'-phosphate (PLP) followed by reduction with sodium borohydride. The copresence of NADH and pyruvate largely protected the enzyme against the inactivation by PLP. PMID:7896761

  11. L-alanine in a droplet of water: a density-functional molecular dynamics study.

    PubMed

    Degtyarenko, Ivan M; Jalkanen, Karl J; Gurtovenko, Andrey A; Nieminen, Risto M

    2007-04-26

    We report the results of a Born-Oppenheimer molecular dynamics study on an L-alanine amino acid in neutral aqueous solution. The whole system, the L-alanine zwitterion and 50 water molecules, was treated quantum mechanically. We found that the hydrophobic side chain (R = CH3) defines the trajectory path of the molecule. Initially fully hydrated in an isolated droplet of water, the amino acid moves to the droplet's surface, exposing its hydrophobic methyl group and alpha-hydrogen out of the water. The structure of an L-alanine with the methyl group exposed to the water surface was found to be energetically favorable compared to a fully hydrated molecule. The dynamic behavior of the system suggests that the first hydration shell of the amino acid is localized around carboxylate (CO2-) and ammonium (NH3+) functional groups; it is highly ordered and quite rigid. In contrast, the hydration shell around the side chain is much less structured, suggesting a modest influence of the methyl group on the structure of water. The number of water molecules in the first hydration shell of an alanine molecule is constantly changing; the average number was found to equal 7. The molecular dynamics results show that L-alanine in water does not have a preferred conformation, as all three of the molecule's functional sites (i.e., CH3, NH3+, CO2-) perform rotational movements around the C(alpha)-site bond. PMID:17407339

  12. The origin of amino acids in lunar regolith samples

    NASA Astrophysics Data System (ADS)

    Elsila, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5-651.1 ppb in 6 M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: α-aminoisobutyric acid (AIB), D- and L-β-amino-n-butyric acid (β-ABA), DL-α-amino-n-butyric acid, γ-amino-n-butyric acid, β-alanine, and ε-amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic β-ABA were present in some samples. We also examined seven samples from Apollo 15, 16, and 17 that had been previously allocated to a non-curation laboratory, as well as two samples of terrestrial dunite from studies of lunar module engine exhaust that had been stored in the same laboratory. The amino acid content of these samples suggested that contamination had occurred during non-curatorial storage. We measured the compound-specific carbon isotopic ratios of glycine, β-alanine, and L-alanine in Apollo regolith sample 70011 and found values of -21‰ to -33‰. These values are consistent with those seen in terrestrial biology and, together with the enantiomeric compositions of the proteinogenic amino acids, suggest that terrestrial biological contamination is a primary source of the

  13. Soft x-ray ionization induced fragmentation of glycine

    SciTech Connect

    Itälä, E.; Kooser, K.; Rachlew, E.; Huels, M. A.; Kukk, E.

    2014-06-21

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the C–C{sub α} bond and the presence of the CNH{sub 2}{sup +} fragment.

  14. Soft x-ray ionization induced fragmentation of glycine

    NASA Astrophysics Data System (ADS)

    Itälä, E.; Kooser, K.; Rachlew, E.; Huels, M. A.; Kukk, E.

    2014-06-01

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the C-Cα bond and the presence of the CNH_2^+ fragment.

  15. Repeated Supramaximal Exercise-Induced Oxidative Stress: Effect of β-Alanine Plus Creatine Supplementation

    PubMed Central

    Belviranli, Muaz; Okudan, Nilsel; Revan, Serkan; Balci, Serdar; Gokbel, Hakki

    2016-01-01

    Background: Carnosine is a dipeptide formed from the β-alanine and histidine amino acids and found in mainly in the brain and muscle, especially fast twitch muscle. Carnosine and creatine has an antioxidant effect and carnosine accounts for about 10% of the muscle's ability to buffer the H+ ions produced by exercise. Objectives: The aim of the study was to investigate the effects of beta alanine and/or creatine supplementation on oxidant and antioxidant status during repeated Wingate tests (WTs). Patients and Methods: Forty four sedentary males participated in the study. Participants performed three 30s WTs with 2 minutes rest between exercise bouts. After the first exercise session, the subjects were assigned to one of four groups: Placebo, Creatine, Beta-alanine and Beta-alanine plus creatine. Participants ingested twice per day for 22 consecutive days, then four times per day for the following 6 days. After the supplementation period the second exercise session was applied. Blood samples were taken before and immediately after the each exercise session for the analysis of oxidative stress and antioxidant markers. Results: Malondialdehyde levels and superoxide dismutase activities were affected by neither supplementation nor exercise. During the pre-supplementation session, protein carbonyl reduced and oxidized glutathione (GSH and GSSG) levels increased immediately after the exercise. However, during the post-supplementation session GSH and GSSG levels increased in beta-alanine and beta-alanine plus creatine groups immediately after the exercise compared to pre-exercise. In addition, during the post-supplementation session total antioxidant capacity increased in beta-alanine group immediately after the exercise. Conclusions: Beta-alanine supplementation has limited antioxidant effect during the repeated WTs. PMID:27217925

  16. Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: amino acids and biomass burning derived organic species.

    PubMed

    Chan, Man Nin; Choi, Man Yee; Ng, Nga Lee; Chan, Chak K

    2005-03-15

    Amino acids and organic species derived from biomass burning can potentially affect the hygroscopicity and cloud condensation activities of aerosols. The hygroscopicity of seven amino acids (glycine, alanine, serine, glutamine, threonine, arginine, and asparagine) and three organic species most commonly detected in biomass burning aerosols (levoglucosan, mannosan, and galactosan) were measured using an electrodynamic balance. Crystallization was observed in the glycine, alanine, serine, glutamine, and threonine particles upon evaporation of water, while no phase transition was observed in the arginine and asparagine particles even at 5% relative humidity (RH). Water activity data from these aqueous amino acid particles, except arginine and asparagine, was used to revise the interaction parameters in UNIQUAC functional group activity coefficients to give predictions to within 15% of the measurements. Levoglucosan, mannosan, and galactosan particles did not crystallize nor did they deliquesce. They existed as highly concentrated liquid droplets at low RH, suggesting that biomass burning aerosols retain water at low RH. In addition, these particles follow a very similar pattern in hygroscopic growth. A generalized growth law (Gf = (1 - RH/100)-0.095) is proposed for levoglucosan, mannosan, and galactosan particles. PMID:15819209

  17. Branched-chain amino acid supplementation during bed rest: effect on recovery

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Donaldson, M. R.; Leskiw, M. J.; Schluter, M. D.; Baggett, D. W.; Boden, G.

    2003-01-01

    Bed rest is associated with a loss of protein from the weight-bearing muscle. The objectives of this study are to determine whether increasing dietary branched-chain amino acids (BCAAs) during bed rest improves the anabolic response after bed rest. The study consisted of a 1-day ambulatory period, 14 days of bed rest, and a 4-day recovery period. During bed rest, dietary intake was supplemented with either 30 mmol/day each of glycine, serine, and alanine (group 1) or with 30 mmol/day each of the three BCAAs (group 2). Whole body protein synthesis was determined with U-(15)N-labeled amino acids, muscle, and selected plasma protein synthesis with l-[(2)H(5)]phenylalanine. Total glucose production and gluconeogenesis from alanine were determined with l-[U-(13)C(3)]alanine and [6,6-(2)H(2)]glucose. During bed rest, nitrogen (N) retention was greater with BCAA feeding (56 +/- 6 vs. 26 +/- 12 mg N. kg(-1). day(-1), P < 0.05). There was no effect of BCAA supplementation on either whole body, muscle, or plasma protein synthesis or the rate of 3-MeH excretion. Muscle tissue free amino acid concentrations were increased during bed rest with BCAA (0.214 +/- 0.066 vs. 0.088 +/- 0.12 nmol/mg protein, P < 0.05). Total glucose production and gluconeogenesis from alanine were unchanged with bed rest but were significantly reduced (P < 0.05) with the BCAA group in the recovery phase. In conclusion, the improved N retention during bed rest is due, at least in part, to accretion of amino acids in the tissue free amino acid pools. The amount accreted is not enough to impact protein kinetics in the recovery phase but does improve N retention by providing additional essential amino acids in the early recovery phase.

  18. Investigation of the alpha(1)-glycine receptor channel-opening kinetics in the submillisecond time domain.

    PubMed

    Grewer, C

    1999-08-01

    The activation and desensitization kinetics of the human alpha(1)-homooligomeric glycine receptor, which was transiently expressed in HEK 293 cells, were studied with a 100-microseconds time resolution to determine the rate and equilibrium constants of individual receptor reaction steps. Concentration jumps of the activating ligands glycine and beta-alanine were initiated by photolysis of caged, inactive precursors and were followed by neurotransmitter binding, receptor-channel opening, and receptor desensitization steps that were separated along the time axis. Analysis of the ligand concentration-dependence of these processes allows the determination of 1) the rate constants of glycine binding, k(+1) approximately 10(7) M(-1) s(-1), and dissociation, k(-1) = 1900 s(-1); 2) the rates of receptor-channel opening, k(op) = 2200 s(-1), and closing, k(cl) = 38 s(-1); 3) the receptor desensitization rate, alpha = 0.45 s(-1); 4) the number of occupied ligand binding sites necessary for receptor-channel activation and desensitization, n >/= 3; and 5) the maximum receptor-channel open probability, p(0) > 0.95. The kinetics of receptor-channel activation are insensitive to the transmembrane potential. A general model for glycine receptor activation explaining the experimental data consists of a sequential mechanism based on rapid ligand-binding steps preceding a rate-limiting receptor-channel opening reaction and slow receptor desensitization. PMID:10423421

  19. Light-activated amino acid transport in Halobacterium halobium envelope vesicles

    NASA Technical Reports Server (NTRS)

    Macdonald, R. E.; Lanyi, J. K.

    1977-01-01

    Vesicles prepared from Halobacterium halobium cell envelopes accumulate amino acids in response to light-induced electrical and chemical gradients. Nineteen of 20 commonly occurring amino acids have been shown to be actively accumulated by these vesicles in response to illumination or in response to an artificially created Na+ gradient. On the basis of shared common carriers the transport systems can be divided into eight classes, each responsible for the transport of one or several amino acids: arginine, lysine, histidine; asparagine, glutamine; alanine, glycine, threonine, serine; leucine, valine, isoleucine, methionine; phenylalanine, tyrosine, tryptophan; aspartate; glutamate; proline. Available evidence suggests that these carriers are symmetrical in that amino acids can be transported equally well in both directions across the vesicle membranes. A tentative working model to account for these observations is presented.

  20. GABA, 5-HT and amino acids in the rotifers Brachionus plicatilis and Brachionus rotundiformis.

    PubMed

    Gallardo, W G; Hagiwara, A; Hara, K; Soyano, K; Snell, T W

    2000-11-01

    gamma-Aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT) have been shown to increase the reproduction of the Brachionus plicatilis (NH3L strain). In the present study, the endogenous presence of GABA and 5-HT in the rotifers B. plicatilis (NH3L and Kamiura strains) and Brachionus rotundiformis (Langkawi strain) were confirmed by dot blot immunoassay and high-performance liquid chromatography (HPLC). HPLC showed that GABA and 5-HT concentrations in the three rotifer strains range from 71 to 188 pmol/mg and from 12 to 64 pmol/mg, respectively. A total of 33 amino acids were also detected in B. plicatilis and B. rotundiformis, with glutamic acid, serine, glycine, taurine, threonine, alanine, arginine, proline, valine and isoleucine in high concentrations relative to other amino acids. PMID:11118940

  1. In-Situ Measurements of the Radiation Stability of Amino Acids at 15-140 K

    NASA Technical Reports Server (NTRS)

    Gerakines, Perry A.; Hudson, Reggie L.; Moore, Marla H.; Bell, Jan-Luca

    2012-01-01

    We present new kinetics data on the radiolytic destruction of amino acids measured in situ with infrared spectroscopy. Samples were irradiated at 15, 100, and 140 K with D.8-MeV protons, and amino-acid decay was followed at each temperature with and without H2O present. Observed radiation products included CO2 and amines, consistent with amino-acid decarboxylation. The half-lives of glycine, alanine, and phenylalanine were estimated for various extraterrestrial environments. Infrared spectral changes demonstrated the conversion from the non-zwitterion structure NH2-CH2(R)-COOH at 15 K to the zwitterion structure +NH3-CH2(R)-COO- at 140 K for each amino acid studied.

  2. Cometary Glycine Detected in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, D. P.; Dworkin, J. P.

    2010-01-01

    In January 2006, NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth. The Stardust cometary collector consisted of aerogel cells lined with aluminum foils designed to capture impacting particles and facilitate removal of the aerogel. Preliminary examinations of these comet-exposed materials revealed a suite of organic compounds, including several amines and amino acids which were later examined in more detail. Methylamine (NH2CH3) and ethylamine (NH2C2H5) were detected in the exposed aerogel at concentrations greatly exceeding those found in control samples, while the amino acid glycine (NH2CH2COOH) was detected in several foil samples as well as in the comet-exposed aerogel. None of these three compounds had been previously detected in comets, although methylamine had been observed in the interstellar medium. Although comparison with control samples suggested that the detected glycine was cometary. the previous work was not able to conclusively identify its origin. Here, we present the results of compound-specific carbon isotopic analysis of glycine in Stardust cometary collector foils. Several foils from the interstellar side of the Stardust collector were also analyzed for amino acid abundance, but concentrations were too low to perform isotopic ana!ysis.

  3. Efficient Enzymatic Preparation of (13) N-Labelled Amino Acids: Towards Multipurpose Synthetic Systems.

    PubMed

    da Silva, Eunice S; Gómez-Vallejo, Vanessa; Baz, Zuriñe; Llop, Jordi; López-Gallego, Fernando

    2016-09-12

    Nitrogen-13 can be efficiently produced in biomedical cyclotrons in different chemical forms, and its stable isotopes are present in the majority of biologically active molecules. Hence, it may constitute a convenient alternative to Fluorine-18 and Carbon-11 for the preparation of positron-emitter-labelled radiotracers; however, its short half-life demands for the development of simple, fast, and efficient synthetic processes. Herein, we report the one-pot, enzymatic and non-carrier-added synthesis of the (13) N-labelled amino acids l-[(13) N]alanine, [(13) N]glycine, and l-[(13) N]serine by using l-alanine dehydrogenase from Bacillus subtilis, an enzyme that catalyses the reductive amination of α-keto acids by using nicotinamide adenine dinucleotide (NADH) as the redox cofactor and ammonia as the amine source. The integration of both l-alanine dehydrogenase and formate dehydrogenase from Candida boidinii in the same reaction vessel to facilitate the in situ regeneration of NADH during the radiochemical synthesis of the amino acids allowed a 50-fold decrease in the concentration of the cofactor without compromising reaction yields. After optimization of the experimental conditions, radiochemical yields were sufficient to carry out in vivo imaging studies in small rodents. PMID:27515007

  4. Compartmentalization of amino acids in surfactant aggregates - Partitioning between water and aqueous micellar sodium dodecanoate and between hexane and dodecylammonium propionate trapped water in hexane

    NASA Technical Reports Server (NTRS)

    Fendler, J. H.; Nome, F.; Nagyvary, J.

    1975-01-01

    The partitioning of amino acids (glycine, alanine, leucine, phenylalanine, histidine, aspartic acid, glutamic acid, lysine, isoleucine, threonine, serine, valine, proline, arginine) in aqueous and nonaqueous micellar systems was studied experimentally. Partitioning from neat hexane into dodecylammonium propionate trapped water in hexane was found to be dependent on both electrostatic and hydrophobic interactions, which implies that the interior of dodecylammonium propionate aggregates is negatively charged and is capable of hydrogen bonding in addition to providing a hydrophobic environment. Unitary free energies of transfer of amino acid side chains from hexane to water were determined and solubilities of amino acids in neat hexane substantiated the amino acid hydrophobicity scale. The relevance of the experiments to prebiotic chemistry was examined.

  5. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  6. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  7. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  8. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  9. β-N-methylamino-l-alanine (BMAA) and isomers: Distribution in different food web compartments of Thau lagoon, French Mediterranean Sea.

    PubMed

    Réveillon, Damien; Abadie, Eric; Séchet, Véronique; Masseret, Estelle; Hess, Philipp; Amzil, Zouher

    2015-09-01

    The neurotoxin BMAA (β-N-methylamino-l-alanine) and its isomer DAB (2,4-diaminobutyric acid) have been detected in seafood worldwide, including in Thau lagoon (French Mediterranean Sea). A cluster of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease associated with BMAA, has also been observed in this region. Mussels, periphyton (i.e. biofilms attached to mussels) and plankton were sampled between July 2013 and October 2014, and analyzed using HILIC-MS/MS. BMAA, DAB and AEG (N-(2-aminoethyl)glycine) were found in almost all the samples of the lagoon. BMAA and DAB were present at 0.58 and 0.83, 2.6 and 3.3, 4.0 and 7.2 μg g(-1) dry weight in plankton collected with nets, periphyton and mussels, respectively. Synechococcus sp., Ostreococcus tauri, Alexandrium catenella and eight species of diatoms were cultured and screened for BMAA and analogs. While Synechococcus sp., O. tauri and A. catenella did not produce BMAA under our culture conditions, four diatoms species contained both BMAA and DAB. Hence, diatoms may be a source of BMAA for mussels. Unlike other toxins produced by microalgae, BMAA and DAB were detected in significant amounts in tissues other than digestive glands in mussels. PMID:26254582

  10. About the detectability of glycine in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Lattelais, M.; Pauzat, F.; Pilmé, J.; Ellinger, Y.; Ceccarelli, C.

    2011-08-01

    Context. Glycine, the simplest of aminoacids, has been found in several carbonaceous meteorites. It remains unclear, however, wether glycine is formed in the interstellar medium (ISM) and therefore available everywhere in the Universe. For this reason, radioastronomers have searched for many years unsuccessfully to detect glycine in the ISM. Aims: We provide possible guidelines to optimize the return of these searches. Since, for most of the species observed so far in the ISM, the most abundant isomer of a given generic chemical formula is the most stable one (minimum energy principle (MEP)), we assess whether neutral glycine is the best molecule to search for or whether one of its isomers/conformers or ionic, protonated, or zwitterionic derivatives would have a higher probability of being detected. Methods: The question of the relative stability of these different species is addressed by means of quantum density functional theory (DFT) simulations within the hybrid B3LYP formalism. Each fully optimized structure is verified as a stationary point by means of a vibrational analysis. A comprehensive screening of 32 isomers/conformers of the C2H5O2N chemical formula (neutral, negative, and positive ions together with the corresponding protonated species and the possible zwitterionic structures) is carried out. In the sensitive case of the neutral compounds, more accurate relative energies were obtained by means of high level post Hartree-Fock coupled cluster calculations with large basis sets (CCSD(T)/cc-pVQZ). Results: We find that neutral glycine is not the most stable isomer and, therefore, probably not the most abundant one, which might explain why it has escaped detection so far. We find instead that N-methyl carbamic acid and methyl carbamate are the two most stable isomers and, therefore, probably the two most abundant ones. Among the non-neutral forms, we found that glycine is the most stable isomer only if protonated or zwitterionic if present in interstellar

  11. Activation-induced structural change in the GluN1/GluN3A excitatory glycine receptor

    SciTech Connect

    Balasuriya, Dilshan; Takahashi, Hirohide; Srivats, Shyam; Edwardson, J. Michael

    2014-08-08

    Highlights: • We studied the response of the GluN1/GluN3A excitatory glycine receptor to activation. • GluN1 and GluN3A subunits interacted within transfected cells. • The GluN1/GluN3A receptor was functionally active. • Glycine or D-serine caused a ∼1 nm height reduction in bilayer-integrated receptors. • This height reduction was abolished by the glycine antagonist DCKA. - Abstract: Unlike GluN2-containing N-methyl-D-aspartate (NMDA) receptors, which require both glycine and glutamate for activation, receptors composed of GluN1 and GluN3 subunits are activated by glycine alone. Here, we used atomic force microscopy (AFM) imaging to examine the response to activation of the GluN1/GluN3A excitatory glycine receptor. GluN1 and GluN3A subunits were shown to interact intimately within transfected tsA 201 cells. Isolated GluN1/GluN3A receptors integrated into lipid bilayers responded to addition of either glycine or D-serine, but not glutamate, with a ∼1 nm reduction in height of the extracellular domain. The height reduction in response to glycine was abolished by the glycine antagonist 5,7-dichlorokynurenic acid. Our results represent the first demonstration of the effect of activation on the conformation of this receptor.

  12. D-cycloserine transport in human intestinal epithelial (Caco-2) cells: mediation by a H(+)-coupled amino acid transporter.

    PubMed Central

    Thwaites, D. T.; Armstrong, G.; Hirst, B. H.; Simmons, N. L.

    1995-01-01

    1. The ability of D-cycloserine to act as a substrate for H+/amino acid symport has been tested in epithelial layers of Caco-2 human intestinal cells. 2. In Na(+)-free media with the apical bathing media held at pH 6.0, D-cycloserine (20 mM) is an effective inhibitor of net transepithelial transport (Jnet) of L-alanine (100 microM) and its accumulation (across the apical membrane) in a similar manner to amino acid substrates (L-alanine, beta-alanine, L-proline and glycine). In contrast L-valine was ineffective as an inhibitor for H+/amino acid symport. Both inhibition of L-alanine Jnet and its accumulation by D-cycloserine were dose-dependent, maximal inhibition being achieved by 5-10 mM. 3. Both D-cycloserine and known substrates for H+/amino acid symport stimulated an inward short circuit current (Isc) when voltage-clamped monolayers of Caco-2 epithelia, mounted in Ussing chambers, were exposed to apical substrate in Na(+)-free media, with apical pH held at 6.0. The D-cycloserine dependent increase in Isc was dose-dependent with an apparent Km = 15.8 +/- 2.0 (mean +/- s.e. mean) mM, and Vmax = 373 +/- 21 nmol cm-2h-1. 4. D-Cycloserine (20 mM) induced a prompt acidification of Caco-2 cell cytosol when superfused at the apical surface in both Na+ and Na(+)-free conditions. Cytosolic acidification in response to D-cycloserine was dependent upon superfusate pH, being attenuated at pH 8 and enhanced in acidic media. 5. The increment in Isc with 20 mM D-cycloserine was non-additive with other amino acid substrates for H+/amino acid symport. PMID:8548174

  13. A Sensitive VLA Search for Small-Scale Glycine Emission Toward OMC-1

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Pedelty, J. A.; Snyder, L. E.; Jewell, P. R.; Lovas, F. J.; Palmer, Patrick; Liu, S.-Y.

    2002-01-01

    We have conducted a deep Q-band (lambda-7 mm) search with the Very Large Array (VLA) toward OMC-1 for the lowest energy conformation (conformer I) of glycine (NH2CH2COOH) in four rotational transitions: the 6(sub 15)- 5(sub 14), 6(sub 24)-5(sub 23), 7(sub 17- 6(sub 16), and 7(sub 07)-6(sub 06). Our VLA observations sample the smallest-scale structures to date in the search for glycine toward OMC-1. No glycine emission features were detected. Thus if glycine exists in OMC-1, either it is below our detection limit, or it is more spatially extended than other large molecules in this source, or it is primarily in its high energy form (conformer II). Our VLA glycine fractional abundance limits in OMC-1 are comparable to those determined from previous IRAM 30m measurements -- somewhat better or worse depending on the specific source model -- and the entire approximately 1 foot primary beam of the VLA was searched while sensitive to an areal spatial scale approximately 150 times smaller than the 24 inch beam of the IRAM single-element telescope. In the course of this work, we detected and imaged the 4(sub 14)-3(sub 13) A and E transitions of methyl formate (HCOOCH3) and also the 2(sub 02) - 1(sub 01) transition of formic acid (HCOOH). Since formic acid is a possible precursor to glycine, our glycine limits and formic acid results provide a constraint on this potential formation chemistry route for glycine in OMC-1.

  14. Amino acid changes in a genetic strain of epileptic beagle dogs.

    PubMed

    van Gelder, N M; Edmonds, H L; Hegreberg, G A; Chatburn, C C; Clemmons, R M; Sylvester, D M

    1980-11-01

    A neurochemical evaluation of beagle dogs with naturally occurring spontaneous generalized convulsive seizures was performed. Amino acid profiles of serum, cerebrospinal fluid (CSF), and biopsied cerebral cortex from epileptic dogs were compared with those from seizure-free siblings. No differences in absolute levels were noted. However, when levels were normalized as a percent of total free amino acids, seizures was performed. Amino acid profiles of serum, cerebrospinal fluid (CEF), and biopsied cerebral cortex from epileptic dogs were compared with those seizure-free siblings. No differences also the two groups differed in certain respects. Ten significant correlations between amino acid pairs appeared in epileptic dogs, but only one was seen in seizure-free animals. Seven of these ten correlations involved glutamate or taurine. It was noted that the highly correlated amino acids (taurine, glutamate, glycine, glutamine, alanine) all utilize sodium-dependent membrane transport processes. The sum of glutamate, aspartate, and glycine levels (competing sodium-dependent high-affinity systems) was significantly lower in epileptic beagles. Since this difference was noted in serum but not CSF or brain, it may indicate a diminished capacity of sodium-dependent high-affinity renal transport for acidic and certain small neutral amino acids. PMID:6778970

  15. Determination of glycine in biofluid by hydrophilic interaction chromatography coupled with tandem mass spectrometry and its application to the quantification of glycine released by embryonal carcinoma stem cells.

    PubMed

    Tang, Ya-Bin; Teng, Lin; Sun, Fan; Wang, Xiao-Lin; Peng, Liang; Cui, Yong-Yao; Hu, Jin-Jia; Luan, Xin; Zhu, Liang; Chen, Hong-Zhuan

    2012-09-15

    Because glycine plays a prominent role in living creatures, an accurate and precise quantitative analysis method for the compound is needed. Herein, a new approach to analyze glycine by hydrophilic interaction chromatography (HILIC) coupled with electrospray ionization tandem mass spectrometry (ESI-MS/MS) was developed. This method avoids the use of derivatization and/or ion-pairing reagents. N-methyl-D-aspartate (NMDA) is used as the internal standard (IS). The mobile phase for the isocratic elution consisted of 10 mM ammonium formate in acetonitrile-water (70:30, v/v, adjusted to pH 2.8 with formic acid), and a flow rate of 250 μL/min was used. Two microliters of sample was injected for analysis. The signal was monitored in the positive multiple reaction monitoring (MRM) mode. The total run time was 5 min. The dynamic range was 40-2000 ng/mL for glycine in the biological matrix. The LLOQ (lower limit of quantification) of this method was 40 ng/mL (80 pg on column). The validated method was applied to determine the dynamic release of glycine from P19 embryonal carcinoma stem cells (ECSCs). Glycine spontaneously released from the ECSCs into the intercellular space gradually increased from 331.02±60.36 ng/mL at 2 min in the beginning to 963.52±283.80 ng/mL at 60 min and 948.27±235.09 ng/mL at 120 min, finally reaching a plateau, indicating that ECSCs consecutively release glycine until achieving equilibration between the release and the reuptake of the compound; on the contrary, the negative control NIH/3T3 embryonic fibroblast cells did not release glycine. This finding will help to improve our understanding of the novel effects of neurotransmitters, including glycine, on non-neural systems. PMID:22906796

  16. Stability of amino acids and their oligomerization under high-pressure conditions: implications for prebiotic chemistry.

    PubMed

    Otake, Tsubasa; Taniguchi, Takashi; Furukawa, Yoshihiro; Kawamura, Fumio; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2011-10-01

    The polymerization of amino acids leading to the formation of peptides and proteins is a significant problem for the origin of life. This problem stems from the instability of amino acids and the difficulty of their oligomerization in aqueous environments, such as seafloor hydrothermal systems. We investigated the stability of amino acids and their oligomerization reactions under high-temperature (180-400°C) and high-pressure (1.0-5.5 GPa) conditions, based on the hypothesis that the polymerization of amino acids occurred in marine sediments during diagenesis and metamorphism, at convergent margins on early Earth. Our results show that the amino acids glycine and alanine are stabilized by high pressure. Oligomers up to pentamers were formed, which has never been reported for alanine in the absence of a catalyst. The yields of peptides at a given temperature and reaction time were higher under higher-pressure conditions. Elemental, infrared, and isotopic analyses of the reaction products indicated that deamination is a key degradation process for amino acids and peptides under high-pressure conditions. A possible NH(3)-rich environment in marine sediments on early Earth may have further stabilized amino acids and peptides by inhibiting their deamination. PMID:21961531

  17. Radiolysis of alanine adsorbed in a clay mineral

    NASA Astrophysics Data System (ADS)

    Aguilar-Ovando, Ellen Y.; Negrón-Mendoza, Alicia

    2013-07-01

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically γ-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  18. Radiolysis of alanine adsorbed in a clay mineral

    SciTech Connect

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  19. Ionic conductivity, sintering and thermal expansion behaviors of mixed ion conductor BaZr 0.1Ce 0.7Y 0.1Yb 0.1O 3- δ prepared by ethylene diamine tetraacetic acid assisted glycine nitrate process

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoliang; Liu, Limin; Zhen, Jiangman; Zhu, Shengcai; Li, Baowen; Sun, Kening; Wang, Peng

    BaZr 0.1Ce 0.7Y 0.1Yb 0.1O 3- δ as a candidate electrolyte material is prepared by ethylene diamine tetraacetic acid assisted glycine-nitrate process. After calcining at 900 °C, the single-phase perovskite is obtained due to the better distribution of starting materials and the more feasible reaction kinetic conditions than solid state reaction method. The relative densities reach 96.8 and 98.4% respectively after sintering the pressed pellets at 1280 and 1400 °C for 10 h. In humidified oxygen the ionic conductivities are 0.015, 0.045, 0.101 and 0.207 S cm -1 at 500, 600, 700 and 800 °C, respectively. In air and humidified oxygen the activation energies for ionic conductivity are 66.1 and 68.9 kJ mol -1. In humidified hydrogen, however, different activation energies occur in low and high temperature ranges. The thermal expansion curve inflections at 500-800 °C with respect to possible phase changes are found. Zirconia aggregation possibly results in the higher activation energy and peculiar thermal expansion behavior. The results indicate the ethylene diamine tetraacetic acid assisted glycine-nitrate process is a very promising preparation method for solid oxide fuel cell practical application.

  20. Determination of muscle protein synthesis rates in fish using (2)H2O and (2)H NMR analysis of alanine.

    PubMed

    Marques, Cátia; Viegas, Filipa; Rito, João; Jones, John; Viegas, Ivan

    2016-09-15

    Following administration of deuterated water ((2)H2O), the fractional synthetic rate (FSR) of a given endogenous protein can be estimated by (2)H-enrichment quantification of its alanine residues. Currently, this is measured by mass spectrometry following a derivatization procedure. Muscle FSR was measured by (1)H/(2)H NMR analysis of alanine from seabass kept for 6 days in 5% (2)H-enriched saltwater, following acid hydrolysis and amino acid isolation by cation-exchange chromatography of muscle tissue. The analysis is simple and robust, and provides precise measurements of excess alanine (2)H-enrichment in the 0.1-0.4% range from 50 mmol of alanine recovered from muscle protein. PMID:27418547

  1. The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina

    PubMed Central

    Borycz, Janusz; Borycz, Jolanta A.; Edwards, Tara N.; Boulianne, Gabrielle L.; Meinertzhagen, Ian A.

    2012-01-01

    SUMMARY Flies recycle the photoreceptor neurotransmitter histamine by conjugating it to β-alanine to form β-alanyl-histamine (carcinine). The conjugation is regulated by Ebony, while Tan hydrolyses carcinine, releasing histamine and β-alanine. In Drosophila, β-alanine synthesis occurs either from uracil or from the decarboxylation of aspartate but detailed roles for the enzymes responsible remain unclear. Immunohistochemically detected β-alanine is present throughout the fly’s entire brain, and is enhanced in the retina especially in the pseudocone, pigment and photoreceptor cells of the ommatidia. HPLC determinations reveal 10.7 ng of β-alanine in the wild-type head, roughly five times more than histamine. When wild-type flies drink uracil their head β-alanine increases more than after drinking l-aspartic acid, indicating the effectiveness of the uracil pathway. Mutants of black, which lack aspartate decarboxylase, cannot synthesize β-alanine from l-aspartate but can still synthesize it efficiently from uracil. Our findings demonstrate a novel function for pigment cells, which not only screen ommatidia from stray light but also store and transport β-alanine and carcinine. This role is consistent with a β-alanine-dependent histamine recycling pathway occurring not only in the photoreceptor terminals in the lamina neuropile, where carcinine occurs in marginal glia, but vertically via a long pathway that involves the retina. The lamina’s marginal glia are also a hub involved in the storage and/or disposal of carcinine and β-alanine. PMID:22442379

  2. Solid-state NMR characterization of amphomycin effects on peptidoglycan and wall teichoic acid biosyntheses in Staphylococcus aureus.

    PubMed

    Singh, Manmilan; Chang, James; Coffman, Lauryn; Kim, Sung Joon

    2016-01-01

    Amphomycin and MX-2401 are cyclic lipopeptides exhibiting bactericidal activities against Gram-positive pathogens. Amphomycin and MX-2401 share structural similarities with daptomycin, but unlike daptomycin they do not target bacterial membrane. In this study, we investigate in vivo modes of action for amphomycin and MX-2401 in intact whole cells of Staphylococcus aureus by measuring the changes of peptidoglycan and wall teichoic acid compositions using solid-state NMR. S. aureus were grown in a defined media containing isotope labels [1-(13)C]glycine and L-[ε-(15)N]lysin, L-[1-(13)C]lysine and D-[(15)N]alanine, or D-[1-(13)C]alanine and [(15)N]glycine, to selectively (13)C-(15)N pair label peptidoglycan bridge-link, stem-link, and cross-link, respectively. (13)C{(15)N} and (15)N{(13)C} rotational-echo double resonance NMR measurements determined that cyclic lipopeptide-treated S. aureus exhibited thinning of the cell wall, accumulation of Park's nucleotide, inhibition of glycine utilization for purine biosynthesis, reduction of ester-linked D-Ala in teichoic acids, and reduction of peptidoglycan cross-linking. Whole cell NMR analysis also revealed that S. aureus, in presence of amphomycin and MX-2401, maintained the incorporation of D-Ala during peptidoglycan biosynthesis while the incorporation of D-Ala into teichoic acids was inhibited. These effects are consistent with amphomycin's dual inhibition of both peptidoglycan and wall teichoic acid biosyntheses in S. aureus. PMID:27538449

  3. Solid-state NMR characterization of amphomycin effects on peptidoglycan and wall teichoic acid biosyntheses in Staphylococcus aureus

    PubMed Central

    Singh, Manmilan; Chang, James; Coffman, Lauryn; Kim, Sung Joon

    2016-01-01

    Amphomycin and MX-2401 are cyclic lipopeptides exhibiting bactericidal activities against Gram-positive pathogens. Amphomycin and MX-2401 share structural similarities with daptomycin, but unlike daptomycin they do not target bacterial membrane. In this study, we investigate in vivo modes of action for amphomycin and MX-2401 in intact whole cells of Staphylococcus aureus by measuring the changes of peptidoglycan and wall teichoic acid compositions using solid-state NMR. S. aureus were grown in a defined media containing isotope labels [1-13C]glycine and L-[ε-15N]lysin, L-[1-13C]lysine and D-[15N]alanine, or D-[1-13C]alanine and [15N]glycine, to selectively 13C-15N pair label peptidoglycan bridge-link, stem-link, and cross-link, respectively. 13C{15N} and 15N{13C} rotational-echo double resonance NMR measurements determined that cyclic lipopeptide-treated S. aureus exhibited thinning of the cell wall, accumulation of Park’s nucleotide, inhibition of glycine utilization for purine biosynthesis, reduction of ester-linked D-Ala in teichoic acids, and reduction of peptidoglycan cross-linking. Whole cell NMR analysis also revealed that S. aureus, in presence of amphomycin and MX-2401, maintained the incorporation of D-Ala during peptidoglycan biosynthesis while the incorporation of D-Ala into teichoic acids was inhibited. These effects are consistent with amphomycin’s dual inhibition of both peptidoglycan and wall teichoic acid biosyntheses in S. aureus. PMID:27538449

  4. Glycine transporter 1 is a target for the treatment of epilepsy.

    PubMed

    Shen, Hai-Ying; van Vliet, Erwin A; Bright, Kerry-Ann; Hanthorn, Marissa; Lytle, Nikki K; Gorter, Jan; Aronica, Eleonora; Boison, Detlev

    2015-12-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-D-aspartate receptor (NMDAR). In hippocampus, the synaptic availability of glycine is largely under control of glycine transporter 1 (GlyT1). Since epilepsy is a disorder of disrupted network homeostasis affecting the equilibrium of various neurotransmitters and neuromodulators, we hypothesized that changes in hippocampal GlyT1 expression and resulting disruption of glycine homeostasis might be implicated in the pathophysiology of epilepsy. Using two different rodent models of temporal lobe epilepsy (TLE)--the intrahippocampal kainic acid model of TLE in mice, and the rat model of tetanic stimulation-induced TLE--we first demonstrated robust overexpression of GlyT1 in the hippocampal formation, suggesting dysfunctional glycine signaling in epilepsy. Overexpression of GlyT1 in the hippocampal formation was corroborated in human TLE samples by quantitative real time PCR. In support of a role of dysfunctional glycine signaling in the pathophysiology of epilepsy, both the genetic deletion of GlyT1 in hippocampus and the GlyT1 inhibitor LY2365109 increased seizure thresholds in mice. Importantly, chronic seizures in the mouse model of TLE were robustly suppressed by systemic administration of the GlyT1 inhibitor LY2365109. We conclude that GlyT1 overexpression in the epileptic brain constitutes a new target for therapeutic intervention, and that GlyT1 inhibitors constitute a new class of antiictogenic drugs. These findings are of translational value since GlyT1 inhibitors are already in clinical development to treat cognitive symptoms in schizophrenia. PMID:26302655

  5. Theoretical model of the interaction of glycine with hydrogenated amorphous carbon (HAC).

    PubMed

    Timón, Vicente; Gálvez, Óscar; Maté, Belén; Tanarro, Isabel; Herrero, Víctor J; Escribano, Rafael

    2015-11-21

    A theoretical model of hydrogenated amorphous carbon (HAC) is developed and applied to study the interaction of glycine with HAC surfaces at astronomical temperatures. Two models with different H content are tried for the HAC surface. The theory is applied at the Density Functional Theory (DFT) level, including a semiempirical dispersion correlation potential, d-DFT or Grimme DFT-D2. The level of theory is tested on glycine adsorption on a Si(001) surface. Crystalline glycine is also studied in its two stable phases, α and β, and the metastable γ phase. For the adsorption on Si or HAC surfaces, molecular glycine is introduced in the neutral and zwitterionic forms, and the most stable configurations are searched. All theoretical predictions are checked against experimental observations. HAC films are prepared by plasma enhanced vapor deposition at room temperature. Glycine is deposited at 20 K into a high vacuum, cold temperature chamber, to simulate astronomical conditions. Adsorption takes place through the acidic group COO(-) and when several glycine molecules are present, they form H-bond chains among them. Comparison between experiments and predictions suggests that a possible way to improve the theoretical model would require the introduction of aliphatic chains or a polycyclic aromatic core. The lack of previous models to study the interaction of amino-acids with HAC surfaces provides a motivation for this work. PMID:26456640

  6. 75 FR 62141 - Glycine From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... glycine from China (60 FR 16116). Following first five-year reviews by Commerce and the Commission... from China (65 FR 45752). Following second five-year reviews by Commerce and the Commission, effective... glycine from China (70 FR 69316). The Commission is now conducting a third review to determine...

  7. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  8. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  9. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  10. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  11. Dissociation of gaseous zwitterion glycine-betaine by slow electrons.

    PubMed

    Kopyra, J; Abdoul-Carime, H

    2010-05-28

    In this work, we investigate dissociation processes induced by low-energy electrons to gas phase N,N,N-trimethylglycine [glycine-betaine, (CH(3))(3)N(+)CH(2)COO(-)] molecules. Glycine-betaine represents a model system for zwitterions. All negative fragments are observed to be produced only at subelectronic excitation energies (<4 eV). With the exception of the loss of a neutral H atom that could arise from any C[Single Bond]H bond breaking, we tentatively suggest that the zwitterion dissociates exclusively from the fragmentation of the cation site of the molecule, subsequent to the attachment of the excess electron. Within the context of radiation induced damage to biological systems, the present findings contribute to a more complete description of the fragmentation mechanism occurring to amino acids, peptides, and proteins since they adopt usually a zwitterion structure. PMID:20515090

  12. Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment

    NASA Astrophysics Data System (ADS)

    Veuger, Bart; van Oevelen, Dick; Middelburg, Jack J.

    2012-04-01

    The fate of microbial carbon, nitrogen, hydrolysable amino acids (HAAs), monosaccharides, and fatty acids in sediment was investigated experimentally. The microbial community of a tidal flat sediment was labeled with 13C-enriched glucose and 15N-enriched ammonium, and sediment was incubated for up to 371 days. Analysis of total concentrations and 13C- and 15N content of bulk sediment, hydrolysable amino acids (including D-alanine), monosaccharides, total fatty acids (TFAs), and phospholipid-derived fatty acids (PLFAs) allowed us to trace the fate of microbial biomass and -detritus and the major biochemical groups therein (proteins, carbohydrates, and lipids) over intermediate time scales (weeks-months). Moreover, the unidentified fraction of the labeled material (i.e. not analyzed as HAA, FA, or carbohydrate) provided information on the formation and fate of molecularly uncharacterizable organic matter. Loss of 13C and 15N from the sediment was slow (half live of 433 days) which may have been due to the permanently anoxic conditions in the experiment. Loss rates for the different biochemical groups were also low with the following order of loss rate constants: PLFA > TFA > HAA > monosaccharides. The unidentified 13C-pool was rapidly formed (within days) and then decreased relatively slowly, resulting in a gradual relative accumulation of this pool over time. Degradation and microbial reworking of the labeled material resulted in subtle, yet consistent, diagenetic changes within the different biochemical groups. In the HAA pool, glycine, lysine, and proline were lost relatively slowly (i.e. best preserved) while there was no accumulation of D-alanine relative to L-alanine, indicating no relative accumulation of bacterial macromolecules rich in D-alanine. In the fatty acid pool, there was very little difference between PLFAs and TFAs, indicating a very similar lability of these pools. Differences between individual fatty acids included a relatively slow loss of i15

  13. Analysis of cyclic pyrolysis products formed from amino acid monomer.

    PubMed

    Choi, Sung-Seen; Ko, Ji-Eun

    2011-11-18

    Amino acid was mixed with silica and tetramethylammonium hydroxide (TMAH) to favor pyrolysis of amino acid monomer. The pyrolysis products formed from amino acid monomer were using GC/MS and GC. 20 amino acids of alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine were analyzed. The pyrolysis products were divided into cyclic and non-cyclic products. Among the 20 amino acids, arginine, asparagine, glutamic acid, glutamine, histidine, lysine, and phenylalanine generated cyclic pyrolysis products of the monomer. New cyclic pyrolysis products were formed by isolation of amino acid monomers. They commonly had polar side functional groups to 5-, 6-, or 7-membered ring structure. Arginine, asparagine, glutamic acid, glutamine, histidine, and phenylalanine generated only 5- or 6-membered ring products. However, lysine generated both 6- and 7-membered ring compounds. Variations of the relative intensities of the cyclic pyrolysis products with the pyrolysis temperature and amino acid concentration were also investigated. PMID:21993510

  14. Exchange interactions and magnetic dimension in Cu(L-alanine)2

    NASA Astrophysics Data System (ADS)

    Calvo, R.; Passeggi, M. C. G.; Novak, M. A.; Symko, O. G.; Oseroff, S. B.; Nascimento, O. R.; Terrile, M. C.

    1991-01-01

    A study of the magnetic properties of the copper (II) complex of the amino acid l-alanine [Cu(l-alanine)2] is reported. The susceptibility of a powder sample has been measured between 0.013 and 240 K. A linear-spin-chain model with antiferromagnetic exchange coupling J=-0.52 K fits well the susceptibility data above 0.3 K. Room-temperature electron paramagnetic resonance (EPR) spectra of single crystals of Cu(l-alanine)2 at 9 and 35 GHz show a single, exchange-narrowed resonance. The g tensor, with principal values g1=2.0554+/-0.0005, g2=2.1064+/-0.0005, and g3=2.2056+/-0.0005, reflects the crystal structure of Cu(l-alanine)2 and the electronic properties of the copper ions. The observed angular variation of the linewidth is attributed to the magnetic interactions, narrowed by the exchange coupling between copper ions, and shows a contribution characteristic of the dipole-dipole interaction in a spin system with a predominant two-dimensional spin dynamics. Considering the exchange-collapsed resonance corresponding to the two lattice sites for copper in Cu(l-alanine)2, we evaluate an exchange constant ||J(AB1)||=0.47 K between nonequivalent copper neighbors in a spin chain, similar to the value obtained from the susceptibility data. The one-dimensional magnetic behavior suggested by the susceptibility data in Cu(l-alanine)2, where the metal ions are distributed in layers, is explained by proposing that carboxylate bridges provide electronic paths for superexchange interactions between coppers. Considering the characteristics of the molecular structure of Cu(l-alanine)2, the layers seem to be magnetically split off into one-dimensional zigzag ribbons. The apparent disagreement between the one-dimensional behavior suggested by the susceptibility data and the two-dimensional behavior of the spin dynamics suggested by the EPR linewidth is analyzed.

  15. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions

    PubMed Central

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard

    2015-01-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. 13C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using 3H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  16. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions.

    PubMed

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard; Nielsen, Per Halkjær

    2015-07-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. (13)C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using (3)H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  17. Relative Amino Acid Concentrations as a Signature for Parent Body Processes of Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Botta, Oliver; Glavin, Daniel P.; Kminek, Gerhard; Bada, Jeffrey L.

    2002-01-01

    Most meteorites are thought to have originated from objects in the asteroid belt. Carbonaceous chondrites, which contain significant amounts of organic carbon including complex organic compounds, have also been suggested to be derived from comets. The current model for the synthesis of organic compounds found in carbonaceous chondrites includes the survival of interstellar organic compounds and the processing of some of these compounds on the meteoritic parent body. The amino acid composition of five CM carbonaceous chondrites, two CIs, one CR, and one CV3 have been measured using hot water extraction-vapor hydrolysis, OPA/NAC derivatization and high-performance liquid chromatography (HPLC). Total amino acid abundances in the bulk meteorites as well as the amino acid concentrations relative to glycine = 1.0 for beta-alanine, alpha-aminoisobutyric acid and D-alanine were determined. Additional data for three Antarctic CM meteorites were obtained from the literature. All CM meteorites analyzed in this study show a complex distribution of amino acids and a high variability in total concentration ranging from approx. 15,300 to approx. 5800 parts per billion (ppb), while the CIs show a total amino acid abundance of approx. 4300 ppb. The relatively (compared to glycine) high AIB content found in all the CMs is a strong indicator that Strecker-cyanohydrin synthesis is the dominant pathway for the formation of amino acids found in these meteorites. The data from the Antarctic CM carbonaceous chondrites are inconsistent with the results from the other CMs, perhaps due to influences from the Antarctic ice that were effective during their residence time. In contrast to CMs, the data from the CI carbonaceous chondrites indicate that the Strecker synthesis was not active on their parent bodies.

  18. The development and amino acid binding ability of nano-materials based on azo derivatives: theory and experiment.

    PubMed

    Shang, Xuefang; Du, Jinge; Yang, Wancai; Liu, Yun; Fu, Zhiyuan; Wei, Xiaofang; Yan, Ruifang; Yao, Ningcong; Guo, Yaping; Zhang, Jinlian; Xu, Xiufang

    2014-05-01

    Two nano-material-containing azo groups have been designed and developed, and the binding ability of nano-materials with various amino acids has been characterized by UV-vis and fluorescence titrations. Results indicated that two nano-materials showed the strongest binding ability for homocysteine among twenty normal kinds of amino acids (alanine, valine, leucine, isoleucine, methionine, aspartic acid, glutamic acid, arginine, glycine, serine, threonine, asparagine, phenylalanine, histidine, tryptophan, proline, lysine, glutamine, tyrosine and homocysteine). The reason for the high sensitivity for homocysteine was that two nano-materials containing an aldehyde group reacted with SH in homocysteine and afforded very stable thiazolidine derivatives. Theoretical investigation further illustrated the possible binding mode in host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. Thus, the two nano-materials can be used as optical sensors for the detection of homocysteine. PMID:24656358

  19. Investigation of the adsorption of amino acids on Pd(1 1 1): A density functional theory study

    NASA Astrophysics Data System (ADS)

    James, Joanna N.; Han, Jeong Woo; Sholl, David S.

    2014-05-01

    Density functional theory calculations have been used to study the adsorption of glycine, alanine, norvaline, valine, proline, cysteine, and serine on Pd(1 1 1). Most amino acids except cysteine adsorb onto the surface in a tridentate fashion through a nitrogen atom and both oxygen atoms. For cysteine, an additional bond is formed with the surface due to the strong affinity of the sulfur atom, resulting in a significantly larger adsorption energy. The adsorption patterns of amino acids we examined are supported by the shifts in vibrational frequencies associated with NHH and COO. The adsorption strength of amino acids depends on how much the molecules deform during the adsorption process. Understanding the adsorption of amino acids on Pd(1 1 1) provides fundamental information for future consideration of the interactions between their derivatives or more complicated biomolecules and metal surfaces.

  20. Crystal growth, structural and thermal studies of amino acids admixtured L-arginine phosphate monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Anandan, P.; Saravanan, T.; Parthipan, G.; Kumar, R. Mohan; Bhagavannarayana, G.; Ravi, G.; Jayavel, R.

    2011-05-01

    To study the improved characteristics of L-arginine phosphate monohydrate (LAP) crystals, amino acids mixed LAP crystals have been grown by slow cooling method. Amino acids like glycine, L-alanine, and L-valine have been selected for doping. Optical quality bulk crystals have been harvested after a typical growth period of about twenty days. The effect of amino acids in the crystal lattice and molecular vibrational frequencies of various functional groups in the crystals have been studied using X-ray powder diffraction and Fourier Transform infrared (FTIR) analyses respectively. Thermal behavior of the amino acids mixed LAP crystals have been studied from the TG and DTG analyses. High-resolution X-ray diffraction studies have been carried out to find the crystalline nature. Optical transmission studies have been carried out by UV-vis spectrophotometer. The cut off wavelength is below 240 nm for the grown crystals.

  1. Preferential Treatment: Interaction Between Amino Acids and Minerals

    NASA Astrophysics Data System (ADS)

    Crapster-Pregont, E. J.; Cleaves, H. J.; Hazen, R. M.

    2008-12-01

    Amino acids are the building blocks of proteins and are important for some models of the origin of life. Polymerization of amino acids from dilute solution is unlikely without a scaffold or catalyst. The surfaces of early Earth minerals are the most likely candidates for this role. The surface adsorption behavior of 12 amino acids (L-alanine, L-serine, L-aspartic acid, L-proline, L- phenylalanine, L-valine, L-arginine, d-amino valeric acid, glycine, L-lysine, L-isoleucine, and B-alanine) on 21 minerals (quartz, calcite, enstatite, illite, olivine, pyrrhotite, pyrite, alkali basalt, albite, analcime, chlorite, barite, hydroxyl apatite, hematite, magnetite, aluminum hydroxide, kaolin, silica gel, corundum, rutile, and montmorillonite) was determined via batch adsorption experiments. Absorption was determined for concentrations between 10-4M and 10-6M in the presence of 0.1M NaCl, and between pH values of 3 and 9 at 25 degrees C. The equilibrated solutions were centrifuged, filtered, derivatized using a fluorescent amino group tag (dansyl-chloride) and analyzed by HPLC. Adsorption was standardized using BET surface area measurements for each mineral to give the number of mols of each amino acid adsorbed per square meter for each mineral. The results indicate an enormous difference in the adsorption of amino acids between minerals, along with major differences in the adsorption of individual amino acids on the same mineral surface. There is also a change in the absorbance of amino acids as the pH changes. Many previous studies of amino acid concentration and catalysis by minerals have used clay minerals because of their high surface areas, however, this data suggests that the surfaces of minerals such as calcite, quartz and pyrite have even higher affinities for amino acids. The results suggest mineral surfaces that could be optimal locations for the polymerization of molecules linked to the origin of life.

  2. Caffeine–N-phthaloyl-β-alanine (1/1)

    PubMed Central

    Bhatti, Moazzam H.; Yunus, Uzma; Shah, Syed Raza; Flörke, Ulrich

    2012-01-01

    The title co-crystal [systematic name: 3-(1,3-dioxoisoindolin-2-yl)propanoic acid–1,3,7-trimethyl-1H-purine-2,6(3H,7H)-dione (1/1)], C8H10N4O2·C11H9NO4, is the combination of 1:1 adduct of N-phthaloyl-β-alanine with caffeine. The phthalimide and purine rings in the N-phthaloyl-β-alanine and caffeine mol­ecules are essentially planar, with r.m.s. deviations of the fitted atoms of 0.0078 and 0.0118 Å, respectively. In the crystal, the two mol­ecules are linked via an O—H⋯N hydrogen bond involving the intact carb­oxy­lic acid (COOH) group. The crystal structure is consolidated by C—H⋯O inter­actions. The H atoms of a methyl group of the caffeine mol­ecule are disordered over two sets of sites of equal occupancy. PMID:22719646

  3. The effect of immunonutrition (glutamine, alanine) on fracture healing

    PubMed Central

    Küçükalp, Abdullah; Durak, Kemal; Bayyurt, Sarp; Sönmez, Gürsel; Bilgen, Muhammed S.

    2014-01-01

    Background There have been various studies related to fracture healing. Glutamine is an amino acid with an important role in many cell and organ functions. This study aimed to make a clinical, radiological, and histopathological evaluation of the effects of glutamine on fracture healing. Methods Twenty rabbits were randomly allocated into two groups of control and immunonutrition. A fracture of the fibula was made to the right hind leg. All rabbits received standard food and water. From post-operative first day for 30 days, the study group received an additional 2 ml/kg/day 20% L-alanine L-glutamine solution via a gastric catheter, and the control group received 2 ml/kg/day isotonic via gastric catheter. At the end of 30 days, the rabbits were sacrificed and the fractures were examined clinically, radiologically, and histopathologically in respect to the degree of union. Results Radiological evaluation of the control group determined a mean score of 2.5 according to the orthopaedists and 2.65 according to the radiologists. In the clinical evaluation, the mean score was 1.875 for the control group and 2.0 for the study group. Histopathological evaluation determined a mean score of 8.5 for the control group and 9.0 for the study group. Conclusion One month after orally administered glutamine–alanine, positive effects were observed on fracture healing radiologically, clinically, and histopathologically, although no statistically significant difference was determined.

  4. Formation of complex precursors of amino acids by irradiation of simulated interstellar media with heavy ions

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Suzuki, N.; Taniuchi, T.; Kaneko, T.; Yoshida, S.

    A wide variety of organic compounds have been detected in such extraterrestrial bodies as meteorites and comets Amino acids were identified in the extracts from Murchison meteorite and other carbonaceous chondrites It is hypothesized that these compounds are originally formed in ice mantles of interstellar dusts ISDs in molecular clouds by cosmic rays and ultraviolet light UV Formation of amino acid precursors by high energy protons or UV irradiation of simulated ISDs was reported by several groups The amino acid precursors were however not well-characterized We irradiated a frozen mixture of methanol ammonia and water with heavy ions to study possible organic compounds abiotically formed in molecular clouds by cosmic rays A mixture of methanol ammonia and water was irradiated with carbon beams 290 MeV u from a heavy ion accelerator HIMAC of National Institute of Radiological Sciences Japan Irradiation was performed either at room temperature liquid phase or at 77 K solid phase The products were characterized by gel filtration chromatography GFC FT-IR pyrolysis PY -GC MS etc Amino acids were analyzed by HPLC and GC MS after acid hydrolysis or the products Amino acids such as glycine and alanine were identified in the products in both the cases of liquid phase and solid phase irradiation Energy yields G-values of glycine were 0 014 liquid phase and 0 007 solid phase respectively Average molecular weights of the products were estimated as to 2300 in both the case Aromatic hydrocarbons N-containing heterocyclic

  5. Combined TL and 10B-alanine ESR dosimetry for BNCT.

    PubMed

    Bartolotta, A; D'Oca, M C; Lo Giudice, B; Brai, M; Borio, R; Forini, N; Salvadori, P; Manera, S

    2004-01-01

    The dosimetric technique described in this paper is based on electron spin resonance (ESR) detectors using an alanine-boric compound acid enriched with (10)B, and beryllium oxide thermoluminescent (TL) detectors; with this combined dosimetry, it is possible to discriminate the doses due to thermal neutrons and gamma radiation in a mixed field. Irradiations were carried out inside the thermal column of a TRIGA MARK II water-pool-type research nuclear reactor, also used for Boron Neutron Capture therapy (BNCT) applications, with thermal neutron fluence from 10(9) to 10(14) nth cm(-2). The ESR dosemeters using the alanine-boron compound indicated ESR signals about 30-fold stronger than those using only alanine. Moreover, a negligible correction for the gamma contribution, measured with TL detectors, almost insensitive to thermal neutrons, was necessary. Therefore, a simultaneous analysis of our TL and ESR detectors allows discrimination between thermal neutron and gamma doses, as required in BNCT. PMID:15353720

  6. Principal component analysis and neural networks for detection of amino acid biosignatures

    NASA Astrophysics Data System (ADS)

    Dorn, Evan D.; McDonald, Gene D.; Storrie-Lombardi, Michael C.; Nealson, Kenneth H.

    2003-12-01

    We examine the applicability of Principal Component Analysis (PCA) and Artificial Neural Network (ANN) methods of data analysis to biosignature detection. These techniques show promise in classifying and simplifying the representation of patterns of amino acids resulting from biological and non-biological syntheses. PCA correctly identifies glycine and alanine as the amino acids contributing the most information to the task of discriminating biotic and abiotic samples. Trained ANNs correctly classify between 86.1 and 99.5% of a large set of amino acid samples as biotic or abiotic. These and similar techniques are important in the design of automated data analysis systems for robotic missions to distant planetary bodies. Both techniques are robust with respect to noisy and incomplete data. Analysis of the performance of PCA and ANNs also lends insight into the localization of useful information within a particular data set, a feature that may be exploited in the selection of experiments for efficient mission design.

  7. Production and physicochemical assessment of new stevia amino acid sweeteners from the natural stevioside.

    PubMed

    Khattab, Sherine N; Massoud, Mona I; Jad, Yahya El-Sayed; Bekhit, Adnan A; El-Faham, Ayman

    2015-04-15

    New stevia amino acid sweeteners, stevia glycine ethyl ester (ST-GL) and stevia l-alanine methyl ester (ST-GL), were synthesised and characterised by IR, NMR ((1)H NMR and (13)C NMR) and elemental analysis. The purity of the new sweeteners was determined by HPLC and their sensory properties were evaluated relative to sucrose in an aqueous system. Furthermore, the stevia derivatives (ST-GL and ST-AL) were evaluated for their acute toxicity, melting point, solubility and heat stability. The novel sweeteners were stable in acidic, neutral or basic aqueous solutions maintained at 100 °C for 2 h. The sweetness intensity rate of the novel sweeteners was higher than sucrose. Stevia amino acid (ST-GL and ST-AL) solutions had a clean sweetness taste without bitterness when compared to stevioside. The novel sweeteners can be utilised as non-caloric sweeteners in the production of low-calorie food. PMID:25466115

  8. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  9. Isolation and characterization of cytosolic alanine aminotransferase isoforms from starved rat liver.

    PubMed

    Vedavathi, M; Girish, K S; Kumar, M Karuna

    2004-12-01

    Alanine is the most effective precursor for gluconeogenesis among amino acids and the initial reaction is catalyzed by alanine aminotransferases (AlaATs). It is a less extensively studied enzyme under starvation and known to that the enzyme activity increases in liver under starvation. The present study describes the purification and characterization of two isoforms of alanine aminotransferases from starved male rat liver under starvation. The molecular mass of isoforms was found to be 17.7 and 112.2 kDa with isoelectric points of 4.2 and 5.3 respectively for AlaAT I and AlaAT II. Both the enzymes showed narrow substrate specificity for L-alanine with different Km for alanine and 2-oxoglutarate. Both the enzymes were glycoprotein in nature. Inhibition, modification and spectroscopic studies showed that both PLP and free-SH groups are directly involved in the enzymatic catalysis. PLP activated both the enzymes with a Km 0.057 mM and 0.2 mM for AlaAT I and II respectively. PMID:15663181

  10. Comparative metabolomics analysis of docosahexaenoic acid fermentation processes by Schizochytrium sp. under different oxygen availability conditions.

    PubMed

    Li, Juan; Ren, Lu-Jing; Sun, Guan-Nan; Qu, Liang; Huang, He

    2013-05-01

    The intracellular metabolic profile characterization of Schizochytrium sp. throughout docosahexaenoic acid fermentation was investigated using gas chromatography-mass spectrometry (GC-MS). Metabolite profiles originating from Schizochytrium sp. under normal and limited oxygen supply conditions were distinctive and distinguished by principal components analysis (PCA). A total of more than 60 intracellular metabolites were detected and quantified with the levels of some metabolites involved in central carbon metabolism varying throughout both processes. Both fermentation processes were differentiated into three main phases by principal components analysis. Potential biomarkers responsible for distinguishing the different fermentation phases were identified as glutamic acid, proline, glycine, alanine, and glucose. In addition, alanine, glutamic acid, glucose, inositol, ornithine, and galactose were found to make great contribution for dry cell weight and fatty acid composition during normal and limited oxygen supply fermentations. Furthermore, significantly higher levels of succinate and several amino acids in cells of limited oxygen supply fermentation revealed that they might play important roles in resisting oxygen deficiency and increasing DHA synthesis during the lipid accumulation. These findings provide novel insights into the metabolomic characteristics during docosahexaenoic acid fermentation processes by Schizochytrium sp. PMID:23586678

  11. Investigations on the effect of amino acids on acrylamide, pyrazines, and Michael addition products in model systems.

    PubMed

    Koutsidis, Georgios; Simons, Sandra P J; Thong, Yeong H; Haldoupis, Yannis; Mojica-Lazaro, Jonas; Wedzicha, Bronislaw L; Mottram, Donald S

    2009-10-14

    Acrylamide and pyrazine formation, as influenced by the incorporation of different amino acids, was investigated in sealed low-moisture asparagine-glucose model systems. Added amino acids, with the exception of glycine and cysteine and at an equimolar concentration to asparagine, increased the rate of acrylamide formation. The strong correlation between the unsubstituted pyrazine and acrylamide suggests the promotion of the formation of Maillard reaction intermediates, and in particular glyoxal, as the determining mode of action. At increased amino acid concentrations, diverse effects were observed. The initial rates of acrylamide formation remained high for valine, alanine, phenylalanine, tryptophan, glutamine, and leucine, while a significant mitigating effect, as evident from the acrylamide yields after 60 min of heating at 160 degrees C, was observed for proline, tryptophan, glycine, and cysteine. The secondary amine containing amino acids, proline and tryptophan, had the most profound mitigating effect on acrylamide after 60 min of heating. The relative importance of the competing effect of added amino acids for alpha-dicarbonyls and acrylamide-amino acid alkylation reactions is discussed and accompanied by data on the relative formation rates of selected amino acid-AA adducts. PMID:19739658

  12. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra

    1998-01-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  13. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  14. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  15. The pathways for the removal of acrylamide in model systems using glycine based on the identification of reaction products.

    PubMed

    Liu, Jie; Chen, Fang; Man, Yong; Dong, Jing; Hu, Xiaosong

    2011-09-15

    The reaction between acrylamide and glycine was studied in the aqueous model system heated at 150°C. The main reaction products were identified as C5H10N2O3, C8H15N3O4, C7H12N2O5 and C10H17N3O6 using HPLC-MS/MS, IT-TOF and NMR. Both of the critical intermediates were identified as glyoxylic acid and iminodiacetic acid. The pathways for the removal of acrylamide by glycine were proposed as the Michael addition between acrylamide and glycine with or without the initial oxidation of glycine. The changes in the contents of reactants and products provided quantitative evidence for the above pathways. The addition products between acrylamide and other 14 amino acids were identified by HPLC-MS/MS also. PMID:25212154

  16. Amino acid-containing membrane lipids in bacteria.

    PubMed

    Geiger, Otto; González-Silva, Napoleón; López-Lara, Isabel M; Sohlenkamp, Christian

    2010-01-01

    In the bacterial model organism Escherichia coli only the three major membrane lipids phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin occur, all of which belong to the glycerophospholipids. The amino acid-containing phosphatidylserine is a major lipid in eukaryotic membranes but in most bacteria it occurs only as a minor biosynthetic intermediate. In some bacteria, the anionic glycerophospholipids phosphatidylglycerol and cardiolipin can be decorated with aminoacyl residues. For example, phosphatidylglycerol can be decorated with lysine, alanine, or arginine whereas in the case of cardiolipin, lysine or d-alanine modifications are known. In few bacteria, diacylglycerol-derived lipids can be substituted with lysine or homoserine. Acyl-oxyacyl lipids in which the lipidic part is amide-linked to the alpha-amino group of an amino acid are widely distributed among bacteria and ornithine-containing lipids are the most common version of this lipid type. Only few bacterial groups form glycine-containing lipids, serineglycine-containing lipids, sphingolipids, or sulfonolipids. Although many of these amino acid-containing bacterial membrane lipids are produced in response to certain stress conditions, little is known about the specific molecular functions of these lipids. PMID:19703488

  17. Effects of pH and surface pressure on morphology of glycine crystals formed beneath the phospholipid Langmuir monolayers

    NASA Astrophysics Data System (ADS)

    Mu, Ying-Di; Xiao, Fei; Zhang, Ren-Jie; Li, Hong-Ying; Huang, Wei; Feng, Xu-Sheng; Liu, Hong-Guo

    2005-11-01

    Ordered molecular monolayers of dipalmitoyl phosphatidylcholine (DPPC) were used as templates to induce the nucleation and growth of glycine crystals. It was found that α-glycine crystals were formed under the DPPC monolayers regardless of pH values of the aqueous supersaturated glycine solutions. The morphologies and orientations of the glycine crystals varied with pH of the solutions and surface pressures of the monolayers. When acidic and neutral aqueous supersaturated glycine solutions were used as subphases, the glycine crystals are plate-like habit with an elongated (0 1 0) crystal face preferentially oriented parallel to the plane of the monolayers; when basic solutions were used, the crystals are pyramidal habit. At surface pressures below 25 mN/m at the beginning of crystallization, plate-like α-glycine crystals were formed from the neutral solution; while at higher surface pressures, such as 35 and 40 mN/m, prismatic crystals were formed. The morphology of the glycine crystals can be tuned by changing the experimental conditions.

  18. Contribution of proteolysis and de novo synthesis to alanine production in diabetic rat skeletal muscle: a 15N/1H nuclear magnetic resonance study.

    PubMed

    Meynial-Denis, D; Chavaroux, A; Foucat, L; Mignon, M; Prugnaud, J; Bayle, G; Renou, J P; Arnal, M

    1997-10-01

    To assess the role of leucine as a precursor of alanine alpha-amino nitrogen in skeletal muscle during diabetes, extensor digitorum longus muscles from control (n = 7 experiments) and streptozotocin-diabetic rats (n = 8 experiments) were isolated and superfused with [15N]leucine (3 mmol/l) in the presence of glucose (10 mmol/l) for 2 h. Muscle perchloric acid extraction was performed at the end of superfusion in order to quantify newly synthesized alanine by 15N/1H nuclear magnetic resonance. Release of [15N]alanine in the superfusion medium was also measured. The pool of newly synthesized [15N]alanine was significantly increased (approximately 40%) in extensor digitorum longus muscles from streptozotocin-diabetic rats. Whereas a significant enhancement of total alanine release from muscle was induced by diabetes (20%), only a slight increase in [15N]alanine release was detectable under our experimental conditions. Consequently, we conclude that streptozotocin-diabetes in growing rats induces in skeletal muscle: 1) an increase in nitrogen exchange between leucine and alanine leading to newly synthesized [15N]alanine; and 2) an increase of total alanine release from muscle originating from both proteolysis and de novo synthesis. PMID:9349596

  19. High-throughput determination of dissolved free amino acids in unconcentrated freshwater by ion-pairing liquid chromatography and mass spectrometry.

    PubMed

    Horňák, Karel; Schmidheiny, Helen; Pernthaler, Jakob

    2016-04-01

    We developed a procedure for the direct determination of dissolved free amino acids (DFAAs) in freshwater samples employing ion-pairing liquid chromatography and mass spectrometry. Our approach allowed accurate quantification of subnanomolar concentrations of DFAAs without prior concentration, derivatization or sample clean-up steps, achieving a throughput of three samples per hour. DFAAs were separated on a C-18 resin using tridecafluoroheptanoic acid as an ion-pairing agent controlling the overall retention. The relative standard deviation of DFAA measurements was <10% in samples from the mesotrophic Lake Zurich (Switzerland), and across concentrations of 0.5-500nM. Recoveries of DFAAs ranged from 94 to 102% within the range of 0.2-10nM. The limits of quantification for individual DFAAs varied between 50pM to 2nM (median, 0.5nM). The new method was employed to compare the spatial variability of DFAA concentrations in samples obtained by two devices. Epilimnetic samples of different size (ml, l) were collected at various spatial scales (cm, m, km) with a traditional 5l Friedinger sampler and with a custom-made multi-syringe sampling apparatus. Concentrations of total DFAAs ranged from 30 to 330nM. Alanine, serine, glutamic acid, arginine and glycine constituted 65% of the total pool, while methionine and tryptophan occurred at sub-nM concentrations only. Concentrations of individual DFAAs varied spatially over 2 orders of magnitude. Their spatial distribution was positively skewed, as characterized by rare peaks, most strongly so for glutamate, glycine and asparagine. The composition of DFAAs significantly differed at all examined spatial scales, and this could be mainly attributed to alanine, aspartic acid, and glycine. Our new method equals or outperforms existing ones in terms of sensitivity and reproducibility, while its procedural simplicity renders it superior for the high-throughput analysis of freshwater samples. PMID:26936042

  20. Structural and Functional Importance of Transmembrane Domain 3 (TM3) in the Aspartate:Alanine Antiporter AspT: Topology and Function of the Residues of TM3 and Oligomerization of AspT▿

    PubMed Central

    Nanatani, Kei; Maloney, Peter C.; Abe, Keietsu

    2009-01-01

    AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, a membrane protein of 543 amino acids with 10 putative transmembrane (TM) helices, is the prototype of the aspartate:alanine exchanger (AAE) family of transporters. Because TM3 (isoleucine 64 to methionine 85) has many amino acid residues that are conserved among members of the AAE family and because TM3 contains two charged residues and four polar residues, it is thought to be located near (or to form part of) the substrate translocation pathway that includes the binding site for the substrates. To elucidate the role of TM3 in the transport process, we carried out cysteine-scanning mutagenesis. The substitutions of tyrosine 75 and serine 84 had the strongest inhibitory effects on transport (initial rates of l-aspartate transport were below 15% of the rate for cysteine-less AspT). Considerable but less-marked effects were observed upon the replacement of methionine 70, phenylalanine 71, glycine 74, arginine 76, serine 83, and methionine 85 (initial rates between 15% and 30% of the rate for cysteine-less AspT). Introduced cysteine residues at the cytoplasmic half of TM3 could be labeled with Oregon green maleimide (OGM), whereas cysteines close to the periplasmic half (residues 64 to 75) were not labeled. These results suggest that TM3 has a hydrophobic core on the periplasmic half and that hydrophilic residues on the cytoplasmic half of TM3 participate in the formation of an aqueous cavity in membranes. Furthermore, the presence of l-aspartate protected the cysteine introduced at glycine 62 against a reaction with OGM. In contrast, l-aspartate stimulated the reactivity of the cysteine introduced at proline 79 with OGM. These results demonstrate that TM3 undergoes l-aspartate-induced conformational alterations. In addition, nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses and a glutaraldehyde cross-linking assay suggest that functional AspT forms homo-oligomers as a

  1. Structural and functional importance of transmembrane domain 3 (TM3) in the aspartate:alanine antiporter AspT: topology and function of the residues of TM3 and oligomerization of AspT.

    PubMed

    Nanatani, Kei; Maloney, Peter C; Abe, Keietsu

    2009-04-01

    AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, a membrane protein of 543 amino acids with 10 putative transmembrane (TM) helices, is the prototype of the aspartate:alanine exchanger (AAE) family of transporters. Because TM3 (isoleucine 64 to methionine 85) has many amino acid residues that are conserved among members of the AAE family and because TM3 contains two charged residues and four polar residues, it is thought to be located near (or to form part of) the substrate translocation pathway that includes the binding site for the substrates. To elucidate the role of TM3 in the transport process, we carried out cysteine-scanning mutagenesis. The substitutions of tyrosine 75 and serine 84 had the strongest inhibitory effects on transport (initial rates of l-aspartate transport were below 15% of the rate for cysteine-less AspT). Considerable but less-marked effects were observed upon the replacement of methionine 70, phenylalanine 71, glycine 74, arginine 76, serine 83, and methionine 85 (initial rates between 15% and 30% of the rate for cysteine-less AspT). Introduced cysteine residues at the cytoplasmic half of TM3 could be labeled with Oregon green maleimide (OGM), whereas cysteines close to the periplasmic half (residues 64 to 75) were not labeled. These results suggest that TM3 has a hydrophobic core on the periplasmic half and that hydrophilic residues on the cytoplasmic half of TM3 participate in the formation of an aqueous cavity in membranes. Furthermore, the presence of l-aspartate protected the cysteine introduced at glycine 62 against a reaction with OGM. In contrast, l-aspartate stimulated the reactivity of the cysteine introduced at proline 79 with OGM. These results demonstrate that TM3 undergoes l-aspartate-induced conformational alterations. In addition, nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses and a glutaraldehyde cross-linking assay suggest that functional AspT forms homo-oligomers as a

  2. Weak BMAA toxicity compares with that of the dietary supplement β-alanine.

    PubMed

    Lee, Moonhee; McGeer, Patrick L

    2012-07-01

    β-N-methylamino-L-alanine (BMAA) is routinely described in the literature as a potent neurotoxin and as a possible cause of neurodegenerative disorders of aging such as Alzheimer's disease, amyotrophic lateral sclerosis, and the amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS-PDC) syndrome of Guam. To test for the toxicity of BMAA against human neurons, we chose 3 standard human neuronal cell lines for examination and compared the toxicity with the muscle-building nutritional supplement β-alanine, glutamic acid, and the established excitotoxins kainic acid, quisqualic acid, ibotenic acid, domoic acid, and quinolinic acid. Neurotoxicity was measured by the standard lactic dehydrogenase release assay after 5-day incubation of NT-2, SK-N-MC, and SH-SY5Y cells with BMAA and the comparative substances. The ED(50) of BMAA, corresponding to 50% death of neurons, varied from 1430 to 1604 μM while that of the nutritional supplement β-alanine was almost as low, varying from 1945 to 2134 μM. The ED(50) for glutamic acid and the 5 established excitotoxins was 200- to 360-fold lower, varying from 44 to 70 μM. These in vitro data are in accord with previously published in vivo data on BMAA toxicity in which mice showed no pathological effects from oral consumption of 500 mg/kg/day for more than 10 weeks. Because there are no known natural sources of BMAA that would make consumption of such amounts possible, and because the toxicity observed was in the same range as the nutritional supplement β-alanine, the hypothesis that BMAA is an environmental hazard and a contributor to degenerative neurological diseases becomes untenable. PMID:21236519

  3. Microbial Community Responses to Glycine Addition in Kansas Prairie Soils

    NASA Astrophysics Data System (ADS)

    Bottos, E.; Roy Chowdhury, T.; White, R. A., III; Brislawn, C.; Fansler, S.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.

    2015-12-01

    Advances in sequencing technologies are rapidly expanding our abilities to unravel aspects of microbial community structure and function in complex systems like soil; however, characterizing the highly diverse communities is problematic, due primarily to challenges in data analysis. To tackle this problem, we aimed to constrain the microbial diversity in a soil by enriching for particular functional groups within a community through addition of "trigger substrates". Such trigger substrates, characterized by low molecular weight, readily soluble and diffusible in soil solution, representative of soil organic matter derivatives, would also be rapidly degradable. A relatively small energy investment to maintain the cell in a state of metabolic alertness for such substrates would be a better evolutionary strategy and presumably select for a cohort of microorganisms with the energetics and cellular machinery for utilization and growth. We chose glycine, a free amino acid (AA) known to have short turnover times (in the range of hours) in soil. As such, AAs are a good source of nitrogen and easily degradable, and can serve as building blocks for microbial proteins and other biomass components. We hypothesized that the addition of glycine as a trigger substrate will decrease microbial diversity and evenness, as taxa capable of metabolizing it are enriched in relation to those that are not. We tested this hypothesis by incubating three Kansas native prairie soils with glycine for 24 hours at 21 degree Celsius, and measured community level responses by 16S rRNA gene sequencing, metagenomics, and metatranscriptomics. Preliminary evaluation of 16S rRNA gene sequences revealed minor changes in bacterial community composition in response to glycine addition. We will also present data on functional gene abundance and expression. The results of these analyses will be useful in designing sequencing strategies aimed at dissecting and deciphering complex microbial communities.

  4. Separation and detection of amino acid metabolites of Escherichia coli in microbial fuel cell with CE.

    PubMed

    Wang, Wei; Ma, Lihong; Lin, Ping; Xu, Kaixuan

    2016-07-01

    In this work, CE-LIF was employed to investigate the amino acid metabolites produced by Escherichia coli (E. coli) in microbial fuel cell (MFC). Two peptides, l-carnosine and l-alanyl-glycine, together with six amino acids, cystine, alanine, lysine, methionine, tyrosine, arginine were separated and detected in advance by a CE-LIF system coupled with a homemade spontaneous injection device. The injection device was devised to alleviate the effect of electrical discrimination for analytes during sample injection. All analytes could be completely separated within 8 min with detection limits of 20-300 nmol/L. Then this method was applied to analyze the substrate solution containing amino acid metabolites produced by E. coli. l-carnosine, l-alanyl-glycine, and cystine were used as the carbon, nitrogen, and sulfur source for the E. coli culture in the MFC to investigate the amino acid metabolites during metabolism. Two MFCs were used to compare the activity of metabolism of the bacteria. In the sample collected at the running time 200 h of MFC, the amino acid methionine was discovered as the metabolite with the concentrations 23.3 μg/L. PMID:27121957

  5. Glycine improves biochemical and biomechanical properties following inflammation of the achilles tendon.

    PubMed

    Vieira, Cristiano Pedrozo; De Oliveira, Letícia Prado; Da Ré Guerra, Flávia; Dos Santos De Almeida, Marcos; Marcondes, Maria Cristina Cintra Gomes; Pimentel, Edson Rosa

    2015-03-01

    Tendinopathy of the Achilles tendon is a clinical problem that motivates the scientific community to search for treatments that assist in restoring its functional properties. Glycine has broad biological effects, acting as a modulator of the inflammatory cascade, and is the predominant amino acid in collagen. A 5% glycine diet provided beneficial effects against toxicity and inflammation since glycine may restructure the collagen molecules faster due to its broad anti-inflammatory effects. The purpose was analyze the effects of a 5% glycine diet in rats as a treatment for the inflammatory process. The experimental groups were as follows: C (control group), G1 and G3 (inflammatory group), and G2 and G4 (glycine+inflammatory group). G1 and G2 were euthanized 8 days following injury, and G3 and G4 were euthanized 22 days following injury. The concentrations of hydroxyproline, non-collagenous proteins, and glycosaminoglycans, as well as the activity of MMP-2 and -9 were analyzed. Biomechanical and morphological tests were employed. Higher concentrations of hydroxyproline and glycosaminoglycans were found in G4 and an increased activity of MMP-2 was found in G2. Higher birefringence was noted in group G2. The biomechanical results indicated that the tendon was more resistant to loading to rupture upon treatment with a glycine diet in group G4. Glycine induced the synthesis of important components of the tendon. A rapid remodeling was noted when compared with the inflamed-only groups. These data suggest that glycine may be a beneficial supplement for individuals with inflammation of the Achilles tendon. PMID:25156668

  6. The shell matrix of the freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida). Involvement of acidic polysaccharides from glycoproteins in nacre mineralization.

    PubMed

    Marie, Benjamin; Luquet, Gilles; Pais De Barros, Jean-Paul; Guichard, Nathalie; Morel, Sylvain; Alcaraz, Gérard; Bollache, Loïc; Marin, Frédéric

    2007-06-01

    Among molluscs, the shell biomineralization process is controlled by a set of extracellular macromolecular components secreted by the calcifying mantle. In spite of several studies, these components are mainly known in bivalves from only few members of pteriomorph groups. In the present case, we investigated the biochemical properties of the aragonitic shell of the freshwater bivalve Unio pictorum (Paleoheterodonta, Unionoida). Analysis of the amino acid composition reveals a high amount of glycine, aspartate and alanine in the acid-soluble extract, whereas the acid-insoluble one is rich in alanine and glycine. Monosaccharidic analysis indicates that the insoluble matrix comprises a high amount of glucosamine. Furthermore, a high ratio of the carbohydrates of the soluble matrix is sulfated. Electrophoretic analysis of the acid-soluble matrix revealed discrete bands. Stains-All, Alcian Blue, periodic acid/Schiff and autoradiography with (45)Ca after electrophoretic separation revealed three major polyanionic calcium-binding glycoproteins, which exhibit an apparent molecular mass of 95, 50 and 29 kDa, respectively. Two-dimensional gel electrophoresis shows that these bands, provisionally named P95, P50 and P29, are composed of numerous isoforms, the majority of which have acidic isoelectric points. Chemical deglycosylation of the matrix with trifluoromethanesulfonic acid induces a drastic shift of both the apparent molecular mass and the isoelectric point of these matrix components. This treatment induces also a modification of the shape of CaCO(3) crystals grown in vitro and a loss of the calcium-binding ability of two of the main matrix proteins (P95 and P50). Our findings strongly suggest that post-translational modifications display important functions in mollusc shell calcification. PMID:17488282

  7. An NMR-Based Metabolomic Approach to Investigate the Effects of Supplementation with Glutamic Acid in Piglets Challenged with Deoxynivalenol

    PubMed Central

    Ren, Wenkai; Yin, Jie; Hu, Jiayu; Duan, Jielin; Liu, Gang; Tan, Bie; Xiong, Xia; Oso, Abimbola Oladele; Adeola, Olayiwola; Yao, Kang; Yin, Yulong; Li, Tiejun

    2014-01-01

    Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (P<0.05). Compared with DON treatment, dietary supplementation with glutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (P<0.05). Addition glutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (P<0.05). These novel findings indicate that glutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino

  8. An NMR-based metabolomic approach to investigate the effects of supplementation with glutamic acid in piglets challenged with deoxynivalenol.

    PubMed

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Hu, Jiayu; Duan, Jielin; Liu, Gang; Tan, Bie; Xiong, Xia; Oso, Abimbola Oladele; Adeola, Olayiwola; Yao, Kang; Yin, Yulong; Li, Tiejun

    2014-01-01

    Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (P<0.05). Compared with DON treatment, dietary supplementation with glutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (P<0.05). Addition glutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (P<0.05). These novel findings indicate that glutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino

  9. Theoretical prediction of gas-phase infrared spectra of imidazo[1,2- a]pyrazinediones and imidazo[1,2- a]imidazo[1,2- d]pyrazinediones derived from glycine

    NASA Astrophysics Data System (ADS)

    Contreras-Torres, Flavio F.; Basiuk, Vladimir A.

    2005-09-01

    Imidazo[1,2- a]pyrazine-3,6-diones and imidazo[1,2- a]imidazo[1,2- d]pyrazine-3,8-diones can be produced by pyrolysis of simple amino acids. While such bicyclic and tricyclic amidines were detected and characterized by IR spectroscopy for some α-substituted amino acids, the parent systems composed of glycine fragments are unknown up to now. IR spectra for five amidines derived from glycine were calculated by using different semi-empirical (PM3, AM1, MNDO and MINDO/3), HF, and hybrid DFT (B3LYP, B3P86 and B3PW91) methods in conjunction with 6-31G( d) basis set (for HF and DFT). Vibration frequencies in the experimental IR spectra were predicted based upon the B3LYP data, by correcting the calculated wavenumbers by a scaling factor of 0.959. The behavior of most characteristic bands ( νC dbnd X , νNH, etc.) and their shifts with respect to such bands in the spectra of alanine and α-aminoisobutyric acid derivatives studied before, are discussed. Performance of the semi-empirical methods was tested, bearing in mind possible future needs for IR spectra predictions for larger molecular systems of similar chemical nature; the use of MINDO/3 and MNDO is recommended. A basis set effect on the B3LYP fundamental vibration frequencies for hexahydroimidazo[1,2- a]pyrazine-3,6-dione was studied by varying Pople basis sets from minimal STO-3G to 6-311++G( d, p). No significant improvements were found beyond the 6-31G( d) basis set, which thus can be recommended to predict IR spectra for the amidines and similar molecules.

  10. Effect of DNA interaction involving antioxidative 4-aminoantipyrine incorporating mixed ligand complexes having alpha-amino acid as co-ligand

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Sakthivel, Arunagiri; Selvaganapathy, Muthusamy; Mitu, Liviu

    2014-02-01

    Few new mixed ligand transition metal complexes of the stoichiometry [ML(A)2], where M = Co(II), Ni(II), Cu(II) and Zn(II), L = FFAP (furfurylidene-4-aminoantipyrine) and A = amino acid (glycine/alanine/valine), have been designed, synthesized and characterized. The molar conductivity of the complexes in DMF at 10-3 M concentration shows that they are non-electrolytes. The interaction of these complexes with CT-DNA indicates that the valine mixed ligand complexes are having higher binding constant than alanine and glycine mixed ligand complexes. This analysis reveals that binding constant depends on the size of the alkyl group present in the amino acid. The binding constants of valine mixed ligand complexes are in the order of 104 to 105 M-1 revealing that the complexes interact with DNA through moderate intercalation mode. The metal complexes exhibit effective cleavage of pUC19 DNA but it is not preceded via radical cleavage and superoxide anion radical. They are good antimicrobial agents than the free ligand. On comparing the IC50 values, [Ni(L)(Gly)2] is considered as a potential drug to eliminate the hydroxyl radical.

  11. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV-100 GeV

    NASA Astrophysics Data System (ADS)

    Ahmadi, Morteza; Lunscher, Nolan; Yeow, John T. W.

    2013-04-01

    Recently, there has been an interest in fabrication of X-ray sensors based on bacteriorhodopsin, a proton pump protein in cell membrane of Halobacterium salinarium. Therefore, a better understanding of interaction of X-ray photons with bacteriorhodopsin is required. We use WinXCom program to calculate the mass attenuation coefficient of bacteriorhodopsin and its comprising amino acids for photon energies from 1 keV to 100 GeV. These amino acids include alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Asx1, Asx2, Glx1 and Glx2. We then use that data to calculate effective atomic number and electron densities for the same range of energy. We also emphasize on two ranges of energies (10-200 keV and 1-20 MeV) in which X-ray imaging and radiotherapy machines work.

  12. Inactivation of 3-(3,4-dihydroxyphenyl)alanine decarboxylase by 2-(fluoromethyl)-3-(3,4-dihydroxyphenyl)alanine.

    PubMed

    Maycock, A L; Aster, S D; Patchett, A A

    1980-02-19

    2-(Fluoromethyl)-3-(3,4-dihydroxyphenyl)alanine [alpha-FM-Dopa (I)] causes rapid, time-dependent, stereospecific, and irreversible inhibition of hog kidney aromatic amino acid (Dopa) decarboxylase. The inactivation occurs with loss of both the carboxyl carbon and fluoride from I and results in the stoichimetric formation of a covalent enzyme-inhibitor adduct. The data are consistent with I being a suicide inactivator of the enzyme, and a plausible mechanism for the inactivation process is presented. The inactivation is highly efficient in that there is essentially no enzymatic turnover of I to produce the corresponding amine, 1-(fluoromethyl)-2-(3,4-dihydroxyphenyl)ethylamine [alpha-FM-dopamine (II)]. Amine II is also a potent inactivator of the enzyme. In vivo compound I is found to inactivate both brain and peripheral (liver) Dopa decarboxylase activity. The possible significance of these data with respect to the known antihypertensive effect of I is discussed. PMID:7356954

  13. GABA and glycine in the developing brain.

    PubMed

    Ito, Susumu

    2016-09-01

    GABA and glycine are major inhibitory neurotransmitters in the CNS and act on receptors coupled to chloride channels. During early developmental periods, both GABA and glycine depolarize membrane potentials due to the relatively high intracellular Cl(-) concentration. Therefore, they can act as excitatory neurotransmitters. GABA and glycine are involved in spontaneous neural network activities in the immature CNS such as giant depolarizing potentials (GDPs) in neonatal hippocampal neurons, which are generated by the synchronous activity of GABAergic interneurons and glutamatergic principal neurons. GDPs and GDP-like activities in the developing brains are thought to be important for the activity-dependent functiogenesis through Ca(2+) influx and/or other intracellular signaling pathways activated by depolarization or stimulation of metabotropic receptors. However, if GABA and glycine do not shift from excitatory to inhibitory neurotransmitters at the birth and in maturation, it may result in neural disorders including autism spectrum disorders. PMID:26951057

  14. Carboxy-terminal mutations of bile acid CoA:N-acyltransferase alter activity and substrate specificity.

    PubMed

    Styles, Nathan A; Shonsey, Erin M; Falany, Josie L; Guidry, Amber L; Barnes, Stephen; Falany, Charles N

    2016-07-01

    Bile acid CoA:amino acid N-acyltransferase (BAAT) is the terminal enzyme in the synthesis of bile salts from cholesterol and catalyzes the conjugation of taurine or glycine to bile acid CoA thioesters to form bile acid N-acylamidates. BAAT has a dual localization to the cytosol and peroxisomes, possibly due to an inefficient carboxy-terminal peroxisomal targeting signal (PTS), -serine-glutamine-leucine (-SQL). Mutational analysis was used to define the role of the carboxy terminus in peroxisomal localization and kinetic activity. Amidation activity of BAAT and BAAT lacking the final two amino acids (AAs) (BAAT-S) were similar, whereas the activity of BAAT with a canonical PTS sequence (BAAT-SKL) was increased >2.5-fold. Kinetic analysis of BAAT and BAAT-SKL showed that BAAT-SKL had a lower Km for taurine and glycine as well as a greater Vmax There was no difference in the affinity for cholyl-CoA. In contrast to BAAT, BAAT-SKL forms bile acid N-acylamidates with β-alanine. BAAT-S immunoprecipitated when incubated with peroxisomal biogenesis factor 5 (Pex5) and rabbit anti-Pex5 antibodies; however, deleting the final 12 AAs prevented coimmunoprecipitation with Pex5, indicating the Pex5 interaction involves more than the -SQL sequence. These results indicate that even small changes in the carboxy terminus of BAAT can have significant effects on activity and substrate specificity. PMID:27230263

  15. A Didactic Experience of Statistical Analysis for the Determination of Glycine in a Nonaqueous Medium Using ANOVA and a Computer Program

    ERIC Educational Resources Information Center

    Santos-Delgado, M. J.; Larrea-Tarruella, L.

    2004-01-01

    The back-titration methods are compared statistically to establish glycine in a nonaqueous medium of acetic acid. Important variations in the mean values of glycine are observed due to the interaction effects between the analysis of variance (ANOVA) technique and a statistical study through a computer software.

  16. Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios

    NASA Astrophysics Data System (ADS)

    Chan, Queenie Hoi Shan; Chikaraishi, Yoshito; Takano, Yoshinori; Ogawa, Nanako O.; Ohkouchi, Naohiko

    2016-01-01

    A novel method has been developed for compound-specific nitrogen isotope compositions with an achiral column which was previously shown to offer high precision for nitrogen isotopic analysis. We applied the method to determine the amino acid contents and stable nitrogen isotopic compositions of individual amino acids from the thermally metamorphosed (above 500 °C) Antarctic carbonaceous chondrites Ivuna-like (CI)1 (or CI-like) Yamato (Y) 980115 and Ornans-like (CO)3.5 Allan Hills (ALH) A77003 with the use of gas chromatography/combustion/isotope ratio mass spectrometry. ALHA77003 was deprived of amino acids due to its extended thermal alteration history. Amino acids were unambiguously identified in Y-980115, and the δ15N values of selected amino acids (glycine +144.8 ‰; α-alanine +121.2 ‰) are clearly extraterrestrial. Y-980115 has experienced an extended period of aqueous alteration as indicated by the presence of hydrous mineral phases. It has also been exposed to at least one post-hydration short-lived thermal metamorphism. Glycine and alanine were possibly produced shortly after the accretion event of the asteroid parent body during the course of an extensive aqueous alteration event and have abstained from the short-term post-aqueous alteration heating due to the heterogeneity of the parent body composition and porosity. These carbonaceous chondrite samples are good analogs that offer important insights into the target asteroid Ryugu of the Hayabusa-2 mission, which is a C-type asteroid likely composed of heterogeneous materials including hydrated and dehydrated minerals.

  17. Metabolism of Nonessential N15-Labeled Amino Acids and the Measurement of Human Whole-Body Protein Synthesis Rates

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Settle, R. G.; Albina, J. A.; Dempsey, D. T.; Melnick, G.

    1991-01-01

    Eight N-15 labeled nonessential amino acids plus (15)NH4Cl were administered over a 10 h period to four healthy adult males using a primed-constant dosage regimen. The amount of N-15 excreted in the urine and the urinary ammonia, hippuric acid, and plasma alanine N-15 enrichments were measured. There was a high degree of consistency across subjects in the ordering of the nine compounds based on the fraction of N-15 excreted (Kendall coefficient of concordance W = 0.83, P is less than 0.01). Protein synthesis rates were calculated from the urinary ammonia plateau enrichment and the cumulative excretion of N-15. Glycine was one of the few amino acids that gave similar values by both methods.

  18. Standard thermodynamic functions of complex formation between Cu2+ and glycine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Gorboletova, G. G.; Metlin, A. A.

    2013-05-01

    Heat effects of the interaction of copper(II) solutions with aminoacetic acid (glycine) are measured by the direct calorimetry at 298.15 K and ionic strengths of 0.5, 1.0, and 1.5 against a background of potassium nitrate. Standard enthalpy values for reactions of the formation of aminoacetic acid copper complexes in aqueous solutions are obtained using an equation with a single individual parameter by extrapolating it to zero ionic strength. The standard thermodynamic characteristics of complex formation in the Cu2+-glycine system are calculated. It is shown that glycine-like coordination is most likely in Cu(II) complexes with L-asparagine, L-glutamine, and L-valine.

  19. Isotope labelling of Rubisco subunits provides in vivo information on subcellular biosynthesis and exchange of amino acids between compartments

    PubMed Central

    Allen, Doug K; Laclair, Russell W; Ohlrogge, John B; Shachar-Hill, Yair

    2012-01-01

    The architecture of plant metabolism includes substantial duplication of metabolite pools and enzyme catalyzed reactions in different subcellular compartments. This poses challenges for understanding the regulation of metabolism particularly in primary metabolism and amino acid biosynthesis. To explore the extent to which amino acids are made in single compartments and to gain insight into the metabolic precursors from which they derive, we used steady state 13C labelling and analysed labelling in protein amino acids from plastid and cytosol. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a major component of green tissues and its large and small subunits are synthesized from different pools of amino acids in the plastid and cytosol, respectively. Developing Brassica napus embryos were cultured in the presence of [U-13C]-sucrose, [U-13C]-glucose, [U-13C]-glutamine or [U-13C]-alanine to generate proteins. The large subunits (LSU) and small subunits (SSU) of Rubisco were isolated and the labelling in their constituent amino acids was analysed by gas chromatography-mass spectrometry. Amino acids including alanine, glycine and serine exhibited different 13C enrichment in the LSU and SSU, demonstrating that these pools have different metabolic origins and are not isotopically equilibrated between the plastid and cytosol on the time scale of cellular growth. Potential extensions of this novel approach to other macromolecules, organelles and cell types of eukaryotes are discussed. PMID:22292468

  20. Salinity and pH affect Na+-montmorillonite dissolution and amino acid adsorption: a prebiotic chemistry study

    NASA Astrophysics Data System (ADS)

    Farias, Ana Paula S. F.; Tadayozzi, Yasmin S.; Carneiro, Cristine E. A.; Zaia, Dimas A. M.

    2014-06-01

    The adsorption of amino acids onto minerals in prebiotic seas may have played an important role for their protection against hydrolysis and formation of polymers. In this study, we show that the adsorption of the prebiotic amino acids, glycine (Gly), α-alanine (α-Ala) and β-alanine (β-Ala), onto Na+-montmorillonite was dependent on salinity and pH. Specifically, adsorption decreased from 58.3-88.8 to 0-48.9% when salinity was increased from 10 to 100-150% of modern seawater. This result suggests reduced amino acid adsorption onto minerals in prebiotic seas, which may have been even more saline than the tested conditions. Amino acids also formed complexes with metals in seawater, affecting metal adsorption onto Na+-montmorillonite, and amino acid adsorption was enhanced when added before Na+-montmorillonite was exposed to high saline solutions. Also, the dissolution of Na+-montmorillonite was reduced in the presence of amino acids, with β-Ala being the most effective. Thus, prebiotic chemistry experiments should also consider the integrity of minerals in addition to their adsorption capacity.

  1. N-[[(Mercaptoacetyl)amino]benzoyl]glycines as mucolytic agents.

    PubMed

    Martin, T A; Comer, W T

    1985-07-01

    m- and p-aminobenzoic acids were converted to the title compounds by sequential use of ClCH2COCl, SOCl2, glycine methyl or ethyl ester, AcSK, and hydrolysis. The title compounds and a number of salts were compared for mucolytic activity, toxicity, stability, and hygroscopicity. When compared to N-acetyl-L-cysteine (NAC), the compounds exhibit several times the in vitro mucolytic activity of NAC on a molar basis. The most promising candidate appears to be the sodium salt 3.5H2O 2 of the meta series. PMID:4009614

  2. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    SciTech Connect

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen; Tang, De-Wei; Liu, Xiang-Yu; Zhao, Xiaojun; Liang, Yu-He Su, Xiao-Dong

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  3. Racemization of alanine by the alanine racemases from Salmonella typhimurium and Bacillus stearothermophilus: energetic reaction profiles

    SciTech Connect

    Faraci, W.S.; Walsh, C.T.

    1988-05-03

    Alanine racemases are bacterial pyridoxal 5'-phosphate (PLP) dependent enzymes providing D-alanine as an essential building block for biosynthesis of the peptidoglycan layer of the cell wall. Two isozymic alanine racemases, encoded by the dadB gene and the alr gene, from the Gram-negative mesophilic Salmonella typhimurium and one from the Gram-positive thermophilic Bacillus stearothermophilus have been examined for the racemization mechanism. Substrate deuterium isotope effects and solvent deuterium isotope effects have been measured in both L ..-->.. D and D..-->.. L directions for all three enzymes to assess the degree to which abstraction of the ..cap alpha..-proton or protonation of substrate PLP carbanion is limiting in catalysis. Additionally, experiments measuring internal return of ..cap alpha..-/sup 3/H from substrate to product and solvent exchange/substrate conversion experiments in /sup 3/H/sub 2/O have been used with each enzyme to examine the partitioning of substrate PLP carbanion intermediates and to obtain the relative heights of kinetically significant energy barriers in alanine racemase catalysis.

  4. Animal model of acid-reflux esophagitis: pathogenic roles of acid/pepsin, prostaglandins, and amino acids.

    PubMed

    Takeuchi, Koji; Nagahama, Kenji

    2014-01-01

    Esophagitis was induced in rats within 3 h by ligating both the pylorus and transitional region between the forestomach and glandular portion under ether anesthesia. This esophageal injury was prevented by the administration of acid suppressants and antipepsin drug and aggravated by exogenous pepsin. Damage was also aggravated by pretreatment with indomethacin and the selective COX-1 but not COX-2 inhibitor, whereas PGE2 showed a biphasic effect depending on the dose; a protection at low doses, and an aggravation at high doses, with both being mediated by EP1 receptors. Various amino acids also affected this esophagitis in different ways; L-alanine and L-glutamine had a deleterious effect, while L-arginine and glycine were highly protective, both due to yet unidentified mechanisms. It is assumed that acid/pepsin plays a major pathogenic role in this model of esophagitis; PGs derived from COX-1 are involved in mucosal defense of the esophagus; and some amino acids are protective against esophagitis. These findings also suggest a novel therapeutic approach in the treatment of esophagitis, in addition to acid suppressant therapy. The model introduced may be useful to test the protective effects of drugs on esophagitis and investigate the mucosal defense mechanism in the esophagus. PMID:24672789

  5. Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid Schiff base complexes: A comparative approach

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sakthivel, A.; Pravin, N.

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes were synthesized from Schiff base(s), obtained by the condensation of 4-aminoantipyrine with furfural and amino acid (glycine(L1)/alanine(L2)/valine(L3)) and respective metal(II) chloride. Their structural features and other properties were explored from the analytical and spectral methods. The binding behaviors of the complexes to calf thymus DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The intrinsic binding constants for the above synthesized complexes are found to be in the order of 102 to 105 indicating that most of the synthesized complexes are good intercalators. The binding constant values (Kb) clearly indicate that valine Schiff-base complexes have more intercalating ability than alanine and glycine Schiff-base complexes. The results indicate that the complexes bind to DNA through intercalation and act as efficient cleaving agents. The in vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents against various pathogens. The IC50 values of [Ni(L1)2] and [Zn(L1)2] complexes imply that these complexes have preferable ability to scavenge hydroxyl radical.

  6. Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid Schiff base complexes: a comparative approach.

    PubMed

    Raman, N; Sakthivel, A; Pravin, N

    2014-05-01

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes were synthesized from Schiff base(s), obtained by the condensation of 4-aminoantipyrine with furfural and amino acid (glycine(L1)/alanine(L2)/valine(L3)) and respective metal(II) chloride. Their structural features and other properties were explored from the analytical and spectral methods. The binding behaviors of the complexes to calf thymus DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The intrinsic binding constants for the above synthesized complexes are found to be in the order of 10(2) to 10(5) indicating that most of the synthesized complexes are good intercalators. The binding constant values (Kb) clearly indicate that valine Schiff-base complexes have more intercalating ability than alanine and glycine Schiff-base complexes. The results indicate that the complexes bind to DNA through intercalation and act as efficient cleaving agents. The in vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents against various pathogens. The IC50 values of [Ni(L1)2] and [Zn(L1)2] complexes imply that these complexes have preferable ability to scavenge hydroxyl radical. PMID:24566120

  7. Strecker degradation of amino acids promoted by a camphor-derived sulfonamide

    PubMed Central

    Ferreira, M João; Knittel, Ana S O; Oliveira, Maria da Conceição; Costa Pessoa, João; Herrmann, Rudolf; Wagner, Gabriele

    2016-01-01

    Summary A camphor-derived sulfonimine with a conjugated carbonyl group, oxoimine 1 (O2SNC10H13O), reacts with amino acids (glycine, L-alanine, L-phenylalanine, L-leucine) to form a compound O2SNC10H13NC10H14NSO2 (2) which was characterized by spectroscopic means (MS and NMR) and supported by DFT calculations. The product, a single diastereoisomer, contains two oxoimine units connected by a –N= bridge, and thus has a structural analogy to the colored product Ruhemann´s purple obtained by the ninhydrin reaction with amino acids. A plausible reaction mechanism that involves zwitterions, a Strecker degradation of an intermediate imine and water-catalyzed tautomerizations was developed by means of DFT calculations on potential transition states. PMID:27340465

  8. Radiolysis of Amino Acids in Outer Solar-System Ice Analogs

    NASA Technical Reports Server (NTRS)

    Gerakines, Perry A.; Hudson, Reggie L.

    2011-01-01

    Amino acids have been found in cometary dust particles and in the organic component of meteorites. These molecules, important for pre-biotic chemistry and for active biological systems, might be formed in cold planetary or interstellar environments and then delivered to H20-rich surfaces in the outer solar system. Many models for the availability of organic species on Earth and elsewhere depend on the ability of these molecules to survive in radiation-rich space environments. This poster presents results of O.8-MeV proton radiolysis of ice films at lS-140K. using infrared spectroscopy, the destruction rates of glycine, alanine, and phenylalanine have been determined for both pure films and those containing amino acids diluted in H2o. our results are discussed in terms of the survivability of these molecules in the icy surfaces present in the outer solar system and the possibility of their detection by instruments on board the New Horizons spacecraft

  9. Strecker degradation of amino acids promoted by a camphor-derived sulfonamide.

    PubMed

    Carvalho, M Fernanda N N; Ferreira, M João; Knittel, Ana S O; Oliveira, Maria da Conceição; Costa Pessoa, João; Herrmann, Rudolf; Wagner, Gabriele

    2016-01-01

    A camphor-derived sulfonimine with a conjugated carbonyl group, oxoimine 1 (O2SNC10H13O), reacts with amino acids (glycine, L-alanine, L-phenylalanine, L-leucine) to form a compound O2SNC10H13NC10H14NSO2 (2) which was characterized by spectroscopic means (MS and NMR) and supported by DFT calculations. The product, a single diastereoisomer, contains two oxoimine units connected by a -N= bridge, and thus has a structural analogy to the colored product Ruhemann´s purple obtained by the ninhydrin reaction with amino acids. A plausible reaction mechanism that involves zwitterions, a Strecker degradation of an intermediate imine and water-catalyzed tautomerizations was developed by means of DFT calculations on potential transition states. PMID:27340465

  10. Photosensitizing effect of cations on amino acids and peptides.

    PubMed

    Bogdanova, N P; Khenokh, M A

    1969-01-01

    In connection with a study of the chemical evolution of abiogenically synthesized organic compounds on primitive Earth and the physical conditions of other planets, this paper reports the experimental results obtained by the photolysis of solutions of aliphatic amino acids (glycine, alanine, valine, leucine, n. leucine) and peptides in the atmosphere of the air, N2, Ar and CO2 in the presence of the most simple photocatalyzers-cations of sulphates. The evidence shows that the photochemical conversion of NH2 acids depends on the content of the atmosphere. The decay of NH2-group is most active in air. N2 and Ar exert no significant influence on deamination, whereas in the atmosphere of CO2 the formation of ammonia in valine, for example, was only 29 per cent of its total amount during photolysis in the air. Cu2+ and Fe2+ catalyzed while Al3+ inhibited the ammonia excretion. The formation of acetaldehyde during alanine photolysis was actually independent from the atmosphere of N2 and was inhibited in Ar and CO2. Oxydative processes inducing the formation of glyoxalic acid and formaldehyde were sharply inhibited in Ar, N2 and CO2. Under the influence of ultraviolet light of the decay of NH2-acids is also accompanied by the formation of new NH2-acids. The photosensitizing effect of cations induces a rupture of -CO-NH-bonds in peptides and, provided heavy radiation doses, prevents the formation of new NH2-acids. The longer the dipeptide chain, the more significant the quantum yield of its decomposition. The photolysis of dipeptides, leading to their decay, does not necessarily induce a hydrolytic rupture of -CO-NH-bonds resulting in the formation of three amino acids. The results obtained permit approaching problems concerning the effect of the gas content of the atmosphere and various cations (photocatalyzers) on photolytic conversion of abiogenically synthesized and biogenically significant substances, amino acids for example, at the action of ultraviolet light. PMID

  11. Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method.

    PubMed

    Rolfe, S M; Patel, M R; Gilmour, I; Olsson-Francis, K; Ringrose, T J

    2016-06-01

    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examined L-alanine, L-aspartic acid, L-cysteine, L-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for L-alanine (strongest intensity band: 832 cm(-1)), L-aspartic acid (938 cm(-1)), L-cysteine (679 cm(-1)), L-glutamine (1090 cm(-1)) and glycine (875 cm(-1)), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made. PMID:26744263

  12. Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method

    NASA Astrophysics Data System (ADS)

    Rolfe, S. M.; Patel, M. R.; Gilmour, I.; Olsson-Francis, K.; Ringrose, T. J.

    2016-06-01

    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examined l-alanine, l-aspartic acid, l-cysteine, l-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for l-alanine (strongest intensity band: 832 cm-1), l-aspartic acid (938 cm-1), l-cysteine (679 cm-1), l-glutamine (1090 cm-1) and glycine (875 cm-1), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made.

  13. Neutron inelastic scattering by amino acids

    SciTech Connect

    Thaper, C.L.; Sinha, S.K.; Dasannacharya, B.A.

    1982-01-01

    Inelastic neutron scattering experiments on normal, N-deuterated glycine, normal and N-deuterated alanine, L-valine, L-tyrosine and, L-phenylalanine at 100 K, are reported. Coupling of the external modes to different hydrogens is discussed.

  14. Utilization of glycine and serine as nitrogen sources in the roots of Zea mays and Chamaegigas intrepidus.

    PubMed

    Hartung, W; Ratcliffe, R G

    2002-12-01

    Glycine and serine are potential sources of nitrogen for the aquatic resurrection plant Chamaegigas intrepidus Dinter in the rock pools that provide its natural habitat. The pathways by which these amino acids might be utilized were investigated by incubating C. intrepidus roots and maize (Zea mays) root tips with [(15)N]glycine, [(15)N]serine and [2-(13)C]glycine. The metabolic fate of the label was followed using in vivo NMR spectroscopy, and the results were consistent with the involvement of the glycine decarboxylase complex (GDC) and serine hydroxymethyltransferase (SHMT) in the utilization of glycine. In contrast, the labelling patterns provided no evidence for the involvement of serine:glyoxylate aminotransferase in the metabolism of glycine by the root tissues. The key observations were: (i) the release of [(15)N]ammonium during [(15)N]-labelling experiments; and (ii) the detection of a characteristic set of serine isotopomers in the [2-(13)C]glycine experiments. The effects of aminoacetonitrile, amino-oxyacetate, and isonicotinic acid hydrazide, all of which inhibit GDC and SHMT to some extent, and of methionine sulphoximine, which inhibited the reassimilation of the ammonium, supported the conclusion that GDC and SHMT were essential for the metabolism of glycine. C. intrepidus was observed to metabolize serine more readily than the maize root tips and this may be an adaptation to its nitrogen-deficient habitat. Overall, the results support the emerging view that GDC is an essential component of glycine catabolism in non-photosynthetic tissues. PMID:12432023

  15. Exploration of Sitagliptin as a potential inhibitor for the M1 Alanine aminopeptidase enzyme in Plasmodium falciparum using computational docking

    PubMed Central

    Krishnamoorthy, Mohana; Achary, Anant

    2013-01-01

    Plasmodium falciparum has limited capacity for de novo amino acid synthesis and rely on degradation of host hemoglobin to maintain protein metabolism and synthesis of proteins. M1 alanine aminopeptidase enzyme of the parasite involved in the terminal degradation of host hemoglobin was subjected to in silico screening with low molecular weight protease inhibitors. The km (avg) of the enzyme M1 alanine aminopeptidase for the substrate DL – Alanine β Napthylamide Hydrochloride was estimated as 322.05µM. The molecular interactions between the enzyme and the substrate and the mechanism of enzyme action were analyzed which paved way for inhibition strategies. Among all the inhibitors screened, Sitagliptin was found to be most potent inhibitor with ki of 0.152 µM in its best orientation whereas the ki(avg) was 2.0055 µM. The ki of Sitagliptin is lower than the km of M1 alanine aminopeptidase for the substrate DL – Alanine β Napthylamide Hydrochloride (322.05 µM) and Ki of the known inhibitor Bestatin. Therefore Sitagliptin may serve as a potent competitive inhibitor of the enzyme M1 alanine aminopeptidase of Plasmodium falciparum. PMID:23559748

  16. International society of sports nutrition position stand: Beta-Alanine.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E; Stout, Jeffrey R; Hoffman, Jay R; Wilborn, Colin D; Sale, Craig; Kreider, Richard B; Jäger, Ralf; Earnest, Conrad P; Bannock, Laurent; Campbell, Bill; Kalman, Douglas; Ziegenfuss, Tim N; Antonio, Jose

    2015-01-01

    The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of beta-alanine supplementation. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Four weeks of beta-alanine supplementation (4-6 g daily) significantly augments muscle carnosine concentrations, thereby acting as an intracellular pH buffer; 2) Beta-alanine supplementation currently appears to be safe in healthy populations at recommended doses; 3) The only reported side effect is paraesthesia (tingling), but studies indicate this can be attenuated by using divided lower doses (1.6 g) or using a sustained-release formula; 4) Daily supplementation with 4 to 6 g of beta-alanine for at least 2 to 4 weeks has been shown to improve exercise performance, with more pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; 5) Beta-alanine attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates that beta-alanine may improve tactical performance; 6) Combining beta-alanine with other single or multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high enough (4-6 g daily) and long enough (minimum 4 weeks); 7) More research is needed to determine the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other health-related benefits associated with carnosine. PMID:26175657

  17. Organic foliar Milstop shows efficacy against soybean aphid (Aphis glycines) on soybean (Glycine max)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max (L.) Merr.) has been produced in the United States since 1765. Soybean aphids (Aphis glycines Matsumura) were first detected on soybean in the United States in 2000 and now cause an estimated yield loss of up to US$4.9 billion annually. Organic soybean producers have few insecti...

  18. Shock wave synthesis of amino acids from solutions of ammonium formate and ammonium bicarbonate

    NASA Astrophysics Data System (ADS)

    Suzuki, Chizuka; Furukawa, Yoshihiro; Kobayashi, Takamichi; Sekine, Toshimori; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2015-07-01

    The emergence of life's building blocks, such as amino acids and nucleobases, on the prebiotic Earth was a critical step for the beginning of life. Reduced species with low mass, such as ammonia, amines, or carboxylic acids, are potential precursors for these building blocks of life. These precursors may have been provided to the prebiotic ocean by carbonaceous chondrites and chemical reactions related to meteorite impacts on the early Earth. The impact of extraterrestrial objects on Earth occurred more frequently during this period than at present. Such impacts generated shock waves in the ocean, which have the potential to progress chemical reactions to form the building blocks of life from reduced species. To simulate shock-induced reactions in the prebiotic ocean, we conducted shock-recovery experiments on ammonium bicarbonate solution and ammonium formate solution at impact velocities ranging from 0.51 to 0.92 km/s. In the products from the ammonium formate solution, several amino acids (glycine, alanine, ß-alanine, and sarcosine) and aliphatic amines (methylamine, ethylamine, propylamine, and butylamine) were detected, although yields were less than 0.1 mol % of the formic acid reactant. From the ammonium bicarbonate solution, smaller amounts of glycine, methylamine, ethylamine, and propylamine were formed. The impact velocities used in this study represent minimum cases because natural meteorite impacts typically have higher velocities and longer durations. Our results therefore suggest that shock waves could have been involved in forming life's building blocks in the ocean of prebiotic Earth, and potentially in aquifers of other planets, satellites, and asteroids.

  19. The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function.

    PubMed

    Wilson, Kirilee A; Bär, Séverine; Maerz, Anne L; Alizon, Marc; Poumbourios, Pantelis

    2005-04-01

    Retroviral transmembrane proteins (TMs) contain an N-terminal fusion peptide that initiates virus-cell membrane fusion. The fusion peptide is linked to the coiled-coil core through a conserved sequence that is often rich in glycines. We investigated the functional role of the glycine-rich segment, Met-326 to Ser-337, of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, by alanine and proline scanning mutagenesis. Alanine substitution for the hydrophobic residue Ile-334 caused an approximately 90% reduction in cell-cell fusion activity without detectable effects on the lipid-mixing and pore formation phases of fusion. Alanine substitutions at other positions had smaller effects (Gly-329, Val-330, and Gly-332) or no effect on fusion function. Proline substitution for glycine residues inhibited cell-cell fusion function with position-dependent effects on the three phases of fusion. Retroviral glycoprotein fusion function thus appears to require flexibility within the glycine-rich segment and hydrophobic contacts mediated by this segment. PMID:15767455

  20. The Conserved Glycine-Rich Segment Linking the N-Terminal Fusion Peptide to the Coiled Coil of Human T-Cell Leukemia Virus Type 1 Transmembrane Glycoprotein gp21 Is a Determinant of Membrane Fusion Function

    PubMed Central

    Wilson, Kirilee A.; Bär, Séverine; Maerz, Anne L.; Alizon, Marc; Poumbourios, Pantelis

    2005-01-01

    Retroviral transmembrane proteins (TMs) contain an N-terminal fusion peptide that initiates virus-cell membrane fusion. The fusion peptide is linked to the coiled-coil core through a conserved sequence that is often rich in glycines. We investigated the functional role of the glycine-rich segment, Met-326 to Ser-337, of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, by alanine and proline scanning mutagenesis. Alanine substitution for the hydrophobic residue Ile-334 caused an ∼90% reduction in cell-cell fusion activity without detectable effects on the lipid-mixing and pore formation phases of fusion. Alanine substitutions at other positions had smaller effects (Gly-329, Val-330, and Gly-332) or no effect on fusion function. Proline substitution for glycine residues inhibited cell-cell fusion function with position-dependent effects on the three phases of fusion. Retroviral glycoprotein fusion function thus appears to require flexibility within the glycine-rich segment and hydrophobic contacts mediated by this segment. PMID:15767455

  1. Solubility calculations of branched and linear amino acids using lattice cluster theory

    NASA Astrophysics Data System (ADS)

    Fischlschweiger, Michael; Enders, Sabine; Zeiner, Tim

    2014-09-01

    In this work, the activity coefficients and the solubility of amino acids in water were calculated using the lattice cluster theory (LCT) combined with the extended chemical association lattice model allowing self-association as well as cross-association. This permits the study of the influence of the amino acids structure on the thermodynamic properties for the first time. By the used model, the activity coefficient and solubilities of the investigated fourteen amino acids (glycine, alanine, γ-aminobutyric acid, dl-valine, dl-threonine, dl-methionine, l-leucine, l-glutamic acid, l-proline, hydroxyproline, histidine, l-arginine, α-amino valeric acid) could be described in good accordance with experimental data. In the case of different α-amino acids, but different hydrocarbon chains, the same interaction energy parameter can be used within the LCT. All studied amino acids could be modelled using the same parameter for the description of the amino acid association properties. The formed cross-associates contain more amino acids than expressed by the overall mole fraction of the solution. Moreover, the composition of the cross-associates depends on temperature, where the amount of amino acids increases with increasing temperature.

  2. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes

    PubMed Central

    Carvajal-González, Alexander; Leite, M. Isabel; Waters, Patrick; Woodhall, Mark; Coutinho, Ester; Balint, Bettina; Lang, Bethan; Pettingill, Philippa; Carr, Aisling; Sheerin, Una-Marie; Press, Raomand; Lunn, Michael P.; Lim, Ming; Maddison, Paul; Meinck, H.-M.; Vandenberghe, Wim

    2014-01-01

    The clinical associations of glycine receptor antibodies have not yet been described fully. We identified prospectively 52 antibody-positive patients and collated their clinical features, investigations and immunotherapy responses. Serum glycine receptor antibody endpoint titres ranged from 1:20 to 1:60 000. In 11 paired samples, serum levels were higher than (n = 10) or equal to (n = 1) cerebrospinal fluid levels; there was intrathecal synthesis of glycine receptor antibodies in each of the six pairs available for detailed study. Four patients also had high glutamic acid decarboxylase antibodies (>1000 U/ml), and one had high voltage-gated potassium channel-complex antibody (2442 pM). Seven patients with very low titres (<1:50) and unknown or alternative diagnoses were excluded from further study. Three of the remaining 45 patients had newly-identified thymomas and one had a lymphoma. Thirty-three patients were classified as progressive encephalomyelitis with rigidity and myoclonus, and two as stiff person syndrome; five had a limbic encephalitis or epileptic encephalopathy, two had brainstem features mainly, two had demyelinating optic neuropathies and one had an unclear diagnosis. Four patients (9%) died during the acute disease, but most showed marked improvement with immunotherapies. At most recent follow-up, (2–7 years, median 3 years, since first antibody detection), the median modified Rankin scale scores (excluding the four deaths) decreased from 5 at maximal severity to 1 (P < 0.0001), but relapses have occurred in five patients and a proportion are on reducing steroids or other maintenance immunotherapies as well as symptomatic treatments. The glycine receptor antibodies activated complement on glycine receptor-transfected human embryonic kidney cells at room temperature, and caused internalization and lysosomal degradation of the glycine receptors at 37°C. Immunoglobulin G antibodies bound to rodent spinal cord and brainstem co-localizing with

  3. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.

    PubMed

    Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe

    2016-06-27

    Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection. PMID:27214306

  4. Functionalization of single-walled carbon nanotubes with uracil, guanine, thymine and L-alanine

    NASA Astrophysics Data System (ADS)

    Silambarasan, D.; Iyakutti, K.; Vasu, V.

    2014-06-01

    Experimental investigation of functionalization of oxidized single-walled carbon nanotubes (OSWCNTs) with three nucleic acid bases such as uracil, guanine, thymine and one amino acid, L-alanine is carried out. Initially, the SWCNTs are oxidized by acid treatment. Further, the oxidized SWCNTs are effectively functionalized with aforementioned biological compounds by ultrasonication. The diameter of OSWCNTs has increased after the adsorption of biological compounds. The cumulative Π-Π stacking, hydrogen bond and polar interaction are the key factors to realize the adsorption. The amount of adsorption of each biological compound is estimated. The adsorption of guanine is more among all the four biological compounds.

  5. Methylammonium methylcarbamate thermal formation in interstellar ice analogs: a glycine salt precursor in protostellar environments

    NASA Astrophysics Data System (ADS)

    Bossa, J.-B.; Duvernay, F.; Theulé, P.; Borget, F.; D'Hendecourt, L.; Chiavassa, T.

    2009-11-01

    Context: Analyses of dust cometary grains collected by the Stardust spacecraft have shown the presence of amines and amino acids molecules, and among them glycine (NH{2}CH{2}COOH). We show how the glycine molecule could be produced in the protostellar environments before its introduction into comets. Aims: We study the evolution of the interstellar ice analogues affected by both thermal heating and vacuum ultraviolet (VUV) photons, in addition to the nature of the formed molecules and the confrontation of our experimental results with astronomical observations. Methods: Infrared spectroscopy and mass spectrometry are used to monitor the evolution of the H{2}O:CO{2}:CH{3}NH{2} and CO{2}:CH{3}NH{2} ice mixtures during both warming processes and VUV photolysis. Results: We first show how carbon dioxide (CO{2}) and methylamine (CH{3}NH{2}) thermally react in water-dominated ice to form methylammonium methylcarbamate [ CH{3}NH{3}+] [ CH{3}NHCOO-] noted C. We then determine the reaction rate and activation energy. We show that C thermal formation can occurs in the 50-70 K temperature range of a protostellar environment. Secondly, we report that a VUV photolysis of a pure C sample produces a glycine salt, methylammonium glycinate [ CH{3}NH{3}+] [ NH{2}CH{2}COO-] noted G. We propose a scenario explaining how C and subsequently G can be synthesized in interstellar ices and precometary grains. Conclusions: [ CH{3}NH{3}+] [ CH{3}NHCOO-] could be readily formed and would act as a glycine salt precursor in protostellar environments dominated by thermal and UV processing. We propose a new pathway leading to a glycine salt, which is consistent with the detection of glycine and methylamine within the returned samples of comet 81P/Wild 2 from the Stardust mission.

  6. Ir-Spectroscopy of Glycine and its Complexes with Water in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Letzner, M.; Grün, S. A.; Schwaab, G.; Havenith, M.

    2011-06-01

    Glycine is the smallest amino acid, and therefore it is of special interest as a model and starting point for theoretical and experimental studies. Whereas the crystalline form of glycine consists of zwitterions NH_3+-CH_2-COO-, gas phase glycine is known to exist in the nonionized form NH_2-CH_2-COOH. The interaction between glycine and water has been widely studied using a large variety of theoretical methods. Depending on the theoretical level used, a stabilisation of the zwitterionic form is predicted for complexes containing from 2 to 7 water molecules. In low-temperature Ar matrices a set of characteristic IR absorption bands for the zwitterionic form has been observed. The higher stoichiometry complexes (glycine)\\cdots(H_2O)_n with n larger than 3 are demonstrated to be zwitterionic H-bonded complexes. The multitude of conformations expected for these glycine-water complexes makes a combination of low temperature and high resolution spectroscopy essential. We want to use the advantages of our experiment to investigate glycine and its complexes with water in helium-nanodroplets at ultracold temperatures in the range from 3000-3800 Cm-1. Our measurements were carried out using a high power IR-OPO (cw: 2.7 W) as radiation source and a helium nanodroplet spectrometer. Helium-nanodroplets are formed by expansion of helium at 55 bar through a 5 μm nozzle which is kept at a temperature of 16 K. The status of the project is presented. P.-G. Jönsson et al., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 1827 (1972) G. Junk et al., J. Am. Chem. Soc. 85, 839 (1963) R. Ramaekers et al., J. Chem. Phys., 120 (2004)

  7. Kinetic study of carbon dioxide absorption into glycine promoted diethanolamine (DEA)

    NASA Astrophysics Data System (ADS)

    Pudjiastuti, Lily; Susianto, Altway, Ali; IC, Maria Hestia; Arsi, Kartika

    2015-12-01

    In industry, especially petrochemical, oil and natural gas industry, required separation process of CO2 gas which is a corrosive gas (acid gas). This characteristic can damage the plant utility and piping systems as well as reducing the caloric value of natural gas. Corrosive characteristic of CO2 will appear in areas where there is a decrease in temperature and pressure, such as at the elbow pipe, tubing, cooler and injector turbine. From disadvantages as described above, then it is important to do separation process in the CO2 gas stream, one of the method for remove CO2 from the gas stream is reactive absorption using alkanolamine based solution with promotor. Therefore, this study is done to determine the kinetics constant of CO2 absorption in diethanolamine (DEA) solution using a glycine promoter. Glycine is chosen as a promoter because glycine is a primary amine compound which is reactive, moreover, glycine has resistance to high temperatures so it will not easy to degradable and suitable for application in industry. The method used in this study is absorption using laboratory scale wetted wall column equipment at atmospheric of pressure. This study will to provide the reaction kinetics data information in order to optimize the separation process of CO2 in the industrialized world. The experimental results show that rising temperatures from 303,15 - 328,15 K and the increase of concentration of glycine from 1% - 3% weight will increase the absorption rate of carbon dioxide in DEA promoted with glycine by 24,2% and 59,764% respectively, also the reaction kinetic constant is 1.419 × 1012 exp (-3634/T) (m3/kmol.s). This result show that the addition of glycine as a promoter can increase absorption rate of carbon dioxide in diethanolamine solution and cover the weaknesses of diethanolamine solution.

  8. A Rigorous Attempt to Verify Interstellar Glycine

    NASA Technical Reports Server (NTRS)

    Snyder, L. E.; Lovas, F. J.; Hollis, J. M.; Friedel, D. N.; Jewell, P. R.; Remijan, A.; Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.

    2004-01-01

    In 2003, Kuan, Charnley, and co-workers reported the detection of interstellar glycine (NH2CH2COOH) based on observations of 27 lines in 19 different spectral bands in one or more of the sources Sgr BP(N-LMH), Orion KL, and W51 e1/e2. They supported their detection report with rotational temperature diagrams for all three sources. In this paper, we present essential criteria which can be used in a straightforward analysis technique to confirm the identity of an interstellar asymmetric rotor such as glycine. We use new laboratory measurements of glycine as a basis for applying this analysis technique, both to our previously unpublished 12 m telescope data and to the previously published SEST data of Nummelin and colleagues. We conclude that key lines necessary for an interstellar glycine identification have not yet been found. We identify several common molecular candidates that should be examined further as more likely carriers of the lines reported as glycine. Finally, we illustrate that rotational temperature diagrams used without the support of correct spectroscopic assignments are not a reliable tool for the identification of interstellar molecules. Subject headings: ISM: abundances - ISM: clouds - ISM: individual (Sagittarius B2[N-

  9. Raman spectra of amino acids and their aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  10. Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1985-01-01

    The formation of alanine (ala) form C(14)-glyceraldehyde and ammonium phosphate in the presence or absence of a thiol is reported. At ambient temperature, ala synthesis was six times more rapid in the presence of 3-mercaptopropionic acid than in its absence (0.6 and 0.1 percent, respectively, after 60 days). Similarly, the presence of another thiol, N-acetylcysteinate, increased the production of ala, as well as of lactate. The reaction pathway of thiol-catalyzed synthesis of ala, with the lactic acid formed in a bypath, is suggested. In this, dehydration of glyceraldehyde is followed by the formation of hemithioacetal. In the presence of ammonia, an imine is formed, which eventually yields ala. This pathway is consistent with the observation that the rate ratio of ala/lactate remains constant throughout the process. The fact that the reaction takes place under anaerobic conditions in the presence of H2O and with the low concentrations of simple substrates and catalysts makes it an attractive model prebiotic reaction in the process of molecular evolution.

  11. Antidepressants modulate glycine action in rat hippocampus.

    PubMed

    Chang, Hyun-Kyung; Kim, Khae Hawn; Kang, Ki-Woon; Kang, Yoo-Jin; Kim, Tae-Wook; Park, Hun-Kyung; Kim, Sung-Eun; Kim, Chang-Ju

    2015-12-01

    Antidepressants are drugs that relieve symptoms of depressive disorders. Fluoxetine, tianeptine, and milnacipran are different types of antidepressants, and they have widely been used for relieving of depression symptoms. In the present study, the effects of fluoxetine, tianeptine, and milnacipran on the glycine-induced ion current by nystatin-perforated patch clamp and on the amplitude of field potential in the hippocampal CA1 region by multichannel extracellular recording, MED64, system, were studied. In the present results, fluoxetine, tianeptine, and milnacipran reduced glycine-induced ion current in the hippocampal CA1 neurons in nystatin-perforated patch clamp method. These drugs enhanced the amplitude of the field potential in the hippocampal CA1 region in MED64 system. These results suggest that antidepressants may increase neuronal activity by enhancing field potential through inhibition on glycine-induced ion current. PMID:26730381

  12. Antidepressants modulate glycine action in rat hippocampus

    PubMed Central

    Chang, Hyun-Kyung; Kim, Khae Hawn; Kang, Ki-Woon; Kang, Yoo-Jin; Kim, Tae-Wook; Park, Hun-Kyung; Kim, Sung-Eun; Kim, Chang-Ju

    2015-01-01

    Antidepressants are drugs that relieve symptoms of depressive disorders. Fluoxetine, tianeptine, and milnacipran are different types of antidepressants, and they have widely been used for relieving of depression symptoms. In the present study, the effects of fluoxetine, tianeptine, and milnacipran on the glycine-induced ion current by nystatin-perforated patch clamp and on the amplitude of field potential in the hippocampal CA1 region by multichannel extracellular recording, MED64, system, were studied. In the present results, fluoxetine, tianeptine, and milnacipran reduced glycine-induced ion current in the hippocampal CA1 neurons in nystatin-perforated patch clamp method. These drugs enhanced the amplitude of the field potential in the hippocampal CA1 region in MED64 system. These results suggest that antidepressants may increase neuronal activity by enhancing field potential through inhibition on glycine-induced ion current. PMID:26730381

  13. Chemical basis of glycine riboswitch cooperativity

    PubMed Central

    Kwon, Miyun; Strobel, Scott A.

    2008-01-01

    The glycine binding riboswitch forms a unique tandem aptamer structure that binds glycine cooperatively. We employed nucleotide analog interference mapping (NAIM) and mutagenesis to explore the chemical basis of glycine riboswitch cooperativity. Based on the interference pattern, at least two sites appear to facilitate cooperative tertiary interactions, namely, the minor groove of the P1 helix from aptamer 1 and the major groove of the P3a helix from both aptamers. Mutation of these residues altered both the cooperativity and binding affinity of the riboswitch. The data support a model in which the P1 helix of the first aptamer participates in a tertiary interaction important for cooperativity, while nucleotides in the P1 helix of the second aptamer interface with the expression platform. These data have direct analogy to well-characterized mutations in hemoglobin, which provides a framework for considering cooperativity in this RNA-based system. PMID:18042658

  14. Expression, Purification, and Characterization of Mouse Glycine N-acyltransferase in Escherichia coli

    PubMed Central

    Dempsey, Daniel R.; Bond, Jason D.; Carpenter, Anne-Marie; Ospina, Santiago Rodriguez; Merkler, David J.

    2014-01-01

    Glycine N-acyltransferase (GLYAT) is a phase II metabolic detoxification enzyme for exogenous (xenobiotic) and endogenous carboxylic acids; consisting of fatty acids, benzoic acid, and salicylic acid. GLYAT catalyzes the formation of hippurate (N-benzoylglycine) from the corresponding glycine and benzoyl-CoA. Herein, we report the successful expression, purification, and characterization of recombinant mouse GLYAT (mGLYAT). A 34 kDa mGLYAT protein was expressed in Escherichia coli and purified to homogeneity by nickel affinity chromatography to a final yield of 2.5 mg/L culture. Characterization for both amino donors and amino acceptors were completed, with glycine serving as the best amino donor substrate, (kcat/Km)app = (5.2 ± 0.20) × 102M−1s−1, and benzoyl-CoA serving as the best the amino acceptor substrate, (kcat/Km)app = (4.5 ± 0.27) × 105M−1s−1. Our data demonstrate that mGLYAT will catalyzed the chain length specific (C2-C6) formation of N-acylglycines. The steady-state kinetic constants determined for recombinant mGLYAT for the substrates benzoyl-CoA and glycine, were shown to be consistent with other reported species (rat, human, bovine, ovine, and rhesus monkey). The successful recombinant expression and purification of mGLYAT can lead to solve unanswered questions associated with this enzyme, consisting of what is the chemical mechanism and what catalytic residues are essential for the how this phase II metabolic detoxification enzyme conjugates glycine to xenobiotic and endogenous carboxylic acids. PMID:24576660

  15. Expression of heteromeric glycine receptor-channels in rat spinal cultures and inhibition by neuroactive steroids.

    PubMed

    Fodor, László; Boros, András; Dezso, Péter; Maksay, Gábor

    2006-11-01

    Ionotropic glycine receptors were studied in cultured spinal cord neurons prepared from 17-day-old rat embryos, using whole-cell patch clamp electrophysiology. Glycine receptors of 3-17 days in vitro were characterized via subtype-specific channel blockade by micromolar picrotoxin and cyanotriphenylborate, as well as nanomolar strychnine. Potentiation by nanomolar tropisetron indicated coexpression of beta with alpha subunits. The neuroactive steroids pregnenolone sulfate and dehydroepiandrosterone sulfate, as well as alphaxalone and its 3beta epimer betaxalone inhibited the chloride current with IC(50) values of 19, 46, 16 and 208 microM, respectively, with no potentiation. Reverse transcription polymerase chain reaction and immunocytochemistry demonstrated mRNAs and proteins of alpha1, alpha2, alpha3 and beta subunits in rat spinal cord cultures. In conclusion, neuroactive steroids, both positive and negative modulators of gamma-aminobutyric-acid(A) receptors, inhibited heteromeric glycine receptors at micromolar concentrations. PMID:16784797

  16. Glycine as a regulator of tryptophan-dependent pigment synthesis in Malassezia furfur.

    PubMed

    Barchmann, Thorsten; Hort, Wiebke; Krämer, Hans-Joachim; Mayser, Peter

    2011-01-01

    The effects of the addition of different amino nitrogens on growth, morphology and secondary metabolism of Malassezia furfur were investigated. After primary culture on Dixon agar, M. furfur CBS 1878 was transferred into a fluid medium together with the nitrogen sources, glycine (Gly) or tryptophan (Trp), or a combination of both. Growth was measured by means of a direct cell counting method and pigment synthesis was photometrically assessed. Addition of glycine resulted in an exponential increase in biomass, but not in pigment production. Tryptophan as the sole nitrogen source caused distinct brown staining of the medium, without increasing biomass. Simultaneous equimolar addition of both amino acids resulted in an initial increase in biomass as a sign of preferential metabolism of glycine, followed by a growth plateau and pigment production which, caused by higher biomass, occurred more rapidly than after addition of tryptophan alone. The yeast-cell morphology changed from round to oval. Addition of glycine to the tryptophan-containing liquid culture stopped pigment formation with simultaneous growth induction. These in vitro on-off phenomena depending on the nitrogen source might be significant in the pathogenesis of pityriasis versicolor: hyperhidrosis followed by preferential consumption of individual nitrogen sources such as glycine with exponential growth and thereafter transamination of tryptophan and TRP-dependent pigment synthesis. PMID:19702622

  17. Temperature-sensitive mutants of Escherichia coli K-12 with low activities of the L-alanine adding enzyme and the D-alanyl-D-alanine adding enzyme.

    PubMed

    Lugtenberg, E J; v Schijndel-van Dam, A

    1972-04-01

    A number of properties of temperature-sensitive mutants in murein synthesis are described. The mutants grow at 30 C but lyse at 42 C. One mutant possesses a temperature-sensitive d-alanyl-d-alanine adding enzyme, has an impaired rate of murein synthesis in vivo at both 30 and 42 C, and contains elevated levels of uridine diphosphate-N-acetyl-muramyl-tripeptide (UDP-MurNAc-l-Ala-d-Glu-m-diaminopimelic acid) at 42 C. The other mutant possesses an l-alanine adding enzyme with a very low in vitro activity at both 30 and 42 C. Its in vivo rate of murein synthesis is almost normal at 30 C but is much less at 42 C. When the murein precursors were isolated after incubation of the cells in the presence of (14)C-l-alanine, they contained only a fraction of the radioactivity that could be obtained from a wild-type strain. A genetic nomenclature for genes concerned with murein synthesis is proposed. PMID:4552998

  18. The effect of sugars and free amino acids from the freshwater prawn Macrobrachium rosenbergii hemolymph on lectin activity and on oxidative burst.

    PubMed

    Soria, Frida; Sierra, Claudia; Bouquelet, Stephane; Brassart, Colette; Agundis, Concepción; Zenteno, Edgar; Vázquez, Lorena

    2006-01-01

    We determined the effect of low molecular weight components (LMWC) from healthy juvenile and adult Macrobrachium rosenbergii hemolymph on lectin activity and oxidative burst (OB) in hemocytes. In an attempt to identify the LMWC that affect the lectin's hemagglutinating activity or oxidative burst, we determined the hemolymph carbohydrates and free amino acids (FAA) concentration. The LMWC (<2000 Da) were obtained after dialysis of the hemolymph. Our results showed that LMWC from juveniles exerted a greater inhibition on lectin than LMWC from adult hemolymph. Production of superoxide radicals by hemocytes was lower in the presence of juvenile (p<0.05) as compared to adult LMWC. FAA composition of the hemolymph and of LMWC from adults showed higher proportion of alanine (which corresponded to 25% of total FAA) and proline (>20%); whereas, in juveniles, the main FAA identified were glycine (>40%) and alanine (26%). N-Acetyl-D-glucosamine (GlcNAc) was the main sugar residue in the hemolymph and LMWC from juveniles; its concentration was 2.4 times higher than glucose (Glc), whereas, in adults, Glc was the main free sugar residue. Our results suggest that the proportion of FAA and carbohydrates in the hemolymph of M. rosenbergii seems to be correlated with the maturation process; furthermore, the high proportion of free GlcNAc and glycine regulate, in the juvenile stage, lectin activity and cellular oxidative mechanisms, respectively. PMID:16290085

  19. Effect of taurine supplementation on the alterations in amino Acid content in skeletal muscle with exercise in rat.

    PubMed

    Ishikura, Keisuke; Miyazaki, Teruo; Ra, Song-Gyu; Endo, Shoji; Nakamura, Yusuke; Matsuzaka, Takashi; Miyakawa, Shumpei; Ohmori, Hajime

    2011-01-01

    Taurine included abundantly in skeletal muscle, particularly in the slow-twitch fibers, enhances exercise performance. However, the exact mechanisms for this effect have been unclear. The present study investigated the influence of taurine supplementation on amino acids profile in skeletal muscles as one of mechanisms in the enhancement of exercise performance induced by taurine. In the rats that received taurine solution, amino acids concentrations were comprehensively quantified in two portions with different fiber compositions in the fast-twitch fiber dominant (FFD) gastrocnemius muscle after 2 weeks, and in the gastrocnemius and additional other FFD muscles, liver, and plasma with exhausted exercise after 3 weeks. In the FFD muscles after 2 weeks, a common phenomenon that decreased concentrations of threonine (-16%), serine (-15~-16%), and glycine (-6~-16%) were observed, and they are categorized in the pyruvate precursors for hepatic gluconeogenesis rather than biosynthesis, polar, and side-chain structures. The decreases in the three amino acids were significantly emphasized after an additional week of taurine supplementation in the FFD muscles (p values in three amino acids in these tissues were less than 0.001-0.05), but not in the liver and plasma, accompanied with significantly increase of running time to exhaustion (p <0.05). In contrast, the three amino acids (threonine and serine; p < 0.05, glycine; p < 0.01) and alanine (p < 0.01) in the liver were significantly decreased and increased, respectively, following the exhaustive exercise. In conclusion, the taurine-induced reductions of these amino acids in skeletal muscle might be one of the mechanisms which underpin the enhancement of exercise performance by taurine. Key pointsTaurine ingestion significantly decreased certain amino acids in skeletal muscles accompanied with enhanced exercise performance.The decreased amino acids in common were threonine, serine, and glycine, but not alanine; pyruvate

  20. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice.

    PubMed

    Alarcon-Aguilar, F J; Almanza-Perez, Julio; Blancas, Gerardo; Angeles, Selene; Garcia-Macedo, Rebeca; Roman, Ruben; Cruz, Miguel

    2008-12-01

    Fat tissue plays an important role in the regulation of inflammatory processes. Increased visceral fat has been associated with a higher production of cytokines that triggers a low-grade inflammatory response, which eventually may contribute to the development of insulin resistance. In the present study, we investigated whether glycine, an amino acid that represses the expression in vitro of pro-inflammatory cytokines in Kupffer and 3T3-L1 cells, can affect in vivo cytokine production in lean and monosodium glutamate-induced obese mice (MSG/Ob mice). Our data demonstrate that glycine treatment in lean mice suppressed TNF-alpha transcriptional expression in fat tissue, and serum protein levels of IL-6 were suppressed, while adiponectin levels were increased. In MSG/Ob mice, glycine suppressed TNF-alpha and IL-6 gene expression in fat tissue and significantly reduced protein levels of IL-6, resistin and leptin. To determine the role of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the modulation of this inflammatory response evoked by glycine, we examined its expression levels in fat tissue. Glycine clearly increased PPAR-gamma expression in lean mice but not in MSG/Ob mice. Finally, to identify alterations in glucose metabolism by glycine, we also examined insulin levels and other biochemical parameters during an oral glucose tolerance test. Glycine significantly reduced glucose tolerance and raised insulin levels in lean but not in obese mice. In conclusion, our findings suggest that glycine suppresses the pro-inflammatory cytokines production and increases adiponectin secretion in vivo through the activation of PPAR-gamma. Glycine might prevent insulin resistance and associated inflammatory diseases. PMID:18930730

  1. Genetics of Amino Acid Taste and Appetite.

    PubMed

    Bachmanov, Alexander A; Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Reed, Danielle R; Tordoff, Michael G; Beauchamp, Gary K

    2016-07-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. PMID:27422518

  2. Guanidino acids act as rho1 GABA(C) receptor antagonists.

    PubMed

    Chebib, Mary; Gavande, Navnath; Wong, Kit Yee; Park, Anna; Premoli, Isabella; Mewett, Kenneth N; Allan, Robin D; Duke, Rujee K; Johnston, Graham A R; Hanrahan, Jane R

    2009-10-01

    GABA(C) receptors play a role in myopia, memory-related disorders and circadian rhythms signifying a need to develop potent and selective agents for this class of receptors. Guanidino analogs related to glycine, beta-alanine and taurine were evaluated at human rho(1)GABA(C) receptors expressed in Xenopus oocytes using 2-electrode voltage clamp methods. Of the 12 analogs tested, 8 analogs were active as antagonists and the remaining were inactive. (S)-2-guanidinopropionic acid (IC(50) = 2.2 microM) and guanidinoacetic acid (IC(50) = 5.4 microM; K (B) = 7.75 microM [pK (B) = 5.11 +/- 0.06]) were the most potent being competitive antagonists at this receptor. In contrast, the beta-alanine and GABA guanidino analogs showed reduced activity, indicating the distance between the carboxyl carbon and terminal nitrogen of the guanidino group is critical for activity. Substituting the C2-position of guanidinoacetic acid with various alkyl groups reduced activity indicating that steric effects may impact on activity. The results of this study contribute to the structure-activity-relationship profile required in developing novel therapeutic agents. PMID:19387831

  3. Conserved Glycine Residues in the Cytoplasmic Domain of the Aspartate Receptor Play Essential Roles in Kinase Coupling and On–Off Switching†

    PubMed Central

    Coleman, Matthew D.; Bass, Randal B.; Mehan, Ryan S.; Falke, Joseph J.

    2010-01-01

    The aspartate receptor of the bacterial chemotaxis pathway serves as a scaffold for the formation of a multiprotein signaling complex containing the receptor and the cytoplasmic pathway components. Within this complex, the receptor regulates the autophosphorylation activity of histidine kinase CheA, thereby controlling the signals sent to the flagellar motor and the receptor adaptation system. The receptor cytoplasmic domain, which controls the on–off switching of CheA, possesses 14 glycine residues that are highly conserved in related receptors. In principle, these conserved glycines could be required for static turns, bends, or close packing in the cytoplasmic domain, or they could be required for conformational dynamics during receptor on–off switching. To determine which glycines are essential and to probe their functional roles, we have substituted each conserved glycine with both alanine and cysteine, and then measured the effects on receptor function in vivo and in vitro. The results reveal a subset of six glycines which are required for receptor function during cellular chemotaxis. Two of these essential glycines (G388 and G391) are located at a hairpin turn at the distal end of the folded cytoplasmic domain, where they are required for the tertiary fold of the signaling subdomain and for CheA kinase activation. Three other essential glycines (G338, G339, and G437) are located at the border between the adaptation and signaling subdomains, where they play key roles in CheA kinase activation and on–off switching. These three glycines form a ring around the four-helix bundle that comprises the receptor cytoplasmic domain, yielding a novel architectural feature termed a bundle hinge. The final essential glycine (G455) is located in the adaptation subdomain where it is required for on–off switching. Overall, the findings confirm that six of the 14 conserved cytoplasmic glycines are essential for receptor function because they enable helix turns and bends

  4. The conserved glycine residues in the transmembrane domain of the Semliki Forest virus fusion protein are not required for assembly and fusion

    SciTech Connect

    Liao Maofu; Kielian, Margaret . E-mail: kielian@aecom.yu.edu

    2005-02-05

    The alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered fusion reaction mediated by the viral E1 protein. Both the E1 fusion peptide and transmembrane (TM) domain are essential for membrane fusion, but the functional requirements for the TM domain are poorly understood. Here we explored the role of the five TM domain glycine residues, including the highly conserved glycine pair at E1 residues 415/416. SFV mutants with alanine substitutions for individual or all five glycine residues (5G/A) showed growth kinetics and fusion pH dependence similar to those of wild-type SFV. Mutants with increasing substitution of glycine residues showed an increasingly more stringent requirement for cholesterol during fusion. The 5G/A mutant showed decreased fusion kinetics and extent in fluorescent lipid mixing assays. TM domain glycine residues thus are not required for efficient SFV fusion or assembly but can cause subtle effects on the properties of membrane fusion.

  5. Behavior of peptides combining 1 alanine residue and 8 glycine residues on papain associated with structural fluctuations

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2011-12-01

    I investigated the behavior of the peptides combining 1 ALA residue and 8 GLY residues on papain associated with structural fluctuations via molecular dynamics and docking simulations. Although the chance of binding to sites near the active center of papain was reduced by replacing the GLY residue in 9GLY with ALA residue, binding stability was improved by the replacement. Furthermore, both the chance and binding stability were greatly affected by positioning of ALA residue in the peptides. Residue in peptides should be replaced in view of the balance between chance of binding to sites near active center and binding stability.

  6. Synchrotron x-ray photoemission study of soft x-ray processed ultrathin glycine-water ice films

    SciTech Connect

    Tzvetkov, George; Netzer, Falko P.

    2011-05-28

    Ultrathin glycine-water ice films have been prepared in ultrahigh vacuum by condensation of H{sub 2}O and glycine at 90 K on single crystalline alumina surfaces and processed by soft x-ray (610 eV) exposure for up to 60 min. The physicochemical changes in the films were monitored using synchrotron x-ray photoemission spectroscopy. Two films with different amounts of H{sub 2}O have been considered in order to evaluate the influence of the water ice content on the radiation-induced effects. The analysis of C1s, N1s, and O1s spectral regions together with the changes in the valence band spectra indicates that amino acid degradation occurs fast mainly via decarboxylation and deamination of pristine molecules. Enrichment of the x-ray exposed surfaces with fragments with carbon atoms without strong electronegative substituents (C-C and C-H) is documented as well. In the thinner glycine-water ice film (six layers of glycine + six layers of water) the 3D ice suffers strongly from the x-rays and is largely removed from the sample. The rate of photodecomposition of glycine in this film is about 30% higher than for glycine in the thicker film (6 layers of glycine + 60 layers of water). The photoemission results suggest that the destruction of amino acid molecules is caused by the direct interaction with the radiation and that no chemical attack of glycine by the species released by water radiolysis is detected.

  7. Effects of glycine and proline on the calcium activation properties of skinned muscle fibre segments from crayfish and rat.

    PubMed

    Powney, E L; West, J M; Stephenson, D G; Dooley, P C

    2003-01-01

    The effects of the polar amino acid glycine (20 mmol l(-1)) and the non-polar amino acid proline (20 mmol l(-1)) on Ca(2+)-activated contraction have been examined in four types of striated muscle fibres. Single fibres dissected from the claw muscle of a crustacean (long- and short-sarcomere) and the hindlimb muscles of the rat (slow-twitch from soleus and fast-twitch from extensor digitorum longus) were activated in matched solutions that either contained the amino acid ('test') or not ('control'). The steady-state force produced in these solutions was used to determine the relation between force production and pCa (-log10[Ca2+]). The results show that in the concentrations used, glycine and proline had only small effects on the maximum Ca(2+)-activated force, pCa corresponding to 10, 50 and 90% maximum force (pCa10, pCa50, pCa90, respectively) or on the slope of the force-pCa curves in the four different fibre types. The relative lack of effects of glycine and proline on contractile activation would confer a distinct physiological advantage to force production of muscle of Cherax, where the concentrations of glycine and proline vary considerably. Finally, the results show that glycine and proline may be useful to balance control solutions when the effects of other amino acids or zwitterions on contractile activation are examined. PMID:14677649

  8. GcsR, a TyrR-Like Enhancer-Binding Protein, Regulates Expression of the Glycine Cleavage System in Pseudomonas aeruginosa PAO1

    PubMed Central

    Sarwar, Zaara; Lundgren, Benjamin R.; Grassa, Michael T.; Wang, Michael X.; Gribble, Megan; Moffat, Jennifer F.

    2016-01-01

    ABSTRACT Glycine serves as a major source of single carbon units for biochemical reactions within bacterial cells. Utilization of glycine is tightly regulated and revolves around a key group of proteins known as the glycine cleavage system (GCS). Our lab previously identified the transcriptional regulator GcsR (PA2449) as being required for catabolism of glycine in the opportunistic pathogen Pseudomonas aeruginosa PAO1. In an effort to clarify and have an overall better understanding of the role of GcsR in glycine metabolism, a combination of transcriptome sequencing and electrophoretic mobility shift assays was used to identify target genes of this transcriptional regulator. It was found that GcsR binds to an 18-bp consensus sequence (TGTAACG-N4-CGTTCCG) upstream of the gcs2 operon, consisting of the gcvH2, gcvP2, glyA2, sdaA, and gcvT2 genes. The proteins encoded by these genes, namely, the GCS (GcvH2-GcvP2-GcvT2), serine hydroxymethyltransferase (GlyA2), and serine dehydratase (SdaA), form a metabolic pathway for the conversion of glycine into pyruvate, which can enter the central metabolism. GcsR activates transcription of the gcs2 operon in response to glycine. Interestingly, GcsR belongs to a family of transcriptional regulators known as TyrR-like enhancer-binding proteins (EBPs). Until this study, TyrR-like EBPs were only known to function in regulating aromatic amino acid metabolism. GcsR is the founding member of a new class of TyrR-like EBPs that function in the regulation of glycine metabolism. Indeed, homologs of GcsR and its target genes are present in almost all sequenced genomes of the Pseudomonadales order, suggesting that this genetic regulatory mechanism is a common theme for pseudomonads. IMPORTANCE Glycine is required for various cellular functions, including cell wall synthesis, protein synthesis, and the biosynthesis of several important metabolites. Regulating levels of glycine metabolism allows P. aeruginosa to maintain the metabolic flux

  9. Amino acid and fatty acid composition of follicular fluid as predictors of in-vitro embryo development.

    PubMed

    Sinclair, K D; Lunn, L A; Kwong, W Y; Wonnacott, K; Linforth, R S T; Craigon, J

    2008-06-01

    The value of using the amino acid and fatty acid composition of follicular fluid as predictors of embryo development was assessed in a bovine model of in-vitro maturation (IVM), IVF and blastocyst culture (IVC). A total of 445 cumulus-oocyte complexes (COC) aspirated from visually healthy follicles underwent IVM and IVF singly (n = 138) or in groups (n = 307). Of these COC, 349 cleaved (78%) following IVF and 112 went on to form blastocysts (32% of cleaved) following IVC. Culture method (singly or in groups) had no effect on development. In contrast to fatty acids, which had no predictive value, the amino acid composition of follicular fluid was associated with morphological assessments of COC quality and with post-fertilization development to the blastocyst stage. Principal component analysis identified two amino acids (i.e. alanine and glycine) that had the highest value for predicting early post-fertilization development. The predictive value of these two amino acids, in terms of the percentage of oocytes that cleaved following IVF, was greatest for COC with the poorest morphological grades but, with respect to blastocyst yields, was independent of morphological grade, and so may serve as a useful additional non-invasive measure of COC quality. PMID:18549697

  10. A rare case of glycine encephalopathy unveiled by valproate therapy.

    PubMed

    Subramanian, Velusamy; Kadiyala, Pramila; Hariharan, Praveen; Neeraj, E

    2015-01-01

    Glycine encephalopathy (GE) or nonketotic hyperglycinemia is an autosomal recessive disorder due to a primary defect in glycine cleavage enzyme system. It is characterized by elevated levels of glycine in plasma and cerebrospinal fluid usually presenting with seizures, hypotonia, and developmental delay. In our case, paradoxical increase in seizure frequency on starting sodium valproate led us to diagnose GE. PMID:26167219

  11. Determination of amino acids in Chinese rice wine by fourier transform near-infrared spectroscopy.

    PubMed

    Shen, Fei; Niu, Xiaoying; Yang, Danting; Ying, Yibin; Li, Bobin; Zhu, Geqing; Wu, Jian

    2010-09-01

    Chinese rice wine is abundant in amino acids. The possibility of quantitative detection of 16 free amino acids (aspartic acid, threonine, serine, glutamic acid, proline, glycine, alanine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, lysine, histidine, and arginine) in Chinese rice wine by Fourier transform near-infrared (NIR) spectroscopy was investigated for the first time in this study. A total of 98 samples from vintage 2007 rice wines with different aging times were analyzed by NIR spectroscopy in transmission mode. Calibration models were developed using partial least-squares regression (PLSR) with high-performance liquid chromatography (HPLC) by postcolumn derivatization and diode array detection as a reference method. To validate the calibration models, full cross (leave-one-out) validation was employed. The results showed that the calibration statistics were good (rcal>0.94) for all amino acids except proline, histidine, and arginine. The correlation coefficient in cross validation (rcv) was >0.81 for 12 amino acids. The residual predictive deviation (RPD) value obtained was >1.5 in all amino acids except proline and arginine, and it was >2.0 in 6 amino acids. The results obtained in this study indicated that NIR spectroscopy could be used as an easy, rapid, and novel tool to quantitatively predict free amino acids in Chinese rice wine without sophisticated methods. PMID:20707307

  12. Identification of Rotylenchulus reniformis resistant Glycine lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the Mid South. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen....

  13. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES... food additive glycine may be safely used for technological purposes in food in accordance with the following prescribed conditions: (a) The additive meets the specifications of the Food Chemicals Codex,...

  14. Engineering and characterization of fluorogenic glycine riboswitches

    PubMed Central

    Ketterer, Simon; Gladis, Lukas; Kozica, Adnan; Meier, Matthias

    2016-01-01

    A set of 12 fluorogenic glycine riboswitches with different thermodynamic and kinetic response properties was engineered. For the design of functional riboswitches, a three-part RNA approach was applied based on the idea of linking a RNA sensor, transmitter and actuator part together. For the RNA sensor and actuator part, we used the tandem glycine aptamer structure from Bacillus subtillis, and fluorogenic aptamer Spinach, respectively. To achieve optimal signal transduction from the sensor to the actuator, a riboswitch library with variable transmitter was screened with a microfluidic large-scale integration chip. This allowed us to establish the complete thermodynamic binding profiles of the riboswitch library. Glycine dissociation constants of the 12 strong fluorescence response riboswitches varied between 99.7 and 570 μM. Furthermore, the kinetic glycine binding (kon), and dissociation (koff) rates, and corresponding energy barriers of the 10 strongest fluorescence response riboswitches were determined with the same chip platform. kon and koff were in the order of 10−3s−1 and 10−2s−1, respectively. Conclusively, we demonstrate that systematic screening of synthetic and natural linked RNA parts with microfluidic chip technology is an effective approach to rapidly generate fluorogenic metabolite riboswitches with a broad range of biophysical response properties. PMID:27220466

  15. Engineering and characterization of fluorogenic glycine riboswitches.

    PubMed

    Ketterer, Simon; Gladis, Lukas; Kozica, Adnan; Meier, Matthias

    2016-07-01

    A set of 12 fluorogenic glycine riboswitches with different thermodynamic and kinetic response properties was engineered. For the design of functional riboswitches, a three-part RNA approach was applied based on the idea of linking a RNA sensor, transmitter and actuator part together. For the RNA sensor and actuator part, we used the tandem glycine aptamer structure from Bacillus subtillis, and fluorogenic aptamer Spinach, respectively. To achieve optimal signal transduction from the sensor to the actuator, a riboswitch library with variable transmitter was screened with a microfluidic large-scale integration chip. This allowed us to establish the complete thermodynamic binding profiles of the riboswitch library. Glycine dissociation constants of the 12 strong fluorescence response riboswitches varied between 99.7 and 570 μM. Furthermore, the kinetic glycine binding (k(on)), and dissociation (k(off)) rates, and corresponding energy barriers of the 10 strongest fluorescence response riboswitches were determined with the same chip platform. k(on) and k(off) were in the order of 10(-3)s(-1) and 10(-2)s(-1), respectively. Conclusively, we demonstrate that systematic screening of synthetic and natural linked RNA parts with microfluidic chip technology is an effective approach to rapidly generate fluorogenic metabolite riboswitches with a broad range of biophysical response properties. PMID:27220466

  16. Membrane topology of the electrogenic aspartate-alanine antiporter AspT of Tetragenococcus halophilus.

    PubMed

    Nanatani, Kei; Ohonishi, Fumito; Yoneyama, Hiroshi; Nakajima, Tasuku; Abe, Keietsu

    2005-03-01

    AspT is an electrogenic aspartate:alanine exchange protein that represents the vectorial component of a proton-motive metabolic cycle found in some strains of Tetragenococcus halophilus. AspT is the sole member of a new family, the Aspartate: Alanine Exchanger (AAE) family, in secondary transporters, according to the computational classification proposed by Saier et al. (http://www.biology.ucsd.edu/~msaier/transport/). We analyzed the topology of AspT biochemically, by using fusion methods in combination with alkaline phosphatase or beta-lactamase. These results suggested that AspT has a unique topology; 8 TMS, a large cytoplasmic loop (183 amino acids) between TMS5 and TMS6, and N- and C-termini that both face the periplasm. These results demonstrated a unique 2D-structure of AspT as the novel AAE family. PMID:15670744

  17. Chiral effects on helicity studied via the energy landscape of short (d, l)-alanine peptides

    NASA Astrophysics Data System (ADS)

    Neelamraju, Sridhar; Oakley, Mark T.; Johnston, Roy L.

    2015-10-01

    The homochirality of natural amino acids facilitates the formation of regular secondary structures such as α-helices and β-sheets. Here, we study the relationship between chirality and backbone structure for the example of hexa-alanine. The most stable stereoisomers are identified through global optimisation. Further, the energy landscape, a database of connected low-energy local minima and transition points, is constructed for various neutral and zwitterionic stereoisomers of hexa-alanine. Three order parameters for partial helicity are applied and metric disconnectivity graphs are presented with partial helicity as a metric. We also apply the Zimm-Bragg model to derive average partial helicities for Ace-(l-Ala)6-NHMe, Ace-(d-Ala-l-Ala)3-NHMe, and Ace-(l-Ala)3-(d-Ala)3-NHMe from the database of local minima and compare with previous studies.

  18. Unusual hydroxyl migration in the fragmentation of β-alanine dication in the gas phase.

    PubMed

    Piekarski, Dariusz Grzegorz; Delaunay, Rudy; Maclot, Sylvain; Adoui, Lamri; Martín, Fernando; Alcamí, Manuel; Huber, Bernd A; Rousseau, Patrick; Domaracka, Alicja; Díaz-Tendero, Sergio

    2015-07-14

    We present a combined experimental and theoretical study of the fragmentation of doubly positively charged β-alanine molecules in the gas phase. The dissociation of the produced dicationic molecules, induced by low-energy ion collisions, is analysed by coincidence mass spectrometric techniques; the coupling with ab initio molecular dynamics simulations allows rationalisation of the experimental observations. The present strategy gives deeper insights into the chemical mechanisms of multiply charged amino acids in the gas phase. In the case of the β-alanine dication, in addition to the expected Coulomb explosion and hydrogen migration processes, we have found evidence of hydroxyl-group migration, which leads to unusual fragmentation products, such as hydroxymethyl cation, and is necessary to explain some of the observed dominant channels. PMID:26035826

  19. The effects of boron on the electron paramagnetic resonance spectra of alanine irradiated with thermal neutrons

    SciTech Connect

    Ciesielski, B.; Wielopolski, L.

    1995-10-01

    The effects of boric acid admixture on the intensity and line structure of EPR spectra of free radicals produced in alanine by thermal neutrons are presented. The EPR signal enhancement, up to a factor of 40 depending on the boron concentration, is related to additional energy deposition in alanine crystals by the disintegration products resulting from the capture of a thermal neutron by boron, {sup 10}B(n,{alpha}){sup 7}Li. The changes in the shape of the EPR spectra observed by changing the microwave power are due to the differences in the microwave power saturation of the free radicals produced by a low-LET radiation and those produced by the high-LET components of the radiation after the neutron capture reaction. 27 refs., 4 figs., 2 tabs.

  20. A Novel Glycinate-based Body Wash

    PubMed Central

    Regan, Jamie; Ananthapadmanabhan, K.P.

    2013-01-01

    Objective: To assess the properties of a novel body wash containing the mild surfactant glycinate. Design: Biochemical and clinical assays. Setting: Research laboratories and clinical sites in the United States and Canada. Participants: Women 18 to 65 years of age (cleansing efficacy); male and female subjects 26 to 63 years of age with mild or moderate dryness and erythema (leg-controlled application test); subjects 5 to 65 years of age with mild-to-moderate eczema (eczema compatibility); and women 18 to 64 years of age (home use). Measurements: Assessments across studies included colorimetric dye exclusion to assess skin damage potential (corneosurfametry), efficacy of cosmetic product removal from skin, change from baseline in visual dryness, change from baseline in Eczema Area and Severity Index, and self-perceived eczema attributes and self-reported product preference. Results: The glycinate-based cleanser demonstrated mildness to skin components when evaluated in a corneosurfametry assay. Short-term use under exaggerated wash conditions in subjects with dryness scores <3 and erythema scores <2 (both on a 0-6 scale) indicated an initial reduction in visual dryness. In subjects with eczema, normal use resulted in significant improvements (p<0.05) at Week 4 compared with baseline in skin dryness (change from baseline = −0.73), rash (−0.56), itch (−0.927), tightness (−0.585), and all eczema (−0.756). The glycinate-based body wash removed 56 percent of a long-lasting cosmetic foundation from skin compared with less than 30 percent removed by two competitive products tested. The glycinate-based body wash was preferred over a competitive mild cleansing product overall. Conclusion: The patented glycinate-containing body wash demonstrated better product mildness and patient-preferred attributes and clinical benefits. PMID:23882306

  1. Glycine Betaine Biosynthesized from Glycine Provides an Osmolyte for Cell Growth and Spore Germination during Osmotic Stress in Myxococcus xanthus▿

    PubMed Central

    Kimura, Yoshio; Kawasaki, Shinji; Yoshimoto, Hinae; Takegawa, Kaoru

    2010-01-01

    Glycine sarcosine methyltransferase (Gsm) and sarcosine dimethylglycine methyltransferase (Sdm) catalyze glycine betaine synthesis from glycine. Disruption of the M. xanthus gsmA (MXAN 7068) or sdmA (MXAN 3190) gene, encoding Gsm or Sdm homologue proteins, respectively, generated mutants that exhibited a longer lag period of growth and delayed spore germination under osmostress. PMID:20023011

  2. Sorption of Cu(II) complexes with ligands tartrate, glycine and quadrol by chitosan.

    PubMed

    Gyliene, Ona; Binkiene, Rima; Butkiene, Rita

    2009-11-15

    The sorption by chitosan in Cu(II) solutions containing tartrate, glycine (amino acetic acid) and quadrol (N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine) as ligands has been investigated. The degree of sorbate removal strongly depends on pH. In solutions containing tartrate almost complete sorption of both Cu(II) and tartrate proceeds in mildly acidic and neutral solutions. The sorption of Cu(II) is also complete in alkaline solutions containing glycine; meanwhile a substantial sorption of glycine proceeds at pH approximately 6. The Cu(II) sorption in solutions containing quadrol is insignificant. Any sorption of quadrol does not proceed in the whole range of pH investigated. The investigations under equilibrium conditions showed that the Cu(II) sorption from tartrate containing solutions obeys Freundlich equation and in solutions containing glycine and quadrol it fits Langmuir equation. Supposedly, Cu(II) sorption onto chitosan proceeds with formation of amino complexes onto the surface of chitosan; the sorption of tartrate proceeds as electrostatic as well as with formation of amide bonds. Applying of electrolysis enables a complete removal of sorbed Cu(II) and ligands without changes in physical and chemical properties of chitosan. This is confirmed by sorption ability of regenerated chitosan, measurements of its molecular weight, the deacetylation degree and FT-IR spectra. PMID:19540041

  3. Bioinformatics analysis of the serine and glycine pathway in cancer cells

    PubMed Central

    Morello, Maria; Minieri, Marilena; Melino, Gerry; Amelio, Ivano

    2014-01-01

    Serine and glycine are amino acids that provide the essential precursors for the synthesis of proteins, nucleic acids and lipids. Employing 3 subsequent enzymes, phosphoglycerate dehydrogenase (PHGDH), phosphoserine phosphatase (PSPH), phosphoserine aminotransferase 1 (PSAT1), 3-phosphoglycerate from glycolysis can be converted in serine, which in turn can by converted in glycine by serine methyl transferase (SHMT). Besides proving precursors for macromolecules, serine/glycine biosynthesis is also required for the maintenance of cellular redox state. Therefore, this metabolic pathway has a pivotal role in proliferating cells, including cancer cells. In the last few years an emerging literature provides genetic and functional evidences that hyperactivation of serine/glycine biosynthetic pathway drives tumorigenesis. Here, we extend these observations performing a bioinformatics analysis using public cancer datasets. Our analysis highlighted the relevance of PHGDH and SHMT2 expression as prognostic factor for breast cancer, revealing a substantial ability of these enzymes to predict patient survival outcome. However analyzing patient datasets of lung cancer our analysis reveled that some other enzymes of the pathways, rather than PHGDH, might be associated to prognosis. Although these observations require further investigations they might suggest a selective requirement of some enzymes in specific cancer types, recommending more cautions in the development of novel translational opportunities and biomarker identification of human cancers. PMID:25436979

  4. Rapid Crystallization of L-Alanine on Engineered Surfaces using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization.

    PubMed

    Alabanza, Anginelle M; Pozharski, Edwin; Aslan, Kadir

    2012-01-01

    This study demonstrates the application of metal-assisted and microwave-accelerated evaporative crystallization (MA-MAEC) technique to rapid crystallization of L-alanine on surface engineered silver nanostructures. In this regard, silver island films (SIFs) were modified with hexamethylenediamine (HMA), 1-undecanethiol (UDET), and 11-mercaptoundecanoic acid (MUDA), which introduced -NH(2), -CH(3) and -COOH functional groups to SIFs, respectively. L-Alanine was crystallized on these engineered surfaces and blank SIFs at room temperature and using MA-MAEC technique. Significant improvements in crystal size, shape, and quality were observed on HMA-, MUDA- and UDET-modified SIFs at room temperature (crystallization time = 144, 40 and 147 min, respectively) as compared to those crystals grown on blank SIFs. Using the MA-MAEC technique, the crystallization time of L-alanine on engineered surfaces were reduced to 17 sec for microwave power level 10 (i.e., duty cycle 100%) and 7 min for microwave power level 1 (duty cycle 10%). Raman spectroscopy and powder x-ray diffraction (XRD) measurements showed that L-Alanine crystals grown on engineered surfaces using MA-MAEC technique had identical characteristic peaks of L-alanine crystals grown using traditional evaporative crystallization. PMID:22267957

  5. REVERSAL OF d-CYCLOSERINE INHIBITION OF BACTERIAL GROWTH BY ALANINE

    PubMed Central

    Zygmunt, Walter A.

    1962-01-01

    Zygmunt, Walter A. (Mead Johnson & Co., Evansville, Ind.). Reversal of d-cycloserine inhibition of bacterial growth by alanine. J. Bacteriol. 84:154–156. 1962.—Reversal of the antibacterial activity of d-4-amino-3-isoxazolidone by alanine in bacterial cultures actively growing on chemically defined media was compared in cultures requiring exogenous alanine and those capable of its synthesis. dl-Alanine was the most effective reversal agent in Pediococcus cerevisiae, an alanine-requiring organism, and d-alanine was effective in Escherichia coli and Staphylococcus aureus, organisms synthesizing alanine. With all three cultures, l-alanine was the least effective reversal agent. PMID:16561951

  6. Metabolomics Analysis Identifies D-Alanine-D-alanine Ligase as the Primary Lethal Target of D-cycloserine in Mycobacteria

    PubMed Central

    Halouska, Steven; Fenton, Robert J.; Zinniel, Denise K.; Marshall, Darrell D.; Barletta, Raúl G.; Powers, Robert

    2014-01-01

    D-cycloserine is an effective second line antibiotic used as a last resort to treat multi (MDR)- and extensively (XDR)- drug resistant strains of Mycobacterium tuberculosis. D-cycloserine interferes with the formation of peptidoglycan biosynthesis by competitive inhibition of Alanine racemase (Alr) and D-Alanine-D-alanine ligase (Ddl). Although, the two enzymes are known to be inhibited, the in vivo lethal target is still unknown. Our NMR metabolomics work has revealed that Ddl is the primary target of DCS, as cell growth is inhibited when the production of D-alanyl-D-alanine is halted. It is shown that inhibition of Alr may contribute indirectly by lowering the levels of D-alanine thus allowing DCS to outcompete D-alanine for Ddl binding. The NMR data also supports the possibility of a transamination reaction to produce D-alanine from pyruvate and glutamate, thereby bypassing Alr inhibition. Furthermore, the inhibition of peptidoglycan synthesis results in a cascading effect on cellular metabolism as there is a shift toward the catabolic routes to compensate for accumulation of peptidoglycan precursors. PMID:24303782

  7. Thermal formation of methylammonium methylcarbamate in interstellar ice analogs: a glycine salt precursor under VUV irradiation

    NASA Astrophysics Data System (ADS)

    Duvernay, Fabrice; Borget, Fabien; Bossa, Jean-Baptiste; Theule, Patrice; Dhendecourt, Louis; Chiavassa, Thierry

    Dust grains in the interstellar medium (ISM) play an important role in dense molecular clouds chemistry of providing a surface (catalyst) upon which atoms and molecules can freeze out, forming icy mantles. Dense molecular clouds are characterized by low temperature (10 -50 K) and represent the birth sites of stars. After a gravitationnal breakdown, a part of the dense molecular cloud collapses toward the formation of star and subsequently a protoplanetary disk from which planets, asteroids and comets will appear. During this evolution, interstellar or-ganic material inside ices undergoes different range of chemical alterations (thermal cycling process, ultraviolet photons, electron scattering and cosmic rays irradiation) hence increasing the molecular complexity before their incorporation inside precometary ices. To date, it is supposed that comets could have delivered to the early Earth the organic materials essential to a prebiotic chemistry, one of the prerequisites toward the origin of living systems. The for-mation of prebiotical molecules such as the simplest amino acids (glycine) is proposed in this current study mainly based on laboratory experiments simulating the chemistry occuring on ices within protostellar environments. Infrared spectroscopy and mass spectroscopy are used to monitor the thermal formation of glycine isomer form: the methylammonium methylcarbamate [CH3NH3+][CH3NHCOO-] in interstellar ice analogs made up of two astrophysical relevant molecules: carbon dioxide (CO2) and methylamine (CH3NH2). Using infrared spectroscopy, we study the photochemical behaviour of a pure sample of methylammonium methylcarbamate under vacuum ultraviolet (VUV) field. We show that a glycine isomer salt could readily enter into the composition of ices in colder region of protostellar environments. Upon ultraviolet irra-diation, this latter can undergo an isomerization process induced by photons yielding a glycine salt: the methylammonium glycinate [CH3NH3+][NH2CH2

  8. Translocation of Radioactive Carbon after the Application of 14C-Alanine and 14CO2 to Sunflower Leaves 1

    PubMed Central

    Chopowick, R. E.; Forward, D. F.

    1974-01-01

    14C-(UL)-l-Alanine was applied to the surface of mature leaves at the second node of sunflower (Helianthus annuus L. cv Commander) plants, under illumination. The alanine was absorbed during a 4-hour period, and some of it was metabolized by the absorbing tissue. After a lag period of about 15 minutes from first application, distribution of 14C through the plant proceeded in much the same pattern as when 14CO2 is assimilated by similar leaves. Most, if not all, of the 14C exported from the absorbing regions was in sucrose. Only minute amounts appeared in alanine or other amino acids in surrounding parts of the leaf blade or in the petiole, although these were strongly labeled in the tissue absorbing 14C-alanine. When 14CO2 was supplied for 15 minutes to leaves of different ages, amino acids were lightly labeled in the leaf blade. Mature green leaves exported only sucrose. Yellowing leaves on 60-day-old plants exported a variety of substances including amino acids. PMID:16658645

  9. Activation of glycine receptor phase-shifts the circadian rhythm in neuronal activity in the mouse suprachiasmatic nucleus

    PubMed Central

    Mordel, Jérôme; Karnas, Diana; Inyushkin, Alexey; Challet, Etienne; Pévet, Paul; Meissl, Hilmar

    2011-01-01

    Abstract In mammals, the master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is composed of numerous synchronized oscillating cells that drive daily behavioural and physiological processes. Several entrainment pathways, afferent inputs to the SCN with their neurotransmitter and neuromodulator systems, can reset the circadian system regularly and also modulate neuronal activity within the SCN. In the present study, we investigated the function of the inhibitory neurotransmitter glycine on neuronal activity in the mouse SCN and on resetting of the circadian clock. The effects of glycine on the electrical activity of SCN cells from C57Bl/6 mice were studied either by patch-clamp recordings from acute brain slices or by long-term recordings from organotypic brain slices using multi-microelectrode arrays (MEA). Voltage-clamp recordings confirmed the existence of glycine-induced, chloride-selective currents in SCN neurons. These currents were reversibly suppressed by strychnine, phenylbenzene ω-phosphono-α-amino acid (PMBA) or ginkgolide B, selective blockers of glycine receptors (GlyRs). Long-term recordings of the spontaneous activity of SCN neurons revealed that glycine application induces a phase advance during the subjective day and a phase delay during the early subjective night. Both effects were suppressed by strychnine or by PMBA. These results suggest that glycine is able to modulate circadian activity by acting directly on its specific receptors in SCN neurons. PMID:21486797

  10. Activation of glycine receptor phase-shifts the circadian rhythm in neuronal activity in the mouse suprachiasmatic nucleus.

    PubMed

    Mordel, Jérôme; Karnas, Diana; Inyushkin, Alexey; Challet, Etienne; Pévet, Paul; Meissl, Hilmar

    2011-05-01

    In mammals, the master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is composed of numerous synchronized oscillating cells that drive daily behavioural and physiological processes. Several entrainment pathways, afferent inputs to the SCN with their neurotransmitter and neuromodulator systems, can reset the circadian system regularly and also modulate neuronal activity within the SCN. In the present study, we investigated the function of the inhibitory neurotransmitter glycine on neuronal activity in the mouse SCN and on resetting of the circadian clock. The effects of glycine on the electrical activity of SCN cells from C57Bl/6 mice were studied either by patch-clamp recordings from acute brain slices or by long-term recordings from organotypic brain slices using multi-microelectrode arrays(MEA). Voltage-clamp recordings confirmed the existence of glycine-induced, chloride-selective currents in SCN neurons. These currents were reversibly suppressed by strychnine, phenylbenzeneω-phosphono-α-amino acid (PMBA) or ginkgolide B, selective blockers of glycine receptors(GlyRs). Long-term recordings of the spontaneous activity of SCN neurons revealed that glycine application induces a phase advance during the subjective day and a phase delay during the early subjective night. Both effects were suppressed by strychnine or by PMBA. These results suggest that glycine is able to modulate circadian activity by acting directly on its specific receptors in SCN neurons. PMID:21486797

  11. Plasma amino-acid patterns in liver disease.

    PubMed Central

    Morgan, M Y; Marshall, A W; Milsom, J P; Sherlock, S

    1982-01-01

    Plasma amino-acid concentrations were measured in 167 patients with liver disease of varying aetiology and severity, all free of encephalopathy, and the results compared with those in 57 control subjects matched for age and sex. In the four groups of patients with chronic liver disease (26 patients with chronic active hepatitis, 23 with primary biliary cirrhosis, 11 with cryptogenic cirrhosis, and 48 with alcoholic hepatitis +/- cirrhosis) plasma concentrations of methionine were significantly increased, while concentrations of the three branched chain amino-acids were significantly reduced. In the first three groups of patients plasma concentrations of aspartate, serine, and one or both of the aromatic amino-acids tyrosine and phenylalanine were also significantly increased, while in the patients with alcoholic hepatitis +/- cirrhosis plasma concentrations of glycine, alanine, and phenylalanine were significantly reduced. In the three groups of patients with minimal, potentially reversible liver disease (31 patients with alcoholic fatty liver, 10 with viral hepatitis, and 18 with biliary disease) plasma concentrations of proline and the three branched chain amino-acids were significantly reduced. Patients with alcoholic fatty liver also showed significantly reduced plasma phenylalanine values. Most changes in plasma amino-acid concentrations in patients with chronic liver disease may be explained on the basis of impaired hepatic function, portal-systemic shunting of blood, and hyperinsulinaemia and hyperglucagonaemia. The changes in patients with minimal liver disease are less easily explained. PMID:7076013

  12. Potentiometric investigation of the effect of the pH on the ionic transfer of some amino acids at the interface between two immiscible electrolyte solutions.

    PubMed

    Spătaru, Tanta; Spătaru, Nicolae; Bonciocat, Nicolae; Luca, Constantin

    2004-04-01

    The effect of the pH on the ionic transfer of glycine and beta-alanine at the interface between two immiscible electrolyte solutions (ITIES) was investigated by a simple potentiometric method. Upon addition of small amounts of solution containing the investigated amino acids, a variation of the potential drop across the interface was recorded, which was found to be pH-dependent. This behavior was explained in terms of a preferential orientation of the amino acid molecules at the ITIES, induced by the different lipoficility of the functional groups. The results enabled the measurement of this voltage variation to be used as the basis for a simple and rapid method for determining the isoelectric point of the investigated compounds. The agreement between the pH(i) values thus estimated and those reported in the literature suggests the possibility of using the method for the interpretation of processes occurring at the level of biological membranes. PMID:14990327

  13. Polymers from amino acids: development of dual ester-urethane melt condensation approach and mechanistic aspects.

    PubMed

    Anantharaj, S; Jayakannan, M

    2012-08-13

    A new dual ester-urethane melt condensation methodology for biological monomers-amino acids was developed to synthesize new classes of thermoplastic polymers under eco-friendly and solvent-free polymerization approach. Naturally abundant L-amino acids were converted into dual functional ester-urethane monomers by tailor-made synthetic approach. Direct polycondensation of these amino acid monomers with commercial diols under melt condition produced high molecular weight poly(ester-urethane)s. The occurrence of the dual ester-urethane process and the structure of the new poly(ester-urethane)s were confirmed by (1)H and (13)C NMR. The new dual ester-urethane condensation approach was demonstrated for variety of amino acids: glycine, β-alanine, L-alanine, L-leucine, L-valine, and L-phenylalanine. MALDI-TOF-MS end group analysis confirmed that the amino acid monomers were thermally stable under the melt polymerization condition. The mechanism of melt process and the kinetics of the polycondensation were studied by model reactions and it was found that the amino acid monomer was very special in the sense that their ester and urethane functionality could be selectively reacted by polymerization temperature or catalyst. The new polymers were self-organized as β-sheet in aqueous or organic solvents and their thermal properties such as glass transition temperature and crystallinity could be readily varied using different l-amino acid monomers or diols in the feed. Thus, the current investigation opens up new platform of research activates for making thermally stable and renewable engineering thermoplastics from natural resource amino acids. PMID:22713137

  14. Monthly changes of glycogen, lipid and free amino acid of oyster

    NASA Astrophysics Data System (ADS)

    Zhicui, Zhang; Changhu, Xue; Xin, Gao; Zhaojie, Li; Qi, Wang

    2006-07-01

    Monthly difference of the chemical composition of oyster cultured along the eastern coast of Shandong Province was analyzed. The components analyzed included glycogen, fatty acid and free amino acid (FAA). The content of glycogen was high in January and March (2.89 and 2.82 g(100g)-1 on average, respectively) and low in October (2.07 g(100g)-1 on avarage). The low content of neutral lipids in October reflected a relatively poor nutritional value of oyster (1.42 g(100 g)-1 on average). The main fatty acids of oyster were palmitic acid (16:0), oleic acid (18:1), eicosapentaenoic acid (EPA, 20: 5ω-3) and docosahexaenoic acid (DHA, 22:6ω-3). The major FAAs of oyster were Taurine, Glutamicacid, Glycin, Alanine, Arginine and Proline. Taurine was the most abundant FAA with its content ranging from 603 mg (100g)-1 to 1139 mg(100g)-1. The high contents of glycogen, polyunsaturated fatty acid and FAA showed that oyster cultured along the eastern coast of Shandong Province was nutritionally good in January and March.

  15. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort

    PubMed Central

    Schmidt, J A; Rinaldi, S; Scalbert, A; Ferrari, P; Achaintre, D; Gunter, M J; Appleby, P N; Key, T J; Travis, R C

    2016-01-01

    Background/Objectives: We aimed to investigate the differences in plasma concentrations and in intakes of amino acids between male meat-eaters, fish-eaters, vegetarians and vegans in the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. Subjects/Methods: This cross-sectional analysis included 392 men, aged 30–49 years. Plasma amino acid concentrations were measured with a targeted metabolomic approach using mass spectrometry, and dietary intake was assessed using a food frequency questionnaire. Differences between diet groups in mean plasma concentrations and intakes of amino acids were examined using analysis of variance, controlling for potential confounding factors and multiple testing. Results: In plasma, concentrations of 6 out of 21 amino acids varied significantly by diet group, with differences of −13% to +16% between meat-eaters and vegans. Concentrations of methionine, tryptophan and tyrosine were highest in fish-eaters and vegetarians, followed by meat-eaters, and lowest in vegans. A broadly similar pattern was seen for lysine, whereas alanine concentration was highest in fish-eaters and lowest in meat-eaters. For glycine, vegans had the highest concentration and meat-eaters the lowest. Intakes of all 18 dietary amino acids differed by diet group; for the majority of these, intake was highest in meat-eaters followed by fish-eaters, then vegetarians and lowest in vegans (up to 47% lower than in meat-eaters). Conclusions: Men belonging to different habitual diet groups have significantly different plasma concentrations of lysine, methionine, tryptophan, alanine, glycine and tyrosine. However, the differences in plasma concentrations were less marked than and did not necessarily mirror those seen for amino acid intakes. PMID:26395436

  16. Amino Acid Synthesis in Photosynthesizing Spinach Cells 1

    PubMed Central

    Larsen, Peder Olesen; Cornwell, Karen L.; Gee, Sherry L.; Bassham, James A.

    1981-01-01

    Isolated cells from leaves of Spinacia oleracea have been maintained in a state capable of high rates of photosynthetic CO2 fixation for more than 60 hours. The incorporation of 14CO2 under saturating CO2 conditions into carbohydrates, carboxylic acids, and amino acids, and the effect of ammonia on this incorporation have been studied. Total incorporation, specific radioactivity, and pool size have been determined as a function of time for most of the protein amino acids and for γ-aminobutyric acid. The measurements of specific radio-activities and of the approaches to 14C “saturation” of some amino acids indicate the presence and relative sizes of metabolically active and passive pools of these amino acids. Added ammonia decreased carbon fixation into carbohydrates and increased fixation into carboxylic acids and amino acids. Different amino acids were, however, affected in different and highly specific ways. Ammonia caused large stimulatory effects in incorporation of 14C into glutamine (a factor of 21), aspartate, asparagine, valine, alanine, arginine, and histidine. No effect or slight decreases were seen in glycine, serine, phenylalanine, and tyrosine labeling. In the case of glutamate, 14C labeling decreased, but specific radioactivity increased. The production of labeled γ-aminobutyric acid was virtually stopped by ammonia. The results indicate that added ammonia stimulates the reactions mediated by pyruvate kinase and phosphoenolpyruvate carboxylase, as seen with other plant systems. The data on the effects of added ammonia on total labeling, pool sizes, and specific radioactivities of several amino acids provides a number of indications about the intracellular sites of principal synthesis from carbon skeletons of these amino acids and the selective nature of effects of increased intracellular ammonia concentration on such synthesis. PMID:16661904

  17. STRUCTURES AND PHYSICOCHEMICAL PROPERTIES OF STARCH FROM IMMATURE SEEDS OF SOYBEAN VARIETIES (GLYCINE MAX (L.) MERR.) EXHIBITING NORMAL, LOW-LINOLENIC OR LOW-SATURATED FATTY ACID OIL PROFILES AT MATURITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean variety exhibiting at maturity, normal (NM), low-linolenic (LL) or low-saturate (LS) fatty acid seed oil composition had starch structure and functional properties studied from seeds collected 20 days prior to harvest. Soybean starch had small granules (0.4-4.5 micrometers diameter), and CB...

  18. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids.

    PubMed

    Zhang, Jianmin; Zhang, Suojiang; Dong, Kun; Zhang, Yanqiang; Shen, Youqing; Lv, Xingmei

    2006-05-15

    A new type of "task specific ionic liquid", tetrabutylphosphonium amino acid [P(C4)4][AA], was synthesized by the reaction of tetrabutylphosphonium hydroxide [P(C4)4][OH] with amino acids, including glycine, L-alanine, L-beta-alanine, L-serine, and L-lysine. The liquids produced were characterized by NMR, IR spectroscopies, and elemental analysis, and their thermal decomposition temperature, glass transition temperature, electrical conductivity, density, and viscosity were recorded in detail. The [P(C4)4][AA] supported on porous silica gel effected fast and reversible CO2 absorption when compared with bubbling CO2 into the bulk of the ionic liquid. No changes in absorption capacity and kinetics were found after four cycles of absorption/desorption. The CO2 absorption capacity at equilibrium was 50 mol % of the ionic liquids. In the presence of water (1 wt %), the ionic liquids could absorb equimolar amounts of CO2. The CO2 absorption mechanisms of the ionic liquids with and without water were different. PMID:16528787

  19. Changes in intramuscular amino acid levels in submaximally exercised horses - a pilot study.

    PubMed

    van den Hoven, R; Bauer, A; Hackl, S; Zickl, M; Spona, J; Zentek, J

    2010-08-01

    The time-dependent changes in intramuscular amino acid (AA) levels caused by exercise and by feeding a protein/AA supplement were analysed in nine horses. Horses were submitted to a total of four standardized exercise tests (SETs). Amino acid concentrations were determined prior to, immediately after, 4 and 18 h after exercise. The experiment was subdivided into two consecutive periods of 3 weeks. In each period two SETs were performed. In the second period, horses were given a protein/AA supplement within 1 h after exercise. Significant changes in mean plasma AA levels similar to previous studies were noted to be time-dependent and to be associated with feeding the supplement. The intramuscular concentrations of the free AA in relation to pre-exercise levels showed significant time-dependent changes for alanine, asparagine, aspartate, citrulline, glutamine, glycine, isoleucine, leucine, methionine, serine, taurine, threonine, tyrosine and valine. Feeding the supplement significantly increased the 4 h post-exercise intramuscular concentration of alanine, isoleucine, methionine and tyrosine. At 18 h after exercise, apart from isoleucine and methionine, levels were still increased and also those of asparagine, histidine and valine in relation to none treatment. Hence, it was concluded that AA mixtures administered orally to horses within 1 h after exercise increased intramuscular AA pool. PMID:19663973

  20. Structure and reaction mechanism of L-arginine:glycine amidinotransferase.

    PubMed

    Humm, A; Fritsche, E; Steinbacher, S

    1997-01-01

    L-Arginine:glycine amidinotransferase (AT) catalyzes the committed step in creatine biosynthesis by formation of guanidinoacetic acid, the direct precursor of creatine. The X-ray structure of the human enzyme shows a novel fold with fivefold pseudosymmetry of beta beta alphabeta-modules. These modules enclose the active site compartment of the basket-like structure. The active site of AT lies at the bottom of a very narrow channel and contains a catalytic triad with the residues Cys-His-Asp. The transamidination reaction follows a ping-pong mechanism and is accompanied by large conformational changes. During catalysis the amidino group is covalently attached to the active site cysteine to give an amidino-cysteine intermediate. PMID:9165070

  1. Studies on Dyeing Process Variables for Salt Free Reactive Dyeing of Glycine Modified Cationized Cotton Muslin Fabric

    NASA Astrophysics Data System (ADS)

    Samanta, Ashis Kumar; Kar, Tapas Ranjan; Mukhopadhyay, Asis; Shome, Debashis; Konar, Adwaita

    2015-04-01

    Bleached cotton muslin fabric with or without pre-oxidized with NaIO4 (oxy-cotton) was chemically modified with glycine (amino acid) by pad dry calendar process to investigate the changes in textile properties and its dyeability with reactive dye. This glycine modified cotton incorporates new functional groups producing -NH3 + or -C=NH+ -ion (cationic groups) in acid bath to obtain cationized cotton making it amenable to a newer route of salt free reactive dyeing in acid bath. In the present work the process variables of reactive dyeing in the salt free acid bath for dyeing of amine (glycine) modified cationized cotton were studied and optimized. The present study also includes thorough investigation of changes in important textile related properties and dyeability with reactive dye after such chemical modifications. Between oxidized and unoxidized cotton muslin fabric, unoxidized cotton fabric shows better reactive dye uptake in both conventional alkaline bath dyeing and nonconventional salt free acid bath dyeing particularly for high exhaustion class of reactive dye with acceptable level of colour fastness and overall balance of other textile related properties. Moreover, application of dye fixing agent further improves surface colour depth (K/S) of the glycine treated cotton fabric for HE brand of reactive dyes. Corresponding reaction mechanisms for such modifications were supported by FTIR spectroscopy. Finally unoxidized cotton and pre-oxidized cotton further treated with glycine (amino acid) provide a new route of acid bath salt free reactive dyeing showing much higher dye uptake and higher degree of surface cover with amino acid residue anchored to modified cotton.

  2. Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters

    PubMed Central

    Bröer, Stefan; Bailey, Charles G.; Kowalczuk, Sonja; Ng, Cynthia; Vanslambrouck, Jessica M.; Rodgers, Helen; Auray-Blais, Christiane; Cavanaugh, Juleen A.; Bröer, Angelika; Rasko, John E.J.

    2008-01-01

    Iminoglycinuria (IG) is an autosomal recessive abnormality of renal transport of glycine and the imino acids proline and hydroxyproline, but the specific genetic defect(s) have not been determined. Similarly, although the related disorder hyperglycinuria (HG) without iminoaciduria has been attributed to heterozygosity of a putative defective glycine, proline, and hydroxyproline transporter, confirming the underlying genetic defect(s) has been difficult. Here we applied a candidate gene sequencing approach in 7 families first identified through newborn IG screening programs. Both inheritance and functional studies identified the gene encoding the proton amino acid transporter SLC36A2 (PAT2) as the major gene responsible for IG in these families, and its inheritance was consistent with a classical semidominant pattern in which 2 inherited nonfunctional alleles conferred the IG phenotype, while 1 nonfunctional allele was sufficient to confer the HG phenotype. Mutations in SLC36A2 that retained residual transport activity resulted in the IG phenotype when combined with mutations in the gene encoding the imino acid transporter SLC6A20 (IMINO). Additional mutations were identified in the genes encoding the putative glycine transporter SLC6A18 (XT2) and the neutral amino acid transporter SLC6A19 (B0AT1) in families with either IG or HG, suggesting that mutations in the genes encoding these transporters may also contribute to these phenotypes. In summary, although recognized as apparently simple Mendelian disorders, IG and HG exhibit complex molecular explanations depending on a major gene and accompanying modifier genes. PMID:19033659

  3. Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine

    SciTech Connect

    Uhlenbusch, I.; Sahm, H.; Sprenger, G.A. )

    1991-05-01

    Gene alaD for L-alanine dehydrogenase from Bacillus sphaericus was cloned and introduced into Z. mobilis. Under the control of the strong promoter of the pyruvate decarboxylase (pdc) gene, the enzyme was expressed up to a specific activity of nearly 1 {mu}mol {center dot} min{sup {minus}1} {center dot} mg of protein{sup {minus}1} in recombinant cells. As a result of this high L-alanine dehydrogenase activity, growing cells excreted up to 10 mmol of alanine per 280 mmol of glucose utilized into a mineral salts medium. By the addition of 85 mM NH{sub 4}{sup +} to the medium, growth of the recombinant cells stopped, and up to 41 mmol of alanine was secreted. As alanine dehydrogenase competed with pyruvate decarboxylase (PDC) for the same substrate (pyruvate), PDC activity was reduced by starvation for the essential PDC cofactor thiamine PP{sub i}. A thiamine auxotrophy mutant of Z. mobilis which carried the alaD gene was starved for 40 h in glucose-supplemented mineral salts medium and then shifted to mineral salts medium with 85 mM NH {sub 4}{sup +} and 280 mmol of glucose. The recombinants excreted up to 84 mmol of alanine over 25 h. Alanine excretion proceeded at an initial velocity of 238 nmol {center dot} min{sup {minus}1} {center dot} mg(dry weight){sup {minus}1}. Despite this high activity, the excretion rate seemed to be a limiting factor, as the intracellular concentration of alanine was as high as 260 mM at the beginning of the excretion phase and decreased to 80 to 90 mM over 24 h.

  4. Dicationic Surfactants with Glycine Counter Ions for Oligonucleotide Transportation.

    PubMed

    Pietralik, Zuzanna; Skrzypczak, Andrzej; Kozak, Maciej

    2016-08-01

    Gemini surfactants are good candidates to bind, protect, and deliver nucleic acids. Herein, the concept of amino acids (namely glycine) as counter ions of gemini surfactants for gene therapy application was explored. This study was conducted on DNA and RNA oligomers and two quaternary bis-imidazolium salts, having 2,5-dioxahexane and 2,8-dioxanonane spacer groups. The toxicity level of surfactants was assessed by an MTT assay, and their ability to bind nucleic acids was tested through electrophoresis. The nucleic acid conformation was established based on circular dichroism and infrared spectroscopic analyses. The structures of the formed complexes were characterized by small-angle scattering of synchrotron radiation. Both studied surfactants appear to be suitable for gene therapy; however, although they vary by only three methylene groups in the spacer, they differ in binding ability and toxicity. The tested oligonucleotides maintained their native conformations upon surfactant addition and the studied lipoplexes formed a variety of structures. In systems based on a 2,5-dioxahexane spacer, a hexagonal phase was observed for DNA-surfactant complexes and a micellar phase was dominant with RNA. For the surfactant with a 2,8-dioxanonane spacer group, the primitive cubic phase prevailed. PMID:27214208

  5. A working hypothesis on the interdependent genesis of nucleotide bases, protein amino acids, and primitive genetic code

    NASA Astrophysics Data System (ADS)

    Egami, Fujio

    1981-09-01

    In the course of experimental approach to the chemical evolution in the primeval sea, we have found that the main products from formaldehyde and hydroxylamine are glycine, alanine, serine, aspartic acid etc., and the products from glycine and formaldehyde are serine and aspartic acid. Guanine is found in the two-letter genetic codons of all these amino acids. Based u